WorldWideScience

Sample records for auditory discrimination learning

  1. Selective increase of auditory cortico-striatal coherence during auditory-cued Go/NoGo discrimination learning.

    Directory of Open Access Journals (Sweden)

    Andreas L. Schulz

    2016-01-01

    Full Text Available Goal directed behavior and associated learning processes are tightly linked to neuronal activity in the ventral striatum. Mechanisms that integrate task relevant sensory information into striatal processing during decision making and learning are implicitly assumed in current reinforcementmodels, yet they are still weakly understood. To identify the functional activation of cortico-striatal subpopulations of connections during auditory discrimination learning, we trained Mongolian gerbils in a two-way active avoidance task in a shuttlebox to discriminate between falling and rising frequency modulated tones with identical spectral properties. We assessed functional coupling by analyzing the field-field coherence between the auditory cortex and the ventral striatum of animals performing the task. During the course of training, we observed a selective increase of functionalcoupling during Go-stimulus presentations. These results suggest that the auditory cortex functionally interacts with the ventral striatum during auditory learning and that the strengthening of these functional connections is selectively goal-directed.

  2. Dopamine modulates memory consolidation of discrimination learning in the auditory cortex.

    Science.gov (United States)

    Schicknick, Horst; Reichenbach, Nicole; Smalla, Karl-Heinz; Scheich, Henning; Gundelfinger, Eckart D; Tischmeyer, Wolfgang

    2012-03-01

    In Mongolian gerbils, the auditory cortex is critical for discriminating rising vs. falling frequency-modulated tones. Based on our previous studies, we hypothesized that dopaminergic inputs to the auditory cortex during and shortly after acquisition of the discrimination strategy control long-term memory formation. To test this hypothesis, we studied frequency-modulated tone discrimination learning of gerbils in a shuttle box GO/NO-GO procedure following differential treatments. (i) Pre-exposure of gerbils to the frequency-modulated tones at 1 day before the first discrimination training session severely impaired the accuracy of the discrimination acquired in that session during the initial trials of a second training session, performed 1 day later. (ii) Local injection of the D1/D5 dopamine receptor antagonist SCH-23390 into the auditory cortex after task acquisition caused a discrimination deficit of similar extent and time course as with pre-exposure. This effect was dependent on the dose and time point of injection. (iii) Injection of the D1/D5 dopamine receptor agonist SKF-38393 into the auditory cortex after retraining caused a further discrimination improvement at the beginning of subsequent sessions. All three treatments, which supposedly interfered with dopamine signalling during conditioning and/or retraining, had a substantial impact on the dynamics of the discrimination performance particularly at the beginning of subsequent training sessions. These findings suggest that auditory-cortical dopamine activity after acquisition of a discrimination of complex sounds and after retrieval of weak frequency-modulated tone discrimination memory further improves memory consolidation, i.e. the correct association of two sounds with their respective GO/NO-GO meaning, in support of future memory recall. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  3. Learning Auditory Discrimination with Computer-Assisted Instruction: A Comparison of Two Different Performance Objectives.

    Science.gov (United States)

    Steinhaus, Kurt A.

    A 12-week study of two groups of 14 college freshmen music majors was conducted to determine which group demonstrated greater achievement in learning auditory discrimination using computer-assisted instruction (CAI). The method employed was a pre-/post-test experimental design using subjects randomly assigned to a control group or an experimental…

  4. Discrimination of schizophrenia auditory hallucinators by machine learning of resting-state functional MRI.

    Science.gov (United States)

    Chyzhyk, Darya; Graña, Manuel; Öngür, Döst; Shinn, Ann K

    2015-05-01

    Auditory hallucinations (AH) are a symptom that is most often associated with schizophrenia, but patients with other neuropsychiatric conditions, and even a small percentage of healthy individuals, may also experience AH. Elucidating the neural mechanisms underlying AH in schizophrenia may offer insight into the pathophysiology associated with AH more broadly across multiple neuropsychiatric disease conditions. In this paper, we address the problem of classifying schizophrenia patients with and without a history of AH, and healthy control (HC) subjects. To this end, we performed feature extraction from resting state functional magnetic resonance imaging (rsfMRI) data and applied machine learning classifiers, testing two kinds of neuroimaging features: (a) functional connectivity (FC) measures computed by lattice auto-associative memories (LAAM), and (b) local activity (LA) measures, including regional homogeneity (ReHo) and fractional amplitude of low frequency fluctuations (fALFF). We show that it is possible to perform classification within each pair of subject groups with high accuracy. Discrimination between patients with and without lifetime AH was highest, while discrimination between schizophrenia patients and HC participants was worst, suggesting that classification according to the symptom dimension of AH may be more valid than discrimination on the basis of traditional diagnostic categories. FC measures seeded in right Heschl's gyrus (RHG) consistently showed stronger discriminative power than those seeded in left Heschl's gyrus (LHG), a finding that appears to support AH models focusing on right hemisphere abnormalities. The cortical brain localizations derived from the features with strong classification performance are consistent with proposed AH models, and include left inferior frontal gyrus (IFG), parahippocampal gyri, the cingulate cortex, as well as several temporal and prefrontal cortical brain regions. Overall, the observed findings suggest that

  5. Fast learning of simple perceptual discriminations reduces brain activation in working memory and in high-level auditory regions.

    Science.gov (United States)

    Daikhin, Luba; Ahissar, Merav

    2015-07-01

    Introducing simple stimulus regularities facilitates learning of both simple and complex tasks. This facilitation may reflect an implicit change in the strategies used to solve the task when successful predictions regarding incoming stimuli can be formed. We studied the modifications in brain activity associated with fast perceptual learning based on regularity detection. We administered a two-tone frequency discrimination task and measured brain activation (fMRI) under two conditions: with and without a repeated reference tone. Although participants could not explicitly tell the difference between these two conditions, the introduced regularity affected both performance and the pattern of brain activation. The "No-Reference" condition induced a larger activation in frontoparietal areas known to be part of the working memory network. However, only the condition with a reference showed fast learning, which was accompanied by a reduction of activity in two regions: the left intraparietal area, involved in stimulus retention, and the posterior superior-temporal area, involved in representing auditory regularities. We propose that this joint reduction reflects a reduction in the need for online storage of the compared tones. We further suggest that this change reflects an implicit strategic shift "backwards" from reliance mainly on working memory networks in the "No-Reference" condition to increased reliance on detected regularities stored in high-level auditory networks.

  6. Age and education adjusted normative data and discriminative validity for Rey's Auditory Verbal Learning Test in the elderly Greek population.

    Science.gov (United States)

    Messinis, Lambros; Nasios, Grigorios; Mougias, Antonios; Politis, Antonis; Zampakis, Petros; Tsiamaki, Eirini; Malefaki, Sonia; Gourzis, Phillipos; Papathanasopoulos, Panagiotis

    2016-01-01

    Rey's Auditory Verbal Learning Test (RAVLT) is a widely used neuropsychological test to assess episodic memory. In the present study we sought to establish normative and discriminative validity data for the RAVLT in the elderly population using previously adapted learning lists for the Greek adult population. We administered the test to 258 cognitively healthy elderly participants, aged 60-89 years, and two patient groups (192 with amnestic mild cognitive impairment, aMCI, and 65 with Alzheimer's disease, AD). From the statistical analyses, we found that age and education contributed significantly to most trials of the RAVLT, whereas the influence of gender was not significant. Younger elderly participants with higher education outperformed the older elderly with lower education levels. Moreover, both clinical groups performed significantly worse on most RAVLT trials and composite measures than matched cognitively healthy controls. Furthermore, the AD group performed more poorly than the aMCI group on most RAVLT variables. Receiver operating characteristic (ROC) analysis was used to examine the utility of the RAVLT trials to discriminate cognitively healthy controls from aMCI and AD patients. Area under the curve (AUC), an index of effect size, showed that most of the RAVLT measures (individual and composite) included in this study adequately differentiated between the performance of healthy elders and aMCI/AD patients. We also provide cutoff scores in discriminating cognitively healthy controls from aMCI and AD patients, based on the sensitivity and specificity of the prescribed scores. Moreover, we present age- and education-specific normative data for individual and composite scores for the Greek adapted RAVLT in elderly subjects aged between 60 and 89 years for use in clinical and research settings.

  7. Temporal Resolution and Active Auditory Discrimination Skill in Vocal Musicians

    Directory of Open Access Journals (Sweden)

    Kumar, Prawin

    2015-12-01

    Full Text Available Introduction Enhanced auditory perception in musicians is likely to result from auditory perceptual learning during several years of training and practice. Many studies have focused on biological processing of auditory stimuli among musicians. However, there is a lack of literature on temporal resolution and active auditory discrimination skills in vocal musicians. Objective The aim of the present study is to assess temporal resolution and active auditory discrimination skill in vocal musicians. Method The study participants included 15 vocal musicians with a minimum professional experience of 5 years of music exposure, within the age range of 20 to 30 years old, as the experimental group, while 15 age-matched non-musicians served as the control group. We used duration discrimination using pure-tones, pulse-train duration discrimination, and gap detection threshold tasks to assess temporal processing skills in both groups. Similarly, we assessed active auditory discrimination skill in both groups using Differential Limen of Frequency (DLF. All tasks were done using MATLab software installed in a personal computer at 40dBSL with maximum likelihood procedure. The collected data were analyzed using SPSS (version 17.0. Result Descriptive statistics showed better threshold for vocal musicians compared with non-musicians for all tasks. Further, independent t-test showed that vocal musicians performed significantly better compared with non-musicians on duration discrimination using pure tone, pulse train duration discrimination, gap detection threshold, and differential limen of frequency. Conclusion The present study showed enhanced temporal resolution ability and better (lower active discrimination threshold in vocal musicians in comparison to non-musicians.

  8. Auditory-motor learning influences auditory memory for music.

    Science.gov (United States)

    Brown, Rachel M; Palmer, Caroline

    2012-05-01

    In two experiments, we investigated how auditory-motor learning influences performers' memory for music. Skilled pianists learned novel melodies in four conditions: auditory only (listening), motor only (performing without sound), strongly coupled auditory-motor (normal performance), and weakly coupled auditory-motor (performing along with auditory recordings). Pianists' recognition of the learned melodies was better following auditory-only or auditory-motor (weakly coupled and strongly coupled) learning than following motor-only learning, and better following strongly coupled auditory-motor learning than following auditory-only learning. Auditory and motor imagery abilities modulated the learning effects: Pianists with high auditory imagery scores had better recognition following motor-only learning, suggesting that auditory imagery compensated for missing auditory feedback at the learning stage. Experiment 2 replicated the findings of Experiment 1 with melodies that contained greater variation in acoustic features. Melodies that were slower and less variable in tempo and intensity were remembered better following weakly coupled auditory-motor learning. These findings suggest that motor learning can aid performers' auditory recognition of music beyond auditory learning alone, and that motor learning is influenced by individual abilities in mental imagery and by variation in acoustic features.

  9. Developmental programming of auditory learning

    Directory of Open Access Journals (Sweden)

    Melania Puddu

    2012-10-01

    Full Text Available The basic structures involved in the development of auditory function and consequently in language acquisition are directed by genetic code, but the expression of individual genes may be altered by exposure to environmental factors, which if favorable, orient it in the proper direction, leading its development towards normality, if unfavorable, they deviate it from its physiological course. Early sensorial experience during the foetal period (i.e. intrauterine noise floor, sounds coming from the outside and attenuated by the uterine filter, particularly mother’s voice and modifications induced by it at the cochlear level represent the first example of programming in one of the earliest critical periods in development of the auditory system. This review will examine the factors that influence the developmental programming of auditory learning from the womb to the infancy. In particular it focuses on the following points: the prenatal auditory experience and the plastic phenomena presumably induced by it in the auditory system from the basilar membrane to the cortex;the involvement of these phenomena on language acquisition and on the perception of language communicative intention after birth;the consequences of auditory deprivation in critical periods of auditory development (i.e. premature interruption of foetal life.

  10. Auditory capture of visual motion: effects on perception and discrimination.

    Science.gov (United States)

    McCourt, Mark E; Leone, Lynnette M

    2016-09-28

    We asked whether the perceived direction of visual motion and contrast thresholds for motion discrimination are influenced by the concurrent motion of an auditory sound source. Visual motion stimuli were counterphasing Gabor patches, whose net motion energy was manipulated by adjusting the contrast of the leftward-moving and rightward-moving components. The presentation of these visual stimuli was paired with the simultaneous presentation of auditory stimuli, whose apparent motion in 3D auditory space (rightward, leftward, static, no sound) was manipulated using interaural time and intensity differences, and Doppler cues. In experiment 1, observers judged whether the Gabor visual stimulus appeared to move rightward or leftward. In experiment 2, contrast discrimination thresholds for detecting the interval containing unequal (rightward or leftward) visual motion energy were obtained under the same auditory conditions. Experiment 1 showed that the perceived direction of ambiguous visual motion is powerfully influenced by concurrent auditory motion, such that auditory motion 'captured' ambiguous visual motion. Experiment 2 showed that this interaction occurs at a sensory stage of processing as visual contrast discrimination thresholds (a criterion-free measure of sensitivity) were significantly elevated when paired with congruent auditory motion. These results suggest that auditory and visual motion signals are integrated and combined into a supramodal (audiovisual) representation of motion.

  11. Learning discriminant face descriptor.

    Science.gov (United States)

    Lei, Zhen; Pietikäinen, Matti; Li, Stan Z

    2014-02-01

    Local feature descriptor is an important module for face recognition and those like Gabor and local binary patterns (LBP) have proven effective face descriptors. Traditionally, the form of such local descriptors is predefined in a handcrafted way. In this paper, we propose a method to learn a discriminant face descriptor (DFD) in a data-driven way. The idea is to learn the most discriminant local features that minimize the difference of the features between images of the same person and maximize that between images from different people. In particular, we propose to enhance the discriminative ability of face representation in three aspects. First, the discriminant image filters are learned. Second, the optimal neighborhood sampling strategy is soft determined. Third, the dominant patterns are statistically constructed. Discriminative learning is incorporated to extract effective and robust features. We further apply the proposed method to the heterogeneous (cross-modality) face recognition problem and learn DFD in a coupled way (coupled DFD or C-DFD) to reduce the gap between features of heterogeneous face images to improve the performance of this challenging problem. Extensive experiments on FERET, CAS-PEAL-R1, LFW, and HFB face databases validate the effectiveness of the proposed DFD learning on both homogeneous and heterogeneous face recognition problems. The DFD improves POEM and LQP by about 4.5 percent on LFW database and the C-DFD enhances the heterogeneous face recognition performance of LBP by over 25 percent.

  12. Discrimination Learning in Children

    Science.gov (United States)

    Ochocki, Thomas E.; And Others

    1975-01-01

    Examined the learning performance of 192 fourth-, fifth-, and sixth-grade children on either a two or four choice simultaneous color discrimination task. Compared the use of verbal reinforcement and/or punishment, under conditions of either complete or incomplete instructions. (Author/SDH)

  13. Auditory Phoneme Discrimination in Illiterates: Mismatch Negativity--A Question of Literacy?

    Science.gov (United States)

    Schaadt, Gesa; Pannekamp, Ann; van der Meer, Elke

    2013-01-01

    These days, illiteracy is still a major problem. There is empirical evidence that auditory phoneme discrimination is one of the factors contributing to written language acquisition. The current study investigated auditory phoneme discrimination in participants who did not acquire written language sufficiently. Auditory phoneme discrimination was…

  14. Genetic pleiotropy explains associations between musical auditory discrimination and intelligence.

    Science.gov (United States)

    Mosing, Miriam A; Pedersen, Nancy L; Madison, Guy; Ullén, Fredrik

    2014-01-01

    Musical aptitude is commonly measured using tasks that involve discrimination of different types of musical auditory stimuli. Performance on such different discrimination tasks correlates positively with each other and with intelligence. However, no study to date has explored these associations using a genetically informative sample to estimate underlying genetic and environmental influences. In the present study, a large sample of Swedish twins (N = 10,500) was used to investigate the genetic architecture of the associations between intelligence and performance on three musical auditory discrimination tasks (rhythm, melody and pitch). Phenotypic correlations between the tasks ranged between 0.23 and 0.42 (Pearson r values). Genetic modelling showed that the covariation between the variables could be explained by shared genetic influences. Neither shared, nor non-shared environment had a significant effect on the associations. Good fit was obtained with a two-factor model where one underlying shared genetic factor explained all the covariation between the musical discrimination tasks and IQ, and a second genetic factor explained variance exclusively shared among the discrimination tasks. The results suggest that positive correlations among musical aptitudes result from both genes with broad effects on cognition, and genes with potentially more specific influences on auditory functions.

  15. Hand proximity facilitates spatial discrimination of auditory tones

    Directory of Open Access Journals (Sweden)

    Philip eTseng

    2014-06-01

    Full Text Available The effect of hand proximity on vision and visual attention has been well documented. In this study we tested whether such effect(s would also be present in the auditory modality. With hands placed either near or away from the audio sources, participants performed an auditory-spatial discrimination (Exp 1: left or right side, pitch discrimination (Exp 2: high, med, or low tone, and spatial-plus-pitch (Exp 3: left or right; high, med, or low discrimination task. In Exp 1, when hands were away from the audio source, participants consistently responded faster with their right hand regardless of stimulus location. This right hand advantage, however, disappeared in the hands-near condition because of a significant improvement in left hand’s reaction time. No effect of hand proximity was found in Exp 2 or 3, where a choice reaction time task requiring pitch discrimination was used. Together, these results suggest that the effect of hand proximity is not exclusive to vision alone, but is also present in audition, though in a much weaker form. Most important, these findings provide evidence from auditory attention that supports the multimodal account originally raised by Reed et al. in 2006.

  16. Auditory phase and frequency discrimination: a comparison of nine procedures.

    Science.gov (United States)

    Creelman, C D; Macmillan, N A

    1979-02-01

    Two auditory discrimination tasks were thoroughly investigated: discrimination of frequency differences from a sinusoidal signal of 200 Hz and discrimination of differences in relative phase of mixed sinusoids of 200 Hz and 400 Hz. For each task psychometric functions were constructed for three observers, using nine different psychophysical measurement procedures. These procedures included yes-no, two-interval forced-choice, and various fixed- and variable-standard designs that investigators have used in recent years. The data showed wide ranges of apparent sensitivity. For frequency discrimination, models derived from signal detection theory for each psychophysical procedure seem to account for the performance differences. For phase discrimination the models do not account for the data. We conclude that for some discriminative continua the assumptions of signal detection theory are appropriate, and underlying sensitivity may be derived from raw data by appropriate transformations. For other continua the models of signal detection theory are probably inappropriate; we speculate that phase might be discriminable only on the basis of comparison or change and suggest some tests of our hypothesis.

  17. Visual Aversive Learning Compromises Sensory Discrimination.

    Science.gov (United States)

    Shalev, Lee; Paz, Rony; Avidan, Galia

    2018-03-14

    Aversive learning is thought to modulate perceptual thresholds, which can lead to overgeneralization. However, it remains undetermined whether this modulation is domain specific or a general effect. Moreover, despite the unique role of the visual modality in human perception, it is unclear whether this aspect of aversive learning exists in this modality. The current study was designed to examine the effect of visual aversive outcomes on the perception of basic visual and auditory features. We tested the ability of healthy participants, both males and females, to discriminate between neutral stimuli, before and after visual learning. In each experiment, neutral stimuli were associated with aversive images in an experimental group and with neutral images in a control group. Participants demonstrated a deterioration in discrimination (higher discrimination thresholds) only after aversive learning. This deterioration was measured for both auditory (tone frequency) and visual (orientation and contrast) features. The effect was replicated in five different experiments and lasted for at least 24 h. fMRI neural responses and pupil size were also measured during learning. We showed an increase in neural activations in the anterior cingulate cortex, insula, and amygdala during aversive compared with neutral learning. Interestingly, the early visual cortex showed increased brain activity during aversive compared with neutral context trials, with identical visual information. Our findings imply the existence of a central multimodal mechanism, which modulates early perceptual properties, following exposure to negative situations. Such a mechanism could contribute to abnormal responses that underlie anxiety states, even in new and safe environments. SIGNIFICANCE STATEMENT Using a visual aversive-learning paradigm, we found deteriorated discrimination abilities for visual and auditory stimuli that were associated with visual aversive stimuli. We showed increased neural

  18. Stability of auditory discrimination and novelty processing in physiological aging.

    Science.gov (United States)

    Raggi, Alberto; Tasca, Domenica; Rundo, Francesco; Ferri, Raffaele

    2013-01-01

    Complex higher-order cognitive functions and their possible changes with aging are mandatory objectives of cognitive neuroscience. Event-related potentials (ERPs) allow investigators to probe the earliest stages of information processing. N100, Mismatch negativity (MMN) and P3a are auditory ERP components that reflect automatic sensory discrimination. The aim of the present study was to determine if N100, MMN and P3a parameters are stable in healthy aged subjects, compared to those of normal young adults. Normal young adults and older participants were assessed using standardized cognitive functional instruments and their ERPs were obtained with an auditory stimulation at two different interstimulus intervals, during a passive paradigm. All individuals were within the normal range on cognitive tests. No significant differences were found for any ERP parameters obtained from the two age groups. This study shows that aging is characterized by a stability of the auditory discrimination and novelty processing. This is important for the arrangement of normative for the detection of subtle preclinical changes due to abnormal brain aging.

  19. Auditory Processing, Linguistic Prosody Awareness, and Word Reading in Mandarin-Speaking Children Learning English

    Science.gov (United States)

    Chung, Wei-Lun; Jarmulowicz, Linda; Bidelman, Gavin M.

    2017-01-01

    This study examined language-specific links among auditory processing, linguistic prosody awareness, and Mandarin (L1) and English (L2) word reading in 61 Mandarin-speaking, English-learning children. Three auditory discrimination abilities were measured: pitch contour, pitch interval, and rise time (rate of intensity change at tone onset).…

  20. Statistical learning and auditory processing in children with music training: An ERP study.

    Science.gov (United States)

    Mandikal Vasuki, Pragati Rao; Sharma, Mridula; Ibrahim, Ronny; Arciuli, Joanne

    2017-07-01

    The question whether musical training is associated with enhanced auditory and cognitive abilities in children is of considerable interest. In the present study, we compared children with music training versus those without music training across a range of auditory and cognitive measures, including the ability to detect implicitly statistical regularities in input (statistical learning). Statistical learning of regularities embedded in auditory and visual stimuli was measured in musically trained and age-matched untrained children between the ages of 9-11years. In addition to collecting behavioural measures, we recorded electrophysiological measures to obtain an online measure of segmentation during the statistical learning tasks. Musically trained children showed better performance on melody discrimination, rhythm discrimination, frequency discrimination, and auditory statistical learning. Furthermore, grand-averaged ERPs showed that triplet onset (initial stimulus) elicited larger responses in the musically trained children during both auditory and visual statistical learning tasks. In addition, children's music skills were associated with performance on auditory and visual behavioural statistical learning tasks. Our data suggests that individual differences in musical skills are associated with children's ability to detect regularities. The ERP data suggest that musical training is associated with better encoding of both auditory and visual stimuli. Although causality must be explored in further research, these results may have implications for developing music-based remediation strategies for children with learning impairments. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  1. Psychophysical Estimates of Frequency Discrimination: More than Just Limitations of Auditory Processing

    Directory of Open Access Journals (Sweden)

    Beate Sabisch

    2013-07-01

    Full Text Available Efficient auditory processing is hypothesized to support language and literacy development. However, behavioral tasks used to assess this hypothesis need to be robust to non-auditory specific individual differences. This study compared frequency discrimination abilities in a heterogeneous sample of adults using two different psychoacoustic task designs, referred to here as: 2I_6A_X and 3I_2AFC designs. The role of individual differences in nonverbal IQ (NVIQ, socioeconomic status (SES and musical experience in predicting frequency discrimination thresholds on each task were assessed using multiple regression analyses. The 2I_6A_X task was more cognitively demanding and hence more susceptible to differences specifically in SES and musical training. Performance on this task did not, however, relate to nonword repetition ability (a measure of language learning capacity. The 3I_2AFC task, by contrast, was only susceptible to musical training. Moreover, thresholds measured using it predicted some variance in nonword repetition performance. This design thus seems suitable for use in studies addressing questions regarding the role of auditory processing in supporting language and literacy development.

  2. Auditory and motor imagery modulate learning in music performance.

    Science.gov (United States)

    Brown, Rachel M; Palmer, Caroline

    2013-01-01

    Skilled performers such as athletes or musicians can improve their performance by imagining the actions or sensory outcomes associated with their skill. Performers vary widely in their auditory and motor imagery abilities, and these individual differences influence sensorimotor learning. It is unknown whether imagery abilities influence both memory encoding and retrieval. We examined how auditory and motor imagery abilities influence musicians' encoding (during Learning, as they practiced novel melodies), and retrieval (during Recall of those melodies). Pianists learned melodies by listening without performing (auditory learning) or performing without sound (motor learning); following Learning, pianists performed the melodies from memory with auditory feedback (Recall). During either Learning (Experiment 1) or Recall (Experiment 2), pianists experienced either auditory interference, motor interference, or no interference. Pitch accuracy (percentage of correct pitches produced) and temporal regularity (variability of quarter-note interonset intervals) were measured at Recall. Independent tests measured auditory and motor imagery skills. Pianists' pitch accuracy was higher following auditory learning than following motor learning and lower in motor interference conditions (Experiments 1 and 2). Both auditory and motor imagery skills improved pitch accuracy overall. Auditory imagery skills modulated pitch accuracy encoding (Experiment 1): Higher auditory imagery skill corresponded to higher pitch accuracy following auditory learning with auditory or motor interference, and following motor learning with motor or no interference. These findings suggest that auditory imagery abilities decrease vulnerability to interference and compensate for missing auditory feedback at encoding. Auditory imagery skills also influenced temporal regularity at retrieval (Experiment 2): Higher auditory imagery skill predicted greater temporal regularity during Recall in the presence of

  3. Auditory and motor imagery modulate learning in music performance

    Science.gov (United States)

    Brown, Rachel M.; Palmer, Caroline

    2013-01-01

    Skilled performers such as athletes or musicians can improve their performance by imagining the actions or sensory outcomes associated with their skill. Performers vary widely in their auditory and motor imagery abilities, and these individual differences influence sensorimotor learning. It is unknown whether imagery abilities influence both memory encoding and retrieval. We examined how auditory and motor imagery abilities influence musicians' encoding (during Learning, as they practiced novel melodies), and retrieval (during Recall of those melodies). Pianists learned melodies by listening without performing (auditory learning) or performing without sound (motor learning); following Learning, pianists performed the melodies from memory with auditory feedback (Recall). During either Learning (Experiment 1) or Recall (Experiment 2), pianists experienced either auditory interference, motor interference, or no interference. Pitch accuracy (percentage of correct pitches produced) and temporal regularity (variability of quarter-note interonset intervals) were measured at Recall. Independent tests measured auditory and motor imagery skills. Pianists' pitch accuracy was higher following auditory learning than following motor learning and lower in motor interference conditions (Experiments 1 and 2). Both auditory and motor imagery skills improved pitch accuracy overall. Auditory imagery skills modulated pitch accuracy encoding (Experiment 1): Higher auditory imagery skill corresponded to higher pitch accuracy following auditory learning with auditory or motor interference, and following motor learning with motor or no interference. These findings suggest that auditory imagery abilities decrease vulnerability to interference and compensate for missing auditory feedback at encoding. Auditory imagery skills also influenced temporal regularity at retrieval (Experiment 2): Higher auditory imagery skill predicted greater temporal regularity during Recall in the presence of

  4. Auditory and motor imagery modulate learning in music performance

    Directory of Open Access Journals (Sweden)

    Rachel M. Brown

    2013-07-01

    Full Text Available Skilled performers such as athletes or musicians can improve their performance by imagining the actions or sensory outcomes associated with their skill. Performers vary widely in their auditory and motor imagery abilities, and these individual differences influence sensorimotor learning. It is unknown whether imagery abilities influence both memory encoding and retrieval. We examined how auditory and motor imagery abilities influence musicians’ encoding (during Learning, as they practiced novel melodies, and retrieval (during Recall of those melodies. Pianists learned melodies by listening without performing (auditory learning or performing without sound (motor learning; following Learning, pianists performed the melodies from memory with auditory feedback (Recall. During either Learning (Experiment 1 or Recall (Experiment 2, pianists experienced either auditory interference, motor interference, or no interference. Pitch accuracy (percentage of correct pitches produced and temporal regularity (variability of quarter-note interonset intervals were measured at Recall. Independent tests measured auditory and motor imagery skills. Pianists’ pitch accuracy was higher following auditory learning than following motor learning and lower in motor interference conditions (Experiments 1 and 2. Both auditory and motor imagery skills improved pitch accuracy overall. Auditory imagery skills modulated pitch accuracy encoding (Experiment 1: Higher auditory imagery skill corresponded to higher pitch accuracy following auditory learning with auditory or motor interference, and following motor learning with motor or no interference. These findings suggest that auditory imagery abilities decrease vulnerability to interference and compensate for missing auditory feedback at encoding. Auditory imagery skills also influenced temporal regularity at retrieval (Experiment 2: Higher auditory imagery skill predicted greater temporal regularity during Recall in the

  5. Neural Correlates of Auditory Processing, Learning and Memory Formation in Songbirds

    Science.gov (United States)

    Pinaud, R.; Terleph, T. A.; Wynne, R. D.; Tremere, L. A.

    Songbirds have emerged as powerful experimental models for the study of auditory processing of complex natural communication signals. Intact hearing is necessary for several behaviors in developing and adult animals including vocal learning, territorial defense, mate selection and individual recognition. These behaviors are thought to require the processing, discrimination and memorization of songs. Although much is known about the brain circuits that participate in sensorimotor (auditory-vocal) integration, especially the ``song-control" system, less is known about the anatomical and functional organization of central auditory pathways. Here we discuss findings associated with a telencephalic auditory area known as the caudomedial nidopallium (NCM). NCM has attracted significant interest as it exhibits functional properties that may support higher order auditory functions such as stimulus discrimination and the formation of auditory memories. NCM neurons are vigorously dr iven by auditory stimuli. Interestingly, these responses are selective to conspecific, relative to heterospecific songs and artificial stimuli. In addition, forms of experience-dependent plasticity occur in NCM and are song-specific. Finally, recent experiments employing high-throughput quantitative proteomics suggest that complex protein regulatory pathways are engaged in NCM as a result of auditory experience. These molecular cascades are likely central to experience-associated plasticity of NCM circuitry and may be part of a network of calcium-driven molecular events that support the formation of auditory memory traces.

  6. Discriminative learning for speech recognition

    CERN Document Server

    He, Xiadong

    2008-01-01

    In this book, we introduce the background and mainstream methods of probabilistic modeling and discriminative parameter optimization for speech recognition. The specific models treated in depth include the widely used exponential-family distributions and the hidden Markov model. A detailed study is presented on unifying the common objective functions for discriminative learning in speech recognition, namely maximum mutual information (MMI), minimum classification error, and minimum phone/word error. The unification is presented, with rigorous mathematical analysis, in a common rational-functio

  7. Discrimination of Communication Vocalizations by Single Neurons and Groups of Neurons in the Auditory Midbrain

    OpenAIRE

    Schneider, David M.; Woolley, Sarah M. N.

    2010-01-01

    Many social animals including songbirds use communication vocalizations for individual recognition. The perception of vocalizations depends on the encoding of complex sounds by neurons in the ascending auditory system, each of which is tuned to a particular subset of acoustic features. Here, we examined how well the responses of single auditory neurons could be used to discriminate among bird songs and we compared discriminability to spectrotemporal tuning. We then used biologically realistic...

  8. Spatiotemporal Relationships among Audiovisual Stimuli Modulate Auditory Facilitation of Visual Target Discrimination.

    Science.gov (United States)

    Li, Qi; Yang, Huamin; Sun, Fang; Wu, Jinglong

    2015-03-01

    Sensory information is multimodal; through audiovisual interaction, task-irrelevant auditory stimuli tend to speed response times and increase visual perception accuracy. However, mechanisms underlying these performance enhancements have remained unclear. We hypothesize that task-irrelevant auditory stimuli might provide reliable temporal and spatial cues for visual target discrimination and behavioral response enhancement. Using signal detection theory, the present study investigated the effects of spatiotemporal relationships on auditory facilitation of visual target discrimination. Three experiments were conducted where an auditory stimulus maintained reliable temporal and/or spatial relationships with visual target stimuli. Results showed that perception sensitivity (d') to visual target stimuli was enhanced only when a task-irrelevant auditory stimulus maintained reliable spatiotemporal relationships with a visual target stimulus. When only reliable spatial or temporal information was contained, perception sensitivity was not enhanced. These results suggest that reliable spatiotemporal relationships between visual and auditory signals are required for audiovisual integration during a visual discrimination task, most likely due to a spread of attention. These results also indicate that auditory facilitation of visual target discrimination follows from late-stage cognitive processes rather than early stage sensory processes. © 2015 SAGE Publications.

  9. Atypical central auditory speech-sound discrimination in children who stutter as indexed by the mismatch negativity

    NARCIS (Netherlands)

    Jansson-Verkasalo, E.; Eggers, K.; Järvenpää, A.; Suominen, K.; Van Den Bergh, B.R.H.; de Nil, L.; Kujala, T.

    2014-01-01

    Purpose Recent theoretical conceptualizations suggest that disfluencies in stuttering may arise from several factors, one of them being atypical auditory processing. The main purpose of the present study was to investigate whether speech sound encoding and central auditory discrimination, are

  10. Visual Speech Fills in Both Discrimination and Identification of Non-Intact Auditory Speech in Children

    Science.gov (United States)

    Jerger, Susan; Damian, Markus F.; McAlpine, Rachel P.; Abdi, Herve

    2018-01-01

    To communicate, children must discriminate and identify speech sounds. Because visual speech plays an important role in this process, we explored how visual speech influences phoneme discrimination and identification by children. Critical items had intact visual speech (e.g. baez) coupled to non-intact (excised onsets) auditory speech (signified…

  11. Discrimination of communication vocalizations by single neurons and groups of neurons in the auditory midbrain.

    Science.gov (United States)

    Schneider, David M; Woolley, Sarah M N

    2010-06-01

    Many social animals including songbirds use communication vocalizations for individual recognition. The perception of vocalizations depends on the encoding of complex sounds by neurons in the ascending auditory system, each of which is tuned to a particular subset of acoustic features. Here, we examined how well the responses of single auditory neurons could be used to discriminate among bird songs and we compared discriminability to spectrotemporal tuning. We then used biologically realistic models of pooled neural responses to test whether the responses of groups of neurons discriminated among songs better than the responses of single neurons and whether discrimination by groups of neurons was related to spectrotemporal tuning and trial-to-trial response variability. The responses of single auditory midbrain neurons could be used to discriminate among vocalizations with a wide range of abilities, ranging from chance to 100%. The ability to discriminate among songs using single neuron responses was not correlated with spectrotemporal tuning. Pooling the responses of pairs of neurons generally led to better discrimination than the average of the two inputs and the most discriminating input. Pooling the responses of three to five single neurons continued to improve neural discrimination. The increase in discriminability was largest for groups of neurons with similar spectrotemporal tuning. Further, we found that groups of neurons with correlated spike trains achieved the largest gains in discriminability. We simulated neurons with varying levels of temporal precision and measured the discriminability of responses from single simulated neurons and groups of simulated neurons. Simulated neurons with biologically observed levels of temporal precision benefited more from pooling correlated inputs than did neurons with highly precise or imprecise spike trains. These findings suggest that pooling correlated neural responses with the levels of precision observed in the

  12. The Central Auditory Processing Kit[TM]. Book 1: Auditory Memory [and] Book 2: Auditory Discrimination, Auditory Closure, and Auditory Synthesis [and] Book 3: Auditory Figure-Ground, Auditory Cohesion, Auditory Binaural Integration, and Compensatory Strategies.

    Science.gov (United States)

    Mokhemar, Mary Ann

    This kit for assessing central auditory processing disorders (CAPD), in children in grades 1 through 8 includes 3 books, 14 full-color cards with picture scenes, and a card depicting a phone key pad, all contained in a sturdy carrying case. The units in each of the three books correspond with auditory skill areas most commonly addressed in…

  13. Polarity-Specific Transcranial Direct Current Stimulation Disrupts Auditory Pitch Learning

    Directory of Open Access Journals (Sweden)

    Reiko eMatsushita

    2015-05-01

    Full Text Available Transcranial direct current stimulation (tDCS is attracting increasing interest because of its potential for therapeutic use. While its effects have been investigated mainly with motor and visual tasks, less is known in the auditory domain. Past tDCS studies with auditory tasks demonstrated various behavioural outcomes, possibly due to differences in stimulation parameters or task measurements used in each study. Further research using well-validated tasks are therefore required for clarification of behavioural effects of tDCS on the auditory system. Here, we took advantage of findings from a prior functional magnetic resonance imaging study, which demonstrated that the right auditory cortex is modulated during fine-grained pitch learning of microtonal melodic patterns. Targeting the right auditory cortex with tDCS using this same task thus allowed us to test the hypothesis that this region is causally involved in pitch learning. Participants in the current study were trained for three days while we measured pitch discrimination thresholds using microtonal melodies on each day using a psychophysical staircase procedure. We administered anodal, cathodal, or sham tDCS to three groups of participants over the right auditory cortex on the second day of training during performance of the task. Both the sham and the cathodal groups showed the expected significant learning effect (decreased pitch threshold over the three days of training; in contrast we observed a blocking effect of anodal tDCS on auditory pitch learning, such that this group showed no significant change in thresholds over the three days. The results support a causal role for the right auditory cortex in pitch discrimination learning.

  14. Motivation and intelligence drive auditory perceptual learning.

    Science.gov (United States)

    Amitay, Sygal; Halliday, Lorna; Taylor, Jenny; Sohoglu, Ediz; Moore, David R

    2010-03-23

    Although feedback on performance is generally thought to promote perceptual learning, the role and necessity of feedback remain unclear. We investigated the effect of providing varying amounts of positive feedback while listeners attempted to discriminate between three identical tones on learning frequency discrimination. Using this novel procedure, the feedback was meaningless and random in relation to the listeners' responses, but the amount of feedback provided (or lack thereof) affected learning. We found that a group of listeners who received positive feedback on 10% of the trials improved their performance on the task (learned), while other groups provided either with excess (90%) or with no feedback did not learn. Superimposed on these group data, however, individual listeners showed other systematic changes of performance. In particular, those with lower non-verbal IQ who trained in the no feedback condition performed more poorly after training. This pattern of results cannot be accounted for by learning models that ascribe an external teacher role to feedback. We suggest, instead, that feedback is used to monitor performance on the task in relation to its perceived difficulty, and that listeners who learn without the benefit of feedback are adept at self-monitoring of performance, a trait that also supports better performance on non-verbal IQ tests. These results show that 'perceptual' learning is strongly influenced by top-down processes of motivation and intelligence.

  15. Dissociation of Detection and Discrimination of Pure Tones following Bilateral Lesions of Auditory Cortex

    Science.gov (United States)

    Dykstra, Andrew R.; Koh, Christine K.; Braida, Louis D.; Tramo, Mark Jude

    2012-01-01

    It is well known that damage to the peripheral auditory system causes deficits in tone detection as well as pitch and loudness perception across a wide range of frequencies. However, the extent to which to which the auditory cortex plays a critical role in these basic aspects of spectral processing, especially with regard to speech, music, and environmental sound perception, remains unclear. Recent experiments indicate that primary auditory cortex is necessary for the normally-high perceptual acuity exhibited by humans in pure-tone frequency discrimination. The present study assessed whether the auditory cortex plays a similar role in the intensity domain and contrasted its contribution to sensory versus discriminative aspects of intensity processing. We measured intensity thresholds for pure-tone detection and pure-tone loudness discrimination in a population of healthy adults and a middle-aged man with complete or near-complete lesions of the auditory cortex bilaterally. Detection thresholds in his left and right ears were 16 and 7 dB HL, respectively, within clinically-defined normal limits. In contrast, the intensity threshold for monaural loudness discrimination at 1 kHz was 6.5±2.1 dB in the left ear and 6.5±1.9 dB in the right ear at 40 dB sensation level, well above the means of the control population (left ear: 1.6±0.22 dB; right ear: 1.7±0.19 dB). The results indicate that auditory cortex lowers just-noticeable differences for loudness discrimination by approximately 5 dB but is not necessary for tone detection in quiet. Previous human and Old-world monkey experiments employing lesion-effect, neurophysiology, and neuroimaging methods to investigate the role of auditory cortex in intensity processing are reviewed. PMID:22957087

  16. Dissociation of detection and discrimination of pure tones following bilateral lesions of auditory cortex.

    Science.gov (United States)

    Dykstra, Andrew R; Koh, Christine K; Braida, Louis D; Tramo, Mark Jude

    2012-01-01

    It is well known that damage to the peripheral auditory system causes deficits in tone detection as well as pitch and loudness perception across a wide range of frequencies. However, the extent to which to which the auditory cortex plays a critical role in these basic aspects of spectral processing, especially with regard to speech, music, and environmental sound perception, remains unclear. Recent experiments indicate that primary auditory cortex is necessary for the normally-high perceptual acuity exhibited by humans in pure-tone frequency discrimination. The present study assessed whether the auditory cortex plays a similar role in the intensity domain and contrasted its contribution to sensory versus discriminative aspects of intensity processing. We measured intensity thresholds for pure-tone detection and pure-tone loudness discrimination in a population of healthy adults and a middle-aged man with complete or near-complete lesions of the auditory cortex bilaterally. Detection thresholds in his left and right ears were 16 and 7 dB HL, respectively, within clinically-defined normal limits. In contrast, the intensity threshold for monaural loudness discrimination at 1 kHz was 6.5 ± 2.1 dB in the left ear and 6.5 ± 1.9 dB in the right ear at 40 dB sensation level, well above the means of the control population (left ear: 1.6 ± 0.22 dB; right ear: 1.7 ± 0.19 dB). The results indicate that auditory cortex lowers just-noticeable differences for loudness discrimination by approximately 5 dB but is not necessary for tone detection in quiet. Previous human and Old-world monkey experiments employing lesion-effect, neurophysiology, and neuroimaging methods to investigate the role of auditory cortex in intensity processing are reviewed.

  17. Dissociation of detection and discrimination of pure tones following bilateral lesions of auditory cortex.

    Directory of Open Access Journals (Sweden)

    Andrew R Dykstra

    Full Text Available It is well known that damage to the peripheral auditory system causes deficits in tone detection as well as pitch and loudness perception across a wide range of frequencies. However, the extent to which to which the auditory cortex plays a critical role in these basic aspects of spectral processing, especially with regard to speech, music, and environmental sound perception, remains unclear. Recent experiments indicate that primary auditory cortex is necessary for the normally-high perceptual acuity exhibited by humans in pure-tone frequency discrimination. The present study assessed whether the auditory cortex plays a similar role in the intensity domain and contrasted its contribution to sensory versus discriminative aspects of intensity processing. We measured intensity thresholds for pure-tone detection and pure-tone loudness discrimination in a population of healthy adults and a middle-aged man with complete or near-complete lesions of the auditory cortex bilaterally. Detection thresholds in his left and right ears were 16 and 7 dB HL, respectively, within clinically-defined normal limits. In contrast, the intensity threshold for monaural loudness discrimination at 1 kHz was 6.5 ± 2.1 dB in the left ear and 6.5 ± 1.9 dB in the right ear at 40 dB sensation level, well above the means of the control population (left ear: 1.6 ± 0.22 dB; right ear: 1.7 ± 0.19 dB. The results indicate that auditory cortex lowers just-noticeable differences for loudness discrimination by approximately 5 dB but is not necessary for tone detection in quiet. Previous human and Old-world monkey experiments employing lesion-effect, neurophysiology, and neuroimaging methods to investigate the role of auditory cortex in intensity processing are reviewed.

  18. The effects of context and musical training on auditory temporal-interval discrimination.

    Science.gov (United States)

    Banai, Karen; Fisher, Shirley; Ganot, Ron

    2012-02-01

    Non sensory factors such as stimulus context and musical experience are known to influence auditory frequency discrimination, but whether the context effect extends to auditory temporal processing remains unknown. Whether individual experiences such as musical training alter the context effect is also unknown. The goal of the present study was therefore to investigate the effects of stimulus context and musical experience on auditory temporal-interval discrimination. In experiment 1, temporal-interval discrimination was compared between fixed context conditions in which a single base temporal interval was presented repeatedly across all trials and variable context conditions in which one of two base intervals was randomly presented on each trial. Discrimination was significantly better in the fixed than in the variable context conditions. In experiment 2 temporal discrimination thresholds of musicians and non-musicians were compared across 3 conditions: a fixed context condition in which the target interval was presented repeatedly across trials, and two variable context conditions differing in the frequencies used for the tones marking the temporal intervals. Musicians outperformed non-musicians on all 3 conditions, but the effects of context were similar for the two groups. Overall, it appears that, like frequency discrimination, temporal-interval discrimination benefits from having a fixed reference. Musical experience, while improving performance, did not alter the context effect, suggesting that improved discrimination skills among musicians are probably not an outcome of more sensitive contextual facilitation or predictive coding mechanisms. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Behavioral semantics of learning and crossmodal processing in auditory cortex: the semantic processor concept.

    Science.gov (United States)

    Scheich, Henning; Brechmann, André; Brosch, Michael; Budinger, Eike; Ohl, Frank W; Selezneva, Elena; Stark, Holger; Tischmeyer, Wolfgang; Wetzel, Wolfram

    2011-01-01

    Two phenomena of auditory cortex activity have recently attracted attention, namely that the primary field can show different types of learning-related changes of sound representation and that during learning even this early auditory cortex is under strong multimodal influence. Based on neuronal recordings in animal auditory cortex during instrumental tasks, in this review we put forward the hypothesis that these two phenomena serve to derive the task-specific meaning of sounds by associative learning. To understand the implications of this tenet, it is helpful to realize how a behavioral meaning is usually derived for novel environmental sounds. For this purpose, associations with other sensory, e.g. visual, information are mandatory to develop a connection between a sound and its behaviorally relevant cause and/or the context of sound occurrence. This makes it plausible that in instrumental tasks various non-auditory sensory and procedural contingencies of sound generation become co-represented by neuronal firing in auditory cortex. Information related to reward or to avoidance of discomfort during task learning, that is essentially non-auditory, is also co-represented. The reinforcement influence points to the dopaminergic internal reward system, the local role of which for memory consolidation in auditory cortex is well-established. Thus, during a trial of task performance, the neuronal responses to the sounds are embedded in a sequence of representations of such non-auditory information. The embedded auditory responses show task-related modulations of auditory responses falling into types that correspond to three basic logical classifications that may be performed with a perceptual item, i.e. from simple detection to discrimination, and categorization. This hierarchy of classifications determine the semantic "same-different" relationships among sounds. Different cognitive classifications appear to be a consequence of learning task and lead to a recruitment of

  20. Response properties of neurons in the cat's putamen during auditory discrimination.

    Science.gov (United States)

    Zhao, Zhenling; Sato, Yu; Qin, Ling

    2015-10-01

    The striatum integrates diverse convergent input and plays a critical role in the goal-directed behaviors. To date, the auditory functions of striatum are less studied. Recently, it was demonstrated that auditory cortico-striatal projections influence behavioral performance during a frequency discrimination task. To reveal the functions of striatal neurons in auditory discrimination, we recorded the single-unit spike activities in the putamen (dorsal striatum) of free-moving cats while performing a Go/No-go task to discriminate the sounds with different modulation rates (12.5 Hz vs. 50 Hz) or envelopes (damped vs. ramped). We found that the putamen neurons can be broadly divided into four groups according to their contributions to sound discrimination. First, 40% of neurons showed vigorous responses synchronized to the sound envelope, and could precisely discriminate different sounds. Second, 18% of neurons showed a high preference of ramped to damped sounds, but no preference for modulation rate. They could only discriminate the change of sound envelope. Third, 27% of neurons rapidly adapted to the sound stimuli, had no ability of sound discrimination. Fourth, 15% of neurons discriminated the sounds dependent on the reward-prediction. Comparing to passively listening condition, the activities of putamen neurons were significantly enhanced by the engagement of the auditory tasks, but not modulated by the cat's behavioral choice. The coexistence of multiple types of neurons suggests that the putamen is involved in the transformation from auditory representation to stimulus-reward association. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Sustained Cortical and Subcortical Measures of Auditory and Visual Plasticity following Short-Term Perceptual Learning.

    Science.gov (United States)

    Lau, Bonnie K; Ruggles, Dorea R; Katyal, Sucharit; Engel, Stephen A; Oxenham, Andrew J

    2017-01-01

    Short-term training can lead to improvements in behavioral discrimination of auditory and visual stimuli, as well as enhanced EEG responses to those stimuli. In the auditory domain, fluency with tonal languages and musical training has been associated with long-term cortical and subcortical plasticity, but less is known about the effects of shorter-term training. This study combined electroencephalography (EEG) and behavioral measures to investigate short-term learning and neural plasticity in both auditory and visual domains. Forty adult participants were divided into four groups. Three groups trained on one of three tasks, involving discrimination of auditory fundamental frequency (F0), auditory amplitude modulation rate (AM), or visual orientation (VIS). The fourth (control) group received no training. Pre- and post-training tests, as well as retention tests 30 days after training, involved behavioral discrimination thresholds, steady-state visually evoked potentials (SSVEP) to the flicker frequencies of visual stimuli, and auditory envelope-following responses simultaneously evoked and measured in response to rapid stimulus F0 (EFR), thought to reflect subcortical generators, and slow amplitude modulation (ASSR), thought to reflect cortical generators. Enhancement of the ASSR was observed in both auditory-trained groups, not specific to the AM-trained group, whereas enhancement of the SSVEP was found only in the visually-trained group. No evidence was found for changes in the EFR. The results suggest that some aspects of neural plasticity can develop rapidly and may generalize across tasks but not across modalities. Behaviorally, the pattern of learning was complex, with significant cross-task and cross-modal learning effects.

  2. Localized brain activation related to the strength of auditory learning in a parrot.

    Directory of Open Access Journals (Sweden)

    Hiroko Eda-Fujiwara

    Full Text Available Parrots and songbirds learn their vocalizations from a conspecific tutor, much like human infants acquire spoken language. Parrots can learn human words and it has been suggested that they can use them to communicate with humans. The caudomedial pallium in the parrot brain is homologous with that of songbirds, and analogous to the human auditory association cortex, involved in speech processing. Here we investigated neuronal activation, measured as expression of the protein product of the immediate early gene ZENK, in relation to auditory learning in the budgerigar (Melopsittacus undulatus, a parrot. Budgerigar males successfully learned to discriminate two Japanese words spoken by another male conspecific. Re-exposure to the two discriminanda led to increased neuronal activation in the caudomedial pallium, but not in the hippocampus, compared to untrained birds that were exposed to the same words, or were not exposed to words. Neuronal activation in the caudomedial pallium of the experimental birds was correlated significantly and positively with the percentage of correct responses in the discrimination task. These results suggest that in a parrot, the caudomedial pallium is involved in auditory learning. Thus, in parrots, songbirds and humans, analogous brain regions may contain the neural substrate for auditory learning and memory.

  3. Single-trial multisensory memories affect later auditory and visual object discrimination.

    Science.gov (United States)

    Thelen, Antonia; Talsma, Durk; Murray, Micah M

    2015-05-01

    Multisensory memory traces established via single-trial exposures can impact subsequent visual object recognition. This impact appears to depend on the meaningfulness of the initial multisensory pairing, implying that multisensory exposures establish distinct object representations that are accessible during later unisensory processing. Multisensory contexts may be particularly effective in influencing auditory discrimination, given the purportedly inferior recognition memory in this sensory modality. The possibility of this generalization and the equivalence of effects when memory discrimination was being performed in the visual vs. auditory modality were at the focus of this study. First, we demonstrate that visual object discrimination is affected by the context of prior multisensory encounters, replicating and extending previous findings by controlling for the probability of multisensory contexts during initial as well as repeated object presentations. Second, we provide the first evidence that single-trial multisensory memories impact subsequent auditory object discrimination. Auditory object discrimination was enhanced when initial presentations entailed semantically congruent multisensory pairs and was impaired after semantically incongruent multisensory encounters, compared to sounds that had been encountered only in a unisensory manner. Third, the impact of single-trial multisensory memories upon unisensory object discrimination was greater when the task was performed in the auditory vs. visual modality. Fourth, there was no evidence for correlation between effects of past multisensory experiences on visual and auditory processing, suggestive of largely independent object processing mechanisms between modalities. We discuss these findings in terms of the conceptual short term memory (CSTM) model and predictive coding. Our results suggest differential recruitment and modulation of conceptual memory networks according to the sensory task at hand. Copyright

  4. Intracranial auditory detection and discrimination potentials as substrates of echoic memory in children.

    Science.gov (United States)

    Liasis, A; Towell, A; Boyd, S

    1999-03-01

    In children, intracranial responses to auditory detection and discrimination processes have not been reported. We, therefore, recorded intracranial event-related potentials (ERPs) to both standard and deviant tones and/or syllables in 4 children undergoing pre-surgical evaluation for epilepsy. ERPs to detection (mean latency = 63 ms) and discrimination (mean latency = 334 ms) were highly localized to areas surrounding the Sylvian fissure (SF). These potentials reflect activation of different neuronal populations and are suggested to contribute to the scalp recorded auditory N1 and mismatch negativity (MMN).

  5. Present and past: Can writing abilities in school children be associated with their auditory discrimination capacities in infancy?

    Science.gov (United States)

    Schaadt, Gesa; Männel, Claudia; van der Meer, Elke; Pannekamp, Ann; Oberecker, Regine; Friederici, Angela D

    2015-12-01

    Literacy acquisition is highly associated with auditory processing abilities, such as auditory discrimination. The event-related potential Mismatch Response (MMR) is an indicator for cortical auditory discrimination abilities and it has been found to be reduced in individuals with reading and writing impairments and also in infants at risk for these impairments. The goal of the present study was to analyze the relationship between auditory speech discrimination in infancy and writing abilities at school age within subjects, and to determine when auditory speech discrimination differences, relevant for later writing abilities, start to develop. We analyzed the MMR registered in response to natural syllables in German children with and without writing problems at two points during development, that is, at school age and at infancy, namely at age 1 month and 5 months. We observed MMR related auditory discrimination differences between infants with and without later writing problems, starting to develop at age 5 months-an age when infants begin to establish language-specific phoneme representations. At school age, these children with and without writing problems also showed auditory discrimination differences, reflected in the MMR, confirming a relationship between writing and auditory speech processing skills. Thus, writing problems at school age are, at least, partly grounded in auditory discrimination problems developing already during the first months of life. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Prediction of cognitive outcome based on the progression of auditory discrimination during coma.

    Science.gov (United States)

    Juan, Elsa; De Lucia, Marzia; Tzovara, Athina; Beaud, Valérie; Oddo, Mauro; Clarke, Stephanie; Rossetti, Andrea O

    2016-09-01

    To date, no clinical test is able to predict cognitive and functional outcome of cardiac arrest survivors. Improvement of auditory discrimination in acute coma indicates survival with high specificity. Whether the degree of this improvement is indicative of recovery remains unknown. Here we investigated if progression of auditory discrimination can predict cognitive and functional outcome. We prospectively recorded electroencephalography responses to auditory stimuli of post-anoxic comatose patients on the first and second day after admission. For each recording, auditory discrimination was quantified and its evolution over the two recordings was used to classify survivors as "predicted" when it increased vs. "other" if not. Cognitive functions were tested on awakening and functional outcome was assessed at 3 months using the Cerebral Performance Categories (CPC) scale. Thirty-two patients were included, 14 "predicted survivors" and 18 "other survivors". "Predicted survivors" were more likely to recover basic cognitive functions shortly after awakening (ability to follow a standardized neuropsychological battery: 86% vs. 44%; p=0.03 (Fisher)) and to show a very good functional outcome at 3 months (CPC 1: 86% vs. 33%; p=0.004 (Fisher)). Moreover, progression of auditory discrimination during coma was strongly correlated with cognitive performance on awakening (phonemic verbal fluency: rs=0.48; p=0.009 (Spearman)). Progression of auditory discrimination during coma provides early indication of future recovery of cognitive functions. The degree of improvement is informative of the degree of functional impairment. If confirmed in a larger cohort, this test would be the first to predict detailed outcome at the single-patient level. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Discrimination learning with variable stimulus 'salience'

    Directory of Open Access Journals (Sweden)

    Treviño Mario

    2011-08-01

    Full Text Available Abstract Background In nature, sensory stimuli are organized in heterogeneous combinations. Salient items from these combinations 'stand-out' from their surroundings and determine what and how we learn. Yet, the relationship between varying stimulus salience and discrimination learning remains unclear. Presentation of the hypothesis A rigorous formulation of the problem of discrimination learning should account for varying salience effects. We hypothesize that structural variations in the environment where the conditioned stimulus (CS is embedded will be a significant determinant of learning rate and retention level. Testing the hypothesis Using numerical simulations, we show how a modified version of the Rescorla-Wagner model, an influential theory of associative learning, predicts relevant interactions between varying salience and discrimination learning. Implications of the hypothesis If supported by empirical data, our model will help to interpret critical experiments addressing the relations between attention, discrimination and learning.

  8. Concentrated pitch discrimination modulates auditory brainstem responses during contralateral noise exposure.

    Science.gov (United States)

    Ikeda, Kazunari; Sekiguchi, Takahiro; Hayashi, Akiko

    2010-03-31

    This study examined a notion that auditory discrimination is a requisite for attention-related modulation of the auditory brainstem response (ABR) during contralateral noise exposure. Given that the right ear was exposed continuously with white noise at an intensity of 60-80 dB sound pressure level, tone pips at 80 dB sound pressure level were delivered to the left ear through either single-stimulus or oddball procedures. Participants conducted reading (ignoring task) and counting target tones (attentive task) during stimulation. The oddball but not the single-stimulus procedures elicited task-related modulations in both early (ABR) and late (processing negativity) event-related potentials simultaneously. The elicitation of the attention-related ABR modulation during contralateral noise exposure is thus considered to require auditory discrimination and have the corticofugal nature evidently.

  9. A Further Evaluation of Picture Prompts during Auditory-Visual Conditional Discrimination Training

    Science.gov (United States)

    Carp, Charlotte L.; Peterson, Sean P.; Arkel, Amber J.; Petursdottir, Anna I.; Ingvarsson, Einar T.

    2012-01-01

    This study was a systematic replication and extension of Fisher, Kodak, and Moore (2007), in which a picture prompt embedded into a least-to-most prompting sequence facilitated acquisition of auditory-visual conditional discriminations. Participants were 4 children who had been diagnosed with autism; 2 had limited prior receptive skills, and 2 had…

  10. Auditory temporal perceptual learning and transfer in Chinese-speaking children with developmental dyslexia.

    Science.gov (United States)

    Zhang, Manli; Xie, Weiyi; Xu, Yanzhi; Meng, Xiangzhi

    2018-03-01

    Perceptual learning refers to the improvement of perceptual performance as a function of training. Recent studies found that auditory perceptual learning may improve phonological skills in individuals with developmental dyslexia in alphabetic writing system. However, whether auditory perceptual learning could also benefit the reading skills of those learning the Chinese logographic writing system is, as yet, unknown. The current study aimed to investigate the remediation effect of auditory temporal perceptual learning on Mandarin-speaking school children with developmental dyslexia. Thirty children with dyslexia were screened from a large pool of students in 3th-5th grades. They completed a series of pretests and then were assigned to either a non-training control group or a training group. The training group worked on a pure tone duration discrimination task for 7 sessions over 2 weeks with thirty minutes per session. Post-tests immediately after training and a follow-up test 2 months later were conducted. Analyses revealed a significant training effect in the training group relative to non-training group, as well as near transfer to the temporal interval discrimination task and far transfer to phonological awareness, character recognition and reading fluency. Importantly, the training effect and all the transfer effects were stable at the 2-month follow-up session. Further analyses found that a significant correlation between character recognition performance and learning rate mainly existed in the slow learning phase, the consolidation stage of perceptual learning, and this effect was modulated by an individuals' executive function. These findings indicate that adaptive auditory temporal perceptual learning can lead to learning and transfer effects on reading performance, and shed further light on the potential role of basic perceptual learning in the remediation and prevention of developmental dyslexia. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Auditory cortex involvement in emotional learning and memory.

    Science.gov (United States)

    Grosso, A; Cambiaghi, M; Concina, G; Sacco, T; Sacchetti, B

    2015-07-23

    Emotional memories represent the core of human and animal life and drive future choices and behaviors. Early research involving brain lesion studies in animals lead to the idea that the auditory cortex participates in emotional learning by processing the sensory features of auditory stimuli paired with emotional consequences and by transmitting this information to the amygdala. Nevertheless, electrophysiological and imaging studies revealed that, following emotional experiences, the auditory cortex undergoes learning-induced changes that are highly specific, associative and long lasting. These studies suggested that the role played by the auditory cortex goes beyond stimulus elaboration and transmission. Here, we discuss three major perspectives created by these data. In particular, we analyze the possible roles of the auditory cortex in emotional learning, we examine the recruitment of the auditory cortex during early and late memory trace encoding, and finally we consider the functional interplay between the auditory cortex and subcortical nuclei, such as the amygdala, that process affective information. We conclude that, starting from the early phase of memory encoding, the auditory cortex has a more prominent role in emotional learning, through its connections with subcortical nuclei, than is typically acknowledged. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Auditory Processing Learning Disability, Suicidal Ideation, and Transformational Faith

    Science.gov (United States)

    Bailey, Frank S.; Yocum, Russell G.

    2015-01-01

    The purpose of this personal experience as a narrative investigation is to describe how an auditory processing learning disability exacerbated--and how spirituality and religiosity relieved--suicidal ideation, through the lived experiences of an individual born and raised in the United States. The study addresses: (a) how an auditory processing…

  13. Subcortical plasticity following perceptual learning in a pitch discrimination task

    OpenAIRE

    Carcagno, Samuele; Plack, Christopher J.

    2011-01-01

    Practice can lead to dramatic improvements in the discrimination of auditory stimuli. In this study, we investigated changes of the frequency-following response (FFR), a subcortical component of the auditory evoked potentials, after a period of pitch discrimination training. Twenty-seven adult listeners were trained for 10 h on a pitch discrimination task using one of three different complex tone stimuli. One had a static pitch contour, one had a rising pitch contour, and one had a falling pi...

  14. Discriminative Transfer Learning for General Image Restoration

    KAUST Repository

    Xiao, Lei

    2018-04-30

    Recently, several discriminative learning approaches have been proposed for effective image restoration, achieving convincing trade-off between image quality and computational efficiency. However, these methods require separate training for each restoration task (e.g., denoising, deblurring, demosaicing) and problem condition (e.g., noise level of input images). This makes it time-consuming and difficult to encompass all tasks and conditions during training. In this paper, we propose a discriminative transfer learning method that incorporates formal proximal optimization and discriminative learning for general image restoration. The method requires a single-pass discriminative training and allows for reuse across various problems and conditions while achieving an efficiency comparable to previous discriminative approaches. Furthermore, after being trained, our model can be easily transferred to new likelihood terms to solve untrained tasks, or be combined with existing priors to further improve image restoration quality.

  15. Discriminative Transfer Learning for General Image Restoration

    KAUST Repository

    Xiao, Lei; Heide, Felix; Heidrich, Wolfgang; Schö lkopf, Bernhard; Hirsch, Michael

    2018-01-01

    Recently, several discriminative learning approaches have been proposed for effective image restoration, achieving convincing trade-off between image quality and computational efficiency. However, these methods require separate training for each restoration task (e.g., denoising, deblurring, demosaicing) and problem condition (e.g., noise level of input images). This makes it time-consuming and difficult to encompass all tasks and conditions during training. In this paper, we propose a discriminative transfer learning method that incorporates formal proximal optimization and discriminative learning for general image restoration. The method requires a single-pass discriminative training and allows for reuse across various problems and conditions while achieving an efficiency comparable to previous discriminative approaches. Furthermore, after being trained, our model can be easily transferred to new likelihood terms to solve untrained tasks, or be combined with existing priors to further improve image restoration quality.

  16. Discrimination aware decision tree learning

    NARCIS (Netherlands)

    Kamiran, F.; Calders, T.G.K.; Pechenizkiy, M.

    2010-01-01

    Recently, the following problem of discrimination aware classification was introduced: given a labeled dataset and an attribute B, find a classifier with high predictive accuracy that at the same time does not discriminate on the basis of the given attribute B. This problem is motivated by the fact

  17. Discrimination aware decision tree learning

    NARCIS (Netherlands)

    Kamiran, F.; Calders, T.G.K.; Pechenizkiy, M.

    2010-01-01

    Recently, the following discrimination aware classification problem was introduced: given a labeled dataset and an attribute B, find a classifier with high predictive accuracy that at the same time does not discriminate on the basis of the given attribute B. This problem is motivated by the fact

  18. Statistical learning of recurring sound patterns encodes auditory objects in songbird forebrain.

    Science.gov (United States)

    Lu, Kai; Vicario, David S

    2014-10-07

    Auditory neurophysiology has demonstrated how basic acoustic features are mapped in the brain, but it is still not clear how multiple sound components are integrated over time and recognized as an object. We investigated the role of statistical learning in encoding the sequential features of complex sounds by recording neuronal responses bilaterally in the auditory forebrain of awake songbirds that were passively exposed to long sound streams. These streams contained sequential regularities, and were similar to streams used in human infants to demonstrate statistical learning for speech sounds. For stimulus patterns with contiguous transitions and with nonadjacent elements, single and multiunit responses reflected neuronal discrimination of the familiar patterns from novel patterns. In addition, discrimination of nonadjacent patterns was stronger in the right hemisphere than in the left, and may reflect an effect of top-down modulation that is lateralized. Responses to recurring patterns showed stimulus-specific adaptation, a sparsening of neural activity that may contribute to encoding invariants in the sound stream and that appears to increase coding efficiency for the familiar stimuli across the population of neurons recorded. As auditory information about the world must be received serially over time, recognition of complex auditory objects may depend on this type of mnemonic process to create and differentiate representations of recently heard sounds.

  19. Conditional discrimination learning: A critique and amplification

    OpenAIRE

    Schrier, Allan M.; Thompson, Claudia R.

    1980-01-01

    Carter and Werner recently reviewed the literature on conditional discrimination learning by pigeons, which consists of studies of matching-to-sample and oddity-from-sample. They also discussed three models of such learning: the “multiple-rule” model (learning of stimulus-specific relations), the “configuration” model, and the “single-rule” model (concept learning). Although their treatment of the multiple-rule model, which seems most applicable to the pigeon data, is generally excellent, the...

  20. Intelligence and P3 Components of the Event-Related Potential Elicited during an Auditory Discrimination Task with Masking

    Science.gov (United States)

    De Pascalis, V.; Varriale, V.; Matteoli, A.

    2008-01-01

    The relationship between fluid intelligence (indexed by scores on Raven Progressive Matrices) and auditory discrimination ability was examined by recording event-related potentials from 48 women during the performance of an auditory oddball task with backward masking. High ability (HA) subjects exhibited shorter response times, greater response…

  1. Visually induced gains in pitch discrimination: Linking audio-visual processing with auditory abilities.

    Science.gov (United States)

    Møller, Cecilie; Højlund, Andreas; Bærentsen, Klaus B; Hansen, Niels Chr; Skewes, Joshua C; Vuust, Peter

    2018-05-01

    Perception is fundamentally a multisensory experience. The principle of inverse effectiveness (PoIE) states how the multisensory gain is maximal when responses to the unisensory constituents of the stimuli are weak. It is one of the basic principles underlying multisensory processing of spatiotemporally corresponding crossmodal stimuli that are well established at behavioral as well as neural levels. It is not yet clear, however, how modality-specific stimulus features influence discrimination of subtle changes in a crossmodally corresponding feature belonging to another modality. Here, we tested the hypothesis that reliance on visual cues to pitch discrimination follow the PoIE at the interindividual level (i.e., varies with varying levels of auditory-only pitch discrimination abilities). Using an oddball pitch discrimination task, we measured the effect of varying visually perceived vertical position in participants exhibiting a wide range of pitch discrimination abilities (i.e., musicians and nonmusicians). Visual cues significantly enhanced pitch discrimination as measured by the sensitivity index d', and more so in the crossmodally congruent than incongruent condition. The magnitude of gain caused by compatible visual cues was associated with individual pitch discrimination thresholds, as predicted by the PoIE. This was not the case for the magnitude of the congruence effect, which was unrelated to individual pitch discrimination thresholds, indicating that the pitch-height association is robust to variations in auditory skills. Our findings shed light on individual differences in multisensory processing by suggesting that relevant multisensory information that crucially aids some perceivers' performance may be of less importance to others, depending on their unisensory abilities.

  2. Supramodal Enhancement of Auditory Perceptual and Cognitive Learning by Video Game Playing.

    Science.gov (United States)

    Zhang, Yu-Xuan; Tang, Ding-Lan; Moore, David R; Amitay, Sygal

    2017-01-01

    Medical rehabilitation involving behavioral training can produce highly successful outcomes, but those successes are obtained at the cost of long periods of often tedious training, reducing compliance. By contrast, arcade-style video games can be entertaining and highly motivating. We examine here the impact of video game play on contiguous perceptual training. We alternated several periods of auditory pure-tone frequency discrimination (FD) with the popular spatial visual-motor game Tetris played in silence. Tetris play alone did not produce any auditory or cognitive benefits. However, when alternated with FD training it enhanced learning of FD and auditory working memory. The learning-enhancing effects of Tetris play cannot be explained simply by the visual-spatial training involved, as the effects were gone when Tetris play was replaced with another visual-spatial task using Tetris-like stimuli but not incorporated into a game environment. The results indicate that game play enhances learning and transfer of the contiguous auditory experiences, pointing to a promising approach for increasing the efficiency and applicability of rehabilitative training.

  3. Supramodal Enhancement of Auditory Perceptual and Cognitive Learning by Video Game Playing

    Directory of Open Access Journals (Sweden)

    Yu-Xuan Zhang

    2017-06-01

    Full Text Available Medical rehabilitation involving behavioral training can produce highly successful outcomes, but those successes are obtained at the cost of long periods of often tedious training, reducing compliance. By contrast, arcade-style video games can be entertaining and highly motivating. We examine here the impact of video game play on contiguous perceptual training. We alternated several periods of auditory pure-tone frequency discrimination (FD with the popular spatial visual-motor game Tetris played in silence. Tetris play alone did not produce any auditory or cognitive benefits. However, when alternated with FD training it enhanced learning of FD and auditory working memory. The learning-enhancing effects of Tetris play cannot be explained simply by the visual-spatial training involved, as the effects were gone when Tetris play was replaced with another visual-spatial task using Tetris-like stimuli but not incorporated into a game environment. The results indicate that game play enhances learning and transfer of the contiguous auditory experiences, pointing to a promising approach for increasing the efficiency and applicability of rehabilitative training.

  4. Temporal integration: intentional sound discrimination does not modulate stimulus-driven processes in auditory event synthesis.

    Science.gov (United States)

    Sussman, Elyse; Winkler, István; Kreuzer, Judith; Saher, Marieke; Näätänen, Risto; Ritter, Walter

    2002-12-01

    Our previous study showed that the auditory context could influence whether two successive acoustic changes occurring within the temporal integration window (approximately 200ms) were pre-attentively encoded as a single auditory event or as two discrete events (Cogn Brain Res 12 (2001) 431). The aim of the current study was to assess whether top-down processes could influence the stimulus-driven processes in determining what constitutes an auditory event. Electroencepholagram (EEG) was recorded from 11 scalp electrodes to frequently occurring standard and infrequently occurring deviant sounds. Within the stimulus blocks, deviants either occurred only in pairs (successive feature changes) or both singly and in pairs. Event-related potential indices of change and target detection, the mismatch negativity (MMN) and the N2b component, respectively, were compared with the simultaneously measured performance in discriminating the deviants. Even though subjects could voluntarily distinguish the two successive auditory feature changes from each other, which was also indicated by the elicitation of the N2b target-detection response, top-down processes did not modify the event organization reflected by the MMN response. Top-down processes can extract elemental auditory information from a single integrated acoustic event, but the extraction occurs at a later processing stage than the one whose outcome is indexed by MMN. Initial processes of auditory event-formation are fully governed by the context within which the sounds occur. Perception of the deviants as two separate sound events (the top-down effects) did not change the initial neural representation of the same deviants as one event (indexed by the MMN), without a corresponding change in the stimulus-driven sound organization.

  5. Discrimination of timbre in early auditory responses of the human brain.

    Directory of Open Access Journals (Sweden)

    Jaeho Seol

    Full Text Available BACKGROUND: The issue of how differences in timbre are represented in the neural response still has not been well addressed, particularly with regard to the relevant brain mechanisms. Here we employ phasing and clipping of tones to produce auditory stimuli differing to describe the multidimensional nature of timbre. We investigated the auditory response and sensory gating as well, using by magnetoencephalography (MEG. METHODOLOGY/PRINCIPAL FINDINGS: Thirty-five healthy subjects without hearing deficit participated in the experiments. Two different or same tones in timbre were presented through conditioning (S1-testing (S2 paradigm as a pair with an interval of 500 ms. As a result, the magnitudes of auditory M50 and M100 responses were different with timbre in both hemispheres. This result might support that timbre, at least by phasing and clipping, is discriminated in the auditory early processing. The second response in a pair affected by S1 in the consecutive stimuli occurred in M100 of the left hemisphere, whereas both M50 and M100 responses to S2 only in the right hemisphere reflected whether two stimuli in a pair were the same or not. Both M50 and M100 magnitudes were different with the presenting order (S1 vs. S2 for both same and different conditions in the both hemispheres. CONCLUSIONS/SIGNIFICANCES: Our results demonstrate that the auditory response depends on timbre characteristics. Moreover, it was revealed that the auditory sensory gating is determined not by the stimulus that directly evokes the response, but rather by whether or not the two stimuli are identical in timbre.

  6. Unifying generative and discriminative learning principles

    Directory of Open Access Journals (Sweden)

    Strickert Marc

    2010-02-01

    Full Text Available Abstract Background The recognition of functional binding sites in genomic DNA remains one of the fundamental challenges of genome research. During the last decades, a plethora of different and well-adapted models has been developed, but only little attention has been payed to the development of different and similarly well-adapted learning principles. Only recently it was noticed that discriminative learning principles can be superior over generative ones in diverse bioinformatics applications, too. Results Here, we propose a generalization of generative and discriminative learning principles containing the maximum likelihood, maximum a posteriori, maximum conditional likelihood, maximum supervised posterior, generative-discriminative trade-off, and penalized generative-discriminative trade-off learning principles as special cases, and we illustrate its efficacy for the recognition of vertebrate transcription factor binding sites. Conclusions We find that the proposed learning principle helps to improve the recognition of transcription factor binding sites, enabling better computational approaches for extracting as much information as possible from valuable wet-lab data. We make all implementations available in the open-source library Jstacs so that this learning principle can be easily applied to other classification problems in the field of genome and epigenome analysis.

  7. Speech discrimination difficulties in High-Functioning Autism Spectrum Disorder are likely independent of auditory hypersensitivity.

    Directory of Open Access Journals (Sweden)

    William Andrew Dunlop

    2016-08-01

    Full Text Available Autism Spectrum Disorder (ASD, characterised by impaired communication skills and repetitive behaviours, can also result in differences in sensory perception. Individuals with ASD often perform normally in simple auditory tasks but poorly compared to typically developed (TD individuals on complex auditory tasks like discriminating speech from complex background noise. A common trait of individuals with ASD is hypersensitivity to auditory stimulation. No studies to our knowledge consider whether hypersensitivity to sounds is related to differences in speech-in-noise discrimination. We provide novel evidence that individuals with high-functioning ASD show poor performance compared to TD individuals in a speech-in-noise discrimination task with an attentionally demanding background noise, but not in a purely energetic noise. Further, we demonstrate in our small sample that speech-hypersensitivity does not appear to predict performance in the speech-in-noise task. The findings support the argument that an attentional deficit, rather than a perceptual deficit, affects the ability of individuals with ASD to discriminate speech from background noise. Finally, we piloted a novel questionnaire that measures difficulty hearing in noisy environments, and sensitivity to non-verbal and verbal sounds. Psychometric analysis using 128 TD participants provided novel evidence for a difference in sensitivity to non-verbal and verbal sounds, and these findings were reinforced by participants with ASD who also completed the questionnaire. The study was limited by a small and high-functioning sample of participants with ASD. Future work could test larger sample sizes and include lower-functioning ASD participants.

  8. Musical Sophistication and the Effect of Complexity on Auditory Discrimination in Finnish Speakers

    Science.gov (United States)

    Dawson, Caitlin; Aalto, Daniel; Šimko, Juraj; Vainio, Martti; Tervaniemi, Mari

    2017-01-01

    Musical experiences and native language are both known to affect auditory processing. The present work aims to disentangle the influences of native language phonology and musicality on behavioral and subcortical sound feature processing in a population of musically diverse Finnish speakers as well as to investigate the specificity of enhancement from musical training. Finnish speakers are highly sensitive to duration cues since in Finnish, vowel and consonant duration determine word meaning. Using a correlational approach with a set of behavioral sound feature discrimination tasks, brainstem recordings, and a musical sophistication questionnaire, we find no evidence for an association between musical sophistication and more precise duration processing in Finnish speakers either in the auditory brainstem response or in behavioral tasks, but they do show an enhanced pitch discrimination compared to Finnish speakers with less musical experience and show greater duration modulation in a complex task. These results are consistent with a ceiling effect set for certain sound features which corresponds to the phonology of the native language, leaving an opportunity for music experience-based enhancement of sound features not explicitly encoded in the language (such as pitch, which is not explicitly encoded in Finnish). Finally, the pattern of duration modulation in more musically sophisticated Finnish speakers suggests integrated feature processing for greater efficiency in a real world musical situation. These results have implications for research into the specificity of plasticity in the auditory system as well as to the effects of interaction of specific language features with musical experiences. PMID:28450829

  9. Musical Sophistication and the Effect of Complexity on Auditory Discrimination in Finnish Speakers.

    Science.gov (United States)

    Dawson, Caitlin; Aalto, Daniel; Šimko, Juraj; Vainio, Martti; Tervaniemi, Mari

    2017-01-01

    Musical experiences and native language are both known to affect auditory processing. The present work aims to disentangle the influences of native language phonology and musicality on behavioral and subcortical sound feature processing in a population of musically diverse Finnish speakers as well as to investigate the specificity of enhancement from musical training. Finnish speakers are highly sensitive to duration cues since in Finnish, vowel and consonant duration determine word meaning. Using a correlational approach with a set of behavioral sound feature discrimination tasks, brainstem recordings, and a musical sophistication questionnaire, we find no evidence for an association between musical sophistication and more precise duration processing in Finnish speakers either in the auditory brainstem response or in behavioral tasks, but they do show an enhanced pitch discrimination compared to Finnish speakers with less musical experience and show greater duration modulation in a complex task. These results are consistent with a ceiling effect set for certain sound features which corresponds to the phonology of the native language, leaving an opportunity for music experience-based enhancement of sound features not explicitly encoded in the language (such as pitch, which is not explicitly encoded in Finnish). Finally, the pattern of duration modulation in more musically sophisticated Finnish speakers suggests integrated feature processing for greater efficiency in a real world musical situation. These results have implications for research into the specificity of plasticity in the auditory system as well as to the effects of interaction of specific language features with musical experiences.

  10. Classification of passive auditory event-related potentials using discriminant analysis and self-organizing feature maps.

    Science.gov (United States)

    Schönweiler, R; Wübbelt, P; Tolloczko, R; Rose, C; Ptok, M

    2000-01-01

    Discriminant analysis (DA) and self-organizing feature maps (SOFM) were used to classify passively evoked auditory event-related potentials (ERP) P(1), N(1), P(2) and N(2). Responses from 16 children with severe behavioral auditory perception deficits, 16 children with marked behavioral auditory perception deficits, and 14 controls were examined. Eighteen ERP amplitude parameters were selected for examination of statistical differences between the groups. Different DA methods and SOFM configurations were trained to the values. SOFM had better classification results than DA methods. Subsequently, measures on another 37 subjects that were unknown for the trained SOFM were used to test the reliability of the system. With 10-dimensional vectors, reliable classifications were obtained that matched behavioral auditory perception deficits in 96%, implying central auditory processing disorder (CAPD). The results also support the assumption that CAPD includes a 'non-peripheral' auditory processing deficit. Copyright 2000 S. Karger AG, Basel.

  11. Examination of the Relation between an Assessment of Skills and Performance on Auditory-Visual Conditional Discriminations for Children with Autism Spectrum Disorder

    Science.gov (United States)

    Kodak, Tiffany; Clements, Andrea; Paden, Amber R.; LeBlanc, Brittany; Mintz, Joslyn; Toussaint, Karen A.

    2015-01-01

    The current investigation evaluated repertoires that may be related to performance on auditory-to-visual conditional discrimination training with 9 students who had been diagnosed with autism spectrum disorder. The skills included in the assessment were matching, imitation, scanning, an auditory discrimination, and a visual discrimination. The…

  12. Brain activity during auditory and visual phonological, spatial and simple discrimination tasks.

    Science.gov (United States)

    Salo, Emma; Rinne, Teemu; Salonen, Oili; Alho, Kimmo

    2013-02-16

    We used functional magnetic resonance imaging to measure human brain activity during tasks demanding selective attention to auditory or visual stimuli delivered in concurrent streams. Auditory stimuli were syllables spoken by different voices and occurring in central or peripheral space. Visual stimuli were centrally or more peripherally presented letters in darker or lighter fonts. The participants performed a phonological, spatial or "simple" (speaker-gender or font-shade) discrimination task in either modality. Within each modality, we expected a clear distinction between brain activations related to nonspatial and spatial processing, as reported in previous studies. However, within each modality, different tasks activated largely overlapping areas in modality-specific (auditory and visual) cortices, as well as in the parietal and frontal brain regions. These overlaps may be due to effects of attention common for all three tasks within each modality or interaction of processing task-relevant features and varying task-irrelevant features in the attended-modality stimuli. Nevertheless, brain activations caused by auditory and visual phonological tasks overlapped in the left mid-lateral prefrontal cortex, while those caused by the auditory and visual spatial tasks overlapped in the inferior parietal cortex. These overlapping activations reveal areas of multimodal phonological and spatial processing. There was also some evidence for intermodal attention-related interaction. Most importantly, activity in the superior temporal sulcus elicited by unattended speech sounds was attenuated during the visual phonological task in comparison with the other visual tasks. This effect might be related to suppression of processing irrelevant speech presumably distracting the phonological task involving the letters. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Low-level neural auditory discrimination dysfunctions in specific language impairment—A review on mismatch negativity findings

    Directory of Open Access Journals (Sweden)

    Teija Kujala

    2017-12-01

    Full Text Available In specific language impairment (SLI, there is a delay in the child’s oral language skills when compared with nonverbal cognitive abilities. The problems typically relate to phonological and morphological processing and word learning. This article reviews studies which have used mismatch negativity (MMN in investigating low-level neural auditory dysfunctions in this disorder. With MMN, it is possible to tap the accuracy of neural sound discrimination and sensory memory functions. These studies have found smaller response amplitudes and longer latencies for speech and non-speech sound changes in children with SLI than in typically developing children, suggesting impaired and slow auditory discrimination in SLI. Furthermore, they suggest shortened sensory memory duration and vulnerability of the sensory memory to masking effects. Importantly, some studies reported associations between MMN parameters and language test measures. In addition, it was found that language intervention can influence the abnormal MMN in children with SLI, enhancing its amplitude. These results suggest that the MMN can shed light on the neural basis of various auditory and memory impairments in SLI, which are likely to influence speech perception. Keywords: Specific language impairment, Auditory processing, Mismatch negativity (MMN

  14. Identification of Auditory Object-Specific Attention from Single-Trial Electroencephalogram Signals via Entropy Measures and Machine Learning

    Directory of Open Access Journals (Sweden)

    Yun Lu

    2018-05-01

    Full Text Available Existing research has revealed that auditory attention can be tracked from ongoing electroencephalography (EEG signals. The aim of this novel study was to investigate the identification of peoples’ attention to a specific auditory object from single-trial EEG signals via entropy measures and machine learning. Approximate entropy (ApEn, sample entropy (SampEn, composite multiscale entropy (CmpMSE and fuzzy entropy (FuzzyEn were used to extract the informative features of EEG signals under three kinds of auditory object-specific attention (Rest, Auditory Object1 Attention (AOA1 and Auditory Object2 Attention (AOA2. The linear discriminant analysis and support vector machine (SVM, were used to construct two auditory attention classifiers. The statistical results of entropy measures indicated that there were significant differences in the values of ApEn, SampEn, CmpMSE and FuzzyEn between Rest, AOA1 and AOA2. For the SVM-based auditory attention classifier, the auditory object-specific attention of Rest, AOA1 and AOA2 could be identified from EEG signals using ApEn, SampEn, CmpMSE and FuzzyEn as features and the identification rates were significantly different from chance level. The optimal identification was achieved by the SVM-based auditory attention classifier using CmpMSE with the scale factor τ = 10. This study demonstrated a novel solution to identify the auditory object-specific attention from single-trial EEG signals without the need to access the auditory stimulus.

  15. Neural correlates of face gender discrimination learning.

    Science.gov (United States)

    Su, Junzhu; Tan, Qingleng; Fang, Fang

    2013-04-01

    Using combined psychophysics and event-related potentials (ERPs), we investigated the effect of perceptual learning on face gender discrimination and probe the neural correlates of the learning effect. Human subjects were trained to perform a gender discrimination task with male or female faces. Before and after training, they were tested with the trained faces and other faces with the same and opposite genders. ERPs responding to these faces were recorded. Psychophysical results showed that training significantly improved subjects' discrimination performance and the improvement was specific to the trained gender, as well as to the trained identities. The training effect indicates that learning occurs at two levels-the category level (gender) and the exemplar level (identity). ERP analyses showed that the gender and identity learning was associated with the N170 latency reduction at the left occipital-temporal area and the N170 amplitude reduction at the right occipital-temporal area, respectively. These findings provide evidence for the facilitation model and the sharpening model on neuronal plasticity from visual experience, suggesting a faster processing speed and a sparser representation of face induced by perceptual learning.

  16. Influence of syllable structure on L2 auditory word learning.

    Science.gov (United States)

    Hamada, Megumi; Goya, Hideki

    2015-04-01

    This study investigated the role of syllable structure in L2 auditory word learning. Based on research on cross-linguistic variation of speech perception and lexical memory, it was hypothesized that Japanese L1 learners of English would learn English words with an open-syllable structure without consonant clusters better than words with a closed-syllable structure and consonant clusters. Two groups of college students (Japanese group, N = 22; and native speakers of English, N = 21) learned paired English pseudowords and pictures. The pseudoword types differed in terms of the syllable structure and consonant clusters (congruent vs. incongruent) and the position of consonant clusters (coda vs. onset). Recall accuracy was higher for the pseudowords in the congruent type and the pseudowords with the coda-consonant clusters. The syllable structure effect was obtained from both participant groups, disconfirming the hypothesized cross-linguistic influence on L2 auditory word learning.

  17. Less is more: latent learning is maximized by shorter training sessions in auditory perceptual learning.

    Science.gov (United States)

    Molloy, Katharine; Moore, David R; Sohoglu, Ediz; Amitay, Sygal

    2012-01-01

    The time course and outcome of perceptual learning can be affected by the length and distribution of practice, but the training regimen parameters that govern these effects have received little systematic study in the auditory domain. We asked whether there was a minimum requirement on the number of trials within a training session for learning to occur, whether there was a maximum limit beyond which additional trials became ineffective, and whether multiple training sessions provided benefit over a single session. We investigated the efficacy of different regimens that varied in the distribution of practice across training sessions and in the overall amount of practice received on a frequency discrimination task. While learning was relatively robust to variations in regimen, the group with the shortest training sessions (∼8 min) had significantly faster learning in early stages of training than groups with longer sessions. In later stages, the group with the longest training sessions (>1 hr) showed slower learning than the other groups, suggesting overtraining. Between-session improvements were inversely correlated with performance; they were largest at the start of training and reduced as training progressed. In a second experiment we found no additional longer-term improvement in performance, retention, or transfer of learning for a group that trained over 4 sessions (∼4 hr in total) relative to a group that trained for a single session (∼1 hr). However, the mechanisms of learning differed; the single-session group continued to improve in the days following cessation of training, whereas the multi-session group showed no further improvement once training had ceased. Shorter training sessions were advantageous because they allowed for more latent, between-session and post-training learning to emerge. These findings suggest that efficient regimens should use short training sessions, and optimized spacing between sessions.

  18. Discriminative Bayesian Dictionary Learning for Classification.

    Science.gov (United States)

    Akhtar, Naveed; Shafait, Faisal; Mian, Ajmal

    2016-12-01

    We propose a Bayesian approach to learn discriminative dictionaries for sparse representation of data. The proposed approach infers probability distributions over the atoms of a discriminative dictionary using a finite approximation of Beta Process. It also computes sets of Bernoulli distributions that associate class labels to the learned dictionary atoms. This association signifies the selection probabilities of the dictionary atoms in the expansion of class-specific data. Furthermore, the non-parametric character of the proposed approach allows it to infer the correct size of the dictionary. We exploit the aforementioned Bernoulli distributions in separately learning a linear classifier. The classifier uses the same hierarchical Bayesian model as the dictionary, which we present along the analytical inference solution for Gibbs sampling. For classification, a test instance is first sparsely encoded over the learned dictionary and the codes are fed to the classifier. We performed experiments for face and action recognition; and object and scene-category classification using five public datasets and compared the results with state-of-the-art discriminative sparse representation approaches. Experiments show that the proposed Bayesian approach consistently outperforms the existing approaches.

  19. Abstract numerical discrimination learning in rats.

    Science.gov (United States)

    Taniuchi, Tohru; Sugihara, Junko; Wakashima, Mariko; Kamijo, Makiko

    2016-06-01

    In this study, we examined rats' discrimination learning of the numerical ordering positions of objects. In Experiments 1 and 2, five out of seven rats successfully learned to respond to the third of six identical objects in a row and showed reliable transfer of this discrimination to novel stimuli after being trained with three different training stimuli. In Experiment 3, the three rats from Experiment 2 continued to be trained to respond to the third object in an object array, which included an odd object that needed to be excluded when identifying the target third object. All three rats acquired this selective-counting task of specific stimuli, and two rats showed reliable transfer of this selective-counting performance to test sets of novel stimuli. In Experiment 4, the three rats from Experiment 3 quickly learned to respond to the third stimulus in object rows consisting of either six identical or six different objects. These results offer strong evidence for abstract numerical discrimination learning in rats.

  20. Hyperspectral Image Classification Using Discriminative Dictionary Learning

    International Nuclear Information System (INIS)

    Zongze, Y; Hao, S; Kefeng, J; Huanxin, Z

    2014-01-01

    The hyperspectral image (HSI) processing community has witnessed a surge of papers focusing on the utilization of sparse prior for effective HSI classification. In sparse representation based HSI classification, there are two phases: sparse coding with an over-complete dictionary and classification. In this paper, we first apply a novel fisher discriminative dictionary learning method, which capture the relative difference in different classes. The competitive selection strategy ensures that atoms in the resulting over-complete dictionary are the most discriminative. Secondly, motivated by the assumption that spatially adjacent samples are statistically related and even belong to the same materials (same class), we propose a majority voting scheme incorporating contextual information to predict the category label. Experiment results show that the proposed method can effectively strengthen relative discrimination of the constructed dictionary, and incorporating with the majority voting scheme achieve generally an improved prediction performance

  1. Neurofeedback in Learning Disabled Children: Visual versus Auditory Reinforcement.

    Science.gov (United States)

    Fernández, Thalía; Bosch-Bayard, Jorge; Harmony, Thalía; Caballero, María I; Díaz-Comas, Lourdes; Galán, Lídice; Ricardo-Garcell, Josefina; Aubert, Eduardo; Otero-Ojeda, Gloria

    2016-03-01

    Children with learning disabilities (LD) frequently have an EEG characterized by an excess of theta and a deficit of alpha activities. NFB using an auditory stimulus as reinforcer has proven to be a useful tool to treat LD children by positively reinforcing decreases of the theta/alpha ratio. The aim of the present study was to optimize the NFB procedure by comparing the efficacy of visual (with eyes open) versus auditory (with eyes closed) reinforcers. Twenty LD children with an abnormally high theta/alpha ratio were randomly assigned to the Auditory or the Visual group, where a 500 Hz tone or a visual stimulus (a white square), respectively, was used as a positive reinforcer when the value of the theta/alpha ratio was reduced. Both groups had signs consistent with EEG maturation, but only the Auditory Group showed behavioral/cognitive improvements. In conclusion, the auditory reinforcer was more efficacious in reducing the theta/alpha ratio, and it improved the cognitive abilities more than the visual reinforcer.

  2. Auditory velocity discrimination in the horizontal plane at very high velocities.

    Science.gov (United States)

    Frissen, Ilja; Féron, François-Xavier; Guastavino, Catherine

    2014-10-01

    We determined velocity discrimination thresholds and Weber fractions for sounds revolving around the listener at very high velocities. Sounds used were a broadband white noise and two harmonic sounds with fundamental frequencies of 330 Hz and 1760 Hz. Experiment 1 used velocities ranging between 288°/s and 720°/s in an acoustically treated room and Experiment 2 used velocities between 288°/s and 576°/s in a highly reverberant hall. A third experiment addressed potential confounds in the first two experiments. The results show that people can reliably discriminate velocity at very high velocities and that both thresholds and Weber fractions decrease as velocity increases. These results violate Weber's law but are consistent with the empirical trend observed in the literature. While thresholds for the noise and 330 Hz harmonic stimulus were similar, those for the 1760 Hz harmonic stimulus were substantially higher. There were no reliable differences in velocity discrimination between the two acoustical environments, suggesting that auditory motion perception at high velocities is robust against the effects of reverberation. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Importance of the left auditory areas in chord discrimination in music experts as demonstrated by MEG.

    Science.gov (United States)

    Tervaniemi, Mari; Sannemann, Christian; Noyranen, Maiju; Salonen, Johanna; Pihko, Elina

    2011-08-01

    The brain basis behind musical competence in its various forms is not yet known. To determine the pattern of hemispheric lateralization during sound-change discrimination, we recorded the magnetic counterpart of the electrical mismatch negativity (MMNm) responses in professional musicians, musical participants (with high scores in the musicality tests but without professional training in music) and non-musicians. While watching a silenced video, they were presented with short sounds with frequency and duration deviants and C major chords with C minor chords as deviants. MMNm to chord deviants was stronger in both musicians and musical participants than in non-musicians, particularly in their left hemisphere. No group differences were obtained in the MMNm strength in the right hemisphere in any of the conditions or in the left hemisphere in the case of frequency or duration deviants. Thus, in addition to professional training in music, musical aptitude (combined with lower-level musical training) is also reflected in brain functioning related to sound discrimination. The present magnetoencephalographic evidence therefore indicates that the sound discrimination abilities may be differentially distributed in the brain in musically competent and naïve participants, especially in a musical context established by chord stimuli: the higher forms of musical competence engage both auditory cortices in an integrative manner. © 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  4. Activations of human auditory cortex to phonemic and nonphonemic vowels during discrimination and memory tasks.

    Science.gov (United States)

    Harinen, Kirsi; Rinne, Teemu

    2013-08-15

    We used fMRI to investigate activations within human auditory cortex (AC) to vowels during vowel discrimination, vowel (categorical n-back) memory, and visual tasks. Based on our previous studies, we hypothesized that the vowel discrimination task would be associated with increased activations in the anterior superior temporal gyrus (STG), while the vowel memory task would enhance activations in the posterior STG and inferior parietal lobule (IPL). In particular, we tested the hypothesis that activations in the IPL during vowel memory tasks are associated with categorical processing. Namely, activations due to categorical processing should be higher during tasks performed on nonphonemic (hard to categorize) than on phonemic (easy to categorize) vowels. As expected, we found distinct activation patterns during vowel discrimination and vowel memory tasks. Further, these task-dependent activations were different during tasks performed on phonemic or nonphonemic vowels. However, activations in the IPL associated with the vowel memory task were not stronger during nonphonemic than phonemic vowel blocks. Together these results demonstrate that activations in human AC to vowels depend on both the requirements of the behavioral task and the phonemic status of the vowels. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Motor-related signals in the auditory system for listening and learning.

    Science.gov (United States)

    Schneider, David M; Mooney, Richard

    2015-08-01

    In the auditory system, corollary discharge signals are theorized to facilitate normal hearing and the learning of acoustic behaviors, including speech and music. Despite clear evidence of corollary discharge signals in the auditory cortex and their presumed importance for hearing and auditory-guided motor learning, the circuitry and function of corollary discharge signals in the auditory cortex are not well described. In this review, we focus on recent developments in the mouse and songbird that provide insights into the circuitry that transmits corollary discharge signals to the auditory system and the function of these signals in the context of hearing and vocal learning. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Gay- and Lesbian-Sounding Auditory Cues Elicit Stereotyping and Discrimination.

    Science.gov (United States)

    Fasoli, Fabio; Maass, Anne; Paladino, Maria Paola; Sulpizio, Simone

    2017-07-01

    The growing body of literature on the recognition of sexual orientation from voice ("auditory gaydar") is silent on the cognitive and social consequences of having a gay-/lesbian- versus heterosexual-sounding voice. We investigated this issue in four studies (overall N = 276), conducted in Italian language, in which heterosexual listeners were exposed to single-sentence voice samples of gay/lesbian and heterosexual speakers. In all four studies, listeners were found to make gender-typical inferences about traits and preferences of heterosexual speakers, but gender-atypical inferences about those of gay or lesbian speakers. Behavioral intention measures showed that listeners considered lesbian and gay speakers as less suitable for a leadership position, and male (but not female) listeners took distance from gay speakers. Together, this research demonstrates that having a gay/lesbian rather than heterosexual-sounding voice has tangible consequences for stereotyping and discrimination.

  7. Increased discriminability of authenticity from multimodal laughter is driven by auditory information.

    Science.gov (United States)

    Lavan, Nadine; McGettigan, Carolyn

    2017-10-01

    We present an investigation of the perception of authenticity in audiovisual laughter, in which we contrast spontaneous and volitional samples and examine the contributions of unimodal affective information to multimodal percepts. In a pilot study, we demonstrate that listeners perceive spontaneous laughs as more authentic than volitional ones, both in unimodal (audio-only, visual-only) and multimodal contexts (audiovisual). In the main experiment, we show that the discriminability of volitional and spontaneous laughter is enhanced for multimodal laughter. Analyses of relationships between affective ratings and the perception of authenticity show that, while both unimodal percepts significantly predict evaluations of audiovisual laughter, it is auditory affective cues that have the greater influence on multimodal percepts. We discuss differences and potential mismatches in emotion signalling through voices and faces, in the context of spontaneous and volitional behaviour, and highlight issues that should be addressed in future studies of dynamic multimodal emotion processing.

  8. Auditory working memory predicts individual differences in absolute pitch learning.

    Science.gov (United States)

    Van Hedger, Stephen C; Heald, Shannon L M; Koch, Rachelle; Nusbaum, Howard C

    2015-07-01

    Absolute pitch (AP) is typically defined as the ability to label an isolated tone as a musical note in the absence of a reference tone. At first glance the acquisition of AP note categories seems like a perceptual learning task, since individuals must assign a category label to a stimulus based on a single perceptual dimension (pitch) while ignoring other perceptual dimensions (e.g., loudness, octave, instrument). AP, however, is rarely discussed in terms of domain-general perceptual learning mechanisms. This is because AP is typically assumed to depend on a critical period of development, in which early exposure to pitches and musical labels is thought to be necessary for the development of AP precluding the possibility of adult acquisition of AP. Despite this view of AP, several previous studies have found evidence that absolute pitch category learning is, to an extent, trainable in a post-critical period adult population, even if the performance typically achieved by this population is below the performance of a "true" AP possessor. The current studies attempt to understand the individual differences in learning to categorize notes using absolute pitch cues by testing a specific prediction regarding cognitive capacity related to categorization - to what extent does an individual's general auditory working memory capacity (WMC) predict the success of absolute pitch category acquisition. Since WMC has been shown to predict performance on a wide variety of other perceptual and category learning tasks, we predict that individuals with higher WMC should be better at learning absolute pitch note categories than individuals with lower WMC. Across two studies, we demonstrate that auditory WMC predicts the efficacy of learning absolute pitch note categories. These results suggest that a higher general auditory WMC might underlie the formation of absolute pitch categories for post-critical period adults. Implications for understanding the mechanisms that underlie the

  9. A Rapid Assessment of Instructional Strategies to Teach Auditory-Visual Conditional Discriminations to Children with Autism

    Science.gov (United States)

    Kodak, Tiffany; Clements, Andrea; LeBlanc, Brittany

    2013-01-01

    The purpose of the present investigation was to evaluate a rapid assessment procedure to identify effective instructional strategies to teach auditory-visual conditional discriminations to children diagnosed with autism. We replicated and extended previous rapid skills assessments (Lerman, Vorndran, Addison, & Kuhn, 2004) by evaluating the effects…

  10. Outline for Remediation of Problem Areas for Children with Learning Disabilities. Revised. = Bosquejo para la Correccion de Areas Problematicas para Ninos con Impedimientos del Aprendizaje.

    Science.gov (United States)

    Bornstein, Joan L.

    The booklet outlines ways to help children with learning disabilities in specific subject areas. Characteristic behavior and remedial exercises are listed for seven areas of auditory problems: auditory reception, auditory association, auditory discrimination, auditory figure ground, auditory closure and sound blending, auditory memory, and grammar…

  11. Object discrimination using optimized multi-frequency auditory cross-modal haptic feedback.

    Science.gov (United States)

    Gibson, Alison; Artemiadis, Panagiotis

    2014-01-01

    As the field of brain-machine interfaces and neuro-prosthetics continues to grow, there is a high need for sensor and actuation mechanisms that can provide haptic feedback to the user. Current technologies employ expensive, invasive and often inefficient force feedback methods, resulting in an unrealistic solution for individuals who rely on these devices. This paper responds through the development, integration and analysis of a novel feedback architecture where haptic information during the neural control of a prosthetic hand is perceived through multi-frequency auditory signals. Through representing force magnitude with volume and force location with frequency, the feedback architecture can translate the haptic experiences of a robotic end effector into the alternative sensory modality of sound. Previous research with the proposed cross-modal feedback method confirmed its learnability, so the current work aimed to investigate which frequency map (i.e. frequency-specific locations on the hand) is optimal in helping users distinguish between hand-held objects and tasks associated with them. After short use with the cross-modal feedback during the electromyographic (EMG) control of a prosthetic hand, testing results show that users are able to use audial feedback alone to discriminate between everyday objects. While users showed adaptation to three different frequency maps, the simplest map containing only two frequencies was found to be the most useful in discriminating between objects. This outcome provides support for the feasibility and practicality of the cross-modal feedback method during the neural control of prosthetics.

  12. Auditory stimulus discrimination recorded in dogs, as indicated by mismatch negativity (MMN).

    Science.gov (United States)

    Howell, Tiffani J; Conduit, Russell; Toukhsati, Samia; Bennett, Pauleen

    2012-01-01

    Dog cognition research tends to rely on behavioural response, which can be confounded by obedience or motivation, as the primary means of indexing dog cognitive abilities. A physiological method of measuring dog cognitive processing would be instructive and could complement behavioural response. Electroencephalogram (EEG) has been used in humans to study stimulus processing, which results in waveforms called event-related potentials (ERPs). One ERP component, mismatch negativity (MMN), is a negative deflection approximately 160-200 ms after stimulus onset, which may be related to change detection from echoic sensory memory. We adapted a minimally invasive technique to record MMN in dogs. Dogs were exposed to an auditory oddball paradigm in which deviant tones (10% probability) were pseudo-randomly interspersed throughout an 8 min sequence of standard tones (90% probability). A significant difference in MMN ERP amplitude was observed after the deviant tone in comparison to the standard tone, t5 = -2.98, p = 0.03. This difference, attributed to discrimination of an unexpected stimulus in a series of expected stimuli, was not observed when both tones occurred 50% of the time, t1 = -0.82, p > 0.05. Dogs showed no evidence of pain or distress at any point. We believe this is the first illustration of MMN in a group of dogs and anticipate that this technique may provide valuable insights in cognitive tasks such as object discrimination. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Visual speech alters the discrimination and identification of non-intact auditory speech in children with hearing loss.

    Science.gov (United States)

    Jerger, Susan; Damian, Markus F; McAlpine, Rachel P; Abdi, Hervé

    2017-03-01

    Understanding spoken language is an audiovisual event that depends critically on the ability to discriminate and identify phonemes yet we have little evidence about the role of early auditory experience and visual speech on the development of these fundamental perceptual skills. Objectives of this research were to determine 1) how visual speech influences phoneme discrimination and identification; 2) whether visual speech influences these two processes in a like manner, such that discrimination predicts identification; and 3) how the degree of hearing loss affects this relationship. Such evidence is crucial for developing effective intervention strategies to mitigate the effects of hearing loss on language development. Participants were 58 children with early-onset sensorineural hearing loss (CHL, 53% girls, M = 9;4 yrs) and 58 children with normal hearing (CNH, 53% girls, M = 9;4 yrs). Test items were consonant-vowel (CV) syllables and nonwords with intact visual speech coupled to non-intact auditory speech (excised onsets) as, for example, an intact consonant/rhyme in the visual track (Baa or Baz) coupled to non-intact onset/rhyme in the auditory track (/-B/aa or/-B/az). The items started with an easy-to-speechread/B/or difficult-to-speechread/G/onset and were presented in the auditory (static face) vs. audiovisual (dynamic face) modes. We assessed discrimination for intact vs. non-intact different pairs (e.g., Baa:/-B/aa). We predicted that visual speech would cause the non-intact onset to be perceived as intact and would therefore generate more same-as opposed to different-responses in the audiovisual than auditory mode. We assessed identification by repetition of nonwords with non-intact onsets (e.g.,/-B/az). We predicted that visual speech would cause the non-intact onset to be perceived as intact and would therefore generate more Baz-as opposed to az- responses in the audiovisual than auditory mode. Performance in the audiovisual mode showed more same

  14. Visual Speech Alters the Discrimination and Identification of Non-Intact Auditory Speech in Children with Hearing Loss

    Science.gov (United States)

    Jerger, Susan; Damian, Markus F.; McAlpine, Rachel P.; Abdi, Hervé

    2017-01-01

    Objectives Understanding spoken language is an audiovisual event that depends critically on the ability to discriminate and identify phonemes yet we have little evidence about the role of early auditory experience and visual speech on the development of these fundamental perceptual skills. Objectives of this research were to determine 1) how visual speech influences phoneme discrimination and identification; 2) whether visual speech influences these two processes in a like manner, such that discrimination predicts identification; and 3) how the degree of hearing loss affects this relationship. Such evidence is crucial for developing effective intervention strategies to mitigate the effects of hearing loss on language development. Methods Participants were 58 children with early-onset sensorineural hearing loss (CHL, 53% girls, M = 9;4 yrs) and 58 children with normal hearing (CNH, 53% girls, M = 9;4 yrs). Test items were consonant-vowel (CV) syllables and nonwords with intact visual speech coupled to non-intact auditory speech (excised onsets) as, for example, an intact consonant/rhyme in the visual track (Baa or Baz) coupled to non-intact onset/rhyme in the auditory track (/–B/aa or /–B/az). The items started with an easy-to-speechread /B/ or difficult-to-speechread /G/ onset and were presented in the auditory (static face) vs. audiovisual (dynamic face) modes. We assessed discrimination for intact vs. non-intact different pairs (e.g., Baa:/–B/aa). We predicted that visual speech would cause the non-intact onset to be perceived as intact and would therefore generate more same—as opposed to different—responses in the audiovisual than auditory mode. We assessed identification by repetition of nonwords with non-intact onsets (e.g., /–B/az). We predicted that visual speech would cause the non-intact onset to be perceived as intact and would therefore generate more Baz—as opposed to az— responses in the audiovisual than auditory mode. Results

  15. The Persian version of auditory word discrimination test (P-AWDT) for children: Development, validity, and reliability.

    Science.gov (United States)

    Hashemi, Nassim; Ghorbani, Ali; Soleymani, Zahra; Kamali, Mohmmad; Ahmadi, Zohreh Ziatabar; Mahmoudian, Saeid

    2018-07-01

    Auditory discrimination of speech sounds is an important perceptual ability and a precursor to the acquisition of language. Auditory information is at least partially necessary for the acquisition and organization of phonological rules. There are few standardized behavioral tests to evaluate phonemic distinctive features in children with or without speech and language disorders. The main objective of the present study was the development, validity, and reliability of the Persian version of auditory word discrimination test (P-AWDT) for 4-8-year-old children. A total of 120 typical children and 40 children with speech sound disorder (SSD) participated in the present study. The test comprised of 160 monosyllabic paired-words distributed in the Forms A-1 and the Form A-2 for the initial consonants (80 words) and the Forms B-1 and the Form B-2 for the final consonants (80 words). Moreover, the discrimination of vowels was randomly included in all forms. Content validity was calculated and 50 children repeated the test twice with two weeks of interval (test-retest reliability). Further analysis was also implemented including validity, intraclass correlation coefficient (ICC), Cronbach's alpha (internal consistency), age groups, and gender. The content validity index (CVI) and the test-retest reliability of the P-AWDT were achieved 63%-86% and 81%-96%, respectively. Moreover, the total Cronbach's alpha for the internal consistency was estimated relatively high (0.93). Comparison of the mean scores of the P-AWDT in the typical children and the children with SSD revealed a significant difference. The results revealed that the group with SSD had greater severity of deficit than the typical group in auditory word discrimination. In addition, the difference between the age groups was statistically significant, especially in 4-4.11-year-old children. The performance of the two gender groups was relatively same. The comparison of the P-AWDT scores between the typical children

  16. Auditory Perceptual Abilities Are Associated with Specific Auditory Experience

    Directory of Open Access Journals (Sweden)

    Yael Zaltz

    2017-11-01

    Full Text Available The extent to which auditory experience can shape general auditory perceptual abilities is still under constant debate. Some studies show that specific auditory expertise may have a general effect on auditory perceptual abilities, while others show a more limited influence, exhibited only in a relatively narrow range associated with the area of expertise. The current study addresses this issue by examining experience-dependent enhancement in perceptual abilities in the auditory domain. Three experiments were performed. In the first experiment, 12 pop and rock musicians and 15 non-musicians were tested in frequency discrimination (DLF, intensity discrimination, spectrum discrimination (DLS, and time discrimination (DLT. Results showed significant superiority of the musician group only for the DLF and DLT tasks, illuminating enhanced perceptual skills in the key features of pop music, in which miniscule changes in amplitude and spectrum are not critical to performance. The next two experiments attempted to differentiate between generalization and specificity in the influence of auditory experience, by comparing subgroups of specialists. First, seven guitar players and eight percussionists were tested in the DLF and DLT tasks that were found superior for musicians. Results showed superior abilities on the DLF task for guitar players, though no difference between the groups in DLT, demonstrating some dependency of auditory learning on the specific area of expertise. Subsequently, a third experiment was conducted, testing a possible influence of vowel density in native language on auditory perceptual abilities. Ten native speakers of German (a language characterized by a dense vowel system of 14 vowels, and 10 native speakers of Hebrew (characterized by a sparse vowel system of five vowels, were tested in a formant discrimination task. This is the linguistic equivalent of a DLS task. Results showed that German speakers had superior formant

  17. New perspectives on the auditory cortex: learning and memory.

    Science.gov (United States)

    Weinberger, Norman M

    2015-01-01

    Primary ("early") sensory cortices have been viewed as stimulus analyzers devoid of function in learning, memory, and cognition. However, studies combining sensory neurophysiology and learning protocols have revealed that associative learning systematically modifies the encoding of stimulus dimensions in the primary auditory cortex (A1) to accentuate behaviorally important sounds. This "representational plasticity" (RP) is manifest at different levels. The sensitivity and selectivity of signal tones increase near threshold, tuning above threshold shifts toward the frequency of acoustic signals, and their area of representation can increase within the tonotopic map of A1. The magnitude of area gain encodes the level of behavioral stimulus importance and serves as a substrate of memory strength. RP has the same characteristics as behavioral memory: it is associative, specific, develops rapidly, consolidates, and can last indefinitely. Pairing tone with stimulation of the cholinergic nucleus basalis induces RP and implants specific behavioral memory, while directly increasing the representational area of a tone in A1 produces matching behavioral memory. Thus, RP satisfies key criteria for serving as a substrate of auditory memory. The findings suggest a basis for posttraumatic stress disorder in abnormally augmented cortical representations and emphasize the need for a new model of the cerebral cortex. © 2015 Elsevier B.V. All rights reserved.

  18. Active Discriminative Dictionary Learning for Weather Recognition

    Directory of Open Access Journals (Sweden)

    Caixia Zheng

    2016-01-01

    Full Text Available Weather recognition based on outdoor images is a brand-new and challenging subject, which is widely required in many fields. This paper presents a novel framework for recognizing different weather conditions. Compared with other algorithms, the proposed method possesses the following advantages. Firstly, our method extracts both visual appearance features of the sky region and physical characteristics features of the nonsky region in images. Thus, the extracted features are more comprehensive than some of the existing methods in which only the features of sky region are considered. Secondly, unlike other methods which used the traditional classifiers (e.g., SVM and K-NN, we use discriminative dictionary learning as the classification model for weather, which could address the limitations of previous works. Moreover, the active learning procedure is introduced into dictionary learning to avoid requiring a large number of labeled samples to train the classification model for achieving good performance of weather recognition. Experiments and comparisons are performed on two datasets to verify the effectiveness of the proposed method.

  19. Right hemispheric contributions to fine auditory temporal discriminations: high-density electrical mapping of the duration mismatch negativity (MMN

    Directory of Open Access Journals (Sweden)

    Pierfilippo De Sanctis

    2009-04-01

    Full Text Available That language processing is primarily a function of the left hemisphere has led to the supposition that auditory temporal discrimination is particularly well-tuned in the left hemisphere, since speech discrimination is thought to rely heavily on the registration of temporal transitions. However, physiological data have not consistently supported this view. Rather, functional imaging studies often show equally strong, if not stronger, contributions from the right hemisphere during temporal processing tasks, suggesting a more complex underlying neural substrate. The mismatch negativity (MMN component of the human auditory evoked-potential (AEP provides a sensitive metric of duration processing in human auditory cortex and lateralization of MMN can be readily assayed when sufficiently dense electrode arrays are employed. Here, the sensitivity of the left and right auditory cortex for temporal processing was measured by recording the MMN to small duration deviants presented to either the left or right ear. We found that duration deviants differing by just 15% (i.e. rare 115 ms tones presented in a stream of 100 ms tones elicited a significant MMN for tones presented to the left ear (biasing the right hemisphere. However, deviants presented to the right ear elicited no detectable MMN for this separation. Further, participants detected significantly more duration deviants and committed fewer false alarms for tones presented to the left ear during a subsequent psychophysical testing session. In contrast to the prevalent model, these results point to equivalent if not greater right hemisphere contributions to temporal processing of small duration changes.

  20. Visual form Cues, Biological Motions, Auditory Cues, and Even Olfactory Cues Interact to Affect Visual Sex Discriminations

    OpenAIRE

    Rick Van Der Zwan; Anna Brooks; Duncan Blair; Coralia Machatch; Graeme Hacker

    2011-01-01

    Johnson and Tassinary (2005) proposed that visually perceived sex is signalled by structural or form cues. They suggested also that biological motion cues signal sex, but do so indirectly. We previously have shown that auditory cues can mediate visual sex perceptions (van der Zwan et al., 2009). Here we demonstrate that structural cues to body shape are alone sufficient for visual sex discriminations but that biological motion cues alone are not. Interestingly, biological motions can resolve ...

  1. Feedback Valence Affects Auditory Perceptual Learning Independently of Feedback Probability

    Science.gov (United States)

    Amitay, Sygal; Moore, David R.; Molloy, Katharine; Halliday, Lorna F.

    2015-01-01

    Previous studies have suggested that negative feedback is more effective in driving learning than positive feedback. We investigated the effect on learning of providing varying amounts of negative and positive feedback while listeners attempted to discriminate between three identical tones; an impossible task that nevertheless produces robust learning. Four feedback conditions were compared during training: 90% positive feedback or 10% negative feedback informed the participants that they were doing equally well, while 10% positive or 90% negative feedback informed them they were doing equally badly. In all conditions the feedback was random in relation to the listeners’ responses (because the task was to discriminate three identical tones), yet both the valence (negative vs. positive) and the probability of feedback (10% vs. 90%) affected learning. Feedback that informed listeners they were doing badly resulted in better post-training performance than feedback that informed them they were doing well, independent of valence. In addition, positive feedback during training resulted in better post-training performance than negative feedback, but only positive feedback indicating listeners were doing badly on the task resulted in learning. As we have previously speculated, feedback that better reflected the difficulty of the task was more effective in driving learning than feedback that suggested performance was better than it should have been given perceived task difficulty. But contrary to expectations, positive feedback was more effective than negative feedback in driving learning. Feedback thus had two separable effects on learning: feedback valence affected motivation on a subjectively difficult task, and learning occurred only when feedback probability reflected the subjective difficulty. To optimize learning, training programs need to take into consideration both feedback valence and probability. PMID:25946173

  2. Auditory verbal learning in drug-free Ecstasy polydrug users.

    Science.gov (United States)

    Fox, H. C.; Toplis, A. S.; Turner, J. J. D.; Parrott, A. C.

    2001-12-01

    Drug-free Ecstasy polydrug users have shown impairment on tasks of verbal working memory and memory span. Current research aims to investigate how these deficits may affect the learning of verbal material by administration of the Auditory Verbal Learning Task (AVLT) (Rey, 1964). The task provides a learning curve by assessing immediate memory span over multiple trials. Learning strategies are further analysed by tendencies to confabulate as well as demonstrate either proactive or retroactive interference elicited by a novel 'distractor' list. Three groups completed the task: two groups of 14 Ecstasy users (short- and long-term) and one group of 14 polydrug controls. Compared with controls both Ecstasy groups recalled significantly fewer words and made more confabulation errors on the initial three recall trials as well as a delayed recall trial. Long-term users demonstrated increased confabulation on the initial trials and the novel 'distractor7' trial, compared with short-term users. Only following repeated presentations were both short- and long-term users shown to perform at control levels. As such, deficits in verbal learning may be more related to storage and/or retrieval problems than problems associated with capacity per se. No interference errors were demonstrated by either of the Ecstasy groups. However, a high level of intrusion errors may indicate selective working memory problems associated with longer-term use of the drug. Copyright 2001 John Wiley & Sons, Ltd.

  3. Differential Effects of Music and Video Gaming During Breaks on Auditory and Visual Learning.

    Science.gov (United States)

    Liu, Shuyan; Kuschpel, Maxim S; Schad, Daniel J; Heinz, Andreas; Rapp, Michael A

    2015-11-01

    The interruption of learning processes by breaks filled with diverse activities is common in everyday life. This study investigated the effects of active computer gaming and passive relaxation (rest and music) breaks on auditory versus visual memory performance. Young adults were exposed to breaks involving (a) open eyes resting, (b) listening to music, and (c) playing a video game, immediately after memorizing auditory versus visual stimuli. To assess learning performance, words were recalled directly after the break (an 8:30 minute delay) and were recalled and recognized again after 7 days. Based on linear mixed-effects modeling, it was found that playing the Angry Birds video game during a short learning break impaired long-term retrieval in auditory learning but enhanced long-term retrieval in visual learning compared with the music and rest conditions. These differential effects of video games on visual versus auditory learning suggest specific interference of common break activities on learning.

  4. Task-irrelevant emotion facilitates face discrimination learning.

    Science.gov (United States)

    Lorenzino, Martina; Caudek, Corrado

    2015-03-01

    We understand poorly how the ability to discriminate faces from one another is shaped by visual experience. The purpose of the present study is to determine whether face discrimination learning can be facilitated by facial emotions. To answer this question, we used a task-irrelevant perceptual learning paradigm because it closely mimics the learning processes that, in daily life, occur without a conscious intention to learn and without an attentional focus on specific facial features. We measured face discrimination thresholds before and after training. During the training phase (4 days), participants performed a contrast discrimination task on face images. They were not informed that we introduced (task-irrelevant) subtle variations in the face images from trial to trial. For the Identity group, the task-irrelevant features were variations along a morphing continuum of facial identity. For the Emotion group, the task-irrelevant features were variations along an emotional expression morphing continuum. The Control group did not undergo contrast discrimination learning and only performed the pre-training and post-training tests, with the same temporal gap between them as the other two groups. Results indicate that face discrimination improved, but only for the Emotion group. Participants in the Emotion group, moreover, showed face discrimination improvements also for stimulus variations along the facial identity dimension, even if these (task-irrelevant) stimulus features had not been presented during training. The present results highlight the importance of emotions for face discrimination learning. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Learning-dependent plasticity in human auditory cortex during appetitive operant conditioning.

    Science.gov (United States)

    Puschmann, Sebastian; Brechmann, André; Thiel, Christiane M

    2013-11-01

    Animal experiments provide evidence that learning to associate an auditory stimulus with a reward causes representational changes in auditory cortex. However, most studies did not investigate the temporal formation of learning-dependent plasticity during the task but rather compared auditory cortex receptive fields before and after conditioning. We here present a functional magnetic resonance imaging study on learning-related plasticity in the human auditory cortex during operant appetitive conditioning. Participants had to learn to associate a specific category of frequency-modulated tones with a reward. Only participants who learned this association developed learning-dependent plasticity in left auditory cortex over the course of the experiment. No differential responses to reward predicting and nonreward predicting tones were found in auditory cortex in nonlearners. In addition, learners showed similar learning-induced differential responses to reward-predicting and nonreward-predicting tones in the ventral tegmental area and the nucleus accumbens, two core regions of the dopaminergic neurotransmitter system. This may indicate a dopaminergic influence on the formation of learning-dependent plasticity in auditory cortex, as it has been suggested by previous animal studies. Copyright © 2012 Wiley Periodicals, Inc.

  6. Subcortical plasticity following perceptual learning in a pitch discrimination task.

    Science.gov (United States)

    Carcagno, Samuele; Plack, Christopher J

    2011-02-01

    Practice can lead to dramatic improvements in the discrimination of auditory stimuli. In this study, we investigated changes of the frequency-following response (FFR), a subcortical component of the auditory evoked potentials, after a period of pitch discrimination training. Twenty-seven adult listeners were trained for 10 h on a pitch discrimination task using one of three different complex tone stimuli. One had a static pitch contour, one had a rising pitch contour, and one had a falling pitch contour. Behavioral measures of pitch discrimination and FFRs for all the stimuli were measured before and after the training phase for these participants, as well as for an untrained control group (n = 12). Trained participants showed significant improvements in pitch discrimination compared to the control group for all three trained stimuli. These improvements were partly specific for stimuli with the same pitch modulation (dynamic vs. static) and with the same pitch trajectory (rising vs. falling) as the trained stimulus. Also, the robustness of FFR neural phase locking to the sound envelope increased significantly more in trained participants compared to the control group for the static and rising contour, but not for the falling contour. Changes in FFR strength were partly specific for stimuli with the same pitch modulation (dynamic vs. static) of the trained stimulus. Changes in FFR strength, however, were not specific for stimuli with the same pitch trajectory (rising vs. falling) as the trained stimulus. These findings indicate that even relatively low-level processes in the mature auditory system are subject to experience-related change.

  7. MR PROSTATE SEGMENTATION VIA DISTRIBUTED DISCRIMINATIVE DICTIONARY (DDD) LEARNING.

    Science.gov (United States)

    Guo, Yanrong; Zhan, Yiqiang; Gao, Yaozong; Jiang, Jianguo; Shen, Dinggang

    2013-01-01

    Segmenting prostate from MR images is important yet challenging. Due to non-Gaussian distribution of prostate appearances in MR images, the popular active appearance model (AAM) has its limited performance. Although the newly developed sparse dictionary learning method[1, 2] can model the image appearance in a non-parametric fashion, the learned dictionaries still lack the discriminative power between prostate and non-prostate tissues, which is critical for accurate prostate segmentation. In this paper, we propose to integrate deformable model with a novel learning scheme, namely the Distributed Discriminative Dictionary ( DDD ) learning, which can capture image appearance in a non-parametric and discriminative fashion. In particular, three strategies are designed to boost the tissue discriminative power of DDD. First , minimum Redundancy Maximum Relevance (mRMR) feature selection is performed to constrain the dictionary learning in a discriminative feature space. Second , linear discriminant analysis (LDA) is employed to assemble residuals from different dictionaries for optimal separation between prostate and non-prostate tissues. Third , instead of learning the global dictionaries, we learn a set of local dictionaries for the local regions (each with small appearance variations) along prostate boundary, thus achieving better tissue differentiation locally. In the application stage, DDDs will provide the appearance cues to robustly drive the deformable model onto the prostate boundary. Experiments on 50 MR prostate images show that our method can yield a Dice Ratio of 88% compared to the manual segmentations, and have 7% improvement over the conventional AAM.

  8. Computer-based auditory phoneme discrimination training improves speech recognition in noise in experienced adult cochlear implant listeners.

    Science.gov (United States)

    Schumann, Annette; Serman, Maja; Gefeller, Olaf; Hoppe, Ulrich

    2015-03-01

    Specific computer-based auditory training may be a useful completion in the rehabilitation process for cochlear implant (CI) listeners to achieve sufficient speech intelligibility. This study evaluated the effectiveness of a computerized, phoneme-discrimination training programme. The study employed a pretest-post-test design; participants were randomly assigned to the training or control group. Over a period of three weeks, the training group was instructed to train in phoneme discrimination via computer, twice a week. Sentence recognition in different noise conditions (moderate to difficult) was tested pre- and post-training, and six months after the training was completed. The control group was tested and retested within one month. Twenty-seven adult CI listeners who had been using cochlear implants for more than two years participated in the programme; 15 adults in the training group, 12 adults in the control group. Besides significant improvements for the trained phoneme-identification task, a generalized training effect was noted via significantly improved sentence recognition in moderate noise. No significant changes were noted in the difficult noise conditions. Improved performance was maintained over an extended period. Phoneme-discrimination training improves experienced CI listeners' speech perception in noise. Additional research is needed to optimize auditory training for individual benefit.

  9. Unsupervised spike sorting based on discriminative subspace learning.

    Science.gov (United States)

    Keshtkaran, Mohammad Reza; Yang, Zhi

    2014-01-01

    Spike sorting is a fundamental preprocessing step for many neuroscience studies which rely on the analysis of spike trains. In this paper, we present two unsupervised spike sorting algorithms based on discriminative subspace learning. The first algorithm simultaneously learns the discriminative feature subspace and performs clustering. It uses histogram of features in the most discriminative projection to detect the number of neurons. The second algorithm performs hierarchical divisive clustering that learns a discriminative 1-dimensional subspace for clustering in each level of the hierarchy until achieving almost unimodal distribution in the subspace. The algorithms are tested on synthetic and in-vivo data, and are compared against two widely used spike sorting methods. The comparative results demonstrate that our spike sorting methods can achieve substantially higher accuracy in lower dimensional feature space, and they are highly robust to noise. Moreover, they provide significantly better cluster separability in the learned subspace than in the subspace obtained by principal component analysis or wavelet transform.

  10. From bird to sparrow: Learning-induced modulations in fine-grained semantic discrimination.

    Science.gov (United States)

    De Meo, Rosanna; Bourquin, Nathalie M-P; Knebel, Jean-François; Murray, Micah M; Clarke, Stephanie

    2015-09-01

    Recognition of environmental sounds is believed to proceed through discrimination steps from broad to more narrow categories. Very little is known about the neural processes that underlie fine-grained discrimination within narrow categories or about their plasticity in relation to newly acquired expertise. We investigated how the cortical representation of birdsongs is modulated by brief training to recognize individual species. During a 60-minute session, participants learned to recognize a set of birdsongs; they improved significantly their performance for trained (T) but not control species (C), which were counterbalanced across participants. Auditory evoked potentials (AEPs) were recorded during pre- and post-training sessions. Pre vs. post changes in AEPs were significantly different between T and C i) at 206-232ms post stimulus onset within a cluster on the anterior part of the left superior temporal gyrus; ii) at 246-291ms in the left middle frontal gyrus; and iii) 512-545ms in the left middle temporal gyrus as well as bilaterally in the cingulate cortex. All effects were driven by weaker activity for T than C species. Thus, expertise in discriminating T species modulated early stages of semantic processing, during and immediately after the time window that sustains the discrimination between human vs. animal vocalizations. Moreover, the training-induced plasticity is reflected by the sharpening of a left lateralized semantic network, including the anterior part of the temporal convexity and the frontal cortex. Training to identify birdsongs influenced, however, also the processing of C species, but at a much later stage. Correct discrimination of untrained sounds seems to require an additional step which results from lower-level features analysis such as apperception. We therefore suggest that the access to objects within an auditory semantic category is different and depends on subject's level of expertise. More specifically, correct intra

  11. Profiles of Types of Central Auditory Processing Disorders in Children with Learning Disabilities.

    Science.gov (United States)

    Musiek, Frank E.; And Others

    1985-01-01

    The article profiles five cases of children (8-17 years old) with learning disabilities and auditory processing problems. Possible correlations between the presumed etiology and the unique audiological pattern on the central test battery are analyzed. (Author/CL)

  12. Modeling speech imitation and ecological learning of auditory-motor maps

    Directory of Open Access Journals (Sweden)

    Claudia eCanevari

    2013-06-01

    Full Text Available Classical models of speech consider an antero-posterior distinction between perceptive and productive functions. However, the selective alteration of neural activity in speech motor centers, via transcranial magnetic stimulation, was shown to affect speech discrimination. On the automatic speech recognition (ASR side, the recognition systems have classically relied solely on acoustic data, achieving rather good performance in optimal listening conditions. The main limitations of current ASR are mainly evident in the realistic use of such systems. These limitations can be partly reduced by using normalization strategies that minimize inter-speaker variability by either explicitly removing speakers’ peculiarities or adapting different speakers to a reference model. In this paper we aim at modeling a motor-based imitation learning mechanism in ASR. We tested the utility of a speaker normalization strategy that uses motor representations of speech and compare it with strategies that ignore the motor domain. Specifically, we first trained a regressor through state-of-the-art machine learning techniques to build an auditory-motor mapping, in a sense mimicking a human learner that tries to reproduce utterances produced by other speakers. This auditory-motor mapping maps the speech acoustics of a speaker into the motor plans of a reference speaker. Since, during recognition, only speech acoustics are available, the mapping is necessary to recover motor information. Subsequently, in a phone classification task, we tested the system on either one of the speakers that was used during training or a new one. Results show that in both cases the motor-based speaker normalization strategy almost always outperforms all other strategies where only acoustics is taken into account.

  13. Polarimetric SAR image classification based on discriminative dictionary learning model

    Science.gov (United States)

    Sang, Cheng Wei; Sun, Hong

    2018-03-01

    Polarimetric SAR (PolSAR) image classification is one of the important applications of PolSAR remote sensing. It is a difficult high-dimension nonlinear mapping problem, the sparse representations based on learning overcomplete dictionary have shown great potential to solve such problem. The overcomplete dictionary plays an important role in PolSAR image classification, however for PolSAR image complex scenes, features shared by different classes will weaken the discrimination of learned dictionary, so as to degrade classification performance. In this paper, we propose a novel overcomplete dictionary learning model to enhance the discrimination of dictionary. The learned overcomplete dictionary by the proposed model is more discriminative and very suitable for PolSAR classification.

  14. The Role of Age and Executive Function in Auditory Category Learning

    Science.gov (United States)

    Reetzke, Rachel; Maddox, W. Todd; Chandrasekaran, Bharath

    2015-01-01

    Auditory categorization is a natural and adaptive process that allows for the organization of high-dimensional, continuous acoustic information into discrete representations. Studies in the visual domain have identified a rule-based learning system that learns and reasons via a hypothesis-testing process that requires working memory and executive attention. The rule-based learning system in vision shows a protracted development, reflecting the influence of maturing prefrontal function on visual categorization. The aim of the current study is two-fold: (a) to examine the developmental trajectory of rule-based auditory category learning from childhood through adolescence, into early adulthood; and (b) to examine the extent to which individual differences in rule-based category learning relate to individual differences in executive function. Sixty participants with normal hearing, 20 children (age range, 7–12), 21 adolescents (age range, 13–19), and 19 young adults (age range, 20–23), learned to categorize novel dynamic ripple sounds using trial-by-trial feedback. The spectrotemporally modulated ripple sounds are considered the auditory equivalent of the well-studied Gabor patches in the visual domain. Results revealed that auditory categorization accuracy improved with age, with young adults outperforming children and adolescents. Computational modeling analyses indicated that the use of the task-optimal strategy (i.e. a conjunctive rule-based learning strategy) improved with age. Notably, individual differences in executive flexibility significantly predicted auditory category learning success. The current findings demonstrate a protracted development of rule-based auditory categorization. The results further suggest that executive flexibility coupled with perceptual processes play important roles in successful rule-based auditory category learning. PMID:26491987

  15. Horse breed discrimination using machine learning methods

    Czech Academy of Sciences Publication Activity Database

    Burócziová, Monika; Riha, J.

    2009-01-01

    Roč. 50, č. 4 (2009), s. 375-377 ISSN 1234-1983 Institutional research plan: CEZ:AV0Z50450515 Keywords : Breed discrimination * Genetics diversity * Horse breeds Subject RIV: EG - Zoology Impact factor: 1.324, year: 2009

  16. Auditory perceptual learning in adults with and without age-related hearing loss

    Directory of Open Access Journals (Sweden)

    Hanin eKarawani

    2016-02-01

    Full Text Available Introduction: Speech recognition in adverse listening conditions becomes more difficult as we age, particularly for individuals with age-related hearing loss (ARHL. Whether these difficulties can be eased with training remains debated, because it is not clear whether the outcomes are sufficiently general to be of use outside of the training context. The aim of the current study was to compare training-induced learning and generalization between normal-hearing older adults and those with ARHL.Methods: 56 listeners (60-72 y/o, 35 participants with ARHL and 21 normal hearing adults participated in the study. The study design was a cross over design with three groups (immediate-training, delayed-training and no-training group. Trained participants received 13 sessions of home-based auditory training over the course of 4 weeks. Three adverse listening conditions were targeted: (1 Speech-in-noise (2 time compressed speech and (3 competing speakers, and the outcomes of training were compared between normal and ARHL groups. Pre- and post-test sessions were completed by all participants. Outcome measures included tests on all of the trained conditions as well as on a series of untrained conditions designed to assess the transfer of learning to other speech and non-speech conditions. Results: Significant improvements on all trained conditions were observed in both ARHL and normal-hearing groups over the course of training. Normal hearing participants learned more than participants with ARHL in the speech-in-noise condition, but showed similar patterns of learning in the other conditions. Greater pre- to post-test changes were observed in trained than in untrained listeners on all trained conditions. In addition, the ability of trained listeners from the ARHL group to discriminate minimally different pseudowords in noise also improved with training. Conclusions: ARHL did not preclude auditory perceptual learning but there was little generalization to

  17. Investigating Verbal and Visual Auditory Learning After Conformal Radiation Therapy for Childhood Ependymoma

    International Nuclear Information System (INIS)

    Di Pinto, Marcos; Conklin, Heather M.; Li Chenghong; Xiong Xiaoping; Merchant, Thomas E.

    2010-01-01

    Purpose: The primary objective of this study was to determine whether children with localized ependymoma experience a decline in verbal or visual-auditory learning after conformal radiation therapy (CRT). The secondary objective was to investigate the impact of age and select clinical factors on learning before and after treatment. Methods and Materials: Learning in a sample of 71 patients with localized ependymoma was assessed with the California Verbal Learning Test (CVLT-C) and the Visual-Auditory Learning Test (VAL). Learning measures were administered before CRT, at 6 months, and then yearly for a total of 5 years. Results: There was no significant decline on measures of verbal or visual-auditory learning after CRT; however, younger age, more surgeries, and cerebrospinal fluid shunting did predict lower scores at baseline. There were significant longitudinal effects (improved learning scores after treatment) among older children on the CVLT-C and children that did not receive pre-CRT chemotherapy on the VAL. Conclusion: There was no evidence of global decline in learning after CRT in children with localized ependymoma. Several important implications from the findings include the following: (1) identification of and differentiation among variables with transient vs. long-term effects on learning, (2) demonstration that children treated with chemotherapy before CRT had greater risk of adverse visual-auditory learning performance, and (3) establishment of baseline and serial assessment as critical in ascertaining necessary sensitivity and specificity for the detection of modest effects.

  18. The Effects of Static and Dynamic Visual Representations as Aids for Primary School Children in Tasks of Auditory Discrimination of Sound Patterns. An Intervention-based Study.

    Directory of Open Access Journals (Sweden)

    Jesus Tejada

    2018-02-01

    Full Text Available It has been proposed that non-conventional presentations of visual information could be very useful as a scaffolding strategy in the learning of Western music notation. As a result, this study has attempted to determine if there is any effect of static and dynamic presentation modes of visual information in the recognition of sound patterns. An intervention-based quasi-experimental design was adopted with two groups of fifth-grade students in a Spanish city. Students did tasks involving discrimination, auditory recognition and symbolic association of the sound patterns with non-musical representations, either static images (S group, or dynamic images (D group. The results showed neither statistically significant differences in the scores of D and S, nor influence of the covariates on the dependent variable, although statistically significant intra-group differences were found for both groups. This suggests that both types of graphic formats could be effective as digital learning mediators in the learning of Western musical notation.

  19. Auditory Pattern Memory: Mechanisms of Tonal Sequence Discrimination by Human Observers

    Science.gov (United States)

    1988-10-30

    and Creelman (1977) in a study of categorical perception. Tanner’s model included a short-term decaying memory for the acoustic input to the system plus...auditory pattern components, J. &Coust. Soc. 91 Am., 76, 1037- 1044. Macmillan, N. A., Kaplan H. L., & Creelman , C. D. (1977). The psychophysics of

  20. Effects of damage to auditory cortex on the discrimination of speech sounds by rats

    Czech Academy of Sciences Publication Activity Database

    Floody, O. R.; Ouda, Ladislav; Porter, B. A.; Kilgard, M. P.

    2010-01-01

    Roč. 101, č. 2 (2010), s. 260-268 ISSN 0031-9384 R&D Projects: GA ČR GA309/07/1336 Institutional research plan: CEZ:AV0Z50390703 Keywords : auditory cortex * brain lesions * prepulse inhibition Subject RIV: FH - Neurology Impact factor: 2.891, year: 2010

  1. Towards an understanding of the mechanisms of weak central coherence effects: experiments in visual configural learning and auditory perception.

    Science.gov (United States)

    Plaisted, Kate; Saksida, Lisa; Alcántara, José; Weisblatt, Emma

    2003-01-01

    The weak central coherence hypothesis of Frith is one of the most prominent theories concerning the abnormal performance of individuals with autism on tasks that involve local and global processing. Individuals with autism often outperform matched nonautistic individuals on tasks in which success depends upon processing of local features, and underperform on tasks that require global processing. We review those studies that have been unable to identify the locus of the mechanisms that may be responsible for weak central coherence effects and those that show that local processing is enhanced in autism but not at the expense of global processing. In the light of these studies, we propose that the mechanisms which can give rise to 'weak central coherence' effects may be perceptual. More specifically, we propose that perception operates to enhance the representation of individual perceptual features but that this does not impact adversely on representations that involve integration of features. This proposal was supported in the two experiments we report on configural and feature discrimination learning in high-functioning children with autism. We also examined processes of perception directly, in an auditory filtering task which measured the width of auditory filters in individuals with autism and found that the width of auditory filters in autism were abnormally broad. We consider the implications of these findings for perceptual theories of the mechanisms underpinning weak central coherence effects. PMID:12639334

  2. Auditory access, language access, and implicit sequence learning in deaf children.

    Science.gov (United States)

    Hall, Matthew L; Eigsti, Inge-Marie; Bortfeld, Heather; Lillo-Martin, Diane

    2018-05-01

    Developmental psychology plays a central role in shaping evidence-based best practices for prelingually deaf children. The Auditory Scaffolding Hypothesis (Conway et al., 2009) asserts that a lack of auditory stimulation in deaf children leads to impoverished implicit sequence learning abilities, measured via an artificial grammar learning (AGL) task. However, prior research is confounded by a lack of both auditory and language input. The current study examines implicit learning in deaf children who were (Deaf native signers) or were not (oral cochlear implant users) exposed to language from birth, and in hearing children, using both AGL and Serial Reaction Time (SRT) tasks. Neither deaf nor hearing children across the three groups show evidence of implicit learning on the AGL task, but all three groups show robust implicit learning on the SRT task. These findings argue against the Auditory Scaffolding Hypothesis, and suggest that implicit sequence learning may be resilient to both auditory and language deprivation, within the tested limits. A video abstract of this article can be viewed at: https://youtu.be/EeqfQqlVHLI [Correction added on 07 August 2017, after first online publication: The video abstract link was added.]. © 2017 John Wiley & Sons Ltd.

  3. Learning for pitch and melody discrimination in congenital amusia.

    Science.gov (United States)

    Whiteford, Kelly L; Oxenham, Andrew J

    2018-03-23

    Congenital amusia is currently thought to be a life-long neurogenetic disorder in music perception, impervious to training in pitch or melody discrimination. This study provides an explicit test of whether amusic deficits can be reduced with training. Twenty amusics and 20 matched controls participated in four sessions of psychophysical training involving either pure-tone (500 Hz) pitch discrimination or a control task of lateralization (interaural level differences for bandpass white noise). Pure-tone pitch discrimination at low, medium, and high frequencies (500, 2000, and 8000 Hz) was measured before and after training (pretest and posttest) to determine the specificity of learning. Melody discrimination was also assessed before and after training using the full Montreal Battery of Evaluation of Amusia, the most widely used standardized test to diagnose amusia. Amusics performed more poorly than controls in pitch but not localization discrimination, but both groups improved with practice on the trained stimuli. Learning was broad, occurring across all three frequencies and melody discrimination for all groups, including those who trained on the non-pitch control task. Following training, 11 of 20 amusics no longer met the global diagnostic criteria for amusia. A separate group of untrained controls (n = 20), who also completed melody discrimination and pretest, improved by an equal amount as trained controls on all measures, suggesting that the bulk of learning for the control group occurred very rapidly from the pretest. Thirty-one trained participants (13 amusics) returned one year later to assess long-term maintenance of pitch and melody discrimination. On average, there was no change in performance between posttest and one-year follow-up, demonstrating that improvements on pitch- and melody-related tasks in amusics and controls can be maintained. The findings indicate that amusia is not always a life-long deficit when using the current standard

  4. Dynamic functional brain networks involved in simple visual discrimination learning.

    Science.gov (United States)

    Fidalgo, Camino; Conejo, Nélida María; González-Pardo, Héctor; Arias, Jorge Luis

    2014-10-01

    Visual discrimination tasks have been widely used to evaluate many types of learning and memory processes. However, little is known about the brain regions involved at different stages of visual discrimination learning. We used cytochrome c oxidase histochemistry to evaluate changes in regional brain oxidative metabolism during visual discrimination learning in a water-T maze at different time points during training. As compared with control groups, the results of the present study reveal the gradual activation of cortical (prefrontal and temporal cortices) and subcortical brain regions (including the striatum and the hippocampus) associated to the mastery of a simple visual discrimination task. On the other hand, the brain regions involved and their functional interactions changed progressively over days of training. Regions associated with novelty, emotion, visuo-spatial orientation and motor aspects of the behavioral task seem to be relevant during the earlier phase of training, whereas a brain network comprising the prefrontal cortex was found along the whole learning process. This study highlights the relevance of functional interactions among brain regions to investigate learning and memory processes. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Sex differences in audiovisual discrimination learning by Bengalese finches (Lonchura striata var. domestica).

    Science.gov (United States)

    Seki, Yoshimasa; Okanoya, Kazuo

    2008-02-01

    Both visual and auditory information are important for songbirds, especially in developmental and sexual contexts. To investigate bimodal cognition in songbirds, the authors conducted audiovisual discrimination training in Bengalese finches. The authors used two types of stimulus: an "artificial stimulus," which is a combination of simple figures and sound, and a "biological stimulus," consisting of video images of singing males along with their songs. The authors found that while both sexes predominantly used visual cues in the discrimination tasks, males tended to be more dependent on auditory information for the biological stimulus. Female responses were always dependent on the visual stimulus for both stimulus types. Only males changed their discrimination strategy according to stimulus type. Although males used both visual and auditory cues for the biological stimulus, they responded to the artificial stimulus depending only on visual information, as the females did. These findings suggest a sex difference in innate auditory sensitivity. (c) 2008 APA.

  6. Discriminative object tracking via sparse representation and online dictionary learning.

    Science.gov (United States)

    Xie, Yuan; Zhang, Wensheng; Li, Cuihua; Lin, Shuyang; Qu, Yanyun; Zhang, Yinghua

    2014-04-01

    We propose a robust tracking algorithm based on local sparse coding with discriminative dictionary learning and new keypoint matching schema. This algorithm consists of two parts: the local sparse coding with online updated discriminative dictionary for tracking (SOD part), and the keypoint matching refinement for enhancing the tracking performance (KP part). In the SOD part, the local image patches of the target object and background are represented by their sparse codes using an over-complete discriminative dictionary. Such discriminative dictionary, which encodes the information of both the foreground and the background, may provide more discriminative power. Furthermore, in order to adapt the dictionary to the variation of the foreground and background during the tracking, an online learning method is employed to update the dictionary. The KP part utilizes refined keypoint matching schema to improve the performance of the SOD. With the help of sparse representation and online updated discriminative dictionary, the KP part are more robust than the traditional method to reject the incorrect matches and eliminate the outliers. The proposed method is embedded into a Bayesian inference framework for visual tracking. Experimental results on several challenging video sequences demonstrate the effectiveness and robustness of our approach.

  7. Reorganization of auditory map and pitch discrimination in adult rats chronically exposed to low-level ambient noise

    Directory of Open Access Journals (Sweden)

    Weimin eZheng

    2012-09-01

    Full Text Available Behavioral adaption to a changing environment is critical for an animal’s survival. How well the brain can modify its functional properties based on experience essentially defines the limits of behavioral adaptation. In adult animals the extent to which experience shapes brain function has not been fully explored. Moreover, the perceptual consequences of experience-induced changes in the brains of adults remain unknown. Here we show that the tonotopic map in the primary auditory cortex of adult rats living with low-level ambient noise underwent a dramatic reorganization. Behaviorally, chronic noise-exposure impaired fine, but not coarse pitch discrimination. When tested in a noisy environment, the noise-exposed rats performed as well as in a quiet environment whereas the control rats performed poorly. This suggests that noise-exposed animals had adapted to living in a noisy environment. Behavioral pattern analyses revealed that stress or distraction engendered by the noisy background could not account for the poor performance of the control rats in a noisy environment. A reorganized auditory map may therefore have served as the neural substrate for the consistent performance of the noise-exposed rats in a noisy environment.

  8. Weighted Discriminative Dictionary Learning based on Low-rank Representation

    International Nuclear Information System (INIS)

    Chang, Heyou; Zheng, Hao

    2017-01-01

    Low-rank representation has been widely used in the field of pattern classification, especially when both training and testing images are corrupted with large noise. Dictionary plays an important role in low-rank representation. With respect to the semantic dictionary, the optimal representation matrix should be block-diagonal. However, traditional low-rank representation based dictionary learning methods cannot effectively exploit the discriminative information between data and dictionary. To address this problem, this paper proposed weighted discriminative dictionary learning based on low-rank representation, where a weighted representation regularization term is constructed. The regularization associates label information of both training samples and dictionary atoms, and encourages to generate a discriminative representation with class-wise block-diagonal structure, which can further improve the classification performance where both training and testing images are corrupted with large noise. Experimental results demonstrate advantages of the proposed method over the state-of-the-art methods. (paper)

  9. Dorsolateral Striatum Engagement Interferes with Early Discrimination Learning

    Directory of Open Access Journals (Sweden)

    Hadley C. Bergstrom

    2018-05-01

    Full Text Available Summary: In current models, learning the relationship between environmental stimuli and the outcomes of actions involves both stimulus-driven and goal-directed systems, mediated in part by the DLS and DMS, respectively. However, though these models emphasize the importance of the DLS in governing actions after extensive experience has accumulated, there is growing evidence of DLS engagement from the onset of training. Here, we used in vivo photosilencing to reveal that DLS recruitment interferes with early touchscreen discrimination learning. We also show that the direct output pathway of the DLS is preferentially recruited and causally involved in early learning and find that silencing the normal contribution of the DLS produces plasticity-related alterations in a PL-DMS circuit. These data provide further evidence suggesting that the DLS is recruited in the construction of stimulus-elicited actions that ultimately automate behavior and liberate cognitive resources for other demands, but with a cost to performance at the outset of learning. : What is the contribution of the DLS in early discrimination learning? Bergstrom et al. show using in vivo optogenetics, fluorescence in situ hybridization, and brain-wide activity mapping that silencing the DLS facilitates early discrimination learning, drives activity in a parallel PL-DMS circuit, and preferentially recruits the DLS “direct” output pathway. Keywords: striatum, reward, goal-directed, habit, optogenetics, plasticity, cognition, Arc

  10. Can theories of animal discrimination explain perceptual learning in humans?

    Science.gov (United States)

    Mitchell, Chris; Hall, Geoffrey

    2014-01-01

    We present a review of recent studies of perceptual learning conducted with nonhuman animals. The focus of this research has been to elucidate the mechanisms by which mere exposure to a pair of similar stimuli can increase the ease with which those stimuli are discriminated. These studies establish an important role for 2 mechanisms, one involving inhibitory associations between the unique features of the stimuli, the other involving a long-term habituation process that enhances the relative salience of these features. We then examine recent work investigating equivalent perceptual learning procedures with human participants. Our aim is to determine the extent to which the phenomena exhibited by people are susceptible to explanation in terms of the mechanisms revealed by the animal studies. Although we find no evidence that associative inhibition contributes to the perceptual learning effect in humans, initial detection of unique features (those that allow discrimination between 2 similar stimuli) appears to depend on an habituation process. Once the unique features have been detected, a tendency to attend to those features and to learn about their properties enhances subsequent discrimination. We conclude that the effects obtained with humans engage mechanisms additional to those seen in animals but argue that, for the most part, these have their basis in learning processes that are common to animals and people. In a final section, we discuss some implications of this analysis of perceptual learning for other aspects of experimental psychology and consider some potential applications. (PsycINFO Database Record (c) 2013 APA, all rights reserved).

  11. Comparing Auditory-Only and Audiovisual Word Learning for Children with Hearing Loss.

    Science.gov (United States)

    McDaniel, Jena; Camarata, Stephen; Yoder, Paul

    2018-05-15

    Although reducing visual input to emphasize auditory cues is a common practice in pediatric auditory (re)habilitation, the extant literature offers minimal empirical evidence for whether unisensory auditory-only (AO) or multisensory audiovisual (AV) input is more beneficial to children with hearing loss for developing spoken language skills. Using an adapted alternating treatments single case research design, we evaluated the effectiveness and efficiency of a receptive word learning intervention with and without access to visual speechreading cues. Four preschool children with prelingual hearing loss participated. Based on probes without visual cues, three participants demonstrated strong evidence for learning in the AO and AV conditions relative to a control (no-teaching) condition. No participants demonstrated a differential rate of learning between AO and AV conditions. Neither an inhibitory effect predicted by a unisensory theory nor a beneficial effect predicted by a multisensory theory for providing visual cues was identified. Clinical implications are discussed.

  12. Faster native vowel discrimination learning in musicians is mediated by an optimization of mnemonic functions.

    Science.gov (United States)

    Elmer, Stefan; Greber, Marielle; Pushparaj, Arethy; Kühnis, Jürg; Jäncke, Lutz

    2017-09-01

    The ability to discriminate phonemes varying in spectral and temporal attributes constitutes one of the most basic intrinsic elements underlying language learning mechanisms. Since previous work has consistently shown that professional musicians are characterized by perceptual and cognitive advantages in a variety of language-related tasks, and since vowels can be considered musical sounds within the domain of speech, here we investigated the behavioral and electrophysiological correlates of native vowel discrimination learning in a sample of professional musicians and non-musicians. We evaluated the contribution of both the neurophysiological underpinnings of perceptual (i.e., N1/P2 complex) and mnemonic functions (i.e., N400 and P600 responses) while the participants were instructed to judge whether pairs of native consonant-vowel (CV) syllables manipulated in the first formant transition of the vowel (i.e., from /tu/ to /to/) were identical or not. Results clearly demonstrated faster learning in musicians, compared to non-musicians, as reflected by shorter reaction times and higher accuracy. Most notably, in terms of morphology, time course, and voltage strength, this steeper learning curve was accompanied by distinctive N400 and P600 manifestations between the two groups. In contrast, we did not reveal any group differences during the early stages of auditory processing (i.e., N1/P2 complex), suggesting that faster learning was mediated by an optimization of mnemonic but not perceptual functions. Based on a clear taxonomy of the mnemonic functions involved in the task, results are interpreted as pointing to a relationship between faster learning mechanisms in musicians and an optimization of echoic (i.e., N400 component) and working memory (i.e., P600 component) functions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Learning effects of dynamic postural control by auditory biofeedback versus visual biofeedback training.

    Science.gov (United States)

    Hasegawa, Naoya; Takeda, Kenta; Sakuma, Moe; Mani, Hiroki; Maejima, Hiroshi; Asaka, Tadayoshi

    2017-10-01

    Augmented sensory biofeedback (BF) for postural control is widely used to improve postural stability. However, the effective sensory information in BF systems of motor learning for postural control is still unknown. The purpose of this study was to investigate the learning effects of visual versus auditory BF training in dynamic postural control. Eighteen healthy young adults were randomly divided into two groups (visual BF and auditory BF). In test sessions, participants were asked to bring the real-time center of pressure (COP) in line with a hidden target by body sway in the sagittal plane. The target moved in seven cycles of sine curves at 0.23Hz in the vertical direction on a monitor. In training sessions, the visual and auditory BF groups were required to change the magnitude of a visual circle and a sound, respectively, according to the distance between the COP and target in order to reach the target. The perceptual magnitudes of visual and auditory BF were equalized according to Stevens' power law. At the retention test, the auditory but not visual BF group demonstrated decreased postural performance errors in both the spatial and temporal parameters under the no-feedback condition. These findings suggest that visual BF increases the dependence on visual information to control postural performance, while auditory BF may enhance the integration of the proprioceptive sensory system, which contributes to motor learning without BF. These results suggest that auditory BF training improves motor learning of dynamic postural control. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Learning Dictionaries of Discriminative Image Patches

    DEFF Research Database (Denmark)

    Dahl, Anders Lindbjerg; Larsen, Rasmus

    2011-01-01

    using dictionaries of image patches with associated label data. The approach is based on ideas from sparse generative image models and texton based texture modeling. The intensity and label dictionaries are learned from training images with associated label information of (a subset) of the pixels based...... on a modified vector quantization approach. For new images the intensity dictionary is used to encode the image data and the label dictionary is used to build a segmentation of the image. We demonstrate the algorithm on composite and real texture images and show how successful training is possible even...

  15. Discriminative learning of receptive fields from responses to non-Gaussian stimulus ensembles.

    Science.gov (United States)

    Meyer, Arne F; Diepenbrock, Jan-Philipp; Happel, Max F K; Ohl, Frank W; Anemüller, Jörn

    2014-01-01

    Analysis of sensory neurons' processing characteristics requires simultaneous measurement of presented stimuli and concurrent spike responses. The functional transformation from high-dimensional stimulus space to the binary space of spike and non-spike responses is commonly described with linear-nonlinear models, whose linear filter component describes the neuron's receptive field. From a machine learning perspective, this corresponds to the binary classification problem of discriminating spike-eliciting from non-spike-eliciting stimulus examples. The classification-based receptive field (CbRF) estimation method proposed here adapts a linear large-margin classifier to optimally predict experimental stimulus-response data and subsequently interprets learned classifier weights as the neuron's receptive field filter. Computational learning theory provides a theoretical framework for learning from data and guarantees optimality in the sense that the risk of erroneously assigning a spike-eliciting stimulus example to the non-spike class (and vice versa) is minimized. Efficacy of the CbRF method is validated with simulations and for auditory spectro-temporal receptive field (STRF) estimation from experimental recordings in the auditory midbrain of Mongolian gerbils. Acoustic stimulation is performed with frequency-modulated tone complexes that mimic properties of natural stimuli, specifically non-Gaussian amplitude distribution and higher-order correlations. Results demonstrate that the proposed approach successfully identifies correct underlying STRFs, even in cases where second-order methods based on the spike-triggered average (STA) do not. Applied to small data samples, the method is shown to converge on smaller amounts of experimental recordings and with lower estimation variance than the generalized linear model and recent information theoretic methods. Thus, CbRF estimation may prove useful for investigation of neuronal processes in response to natural stimuli and

  16. Discriminative learning of receptive fields from responses to non-Gaussian stimulus ensembles.

    Directory of Open Access Journals (Sweden)

    Arne F Meyer

    Full Text Available Analysis of sensory neurons' processing characteristics requires simultaneous measurement of presented stimuli and concurrent spike responses. The functional transformation from high-dimensional stimulus space to the binary space of spike and non-spike responses is commonly described with linear-nonlinear models, whose linear filter component describes the neuron's receptive field. From a machine learning perspective, this corresponds to the binary classification problem of discriminating spike-eliciting from non-spike-eliciting stimulus examples. The classification-based receptive field (CbRF estimation method proposed here adapts a linear large-margin classifier to optimally predict experimental stimulus-response data and subsequently interprets learned classifier weights as the neuron's receptive field filter. Computational learning theory provides a theoretical framework for learning from data and guarantees optimality in the sense that the risk of erroneously assigning a spike-eliciting stimulus example to the non-spike class (and vice versa is minimized. Efficacy of the CbRF method is validated with simulations and for auditory spectro-temporal receptive field (STRF estimation from experimental recordings in the auditory midbrain of Mongolian gerbils. Acoustic stimulation is performed with frequency-modulated tone complexes that mimic properties of natural stimuli, specifically non-Gaussian amplitude distribution and higher-order correlations. Results demonstrate that the proposed approach successfully identifies correct underlying STRFs, even in cases where second-order methods based on the spike-triggered average (STA do not. Applied to small data samples, the method is shown to converge on smaller amounts of experimental recordings and with lower estimation variance than the generalized linear model and recent information theoretic methods. Thus, CbRF estimation may prove useful for investigation of neuronal processes in response to

  17. Auditory Discrimination of Anisochrony: Influence of the Tempo and Musical Backgrounds of Listeners

    Science.gov (United States)

    Ehrle, N.; Samson, S.

    2005-01-01

    This study explored the influence of several factors, physical and human, on anisochrony's thresholds measured with an adaptive two alternative forced choice paradigm. The effect of the number and duration of sounds on anisochrony discrimination was tested in the first experiment as well as potential interactions between each of these factors and…

  18. Thalamic and parietal brain morphology predicts auditory category learning.

    Science.gov (United States)

    Scharinger, Mathias; Henry, Molly J; Erb, Julia; Meyer, Lars; Obleser, Jonas

    2014-01-01

    Auditory categorization is a vital skill involving the attribution of meaning to acoustic events, engaging domain-specific (i.e., auditory) as well as domain-general (e.g., executive) brain networks. A listener's ability to categorize novel acoustic stimuli should therefore depend on both, with the domain-general network being particularly relevant for adaptively changing listening strategies and directing attention to relevant acoustic cues. Here we assessed adaptive listening behavior, using complex acoustic stimuli with an initially salient (but later degraded) spectral cue and a secondary, duration cue that remained nondegraded. We employed voxel-based morphometry (VBM) to identify cortical and subcortical brain structures whose individual neuroanatomy predicted task performance and the ability to optimally switch to making use of temporal cues after spectral degradation. Behavioral listening strategies were assessed by logistic regression and revealed mainly strategy switches in the expected direction, with considerable individual differences. Gray-matter probability in the left inferior parietal lobule (BA 40) and left precentral gyrus was predictive of "optimal" strategy switch, while gray-matter probability in thalamic areas, comprising the medial geniculate body, co-varied with overall performance. Taken together, our findings suggest that successful auditory categorization relies on domain-specific neural circuits in the ascending auditory pathway, while adaptive listening behavior depends more on brain structure in parietal cortex, enabling the (re)direction of attention to salient stimulus properties. © 2013 Published by Elsevier Ltd.

  19. Infants Learn Phonotactic Regularities from Brief Auditory Experience.

    Science.gov (United States)

    Chambers, Kyle E.; Onishi, Kristine H.; Fisher, Cynthia

    2003-01-01

    Two experiments investigated whether novel phonotactic regularities, not present in English, could be acquired by 16.5-month-olds from brief auditory experience. Subjects listened to consonant-vowel-consonant syllables in which particular consonants were artificially restricted to either initial or final position. Findings in a subsequent…

  20. Comparative Evaluation of Auditory Attention in 7 to 9 Year Old Learning Disabled Students

    Directory of Open Access Journals (Sweden)

    Fereshteh Amiriani

    2011-06-01

    Full Text Available Background and Aim: Learning disability is a term referes to a group of disorders manifesting listening, reading, writing, or mathematical problems. These children mostly have attention difficulties in classroom that leads to many learning problems. In this study we aimed to compare the auditory attention of 7 to 9 year old children with learning disability to non- learning disability age matched normal group.Methods: Twenty seven male 7 to 9 year old students with learning disability and 27 age and sex matched normal conrols were selected with unprobable simple sampling. 27 In order to evaluate auditory selective and divided attention, Farsi versions of speech in noise and dichotic digit test were used respectively.Results: Comparison of mean scores of Farsi versions of speech in noise in both ears of 7 and 8 year-old students in two groups indicated no significant difference (p>0.05 Mean scores of 9 year old controls was significant more than those of the cases only in the right ear (p=0.033. However, no significant difference was observed between mean scores of dichotic digit test assessing the right ear of 9 year-old learning disability and non learning disability students (p>0.05. Moreover, mean scores of 7 and 8 year- old students with learning disability was less than those of their normal peers in the left ear (p>0.05.Conclusion: Selective auditory attention is not affected in the optimal signal to noise ratio, while divided attention seems to be affected by maturity delay of auditory system or central auditory system disorders.

  1. Is the auditory evoked P2 response a biomarker of learning?

    Directory of Open Access Journals (Sweden)

    Kelly eTremblay

    2014-02-01

    Full Text Available Even though auditory training exercises for humans have been shown to improve certain perceptual skills of individuals with and without hearing loss, there is a lack of knowledge pertaining to which aspects of training are responsible for the perceptual gains, and which aspects of perception are changed. To better define how auditory training impacts brain and behavior, electroencephalography and magnetoencephalography have been used to determine the time course and coincidence of cortical modulations associated with different types of training. Here we focus on P1-N1-P2 auditory evoked responses (AEP, as there are consistent reports of gains in P2 amplitude following various types of auditory training experiences; including music and speech-sound training. The purpose of this experiment was to determine if the auditory evoked P2 response is a biomarker of learning. To do this, we taught native English speakers to identify a new pre-voiced temporal cue that is not used phonemically in the English language so that coinciding changes in evoked neural activity could be characterized. To differentiate possible effects of repeated stimulus exposure and a button-pushing task from learning itself, we examined modulations in brain activity in a group of participants who learned to identify the pre-voicing contrast and compared it to participants, matched in time, and stimulus exposure, that did not. The main finding was that the amplitude of the P2 auditory evoked response increased across repeated EEG sessions for all groups, regardless of any change in perceptual performance. What’s more, these effects were retained for months. Changes in P2 amplitude were attributed to changes in neural activity associated with the acquisition process and not the learned outcome itself. A further finding was the expression of a late negativity (LN wave 600-900 ms post-stimulus onset, post-training, exclusively for the group that learned to identify the pre

  2. The role of diffusive architectural surfaces on auditory spatial discrimination in performance venues.

    Science.gov (United States)

    Robinson, Philip W; Pätynen, Jukka; Lokki, Tapio; Jang, Hyung Suk; Jeon, Jin Yong; Xiang, Ning

    2013-06-01

    In musical or theatrical performance, some venues allow listeners to individually localize and segregate individual performers, while others produce a well blended ensemble sound. The room acoustic conditions that make this possible, and the psycho-acoustic effects at work are not fully understood. This research utilizes auralizations from measured and simulated performance venues to investigate spatial discrimination of multiple acoustic sources in rooms. Signals were generated from measurements taken in a small theater, and listeners in the audience area were asked to distinguish pairs of speech sources on stage with various spatial separations. This experiment was repeated with the proscenium splay walls treated to be flat, diffusive, or absorptive. Similar experiments were conducted in a simulated hall, utilizing 11 early reflections with various characteristics, and measured late reverberation. The experiments reveal that discriminating the lateral arrangement of two sources is possible at narrower separation angles when reflections come from flat or absorptive rather than diffusive surfaces.

  3. Auditory Perceptual Learning for Speech Perception Can be Enhanced by Audiovisual Training.

    Science.gov (United States)

    Bernstein, Lynne E; Auer, Edward T; Eberhardt, Silvio P; Jiang, Jintao

    2013-01-01

    Speech perception under audiovisual (AV) conditions is well known to confer benefits to perception such as increased speed and accuracy. Here, we investigated how AV training might benefit or impede auditory perceptual learning of speech degraded by vocoding. In Experiments 1 and 3, participants learned paired associations between vocoded spoken nonsense words and nonsense pictures. In Experiment 1, paired-associates (PA) AV training of one group of participants was compared with audio-only (AO) training of another group. When tested under AO conditions, the AV-trained group was significantly more accurate than the AO-trained group. In addition, pre- and post-training AO forced-choice consonant identification with untrained nonsense words showed that AV-trained participants had learned significantly more than AO participants. The pattern of results pointed to their having learned at the level of the auditory phonetic features of the vocoded stimuli. Experiment 2, a no-training control with testing and re-testing on the AO consonant identification, showed that the controls were as accurate as the AO-trained participants in Experiment 1 but less accurate than the AV-trained participants. In Experiment 3, PA training alternated AV and AO conditions on a list-by-list basis within participants, and training was to criterion (92% correct). PA training with AO stimuli was reliably more effective than training with AV stimuli. We explain these discrepant results in terms of the so-called "reverse hierarchy theory" of perceptual learning and in terms of the diverse multisensory and unisensory processing resources available to speech perception. We propose that early AV speech integration can potentially impede auditory perceptual learning; but visual top-down access to relevant auditory features can promote auditory perceptual learning.

  4. Contextual control of attentional allocation in human discrimination learning.

    Science.gov (United States)

    Uengoer, Metin; Lachnit, Harald; Lotz, Anja; Koenig, Stephan; Pearce, John M

    2013-01-01

    In 3 human predictive learning experiments, we investigated whether the allocation of attention can come under the control of contextual stimuli. In each experiment, participants initially received a conditional discrimination for which one set of cues was trained as relevant in Context 1 and irrelevant in Context 2, and another set was relevant in Context 2 and irrelevant in Context 1. For Experiments 1 and 2, we observed that a second discrimination based on cues that had previously been trained as relevant in Context 1 during the conditional discrimination was acquired more rapidly in Context 1 than in Context 2. Experiment 3 revealed a similar outcome when new stimuli from the original dimensions were used in the test stage. Our results support the view that the associability of a stimulus can be controlled by the stimuli that accompany it.

  5. Functional discrimination of membrane proteins using machine learning techniques

    Directory of Open Access Journals (Sweden)

    Yabuki Yukimitsu

    2008-03-01

    Full Text Available Abstract Background Discriminating membrane proteins based on their functions is an important task in genome annotation. In this work, we have analyzed the characteristic features of amino acid residues in membrane proteins that perform major functions, such as channels/pores, electrochemical potential-driven transporters and primary active transporters. Results We observed that the residues Asp, Asn and Tyr are dominant in channels/pores whereas the composition of hydrophobic residues, Phe, Gly, Ile, Leu and Val is high in electrochemical potential-driven transporters. The composition of all the amino acids in primary active transporters lies in between other two classes of proteins. We have utilized different machine learning algorithms, such as, Bayes rule, Logistic function, Neural network, Support vector machine, Decision tree etc. for discriminating these classes of proteins. We observed that most of the algorithms have discriminated them with similar accuracy. The neural network method discriminated the channels/pores, electrochemical potential-driven transporters and active transporters with the 5-fold cross validation accuracy of 64% in a data set of 1718 membrane proteins. The application of amino acid occurrence improved the overall accuracy to 68%. In addition, we have discriminated transporters from other α-helical and β-barrel membrane proteins with the accuracy of 85% using k-nearest neighbor method. The classification of transporters and all other proteins (globular and membrane showed the accuracy of 82%. Conclusion The performance of discrimination with amino acid occurrence is better than that with amino acid composition. We suggest that this method could be effectively used to discriminate transporters from all other globular and membrane proteins, and classify them into channels/pores, electrochemical and active transporters.

  6. Neighbors Based Discriminative Feature Difference Learning for Kinship Verification

    DEFF Research Database (Denmark)

    Duan, Xiaodong; Tan, Zheng-Hua

    2015-01-01

    In this paper, we present a discriminative feature difference learning method for facial image based kinship verification. To transform feature difference of an image pair to be discriminative for kinship verification, a linear transformation matrix for feature difference between an image pair...... than the commonly used feature concatenation, leading to a low complexity. Furthermore, there is no positive semi-definitive constrain on the transformation matrix while there is in metric learning methods, leading to an easy solution for the transformation matrix. Experimental results on two public...... databases show that the proposed method combined with a SVM classification method outperforms or is comparable to state-of-the-art kinship verification methods. © Springer International Publishing AG, Part of Springer Science+Business Media...

  7. Precise auditory-vocal mirroring in neurons for learned vocal communication.

    Science.gov (United States)

    Prather, J F; Peters, S; Nowicki, S; Mooney, R

    2008-01-17

    Brain mechanisms for communication must establish a correspondence between sensory and motor codes used to represent the signal. One idea is that this correspondence is established at the level of single neurons that are active when the individual performs a particular gesture or observes a similar gesture performed by another individual. Although neurons that display a precise auditory-vocal correspondence could facilitate vocal communication, they have yet to be identified. Here we report that a certain class of neurons in the swamp sparrow forebrain displays a precise auditory-vocal correspondence. We show that these neurons respond in a temporally precise fashion to auditory presentation of certain note sequences in this songbird's repertoire and to similar note sequences in other birds' songs. These neurons display nearly identical patterns of activity when the bird sings the same sequence, and disrupting auditory feedback does not alter this singing-related activity, indicating it is motor in nature. Furthermore, these neurons innervate striatal structures important for song learning, raising the possibility that singing-related activity in these cells is compared to auditory feedback to guide vocal learning.

  8. Neural responses in the primary auditory cortex of freely behaving cats while discriminating fast and slow click-trains.

    Science.gov (United States)

    Dong, Chao; Qin, Ling; Liu, Yongchun; Zhang, Xinan; Sato, Yu

    2011-01-01

    Repeated acoustic events are ubiquitous temporal features of natural sounds. To reveal the neural representation of the sound repetition rate, a number of electrophysiological studies have been conducted on various mammals and it has been proposed that both the spike-time and firing rate of primary auditory cortex (A1) neurons encode the repetition rate. However, previous studies rarely examined how the experimental animals perceive the difference in the sound repetition rate, and a caveat to these experiments is that they compared physiological data obtained from animals with psychophysical data obtained from humans. In this study, for the first time, we directly investigated acoustic perception and the underlying neural mechanisms in the same experimental animal by examining spike activities in the A1 of free-moving cats while performing a Go/No-go task to discriminate the click-trains at different repetition rates (12.5-200 Hz). As reported by previous studies on passively listening animals, A1 neurons showed both synchronized and non-synchronized responses to the click-trains. We further found that the neural performance estimated from the precise temporal information of synchronized units was good enough to distinguish all 16.7-200 Hz from the 12.5 Hz repetition rate; however, the cats showed declining behavioral performance with the decrease of the target repetition rate, indicating an increase of difficulty in discriminating two slower click-trains. Such behavioral performance was well explained by the firing rate of some synchronized and non-synchronized units. Trial-by-trial analysis indicated that A1 activity was not affected by the cat's judgment of behavioral response. Our results suggest that the main function of A1 is to effectively represent temporal signals using both spike timing and firing rate, while the cats may read out the rate-coding information to perform the task in this experiment.

  9. Neural responses in the primary auditory cortex of freely behaving cats while discriminating fast and slow click-trains.

    Directory of Open Access Journals (Sweden)

    Chao Dong

    Full Text Available Repeated acoustic events are ubiquitous temporal features of natural sounds. To reveal the neural representation of the sound repetition rate, a number of electrophysiological studies have been conducted on various mammals and it has been proposed that both the spike-time and firing rate of primary auditory cortex (A1 neurons encode the repetition rate. However, previous studies rarely examined how the experimental animals perceive the difference in the sound repetition rate, and a caveat to these experiments is that they compared physiological data obtained from animals with psychophysical data obtained from humans. In this study, for the first time, we directly investigated acoustic perception and the underlying neural mechanisms in the same experimental animal by examining spike activities in the A1 of free-moving cats while performing a Go/No-go task to discriminate the click-trains at different repetition rates (12.5-200 Hz. As reported by previous studies on passively listening animals, A1 neurons showed both synchronized and non-synchronized responses to the click-trains. We further found that the neural performance estimated from the precise temporal information of synchronized units was good enough to distinguish all 16.7-200 Hz from the 12.5 Hz repetition rate; however, the cats showed declining behavioral performance with the decrease of the target repetition rate, indicating an increase of difficulty in discriminating two slower click-trains. Such behavioral performance was well explained by the firing rate of some synchronized and non-synchronized units. Trial-by-trial analysis indicated that A1 activity was not affected by the cat's judgment of behavioral response. Our results suggest that the main function of A1 is to effectively represent temporal signals using both spike timing and firing rate, while the cats may read out the rate-coding information to perform the task in this experiment.

  10. Effect of task-related continuous auditory feedback during learning of tracking motion exercises

    Directory of Open Access Journals (Sweden)

    Rosati Giulio

    2012-10-01

    Full Text Available Abstract Background This paper presents the results of a set of experiments in which we used continuous auditory feedback to augment motor training exercises. This feedback modality is mostly underexploited in current robotic rehabilitation systems, which usually implement only very basic auditory interfaces. Our hypothesis is that properly designed continuous auditory feedback could be used to represent temporal and spatial information that could in turn, improve performance and motor learning. Methods We implemented three different experiments on healthy subjects, who were asked to track a target on a screen by moving an input device (controller with their hand. Different visual and auditory feedback modalities were envisaged. The first experiment investigated whether continuous task-related auditory feedback can help improve performance to a greater extent than error-related audio feedback, or visual feedback alone. In the second experiment we used sensory substitution to compare different types of auditory feedback with equivalent visual feedback, in order to find out whether mapping the same information on a different sensory channel (the visual channel yielded comparable effects with those gained in the first experiment. The final experiment applied a continuously changing visuomotor transformation between the controller and the screen and mapped kinematic information, computed in either coordinate system (controller or video, to the audio channel, in order to investigate which information was more relevant to the user. Results Task-related audio feedback significantly improved performance with respect to visual feedback alone, whilst error-related feedback did not. Secondly, performance in audio tasks was significantly better with respect to the equivalent sensory-substituted visual tasks. Finally, with respect to visual feedback alone, video-task-related sound feedback decreased the tracking error during the learning of a novel

  11. Comparing auditory filter bandwidths, spectral ripple modulation detection, spectral ripple discrimination, and speech recognition: Normal and impaired hearing.

    Science.gov (United States)

    Davies-Venn, Evelyn; Nelson, Peggy; Souza, Pamela

    2015-07-01

    Some listeners with hearing loss show poor speech recognition scores in spite of using amplification that optimizes audibility. Beyond audibility, studies have suggested that suprathreshold abilities such as spectral and temporal processing may explain differences in amplified speech recognition scores. A variety of different methods has been used to measure spectral processing. However, the relationship between spectral processing and speech recognition is still inconclusive. This study evaluated the relationship between spectral processing and speech recognition in listeners with normal hearing and with hearing loss. Narrowband spectral resolution was assessed using auditory filter bandwidths estimated from simultaneous notched-noise masking. Broadband spectral processing was measured using the spectral ripple discrimination (SRD) task and the spectral ripple depth detection (SMD) task. Three different measures were used to assess unamplified and amplified speech recognition in quiet and noise. Stepwise multiple linear regression revealed that SMD at 2.0 cycles per octave (cpo) significantly predicted speech scores for amplified and unamplified speech in quiet and noise. Commonality analyses revealed that SMD at 2.0 cpo combined with SRD and equivalent rectangular bandwidth measures to explain most of the variance captured by the regression model. Results suggest that SMD and SRD may be promising clinical tools for diagnostic evaluation and predicting amplification outcomes.

  12. Comparing auditory filter bandwidths, spectral ripple modulation detection, spectral ripple discrimination, and speech recognition: Normal and impaired hearinga)

    Science.gov (United States)

    Davies-Venn, Evelyn; Nelson, Peggy; Souza, Pamela

    2015-01-01

    Some listeners with hearing loss show poor speech recognition scores in spite of using amplification that optimizes audibility. Beyond audibility, studies have suggested that suprathreshold abilities such as spectral and temporal processing may explain differences in amplified speech recognition scores. A variety of different methods has been used to measure spectral processing. However, the relationship between spectral processing and speech recognition is still inconclusive. This study evaluated the relationship between spectral processing and speech recognition in listeners with normal hearing and with hearing loss. Narrowband spectral resolution was assessed using auditory filter bandwidths estimated from simultaneous notched-noise masking. Broadband spectral processing was measured using the spectral ripple discrimination (SRD) task and the spectral ripple depth detection (SMD) task. Three different measures were used to assess unamplified and amplified speech recognition in quiet and noise. Stepwise multiple linear regression revealed that SMD at 2.0 cycles per octave (cpo) significantly predicted speech scores for amplified and unamplified speech in quiet and noise. Commonality analyses revealed that SMD at 2.0 cpo combined with SRD and equivalent rectangular bandwidth measures to explain most of the variance captured by the regression model. Results suggest that SMD and SRD may be promising clinical tools for diagnostic evaluation and predicting amplification outcomes. PMID:26233047

  13. Effects of hand gestures on auditory learning of second-language vowel length contrasts.

    Science.gov (United States)

    Hirata, Yukari; Kelly, Spencer D; Huang, Jessica; Manansala, Michael

    2014-12-01

    Research has shown that hand gestures affect comprehension and production of speech at semantic, syntactic, and pragmatic levels for both native language and second language (L2). This study investigated a relatively less explored question: Do hand gestures influence auditory learning of an L2 at the segmental phonology level? To examine auditory learning of phonemic vowel length contrasts in Japanese, 88 native English-speaking participants took an auditory test before and after one of the following 4 types of training in which they (a) observed an instructor in a video speaking Japanese words while she made syllabic-rhythm hand gesture, (b) produced this gesture with the instructor, (c) observed the instructor speaking those words and her moraic-rhythm hand gesture, or (d) produced the moraic-rhythm gesture with the instructor. All of the training types yielded similar auditory improvement in identifying vowel length contrast. However, observing the syllabic-rhythm hand gesture yielded the most balanced improvement between word-initial and word-final vowels and between slow and fast speaking rates. The overall effect of hand gesture on learning of segmental phonology is limited. Implications for theories of hand gesture are discussed in terms of the role it plays at different linguistic levels.

  14. Semi-supervised learning for ordinal Kernel Discriminant Analysis.

    Science.gov (United States)

    Pérez-Ortiz, M; Gutiérrez, P A; Carbonero-Ruz, M; Hervás-Martínez, C

    2016-12-01

    Ordinal classification considers those classification problems where the labels of the variable to predict follow a given order. Naturally, labelled data is scarce or difficult to obtain in this type of problems because, in many cases, ordinal labels are given by a user or expert (e.g. in recommendation systems). Firstly, this paper develops a new strategy for ordinal classification where both labelled and unlabelled data are used in the model construction step (a scheme which is referred to as semi-supervised learning). More specifically, the ordinal version of kernel discriminant learning is extended for this setting considering the neighbourhood information of unlabelled data, which is proposed to be computed in the feature space induced by the kernel function. Secondly, a new method for semi-supervised kernel learning is devised in the context of ordinal classification, which is combined with our developed classification strategy to optimise the kernel parameters. The experiments conducted compare 6 different approaches for semi-supervised learning in the context of ordinal classification in a battery of 30 datasets, showing (1) the good synergy of the ordinal version of discriminant analysis and the use of unlabelled data and (2) the advantage of computing distances in the feature space induced by the kernel function. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Comparison of Auditory/Visual and Visual/Motor Practice on the Spelling Accuracy of Learning Disabled Children.

    Science.gov (United States)

    Aleman, Cheryl; And Others

    1990-01-01

    Compares auditory/visual practice to visual/motor practice in spelling with seven elementary school learning-disabled students enrolled in a resource room setting. Finds that the auditory/visual practice was superior to the visual/motor practice on the weekly spelling performance for all seven students. (MG)

  16. Effect of Auditory Constraints on Motor Learning Depends on Stage of Recovery Post Stroke

    Directory of Open Access Journals (Sweden)

    Viswanath eAluru

    2014-06-01

    Full Text Available In order to develop evidence-based rehabilitation protocols post stroke, one must first reconcile the vast heterogeneity in the post-stroke population and develop protocols to facilitate motor learning in the various subgroups. The main purpose of this study is to show that auditory constraints interact with the stage of recovery post stroke to influence motor learning. We characterized the stages of upper limb recovery using task-based kinematic measures in twenty subjects with chronic hemiparesis, and used a bimanual wrist extension task using a custom-made wrist trainer to facilitate learning of wrist extension in the paretic hand under four auditory conditions: 1 without auditory cueing; 2 to non-musical happy sounds; 3 to self-selected music; and 4 to a metronome beat set at a comfortable tempo. Two bimanual trials (15 s each were followed by one unimanual trial with the paretic hand over six cycles under each condition. Clinical metrics, wrist and arm kinematics and electromyographic activity were recorded. Hierarchical cluster analysis with the Mahalanobis metric based on baseline speed and extent of wrist movement stratified subjects into three distinct groups which reflected their stage of recovery: spastic paresis, spastic co-contraction, and minimal paresis. In spastic paresis, the metronome beat increased wrist extension, but also increased muscle co-activation across the wrist. In contrast, in spastic co-contraction, no auditory stimulation increased wrist extension and reduced co-activation. In minimal paresis, wrist extension did not improve under any condition. The results suggest that auditory task constraints interact with stage of recovery during motor learning after stroke, perhaps due to recruitment of distinct neural substrates over the course of recovery. The findings advance our understanding of the mechanisms of progression of motor recovery and lay the foundation for personalized treatment algorithms post stroke.

  17. Picture-Word Differences in Discrimination Learning: II. Effects of Conceptual Categories.

    Science.gov (United States)

    Bourne, Lyle E., Jr.; And Others

    A well established finding in the discrimination learning literature is that pictures are learned more rapidly than their associated verbal labels. It was hypothesized in this study that the usual superiority of pictures over words in a discrimination list containing same-instance repetitions would disappear in a discrimination list containing…

  18. Assessing learning preferences of dental students using visual, auditory, reading-writing, and kinesthetic questionnaire

    Directory of Open Access Journals (Sweden)

    Darshana Bennadi

    2015-01-01

    Full Text Available Introduction: Educators of the health care profession (teachers are committed in preparing future health care providers, but are facing many challenges in transmitting their ever expanding knowledge to the students. This study was done to focus on different learning styles among dental students. Aim: To assess different learning preferences among dental students. Materials and Methods: This is a descriptive cross-sectional questionnaire study using visual, auditory, reading-writing, and kinesthetic questionnaire among dental students. Results: Majority 75.8% of the students preferred multimodal learning style. Multimodal learning was common among clinical students. No statistical significant difference of learning styles in relation to gender (P > 0.05. Conclusion: In the present study, majority of students preferred multimodal learning preference. Knowledge about the learning style preference of different profession can help to enhance the teaching method for the students.

  19. Generalization of Auditory Sensory and Cognitive Learning in Typically Developing Children.

    Directory of Open Access Journals (Sweden)

    Cristina F B Murphy

    Full Text Available Despite the well-established involvement of both sensory ("bottom-up" and cognitive ("top-down" processes in literacy, the extent to which auditory or cognitive (memory or attention learning transfers to phonological and reading skills remains unclear. Most research has demonstrated learning of the trained task or even learning transfer to a closely related task. However, few studies have reported "far-transfer" to a different domain, such as the improvement of phonological and reading skills following auditory or cognitive training. This study assessed the effectiveness of auditory, memory or attention training on far-transfer measures involving phonological and reading skills in typically developing children. Mid-transfer was also assessed through untrained auditory, attention and memory tasks. Sixty 5- to 8-year-old children with normal hearing were quasi-randomly assigned to one of five training groups: attention group (AG, memory group (MG, auditory sensory group (SG, placebo group (PG; drawing, painting, and a control, untrained group (CG. Compliance, mid-transfer and far-transfer measures were evaluated before and after training. All trained groups received 12 x 45-min training sessions over 12 weeks. The CG did not receive any intervention. All trained groups, especially older children, exhibited significant learning of the trained task. On pre- to post-training measures (test-retest, most groups exhibited improvements on most tasks. There was significant mid-transfer for a visual digit span task, with highest span in the MG, relative to other groups. These results show that both sensory and cognitive (memory or attention training can lead to learning in the trained task and to mid-transfer learning on a task (visual digit span within the same domain as the trained tasks. However, learning did not transfer to measures of language (reading and phonological awareness, as the PG and CG improved as much as the other trained groups. Further

  20. Generalization of Auditory Sensory and Cognitive Learning in Typically Developing Children.

    Science.gov (United States)

    Murphy, Cristina F B; Moore, David R; Schochat, Eliane

    2015-01-01

    Despite the well-established involvement of both sensory ("bottom-up") and cognitive ("top-down") processes in literacy, the extent to which auditory or cognitive (memory or attention) learning transfers to phonological and reading skills remains unclear. Most research has demonstrated learning of the trained task or even learning transfer to a closely related task. However, few studies have reported "far-transfer" to a different domain, such as the improvement of phonological and reading skills following auditory or cognitive training. This study assessed the effectiveness of auditory, memory or attention training on far-transfer measures involving phonological and reading skills in typically developing children. Mid-transfer was also assessed through untrained auditory, attention and memory tasks. Sixty 5- to 8-year-old children with normal hearing were quasi-randomly assigned to one of five training groups: attention group (AG), memory group (MG), auditory sensory group (SG), placebo group (PG; drawing, painting), and a control, untrained group (CG). Compliance, mid-transfer and far-transfer measures were evaluated before and after training. All trained groups received 12 x 45-min training sessions over 12 weeks. The CG did not receive any intervention. All trained groups, especially older children, exhibited significant learning of the trained task. On pre- to post-training measures (test-retest), most groups exhibited improvements on most tasks. There was significant mid-transfer for a visual digit span task, with highest span in the MG, relative to other groups. These results show that both sensory and cognitive (memory or attention) training can lead to learning in the trained task and to mid-transfer learning on a task (visual digit span) within the same domain as the trained tasks. However, learning did not transfer to measures of language (reading and phonological awareness), as the PG and CG improved as much as the other trained groups. Further research

  1. Global discriminative learning for higher-accuracy computational gene prediction.

    Directory of Open Access Journals (Sweden)

    Axel Bernal

    2007-03-01

    Full Text Available Most ab initio gene predictors use a probabilistic sequence model, typically a hidden Markov model, to combine separately trained models of genomic signals and content. By combining separate models of relevant genomic features, such gene predictors can exploit small training sets and incomplete annotations, and can be trained fairly efficiently. However, that type of piecewise training does not optimize prediction accuracy and has difficulty in accounting for statistical dependencies among different parts of the gene model. With genomic information being created at an ever-increasing rate, it is worth investigating alternative approaches in which many different types of genomic evidence, with complex statistical dependencies, can be integrated by discriminative learning to maximize annotation accuracy. Among discriminative learning methods, large-margin classifiers have become prominent because of the success of support vector machines (SVM in many classification tasks. We describe CRAIG, a new program for ab initio gene prediction based on a conditional random field model with semi-Markov structure that is trained with an online large-margin algorithm related to multiclass SVMs. Our experiments on benchmark vertebrate datasets and on regions from the ENCODE project show significant improvements in prediction accuracy over published gene predictors that use intrinsic features only, particularly at the gene level and on genes with long introns.

  2. Emotional Intelligence among Auditory, Reading, and Kinesthetic Learning Styles of Elementary School Students in Ambon-Indonesia

    Science.gov (United States)

    Leasa, Marleny; Corebima, Aloysius D.; Ibrohim; Suwono, Hadi

    2017-01-01

    Students have unique ways in managing the information in their learning process. VARK learning styles associated with memory are considered to have an effect on emotional intelligence. This quasi-experimental research was conducted to compare the emotional intelligence among the students having auditory, reading, and kinesthetic learning styles in…

  3. Representation of complex vocalizations in the Lusitanian toadfish auditory system: evidence of fine temporal, frequency and amplitude discrimination

    Science.gov (United States)

    Vasconcelos, Raquel O.; Fonseca, Paulo J.; Amorim, M. Clara P.; Ladich, Friedrich

    2011-01-01

    Many fishes rely on their auditory skills to interpret crucial information about predators and prey, and to communicate intraspecifically. Few studies, however, have examined how complex natural sounds are perceived in fishes. We investigated the representation of conspecific mating and agonistic calls in the auditory system of the Lusitanian toadfish Halobatrachus didactylus, and analysed auditory responses to heterospecific signals from ecologically relevant species: a sympatric vocal fish (meagre Argyrosomus regius) and a potential predator (dolphin Tursiops truncatus). Using auditory evoked potential (AEP) recordings, we showed that both sexes can resolve fine features of conspecific calls. The toadfish auditory system was most sensitive to frequencies well represented in the conspecific vocalizations (namely the mating boatwhistle), and revealed a fine representation of duration and pulsed structure of agonistic and mating calls. Stimuli and corresponding AEP amplitudes were highly correlated, indicating an accurate encoding of amplitude modulation. Moreover, Lusitanian toadfish were able to detect T. truncatus foraging sounds and A. regius calls, although at higher amplitudes. We provide strong evidence that the auditory system of a vocal fish, lacking accessory hearing structures, is capable of resolving fine features of complex vocalizations that are probably important for intraspecific communication and other relevant stimuli from the auditory scene. PMID:20861044

  4. Behavioral determination of stimulus pair discrimination of auditory acoustic and electrical stimuli using a classical conditioning and heart-rate approach.

    Science.gov (United States)

    Morgan, Simeon J; Paolini, Antonio G

    2012-06-06

    Acute animal preparations have been used in research prospectively investigating electrode designs and stimulation techniques for integration into neural auditory prostheses, such as auditory brainstem implants and auditory midbrain implants. While acute experiments can give initial insight to the effectiveness of the implant, testing the chronically implanted and awake animals provides the advantage of examining the psychophysical properties of the sensations induced using implanted devices. Several techniques such as reward-based operant conditioning, conditioned avoidance, or classical fear conditioning have been used to provide behavioral confirmation of detection of a relevant stimulus attribute. Selection of a technique involves balancing aspects including time efficiency (often poor in reward-based approaches), the ability to test a plurality of stimulus attributes simultaneously (limited in conditioned avoidance), and measure reliability of repeated stimuli (a potential constraint when physiological measures are employed). Here, a classical fear conditioning behavioral method is presented which may be used to simultaneously test both detection of a stimulus, and discrimination between two stimuli. Heart-rate is used as a measure of fear response, which reduces or eliminates the requirement for time-consuming video coding for freeze behaviour or other such measures (although such measures could be included to provide convergent evidence). Animals were conditioned using these techniques in three 2-hour conditioning sessions, each providing 48 stimulus trials. Subsequent 48-trial testing sessions were then used to test for detection of each stimulus in presented pairs, and test discrimination between the member stimuli of each pair. This behavioral method is presented in the context of its utilisation in auditory prosthetic research. The implantation of electrocardiogram telemetry devices is shown. Subsequent implantation of brain electrodes into the Cochlear

  5. Learning Disabilities and the Auditory and Visual Matching Computer Program

    Science.gov (United States)

    Tormanen, Minna R. K.; Takala, Marjatta; Sajaniemi, Nina

    2008-01-01

    This study examined whether audiovisual computer training without linguistic material had a remedial effect on different learning disabilities, like dyslexia and ADD (Attention Deficit Disorder). This study applied a pre-test-intervention-post-test design with students (N = 62) between the ages of 7 and 19. The computer training lasted eight weeks…

  6. Word learning in deaf children with cochlear implants: effects of early auditory experience.

    Science.gov (United States)

    Houston, Derek M; Stewart, Jessica; Moberly, Aaron; Hollich, George; Miyamoto, Richard T

    2012-05-01

    Word-learning skills were tested in normal-hearing 12- to 40-month-olds and in deaf 22- to 40-month-olds 12 to 18 months after cochlear implantation. Using the Intermodal Preferential Looking Paradigm (IPLP), children were tested for their ability to learn two novel-word/novel-object pairings. Normal-hearing children demonstrated learning on this task at approximately 18 months of age and older. For deaf children, performance on this task was significantly correlated with early auditory experience: Children whose cochlear implants were switched on by 14 months of age or who had relatively more hearing before implantation demonstrated learning in this task, but later implanted profoundly deaf children did not. Performance on this task also correlated with later measures of vocabulary size. Taken together, these findings suggest that early auditory experience facilitates word learning and that the IPLP may be useful for identifying children who may be at high risk for poor vocabulary development. © 2012 Blackwell Publishing Ltd.

  7. The development of interactive multimedia based on auditory, intellectually, repetition in repetition algorithm learning to increase learning outcome

    Science.gov (United States)

    Munir; Sutarno, H.; Aisyah, N. S.

    2018-05-01

    This research aims to find out how the development of interactive multimedia based on auditory, intellectually, and repetition can improve student learning outcomes. This interactive multimedia is developed through 5 stages. Analysis stages include the study of literature, questionnaire, interviews and observations. The design phase is done by the database design, flowchart, storyboards and repetition algorithm material while the development phase is done by the creation of web-based framework. Presentation material is adapted to the model of learning such as auditory, intellectually, repetition. Auditory points are obtained by recording the narrative material that presented by a variety of intellectual points. Multimedia as a product is validated by material and media experts. Implementation phase conducted on grade XI-TKJ2 SMKN 1 Garut. Based on index’s gain, an increasing of student learning outcomes in this study is 0.46 which is fair due to interest of student in using interactive multimedia. While the multimedia assessment earned 84.36% which is categorized as very well.

  8. Effects of Learning about Historical Gender Discrimination on Early Adolescents' Occupational Judgments and Aspirations

    Science.gov (United States)

    Pahlke, Erin; Bigler, Rebecca S.; Green, Vanessa A.

    2010-01-01

    To examine the consequences of learning about gender discrimination, early adolescents (n = 121, aged 10-14) were randomly assigned to receive either (a) standard biographical lessons about historical figures (standard condition) or (b) nearly identical lessons that included information about gender discrimination (discrimination condition).…

  9. Effects of Learning about Gender Discrimination on Adolescent Girls' Attitudes toward and Interest in Science

    Science.gov (United States)

    Weisgram, Erica S.; Bigler, Rebecca S.

    2007-01-01

    Gender discrimination has contributed to the gender imbalance in scientific fields. However, research on the effects of informing adolescent girls about gender discrimination in these fields is rare and controversial. To examine the consequences of learning about gender-based occupational discrimination, adolescent girls (n= 158, ages 11 to 14)…

  10. Sustained Firing of Model Central Auditory Neurons Yields a Discriminative Spectro-temporal Representation for Natural Sounds

    OpenAIRE

    Carlin, Michael A.; Elhilali, Mounya

    2013-01-01

    The processing characteristics of neurons in the central auditory system are directly shaped by and reflect the statistics of natural acoustic environments, but the principles that govern the relationship between natural sound ensembles and observed responses in neurophysiological studies remain unclear. In particular, accumulating evidence suggests the presence of a code based on sustained neural firing rates, where central auditory neurons exhibit strong, persistent responses to their prefe...

  11. Fronto-striatal grey matter contributions to discrimination learning in Parkinson's disease

    NARCIS (Netherlands)

    O'Callaghan, C.; Moustafa, A.A.; de Wit, S.; Shine, J.M.; Robbins, T.W.; Lewis, S.J.G.; Hornberger, M.

    2013-01-01

    Discrimination learning deficits in Parkinson's disease (PD) have been well-established. Using both behavioral patient studies and computational approaches, these deficits have typically been attributed to dopamine imbalance across the basal ganglia. However, this explanation of impaired learning in

  12. Learning of arbitrary association between visual and auditory novel stimuli in adults: the "bond effect" of haptic exploration.

    Directory of Open Access Journals (Sweden)

    Benjamin Fredembach

    Full Text Available BACKGROUND: It is well-known that human beings are able to associate stimuli (novel or not perceived in their environment. For example, this ability is used by children in reading acquisition when arbitrary associations between visual and auditory stimuli must be learned. The studies tend to consider it as an "implicit" process triggered by the learning of letter/sound correspondences. The study described in this paper examined whether the addition of the visuo-haptic exploration would help adults to learn more effectively the arbitrary association between visual and auditory novel stimuli. METHODOLOGY/PRINCIPAL FINDINGS: Adults were asked to learn 15 new arbitrary associations between visual stimuli and their corresponding sounds using two learning methods which differed according to the perceptual modalities involved in the exploration of the visual stimuli. Adults used their visual modality in the "classic" learning method and both their visual and haptic modalities in the "multisensory" learning one. After both learning methods, participants showed a similar above-chance ability to recognize the visual and auditory stimuli and the audio-visual associations. However, the ability to recognize the visual-auditory associations was better after the multisensory method than after the classic one. CONCLUSION/SIGNIFICANCE: This study revealed that adults learned more efficiently the arbitrary association between visual and auditory novel stimuli when the visual stimuli were explored with both vision and touch. The results are discussed from the perspective of how they relate to the functional differences of the manual haptic modality and the hypothesis of a "haptic bond" between visual and auditory stimuli.

  13. At the interface of the auditory and vocal motor systems: NIf and its role in vocal processing, production and learning.

    Science.gov (United States)

    Lewandowski, Brian; Vyssotski, Alexei; Hahnloser, Richard H R; Schmidt, Marc

    2013-06-01

    Communication between auditory and vocal motor nuclei is essential for vocal learning. In songbirds, the nucleus interfacialis of the nidopallium (NIf) is part of a sensorimotor loop, along with auditory nucleus avalanche (Av) and song system nucleus HVC, that links the auditory and song systems. Most of the auditory information comes through this sensorimotor loop, with the projection from NIf to HVC representing the largest single source of auditory information to the song system. In addition to providing the majority of HVC's auditory input, NIf is also the primary driver of spontaneous activity and premotor-like bursting during sleep in HVC. Like HVC and RA, two nuclei critical for song learning and production, NIf exhibits behavioral-state dependent auditory responses and strong motor bursts that precede song output. NIf also exhibits extended periods of fast gamma oscillations following vocal production. Based on the converging evidence from studies of physiology and functional connectivity it would be reasonable to expect NIf to play an important role in the learning, maintenance, and production of song. Surprisingly, however, lesions of NIf in adult zebra finches have no effect on song production or maintenance. Only the plastic song produced by juvenile zebra finches during the sensorimotor phase of song learning is affected by NIf lesions. In this review, we carefully examine what is known about NIf at the anatomical, physiological, and behavioral levels. We reexamine conclusions drawn from previous studies in the light of our current understanding of the song system, and establish what can be said with certainty about NIf's involvement in song learning, maintenance, and production. Finally, we review recent theories of song learning integrating possible roles for NIf within these frameworks and suggest possible parallels between NIf and sensorimotor areas that form part of the neural circuitry for speech processing in humans. Copyright © 2013 Elsevier

  14. Perceptual Learning: 12-Month-Olds' Discrimination of Monkey Faces

    Science.gov (United States)

    Fair, Joseph; Flom, Ross; Jones, Jacob; Martin, Justin

    2012-01-01

    Six-month-olds reliably discriminate different monkey and human faces whereas 9-month-olds only discriminate different human faces. It is often falsely assumed that perceptual narrowing reflects a permanent change in perceptual abilities. In 3 experiments, ninety-six 12-month-olds' discrimination of unfamiliar monkey faces was examined. Following…

  15. Efficacy of the LiSN & Learn auditory training software: randomized blinded controlled study

    Directory of Open Access Journals (Sweden)

    Sharon Cameron

    2012-09-01

    Full Text Available Children with a spatial processing disorder (SPD require a more favorable signal-to-noise ratio in the classroom because they have difficulty perceiving sound source location cues. Previous research has shown that a novel training program - LiSN & Learn - employing spatialized sound, overcomes this deficit. Here we investigate whether improvements in spatial processing ability are specific to the LiSN & Learn training program. Participants were ten children (aged between 6;0 [years;months] and 9;9 with normal peripheral hearing who were diagnosed as having SPD using the Listening in Spatialized Noise - Sentences test (LiSN-S. In a blinded controlled study, the participants were randomly allocated to train with either the LiSN & Learn or another auditory training program - Earobics - for approximately 15 min per day for twelve weeks. There was a significant improvement post-training on the conditions of the LiSN-S that evaluate spatial processing ability for the LiSN & Learn group (P=0.03 to 0.0008, η 2=0.75 to 0.95, n=5, but not for the Earobics group (P=0.5 to 0.7, η 2=0.1 to 0.04, n=5. Results from questionnaires completed by the participants and their parents and teachers revealed improvements in real-world listening performance post-training were greater in the LiSN & Learn group than the Earobics group. LiSN & Learn training improved binaural processing ability in children with SPD, enhancing their ability to understand speech in noise. Exposure to non-spatialized auditory training does not produce similar outcomes, emphasizing the importance of deficit-specific remediation.

  16. Efficacy of the LiSN & Learn Auditory Training Software: randomized blinded controlled study

    Directory of Open Access Journals (Sweden)

    Sharon Cameron

    2012-01-01

    Full Text Available Background: Children with a spatial processing disorder (SPD require a more favorable signal-to-noise ratio in the classroom because they have difficulty perceiving sound source location cues. Previous research has shown that a novel training program - LiSN & Learn - employing spatialized sound, overcomes this deficit. Here we investigate whether improvements in spatial processing ability are specific to the LiSN & Learn training program. Materials and methods: Participants were ten children (aged between 6;0 [years;months] and 9;9 with normal peripheral hearing who were diagnosed as having SPD using the Listening in Spatialized Noise – Sentences Test (LISN-S. In a blinded controlled study, the participants were randomly allocated to train with either the LiSN & Learn or another auditory training program – Earobics - for approximately 15 minutes per day for twelve weeks. Results: There was a significant improvement post-training on the conditions of the LiSN-S that evaluate spatial processing ability for the LiSN & Learn group (p=0.03 to 0.0008, η2=0.75 to 0.95, n=5, but not for the Earobics group (p=0.5 to 0.7, η2=0.1 to 0.04, n=5. Results from questionnaires completed by the participants and their parents and teachers revealed improvements in real-world listening performance post-training were greater in the LiSN & Learn group than the Earobics group. Conclusions: LiSN & Learn training improved binaural processing ability in children with SPD, enhancing their ability to understand speech in noise. Exposure to non-spatialized auditory training does not produce similar outcomes, emphasizing the importance of deficit-specific remediation.

  17. Attention Cueing and Activity Equally Reduce False Alarm Rate in Visual-Auditory Associative Learning through Improving Memory.

    Science.gov (United States)

    Nikouei Mahani, Mohammad-Ali; Haghgoo, Hojjat Allah; Azizi, Solmaz; Nili Ahmadabadi, Majid

    2016-01-01

    In our daily life, we continually exploit already learned multisensory associations and form new ones when facing novel situations. Improving our associative learning results in higher cognitive capabilities. We experimentally and computationally studied the learning performance of healthy subjects in a visual-auditory sensory associative learning task across active learning, attention cueing learning, and passive learning modes. According to our results, the learning mode had no significant effect on learning association of congruent pairs. In addition, subjects' performance in learning congruent samples was not correlated with their vigilance score. Nevertheless, vigilance score was significantly correlated with the learning performance of the non-congruent pairs. Moreover, in the last block of the passive learning mode, subjects significantly made more mistakes in taking non-congruent pairs as associated and consciously reported lower confidence. These results indicate that attention and activity equally enhanced visual-auditory associative learning for non-congruent pairs, while false alarm rate in the passive learning mode did not decrease after the second block. We investigated the cause of higher false alarm rate in the passive learning mode by using a computational model, composed of a reinforcement learning module and a memory-decay module. The results suggest that the higher rate of memory decay is the source of making more mistakes and reporting lower confidence in non-congruent pairs in the passive learning mode.

  18. Predicting dynamic range and intensity discrimination for electrical pulse-train stimuli using a stochastic auditory nerve model: the effects of stimulus noise.

    Science.gov (United States)

    Xu, Yifang; Collins, Leslie M

    2005-06-01

    This work investigates dynamic range and intensity discrimination for electrical pulse-train stimuli that are modulated by noise using a stochastic auditory nerve model. Based on a hypothesized monotonic relationship between loudness and the number of spikes elicited by a stimulus, theoretical prediction of the uncomfortable level has previously been determined by comparing spike counts to a fixed threshold, Nucl. However, no specific rule for determining Nucl has been suggested. Our work determines the uncomfortable level based on the excitation pattern of the neural response in a normal ear. The number of fibers corresponding to the portion of the basilar membrane driven by a stimulus at an uncomfortable level in a normal ear is related to Nucl at an uncomfortable level of the electrical stimulus. Intensity discrimination limens are predicted using signal detection theory via the probability mass function of the neural response and via experimental simulations. The results show that the uncomfortable level for pulse-train stimuli increases slightly as noise level increases. Combining this with our previous threshold predictions, we hypothesize that the dynamic range for noise-modulated pulse-train stimuli should increase with additive noise. However, since our predictions indicate that intensity discrimination under noise degrades, overall intensity coding performance may not improve significantly.

  19. Brain dynamics that correlate with effects of learning on auditory distance perception

    Directory of Open Access Journals (Sweden)

    Matthew G. Wisniewski

    2014-12-01

    Full Text Available Accuracy in auditory distance perception can improve with practice and varies for sounds differing in familiarity. Here, listeners were trained to judge the distances of English, Bengali, and backwards speech sources pre-recorded at near (2-m and far (30-m distances. Listeners’ accuracy was tested before and after training. Improvements from pre-test to post-test were greater for forward speech, demonstrating a learning advantage for forward speech sounds. Independent component (IC processes identified in electroencephalographic (EEG data collected during pre- and post-testing revealed three clusters of ICs across subjects with stimulus-locked spectral perturbations related to learning and accuracy. One cluster exhibited a transient stimulus-locked increase in 4-8 Hz power (theta event-related synchronization; ERS that was smaller after training and largest for backwards speech. For a left temporal cluster, 8-12 Hz decreases in power (alpha event-related desynchronization; ERD were greatest for English speech and less prominent after training. In contrast, a cluster of IC processes centered at or near anterior portions of the medial frontal cortex showed learning-related enhancement of sustained increases in 10-16 Hz power (upper-alpha/low-beta ERS. The degree of this enhancement was positively correlated with the degree of behavioral improvements. Results suggest that neural dynamics in non-auditory cortical areas support distance judgments. Further, frontal cortical networks associated with attentional and/or working memory processes appear to play a role in perceptual learning for source distance.

  20. Training with Differential Outcomes Enhances Discriminative Learning and Visuospatial Recognition Memory in Children Born Prematurely

    Science.gov (United States)

    Martinez, Lourdes; Mari-Beffa, Paloma; Roldan-Tapia, Dolores; Ramos-Lizana, Julio; Fuentes, Luis J.; Estevez, Angeles F.

    2012-01-01

    Previous studies have demonstrated that discriminative learning is facilitated when a particular outcome is associated with each relation to be learned. When this training procedure is applied (the differential outcome procedure; DOP), learning is faster and more accurate than when the more common non-differential outcome procedure is used. This…

  1. Post-training depletions of basolateral amygdala serotonin fail to disrupt discrimination, retention, or reversal learning

    Directory of Open Access Journals (Sweden)

    G. Jesus eOchoa

    2015-05-01

    Full Text Available In goal-directed pursuits, the basolateral amygdala (BLA is critical in learning about changes in the value of rewards. BLA-lesioned rats show enhanced reversal learning, a task employed to measure the flexibility of response to changes in reward. Similarly, there is a trend for enhanced discrimination learning, suggesting that BLA may modulate formation of stimulus-reward associations. There is a parallel literature on the importance of serotonin (5HT in new stimulus-reward and reversal learning. Recent postulations implicate 5HT in learning from punishment. Whereas dopaminergic involvement is critical in behavioral activation and reinforcement, 5HT may be most critical for aversive processing and behavioral inhibition, complementary cognitive processes. Given these findings, a 5HT-mediated mechanism in BLA may mediate the facilitated learning observed previously. The present study investigated the effects of selective 5HT lesions in BLA using 5,7-dihydroxytryptamine (5,7-DHT versus infusions of saline (Sham on discrimination, retention, and deterministic reversal learning. Rats were required to reach an 85% correct pairwise discrimination and single reversal criterion prior to surgery. Postoperatively, rats were then tested on the 1 retention of the pretreatment discrimination pair 2 discrimination of a novel pair and 3 reversal learning performance. We found statistically comparable preoperative learning rates between groups, intact postoperative retention, and unaltered novel discrimination and reversal learning in 5,7-DHT rats. These findings suggest that 5HT in BLA is not required for formation and flexible adjustment of new stimulus-reward associations when the strategy to efficiently solve the task has already been learned. Given the complementary role of orbitofrontal cortex in reward learning and its interconnectivity with BLA, these findings add to the list of dissociable mechanisms for BLA and orbitofrontal cortex in reward learning.

  2. Simultaneous and Sequential Feature Negative Discriminations: Elemental Learning and Occasion Setting in Human Pavlovian Conditioning

    Science.gov (United States)

    Baeyens, Frank; Vervliet, Bram; Vansteenwegen, Debora; Beckers, Tom; Hermans, Dirk; Eelen, Paul

    2004-01-01

    Using a conditioned suppression task, we investigated simultaneous (XA-/A+) vs. sequential (X [right arrow] A-/A+) Feature Negative (FN) discrimination learning in humans. We expected the simultaneous discrimination to result in X (or alternatively the XA configuration) becoming an inhibitor acting directly on the US, and the sequential…

  3. Interaction between age and perceptual similarity in olfactory discrimination learning in F344 rats: relationships with spatial learning

    Science.gov (United States)

    Yoder, Wendy M.; Gaynor, Leslie S.; Burke, Sara N.; Setlow, Barry; Smith, David W.; Bizon, Jennifer L.

    2017-01-01

    Emerging evidence suggests that aging is associated with a reduced ability to distinguish perceptually similar stimuli in one’s environment. As the ability to accurately perceive and encode sensory information is foundational for explicit memory, understanding the neurobiological underpinnings of discrimination impairments that emerge with advancing age could help elucidate the mechanisms of mnemonic decline. To this end, there is a need for preclinical approaches that robustly and reliably model age-associated perceptual discrimination deficits. Taking advantage of rodents’ exceptional olfactory abilities, the present study applied rigorous psychophysical techniques to the evaluation of discrimination learning in young and aged F344 rats. Aging did not influence odor detection thresholds or the ability to discriminate between perceptually distinct odorants. In contrast, aged rats were disproportionately impaired relative to young on problems that required discriminations between perceptually similar olfactory stimuli. Importantly, these disproportionate impairments in discrimination learning did not simply reflect a global learning impairment in aged rats, as they performed other types of difficult discriminations on par with young rats. Among aged rats, discrimination deficits were strongly associated with spatial learning deficits. These findings reveal a new, sensitive behavioral approach for elucidating the neural mechanisms of cognitive decline associated with normal aging. PMID:28259065

  4. Auditory Magnetoencephalographic Frequency-Tagged Responses Mirror the Ongoing Segmentation Processes Underlying Statistical Learning.

    Science.gov (United States)

    Farthouat, Juliane; Franco, Ana; Mary, Alison; Delpouve, Julie; Wens, Vincent; Op de Beeck, Marc; De Tiège, Xavier; Peigneux, Philippe

    2017-03-01

    Humans are highly sensitive to statistical regularities in their environment. This phenomenon, usually referred as statistical learning, is most often assessed using post-learning behavioural measures that are limited by a lack of sensibility and do not monitor the temporal dynamics of learning. In the present study, we used magnetoencephalographic frequency-tagged responses to investigate the neural sources and temporal development of the ongoing brain activity that supports the detection of regularities embedded in auditory streams. Participants passively listened to statistical streams in which tones were grouped as triplets, and to random streams in which tones were randomly presented. Results show that during exposure to statistical (vs. random) streams, tritone frequency-related responses reflecting the learning of regularities embedded in the stream increased in the left supplementary motor area and left posterior superior temporal sulcus (pSTS), whereas tone frequency-related responses decreased in the right angular gyrus and right pSTS. Tritone frequency-related responses rapidly developed to reach significance after 3 min of exposure. These results suggest that the incidental extraction of novel regularities is subtended by a gradual shift from rhythmic activity reflecting individual tone succession toward rhythmic activity synchronised with triplet presentation, and that these rhythmic processes are subtended by distinct neural sources.

  5. Auditory and Visual Working Memory Functioning in College Students with Attention-Deficit/Hyperactivity Disorder and/or Learning Disabilities.

    Science.gov (United States)

    Liebel, Spencer W; Nelson, Jason M

    2017-12-01

    We investigated the auditory and visual working memory functioning in college students with attention-deficit/hyperactivity disorder, learning disabilities, and clinical controls. We examined the role attention-deficit/hyperactivity disorder subtype status played in working memory functioning. The unique influence that both domains of working memory have on reading and math abilities was investigated. A sample of 268 individuals seeking postsecondary education comprise four groups of the present study: 110 had an attention-deficit/hyperactivity disorder diagnosis only, 72 had a learning disability diagnosis only, 35 had comorbid attention-deficit/hyperactivity disorder and learning disability diagnoses, and 60 individuals without either of these disorders comprise a clinical control group. Participants underwent a comprehensive neuropsychological evaluation, and licensed psychologists employed a multi-informant, multi-method approach in obtaining diagnoses. In the attention-deficit/hyperactivity disorder only group, there was no difference between auditory and visual working memory functioning, t(100) = -1.57, p = .12. In the learning disability group, however, auditory working memory functioning was significantly weaker compared with visual working memory, t(71) = -6.19, p attention-deficit/hyperactivity disorder only group, there were no auditory or visual working memory functioning differences between participants with either a predominantly inattentive type or a combined type diagnosis. Visual working memory did not incrementally contribute to the prediction of academic achievement skills. Individuals with attention-deficit/hyperactivity disorder did not demonstrate significant working memory differences compared with clinical controls. Individuals with a learning disability demonstrated weaker auditory working memory than individuals in either the attention-deficit/hyperactivity or clinical control groups. © The Author 2017. Published by Oxford University

  6. Alternative Forms of the Rey Auditory Verbal Learning Test: A Review

    Directory of Open Access Journals (Sweden)

    Keith A. Hawkins

    2004-01-01

    Full Text Available Practice effects in memory testing complicate the interpretation of score changes over repeated testings, particularly in clinical applications. Consequently, several alternative forms of the Auditory Verbal Learning Test (AVLT have been developed. Studies of these typically indicate that the forms examined are equivalent. However, the implication that the forms in the literature are interchangeable must be tempered by several caveats. Few studies of equivalence have been undertaken; most are restricted to the comparison of single pairs of forms, and the pairings vary across studies. These limitations are exacerbated by the minimal overlapping across studies in variables reported, or in the analyses of equivalence undertaken. The data generated by these studies are nonetheless valuable, as significant practice effects result from serial use of the same form. The available data on alternative AVLT forms are summarized, and recommendations regarding form development and the determination of form equivalence are offered.

  7. Auditory-visual stimulus pairing enhances perceptual learning in a songbird.

    Science.gov (United States)

    Hultsch; Schleuss; Todt

    1999-07-01

    In many oscine birds, song learning is affected by social variables, for example the behaviour of a tutor. This implies that both auditory and visual perceptual systems should be involved in the acquisition process. To examine whether and how particular visual stimuli can affect song acquisition, we tested the impact of a tutoring design in which the presentation of auditory stimuli (i.e. species-specific master songs) was paired with a well-defined nonauditory stimulus (i.e. stroboscope light flashes: Strobe regime). The subjects were male hand-reared nightingales, Luscinia megarhynchos. For controls, males were exposed to tutoring without a light stimulus (Control regime). The males' singing recorded 9 months later showed that the Strobe regime had enhanced the acquisition of song patterns. During this treatment birds had acquired more songs than during the Control regime; the observed increase in repertoire size was from 20 to 30% in most cases. Furthermore, the copy quality of imitations acquired during the Strobe regime was better than that of imitations developed from the Control regime, and this was due to a significant increase in the number of 'perfect' song copies. We conclude that these effects were mediated by an intrinsic component (e.g. attention or arousal) which specifically responded to the Strobe regime. Our findings also show that mechanisms of song learning are well prepared to process information from cross-modal perception. Thus, more detailed enquiries into stimulus complexes that are usually referred to as social variables are promising. Copyright 1999 The Association for the Study of Animal Behaviour.

  8. Jumpstarting auditory learning in children with cochlear implants through music experiences.

    Science.gov (United States)

    Barton, Christine; Robbins, Amy McConkey

    2015-09-01

    Musical experiences are a valuable part of the lives of children with cochlear implants (CIs). In addition to the pleasure, relationships and emotional outlet provided by music, it serves to enhance or 'jumpstart' other auditory and cognitive skills that are critical for development and learning throughout the lifespan. Musicians have been shown to be 'better listeners' than non-musicians with regard to how they perceive and process sound. A heuristic model of music therapy is reviewed, including six modulating factors that may account for the auditory advantages demonstrated by those who participate in music therapy. The integral approach to music therapy is described along with the hybrid approach to pediatric language intervention. These approaches share the characteristics of placing high value on ecologically valid therapy experiences, i.e., engaging in 'real' music and 'real' communication. Music and language intervention techniques used by the authors are presented. It has been documented that children with CIs consistently have lower music perception scores than do their peers with normal hearing (NH). On the one hand, this finding matters a great deal because it provides parameters for setting reasonable expectations and highlights the work still required to improve signal processing with the devices so that they more accurately transmit music to CI listeners. On the other hand, the finding might not matter much if we assume that music, even in its less-than-optimal state, functions for CI children, as for NH children, as a developmental jumpstarter, a language-learning tool, a cognitive enricher, a motivator, and an attention enhancer.

  9. Evaluation of Auditory Verbal Memory and Learning Performance of 18-30 Year Old Persian-Speaking Healthy Women

    Directory of Open Access Journals (Sweden)

    Reyhane Toufan

    2012-10-01

    Full Text Available Background and Aim: Auditory memory plays an important role in developing language skills and learning. The aim of the present study was to assess auditory verbal memory and learning performanceof 18-30 year old healthy adults using the Persian version of the Rey Auditory-Verbal Learning Test(RAVLT.Methods: This descriptive, cross-sectional study was coducted on seventy 18-30 year old healthy females with the mean age of 23.2 years and a standard deviation (SD of 2.4 years. Different aspectsof memory, like immediate recall, delayed recall, recognition, forgetting rate, interference and learning, were assessed using the Persian version of RAVLT.Results: Mean score increased from 8.94 (SD=1.91 on the first trial to 13.70 (SD=1.18 on the fifth trial. Total learning mean score was 12.19 (SD=1.08, and mean learning rate was 4.76. Mean scoresof the participants on the delayed recall and recognition trials were 13.47 (SD=1.2, and 14.72(SD=0.53, respectively. The proactive and retroactive interference scores were 0.86 and 0.96,respectively. The forgetting rate score was 1.01 and the retrieval score was 0.90.Conclusion: The auditory-verbal memory and learning performance of healthy Persian-speaking females was similar to the performance of the same population in other countries. Therefore, the Persian version of RAVLT is valid for assessment of memory function in the Persian-speaking female population.

  10. Reduced autobiographical memory specificity is associated with impaired discrimination learning in anxiety disorder patients

    Science.gov (United States)

    Lenaert, Bert; Boddez, Yannick; Vervliet, Bram; Schruers, Koen; Hermans, Dirk

    2015-01-01

    Associative learning plays an important role in the development of anxiety disorders, but a thorough understanding of the variables that impact such learning is still lacking. We investigated whether individual differences in autobiographical memory specificity are related to discrimination learning and generalization. In an associative learning task, participants learned the association between two pictures of female faces and a non-aversive outcome. Subsequently, six morphed pictures functioning as generalization stimuli (GSs) were introduced. In a sample of healthy participants (Study 1), we did not find evidence for differences in discrimination learning as a function of memory specificity. In a sample of anxiety disorder patients (Study 2), individuals who were characterized by low memory specificity showed deficient discrimination learning relative to high specific individuals. In contrast to previous findings, results revealed no effect of memory specificity on generalization. These results indicate that impaired discrimination learning, previously shown in patients suffering from an anxiety disorder, may be—in part—due to limited memory specificity. Together, these studies emphasize the importance of incorporating cognitive variables in associative learning theories and their implications for the development of anxiety disorders. In addition, re-analyses of the data (Study 3) showed that patients suffering from panic disorder showed higher outcome expectancies in the presence of the stimulus that was never followed by an outcome during discrimination training, relative to patients suffering from other anxiety disorders and healthy participants. Because we used a neutral, non-aversive outcome (i.e., drawing of a lightning bolt), these data suggest that learning abnormalities in panic disorder may not be restricted to fear learning, but rather reflect a more general associative learning deficit that also manifests in fear irrelevant contexts. PMID

  11. Discriminating the stimulus elements during human odor-taste learning: a successful analytic stance does not eliminate learning.

    Science.gov (United States)

    Stevenson, Richard J; Mahmut, Mehmet K

    2011-10-01

    Odor "sweetness" may arise from experiencing odors and tastes together, resulting in a flavor memory that is later reaccessed by the odor. Forming a flavor memory may be impaired if the taste and odor elements are apparent during exposure, suggesting that configural processing may underpin learning. Using a new procedure, participants made actual flavor discriminations for one odor-taste pair (e.g., Taste A vs. Odor X-Taste A) and mock discriminations for another (e.g., Odor Y-Taste B vs. Odor Y-Taste B). Participants, who were successful at detecting the actual flavor discriminations, demonstrated equal amounts of learning for both odor-taste pairings. These results suggest that although a capacity to discriminate flavor into its elements may be necessary to support learning, whether participants experience a configural or elemental flavor representation may not.

  12. The developmental trajectory of children's auditory and visual statistical learning abilities: modality-based differences in the effect of age.

    Science.gov (United States)

    Raviv, Limor; Arnon, Inbal

    2017-09-12

    Infants, children and adults are capable of extracting recurring patterns from their environment through statistical learning (SL), an implicit learning mechanism that is considered to have an important role in language acquisition. Research over the past 20 years has shown that SL is present from very early infancy and found in a variety of tasks and across modalities (e.g., auditory, visual), raising questions on the domain generality of SL. However, while SL is well established for infants and adults, only little is known about its developmental trajectory during childhood, leaving two important questions unanswered: (1) Is SL an early-maturing capacity that is fully developed in infancy, or does it improve with age like other cognitive capacities (e.g., memory)? and (2) Will SL have similar developmental trajectories across modalities? Only few studies have looked at SL across development, with conflicting results: some find age-related improvements while others do not. Importantly, no study to date has examined auditory SL across childhood, nor compared it to visual SL to see if there are modality-based differences in the developmental trajectory of SL abilities. We addressed these issues by conducting a large-scale study of children's performance on matching auditory and visual SL tasks across a wide age range (5-12y). Results show modality-based differences in the development of SL abilities: while children's learning in the visual domain improved with age, learning in the auditory domain did not change in the tested age range. We examine these findings in light of previous studies and discuss their implications for modality-based differences in SL and for the role of auditory SL in language acquisition. A video abstract of this article can be viewed at: https://www.youtube.com/watch?v=3kg35hoF0pw. © 2017 John Wiley & Sons Ltd.

  13. The Effect of Learning Modality and Auditory Feedback on Word Memory: Cochlear-Implanted versus Normal-Hearing Adults.

    Science.gov (United States)

    Taitelbaum-Swead, Riki; Icht, Michal; Mama, Yaniv

    2017-03-01

    In recent years, the effect of cognitive abilities on the achievements of cochlear implant (CI) users has been evaluated. Some studies have suggested that gaps between CI users and normal-hearing (NH) peers in cognitive tasks are modality specific, and occur only in auditory tasks. The present study focused on the effect of learning modality (auditory, visual) and auditory feedback on word memory in young adults who were prelingually deafened and received CIs before the age of 5 yr, and their NH peers. A production effect (PE) paradigm was used, in which participants learned familiar study words by vocal production (saying aloud) or by no-production (silent reading or listening). Words were presented (1) in the visual modality (written) and (2) in the auditory modality (heard). CI users performed the visual condition twice-once with the implant ON and once with it OFF. All conditions were followed by free recall tests. Twelve young adults, long-term CI users, implanted between ages 1.7 and 4.5 yr, and who showed ≥50% in monosyllabic consonant-vowel-consonant open-set test with their implants were enrolled. A group of 14 age-matched NH young adults served as the comparison group. For each condition, we calculated the proportion of study words recalled. Mixed-measures analysis of variances were carried out with group (NH, CI) as a between-subjects variable, and learning condition (aloud or silent reading) as a within-subject variable. Following this, paired sample t tests were used to evaluate the PE size (differences between aloud and silent words) and overall recall ratios (aloud and silent words combined) in each of the learning conditions. With visual word presentation, young adults with CIs (regardless of implant status CI-ON or CI-OFF), showed comparable memory performance (and a similar PE) to NH peers. However, with auditory presentation, young adults with CIs showed poorer memory for nonproduced words (hence a larger PE) relative to their NH peers. The

  14. An analysis of mathematical connection ability based on student learning style on visualization auditory kinesthetic (VAK) learning model with self-assessment

    Science.gov (United States)

    Apipah, S.; Kartono; Isnarto

    2018-03-01

    This research aims to analyze the quality of VAK learning with self-assessment toward the ability of mathematical connection performed by students and to analyze students’ mathematical connection ability based on learning styles in VAK learning model with self-assessment. This research applies mixed method type with concurrent embedded design. The subject of this research consists of VIII grade students from State Junior High School 9 Semarang who apply visual learning style, auditory learning style, and kinesthetic learning style. The data of learning style is collected by using questionnaires, the data of mathematical connection ability is collected by performing tests, and the data of self-assessment is collected by using assessment sheets. The quality of learning is qualitatively valued from planning stage, realization stage, and valuation stage. The result of mathematical connection ability test is analyzed quantitatively by mean test, conducting completeness test, mean differentiation test, and mean proportional differentiation test. The result of the research shows that VAK learning model results in well-qualified learning regarded from qualitative and quantitative sides. Students with visual learning style perform the highest mathematical connection ability, students with kinesthetic learning style perform average mathematical connection ability, and students with auditory learning style perform the lowest mathematical connection ability.

  15. Discriminating Microbial Species Using Protein Sequence Properties and Machine Learning

    NARCIS (Netherlands)

    Shahib, Ali Al-; Gilbert, David; Breitling, Rainer

    2007-01-01

    Much work has been done to identify species-specific proteins in sequenced genomes and hence to determine their function. We assumed that such proteins have specific physico-chemical properties that will discriminate them from proteins in other species. In this paper, we examine the validity of this

  16. Brainstem auditory evoked potentials with the use of acoustic clicks and complex verbal sounds in young adults with learning disabilities.

    Science.gov (United States)

    Kouni, Sophia N; Giannopoulos, Sotirios; Ziavra, Nausika; Koutsojannis, Constantinos

    2013-01-01

    'other learning disabilities' and who were characterized as with 'light' dyslexia according to dyslexia tests, no significant delays were found in peak latencies A and C and interpeak latencies A-C in comparison with the control group. Acoustic representation of a speech sound and, in particular, the disyllabic word 'baba' was found to be abnormal, as low as the auditory brainstem. Because ABRs mature in early life, this can help to identify subjects with acoustically based learning problems and apply early intervention, rehabilitation, and treatment. Further studies and more experience with more patients and pathological conditions such as plasticity of the auditory system, cochlear implants, hearing aids, presbycusis, or acoustic neuropathy are necessary until this type of testing is ready for clinical application. © 2013 Elsevier Inc. All rights reserved.

  17. Auditory learning through active engagement with sound: Biological impact of community music lessons in at-risk children

    Directory of Open Access Journals (Sweden)

    Nina eKraus

    2014-11-01

    Full Text Available The young nervous system is primed for sensory learning, facilitating the acquisition of language and communication skills. Social and linguistic impoverishment can limit these learning opportunities, eventually leading to language-related challenges such as poor reading. Music training offers a promising auditory learning strategy by directing attention to meaningful acoustic elements in the soundscape. In light of evidence that music training improves auditory skills and their neural substrates, there are increasing efforts to enact community-based programs to provide music instruction to at-risk children. Harmony Project is a community foundation that has provided free music instruction to over 1,000 children from Los Angeles gang-reduction zones over the past decade. We conducted an independent evaluation of biological effects of participating in Harmony Project by following a cohort of children for one year. Here we focus on a comparison between students who actively engaged with sound through instrumental music training vs. students who took music appreciation classes. All children began with an introductory music appreciation class, but midway through the year half of the children transitioned to an instrumental training class. After the year of training, the children who actively engaged with sound through instrumental music training had faster and more robust neural processing of speech than the children who stayed in the music appreciation class, observed in neural responses to a speech sound /d/. The neurophysiological measures found to be enhanced in the instrumentally trained children have been previously linked to reading ability, suggesting a gain in neural processes important for literacy stemming from active auditory learning. These findings speak to the potential of active engagement with sound (i.e., music-making to engender experience-dependent neuroplasticity during trand may inform the development of strategies for auditory

  18. Auditory learning through active engagement with sound: biological impact of community music lessons in at-risk children.

    Science.gov (United States)

    Kraus, Nina; Slater, Jessica; Thompson, Elaine C; Hornickel, Jane; Strait, Dana L; Nicol, Trent; White-Schwoch, Travis

    2014-01-01

    The young nervous system is primed for sensory learning, facilitating the acquisition of language and communication skills. Social and linguistic impoverishment can limit these learning opportunities, eventually leading to language-related challenges such as poor reading. Music training offers a promising auditory learning strategy by directing attention to meaningful acoustic elements of the soundscape. In light of evidence that music training improves auditory skills and their neural substrates, there are increasing efforts to enact community-based programs to provide music instruction to at-risk children. Harmony Project is a community foundation that has provided free music instruction to over 1000 children from Los Angeles gang-reduction zones over the past decade. We conducted an independent evaluation of biological effects of participating in Harmony Project by following a cohort of children for 1 year. Here we focus on a comparison between students who actively engaged with sound through instrumental music training vs. students who took music appreciation classes. All children began with an introductory music appreciation class, but midway through the year half of the children transitioned to the instrumental training. After the year of training, the children who actively engaged with sound through instrumental music training had faster and more robust neural processing of speech than the children who stayed in the music appreciation class, observed in neural responses to a speech sound /d/. The neurophysiological measures found to be enhanced in the instrumentally-trained children have been previously linked to reading ability, suggesting a gain in neural processes important for literacy stemming from active auditory learning. Despite intrinsic constraints on our study imposed by a community setting, these findings speak to the potential of active engagement with sound (i.e., music-making) to engender experience-dependent neuroplasticity and may inform the

  19. Pitch Discrimination Learning: Specificity for Pitch and Harmonic Resolvability, and Electrophysiological Correlates

    OpenAIRE

    Carcagno, Samuele; Plack, Christopher J.

    2011-01-01

    Multiple-hour training on a pitch discrimination task dramatically decreases the threshold for detecting a pitch difference between two harmonic complexes. Here, we investigated the specificity of this perceptual learning with respect to the pitch and the resolvability of the trained harmonic complex, as well as its cortical electrophysiological correlates. We trained 24 participants for 12 h on a pitch discrimination task using one of four different harmonic complexes. The complexes differed...

  20. Transfer Effect of Speech-sound Learning on Auditory-motor Processing of Perceived Vocal Pitch Errors.

    Science.gov (United States)

    Chen, Zhaocong; Wong, Francis C K; Jones, Jeffery A; Li, Weifeng; Liu, Peng; Chen, Xi; Liu, Hanjun

    2015-08-17

    Speech perception and production are intimately linked. There is evidence that speech motor learning results in changes to auditory processing of speech. Whether speech motor control benefits from perceptual learning in speech, however, remains unclear. This event-related potential study investigated whether speech-sound learning can modulate the processing of feedback errors during vocal pitch regulation. Mandarin speakers were trained to perceive five Thai lexical tones while learning to associate pictures with spoken words over 5 days. Before and after training, participants produced sustained vowel sounds while they heard their vocal pitch feedback unexpectedly perturbed. As compared to the pre-training session, the magnitude of vocal compensation significantly decreased for the control group, but remained consistent for the trained group at the post-training session. However, the trained group had smaller and faster N1 responses to pitch perturbations and exhibited enhanced P2 responses that correlated significantly with their learning performance. These findings indicate that the cortical processing of vocal pitch regulation can be shaped by learning new speech-sound associations, suggesting that perceptual learning in speech can produce transfer effects to facilitating the neural mechanisms underlying the online monitoring of auditory feedback regarding vocal production.

  1. Rey's Auditory Verbal Learning Test scores can be predicted from whole brain MRI in Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Elaheh Moradi

    2017-01-01

    Full Text Available Rey's Auditory Verbal Learning Test (RAVLT is a powerful neuropsychological tool for testing episodic memory, which is widely used for the cognitive assessment in dementia and pre-dementia conditions. Several studies have shown that an impairment in RAVLT scores reflect well the underlying pathology caused by Alzheimer's disease (AD, thus making RAVLT an effective early marker to detect AD in persons with memory complaints. We investigated the association between RAVLT scores (RAVLT Immediate and RAVLT Percent Forgetting and the structural brain atrophy caused by AD. The aim was to comprehensively study to what extent the RAVLT scores are predictable based on structural magnetic resonance imaging (MRI data using machine learning approaches as well as to find the most important brain regions for the estimation of RAVLT scores. For this, we built a predictive model to estimate RAVLT scores from gray matter density via elastic net penalized linear regression model. The proposed approach provided highly significant cross-validated correlation between the estimated and observed RAVLT Immediate (R = 0.50 and RAVLT Percent Forgetting (R = 0.43 in a dataset consisting of 806 AD, mild cognitive impairment (MCI or healthy subjects. In addition, the selected machine learning method provided more accurate estimates of RAVLT scores than the relevance vector regression used earlier for the estimation of RAVLT based on MRI data. The top predictors were medial temporal lobe structures and amygdala for the estimation of RAVLT Immediate and angular gyrus, hippocampus and amygdala for the estimation of RAVLT Percent Forgetting. Further, the conversion of MCI subjects to AD in 3-years could be predicted based on either observed or estimated RAVLT scores with an accuracy comparable to MRI-based biomarkers.

  2. Effects of musicality and motivational orientation on auditory category learning: a test of a regulatory-fit hypothesis.

    Science.gov (United States)

    McAuley, J Devin; Henry, Molly J; Wedd, Alan; Pleskac, Timothy J; Cesario, Joseph

    2012-02-01

    Two experiments investigated the effects of musicality and motivational orientation on auditory category learning. In both experiments, participants learned to classify tone stimuli that varied in frequency and duration according to an initially unknown disjunctive rule; feedback involved gaining points for correct responses (a gains reward structure) or losing points for incorrect responses (a losses reward structure). For Experiment 1, participants were told at the start that musicians typically outperform nonmusicians on the task, and then they were asked to identify themselves as either a "musician" or a "nonmusician." For Experiment 2, participants were given either a promotion focus prime (a performance-based opportunity to gain entry into a raffle) or a prevention focus prime (a performance-based criterion that needed to be maintained to avoid losing an entry into a raffle) at the start of the experiment. Consistent with a regulatory-fit hypothesis, self-identified musicians and promotion-primed participants given a gains reward structure made more correct tone classifications and were more likely to discover the optimal disjunctive rule than were musicians and promotion-primed participants experiencing losses. Reward structure (gains vs. losses) had inconsistent effects on the performance of nonmusicians, and a weaker regulatory-fit effect was found for the prevention focus prime. Overall, the findings from this study demonstrate a regulatory-fit effect in the domain of auditory category learning and show that motivational orientation may contribute to musician performance advantages in auditory perception.

  3. Rehearsal significantly improves immediate and delayed recall on the Rey Auditory Verbal Learning Test.

    Science.gov (United States)

    Hessen, Erik

    2011-10-01

    A repeated observation during memory assessment with the Rey Auditory Verbal Learning Test (RAVLT) is that patients who spontaneously employ a memory rehearsal strategy by repeating the word list more than once achieve better scores than patients who only repeat the word list once. This observation led to concern about the ability of the standard test procedure of RAVLT and similar tests in eliciting the best possible recall scores. The purpose of the present study was to test the hypothesis that a rehearsal recall strategy of repeating the word list more than once would result in improved scores of recall on the RAVLT. We report on differences in outcome after standard administration and after experimental administration on Immediate and Delayed Recall measures from the RAVLT of 50 patients. The experimental administration resulted in significantly improved scores for all the variables employed. Additionally, it was found that patients who failed effort screening showed significantly poorer improvement on Delayed Recall compared with those who passed the effort screening. The general clear improvement both in raw scores and T-scores demonstrates that recall performance can be significantly influenced by the strategy of the patient or by small variations in instructions by the examiner.

  4. Effects of lips and hands on auditory learning of second-language speech sounds.

    Science.gov (United States)

    Hirata, Yukari; Kelly, Spencer D

    2010-04-01

    Previous research has found that auditory training helps native English speakers to perceive phonemic vowel length contrasts in Japanese, but their performance did not reach native levels after training. Given that multimodal information, such as lip movement and hand gesture, influences many aspects of native language processing, the authors examined whether multimodal input helps to improve native English speakers' ability to perceive Japanese vowel length contrasts. Sixty native English speakers participated in 1 of 4 types of training: (a) audio-only; (b) audio-mouth; (c) audio-hands; and (d) audio-mouth-hands. Before and after training, participants were given phoneme perception tests that measured their ability to identify short and long vowels in Japanese (e.g., /kato/ vs. /kato/). Although all 4 groups improved from pre- to posttest (replicating previous research), the participants in the audio-mouth condition improved more than those in the audio-only condition, whereas the 2 conditions involving hand gestures did not. Seeing lip movements during training significantly helps learners to perceive difficult second-language phonemic contrasts, but seeing hand gestures does not. The authors discuss possible benefits and limitations of using multimodal information in second-language phoneme learning.

  5. Clinical efficiency of the Auditory Verbal Learning Test for patients with internal carotid artery stenosis

    International Nuclear Information System (INIS)

    Seki, Yasuko; Maeshima, Shinichiro; Osawa, Aiko; Imura, Junko; Kohyama, Shinya; Yamane, Fumitaka; Ishihara, Shoichiro; Tanahashi, Norio

    2010-01-01

    Most patients who have an internal carotid artery (ICA) stenosis with cerebral lesion have some cognitive dysfunction. To clarify the clinical efficiency of the Auditory Verbal Learning Test (AVLT) and to assess the relationship between AVLT and cerebral damage, we examined AVLT in patients with ICA stenosis. 44 patients (35 males and 9 females) with ICA stenosis aged 56 to 83 (69.6±6.5) years old were evaluated. The educational periods were from 9 to 16 (12.3±2.8) years. Their activities of daily living (ADL) were independent. We assessed cognitive function with neuropsychological tests including AVLT, Mini-mental State Examination (MMSE), Raven's coloured progressive matrices (RCPM) and Frontal Assessment Battery (FAB), etc. We assessed cerebral damage (periventricular high intensity; PVH and white matter hyperintensity; WMH) with MRI. Then, we investigated the relationship between AVLT and other neuropsychological tests, and the relationship between AVLT and carotid/cerebral lesion. There was no association with lesion side of ICA stenosis and the scores of AVLT. In patients with ICA stenosis and cerebral damage (PVH and/or WMH), there was a significant relationship between the severity of cerebral damage and the scores in AVLT. AVLT had a significant relationship to other neuropsychological tests. AVLT might be a good cognitive assessment for patients who have cerebral damage due to ICA stenosis. (author)

  6. Valence of Facial Cues Influences Sheep Learning in a Visual Discrimination Task

    Directory of Open Access Journals (Sweden)

    Lucille G. A. Bellegarde

    2017-11-01

    Full Text Available Sheep are one of the most studied farm species in terms of their ability to process information from faces, but little is known about their face-based emotion recognition abilities. We investigated (a whether sheep could use images of sheep faces taken in situation of varying valence as cues in a simultaneous discrimination task and (b whether the valence of the situation affects their learning performance. To accomplish this, we photographed faces of sheep in three situations inducing emotional states of neutral (ruminating in the home pen or negative valence (social isolation or aggressive interaction. Sheep (n = 35 first had to learn a discrimination task with colored cards. Animals that reached the learning criterion (n = 16 were then presented with pairs of images of the face of a single individual taken in the neutral situation and in one of the negative situations. Finally, sheep had to generalize what they had learned to new pairs of images of faces taken in the same situation, but of a different conspecific. All sheep that learned the discrimination task with colored cards reached the learning criterion with images of faces. Sheep that had to associate a negative image with a food reward learned faster than sheep that had to associate a neutral image with a reward. With the exception of sheep from the aggression-rewarded group, sheep generalized this discrimination to images of faces of different individuals. Our results suggest that sheep can perceive the emotional valence displayed on faces of conspecifics and that this valence affects learning processes.

  7. Multi-Site Diagnostic Classification of Schizophrenia Using Discriminant Deep Learning with Functional Connectivity MRI

    Directory of Open Access Journals (Sweden)

    Ling-Li Zeng

    2018-04-01

    Full Text Available Background: A lack of a sufficiently large sample at single sites causes poor generalizability in automatic diagnosis classification of heterogeneous psychiatric disorders such as schizophrenia based on brain imaging scans. Advanced deep learning methods may be capable of learning subtle hidden patterns from high dimensional imaging data, overcome potential site-related variation, and achieve reproducible cross-site classification. However, deep learning-based cross-site transfer classification, despite less imaging site-specificity and more generalizability of diagnostic models, has not been investigated in schizophrenia. Methods: A large multi-site functional MRI sample (n = 734, including 357 schizophrenic patients from seven imaging resources was collected, and a deep discriminant autoencoder network, aimed at learning imaging site-shared functional connectivity features, was developed to discriminate schizophrenic individuals from healthy controls. Findings: Accuracies of approximately 85·0% and 81·0% were obtained in multi-site pooling classification and leave-site-out transfer classification, respectively. The learned functional connectivity features revealed dysregulation of the cortical-striatal-cerebellar circuit in schizophrenia, and the most discriminating functional connections were primarily located within and across the default, salience, and control networks. Interpretation: The findings imply that dysfunctional integration of the cortical-striatal-cerebellar circuit across the default, salience, and control networks may play an important role in the “disconnectivity” model underlying the pathophysiology of schizophrenia. The proposed discriminant deep learning method may be capable of learning reliable connectome patterns and help in understanding the pathophysiology and achieving accurate prediction of schizophrenia across multiple independent imaging sites. Keywords: Schizophrenia, Deep learning, Connectome, f

  8. Fairer machine learning in the real world: Mitigating discrimination without collecting sensitive data

    OpenAIRE

    Veale, M; Binns, RDP

    2017-01-01

    Decisions based on algorithmic, machine learning models can be unfair, reproducing biases in historical data used to train them. While computational techniques are emerging to address aspects of these concerns through communities such as discrimination-aware data mining (DADM) and fairness, accountability and transparency machine learning (FATML), their practical implementation faces real-world challenges. For legal, institutional or commercial reasons, organisations might not hold the data o...

  9. Segmentation of MR images via discriminative dictionary learning and sparse coding: Application to hippocampus labeling

    OpenAIRE

    Tong, Tong; Wolz, Robin; Coupe, Pierrick; Hajnal, Joseph V.; Rueckert, Daniel

    2013-01-01

    International audience; We propose a novel method for the automatic segmentation of brain MRI images by using discriminative dictionary learning and sparse coding techniques. In the proposed method, dictionaries and classifiers are learned simultaneously from a set of brain atlases, which can then be used for the reconstruction and segmentation of an unseen target image. The proposed segmentation strategy is based on image reconstruction, which is in contrast to most existing atlas-based labe...

  10. Combining generative and discriminative representation learning for lung CT analysis with convolutional restricted Boltzmann machines

    DEFF Research Database (Denmark)

    van Tulder, Gijs; de Bruijne, Marleen

    2016-01-01

    The choice of features greatly influences the performance of a tissue classification system. Despite this, many systems are built with standard, predefined filter banks that are not optimized for that particular application. Representation learning methods such as restricted Boltzmann machines may...... outperform these standard filter banks because they learn a feature description directly from the training data. Like many other representation learning methods, restricted Boltzmann machines are unsupervised and are trained with a generative learning objective; this allows them to learn representations from...... unlabeled data, but does not necessarily produce features that are optimal for classification. In this paper we propose the convolutional classification restricted Boltzmann machine, which combines a generative and a discriminative learning objective. This allows it to learn filters that are good both...

  11. Pitch discrimination learning: specificity for pitch and harmonic resolvability, and electrophysiological correlates.

    Science.gov (United States)

    Carcagno, Samuele; Plack, Christopher J

    2011-08-01

    Multiple-hour training on a pitch discrimination task dramatically decreases the threshold for detecting a pitch difference between two harmonic complexes. Here, we investigated the specificity of this perceptual learning with respect to the pitch and the resolvability of the trained harmonic complex, as well as its cortical electrophysiological correlates. We trained 24 participants for 12 h on a pitch discrimination task using one of four different harmonic complexes. The complexes differed in pitch and/or spectral resolvability of their components by the cochlea, but were filtered into the same spectral region. Cortical-evoked potentials and a behavioral measure of pitch discrimination were assessed before and after training for all the four complexes. The change in these measures was compared to that of two control groups: one trained on a level discrimination task and one without any training. The behavioral results showed that learning was partly specific to both pitch and resolvability. Training with a resolved-harmonic complex improved pitch discrimination for resolved complexes more than training with an unresolved complex. However, we did not find evidence that training with an unresolved complex leads to specific learning for unresolved complexes. Training affected the P2 component of the cortical-evoked potentials, as well as a later component (250-400 ms). No significant changes were found on the mismatch negativity (MMN) component, although a separate experiment showed that this measure was sensitive to pitch changes equivalent to the pitch discriminability changes induced by training. This result suggests that pitch discrimination training affects processes not measured by the MMN, for example, processes higher in level or parallel to those involved in MMN generation.

  12. Perceived Discrimination and International Students' Learning: An Empirical Investigation

    Science.gov (United States)

    Karuppan, Corinne M.; Barari, Mahua

    2011-01-01

    At a time when the number of internationally mobile students worldwide has been growing steadily, the US share of this market has been declining. Since, as it is often claimed, international students are the best ambassadors for their host countries, an effective recruitment strategy is to enhance their learning experience, with the expectation…

  13. A deafening flash! Visual interference of auditory signal detection.

    Science.gov (United States)

    Fassnidge, Christopher; Cecconi Marcotti, Claudia; Freeman, Elliot

    2017-03-01

    In some people, visual stimulation evokes auditory sensations. How prevalent and how perceptually real is this? 22% of our neurotypical adult participants responded 'Yes' when asked whether they heard faint sounds accompanying flash stimuli, and showed significantly better ability to discriminate visual 'Morse-code' sequences. This benefit might arise from an ability to recode visual signals as sounds, thus taking advantage of superior temporal acuity of audition. In support of this, those who showed better visual relative to auditory sequence discrimination also had poorer auditory detection in the presence of uninformative visual flashes, though this was independent of awareness of visually-evoked sounds. Thus a visually-evoked auditory representation may occur subliminally and disrupt detection of real auditory signals. The frequent natural correlation between visual and auditory stimuli might explain the surprising prevalence of this phenomenon. Overall, our results suggest that learned correspondences between strongly correlated modalities may provide a precursor for some synaesthetic abilities. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. An Information Analysis of 2-, 3-, and 4-Word Verbal Discrimination Learning.

    Science.gov (United States)

    Arima, James K.; Gray, Francis D.

    Information theory was used to qualify the difficulty of verbal discrimination (VD) learning tasks and to measure VD performance. Words for VD items were selected with high background frequency and equal a priori probabilities of being selected as a first response. Three VD lists containing only 2-, 3-, or 4-word items were created and equated for…

  15. Patterns of Learning in Verbal Discrimination as an Interaction of Social Reinforcement and Sex Combinations

    Science.gov (United States)

    Ratliff, Richard G.; And Others

    1976-01-01

    A total of 540 college students were run in two verbal discrimination learning studies (the second, a replication of the first) with one of three verbal reward conditions. In both studies, equal numbers of male and female subjects were run in each reward condition by each male and female experimenter. (MS)

  16. Roles of Approval Motivation and Generalized Expectancy for Reinforcement in Children's Conceptual Discrimination Learning

    Science.gov (United States)

    Nyce, Peggy A.; And Others

    1977-01-01

    Forty-four third graders were given a two-choice conceptual discrimination learning task. The two major factors were (1) four treatment groups varying at the extremes on two personality measures, approval motivation and locus of control and (2) sex. (MS)

  17. Multi-level discriminative dictionary learning with application to large scale image classification.

    Science.gov (United States)

    Shen, Li; Sun, Gang; Huang, Qingming; Wang, Shuhui; Lin, Zhouchen; Wu, Enhua

    2015-10-01

    The sparse coding technique has shown flexibility and capability in image representation and analysis. It is a powerful tool in many visual applications. Some recent work has shown that incorporating the properties of task (such as discrimination for classification task) into dictionary learning is effective for improving the accuracy. However, the traditional supervised dictionary learning methods suffer from high computation complexity when dealing with large number of categories, making them less satisfactory in large scale applications. In this paper, we propose a novel multi-level discriminative dictionary learning method and apply it to large scale image classification. Our method takes advantage of hierarchical category correlation to encode multi-level discriminative information. Each internal node of the category hierarchy is associated with a discriminative dictionary and a classification model. The dictionaries at different layers are learnt to capture the information of different scales. Moreover, each node at lower layers also inherits the dictionary of its parent, so that the categories at lower layers can be described with multi-scale information. The learning of dictionaries and associated classification models is jointly conducted by minimizing an overall tree loss. The experimental results on challenging data sets demonstrate that our approach achieves excellent accuracy and competitive computation cost compared with other sparse coding methods for large scale image classification.

  18. Discrimination of Breast Cancer with Microcalcifications on Mammography by Deep Learning.

    Science.gov (United States)

    Wang, Jinhua; Yang, Xi; Cai, Hongmin; Tan, Wanchang; Jin, Cangzheng; Li, Li

    2016-06-07

    Microcalcification is an effective indicator of early breast cancer. To improve the diagnostic accuracy of microcalcifications, this study evaluates the performance of deep learning-based models on large datasets for its discrimination. A semi-automated segmentation method was used to characterize all microcalcifications. A discrimination classifier model was constructed to assess the accuracies of microcalcifications and breast masses, either in isolation or combination, for classifying breast lesions. Performances were compared to benchmark models. Our deep learning model achieved a discriminative accuracy of 87.3% if microcalcifications were characterized alone, compared to 85.8% with a support vector machine. The accuracies were 61.3% for both methods with masses alone and improved to 89.7% and 85.8% after the combined analysis with microcalcifications. Image segmentation with our deep learning model yielded 15, 26 and 41 features for the three scenarios, respectively. Overall, deep learning based on large datasets was superior to standard methods for the discrimination of microcalcifications. Accuracy was increased by adopting a combinatorial approach to detect microcalcifications and masses simultaneously. This may have clinical value for early detection and treatment of breast cancer.

  19. Robust Visual Tracking via Online Discriminative and Low-Rank Dictionary Learning.

    Science.gov (United States)

    Zhou, Tao; Liu, Fanghui; Bhaskar, Harish; Yang, Jie

    2017-09-12

    In this paper, we propose a novel and robust tracking framework based on online discriminative and low-rank dictionary learning. The primary aim of this paper is to obtain compact and low-rank dictionaries that can provide good discriminative representations of both target and background. We accomplish this by exploiting the recovery ability of low-rank matrices. That is if we assume that the data from the same class are linearly correlated, then the corresponding basis vectors learned from the training set of each class shall render the dictionary to become approximately low-rank. The proposed dictionary learning technique incorporates a reconstruction error that improves the reliability of classification. Also, a multiconstraint objective function is designed to enable active learning of a discriminative and robust dictionary. Further, an optimal solution is obtained by iteratively computing the dictionary, coefficients, and by simultaneously learning the classifier parameters. Finally, a simple yet effective likelihood function is implemented to estimate the optimal state of the target during tracking. Moreover, to make the dictionary adaptive to the variations of the target and background during tracking, an online update criterion is employed while learning the new dictionary. Experimental results on a publicly available benchmark dataset have demonstrated that the proposed tracking algorithm performs better than other state-of-the-art trackers.

  20. The Use of Music and Other Forms of Organized Sound as a Therapeutic Intervention for Students with Auditory Processing Disorder: Providing the Best Auditory Experience for Children with Learning Differences

    Science.gov (United States)

    Faronii-Butler, Kishasha O.

    2013-01-01

    This auto-ethnographical inquiry used vignettes and interviews to examine the therapeutic use of music and other forms of organized sound in the learning environment of individuals with Central Auditory Processing Disorders. It is an investigation of the traditions of healing with sound vibrations, from its earliest cultural roots in shamanism and…

  1. Multi-Site Diagnostic Classification of Schizophrenia Using Discriminant Deep Learning with Functional Connectivity MRI.

    Science.gov (United States)

    Zeng, Ling-Li; Wang, Huaning; Hu, Panpan; Yang, Bo; Pu, Weidan; Shen, Hui; Chen, Xingui; Liu, Zhening; Yin, Hong; Tan, Qingrong; Wang, Kai; Hu, Dewen

    2018-04-01

    A lack of a sufficiently large sample at single sites causes poor generalizability in automatic diagnosis classification of heterogeneous psychiatric disorders such as schizophrenia based on brain imaging scans. Advanced deep learning methods may be capable of learning subtle hidden patterns from high dimensional imaging data, overcome potential site-related variation, and achieve reproducible cross-site classification. However, deep learning-based cross-site transfer classification, despite less imaging site-specificity and more generalizability of diagnostic models, has not been investigated in schizophrenia. A large multi-site functional MRI sample (n = 734, including 357 schizophrenic patients from seven imaging resources) was collected, and a deep discriminant autoencoder network, aimed at learning imaging site-shared functional connectivity features, was developed to discriminate schizophrenic individuals from healthy controls. Accuracies of approximately 85·0% and 81·0% were obtained in multi-site pooling classification and leave-site-out transfer classification, respectively. The learned functional connectivity features revealed dysregulation of the cortical-striatal-cerebellar circuit in schizophrenia, and the most discriminating functional connections were primarily located within and across the default, salience, and control networks. The findings imply that dysfunctional integration of the cortical-striatal-cerebellar circuit across the default, salience, and control networks may play an important role in the "disconnectivity" model underlying the pathophysiology of schizophrenia. The proposed discriminant deep learning method may be capable of learning reliable connectome patterns and help in understanding the pathophysiology and achieving accurate prediction of schizophrenia across multiple independent imaging sites. Copyright © 2018 German Center for Neurodegenerative Diseases (DZNE). Published by Elsevier B.V. All rights reserved.

  2. Supervised orthogonal discriminant subspace projects learning for face recognition.

    Science.gov (United States)

    Chen, Yu; Xu, Xiao-Hong

    2014-02-01

    In this paper, a new linear dimension reduction method called supervised orthogonal discriminant subspace projection (SODSP) is proposed, which addresses high-dimensionality of data and the small sample size problem. More specifically, given a set of data points in the ambient space, a novel weight matrix that describes the relationship between the data points is first built. And in order to model the manifold structure, the class information is incorporated into the weight matrix. Based on the novel weight matrix, the local scatter matrix as well as non-local scatter matrix is defined such that the neighborhood structure can be preserved. In order to enhance the recognition ability, we impose an orthogonal constraint into a graph-based maximum margin analysis, seeking to find a projection that maximizes the difference, rather than the ratio between the non-local scatter and the local scatter. In this way, SODSP naturally avoids the singularity problem. Further, we develop an efficient and stable algorithm for implementing SODSP, especially, on high-dimensional data set. Moreover, the theoretical analysis shows that LPP is a special instance of SODSP by imposing some constraints. Experiments on the ORL, Yale, Extended Yale face database B and FERET face database are performed to test and evaluate the proposed algorithm. The results demonstrate the effectiveness of SODSP. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Multisensory training can promote or impede visual perceptual learning of speech stimuli: visual-tactile vs. visual-auditory training.

    Science.gov (United States)

    Eberhardt, Silvio P; Auer, Edward T; Bernstein, Lynne E

    2014-01-01

    In a series of studies we have been investigating how multisensory training affects unisensory perceptual learning with speech stimuli. Previously, we reported that audiovisual (AV) training with speech stimuli can promote auditory-only (AO) perceptual learning in normal-hearing adults but can impede learning in congenitally deaf adults with late-acquired cochlear implants. Here, impeder and promoter effects were sought in normal-hearing adults who participated in lipreading training. In Experiment 1, visual-only (VO) training on paired associations between CVCVC nonsense word videos and nonsense pictures demonstrated that VO words could be learned to a high level of accuracy even by poor lipreaders. In Experiment 2, visual-auditory (VA) training in the same paradigm but with the addition of synchronous vocoded acoustic speech impeded VO learning of the stimuli in the paired-associates paradigm. In Experiment 3, the vocoded AO stimuli were shown to be less informative than the VO speech. Experiment 4 combined vibrotactile speech stimuli with the visual stimuli during training. Vibrotactile stimuli were shown to promote visual perceptual learning. In Experiment 5, no-training controls were used to show that training with visual speech carried over to consonant identification of untrained CVCVC stimuli but not to lipreading words in sentences. Across this and previous studies, multisensory training effects depended on the functional relationship between pathways engaged during training. Two principles are proposed to account for stimulus effects: (1) Stimuli presented to the trainee's primary perceptual pathway will impede learning by a lower-rank pathway. (2) Stimuli presented to the trainee's lower rank perceptual pathway will promote learning by a higher-rank pathway. The mechanisms supporting these principles are discussed in light of multisensory reverse hierarchy theory (RHT).

  4. Discrimination learning and attentional set formation in a mouse model of Fragile X.

    Science.gov (United States)

    Casten, Kimberly S; Gray, Annette C; Burwell, Rebecca D

    2011-06-01

    Fragile X Syndrome is the most prevalent genetic cause of mental retardation. Selective deficits in executive function, including inhibitory control and attention, are core features of the disorder. In humans, Fragile X results from a trinucleotide repeat in the Fmr1 gene that renders it functionally silent and has been modeled in mice by targeted deletion of the Fmr1 gene. Fmr1 knockout (KO) mice recapitulate many features of Fragile X syndrome, but evidence for deficits in executive function is inconsistent. To address this issue, we trained wild-type and Fmr1 KO mice on an experimental paradigm that assesses attentional set-shifting. Mice learned to discriminate between stimuli differing in two of three perceptual dimensions. Successful discrimination required attending only to the relevant dimension, while ignoring irrelevant dimensions. Mice were trained on three discriminations in the same perceptual dimension, each followed by a reversal. This procedure normally results in the formation of an attentional set to the relevant dimension. Mice were then required to shift attention and discriminate based on a previously irrelevant perceptual dimension. Wild-type mice exhibited the increase in trials to criterion expected when shifting attention from one perceptual dimension to another. In contrast, the Fmr1 KO group failed to show the expected increase, suggesting impairment in forming an attentional set. Fmr1 KO mice also exhibited a general impairment in learning discriminations and reversals. This is the first demonstration that Fmr1 KO mice show a deficit in attentional set formation.

  5. A perceptual learning deficit in Chinese developmental dyslexia as revealed by visual texture discrimination training.

    Science.gov (United States)

    Wang, Zhengke; Cheng-Lai, Alice; Song, Yan; Cutting, Laurie; Jiang, Yuzheng; Lin, Ou; Meng, Xiangzhi; Zhou, Xiaolin

    2014-08-01

    Learning to read involves discriminating between different written forms and establishing connections with phonology and semantics. This process may be partially built upon visual perceptual learning, during which the ability to process the attributes of visual stimuli progressively improves with practice. The present study investigated to what extent Chinese children with developmental dyslexia have deficits in perceptual learning by using a texture discrimination task, in which participants were asked to discriminate the orientation of target bars. Experiment l demonstrated that, when all of the participants started with the same initial stimulus-to-mask onset asynchrony (SOA) at 300 ms, the threshold SOA, adjusted according to response accuracy for reaching 80% accuracy, did not show a decrement over 5 days of training for children with dyslexia, whereas this threshold SOA steadily decreased over the training for the control group. Experiment 2 used an adaptive procedure to determine the threshold SOA for each participant during training. Results showed that both the group of dyslexia and the control group attained perceptual learning over the sessions in 5 days, although the threshold SOAs were significantly higher for the group of dyslexia than for the control group; moreover, over individual participants, the threshold SOA negatively correlated with their performance in Chinese character recognition. These findings suggest that deficits in visual perceptual processing and learning might, in part, underpin difficulty in reading Chinese. Copyright © 2014 John Wiley & Sons, Ltd.

  6. Discriminative Nonlinear Analysis Operator Learning: When Cosparse Model Meets Image Classification.

    Science.gov (United States)

    Wen, Zaidao; Hou, Biao; Jiao, Licheng

    2017-05-03

    Linear synthesis model based dictionary learning framework has achieved remarkable performances in image classification in the last decade. Behaved as a generative feature model, it however suffers from some intrinsic deficiencies. In this paper, we propose a novel parametric nonlinear analysis cosparse model (NACM) with which a unique feature vector will be much more efficiently extracted. Additionally, we derive a deep insight to demonstrate that NACM is capable of simultaneously learning the task adapted feature transformation and regularization to encode our preferences, domain prior knowledge and task oriented supervised information into the features. The proposed NACM is devoted to the classification task as a discriminative feature model and yield a novel discriminative nonlinear analysis operator learning framework (DNAOL). The theoretical analysis and experimental performances clearly demonstrate that DNAOL will not only achieve the better or at least competitive classification accuracies than the state-of-the-art algorithms but it can also dramatically reduce the time complexities in both training and testing phases.

  7. Aversive reinforcement improves visual discrimination learning in free-flying honeybees.

    Directory of Open Access Journals (Sweden)

    Aurore Avarguès-Weber

    Full Text Available BACKGROUND: Learning and perception of visual stimuli by free-flying honeybees has been shown to vary dramatically depending on the way insects are trained. Fine color discrimination is achieved when both a target and a distractor are present during training (differential conditioning, whilst if the same target is learnt in isolation (absolute conditioning, discrimination is coarse and limited to perceptually dissimilar alternatives. Another way to potentially enhance discrimination is to increase the penalty associated with the distractor. Here we studied whether coupling the distractor with a highly concentrated quinine solution improves color discrimination of both similar and dissimilar colors by free-flying honeybees. As we assumed that quinine acts as an aversive stimulus, we analyzed whether aversion, if any, is based on an aversive sensory input at the gustatory level or on a post-ingestional malaise following quinine feeding. METHODOLOGY/PRINCIPAL FINDINGS: We show that the presence of a highly concentrated quinine solution (60 mM acts as an aversive reinforcer promoting rejection of the target associated with it, and improving discrimination of perceptually similar stimuli but not of dissimilar stimuli. Free-flying bees did not use remote cues to detect the presence of quinine solution; the aversive effect exerted by this substance was mediated via a gustatory input, i.e. via a distasteful sensory experience, rather than via a post-ingestional malaise. CONCLUSION: The present study supports the hypothesis that aversion conditioning is important for understanding how and what animals perceive and learn. By using this form of conditioning coupled with appetitive conditioning in the framework of a differential conditioning procedure, it is possible to uncover discrimination capabilities that may remain otherwise unsuspected. We show, therefore, that visual discrimination is not an absolute phenomenon but can be modulated by experience.

  8. Noise-robust unsupervised spike sorting based on discriminative subspace learning with outlier handling.

    Science.gov (United States)

    Keshtkaran, Mohammad Reza; Yang, Zhi

    2017-06-01

    Spike sorting is a fundamental preprocessing step for many neuroscience studies which rely on the analysis of spike trains. Most of the feature extraction and dimensionality reduction techniques that have been used for spike sorting give a projection subspace which is not necessarily the most discriminative one. Therefore, the clusters which appear inherently separable in some discriminative subspace may overlap if projected using conventional feature extraction approaches leading to a poor sorting accuracy especially when the noise level is high. In this paper, we propose a noise-robust and unsupervised spike sorting algorithm based on learning discriminative spike features for clustering. The proposed algorithm uses discriminative subspace learning to extract low dimensional and most discriminative features from the spike waveforms and perform clustering with automatic detection of the number of the clusters. The core part of the algorithm involves iterative subspace selection using linear discriminant analysis and clustering using Gaussian mixture model with outlier detection. A statistical test in the discriminative subspace is proposed to automatically detect the number of the clusters. Comparative results on publicly available simulated and real in vivo datasets demonstrate that our algorithm achieves substantially improved cluster distinction leading to higher sorting accuracy and more reliable detection of clusters which are highly overlapping and not detectable using conventional feature extraction techniques such as principal component analysis or wavelets. By providing more accurate information about the activity of more number of individual neurons with high robustness to neural noise and outliers, the proposed unsupervised spike sorting algorithm facilitates more detailed and accurate analysis of single- and multi-unit activities in neuroscience and brain machine interface studies.

  9. Noise-robust unsupervised spike sorting based on discriminative subspace learning with outlier handling

    Science.gov (United States)

    Keshtkaran, Mohammad Reza; Yang, Zhi

    2017-06-01

    Objective. Spike sorting is a fundamental preprocessing step for many neuroscience studies which rely on the analysis of spike trains. Most of the feature extraction and dimensionality reduction techniques that have been used for spike sorting give a projection subspace which is not necessarily the most discriminative one. Therefore, the clusters which appear inherently separable in some discriminative subspace may overlap if projected using conventional feature extraction approaches leading to a poor sorting accuracy especially when the noise level is high. In this paper, we propose a noise-robust and unsupervised spike sorting algorithm based on learning discriminative spike features for clustering. Approach. The proposed algorithm uses discriminative subspace learning to extract low dimensional and most discriminative features from the spike waveforms and perform clustering with automatic detection of the number of the clusters. The core part of the algorithm involves iterative subspace selection using linear discriminant analysis and clustering using Gaussian mixture model with outlier detection. A statistical test in the discriminative subspace is proposed to automatically detect the number of the clusters. Main results. Comparative results on publicly available simulated and real in vivo datasets demonstrate that our algorithm achieves substantially improved cluster distinction leading to higher sorting accuracy and more reliable detection of clusters which are highly overlapping and not detectable using conventional feature extraction techniques such as principal component analysis or wavelets. Significance. By providing more accurate information about the activity of more number of individual neurons with high robustness to neural noise and outliers, the proposed unsupervised spike sorting algorithm facilitates more detailed and accurate analysis of single- and multi-unit activities in neuroscience and brain machine interface studies.

  10. Reduced auditory efferent activity in childhood selective mutism.

    Science.gov (United States)

    Bar-Haim, Yair; Henkin, Yael; Ari-Even-Roth, Daphne; Tetin-Schneider, Simona; Hildesheimer, Minka; Muchnik, Chava

    2004-06-01

    Selective mutism is a psychiatric disorder of childhood characterized by consistent inability to speak in specific situations despite the ability to speak normally in others. The objective of this study was to test whether reduced auditory efferent activity, which may have direct bearings on speaking behavior, is compromised in selectively mute children. Participants were 16 children with selective mutism and 16 normally developing control children matched for age and gender. All children were tested for pure-tone audiometry, speech reception thresholds, speech discrimination, middle-ear acoustic reflex thresholds and decay function, transient evoked otoacoustic emission, suppression of transient evoked otoacoustic emission, and auditory brainstem response. Compared with control children, selectively mute children displayed specific deficiencies in auditory efferent activity. These aberrations in efferent activity appear along with normal pure-tone and speech audiometry and normal brainstem transmission as indicated by auditory brainstem response latencies. The diminished auditory efferent activity detected in some children with SM may result in desensitization of their auditory pathways by self-vocalization and in reduced control of masking and distortion of incoming speech sounds. These children may gradually learn to restrict vocalization to the minimal amount possible in contexts that require complex auditory processing.

  11. Translation and adaptation of functional auditory performance indicators (FAPI

    Directory of Open Access Journals (Sweden)

    Karina Ferreira

    2011-12-01

    Full Text Available Work with deaf children has gained new attention since the expectation and goal of therapy has expanded to language development and subsequent language learning. Many clinical tests were developed for evaluation of speech sound perception in young children in response to the need for accurate assessment of hearing skills that developed from the use of individual hearing aids or cochlear implants. These tests also allow the evaluation of the rehabilitation program. However, few of these tests are available in Portuguese. Evaluation with the Functional Auditory Performance Indicators (FAPI generates a child's functional auditory skills profile, which lists auditory skills in an integrated and hierarchical order. It has seven hierarchical categories, including sound awareness, meaningful sound, auditory feedback, sound source localizing, auditory discrimination, short-term auditory memory, and linguistic auditory processing. FAPI evaluation allows the therapist to map the child's hearing profile performance, determine the target for increasing the hearing abilities, and develop an effective therapeutic plan. Objective: Since the FAPI is an American test, the inventory was adapted for application in the Brazilian population. Material and Methods: The translation was done following the steps of translation and back translation, and reproducibility was evaluated. Four translated versions (two originals and two back-translated were compared, and revisions were done to ensure language adaptation and grammatical and idiomatic equivalence. Results: The inventory was duly translated and adapted. Conclusion: Further studies about the application of the translated FAPI are necessary to make the test practicable in Brazilian clinical use.

  12. Food approach conditioning and discrimination learning using sound cues in benthic sharks.

    Science.gov (United States)

    Vila Pouca, Catarina; Brown, Culum

    2018-07-01

    The marine environment is filled with biotic and abiotic sounds. Some of these sounds predict important events that influence fitness while others are unimportant. Individuals can learn specific sound cues and 'soundscapes' and use them for vital activities such as foraging, predator avoidance, communication and orientation. Most research with sounds in elasmobranchs has focused on hearing thresholds and attractiveness to sound sources, but very little is known about their abilities to learn about sounds, especially in benthic species. Here we investigated if juvenile Port Jackson sharks could learn to associate a musical stimulus with a food reward, discriminate between two distinct musical stimuli, and whether individual personality traits were linked to cognitive performance. Five out of eight sharks were successfully conditioned to associate a jazz song with a food reward delivered in a specific corner of the tank. We observed repeatable individual differences in activity and boldness in all eight sharks, but these personality traits were not linked to the learning performance assays we examined. These sharks were later trained in a discrimination task, where they had to distinguish between the same jazz and a novel classical music song, and swim to opposite corners of the tank according to the stimulus played. The sharks' performance to the jazz stimulus declined to chance levels in the discrimination task. Interestingly, some sharks developed a strong side bias to the right, which in some cases was not the correct side for the jazz stimulus.

  13. Abnormality detection of mammograms by discriminative dictionary learning on DSIFT descriptors.

    Science.gov (United States)

    Tavakoli, Nasrin; Karimi, Maryam; Nejati, Mansour; Karimi, Nader; Reza Soroushmehr, S M; Samavi, Shadrokh; Najarian, Kayvan

    2017-07-01

    Detection and classification of breast lesions using mammographic images are one of the most difficult studies in medical image processing. A number of learning and non-learning methods have been proposed for detecting and classifying these lesions. However, the accuracy of the detection/classification still needs improvement. In this paper we propose a powerful classification method based on sparse learning to diagnose breast cancer in mammograms. For this purpose, a supervised discriminative dictionary learning approach is applied on dense scale invariant feature transform (DSIFT) features. A linear classifier is also simultaneously learned with the dictionary which can effectively classify the sparse representations. Our experimental results show the superior performance of our method compared to existing approaches.

  14. Estradiol differentially affects auditory recognition and learning according to photoperiodic state in the adult male songbird, European starling (Sturnus vulgaris

    Directory of Open Access Journals (Sweden)

    Rebecca M. Calisi

    2013-09-01

    Full Text Available Changes in hormones can affect many types of learning in vertebrates. Adults experience fluctuations in a multitude of hormones over a temporal scale, from local, rapid action to more long-term, seasonal changes. Endocrine changes during development can affect behavioral outcomes in adulthood, but how learning is affected in adults by hormone fluctuations experienced during adulthood is less understood. Previous reports have implicated the sex steroid hormone estradiol (E2 in both male and female vertebrate cognitive functioning. Here, we examined the effects of E2 on auditory recognition and learning in male European starlings (Sturnus vulgaris. European starlings are photoperiodic, seasonally breeding songbirds that undergo different periods of reproductive activity according to annual changes in day length. We simulated these reproductive periods, specifically 1. photosensitivity, 2. photostimulation, and 3. photorefractoriness in captive birds by altering day length. During each period, we manipulated circulating E2 and examined multiple measures of learning. To manipulate circulating E2, we used subcutaneous implants containing either 17-β E2 and/or fadrozole (FAD, a highly specific aromatase inhibitor that suppresses E2 production in the body and the brain, and measured the latency for birds to learn and respond to short, male conspecific song segments (motifs. We report that photostimulated birds given E2 had higher response rates and responded with better accuracy than those given saline controls or FAD. Conversely, photosensitive, animals treated with E2 responded with less accuracy than those given FAD. These results demonstrate how circulating E2 and photoperiod can interact to shape auditory recognition and learning in adults, driving it in opposite directions in different states.

  15. Vicarious trial-and-error behavior and hippocampal cytochrome oxidase activity during Y-maze discrimination learning in the rat.

    Science.gov (United States)

    Hu, Dan; Xu, Xiaojuan; Gonzalez-Lima, Francisco

    2006-03-01

    The present study investigated whether more vicarious trial-and-error (VTE) behavior, defined by head movement from one stimulus to another at a choice point during simultaneous discriminations, led to better visual discrimination learning in a Y-maze, and whether VTE behavior was a function of the hippocampus by measuring regional brain cytochrome oxidase (C.O.) activity, an index of neuronal metabolic activity. The results showed that the more VTEs a rat made, the better the rat learned the visual discrimination. Furthermore, both learning and VTE behavior during learning were correlated to C.O. activity in the hippocampus, suggesting that the hippocampus plays a role in VTE behavior during discrimination learning.

  16. The role of auditory cortices in the retrieval of single-trial auditory-visual object memories.

    Science.gov (United States)

    Matusz, Pawel J; Thelen, Antonia; Amrein, Sarah; Geiser, Eveline; Anken, Jacques; Murray, Micah M

    2015-03-01

    Single-trial encounters with multisensory stimuli affect both memory performance and early-latency brain responses to visual stimuli. Whether and how auditory cortices support memory processes based on single-trial multisensory learning is unknown and may differ qualitatively and quantitatively from comparable processes within visual cortices due to purported differences in memory capacities across the senses. We recorded event-related potentials (ERPs) as healthy adults (n = 18) performed a continuous recognition task in the auditory modality, discriminating initial (new) from repeated (old) sounds of environmental objects. Initial presentations were either unisensory or multisensory; the latter entailed synchronous presentation of a semantically congruent or a meaningless image. Repeated presentations were exclusively auditory, thus differing only according to the context in which the sound was initially encountered. Discrimination abilities (indexed by d') were increased for repeated sounds that were initially encountered with a semantically congruent image versus sounds initially encountered with either a meaningless or no image. Analyses of ERPs within an electrical neuroimaging framework revealed that early stages of auditory processing of repeated sounds were affected by prior single-trial multisensory contexts. These effects followed from significantly reduced activity within a distributed network, including the right superior temporal cortex, suggesting an inverse relationship between brain activity and behavioural outcome on this task. The present findings demonstrate how auditory cortices contribute to long-term effects of multisensory experiences on auditory object discrimination. We propose a new framework for the efficacy of multisensory processes to impact both current multisensory stimulus processing and unisensory discrimination abilities later in time. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  17. Use of media technology to enhance the learning of student nurses in regards to auditory hallucinations.

    Science.gov (United States)

    Mawson, Kerry

    2014-04-01

    The aim of this study was to determine if simulation aided by media technology contributes towards an increase in knowledge, empathy, and a change in attitudes in regards to auditory hallucinations for nursing students. A convenience sample of 60 second-year undergraduate nursing students from an Australian university was invited to be part of the study. A pre-post-test design was used, with data analysed using a paired samples t-test to identify pre- and post-changes on nursing students' scores on knowledge of auditory hallucinations. Nine of the 11 questions reported statistically-significant results. The remaining two questions highlighted knowledge embedded within the curriculum, with therapeutic communication being the core work of mental health nursing. The implications for practice are that simulation aided by media technology increases the knowledge of students in regards to auditory hallucinations. © 2013 Australian College of Mental Health Nurses Inc.

  18. Visual and auditory perception in preschool children at risk for dyslexia.

    Science.gov (United States)

    Ortiz, Rosario; Estévez, Adelina; Muñetón, Mercedes; Domínguez, Carolina

    2014-11-01

    Recently, there has been renewed interest in perceptive problems of dyslexics. A polemic research issue in this area has been the nature of the perception deficit. Another issue is the causal role of this deficit in dyslexia. Most studies have been carried out in adult and child literates; consequently, the observed deficits may be the result rather than the cause of dyslexia. This study addresses these issues by examining visual and auditory perception in children at risk for dyslexia. We compared children from preschool with and without risk for dyslexia in auditory and visual temporal order judgment tasks and same-different discrimination tasks. Identical visual and auditory, linguistic and nonlinguistic stimuli were presented in both tasks. The results revealed that the visual as well as the auditory perception of children at risk for dyslexia is impaired. The comparison between groups in auditory and visual perception shows that the achievement of children at risk was lower than children without risk for dyslexia in the temporal tasks. There were no differences between groups in auditory discrimination tasks. The difficulties of children at risk in visual and auditory perceptive processing affected both linguistic and nonlinguistic stimuli. Our conclusions are that children at risk for dyslexia show auditory and visual perceptive deficits for linguistic and nonlinguistic stimuli. The auditory impairment may be explained by temporal processing problems and these problems are more serious for processing language than for processing other auditory stimuli. These visual and auditory perceptive deficits are not the consequence of failing to learn to read, thus, these findings support the theory of temporal processing deficit. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Effects of asymmetry and learning on phonotaxis in a robot based on the lizard auditory system

    DEFF Research Database (Denmark)

    Zhang, L.; Hallam, J.; Christensen-Dalsgaard, J.

    2012-01-01

    Lizards have strong directional hearing across a broad band of frequencies. The directionality can be attributed to the acoustical properties of the ear, especially the strong acoustical coupling of the two eardrums. The peripheral auditory system of the lizard has previously been modeled...... and magnitude of their intrinsic bias. To attain effective directional hearing, the bias in the peripheral system should be compensated. In this article, with the peripheral models, we design a decision model and a behavior model, a virtual robot, to simulate the auditory system of the lizard in software...

  20. Factors of Predicted Learning Disorders and their Interaction with Attentional and Perceptual Training Procedures.

    Science.gov (United States)

    Friar, John T.

    Two factors of predicted learning disorders were investigated: (1) inability to maintain appropriate classroom behavior (BEH), (2) perceptual discrimination deficit (PERC). Three groups of first-graders (BEH, PERC, normal control) were administered measures of impulse control, distractability, auditory discrimination, and visual discrimination.…

  1. Encoding of Discriminative Fear Memory by Input-Specific LTP in the Amygdala.

    Science.gov (United States)

    Kim, Woong Bin; Cho, Jun-Hyeong

    2017-08-30

    In auditory fear conditioning, experimental subjects learn to associate an auditory conditioned stimulus (CS) with an aversive unconditioned stimulus. With sufficient training, animals fear conditioned to an auditory CS show fear response to the CS, but not to irrelevant auditory stimuli. Although long-term potentiation (LTP) in the lateral amygdala (LA) plays an essential role in auditory fear conditioning, it is unknown whether LTP is induced selectively in the neural pathways conveying specific CS information to the LA in discriminative fear learning. Here, we show that postsynaptically expressed LTP is induced selectively in the CS-specific auditory pathways to the LA in a mouse model of auditory discriminative fear conditioning. Moreover, optogenetically induced depotentiation of the CS-specific auditory pathways to the LA suppressed conditioned fear responses to the CS. Our results suggest that input-specific LTP in the LA contributes to fear memory specificity, enabling adaptive fear responses only to the relevant sensory cue. VIDEO ABSTRACT. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Valence of facial cues influences sheep learning in a visual discrimination task

    OpenAIRE

    Bellegarde, Lucille; Erhard, Hans; Weiss, A.; Boissy, Alain; Haskell, M.J.

    2017-01-01

    Sheep are one of the most studied farm species in terms of their ability to process information from faces, but little is known about their face-based emotion recognition abilities. We investigated (a) whether sheep could use images of sheep faces taken in situation of varying valence as cues in a simultaneous discrimination task and (b) whether the valence of the situation affects their learning performance. To accomplish this, we photographed faces of sheep in three situations inducing emot...

  3. Valence of Facial Cues Influences Sheep Learning in a Visual Discrimination Task

    OpenAIRE

    Lucille G. A. Bellegarde; Lucille G. A. Bellegarde; Lucille G. A. Bellegarde; Hans W. Erhard; Alexander Weiss; Alain Boissy; Marie J. Haskell

    2017-01-01

    Sheep are one of the most studied farm species in terms of their ability to process information from faces, but little is known about their face-based emotion recognition abilities. We investigated (a) whether sheep could use images of sheep faces taken in situation of varying valence as cues in a simultaneous discrimination task and (b) whether the valence of the situation affects their learning performance. To accomplish this, we photographed faces of sheep in three situations inducing emot...

  4. Transfer of Perceptual Learning of Depth Discrimination Between Local and Global Stereograms

    OpenAIRE

    Gantz, Liat; Bedell, Harold

    2010-01-01

    Several previous studies reported differences when stereothresholds are assessed with local-contour stereograms vs. complex random-dot stereograms (RDSs). Dissimilar thresholds may be due to differences in the properties of the stereograms (e.g., spatial frequency content, contrast, inter-element separation, area) or to different underlying processing mechanisms. This study examined the transfer of perceptual learning of depth discrimination between local and global RDSs with similar properti...

  5. Fairer machine learning in the real world: Mitigating discrimination without collecting sensitive data

    Directory of Open Access Journals (Sweden)

    Michael Veale

    2017-11-01

    Full Text Available Decisions based on algorithmic, machine learning models can be unfair, reproducing biases in historical data used to train them. While computational techniques are emerging to address aspects of these concerns through communities such as discrimination-aware data mining (DADM and fairness, accountability and transparency machine learning (FATML, their practical implementation faces real-world challenges. For legal, institutional or commercial reasons, organisations might not hold the data on sensitive attributes such as gender, ethnicity, sexuality or disability needed to diagnose and mitigate emergent indirect discrimination-by-proxy, such as redlining. Such organisations might also lack the knowledge and capacity to identify and manage fairness issues that are emergent properties of complex sociotechnical systems. This paper presents and discusses three potential approaches to deal with such knowledge and information deficits in the context of fairer machine learning. Trusted third parties could selectively store data necessary for performing discrimination discovery and incorporating fairness constraints into model-building in a privacy-preserving manner. Collaborative online platforms would allow diverse organisations to record, share and access contextual and experiential knowledge to promote fairness in machine learning systems. Finally, unsupervised learning and pedagogically interpretable algorithms might allow fairness hypotheses to be built for further selective testing and exploration. Real-world fairness challenges in machine learning are not abstract, constrained optimisation problems, but are institutionally and contextually grounded. Computational fairness tools are useful, but must be researched and developed in and with the messy contexts that will shape their deployment, rather than just for imagined situations. Not doing so risks real, near-term algorithmic harm.

  6. Dissociable Hippocampal and Amygdalar D1-like receptor contribution to Discriminated Pavlovian conditioned approach learning

    Science.gov (United States)

    Andrzejewski, Matthew E; Ryals, Curtis

    2016-01-01

    Pavlovian conditioning is an elementary form of reward-related behavioral adaptation. The mesolimbic dopamine system is widely considered to mediate critical aspects of reward-related learning. For example, initial acquisition of positively-reinforced operant behavior requires dopamine (DA) D1 receptor (D1R) activation in the basolateral amygdala (BLA), central nucleus of the amygdala (CeA), and the ventral subiculum (vSUB). However, the role of D1R activation in these areas on appetitive, non-drug-related, Pavlovian learning is not currently known. In separate experiments, microinfusions of the D1-like receptor antagonist SCH-23390 (3.0 nmol/0.5 μL per side) into the amygdala and subiculum preceded discriminated Pavlovian conditioned approach (dPCA) training sessions. D1-like antagonism in all three structures impaired the acquisition of discriminated approach, but had no effect on performance after conditioning was asymptotic. Moreover, dissociable effects of D1-like antagonism in the three structures on components of discriminated responding were obtained. Lastly, the lack of latent inhibition in drug-treated groups may elucidate the role of D1-like in reward-related Pavlovian conditioning. The present data suggest a role for the D1 receptors in the amygdala and hippocampus in learning the significance of conditional stimuli, but not in the expression of conditional responses. PMID:26632336

  7. Learning discriminative distance functions for valve retrieval and improved decision support in valvular heart disease

    Science.gov (United States)

    Voigt, Ingmar; Vitanovski, Dime; Ionasec, Razvan I.; Tsymal, Alexey; Georgescu, Bogdan; Zhou, Shaohua K.; Huber, Martin; Navab, Nassir; Hornegger, Joachim; Comaniciu, Dorin

    2010-03-01

    Disorders of the heart valves constitute a considerable health problem and often require surgical intervention. Recently various approaches were published seeking to overcome the shortcomings of current clinical practice,that still relies on manually performed measurements for performance assessment. Clinical decisions are still based on generic information from clinical guidelines and publications and personal experience of clinicians. We present a framework for retrieval and decision support using learning based discriminative distance functions and visualization of patient similarity with relative neighborhood graphsbased on shape and derived features. We considered two learning based techniques, namely learning from equivalence constraints and the intrinsic Random Forest distance. The generic approach enables for learning arbitrary user-defined concepts of similarity depending on the application. This is demonstrated with the proposed applications, including automated diagnosis and interventional suitability classification, where classification rates of up to 88.9% and 85.9% could be observed on a set of valve models from 288 and 102 patients respectively.

  8. Auditory Memory for Timbre

    Science.gov (United States)

    McKeown, Denis; Wellsted, David

    2009-01-01

    Psychophysical studies are reported examining how the context of recent auditory stimulation may modulate the processing of new sounds. The question posed is how recent tone stimulation may affect ongoing performance in a discrimination task. In the task, two complex sounds occurred in successive intervals. A single target component of one complex…

  9. Plastic changes in the central auditory system after hearing loss, restoration of function, and during learning

    Czech Academy of Sciences Publication Activity Database

    Syka, Josef

    2002-01-01

    Roč. 82, - (2002), s. 601-636 ISSN 0031-9333 R&D Projects: GA MZd NK6454 Institutional research plan: CEZ:AV0Z5039906 Keywords : auditory system Subject RIV: FH - Neurology Impact factor: 26.533, year: 2002

  10. Learning to listen again: the role of compliance in auditory training for adults with hearing loss.

    Science.gov (United States)

    Chisolm, Theresa Hnath; Saunders, Gabrielle H; Frederick, Melissa T; McArdle, Rachel A; Smith, Sherri L; Wilson, Richard H

    2013-12-01

    To examine the role of compliance in the outcomes of computer-based auditory training with the Listening and Communication Enhancement (LACE) program in Veterans using hearing aids. The authors examined available LACE training data for 5 tasks (i.e., speech-in-babble, time compression, competing speaker, auditory memory, missing word) from 50 hearing-aid users who participated in a larger, randomized controlled trial designed to examine the efficacy of LACE training. The goals were to determine: (a) whether there were changes in performance over 20 training sessions on trained tasks (i.e., on-task outcomes); and (b) whether compliance, defined as completing all 20 sessions, vs. noncompliance, defined as completing less than 20 sessions, influenced performance on parallel untrained tasks (i.e., off-task outcomes). The majority, 84% of participants, completed 20 sessions, with maximum outcome occurring with at least 10 sessions of training for some tasks and up to 20 sessions of training for others. Comparison of baseline to posttest performance revealed statistically significant improvements for 4 of 7 off-task outcome measures for the compliant group, with at least small (0.2 compliance in the present study may be attributable to use of systematized verbal and written instructions with telephone follow-up. Compliance, as expected, appears important for optimizing the outcomes of auditory training. Methods to improve compliance in clinical populations need to be developed, and compliance data are important to report in future studies of auditory training.

  11. The Rey Auditory Verbal Learning Test forced-choice recognition task: Base-rate data and norms.

    Science.gov (United States)

    Poreh, Amir; Bezdicek, Ondrej; Korobkova, Irina; Levin, Jennifer B; Dines, Philipp

    2016-01-01

    The present study describes a novel Forced-Choice Response (FCR) index for detecting poor effort on the Rey Auditory Verbal Learning Test (RAVLT). This retrospective study analyzes the performance of 4 groups on the new index: clinically referred patients with suspected dementia, forensic patients identified as not exhibiting adequate effort on other measures of response bias, students who simulated poor effort, and a large normative sample collected in the Gulf State of Oman. Using sensitivity and specificity analyses, the study shows that much like the California Verbal Learning Test-Second Edition FCR index, the RAVLT FCR index misses a proportion of individuals with inadequate effort (low sensitivity), but those who fail this measure are highly likely to be exhibiting poor effort (high specificity). The limitations and benefits of utilizing the RAVLT FCR index in clinical practice are discussed.

  12. Long term effects of aversive reinforcement on colour discrimination learning in free-flying bumblebees.

    Directory of Open Access Journals (Sweden)

    Miguel A Rodríguez-Gironés

    Full Text Available The results of behavioural experiments provide important information about the structure and information-processing abilities of the visual system. Nevertheless, if we want to infer from behavioural data how the visual system operates, it is important to know how different learning protocols affect performance and to devise protocols that minimise noise in the response of experimental subjects. The purpose of this work was to investigate how reinforcement schedule and individual variability affect the learning process in a colour discrimination task. Free-flying bumblebees were trained to discriminate between two perceptually similar colours. The target colour was associated with sucrose solution, and the distractor could be associated with water or quinine solution throughout the experiment, or with one substance during the first half of the experiment and the other during the second half. Both acquisition and final performance of the discrimination task (measured as proportion of correct choices were determined by the choice of reinforcer during the first half of the experiment: regardless of whether bees were trained with water or quinine during the second half of the experiment, bees trained with quinine during the first half learned the task faster and performed better during the whole experiment. Our results confirm that the choice of stimuli used during training affects the rate at which colour discrimination tasks are acquired and show that early contact with a strongly aversive stimulus can be sufficient to maintain high levels of attention during several hours. On the other hand, bees which took more time to decide on which flower to alight were more likely to make correct choices than bees which made fast decisions. This result supports the existence of a trade-off between foraging speed and accuracy, and highlights the importance of measuring choice latencies during behavioural experiments focusing on cognitive abilities.

  13. Emergence of auditory-visual relations from a visual-visual baseline with auditory-specific consequences in individuals with autism.

    Science.gov (United States)

    Varella, André A B; de Souza, Deisy G

    2014-07-01

    Empirical studies have demonstrated that class-specific contingencies may engender stimulus-reinforcer relations. In these studies, crossmodal relations emerged when crossmodal relations comprised the baseline, and intramodal relations emerged when intramodal relations were taught during baseline. This study investigated whether auditory-visual relations (crossmodal) would emerge after participants learned a visual-visual baseline (intramodal) with auditory stimuli presented as specific consequences. Four individuals with autism learned AB and CD relations with class-specific reinforcers. When A1 and C1 were presented as samples, the selections of B1 and D1, respectively, were followed by an edible (R1) and a sound (S1). Selections of B2 and D2 under the control of A2 and C2, respectively, were followed by R2 and S2. Probe trials tested for visual-visual AC, CA, AD, DA, BC, CB, BD, and DB emergent relations and auditory-visual SA, SB, SC, and SD emergent relations. All of the participants demonstrated the emergence of all auditory-visual relations, and three of four participants showed emergence of all visual-visual relations. Thus, the emergence of auditory-visual relations from specific auditory consequences suggests that these relations do not depend on crossmodal baseline training. The procedure has great potential for applied technology to generate auditory-visual discriminations and stimulus classes in the context of behavior-analytic interventions for autism. © Society for the Experimental Analysis of Behavior.

  14. Does Fine Color Discrimination Learning in Free-Flying Honeybees Change Mushroom-Body Calyx Neuroarchitecture?

    Science.gov (United States)

    Sommerlandt, Frank M J; Spaethe, Johannes; Rössler, Wolfgang; Dyer, Adrian G

    2016-01-01

    Honeybees learn color information of rewarding flowers and recall these memories in future decisions. For fine color discrimination, bees require differential conditioning with a concurrent presentation of target and distractor stimuli to form a long-term memory. Here we investigated whether the long-term storage of color information shapes the neural network of microglomeruli in the mushroom body calyces and if this depends on the type of conditioning. Free-flying honeybees were individually trained to a pair of perceptually similar colors in either absolute conditioning towards one of the colors or in differential conditioning with both colors. Subsequently, bees of either conditioning groups were tested in non-rewarded discrimination tests with the two colors. Only bees trained with differential conditioning preferred the previously learned color, whereas bees of the absolute conditioning group, and a stimuli-naïve group, chose randomly among color stimuli. All bees were then kept individually for three days in the dark to allow for complete long-term memory formation. Whole-mount immunostaining was subsequently used to quantify variation of microglomeruli number and density in the mushroom-body lip and collar. We found no significant differences among groups in neuropil volumes and total microglomeruli numbers, but learning performance was negatively correlated with microglomeruli density in the absolute conditioning group. Based on these findings we aim to promote future research approaches combining behaviorally relevant color learning tests in honeybees under free-flight conditions with neuroimaging analysis; we also discuss possible limitations of this approach.

  15. Spatial discrimination and visual discrimination

    DEFF Research Database (Denmark)

    Haagensen, Annika M. J.; Grand, Nanna; Klastrup, Signe

    2013-01-01

    Two methods investigating learning and memory in juvenile Gottingen minipigs were evaluated for potential use in preclinical toxicity testing. Twelve minipigs were tested using a spatial hole-board discrimination test including a learning phase and two memory phases. Five minipigs were tested...... in a visual discrimination test. The juvenile minipigs were able to learn the spatial hole-board discrimination test and showed improved working and reference memory during the learning phase. Performance in the memory phases was affected by the retention intervals, but the minipigs were able to remember...... the concept of the test in both memory phases. Working memory and reference memory were significantly improved in the last trials of the memory phases. In the visual discrimination test, the minipigs learned to discriminate between the three figures presented to them within 9-14 sessions. For the memory test...

  16. Pigeons learn stimulus identity and stimulus relations when both serve as redundant, relevant cues during same-different discrimination training.

    Science.gov (United States)

    Gibson, Brett M; Wasserman, Edward A

    2003-01-01

    The authors taught pigeons to discriminate displays of 16 identical items from displays of 16 nonidentical items. Unlike most same-different discrimination studies--where only stimulus relations could serve a discriminative function--both the identity of the items and the relations among the items were discriminative features of the displays. The pigeons learned about both stimulus identity and stimulus relations when these 2 sources of information served as redundant, relevant cues. In tests of associative competition, identity cues exerted greater stimulus control than relational cues. These results suggest that the pigeon can respond to both specific stimuli and general relations in the environment.

  17. Direct current induced short-term modulation of the left dorsolateral prefrontal cortex while learning auditory presented nouns

    Directory of Open Access Journals (Sweden)

    Meyer Martin

    2009-07-01

    Full Text Available Abstract Background Little is known about the contribution of transcranial direct current stimulation (tDCS to the exploration of memory functions. The aim of the present study was to examine the behavioural effects of right or left-hemisphere frontal direct current delivery while committing to memory auditory presented nouns on short-term learning and subsequent long-term retrieval. Methods Twenty subjects, divided into two groups, performed an episodic verbal memory task during anodal, cathodal and sham current application on the right or left dorsolateral prefrontal cortex (DLPFC. Results Our results imply that only cathodal tDCS elicits behavioural effects on verbal memory performance. In particular, left-sided application of cathodal tDCS impaired short-term verbal learning when compared to the baseline. We did not observe tDCS effects on long-term retrieval. Conclusion Our results imply that the left DLPFC is a crucial area involved in short-term verbal learning mechanisms. However, we found further support that direct current delivery with an intensity of 1.5 mA to the DLPFC during short-term learning does not disrupt longer lasting consolidation processes that are mainly known to be related to mesial temporal lobe areas. In the present study, we have shown that the tDCS technique has the potential to modulate short-term verbal learning mechanism.

  18. Discrimination of Rock Fracture and Blast Events Based on Signal Complexity and Machine Learning

    Directory of Open Access Journals (Sweden)

    Zilong Zhou

    2018-01-01

    Full Text Available The automatic discrimination of rock fracture and blast events is complex and challenging due to the similar waveform characteristics. To solve this problem, a new method based on the signal complexity analysis and machine learning has been proposed in this paper. First, the permutation entropy values of signals at different scale factors are calculated to reflect complexity of signals and constructed into a feature vector set. Secondly, based on the feature vector set, back-propagation neural network (BPNN as a means of machine learning is applied to establish a discriminator for rock fracture and blast events. Then to evaluate the classification performances of the new method, the classifying accuracies of support vector machine (SVM, naive Bayes classifier, and the new method are compared, and the receiver operating characteristic (ROC curves are also analyzed. The results show the new method obtains the best classification performances. In addition, the influence of different scale factor q and number of training samples n on discrimination results is discussed. It is found that the classifying accuracy of the new method reaches the highest value when q = 8–15 or 8–20 and n=140.

  19. Brightness discrimination learning in a Skinner box in prenatally X-irradiated rats

    International Nuclear Information System (INIS)

    Tamaki, Y.; Inouye, M.

    1976-01-01

    Male MP 1 albino rats were exposed to x-irradiation in utero at a single dose of 200 R on day 17 of gestation. The light-dark discrimination training in a Skinner box was continued until the animals attained a learning criterion of 0.80 correct response ratio for 3 consecutive days. Although during the unreinforced baseline sessions the total number of bar pressings in the irradiated animals was superior to that in the controls, performance between the control and the irradiated animals did not differ significantly in (a) the number of training days required to attain the learning criterion, (b) the total number of days on which the animals produced a correct response ratio more than 0.80, and (c) the number of consecutive days during which the correct response ratio was more than 0.75. The results obtained suggest that the irradiated animals were able to discriminate in brightness cues as well, or nearly as well, as the controls. The cortical-subcortical system mediating brightness discrimination in the irradiated animals is discussed. (author)

  20. Semi-Supervised Tensor-Based Graph Embedding Learning and Its Application to Visual Discriminant Tracking.

    Science.gov (United States)

    Hu, Weiming; Gao, Jin; Xing, Junliang; Zhang, Chao; Maybank, Stephen

    2017-01-01

    An appearance model adaptable to changes in object appearance is critical in visual object tracking. In this paper, we treat an image patch as a two-order tensor which preserves the original image structure. We design two graphs for characterizing the intrinsic local geometrical structure of the tensor samples of the object and the background. Graph embedding is used to reduce the dimensions of the tensors while preserving the structure of the graphs. Then, a discriminant embedding space is constructed. We prove two propositions for finding the transformation matrices which are used to map the original tensor samples to the tensor-based graph embedding space. In order to encode more discriminant information in the embedding space, we propose a transfer-learning- based semi-supervised strategy to iteratively adjust the embedding space into which discriminative information obtained from earlier times is transferred. We apply the proposed semi-supervised tensor-based graph embedding learning algorithm to visual tracking. The new tracking algorithm captures an object's appearance characteristics during tracking and uses a particle filter to estimate the optimal object state. Experimental results on the CVPR 2013 benchmark dataset demonstrate the effectiveness of the proposed tracking algorithm.

  1. Machinery fault diagnosis using joint global and local/nonlocal discriminant analysis with selective ensemble learning

    Science.gov (United States)

    Yu, Jianbo

    2016-11-01

    The vibration signals of faulty machine are generally non-stationary and nonlinear under those complicated working conditions. Thus, it is a big challenge to extract and select the effective features from vibration signals for machinery fault diagnosis. This paper proposes a new manifold learning algorithm, joint global and local/nonlocal discriminant analysis (GLNDA), which aims to extract effective intrinsic geometrical information from the given vibration data. Comparisons with other regular methods, principal component analysis (PCA), local preserving projection (LPP), linear discriminant analysis (LDA) and local LDA (LLDA), illustrate the superiority of GLNDA in machinery fault diagnosis. Based on the extracted information by GLNDA, a GLNDA-based Fisher discriminant rule (FDR) is put forward and applied to machinery fault diagnosis without additional recognizer construction procedure. By importing Bagging into GLNDA score-based feature selection and FDR, a novel manifold ensemble method (selective GLNDA ensemble, SE-GLNDA) is investigated for machinery fault diagnosis. The motivation for developing ensemble of manifold learning components is that it can achieve higher accuracy and applicability than single component in machinery fault diagnosis. The effectiveness of the SE-GLNDA-based fault diagnosis method has been verified by experimental results from bearing full life testers.

  2. Auditory Integration Training

    Directory of Open Access Journals (Sweden)

    Zahra Jafari

    2002-07-01

    Full Text Available Auditory integration training (AIT is a hearing enhancement training process for sensory input anomalies found in individuals with autism, attention deficit hyperactive disorder, dyslexia, hyperactivity, learning disability, language impairments, pervasive developmental disorder, central auditory processing disorder, attention deficit disorder, depressin, and hyperacute hearing. AIT, recently introduced in the United States, and has received much notice of late following the release of The Sound of a Moracle, by Annabel Stehli. In her book, Mrs. Stehli describes before and after auditory integration training experiences with her daughter, who was diagnosed at age four as having autism.

  3. Review: Auditory Integration Training

    Directory of Open Access Journals (Sweden)

    Zahra Ja'fari

    2003-01-01

    Full Text Available Auditory integration training (AIT is a hearing enhancement training process for sensory input anomalies found in individuals with autism, attention deficit hyperactive disorder, dyslexia, hyperactivity, learning disability, language impairments, pervasive developmental disorder, central auditory processing disorder, attention deficit disorder, depression, and hyper acute hearing. AIT, recently introduced in the United States, and has received much notice of late following the release of the sound of a miracle, by Annabel Stehli. In her book, Mrs. Stehli describes before and after auditory integration training experiences with her daughter, who was diagnosed at age four as having autism.

  4. Auditory Discrimination of Lexical Stress Patterns in Hearing-Impaired Infants with Cochlear Implants Compared with Normal Hearing: Influence of Acoustic Cues and Listening Experience to the Ambient Language.

    Science.gov (United States)

    Segal, Osnat; Houston, Derek; Kishon-Rabin, Liat

    2016-01-01

    To assess discrimination of lexical stress pattern in infants with cochlear implant (CI) compared with infants with normal hearing (NH). While criteria for cochlear implantation have expanded to infants as young as 6 months, little is known regarding infants' processing of suprasegmental-prosodic cues which are known to be important for the first stages of language acquisition. Lexical stress is an example of such a cue, which, in hearing infants, has been shown to assist in segmenting words from fluent speech and in distinguishing between words that differ only the stress pattern. To date, however, there are no data on the ability of infants with CIs to perceive lexical stress. Such information will provide insight to the speech characteristics that are available to these infants in their first steps of language acquisition. This is of particular interest given the known limitations that the CI device has in transmitting speech information that is mediated by changes in fundamental frequency. Two groups of infants participated in this study. The first group included 20 profoundly hearing-impaired infants with CI, 12 to 33 months old, implanted under the age of 2.5 years (median age of implantation = 14.5 months), with 1 to 6 months of CI use (mean = 2.7 months) and no known additional problems. The second group of infants included 48 NH infants, 11 to 14 months old with normal development and no known risk factors for developmental delays. Infants were tested on their ability to discriminate between nonsense words that differed on their stress pattern only (/dóti/ versus /dotí/ and /dotí/ versus /dóti/) using the visual habituation procedure. The measure for discrimination was the change in looking time between the last habituation trial (e.g., /dóti/) and the novel trial (e.g., /dotí/). (1) Infants with CI showed discrimination between lexical stress pattern with only limited auditory experience with their implant device, (2) discrimination of stress

  5. Sparse representation for infrared Dim target detection via a discriminative over-complete dictionary learned online.

    Science.gov (United States)

    Li, Zheng-Zhou; Chen, Jing; Hou, Qian; Fu, Hong-Xia; Dai, Zhen; Jin, Gang; Li, Ru-Zhang; Liu, Chang-Ju

    2014-05-27

    It is difficult for structural over-complete dictionaries such as the Gabor function and discriminative over-complete dictionary, which are learned offline and classified manually, to represent natural images with the goal of ideal sparseness and to enhance the difference between background clutter and target signals. This paper proposes an infrared dim target detection approach based on sparse representation on a discriminative over-complete dictionary. An adaptive morphological over-complete dictionary is trained and constructed online according to the content of infrared image by K-singular value decomposition (K-SVD) algorithm. Then the adaptive morphological over-complete dictionary is divided automatically into a target over-complete dictionary describing target signals, and a background over-complete dictionary embedding background by the criteria that the atoms in the target over-complete dictionary could be decomposed more sparsely based on a Gaussian over-complete dictionary than the one in the background over-complete dictionary. This discriminative over-complete dictionary can not only capture significant features of background clutter and dim targets better than a structural over-complete dictionary, but also strengthens the sparse feature difference between background and target more efficiently than a discriminative over-complete dictionary learned offline and classified manually. The target and background clutter can be sparsely decomposed over their corresponding over-complete dictionaries, yet couldn't be sparsely decomposed based on their opposite over-complete dictionary, so their residuals after reconstruction by the prescribed number of target and background atoms differ very visibly. Some experiments are included and the results show that this proposed approach could not only improve the sparsity more efficiently, but also enhance the performance of small target detection more effectively.

  6. Sparse Representation for Infrared Dim Target Detection via a Discriminative Over-Complete Dictionary Learned Online

    Directory of Open Access Journals (Sweden)

    Zheng-Zhou Li

    2014-05-01

    Full Text Available It is difficult for structural over-complete dictionaries such as the Gabor function and discriminative over-complete dictionary, which are learned offline and classified manually, to represent natural images with the goal of ideal sparseness and to enhance the difference between background clutter and target signals. This paper proposes an infrared dim target detection approach based on sparse representation on a discriminative over-complete dictionary. An adaptive morphological over-complete dictionary is trained and constructed online according to the content of infrared image by K-singular value decomposition (K-SVD algorithm. Then the adaptive morphological over-complete dictionary is divided automatically into a target over-complete dictionary describing target signals, and a background over-complete dictionary embedding background by the criteria that the atoms in the target over-complete dictionary could be decomposed more sparsely based on a Gaussian over-complete dictionary than the one in the background over-complete dictionary. This discriminative over-complete dictionary can not only capture significant features of background clutter and dim targets better than a structural over-complete dictionary, but also strengthens the sparse feature difference between background and target more efficiently than a discriminative over-complete dictionary learned offline and classified manually. The target and background clutter can be sparsely decomposed over their corresponding over-complete dictionaries, yet couldn’t be sparsely decomposed based on their opposite over-complete dictionary, so their residuals after reconstruction by the prescribed number of target and background atoms differ very visibly. Some experiments are included and the results show that this proposed approach could not only improve the sparsity more efficiently, but also enhance the performance of small target detection more effectively.

  7. Improved Discriminability of Spatiotemporal Neural Patterns in Rat Motor Cortical Areas as Directional Choice Learning Progresses

    Directory of Open Access Journals (Sweden)

    Hongwei eMao

    2015-03-01

    Full Text Available Animals learn to choose a proper action among alternatives to improve their odds of success in food foraging and other activities critical for survival. Through trial-and-error, they learn correct associations between their choices and external stimuli. While a neural network that underlies such learning process has been identified at a high level, it is still unclear how individual neurons and a neural ensemble adapt as learning progresses. In this study, we monitored the activity of single units in the rat medial and lateral agranular (AGm and AGl, respectively areas as rats learned to make a left or right side lever press in response to a left or right side light cue. We noticed that rat movement parameters during the performance of the directional choice task quickly became stereotyped during the first 2-3 days or sessions. But learning the directional choice problem took weeks to occur. Accompanying rats’ behavioral performance adaptation, we observed neural modulation by directional choice in recorded single units. Our analysis shows that ensemble mean firing rates in the cue-on period did not change significantly as learning progressed, and the ensemble mean rate difference between left and right side choices did not show a clear trend of change either. However, the spatiotemporal firing patterns of the neural ensemble exhibited improved discriminability between the two directional choices through learning. These results suggest a spatiotemporal neural coding scheme in a motor cortical neural ensemble that may be responsible for and contributing to learning the directional choice task.

  8. Deformable segmentation of 3D MR prostate images via distributed discriminative dictionary and ensemble learning

    International Nuclear Information System (INIS)

    Guo, Yanrong; Shao, Yeqin; Gao, Yaozong; Price, True; Oto, Aytekin; Shen, Dinggang

    2014-01-01

    Purpose: Automatic prostate segmentation from MR images is an important task in various clinical applications such as prostate cancer staging and MR-guided radiotherapy planning. However, the large appearance and shape variations of the prostate in MR images make the segmentation problem difficult to solve. Traditional Active Shape/Appearance Model (ASM/AAM) has limited accuracy on this problem, since its basic assumption, i.e., both shape and appearance of the targeted organ follow Gaussian distributions, is invalid in prostate MR images. To this end, the authors propose a sparse dictionary learning method to model the image appearance in a nonparametric fashion and further integrate the appearance model into a deformable segmentation framework for prostate MR segmentation. Methods: To drive the deformable model for prostate segmentation, the authors propose nonparametric appearance and shape models. The nonparametric appearance model is based on a novel dictionary learning method, namely distributed discriminative dictionary (DDD) learning, which is able to capture fine distinctions in image appearance. To increase the differential power of traditional dictionary-based classification methods, the authors' DDD learning approach takes three strategies. First, two dictionaries for prostate and nonprostate tissues are built, respectively, using the discriminative features obtained from minimum redundancy maximum relevance feature selection. Second, linear discriminant analysis is employed as a linear classifier to boost the optimal separation between prostate and nonprostate tissues, based on the representation residuals from sparse representation. Third, to enhance the robustness of the authors' classification method, multiple local dictionaries are learned for local regions along the prostate boundary (each with small appearance variations), instead of learning one global classifier for the entire prostate. These discriminative dictionaries are located on

  9. Deformable segmentation of 3D MR prostate images via distributed discriminative dictionary and ensemble learning

    Science.gov (United States)

    Guo, Yanrong; Gao, Yaozong; Shao, Yeqin; Price, True; Oto, Aytekin; Shen, Dinggang

    2014-01-01

    Purpose: Automatic prostate segmentation from MR images is an important task in various clinical applications such as prostate cancer staging and MR-guided radiotherapy planning. However, the large appearance and shape variations of the prostate in MR images make the segmentation problem difficult to solve. Traditional Active Shape/Appearance Model (ASM/AAM) has limited accuracy on this problem, since its basic assumption, i.e., both shape and appearance of the targeted organ follow Gaussian distributions, is invalid in prostate MR images. To this end, the authors propose a sparse dictionary learning method to model the image appearance in a nonparametric fashion and further integrate the appearance model into a deformable segmentation framework for prostate MR segmentation. Methods: To drive the deformable model for prostate segmentation, the authors propose nonparametric appearance and shape models. The nonparametric appearance model is based on a novel dictionary learning method, namely distributed discriminative dictionary (DDD) learning, which is able to capture fine distinctions in image appearance. To increase the differential power of traditional dictionary-based classification methods, the authors' DDD learning approach takes three strategies. First, two dictionaries for prostate and nonprostate tissues are built, respectively, using the discriminative features obtained from minimum redundancy maximum relevance feature selection. Second, linear discriminant analysis is employed as a linear classifier to boost the optimal separation between prostate and nonprostate tissues, based on the representation residuals from sparse representation. Third, to enhance the robustness of the authors' classification method, multiple local dictionaries are learned for local regions along the prostate boundary (each with small appearance variations), instead of learning one global classifier for the entire prostate. These discriminative dictionaries are located on different

  10. Deformable segmentation of 3D MR prostate images via distributed discriminative dictionary and ensemble learning.

    Science.gov (United States)

    Guo, Yanrong; Gao, Yaozong; Shao, Yeqin; Price, True; Oto, Aytekin; Shen, Dinggang

    2014-07-01

    Automatic prostate segmentation from MR images is an important task in various clinical applications such as prostate cancer staging and MR-guided radiotherapy planning. However, the large appearance and shape variations of the prostate in MR images make the segmentation problem difficult to solve. Traditional Active Shape/Appearance Model (ASM/AAM) has limited accuracy on this problem, since its basic assumption, i.e., both shape and appearance of the targeted organ follow Gaussian distributions, is invalid in prostate MR images. To this end, the authors propose a sparse dictionary learning method to model the image appearance in a nonparametric fashion and further integrate the appearance model into a deformable segmentation framework for prostate MR segmentation. To drive the deformable model for prostate segmentation, the authors propose nonparametric appearance and shape models. The nonparametric appearance model is based on a novel dictionary learning method, namely distributed discriminative dictionary (DDD) learning, which is able to capture fine distinctions in image appearance. To increase the differential power of traditional dictionary-based classification methods, the authors' DDD learning approach takes three strategies. First, two dictionaries for prostate and nonprostate tissues are built, respectively, using the discriminative features obtained from minimum redundancy maximum relevance feature selection. Second, linear discriminant analysis is employed as a linear classifier to boost the optimal separation between prostate and nonprostate tissues, based on the representation residuals from sparse representation. Third, to enhance the robustness of the authors' classification method, multiple local dictionaries are learned for local regions along the prostate boundary (each with small appearance variations), instead of learning one global classifier for the entire prostate. These discriminative dictionaries are located on different patches of the

  11. Deformable segmentation of 3D MR prostate images via distributed discriminative dictionary and ensemble learning

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yanrong; Shao, Yeqin [Department of Radiology and BRIC, University of North Carolina at Chapel Hill, North Carolina 27599 (United States); Gao, Yaozong; Price, True [Department of Radiology and BRIC, University of North Carolina at Chapel Hill, North Carolina 27599 and Department of Computer Science, University of North Carolina at Chapel Hill, North Carolina 27599 (United States); Oto, Aytekin [Department of Radiology, Section of Urology, University of Chicago, Illinois 60637 (United States); Shen, Dinggang, E-mail: dgshen@med.unc.edu [Department of Radiology and BRIC, University of North Carolina at Chapel Hill, North Carolina 27599 and Department of Brain and Cognitive Engineering, Korea University, Seoul 136-713 (Korea, Republic of)

    2014-07-15

    Purpose: Automatic prostate segmentation from MR images is an important task in various clinical applications such as prostate cancer staging and MR-guided radiotherapy planning. However, the large appearance and shape variations of the prostate in MR images make the segmentation problem difficult to solve. Traditional Active Shape/Appearance Model (ASM/AAM) has limited accuracy on this problem, since its basic assumption, i.e., both shape and appearance of the targeted organ follow Gaussian distributions, is invalid in prostate MR images. To this end, the authors propose a sparse dictionary learning method to model the image appearance in a nonparametric fashion and further integrate the appearance model into a deformable segmentation framework for prostate MR segmentation. Methods: To drive the deformable model for prostate segmentation, the authors propose nonparametric appearance and shape models. The nonparametric appearance model is based on a novel dictionary learning method, namely distributed discriminative dictionary (DDD) learning, which is able to capture fine distinctions in image appearance. To increase the differential power of traditional dictionary-based classification methods, the authors' DDD learning approach takes three strategies. First, two dictionaries for prostate and nonprostate tissues are built, respectively, using the discriminative features obtained from minimum redundancy maximum relevance feature selection. Second, linear discriminant analysis is employed as a linear classifier to boost the optimal separation between prostate and nonprostate tissues, based on the representation residuals from sparse representation. Third, to enhance the robustness of the authors' classification method, multiple local dictionaries are learned for local regions along the prostate boundary (each with small appearance variations), instead of learning one global classifier for the entire prostate. These discriminative dictionaries are located on

  12. Different levels of food restriction reveal genotype-specific differences in learning a visual discrimination task.

    Directory of Open Access Journals (Sweden)

    Kalina Makowiecki

    Full Text Available In behavioural experiments, motivation to learn can be achieved using food rewards as positive reinforcement in food-restricted animals. Previous studies reduce animal weights to 80-90% of free-feeding body weight as the criterion for food restriction. However, effects of different degrees of food restriction on task performance have not been assessed. We compared learning task performance in mice food-restricted to 80 or 90% body weight (BW. We used adult wildtype (WT; C57Bl/6j and knockout (ephrin-A2⁻/⁻ mice, previously shown to have a reverse learning deficit. Mice were trained in a two-choice visual discrimination task with food reward as positive reinforcement. When mice reached criterion for one visual stimulus (80% correct in three consecutive 10 trial sets they began the reverse learning phase, where the rewarded stimulus was switched to the previously incorrect stimulus. For the initial learning and reverse phase of the task, mice at 90%BW took almost twice as many trials to reach criterion as mice at 80%BW. Furthermore, WT 80 and 90%BW groups significantly differed in percentage correct responses and learning strategy in the reverse learning phase, whereas no differences between weight restriction groups were observed in ephrin-A2⁻/⁻ mice. Most importantly, genotype-specific differences in reverse learning strategy were only detected in the 80%BW groups. Our results indicate that increased food restriction not only results in better performance and a shorter training period, but may also be necessary for revealing behavioural differences between experimental groups. This has important ethical and animal welfare implications when deciding extent of diet restriction in behavioural studies.

  13. A novel perceptual discrimination training task: Reducing fear overgeneralization in the context of fear learning.

    Science.gov (United States)

    Ginat-Frolich, Rivkah; Klein, Zohar; Katz, Omer; Shechner, Tomer

    2017-06-01

    Generalization is an adaptive learning mechanism, but it can be maladaptive when it occurs in excess. A novel perceptual discrimination training task was therefore designed to moderate fear overgeneralization. We hypothesized that improvement in basic perceptual discrimination would translate into lower fear overgeneralization in affective cues. Seventy adults completed a fear-conditioning task prior to being allocated into training or placebo groups. Predesignated geometric shape pairs were constructed for the training task. A target shape from each pair was presented. Thereafter, participants in the training group were shown both shapes and asked to identify the image that differed from the target. Placebo task participants only indicated the location of each shape on the screen. All participants then viewed new geometric pairs and indicated whether they were identical or different. Finally, participants completed a fear generalization test consisting of perceptual morphs ranging from the CS + to the CS-. Fear-conditioning was observed through physiological and behavioural measures. Furthermore, the training group performed better than the placebo group on the assessment task and exhibited decreased fear generalization in response to threat/safety cues. The findings offer evidence for the effectiveness of the novel discrimination training task, setting the stage for future research with clinical populations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Accurate classification of brain gliomas by discriminate dictionary learning based on projective dictionary pair learning of proton magnetic resonance spectra.

    Science.gov (United States)

    Adebileje, Sikiru Afolabi; Ghasemi, Keyvan; Aiyelabegan, Hammed Tanimowo; Saligheh Rad, Hamidreza

    2017-04-01

    Proton magnetic resonance spectroscopy is a powerful noninvasive technique that complements the structural images of cMRI, which aids biomedical and clinical researches, by identifying and visualizing the compositions of various metabolites within the tissues of interest. However, accurate classification of proton magnetic resonance spectroscopy is still a challenging issue in clinics due to low signal-to-noise ratio, overlapping peaks of metabolites, and the presence of background macromolecules. This paper evaluates the performance of a discriminate dictionary learning classifiers based on projective dictionary pair learning method for brain gliomas proton magnetic resonance spectroscopy spectra classification task, and the result were compared with the sub-dictionary learning methods. The proton magnetic resonance spectroscopy data contain a total of 150 spectra (74 healthy, 23 grade II, 23 grade III, and 30 grade IV) from two databases. The datasets from both databases were first coupled together, followed by column normalization. The Kennard-Stone algorithm was used to split the datasets into its training and test sets. Performance comparison based on the overall accuracy, sensitivity, specificity, and precision was conducted. Based on the overall accuracy of our classification scheme, the dictionary pair learning method was found to outperform the sub-dictionary learning methods 97.78% compared with 68.89%, respectively. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Does Fine Color Discrimination Learning in Free-Flying Honeybees Change Mushroom-Body Calyx Neuroarchitecture?

    Directory of Open Access Journals (Sweden)

    Frank M J Sommerlandt

    Full Text Available Honeybees learn color information of rewarding flowers and recall these memories in future decisions. For fine color discrimination, bees require differential conditioning with a concurrent presentation of target and distractor stimuli to form a long-term memory. Here we investigated whether the long-term storage of color information shapes the neural network of microglomeruli in the mushroom body calyces and if this depends on the type of conditioning. Free-flying honeybees were individually trained to a pair of perceptually similar colors in either absolute conditioning towards one of the colors or in differential conditioning with both colors. Subsequently, bees of either conditioning groups were tested in non-rewarded discrimination tests with the two colors. Only bees trained with differential conditioning preferred the previously learned color, whereas bees of the absolute conditioning group, and a stimuli-naïve group, chose randomly among color stimuli. All bees were then kept individually for three days in the dark to allow for complete long-term memory formation. Whole-mount immunostaining was subsequently used to quantify variation of microglomeruli number and density in the mushroom-body lip and collar. We found no significant differences among groups in neuropil volumes and total microglomeruli numbers, but learning performance was negatively correlated with microglomeruli density in the absolute conditioning group. Based on these findings we aim to promote future research approaches combining behaviorally relevant color learning tests in honeybees under free-flight conditions with neuroimaging analysis; we also discuss possible limitations of this approach.

  16. Enhanced discriminative fear learning of phobia-irrelevant stimuli in spider-fearful individuals

    Directory of Open Access Journals (Sweden)

    Carina eMosig

    2014-10-01

    Full Text Available Avoidance is considered as a central hallmark of all anxiety disorders. The acquisition and expression of avoidance which leads to the maintenance and exacerbation of pathological fear is closely linked to Pavlovian and operant conditioning processes. Changes in conditionability might represent a key feature of all anxiety disorders but the exact nature of these alterations might vary across different disorders. To date, no information is available on specific changes in conditionability for disorder-irrelevant stimuli in specific phobia (SP. The first aim of this study was to investigate changes in fear acquisition and extinction in spider-fearful individuals as compared to non-fearful participants by using the de novo fear conditioning paradigm. Secondly, we aimed to determine whether differences in the magnitude of context-dependent fear retrieval exist between spider-fearful and non-fearful individuals. Our findings point to an enhanced fear discrimination in spider-fearful individuals as compared to non-fearful individuals at both the physiological and subjective level. The enhanced fear discrimination in spider-fearful individuals was neither mediated by increased state anxiety, depression, nor stress tension. Spider-fearful individuals displayed no changes in extinction learning and/or fear retrieval. Surprisingly, we found no evidence for context-dependent modulation of fear retrieval in either group. Here we provide first evidence that spider-fearful individuals show an enhanced discriminative fear learning of phobia-irrelevant (de novo stimuli. Our findings provide novel insights into the role of fear acquisition and expression for the development and maintenance of maladaptive responses in the course of SP.

  17. Performance of normal adults on Rey Auditory Learning Test: a pilot study Desempenho de indivíduos saudáveis no Rey Auditory Verbal Learning Test (RAVLT: estudo piloto

    Directory of Open Access Journals (Sweden)

    Leila Cardoso Teruya

    2009-06-01

    Full Text Available The present study aimed to assess the performance of healthy Brazilian adults on the Rey Auditory Verbal Learning Test (RAVLT, a test devised for assessing memory, and to investigate the influence of the variables age, sex and education on the performance obtained, and finally to suggest scores which may be adopted for assessing memory with this instrument. The performance of 130 individuals, subdivided into groups according to age and education, was assessed. Overall performance decreased with age. Schooling presented a strong and positive relationship with scores on all subitems analyzed except learning, for which no influence was found. Mean scores of subitems analyzed did not differ significantly between men and women, except for the delayed recall subitem. This manuscript describes RAVLT scores according to age and education. In summary, this is a pilot study that presents a profile of Brazilian adults on A1, A7, recognition and LOT subitem.O objetivo deste estudo foi avaliar o desempenho de adultos normais brasileiros no Rey Auditory Verbal Learning Test (RAVLT, um teste destinado à avaliação da memória, e investigar a influência das variáveis idade, sexo e escolaridade no desempenho obtido, além de sugerir escores que possam ser utilizados na avaliação da memória segundo este instrumento. Foi avaliado o desempenho de 130 indivíduos, subdivididos em grupos de acordo com a idade e escolaridade. O desempenho geral no teste diminuiu com o aumento da idade. A escolaridade apresentou relação forte e positiva com os escores em todos os subitens analisados, exceto no aprendizado, no qual não foi verificada influência. As médias dos escores dos subitens analisados não foram estatisticamente diferentes entre homens e mulheres, exceto no subitem recordação tardia. Descrevemos os escores no RAVLT de acordo com faixa etária e escolaridade neste manuscrito.

  18. Learning Disabilities and the School Health Worker

    Science.gov (United States)

    Freeman, Stephen W.

    1973-01-01

    This article offers three listings of signs and symptoms useful in detection of learning and perceptual deficiencies. The first list presents symptoms of the learning-disabled child; the second gives specific visual perceptual deficits (poor discrimination, figure-ground problems, reversals, etc.); and the third gives auditory perceptual deficits…

  19. Not All Same-Different Discriminations Are Created Equal: Evidence Contrary to a Unidimensional Account of Same-Different Learning

    Science.gov (United States)

    Gibson, Brett M.; Wasserman, Edward A.; Cook, Robert G.

    2006-01-01

    In Experiment 1, we trained four pigeons to concurrently discriminate displays of 16 same icons (16S) from displays of 16 different icons (16D) as well as between displays of same icons (16S) from displays that contained 15 same icons and one different icon (15S:1D). The birds rapidly learned to discriminate 16S vs. 16D displays, but they failed…

  20. Auditory Stimulus Processing and Task Learning Are Adequate in Dyslexia, but Benefits from Regularities Are Reduced

    Science.gov (United States)

    Daikhin, Luba; Raviv, Ofri; Ahissar, Merav

    2017-01-01

    Purpose: The reading deficit for people with dyslexia is typically associated with linguistic, memory, and perceptual-discrimination difficulties, whose relation to reading impairment is disputed. We proposed that automatic detection and usage of serial sound regularities for individuals with dyslexia is impaired (anchoring deficit hypothesis),…

  1. PROBABILISTIC PROGRAMMING FOR ADVANCED MACHINE LEARNING (PPAML) DISCRIMINATIVE LEARNING FOR GENERATIVE TASKS (DILIGENT)

    Science.gov (United States)

    2017-11-29

    follows, to see the performance of the SVM Standard algorithm: python mamiStd.py --nJobs 2 --trainSize 80 where nJobs tell the computer to use ...follows: python mamiLupi.py --nJobs 2 --trainSize 80 where nJobs tell the computer to use 2 processors and trainSize tells it to run the...in the course of DARPA PPAML program. 2 INTRODUCTION As explained in Introduction , the focus of our project is to enable the use of discriminative

  2. Optimisation of a machine learning algorithm in human locomotion using principal component and discriminant function analyses.

    Science.gov (United States)

    Bisele, Maria; Bencsik, Martin; Lewis, Martin G C; Barnett, Cleveland T

    2017-01-01

    Assessment methods in human locomotion often involve the description of normalised graphical profiles and/or the extraction of discrete variables. Whilst useful, these approaches may not represent the full complexity of gait data. Multivariate statistical methods, such as Principal Component Analysis (PCA) and Discriminant Function Analysis (DFA), have been adopted since they have the potential to overcome these data handling issues. The aim of the current study was to develop and optimise a specific machine learning algorithm for processing human locomotion data. Twenty participants ran at a self-selected speed across a 15m runway in barefoot and shod conditions. Ground reaction forces (BW) and kinematics were measured at 1000 Hz and 100 Hz, respectively from which joint angles (°), joint moments (N.m.kg-1) and joint powers (W.kg-1) for the hip, knee and ankle joints were calculated in all three anatomical planes. Using PCA and DFA, power spectra of the kinematic and kinetic variables were used as a training database for the development of a machine learning algorithm. All possible combinations of 10 out of 20 participants were explored to find the iteration of individuals that would optimise the machine learning algorithm. The results showed that the algorithm was able to successfully predict whether a participant ran shod or barefoot in 93.5% of cases. To the authors' knowledge, this is the first study to optimise the development of a machine learning algorithm.

  3. Auditory Perception, Suprasegmental Speech Processing, and Vocabulary Development in Chinese Preschoolers.

    Science.gov (United States)

    Wang, Hsiao-Lan S; Chen, I-Chen; Chiang, Chun-Han; Lai, Ying-Hui; Tsao, Yu

    2016-10-01

    The current study examined the associations between basic auditory perception, speech prosodic processing, and vocabulary development in Chinese kindergartners, specifically, whether early basic auditory perception may be related to linguistic prosodic processing in Chinese Mandarin vocabulary acquisition. A series of language, auditory, and linguistic prosodic tests were given to 100 preschool children who had not yet learned how to read Chinese characters. The results suggested that lexical tone sensitivity and intonation production were significantly correlated with children's general vocabulary abilities. In particular, tone awareness was associated with comprehensive language development, whereas intonation production was associated with both comprehensive and expressive language development. Regression analyses revealed that tone sensitivity accounted for 36% of the unique variance in vocabulary development, whereas intonation production accounted for 6% of the variance in vocabulary development. Moreover, auditory frequency discrimination was significantly correlated with lexical tone sensitivity, syllable duration discrimination, and intonation production in Mandarin Chinese. Also it provided significant contributions to tone sensitivity and intonation production. Auditory frequency discrimination may indirectly affect early vocabulary development through Chinese speech prosody. © The Author(s) 2016.

  4. Effects of MK-801 on vicarious trial-and-error and reversal of olfactory discrimination learning in weanling rats.

    Science.gov (United States)

    Griesbach, G S; Hu, D; Amsel, A

    1998-12-01

    The effects of dizocilpine maleate (MK-801) on vicarious trial-and-error (VTE), and on simultaneous olfactory discrimination learning and its reversal, were observed in weanling rats. The term VTE was used by Tolman (The determiners of behavior at a choice point. Psychol. Rev. 1938;46:318-336), who described it as conflict-like behavior at a choice-point in simultaneous discrimination learning. It takes the form of head movements from one stimulus to the other, and has recently been proposed by Amsel (Hippocampal function in the rat: cognitive mapping or vicarious trial-and-error? Hippocampus, 1993;3:251-256) as related to hippocampal, nonspatial function during this learning. Weanling male rats received systemic MK-801 either 30 min before the onset of olfactory discrimination training and its reversal, or only before its reversal. The MK-801-treated animals needed significantly more sessions to acquire the discrimination and showed significantly fewer VTEs in the acquisition phase of learning. Impaired reversal learning was shown only when MK-801 was administered during the reversal-learning phase, itself, and not when it was administered throughout both phases.

  5. Development of vicarious trial-and-error behavior in odor discrimination learning in the rat: relation to hippocampal function?

    Science.gov (United States)

    Hu, D; Griesbach, G; Amsel, A

    1997-06-01

    Previous work from our laboratory has suggested that hippocampal electrolytic lesions result in a deficit in simultaneous, black-white discrimination learning and reduce the frequency of vicarious trial-and-error (VTE) at a choice-point. VTE is a term Tolman used to describe the rat's conflict-like behavior, moving its head from one stimulus to the other at a choice point, and has been proposed as a major nonspatial feature of hippocampal function in both visual and olfactory discrimination learning. Simultaneous odor discrimination and VTE behavior were examined at three different ages. The results were that 16-day-old pups made fewer VTEs and learned much more slowly than 30- and 60-day-olds, a finding in accord with levels of hippocampal maturity in the rat.

  6. Implicit learning of predictable sound sequences modulates human brain responses at different levels of the auditory hierarchy

    Directory of Open Access Journals (Sweden)

    Françoise eLecaignard

    2015-09-01

    Full Text Available Deviant stimuli, violating regularities in a sensory environment, elicit the Mismatch Negativity (MMN, largely described in the Event-Related Potential literature. While it is widely accepted that the MMN reflects more than basic change detection, a comprehensive description of mental processes modulating this response is still lacking. Within the framework of predictive coding, deviance processing is part of an inference process where prediction errors (the mismatch between incoming sensations and predictions established through experience are minimized. In this view, the MMN is a measure of prediction error, which yields specific expectations regarding its modulations by various experimental factors. In particular, it predicts that the MMN should decrease as the occurrence of a deviance becomes more predictable. We conducted a passive oddball EEG study and manipulated the predictability of sound sequences by means of different temporal structures. Importantly, our design allows comparing mismatch responses elicited by predictable and unpredictable violations of a simple repetition rule and therefore departs from previous studies that investigate violations of different time-scale regularities. We observed a decrease of the MMN with predictability and interestingly, a similar effect at earlier latencies, within 70 ms after deviance onset. Following these pre-attentive responses, a reduced P3a was measured in the case of predictable deviants. We conclude that early and late deviance responses reflect prediction errors, triggering belief updating within the auditory hierarchy. Beside, in this passive study, such perceptual inference appears to be modulated by higher-level implicit learning of sequence statistical structures. Our findings argue for a hierarchical model of auditory processing where predictive coding enables implicit extraction of environmental regularities.

  7. Auditory agnosia.

    Science.gov (United States)

    Slevc, L Robert; Shell, Alison R

    2015-01-01

    Auditory agnosia refers to impairments in sound perception and identification despite intact hearing, cognitive functioning, and language abilities (reading, writing, and speaking). Auditory agnosia can be general, affecting all types of sound perception, or can be (relatively) specific to a particular domain. Verbal auditory agnosia (also known as (pure) word deafness) refers to deficits specific to speech processing, environmental sound agnosia refers to difficulties confined to non-speech environmental sounds, and amusia refers to deficits confined to music. These deficits can be apperceptive, affecting basic perceptual processes, or associative, affecting the relation of a perceived auditory object to its meaning. This chapter discusses what is known about the behavioral symptoms and lesion correlates of these different types of auditory agnosia (focusing especially on verbal auditory agnosia), evidence for the role of a rapid temporal processing deficit in some aspects of auditory agnosia, and the few attempts to treat the perceptual deficits associated with auditory agnosia. A clear picture of auditory agnosia has been slow to emerge, hampered by the considerable heterogeneity in behavioral deficits, associated brain damage, and variable assessments across cases. Despite this lack of clarity, these striking deficits in complex sound processing continue to inform our understanding of auditory perception and cognition. © 2015 Elsevier B.V. All rights reserved.

  8. Training haptic stiffness discrimination: time course of learning with or without visual information and knowledge of results.

    Science.gov (United States)

    Teodorescu, Kinneret; Bouchigny, Sylvain; Korman, Maria

    2013-08-01

    In this study, we explored the time course of haptic stiffness discrimination learning and how it was affected by two experimental factors, the addition of visual information and/or knowledge of results (KR) during training. Stiffness perception may integrate both haptic and visual modalities. However, in many tasks, the visual field is typically occluded, forcing stiffness perception to be dependent exclusively on haptic information. No studies to date addressed the time course of haptic stiffness perceptual learning. Using a virtual environment (VE) haptic interface and a two-alternative forced-choice discrimination task, the haptic stiffness discrimination ability of 48 participants was tested across 2 days. Each day included two haptic test blocks separated by a training block Additional visual information and/or KR were manipulated between participants during training blocks. Practice repetitions alone induced significant improvement in haptic stiffness discrimination. Between days, accuracy was slightly improved, but decision time performance was deteriorated. The addition of visual information and/or KR had only temporary effects on decision time, without affecting the time course of haptic discrimination learning. Learning in haptic stiffness discrimination appears to evolve through at least two distinctive phases: A single training session resulted in both immediate and latent learning. This learning was not affected by the training manipulations inspected. Training skills in VE in spaced sessions can be beneficial for tasks in which haptic perception is critical, such as surgery procedures, when the visual field is occluded. However, training protocols for such tasks should account for low impact of multisensory information and KR.

  9. Go/no-go discriminated avoidance learning in prenatally x-irradiated rats

    International Nuclear Information System (INIS)

    Tamaki, Y.; Inouye, M.

    1988-01-01

    Male Fischer344 rats were exposed to x-irradiation at a dose of 200 rad on Day 17 of gestation. Irradiated and control rats were tested at 10-13 weeks of age with the paradigm of go/no-go (active-passive) discriminated avoidance conditioning for three consecutive daily sessions. During the first conditioning session, they learned only active avoidance responses to two different warning signals. During the second and third sessions, they learned active and passive avoidance responses: in response to one warning signal, rats were required to make an active response to avoid a shock, but not to run in response to the other signal in order to avoid a shock. Prenatally irradiated rats made more active avoidance responses to both warning signals than controls (first session). In the early training phase of the go/no-go task, irradiated rats performed significantly higher active and lower passive avoidance responses than controls. Irradiated rats established a strong tendency to respond actively to the no-go signal, but eventually learned to respond to it

  10. Pharmacological evidence that both cognitive memory and habit formation contribute to within-session learning of concurrent visual discriminations.

    Science.gov (United States)

    Turchi, Janita; Devan, Bryan; Yin, Pingbo; Sigrist, Emmalynn; Mishkin, Mortimer

    2010-07-01

    The monkey's ability to learn a set of visual discriminations presented concurrently just once a day on successive days (24-h ITI task) is based on habit formation, which is known to rely on a visuo-striatal circuit and to be independent of visuo-rhinal circuits that support one-trial memory. Consistent with this dissociation, we recently reported that performance on the 24-h ITI task is impaired by a striatal-function blocking agent, the dopaminergic antagonist haloperidol, and not by a rhinal-function blocking agent, the muscarinic cholinergic antagonist scopolamine. In the present study, monkeys were trained on a short-ITI form of concurrent visual discrimination learning, one in which a set of stimulus pairs is repeated not only across daily sessions but also several times within each session (in this case, at about 4-min ITIs). Asymptotic discrimination learning rates in the non-drug condition were reduced by half, from approximately 11 trials/pair on the 24-h ITI task to approximately 5 trials/pair on the 4-min ITI task, and this faster learning was impaired by systemic injections of either haloperidol or scopolamine. The results suggest that in the version of concurrent discrimination learning used here, the short ITIs within a session recruit both visuo-rhinal and visuo-striatal circuits, and that the final performance level is driven by both cognitive memory and habit formation working in concert.

  11. Improved neutron-gamma discrimination for a 3He neutron detector using subspace learning methods

    Science.gov (United States)

    Wang, C. L.; Funk, L. L.; Riedel, R. A.; Berry, K. D.

    2017-05-01

    3He gas based neutron Linear-Position-Sensitive Detectors (LPSDs) have been used for many neutron scattering instruments. Traditional Pulse-height Analysis (PHA) for Neutron-Gamma Discrimination (NGD) resulted in the neutron-gamma efficiency ratio (NGD ratio) on the order of 105-106. The NGD ratios of 3He detectors need to be improved for even better scientific results from neutron scattering. Digital Signal Processing (DSP) analyses of waveforms were proposed for obtaining better NGD ratios, based on features extracted from rise-time, pulse amplitude, charge integration, a simplified Wiener filter, and the cross-correlation between individual and template waveforms of neutron and gamma events. Fisher Linear Discriminant Analysis (FLDA) and three Multivariate Analyses (MVAs) of the features were performed. The NGD ratios are improved by about 102-103 times compared with the traditional PHA method. Our results indicate the NGD capabilities of 3He tube detectors can be significantly improved with subspace-learning based methods, which may result in a reduced data-collection time and better data quality for further data reduction.

  12. Achilles' ear? Inferior human short-term and recognition memory in the auditory modality.

    Science.gov (United States)

    Bigelow, James; Poremba, Amy

    2014-01-01

    Studies of the memory capabilities of nonhuman primates have consistently revealed a relative weakness for auditory compared to visual or tactile stimuli: extensive training is required to learn auditory memory tasks, and subjects are only capable of retaining acoustic information for a brief period of time. Whether a parallel deficit exists in human auditory memory remains an outstanding question. In the current study, a short-term memory paradigm was used to test human subjects' retention of simple auditory, visual, and tactile stimuli that were carefully equated in terms of discriminability, stimulus exposure time, and temporal dynamics. Mean accuracy did not differ significantly among sensory modalities at very short retention intervals (1-4 s). However, at longer retention intervals (8-32 s), accuracy for auditory stimuli fell substantially below that observed for visual and tactile stimuli. In the interest of extending the ecological validity of these findings, a second experiment tested recognition memory for complex, naturalistic stimuli that would likely be encountered in everyday life. Subjects were able to identify all stimuli when retention was not required, however, recognition accuracy following a delay period was again inferior for auditory compared to visual and tactile stimuli. Thus, the outcomes of both experiments provide a human parallel to the pattern of results observed in nonhuman primates. The results are interpreted in light of neuropsychological data from nonhuman primates, which suggest a difference in the degree to which auditory, visual, and tactile memory are mediated by the perirhinal and entorhinal cortices.

  13. Achilles' ear? Inferior human short-term and recognition memory in the auditory modality.

    Directory of Open Access Journals (Sweden)

    James Bigelow

    Full Text Available Studies of the memory capabilities of nonhuman primates have consistently revealed a relative weakness for auditory compared to visual or tactile stimuli: extensive training is required to learn auditory memory tasks, and subjects are only capable of retaining acoustic information for a brief period of time. Whether a parallel deficit exists in human auditory memory remains an outstanding question. In the current study, a short-term memory paradigm was used to test human subjects' retention of simple auditory, visual, and tactile stimuli that were carefully equated in terms of discriminability, stimulus exposure time, and temporal dynamics. Mean accuracy did not differ significantly among sensory modalities at very short retention intervals (1-4 s. However, at longer retention intervals (8-32 s, accuracy for auditory stimuli fell substantially below that observed for visual and tactile stimuli. In the interest of extending the ecological validity of these findings, a second experiment tested recognition memory for complex, naturalistic stimuli that would likely be encountered in everyday life. Subjects were able to identify all stimuli when retention was not required, however, recognition accuracy following a delay period was again inferior for auditory compared to visual and tactile stimuli. Thus, the outcomes of both experiments provide a human parallel to the pattern of results observed in nonhuman primates. The results are interpreted in light of neuropsychological data from nonhuman primates, which suggest a difference in the degree to which auditory, visual, and tactile memory are mediated by the perirhinal and entorhinal cortices.

  14. Achilles’ Ear? Inferior Human Short-Term and Recognition Memory in the Auditory Modality

    Science.gov (United States)

    Bigelow, James; Poremba, Amy

    2014-01-01

    Studies of the memory capabilities of nonhuman primates have consistently revealed a relative weakness for auditory compared to visual or tactile stimuli: extensive training is required to learn auditory memory tasks, and subjects are only capable of retaining acoustic information for a brief period of time. Whether a parallel deficit exists in human auditory memory remains an outstanding question. In the current study, a short-term memory paradigm was used to test human subjects’ retention of simple auditory, visual, and tactile stimuli that were carefully equated in terms of discriminability, stimulus exposure time, and temporal dynamics. Mean accuracy did not differ significantly among sensory modalities at very short retention intervals (1–4 s). However, at longer retention intervals (8–32 s), accuracy for auditory stimuli fell substantially below that observed for visual and tactile stimuli. In the interest of extending the ecological validity of these findings, a second experiment tested recognition memory for complex, naturalistic stimuli that would likely be encountered in everyday life. Subjects were able to identify all stimuli when retention was not required, however, recognition accuracy following a delay period was again inferior for auditory compared to visual and tactile stimuli. Thus, the outcomes of both experiments provide a human parallel to the pattern of results observed in nonhuman primates. The results are interpreted in light of neuropsychological data from nonhuman primates, which suggest a difference in the degree to which auditory, visual, and tactile memory are mediated by the perirhinal and entorhinal cortices. PMID:24587119

  15. Discriminative kernel feature extraction and learning for object recognition and detection

    DEFF Research Database (Denmark)

    Pan, Hong; Olsen, Søren Ingvor; Zhu, Yaping

    2015-01-01

    Feature extraction and learning is critical for object recognition and detection. By embedding context cue of image attributes into the kernel descriptors, we propose a set of novel kernel descriptors called context kernel descriptors (CKD). The motivation of CKD is to use the spatial consistency...... even in high-dimensional space. In addition, the latent connection between Rényi quadratic entropy and the mapping data in kernel feature space further facilitates us to capture the geometric structure as well as the information about the underlying labels of the CKD using CSQMI. Thus the resulting...... codebook and reduced CKD are discriminative. We report superior performance of our algorithm for object recognition on benchmark datasets like Caltech-101 and CIFAR-10, as well as for detection on a challenging chicken feet dataset....

  16. Statistical and Machine-Learning Classifier Framework to Improve Pulse Shape Discrimination System Design

    Energy Technology Data Exchange (ETDEWEB)

    Wurtz, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kaplan, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-28

    Pulse shape discrimination (PSD) is a variety of statistical classifier. Fully-­realized statistical classifiers rely on a comprehensive set of tools for designing, building, and implementing. PSD advances rely on improvements to the implemented algorithm. PSD advances can be improved by using conventional statistical classifier or machine learning methods. This paper provides the reader with a glossary of classifier-­building elements and their functions in a fully-­designed and operational classifier framework that can be used to discover opportunities for improving PSD classifier projects. This paper recommends reporting the PSD classifier’s receiver operating characteristic (ROC) curve and its behavior at a gamma rejection rate (GRR) relevant for realistic applications.

  17. Deep learning in color: towards automated quark/gluon jet discrimination

    International Nuclear Information System (INIS)

    Komiske, Patrick T.; Metodiev, Eric M.; Schwartz, Matthew D.

    2017-01-01

    Artificial intelligence offers the potential to automate challenging data-processing tasks in collider physics. Here, to establish its prospects, we explore to what extent deep learning with convolutional neural networks can discriminate quark and gluon jets better than observables designed by physicists. Our approach builds upon the paradigm that a jet can be treated as an image, with intensity given by the local calorimeter deposits. We supplement this construction by adding color to the images, with red, green and blue intensities given by the transverse momentum in charged particles, transverse momentum in neutral particles, and pixel-level charged particle counts. Overall, the deep networks match or outperform traditional jet variables. We also find that, while various simulations produce different quark and gluon jets, the neural networks are surprisingly insensitive to these differences, similar to traditional observables. This suggests that the networks can extract robust physical information from imperfect simulations.

  18. A parallel spatiotemporal saliency and discriminative online learning method for visual target tracking in aerial videos.

    Science.gov (United States)

    Aghamohammadi, Amirhossein; Ang, Mei Choo; A Sundararajan, Elankovan; Weng, Ng Kok; Mogharrebi, Marzieh; Banihashem, Seyed Yashar

    2018-01-01

    Visual tracking in aerial videos is a challenging task in computer vision and remote sensing technologies due to appearance variation difficulties. Appearance variations are caused by camera and target motion, low resolution noisy images, scale changes, and pose variations. Various approaches have been proposed to deal with appearance variation difficulties in aerial videos, and amongst these methods, the spatiotemporal saliency detection approach reported promising results in the context of moving target detection. However, it is not accurate for moving target detection when visual tracking is performed under appearance variations. In this study, a visual tracking method is proposed based on spatiotemporal saliency and discriminative online learning methods to deal with appearance variations difficulties. Temporal saliency is used to represent moving target regions, and it was extracted based on the frame difference with Sauvola local adaptive thresholding algorithms. The spatial saliency is used to represent the target appearance details in candidate moving regions. SLIC superpixel segmentation, color, and moment features can be used to compute feature uniqueness and spatial compactness of saliency measurements to detect spatial saliency. It is a time consuming process, which prompted the development of a parallel algorithm to optimize and distribute the saliency detection processes that are loaded into the multi-processors. Spatiotemporal saliency is then obtained by combining the temporal and spatial saliencies to represent moving targets. Finally, a discriminative online learning algorithm was applied to generate a sample model based on spatiotemporal saliency. This sample model is then incrementally updated to detect the target in appearance variation conditions. Experiments conducted on the VIVID dataset demonstrated that the proposed visual tracking method is effective and is computationally efficient compared to state-of-the-art methods.

  19. A parallel spatiotemporal saliency and discriminative online learning method for visual target tracking in aerial videos

    Science.gov (United States)

    2018-01-01

    Visual tracking in aerial videos is a challenging task in computer vision and remote sensing technologies due to appearance variation difficulties. Appearance variations are caused by camera and target motion, low resolution noisy images, scale changes, and pose variations. Various approaches have been proposed to deal with appearance variation difficulties in aerial videos, and amongst these methods, the spatiotemporal saliency detection approach reported promising results in the context of moving target detection. However, it is not accurate for moving target detection when visual tracking is performed under appearance variations. In this study, a visual tracking method is proposed based on spatiotemporal saliency and discriminative online learning methods to deal with appearance variations difficulties. Temporal saliency is used to represent moving target regions, and it was extracted based on the frame difference with Sauvola local adaptive thresholding algorithms. The spatial saliency is used to represent the target appearance details in candidate moving regions. SLIC superpixel segmentation, color, and moment features can be used to compute feature uniqueness and spatial compactness of saliency measurements to detect spatial saliency. It is a time consuming process, which prompted the development of a parallel algorithm to optimize and distribute the saliency detection processes that are loaded into the multi-processors. Spatiotemporal saliency is then obtained by combining the temporal and spatial saliencies to represent moving targets. Finally, a discriminative online learning algorithm was applied to generate a sample model based on spatiotemporal saliency. This sample model is then incrementally updated to detect the target in appearance variation conditions. Experiments conducted on the VIVID dataset demonstrated that the proposed visual tracking method is effective and is computationally efficient compared to state-of-the-art methods. PMID:29438421

  20. Speech Production and Speech Discrimination by Hearing-Impaired Children.

    Science.gov (United States)

    Novelli-Olmstead, Tina; Ling, Daniel

    1984-01-01

    Seven hearing impaired children (five to seven years old) assigned to the Speakers group made highly significant gains in speech production and auditory discrimination of speech, while Listeners made only slight speech production gains and no gains in auditory discrimination. Combined speech and auditory training was more effective than auditory…

  1. Discriminating Children with Autism from Children with Learning Difficulties with an Adaptation of the Short Sensory Profile

    Science.gov (United States)

    O'Brien, Justin; Tsermentseli, Stella; Cummins, Omar; Happe, Francesca; Heaton, Pamela; Spencer, Janine

    2009-01-01

    In this article, we examine the extent to which children with autism and children with learning difficulties can be discriminated from their responses to different patterns of sensory stimuli. Using an adapted version of the Short Sensory Profile (SSP), sensory processing was compared in 34 children with autism to 33 children with typical…

  2. Sex differences in the representation of call stimuli in a songbird secondary auditory area.

    Science.gov (United States)

    Giret, Nicolas; Menardy, Fabien; Del Negro, Catherine

    2015-01-01

    Understanding how communication sounds are encoded in the central auditory system is critical to deciphering the neural bases of acoustic communication. Songbirds use learned or unlearned vocalizations in a variety of social interactions. They have telencephalic auditory areas specialized for processing natural sounds and considered as playing a critical role in the discrimination of behaviorally relevant vocal sounds. The zebra finch, a highly social songbird species, forms lifelong pair bonds. Only male zebra finches sing. However, both sexes produce the distance call when placed in visual isolation. This call is sexually dimorphic, is learned only in males and provides support for individual recognition in both sexes. Here, we assessed whether auditory processing of distance calls differs between paired males and females by recording spiking activity in a secondary auditory area, the caudolateral mesopallium (CLM), while presenting the distance calls of a variety of individuals, including the bird itself, the mate, familiar and unfamiliar males and females. In males, the CLM is potentially involved in auditory feedback processing important for vocal learning. Based on both the analyses of spike rates and temporal aspects of discharges, our results clearly indicate that call-evoked responses of CLM neurons are sexually dimorphic, being stronger, lasting longer, and conveying more information about calls in males than in females. In addition, how auditory responses vary among call types differ between sexes. In females, response strength differs between familiar male and female calls. In males, temporal features of responses reveal a sensitivity to the bird's own call. These findings provide evidence that sexual dimorphism occurs in higher-order processing areas within the auditory system. They suggest a sexual dimorphism in the function of the CLM, contributing to transmit information about the self-generated calls in males and to storage of information about the

  3. Sex differences in the representation of call stimuli in a songbird secondary auditory area

    Directory of Open Access Journals (Sweden)

    Nicolas eGiret

    2015-10-01

    Full Text Available Understanding how communication sounds are encoded in the central auditory system is critical to deciphering the neural bases of acoustic communication. Songbirds use learned or unlearned vocalizations in a variety of social interactions. They have telencephalic auditory areas specialized for processing natural sounds and considered as playing a critical role in the discrimination of behaviorally relevant vocal sounds. The zebra finch, a highly social songbird species, forms lifelong pair bonds. Only male zebra finches sing. However, both sexes produce the distance call when placed in visual isolation. This call is sexually dimorphic, is learned only in males and provides support for individual recognition in both sexes. Here, we assessed whether auditory processing of distance calls differs between paired males and females by recording spiking activity in a secondary auditory area, the caudolateral mesopallium (CLM, while presenting the distance calls of a variety of individuals, including the bird itself, the mate, familiar and unfamiliar males and females. In males, the CLM is potentially involved in auditory feedback processing important for vocal learning. Based on both the analyses of spike rates and temporal aspects of discharges, our results clearly indicate that call-evoked responses of CLM neurons are sexually dimorphic, being stronger, lasting longer and conveying more information about calls in males than in females. In addition, how auditory responses vary among call types differ between sexes. In females, response strength differs between familiar male and female calls. In males, temporal features of responses reveal a sensitivity to the bird’s own call. These findings provide evidence that sexual dimorphism occurs in higher-order processing areas within the auditory system. They suggest a sexual dimorphism in the function of the CLM, contributing to transmit information about the self-generated calls in males and to storage of

  4. Auditory Association Cortex Lesions Impair Auditory Short-Term Memory in Monkeys

    Science.gov (United States)

    Colombo, Michael; D'Amato, Michael R.; Rodman, Hillary R.; Gross, Charles G.

    1990-01-01

    Monkeys that were trained to perform auditory and visual short-term memory tasks (delayed matching-to-sample) received lesions of the auditory association cortex in the superior temporal gyrus. Although visual memory was completely unaffected by the lesions, auditory memory was severely impaired. Despite this impairment, all monkeys could discriminate sounds closer in frequency than those used in the auditory memory task. This result suggests that the superior temporal cortex plays a role in auditory processing and retention similar to the role the inferior temporal cortex plays in visual processing and retention.

  5. Psychometric properties of Persian version of the Sustained Auditory Attention Capacity Test in children with attention deficit-hyperactivity disorder.

    Science.gov (United States)

    Soltanparast, Sanaz; Jafari, Zahra; Sameni, Seyed Jalal; Salehi, Masoud

    2014-01-01

    The purpose of the present study was to evaluate the psychometric properties (validity and reliability) of the Persian version of the Sustained Auditory Attention Capacity Test in children with attention deficit hyperactivity disorder. The Persian version of the Sustained Auditory Attention Capacity Test was constructed to assess sustained auditory attention using the method provided by Feniman and colleagues (2007). In this test, comments were provided to assess the child's attentional deficit by determining inattention and impulsiveness error, the total scores of the sustained auditory attention capacity test and attention span reduction index. In the present study for determining the validity and reliability of in both Rey Auditory Verbal Learning test and the Persian version of the Sustained Auditory Attention Capacity Test (SAACT), 46 normal children and 41 children with Attention Deficit Hyperactivity (ADHD), all right-handed and aged between 7 and 11 of both genders, were evaluated. In determining convergent validity, a negative significant correlation was found between the three parts of the Rey Auditory Verbal Learning test (first, fifth, and immediate recall) and all indicators of the SAACT except attention span reduction. By comparing the test scores between the normal and ADHD groups, discriminant validity analysis showed significant differences in all indicators of the test except for attention span reduction (pAttention Capacity test has good validity and reliability, that matches other reliable tests, and it can be used for the identification of children with attention deficits and if they suspected to have Attention Deficit Hyperactivity Disorder.

  6. The combination of appetitive and aversive reinforcers and the nature of their interaction during auditory learning.

    Science.gov (United States)

    Ilango, A; Wetzel, W; Scheich, H; Ohl, F W

    2010-03-31

    Learned changes in behavior can be elicited by either appetitive or aversive reinforcers. It is, however, not clear whether the two types of motivation, (approaching appetitive stimuli and avoiding aversive stimuli) drive learning in the same or different ways, nor is their interaction understood in situations where the two types are combined in a single experiment. To investigate this question we have developed a novel learning paradigm for Mongolian gerbils, which not only allows rewards and punishments to be presented in isolation or in combination with each other, but also can use these opposite reinforcers to drive the same learned behavior. Specifically, we studied learning of tone-conditioned hurdle crossing in a shuttle box driven by either an appetitive reinforcer (brain stimulation reward) or an aversive reinforcer (electrical footshock), or by a combination of both. Combination of the two reinforcers potentiated speed of acquisition, led to maximum possible performance, and delayed extinction as compared to either reinforcer alone. Additional experiments, using partial reinforcement protocols and experiments in which one of the reinforcers was omitted after the animals had been previously trained with the combination of both reinforcers, indicated that appetitive and aversive reinforcers operated together but acted in different ways: in this particular experimental context, punishment appeared to be more effective for initial acquisition and reward more effective to maintain a high level of conditioned responses (CRs). The results imply that learning mechanisms in problem solving were maximally effective when the initial punishment of mistakes was combined with the subsequent rewarding of correct performance. Copyright 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. Explosion Monitoring with Machine Learning: A LSTM Approach to Seismic Event Discrimination

    Science.gov (United States)

    Magana-Zook, S. A.; Ruppert, S. D.

    2017-12-01

    The streams of seismic data that analysts look at to discriminate natural from man- made events will soon grow from gigabytes of data per day to exponentially larger rates. This is an interesting problem as the requirement for real-time answers to questions of non-proliferation will remain the same, and the analyst pool cannot grow as fast as the data volume and velocity will. Machine learning is a tool that can solve the problem of seismic explosion monitoring at scale. Using machine learning, and Long Short-term Memory (LSTM) models in particular, analysts can become more efficient by focusing their attention on signals of interest. From a global dataset of earthquake and explosion events, a model was trained to recognize the different classes of events, given their spectrograms. Optimal recurrent node count and training iterations were found, and cross validation was performed to evaluate model performance. A 10-fold mean accuracy of 96.92% was achieved on a balanced dataset of 30,002 instances. Given that the model is 446.52 MB it can be used to simultaneously characterize all incoming signals by researchers looking at events in isolation on desktop machines, as well as at scale on all of the nodes of a real-time streaming platform. LLNL-ABS-735911

  8. Auditory Evoked Potential: a proposal for further evaluation in children with learning disabilities

    Directory of Open Access Journals (Sweden)

    Ana Claudia Figueiredo Frizzo

    2015-06-01

    Full Text Available The information presented in this paper demonstrates the author's experience in previews cross-sectional studies conducted in Brazil, in comparison with the current literature. Over the last ten years, AEP has been used in children with learning disabilities. This method is critical to analyze the quality of the processing in time and indicates the specific neural demands and circuits of the sensorial and cognitive process in this clinical population. Some studies with children with dyslexia and learning disabilities were shown here to illustrate the use of AEP in this population.

  9. Amygdala and auditory cortex exhibit distinct sensitivity to relevant acoustic features of auditory emotions.

    Science.gov (United States)

    Pannese, Alessia; Grandjean, Didier; Frühholz, Sascha

    2016-12-01

    Discriminating between auditory signals of different affective value is critical to successful social interaction. It is commonly held that acoustic decoding of such signals occurs in the auditory system, whereas affective decoding occurs in the amygdala. However, given that the amygdala receives direct subcortical projections that bypass the auditory cortex, it is possible that some acoustic decoding occurs in the amygdala as well, when the acoustic features are relevant for affective discrimination. We tested this hypothesis by combining functional neuroimaging with the neurophysiological phenomena of repetition suppression (RS) and repetition enhancement (RE) in human listeners. Our results show that both amygdala and auditory cortex responded differentially to physical voice features, suggesting that the amygdala and auditory cortex decode the affective quality of the voice not only by processing the emotional content from previously processed acoustic features, but also by processing the acoustic features themselves, when these are relevant to the identification of the voice's affective value. Specifically, we found that the auditory cortex is sensitive to spectral high-frequency voice cues when discriminating vocal anger from vocal fear and joy, whereas the amygdala is sensitive to vocal pitch when discriminating between negative vocal emotions (i.e., anger and fear). Vocal pitch is an instantaneously recognized voice feature, which is potentially transferred to the amygdala by direct subcortical projections. These results together provide evidence that, besides the auditory cortex, the amygdala too processes acoustic information, when this is relevant to the discrimination of auditory emotions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Learning to Match Auditory and Visual Speech Cues: Social Influences on Acquisition of Phonological Categories

    Science.gov (United States)

    Altvater-Mackensen, Nicole; Grossmann, Tobias

    2015-01-01

    Infants' language exposure largely involves face-to-face interactions providing acoustic and visual speech cues but also social cues that might foster language learning. Yet, both audiovisual speech information and social information have so far received little attention in research on infants' early language development. Using a preferential…

  11. A possible structural correlate of learning performance on a colour discrimination task in the brain of the bumblebee

    Science.gov (United States)

    Li, Li; MaBouDi, HaDi; Egertová, Michaela; Elphick, Maurice R.

    2017-01-01

    Synaptic plasticity is considered to be a basis for learning and memory. However, the relationship between synaptic arrangements and individual differences in learning and memory is poorly understood. Here, we explored how the density of microglomeruli (synaptic complexes) within specific regions of the bumblebee (Bombus terrestris) brain relates to both visual learning and inter-individual differences in learning and memory performance on a visual discrimination task. Using whole-brain immunolabelling, we measured the density of microglomeruli in the collar region (visual association areas) of the mushroom bodies of the bumblebee brain. We found that bumblebees which made fewer errors during training in a visual discrimination task had higher microglomerular density. Similarly, bumblebees that had better retention of the learned colour-reward associations two days after training had higher microglomerular density. Further experiments indicated experience-dependent changes in neural circuitry: learning a colour-reward contingency with 10 colours (but not two colours) does result, and exposure to many different colours may result, in changes to microglomerular density in the collar region of the mushroom bodies. These results reveal the varying roles that visual experience, visual learning and foraging activity have on neural structure. Although our study does not provide a causal link between microglomerular density and performance, the observed positive correlations provide new insights for future studies into how neural structure may relate to inter-individual differences in learning and memory. PMID:28978727

  12. A possible structural correlate of learning performance on a colour discrimination task in the brain of the bumblebee.

    Science.gov (United States)

    Li, Li; MaBouDi, HaDi; Egertová, Michaela; Elphick, Maurice R; Chittka, Lars; Perry, Clint J

    2017-10-11

    Synaptic plasticity is considered to be a basis for learning and memory. However, the relationship between synaptic arrangements and individual differences in learning and memory is poorly understood. Here, we explored how the density of microglomeruli (synaptic complexes) within specific regions of the bumblebee ( Bombus terrestris ) brain relates to both visual learning and inter-individual differences in learning and memory performance on a visual discrimination task. Using whole-brain immunolabelling, we measured the density of microglomeruli in the collar region (visual association areas) of the mushroom bodies of the bumblebee brain. We found that bumblebees which made fewer errors during training in a visual discrimination task had higher microglomerular density. Similarly, bumblebees that had better retention of the learned colour-reward associations two days after training had higher microglomerular density. Further experiments indicated experience-dependent changes in neural circuitry: learning a colour-reward contingency with 10 colours (but not two colours) does result, and exposure to many different colours may result, in changes to microglomerular density in the collar region of the mushroom bodies. These results reveal the varying roles that visual experience, visual learning and foraging activity have on neural structure. Although our study does not provide a causal link between microglomerular density and performance, the observed positive correlations provide new insights for future studies into how neural structure may relate to inter-individual differences in learning and memory. © 2017 The Authors.

  13. Learning temporal context shapes prestimulus alpha oscillations and improves visual discrimination performance.

    Science.gov (United States)

    Toosi, Tahereh; K Tousi, Ehsan; Esteky, Hossein

    2017-08-01

    Time is an inseparable component of every physical event that we perceive, yet it is not clear how the brain processes time or how the neuronal representation of time affects our perception of events. Here we asked subjects to perform a visual discrimination task while we changed the temporal context in which the stimuli were presented. We collected electroencephalography (EEG) signals in two temporal contexts. In predictable blocks stimuli were presented after a constant delay relative to a visual cue, and in unpredictable blocks stimuli were presented after variable delays relative to the visual cue. Four subsecond delays of 83, 150, 400, and 800 ms were used in the predictable and unpredictable blocks. We observed that predictability modulated the power of prestimulus alpha oscillations in the parieto-occipital sites: alpha power increased in the 300-ms window before stimulus onset in the predictable blocks compared with the unpredictable blocks. This modulation only occurred in the longest delay period, 800 ms, in which predictability also improved the behavioral performance of the subjects. Moreover, learning the temporal context shaped the prestimulus alpha power: modulation of prestimulus alpha power grew during the predictable block and correlated with performance enhancement. These results suggest that the brain is able to learn the subsecond temporal context of stimuli and use this to enhance sensory processing. Furthermore, the neural correlate of this temporal prediction is reflected in the alpha oscillations. NEW & NOTEWORTHY It is not well understood how the uncertainty in the timing of an external event affects its processing, particularly at subsecond scales. Here we demonstrate how a predictable timing scheme improves visual processing. We found that learning the predictable scheme gradually shaped the prestimulus alpha power. These findings indicate that the human brain is able to extract implicit subsecond patterns in the temporal context of

  14. Magnetic field discrimination, learning, and memory in the yellow stingray (Urobatis jamaicensis).

    Science.gov (United States)

    Newton, Kyle C; Kajiura, Stephen M

    2017-07-01

    Elasmobranch fishes (sharks, skates, and rays) have been hypothesized to use the geomagnetic field as a cue for orienting and navigating across a wide range of spatial scales. Magnetoreception has been demonstrated in many invertebrate and vertebrate taxa, including elasmobranchs, but this sensory modality and the cognitive abilities of cartilaginous fishes are poorly studied. Wild caught yellow stingrays, Urobatis jamaicensis (N = 8), underwent conditioning to associate a magnetic stimulus with a food reward in order to elicit foraging behaviors. Behavioral conditioning consisted of burying magnets and non-magnetic controls at random locations within a test arena and feeding stingrays as they passed over the hidden magnets. The location of the magnets and controls was changed for each trial, and all confounding sensory cues were eliminated. The stingrays learned to discriminate the magnetic stimuli within a mean of 12.6 ± 0.7 SE training sessions of four trials per session. Memory probes were conducted at intervals between 90 and 180 days post-learning criterion, and six of eight stingrays completed the probes with a ≥75% success rate and minimum latency to complete the task. These results show the fastest rate of learning and longest memory window for any batoid (skate or ray) to date. This study demonstrates that yellow stingrays, and possibly other elasmobranchs, can use a magnetic stimulus as a geographic marker for the location of resources and is an important step toward understanding whether these fishes use geomagnetic cues during spatial navigation tasks in the natural environment.

  15. Improved object optimal synthetic description, modeling, learning, and discrimination by GEOGINE computational kernel

    Science.gov (United States)

    Fiorini, Rodolfo A.; Dacquino, Gianfranco

    2005-03-01

    GEOGINE (GEOmetrical enGINE), a state-of-the-art OMG (Ontological Model Generator) based on n-D Tensor Invariants for n-Dimensional shape/texture optimal synthetic representation, description and learning, was presented in previous conferences elsewhere recently. Improved computational algorithms based on the computational invariant theory of finite groups in Euclidean space and a demo application is presented. Progressive model automatic generation is discussed. GEOGINE can be used as an efficient computational kernel for fast reliable application development and delivery in advanced biomedical engineering, biometric, intelligent computing, target recognition, content image retrieval, data mining technological areas mainly. Ontology can be regarded as a logical theory accounting for the intended meaning of a formal dictionary, i.e., its ontological commitment to a particular conceptualization of the world object. According to this approach, "n-D Tensor Calculus" can be considered a "Formal Language" to reliably compute optimized "n-Dimensional Tensor Invariants" as specific object "invariant parameter and attribute words" for automated n-Dimensional shape/texture optimal synthetic object description by incremental model generation. The class of those "invariant parameter and attribute words" can be thought as a specific "Formal Vocabulary" learned from a "Generalized Formal Dictionary" of the "Computational Tensor Invariants" language. Even object chromatic attributes can be effectively and reliably computed from object geometric parameters into robust colour shape invariant characteristics. As a matter of fact, any highly sophisticated application needing effective, robust object geometric/colour invariant attribute capture and parameterization features, for reliable automated object learning and discrimination can deeply benefit from GEOGINE progressive automated model generation computational kernel performance. Main operational advantages over previous

  16. Responses of mink to auditory stimuli: Prerequisites for applying the ‘cognitive bias’ approach

    DEFF Research Database (Denmark)

    Svendsen, Pernille Maj; Malmkvist, Jens; Halekoh, Ulrich

    2012-01-01

    The aim of the study was to determine and validate prerequisites for applying a cognitive (judgement) bias approach to assessing welfare in farmed mink (Neovison vison). We investigated discrimination ability and associative learning ability using auditory cues. The mink (n = 15 females) were...... farmed mink in a judgement bias approach would thus appear to be feasible. However several specific issues are to be considered in order to successfully adapt a cognitive bias approach to mink, and these are discussed....

  17. Effects of X-ray radiation on complex visual discrimination learning and social recognition memory in rats.

    Directory of Open Access Journals (Sweden)

    Catherine M Davis

    Full Text Available The present report describes an animal model for examining the effects of radiation on a range of neurocognitive functions in rodents that are similar to a number of basic human cognitive functions. Fourteen male Long-Evans rats were trained to perform an automated intra-dimensional set shifting task that consisted of their learning a basic discrimination between two stimulus shapes followed by more complex discrimination stages (e.g., a discrimination reversal, a compound discrimination, a compound reversal, a new shape discrimination, and an intra-dimensional stimulus discrimination reversal. One group of rats was exposed to head-only X-ray radiation (2.3 Gy at a dose rate of 1.9 Gy/min, while a second group received a sham-radiation exposure using the same anesthesia protocol. The irradiated group responded less, had elevated numbers of omitted trials, increased errors, and greater response latencies compared to the sham-irradiated control group. Additionally, social odor recognition memory was tested after radiation exposure by assessing the degree to which rats explored wooden beads impregnated with either their own odors or with the odors of novel, unfamiliar rats; however, no significant effects of radiation on social odor recognition memory were observed. These data suggest that rodent tasks assessing higher-level human cognitive domains are useful in examining the effects of radiation on the CNS, and may be applicable in approximating CNS risks from radiation exposure in clinical populations receiving whole brain irradiation.

  18. Effects of X-ray radiation on complex visual discrimination learning and social recognition memory in rats.

    Science.gov (United States)

    Davis, Catherine M; Roma, Peter G; Armour, Elwood; Gooden, Virginia L; Brady, Joseph V; Weed, Michael R; Hienz, Robert D

    2014-01-01

    The present report describes an animal model for examining the effects of radiation on a range of neurocognitive functions in rodents that are similar to a number of basic human cognitive functions. Fourteen male Long-Evans rats were trained to perform an automated intra-dimensional set shifting task that consisted of their learning a basic discrimination between two stimulus shapes followed by more complex discrimination stages (e.g., a discrimination reversal, a compound discrimination, a compound reversal, a new shape discrimination, and an intra-dimensional stimulus discrimination reversal). One group of rats was exposed to head-only X-ray radiation (2.3 Gy at a dose rate of 1.9 Gy/min), while a second group received a sham-radiation exposure using the same anesthesia protocol. The irradiated group responded less, had elevated numbers of omitted trials, increased errors, and greater response latencies compared to the sham-irradiated control group. Additionally, social odor recognition memory was tested after radiation exposure by assessing the degree to which rats explored wooden beads impregnated with either their own odors or with the odors of novel, unfamiliar rats; however, no significant effects of radiation on social odor recognition memory were observed. These data suggest that rodent tasks assessing higher-level human cognitive domains are useful in examining the effects of radiation on the CNS, and may be applicable in approximating CNS risks from radiation exposure in clinical populations receiving whole brain irradiation.

  19. Effects of X-Ray Radiation on Complex Visual Discrimination Learning and Social Recognition Memory in Rats

    Science.gov (United States)

    Davis, Catherine M.; Roma, Peter G.; Armour, Elwood; Gooden, Virginia L.; Brady, Joseph V.; Weed, Michael R.; Hienz, Robert D.

    2014-01-01

    The present report describes an animal model for examining the effects of radiation on a range of neurocognitive functions in rodents that are similar to a number of basic human cognitive functions. Fourteen male Long-Evans rats were trained to perform an automated intra-dimensional set shifting task that consisted of their learning a basic discrimination between two stimulus shapes followed by more complex discrimination stages (e.g., a discrimination reversal, a compound discrimination, a compound reversal, a new shape discrimination, and an intra-dimensional stimulus discrimination reversal). One group of rats was exposed to head-only X-ray radiation (2.3 Gy at a dose rate of 1.9 Gy/min), while a second group received a sham-radiation exposure using the same anesthesia protocol. The irradiated group responded less, had elevated numbers of omitted trials, increased errors, and greater response latencies compared to the sham-irradiated control group. Additionally, social odor recognition memory was tested after radiation exposure by assessing the degree to which rats explored wooden beads impregnated with either their own odors or with the odors of novel, unfamiliar rats; however, no significant effects of radiation on social odor recognition memory were observed. These data suggest that rodent tasks assessing higher-level human cognitive domains are useful in examining the effects of radiation on the CNS, and may be applicable in approximating CNS risks from radiation exposure in clinical populations receiving whole brain irradiation. PMID:25099152

  20. On the learning difficulty of visual and auditory modal concepts: Evidence for a single processing system.

    Science.gov (United States)

    Vigo, Ronaldo; Doan, Karina-Mikayla C; Doan, Charles A; Pinegar, Shannon

    2018-02-01

    The logic operators (e.g., "and," "or," "if, then") play a fundamental role in concept formation, syntactic construction, semantic expression, and deductive reasoning. In spite of this very general and basic role, there are relatively few studies in the literature that focus on their conceptual nature. In the current investigation, we examine, for the first time, the learning difficulty experienced by observers in classifying members belonging to these primitive "modal concepts" instantiated with sets of acoustic and visual stimuli. We report results from two categorization experiments that suggest the acquisition of acoustic and visual modal concepts is achieved by the same general cognitive mechanism. Additionally, we attempt to account for these results with two models of concept learning difficulty: the generalized invariance structure theory model (Vigo in Cognition 129(1):138-162, 2013, Mathematical principles of human conceptual behavior, Routledge, New York, 2014) and the generalized context model (Nosofsky in J Exp Psychol Learn Mem Cogn 10(1):104-114, 1984, J Exp Psychol 115(1):39-57, 1986).

  1. Auditory Neuropathy

    Science.gov (United States)

    ... children and adults with auditory neuropathy. Cochlear implants (electronic devices that compensate for damaged or nonworking parts ... and Drug Administration: Information on Cochlear Implants Telecommunications Relay Services Your Baby's Hearing Screening News Deaf health ...

  2. Discriminative Structured Dictionary Learning on Grassmann Manifolds and Its Application on Image Restoration.

    Science.gov (United States)

    Pan, Han; Jing, Zhongliang; Qiao, Lingfeng; Li, Minzhe

    2017-09-25

    Image restoration is a difficult and challenging problem in various imaging applications. However, despite of the benefits of a single overcomplete dictionary, there are still several challenges for capturing the geometric structure of image of interest. To more accurately represent the local structures of the underlying signals, we propose a new problem formulation for sparse representation with block-orthogonal constraint. There are three contributions. First, a framework for discriminative structured dictionary learning is proposed, which leads to a smooth manifold structure and quotient search spaces. Second, an alternating minimization scheme is proposed after taking both the cost function and the constraints into account. This is achieved by iteratively alternating between updating the block structure of the dictionary defined on Grassmann manifold and sparsifying the dictionary atoms automatically. Third, Riemannian conjugate gradient is considered to track local subspaces efficiently with a convergence guarantee. Extensive experiments on various datasets demonstrate that the proposed method outperforms the state-of-the-art methods on the removal of mixed Gaussian-impulse noise.

  3. Auditory hallucinations.

    Science.gov (United States)

    Blom, Jan Dirk

    2015-01-01

    Auditory hallucinations constitute a phenomenologically rich group of endogenously mediated percepts which are associated with psychiatric, neurologic, otologic, and other medical conditions, but which are also experienced by 10-15% of all healthy individuals in the general population. The group of phenomena is probably best known for its verbal auditory subtype, but it also includes musical hallucinations, echo of reading, exploding-head syndrome, and many other types. The subgroup of verbal auditory hallucinations has been studied extensively with the aid of neuroimaging techniques, and from those studies emerges an outline of a functional as well as a structural network of widely distributed brain areas involved in their mediation. The present chapter provides an overview of the various types of auditory hallucination described in the literature, summarizes our current knowledge of the auditory networks involved in their mediation, and draws on ideas from the philosophy of science and network science to reconceptualize the auditory hallucinatory experience, and point out directions for future research into its neurobiologic substrates. In addition, it provides an overview of known associations with various clinical conditions and of the existing evidence for pharmacologic and non-pharmacologic treatments. © 2015 Elsevier B.V. All rights reserved.

  4. Stuttering adults' lack of pre-speech auditory modulation normalizes when speaking with delayed auditory feedback.

    Science.gov (United States)

    Daliri, Ayoub; Max, Ludo

    2018-02-01

    Auditory modulation during speech movement planning is limited in adults who stutter (AWS), but the functional relevance of the phenomenon itself remains unknown. We investigated for AWS and adults who do not stutter (AWNS) (a) a potential relationship between pre-speech auditory modulation and auditory feedback contributions to speech motor learning and (b) the effect on pre-speech auditory modulation of real-time versus delayed auditory feedback. Experiment I used a sensorimotor adaptation paradigm to estimate auditory-motor speech learning. Using acoustic speech recordings, we quantified subjects' formant frequency adjustments across trials when continually exposed to formant-shifted auditory feedback. In Experiment II, we used electroencephalography to determine the same subjects' extent of pre-speech auditory modulation (reductions in auditory evoked potential N1 amplitude) when probe tones were delivered prior to speaking versus not speaking. To manipulate subjects' ability to monitor real-time feedback, we included speaking conditions with non-altered auditory feedback (NAF) and delayed auditory feedback (DAF). Experiment I showed that auditory-motor learning was limited for AWS versus AWNS, and the extent of learning was negatively correlated with stuttering frequency. Experiment II yielded several key findings: (a) our prior finding of limited pre-speech auditory modulation in AWS was replicated; (b) DAF caused a decrease in auditory modulation for most AWNS but an increase for most AWS; and (c) for AWS, the amount of auditory modulation when speaking with DAF was positively correlated with stuttering frequency. Lastly, AWNS showed no correlation between pre-speech auditory modulation (Experiment II) and extent of auditory-motor learning (Experiment I) whereas AWS showed a negative correlation between these measures. Thus, findings suggest that AWS show deficits in both pre-speech auditory modulation and auditory-motor learning; however, limited pre

  5. Neural biomarkers for dyslexia, ADHD and ADD in the auditory cortex of children

    Directory of Open Access Journals (Sweden)

    Bettina Serrallach

    2016-07-01

    Full Text Available Dyslexia, attention deficit hyperactivity disorder (ADHD, and attention deficit disorder (ADD show distinct clinical profiles that may include auditory and language-related impairments. Currently, an objective brain-based diagnosis of these developmental disorders is still unavailable. We investigated the neuro-auditory systems of dyslexic, ADHD, ADD, and age-matched control children (N=147 using neuroimaging, magnet-encephalography and psychoacoustics. All disorder subgroups exhibited an oversized left planum temporale and an abnormal interhemispheric asynchrony (10-40 ms of the primary auditory evoked P1-response. Considering right auditory cortex morphology, bilateral P1 source waveform shapes, and auditory performance, the three disorder subgroups could be reliably differentiated with outstanding accuracies of 89-98%. We therefore for the first time provide differential biomarkers for a brain-based diagnosis of dyslexia, ADHD, and ADD. The method allowed not only a clear discrimination between two subtypes of attentional disorders (ADHD and ADD, a topic controversially discussed for decades in the scientific community, but also revealed the potential for objectively identifying comorbid cases. Noteworthy, in children playing a musical instrument, after three and a half years of training the observed interhemispheric asynchronies were reduced by about 2/3, thus suggesting a strong beneficial influence of music experience on brain development. These findings might have far-reaching implications for both research and practice and enable a profound understanding of the brain-related etiology, diagnosis, and musically based therapy of common auditory-related developmental disorders and learning disabilities.

  6. Multisensory perceptual learning of temporal order: audiovisual learning transfers to vision but not audition.

    Directory of Open Access Journals (Sweden)

    David Alais

    2010-06-01

    Full Text Available An outstanding question in sensory neuroscience is whether the perceived timing of events is mediated by a central supra-modal timing mechanism, or multiple modality-specific systems. We use a perceptual learning paradigm to address this question.Three groups were trained daily for 10 sessions on an auditory, a visual or a combined audiovisual temporal order judgment (TOJ. Groups were pre-tested on a range TOJ tasks within and between their group modality prior to learning so that transfer of any learning from the trained task could be measured by post-testing other tasks. Robust TOJ learning (reduced temporal order discrimination thresholds occurred for all groups, although auditory learning (dichotic 500/2000 Hz tones was slightly weaker than visual learning (lateralised grating patches. Crossmodal TOJs also displayed robust learning. Post-testing revealed that improvements in temporal resolution acquired during visual learning transferred within modality to other retinotopic locations and orientations, but not to auditory or crossmodal tasks. Auditory learning did not transfer to visual or crossmodal tasks, and neither did it transfer within audition to another frequency pair. In an interesting asymmetry, crossmodal learning transferred to all visual tasks but not to auditory tasks. Finally, in all conditions, learning to make TOJs for stimulus onsets did not transfer at all to discriminating temporal offsets. These data present a complex picture of timing processes.The lack of transfer between unimodal groups indicates no central supramodal timing process for this task; however, the audiovisual-to-visual transfer cannot be explained without some form of sensory interaction. We propose that auditory learning occurred in frequency-tuned processes in the periphery, precluding interactions with more central visual and audiovisual timing processes. Functionally the patterns of featural transfer suggest that perceptual learning of temporal order

  7. Multisensory perceptual learning of temporal order: audiovisual learning transfers to vision but not audition.

    Science.gov (United States)

    Alais, David; Cass, John

    2010-06-23

    An outstanding question in sensory neuroscience is whether the perceived timing of events is mediated by a central supra-modal timing mechanism, or multiple modality-specific systems. We use a perceptual learning paradigm to address this question. Three groups were trained daily for 10 sessions on an auditory, a visual or a combined audiovisual temporal order judgment (TOJ). Groups were pre-tested on a range TOJ tasks within and between their group modality prior to learning so that transfer of any learning from the trained task could be measured by post-testing other tasks. Robust TOJ learning (reduced temporal order discrimination thresholds) occurred for all groups, although auditory learning (dichotic 500/2000 Hz tones) was slightly weaker than visual learning (lateralised grating patches). Crossmodal TOJs also displayed robust learning. Post-testing revealed that improvements in temporal resolution acquired during visual learning transferred within modality to other retinotopic locations and orientations, but not to auditory or crossmodal tasks. Auditory learning did not transfer to visual or crossmodal tasks, and neither did it transfer within audition to another frequency pair. In an interesting asymmetry, crossmodal learning transferred to all visual tasks but not to auditory tasks. Finally, in all conditions, learning to make TOJs for stimulus onsets did not transfer at all to discriminating temporal offsets. These data present a complex picture of timing processes. The lack of transfer between unimodal groups indicates no central supramodal timing process for this task; however, the audiovisual-to-visual transfer cannot be explained without some form of sensory interaction. We propose that auditory learning occurred in frequency-tuned processes in the periphery, precluding interactions with more central visual and audiovisual timing processes. Functionally the patterns of featural transfer suggest that perceptual learning of temporal order may be

  8. Desempenho de escolares com distúrbio de aprendizagem e dislexia em testes de processamento auditivo Performance of students with learning disabilities and dyslexia on auditory processing tests

    Directory of Open Access Journals (Sweden)

    Adriana Marques de Oliveira

    2011-06-01

    Full Text Available OBJETIVO: caracterizar e comparar, por meio de testes comportamentais, o processamento auditivo de escolares com diagnóstico interdisciplinar de (I distúrbio da aprendizagem, (II dislexia e (III escolares com bom desempenho acadêmico. MÉTODOS: participaram deste estudo 30 escolares na faixa etária de 8 a 16 anos de idade, de ambos os gêneros, de 2ª a 4ª séries do ensino fundamental, divididos em três grupos: GI composto por 10 escolares com diagnóstico interdisciplinar de distúrbio de aprendizagem, GII: composto por 10 escolares com diagnóstico interdisciplinar de dislexia e GIII composto por 10 escolares sem dificuldades de aprendizagem, pareados segundo gênero e faixa etária com os grupos GI e GII. Foram realizadas avaliação audiológica e de processamento auditivo. RESULTADOS: os escolares de GIII apresentaram desempenho superior nos testes de processamento auditivo em relação aos escolares de GI e GII. GI apresentou desempenho inferior nas habilidades auditivas avaliadas para testes dicóticos de dígitos e dissílabos alternados, logoaudiometria pediátrica, localização sonora, memória verbal e não-verbal, ao passo que GII apresentou as mesmas alterações de GI, com exceção do teste de logoaudiometria pediátrica. CONCLUSÃO: os escolares com transtornos de aprendizagem apresentaram desempenho inferior nos testes de processamento auditivo, sendo que os escolares com distúrbio de aprendizagem apresentaram maior número de habilidades auditivas alteradas, em comparação com os escolares com dislexia, por terem apresentado atenção sustentada reduzida. O grupo de escolares com dislexia apresentou alterações decorrentes da dificuldade relacionada à codificação e decodificação de estímulos sonoros.PURPOSE: to characterize and compare, by means of behavioral tests, the auditory processing of students with an interdisciplinary diagnosis of (I learning disorder, (II dyslexia and (III students with good academic

  9. Auditory Evoked Responses in Neonates by MEG

    International Nuclear Information System (INIS)

    Hernandez-Pavon, J. C.; Sosa, M.; Lutter, W. J.; Maier, M.; Wakai, R. T.

    2008-01-01

    Magnetoencephalography is a biomagnetic technique with outstanding potential for neurodevelopmental studies. In this work, we have used MEG to determinate if newborns can discriminate between different stimuli during the first few months of life. Five neonates were stimulated during several minutes with auditory stimulation. The results suggest that the newborns are able to discriminate between different stimuli despite their early age

  10. Discrimination of plant root zone water status in greenhouse production based on phenotyping and machine learning techniques

    OpenAIRE

    Guo, Doudou; Juan, Jiaxiang; Chang, Liying; Zhang, Jingjin; Huang, Danfeng

    2017-01-01

    Plant-based sensing on water stress can provide sensitive and direct reference for precision irrigation system in greenhouse. However, plant information acquisition, interpretation, and systematical application remain insufficient. This study developed a discrimination method for plant root zone water status in greenhouse by integrating phenotyping and machine learning techniques. Pakchoi plants were used and treated by three root zone moisture levels, 40%, 60%, and 80% relative water content...

  11. Wavelet transform and real-time learning method for myoelectric signal in motion discrimination

    International Nuclear Information System (INIS)

    Liu Haihua; Chen Xinhao; Chen Yaguang

    2005-01-01

    This paper discusses the applicability of the Wavelet transform for analyzing an EMG signal and discriminating motion classes. In many previous works, researchers have dealt with steady EMG and have proposed suitable analyzing methods for the EMG, for example FFT and STFT. Therefore, it is difficult for the previous approaches to discriminate motions from the EMG in the different phases of muscle activity, i.e., pre-activity, in activity, postactivity phases, as well as the period of motion transition from one to another. In this paper, we introduce the Wavelet transform using the Coiflet mother wavelet into our real-time EMG prosthetic hand controller for discriminating motions from steady and unsteady EMG. A preliminary experiment to discriminate three hand motions from four channel EMG in the initial pre-activity and in activity phase is carried out to show the effectiveness of the approach. However, future research efforts are necessary to discriminate more motions much precisely

  12. Transfer of perceptual learning of depth discrimination between local and global stereograms.

    Science.gov (United States)

    Gantz, Liat; Bedell, Harold E

    2010-08-23

    Several previous studies reported differences when stereothresholds are assessed with local-contour stereograms vs. complex random-dot stereograms (RDSs). Dissimilar thresholds may be due to differences in the properties of the stereograms (e.g. spatial frequency content, contrast, inter-element separation, area) or to different underlying processing mechanisms. This study examined the transfer of perceptual learning of depth discrimination between local and global RDSs with similar properties, and vice versa. If global and local stereograms are processed by separate neural mechanisms, then the magnitude and rate of training for the two types of stimuli are likely to differ, and the transfer of training from one stimulus type to the other should be minimal. Based on previous results, we chose RDSs with element densities of 0.17% and 28.3% to serve as the local and global stereograms, respectively. Fourteen inexperienced subjects with normal binocular vision were randomly assigned to either a local- or global- RDS training group. Stereothresholds for both stimulus types were measured before and after 7700 training trials distributed over 10 sessions. Stereothresholds for the trained condition improve for approximately 3000 trials, by an average of 0.36+/-0.08 for local and 0.29+/-0.10 for global RDSs, and level off thereafter. Neither the rate nor the magnitude of improvement differ statistically between the local- and global-training groups. Further, no significant difference exists in the amount of improvement on the trained vs. the untrained targets for either training group. These results are consistent with the operation of a single mechanism to process both local and global stereograms. Copyright 2010 Elsevier Ltd. All rights reserved.

  13. Short-term plasticity in auditory cognition.

    Science.gov (United States)

    Jääskeläinen, Iiro P; Ahveninen, Jyrki; Belliveau, John W; Raij, Tommi; Sams, Mikko

    2007-12-01

    Converging lines of evidence suggest that auditory system short-term plasticity can enable several perceptual and cognitive functions that have been previously considered as relatively distinct phenomena. Here we review recent findings suggesting that auditory stimulation, auditory selective attention and cross-modal effects of visual stimulation each cause transient excitatory and (surround) inhibitory modulations in the auditory cortex. These modulations might adaptively tune hierarchically organized sound feature maps of the auditory cortex (e.g. tonotopy), thus filtering relevant sounds during rapidly changing environmental and task demands. This could support auditory sensory memory, pre-attentive detection of sound novelty, enhanced perception during selective attention, influence of visual processing on auditory perception and longer-term plastic changes associated with perceptual learning.

  14. Development and evaluation of the LiSN & learn auditory training software for deficit-specific remediation of binaural processing deficits in children: preliminary findings.

    Science.gov (United States)

    Cameron, Sharon; Dillon, Harvey

    2011-01-01

    The LiSN & Learn auditory training software was developed specifically to improve binaural processing skills in children with suspected central auditory processing disorder who were diagnosed as having a spatial processing disorder (SPD). SPD is defined here as a condition whereby individuals are deficient in their ability to use binaural cues to selectively attend to sounds arriving from one direction while simultaneously suppressing sounds arriving from another. As a result, children with SPD have difficulty understanding speech in noisy environments, such as in the classroom. To develop and evaluate the LiSN & Learn auditory training software for children diagnosed with the Listening in Spatialized Noise-Sentences Test (LiSN-S) as having an SPD. The LiSN-S is an adaptive speech-in-noise test designed to differentially diagnose spatial and pitch-processing deficits in children with suspected central auditory processing disorder. Participants were nine children (aged between 6 yr, 9 mo, and 11 yr, 4 mo) who performed outside normal limits on the LiSN-S. In a pre-post study of treatment outcomes, participants trained on the LiSN & Learn for 15 min per day for 12 weeks. Participants acted as their own control. Participants were assessed on the LiSN-S, as well as tests of attention and memory and a self-report questionnaire of listening ability. Performance on all tasks was reassessed after 3 mo where no further training occurred. The LiSN & Learn produces a three-dimensional auditory environment under headphones on the user's home computer. The child's task was to identify a word from a target sentence presented in background noise. A weighted up-down adaptive procedure was used to adjust the signal level of the target based on the participant's response. On average, speech reception thresholds on the LiSN & Learn improved by 10 dB over the course of training. As hypothesized, there were significant improvements in posttraining performance on the LiSN-S conditions

  15. Audiovisual spoken word training can promote or impede auditory-only perceptual learning: prelingually deafened adults with late-acquired cochlear implants versus normal hearing adults.

    Science.gov (United States)

    Bernstein, Lynne E; Eberhardt, Silvio P; Auer, Edward T

    2014-01-01

    Training with audiovisual (AV) speech has been shown to promote auditory perceptual learning of vocoded acoustic speech by adults with normal hearing. In Experiment 1, we investigated whether AV speech promotes auditory-only (AO) perceptual learning in prelingually deafened adults with late-acquired cochlear implants. Participants were assigned to learn associations between spoken disyllabic C(=consonant)V(=vowel)CVC non-sense words and non-sense pictures (fribbles), under AV and then AO (AV-AO; or counter-balanced AO then AV, AO-AV, during Periods 1 then 2) training conditions. After training on each list of paired-associates (PA), testing was carried out AO. Across all training, AO PA test scores improved (7.2 percentage points) as did identification of consonants in new untrained CVCVC stimuli (3.5 percentage points). However, there was evidence that AV training impeded immediate AO perceptual learning: During Period-1, training scores across AV and AO conditions were not different, but AO test scores were dramatically lower in the AV-trained participants. During Period-2 AO training, the AV-AO participants obtained significantly higher AO test scores, demonstrating their ability to learn the auditory speech. Across both orders of training, whenever training was AV, AO test scores were significantly lower than training scores. Experiment 2 repeated the procedures with vocoded speech and 43 normal-hearing adults. Following AV training, their AO test scores were as high as or higher than following AO training. Also, their CVCVC identification scores patterned differently than those of the cochlear implant users. In Experiment 1, initial consonants were most accurate, and in Experiment 2, medial consonants were most accurate. We suggest that our results are consistent with a multisensory reverse hierarchy theory, which predicts that, whenever possible, perceivers carry out perceptual tasks immediately based on the experience and biases they bring to the task. We

  16. Laterality of basic auditory perception.

    Science.gov (United States)

    Sininger, Yvonne S; Bhatara, Anjali

    2012-01-01

    Laterality (left-right ear differences) of auditory processing was assessed using basic auditory skills: (1) gap detection, (2) frequency discrimination, and (3) intensity discrimination. Stimuli included tones (500, 1000, and 4000 Hz) and wide-band noise presented monaurally to each ear of typical adult listeners. The hypothesis tested was that processing of tonal stimuli would be enhanced by left ear (LE) stimulation and noise by right ear (RE) presentations. To investigate the limits of laterality by (1) spectral width, a narrow-band noise (NBN) of 450-Hz bandwidth was evaluated using intensity discrimination, and (2) stimulus duration, 200, 500, and 1000 ms duration tones were evaluated using frequency discrimination. A left ear advantage (LEA) was demonstrated with tonal stimuli in all experiments, but an expected REA for noise stimuli was not found. The NBN stimulus demonstrated no LEA and was characterised as a noise. No change in laterality was found with changes in stimulus durations. The LEA for tonal stimuli is felt to be due to more direct connections between the left ear and the right auditory cortex, which has been shown to be primary for spectral analysis and tonal processing. The lack of a REA for noise stimuli is unexplained. Sex differences in laterality for noise stimuli were noted but were not statistically significant. This study did establish a subtle but clear pattern of LEA for processing of tonal stimuli.

  17. Confidence-Based Data Association and Discriminative Deep Appearance Learning for Robust Online Multi-Object Tracking.

    Science.gov (United States)

    Bae, Seung-Hwan; Yoon, Kuk-Jin

    2018-03-01

    Online multi-object tracking aims at estimating the tracks of multiple objects instantly with each incoming frame and the information provided up to the moment. It still remains a difficult problem in complex scenes, because of the large ambiguity in associating multiple objects in consecutive frames and the low discriminability between objects appearances. In this paper, we propose a robust online multi-object tracking method that can handle these difficulties effectively. We first define the tracklet confidence using the detectability and continuity of a tracklet, and decompose a multi-object tracking problem into small subproblems based on the tracklet confidence. We then solve the online multi-object tracking problem by associating tracklets and detections in different ways according to their confidence values. Based on this strategy, tracklets sequentially grow with online-provided detections, and fragmented tracklets are linked up with others without any iterative and expensive association steps. For more reliable association between tracklets and detections, we also propose a deep appearance learning method to learn a discriminative appearance model from large training datasets, since the conventional appearance learning methods do not provide rich representation that can distinguish multiple objects with large appearance variations. In addition, we combine online transfer learning for improving appearance discriminability by adapting the pre-trained deep model during online tracking. Experiments with challenging public datasets show distinct performance improvement over other state-of-the-arts batch and online tracking methods, and prove the effect and usefulness of the proposed methods for online multi-object tracking.

  18. Dimensional feature weighting utilizing multiple kernel learning for single-channel talker location discrimination using the acoustic transfer function.

    Science.gov (United States)

    Takashima, Ryoichi; Takiguchi, Tetsuya; Ariki, Yasuo

    2013-02-01

    This paper presents a method for discriminating the location of the sound source (talker) using only a single microphone. In a previous work, the single-channel approach for discriminating the location of the sound source was discussed, where the acoustic transfer function from a user's position is estimated by using a hidden Markov model of clean speech in the cepstral domain. In this paper, each cepstral dimension of the acoustic transfer function is newly weighted, in order to obtain the cepstral dimensions having information that is useful for classifying the user's position. Then, this paper proposes a feature-weighting method for the cepstral parameter using multiple kernel learning, defining the base kernels for each cepstral dimension of the acoustic transfer function. The user's position is trained and classified by support vector machine. The effectiveness of this method has been confirmed by sound source (talker) localization experiments performed in different room environments.

  19. Handling conditional discrimination

    NARCIS (Netherlands)

    Zliobaite, I.; Kamiran, F.; Calders, T.G.K.

    2011-01-01

    Historical data used for supervised learning may contain discrimination. We study how to train classifiers on such data, so that they are discrimination free with respect to a given sensitive attribute, e.g., gender. Existing techniques that deal with this problem aim at removing all discrimination

  20. Label-Driven Learning Framework: Towards More Accurate Bayesian Network Classifiers through Discrimination of High-Confidence Labels

    Directory of Open Access Journals (Sweden)

    Yi Sun

    2017-12-01

    Full Text Available Bayesian network classifiers (BNCs have demonstrated competitive classification accuracy in a variety of real-world applications. However, it is error-prone for BNCs to discriminate among high-confidence labels. To address this issue, we propose the label-driven learning framework, which incorporates instance-based learning and ensemble learning. For each testing instance, high-confidence labels are first selected by a generalist classifier, e.g., the tree-augmented naive Bayes (TAN classifier. Then, by focusing on these labels, conditional mutual information is redefined to more precisely measure mutual dependence between attributes, thus leading to a refined generalist with a more reasonable network structure. To enable finer discrimination, an expert classifier is tailored for each high-confidence label. Finally, the predictions of the refined generalist and the experts are aggregated. We extend TAN to LTAN (Label-driven TAN by applying the proposed framework. Extensive experimental results demonstrate that LTAN delivers superior classification accuracy to not only several state-of-the-art single-structure BNCs but also some established ensemble BNCs at the expense of reasonable computation overhead.

  1. Effects of early postnatal X-irradiation of the hippocampus on discrimination learning in adult rats

    International Nuclear Information System (INIS)

    Gazzara, R.A.

    1980-01-01

    Rats with x-irradiation-produced degranulation of the hippocampal dentate gyrus were trained in the acquisition and reversal of simultaneous visual and tactile discriminations in a T-maze. These experiments employed the same treatment, apparatus, and procedure, but varied in task difficulty. In the brightness and roughness discriminations, the irradiated rats were not handicapped in acquiring or reversing discriminations of low or low-moderate task-difficulty. However, these rats were handicapped in acquiring and reversing discriminations of moderate and high task-difficulty. In a Black/White discrimination, in which the stimuli were restricted to the goal-arm walls, the irradiated rats were handicapped in the acquisition (low task-difficulty) and reversal (moderate task-difficulty) phases of the task. These results suggest that the irradiated rats were not handicapped when the noticeability of the stimuli was high, irrespective of modality used, but were handicapped when the noticeability of the stimuli was low. In addition, these results are consistent with the hypothesis that hippocampal-damaged rats are inattentive due to hyperactivity

  2. Early postnatal x-irradiation of the hippocampus and discrimination learning in adult rats

    International Nuclear Information System (INIS)

    Gazzara, R.A.; Altman, J.

    1981-01-01

    Rats with X-irradiation-produced degranulation of the hippocampal dentate gyrus were trained in the acquisition and reversal of simultaneous visual and tactile discriminations in a T-maze. These experiments employed the same treatment, apparatus, and procedure but varied in task difficulty. In the brightness and roughness discriminations, the irradiated rats were not handicapped in acquiring or reversing discriminations of low or low-moderate task difficulty. However, these rats were handicapped in acquiring and reversing discriminations of moderate and high task difficulty. In a Black/White discrimination, in which the stimuli were restricted to the goal-arm walls, the irradiated rats were handicapped in the acquisition (low task difficulty) and reversal (moderate task difficulty) phases of the task. These results suggest that the irradiated rats were not handicapped when the noticeability of the stimuli was high, irrespective of modality used, but were handicapped when the noticeability of the stimuli was low. In addition, these results are consistent with the hypothesis that rats with hippocampal damage are inattentive due to hyperactivity

  3. Primary Auditory Cortex Regulates Threat Memory Specificity

    Science.gov (United States)

    Wigestrand, Mattis B.; Schiff, Hillary C.; Fyhn, Marianne; LeDoux, Joseph E.; Sears, Robert M.

    2017-01-01

    Distinguishing threatening from nonthreatening stimuli is essential for survival and stimulus generalization is a hallmark of anxiety disorders. While auditory threat learning produces long-lasting plasticity in primary auditory cortex (Au1), it is not clear whether such Au1 plasticity regulates memory specificity or generalization. We used…

  4. Dissociable contributions of the orbitofrontal and infralimbic cortex to pavlovian autoshaping and discrimination reversal learning: further evidence for the functional heterogeneity of the rodent frontal cortex.

    Science.gov (United States)

    Chudasama, Y; Robbins, Trevor W

    2003-09-24

    To examine possible heterogeneity of function within the ventral regions of the rodent frontal cortex, the present study compared the effects of excitotoxic lesions of the orbitofrontal cortex (OFC) and the infralimbic cortex (ILC) on pavlovian autoshaping and discrimination reversal learning. During the pavlovian autoshaping task, in which rats learn to approach a stimulus predictive of reward [conditional stimulus (CS+)], only the OFC group failed to acquire discriminated approach but was unimpaired when preoperatively trained. In the visual discrimination learning and reversal task, rats were initially required to discriminate a stimulus positively associated with reward. There was no effect of either OFC or ILC lesions on discrimination learning. When the stimulus-reward contingencies were reversed, both groups of animals committed more errors, but only the OFC-lesioned animals were unable to suppress the previously rewarded stimulus-reward association, committing more "stimulus perseverative" errors. In contrast, the ILC group showed a pattern of errors that was more attributable to "learning" than perseveration. These findings suggest two types of dissociation between the effects of OFC and ILC lesions: (1) OFC lesions impaired the learning processes implicated in pavlovian autoshaping but not instrumental simultaneous discrimination learning, whereas ILC lesions were unimpaired at autoshaping and their reversal learning deficit did not reflect perseveration, and (2) OFC lesions induced perseverative responding in reversal learning but did not disinhibit responses to pavlovian CS-. In contrast, the ILC lesion had no effect on response inhibitory control in either of these settings. The findings are discussed in the context of dissociable executive functions in ventral sectors of the rat prefrontal cortex.

  5. Size and synchronization of auditory cortex promotes musical, literacy, and attentional skills in children.

    Science.gov (United States)

    Seither-Preisler, Annemarie; Parncutt, Richard; Schneider, Peter

    2014-08-13

    Playing a musical instrument is associated with numerous neural processes that continuously modify the human brain and may facilitate characteristic auditory skills. In a longitudinal study, we investigated the auditory and neural plasticity of musical learning in 111 young children (aged 7-9 y) as a function of the intensity of instrumental practice and musical aptitude. Because of the frequent co-occurrence of central auditory processing disorders and attentional deficits, we also tested 21 children with attention deficit (hyperactivity) disorder [AD(H)D]. Magnetic resonance imaging and magnetoencephalography revealed enlarged Heschl's gyri and enhanced right-left hemispheric synchronization of the primary evoked response (P1) to harmonic complex sounds in children who spent more time practicing a musical instrument. The anatomical characteristics were positively correlated with frequency discrimination, reading, and spelling skills. Conversely, AD(H)D children showed reduced volumes of Heschl's gyri and enhanced volumes of the plana temporalia that were associated with a distinct bilateral P1 asynchrony. This may indicate a risk for central auditory processing disorders that are often associated with attentional and literacy problems. The longitudinal comparisons revealed a very high stability of auditory cortex morphology and gray matter volumes, suggesting that the combined anatomical and functional parameters are neural markers of musicality and attention deficits. Educational and clinical implications are considered. Copyright © 2014 the authors 0270-6474/14/3410937-13$15.00/0.

  6. Very deep learning for ship discrimination in synthetic aperture radar imagery

    CSIR Research Space (South Africa)

    Schwegmann, Colin P

    2016-07-01

    Full Text Available using machine learning. Newer, advanced deep learning techniques offer a unique solution but traditionally require a large dataset to train effectively. Highway Networks allow for very deep networks that can be trained using the smaller datasets typical...

  7. Multiscale Region-Level VHR Image Change Detection via Sparse Change Descriptor and Robust Discriminative Dictionary Learning

    Directory of Open Access Journals (Sweden)

    Yuan Xu

    2015-01-01

    Full Text Available Very high resolution (VHR image change detection is challenging due to the low discriminative ability of change feature and the difficulty of change decision in utilizing the multilevel contextual information. Most change feature extraction techniques put emphasis on the change degree description (i.e., in what degree the changes have happened, while they ignore the change pattern description (i.e., how the changes changed, which is of equal importance in characterizing the change signatures. Moreover, the simultaneous consideration of the classification robust to the registration noise and the multiscale region-consistent fusion is often neglected in change decision. To overcome such drawbacks, in this paper, a novel VHR image change detection method is proposed based on sparse change descriptor and robust discriminative dictionary learning. Sparse change descriptor combines the change degree component and the change pattern component, which are encoded by the sparse representation error and the morphological profile feature, respectively. Robust change decision is conducted by multiscale region-consistent fusion, which is implemented by the superpixel-level cosparse representation with robust discriminative dictionary and the conditional random field model. Experimental results confirm the effectiveness of the proposed change detection technique.

  8. An unsupervised learning algorithm: application to the discrimination of seismic events and quarry blasts in the vicinity of Istanbul

    Directory of Open Access Journals (Sweden)

    H. S. Kuyuk

    2011-01-01

    Full Text Available The results of the application of an unsupervised learning (neural network approach comprising a Self Organizing Map (SOM, to distinguish micro-earthquakes from quarry blasts in the vicinity of Istanbul, Turkey, are presented and discussed. The SOM is constructed as a neural classifier and complementary reliability estimator to distinguish seismic events, and was employed for varying map sizes. Input parameters consisting of frequency and time domain data (complexity, spectral ratio, S/P wave amplitude peak ratio and origin time of events extracted from the vertical components of digital seismograms were estimated as discriminants for 179 (1.8 < Md < 3.0 local events. The results show that complexity and amplitude peak ratio parameters of the observed velocity seismogram may suffice for a reliable discrimination, while origin time and spectral ratio were found to be fuzzy and misleading classifiers for this problem. The SOM discussed here achieved a discrimination reliability that could be employed routinely in observatory practice; however, about 6% of all events were classified as ambiguous cases. This approach was developed independently for this particular classification, but it could be applied to different earthquake regions.

  9. Learning Styles.

    Science.gov (United States)

    Missouri Univ., Columbia. Coll. of Education.

    Information is provided regarding major learning styles and other factors important to student learning. Several typically asked questions are presented regarding different learning styles (visual, auditory, tactile and kinesthetic, and multisensory learning), associated considerations, determining individuals' learning styles, and appropriate…

  10. Statistics that learn: can logistic discriminant analysis improve diagnosis in brain SPECT?

    International Nuclear Information System (INIS)

    Behin-Ain, S.; Barnden, L.; Kwiatek, R.; Del Fante, P.; Casse, R.; Burnet, R.; Chew, G.; Kitchener, M.; Boundy, K.; Unger, S.

    2002-01-01

    Full text: Logistic discriminant analysis (LDA) is a statistical technique capable of discriminating individuals within a diseased group against normals. It also enables classification of various diseases within a group of patients. This technique provides a quantitative, automated and non-subjective clinical diagnostic tool. Based on a population known to have the disease and a normal control group, an algorithm was developed and trained to identify regions in the human brain responsible for the disease in question. The algorithm outputs a statistical map representing diseased or normal probability on a voxel or cluster basis from which an index is generated for each subject. The algorithm also generates a set of coefficients which is used to generate an index for the purpose of classification of new subjects. The results are comparable and complement those of Statistical Parametric Mapping (SPM) which employs a more common linear discriminant technique. The results are presented for brain SPECT studies of two diseases: chronic fatigue syndrome (CFS) and fibromyalgia (FM). A 100% specificity and 94% sensitivity is achieved for the CFS study (similar to SPM results) and for the FM study 82% specificity and 94% sensitivity is achieved with corresponding SPM results showing 90% specificity and 82% sensitivity. The results encourages application of LDA for discrimination of new single subjects as well as of diseased and normal groups. Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc

  11. Double Dissociation of Pharmacologically Induced Deficits in Visual Recognition and Visual Discrimination Learning

    Science.gov (United States)

    Turchi, Janita; Buffalari, Deanne; Mishkin, Mortimer

    2008-01-01

    Monkeys trained in either one-trial recognition at 8- to 10-min delays or multi-trial discrimination habits with 24-h intertrial intervals received systemic cholinergic and dopaminergic antagonists, scopolamine and haloperidol, respectively, in separate sessions. Recognition memory was impaired markedly by scopolamine but not at all by…

  12. Unconscious improvement in foreign language learning using mismatch negativity neurofeedback: A preliminary study.

    Directory of Open Access Journals (Sweden)

    Ming Chang

    Full Text Available When people learn foreign languages, they find it difficult to perceive speech sounds that are nonexistent in their native language, and extensive training is consequently necessary. Our previous studies have shown that by using neurofeedback based on the mismatch negativity event-related brain potential, participants could unconsciously achieve learning in the auditory discrimination of pure tones that could not be consciously discriminated without the neurofeedback. Here, we examined whether mismatch negativity neurofeedback is effective for helping someone to perceive new speech sounds in foreign language learning. We developed a task for training native Japanese speakers to discriminate between 'l' and 'r' sounds in English, as they usually cannot discriminate between these two sounds. Without participants attending to auditory stimuli or being aware of the nature of the experiment, neurofeedback training helped them to achieve significant improvement in unconscious auditory discrimination and recognition of the target words 'light' and 'right'. There was also improvement in the recognition of other words containing 'l' and 'r' (e.g., 'blight' and 'bright', even though these words had not been presented during training. This method could be used to facilitate foreign language learning and can be extended to other fields of auditory and clinical research and even other senses.

  13. Development and assessment of a lysophospholipid-based deep learning model to discriminate geographical origins of white rice.

    Science.gov (United States)

    Long, Nguyen Phuoc; Lim, Dong Kyu; Mo, Changyeun; Kim, Giyoung; Kwon, Sung Won

    2017-08-17

    Geographical origin determination of white rice has become the major issue of food industry. However, there is still lack of a high-throughput method for rapidly and reproducibly differentiating the geographical origins of commercial white rice. In this study, we developed a method that employed lipidomics and deep learning to discriminate white rice from Korea to China. A total of 126 white rice of 30 cultivars from different regions were utilized for the method development and validation. By using direct infusion-mass spectrometry-based targeted lipidomics, 17 lysoglycerophospholipids were simultaneously characterized within minutes per sample. Unsupervised data exploration showed a noticeable overlap of white rice between two countries. In addition, lysophosphatidylcholines (lysoPCs) were prominent in white rice from Korea while lysophosphatidylethanolamines (lysoPEs) were enriched in white rice from China. A deep learning prediction model was built using 2014 white rice and validated using two different batches of 2015 white rice. The model accurately discriminated white rice from two countries. Among 10 selected predictors, lysoPC(18:2), lysoPC(14:0), and lysoPE(16:0) were the three most important features. Random forest and gradient boosting machine models also worked well in this circumstance. In conclusion, this study provides an architecture for high-throughput classification of white rice from different geographical origins.

  14. Discrimination of plant root zone water status in greenhouse production based on phenotyping and machine learning techniques.

    Science.gov (United States)

    Guo, Doudou; Juan, Jiaxiang; Chang, Liying; Zhang, Jingjin; Huang, Danfeng

    2017-08-15

    Plant-based sensing on water stress can provide sensitive and direct reference for precision irrigation system in greenhouse. However, plant information acquisition, interpretation, and systematical application remain insufficient. This study developed a discrimination method for plant root zone water status in greenhouse by integrating phenotyping and machine learning techniques. Pakchoi plants were used and treated by three root zone moisture levels, 40%, 60%, and 80% relative water content. Three classification models, Random Forest (RF), Neural Network (NN), and Support Vector Machine (SVM) were developed and validated in different scenarios with overall accuracy over 90% for all. SVM model had the highest value, but it required the longest training time. All models had accuracy over 85% in all scenarios, and more stable performance was observed in RF model. Simplified SVM model developed by the top five most contributing traits had the largest accuracy reduction as 29.5%, while simplified RF and NN model still maintained approximately 80%. For real case application, factors such as operation cost, precision requirement, and system reaction time should be synthetically considered in model selection. Our work shows it is promising to discriminate plant root zone water status by implementing phenotyping and machine learning techniques for precision irrigation management.

  15. SAR Target Recognition via Supervised Discriminative Dictionary Learning and Sparse Representation of the SAR-HOG Feature

    Directory of Open Access Journals (Sweden)

    Shengli Song

    2016-08-01

    Full Text Available Automatic target recognition (ATR in synthetic aperture radar (SAR images plays an important role in both national defense and civil applications. Although many methods have been proposed, SAR ATR is still very challenging due to the complex application environment. Feature extraction and classification are key points in SAR ATR. In this paper, we first design a novel feature, which is a histogram of oriented gradients (HOG-like feature for SAR ATR (called SAR-HOG. Then, we propose a supervised discriminative dictionary learning (SDDL method to learn a discriminative dictionary for SAR ATR and propose a strategy to simplify the optimization problem. Finally, we propose a SAR ATR classifier based on SDDL and sparse representation (called SDDLSR, in which both the reconstruction error and the classification error are considered. Extensive experiments are performed on the MSTAR database under standard operating conditions and extended operating conditions. The experimental results show that SAR-HOG can reliably capture the structures of targets in SAR images, and SDDL can further capture subtle differences among the different classes. By virtue of the SAR-HOG feature and SDDLSR, the proposed method achieves the state-of-the-art performance on MSTAR database. Especially for the extended operating conditions (EOC scenario “Training 17 ∘ —Testing 45 ∘ ”, the proposed method improves remarkably with respect to the previous works.

  16. Perceptual consequences of disrupted auditory nerve activity.

    Science.gov (United States)

    Zeng, Fan-Gang; Kong, Ying-Yee; Michalewski, Henry J; Starr, Arnold

    2005-06-01

    Perceptual consequences of disrupted auditory nerve activity were systematically studied in 21 subjects who had been clinically diagnosed with auditory neuropathy (AN), a recently defined disorder characterized by normal outer hair cell function but disrupted auditory nerve function. Neurological and electrophysical evidence suggests that disrupted auditory nerve activity is due to desynchronized or reduced neural activity or both. Psychophysical measures showed that the disrupted neural activity has minimal effects on intensity-related perception, such as loudness discrimination, pitch discrimination at high frequencies, and sound localization using interaural level differences. In contrast, the disrupted neural activity significantly impairs timing related perception, such as pitch discrimination at low frequencies, temporal integration, gap detection, temporal modulation detection, backward and forward masking, signal detection in noise, binaural beats, and sound localization using interaural time differences. These perceptual consequences are the opposite of what is typically observed in cochlear-impaired subjects who have impaired intensity perception but relatively normal temporal processing after taking their impaired intensity perception into account. These differences in perceptual consequences between auditory neuropathy and cochlear damage suggest the use of different neural codes in auditory perception: a suboptimal spike count code for intensity processing, a synchronized spike code for temporal processing, and a duplex code for frequency processing. We also proposed two underlying physiological models based on desynchronized and reduced discharge in the auditory nerve to successfully account for the observed neurological and behavioral data. These methods and measures cannot differentiate between these two AN models, but future studies using electric stimulation of the auditory nerve via a cochlear implant might. These results not only show the unique

  17. Medial Auditory Thalamus Is Necessary for Acquisition and Retention of Eyeblink Conditioning to Cochlear Nucleus Stimulation

    Science.gov (United States)

    Halverson, Hunter E.; Poremba, Amy; Freeman, John H.

    2015-01-01

    Associative learning tasks commonly involve an auditory stimulus, which must be projected through the auditory system to the sites of memory induction for learning to occur. The cochlear nucleus (CN) projection to the pontine nuclei has been posited as the necessary auditory pathway for cerebellar learning, including eyeblink conditioning.…

  18. Optimisation of a machine learning algorithm in human locomotion using principal component and discriminant function analyses

    OpenAIRE

    Bisele, M; Bencsik, M; Lewis, MGC; Barnett, CT

    2017-01-01

    Assessment methods in human locomotion often involve the description of normalised graphical profiles and/or the extraction of discrete variables. Whilst useful, these approaches may not represent the full complexity of gait data. Multivariate statistical methods, such as Principal Component Analysis (PCA) and Discriminant Function Analysis (DFA), have been adopted since they have the potential to overcome these data handling issues. The aim of the current study was to develop and optimise a ...

  19. Best of Both Worlds: Transferring Knowledge from Discriminative Learning to a Generative Visual Dialog Model

    OpenAIRE

    Lu, Jiasen; Kannan, Anitha; Yang, Jianwei; Parikh, Devi; Batra, Dhruv

    2017-01-01

    We present a novel training framework for neural sequence models, particularly for grounded dialog generation. The standard training paradigm for these models is maximum likelihood estimation (MLE), or minimizing the cross-entropy of the human responses. Across a variety of domains, a recurring problem with MLE trained generative neural dialog models (G) is that they tend to produce 'safe' and generic responses ("I don't know", "I can't tell"). In contrast, discriminative dialog models (D) th...

  20. Visual and Auditory Sensitivities and Discriminations

    National Research Council Canada - National Science Library

    Regan, David

    2003-01-01

    .... A new equation gives TTC from binocular information without involving distance. The human visual system contains a mechanism that rapidly compares contours at two distant sites so as to encode the location size and shape of an object...

  1. Auditory changes in acromegaly.

    Science.gov (United States)

    Tabur, S; Korkmaz, H; Baysal, E; Hatipoglu, E; Aytac, I; Akarsu, E

    2017-06-01

    The aim of this study is to determine the changes involving auditory system in cases with acromegaly. Otological examinations of 41 cases with acromegaly (uncontrolled n = 22, controlled n = 19) were compared with those of age and gender-matched 24 healthy subjects. Whereas the cases with acromegaly underwent examination with pure tone audiometry (PTA), speech audiometry for speech discrimination (SD), tympanometry, stapedius reflex evaluation and otoacoustic emission tests, the control group did only have otological examination and PTA. Additionally, previously performed paranasal sinus-computed tomography of all cases with acromegaly and control subjects were obtained to measure the length of internal acoustic canal (IAC). PTA values were higher (p acromegaly group was narrower compared to that in control group (p = 0.03 for right ears and p = 0.02 for left ears). When only cases with acromegaly were taken into consideration, PTA values in left ears had positive correlation with growth hormone and insulin-like growth factor-1 levels (r = 0.4, p = 0.02 and r = 0.3, p = 0.03). Of all cases with acromegaly 13 (32%) had hearing loss in at least one ear, 7 (54%) had sensorineural type and 6 (46%) had conductive type hearing loss. Acromegaly may cause certain changes in the auditory system in cases with acromegaly. The changes in the auditory system may be multifactorial causing both conductive and sensorioneural defects.

  2. Music lessons improve auditory perceptual and cognitive performance in deaf children.

    Science.gov (United States)

    Rochette, Françoise; Moussard, Aline; Bigand, Emmanuel

    2014-01-01

    Despite advanced technologies in auditory rehabilitation of profound deafness, deaf children often exhibit delayed cognitive and linguistic development and auditory training remains a crucial element of their education. In the present cross-sectional study, we assess whether music would be a relevant tool for deaf children rehabilitation. In normal-hearing children, music lessons have been shown to improve cognitive and linguistic-related abilities, such as phonetic discrimination and reading. We compared auditory perception, auditory cognition, and phonetic discrimination between 14 profoundly deaf children who completed weekly music lessons for a period of 1.5-4 years and 14 deaf children who did not receive musical instruction. Children were assessed on perceptual and cognitive auditory tasks using environmental sounds: discrimination, identification, auditory scene analysis, auditory working memory. Transfer to the linguistic domain was tested with a phonetic discrimination task. Musically trained children showed better performance in auditory scene analysis, auditory working memory and phonetic discrimination tasks, and multiple regressions showed that success on these tasks was at least partly driven by music lessons. We propose that musical education contributes to development of general processes such as auditory attention and perception, which, in turn, facilitate auditory-related cognitive and linguistic processes.

  3. Music lessons improve auditory perceptual and cognitive performance in deaf children

    Directory of Open Access Journals (Sweden)

    Françoise eROCHETTE

    2014-07-01

    Full Text Available Despite advanced technologies in auditory rehabilitation of profound deafness, deaf children often exhibit delayed cognitive and linguistic development and auditory training remains a crucial element of their education. In the present cross-sectional study, we assess whether music would be a relevant tool for deaf children rehabilitation. In normal-hearing children, music lessons have been shown to improve cognitive and linguistic-related abilities, such as phonetic discrimination and reading. We compared auditory perception, auditory cognition, and phonetic discrimination between 14 profoundly deaf children who completed weekly music lessons for a period of 1.5 to 4 years and 14 deaf children who did not receive musical instruction. Children were assessed on perceptual and cognitive auditory tasks using environmental sounds: discrimination, identification, auditory scene analysis, auditory working memory. Transfer to the linguistic domain was tested with a phonetic discrimination task. Musically-trained children showed better performance in auditory scene analysis, auditory working memory and phonetic discrimination tasks, and multiple regressions showed that success on these tasks was at least partly driven by music lessons. We propose that musical education contributes to development of general processes such as auditory attention and perception, which, in turn, facilitate auditory-related cognitive and linguistic processes.

  4. Common Elements Enhance or Retard Negative Patterning Discrimination Learning Depending on Modality of Stimuli

    Science.gov (United States)

    Redhead, Edward S.; Curtis, Cheryl

    2013-01-01

    Human contingency learning studies were used to compare the predictions of configural and elemental theories. In two experiments, participants were required to learn which stimuli were associated with an increase in core temperature of a fictitious nuclear plant. Experiments investigated the rate at which a simple negative patterning…

  5. Early Visual Deprivation Severely Compromises the Auditory Sense of Space in Congenitally Blind Children

    Science.gov (United States)

    Vercillo, Tiziana; Burr, David; Gori, Monica

    2016-01-01

    A recent study has shown that congenitally blind adults, who have never had visual experience, are impaired on an auditory spatial bisection task (Gori, Sandini, Martinoli, & Burr, 2014). In this study we investigated how thresholds for auditory spatial bisection and auditory discrimination develop with age in sighted and congenitally blind…

  6. Effects of Multimodal Presentation and Stimulus Familiarity on Auditory and Visual Processing

    Science.gov (United States)

    Robinson, Christopher W.; Sloutsky, Vladimir M.

    2010-01-01

    Two experiments examined the effects of multimodal presentation and stimulus familiarity on auditory and visual processing. In Experiment 1, 10-month-olds were habituated to either an auditory stimulus, a visual stimulus, or an auditory-visual multimodal stimulus. Processing time was assessed during the habituation phase, and discrimination of…

  7. Discrimination of Brazilian propolis according to the seasoning using chemometrics and machine learning based on UV-Vis scanning data.

    Science.gov (United States)

    Tomazzoli, Maíra M; Pai Neto, Remi D; Moresco, Rodolfo; Westphal, Larissa; Zeggio, Amelia R S; Specht, Leandro; Costa, Christopher; Rocha, Miguel; Maraschin, Marcelo

    2015-12-01

    Propolis is a chemically complex biomass produced by honeybees (Apis mellifera) from plant resins added of salivary enzymes, beeswax, and pollen. The biological activities described for propolis were also identified for donor plant's resin, but a big challenge for the standardization of the chemical composition and biological effects of propolis remains on a better understanding of the influence of seasonality on the chemical constituents of that raw material. Since propolis quality depends, among other variables, on the local flora which is strongly influenced by (a)biotic factors over the seasons, to unravel the harvest season effect on the propolis chemical profile is an issue of recognized importance. For that, fast, cheap, and robust analytical techniques seem to be the best choice for large scale quality control processes in the most demanding markets, e.g., human health applications. For that, UV-Visible (UV-Vis) scanning spectrophotometry of hydroalcoholic extracts (HE) of seventy-three propolis samples, collected over the seasons in 2014 (summer, spring, autumn, and winter) and 2015 (summer and autumn) in Southern Brazil was adopted. Further machine learning and chemometrics techniques were applied to the UV-Vis dataset aiming to gain insights as to the seasonality effect on the claimed chemical heterogeneity of propolis samples determined by changes in the flora of the geographic region under study. Descriptive and classification models were built following a chemometric approach, i.e. principal component analysis (PCA) and hierarchical clustering analysis (HCA) supported by scripts written in the R language. The UV-Vis profiles associated with chemometric analysis allowed identifying a typical pattern in propolis samples collected in the summer. Importantly, the discrimination based on PCA could be improved by using the dataset of the fingerprint region of phenolic compounds ( λ= 280-400 ηm), suggesting that besides the biological activities of those

  8. Trial-dependent psychometric functions accounting for perceptual learning in 2-AFC discrimination tasks.

    Science.gov (United States)

    Kattner, Florian; Cochrane, Aaron; Green, C Shawn

    2017-09-01

    The majority of theoretical models of learning consider learning to be a continuous function of experience. However, most perceptual learning studies use thresholds estimated by fitting psychometric functions to independent blocks, sometimes then fitting a parametric function to these block-wise estimated thresholds. Critically, such approaches tend to violate the basic principle that learning is continuous through time (e.g., by aggregating trials into large "blocks" for analysis that each assume stationarity, then fitting learning functions to these aggregated blocks). To address this discrepancy between base theory and analysis practice, here we instead propose fitting a parametric function to thresholds from each individual trial. In particular, we implemented a dynamic psychometric function whose parameters were allowed to change continuously with each trial, thus parameterizing nonstationarity. We fit the resulting continuous time parametric model to data from two different perceptual learning tasks. In nearly every case, the quality of the fits derived from the continuous time parametric model outperformed the fits derived from a nonparametric approach wherein separate psychometric functions were fit to blocks of trials. Because such a continuous trial-dependent model of perceptual learning also offers a number of additional advantages (e.g., the ability to extrapolate beyond the observed data; the ability to estimate performance on individual critical trials), we suggest that this technique would be a useful addition to each psychophysicist's analysis toolkit.

  9. Dopamine D2 receptors mediate two-odor discrimination and reversal learning in C57BL/6 mice

    Directory of Open Access Journals (Sweden)

    Grandy David K

    2004-04-01

    Full Text Available Abstract Background Dopamine modulation of neuronal signaling in the frontal cortex, midbrain, and striatum is essential for processing and integrating diverse external sensory stimuli and attaching salience to environmental cues that signal causal relationships, thereby guiding goal-directed, adaptable behaviors. At the cellular level, dopamine signaling is mediated through D1-like or D2-like receptors. Although a role for D1-like receptors in a variety of goal-directed behaviors has been identified, an explicit involvement of D2 receptors has not been clearly established. To determine whether dopamine D2 receptor-mediated signaling contributes to associative and reversal learning, we compared C57Bl/6J mice that completely lack functional dopamine D2 receptors to wild-type mice with respect to their ability to attach appropriate salience to external stimuli (stimulus discrimination and disengage from inappropriate behavioral strategies when reinforcement contingencies change (e.g. reversal learning. Results Mildly food-deprived female wild-type and dopamine D2 receptor deficient mice rapidly learned to retrieve and consume visible food reinforcers from a small plastic dish. Furthermore, both genotypes readily learned to dig through the same dish filled with sterile sand in order to locate a buried food pellet. However, the dopamine D2 receptor deficient mice required significantly more trials than wild-type mice to discriminate between two dishes, each filled with a different scented sand, and to associate one of the two odors with the presence of a reinforcer (food. In addition, the dopamine D2 receptor deficient mice repeatedly fail to alter their response patterns during reversal trials where the reinforcement rules were inverted. Conclusions Inbred C57Bl/6J mice that develop in the complete absence of functional dopamine D2 receptors are capable of olfaction but display an impaired ability to acquire odor-driven reinforcement contingencies

  10. Perceptual learning of motion direction discrimination with suppressed and unsuppressed MT in humans: an fMRI study.

    Directory of Open Access Journals (Sweden)

    Benjamin Thompson

    Full Text Available The middle temporal area of the extrastriate visual cortex (area MT is integral to motion perception and is thought to play a key role in the perceptual learning of motion tasks. We have previously found, however, that perceptual learning of a motion discrimination task is possible even when the training stimulus contains locally balanced, motion opponent signals that putatively suppress the response of MT. Assuming at least partial suppression of MT, possible explanations for this learning are that 1 training made MT more responsive by reducing motion opponency, 2 MT remained suppressed and alternative visual areas such as V1 enabled learning and/or 3 suppression of MT increased with training, possibly to reduce noise. Here we used fMRI to test these possibilities. We first confirmed that the motion opponent stimulus did indeed suppress the BOLD response within hMT+ compared to an almost identical stimulus without locally balanced motion signals. We then trained participants on motion opponent or non-opponent stimuli. Training with the motion opponent stimulus reduced the BOLD response within hMT+ and greater reductions in BOLD response were correlated with greater amounts of learning. The opposite relationship between BOLD and behaviour was found at V1 for the group trained on the motion-opponent stimulus and at both V1 and hMT+ for the group trained on the non-opponent motion stimulus. As the average response of many cells within MT to motion opponent stimuli is the same as their response to non-directional flickering noise, the reduced activation of hMT+ after training may reflect noise reduction.

  11. Context effects in a temporal discrimination task" further tests of the Scalar Expectancy Theory and Learning-to-Time models.

    Science.gov (United States)

    Arantes, Joana; Machado, Armando

    2008-07-01

    Pigeons were trained on two temporal bisection tasks, which alternated every two sessions. In the first task, they learned to choose a red key after a 1-s signal and a green key after a 4-s signal; in the second task, they learned to choose a blue key after a 4-s signal and a yellow key after a 16-s signal. Then the pigeons were exposed to a series of test trials in order to contrast two timing models, Learning-to-Time (LeT) and Scalar Expectancy Theory (SET). The models made substantially different predictions particularly for the test trials in which the sample duration ranged from 1 s to 16 s and the choice keys were Green and Blue, the keys associated with the same 4-s samples: LeT predicted that preference for Green should increase with sample duration, a context effect, but SET predicted that preference for Green should not vary with sample duration. The results were consistent with LeT. The present study adds to the literature the finding that the context effect occurs even when the two basic discriminations are never combined in the same session.

  12. Auditory-vocal mirroring in songbirds.

    Science.gov (United States)

    Mooney, Richard

    2014-01-01

    Mirror neurons are theorized to serve as a neural substrate for spoken language in humans, but the existence and functions of auditory-vocal mirror neurons in the human brain remain largely matters of speculation. Songbirds resemble humans in their capacity for vocal learning and depend on their learned songs to facilitate courtship and individual recognition. Recent neurophysiological studies have detected putative auditory-vocal mirror neurons in a sensorimotor region of the songbird's brain that plays an important role in expressive and receptive aspects of vocal communication. This review discusses the auditory and motor-related properties of these cells, considers their potential role on song learning and communication in relation to classical studies of birdsong, and points to the circuit and developmental mechanisms that may give rise to auditory-vocal mirroring in the songbird's brain.

  13. Functional Mapping of the Human Auditory Cortex: fMRI Investigation of a Patient with Auditory Agnosia from Trauma to the Inferior Colliculus.

    Science.gov (United States)

    Poliva, Oren; Bestelmeyer, Patricia E G; Hall, Michelle; Bultitude, Janet H; Koller, Kristin; Rafal, Robert D

    2015-09-01

    To use functional magnetic resonance imaging to map the auditory cortical fields that are activated, or nonreactive, to sounds in patient M.L., who has auditory agnosia caused by trauma to the inferior colliculi. The patient cannot recognize speech or environmental sounds. Her discrimination is greatly facilitated by context and visibility of the speaker's facial movements, and under forced-choice testing. Her auditory temporal resolution is severely compromised. Her discrimination is more impaired for words differing in voice onset time than place of articulation. Words presented to her right ear are extinguished with dichotic presentation; auditory stimuli in the right hemifield are mislocalized to the left. We used functional magnetic resonance imaging to examine cortical activations to different categories of meaningful sounds embedded in a block design. Sounds activated the caudal sub-area of M.L.'s primary auditory cortex (hA1) bilaterally and her right posterior superior temporal gyrus (auditory dorsal stream), but not the rostral sub-area (hR) of her primary auditory cortex or the anterior superior temporal gyrus in either hemisphere (auditory ventral stream). Auditory agnosia reflects dysfunction of the auditory ventral stream. The ventral and dorsal auditory streams are already segregated as early as the primary auditory cortex, with the ventral stream projecting from hR and the dorsal stream from hA1. M.L.'s leftward localization bias, preserved audiovisual integration, and phoneme perception are explained by preserved processing in her right auditory dorsal stream.

  14. A learning perspective on individual differences in skilled reading: Exploring and exploiting orthographic and semantic discrimination cues.

    Science.gov (United States)

    Milin, Petar; Divjak, Dagmar; Baayen, R Harald

    2017-11-01

    The goal of the present study is to understand the role orthographic and semantic information play in the behavior of skilled readers. Reading latencies from a self-paced sentence reading experiment in which Russian near-synonymous verbs were manipulated appear well-predicted by a combination of bottom-up sublexical letter triplets (trigraphs) and top-down semantic generalizations, modeled using the Naive Discrimination Learner. The results reveal a complex interplay of bottom-up and top-down support from orthography and semantics to the target verbs, whereby activations from orthography only are modulated by individual differences. Using performance on a serial reaction time (SRT) task for a novel operationalization of the mental speed hypothesis, we explain the observed individual differences in reading behavior in terms of the exploration/exploitation hypothesis from reinforcement learning, where initially slower and more variable behavior leads to better performance overall. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  15. Auditory Training for Children with Processing Disorders.

    Science.gov (United States)

    Katz, Jack; Cohen, Carolyn F.

    1985-01-01

    The article provides an overview of central auditory processing (CAP) dysfunction and reviews research on approaches to improve perceptual skills; to provide discrimination training for communicative and reading disorders; to increase memory and analysis skills and dichotic listening; to provide speech-in-noise training; and to amplify speech as…

  16. Individual Difference Factors in the Learning and Transfer of Patterning Discriminations

    Directory of Open Access Journals (Sweden)

    Elisa Maes

    2017-07-01

    Full Text Available In an associative patterning task, some people seem to focus more on learning an overarching rule, whereas others seem to focus on acquiring specific relations between the stimuli and outcomes involved. Building on earlier work, we further investigated which cognitive factors are involved in feature- vs. rule-based learning and generalization. To this end, we measured participants' tendency to generalize according to the rule of opposites after training on negative and positive patterning problems (i.e., A+/B+/AB− and C−/D−/CD+, their tendency to attend to global aspects or local details of stimuli, their systemizing disposition and their score on the Raven intelligence test. Our results suggest that while intelligence might have some influence on patterning learning and generalization, visual processing style and systemizing disposition do not. We discuss our findings in the light of previous observations on patterning.

  17. Short-term delayed recall of auditory verbal learning test is equivalent to long-term delayed recall for identifying amnestic mild cognitive impairment.

    Directory of Open Access Journals (Sweden)

    Qianhua Zhao

    Full Text Available Delayed recall of words in a verbal learning test is a sensitive measure for the diagnosis of amnestic mild cognitive impairment (aMCI and early Alzheimer's disease (AD. The relative validity of different retention intervals of delayed recall has not been well characterized. Using the Auditory Verbal Learning Test-Huashan version, we compared the differentiating value of short-term delayed recall (AVL-SR, that is, a 3- to 5-minute delay time and long-term delayed recall (AVL-LR, that is, a 20-minute delay time in distinguishing patients with aMCI (n = 897 and mild AD (n = 530 from the healthy elderly (n = 1215. In patients with aMCI, the correlation between AVL-SR and AVL-LR was very high (r = 0.94, and the difference between the two indicators was less than 0.5 points. There was no difference between AVL-SR and AVL-LR in the frequency of zero scores. In the receiver operating characteristic curves analysis, although the area under the curve (AUC of AVL-SR and AVL-LR for diagnosing aMCI was significantly different, the cut-off scores of the two indicators were identical. In the subgroup of ages 80 to 89, the AUC of the two indicators showed no significant difference. Therefore, we concluded that AVL-SR could substitute for AVL-LR in identifying aMCI, especially for the oldest patients.

  18. Statistical Discriminability Estimation for Pattern Classification Based on Neural Incremental Attribute Learning

    DEFF Research Database (Denmark)

    Wang, Ting; Guan, Sheng-Uei; Puthusserypady, Sadasivan

    2014-01-01

    Feature ordering is a significant data preprocessing method in Incremental Attribute Learning (IAL), a novel machine learning approach which gradually trains features according to a given order. Previous research has shown that, similar to feature selection, feature ordering is also important based...... estimation. Moreover, a criterion that summarizes all the produced values of AD is employed with a GA (Genetic Algorithm)-based approach to obtain the optimum feature ordering for classification problems based on neural networks by means of IAL. Compared with the feature ordering obtained by other approaches...

  19. Muscarinic receptor binding increases in anterior thalamus and cingulate cortex during discriminative avoidance learning

    International Nuclear Information System (INIS)

    Vogt, B.A.; Gabriel, M.; Vogt, L.J.; Poremba, A.; Jensen, E.L.; Kubota, Y.; Kang, E.

    1991-01-01

    Training-induced neuronal activity develops in the mammalian limbic system during discriminative avoidance conditioning. This study explores behaviorally relevant changes in muscarinic ACh receptor binding in 52 rabbits that were trained to one of five stages of conditioned response acquisition. Sixteen naive and 10 animals yoked to criterion performance served as control cases. Upon reaching a particular stage of training, the brains were removed and autoradiographically assayed for 3H-oxotremorine-M binding with 50 nM pirenzepine (OxO-M/PZ) or for 3H-pirenzepine binding in nine limbic thalamic nuclei and cingulate cortex. Specific OxO-M/PZ binding increased in the parvocellular division of the anterodorsal nucleus early in training when the animals were first exposed to pairing of the conditional and unconditional stimuli. Elevated binding in this nucleus was maintained throughout subsequent training. In the parvocellular division of the anteroventral nucleus (AVp), OxO-M/PZ binding progressively increased throughout training, reached a peak at the criterion stage of performance, and returned to control values during extinction sessions. Peak OxO-M/PZ binding in AVp was significantly elevated over that for cases yoked to criterion performance. In the magnocellular division of the anteroventral nucleus (AVm), OxO-M/PZ binding was elevated only during criterion performance of the task, and it was unaltered in any other limbic thalamic nuclei. Specific OxO-M/PZ binding was also elevated in most layers in rostral area 29c when subjects first performed a significant behavioral discrimination. Training-induced alterations in OxO-M/PZ binding in AVp and layer Ia of area 29c were similar and highly correlated

  20. Improving Dorsal Stream Function in Dyslexics by Training Figure/Ground Motion Discrimination Improves Attention, Reading Fluency, and Working Memory.

    Science.gov (United States)

    Lawton, Teri

    2016-01-01

    There is an ongoing debate about whether the cause of dyslexia is based on linguistic, auditory, or visual timing deficits. To investigate this issue three interventions were compared in 58 dyslexics in second grade (7 years on average), two targeting the temporal dynamics (timing) of either the auditory or visual pathways with a third reading intervention (control group) targeting linguistic word building. Visual pathway training in dyslexics to improve direction-discrimination of moving test patterns relative to a stationary background (figure/ground discrimination) significantly improved attention, reading fluency, both speed and comprehension, phonological processing, and both auditory and visual working memory relative to controls, whereas auditory training to improve phonological processing did not improve these academic skills significantly more than found for controls. This study supports the hypothesis that faulty timing in synchronizing the activity of magnocellular with parvocellular visual pathways is a fundamental cause of dyslexia, and argues against the assumption that reading deficiencies in dyslexia are caused by phonological deficits. This study demonstrates that visual movement direction-discrimination can be used to not only detect dyslexia early, but also for its successful treatment, so that reading problems do not prevent children from readily learning.

  1. Improving Dorsal Stream Function in Dyslexics By Training Figure/Ground Motion Discrimination Improves Reading Fluency, Attention, and Working Memory

    Directory of Open Access Journals (Sweden)

    Teri Lawton

    2016-08-01

    Full Text Available There is an ongoing debate about whether the cause of dyslexia is based on linguistic, auditory, or visual timing deficits. To investigate this issue three interventions were compared in 58 dyslexics in second grade (7 years on average, two targeting the temporal dynamics (timing of either the auditory or visual pathways with a third reading intervention (control group using linguistic word building. Visual pathway training in dyslexics to improve direction-discrimination of moving test patterns relative to a stationary background (figure/ground discrimination significantly improved attention, reading fluency, both speed and comprehension, phonological processing, and both auditory and visual working memory relative to controls, whereas auditory training to improve phonological processing did not improve these academic skills significantly more than found for controls. This study supports the hypothesis that faulty timing in synchronizing the activity of magnocellular with parvocellular visual pathways is a fundamental cause of dyslexia, and argues against the assumption that reading deficiencies in dyslexia are caused by phonological deficits. This study demonstrates that visual movement direction-discrimination can be used to not only detect dyslexia early, but also for its successful treatment, so that reading problems do not prevent children from readily learning.

  2. On combining principal components with Fisher's linear discriminants for supervised learning

    NARCIS (Netherlands)

    Pechenizkiy, M.; Tsymbal, A.; Puuronen, S.

    2006-01-01

    "The curse of dimensionality" is pertinent to many learning algorithms, and it denotes the drastic increase of computational complexity and classification error in high dimensions. In this paper, principal component analysis (PCA), parametric feature extraction (FE) based on Fisher’s linear

  3. Image Tracing: An Analysis of Its Effectiveness in Children's Pictorial Discrimination Learning

    Science.gov (United States)

    Levin, Joel R.; And Others

    1977-01-01

    A total of 45 fifth grade students were the subjects of an experiment offering support for a component of learning strategy (memory imagery). Various theoretical explanations of the image-tracing phenomenon are considered, including depth of processing, dual coding and frequency. (MS)

  4. Different Parameters Support Generalization and Discrimination Learning in "Drosophila" at the Flight Simulator

    Science.gov (United States)

    Brembs, Bjorn; de Ibarra, Natalie Hempel

    2006-01-01

    We have used a genetically tractable model system, the fruit fly "Drosophila melanogaster" to study the interdependence between sensory processing and associative processing on learning performance. We investigated the influence of variations in the physical and predictive properties of color stimuli in several different operant-conditioning…

  5. Combining Generative and Discriminative Representation Learning for Lung CT Analysis With Convolutional Restricted Boltzmann Machines

    NARCIS (Netherlands)

    G. van Tulder (Gijs); M. de Bruijne (Marleen)

    2016-01-01

    textabstractThe choice of features greatly influences the performance of a tissue classification system. Despite this, many systems are built with standard, predefined filter banks that are not optimized for that particular application. Representation learning methods such as restricted Boltzmann

  6. Measuring Discrimination- and Reversal Learning in Mouse Models within 4 Days and without Prior Food Deprivation

    Science.gov (United States)

    Remmelink, Esther; Smit, August B.; Verhage, Matthijs; Loos, Maarten

    2016-01-01

    Many neurological and psychiatric disorders are characterized by deficits in cognitive flexibility. Modeling cognitive flexibility in mice enables the investigation of mechanisms underlying these deficits. The majority of currently available behavioral tests targeting this cognitive domain are reversal learning tasks that require scheduled food…

  7. Barriers to repeated assessment of verbal learning and memory: a comparison of international shopping list task and rey auditory verbal learning test on build-up of proactive interference.

    Science.gov (United States)

    Rahimi-Golkhandan, S; Maruff, P; Darby, D; Wilson, P

    2012-11-01

    Proactive interference (PI) that remains unidentified can confound the assessment of verbal learning, particularly when its effects vary from one population to another. The International Shopping List Task (ISLT) is a new measure that provides multiple forms that can be equated for linguistic factors across cultural groups. The aim of this study was to examine the build-up of PI on two measures of verbal learning-a traditional test of list learning (Rey Auditory Verbal Learning Test, RAVLT) and the ISLT. The sample consisted of 61 healthy adults aged 18-40. Each test had three parallel forms, each recalled three times. Results showed that repeated administration of the ISLT did not result in significant PI effects, unlike the RAVLT. Although these PI effects, observed during short retest intervals, may not be as robust under normal clinical administrations of the tests, the results suggest that the choice of the verbal learning test should be guided by the knowledge of PI effects and the susceptibility of particular patient groups to this effect.

  8. Fos Protein Expression in Olfactory-Related Brain Areas after Learning and after Reactivation of a Slowly Acquired Olfactory Discrimination Task in the Rat

    Science.gov (United States)

    Roullet, Florence; Lienard, Fabienne; Datiche, Frederique; Cattarelli, Martine

    2005-01-01

    Fos protein immunodetection was used to investigate the neuronal activation elicited in some olfactory-related areas after either learning of an olfactory discrimination task or its reactivation 10 d later. Trained rats (T) progressively acquired the association between one odor of a pair and water-reward in a four-arm maze. Two groups of…

  9. Brazilian children performance on Rey’s auditory verbal learning paradigm Desempenho de crianças brasileiras no paradigma de aprendizagem auditivo-verbal de Rey

    Directory of Open Access Journals (Sweden)

    Rosinda Martins Oliveira

    2008-03-01

    Full Text Available The Rey Auditory Verbal Learning paradigm is worldwide used in clinical and research settings. There is consensus about its psychometric robustessness and that its various scores provide relevant information about different aspects of memory and learning. However, there are only a few studies in Brazil employing this paradigm and none of them with children. This paper describes the performance of 119 Brazilian children in a version of Rey´s paradigm. The correlations between scores showed the internal consistency of this version. Also, the pattern of results observed was very similar to that observed in foreign studies with adults and children. There was correlation between age in months and recall scores, showing that age affects the rhythm of learning. These results were discussed based on the information processing theory.O paradigma de aprendizagem auditivo-verbal de Rey é utilizado em todo o mundo, tanto em pesquisa quanto na clínica. Há consenso sobre sua robustez psicométrica e de que seus vários escores fornecem informações relevantes sobre diferentes aspectos da memória e da aprendizagem. No entanto, existem apenas alguns poucos estudos no Brasil envolvendo este paradigma e nenhum deles com crianças. Este artigo descreve o desempenho de 119 crianças brasileiras em uma versão do paradigma de Rey. As correlações entre escores mostraram a consistência interna desta versão. Além disso, o padrão de resultados encontrado foi muito similar àquele observado em estudos estrangeiros com adultos e crianças. Verificou-se correlação entre idade em meses e os escores de evocação, mostrando que a idade afeta o ritmo de aprendizagem. Estes resultados foram discutidos a partir da teoria do processamento da informação.

  10. Unpredictable chronic mild stress differentially impairs social and contextual discrimination learning in two inbred mouse strains.

    Science.gov (United States)

    van Boxelaere, Michiel; Clements, Jason; Callaerts, Patrick; D'Hooge, Rudi; Callaerts-Vegh, Zsuzsanna

    2017-01-01

    Alterations in the social and cognitive domain are considered important indicators for increased disability in many stress-related disorders. Similar impairments have been observed in rodents chronically exposed to stress, mimicking potential endophenotypes of stress-related psychopathologies such as major depression disorder (MDD), anxiety, conduct disorder, and posttraumatic stress disorder (PTSD). Data from numerous studies suggest that deficient plasticity mechanisms in hippocampus (HC) and prefrontal cortex (PFC) might underlie these social and cognitive deficits. Specifically, stress-induced deficiencies in neural plasticity have been associated with a hypodopaminergic state and reduced neural plasticity persistence. Here we assessed the effects of unpredictable chronic mild stress (UCMS) on exploratory, social and cognitive behavior of females of two inbred mouse strains (C57BL/6J and DBA/2J) that differ in their dopaminergic profile. Exposure to chronic stress resulted in impaired circadian rhythmicity, sociability and social cognition in both inbred strains, but differentially affected activity patterns and contextual discrimination performance. These stress-induced behavioral impairments were accompanied by reduced expression levels of brain derived neurotrophic factor (BDNF) in the prefrontal cortex. The strain-specific cognitive impairment was coexistent with enhanced plasma corticosterone levels and reduced expression of genes related to dopamine signaling in hippocampus. These results underline the importance of assessing different strains with multiple test batteries to elucidate the neural and genetic basis of social and cognitive impairments related to chronic stress.

  11. Unpredictable chronic mild stress differentially impairs social and contextual discrimination learning in two inbred mouse strains.

    Directory of Open Access Journals (Sweden)

    Michiel van Boxelaere

    Full Text Available Alterations in the social and cognitive domain are considered important indicators for increased disability in many stress-related disorders. Similar impairments have been observed in rodents chronically exposed to stress, mimicking potential endophenotypes of stress-related psychopathologies such as major depression disorder (MDD, anxiety, conduct disorder, and posttraumatic stress disorder (PTSD. Data from numerous studies suggest that deficient plasticity mechanisms in hippocampus (HC and prefrontal cortex (PFC might underlie these social and cognitive deficits. Specifically, stress-induced deficiencies in neural plasticity have been associated with a hypodopaminergic state and reduced neural plasticity persistence. Here we assessed the effects of unpredictable chronic mild stress (UCMS on exploratory, social and cognitive behavior of females of two inbred mouse strains (C57BL/6J and DBA/2J that differ in their dopaminergic profile. Exposure to chronic stress resulted in impaired circadian rhythmicity, sociability and social cognition in both inbred strains, but differentially affected activity patterns and contextual discrimination performance. These stress-induced behavioral impairments were accompanied by reduced expression levels of brain derived neurotrophic factor (BDNF in the prefrontal cortex. The strain-specific cognitive impairment was coexistent with enhanced plasma corticosterone levels and reduced expression of genes related to dopamine signaling in hippocampus. These results underline the importance of assessing different strains with multiple test batteries to elucidate the neural and genetic basis of social and cognitive impairments related to chronic stress.

  12. Auditory Connections and Functions of Prefrontal Cortex

    Directory of Open Access Journals (Sweden)

    Bethany ePlakke

    2014-07-01

    Full Text Available The functional auditory system extends from the ears to the frontal lobes with successively more complex functions occurring as one ascends the hierarchy of the nervous system. Several areas of the frontal lobe receive afferents from both early and late auditory processing regions within the temporal lobe. Afferents from the early part of the cortical auditory system, the auditory belt cortex, which are presumed to carry information regarding auditory features of sounds, project to only a few prefrontal regions and are most dense in the ventrolateral prefrontal cortex (VLPFC. In contrast, projections from the parabelt and the rostral superior temporal gyrus (STG most likely convey more complex information and target a larger, widespread region of the prefrontal cortex. Neuronal responses reflect these anatomical projections as some prefrontal neurons exhibit responses to features in acoustic stimuli, while other neurons display task-related responses. For example, recording studies in non-human primates indicate that VLPFC is responsive to complex sounds including vocalizations and that VLPFC neurons in area 12/47 respond to sounds with similar acoustic morphology. In contrast, neuronal responses during auditory working memory involve a wider region of the prefrontal cortex. In humans, the frontal lobe is involved in auditory detection, discrimination, and working memory. Past research suggests that dorsal and ventral subregions of the prefrontal cortex process different types of information with dorsal cortex processing spatial/visual information and ventral cortex processing non-spatial/auditory information. While this is apparent in the non-human primate and in some neuroimaging studies, most research in humans indicates that specific task conditions, stimuli or previous experience may bias the recruitment of specific prefrontal regions, suggesting a more flexible role for the frontal lobe during auditory cognition.

  13. Auditory connections and functions of prefrontal cortex

    Science.gov (United States)

    Plakke, Bethany; Romanski, Lizabeth M.

    2014-01-01

    The functional auditory system extends from the ears to the frontal lobes with successively more complex functions occurring as one ascends the hierarchy of the nervous system. Several areas of the frontal lobe receive afferents from both early and late auditory processing regions within the temporal lobe. Afferents from the early part of the cortical auditory system, the auditory belt cortex, which are presumed to carry information regarding auditory features of sounds, project to only a few prefrontal regions and are most dense in the ventrolateral prefrontal cortex (VLPFC). In contrast, projections from the parabelt and the rostral superior temporal gyrus (STG) most likely convey more complex information and target a larger, widespread region of the prefrontal cortex. Neuronal responses reflect these anatomical projections as some prefrontal neurons exhibit responses to features in acoustic stimuli, while other neurons display task-related responses. For example, recording studies in non-human primates indicate that VLPFC is responsive to complex sounds including vocalizations and that VLPFC neurons in area 12/47 respond to sounds with similar acoustic morphology. In contrast, neuronal responses during auditory working memory involve a wider region of the prefrontal cortex. In humans, the frontal lobe is involved in auditory detection, discrimination, and working memory. Past research suggests that dorsal and ventral subregions of the prefrontal cortex process different types of information with dorsal cortex processing spatial/visual information and ventral cortex processing non-spatial/auditory information. While this is apparent in the non-human primate and in some neuroimaging studies, most research in humans indicates that specific task conditions, stimuli or previous experience may bias the recruitment of specific prefrontal regions, suggesting a more flexible role for the frontal lobe during auditory cognition. PMID:25100931

  14. Fundamental deficits of auditory perception in Wernicke's aphasia.

    Science.gov (United States)

    Robson, Holly; Grube, Manon; Lambon Ralph, Matthew A; Griffiths, Timothy D; Sage, Karen

    2013-01-01

    This work investigates the nature of the comprehension impairment in Wernicke's aphasia (WA), by examining the relationship between deficits in auditory processing of fundamental, non-verbal acoustic stimuli and auditory comprehension. WA, a condition resulting in severely disrupted auditory comprehension, primarily occurs following a cerebrovascular accident (CVA) to the left temporo-parietal cortex. Whilst damage to posterior superior temporal areas is associated with auditory linguistic comprehension impairments, functional-imaging indicates that these areas may not be specific to speech processing but part of a network for generic auditory analysis. We examined analysis of basic acoustic stimuli in WA participants (n = 10) using auditory stimuli reflective of theories of cortical auditory processing and of speech cues. Auditory spectral, temporal and spectro-temporal analysis was assessed using pure-tone frequency discrimination, frequency modulation (FM) detection and the detection of dynamic modulation (DM) in "moving ripple" stimuli. All tasks used criterion-free, adaptive measures of threshold to ensure reliable results at the individual level. Participants with WA showed normal frequency discrimination but significant impairments in FM and DM detection, relative to age- and hearing-matched controls at the group level (n = 10). At the individual level, there was considerable variation in performance, and thresholds for both FM and DM detection correlated significantly with auditory comprehension abilities in the WA participants. These results demonstrate the co-occurrence of a deficit in fundamental auditory processing of temporal and spectro-temporal non-verbal stimuli in WA, which may have a causal contribution to the auditory language comprehension impairment. Results are discussed in the context of traditional neuropsychology and current models of cortical auditory processing. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Awake, long-term intranasal insulin treatment does not affect object memory, odor discrimination, or reversal learning in mice.

    Science.gov (United States)

    Bell, Genevieve A; Fadool, Debra Ann

    2017-05-15

    Intranasal insulin delivery is currently being used in clinical trials to test for improvement in human memory and cognition, and in particular, for lessening memory loss attributed to neurodegenerative diseases. Studies have reported the effects of short-term intranasal insulin treatment on various behaviors, but less have examined long-term effects. The olfactory bulb contains the highest density of insulin receptors in conjunction with the highest level of insulin transport within the brain. Previous research from our laboratory has demonstrated that acute insulin intranasal delivery (IND) enhanced both short- and long-term memory as well as increased two-odor discrimination in a two-choice paradigm. Herein, we investigated the behavioral and physiological effects of chronic insulin IND. Adult, male C57BL6/J mice were intranasally treated with 5μg/μl of insulin twice daily for 30 and 60days. Metabolic assessment indicated no change in body weight, caloric intake, or energy expenditure following chronic insulin IND, but an increase in the frequency of meal bouts selectively in the dark cycle. Unlike acute insulin IND, which has been shown to cause enhanced performance in odor habituation/dishabituation and two-odor discrimination tasks in mice, chronic insulin IND did not enhance olfactometry-based odorant discrimination or olfactory reversal learning. In an object memory recognition task, insulin IND-treated mice did not perform differently than controls, regardless of task duration. Biochemical analyses of the olfactory bulb revealed a modest 1.3 fold increase in IR kinase phosphorylation but no significant increase in Kv1.3 phosphorylation. Substrate phosphorylation of IR kinase downstream effectors (MAPK/ERK and Akt signaling) proved to be highly variable. These data indicate that chronic administration of insulin IND in mice fails to enhance olfactory ability, object memory recognition, or a majority of systems physiology metabolic factors - as reported to

  16. A Comparative Study of Discrimination in Education: The Learning Environment and Behaviours of Students and Teachers in Iran

    Science.gov (United States)

    Ghaffarzadeh, Mozhgan

    2016-01-01

    It is the learners' right to get an education free from discrimination. Discrimination in education ranges from gender to race, age, social class, financial status, and other characteristics. In this study the focus is on discrimination in education in regard to social class and financial status. The paper describes observations of the school…

  17. Pitch discrimination: are professional musicians better than non-musicians?

    Science.gov (United States)

    Kishon-Rabin, L; Amir, O; Vexler, Y; Zaltz, Y

    2001-01-01

    Musicians are typically considered to exhibit exceptional auditory skills. Only few studies, however, have substantiated this in basic psychoacoustic tasks. The purpose of the present investigation was to expand our knowledge on basic auditory abilities of musicians compared to non-musicians. Specific goals were: (1) to compare frequency discrimination thresholds (difference limen for frequency [DLF]) of non-musical pure tones in controlled groups of professional musicians and non-musicians; (2) to relate DLF performance to musical background; and (3) to compare DLF thresholds obtained with two threshold estimation procedures: 2- and 3- interval forced choice procedures (2IFC and 3IFC). Subjects were 16 professional musicians and 14 non-musicians. DLFs were obtained for three frequencies (0.25, 1 and 1.5 kHz) using the 3IFC adaptive procedure, and for one frequency (1 kHz) also using the 2IFC. Three threshold estimates were obtained for each frequency, procedure and subject. The results of the present study support five major findings: (a) mean DLFs for musicians were approximately half the values of the non-musicians; (b) significant learning for both groups during the three threshold estimations; (c) classical musicians performed better than those with contemporary musical background; (d) performance was influenced by years of musical experience; and (e) both groups showed better DLF in a 2IFC paradigm compared to the 3IFC. These data highlight the importance of short-term training on an auditory task, auditory memory and factors related to musical background (such as musical genre and years of experience) on auditory performance.

  18. The Effectiveness of Storytelling on Improving Auditory Memory of Students with Reading Disabilities in Marivan City, Iran

    Directory of Open Access Journals (Sweden)

    Fatemeh Ghaderi

    2017-08-01

    Full Text Available Background: Students with learning disabilities often encounter problems with their lessons due to the disorder in reading and writing and face to some challenging situation such as auditory and visual memory problem, sustaining attention, inhibiting impulses, motor coordination, auditory and visual perception and discrimination. The purpose of this study was to investigate the effectiveness of storytelling on auditory memory of students with reading disabilities of Marivan city, Iran. Materials and Methods: The research method was quasi-experimental with pretest-posttest design with a control group. Sampling method was replaced in this study using an available sampling method on 30 students in two groups (15 experimental and 15 control people. The experimental group test abilities were trained in 12 one-hour session. Inclusion criteria were having a learning disorder (only dyslexic, third grade elementary school and having no other abnormalities and exclusion criteria were students who did not attend the regular sessions. Digit span subtest the Wechsler figures Fourth Edition were used to collect data. Collected data were analyzed by using SPSS version 21.0 software in two levels of descriptive and inferential statistics (ANCOVA. Results: The results showed that 66% of participants were female, also, according to the parents' literacy level, the results showed that the highest level of fathers’ literacy was between high school and diploma (46.7% as well as the highest level of mothers’ literacy was under diploma (50%. The results showed that storytelling had a significant impact on improving dyslexic students’ auditory memory (P

  19. Learning discriminative features from RGB-D images for gender and ethnicity identification

    Science.gov (United States)

    Azzakhnini, Safaa; Ballihi, Lahoucine; Aboutajdine, Driss

    2016-11-01

    The development of sophisticated sensor technologies gave rise to an interesting variety of data. With the appearance of affordable devices, such as the Microsoft Kinect, depth-maps and three-dimensional data became easily accessible. This attracted many computer vision researchers seeking to exploit this information in classification and recognition tasks. In this work, the problem of face classification in the context of RGB images and depth information (RGB-D images) is addressed. The purpose of this paper is to study and compare some popular techniques for gender recognition and ethnicity classification to understand how much depth data can improve the quality of recognition. Furthermore, we investigate which combination of face descriptors, feature selection methods, and learning techniques is best suited to better exploit RGB-D images. The experimental results show that depth data improve the recognition accuracy for gender and ethnicity classification applications in many use cases.

  20. Auditory Perspective Taking

    National Research Council Canada - National Science Library

    Martinson, Eric; Brock, Derek

    2006-01-01

    .... From this knowledge of another's auditory perspective, a conversational partner can then adapt his or her auditory output to overcome a variety of environmental challenges and insure that what is said is intelligible...

  1. How may the basal ganglia contribute to auditory categorization and speech perception?

    Directory of Open Access Journals (Sweden)

    Sung-Joo eLim

    2014-08-01

    Full Text Available Listeners must accomplish two complementary perceptual feats in extracting a message from speech. They must discriminate linguistically-relevant acoustic variability and generalize across irrelevant variability. Said another way, they must categorize speech. Since the mapping of acoustic variability is language-specific, these categories must be learned from experience. Thus, understanding how, in general, the auditory system acquires and represents categories can inform us about the toolbox of mechanisms available to speech perception. This perspective invites consideration of findings from cognitive neuroscience literatures outside of the speech domain as a means of constraining models of speech perception. Although neurobiological models of speech perception have mainly focused on cerebral cortex, research outside the speech domain is consistent with the possibility of significant subcortical contributions in category learning. Here, we review the functional role of one such structure, the basal ganglia. We examine research from animal electrophysiology, human neuroimaging, and behavior to consider characteristics of basal ganglia processing that may be advantageous for speech category learning. We also present emerging evidence for a direct role for basal ganglia in learning auditory categories in a complex, naturalistic task intended to model the incidental manner in which speech categories are acquired. To conclude, we highlight new research questions that arise in incorporating the broader neuroscience research literature in modeling speech perception, and suggest how understanding contributions of the basal ganglia can inform attempts to optimize training protocols for learning non-native speech categories in adulthood.

  2. Fuzziness-based active learning framework to enhance hyperspectral image classification performance for discriminative and generative classifiers.

    Directory of Open Access Journals (Sweden)

    Muhammad Ahmad

    Full Text Available Hyperspectral image classification with a limited number of training samples without loss of accuracy is desirable, as collecting such data is often expensive and time-consuming. However, classifiers trained with limited samples usually end up with a large generalization error. To overcome the said problem, we propose a fuzziness-based active learning framework (FALF, in which we implement the idea of selecting optimal training samples to enhance generalization performance for two different kinds of classifiers, discriminative and generative (e.g. SVM and KNN. The optimal samples are selected by first estimating the boundary of each class and then calculating the fuzziness-based distance between each sample and the estimated class boundaries. Those samples that are at smaller distances from the boundaries and have higher fuzziness are chosen as target candidates for the training set. Through detailed experimentation on three publically available datasets, we showed that when trained with the proposed sample selection framework, both classifiers achieved higher classification accuracy and lower processing time with the small amount of training data as opposed to the case where the training samples were selected randomly. Our experiments demonstrate the effectiveness of our proposed method, which equates favorably with the state-of-the-art methods.

  3. Quantifying explainable discrimination and removing illegal discrimination in automated decision making

    NARCIS (Netherlands)

    Kamiran, F.; Zliobaite, I.; Calders, T.G.K.

    2013-01-01

    Recently, the following discrimination-aware classification problem was introduced. Historical data used for supervised learning may contain discrimination, for instance, with respect to gender. The question addressed by discrimination-aware techniques is, given sensitive attribute, how to train

  4. The thalamo-cortical auditory receptive fields: regulation by the states of vigilance, learning and the neuromodulatory systems.

    Science.gov (United States)

    Edeline, Jean-Marc

    2003-12-01

    The goal of this review is twofold. First, it aims to describe the dynamic regulation that constantly shapes the receptive fields (RFs) and maps in the thalamo-cortical sensory systems of undrugged animals. Second, it aims to discuss several important issues that remain unresolved at the intersection between behavioral neurosciences and sensory physiology. A first section presents the RF modulations observed when an undrugged animal spontaneously shifts from waking to slow-wave sleep or to paradoxical sleep (also called REM sleep). A second section shows that, in contrast with the general changes described in the first section, behavioral training can induce selective effects which favor the stimulus that has acquired significance during learning. A third section reviews the effects triggered by two major neuromodulators of the thalamo-cortical system--acetylcholine and noradrenaline--which are traditionally involved both in the switch of vigilance states and in learning experiences. The conclusion argues that because the receptive fields and maps of an awake animal are continuously modulated from minute to minute, learning-induced sensory plasticity can be viewed as a "crystallization" of the receptive fields and maps in one of the multiple possible states. Studying the interplays between neuromodulators can help understanding the neurobiological foundations of this dynamic regulation.

  5. Structural Discrimination

    DEFF Research Database (Denmark)

    Thorsen, Mira Skadegård

    discrimination as two ways of articulating particular, opaque forms of racial discrimination that occur in everyday Danish (and other) contexts, and have therefore become normalized. I present and discuss discrimination as it surfaces in data from my empirical studies of discrimination in Danish contexts...

  6. Auditory agnosia as a clinical symptom of childhood adrenoleukodystrophy.

    Science.gov (United States)

    Furushima, Wakana; Kaga, Makiko; Nakamura, Masako; Gunji, Atsuko; Inagaki, Masumi

    2015-08-01

    To investigate detailed auditory features in patients with auditory impairment as the first clinical symptoms of childhood adrenoleukodystrophy (CSALD). Three patients who had hearing difficulty as the first clinical signs and/or symptoms of ALD. Precise examination of the clinical characteristics of hearing and auditory function was performed, including assessments of pure tone audiometry, verbal sound discrimination, otoacoustic emission (OAE), and auditory brainstem response (ABR), as well as an environmental sound discrimination test, a sound lateralization test, and a dichotic listening test (DLT). The auditory pathway was evaluated by MRI in each patient. Poor response to calling was detected in all patients. Two patients were not aware of their hearing difficulty, and had been diagnosed with normal hearing by otolaryngologists at first. Pure-tone audiometry disclosed normal hearing in all patients. All patients showed a normal wave V ABR threshold. Three patients showed obvious difficulty in discriminating verbal sounds, environmental sounds, and sound lateralization and strong left-ear suppression in a dichotic listening test. However, once they discriminated verbal sounds, they correctly understood the meaning. Two patients showed elongation of the I-V and III-V interwave intervals in ABR, but one showed no abnormality. MRIs of these three patients revealed signal changes in auditory radiation including in other subcortical areas. The hearing features of these subjects were diagnosed as auditory agnosia and not aphasia. It should be emphasized that when patients are suspected to have hearing impairment but have no abnormalities in pure tone audiometry and/or ABR, this should not be diagnosed immediately as psychogenic response or pathomimesis, but auditory agnosia must also be considered. Copyright © 2014 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  7. Primate Auditory Recognition Memory Performance Varies With Sound Type

    OpenAIRE

    Chi-Wing, Ng; Bethany, Plakke; Amy, Poremba

    2009-01-01

    Neural correlates of auditory processing, including for species-specific vocalizations that convey biological and ethological significance (e.g. social status, kinship, environment),have been identified in a wide variety of areas including the temporal and frontal cortices. However, few studies elucidate how non-human primates interact with these vocalization signals when they are challenged by tasks requiring auditory discrimination, recognition, and/or memory. The present study employs a de...

  8. Spatial localization deficits and auditory cortical dysfunction in schizophrenia

    Science.gov (United States)

    Perrin, Megan A.; Butler, Pamela D.; DiCostanzo, Joanna; Forchelli, Gina; Silipo, Gail; Javitt, Daniel C.

    2014-01-01

    Background Schizophrenia is associated with deficits in the ability to discriminate auditory features such as pitch and duration that localize to primary cortical regions. Lesions of primary vs. secondary auditory cortex also produce differentiable effects on ability to localize and discriminate free-field sound, with primary cortical lesions affecting variability as well as accuracy of response. Variability of sound localization has not previously been studied in schizophrenia. Methods The study compared performance between patients with schizophrenia (n=21) and healthy controls (n=20) on sound localization and spatial discrimination tasks using low frequency tones generated from seven speakers concavely arranged with 30 degrees separation. Results For the sound localization task, patients showed reduced accuracy (p=0.004) and greater overall response variability (p=0.032), particularly in the right hemifield. Performance was also impaired on the spatial discrimination task (p=0.018). On both tasks, poorer accuracy in the right hemifield was associated with greater cognitive symptom severity. Better accuracy in the left hemifield was associated with greater hallucination severity on the sound localization task (p=0.026), but no significant association was found for the spatial discrimination task. Conclusion Patients show impairments in both sound localization and spatial discrimination of sounds presented free-field, with a pattern comparable to that of individuals with right superior temporal lobe lesions that include primary auditory cortex (Heschl’s gyrus). Right primary auditory cortex dysfunction may protect against hallucinations by influencing laterality of functioning. PMID:20619608

  9. Auditory and cognitive performance in elderly musicians and nonmusicians.

    Directory of Open Access Journals (Sweden)

    Massimo Grassi

    Full Text Available Musicians represent a model for examining brain and behavioral plasticity in terms of cognitive and auditory profile, but few studies have investigated whether elderly musicians have better auditory and cognitive abilities than nonmusicians. The aim of the present study was to examine whether being a professional musician attenuates the normal age-related changes in hearing and cognition. Elderly musicians still active in their profession were compared with nonmusicians on auditory performance (absolute threshold, frequency intensity, duration and spectral shape discrimination, gap and sinusoidal amplitude-modulation detection, and on simple (short-term memory and more complex and higher-order (working memory [WM] and visuospatial abilities cognitive tasks. The sample consisted of adults at least 65 years of age. The results showed that older musicians had similar absolute thresholds but better supra-threshold discrimination abilities than nonmusicians in four of the six auditory tasks administered. They also had a better WM performance, and stronger visuospatial abilities than nonmusicians. No differences were found between the two groups' short-term memory. Frequency discrimination and gap detection for the auditory measures, and WM complex span tasks and one of the visuospatial tasks for the cognitive ones proved to be very good classifiers of the musicians. These findings suggest that life-long music training may be associated with enhanced auditory and cognitive performance, including complex cognitive skills, in advanced age. However, whether this music training represents a protective factor or not needs further investigation.

  10. Multisensory object perception in infancy: 4-month-olds perceive a mistuned harmonic as a separate auditory and visual object.

    Science.gov (United States)

    Smith, Nicholas A; Folland, Nicole A; Martinez, Diana M; Trainor, Laurel J

    2017-07-01

    Infants learn to use auditory and visual information to organize the sensory world into identifiable objects with particular locations. Here we use a behavioural method to examine infants' use of harmonicity cues to auditory object perception in a multisensory context. Sounds emitted by different objects sum in the air and the auditory system must figure out which parts of the complex waveform belong to different sources (auditory objects). One important cue to this source separation is that complex tones with pitch typically contain a fundamental frequency and harmonics at integer multiples of the fundamental. Consequently, adults hear a mistuned harmonic in a complex sound as a distinct auditory object (Alain, Theunissen, Chevalier, Batty, & Taylor, 2003). Previous work by our group demonstrated that 4-month-old infants are also sensitive to this cue. They behaviourally discriminate a complex tone with a mistuned harmonic from the same complex with in-tune harmonics, and show an object-related event-related potential (ERP) electrophysiological (EEG) response to the stimulus with mistuned harmonics. In the present study we use an audiovisual procedure to investigate whether infants perceive a complex tone with an 8% mistuned harmonic as emanating from two objects, rather than merely detecting the mistuned cue. We paired in-tune and mistuned complex tones with visual displays that contained either one or two bouncing balls. Four-month-old infants showed surprise at the incongruous pairings, looking longer at the display of two balls when paired with the in-tune complex and at the display of one ball when paired with the mistuned harmonic complex. We conclude that infants use harmonicity as a cue for source separation when integrating auditory and visual information in object perception. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Effects of subchronic phencyclidine (PCP treatment on social behaviors, and operant discrimination and reversal learning in C57BL/6J mice

    Directory of Open Access Journals (Sweden)

    Jonathan L Brigman

    2009-02-01

    Full Text Available Subchronic treatment with the psychotomimetic phencyclidine (PCP has been proposed as a rodent model of the negative and cognitive/executive symptoms of schizophrenia. There has, however, been a paucity of studies on this model in mice, despite the growing use of the mouse as a subject in genetic and molecular studies of schizophrenia. In the present study, we evaluated the effects of subchronic PCP treatment (5 mg/kg twice daily x 7 days, followed by 7 days withdrawal in C57BL/6J mice on 1 social behaviors using a sociability/social novelty-preference paradigm, and 2 pairwise visual discrimination and reversal learning using a touchscreen-based operant system. Results showed that mice subchronically treated with PCP made more visits to (but did not spend more time with a social stimulus relative to an inanimate one, and made more visits and spent more time investigating a novel social stimulus over a familiar one. Subchronic PCP treatment did not significantly affect behavior in either the discrimination or reversal learning tasks. These data encourage further analysis of the potential utility of mouse subchronic PCP treatment for modeling the social withdrawal component of schizophrenia. They also indicate that the treatment regimen employed was insufficient to impair our measures of discrimination and reversal learning in the C57BL/6J strain. Further work will be needed to identify alternative methods (e.g., repeated cycles of subchronic PCP treatment, use of different mouse strains that produce discrimination and/or reversal impairment, as well as other cognitive/executive measures that are sensitive to chronic PCP treatment in mice.

  12. Maturation of Rapid Auditory Temporal Processing and Subsequent Nonword Repetition Performance in Children

    Science.gov (United States)

    Fox, Allison M.; Reid, Corinne L.; Anderson, Mike; Richardson, Cassandra; Bishop, Dorothy V. M.

    2012-01-01

    According to the rapid auditory processing theory, the ability to parse incoming auditory information underpins learning of oral and written language. There is wide variation in this low-level perceptual ability, which appears to follow a protracted developmental course. We studied the development of rapid auditory processing using event-related…

  13. Auditory memory for temporal characteristics of sound.

    Science.gov (United States)

    Zokoll, Melanie A; Klump, Georg M; Langemann, Ulrike

    2008-05-01

    This study evaluates auditory memory for variations in the rate of sinusoidal amplitude modulation (SAM) of noise bursts in the European starling (Sturnus vulgaris). To estimate the extent of the starling's auditory short-term memory store, a delayed non-matching-to-sample paradigm was applied. The birds were trained to discriminate between a series of identical "sample stimuli" and a single "test stimulus". The birds classified SAM rates of sample and test stimuli as being either the same or different. Memory performance of the birds was measured as the percentage of correct classifications. Auditory memory persistence time was estimated as a function of the delay between sample and test stimuli. Memory performance was significantly affected by the delay between sample and test and by the number of sample stimuli presented before the test stimulus, but was not affected by the difference in SAM rate between sample and test stimuli. The individuals' auditory memory persistence times varied between 2 and 13 s. The starlings' auditory memory persistence in the present study for signals varying in the temporal domain was significantly shorter compared to that of a previous study (Zokoll et al. in J Acoust Soc Am 121:2842, 2007) applying tonal stimuli varying in the spectral domain.

  14. Input from the medial geniculate nucleus modulates amygdala encoding of fear memory discrimination.

    Science.gov (United States)

    Ferrara, Nicole C; Cullen, Patrick K; Pullins, Shane P; Rotondo, Elena K; Helmstetter, Fred J

    2017-09-01

    Generalization of fear can involve abnormal responding to cues that signal safety and is common in people diagnosed with post-traumatic stress disorder. Differential auditory fear conditioning can be used as a tool to measure changes in fear discrimination and generalization. Most prior work in this area has focused on elevated amygdala activity as a critical component underlying generalization. The amygdala receives input from auditory cortex as well as the medial geniculate nucleus (MgN) of the thalamus, and these synapses undergo plastic changes in response to fear conditioning and are major contributors to the formation of memory related to both safe and threatening cues. The requirement for MgN protein synthesis during auditory discrimination and generalization, as well as the role of MgN plasticity in amygdala encoding of discrimination or generalization, have not been directly tested. GluR1 and GluR2 containing AMPA receptors are found at synapses throughout the amygdala and their expression is persistently up-regulated after learning. Some of these receptors are postsynaptic to terminals from MgN neurons. We found that protein synthesis-dependent plasticity in MgN is necessary for elevated freezing to both aversive and safe auditory cues, and that this is accompanied by changes in the expressions of AMPA receptor and synaptic scaffolding proteins (e.g., SHANK) at amygdala synapses. This work contributes to understanding the neural mechanisms underlying increased fear to safety signals after stress. © 2017 Ferrara et al.; Published by Cold Spring Harbor Laboratory Press.

  15. Absence of both auditory evoked potentials and auditory percepts dependent on timing cues.

    Science.gov (United States)

    Starr, A; McPherson, D; Patterson, J; Don, M; Luxford, W; Shannon, R; Sininger, Y; Tonakawa, L; Waring, M

    1991-06-01

    An 11-yr-old girl had an absence of sensory components of auditory evoked potentials (brainstem, middle and long-latency) to click and tone burst stimuli that she could clearly hear. Psychoacoustic tests revealed a marked impairment of those auditory perceptions dependent on temporal cues, that is, lateralization of binaural clicks, change of binaural masked threshold with changes in signal phase, binaural beats, detection of paired monaural clicks, monaural detection of a silent gap in a sound, and monaural threshold elevation for short duration tones. In contrast, auditory functions reflecting intensity or frequency discriminations (difference limens) were only minimally impaired. Pure tone audiometry showed a moderate (50 dB) bilateral hearing loss with a disproportionate severe loss of word intelligibility. Those auditory evoked potentials that were preserved included (1) cochlear microphonics reflecting hair cell activity; (2) cortical sustained potentials reflecting processing of slowly changing signals; and (3) long-latency cognitive components (P300, processing negativity) reflecting endogenous auditory cognitive processes. Both the evoked potential and perceptual deficits are attributed to changes in temporal encoding of acoustic signals perhaps occurring at the synapse between hair cell and eighth nerve dendrites. The results from this patient are discussed in relation to previously published cases with absent auditory evoked potentials and preserved hearing.

  16. Attending to auditory memory.

    Science.gov (United States)

    Zimmermann, Jacqueline F; Moscovitch, Morris; Alain, Claude

    2016-06-01

    Attention to memory describes the process of attending to memory traces when the object is no longer present. It has been studied primarily for representations of visual stimuli with only few studies examining attention to sound object representations in short-term memory. Here, we review the interplay of attention and auditory memory with an emphasis on 1) attending to auditory memory in the absence of related external stimuli (i.e., reflective attention) and 2) effects of existing memory on guiding attention. Attention to auditory memory is discussed in the context of change deafness, and we argue that failures to detect changes in our auditory environments are most likely the result of a faulty comparison system of incoming and stored information. Also, objects are the primary building blocks of auditory attention, but attention can also be directed to individual features (e.g., pitch). We review short-term and long-term memory guided modulation of attention based on characteristic features, location, and/or semantic properties of auditory objects, and propose that auditory attention to memory pathways emerge after sensory memory. A neural model for auditory attention to memory is developed, which comprises two separate pathways in the parietal cortex, one involved in attention to higher-order features and the other involved in attention to sensory information. This article is part of a Special Issue entitled SI: Auditory working memory. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. [A case of transient auditory agnosia and schizophrenia].

    Science.gov (United States)

    Kanzaki, Jin; Harada, Tatsuhiko; Kanzaki, Sho

    2011-03-01

    We report a case of transient functional auditory agnosia and schizophrenia and discuss their relationship. A 30-year-old woman with schizophrenia reporting bilateral hearing loss was found in history taking to be able to hear but could neither understand speech nor discriminate among environmental sounds. Audiometry clarified normal but low speech discrimination. Otoacoustic emission and auditory brainstem response were normal. Magnetic resonance imaging (MRI) elsewhere evidenced no abnormal findings. We assumed that taking care of her grandparents who had been discharged from the hospital had unduly stressed her, and her condition improved shortly after she stopped caring for them, returned home and started taking a minor tranquilizer.

  18. Rapid Auditory System Adaptation Using a Virtual Auditory Environment

    Directory of Open Access Journals (Sweden)

    Gaëtan Parseihian

    2011-10-01

    Full Text Available Various studies have highlighted plasticity of the auditory system from visual stimuli, limiting the trained field of perception. The aim of the present study is to investigate auditory system adaptation using an audio-kinesthetic platform. Participants were placed in a Virtual Auditory Environment allowing the association of the physical position of a virtual sound source with an alternate set of acoustic spectral cues or Head-Related Transfer Function (HRTF through the use of a tracked ball manipulated by the subject. This set-up has the advantage to be not being limited to the visual field while also offering a natural perception-action coupling through the constant awareness of one's hand position. Adaptation process to non-individualized HRTF was realized through a spatial search game application. A total of 25 subjects participated, consisting of subjects presented with modified cues using non-individualized HRTF and a control group using individual measured HRTFs to account for any learning effect due to the game itself. The training game lasted 12 minutes and was repeated over 3 consecutive days. Adaptation effects were measured with repeated localization tests. Results showed a significant performance improvement for vertical localization and a significant reduction in the front/back confusion rate after 3 sessions.

  19. Distributional learning has immediate and long-lasting effects.

    Science.gov (United States)

    Escudero, Paola; Williams, Daniel

    2014-11-01

    Evidence of distributional learning, a statistical learning mechanism centered on relative frequency of exposure to different tokens, has mainly come from short-term learning and therefore does not ostensibly address the development of important learning processes. The present longitudinal study examines both short- and long-term effects of distributional learning of phonetic categories on non-native sound discrimination over a 12-month period. Two groups of listeners were exposed to a two-minute distribution of auditory stimuli in which the most frequently presented tokens either approximated or exaggerated the natural production of the speech sounds, whereas a control group listened to a piece of classical music for the same length of time. Discrimination by listeners in the two distribution groups improved immediately after the short exposure, replicating previous results. Crucially, this improvement was maintained after six and 12 months, demonstrating that distributional learning has long-lasting effects. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Auditory Processing Disorder (For Parents)

    Science.gov (United States)

    ... role. Auditory cohesion problems: This is when higher-level listening tasks are difficult. Auditory cohesion skills — drawing inferences from conversations, understanding riddles, or comprehending verbal math problems — require heightened auditory processing and language levels. ...

  1. Auditory feedback and memory for music performance: sound evidence for an encoding effect.

    Science.gov (United States)

    Finney, Steven A; Palmer, Caroline

    2003-01-01

    Research on the effects of context and task on learning and memory has included approaches that emphasize processes during learning (e.g., Craik & Tulving, 1975) and approaches that emphasize a match of conditions during learning with conditions during a later test of memory (e.g., Morris, Bransford, & Franks, 1977; Proteau, 1992; Tulving & Thomson, 1973). We investigated the effects of auditory context on learning and retrieval in three experiments on memorized music performance (a form of serial recall). Auditory feedback (presence or absence) was manipulated while pianists learned musical pieces from notation and when they later played the pieces from memory. Auditory feedback during learning significantly improved later recall. However, auditory feedback at test did not significantly affect recall, nor was there an interaction between conditions at learning and test. Auditory feedback in music performance appears to be a contextual factor that affects learning but is relatively independent of retrieval conditions.

  2. Widespread auditory deficits in tune deafness.

    Science.gov (United States)

    Jones, Jennifer L; Zalewski, Christopher; Brewer, Carmen; Lucker, Jay; Drayna, Dennis

    2009-02-01

    The goal of this study was to investigate auditory function in individuals with deficits in musical pitch perception. We hypothesized that such individuals have deficits in nonspeech areas of auditory processing. We screened 865 randomly selected individuals to identify those who scored poorly on the Distorted Tunes test (DTT), a measure of musical pitch recognition ability. Those who scored poorly were given a comprehensive audiologic examination, and those with hearing loss or other confounding audiologic factors were excluded from further testing. Thirty-five individuals with tune deafness constituted the experimental group. Thirty-four individuals with normal hearing and normal DTT scores, matched for age, gender, handedness, and education, and without overt or reported psychiatric disorders made up the normal control group. Individual and group performance for pure-tone frequency discrimination at 1000 Hz was determined by measuring the difference limen for frequency (DLF). Auditory processing abilities were assessed using tests of pitch pattern recognition, duration pattern recognition, and auditory gap detection. In addition, we evaluated both attention and short- and long-term memory as variables that might influence performance on our experimental measures. Differences between groups were evaluated statistically using Wilcoxon nonparametric tests and t-tests as appropriate. The DLF at 1000 Hz in the group with tune deafness was significantly larger than that of the normal control group. However, approximately one-third of participants with tune deafness had DLFs within the range of performance observed in the control group. Many individuals with tune deafness also displayed a high degree of variability in their intertrial frequency discrimination performance that could not be explained by deficits in memory or attention. Pitch and duration pattern discrimination and auditory gap-detection ability were significantly poorer in the group with tune deafness

  3. Differential discriminator

    International Nuclear Information System (INIS)

    Dukhanov, V.I.; Mazurov, I.B.

    1981-01-01

    A principal flowsheet of a differential discriminator intended for operation in a spectrometric circuit with statistical time distribution of pulses is described. The differential discriminator includes four integrated discriminators and a channel of piled-up signal rejection. The presence of the rejection channel enables the discriminator to operate effectively at loads of 14x10 3 pulse/s. The temperature instability of the discrimination thresholds equals 250 μV/ 0 C. The discrimination level changes within 0.1-5 V, the level shift constitutes 0.5% for the filling ratio of 1:10. The rejection coefficient is not less than 90%. Alpha spectrum of the 228 Th source is presented to evaluate the discriminator operation with the rejector. The rejector provides 50 ns time resolution

  4. Plasticity in the Primary Auditory Cortex, Not What You Think it is: Implications for Basic and Clinical Auditory Neuroscience

    Science.gov (United States)

    Weinberger, Norman M.

    2013-01-01

    Standard beliefs that the function of the primary auditory cortex (A1) is the analysis of sound have proven to be incorrect. Its involvement in learning, memory and other complex processes in both animals and humans is now well-established, although often not appreciated. Auditory coding is strongly modifed by associative learning, evident as associative representational plasticity (ARP) in which the representation of an acoustic dimension, like frequency, is re-organized to emphasize a sound that has become behaviorally important. For example, the frequency tuning of a cortical neuron can be shifted to match that of a significant sound and the representational area of sounds that acquire behavioral importance can be increased. ARP depends on the learning strategy used to solve an auditory problem and the increased cortical area confers greater strength of auditory memory. Thus, primary auditory cortex is involved in cognitive processes, transcending its assumed function of auditory stimulus analysis. The implications for basic neuroscience and clinical auditory neuroscience are presented and suggestions for remediation of auditory processing disorders are introduced. PMID:25356375

  5. The role of auditory abilities in basic mechanisms of cognition in older adults

    Directory of Open Access Journals (Sweden)

    Massimo eGrassi

    2013-10-01

    Full Text Available The aim of this study was to assess age-related differences between young and older adults in auditory abilities and to investigate the relationship between auditory abilities and basic mechanisms of cognition in older adults. Although there is a certain consensus that the participant’s sensitivity to the absolute intensity of sounds (such as that measured via pure tone audiometry explains his/her cognitive performance, there is not yet much evidence that the participant’s auditory ability (i.e., the whole supra-threshold processing of sounds explains his/her cognitive performance. Twenty-eight young adults (age < 35, 26 young-old adults (65 ≤ age ≤75 and 28 old-old adults (age > 75 were presented with a set of tasks estimating several auditory abilities (i.e., frequency discrimination, intensity discrimination, duration discrimination, timbre discrimination, gap detection, amplitude modulation detection, and the absolute threshold for a 1 kHz pure tone and the participant’s working memory, cognitive inhibition, and processing speed. Results showed an age-related decline in both auditory and cognitive performance. Moreover, regression analyses showed that a subset of the auditory abilities (i.e., the ability to discriminate frequency, duration, timbre, and the ability to detect amplitude modulation explained a significant part of the variance observed in processing speed in older adults. Overall, the present results highlight the relationship between auditory abilities and basic mechanisms of cognition.

  6. The Role of Visual and Auditory Stimuli in Continuous Performance Tests: Differential Effects on Children With ADHD.

    Science.gov (United States)

    Simões, Eunice N; Carvalho, Ana L Novais; Schmidt, Sergio L

    2018-04-01

    Continuous performance tests (CPTs) usually utilize visual stimuli. A previous investigation showed that inattention is partially independent of modality, but response inhibition is modality-specific. Here we aimed to compare performance on visual and auditory CPTs in ADHD and in healthy controls. The sample consisted of 160 elementary and high school students (43 ADHD, 117 controls). For each sensory modality, five variables were extracted: commission errors (CEs) and omission errors (OEs), reaction time (RT), variability of reaction time (VRT), and coefficient of variability (CofV = VRT / RT). The ADHD group exhibited higher rates for all test variables. The discriminant analysis indicated that auditory OE was the most reliable variable for discriminating between groups, followed by visual CE, auditory CE, and auditory CofV. Discriminant equation classified ADHD with 76.3% accuracy. Auditory parameters in the inattention domain (OE and VRT) can discriminate ADHD from controls. For the hyperactive/impulsive domain (CE), the two modalities are equally important.

  7. Biological impact of music and software-based auditory training

    Science.gov (United States)

    Kraus, Nina

    2012-01-01

    Auditory-based communication skills are developed at a young age and are maintained throughout our lives. However, some individuals – both young and old – encounter difficulties in achieving or maintaining communication proficiency. Biological signals arising from hearing sounds relate to real-life communication skills such as listening to speech in noisy environments and reading, pointing to an intersection between hearing and cognition. Musical experience, amplification, and software-based training can improve these biological signals. These findings of biological plasticity, in a variety of subject populations, relate to attention and auditory memory, and represent an integrated auditory system influenced by both sensation and cognition. Learning outcomes The reader will (1) understand that the auditory system is malleable to experience and training, (2) learn the ingredients necessary for auditory learning to successfully be applied to communication, (3) learn that the auditory brainstem response to complex sounds (cABR) is a window into the integrated auditory system, and (4) see examples of how cABR can be used to track the outcome of experience and training. PMID:22789822

  8. Performance of four different rat strains in the autoshaping, two-object discrimination, and swim maze tests of learning and memory.

    Science.gov (United States)

    Andrews, J S; Jansen, J H; Linders, S; Princen, A; Broekkamp, C L

    1995-04-01

    The performance of four strains of rats commonly used in behavioural research was assessed in three different tests of learning and memory. The four strains included three outbred lines (Long-Evans, Sprague-Dawley, Wistar) and one inbred strain (S3). Learning and memory were tested using three different paradigms: autoshaping of a lever press, a two-object discrimination test, and performance in a two-island swim maze task. The pigmented strains showed better performance in the autoshaping procedure: the majority of the Long-Evans and the S3 rats acquired the response, and the majority of the Wistar and Sprague-Dawley failed to acquire the response in the set time. The albino strains were slightly better in the swim maze than the pigmented strains. There appeared to be a speed/accuracy trade-off in the strategy used to solve the task. This was also evident following treatment with the cholinergic-depleting agent hemicholinium-3. The performance of the Long-Evans rats was most affected by the treatment in terms of accuracy and the Wistar and Sprague-Dawleys in terms of speed. In the two-object discrimination test only the Long-Evans showed satisfactory performance and were able to discriminate a novel from a known object a short interval after initial exposure. These results show large task- and strain-dependent differences in performance in tests of learning and memory. Some of the performance variation may be due to emotional differences between the strains and may be alleviated by extra training. However, the response to pharmacological manipulation may require more careful evaluation.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Knockdown of the dyslexia-associated gene Kiaa0319 impairs temporal responses to speech stimuli in rat primary auditory cortex.

    Science.gov (United States)

    Centanni, T M; Booker, A B; Sloan, A M; Chen, F; Maher, B J; Carraway, R S; Khodaparast, N; Rennaker, R; LoTurco, J J; Kilgard, M P

    2014-07-01

    One in 15 school age children have dyslexia, which is characterized by phoneme-processing problems and difficulty learning to read. Dyslexia is associated with mutations in the gene KIAA0319. It is not known whether reduced expression of KIAA0319 can degrade the brain's ability to process phonemes. In the current study, we used RNA interference (RNAi) to reduce expression of Kiaa0319 (the rat homolog of the human gene KIAA0319) and evaluate the effect in a rat model of phoneme discrimination. Speech discrimination thresholds in normal rats are nearly identical to human thresholds. We recorded multiunit neural responses to isolated speech sounds in primary auditory cortex (A1) of rats that received in utero RNAi of Kiaa0319. Reduced expression of Kiaa0319 increased the trial-by-trial variability of speech responses and reduced the neural discrimination ability of speech sounds. Intracellular recordings from affected neurons revealed that reduced expression of Kiaa0319 increased neural excitability and input resistance. These results provide the first evidence that decreased expression of the dyslexia-associated gene Kiaa0319 can alter cortical responses and impair phoneme processing in auditory cortex. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. [Effect of space flight factors simulated in ground-based experiments on the behavior, discriminant learning, and exchange of monoamines in different brain structures of rats].

    Science.gov (United States)

    Shtemberg, A S; Lebedeva-Georgievskaia, K V; Matveeva, M I; Kudrin, V S; Narkevich, V B; Klodt, P M; Bazian, A S

    2014-01-01

    Experimental treatment (long-term fractionated γ-irradiation, antiorthostatic hypodynamia, and the combination of these factors) simulating the effect of space flight in ground-based experiments rapidly restored the motor and orienting-investigative activity of animals (rats) in "open-field" tests. The study of the dynamics of discriminant learning of rats of experimental groups did not show significant differences from the control animals. It was found that the minor effect of these factors on the cognitive performance of animals correlated with slight changes in the concentration ofmonoamines in the brain structures responsible for the cognitive, emotional, and motivational functions.

  11. The perception of prosody and associated auditory cues in early-implanted children: the role of auditory working memory and musical activities.

    Science.gov (United States)

    Torppa, Ritva; Faulkner, Andrew; Huotilainen, Minna; Järvikivi, Juhani; Lipsanen, Jari; Laasonen, Marja; Vainio, Martti

    2014-03-01

    To study prosodic perception in early-implanted children in relation to auditory discrimination, auditory working memory, and exposure to music. Word and sentence stress perception, discrimination of fundamental frequency (F0), intensity and duration, and forward digit span were measured twice over approximately 16 months. Musical activities were assessed by questionnaire. Twenty-one early-implanted and age-matched normal-hearing (NH) children (4-13 years). Children with cochlear implants (CIs) exposed to music performed better than others in stress perception and F0 discrimination. Only this subgroup of implanted children improved with age in word stress perception, intensity discrimination, and improved over time in digit span. Prosodic perception, F0 discrimination and forward digit span in implanted children exposed to music was equivalent to the NH group, but other implanted children performed more poorly. For children with CIs, word stress perception was linked to digit span and intensity discrimination: sentence stress perception was additionally linked to F0 discrimination. Prosodic perception in children with CIs is linked to auditory working memory and aspects of auditory discrimination. Engagement in music was linked to better performance across a range of measures, suggesting that music is a valuable tool in the rehabilitation of implanted children.

  12. Learning and Transforming Reality: Women from Rosario's Neighborhoods Demand Access to Public Health Services Free of Discrimination

    Science.gov (United States)

    Chiarotti, Susana

    2005-01-01

    This article focuses on the activities of two women's groups in Argentina -- CLADEM and INSGENAR. CLADEM, which has a much broader presence in Latin America, aims to give a feminist perspective to the construction of real democracies with social justice, free of discrimination and with full exercise of human rights. INSGENAR is a local,…

  13. Magnetoencephalographic signatures of numerosity discrimination in fetuses and neonates.

    Science.gov (United States)

    Schleger, Franziska; Landerl, Karin; Muenssinger, Jana; Draganova, Rossitza; Reinl, Maren; Kiefer-Schmidt, Isabelle; Weiss, Magdalene; Wacker-Gußmann, Annette; Huotilainen, Minna; Preissl, Hubert

    2014-01-01

    Numerosity discrimination has been demonstrated in newborns, but not in fetuses. Fetal magnetoencephalography allows non-invasive investigation of neural responses in neonates and fetuses. During an oddball paradigm with auditory sequences differing in numerosity, evoked responses were recorded and mismatch responses were quantified as an indicator for auditory discrimination. Thirty pregnant women with healthy fetuses (last trimester) and 30 healthy term neonates participated. Fourteen adults were included as a control group. Based on measurements eligible for analysis, all adults, all neonates, and 74% of fetuses showed numerical mismatch responses. Numerosity discrimination appears to exist in the last trimester of pregnancy.

  14. Differential Recruitment of Auditory Cortices in the Consolidation of Recent Auditory Fearful Memories.

    Science.gov (United States)

    Cambiaghi, Marco; Grosso, Anna; Renna, Annamaria; Sacchetti, Benedetto

    2016-08-17

    Memories of frightening events require a protracted consolidation process. Sensory cortex, such as the auditory cortex, is involved in the formation of fearful memories with a more complex sensory stimulus pattern. It remains controversial, however, whether the auditory cortex is also required for fearful memories related to simple sensory stimuli. In the present study, we found that, 1 d after training, the temporary inactivation of either the most anterior region of the auditory cortex, including the primary (Te1) cortex, or the most posterior region, which included the secondary (Te2) component, did not affect the retention of recent memories, which is consistent with the current literature. However, at this time point, the inactivation of the entire auditory cortices completely prevented the formation of new memories. Amnesia was site specific and was not due to auditory stimuli perception or processing and strictly related to the interference with memory consolidation processes. Strikingly, at a late time interval 4 d after training, blocking the posterior part (encompassing the Te2) alone impaired memory retention, whereas the inactivation of the anterior part (encompassing the Te1) left memory unaffected. Together, these data show that the auditory cortex is necessary for the consolidation of auditory fearful memories related to simple tones in rats. Moreover, these results suggest that, at early time intervals, memory information is processed in a distributed network composed of both the anterior and the posterior auditory cortical regions, whereas, at late time intervals, memory processing is concentrated in the most posterior part containing the Te2 region. Memories of threatening experiences undergo a prolonged process of "consolidation" to be maintained for a long time. The dynamic of fearful memory consolidation is poorly understood. Here, we show that 1 d after learning, memory is processed in a distributed network composed of both primary Te1 and

  15. Automatic detection of frequency changes depends on auditory stimulus intensity.

    Science.gov (United States)

    Salo, S; Lang, A H; Aaltonen, O; Lertola, K; Kärki, T

    1999-06-01

    A cortical cognitive auditory evoked potential, mismatch negativity (MMN), reflects automatic discrimination and echoic memory functions of the auditory system. For this study, we examined whether this potential is dependent on the stimulus intensity. The MMN potentials were recorded from 10 subjects with normal hearing using a sine tone of 1000 Hz as the standard stimulus and a sine tone of 1141 Hz as the deviant stimulus, with probabilities of 90% and 10%, respectively. The intensities were 40, 50, 60, 70, and 80 dB HL for both standard and deviant stimuli in separate blocks. Stimulus intensity had a statistically significant effect on the mean amplitude, rise time parameter, and onset latency of the MMN. Automatic auditory discrimination seems to be dependent on the sound pressure level of the stimuli.

  16. Musical experience and Mandarin tone discrimination and imitation

    Science.gov (United States)

    Gottfried, Terry L.; Staby, Ann M.; Ziemer, Christine J.

    2004-05-01

    Previous work [T. L. Gottfried and D. Riester, J. Acoust. Soc. Am. 108, 2604 (2000)] showed that native speakers of American English with musical training performed better than nonmusicians when identifying the four distinctive tones of Mandarin Chinese (high-level, mid-rising, low-dipping, high-falling). Accuracy for both groups was relatively low since listeners were not trained on the phonemic contrasts. Current research compares musicians and nonmusicians on discrimination and imitation of unfamiliar tones. Listeners were presented with two different Mandarin words that had either the same or different tones; listeners indicated whether the tones were same or different. Thus, they were required to determine a categorical match (same or different tone), rather than an auditory match. All listeners had significantly more difficulty discriminating between mid-rising and low-dipping tones than with other contrasts. Listeners with more musical training showed significantly greater accuracy in their discrimination. Likewise, musicians' spoken imitations of Mandarin tones (model tokens presented by a native speaker) were rated as significantly more native-like than those of nonmusicians. These findings suggest that musicians may have abilities or training that facilitate their perception and production of Mandarin tones. However, further research is needed to determine whether this advantage transfers to language learning situations.

  17. Sex differences in conditioned stimulus discrimination during context-dependent fear learning and its retrieval in humans: the role of biological sex, contraceptives and menstrual cycle phases.

    Science.gov (United States)

    Lonsdorf, Tina B; Haaker, Jan; Schümann, Dirk; Sommer, Tobias; Bayer, Janine; Brassen, Stefanie; Bunzeck, Nico; Gamer, Matthias; Kalisch, Raffael

    2015-11-01

    Anxiety disorders are more prevalent in women than in men. Despite this sexual dimorphism, most experimental studies are conducted in male participants and studies focusing on sex differences are sparse. In addition, the role of hormonal contraceptives and menstrual cycle phase in fear conditioning and extinction processes remain largely unknown. We investigated sex differences in context-dependent fear acquisition and extinction (day 1) and their retrieval/expression (day 2). Skin conductance responses (SCRs), fear and unconditioned stimulus expectancy ratings were obtained. We included 377 individuals (261 women) in our study. Robust sex differences were observed in all dependent measures. Women generally displayed higher subjective ratings but smaller SCRs than men and showed reduced excitatory/inhibitory conditioned stimulus (CS+/CS-) discrimination in all dependent measures. Furthermore, women using hormonal contraceptives showed reduced SCR CS discrimination on day 2 than men and free-cycling women, while menstrual cycle phase had no effect. Possible limitations include the simultaneous testing of up to 4 participants in cubicles, which might have introduced a social component, and not assessing postexperimental contingency awareness. The response pattern in women shows striking similarity to previously reported sex differences in patients with anxiety. Our results suggest that pronounced deficits in associative discrimination learning and subjective expression of safety information (CS- responses) might underlie higher prevalence and higher symptom rates seen in women with anxiety disorders. The data call for consideration of biological sex and hormonal contraceptive use in future studies and may suggest that targeting inhibitory learning during therapy might aid precision medicine.

  18. The human brain maintains contradictory and redundant auditory sensory predictions.

    Directory of Open Access Journals (Sweden)

    Marika Pieszek

    Full Text Available Computational and experimental research has revealed that auditory sensory predictions are derived from regularities of the current environment by using internal generative models. However, so far, what has not been addressed is how the auditory system handles situations giving rise to redundant or even contradictory predictions derived from different sources of information. To this end, we measured error signals in the event-related brain potentials (ERPs in response to violations of auditory predictions. Sounds could be predicted on the basis of overall probability, i.e., one sound was presented frequently and another sound rarely. Furthermore, each sound was predicted by an informative visual cue. Participants' task was to use the cue and to discriminate the two sounds as fast as possible. Violations of the probability based prediction (i.e., a rare sound as well as violations of the visual-auditory prediction (i.e., an incongruent sound elicited error signals in the ERPs (Mismatch Negativity [MMN] and Incongruency Response [IR]. Particular error signals were observed even in case the overall probability and the visual symbol predicted different sounds. That is, the auditory system concurrently maintains and tests contradictory predictions. Moreover, if the same sound was predicted, we observed an additive error signal (scalp potential and primary current density equaling the sum of the specific error signals. Thus, the auditory system maintains and tolerates functionally independently represented redundant and contradictory predictions. We argue that the auditory system exploits all currently active regularities in order to optimally prepare for future events.

  19. Integration of auditory and tactile inputs in musical meter perception.

    Science.gov (United States)

    Huang, Juan; Gamble, Darik; Sarnlertsophon, Kristine; Wang, Xiaoqin; Hsiao, Steven

    2013-01-01

    Musicians often say that they not only hear but also "feel" music. To explore the contribution of tactile information to "feeling" music, we investigated the degree that auditory and tactile inputs are integrated in humans performing a musical meter-recognition task. Subjects discriminated between two types of sequences, "duple" (march-like rhythms) and "triple" (waltz-like rhythms), presented in three conditions: (1) unimodal inputs (auditory or tactile alone); (2) various combinations of bimodal inputs, where sequences were distributed between the auditory and tactile channels such that a single channel did not produce coherent meter percepts; and (3) bimodal inputs where the two channels contained congruent or incongruent meter cues. We first show that meter is perceived similarly well (70-85 %) when tactile or auditory cues are presented alone. We next show in the bimodal experiments that auditory and tactile cues are integrated to produce coherent meter percepts. Performance is high (70-90 %) when all of the metrically important notes are assigned to one channel and is reduced to 60 % when half of these notes are assigned to one channel. When the important notes are presented simultaneously to both channels, congruent cues enhance meter recognition (90 %). Performance dropped dramatically when subjects were presented with incongruent auditory cues (10 %), as opposed to incongruent tactile cues (60 %), demonstrating that auditory input dominates meter perception. These observations support the notion that meter perception is a cross-modal percept with tactile inputs underlying the perception of "feeling" music.

  20. Avaliação das habilidades auditivas em crianças com alterações de aprendizagem Evaluating auditory abilities in children with learning disabilities

    Directory of Open Access Journals (Sweden)

    Tatiane Maria Pelitero

    2010-08-01

    Full Text Available OBJETIVO: comparar o desempenho na Avaliação Simplificada do Processamento Auditivo (ASPA e no Pediatric Speech Intelligibility Test (PSI, de crianças com alteração de Aprendizagem da Leitura e Escrita e sem este tipo de alteração. MÉTODOS: participaram da pesquisa 28 crianças na faixa etária de 8 a 12 anos, do sexo masculino e feminino. Os participantes foram submetidos ao Teste de Desempenho Escolar (TDE para a categorização dos grupos de estudo e controle, e, para avaliação das habilidades auditivas foram aplicados a ASPA e o Teste PSI. RESULTADOS: não foi observada associação estatisticamente significante entre o desempenho nos testes de Processamento Auditivo (PA e o grupo com dificuldades de aprendizagem, apesar de ter sido verificada maior frequência de alterações no grupo de estudo em relação ao grupo controle, em todos os testes. Na ASPA, o teste em que se observou maior número de alterações foi o Teste de Memória Sequencial Verbal, contudo, o Teste de Memória Sequencial Não-verbal foi o que mostrou maior diferença entre os grupos. CONCLUSÃO: Não foram encontradas diferenças estatisticamente significantes no desempenho na Avaliação Simplificada do Processamento Auditivo (ASPA e no Pediatric Speech Intelligibility Test (PSI, das crianças com alteração de Aprendizagem da Leitura e Escrita e sem alteração.PURPOSE: to compare performance of children with or without alterations in reading and writing skills acquisition in the Simplified Auditory Processing Test (SAPT and the Pediatric Speech Intelligibility (PSI tests. METHODS: twenty-eight female and male children aged 8-12 took part in this study. The subjects did the Academic Achievement Test (TDE in order to be placed in the study group or control group and, for the assessment of hearing abilities, they took the SAPT and the PSI tests. RESULTS: no statistically significant association was found between performances in tests for hearing processing

  1. Medical students’ perception of lesbian, gay, bisexual, and transgender (LGBT) discrimination in their learning environment and their self-reported comfort level for caring for LGBT patients: a survey study

    OpenAIRE

    Nama, Nassr; MacPherson, Paul; Sampson, Margaret; McMillan, Hugh J.

    2017-01-01

    ABSTRACT Background: Historically, medical students who are lesbian, gay, bisexual or transgendered (LGBT) report higher rates of social stress, depression, and anxiety, while LGBT patients have reported discrimination and poorer access to healthcare. Objective: The objectives of this study were: (1) to assess if medical students have perceived discrimination in their learning environment and; (2) to determine self-reported comfort level for caring for LGBT patients. Design: Medical students ...

  2. Neurofeedback-Based Enhancement of Single-Trial Auditory Evoked Potentials: Treatment of Auditory Verbal Hallucinations in Schizophrenia.

    Science.gov (United States)

    Rieger, Kathryn; Rarra, Marie-Helene; Diaz Hernandez, Laura; Hubl, Daniela; Koenig, Thomas

    2018-03-01

    Auditory verbal hallucinations depend on a broad neurobiological network ranging from the auditory system to language as well as memory-related processes. As part of this, the auditory N100 event-related potential (ERP) component is attenuated in patients with schizophrenia, with stronger attenuation occurring during auditory verbal hallucinations. Changes in the N100 component assumingly reflect disturbed responsiveness of the auditory system toward external stimuli in schizophrenia. With this premise, we investigated the therapeutic utility of neurofeedback training to modulate the auditory-evoked N100 component in patients with schizophrenia and associated auditory verbal hallucinations. Ten patients completed electroencephalography neurofeedback training for modulation of N100 (treatment condition) or another unrelated component, P200 (control condition). On a behavioral level, only the control group showed a tendency for symptom improvement in the Positive and Negative Syndrome Scale total score in a pre-/postcomparison ( t (4) = 2.71, P = .054); however, no significant differences were found in specific hallucination related symptoms ( t (7) = -0.53, P = .62). There was no significant overall effect of neurofeedback training on ERP components in our paradigm; however, we were able to identify different learning patterns, and found a correlation between learning and improvement in auditory verbal hallucination symptoms across training sessions ( r = 0.664, n = 9, P = .05). This effect results, with cautious interpretation due to the small sample size, primarily from the treatment group ( r = 0.97, n = 4, P = .03). In particular, a within-session learning parameter showed utility for predicting symptom improvement with neurofeedback training. In conclusion, patients with schizophrenia and associated auditory verbal hallucinations who exhibit a learning pattern more characterized by within-session aptitude may benefit from electroencephalography neurofeedback

  3. Auditory Spatial Layout

    Science.gov (United States)

    Wightman, Frederic L.; Jenison, Rick

    1995-01-01

    All auditory sensory information is packaged in a pair of acoustical pressure waveforms, one at each ear. While there is obvious structure in these waveforms, that structure (temporal and spectral patterns) bears no simple relationship to the structure of the environmental objects that produced them. The properties of auditory objects and their layout in space must be derived completely from higher level processing of the peripheral input. This chapter begins with a discussion of the peculiarities of acoustical stimuli and how they are received by the human auditory system. A distinction is made between the ambient sound field and the effective stimulus to differentiate the perceptual distinctions among various simple classes of sound sources (ambient field) from the known perceptual consequences of the linear transformations of the sound wave from source to receiver (effective stimulus). Next, the definition of an auditory object is dealt with, specifically the question of how the various components of a sound stream become segregated into distinct auditory objects. The remainder of the chapter focuses on issues related to the spatial layout of auditory objects, both stationary and moving.

  4. Mass discrimination

    Energy Technology Data Exchange (ETDEWEB)

    Broeckman, A. [Rijksuniversiteit Utrecht (Netherlands)

    1978-12-15

    In thermal ionization mass spectrometry the phenomenon of mass discrimination has led to the use of a correction factor for isotope ratio-measurements. The correction factor is defined as the measured ratio divided by the true or accepted value of this ratio. In fact this factor corrects for systematic errors of the whole procedure; however mass discrimination is often associated just with the mass spectrometer.

  5. How discriminating are discriminative instruments?

    Science.gov (United States)

    Hankins, Matthew

    2008-05-27

    The McMaster framework introduced by Kirshner & Guyatt is the dominant paradigm for the development of measures of health status and health-related quality of life (HRQL). The framework defines the functions of such instruments as evaluative, predictive or discriminative. Evaluative instruments are required to be sensitive to change (responsiveness), but there is no corresponding index of the degree to which discriminative instruments are sensitive to cross-sectional differences. This paper argues that indices of validity and reliability are not sufficient to demonstrate that a discriminative instrument performs its function of discriminating between individuals, and that the McMaster framework would be augmented by the addition of a separate index of discrimination. The coefficient proposed by Ferguson (Delta) is easily adapted to HRQL instruments and is a direct, non-parametric index of the degree to which an instrument distinguishes between individuals. While Delta should prove useful in the development and evaluation of discriminative instruments, further research is required to elucidate the relationship between the measurement properties of discrimination, reliability and responsiveness.

  6. How discriminating are discriminative instruments?

    Directory of Open Access Journals (Sweden)

    Hankins Matthew

    2008-05-01

    Full Text Available Abstract The McMaster framework introduced by Kirshner & Guyatt is the dominant paradigm for the development of measures of health status and health-related quality of life (HRQL. The framework defines the functions of such instruments as evaluative, predictive or discriminative. Evaluative instruments are required to be sensitive to change (responsiveness, but there is no corresponding index of the degree to which discriminative instruments are sensitive to cross-sectional differences. This paper argues that indices of validity and reliability are not sufficient to demonstrate that a discriminative instrument performs its function of discriminating between individuals, and that the McMaster framework would be augmented by the addition of a separate index of discrimination. The coefficient proposed by Ferguson (Delta is easily adapted to HRQL instruments and is a direct, non-parametric index of the degree to which an instrument distinguishes between individuals. While Delta should prove useful in the development and evaluation of discriminative instruments, further research is required to elucidate the relationship between the measurement properties of discrimination, reliability and responsiveness.

  7. Integration of auditory and visual speech information

    NARCIS (Netherlands)

    Hall, M.; Smeele, P.M.T.; Kuhl, P.K.

    1998-01-01

    The integration of auditory and visual speech is observed when modes specify different places of articulation. Influences of auditory variation on integration were examined using consonant identifi-cation, plus quality and similarity ratings. Auditory identification predicted auditory-visual

  8. Rapid-rate transcranial magnetic stimulation of animal auditory cortex impairs short-term but not long-term memory formation.

    Science.gov (United States)

    Wang, Hong; Wang, Xu; Wetzel, Wolfram; Scheich, Henning

    2006-04-01

    Bilateral rapid-rate transcranial magnetic stimulation (rTMS) of gerbil auditory cortex with a miniature coil device was used to study short-term and long-term effects on discrimination learning of frequency-modulated tones. We found previously that directional discrimination of frequency modulation (rising vs. falling) relies on auditory cortex processing and that formation of its memory depends on local protein synthesis. Here we show that, during training over 5 days, certain rTMS regimes contingent on training had differential effects on the time course of learning. When rTMS was applied several times per day, i.e. four blocks of 5 min rTMS each followed 5 min later by a 3-min training block and 15-min intervals between these blocks (experiment A), animals reached a high discrimination performance more slowly over 5 days than did controls. When rTMS preceded only the first two of four training blocks (experiment B), or when prolonged rTMS (20 min) preceded only the first block, or when blocks of experiment A had longer intervals (experiments C and D), no significant day-to-day effects were found. However, in experiment A, and to some extent in experiment B, rTMS reduced the within-session discrimination performance. Nevertheless the animals learned, as demonstrated by a higher performance the next day. Thus, our results indicate that rTMS treatments accumulate over a day but not strongly over successive days. We suggest that rTMS of sensory cortex, as used in our study, affects short-term memory but not long-term memory formation.

  9. Semantic elaboration in auditory and visual spatial memory.

    Science.gov (United States)

    Taevs, Meghan; Dahmani, Louisa; Zatorre, Robert J; Bohbot, Véronique D

    2010-01-01

    The aim of this study was to investigate the hypothesis that semantic information facilitates auditory and visual spatial learning and memory. An auditory spatial task was administered, whereby healthy participants were placed in the center of a semi-circle that contained an array of speakers where the locations of nameable and non-nameable sounds were learned. In the visual spatial task, locations of pictures of abstract art intermixed with nameable objects were learned by presenting these items in specific locations on a computer screen. Participants took part in both the auditory and visual spatial tasks, which were counterbalanced for order and were learned at the same rate. Results showed that learning and memory for the spatial locations of nameable sounds and pictures was significantly better than for non-nameable stimuli. Interestingly, there was a cross-modal learning effect such that the auditory task facilitated learning of the visual task and vice versa. In conclusion, our results support the hypotheses that the semantic representation of items, as well as the presentation of items in different modalities, facilitate spatial learning and memory.

  10. A Neural Circuit for Auditory Dominance over Visual Perception.

    Science.gov (United States)

    Song, You-Hyang; Kim, Jae-Hyun; Jeong, Hye-Won; Choi, Ilsong; Jeong, Daun; Kim, Kwansoo; Lee, Seung-Hee

    2017-02-22

    When conflicts occur during integration of visual and auditory information, one modality often dominates the other, but the underlying neural circuit mechanism remains unclear. Using auditory-visual discrimination tasks for head-fixed mice, we found that audition dominates vision in a process mediated by interaction between inputs from the primary visual (VC) and auditory (AC) cortices in the posterior parietal cortex (PTLp). Co-activation of the VC and AC suppresses VC-induced PTLp responses, leaving AC-induced responses. Furthermore, parvalbumin-positive (PV+) interneurons in the PTLp mainly receive AC inputs, and muscimol inactivation of the PTLp or optogenetic inhibition of its PV+ neurons abolishes auditory dominance in the resolution of cross-modal sensory conflicts without affecting either sensory perception. Conversely, optogenetic activation of PV+ neurons in the PTLp enhances the auditory dominance. Thus, our results demonstrate that AC input-specific feedforward inhibition of VC inputs in the PTLp is responsible for the auditory dominance during cross-modal integration. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Primate auditory recognition memory performance varies with sound type.

    Science.gov (United States)

    Ng, Chi-Wing; Plakke, Bethany; Poremba, Amy

    2009-10-01

    Neural correlates of auditory processing, including for species-specific vocalizations that convey biological and ethological significance (e.g., social status, kinship, environment), have been identified in a wide variety of areas including the temporal and frontal cortices. However, few studies elucidate how non-human primates interact with these vocalization signals when they are challenged by tasks requiring auditory discrimination, recognition and/or memory. The present study employs a delayed matching-to-sample task with auditory stimuli to examine auditory memory performance of rhesus macaques (Macaca mulatta), wherein two sounds are determined to be the same or different. Rhesus macaques seem to have relatively poor short-term memory with auditory stimuli, and we examine if particular sound types are more favorable for memory performance. Experiment 1 suggests memory performance with vocalization sound types (particularly monkey), are significantly better than when using non-vocalization sound types, and male monkeys outperform female monkeys overall. Experiment 2, controlling for number of sound exemplars and presentation pairings across types, replicates Experiment 1, demonstrating better performance or decreased response latencies, depending on trial type, to species-specific monkey vocalizations. The findings cannot be explained by acoustic differences between monkey vocalizations and the other sound types, suggesting the biological, and/or ethological meaning of these sounds are more effective for auditory memory. 2009 Elsevier B.V.

  12. Auditory and Visual Sensations

    CERN Document Server

    Ando, Yoichi

    2010-01-01

    Professor Yoichi Ando, acoustic architectural designer of the Kirishima International Concert Hall in Japan, presents a comprehensive rational-scientific approach to designing performance spaces. His theory is based on systematic psychoacoustical observations of spatial hearing and listener preferences, whose neuronal correlates are observed in the neurophysiology of the human brain. A correlation-based model of neuronal signal processing in the central auditory system is proposed in which temporal sensations (pitch, timbre, loudness, duration) are represented by an internal autocorrelation representation, and spatial sensations (sound location, size, diffuseness related to envelopment) are represented by an internal interaural crosscorrelation function. Together these two internal central auditory representations account for the basic auditory qualities that are relevant for listening to music and speech in indoor performance spaces. Observed psychological and neurophysiological commonalities between auditor...

  13. The relation between working memory capacity and auditory lateralization in children with auditory processing disorders.

    Science.gov (United States)

    Moossavi, Abdollah; Mehrkian, Saiedeh; Lotfi, Yones; Faghihzadeh, Soghrat; sajedi, Hamed

    2014-11-01

    Auditory processing disorder (APD) describes a complex and heterogeneous disorder characterized by poor speech perception, especially in noisy environments. APD may be responsible for a range of sensory processing deficits associated with learning difficulties. There is no general consensus about the nature of APD and how the disorder should be assessed or managed. This study assessed the effect of cognition abilities (working memory capacity) on sound lateralization in children with auditory processing disorders, in order to determine how "auditory cognition" interacts with APD. The participants in this cross-sectional comparative study were 20 typically developing and 17 children with a diagnosed auditory processing disorder (9-11 years old). Sound lateralization abilities investigated using inter-aural time (ITD) differences and inter-aural intensity (IID) differences with two stimuli (high pass and low pass noise) in nine perceived positions. Working memory capacity was evaluated using the non-word repetition, and forward and backward digits span tasks. Linear regression was employed to measure the degree of association between working memory capacity and localization tests between the two groups. Children in the APD group had consistently lower scores than typically developing subjects in lateralization and working memory capacity measures. The results showed working memory capacity had significantly negative correlation with ITD errors especially with high pass noise stimulus but not with IID errors in APD children. The study highlights the impact of working memory capacity on auditory lateralization. The finding of this research indicates that the extent to which working memory influences auditory processing depend on the type of auditory processing and the nature of stimulus/listening situation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Modularity in Sensory Auditory Memory

    OpenAIRE

    Clement, Sylvain; Moroni, Christine; Samson, Séverine

    2004-01-01

    The goal of this paper was to review various experimental and neuropsychological studies that support the modular conception of auditory sensory memory or auditory short-term memory. Based on initial findings demonstrating that verbal sensory memory system can be dissociated from a general auditory memory store at the functional and anatomical levels. we reported a series of studies that provided evidence in favor of multiple auditory sensory stores specialized in retaining eit...

  15. Auditory perception of a human walker.

    Science.gov (United States)

    Cottrell, David; Campbell, Megan E J

    2014-01-01

    When one hears footsteps in the hall, one is able to instantly recognise it as a person: this is an everyday example of auditory biological motion perception. Despite the familiarity of this experience, research into this phenomenon is in its infancy compared with visual biological motion perception. Here, two experiments explored sensitivity to, and recognition of, auditory stimuli of biological and nonbiological origin. We hypothesised that the cadence of a walker gives rise to a temporal pattern of impact sounds that facilitates the recognition of human motion from auditory stimuli alone. First a series of detection tasks compared sensitivity with three carefully matched impact sounds: footsteps, a ball bouncing, and drumbeats. Unexpectedly, participants were no more sensitive to footsteps than to impact sounds of nonbiological origin. In the second experiment participants made discriminations between pairs of the same stimuli, in a series of recognition tasks in which the temporal pattern of impact sounds was manipulated to be either that of a walker or the pattern more typical of the source event (a ball bouncing or a drumbeat). Under these conditions, there was evidence that both temporal and nontemporal cues were important in recognising theses stimuli. It is proposed that the interval between footsteps, which reflects a walker's cadence, is a cue for the recognition of the sounds of a human walking.

  16. Teaching for Different Learning Styles.

    Science.gov (United States)

    Cropper, Carolyn

    1994-01-01

    This study examined learning styles in 137 high ability fourth-grade students. All students were administered two learning styles inventories. Characteristics of students with the following learning styles are summarized: auditory language, visual language, auditory numerical, visual numerical, tactile concrete, individual learning, group…

  17. Inhibition of histone deacetylase 3 via RGFP966 facilitates cortical plasticity underlying unusually accurate auditory associative cue memory for excitatory and inhibitory cue-reward associations.

    Science.gov (United States)

    Shang, Andrea; Bylipudi, Sooraz; Bieszczad, Kasia M

    2018-05-31

    Epigenetic mechanisms are key for regulating long-term memory (LTM) and are known to exert control on memory formation in multiple systems of the adult brain, including the sensory cortex. One epigenetic mechanism is chromatin modification by histone acetylation. Blocking the action of histone de-acetylases (HDACs) that normally negatively regulate LTM by repressing transcription, has been shown to enable memory formation. Indeed, HDAC-inhibition appears to facilitate memory by altering the dynamics of gene expression events important for memory consolidation. However less understood are the ways in which molecular-level consolidation processes alter subsequent memory to enhance storage or facilitate retrieval. Here we used a sensory perspective to investigate whether the characteristics of memory formed with HDAC inhibitors are different from naturally-formed memory. One possibility is that HDAC inhibition enables memory to form with greater sensory detail than normal. Because the auditory system undergoes learning-induced remodeling that provides substrates for sound-specific LTM, we aimed to identify behavioral effects of HDAC inhibition on memory for specific sound features using a standard model of auditory associative cue-reward learning, memory, and cortical plasticity. We found that three systemic post-training treatments of an HDAC3-inhibitor (RGPF966, Abcam Inc.) in rats in the early phase of training facilitated auditory discriminative learning, changed auditory cortical tuning, and increased the specificity for acoustic frequency formed in memory of both excitatory (S+) and inhibitory (S-) associations for at least 2 weeks. The findings support that epigenetic mechanisms act on neural and behavioral sensory acuity to increase the precision of associative cue memory, which can be revealed by studying the sensory characteristics of long-term associative memory formation with HDAC inhibitors. Published by Elsevier B.V.

  18. The musical environment and auditory plasticity: Hearing the pitch of percussion

    Directory of Open Access Journals (Sweden)

    Neil M Mclachlan

    2013-10-01

    Full Text Available Although musical skills clearly improve with training, pitch processing has generally been believed to be biologically determined by the behavior of brain stem neural mechanisms. Two main classes of pitch models have emerged over the last 50 years. Harmonic template models have been used to explain cross-channel integration of frequency information, and waveform periodicity models have been used to explain pitch discrimination that is much finer than the resolution of the auditory nerve. It has been proposed that harmonic templates are learnt from repeated exposure to voice, and so it may also be possible to learn inharmonic templates from repeated exposure to inharmonic music instruments. This study investigated whether pitch-matching accuracy for inharmonic percussion instruments was better in people who have trained on these instruments and could reliably recognize their timbre. We found that adults who had trained with Indonesian gamelan instruments were better at recognizing and pitch-matching gamelan instruments than people with similar levels of music training, but no prior exposure to these instruments. These findings suggest that gamelan musicians were able to use inharmonic templates to support accurate pitch processing for these instruments. We suggest that recognition mechanisms based on spectrotemporal patterns of afferent auditory excitation in the early stages of pitch processing allow rapid priming of the lowest frequency partial of inharmonic timbres, explaining how music training can adapt pitch processing to different musical genres and instruments.

  19. Auditory evacuation beacons

    NARCIS (Netherlands)

    Wijngaarden, S.J. van; Bronkhorst, A.W.; Boer, L.C.

    2005-01-01

    Auditory evacuation beacons can be used to guide people to safe exits, even when vision is totally obscured by smoke. Conventional beacons make use of modulated noise signals. Controlled evacuation experiments show that such signals require explicit instructions and are often misunderstood. A new

  20. Knowledge about Sounds – Context-Specific Meaning Differently Activates Cortical Hemispheres, Auditory Cortical Fields and Layers in House Mice

    Directory of Open Access Journals (Sweden)

    Diana B. Geissler

    2016-03-01

    Full Text Available Activation of the auditory cortex (AC by a given sound pattern is plastic, depending, in largely unknown ways, on the physiological state and the behavioral context of the receiving animal and on the receiver's experience with the sounds. Such plasticity can be inferred when house mouse mothers respond maternally to pup ultrasounds right after parturition and naïve females have to learn to respond. Here we use c-FOS immunocytochemistry to quantify highly activated neurons in the AC fields and layers of seven groups of mothers and naïve females who have different knowledge about and are differently motivated to respond to acoustic models of pup ultrasounds of different behavioral significance. Profiles of FOS-positive cells in the AC primary fields (AI, AAF, the ultrasonic field (UF, the secondary field (AII, and the dorsoposterior field (DP suggest that activation reflects in AI, AAF, and UF the integration of sound properties with animal state-dependent factors, in the higher-order field AII the news value of a given sound in the behavioral context, and in the higher-order field DP the level of maternal motivation and, by left-hemisphere activation advantage, the recognition of the meaning of sounds in the given context. Anesthesia reduced activation in all fields, especially in cortical layers 2/3. Thus, plasticity in the AC is field-specific preparing different output of AC fields in the process of perception, recognition and responding to communication sounds. Further, the activation profiles of the auditory cortical fields suggest the differentiation between brains hormonally primed to know (mothers and brains which acquired knowledge via implicit learning (naïve females. In this way, auditory cortical activation discriminates between instinctive (mothers and learned (naïve females cognition.

  1. The effects of incidentally learned temporal and spatial predictability on response times and visual fixations during target detection and discrimination.

    Directory of Open Access Journals (Sweden)

    Melissa R Beck

    Full Text Available Responses are quicker to predictable stimuli than if the time and place of appearance is uncertain. Studies that manipulate target predictability often involve overt cues to speed up response times. However, less is known about whether individuals will exhibit faster response times when target predictability is embedded within the inter-trial relationships. The current research examined the combined effects of spatial and temporal target predictability on reaction time (RT and allocation of overt attention in a sustained attention task. Participants responded as quickly as possible to stimuli while their RT and eye movements were measured. Target temporal and spatial predictability were manipulated by altering the number of: 1 different time intervals between a response and the next target; and 2 possible spatial locations of the target. The effects of target predictability on target detection (Experiment 1 and target discrimination (Experiment 2 were tested. For both experiments, shorter RTs as target predictability increased across both space and time were found. In addition, the influences of spatial and temporal target predictability on RT and the overt allocation of attention were task dependent; suggesting that effective orienting of attention relies on both spatial and temporal predictability. These results indicate that stimulus predictability can be increased without overt cues and detected purely through inter-trial relationships over the course of repeated stimulus presentations.

  2. Development of a Pitch Discrimination Screening Test for Preschool Children.

    Science.gov (United States)

    Abramson, Maria Kulick; Lloyd, Peter J

    2016-04-01

    There is a critical need for tests of auditory discrimination for young children as this skill plays a fundamental role in the development of speaking, prereading, reading, language, and more complex auditory processes. Frequency discrimination is important with regard to basic sensory processing affecting phonological processing, dyslexia, measurements of intelligence, auditory memory, Asperger syndrome, and specific language impairment. This study was performed to determine the clinical feasibility of the Pitch Discrimination Test (PDT) to screen the preschool child's ability to discriminate some of the acoustic demands of speech perception, primarily pitch discrimination, without linguistic content. The PDT used brief speech frequency tones to gather normative data from preschool children aged 3 to 5 yrs. A cross-sectional study was used to gather data regarding the pitch discrimination abilities of a sample of typically developing preschool children, between 3 and 5 yrs of age. The PDT consists of ten trials using two pure tones of 100-msec duration each, and was administered in an AA or AB forced-choice response format. Data from 90 typically developing preschool children between the ages of 3 and 5 yrs were used to provide normative data. Nonparametric Mann-Whitney U-testing was used to examine the effects of age as a continuous variable on pitch discrimination. The Kruskal-Wallis test was used to determine the significance of age on performance on the PDT. Spearman rank was used to determine the correlation of age and performance on the PDT. Pitch discrimination of brief tones improved significantly from age 3 yrs to age 4 yrs, as well as from age 3 yrs to the age 4- and 5-yrs group. Results indicated that between ages 3 and 4 yrs, children's auditory discrimination of pitch improved on the PDT. The data showed that children can be screened for auditory discrimination of pitch beginning with age 4 yrs. The PDT proved to be a time efficient, feasible tool for

  3. Comparison of learning ability and memory retention in altricial (Bengalese finch, Lonchura striata var. domestica) and precocial (blue-breasted quail, Coturnix chinensis) birds using a color discrimination task.

    Science.gov (United States)

    Ueno, Aki; Suzuki, Kaoru

    2014-02-01

    The present study sought to assess the potential application of avian models with different developmental modes to studies on cognition and neuroscience. Six altricial Bengalese finches (Lonchura striata var. domestica), and eight precocial blue-breasted quails (Coturnix chinensis) were presented with color discrimination tasks to compare their respective faculties for learning and memory retention within the context of the two developmental modes. Tasks consisted of presenting birds with discriminative cues in the form of colored feeder lids, and birds were considered to have learned a task when 80% of their attempts at selecting the correctly colored lid in two consecutive blocks of 10 trials were successful. All of the finches successfully performed the required experimental tasks, whereas only half of the quails were able to execute the same tasks. In the learning test, finches required significantly fewer trials than quails to learn the task (finches: 13.5 ± 9.14 trials, quails: 45.8 ± 4.35 trials, P memory retention tests, which were conducted 45 days after the learning test, finches retained the ability to discriminate between colors correctly (95.0 ± 4.47%), whereas quails did not retain any memory of the experimental procedure and so could not be tested. These results suggested that altricial and precocial birds both possess the faculty for learning and retaining discrimination-type tasks, but that altricial birds perform better than precocial birds in both faculties. The present findings imply that developmental mode is an important consideration for assessing the suitability of bird species for particular experiments. © 2013 Japanese Society of Animal Science.

  4. Perceptual learning: top to bottom.

    Science.gov (United States)

    Amitay, Sygal; Zhang, Yu-Xuan; Jones, Pete R; Moore, David R

    2014-06-01

    Perceptual learning has traditionally been portrayed as a bottom-up phenomenon that improves encoding or decoding of the trained stimulus. Cognitive skills such as attention and memory are thought to drive, guide and modulate learning but are, with notable exceptions, not generally considered to undergo changes themselves as a result of training with simple perceptual tasks. Moreover, shifts in threshold are interpreted as shifts in perceptual sensitivity, with no consideration for non-sensory factors (such as response bias) that may contribute to these changes. Accumulating evidence from our own research and others shows that perceptual learning is a conglomeration of effects, with training-induced changes ranging from the lowest (noise reduction in the phase locking of auditory signals) to the highest (working memory capacity) level of processing, and includes contributions from non-sensory factors that affect decision making even on a "simple" auditory task such as frequency discrimination. We discuss our emerging view of learning as a process that increases the signal-to-noise ratio associated with perceptual tasks by tackling noise sources and inefficiencies that cause performance bottlenecks, and present some implications for training populations other than young, smart, attentive and highly-motivated college students. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  5. Associative representational plasticity in the auditory cortex: A synthesis of two disciplines

    Science.gov (United States)

    Weinberger, Norman M.

    2013-01-01

    Historically, sensory systems have been largely ignored as potential loci of information storage in the neurobiology of learning and memory. They continued to be relegated to the role of “sensory analyzers” despite consistent findings of associatively induced enhancement of responses in primary sensory cortices to behaviorally important signal stimuli, such as conditioned stimuli (CS), during classical conditioning. This disregard may have been promoted by the fact that the brain was interrogated using only one or two stimuli, e.g., a CS+ sometimes with a CS−, providing little insight into the specificity of neural plasticity. This review describes a novel approach that synthesizes the basic experimental designs of the experimental psychology of learning with that of sensory neurophysiology. By probing the brain with a large stimulus set before and after learning, this unified method has revealed that associative processes produce highly specific changes in the receptive fields of cells in the primary auditory cortex (A1). This associative representational plasticity (ARP) selectively facilitates responses to tonal CSs at the expense of other frequencies, producing tuning shifts toward and to the CS and expanded representation of CS frequencies in the tonotopic map of A1. ARPs have the major characteristics of associative memory: They are highly specific, discriminative, rapidly acquired, exhibit consolidation over hours and days, and can be retained indefinitely. Evidence to date suggests that ARPs encode the level of acquired behavioral importance of stimuli. The nucleus basalis cholinergic system is sufficient both for the induction of ARPs and the induction of specific auditory memory. Investigation of ARPs has attracted workers with diverse backgrounds, often resulting in behavioral approaches that yield data that are difficult to interpret. The advantages of studying associative representational plasticity are emphasized, as is the need for greater

  6. Song exposure regulates known and novel microRNAs in the zebra finch auditory forebrain

    Directory of Open Access Journals (Sweden)

    Kim Jong H

    2011-05-01

    Full Text Available Abstract Background In an important model for neuroscience, songbirds learn to discriminate songs they hear during tape-recorded playbacks, as demonstrated by song-specific habituation of both behavioral and neurogenomic responses in the auditory forebrain. We hypothesized that microRNAs (miRNAs or miRs may participate in the changing pattern of gene expression induced by song exposure. To test this, we used massively parallel Illumina sequencing to analyse small RNAs from auditory forebrain of adult zebra finches exposed to tape-recorded birdsong or silence. Results In the auditory forebrain, we identified 121 known miRNAs conserved in other vertebrates. We also identified 34 novel miRNAs that do not align to human or chicken genomes. Five conserved miRNAs showed significant and consistent changes in copy number after song exposure across three biological replications of the song-silence comparison, with two increasing (tgu-miR-25, tgu-miR-192 and three decreasing (tgu-miR-92, tgu-miR-124, tgu-miR-129-5p. We also detected a locus on the Z sex chromosome that produces three different novel miRNAs, with supporting evidence from Northern blot and TaqMan qPCR assays for differential expression in males and females and in response to song playbacks. One of these, tgu-miR-2954-3p, is predicted (by TargetScan to regulate eight song-responsive mRNAs that all have functions in cellular proliferation and neuronal differentiation. Conclusions The experience of hearing another bird singing alters the profile of miRNAs in the auditory forebrain of zebra finches. The response involves both known conserved miRNAs and novel miRNAs described so far only in the zebra finch, including a novel sex-linked, song-responsive miRNA. These results indicate that miRNAs are likely to contribute to the unique behavioural biology of learned song communication in songbirds.

  7. Central auditory neurons have composite receptive fields.

    Science.gov (United States)

    Kozlov, Andrei S; Gentner, Timothy Q

    2016-02-02