WorldWideScience

Sample records for auditory attention performance

  1. Effect of handedness on auditory attentional performance in ADHD students

    Directory of Open Access Journals (Sweden)

    Schmidt SL

    2017-12-01

    Full Text Available Sergio L Schmidt,1,2 Ana Lucia Novais Carvaho,3 Eunice N Simoes2 1Department of Neurophysiology, State University of Rio de Janeiro, Rio de Janeiro, 2Neurology Department, Federal University of the State of Rio de Janeiro, Rio de Janeiro, 3Department of Psychology, Fluminense Federal University, Niteroi, Brazil Abstract: The relationship between handedness and attentional performance is poorly understood. Continuous performance tests (CPTs using visual stimuli are commonly used to assess subjects suffering from attention deficit hyperactivity disorder (ADHD. However, auditory CPTs are considered more useful than visual ones to evaluate classroom attentional problems. A previous study reported that there was a significant effect of handedness on students’ performance on a visual CPT. Here, we examined whether handedness would also affect CPT performance using only auditory stimuli. From an initial sample of 337 students, 11 matched pairs were selected. Repeated ANOVAs showed a significant effect of handedness on attentional performance that was exhibited even in the control group. Left-handers made more commission errors than right-handers. The results were interpreted considering that the association between ADHD and handedness reflects that consistent left-handers are less lateralized and have decreased interhemispheric connections. Auditory attentional data suggest that left-handers have problems in the impulsive/hyperactivity domain. In ADHD, clinical therapeutics and rehabilitation must take handedness into account because consistent sinistrals are more impulsive than dextrals. Keywords: attention, ADHD, consistent left-handers, auditory attention, continuous performance test

  2. Musical experience shapes top-down auditory mechanisms: evidence from masking and auditory attention performance.

    Science.gov (United States)

    Strait, Dana L; Kraus, Nina; Parbery-Clark, Alexandra; Ashley, Richard

    2010-03-01

    A growing body of research suggests that cognitive functions, such as attention and memory, drive perception by tuning sensory mechanisms to relevant acoustic features. Long-term musical experience also modulates lower-level auditory function, although the mechanisms by which this occurs remain uncertain. In order to tease apart the mechanisms that drive perceptual enhancements in musicians, we posed the question: do well-developed cognitive abilities fine-tune auditory perception in a top-down fashion? We administered a standardized battery of perceptual and cognitive tests to adult musicians and non-musicians, including tasks either more or less susceptible to cognitive control (e.g., backward versus simultaneous masking) and more or less dependent on auditory or visual processing (e.g., auditory versus visual attention). Outcomes indicate lower perceptual thresholds in musicians specifically for auditory tasks that relate with cognitive abilities, such as backward masking and auditory attention. These enhancements were observed in the absence of group differences for the simultaneous masking and visual attention tasks. Our results suggest that long-term musical practice strengthens cognitive functions and that these functions benefit auditory skills. Musical training bolsters higher-level mechanisms that, when impaired, relate to language and literacy deficits. Thus, musical training may serve to lessen the impact of these deficits by strengthening the corticofugal system for hearing. 2009 Elsevier B.V. All rights reserved.

  3. Auditory and Visual Attention Performance in Children With ADHD: The Attentional Deficiency of ADHD Is Modality Specific.

    Science.gov (United States)

    Lin, Hung-Yu; Hsieh, Hsieh-Chun; Lee, Posen; Hong, Fu-Yuan; Chang, Wen-Dien; Liu, Kuo-Cheng

    2017-08-01

    This study explored auditory and visual attention in children with ADHD. In a randomized, two-period crossover design, 50 children with ADHD and 50 age- and sex-matched typically developing peers were measured with the Test of Various Attention (TOVA). The deficiency of visual attention is more serious than that of auditory attention in children with ADHD. On the auditory modality, only the deficit of attentional inconsistency is sufficient to explain most cases of ADHD; however, most of the children with ADHD suffered from deficits of sustained attention, response inhibition, and attentional inconsistency on the visual modality. Our results also showed that the deficit of attentional inconsistency is the most important indicator in diagnosing and intervening in ADHD when both auditory and visual modalities are considered. The findings provide strong evidence that the deficits of auditory attention are different from those of visual attention in children with ADHD.

  4. Contributions of Sensory Coding and Attentional Control to Individual Differences in Performance in Spatial Auditory Selective Attention Tasks.

    Science.gov (United States)

    Dai, Lengshi; Shinn-Cunningham, Barbara G

    2016-01-01

    Listeners with normal hearing thresholds (NHTs) differ in their ability to steer attention to whatever sound source is important. This ability depends on top-down executive control, which modulates the sensory representation of sound in the cortex. Yet, this sensory representation also depends on the coding fidelity of the peripheral auditory system. Both of these factors may thus contribute to the individual differences in performance. We designed a selective auditory attention paradigm in which we could simultaneously measure envelope following responses (EFRs, reflecting peripheral coding), onset event-related potentials (ERPs) from the scalp (reflecting cortical responses to sound) and behavioral scores. We performed two experiments that varied stimulus conditions to alter the degree to which performance might be limited due to fine stimulus details vs. due to control of attentional focus. Consistent with past work, in both experiments we find that attention strongly modulates cortical ERPs. Importantly, in Experiment I, where coding fidelity limits the task, individual behavioral performance correlates with subcortical coding strength (derived by computing how the EFR is degraded for fully masked tones compared to partially masked tones); however, in this experiment, the effects of attention on cortical ERPs were unrelated to individual subject performance. In contrast, in Experiment II, where sensory cues for segregation are robust (and thus less of a limiting factor on task performance), inter-subject behavioral differences correlate with subcortical coding strength. In addition, after factoring out the influence of subcortical coding strength, behavioral differences are also correlated with the strength of attentional modulation of ERPs. These results support the hypothesis that behavioral abilities amongst listeners with NHTs can arise due to both subcortical coding differences and differences in attentional control, depending on stimulus characteristics

  5. Contributions of sensory coding and attentional control to individual differences in performance in spatial auditory selective attention tasks

    Directory of Open Access Journals (Sweden)

    Lengshi Dai

    2016-10-01

    Full Text Available Listeners with normal hearing thresholds differ in their ability to steer attention to whatever sound source is important. This ability depends on top-down executive control, which modulates the sensory representation of sound in cortex. Yet, this sensory representation also depends on the coding fidelity of the peripheral auditory system. Both of these factors may thus contribute to the individual differences in performance. We designed a selective auditory attention paradigm in which we could simultaneously measure envelope following responses (EFRs, reflecting peripheral coding, onset event-related potentials from the scalp (ERPs, reflecting cortical responses to sound, and behavioral scores. We performed two experiments that varied stimulus conditions to alter the degree to which performance might be limited due to fine stimulus details vs. due to control of attentional focus. Consistent with past work, in both experiments we find that attention strongly modulates cortical ERPs. Importantly, in Experiment I, where coding fidelity limits the task, individual behavioral performance correlates with subcortical coding strength (derived by computing how the EFR is degraded for fully masked tones compared to partially masked tones; however, in this experiment, the effects of attention on cortical ERPs were unrelated to individual subject performance. In contrast, in Experiment II, where sensory cues for segregation are robust (and thus less of a limiting factor on task performance, inter-subject behavioral differences correlate with subcortical coding strength. In addition, after factoring out the influence of subcortical coding strength, behavioral differences are also correlated with the strength of attentional modulation of ERPs. These results support the hypothesis that behavioral abilities amongst listeners with normal hearing thresholds can arise due to both subcortical coding differences and differences in attentional control, depending on

  6. A new test of attention in listening (TAIL) predicts auditory performance.

    Science.gov (United States)

    Zhang, Yu-Xuan; Barry, Johanna G; Moore, David R; Amitay, Sygal

    2012-01-01

    Attention modulates auditory perception, but there are currently no simple tests that specifically quantify this modulation. To fill the gap, we developed a new, easy-to-use test of attention in listening (TAIL) based on reaction time. On each trial, two clearly audible tones were presented sequentially, either at the same or different ears. The frequency of the tones was also either the same or different (by at least two critical bands). When the task required same/different frequency judgments, presentation at the same ear significantly speeded responses and reduced errors. A same/different ear (location) judgment was likewise facilitated by keeping tone frequency constant. Perception was thus influenced by involuntary orienting of attention along the task-irrelevant dimension. When information in the two stimulus dimensions were congruent (same-frequency same-ear, or different-frequency different-ear), response was faster and more accurate than when they were incongruent (same-frequency different-ear, or different-frequency same-ear), suggesting the involvement of executive control to resolve conflicts. In total, the TAIL yielded five independent outcome measures: (1) baseline reaction time, indicating information processing efficiency, (2) involuntary orienting of attention to frequency and (3) location, and (4) conflict resolution for frequency and (5) location. Processing efficiency and conflict resolution accounted for up to 45% of individual variances in the low- and high-threshold variants of three psychoacoustic tasks assessing temporal and spectral processing. Involuntary orientation of attention to the irrelevant dimension did not correlate with perceptual performance on these tasks. Given that TAIL measures are unlikely to be limited by perceptual sensitivity, we suggest that the correlations reflect modulation of perceptual performance by attention. The TAIL thus has the power to identify and separate contributions of different components of attention

  7. Stroke caused auditory attention deficits in children

    Directory of Open Access Journals (Sweden)

    Karla Maria Ibraim da Freiria Elias

    2013-01-01

    Full Text Available OBJECTIVE: To verify the auditory selective attention in children with stroke. METHODS: Dichotic tests of binaural separation (non-verbal and consonant-vowel and binaural integration - digits and Staggered Spondaic Words Test (SSW - were applied in 13 children (7 boys, from 7 to 16 years, with unilateral stroke confirmed by neurological examination and neuroimaging. RESULTS: The attention performance showed significant differences in comparison to the control group in both kinds of tests. In the non-verbal test, identifications the ear opposite the lesion in the free recall stage was diminished and, in the following stages, a difficulty in directing attention was detected. In the consonant- vowel test, a modification in perceptual asymmetry and difficulty in focusing in the attended stages was found. In the digits and SSW tests, ipsilateral, contralateral and bilateral deficits were detected, depending on the characteristics of the lesions and demand of the task. CONCLUSION: Stroke caused auditory attention deficits when dealing with simultaneous sources of auditory information.

  8. Auditory attention activates peripheral visual cortex.

    Directory of Open Access Journals (Sweden)

    Anthony D Cate

    Full Text Available BACKGROUND: Recent neuroimaging studies have revealed that putatively unimodal regions of visual cortex can be activated during auditory tasks in sighted as well as in blind subjects. However, the task determinants and functional significance of auditory occipital activations (AOAs remains unclear. METHODOLOGY/PRINCIPAL FINDINGS: We examined AOAs in an intermodal selective attention task to distinguish whether they were stimulus-bound or recruited by higher-level cognitive operations associated with auditory attention. Cortical surface mapping showed that auditory occipital activations were localized to retinotopic visual cortex subserving the far peripheral visual field. AOAs depended strictly on the sustained engagement of auditory attention and were enhanced in more difficult listening conditions. In contrast, unattended sounds produced no AOAs regardless of their intensity, spatial location, or frequency. CONCLUSIONS/SIGNIFICANCE: Auditory attention, but not passive exposure to sounds, routinely activated peripheral regions of visual cortex when subjects attended to sound sources outside the visual field. Functional connections between auditory cortex and visual cortex subserving the peripheral visual field appear to underlie the generation of AOAs, which may reflect the priming of visual regions to process soon-to-appear objects associated with unseen sound sources.

  9. Measuring Auditory Selective Attention using Frequency Tagging

    Directory of Open Access Journals (Sweden)

    Hari M Bharadwaj

    2014-02-01

    Full Text Available Frequency tagging of sensory inputs (presenting stimuli that fluctuate periodically at rates to which the cortex can phase lock has been used to study attentional modulation of neural responses to inputs in different sensory modalities. For visual inputs, the visual steady-state response (VSSR at the frequency modulating an attended object is enhanced, while the VSSR to a distracting object is suppressed. In contrast, the effect of attention on the auditory steady-state response (ASSR is inconsistent across studies. However, most auditory studies analyzed results at the sensor level or used only a small number of equivalent current dipoles to fit cortical responses. In addition, most studies of auditory spatial attention used dichotic stimuli (independent signals at the ears rather than more natural, binaural stimuli. Here, we asked whether these methodological choices help explain discrepant results. Listeners attended to one of two competing speech streams, one simulated from the left and one from the right, that were modulated at different frequencies. Using distributed source modeling of magnetoencephalography results, we estimate how spatially directed attention modulates the ASSR in neural regions across the whole brain. Attention enhances the ASSR power at the frequency of the attended stream in the contralateral auditory cortex. The attended-stream modulation frequency also drives phase-locked responses in the left (but not right precentral sulcus (lPCS, a region implicated in control of eye gaze and visual spatial attention. Importantly, this region shows no phase locking to the distracting stream suggesting that the lPCS in engaged in an attention-specific manner. Modeling results that take account of the geometry and phases of the cortical sources phase locked to the two streams (including hemispheric asymmetry of lPCS activity help partly explain why past ASSR studies of auditory spatial attention yield seemingly contradictory

  10. Auditory and visual capture during focused visual attention

    OpenAIRE

    Koelewijn, T.; Bronkhorst, A.W.; Theeuwes, J.

    2009-01-01

    It is well known that auditory and visual onsets presented at a particular location can capture a person's visual attention. However, the question of whether such attentional capture disappears when attention is focused endogenously beforehand has not yet been answered. Moreover, previous studies have not differentiated between capture by onsets presented at a nontarget (invalid) location and possible performance benefits occurring when the target location is (validly) cued. In this study, th...

  11. The auditory attention status in Iranian bilingual and monolingual people

    Directory of Open Access Journals (Sweden)

    Nayiere Mansoori

    2013-05-01

    Full Text Available Background and Aim: Bilingualism, as one of the discussing issues of psychology and linguistics, can influence the speech processing. Of several tests for assessing auditory processing, dichotic digit test has been designed to study divided auditory attention. Our study was performed to compare the auditory attention between Iranian bilingual and monolingual young adults. Methods: This cross-sectional study was conducted on 60 students including 30 Turkish-Persian bilinguals and 30 Persian monolinguals aged between 18 to 30 years in both genders. Dichotic digit test was performed on young individuals with normal peripheral hearing and right hand preference. Results: No significant correlation was found between the results of dichotic digit test of monolinguals and bilinguals (p=0.195, and also between the results of right and left ears in monolingual (p=0.460 and bilingual (p=0.054 groups. The mean score of women was significantly more than men (p=0.031. Conclusion: There was no significant difference between bilinguals and monolinguals in divided auditory attention; and it seems that acquisition of second language in lower ages has no noticeable effect on this type of auditory attention.

  12. The role of working memory in auditory selective attention.

    Science.gov (United States)

    Dalton, Polly; Santangelo, Valerio; Spence, Charles

    2009-11-01

    A growing body of research now demonstrates that working memory plays an important role in controlling the extent to which irrelevant visual distractors are processed during visual selective attention tasks (e.g., Lavie, Hirst, De Fockert, & Viding, 2004). Recently, it has been shown that the successful selection of tactile information also depends on the availability of working memory (Dalton, Lavie, & Spence, 2009). Here, we investigate whether working memory plays a role in auditory selective attention. Participants focused their attention on short continuous bursts of white noise (targets) while attempting to ignore pulsed bursts of noise (distractors). Distractor interference in this auditory task, as measured in terms of the difference in performance between congruent and incongruent distractor trials, increased significantly under high (vs. low) load in a concurrent working-memory task. These results provide the first evidence demonstrating a causal role for working memory in reducing interference by irrelevant auditory distractors.

  13. Auditory and visual sustained attention in Down syndrome.

    Science.gov (United States)

    Faught, Gayle G; Conners, Frances A; Himmelberger, Zachary M

    2016-01-01

    Sustained attention (SA) is important to task performance and development of higher functions. It emerges as a separable component of attention during preschool and shows incremental improvements during this stage of development. The current study investigated if auditory and visual SA match developmental level or are particular challenges for youth with DS. Further, we sought to determine if there were modality effects in SA that could predict those seen in short-term memory (STM). We compared youth with DS to typically developing youth matched for nonverbal mental age and receptive vocabulary. Groups completed auditory and visual sustained attention to response tests (SARTs) and STM tasks. Results indicated groups performed similarly on both SARTs, even over varying cognitive ability. Further, within groups participants performed similarly on auditory and visual SARTs, thus SA could not predict modality effects in STM. However, SA did generally predict a significant portion of unique variance in groups' STM. Ultimately, results suggested both auditory and visual SA match developmental level in DS. Further, SA generally predicts STM, though SA does not necessarily predict the pattern of poor auditory relative to visual STM characteristic of DS. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Auditory attention: time of day and type of school

    Directory of Open Access Journals (Sweden)

    Picolini, Mirela Machado

    2010-06-01

    Full Text Available Introduction: The sustained auditory attention is crucial for the development of some communication skills and learning. Objective: To evaluate the effect of time of day and type of school attended by children in their ability to sustained auditory attention. Method: We performed a prospective study of 50 volunteer children of both sexes, aged 7 years, with normal hearing, no learning or behavioral problems and no complaints of attention. These participants underwent Ability Test of Sustained Auditory Attention (SAAAT. The performance was evaluated by total score and the decrease of vigilance. Statistical analysis was used to analysis of variance (ANOVA with significance level of 5% (p<0.05. Results: The result set by the normative test for the age group evaluated showed a statistically significant difference for the errors of inattention (p=0.041, p=0.027 and total error score (p=0.033, p=0.024, in different periods assessment and school types, respectively. Conclusion: Children evaluated in the afternoon and the children studying in public schools had a poorer performance on auditory attention sustained.

  15. Changes in otoacoustic emissions during selective auditory and visual attention.

    Science.gov (United States)

    Walsh, Kyle P; Pasanen, Edward G; McFadden, Dennis

    2015-05-01

    Previous studies have demonstrated that the otoacoustic emissions (OAEs) measured during behavioral tasks can have different magnitudes when subjects are attending selectively or not attending. The implication is that the cognitive and perceptual demands of a task can affect the first neural stage of auditory processing-the sensory receptors themselves. However, the directions of the reported attentional effects have been inconsistent, the magnitudes of the observed differences typically have been small, and comparisons across studies have been made difficult by significant procedural differences. In this study, a nonlinear version of the stimulus-frequency OAE (SFOAE), called the nSFOAE, was used to measure cochlear responses from human subjects while they simultaneously performed behavioral tasks requiring selective auditory attention (dichotic or diotic listening), selective visual attention, or relative inattention. Within subjects, the differences in nSFOAE magnitude between inattention and attention conditions were about 2-3 dB for both auditory and visual modalities, and the effect sizes for the differences typically were large for both nSFOAE magnitude and phase. These results reveal that the cochlear efferent reflex is differentially active during selective attention and inattention, for both auditory and visual tasks, although they do not reveal how attention is improved when efferent activity is greater.

  16. Changes in otoacoustic emissions during selective auditory and visual attention

    Science.gov (United States)

    Walsh, Kyle P.; Pasanen, Edward G.; McFadden, Dennis

    2015-01-01

    Previous studies have demonstrated that the otoacoustic emissions (OAEs) measured during behavioral tasks can have different magnitudes when subjects are attending selectively or not attending. The implication is that the cognitive and perceptual demands of a task can affect the first neural stage of auditory processing—the sensory receptors themselves. However, the directions of the reported attentional effects have been inconsistent, the magnitudes of the observed differences typically have been small, and comparisons across studies have been made difficult by significant procedural differences. In this study, a nonlinear version of the stimulus-frequency OAE (SFOAE), called the nSFOAE, was used to measure cochlear responses from human subjects while they simultaneously performed behavioral tasks requiring selective auditory attention (dichotic or diotic listening), selective visual attention, or relative inattention. Within subjects, the differences in nSFOAE magnitude between inattention and attention conditions were about 2–3 dB for both auditory and visual modalities, and the effect sizes for the differences typically were large for both nSFOAE magnitude and phase. These results reveal that the cochlear efferent reflex is differentially active during selective attention and inattention, for both auditory and visual tasks, although they do not reveal how attention is improved when efferent activity is greater. PMID:25994703

  17. A common source of attention for auditory and visual tracking.

    Science.gov (United States)

    Fougnie, Daryl; Cockhren, Jurnell; Marois, René

    2018-05-01

    Tasks that require tracking visual information reveal the severe limitations of our capacity to attend to multiple objects that vary in time and space. Although these limitations have been extensively characterized in the visual domain, very little is known about tracking information in other sensory domains. Does tracking auditory information exhibit characteristics similar to those of tracking visual information, and to what extent do these two tracking tasks draw on the same attention resources? We addressed these questions by asking participants to perform either single or dual tracking tasks from the same (visual-visual) or different (visual-auditory) perceptual modalities, with the difficulty of the tracking tasks being manipulated across trials. The results revealed that performing two concurrent tracking tasks, whether they were in the same or different modalities, affected tracking performance as compared to performing each task alone (concurrence costs). Moreover, increasing task difficulty also led to increased costs in both the single-task and dual-task conditions (load-dependent costs). The comparison of concurrence costs between visual-visual and visual-auditory dual-task performance revealed slightly greater interference when two visual tracking tasks were paired. Interestingly, however, increasing task difficulty led to equivalent costs for visual-visual and visual-auditory pairings. We concluded that visual and auditory tracking draw largely, though not exclusively, on common central attentional resources.

  18. Auditory Selective Attention in Cerebral-Palsied Individuals.

    Science.gov (United States)

    Laraway, Lee Ann

    1985-01-01

    To examine differences between auditory selective attention abilities of normal and cerebral-palsied individuals, 23 cerebral-palsied and 23 normal subjects (5-21) were asked to repeat a series of 30 items in presence of intermittent white noise. Results indicated that cerebral-palsied individuals perform significantly more poorly when the…

  19. Selective Attention to Auditory Memory Neurally Enhances Perceptual Precision.

    Science.gov (United States)

    Lim, Sung-Joo; Wöstmann, Malte; Obleser, Jonas

    2015-12-09

    Selective attention to a task-relevant stimulus facilitates encoding of that stimulus into a working memory representation. It is less clear whether selective attention also improves the precision of a stimulus already represented in memory. Here, we investigate the behavioral and neural dynamics of selective attention to representations in auditory working memory (i.e., auditory objects) using psychophysical modeling and model-based analysis of electroencephalographic signals. Human listeners performed a syllable pitch discrimination task where two syllables served as to-be-encoded auditory objects. Valid (vs neutral) retroactive cues were presented during retention to allow listeners to selectively attend to the to-be-probed auditory object in memory. Behaviorally, listeners represented auditory objects in memory more precisely (expressed by steeper slopes of a psychometric curve) and made faster perceptual decisions when valid compared to neutral retrocues were presented. Neurally, valid compared to neutral retrocues elicited a larger frontocentral sustained negativity in the evoked potential as well as enhanced parietal alpha/low-beta oscillatory power (9-18 Hz) during memory retention. Critically, individual magnitudes of alpha oscillatory power (7-11 Hz) modulation predicted the degree to which valid retrocues benefitted individuals' behavior. Our results indicate that selective attention to a specific object in auditory memory does benefit human performance not by simply reducing memory load, but by actively engaging complementary neural resources to sharpen the precision of the task-relevant object in memory. Can selective attention improve the representational precision with which objects are held in memory? And if so, what are the neural mechanisms that support such improvement? These issues have been rarely examined within the auditory modality, in which acoustic signals change and vanish on a milliseconds time scale. Introducing a new auditory memory

  20. The effects of aging on postural control and selective attention when stepping down while performing a concurrent auditory response task.

    Science.gov (United States)

    Tsang, William W N; Lam, Nazca K Y; Lau, Kit N L; Leung, Harry C H; Tsang, Crystal M S; Lu, Xi

    2013-12-01

    To investigate the effects of aging on postural control and cognitive performance in single- and dual-tasking. A cross-sectional comparative design was conducted in a university motion analysis laboratory. Young adults (n = 30; age 21.9 ± 2.4 years) and older adults (n = 30; age 71.9 ± 6.4 years) were recruited. Postural control after stepping down was measured with and without performing a concurrent auditory response task. Measurement included: (1) reaction time and (2) error rate in performing the cognitive task; (3) total sway path and (4) total sway area after stepping down. Our findings showed that the older adults had significantly longer reaction times and higher error rates than the younger subjects in both the single-tasking and dual-tasking conditions. The older adults had significantly longer reaction times and higher error rates when dual-tasking compared with single-tasking, but the younger adults did not. The older adults demonstrated significantly less total sway path, but larger total sway area in single-leg stance after stepping down than the young adults. The older adults showed no significant change in total sway path and area between the dual-tasking and when compared with single-tasking conditions, while the younger adults showed significant decreases in sway. Older adults prioritize postural control by sacrificing cognitive performance when faced with dual-tasking.

  1. Comparing Auditory Noise Treatment with Stimulant Medication on Cognitive Task Performance in Children with Attention Deficit Hyperactivity Disorder: Results from a Pilot Study.

    Science.gov (United States)

    Söderlund, Göran B W; Björk, Christer; Gustafsson, Peik

    2016-01-01

    Recent research has shown that acoustic white noise (80 dB) can improve task performance in people with attention deficits and/or Attention Deficit Hyperactivity Disorder (ADHD). This is attributed to the phenomenon of stochastic resonance in which a certain amount of noise can improve performance in a brain that is not working at its optimum. We compare here the effect of noise exposure with the effect of stimulant medication on cognitive task performance in ADHD. The aim of the present study was to compare the effects of auditory noise exposure with stimulant medication for ADHD children on a cognitive test battery. A group of typically developed children (TDC) took the same tests as a comparison. Twenty children with ADHD of combined or inattentive subtypes and twenty TDC matched for age and gender performed three different tests (word recall, spanboard and n-back task) during exposure to white noise (80 dB) and in a silent condition. The ADHD children were tested with and without central stimulant medication. In the spanboard- and the word recall tasks, but not in the 2-back task, white noise exposure led to significant improvements for both non-medicated and medicated ADHD children. No significant effects of medication were found on any of the three tasks. This pilot study shows that exposure to white noise resulted in a task improvement that was larger than the one with stimulant medication thus opening up the possibility of using auditory noise as an alternative, non-pharmacological treatment of cognitive ADHD symptoms.

  2. Comparing Auditory Noise Treatment with Stimulant Medication on Cognitive Task Performance in Children with Attention Deficit Hyperactivity Disorder: Results from a Pilot Study

    Directory of Open Access Journals (Sweden)

    Göran B W Söderlund

    2016-09-01

    Full Text Available Background: Recent research has shown that acoustic white noise (80 dB can improve task performance in people with attention deficits and/or Attention Deficit Hyperactivity Disorder (ADHD. This is attributed to the phenomenon of stochastic resonance in which a certain amount of noise can improve performance in a brain that is not working at its optimum. We compare here the effect of noise exposure with the effect of stimulant medication on cognitive task performance in ADHD. The aim of the present study was to compare the effects of auditory noise exposure with stimulant medication for ADHD children on a cognitive test battery. A group of typically developed children (TDC took the same tests as a comparison.Methods: Twenty children with ADHD of combined or inattentive subtypes and twenty typically developed children matched for age and gender performed three different tests (word recall, spanboard and n-back task during exposure to white noise (80 dB and in a silent condition. The ADHD children were tested with and without central stimulant medication.Results: In the spanboard- and the word recall tasks, but not in the 2-back task, white noise exposure led to significant improvements for both non-medicated and medicated ADHD children. No significant effects of medication were found on any of the three tasks.Conclusion: This pilot study shows that exposure to white noise resulted in a task improvement that was larger than the one with stimulant medication thus opening up the possibility of using auditory noise as an alternative, non-pharmacological treatment of cognitive ADHD symptoms.

  3. Neural effects of cognitive control load on auditory selective attention.

    Science.gov (United States)

    Sabri, Merav; Humphries, Colin; Verber, Matthew; Liebenthal, Einat; Binder, Jeffrey R; Mangalathu, Jain; Desai, Anjali

    2014-08-01

    Whether and how working memory disrupts or alters auditory selective attention is unclear. We compared simultaneous event-related potentials (ERP) and functional magnetic resonance imaging (fMRI) responses associated with task-irrelevant sounds across high and low working memory load in a dichotic-listening paradigm. Participants performed n-back tasks (1-back, 2-back) in one ear (Attend ear) while ignoring task-irrelevant speech sounds in the other ear (Ignore ear). The effects of working memory load on selective attention were observed at 130-210ms, with higher load resulting in greater irrelevant syllable-related activation in localizer-defined regions in auditory cortex. The interaction between memory load and presence of irrelevant information revealed stronger activations primarily in frontal and parietal areas due to presence of irrelevant information in the higher memory load. Joint independent component analysis of ERP and fMRI data revealed that the ERP component in the N1 time-range is associated with activity in superior temporal gyrus and medial prefrontal cortex. These results demonstrate a dynamic relationship between working memory load and auditory selective attention, in agreement with the load model of attention and the idea of common neural resources for memory and attention. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Higher dietary diversity is related to better visual and auditory sustained attention.

    Science.gov (United States)

    Shiraseb, Farideh; Siassi, Fereydoun; Qorbani, Mostafa; Sotoudeh, Gity; Rostami, Reza; Narmaki, Elham; Yavari, Parvaneh; Aghasi, Mohadeseh; Shaibu, Osman Mohammed

    2016-04-01

    Attention is a complex cognitive function that is necessary for learning, for following social norms of behaviour and for effective performance of responsibilities and duties. It is especially important in sensitive occupations requiring sustained attention. Improvement of dietary diversity (DD) is recognised as an important factor in health promotion, but its association with sustained attention is unknown. The aim of this study was to determine the association between auditory and visual sustained attention and DD. A cross-sectional study was carried out on 400 women aged 20-50 years who attended sports clubs at Tehran Municipality. Sustained attention was evaluated on the basis of the Integrated Visual and Auditory Continuous Performance Test using Integrated Visual and Auditory software. A single 24-h dietary recall questionnaire was used for DD assessment. Dietary diversity scores (DDS) were determined using the FAO guidelines. The mean visual and auditory sustained attention scores were 40·2 (sd 35·2) and 42·5 (sd 38), respectively. The mean DDS was 4·7 (sd 1·5). After adjusting for age, education years, physical activity, energy intake and BMI, mean visual and auditory sustained attention showed a significant increase as the quartiles of DDS increased (P=0·001). In addition, the mean subscales of attention, including auditory consistency and vigilance, visual persistence, visual and auditory focus, speed, comprehension and full attention, increased significantly with increasing DDS (Pvisual and auditory sustained attention.

  5. Influence of memory, attention, IQ and age on auditory temporal processing tests: preliminary study

    OpenAIRE

    Murphy, Cristina Ferraz Borges; Zachi, Elaine Cristina; Roque, Daniela Tsubota; Ventura, Dora Selma Fix; Schochat, Eliane

    2014-01-01

    PURPOSE: To investigate the existence of correlations between the performance of children in auditory temporal tests (Frequency Pattern and Gaps in Noise - GIN) and IQ, attention, memory and age measurements. METHOD: Fifteen typically developing individuals between the ages of 7 to 12 years and normal hearing participated in the study. Auditory temporal processing tests (GIN and Frequency Pattern), as well as a Memory test (Digit Span), Attention tests (auditory and visual modality) and ...

  6. Control of Auditory Attention in Children With Specific Language Impairment.

    Science.gov (United States)

    Victorino, Kristen R; Schwartz, Richard G

    2015-08-01

    Children with specific language impairment (SLI) appear to demonstrate deficits in attention and its control. Selective attention involves the cognitive control of attention directed toward a relevant stimulus and simultaneous inhibition of attention toward irrelevant stimuli. The current study examined attention control during a cross-modal word recognition task. Twenty participants with SLI (ages 9-12 years) and 20 age-matched peers with typical language development (TLD) listened to words through headphones and were instructed to attend to the words in 1 ear while ignoring the words in the other ear. They were simultaneously presented with pictures and asked to make a lexical decision about whether the pictures and auditory words were the same or different. Accuracy and reaction time were measured in 5 conditions, in which the stimulus in the unattended channel was manipulated. The groups performed with similar accuracy. Compared with their peers with TLD, children with SLI had slower reaction times overall and different within-group patterns of performance by condition. Children with TLD showed efficient inhibitory control in conditions that required active suppression of competing stimuli. Participants with SLI had difficulty exerting control over their auditory attention in all conditions, with particular difficulty inhibiting distractors of all types.

  7. Entrainment to an auditory signal: Is attention involved?

    NARCIS (Netherlands)

    Kunert, R.; Jongman, S.R.

    2017-01-01

    Many natural auditory signals, including music and language, change periodically. The effect of such auditory rhythms on the brain is unclear however. One widely held view, dynamic attending theory, proposes that the attentional system entrains to the rhythm and increases attention at moments of

  8. Pre-Attentive Auditory Processing of Lexicality

    Science.gov (United States)

    Jacobsen, Thomas; Horvath, Janos; Schroger, Erich; Lattner, Sonja; Widmann, Andreas; Winkler, Istvan

    2004-01-01

    The effects of lexicality on auditory change detection based on auditory sensory memory representations were investigated by presenting oddball sequences of repeatedly presented stimuli, while participants ignored the auditory stimuli. In a cross-linguistic study of Hungarian and German participants, stimulus sequences were composed of words that…

  9. Association of blood antioxidants status with visual and auditory sustained attention.

    Science.gov (United States)

    Shiraseb, Farideh; Siassi, Fereydoun; Sotoudeh, Gity; Qorbani, Mostafa; Rostami, Reza; Sadeghi-Firoozabadi, Vahid; Narmaki, Elham

    2015-01-01

    A low antioxidants status has been shown to result in oxidative stress and cognitive impairment. Because antioxidants can protect the nervous system, it is expected that a better blood antioxidant status might be related to sustained attention. However, the relationship between the blood antioxidant status and visual and auditory sustained attention has not been investigated. The aim of this study was to evaluate the association of fruits and vegetables intake and the blood antioxidant status with visual and auditory sustained attention in women. This cross-sectional study was performed on 400 healthy women (20-50 years) who attended the sports clubs of Tehran Municipality. Sustained attention was evaluated based on the Integrated Visual and Auditory Continuous Performance Test using the Integrated Visual and Auditory (IVA) software. The 24-hour food recall questionnaire was used for estimating fruits and vegetables intake. Serum total antioxidant capacity (TAC), and erythrocyte superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities were measured in 90 participants. After adjusting for energy intake, age, body mass index (BMI), years of education and physical activity, higher reported fruits, and vegetables intake was associated with better visual and auditory sustained attention (P attention (P visual and auditory sustained attention after adjusting for age, years of education, physical activity, energy, BMI, and caffeine intake (P visual and auditory sustained attention is associated with a better blood antioxidant status. Therefore, improvement of the antioxidant status through an appropriate dietary intake can possibly enhance sustained attention.

  10. Reducing the Effects of Auditory and Visual Distraction on the Math Performances of Students with Attention Deficit Hyperactivity Disorder

    Science.gov (United States)

    Kercood, Suneeta; Grskovic, Janice A.

    2010-01-01

    Two exploratory studies assessed the effects of an intervention on the math problem solving of students with Attention Deficit Hyperactivity Disorder (ADHD). In the first study, students were assessed on a visual task in a high stimulation classroom analog setting with and without the use of a fine motor activity. Results showed that the fine…

  11. The Relationship between Types of Attention and Auditory Processing Skills: Reconsidering Auditory Processing Disorder Diagnosis

    Science.gov (United States)

    Stavrinos, Georgios; Iliadou, Vassiliki-Maria; Edwards, Lindsey; Sirimanna, Tony; Bamiou, Doris-Eva

    2018-01-01

    Measures of attention have been found to correlate with specific auditory processing tests in samples of children suspected of Auditory Processing Disorder (APD), but these relationships have not been adequately investigated. Despite evidence linking auditory attention and deficits/symptoms of APD, measures of attention are not routinely used in APD diagnostic protocols. The aim of the study was to examine the relationship between auditory and visual attention tests and auditory processing tests in children with APD and to assess whether a proposed diagnostic protocol for APD, including measures of attention, could provide useful information for APD management. A pilot study including 27 children, aged 7–11 years, referred for APD assessment was conducted. The validated test of everyday attention for children, with visual and auditory attention tasks, the listening in spatialized noise sentences test, the children's communication checklist questionnaire and tests from a standard APD diagnostic test battery were administered. Pearson's partial correlation analysis examining the relationship between these tests and Cochrane's Q test analysis comparing proportions of diagnosis under each proposed battery were conducted. Divided auditory and divided auditory-visual attention strongly correlated with the dichotic digits test, r = 0.68, p attention battery identified as having Attention Deficits (ADs). The proposed APD battery excluding AD cases did not have a significantly different diagnosis proportion than the standard APD battery. Finally, the newly proposed diagnostic battery, identifying an inattentive subtype of APD, identified five children who would have otherwise been considered not having ADs. The findings show that a subgroup of children with APD demonstrates underlying sustained and divided attention deficits. Attention deficits in children with APD appear to be centred around the auditory modality but further examination of types of attention in both

  12. The effects of divided attention on auditory priming.

    Science.gov (United States)

    Mulligan, Neil W; Duke, Marquinn; Cooper, Angela W

    2007-09-01

    Traditional theorizing stresses the importance of attentional state during encoding for later memory, based primarily on research with explicit memory. Recent research has begun to investigate the role of attention in implicit memory but has focused almost exclusively on priming in the visual modality. The present experiments examined the effect of divided attention on auditory implicit memory, using auditory perceptual identification, word-stem completion and word-fragment completion. Participants heard study words under full attention conditions or while simultaneously carrying out a distractor task (the divided attention condition). In Experiment 1, a distractor task with low response frequency failed to disrupt later auditory priming (but diminished explicit memory as assessed with auditory recognition). In Experiment 2, a distractor task with greater response frequency disrupted priming on all three of the auditory priming tasks as well as the explicit test. These results imply that although auditory priming is less reliant on attention than explicit memory, it is still greatly affected by at least some divided-attention manipulations. These results are consistent with research using visual priming tasks and have relevance for hypotheses regarding attention and auditory priming.

  13. Dynamic crossmodal links revealed by steady-state responses in auditory-visual divided attention

    NARCIS (Netherlands)

    de Jong, Ritske; Toffanin, Paolo; Harbers, Marten; Martens, Sander

    Frequency tagging has been often used to study intramodal attention but not intermodal attention. We used EEG and simultaneous frequency tagging of auditory and visual sources to study intermodal focused and divided attention in detection and discrimination performance. Divided-attention costs were

  14. Dynamic crossmodal links revealed by steady-state responses in auditory-visual divided attention.

    Science.gov (United States)

    de Jong, Ritske; Toffanin, Paolo; Harbers, Marten

    2010-01-01

    Frequency tagging has been often used to study intramodal attention but not intermodal attention. We used EEG and simultaneous frequency tagging of auditory and visual sources to study intermodal focused and divided attention in detection and discrimination performance. Divided-attention costs were smaller, but still significant, in detection than in discrimination. The auditory steady-state response (SSR) showed no effects of attention at frontocentral locations, but did so at occipital locations where it was evident only when attention was divided between audition and vision. Similarly, the visual SSR at occipital locations was substantially enhanced when attention was divided across modalities. Both effects were equally present in detection and discrimination. We suggest that both effects reflect a common cause: An attention-dependent influence of auditory information processing on early cortical stages of visual information processing, mediated by enhanced effective connectivity between the two modalities under conditions of divided attention. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  15. The utility of quantitative electroencephalography and Integrated Visual and Auditory Continuous Performance Test as auxiliary tools for the Attention Deficit Hyperactivity Disorder diagnosis.

    Science.gov (United States)

    Kim, JunWon; Lee, YoungSik; Han, DougHyun; Min, KyungJoon; Kim, DoHyun; Lee, ChangWon

    2015-03-01

    This study investigated the clinical utility of quantitative electroencephalography (QEEG) and the Integrated Visual and Auditory Continuous Performance Test (IVA+CPT) as auxiliary tools for assessing Attention Deficit Hyperactivity Disorder (ADHD). All of 157 subjects were assessed using the Korean version of the Diagnostic Interview Schedule for Children Version IV (DISC-IV). We measured EGG absolute power in 21 channels and conducted IVA+CPT. We analyzed QEEG according to the Hz range: delta (1-4Hz), theta (4-8Hz), slow alpha (8-10Hz), fast alpha (10-13.5Hz), and beta (13.5-30Hz). To remove artifacts, independent component analysis was conducted (ICA), and the tester confirmed the results again. All of the IVA+CPT quotients showed significant differences between the ADHD and control groups. The ADHD group showed significantly increased delta and theta activity compared with the control group. The z-scores of theta were negatively correlated with the scores of IVA+CPT in ADHD combined type, and those of beta were positively correlated. IVA+CPT and QEEG significantly discriminated between ADHD and control groups. The commission error of IVA+CPT showed an accuracy of 82.1%, and the omission error of IVA+CPT showed an accuracy of 78.6%. The IVA+CPT and QEEG are expected to be valuable tools for aiding ADHD diagnosis accurately. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  16. Effects of selective attention on the electrophysiological representation of concurrent sounds in the human auditory cortex.

    Science.gov (United States)

    Bidet-Caulet, Aurélie; Fischer, Catherine; Besle, Julien; Aguera, Pierre-Emmanuel; Giard, Marie-Helene; Bertrand, Olivier

    2007-08-29

    In noisy environments, we use auditory selective attention to actively ignore distracting sounds and select relevant information, as during a cocktail party to follow one particular conversation. The present electrophysiological study aims at deciphering the spatiotemporal organization of the effect of selective attention on the representation of concurrent sounds in the human auditory cortex. Sound onset asynchrony was manipulated to induce the segregation of two concurrent auditory streams. Each stream consisted of amplitude modulated tones at different carrier and modulation frequencies. Electrophysiological recordings were performed in epileptic patients with pharmacologically resistant partial epilepsy, implanted with depth electrodes in the temporal cortex. Patients were presented with the stimuli while they either performed an auditory distracting task or actively selected one of the two concurrent streams. Selective attention was found to affect steady-state responses in the primary auditory cortex, and transient and sustained evoked responses in secondary auditory areas. The results provide new insights on the neural mechanisms of auditory selective attention: stream selection during sound rivalry would be facilitated not only by enhancing the neural representation of relevant sounds, but also by reducing the representation of irrelevant information in the auditory cortex. Finally, they suggest a specialization of the left hemisphere in the attentional selection of fine-grained acoustic information.

  17. Priming T2 in a Visual and Auditory Attentional Blink Task

    NARCIS (Netherlands)

    Burg, E. van der; Olivers, C.N.L.; Bronkhorst, A.W.; Theeuwes, J.

    2008-01-01

    Participants performed an attentional blink (AB) task including digits as targets and letters as distractors within the visual and auditory domains. Prior to the rapid serial visual presentation, a visual or auditory prime was presented in the form of a digit that was identical to the second target

  18. Switching in the Cocktail Party: Exploring Intentional Control of Auditory Selective Attention

    Science.gov (United States)

    Koch, Iring; Lawo, Vera; Fels, Janina; Vorlander, Michael

    2011-01-01

    Using a novel variant of dichotic selective listening, we examined the control of auditory selective attention. In our task, subjects had to respond selectively to one of two simultaneously presented auditory stimuli (number words), always spoken by a female and a male speaker, by performing a numerical size categorization. The gender of the…

  19. A Comparison of Selective Auditory Attention Abilities in Open-Space Versus Closed Classroom Students.

    Science.gov (United States)

    Reinertsen, Gloria M.

    A study compared performances on a test of selective auditory attention between students educated in open-space versus closed classroom environments. An open-space classroom environment was defined as having no walls separating it from hallways or other classrooms. It was hypothesized that the incidence of auditory figure-ground (ability to focus…

  20. Negative emotion provides cues for orienting auditory spatial attention

    Directory of Open Access Journals (Sweden)

    Erkin eAsutay

    2015-05-01

    Full Text Available The auditory stimuli provide information about the objects and events around us. They can also carry biologically significant emotional information (such as unseen dangers and conspecific vocalizations, which provides cues for allocation of attention and mental resources. Here, we investigated whether task-irrelevant auditory emotional information can provide cues for orientation of auditory spatial attention. We employed a covert spatial orienting task: the dot-probe task. In each trial, two task irrelevant auditory cues were simultaneously presented at two separate locations (left-right or front-back. Environmental sounds were selected to form emotional vs. neutral, emotional vs. emotional, and neutral vs. neutral cue pairs. The participants’ task was to detect the location of an acoustic target that was presented immediately after the task-irrelevant auditory cues. The target was presented at the same location as one of the auditory cues. The results indicated that participants were significantly faster to locate the target when it replaced the negative cue compared to when it replaced the neutral cue. The positive cues did not produce a clear attentional bias. Further, same valence pairs (emotional-emotional or neutral-neutral did not modulate reaction times due to a lack of spatial attention capture by one cue in the pair. Taken together, the results indicate that negative affect can provide cues for the orientation of spatial attention in the auditory domain.

  1. Auditory and visual capture during focused visual attention

    NARCIS (Netherlands)

    Koelewijn, T.; Bronkhorst, A.W.; Theeuwes, J.

    2009-01-01

    It is well known that auditory and visual onsets presented at a particular location can capture a person's visual attention. However, the question of whether such attentional capture disappears when attention is focused endogenously beforehand has not yet been answered. Moreover, previous studies

  2. Auditory and Visual Capture during Focused Visual Attention

    Science.gov (United States)

    Koelewijn, Thomas; Bronkhorst, Adelbert; Theeuwes, Jan

    2009-01-01

    It is well known that auditory and visual onsets presented at a particular location can capture a person's visual attention. However, the question of whether such attentional capture disappears when attention is focused endogenously beforehand has not yet been answered. Moreover, previous studies have not differentiated between capture by onsets…

  3. Interhemispheric interaction expands attentional capacity in an auditory selective attention task.

    Science.gov (United States)

    Scalf, Paige E; Banich, Marie T; Erickson, Andrew B

    2009-04-01

    Previous work from our laboratory indicates that interhemispheric interaction (IHI) functionally increases the attentional capacity available to support performance on visual tasks (Banich in The asymmetrical brain, pp 261-302, 2003). Because manipulations of both computational complexity and selection demand alter the benefits of IHI to task performance, we argue that IHI may be a general strategy for meeting increases in attentional demand. Other researchers, however, have suggested that the apparent benefits of IHI to attentional capacity are an epiphenomenon of the organization of the visual system (Fecteau and Enns in Neuropsychologia 43:1412-1428, 2005; Marsolek et al. in Neuropsychologia 40:1983-1999, 2002). In the current experiment, we investigate whether IHI increases attentional capacity outside the visual system by manipulating the selection demands of an auditory temporal pattern-matching task. We find that IHI expands attentional capacity in the auditory system. This suggests that the benefits of requiring IHI derive from a functional increase in attentional capacity rather than the organization of a specific sensory modality.

  4. Auditory Attention and Comprehension During a Simulated Night Shift: Effects of Task Characteristics.

    Science.gov (United States)

    Pilcher, June J; Jennings, Kristen S; Phillips, Ginger E; McCubbin, James A

    2016-11-01

    The current study investigated performance on a dual auditory task during a simulated night shift. Night shifts and sleep deprivation negatively affect performance on vigilance-based tasks, but less is known about the effects on complex tasks. Because language processing is necessary for successful work performance, it is important to understand how it is affected by night work and sleep deprivation. Sixty-two participants completed a simulated night shift resulting in 28 hr of total sleep deprivation. Performance on a vigilance task and a dual auditory language task was examined across four testing sessions. The results indicate that working at night negatively impacts vigilance, auditory attention, and comprehension. The effects on the auditory task varied based on the content of the auditory material. When the material was interesting and easy, the participants performed better. Night work had a greater negative effect when the auditory material was less interesting and more difficult. These findings support research that vigilance decreases during the night. The results suggest that auditory comprehension suffers when individuals are required to work at night. Maintaining attention and controlling effort especially on passages that are less interesting or more difficult could improve performance during night shifts. The results from the current study apply to many work environments where decision making is necessary in response to complex auditory information. Better predicting the effects of night work on language processing is important for developing improved means of coping with shiftwork. © 2016, Human Factors and Ergonomics Society.

  5. Selective attention reduces physiological noise in the external ear canals of humans. I: Auditory attention

    Science.gov (United States)

    Walsh, Kyle P.; Pasanen, Edward G.; McFadden, Dennis

    2014-01-01

    In this study, a nonlinear version of the stimulus-frequency OAE (SFOAE), called the nSFOAE, was used to measure cochlear responses from human subjects while they simultaneously performed behavioral tasks requiring, or not requiring, selective auditory attention. Appended to each stimulus presentation, and included in the calculation of each nSFOAE response, was a 30-ms silent period that was used to estimate the level of the inherent physiological noise in the ear canals of our subjects during each behavioral condition. Physiological-noise magnitudes were higher (noisier) for all subjects in the inattention task, and lower (quieter) in the selective auditory-attention tasks. These noise measures initially were made at the frequency of our nSFOAE probe tone (4.0 kHz), but the same attention effects also were observed across a wide range of frequencies. We attribute the observed differences in physiological-noise magnitudes between the inattention and attention conditions to different levels of efferent activation associated with the differing attentional demands of the behavioral tasks. One hypothesis is that when the attentional demand is relatively great, efferent activation is relatively high, and a decrease in the gain of the cochlear amplifier leads to lower-amplitude cochlear activity, and thus a smaller measure of noise from the ear. PMID:24732069

  6. Attention, awareness, and the perception of auditory scenes

    Directory of Open Access Journals (Sweden)

    Joel S Snyder

    2012-02-01

    Full Text Available Auditory perception and cognition entails both low-level and high-level processes, which are likely to interact with each other to create our rich conscious experience of soundscapes. Recent research that we review has revealed numerous influences of high-level factors, such as attention, intention, and prior experience, on conscious auditory perception. And recently, studies have shown that auditory scene analysis tasks can exhibit multistability in a manner very similar to ambiguous visual stimuli, presenting a unique opportunity to study neural correlates of auditory awareness and the extent to which mechanisms of perception are shared across sensory modalities. Research has also led to a growing number of techniques through which auditory perception can be manipulated and even completely suppressed. Such findings have important consequences for our understanding of the mechanisms of perception and also should allow scientists to precisely distinguish the influences of different higher-level influences.

  7. The spectrotemporal filter mechanism of auditory selective attention

    Science.gov (United States)

    Lakatos, Peter; Musacchia, Gabriella; O’Connell, Monica N.; Falchier, Arnaud Y.; Javitt, Daniel C.; Schroeder, Charles E.

    2013-01-01

    SUMMARY While we have convincing evidence that attention to auditory stimuli modulates neuronal responses at or before the level of primary auditory cortex (A1), the underlying physiological mechanisms are unknown. We found that attending to rhythmic auditory streams resulted in the entrainment of ongoing oscillatory activity reflecting rhythmic excitability fluctuations in A1. Strikingly, while the rhythm of the entrained oscillations in A1 neuronal ensembles reflected the temporal structure of the attended stream, the phase depended on the attended frequency content. Counter-phase entrainment across differently tuned A1 regions resulted in both the amplification and sharpening of responses at attended time points, in essence acting as a spectrotemporal filter mechanism. Our data suggest that selective attention generates a dynamically evolving model of attended auditory stimulus streams in the form of modulatory subthreshold oscillations across tonotopically organized neuronal ensembles in A1 that enhances the representation of attended stimuli. PMID:23439126

  8. Irrelevant Auditory and Visual Events Induce a Visual Attentional Blink

    NARCIS (Netherlands)

    Van der Burg, Erik; Nieuwenstein, Mark R.; Theeuwes, Jan; Olivers, Christian N. L.

    2013-01-01

    In the present study we investigated whether a task-irrelevant distractor can induce a visual attentional blink pattern. Participants were asked to detect only a visual target letter (A, B, or C) and to ignore the preceding auditory, visual, or audiovisual distractor. An attentional blink was

  9. Broken Expectations: Violation of Expectancies, Not Novelty, Captures Auditory Attention

    Science.gov (United States)

    Vachon, Francois; Hughes, Robert W.; Jones, Dylan M.

    2012-01-01

    The role of memory in behavioral distraction by auditory attentional capture was investigated: We examined whether capture is a product of the novelty of the capturing event (i.e., the absence of a recent memory for the event) or its violation of learned expectancies on the basis of a memory for an event structure. Attentional capture--indicated…

  10. Emotionally negative pictures increase attention to a subsequent auditory stimulus.

    Science.gov (United States)

    Tartar, Jaime L; de Almeida, Kristen; McIntosh, Roger C; Rosselli, Monica; Nash, Allan J

    2012-01-01

    Emotionally negative stimuli serve as a mechanism of biological preparedness to enhance attention. We hypothesized that emotionally negative stimuli would also serve as motivational priming to increase attention resources for subsequent stimuli. To that end, we tested 11 participants in a dual sensory modality task, wherein emotionally negative pictures were contrasted with emotionally neutral pictures and each picture was followed 600 ms later by a tone in an auditory oddball paradigm. Each trial began with a picture displayed for 200 ms; half of the trials began with an emotionally negative picture and half of the trials began with an emotionally neutral picture; 600 ms following picture presentation, the participants heard either an oddball tone or a standard tone. At the end of each trial (picture followed by tone), the participants categorized, with a button press, the picture and tone combination. As expected, and consistent with previous studies, we found an enhanced visual late positive potential (latency range=300-700 ms) to the negative picture stimuli. We further found that compared to neutral pictures, negative pictures resulted in early attention and orienting effects to subsequent tones (measured through an enhanced N1 and N2) and sustained attention effects only to the subsequent oddball tones (measured through late processing negativity, latency range=400-700 ms). Number pad responses to both the picture and tone category showed the shortest response latencies and greatest percentage of correct picture-tone categorization on the negative picture followed by oddball tone trials. Consistent with previous work on natural selective attention, our results support the idea that emotional stimuli can alter attention resource allocation. This finding has broad implications for human attention and performance as it specifically shows the conditions in which an emotionally negative stimulus can result in extended stimulus evaluation. Copyright © 2011

  11. Influence of memory, attention, IQ and age on auditory temporal processing tests: preliminary study.

    Science.gov (United States)

    Murphy, Cristina Ferraz Borges; Zachi, Elaine Cristina; Roque, Daniela Tsubota; Ventura, Dora Selma Fix; Schochat, Eliane

    2014-01-01

    To investigate the existence of correlations between the performance of children in auditory temporal tests (Frequency Pattern and Gaps in Noise--GIN) and IQ, attention, memory and age measurements. Fifteen typically developing individuals between the ages of 7 to 12 years and normal hearing participated in the study. Auditory temporal processing tests (GIN and Frequency Pattern), as well as a Memory test (Digit Span), Attention tests (auditory and visual modality) and intelligence tests (RAVEN test of Progressive Matrices) were applied. Significant and positive correlation between the Frequency Pattern test and age variable were found, which was considered good (p<0.01, 75.6%). There were no significant correlations between the GIN test and the variables tested. Auditory temporal skills seem to be influenced by different factors: while the performance in temporal ordering skill seems to be influenced by maturational processes, the performance in temporal resolution was not influenced by any of the aspects investigated.

  12. Long-term memory biases auditory spatial attention.

    Science.gov (United States)

    Zimmermann, Jacqueline F; Moscovitch, Morris; Alain, Claude

    2017-10-01

    Long-term memory (LTM) has been shown to bias attention to a previously learned visual target location. Here, we examined whether memory-predicted spatial location can facilitate the detection of a faint pure tone target embedded in real world audio clips (e.g., soundtrack of a restaurant). During an initial familiarization task, participants heard audio clips, some of which included a lateralized target (p = 50%). On each trial participants indicated whether the target was presented from the left, right, or was absent. Following a 1 hr retention interval, participants were presented with the same audio clips, which now all included a target. In Experiment 1, participants showed memory-based gains in response time and d'. Experiment 2 showed that temporal expectations modulate attention, with greater memory-guided attention effects on performance when temporal context was reinstated from learning (i.e., when timing of the target within audio clips was not changed from initially learned timing). Experiment 3 showed that while conscious recall of target locations was modulated by exposure to target-context associations during learning (i.e., better recall with higher number of learning blocks), the influence of LTM associations on spatial attention was not reduced (i.e., number of learning blocks did not affect memory-guided attention). Both Experiments 2 and 3 showed gains in performance related to target-context associations, even for associations that were not explicitly remembered. Together, these findings indicate that memory for audio clips is acquired quickly and is surprisingly robust; both implicit and explicit LTM for the location of a faint target tone modulated auditory spatial attention. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  13. Adapting the Theory of Visual Attention (TVA) to model auditory attention

    DEFF Research Database (Denmark)

    Roberts, Katherine L.; Andersen, Tobias; Kyllingsbæk, Søren

    Mathematical and computational models have provided useful insights into normal and impaired visual attention, but less progress has been made in modelling auditory attention. We are developing a Theory of Auditory Attention (TAA), based on an influential visual model, the Theory of Visual...... Attention (TVA). We report that TVA provides a good fit to auditory data when the stimuli are closely matched to those used in visual studies. In the basic visual TVA task, participants view a brief display of letters and are asked to report either all of the letters (whole report) or a subset of letters (e...... the auditory data, producing good estimates of the rate at which information is encoded (C), the minimum exposure duration required for processing to begin (t0), and the relative attentional weight to targets versus distractors (α). Future work will address the issue of target-distractor confusion, and extend...

  14. Neural dynamics underlying attentional orienting to auditory representations in short-term memory.

    Science.gov (United States)

    Backer, Kristina C; Binns, Malcolm A; Alain, Claude

    2015-01-21

    Sounds are ephemeral. Thus, coherent auditory perception depends on "hearing" back in time: retrospectively attending that which was lost externally but preserved in short-term memory (STM). Current theories of auditory attention assume that sound features are integrated into a perceptual object, that multiple objects can coexist in STM, and that attention can be deployed to an object in STM. Recording electroencephalography from humans, we tested these assumptions, elucidating feature-general and feature-specific neural correlates of auditory attention to STM. Alpha/beta oscillations and frontal and posterior event-related potentials indexed feature-general top-down attentional control to one of several coexisting auditory representations in STM. Particularly, task performance during attentional orienting was correlated with alpha/low-beta desynchronization (i.e., power suppression). However, attention to one feature could occur without simultaneous processing of the second feature of the representation. Therefore, auditory attention to memory relies on both feature-specific and feature-general neural dynamics. Copyright © 2015 the authors 0270-6474/15/351307-12$15.00/0.

  15. Brain activity during divided and selective attention to auditory and visual sentence comprehension tasks

    OpenAIRE

    Moisala, Mona; Salmela, Viljami; Salo, Emma; Carlson, Synnove; Vuontela, Virve; Salonen, Oili; Alho, Kimmo

    2015-01-01

    Using functional magnetic resonance imaging (fMRI), we measured brain activity of human participants while they performed a sentence congruence judgment task in either the visual or auditory modality separately, or in both modalities simultaneously. Significant performance decrements were observed when attention was divided between the two modalities compared with when one modality was selectively attended. Compared with selective attention (i.e., single tasking), divided attention (i.e., dua...

  16. Auditory Attentional Capture: Effects of Singleton Distractor Sounds

    Science.gov (United States)

    Dalton, Polly; Lavie, Nilli

    2004-01-01

    The phenomenon of attentional capture by a unique yet irrelevant singleton distractor has typically been studied in visual search. In this article, the authors examine whether a similar phenomenon occurs in the auditory domain. Participants searched sequences of sounds for targets defined by frequency, intensity, or duration. The presence of a…

  17. Auditory attention enhances processing of positive and negative words in inferior and superior prefrontal cortex.

    Science.gov (United States)

    Wegrzyn, Martin; Herbert, Cornelia; Ethofer, Thomas; Flaisch, Tobias; Kissler, Johanna

    2017-11-01

    Visually presented emotional words are processed preferentially and effects of emotional content are similar to those of explicit attention deployment in that both amplify visual processing. However, auditory processing of emotional words is less well characterized and interactions between emotional content and task-induced attention have not been fully understood. Here, we investigate auditory processing of emotional words, focussing on how auditory attention to positive and negative words impacts their cerebral processing. A Functional magnetic resonance imaging (fMRI) study manipulating word valence and attention allocation was performed. Participants heard negative, positive and neutral words to which they either listened passively or attended by counting negative or positive words, respectively. Regardless of valence, active processing compared to passive listening increased activity in primary auditory cortex, left intraparietal sulcus, and right superior frontal gyrus (SFG). The attended valence elicited stronger activity in left inferior frontal gyrus (IFG) and left SFG, in line with these regions' role in semantic retrieval and evaluative processing. No evidence for valence-specific attentional modulation in auditory regions or distinct valence-specific regional activations (i.e., negative > positive or positive > negative) was obtained. Thus, allocation of auditory attention to positive and negative words can substantially increase their processing in higher-order language and evaluative brain areas without modulating early stages of auditory processing. Inferior and superior frontal brain structures mediate interactions between emotional content, attention, and working memory when prosodically neutral speech is processed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Extensive Tonotopic Mapping across Auditory Cortex Is Recapitulated by Spectrally Directed Attention and Systematically Related to Cortical Myeloarchitecture.

    Science.gov (United States)

    Dick, Frederic K; Lehet, Matt I; Callaghan, Martina F; Keller, Tim A; Sereno, Martin I; Holt, Lori L

    2017-12-13

    Auditory selective attention is vital in natural soundscapes. But it is unclear how attentional focus on the primary dimension of auditory representation-acoustic frequency-might modulate basic auditory functional topography during active listening. In contrast to visual selective attention, which is supported by motor-mediated optimization of input across saccades and pupil dilation, the primate auditory system has fewer means of differentially sampling the world. This makes spectrally-directed endogenous attention a particularly crucial aspect of auditory attention. Using a novel functional paradigm combined with quantitative MRI, we establish in male and female listeners that human frequency-band-selective attention drives activation in both myeloarchitectonically estimated auditory core, and across the majority of tonotopically mapped nonprimary auditory cortex. The attentionally driven best-frequency maps show strong concordance with sensory-driven maps in the same subjects across much of the temporal plane, with poor concordance in areas outside traditional auditory cortex. There is significantly greater activation across most of auditory cortex when best frequency is attended, versus ignored; the same regions do not show this enhancement when attending to the least-preferred frequency band. Finally, the results demonstrate that there is spatial correspondence between the degree of myelination and the strength of the tonotopic signal across a number of regions in auditory cortex. Strong frequency preferences across tonotopically mapped auditory cortex spatially correlate with R 1 -estimated myeloarchitecture, indicating shared functional and anatomical organization that may underlie intrinsic auditory regionalization. SIGNIFICANCE STATEMENT Perception is an active process, especially sensitive to attentional state. Listeners direct auditory attention to track a violin's melody within an ensemble performance, or to follow a voice in a crowded cafe. Although

  19. Attention-driven auditory cortex short-term plasticity helps segregate relevant sounds from noise.

    Science.gov (United States)

    Ahveninen, Jyrki; Hämäläinen, Matti; Jääskeläinen, Iiro P; Ahlfors, Seppo P; Huang, Samantha; Lin, Fa-Hsuan; Raij, Tommi; Sams, Mikko; Vasios, Christos E; Belliveau, John W

    2011-03-08

    How can we concentrate on relevant sounds in noisy environments? A "gain model" suggests that auditory attention simply amplifies relevant and suppresses irrelevant afferent inputs. However, it is unclear whether this suffices when attended and ignored features overlap to stimulate the same neuronal receptive fields. A "tuning model" suggests that, in addition to gain, attention modulates feature selectivity of auditory neurons. We recorded magnetoencephalography, EEG, and functional MRI (fMRI) while subjects attended to tones delivered to one ear and ignored opposite-ear inputs. The attended ear was switched every 30 s to quantify how quickly the effects evolve. To produce overlapping inputs, the tones were presented alone vs. during white-noise masking notch-filtered ±1/6 octaves around the tone center frequencies. Amplitude modulation (39 vs. 41 Hz in opposite ears) was applied for "frequency tagging" of attention effects on maskers. Noise masking reduced early (50-150 ms; N1) auditory responses to unattended tones. In support of the tuning model, selective attention canceled out this attenuating effect but did not modulate the gain of 50-150 ms activity to nonmasked tones or steady-state responses to the maskers themselves. These tuning effects originated at nonprimary auditory cortices, purportedly occupied by neurons that, without attention, have wider frequency tuning than ±1/6 octaves. The attentional tuning evolved rapidly, during the first few seconds after attention switching, and correlated with behavioral discrimination performance. In conclusion, a simple gain model alone cannot explain auditory selective attention. In nonprimary auditory cortices, attention-driven short-term plasticity retunes neurons to segregate relevant sounds from noise.

  20. Can you hear me now? Musical training shapes functional brain networks for selective auditory attention and hearing speech in noise

    Directory of Open Access Journals (Sweden)

    Dana L Strait

    2011-06-01

    Full Text Available Even in the quietest of rooms, our senses are perpetually inundated by a barrage of sounds, requiring the auditory system to adapt to a variety of listening conditions in order to extract signals of interest (e.g., one speaker’s voice amidst others. Brain networks that promote selective attention are thought to sharpen the neural encoding of a target signal, suppressing competing sounds and enhancing perceptual performance. Here, we ask: does musical training benefit cortical mechanisms that underlie selective attention to speech? To answer this question, we assessed the impact of selective auditory attention on cortical auditory-evoked response variability in musicians and nonmusicians. Outcomes indicate strengthened brain networks for selective auditory attention in musicians in that musicians but not nonmusicians demonstrate decreased prefrontal response variability with auditory attention. Results are interpreted in the context of previous work from our laboratory documenting perceptual and subcortical advantages in musicians for the hearing and neural encoding of speech in background noise. Musicians’ neural proficiency for selectively engaging and sustaining auditory attention to language indicates a potential benefit of music for auditory training. Given the importance of auditory attention for the development of language-related skills, musical training may aid in the prevention, habilitation and remediation of children with a wide range of attention-based language and learning impairments.

  1. Attentional Modulation of Auditory Steady-State Responses

    Science.gov (United States)

    Mahajan, Yatin; Davis, Chris; Kim, Jeesun

    2014-01-01

    Auditory selective attention enables task-relevant auditory events to be enhanced and irrelevant ones suppressed. In the present study we used a frequency tagging paradigm to investigate the effects of attention on auditory steady state responses (ASSR). The ASSR was elicited by simultaneously presenting two different streams of white noise, amplitude modulated at either 16 and 23.5 Hz or 32.5 and 40 Hz. The two different frequencies were presented to each ear and participants were instructed to selectively attend to one ear or the other (confirmed by behavioral evidence). The results revealed that modulation of ASSR by selective attention depended on the modulation frequencies used and whether the activation was contralateral or ipsilateral. Attention enhanced the ASSR for contralateral activation from either ear for 16 Hz and suppressed the ASSR for ipsilateral activation for 16 Hz and 23.5 Hz. For modulation frequencies of 32.5 or 40 Hz attention did not affect the ASSR. We propose that the pattern of enhancement and inhibition may be due to binaural suppressive effects on ipsilateral stimulation and the dominance of contralateral hemisphere during dichotic listening. In addition to the influence of cortical processing asymmetries, these results may also reflect a bias towards inhibitory ipsilateral and excitatory contralateral activation present at the level of inferior colliculus. That the effect of attention was clearest for the lower modulation frequencies suggests that such effects are likely mediated by cortical brain structures or by those in close proximity to cortex. PMID:25334021

  2. Attentional modulation of auditory steady-state responses.

    Science.gov (United States)

    Mahajan, Yatin; Davis, Chris; Kim, Jeesun

    2014-01-01

    Auditory selective attention enables task-relevant auditory events to be enhanced and irrelevant ones suppressed. In the present study we used a frequency tagging paradigm to investigate the effects of attention on auditory steady state responses (ASSR). The ASSR was elicited by simultaneously presenting two different streams of white noise, amplitude modulated at either 16 and 23.5 Hz or 32.5 and 40 Hz. The two different frequencies were presented to each ear and participants were instructed to selectively attend to one ear or the other (confirmed by behavioral evidence). The results revealed that modulation of ASSR by selective attention depended on the modulation frequencies used and whether the activation was contralateral or ipsilateral. Attention enhanced the ASSR for contralateral activation from either ear for 16 Hz and suppressed the ASSR for ipsilateral activation for 16 Hz and 23.5 Hz. For modulation frequencies of 32.5 or 40 Hz attention did not affect the ASSR. We propose that the pattern of enhancement and inhibition may be due to binaural suppressive effects on ipsilateral stimulation and the dominance of contralateral hemisphere during dichotic listening. In addition to the influence of cortical processing asymmetries, these results may also reflect a bias towards inhibitory ipsilateral and excitatory contralateral activation present at the level of inferior colliculus. That the effect of attention was clearest for the lower modulation frequencies suggests that such effects are likely mediated by cortical brain structures or by those in close proximity to cortex.

  3. Attentional modulation of auditory steady-state responses.

    Directory of Open Access Journals (Sweden)

    Yatin Mahajan

    Full Text Available Auditory selective attention enables task-relevant auditory events to be enhanced and irrelevant ones suppressed. In the present study we used a frequency tagging paradigm to investigate the effects of attention on auditory steady state responses (ASSR. The ASSR was elicited by simultaneously presenting two different streams of white noise, amplitude modulated at either 16 and 23.5 Hz or 32.5 and 40 Hz. The two different frequencies were presented to each ear and participants were instructed to selectively attend to one ear or the other (confirmed by behavioral evidence. The results revealed that modulation of ASSR by selective attention depended on the modulation frequencies used and whether the activation was contralateral or ipsilateral. Attention enhanced the ASSR for contralateral activation from either ear for 16 Hz and suppressed the ASSR for ipsilateral activation for 16 Hz and 23.5 Hz. For modulation frequencies of 32.5 or 40 Hz attention did not affect the ASSR. We propose that the pattern of enhancement and inhibition may be due to binaural suppressive effects on ipsilateral stimulation and the dominance of contralateral hemisphere during dichotic listening. In addition to the influence of cortical processing asymmetries, these results may also reflect a bias towards inhibitory ipsilateral and excitatory contralateral activation present at the level of inferior colliculus. That the effect of attention was clearest for the lower modulation frequencies suggests that such effects are likely mediated by cortical brain structures or by those in close proximity to cortex.

  4. Self-Regulation of the Primary Auditory Cortex Attention Via Directed Attention Mediated By Real Time fMRI Neurofeedback

    Science.gov (United States)

    2017-05-05

    NELSON FROM: 59 MDW /SGYU SUBJECT: Professional Presentation Approval 1. Your paper, entitled Self - regulation of the Primary Auditory Cortex Attention via...DATE Sherwood - p.1 Self - regulation of the primary auditory cortex attention via directed attention mediated by real-time fMRI neurofeedback M S...auditory cortex hyperactivity by self - regulation of the primary auditory cortex (A 1) based on real-time functional magnetic resonance imaging neurofeedback

  5. Auditory-Cortex Short-Term Plasticity Induced by Selective Attention

    Science.gov (United States)

    Jääskeläinen, Iiro P.; Ahveninen, Jyrki

    2014-01-01

    The ability to concentrate on relevant sounds in the acoustic environment is crucial for everyday function and communication. Converging lines of evidence suggests that transient functional changes in auditory-cortex neurons, “short-term plasticity”, might explain this fundamental function. Under conditions of strongly focused attention, enhanced processing of attended sounds can take place at very early latencies (~50 ms from sound onset) in primary auditory cortex and possibly even at earlier latencies in subcortical structures. More robust selective-attention short-term plasticity is manifested as modulation of responses peaking at ~100 ms from sound onset in functionally specialized nonprimary auditory-cortical areas by way of stimulus-specific reshaping of neuronal receptive fields that supports filtering of selectively attended sound features from task-irrelevant ones. Such effects have been shown to take effect in ~seconds following shifting of attentional focus. There are findings suggesting that the reshaping of neuronal receptive fields is even stronger at longer auditory-cortex response latencies (~300 ms from sound onset). These longer-latency short-term plasticity effects seem to build up more gradually, within tens of seconds after shifting the focus of attention. Importantly, some of the auditory-cortical short-term plasticity effects observed during selective attention predict enhancements in behaviorally measured sound discrimination performance. PMID:24551458

  6. Attention-dependent allocation of auditory processing resources as measured by mismatch negativity.

    Science.gov (United States)

    Dittmann-Balcar, A; Thienel, R; Schall, U

    1999-12-16

    Mismatch negativity (MMN) is a pre-attentive event-related potential measure of echoic memory. However, recent studies suggest attention-related modulation of MMN. This study investigates duration-elicited MMN in healthy subjects (n = 12) who were performing a visual discrimination task and, subsequently, an auditory discrimination task in a series of increasing task difficulty. MMN amplitude was found to be maximal at centro-frontal electrode sites without hemispheric differences. Comparison of both attend conditions (visual vs. auditory), revealed larger MMN amplitudes at Fz in the visual task without differences across task difficulty. However, significantly smaller MMN in the most demanding auditory condition supports the notion of limited processing capacity whose resources are modulated by attention in response to task requirements.

  7. Cognitive Training Enhances Auditory Attention Efficiency in Older Adults

    Directory of Open Access Journals (Sweden)

    Jennifer L. O’Brien

    2017-10-01

    Full Text Available Auditory cognitive training (ACT improves attention in older adults; however, the underlying neurophysiological mechanisms are still unknown. The present study examined the effects of ACT on the P3b event-related potential reflecting attention allocation (amplitude and speed of processing (latency during stimulus categorization and the P1-N1-P2 complex reflecting perceptual processing (amplitude and latency. Participants completed an auditory oddball task before and after 10 weeks of ACT (n = 9 or a no contact control period (n = 15. Parietal P3b amplitudes to oddball stimuli decreased at post-test in the trained group as compared to those in the control group, and frontal P3b amplitudes show a similar trend, potentially reflecting more efficient attentional allocation after ACT. No advantages for the ACT group were evident for auditory perceptual processing or speed of processing in this small sample. Our results provide preliminary evidence that ACT may enhance the efficiency of attention allocation, which may account for the positive impact of ACT on the everyday functioning of older adults.

  8. Auditory and visual sustained attention in children with speech sound disorder.

    Directory of Open Access Journals (Sweden)

    Cristina F B Murphy

    Full Text Available Although research has demonstrated that children with specific language impairment (SLI and reading disorder (RD exhibit sustained attention deficits, no study has investigated sustained attention in children with speech sound disorder (SSD. Given the overlap of symptoms, such as phonological memory deficits, between these different language disorders (i.e., SLI, SSD and RD and the relationships between working memory, attention and language processing, it is worthwhile to investigate whether deficits in sustained attention also occur in children with SSD. A total of 55 children (18 diagnosed with SSD (8.11 ± 1.231 and 37 typically developing children (8.76 ± 1.461 were invited to participate in this study. Auditory and visual sustained-attention tasks were applied. Children with SSD performed worse on these tasks; they committed a greater number of auditory false alarms and exhibited a significant decline in performance over the course of the auditory detection task. The extent to which performance is related to auditory perceptual difficulties and probable working memory deficits is discussed. Further studies are needed to better understand the specific nature of these deficits and their clinical implications.

  9. Translation and adaptation of functional auditory performance indicators (FAPI

    Directory of Open Access Journals (Sweden)

    Karina Ferreira

    2011-12-01

    Full Text Available Work with deaf children has gained new attention since the expectation and goal of therapy has expanded to language development and subsequent language learning. Many clinical tests were developed for evaluation of speech sound perception in young children in response to the need for accurate assessment of hearing skills that developed from the use of individual hearing aids or cochlear implants. These tests also allow the evaluation of the rehabilitation program. However, few of these tests are available in Portuguese. Evaluation with the Functional Auditory Performance Indicators (FAPI generates a child's functional auditory skills profile, which lists auditory skills in an integrated and hierarchical order. It has seven hierarchical categories, including sound awareness, meaningful sound, auditory feedback, sound source localizing, auditory discrimination, short-term auditory memory, and linguistic auditory processing. FAPI evaluation allows the therapist to map the child's hearing profile performance, determine the target for increasing the hearing abilities, and develop an effective therapeutic plan. Objective: Since the FAPI is an American test, the inventory was adapted for application in the Brazilian population. Material and Methods: The translation was done following the steps of translation and back translation, and reproducibility was evaluated. Four translated versions (two originals and two back-translated were compared, and revisions were done to ensure language adaptation and grammatical and idiomatic equivalence. Results: The inventory was duly translated and adapted. Conclusion: Further studies about the application of the translated FAPI are necessary to make the test practicable in Brazilian clinical use.

  10. Superior pre-attentive auditory processing in musicians.

    Science.gov (United States)

    Koelsch, S; Schröger, E; Tervaniemi, M

    1999-04-26

    The present study focuses on influences of long-term experience on auditory processing, providing the first evidence for pre-attentively superior auditory processing in musicians. This was revealed by the brain's automatic change-detection response, which is reflected electrically as the mismatch negativity (MMN) and generated by the operation of sensoric (echoic) memory, the earliest cognitive memory system. Major chords and single tones were presented to both professional violinists and non-musicians under ignore and attend conditions. Slightly impure chords, presented among perfect major chords elicited a distinct MMN in professional musicians, but not in non-musicians. This demonstrates that compared to non-musicians, musicians are superior in pre-attentively extracting more information out of musically relevant stimuli. Since effects of long-term experience on pre-attentive auditory processing have so far been reported for language-specific phonemes only, results indicate that sensory memory mechanisms can be modulated by training on a more general level.

  11. Gender-specific effects of prenatal and adolescent exposure to tobacco smoke on auditory and visual attention.

    Science.gov (United States)

    Jacobsen, Leslie K; Slotkin, Theodore A; Mencl, W Einar; Frost, Stephen J; Pugh, Kenneth R

    2007-12-01

    Prenatal exposure to active maternal tobacco smoking elevates risk of cognitive and auditory processing deficits, and of smoking in offspring. Recent preclinical work has demonstrated a sex-specific pattern of reduction in cortical cholinergic markers following prenatal, adolescent, or combined prenatal and adolescent exposure to nicotine, the primary psychoactive component of tobacco smoke. Given the importance of cortical cholinergic neurotransmission to attentional function, we examined auditory and visual selective and divided attention in 181 male and female adolescent smokers and nonsmokers with and without prenatal exposure to maternal smoking. Groups did not differ in age, educational attainment, symptoms of inattention, or years of parent education. A subset of 63 subjects also underwent functional magnetic resonance imaging while performing an auditory and visual selective and divided attention task. Among females, exposure to tobacco smoke during prenatal or adolescent development was associated with reductions in auditory and visual attention performance accuracy that were greatest in female smokers with prenatal exposure (combined exposure). Among males, combined exposure was associated with marked deficits in auditory attention, suggesting greater vulnerability of neurocircuitry supporting auditory attention to insult stemming from developmental exposure to tobacco smoke in males. Activation of brain regions that support auditory attention was greater in adolescents with prenatal or adolescent exposure to tobacco smoke relative to adolescents with neither prenatal nor adolescent exposure to tobacco smoke. These findings extend earlier preclinical work and suggest that, in humans, prenatal and adolescent exposure to nicotine exerts gender-specific deleterious effects on auditory and visual attention, with concomitant alterations in the efficiency of neurocircuitry supporting auditory attention.

  12. Neuronal effects of nicotine during auditory selective attention.

    Science.gov (United States)

    Smucny, Jason; Olincy, Ann; Eichman, Lindsay S; Tregellas, Jason R

    2015-06-01

    Although the attention-enhancing effects of nicotine have been behaviorally and neurophysiologically well-documented, its localized functional effects during selective attention are poorly understood. In this study, we examined the neuronal effects of nicotine during auditory selective attention in healthy human nonsmokers. We hypothesized to observe significant effects of nicotine in attention-associated brain areas, driven by nicotine-induced increases in activity as a function of increasing task demands. A single-blind, prospective, randomized crossover design was used to examine neuronal response associated with a go/no-go task after 7 mg nicotine or placebo patch administration in 20 individuals who underwent functional magnetic resonance imaging at 3T. The task design included two levels of difficulty (ordered vs. random stimuli) and two levels of auditory distraction (silence vs. noise). Significant treatment × difficulty × distraction interaction effects on neuronal response were observed in the hippocampus, ventral parietal cortex, and anterior cingulate. In contrast to our hypothesis, U and inverted U-shaped dependencies were observed between the effects of nicotine on response and task demands, depending on the brain area. These results suggest that nicotine may differentially affect neuronal response depending on task conditions. These results have important theoretical implications for understanding how cholinergic tone may influence the neurobiology of selective attention.

  13. Spatial auditory attention is modulated by tactile priming.

    Science.gov (United States)

    Menning, Hans; Ackermann, Hermann; Hertrich, Ingo; Mathiak, Klaus

    2005-07-01

    Previous studies have shown that cross-modal processing affects perception at a variety of neuronal levels. In this study, event-related brain responses were recorded via whole-head magnetoencephalography (MEG). Spatial auditory attention was directed via tactile pre-cues (primes) to one of four locations in the peripersonal space (left and right hand versus face). Auditory stimuli were white noise bursts, convoluted with head-related transfer functions, which ensured spatial perception of the four locations. Tactile primes (200-300 ms prior to acoustic onset) were applied randomly to one of these locations. Attentional load was controlled by three different visual distraction tasks. The auditory P50m (about 50 ms after stimulus onset) showed a significant "proximity" effect (larger responses to face stimulation as well as a "contralaterality" effect between side of stimulation and hemisphere). The tactile primes essentially reduced both the P50m and N100m components. However, facial tactile pre-stimulation yielded an enhanced ipsilateral N100m. These results show that earlier responses are mainly governed by exogenous stimulus properties whereas cross-sensory interaction is spatially selective at a later (endogenous) processing stage.

  14. Examining age-related differences in auditory attention control using a task-switching procedure.

    Science.gov (United States)

    Lawo, Vera; Koch, Iring

    2014-03-01

    Using a novel task-switching variant of dichotic selective listening, we examined age-related differences in the ability to intentionally switch auditory attention between 2 speakers defined by their sex. In our task, young (M age = 23.2 years) and older adults (M age = 66.6 years) performed a numerical size categorization on spoken number words. The task-relevant speaker was indicated by a cue prior to auditory stimulus onset. The cuing interval was either short or long and varied randomly trial by trial. We found clear performance costs with instructed attention switches. These auditory attention switch costs decreased with prolonged cue-stimulus interval. Older adults were generally much slower (but not more error prone) than young adults, but switching-related effects did not differ across age groups. These data suggest that the ability to intentionally switch auditory attention in a selective listening task is not compromised in healthy aging. We discuss the role of modality-specific factors in age-related differences.

  15. Attention, memory, and auditory processing in 10- to 15-year-old children with listening difficulties.

    Science.gov (United States)

    Sharma, Mridula; Dhamani, Imran; Leung, Johahn; Carlile, Simon

    2014-12-01

    The aim of this study was to examine attention, memory, and auditory processing in children with reported listening difficulty in noise (LDN) despite having clinically normal hearing. Twenty-one children with LDN and 15 children with no listening concerns (controls) participated. The clinically normed auditory processing tests included the Frequency/Pitch Pattern Test (FPT; Musiek, 2002), the Dichotic Digits Test (Musiek, 1983), the Listening in Spatialized Noise-Sentences (LiSN-S) test (Dillon, Cameron, Glyde, Wilson, & Tomlin, 2012), gap detection in noise (Baker, Jayewardene, Sayle, & Saeed, 2008), and masking level difference (MLD; Wilson, Moncrieff, Townsend, & Pillion, 2003). Also included were research-based psychoacoustic tasks, such as auditory stream segregation, localization, sinusoidal amplitude modulation (SAM), and fine structure perception. All were also evaluated on attention and memory test batteries. The LDN group was significantly slower switching their auditory attention and had poorer inhibitory control. Additionally, the group mean results showed significantly poorer performance on FPT, MLD, 4-Hz SAM, and memory tests. Close inspection of the individual data revealed that only 5 participants (out of 21) in the LDN group showed significantly poor performance on FPT compared with clinical norms. Further testing revealed the frequency discrimination of these 5 children to be significantly impaired. Thus, the LDN group showed deficits in attention switching and inhibitory control, whereas only a subset of these participants demonstrated an additional frequency resolution deficit.

  16. Psychometric properties of Persian version of the Sustained Auditory Attention Capacity Test in children with attention deficit-hyperactivity disorder.

    Science.gov (United States)

    Soltanparast, Sanaz; Jafari, Zahra; Sameni, Seyed Jalal; Salehi, Masoud

    2014-01-01

    The purpose of the present study was to evaluate the psychometric properties (validity and reliability) of the Persian version of the Sustained Auditory Attention Capacity Test in children with attention deficit hyperactivity disorder. The Persian version of the Sustained Auditory Attention Capacity Test was constructed to assess sustained auditory attention using the method provided by Feniman and colleagues (2007). In this test, comments were provided to assess the child's attentional deficit by determining inattention and impulsiveness error, the total scores of the sustained auditory attention capacity test and attention span reduction index. In the present study for determining the validity and reliability of in both Rey Auditory Verbal Learning test and the Persian version of the Sustained Auditory Attention Capacity Test (SAACT), 46 normal children and 41 children with Attention Deficit Hyperactivity (ADHD), all right-handed and aged between 7 and 11 of both genders, were evaluated. In determining convergent validity, a negative significant correlation was found between the three parts of the Rey Auditory Verbal Learning test (first, fifth, and immediate recall) and all indicators of the SAACT except attention span reduction. By comparing the test scores between the normal and ADHD groups, discriminant validity analysis showed significant differences in all indicators of the test except for attention span reduction (pAttention Capacity test has good validity and reliability, that matches other reliable tests, and it can be used for the identification of children with attention deficits and if they suspected to have Attention Deficit Hyperactivity Disorder.

  17. Role of the right inferior parietal cortex in auditory selective attention: An rTMS study.

    Science.gov (United States)

    Bareham, Corinne A; Georgieva, Stanimira D; Kamke, Marc R; Lloyd, David; Bekinschtein, Tristan A; Mattingley, Jason B

    2018-02-01

    Selective attention is the process of directing limited capacity resources to behaviourally relevant stimuli while ignoring competing stimuli that are currently irrelevant. Studies in healthy human participants and in individuals with focal brain lesions have suggested that the right parietal cortex is crucial for resolving competition for attention. Following right-hemisphere damage, for example, patients may have difficulty reporting a brief, left-sided stimulus if it occurs with a competitor on the right, even though the same left stimulus is reported normally when it occurs alone. Such "extinction" of contralesional stimuli has been documented for all the major sense modalities, but it remains unclear whether its occurrence reflects involvement of one or more specific subregions of the temporo-parietal cortex. Here we employed repetitive transcranial magnetic stimulation (rTMS) over the right hemisphere to examine the effect of disruption of two candidate regions - the supramarginal gyrus (SMG) and the superior temporal gyrus (STG) - on auditory selective attention. Eighteen neurologically normal, right-handed participants performed an auditory task, in which they had to detect target digits presented within simultaneous dichotic streams of spoken distractor letters in the left and right channels, both before and after 20 min of 1 Hz rTMS over the SMG, STG or a somatosensory control site (S1). Across blocks, participants were asked to report on auditory streams in the left, right, or both channels, which yielded focused and divided attention conditions. Performance was unchanged for the two focused attention conditions, regardless of stimulation site, but was selectively impaired for contralateral left-sided targets in the divided attention condition following stimulation of the right SMG, but not the STG or S1. Our findings suggest a causal role for the right inferior parietal cortex in auditory selective attention. Copyright © 2017 Elsevier Ltd. All rights

  18. Selective Attention to Visual Stimuli Using Auditory Distractors Is Altered in Alpha-9 Nicotinic Receptor Subunit Knock-Out Mice.

    Science.gov (United States)

    Terreros, Gonzalo; Jorratt, Pascal; Aedo, Cristian; Elgoyhen, Ana Belén; Delano, Paul H

    2016-07-06

    During selective attention, subjects voluntarily focus their cognitive resources on a specific stimulus while ignoring others. Top-down filtering of peripheral sensory responses by higher structures of the brain has been proposed as one of the mechanisms responsible for selective attention. A prerequisite to accomplish top-down modulation of the activity of peripheral structures is the presence of corticofugal pathways. The mammalian auditory efferent system is a unique neural network that originates in the auditory cortex and projects to the cochlear receptor through the olivocochlear bundle, and it has been proposed to function as a top-down filter of peripheral auditory responses during attention to cross-modal stimuli. However, to date, there is no conclusive evidence of the involvement of olivocochlear neurons in selective attention paradigms. Here, we trained wild-type and α-9 nicotinic receptor subunit knock-out (KO) mice, which lack cholinergic transmission between medial olivocochlear neurons and outer hair cells, in a two-choice visual discrimination task and studied the behavioral consequences of adding different types of auditory distractors. In addition, we evaluated the effects of contralateral noise on auditory nerve responses as a measure of the individual strength of the olivocochlear reflex. We demonstrate that KO mice have a reduced olivocochlear reflex strength and perform poorly in a visual selective attention paradigm. These results confirm that an intact medial olivocochlear transmission aids in ignoring auditory distraction during selective attention to visual stimuli. The auditory efferent system is a neural network that originates in the auditory cortex and projects to the cochlear receptor through the olivocochlear system. It has been proposed to function as a top-down filter of peripheral auditory responses during attention to cross-modal stimuli. However, to date, there is no conclusive evidence of the involvement of olivocochlear

  19. Modelling auditory attention: Insights from the Theory of Visual Attention (TVA)

    DEFF Research Database (Denmark)

    Roberts, K. L.; Andersen, Tobias; Kyllingsbæk, Søren

    modelled using a log-logistic function than an exponential function. A more challenging difference is that in the partial report task, there is more target-distractor confusion for auditory than visual stimuli. This failure of object-formation (prior to attentional object-selection) is not yet effectively......We report initial progress towards creating an auditory analogue of a mathematical model of visual attention: the ‘Theory of Visual Attention’ (TVA; Bundesen, 1990). TVA is one of the best established models of visual attention. It assumes that visual stimuli are initially processed in parallel......, and that there is a ‘race’ for selection and representation in visual short term memory (VSTM). In the basic TVA task, participants view a brief display of letters and are asked to report either all of the letters (whole report) or a subset of the letters (e.g., the red letters; partial report). Fitting the model...

  20. Modification of sudden onset auditory ERP by involuntary attention to visual stimuli.

    Science.gov (United States)

    Oray, Serkan; Lu, Zhong-Lin; Dawson, Michael E

    2002-03-01

    To investigate the cross-modal nature of the exogenous attention system, we studied how involuntary attention in the visual modality affects ERPs elicited by sudden onset of events in the auditory modality. Relatively loud auditory white noise bursts were presented to subjects with random and long inter-trial intervals. The noise bursts were either presented alone, or paired with a visual stimulus with a visual to auditory onset asynchrony of 120 ms. In a third condition, the visual stimuli were shown alone. All three conditions, auditory alone, visual alone, and paired visual/auditory, were randomly inter-mixed and presented with equal probabilities. Subjects were instructed to fixate on a point in front of them without task instructions concerning either the auditory or visual stimuli. ERPs were recorded from 28 scalp sites throughout every experimental session. Compared to ERPs in the auditory alone condition, pairing the auditory noise bursts with the visual stimulus reduced the amplitude of the auditory N100 component at Cz by 40% and the auditory P200/P300 component at Cz by 25%. No significant topographical change was observed in the scalp distributions of the N100 and P200/P300. Our results suggest that involuntary attention to visual stimuli suppresses early sensory (N100) as well as late cognitive (P200/P300) processing of sudden auditory events. The activation of the exogenous attention system by sudden auditory onset can be modified by involuntary visual attention in a cross-model, passive prepulse inhibition paradigm.

  1. Effect of background music on auditory-verbal memory performance

    Directory of Open Access Journals (Sweden)

    Sona Matloubi

    2014-12-01

    Full Text Available Background and Aim: Music exists in all cultures; many scientists are seeking to understand how music effects cognitive development such as comprehension, memory, and reading skills. More recently, a considerable number of neuroscience studies on music have been developed. This study aimed to investigate the effects of null and positive background music in comparison with silence on auditory-verbal memory performance.Methods: Forty young adults (male and female with normal hearing, aged between 18 and 26, participated in this comparative-analysis study. An auditory and speech evaluation was conducted in order to investigate the effects of background music on working memory. Subsequently, the Rey auditory-verbal learning test was performed for three conditions: silence, positive, and null music.Results: The mean score of the Rey auditory-verbal learning test in silence condition was higher than the positive music condition (p=0.003 and the null music condition (p=0.01. The tests results did not reveal any gender differences.Conclusion: It seems that the presence of competitive music (positive and null music and the orientation of auditory attention have negative effects on the performance of verbal working memory. It is possibly owing to the intervention of music with verbal information processing in the brain.

  2. Contingent capture of involuntary visual attention interferes with detection of auditory stimuli.

    Science.gov (United States)

    Kamke, Marc R; Harris, Jill

    2014-01-01

    The involuntary capture of attention by salient visual stimuli can be influenced by the behavioral goals of an observer. For example, when searching for a target item, irrelevant items that possess the target-defining characteristic capture attention more strongly than items not possessing that feature. Such contingent capture involves a shift of spatial attention toward the item with the target-defining characteristic. It is not clear, however, if the associated decrements in performance for detecting the target item are entirely due to involuntary orienting of spatial attention. To investigate whether contingent capture also involves a non-spatial interference, adult observers were presented with streams of visual and auditory stimuli and were tasked with simultaneously monitoring for targets in each modality. Visual and auditory targets could be preceded by a lateralized visual distractor that either did, or did not, possess the target-defining feature (a specific color). In agreement with the contingent capture hypothesis, target-colored distractors interfered with visual detection performance (response time and accuracy) more than distractors that did not possess the target color. Importantly, the same pattern of results was obtained for the auditory task: visual target-colored distractors interfered with sound detection. The decrement in auditory performance following a target-colored distractor suggests that contingent capture involves a source of processing interference in addition to that caused by a spatial shift of attention. Specifically, we argue that distractors possessing the target-defining characteristic enter a capacity-limited, serial stage of neural processing, which delays detection of subsequently presented stimuli regardless of the sensory modality.

  3. Contingent capture of involuntary visual attention interferes with detection of auditory stimuli

    Directory of Open Access Journals (Sweden)

    Marc R. Kamke

    2014-06-01

    Full Text Available The involuntary capture of attention by salient visual stimuli can be influenced by the behavioral goals of an observer. For example, when searching for a target item, irrelevant items that possess the target-defining characteristic capture attention more strongly than items not possessing that feature. Such contingent capture involves a shift of spatial attention toward the item with the target-defining characteristic. It is not clear, however, if the associated decrements in performance for detecting the target item are entirely due to involuntary orienting of spatial attention. To investigate whether contingent capture also involves a non-spatial interference, adult observers were presented with streams of visual and auditory stimuli and were tasked with simultaneously monitoring for targets in each modality. Visual and auditory targets could be preceded by a lateralized visual distractor that either did, or did not, possess the target-defining feature (a specific color. In agreement with the contingent capture hypothesis, target-colored distractors interfered with visual detection performance (response time and accuracy more than distractors that did not possess the target color. Importantly, the same pattern of results was obtained for the auditory task: visual target-colored distractors interfered with sound detection. The decrement in auditory performance following a target-colored distractor suggests that contingent capture involves a source of processing interference in addition to that caused by a spatial shift of attention. Specifically, we argue that distractors possessing the target-defining characteristic enter a capacity-limited, serial stage of neural processing, which delays detection of subsequently presented stimuli regardless of the sensory modality.

  4. Bottom-up influences of voice continuity in focusing selective auditory attention.

    Science.gov (United States)

    Bressler, Scott; Masud, Salwa; Bharadwaj, Hari; Shinn-Cunningham, Barbara

    2014-01-01

    Selective auditory attention causes a relative enhancement of the neural representation of important information and suppression of the neural representation of distracting sound, which enables a listener to analyze and interpret information of interest. Some studies suggest that in both vision and in audition, the "unit" on which attention operates is an object: an estimate of the information coming from a particular external source out in the world. In this view, which object ends up in the attentional foreground depends on the interplay of top-down, volitional attention and stimulus-driven, involuntary attention. Here, we test the idea that auditory attention is object based by exploring whether continuity of a non-spatial feature (talker identity, a feature that helps acoustic elements bind into one perceptual object) also influences selective attention performance. In Experiment 1, we show that perceptual continuity of target talker voice helps listeners report a sequence of spoken target digits embedded in competing reversed digits spoken by different talkers. In Experiment 2, we provide evidence that this benefit of voice continuity is obligatory and automatic, as if voice continuity biases listeners by making it easier to focus on a subsequent target digit when it is perceptually linked to what was already in the attentional foreground. Our results support the idea that feature continuity enhances streaming automatically, thereby influencing the dynamic processes that allow listeners to successfully attend to objects through time in the cacophony that assails our ears in many everyday settings.

  5. Interaction of streaming and attention in human auditory cortex.

    Science.gov (United States)

    Gutschalk, Alexander; Rupp, André; Dykstra, Andrew R

    2015-01-01

    Serially presented tones are sometimes segregated into two perceptually distinct streams. An ongoing debate is whether this basic streaming phenomenon reflects automatic processes or requires attention focused to the stimuli. Here, we examined the influence of focused attention on streaming-related activity in human auditory cortex using magnetoencephalography (MEG). Listeners were presented with a dichotic paradigm in which left-ear stimuli consisted of canonical streaming stimuli (ABA_ or ABAA) and right-ear stimuli consisted of a classical oddball paradigm. In phase one, listeners were instructed to attend the right-ear oddball sequence and detect rare deviants. In phase two, they were instructed to attend the left ear streaming stimulus and report whether they heard one or two streams. The frequency difference (ΔF) of the sequences was set such that the smallest and largest ΔF conditions generally induced one- and two-stream percepts, respectively. Two intermediate ΔF conditions were chosen to elicit bistable percepts (i.e., either one or two streams). Attention enhanced the peak-to-peak amplitude of the P1-N1 complex, but only for ambiguous ΔF conditions, consistent with the notion that automatic mechanisms for streaming tightly interact with attention and that the latter is of particular importance for ambiguous sound sequences.

  6. Beyond the real world: attention debates in auditory mismatch negativity.

    Science.gov (United States)

    Chung, Kyungmi; Park, Jin Young

    2018-04-11

    The aim of this study was to address the potential for the auditory mismatch negativity (aMMN) to be used in applied event-related potential (ERP) studies by determining whether the aMMN would be an attention-dependent ERP component and could be differently modulated across visual tasks or virtual reality (VR) stimuli with different visual properties and visual complexity levels. A total of 80 participants, aged 19-36 years, were assigned to either a reading-task (21 men and 19 women) or a VR-task (22 men and 18 women) group. Two visual-task groups of healthy young adults were matched in age, sex, and handedness. All participants were instructed to focus only on the given visual tasks and ignore auditory change detection. While participants in the reading-task group read text slides, those in the VR-task group viewed three 360° VR videos in a random order and rated how visually complex the given virtual environment was immediately after each VR video ended. Inconsistent with the finding of a partial significant difference in perceived visual complexity in terms of brightness of virtual environments, both visual properties of distance and brightness showed no significant differences in the modulation of aMMN amplitudes. A further analysis was carried out to compare elicited aMMN amplitudes of a typical MMN task and an applied VR task. No significant difference in the aMMN amplitudes was found across the two groups who completed visual tasks with different visual-task demands. In conclusion, the aMMN is a reliable ERP marker of preattentive cognitive processing for auditory deviance detection.

  7. Vestibular Stimulation and Auditory Perception in Children with Attention Deficit Hyperactivity Disorder

    Directory of Open Access Journals (Sweden)

    Azin Salamati

    2014-09-01

    Full Text Available Objectives: Rehabilitation strategies play a pivotal role in reliving the inappropriate behaviors and improving children's performance during school. Concentration and visual and auditory comprehension in children are crucial to effective learning and have drawn interest from researchers and clinicians. Vestibular function deficits usually cause high level of alertness and vigilance, and problems in maintaining focus, paying selective attention, and altering in precision and attention to the stimulus. The aim of this study is to investigate the correlation between vestibular stimulation and auditory perception in children with attention deficit hyperactivity disorder. Methods: Totally 30 children aged from 7 to 12 years with attention deficit hyperactivity disorder participated in this study. They were assessed based on the criteria of diagnostic and statistical manual of mental disorders. After obtaining guardian and parental consent, they were enrolled and randomly matched on age to two groups of intervention and control. Integrated visual and auditory continuous performance test was carried out as a pre-test. Those in the intervention group received vestibular stimulation during the therapy sessions, twice a week for 10 weeks. At the end the test was done to both groups as post-test. Results: The pre-and post-test scores were measured and compared the differences between means for two subject groups. Statistical analyses found a significant difference for the mean differences regarding auditory comprehension improvement. Discussion: The findings suggest that vestibular training is a reliable and powerful option treatment for attention deficit hyperactivity disorder especially along with other trainings, meaning that stimulating the sense of balance highlights the importance of interaction between inhabitation and cognition.

  8. Electrophysiological evidence for altered visual, but not auditory, selective attention in adolescent cochlear implant users.

    Science.gov (United States)

    Harris, Jill; Kamke, Marc R

    2014-11-01

    Selective attention fundamentally alters sensory perception, but little is known about the functioning of attention in individuals who use a cochlear implant. This study aimed to investigate visual and auditory attention in adolescent cochlear implant users. Event related potentials were used to investigate the influence of attention on visual and auditory evoked potentials in six cochlear implant users and age-matched normally-hearing children. Participants were presented with streams of alternating visual and auditory stimuli in an oddball paradigm: each modality contained frequently presented 'standard' and infrequent 'deviant' stimuli. Across different blocks attention was directed to either the visual or auditory modality. For the visual stimuli attention boosted the early N1 potential, but this effect was larger for cochlear implant users. Attention was also associated with a later P3 component for the visual deviant stimulus, but there was no difference between groups in the later attention effects. For the auditory stimuli, attention was associated with a decrease in N1 latency as well as a robust P3 for the deviant tone. Importantly, there was no difference between groups in these auditory attention effects. The results suggest that basic mechanisms of auditory attention are largely normal in children who are proficient cochlear implant users, but that visual attention may be altered. Ultimately, a better understanding of how selective attention influences sensory perception in cochlear implant users will be important for optimising habilitation strategies. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Enhancing Auditory Selective Attention Using a Visually Guided Hearing Aid

    Science.gov (United States)

    2017-01-01

    Purpose Listeners with hearing loss, as well as many listeners with clinically normal hearing, often experience great difficulty segregating talkers in a multiple-talker sound field and selectively attending to the desired “target” talker while ignoring the speech from unwanted “masker” talkers and other sources of sound. This listening situation forms the classic “cocktail party problem” described by Cherry (1953) that has received a great deal of study over the past few decades. In this article, a new approach to improving sound source segregation and enhancing auditory selective attention is described. The conceptual design, current implementation, and results obtained to date are reviewed and discussed in this article. Method This approach, embodied in a prototype “visually guided hearing aid” (VGHA) currently used for research, employs acoustic beamforming steered by eye gaze as a means for improving the ability of listeners to segregate and attend to one sound source in the presence of competing sound sources. Results The results from several studies demonstrate that listeners with normal hearing are able to use an attention-based “spatial filter” operating primarily on binaural cues to selectively attend to one source among competing spatially distributed sources. Furthermore, listeners with sensorineural hearing loss generally are less able to use this spatial filter as effectively as are listeners with normal hearing especially in conditions high in “informational masking.” The VGHA enhances auditory spatial attention for speech-on-speech masking and improves signal-to-noise ratio for conditions high in “energetic masking.” Visual steering of the beamformer supports the coordinated actions of vision and audition in selective attention and facilitates following sound source transitions in complex listening situations. Conclusions Both listeners with normal hearing and with sensorineural hearing loss may benefit from the acoustic

  10. Frequency-specific attentional modulation in human primary auditory cortex and midbrain

    NARCIS (Netherlands)

    Riecke, Lars; Peters, Judith C; Valente, Giancarlo; Poser, Benedikt A; Kemper, Valentin G; Formisano, Elia; Sorger, Bettina

    2018-01-01

    Paying selective attention to an audio frequency selectively enhances activity within primary auditory cortex (PAC) at the tonotopic site (frequency channel) representing that frequency. Animal PAC neurons achieve this 'frequency-specific attentional spotlight' by adapting their frequency tuning,

  11. Binaural auditory beats affect vigilance performance and mood.

    Science.gov (United States)

    Lane, J D; Kasian, S J; Owens, J E; Marsh, G R

    1998-01-01

    When two tones of slightly different frequency are presented separately to the left and right ears the listener perceives a single tone that varies in amplitude at a frequency equal to the frequency difference between the two tones, a perceptual phenomenon known as the binaural auditory beat. Anecdotal reports suggest that binaural auditory beats within the electroencephalograph frequency range can entrain EEG activity and may affect states of consciousness, although few scientific studies have been published. This study compared the effects of binaural auditory beats in the EEG beta and EEG theta/delta frequency ranges on mood and on performance of a vigilance task to investigate their effects on subjective and objective measures of arousal. Participants (n = 29) performed a 30-min visual vigilance task on three different days while listening to pink noise containing simple tones or binaural beats either in the beta range (16 and 24 Hz) or the theta/delta range (1.5 and 4 Hz). However, participants were kept blind to the presence of binaural beats to control expectation effects. Presentation of beta-frequency binaural beats yielded more correct target detections and fewer false alarms than presentation of theta/delta frequency binaural beats. In addition, the beta-frequency beats were associated with less negative mood. Results suggest that the presentation of binaural auditory beats can affect psychomotor performance and mood. This technology may have applications for the control of attention and arousal and the enhancement of human performance.

  12. Impact of Auditory Selective Attention on Verbal Short-Term Memory and Vocabulary Development

    Science.gov (United States)

    Majerus, Steve; Heiligenstein, Lucie; Gautherot, Nathalie; Poncelet, Martine; Van der Linden, Martial

    2009-01-01

    This study investigated the role of auditory selective attention capacities as a possible mediator of the well-established association between verbal short-term memory (STM) and vocabulary development. A total of 47 6- and 7-year-olds were administered verbal immediate serial recall and auditory attention tasks. Both task types probed processing…

  13. Validation of auditory detection response task method for assessing the attentional effects of cognitive load.

    Science.gov (United States)

    Stojmenova, Kristina; Sodnik, Jaka

    2018-07-04

    There are 3 standardized versions of the Detection Response Task (DRT), 2 using visual stimuli (remote DRT and head-mounted DRT) and one using tactile stimuli. In this article, we present a study that proposes and validates a type of auditory signal to be used as DRT stimulus and evaluate the proposed auditory version of this method by comparing it with the standardized visual and tactile version. This was a within-subject design study performed in a driving simulator with 24 participants. Each participant performed 8 2-min-long driving sessions in which they had to perform 3 different tasks: driving, answering to DRT stimuli, and performing a cognitive task (n-back task). Presence of additional cognitive load and type of DRT stimuli were defined as independent variables. DRT response times and hit rates, n-back task performance, and pupil size were observed as dependent variables. Significant changes in pupil size for trials with a cognitive task compared to trials without showed that cognitive load was induced properly. Each DRT version showed a significant increase in response times and a decrease in hit rates for trials with a secondary cognitive task compared to trials without. Similar and significantly better results in differences in response times and hit rates were obtained for the auditory and tactile version compared to the visual version. There were no significant differences in performance rate between the trials without DRT stimuli compared to trials with and among the trials with different DRT stimuli modalities. The results from this study show that the auditory DRT version, using the signal implementation suggested in this article, is sensitive to the effects of cognitive load on driver's attention and is significantly better than the remote visual and tactile version for auditory-vocal cognitive (n-back) secondary tasks.

  14. Minimal effects of visual memory training on the auditory performance of adult cochlear implant users

    Science.gov (United States)

    Oba, Sandra I.; Galvin, John J.; Fu, Qian-Jie

    2014-01-01

    Auditory training has been shown to significantly improve cochlear implant (CI) users’ speech and music perception. However, it is unclear whether post-training gains in performance were due to improved auditory perception or to generally improved attention, memory and/or cognitive processing. In this study, speech and music perception, as well as auditory and visual memory were assessed in ten CI users before, during, and after training with a non-auditory task. A visual digit span (VDS) task was used for training, in which subjects recalled sequences of digits presented visually. After the VDS training, VDS performance significantly improved. However, there were no significant improvements for most auditory outcome measures (auditory digit span, phoneme recognition, sentence recognition in noise, digit recognition in noise), except for small (but significant) improvements in vocal emotion recognition and melodic contour identification. Post-training gains were much smaller with the non-auditory VDS training than observed in previous auditory training studies with CI users. The results suggest that post-training gains observed in previous studies were not solely attributable to improved attention or memory, and were more likely due to improved auditory perception. The results also suggest that CI users may require targeted auditory training to improve speech and music perception. PMID:23516087

  15. Selective attention to phonology dynamically modulates initial encoding of auditory words within the left hemisphere.

    Science.gov (United States)

    Yoncheva, Yuliya; Maurer, Urs; Zevin, Jason D; McCandliss, Bruce D

    2014-08-15

    Selective attention to phonology, i.e., the ability to attend to sub-syllabic units within spoken words, is a critical precursor to literacy acquisition. Recent functional magnetic resonance imaging evidence has demonstrated that a left-lateralized network of frontal, temporal, and posterior language regions, including the visual word form area, supports this skill. The current event-related potential (ERP) study investigated the temporal dynamics of selective attention to phonology during spoken word perception. We tested the hypothesis that selective attention to phonology dynamically modulates stimulus encoding by recruiting left-lateralized processes specifically while the information critical for performance is unfolding. Selective attention to phonology was captured by manipulating listening goals: skilled adult readers attended to either rhyme or melody within auditory stimulus pairs. Each pair superimposed rhyming and melodic information ensuring identical sensory stimulation. Selective attention to phonology produced distinct early and late topographic ERP effects during stimulus encoding. Data-driven source localization analyses revealed that selective attention to phonology led to significantly greater recruitment of left-lateralized posterior and extensive temporal regions, which was notably concurrent with the rhyme-relevant information within the word. Furthermore, selective attention effects were specific to auditory stimulus encoding and not observed in response to cues, arguing against the notion that they reflect sustained task setting. Collectively, these results demonstrate that selective attention to phonology dynamically engages a left-lateralized network during the critical time-period of perception for achieving phonological analysis goals. These findings suggest a key role for selective attention in on-line phonological computations. Furthermore, these findings motivate future research on the role that neural mechanisms of attention may

  16. Brain activity during divided and selective attention to auditory and visual sentence comprehension tasks.

    Science.gov (United States)

    Moisala, Mona; Salmela, Viljami; Salo, Emma; Carlson, Synnöve; Vuontela, Virve; Salonen, Oili; Alho, Kimmo

    2015-01-01

    Using functional magnetic resonance imaging (fMRI), we measured brain activity of human participants while they performed a sentence congruence judgment task in either the visual or auditory modality separately, or in both modalities simultaneously. Significant performance decrements were observed when attention was divided between the two modalities compared with when one modality was selectively attended. Compared with selective attention (i.e., single tasking), divided attention (i.e., dual-tasking) did not recruit additional cortical regions, but resulted in increased activity in medial and lateral frontal regions which were also activated by the component tasks when performed separately. Areas involved in semantic language processing were revealed predominantly in the left lateral prefrontal cortex by contrasting incongruent with congruent sentences. These areas also showed significant activity increases during divided attention in relation to selective attention. In the sensory cortices, no crossmodal inhibition was observed during divided attention when compared with selective attention to one modality. Our results suggest that the observed performance decrements during dual-tasking are due to interference of the two tasks because they utilize the same part of the cortex. Moreover, semantic dual-tasking did not appear to recruit additional brain areas in comparison with single tasking, and no crossmodal inhibition was observed during intermodal divided attention.

  17. Brain activity during divided and selective attention to auditory and visual sentence comprehension tasks

    Science.gov (United States)

    Moisala, Mona; Salmela, Viljami; Salo, Emma; Carlson, Synnöve; Vuontela, Virve; Salonen, Oili; Alho, Kimmo

    2015-01-01

    Using functional magnetic resonance imaging (fMRI), we measured brain activity of human participants while they performed a sentence congruence judgment task in either the visual or auditory modality separately, or in both modalities simultaneously. Significant performance decrements were observed when attention was divided between the two modalities compared with when one modality was selectively attended. Compared with selective attention (i.e., single tasking), divided attention (i.e., dual-tasking) did not recruit additional cortical regions, but resulted in increased activity in medial and lateral frontal regions which were also activated by the component tasks when performed separately. Areas involved in semantic language processing were revealed predominantly in the left lateral prefrontal cortex by contrasting incongruent with congruent sentences. These areas also showed significant activity increases during divided attention in relation to selective attention. In the sensory cortices, no crossmodal inhibition was observed during divided attention when compared with selective attention to one modality. Our results suggest that the observed performance decrements during dual-tasking are due to interference of the two tasks because they utilize the same part of the cortex. Moreover, semantic dual-tasking did not appear to recruit additional brain areas in comparison with single tasking, and no crossmodal inhibition was observed during intermodal divided attention. PMID:25745395

  18. Music lessons improve auditory perceptual and cognitive performance in deaf children.

    Science.gov (United States)

    Rochette, Françoise; Moussard, Aline; Bigand, Emmanuel

    2014-01-01

    Despite advanced technologies in auditory rehabilitation of profound deafness, deaf children often exhibit delayed cognitive and linguistic development and auditory training remains a crucial element of their education. In the present cross-sectional study, we assess whether music would be a relevant tool for deaf children rehabilitation. In normal-hearing children, music lessons have been shown to improve cognitive and linguistic-related abilities, such as phonetic discrimination and reading. We compared auditory perception, auditory cognition, and phonetic discrimination between 14 profoundly deaf children who completed weekly music lessons for a period of 1.5-4 years and 14 deaf children who did not receive musical instruction. Children were assessed on perceptual and cognitive auditory tasks using environmental sounds: discrimination, identification, auditory scene analysis, auditory working memory. Transfer to the linguistic domain was tested with a phonetic discrimination task. Musically trained children showed better performance in auditory scene analysis, auditory working memory and phonetic discrimination tasks, and multiple regressions showed that success on these tasks was at least partly driven by music lessons. We propose that musical education contributes to development of general processes such as auditory attention and perception, which, in turn, facilitate auditory-related cognitive and linguistic processes.

  19. Music lessons improve auditory perceptual and cognitive performance in deaf children

    Directory of Open Access Journals (Sweden)

    Françoise eROCHETTE

    2014-07-01

    Full Text Available Despite advanced technologies in auditory rehabilitation of profound deafness, deaf children often exhibit delayed cognitive and linguistic development and auditory training remains a crucial element of their education. In the present cross-sectional study, we assess whether music would be a relevant tool for deaf children rehabilitation. In normal-hearing children, music lessons have been shown to improve cognitive and linguistic-related abilities, such as phonetic discrimination and reading. We compared auditory perception, auditory cognition, and phonetic discrimination between 14 profoundly deaf children who completed weekly music lessons for a period of 1.5 to 4 years and 14 deaf children who did not receive musical instruction. Children were assessed on perceptual and cognitive auditory tasks using environmental sounds: discrimination, identification, auditory scene analysis, auditory working memory. Transfer to the linguistic domain was tested with a phonetic discrimination task. Musically-trained children showed better performance in auditory scene analysis, auditory working memory and phonetic discrimination tasks, and multiple regressions showed that success on these tasks was at least partly driven by music lessons. We propose that musical education contributes to development of general processes such as auditory attention and perception, which, in turn, facilitate auditory-related cognitive and linguistic processes.

  20. Auditory and motor imagery modulate learning in music performance.

    Science.gov (United States)

    Brown, Rachel M; Palmer, Caroline

    2013-01-01

    Skilled performers such as athletes or musicians can improve their performance by imagining the actions or sensory outcomes associated with their skill. Performers vary widely in their auditory and motor imagery abilities, and these individual differences influence sensorimotor learning. It is unknown whether imagery abilities influence both memory encoding and retrieval. We examined how auditory and motor imagery abilities influence musicians' encoding (during Learning, as they practiced novel melodies), and retrieval (during Recall of those melodies). Pianists learned melodies by listening without performing (auditory learning) or performing without sound (motor learning); following Learning, pianists performed the melodies from memory with auditory feedback (Recall). During either Learning (Experiment 1) or Recall (Experiment 2), pianists experienced either auditory interference, motor interference, or no interference. Pitch accuracy (percentage of correct pitches produced) and temporal regularity (variability of quarter-note interonset intervals) were measured at Recall. Independent tests measured auditory and motor imagery skills. Pianists' pitch accuracy was higher following auditory learning than following motor learning and lower in motor interference conditions (Experiments 1 and 2). Both auditory and motor imagery skills improved pitch accuracy overall. Auditory imagery skills modulated pitch accuracy encoding (Experiment 1): Higher auditory imagery skill corresponded to higher pitch accuracy following auditory learning with auditory or motor interference, and following motor learning with motor or no interference. These findings suggest that auditory imagery abilities decrease vulnerability to interference and compensate for missing auditory feedback at encoding. Auditory imagery skills also influenced temporal regularity at retrieval (Experiment 2): Higher auditory imagery skill predicted greater temporal regularity during Recall in the presence of

  1. Auditory and motor imagery modulate learning in music performance

    Science.gov (United States)

    Brown, Rachel M.; Palmer, Caroline

    2013-01-01

    Skilled performers such as athletes or musicians can improve their performance by imagining the actions or sensory outcomes associated with their skill. Performers vary widely in their auditory and motor imagery abilities, and these individual differences influence sensorimotor learning. It is unknown whether imagery abilities influence both memory encoding and retrieval. We examined how auditory and motor imagery abilities influence musicians' encoding (during Learning, as they practiced novel melodies), and retrieval (during Recall of those melodies). Pianists learned melodies by listening without performing (auditory learning) or performing without sound (motor learning); following Learning, pianists performed the melodies from memory with auditory feedback (Recall). During either Learning (Experiment 1) or Recall (Experiment 2), pianists experienced either auditory interference, motor interference, or no interference. Pitch accuracy (percentage of correct pitches produced) and temporal regularity (variability of quarter-note interonset intervals) were measured at Recall. Independent tests measured auditory and motor imagery skills. Pianists' pitch accuracy was higher following auditory learning than following motor learning and lower in motor interference conditions (Experiments 1 and 2). Both auditory and motor imagery skills improved pitch accuracy overall. Auditory imagery skills modulated pitch accuracy encoding (Experiment 1): Higher auditory imagery skill corresponded to higher pitch accuracy following auditory learning with auditory or motor interference, and following motor learning with motor or no interference. These findings suggest that auditory imagery abilities decrease vulnerability to interference and compensate for missing auditory feedback at encoding. Auditory imagery skills also influenced temporal regularity at retrieval (Experiment 2): Higher auditory imagery skill predicted greater temporal regularity during Recall in the presence of

  2. Auditory, visual and auditory-visual memory and sequencing performance in typically developing children.

    Science.gov (United States)

    Pillai, Roshni; Yathiraj, Asha

    2017-09-01

    The study evaluated whether there exists a difference/relation in the way four different memory skills (memory score, sequencing score, memory span, & sequencing span) are processed through the auditory modality, visual modality and combined modalities. Four memory skills were evaluated on 30 typically developing children aged 7 years and 8 years across three modality conditions (auditory, visual, & auditory-visual). Analogous auditory and visual stimuli were presented to evaluate the three modality conditions across the two age groups. The children obtained significantly higher memory scores through the auditory modality compared to the visual modality. Likewise, their memory scores were significantly higher through the auditory-visual modality condition than through the visual modality. However, no effect of modality was observed on the sequencing scores as well as for the memory and the sequencing span. A good agreement was seen between the different modality conditions that were studied (auditory, visual, & auditory-visual) for the different memory skills measures (memory scores, sequencing scores, memory span, & sequencing span). A relatively lower agreement was noted only between the auditory and visual modalities as well as between the visual and auditory-visual modality conditions for the memory scores, measured using Bland-Altman plots. The study highlights the efficacy of using analogous stimuli to assess the auditory, visual as well as combined modalities. The study supports the view that the performance of children on different memory skills was better through the auditory modality compared to the visual modality. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Selective attention to phonology dynamically modulates initial encoding of auditory words within the left hemisphere

    Science.gov (United States)

    Yoncheva; Maurer, Urs; Zevin, Jason; McCandliss, Bruce

    2015-01-01

    Selective attention to phonology, i.e., the ability to attend to sub-syllabic units within spoken words, is a critical precursor to literacy acquisition. Recent functional magnetic resonance imaging evidence has demonstrated that a left-lateralized network of frontal, temporal, and posterior language regions, including the visual word form area, supports this skill. The current event-related potential (ERP) study investigated the temporal dynamics of selective attention to phonology during spoken word perception. We tested the hypothesis that selective atten tion to phonology dynamically modulates stimulus encoding by recruiting left-lateralized processes specifically while the information critical for performance is unfolding. Selective attention to phonology was captured by ma nipulating listening goals: skilled adult readers attended to either rhyme or melody within auditory stimulus pairs. Each pair superimposed rhyming and melodic information ensuring identical sensory stimulation. Selective attention to phonology produced distinct early and late topographic ERP effects during stimulus encoding. Data- driven source localization analyses revealed that selective attention to phonology led to significantly greater re cruitment of left-lateralized posterior and extensive temporal regions, which was notably concurrent with the rhyme-relevant information within the word. Furthermore, selective attention effects were specific to auditory stimulus encoding and not observed in response to cues, arguing against the notion that they reflect sustained task setting. Collectively, these results demonstrate that selective attention to phonology dynamically engages a left-lateralized network during the critical time-period of perception for achieving phonological analysis goals. These findings support the key role of selective attention to phonology in the development of literacy and motivate future research on the neural bases of the interaction between phonological

  4. The influence of an auditory-memory attention-demanding task on postural control in blind persons.

    Science.gov (United States)

    Melzer, Itshak; Damry, Elad; Landau, Anat; Yagev, Ronit

    2011-05-01

    In order to evaluate the effect of an auditory-memory attention-demanding task on balance control, nine blind adults were compared to nine age-gender-matched sighted controls. This issue is particularly relevant for the blind population in which functional assessment of postural control has to be revealed through "real life" motor and cognitive function. The study aimed to explore whether an auditory-memory attention-demanding cognitive task would influence postural control in blind persons and compare this with blindfolded sighted persons. Subjects were instructed to minimize body sway during narrow base upright standing on a single force platform under two conditions: 1) standing still (single task); 2) as in 1) while performing an auditory-memory attention-demanding cognitive task (dual task). Subjects in both groups were required to stand blindfolded with their eyes closed. Center of Pressure displacement data were collected and analyzed using summary statistics and stabilogram-diffusion analysis. Blind and sighted subjects had similar postural sway in eyes closed condition. However, for dual compared to single task, sighted subjects show significant decrease in postural sway while blind subjects did not. The auditory-memory attention-demanding cognitive task had no interference effect on balance control on blind subjects. It seems that sighted individuals used auditory cues to compensate for momentary loss of vision, whereas blind subjects did not. This may suggest that blind and sighted people use different sensorimotor strategies to achieve stability. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Cross-modal attention influences auditory contrast sensitivity: Decreasing visual load improves auditory thresholds for amplitude- and frequency-modulated sounds.

    Science.gov (United States)

    Ciaramitaro, Vivian M; Chow, Hiu Mei; Eglington, Luke G

    2017-03-01

    We used a cross-modal dual task to examine how changing visual-task demands influenced auditory processing, namely auditory thresholds for amplitude- and frequency-modulated sounds. Observers had to attend to two consecutive intervals of sounds and report which interval contained the auditory stimulus that was modulated in amplitude (Experiment 1) or frequency (Experiment 2). During auditory-stimulus presentation, observers simultaneously attended to a rapid sequential visual presentation-two consecutive intervals of streams of visual letters-and had to report which interval contained a particular color (low load, demanding less attentional resources) or, in separate blocks of trials, which interval contained more of a target letter (high load, demanding more attentional resources). We hypothesized that if attention is a shared resource across vision and audition, an easier visual task should free up more attentional resources for auditory processing on an unrelated task, hence improving auditory thresholds. Auditory detection thresholds were lower-that is, auditory sensitivity was improved-for both amplitude- and frequency-modulated sounds when observers engaged in a less demanding (compared to a more demanding) visual task. In accord with previous work, our findings suggest that visual-task demands can influence the processing of auditory information on an unrelated concurrent task, providing support for shared attentional resources. More importantly, our results suggest that attending to information in a different modality, cross-modal attention, can influence basic auditory contrast sensitivity functions, highlighting potential similarities between basic mechanisms for visual and auditory attention.

  6. Auditory and motor imagery modulate learning in music performance

    Directory of Open Access Journals (Sweden)

    Rachel M. Brown

    2013-07-01

    Full Text Available Skilled performers such as athletes or musicians can improve their performance by imagining the actions or sensory outcomes associated with their skill. Performers vary widely in their auditory and motor imagery abilities, and these individual differences influence sensorimotor learning. It is unknown whether imagery abilities influence both memory encoding and retrieval. We examined how auditory and motor imagery abilities influence musicians’ encoding (during Learning, as they practiced novel melodies, and retrieval (during Recall of those melodies. Pianists learned melodies by listening without performing (auditory learning or performing without sound (motor learning; following Learning, pianists performed the melodies from memory with auditory feedback (Recall. During either Learning (Experiment 1 or Recall (Experiment 2, pianists experienced either auditory interference, motor interference, or no interference. Pitch accuracy (percentage of correct pitches produced and temporal regularity (variability of quarter-note interonset intervals were measured at Recall. Independent tests measured auditory and motor imagery skills. Pianists’ pitch accuracy was higher following auditory learning than following motor learning and lower in motor interference conditions (Experiments 1 and 2. Both auditory and motor imagery skills improved pitch accuracy overall. Auditory imagery skills modulated pitch accuracy encoding (Experiment 1: Higher auditory imagery skill corresponded to higher pitch accuracy following auditory learning with auditory or motor interference, and following motor learning with motor or no interference. These findings suggest that auditory imagery abilities decrease vulnerability to interference and compensate for missing auditory feedback at encoding. Auditory imagery skills also influenced temporal regularity at retrieval (Experiment 2: Higher auditory imagery skill predicted greater temporal regularity during Recall in the

  7. Towards a Cognitive Model of Distraction by Auditory Novelty: The Role of Involuntary Attention Capture and Semantic Processing

    Science.gov (United States)

    Parmentier, Fabrice B. R.

    2008-01-01

    Unexpected auditory stimuli are potent distractors, able to break through selective attention and disrupt performance in an unrelated visual task. This study examined the processing fate of novel sounds by examining the extent to which their semantic content is analyzed and whether the outcome of this processing can impact on subsequent behavior.…

  8. Sensorineural hearing loss degrades behavioral and physiological measures of human spatial selective auditory attention

    Science.gov (United States)

    Dai, Lengshi; Best, Virginia; Shinn-Cunningham, Barbara G.

    2018-01-01

    Listeners with sensorineural hearing loss often have trouble understanding speech amid other voices. While poor spatial hearing is often implicated, direct evidence is weak; moreover, studies suggest that reduced audibility and degraded spectrotemporal coding may explain such problems. We hypothesized that poor spatial acuity leads to difficulty deploying selective attention, which normally filters out distracting sounds. In listeners with normal hearing, selective attention causes changes in the neural responses evoked by competing sounds, which can be used to quantify the effectiveness of attentional control. Here, we used behavior and electroencephalography to explore whether control of selective auditory attention is degraded in hearing-impaired (HI) listeners. Normal-hearing (NH) and HI listeners identified a simple melody presented simultaneously with two competing melodies, each simulated from different lateral angles. We quantified performance and attentional modulation of cortical responses evoked by these competing streams. Compared with NH listeners, HI listeners had poorer sensitivity to spatial cues, performed more poorly on the selective attention task, and showed less robust attentional modulation of cortical responses. Moreover, across NH and HI individuals, these measures were correlated. While both groups showed cortical suppression of distracting streams, this modulation was weaker in HI listeners, especially when attending to a target at midline, surrounded by competing streams. These findings suggest that hearing loss interferes with the ability to filter out sound sources based on location, contributing to communication difficulties in social situations. These findings also have implications for technologies aiming to use neural signals to guide hearing aid processing. PMID:29555752

  9. Acute physical exercise affected processing efficiency in an auditory attention task more than processing effectiveness.

    Science.gov (United States)

    Dutke, Stephan; Jaitner, Thomas; Berse, Timo; Barenberg, Jonathan

    2014-02-01

    Research on effects of acute physical exercise on performance in a concurrent cognitive task has generated equivocal evidence. Processing efficiency theory predicts that concurrent physical exercise can increase resource requirements for sustaining cognitive performance even when the level of performance is unaffected. This hypothesis was tested in a dual-task experiment. Sixty young adults worked on a primary auditory attention task and a secondary interval production task while cycling on a bicycle ergometer. Physical load (cycling) and cognitive load of the primary task were manipulated. Neither physical nor cognitive load affected primary task performance, but both factors interacted on secondary task performance. Sustaining primary task performance under increased physical and/or cognitive load increased resource consumption as indicated by decreased secondary task performance. Results demonstrated that physical exercise effects on cognition might be underestimated when only single task performance is the focus.

  10. Selective and divided attention modulates auditory-vocal integration in the processing of pitch feedback errors.

    Science.gov (United States)

    Liu, Ying; Hu, Huijing; Jones, Jeffery A; Guo, Zhiqiang; Li, Weifeng; Chen, Xi; Liu, Peng; Liu, Hanjun

    2015-08-01

    Speakers rapidly adjust their ongoing vocal productions to compensate for errors they hear in their auditory feedback. It is currently unclear what role attention plays in these vocal compensations. This event-related potential (ERP) study examined the influence of selective and divided attention on the vocal and cortical responses to pitch errors heard in auditory feedback regarding ongoing vocalisations. During the production of a sustained vowel, participants briefly heard their vocal pitch shifted up two semitones while they actively attended to auditory or visual events (selective attention), or both auditory and visual events (divided attention), or were not told to attend to either modality (control condition). The behavioral results showed that attending to the pitch perturbations elicited larger vocal compensations than attending to the visual stimuli. Moreover, ERPs were likewise sensitive to the attentional manipulations: P2 responses to pitch perturbations were larger when participants attended to the auditory stimuli compared to when they attended to the visual stimuli, and compared to when they were not explicitly told to attend to either the visual or auditory stimuli. By contrast, dividing attention between the auditory and visual modalities caused suppressed P2 responses relative to all the other conditions and caused enhanced N1 responses relative to the control condition. These findings provide strong evidence for the influence of attention on the mechanisms underlying the auditory-vocal integration in the processing of pitch feedback errors. In addition, selective attention and divided attention appear to modulate the neurobehavioral processing of pitch feedback errors in different ways. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  11. Sustained selective attention to competing amplitude-modulations in human auditory cortex.

    Science.gov (United States)

    Riecke, Lars; Scharke, Wolfgang; Valente, Giancarlo; Gutschalk, Alexander

    2014-01-01

    Auditory selective attention plays an essential role for identifying sounds of interest in a scene, but the neural underpinnings are still incompletely understood. Recent findings demonstrate that neural activity that is time-locked to a particular amplitude-modulation (AM) is enhanced in the auditory cortex when the modulated stream of sounds is selectively attended to under sensory competition with other streams. However, the target sounds used in the previous studies differed not only in their AM, but also in other sound features, such as carrier frequency or location. Thus, it remains uncertain whether the observed enhancements reflect AM-selective attention. The present study aims at dissociating the effect of AM frequency on response enhancement in auditory cortex by using an ongoing auditory stimulus that contains two competing targets differing exclusively in their AM frequency. Electroencephalography results showed a sustained response enhancement for auditory attention compared to visual attention, but not for AM-selective attention (attended AM frequency vs. ignored AM frequency). In contrast, the response to the ignored AM frequency was enhanced, although a brief trend toward response enhancement occurred during the initial 15 s. Together with the previous findings, these observations indicate that selective enhancement of attended AMs in auditory cortex is adaptive under sustained AM-selective attention. This finding has implications for our understanding of cortical mechanisms for feature-based attentional gain control.

  12. Sustained Selective Attention to Competing Amplitude-Modulations in Human Auditory Cortex

    Science.gov (United States)

    Riecke, Lars; Scharke, Wolfgang; Valente, Giancarlo; Gutschalk, Alexander

    2014-01-01

    Auditory selective attention plays an essential role for identifying sounds of interest in a scene, but the neural underpinnings are still incompletely understood. Recent findings demonstrate that neural activity that is time-locked to a particular amplitude-modulation (AM) is enhanced in the auditory cortex when the modulated stream of sounds is selectively attended to under sensory competition with other streams. However, the target sounds used in the previous studies differed not only in their AM, but also in other sound features, such as carrier frequency or location. Thus, it remains uncertain whether the observed enhancements reflect AM-selective attention. The present study aims at dissociating the effect of AM frequency on response enhancement in auditory cortex by using an ongoing auditory stimulus that contains two competing targets differing exclusively in their AM frequency. Electroencephalography results showed a sustained response enhancement for auditory attention compared to visual attention, but not for AM-selective attention (attended AM frequency vs. ignored AM frequency). In contrast, the response to the ignored AM frequency was enhanced, although a brief trend toward response enhancement occurred during the initial 15 s. Together with the previous findings, these observations indicate that selective enhancement of attended AMs in auditory cortex is adaptive under sustained AM-selective attention. This finding has implications for our understanding of cortical mechanisms for feature-based attentional gain control. PMID:25259525

  13. Examining Age-Related Differences in Auditory Attention Control Using a Task-Switching Procedure

    OpenAIRE

    Vera Lawo; Iring Koch

    2014-01-01

    Objectives. Using a novel task-switching variant of dichotic selective listening, we examined age-related differences in the ability to intentionally switch auditory attention between 2 speakers defined by their sex.

  14. Attention-driven auditory cortex short-term plasticity helps segregate relevant sounds from noise

    OpenAIRE

    Ahveninen, Jyrki; Hämäläinen, Matti; Jääskeläinen, Iiro P.; Ahlfors, Seppo P.; Huang, Samantha; Lin, Fa-Hsuan; Raij, Tommi; Sams, Mikko; Vasios, Christos E.; Belliveau, John W.

    2011-01-01

    How can we concentrate on relevant sounds in noisy environments? A “gain model” suggests that auditory attention simply amplifies relevant and suppresses irrelevant afferent inputs. However, it is unclear whether this suffices when attended and ignored features overlap to stimulate the same neuronal receptive fields. A “tuning model” suggests that, in addition to gain, attention modulates feature selectivity of auditory neurons. We recorded magnetoencephalography, EEG, and functional MRI (fMR...

  15. Evoked potential correlates of selective attention with multi-channel auditory inputs

    Science.gov (United States)

    Schwent, V. L.; Hillyard, S. A.

    1975-01-01

    Ten subjects were presented with random, rapid sequences of four auditory tones which were separated in pitch and apparent spatial position. The N1 component of the auditory vertex evoked potential (EP) measured relative to a baseline was observed to increase with attention. It was concluded that the N1 enhancement reflects a finely tuned selective attention to one stimulus channel among several concurrent, competing channels. This EP enhancement probably increases with increased information load on the subject.

  16. Feature-Selective Attention Adaptively Shifts Noise Correlations in Primary Auditory Cortex.

    Science.gov (United States)

    Downer, Joshua D; Rapone, Brittany; Verhein, Jessica; O'Connor, Kevin N; Sutter, Mitchell L

    2017-05-24

    Sensory environments often contain an overwhelming amount of information, with both relevant and irrelevant information competing for neural resources. Feature attention mediates this competition by selecting the sensory features needed to form a coherent percept. How attention affects the activity of populations of neurons to support this process is poorly understood because population coding is typically studied through simulations in which one sensory feature is encoded without competition. Therefore, to study the effects of feature attention on population-based neural coding, investigations must be extended to include stimuli with both relevant and irrelevant features. We measured noise correlations ( r noise ) within small neural populations in primary auditory cortex while rhesus macaques performed a novel feature-selective attention task. We found that the effect of feature-selective attention on r noise depended not only on the population tuning to the attended feature, but also on the tuning to the distractor feature. To attempt to explain how these observed effects might support enhanced perceptual performance, we propose an extension of a simple and influential model in which shifts in r noise can simultaneously enhance the representation of the attended feature while suppressing the distractor. These findings present a novel mechanism by which attention modulates neural populations to support sensory processing in cluttered environments. SIGNIFICANCE STATEMENT Although feature-selective attention constitutes one of the building blocks of listening in natural environments, its neural bases remain obscure. To address this, we developed a novel auditory feature-selective attention task and measured noise correlations ( r noise ) in rhesus macaque A1 during task performance. Unlike previous studies showing that the effect of attention on r noise depends on population tuning to the attended feature, we show that the effect of attention depends on the tuning

  17. Minimal effects of visual memory training on auditory performance of adult cochlear implant users.

    Science.gov (United States)

    Oba, Sandra I; Galvin, John J; Fu, Qian-Jie

    2013-01-01

    Auditory training has been shown to significantly improve cochlear implant (CI) users' speech and music perception. However, it is unclear whether posttraining gains in performance were due to improved auditory perception or to generally improved attention, memory, and/or cognitive processing. In this study, speech and music perception, as well as auditory and visual memory, were assessed in 10 CI users before, during, and after training with a nonauditory task. A visual digit span (VDS) task was used for training, in which subjects recalled sequences of digits presented visually. After the VDS training, VDS performance significantly improved. However, there were no significant improvements for most auditory outcome measures (auditory digit span, phoneme recognition, sentence recognition in noise, digit recognition in noise), except for small (but significant) improvements in vocal emotion recognition and melodic contour identification. Posttraining gains were much smaller with the nonauditory VDS training than observed in previous auditory training studies with CI users. The results suggest that posttraining gains observed in previous studies were not solely attributable to improved attention or memory and were more likely due to improved auditory perception. The results also suggest that CI users may require targeted auditory training to improve speech and music perception.

  18. Music training relates to the development of neural mechanisms of selective auditory attention.

    Science.gov (United States)

    Strait, Dana L; Slater, Jessica; O'Connell, Samantha; Kraus, Nina

    2015-04-01

    Selective attention decreases trial-to-trial variability in cortical auditory-evoked activity. This effect increases over the course of maturation, potentially reflecting the gradual development of selective attention and inhibitory control. Work in adults indicates that music training may alter the development of this neural response characteristic, especially over brain regions associated with executive control: in adult musicians, attention decreases variability in auditory-evoked responses recorded over prefrontal cortex to a greater extent than in nonmusicians. We aimed to determine whether this musician-associated effect emerges during childhood, when selective attention and inhibitory control are under development. We compared cortical auditory-evoked variability to attended and ignored speech streams in musicians and nonmusicians across three age groups: preschoolers, school-aged children and young adults. Results reveal that childhood music training is associated with reduced auditory-evoked response variability recorded over prefrontal cortex during selective auditory attention in school-aged child and adult musicians. Preschoolers, on the other hand, demonstrate no impact of selective attention on cortical response variability and no musician distinctions. This finding is consistent with the gradual emergence of attention during this period and may suggest no pre-existing differences in this attention-related cortical metric between children who undergo music training and those who do not. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Switching auditory attention using spatial and non-spatial features recruits different cortical networks.

    Science.gov (United States)

    Larson, Eric; Lee, Adrian K C

    2014-01-01

    Switching attention between different stimuli of interest based on particular task demands is important in many everyday settings. In audition in particular, switching attention between different speakers of interest that are talking concurrently is often necessary for effective communication. Recently, it has been shown by multiple studies that auditory selective attention suppresses the representation of unwanted streams in auditory cortical areas in favor of the target stream of interest. However, the neural processing that guides this selective attention process is not well understood. Here we investigated the cortical mechanisms involved in switching attention based on two different types of auditory features. By combining magneto- and electro-encephalography (M-EEG) with an anatomical MRI constraint, we examined the cortical dynamics involved in switching auditory attention based on either spatial or pitch features. We designed a paradigm where listeners were cued in the beginning of each trial to switch or maintain attention halfway through the presentation of concurrent target and masker streams. By allowing listeners time to switch during a gap in the continuous target and masker stimuli, we were able to isolate the mechanisms involved in endogenous, top-down attention switching. Our results show a double dissociation between the involvement of right temporoparietal junction (RTPJ) and the left inferior parietal supramarginal part (LIPSP) in tasks requiring listeners to switch attention based on space and pitch features, respectively, suggesting that switching attention based on these features involves at least partially separate processes or behavioral strategies. © 2013 Elsevier Inc. All rights reserved.

  20. Sustained Attention in Auditory and Visual Monitoring Tasks: Evaluation of the Administration of a Rest Break or Exogenous Vibrotactile Signals.

    Science.gov (United States)

    Arrabito, G Robert; Ho, Geoffrey; Aghaei, Behzad; Burns, Catherine; Hou, Ming

    2015-12-01

    Performance and mental workload were observed for the administration of a rest break or exogenous vibrotactile signals in auditory and visual monitoring tasks. Sustained attention is mentally demanding. Techniques are required to improve observer performance in vigilance tasks. Participants (N = 150) monitored an auditory or a visual display for changes in signal duration in a 40-min watch. During the watch, participants were administered a rest break or exogenous vibrotactile signals. Detection accuracy was significantly greater in the auditory than in the visual modality. A short rest break restored detection accuracy in both sensory modalities following deterioration in performance. Participants experienced significantly lower mental workload when monitoring auditory than visual signals, and a rest break significantly reduced mental workload in both sensory modalities. Exogenous vibrotactile signals had no beneficial effects on performance, or mental workload. A rest break can restore performance in auditory and visual vigilance tasks. Although sensory differences in vigilance tasks have been studied, this study is the initial effort to investigate the effects of a rest break countermeasure in both auditory and visual vigilance tasks, and it is also the initial effort to explore the effects of the intervention of a rest break on the perceived mental workload of auditory and visual vigilance tasks. Further research is warranted to determine exact characteristics of effective exogenous vibrotactile signals in vigilance tasks. Potential applications of this research include procedures for decreasing the temporal decline in observer performance and the high mental workload imposed by vigilance tasks. © 2015, Her Majesty the Queen in Right of Canada, as represented by the Minister of National Defence.

  1. Neural Correlates of Selective Attention With Hearing Aid Use Followed by ReadMyQuips Auditory Training Program.

    Science.gov (United States)

    Rao, Aparna; Rishiq, Dania; Yu, Luodi; Zhang, Yang; Abrams, Harvey

    The objectives of this study were to investigate the effects of hearing aid use and the effectiveness of ReadMyQuips (RMQ), an auditory training program, on speech perception performance and auditory selective attention using electrophysiological measures. RMQ is an audiovisual training program designed to improve speech perception in everyday noisy listening environments. Participants were adults with mild to moderate hearing loss who were first-time hearing aid users. After 4 weeks of hearing aid use, the experimental group completed RMQ training in 4 weeks, and the control group received listening practice on audiobooks during the same period. Cortical late event-related potentials (ERPs) and the Hearing in Noise Test (HINT) were administered at prefitting, pretraining, and post-training to assess effects of hearing aid use and RMQ training. An oddball paradigm allowed tracking of changes in P3a and P3b ERPs to distractors and targets, respectively. Behavioral measures were also obtained while ERPs were recorded from participants. After 4 weeks of hearing aid use but before auditory training, HINT results did not show a statistically significant change, but there was a significant P3a reduction. This reduction in P3a was correlated with improvement in d prime (d') in the selective attention task. Increased P3b amplitudes were also correlated with improvement in d' in the selective attention task. After training, this correlation between P3b and d' remained in the experimental group, but not in the control group. Similarly, HINT testing showed improved speech perception post training only in the experimental group. The criterion calculated in the auditory selective attention task showed a reduction only in the experimental group after training. ERP measures in the auditory selective attention task did not show any changes related to training. Hearing aid use was associated with a decrement in involuntary attention switch to distractors in the auditory selective

  2. A Brief Period of Postnatal Visual Deprivation Alters the Balance between Auditory and Visual Attention.

    Science.gov (United States)

    de Heering, Adélaïde; Dormal, Giulia; Pelland, Maxime; Lewis, Terri; Maurer, Daphne; Collignon, Olivier

    2016-11-21

    Is a short and transient period of visual deprivation early in life sufficient to induce lifelong changes in how we attend to, and integrate, simple visual and auditory information [1, 2]? This question is of crucial importance given the recent demonstration in both animals and humans that a period of blindness early in life permanently affects the brain networks dedicated to visual, auditory, and multisensory processing [1-16]. To address this issue, we compared a group of adults who had been treated for congenital bilateral cataracts during early infancy with a group of normally sighted controls on a task requiring simple detection of lateralized visual and auditory targets, presented alone or in combination. Redundancy gains obtained from the audiovisual conditions were similar between groups and surpassed the reaction time distribution predicted by Miller's race model. However, in comparison to controls, cataract-reversal patients were faster at processing simple auditory targets and showed differences in how they shifted attention across modalities. Specifically, they were faster at switching attention from visual to auditory inputs than in the reverse situation, while an opposite pattern was observed for controls. Overall, these results reveal that the absence of visual input during the first months of life does not prevent the development of audiovisual integration but enhances the salience of simple auditory inputs, leading to a different crossmodal distribution of attentional resources between auditory and visual stimuli. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Brain correlates of the orientation of auditory spatial attention onto speaker location in a "cocktail-party" situation.

    Science.gov (United States)

    Lewald, Jörg; Hanenberg, Christina; Getzmann, Stephan

    2016-10-01

    Successful speech perception in complex auditory scenes with multiple competing speakers requires spatial segregation of auditory streams into perceptually distinct and coherent auditory objects and focusing of attention toward the speaker of interest. Here, we focused on the neural basis of this remarkable capacity of the human auditory system and investigated the spatiotemporal sequence of neural activity within the cortical network engaged in solving the "cocktail-party" problem. Twenty-eight subjects localized a target word in the presence of three competing sound sources. The analysis of the ERPs revealed an anterior contralateral subcomponent of the N2 (N2ac), computed as the difference waveform for targets to the left minus targets to the right. The N2ac peaked at about 500 ms after stimulus onset, and its amplitude was correlated with better localization performance. Cortical source localization for the contrast of left versus right targets at the time of the N2ac revealed a maximum in the region around left superior frontal sulcus and frontal eye field, both of which are known to be involved in processing of auditory spatial information. In addition, a posterior-contralateral late positive subcomponent (LPCpc) occurred at a latency of about 700 ms. Both these subcomponents are potential correlates of allocation of spatial attention to the target under cocktail-party conditions. © 2016 Society for Psychophysiological Research.

  4. Intentional preparation of auditory attention-switches: Explicit cueing and sequential switch-predictability.

    Science.gov (United States)

    Seibold, Julia C; Nolden, Sophie; Oberem, Josefa; Fels, Janina; Koch, Iring

    2018-06-01

    In an auditory attention-switching paradigm, participants heard two simultaneously spoken number-words, each presented to one ear, and decided whether the target number was smaller or larger than 5 by pressing a left or right key. An instructional cue in each trial indicated which feature had to be used to identify the target number (e.g., female voice). Auditory attention-switch costs were found when this feature changed compared to when it repeated in two consecutive trials. Earlier studies employing this paradigm showed mixed results when they examined whether such cued auditory attention-switches can be prepared actively during the cue-stimulus interval. This study systematically assessed which preconditions are necessary for the advance preparation of auditory attention-switches. Three experiments were conducted that controlled for cue-repetition benefits, modality switches between cue and stimuli, as well as for predictability of the switch-sequence. Only in the third experiment, in which predictability for an attention-switch was maximal due to a pre-instructed switch-sequence and predictable stimulus onsets, active switch-specific preparation was found. These results suggest that the cognitive system can prepare auditory attention-switches, and this preparation seems to be triggered primarily by the memorised switching-sequence and valid expectations about the time of target onset.

  5. The human auditory brainstem response to running speech reveals a subcortical mechanism for selective attention.

    Science.gov (United States)

    Forte, Antonio Elia; Etard, Octave; Reichenbach, Tobias

    2017-10-10

    Humans excel at selectively listening to a target speaker in background noise such as competing voices. While the encoding of speech in the auditory cortex is modulated by selective attention, it remains debated whether such modulation occurs already in subcortical auditory structures. Investigating the contribution of the human brainstem to attention has, in particular, been hindered by the tiny amplitude of the brainstem response. Its measurement normally requires a large number of repetitions of the same short sound stimuli, which may lead to a loss of attention and to neural adaptation. Here we develop a mathematical method to measure the auditory brainstem response to running speech, an acoustic stimulus that does not repeat and that has a high ecological validity. We employ this method to assess the brainstem's activity when a subject listens to one of two competing speakers, and show that the brainstem response is consistently modulated by attention.

  6. An online brain-computer interface based on shifting attention to concurrent streams of auditory stimuli

    Science.gov (United States)

    Hill, N. J.; Schölkopf, B.

    2012-04-01

    We report on the development and online testing of an electroencephalogram-based brain-computer interface (BCI) that aims to be usable by completely paralysed users—for whom visual or motor-system-based BCIs may not be suitable, and among whom reports of successful BCI use have so far been very rare. The current approach exploits covert shifts of attention to auditory stimuli in a dichotic-listening stimulus design. To compare the efficacy of event-related potentials (ERPs) and steady-state auditory evoked potentials (SSAEPs), the stimuli were designed such that they elicited both ERPs and SSAEPs simultaneously. Trial-by-trial feedback was provided online, based on subjects' modulation of N1 and P3 ERP components measured during single 5 s stimulation intervals. All 13 healthy subjects were able to use the BCI, with performance in a binary left/right choice task ranging from 75% to 96% correct across subjects (mean 85%). BCI classification was based on the contrast between stimuli in the attended stream and stimuli in the unattended stream, making use of every stimulus, rather than contrasting frequent standard and rare ‘oddball’ stimuli. SSAEPs were assessed offline: for all subjects, spectral components at the two exactly known modulation frequencies allowed discrimination of pre-stimulus from stimulus intervals, and of left-only stimuli from right-only stimuli when one side of the dichotic stimulus pair was muted. However, attention modulation of SSAEPs was not sufficient for single-trial BCI communication, even when the subject's attention was clearly focused well enough to allow classification of the same trials via ERPs. ERPs clearly provided a superior basis for BCI. The ERP results are a promising step towards the development of a simple-to-use, reliable yes/no communication system for users in the most severely paralysed states, as well as potential attention-monitoring and -training applications outside the context of assistive technology.

  7. Attentional Capture by Deviant Sounds: A Noncontingent Form of Auditory Distraction?

    Science.gov (United States)

    Vachon, François; Labonté, Katherine; Marsh, John E.

    2017-01-01

    The occurrence of an unexpected, infrequent sound in an otherwise homogeneous auditory background tends to disrupt the ongoing cognitive task. This "deviation effect" is typically explained in terms of attentional capture whereby the deviant sound draws attention away from the focal activity, regardless of the nature of this activity.…

  8. Impact of Educational Level on Performance on Auditory Processing Tests.

    Science.gov (United States)

    Murphy, Cristina F B; Rabelo, Camila M; Silagi, Marcela L; Mansur, Letícia L; Schochat, Eliane

    2016-01-01

    Research has demonstrated that a higher level of education is associated with better performance on cognitive tests among middle-aged and elderly people. However, the effects of education on auditory processing skills have not yet been evaluated. Previous demonstrations of sensory-cognitive interactions in the aging process indicate the potential importance of this topic. Therefore, the primary purpose of this study was to investigate the performance of middle-aged and elderly people with different levels of formal education on auditory processing tests. A total of 177 adults with no evidence of cognitive, psychological or neurological conditions took part in the research. The participants completed a series of auditory assessments, including dichotic digit, frequency pattern and speech-in-noise tests. A working memory test was also performed to investigate the extent to which auditory processing and cognitive performance were associated. The results demonstrated positive but weak correlations between years of schooling and performance on all of the tests applied. The factor "years of schooling" was also one of the best predictors of frequency pattern and speech-in-noise test performance. Additionally, performance on the working memory, frequency pattern and dichotic digit tests was also correlated, suggesting that the influence of educational level on auditory processing performance might be associated with the cognitive demand of the auditory processing tests rather than auditory sensory aspects itself. Longitudinal research is required to investigate the causal relationship between educational level and auditory processing skills.

  9. A Persian version of the sustained auditory attention capacity test and its results in normal children

    Directory of Open Access Journals (Sweden)

    Sanaz Soltanparast

    2013-03-01

    Full Text Available Background and Aim: Sustained attention refers to the ability to maintain attention in target stimuli over a sustained period of time. This study was conducted to develop a Persian version of the sustained auditory attention capacity test and to study its results in normal children.Methods: To develop the Persian version of the sustained auditory attention capacity test, like the original version, speech stimuli were used. The speech stimuli consisted of one hundred monosyllabic words consisting of a 20 times random of and repetition of the words of a 21-word list of monosyllabic words, which were randomly grouped together. The test was carried out at comfortable hearing level using binaural, and diotic presentation modes on 46 normal children of 7 to 11 years of age of both gender.Results: There was a significant difference between age, and an average of impulsiveness error score (p=0.004 and total score of sustained auditory attention capacity test (p=0.005. No significant difference was revealed between age, and an average of inattention error score and attention reduction span index. Gender did not have a significant impact on various indicators of the test.Conclusion: The results of this test on a group of normal hearing children confirmed its ability to measure sustained auditory attention capacity through speech stimuli.

  10. Human pupillary dilation response to deviant auditory stimuli: Effects of stimulus properties and voluntary attention

    Directory of Open Access Journals (Sweden)

    Hsin-I eLiao

    2016-02-01

    Full Text Available A unique sound that deviates from a repetitive background sound induces signature neural responses, such as mismatch negativity and novelty P3 response in electro-encephalography studies. Here we show that a deviant auditory stimulus induces a human pupillary dilation response (PDR that is sensitive to the stimulus properties and irrespective whether attention is directed to the sounds or not. In an auditory oddball sequence, we used white noise and 2000-Hz tones as oddballs against repeated 1000-Hz tones. Participants’ pupillary responses were recorded while they listened to the auditory oddball sequence. In Experiment 1, they were not involved in any task. Results show that pupils dilated to the noise oddballs for approximately 4 s, but no such PDR was found for the 2000-Hz tone oddballs. In Experiments 2, two types of visual oddballs were presented synchronously with the auditory oddballs. Participants discriminated the auditory or visual oddballs while trying to ignore stimuli from the other modality. The purpose of this manipulation was to direct attention to or away from the auditory sequence. In Experiment 3, the visual oddballs and the auditory oddballs were always presented asynchronously to prevent residuals of attention on to-be-ignored oddballs due to the concurrence with the attended oddballs. Results show that pupils dilated to both the noise and 2000-Hz tone oddballs in all conditions. Most importantly, PDRs to noise were larger than those to the 2000-Hz tone oddballs regardless of the attention condition in both experiments. The overall results suggest that the stimulus-dependent factor of the PDR appears to be independent of attention.

  11. Human Pupillary Dilation Response to Deviant Auditory Stimuli: Effects of Stimulus Properties and Voluntary Attention.

    Science.gov (United States)

    Liao, Hsin-I; Yoneya, Makoto; Kidani, Shunsuke; Kashino, Makio; Furukawa, Shigeto

    2016-01-01

    A unique sound that deviates from a repetitive background sound induces signature neural responses, such as mismatch negativity and novelty P3 response in electro-encephalography studies. Here we show that a deviant auditory stimulus induces a human pupillary dilation response (PDR) that is sensitive to the stimulus properties and irrespective whether attention is directed to the sounds or not. In an auditory oddball sequence, we used white noise and 2000-Hz tones as oddballs against repeated 1000-Hz tones. Participants' pupillary responses were recorded while they listened to the auditory oddball sequence. In Experiment 1, they were not involved in any task. Results show that pupils dilated to the noise oddballs for approximately 4 s, but no such PDR was found for the 2000-Hz tone oddballs. In Experiments 2, two types of visual oddballs were presented synchronously with the auditory oddballs. Participants discriminated the auditory or visual oddballs while trying to ignore stimuli from the other modality. The purpose of this manipulation was to direct attention to or away from the auditory sequence. In Experiment 3, the visual oddballs and the auditory oddballs were always presented asynchronously to prevent residuals of attention on to-be-ignored oddballs due to the concurrence with the attended oddballs. Results show that pupils dilated to both the noise and 2000-Hz tone oddballs in all conditions. Most importantly, PDRs to noise were larger than those to the 2000-Hz tone oddballs regardless of the attention condition in both experiments. The overall results suggest that the stimulus-dependent factor of the PDR appears to be independent of attention.

  12. Auditory Processing Assessment in Children with Attention Deficit Hyperactivity Disorder: An Open Study Examining Methylphenidate Effects.

    Science.gov (United States)

    Lanzetta-Valdo, Bianca Pinheiro; Oliveira, Giselle Alves de; Ferreira, Jane Tagarro Correa; Palacios, Ester Miyuki Nakamura

    2017-01-01

    Introduction  Children with Attention Deficit Hyperactivity Disorder can present Auditory Processing (AP) Disorder. Objective  The study examined the AP in ADHD children compared with non-ADHD children, and before and after 3 and 6 months of methylphenidate (MPH) treatment in ADHD children. Methods  Drug-naive children diagnosed with ADHD combined subtype aging between 7 and 11 years, coming from public and private outpatient service or public and private school, and age-gender-matched non-ADHD children, participated in an open, non-randomized study from February 2013 to December 2013. They were submitted to a behavioral battery of AP tests comprising Speech with white Noise, Dichotic Digits (DD), and Pitch Pattern Sequence (PPS) and were compared with non-ADHD children. They were followed for 3 and 6 months of MPH treatment (0.5 mg/kg/day). Results  ADHD children presented larger number of errors in DD ( p  < 0.01), and less correct responses in the PPS ( p  < 0.0001) and in the SN ( p  < 0.05) tests when compared with non-ADHD children. The treatment with MPH, especially along 6 months, significantly decreased the mean errors in the DD ( p  < 0.01) and increased the correct response in the PPS ( p  < 0.001) and SN ( p  < 0.01) tests when compared with the performance before MPH treatment. Conclusions  ADHD children show inefficient AP in selected behavioral auditory battery suggesting impaired in auditory closure, binaural integration, and temporal ordering. Treatment with MPH gradually improved these deficiencies and completely reversed them by reaching a performance similar to non-ADHD children at 6 months of treatment.

  13. Auditory event-related responses to diphthongs in different attention conditions

    DEFF Research Database (Denmark)

    Morris, David Jackson; Steinmetzger, Kurt; Tøndering, John

    2016-01-01

    The modulation of auditory event-related potentials (ERP) by attention generally results in larger amplitudes when stimuli are attended. We measured the P1-N1-P2 acoustic change complex elicited with synthetic overt (second formant, F2 = 1000 Hz) and subtle (F2 = 100 Hz) diphthongs, while subjects...... (i) attended to the auditory stimuli, (ii) ignored the auditory stimuli and watched a film, and (iii) diverted their attention to a visual discrimination task. Responses elicited by diphthongs where F2 values rose and fell were found to be different and this precluded their combined analysis....... Multivariate analysis of ERP components from the rising F2 changes showed main effects of attention on P2 amplitude and latency, and N1-P2 amplitude. P2 amplitude decreased by 40% between the attend and ignore conditions, and by 60% between the attend and divert conditions. The effect of diphthong magnitude...

  14. Attention-related modulation of auditory brainstem responses during contralateral noise exposure.

    Science.gov (United States)

    Ikeda, Kazunari; Sekiguchi, Takahiro; Hayashi, Akiko

    2008-10-29

    As determinants facilitating attention-related modulation of the auditory brainstem response (ABR), two experimental factors were examined: (i) auditory discrimination; and (ii) contralateral masking intensity. Tone pips at 80 dB sound pressure level were presented to the left ear via either single-tone exposures or oddball exposures, whereas white noise was delivered continuously to the right ear at variable intensities (none--80 dB sound pressure level). Participants each conducted two tasks during stimulation, either reading a book (ignoring task) or detecting target tones (attentive task). Task-related modulation within the ABR range was found only during oddball exposures at contralateral masking intensities greater than or equal to 60 dB. Attention-related modulation of ABR can thus be detected reliably during auditory discrimination under contralateral masking of sufficient intensity.

  15. Size and synchronization of auditory cortex promotes musical, literacy, and attentional skills in children.

    Science.gov (United States)

    Seither-Preisler, Annemarie; Parncutt, Richard; Schneider, Peter

    2014-08-13

    Playing a musical instrument is associated with numerous neural processes that continuously modify the human brain and may facilitate characteristic auditory skills. In a longitudinal study, we investigated the auditory and neural plasticity of musical learning in 111 young children (aged 7-9 y) as a function of the intensity of instrumental practice and musical aptitude. Because of the frequent co-occurrence of central auditory processing disorders and attentional deficits, we also tested 21 children with attention deficit (hyperactivity) disorder [AD(H)D]. Magnetic resonance imaging and magnetoencephalography revealed enlarged Heschl's gyri and enhanced right-left hemispheric synchronization of the primary evoked response (P1) to harmonic complex sounds in children who spent more time practicing a musical instrument. The anatomical characteristics were positively correlated with frequency discrimination, reading, and spelling skills. Conversely, AD(H)D children showed reduced volumes of Heschl's gyri and enhanced volumes of the plana temporalia that were associated with a distinct bilateral P1 asynchrony. This may indicate a risk for central auditory processing disorders that are often associated with attentional and literacy problems. The longitudinal comparisons revealed a very high stability of auditory cortex morphology and gray matter volumes, suggesting that the combined anatomical and functional parameters are neural markers of musicality and attention deficits. Educational and clinical implications are considered. Copyright © 2014 the authors 0270-6474/14/3410937-13$15.00/0.

  16. Visual unimodal grouping mediates auditory attentional bias in visuo-spatial working memory.

    Science.gov (United States)

    Botta, Fabiano; Lupiáñez, Juan; Sanabria, Daniel

    2013-09-01

    Audiovisual links in spatial attention have been reported in many previous studies. However, the effectiveness of auditory spatial cues in biasing the information encoding into visuo-spatial working memory (VSWM) is still relatively unknown. In this study, we addressed this issue by combining a cuing paradigm with a change detection task in VSWM. Moreover, we manipulated the perceptual organization of the to-be-remembered visual stimuli. We hypothesized that the auditory effect on VSWM would depend on the perceptual association between the auditory cue and the visual probe. Results showed, for the first time, a significant auditory attentional bias in VSWM. However, the effect was observed only when the to-be-remembered visual stimuli were organized in two distinctive visual objects. We propose that these results shed new light on audio-visual crossmodal links in spatial attention suggesting that, apart from the spatio-temporal contingency, the likelihood of perceptual association between the auditory cue and the visual target can have a large impact on crossmodal attentional biases. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Impaired Facilitatory Mechanisms of Auditory Attention After Damage of the Lateral Prefrontal Cortex

    OpenAIRE

    Bidet-Caulet, Aurélie; Buchanan, Kelly G.; Viswanath, Humsini; Black, Jessica; Scabini, Donatella; Bonnet-Brilhault, Frédérique; Knight, Robert T.

    2014-01-01

    There is growing evidence that auditory selective attention operates via distinct facilitatory and inhibitory mechanisms enabling selective enhancement and suppression of sound processing, respectively. The lateral prefrontal cortex (LPFC) plays a crucial role in the top-down control of selective attention. However, whether the LPFC controls facilitatory, inhibitory, or both attentional mechanisms is unclear. Facilitatory and inhibitory mechanisms were assessed, in patients with LPFC damage, ...

  18. Dissociable influences of auditory object vs. spatial attention on visual system oscillatory activity.

    Directory of Open Access Journals (Sweden)

    Jyrki Ahveninen

    Full Text Available Given that both auditory and visual systems have anatomically separate object identification ("what" and spatial ("where" pathways, it is of interest whether attention-driven cross-sensory modulations occur separately within these feature domains. Here, we investigated how auditory "what" vs. "where" attention tasks modulate activity in visual pathways using cortically constrained source estimates of magnetoencephalograpic (MEG oscillatory activity. In the absence of visual stimuli or tasks, subjects were presented with a sequence of auditory-stimulus pairs and instructed to selectively attend to phonetic ("what" vs. spatial ("where" aspects of these sounds, or to listen passively. To investigate sustained modulatory effects, oscillatory power was estimated from time periods between sound-pair presentations. In comparison to attention to sound locations, phonetic auditory attention was associated with stronger alpha (7-13 Hz power in several visual areas (primary visual cortex; lingual, fusiform, and inferior temporal gyri, lateral occipital cortex, as well as in higher-order visual/multisensory areas including lateral/medial parietal and retrosplenial cortices. Region-of-interest (ROI analyses of dynamic changes, from which the sustained effects had been removed, suggested further power increases during Attend Phoneme vs. Location centered at the alpha range 400-600 ms after the onset of second sound of each stimulus pair. These results suggest distinct modulations of visual system oscillatory activity during auditory attention to sound object identity ("what" vs. sound location ("where". The alpha modulations could be interpreted to reflect enhanced crossmodal inhibition of feature-specific visual pathways and adjacent audiovisual association areas during "what" vs. "where" auditory attention.

  19. Auditory-Motor Control of Vocal Production during Divided Attention: Behavioral and ERP Correlates.

    Science.gov (United States)

    Liu, Ying; Fan, Hao; Li, Jingting; Jones, Jeffery A; Liu, Peng; Zhang, Baofeng; Liu, Hanjun

    2018-01-01

    When people hear unexpected perturbations in auditory feedback, they produce rapid compensatory adjustments of their vocal behavior. Recent evidence has shown enhanced vocal compensations and cortical event-related potentials (ERPs) in response to attended pitch feedback perturbations, suggesting that this reflex-like behavior is influenced by selective attention. Less is known, however, about auditory-motor integration for voice control during divided attention. The present cross-modal study investigated the behavioral and ERP correlates of auditory feedback control of vocal pitch production during divided attention. During the production of sustained vowels, 32 young adults were instructed to simultaneously attend to both pitch feedback perturbations they heard and flashing red lights they saw. The presentation rate of the visual stimuli was varied to produce a low, intermediate, and high attentional load. The behavioral results showed that the low-load condition elicited significantly smaller vocal compensations for pitch perturbations than the intermediate-load and high-load conditions. As well, the cortical processing of vocal pitch feedback was also modulated as a function of divided attention. When compared to the low-load and intermediate-load conditions, the high-load condition elicited significantly larger N1 responses and smaller P2 responses to pitch perturbations. These findings provide the first neurobehavioral evidence that divided attention can modulate auditory feedback control of vocal pitch production.

  20. Selective attention modulates human auditory brainstem responses: relative contributions of frequency and spatial cues.

    Directory of Open Access Journals (Sweden)

    Alexandre Lehmann

    Full Text Available Selective attention is the mechanism that allows focusing one's attention on a particular stimulus while filtering out a range of other stimuli, for instance, on a single conversation in a noisy room. Attending to one sound source rather than another changes activity in the human auditory cortex, but it is unclear whether attention to different acoustic features, such as voice pitch and speaker location, modulates subcortical activity. Studies using a dichotic listening paradigm indicated that auditory brainstem processing may be modulated by the direction of attention. We investigated whether endogenous selective attention to one of two speech signals affects amplitude and phase locking in auditory brainstem responses when the signals were either discriminable by frequency content alone, or by frequency content and spatial location. Frequency-following responses to the speech sounds were significantly modulated in both conditions. The modulation was specific to the task-relevant frequency band. The effect was stronger when both frequency and spatial information were available. Patterns of response were variable between participants, and were correlated with psychophysical discriminability of the stimuli, suggesting that the modulation was biologically relevant. Our results demonstrate that auditory brainstem responses are susceptible to efferent modulation related to behavioral goals. Furthermore they suggest that mechanisms of selective attention actively shape activity at early subcortical processing stages according to task relevance and based on frequency and spatial cues.

  1. Selective Impairment of Auditory Selective Attention under Concurrent Cognitive Load

    Science.gov (United States)

    Dittrich, Kerstin; Stahl, Christoph

    2012-01-01

    Load theory predicts that concurrent cognitive load impairs selective attention. For visual stimuli, it has been shown that this impairment can be selective: Distraction was specifically increased when the stimulus material used in the cognitive load task matches that of the selective attention task. Here, we report four experiments that…

  2. Focal Suppression of Distractor Sounds by Selective Attention in Auditory Cortex.

    Science.gov (United States)

    Schwartz, Zachary P; David, Stephen V

    2018-01-01

    Auditory selective attention is required for parsing crowded acoustic environments, but cortical systems mediating the influence of behavioral state on auditory perception are not well characterized. Previous neurophysiological studies suggest that attention produces a general enhancement of neural responses to important target sounds versus irrelevant distractors. However, behavioral studies suggest that in the presence of masking noise, attention provides a focal suppression of distractors that compete with targets. Here, we compared effects of attention on cortical responses to masking versus non-masking distractors, controlling for effects of listening effort and general task engagement. We recorded single-unit activity from primary auditory cortex (A1) of ferrets during behavior and found that selective attention decreased responses to distractors masking targets in the same spectral band, compared with spectrally distinct distractors. This suppression enhanced neural target detection thresholds, suggesting that limited attention resources serve to focally suppress responses to distractors that interfere with target detection. Changing effort by manipulating target salience consistently modulated spontaneous but not evoked activity. Task engagement and changing effort tended to affect the same neurons, while attention affected an independent population, suggesting that distinct feedback circuits mediate effects of attention and effort in A1. © The Author 2017. Published by Oxford University Press.

  3. Gender differences in pre-attentive change detection for visual but not auditory stimuli.

    Science.gov (United States)

    Yang, Xiuxian; Yu, Yunmiao; Chen, Lu; Sun, Hailian; Qiao, Zhengxue; Qiu, Xiaohui; Zhang, Congpei; Wang, Lin; Zhu, Xiongzhao; He, Jincai; Zhao, Lun; Yang, Yanjie

    2016-01-01

    Despite ongoing debate about gender differences in pre-attention processes, little is known about gender effects on change detection for auditory and visual stimuli. We explored gender differences in change detection while processing duration information in auditory and visual modalities. We investigated pre-attentive processing of duration information using a deviant-standard reverse oddball paradigm (50 ms/150 ms) for auditory and visual mismatch negativity (aMMN and vMMN) in males and females (n=21/group). In the auditory modality, decrement and increment aMMN were observed at 150-250 ms after the stimulus onset, and there was no significant gender effect on MMN amplitudes in temporal or fronto-central areas. In contrast, in the visual modality, only increment vMMN was observed at 180-260 ms after the onset of stimulus, and it was higher in males than in females. No gender effect was found in change detection for auditory stimuli, but change detection was facilitated for visual stimuli in males. Gender effects should be considered in clinical studies of pre-attention for visual stimuli. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  4. Tuning In to Sound: Frequency-Selective Attentional Filter in Human Primary Auditory Cortex

    Science.gov (United States)

    Da Costa, Sandra; van der Zwaag, Wietske; Miller, Lee M.; Clarke, Stephanie

    2013-01-01

    Cocktail parties, busy streets, and other noisy environments pose a difficult challenge to the auditory system: how to focus attention on selected sounds while ignoring others? Neurons of primary auditory cortex, many of which are sharply tuned to sound frequency, could help solve this problem by filtering selected sound information based on frequency-content. To investigate whether this occurs, we used high-resolution fMRI at 7 tesla to map the fine-scale frequency-tuning (1.5 mm isotropic resolution) of primary auditory areas A1 and R in six human participants. Then, in a selective attention experiment, participants heard low (250 Hz)- and high (4000 Hz)-frequency streams of tones presented at the same time (dual-stream) and were instructed to focus attention onto one stream versus the other, switching back and forth every 30 s. Attention to low-frequency tones enhanced neural responses within low-frequency-tuned voxels relative to high, and when attention switched the pattern quickly reversed. Thus, like a radio, human primary auditory cortex is able to tune into attended frequency channels and can switch channels on demand. PMID:23365225

  5. Spatial selective auditory attention in the presence of reverberant energy: individual differences in normal-hearing listeners.

    Science.gov (United States)

    Ruggles, Dorea; Shinn-Cunningham, Barbara

    2011-06-01

    Listeners can selectively attend to a desired target by directing attention to known target source features, such as location or pitch. Reverberation, however, reduces the reliability of the cues that allow a target source to be segregated and selected from a sound mixture. Given this, it is likely that reverberant energy interferes with selective auditory attention. Anecdotal reports suggest that the ability to focus spatial auditory attention degrades even with early aging, yet there is little evidence that middle-aged listeners have behavioral deficits on tasks requiring selective auditory attention. The current study was designed to look for individual differences in selective attention ability and to see if any such differences correlate with age. Normal-hearing adults, ranging in age from 18 to 55 years, were asked to report a stream of digits located directly ahead in a simulated rectangular room. Simultaneous, competing masker digit streams were simulated at locations 15° left and right of center. The level of reverberation was varied to alter task difficulty by interfering with localization cues (increasing localization blur). Overall, performance was best in the anechoic condition and worst in the high-reverberation condition. Listeners nearly always reported a digit from one of the three competing streams, showing that reverberation did not render the digits unintelligible. Importantly, inter-subject differences were extremely large. These differences, however, were not significantly correlated with age, memory span, or hearing status. These results show that listeners with audiometrically normal pure tone thresholds differ in their ability to selectively attend to a desired source, a task important in everyday communication. Further work is necessary to determine if these differences arise from differences in peripheral auditory function or in more central function.

  6. Identification of Auditory Object-Specific Attention from Single-Trial Electroencephalogram Signals via Entropy Measures and Machine Learning

    Directory of Open Access Journals (Sweden)

    Yun Lu

    2018-05-01

    Full Text Available Existing research has revealed that auditory attention can be tracked from ongoing electroencephalography (EEG signals. The aim of this novel study was to investigate the identification of peoples’ attention to a specific auditory object from single-trial EEG signals via entropy measures and machine learning. Approximate entropy (ApEn, sample entropy (SampEn, composite multiscale entropy (CmpMSE and fuzzy entropy (FuzzyEn were used to extract the informative features of EEG signals under three kinds of auditory object-specific attention (Rest, Auditory Object1 Attention (AOA1 and Auditory Object2 Attention (AOA2. The linear discriminant analysis and support vector machine (SVM, were used to construct two auditory attention classifiers. The statistical results of entropy measures indicated that there were significant differences in the values of ApEn, SampEn, CmpMSE and FuzzyEn between Rest, AOA1 and AOA2. For the SVM-based auditory attention classifier, the auditory object-specific attention of Rest, AOA1 and AOA2 could be identified from EEG signals using ApEn, SampEn, CmpMSE and FuzzyEn as features and the identification rates were significantly different from chance level. The optimal identification was achieved by the SVM-based auditory attention classifier using CmpMSE with the scale factor τ = 10. This study demonstrated a novel solution to identify the auditory object-specific attention from single-trial EEG signals without the need to access the auditory stimulus.

  7. Nicotine, auditory sensory memory and attention in a human ketamine model of schizophrenia: moderating influence of a hallucinatory trait

    Directory of Open Access Journals (Sweden)

    Verner eKnott

    2012-09-01

    Full Text Available Background: The procognitive actions of the nicotinic acetylcholine receptor (nAChR agonist nicotine are believed, in part, to motivate the excessive cigarette smoking in schizophrenia, a disorder associated with deficits in multiple cognitive domains, including low level auditory sensory processes and higher order attention-dependent operations. Objectives: As N-methyl-D-aspartate receptor (NMDAR hypofunction has been shown to contribute to these cognitive impairments, the primary aims of this healthy volunteer study were to: a to shed light on the separate and interactive roles of nAChR and NMDAR systems in the modulation of auditory sensory memory (and sustained attention, as indexed by the auditory event-related brain potential (ERP – mismatch negativity (MMN, and b to examine how these effects are moderated by a predisposition to auditory hallucinations/delusions (HD. Methods: In a randomized, double-blind, placebo controlled design involving a low intravenous dose of ketamine (.04 mg/kg and a 4 mg dose of nicotine gum, MMN and performance on a rapid visual information processing (RVIP task of sustained attention were examined in 24 healthy controls psychometrically stratified as being lower (L-HD, n = 12 or higher (H-HD for HD propensity. Results: Ketamine significantly slowed MMN, and reduced MMN in H-HD, with amplitude attenuation being blocked by the co-administration of nicotine. Nicotine significantly enhanced response speed (reaction time and accuracy (increased % hits and d΄ and reduced false alarms on the RIVIP, with improved performance accuracy being prevented when nicotine was administered with ketamine. Both % hits and d΄, as well as reaction time were poorer in H-HD (vs. L-HD and while hit rate and d΄ was increased by nicotine in H-HD, reaction time was slowed by ketamine in L-HD. Conclusions: Nicotine alleviated ketamine-induced sensory memory impairments and improved attention, particularly in individuals prone to HD.

  8. Impact of Spatial and Verbal Short-Term Memory Load on Auditory Spatial Attention Gradients.

    Science.gov (United States)

    Golob, Edward J; Winston, Jenna; Mock, Jeffrey R

    2017-01-01

    Short-term memory load can impair attentional control, but prior work shows that the extent of the effect ranges from being very general to very specific. One factor for the mixed results may be reliance on point estimates of memory load effects on attention. Here we used auditory attention gradients as an analog measure to map-out the impact of short-term memory load over space. Verbal or spatial information was maintained during an auditory spatial attention task and compared to no-load. Stimuli were presented from five virtual locations in the frontal azimuth plane, and subjects focused on the midline. Reaction times progressively increased for lateral stimuli, indicating an attention gradient. Spatial load further slowed responses at lateral locations, particularly in the left hemispace, but had little effect at midline. Verbal memory load had no (Experiment 1), or a minimal (Experiment 2) influence on reaction times. Spatial and verbal load increased switch costs between memory encoding and attention tasks relative to the no load condition. The findings show that short-term memory influences the distribution of auditory attention over space; and that the specific pattern depends on the type of information in short-term memory.

  9. Impact of Spatial and Verbal Short-Term Memory Load on Auditory Spatial Attention Gradients

    Directory of Open Access Journals (Sweden)

    Edward J. Golob

    2017-11-01

    Full Text Available Short-term memory load can impair attentional control, but prior work shows that the extent of the effect ranges from being very general to very specific. One factor for the mixed results may be reliance on point estimates of memory load effects on attention. Here we used auditory attention gradients as an analog measure to map-out the impact of short-term memory load over space. Verbal or spatial information was maintained during an auditory spatial attention task and compared to no-load. Stimuli were presented from five virtual locations in the frontal azimuth plane, and subjects focused on the midline. Reaction times progressively increased for lateral stimuli, indicating an attention gradient. Spatial load further slowed responses at lateral locations, particularly in the left hemispace, but had little effect at midline. Verbal memory load had no (Experiment 1, or a minimal (Experiment 2 influence on reaction times. Spatial and verbal load increased switch costs between memory encoding and attention tasks relative to the no load condition. The findings show that short-term memory influences the distribution of auditory attention over space; and that the specific pattern depends on the type of information in short-term memory.

  10. EEG phase reset due to auditory attention: an inverse time-scale approach

    International Nuclear Information System (INIS)

    Low, Yin Fen; Strauss, Daniel J

    2009-01-01

    We propose a novel tool to evaluate the electroencephalograph (EEG) phase reset due to auditory attention by utilizing an inverse analysis of the instantaneous phase for the first time. EEGs were acquired through auditory attention experiments with a maximum entropy stimulation paradigm. We examined single sweeps of auditory late response (ALR) with the complex continuous wavelet transform. The phase in the frequency band that is associated with auditory attention (6–10 Hz, termed as theta–alpha border) was reset to the mean phase of the averaged EEGs. The inverse transform was applied to reconstruct the phase-modified signal. We found significant enhancement of the N100 wave in the reconstructed signal. Analysis of the phase noise shows the effects of phase jittering on the generation of the N100 wave implying that a preferred phase is necessary to generate the event-related potential (ERP). Power spectrum analysis shows a remarkable increase of evoked power but little change of total power after stabilizing the phase of EEGs. Furthermore, by resetting the phase only at the theta border of no attention data to the mean phase of attention data yields a result that resembles attention data. These results show strong connections between EEGs and ERP, in particular, we suggest that the presentation of an auditory stimulus triggers the phase reset process at the theta–alpha border which leads to the emergence of the N100 wave. It is concluded that our study reinforces other studies on the importance of the EEG in ERP genesis

  11. Modulatory Effects of Attention on Lateral Inhibition in the Human Auditory Cortex.

    Directory of Open Access Journals (Sweden)

    Alva Engell

    Full Text Available Reduced neural processing of a tone is observed when it is presented after a sound whose spectral range closely frames the frequency of the tone. This observation might be explained by the mechanism of lateral inhibition (LI due to inhibitory interneurons in the auditory system. So far, several characteristics of bottom up influences on LI have been identified, while the influence of top-down processes such as directed attention on LI has not been investigated. Hence, the study at hand aims at investigating the modulatory effects of focused attention on LI in the human auditory cortex. In the magnetoencephalograph, we present two types of masking sounds (white noise vs. withe noise passing through a notch filter centered at a specific frequency, followed by a test tone with a frequency corresponding to the center-frequency of the notch filter. Simultaneously, subjects were presented with visual input on a screen. To modulate the focus of attention, subjects were instructed to concentrate either on the auditory input or the visual stimuli. More specific, on one half of the trials, subjects were instructed to detect small deviations in loudness in the masking sounds while on the other half of the trials subjects were asked to detect target stimuli on the screen. The results revealed a reduction in neural activation due to LI, which was larger during auditory compared to visual focused attention. Attentional modulations of LI were observed in two post-N1m time intervals. These findings underline the robustness of reduced neural activation due to LI in the auditory cortex and point towards the important role of attention on the modulation of this mechanism in more evaluative processing stages.

  12. Modulatory Effects of Attention on Lateral Inhibition in the Human Auditory Cortex.

    Science.gov (United States)

    Engell, Alva; Junghöfer, Markus; Stein, Alwina; Lau, Pia; Wunderlich, Robert; Wollbrink, Andreas; Pantev, Christo

    2016-01-01

    Reduced neural processing of a tone is observed when it is presented after a sound whose spectral range closely frames the frequency of the tone. This observation might be explained by the mechanism of lateral inhibition (LI) due to inhibitory interneurons in the auditory system. So far, several characteristics of bottom up influences on LI have been identified, while the influence of top-down processes such as directed attention on LI has not been investigated. Hence, the study at hand aims at investigating the modulatory effects of focused attention on LI in the human auditory cortex. In the magnetoencephalograph, we present two types of masking sounds (white noise vs. withe noise passing through a notch filter centered at a specific frequency), followed by a test tone with a frequency corresponding to the center-frequency of the notch filter. Simultaneously, subjects were presented with visual input on a screen. To modulate the focus of attention, subjects were instructed to concentrate either on the auditory input or the visual stimuli. More specific, on one half of the trials, subjects were instructed to detect small deviations in loudness in the masking sounds while on the other half of the trials subjects were asked to detect target stimuli on the screen. The results revealed a reduction in neural activation due to LI, which was larger during auditory compared to visual focused attention. Attentional modulations of LI were observed in two post-N1m time intervals. These findings underline the robustness of reduced neural activation due to LI in the auditory cortex and point towards the important role of attention on the modulation of this mechanism in more evaluative processing stages.

  13. EEG phase reset due to auditory attention: an inverse time-scale approach.

    Science.gov (United States)

    Low, Yin Fen; Strauss, Daniel J

    2009-08-01

    We propose a novel tool to evaluate the electroencephalograph (EEG) phase reset due to auditory attention by utilizing an inverse analysis of the instantaneous phase for the first time. EEGs were acquired through auditory attention experiments with a maximum entropy stimulation paradigm. We examined single sweeps of auditory late response (ALR) with the complex continuous wavelet transform. The phase in the frequency band that is associated with auditory attention (6-10 Hz, termed as theta-alpha border) was reset to the mean phase of the averaged EEGs. The inverse transform was applied to reconstruct the phase-modified signal. We found significant enhancement of the N100 wave in the reconstructed signal. Analysis of the phase noise shows the effects of phase jittering on the generation of the N100 wave implying that a preferred phase is necessary to generate the event-related potential (ERP). Power spectrum analysis shows a remarkable increase of evoked power but little change of total power after stabilizing the phase of EEGs. Furthermore, by resetting the phase only at the theta border of no attention data to the mean phase of attention data yields a result that resembles attention data. These results show strong connections between EEGs and ERP, in particular, we suggest that the presentation of an auditory stimulus triggers the phase reset process at the theta-alpha border which leads to the emergence of the N100 wave. It is concluded that our study reinforces other studies on the importance of the EEG in ERP genesis.

  14. Distraction task rather than focal attention modulates gamma activity associated with auditory steady-state responses (ASSRs)

    DEFF Research Database (Denmark)

    Griskova-Bulanova, Inga; Ruksenas, Osvaldas; Dapsys, Kastytis

    2011-01-01

    To explore the modulation of auditory steady-state response (ASSR) by experimental tasks, differing in attentional focus and arousal level.......To explore the modulation of auditory steady-state response (ASSR) by experimental tasks, differing in attentional focus and arousal level....

  15. Auditory Stream Segregation Improves Infants' Selective Attention to Target Tones Amid Distracters

    Science.gov (United States)

    Smith, Nicholas A.; Trainor, Laurel J.

    2011-01-01

    This study examined the role of auditory stream segregation in the selective attention to target tones in infancy. Using a task adapted from Bregman and Rudnicky's 1975 study and implemented in a conditioned head-turn procedure, infant and adult listeners had to discriminate the temporal order of 2,200 and 2,400 Hz target tones presented alone,…

  16. Selective attention and the auditory vertex potential. 1: Effects of stimulus delivery rate

    Science.gov (United States)

    Schwent, V. L.; Hillyard, S. A.; Galambos, R.

    1975-01-01

    Enhancement of the auditory vertex potentials with selective attention to dichotically presented tone pips was found to be critically sensitive to the range of inter-stimulus intervals in use. Only at the shortest intervals was a clear-cut enhancement of the latency component to stimuli observed for the attended ear.

  17. Effects of total sleep deprivation on divided attention performance.

    Science.gov (United States)

    Chua, Eric Chern-Pin; Fang, Eric; Gooley, Joshua J

    2017-01-01

    Dividing attention across two tasks performed simultaneously usually results in impaired performance on one or both tasks. Most studies have found no difference in the dual-task cost of dividing attention in rested and sleep-deprived states. We hypothesized that, for a divided attention task that is highly cognitively-demanding, performance would show greater impairment during exposure to sleep deprivation. A group of 30 healthy males aged 21-30 years was exposed to 40 h of continuous wakefulness in a laboratory setting. Every 2 h, subjects completed a divided attention task comprising 3 blocks in which an auditory Go/No-Go task was 1) performed alone (single task); 2) performed simultaneously with a visual Go/No-Go task (dual task); and 3) performed simultaneously with both a visual Go/No-Go task and a visually-guided motor tracking task (triple task). Performance on all tasks showed substantial deterioration during exposure to sleep deprivation. A significant interaction was observed between task load and time since wake on auditory Go/No-Go task performance, with greater impairment in response times and accuracy during extended wakefulness. Our results suggest that the ability to divide attention between multiple tasks is impaired during exposure to sleep deprivation. These findings have potential implications for occupations that require multi-tasking combined with long work hours and exposure to sleep loss.

  18. Effects of total sleep deprivation on divided attention performance.

    Directory of Open Access Journals (Sweden)

    Eric Chern-Pin Chua

    Full Text Available Dividing attention across two tasks performed simultaneously usually results in impaired performance on one or both tasks. Most studies have found no difference in the dual-task cost of dividing attention in rested and sleep-deprived states. We hypothesized that, for a divided attention task that is highly cognitively-demanding, performance would show greater impairment during exposure to sleep deprivation. A group of 30 healthy males aged 21-30 years was exposed to 40 h of continuous wakefulness in a laboratory setting. Every 2 h, subjects completed a divided attention task comprising 3 blocks in which an auditory Go/No-Go task was 1 performed alone (single task; 2 performed simultaneously with a visual Go/No-Go task (dual task; and 3 performed simultaneously with both a visual Go/No-Go task and a visually-guided motor tracking task (triple task. Performance on all tasks showed substantial deterioration during exposure to sleep deprivation. A significant interaction was observed between task load and time since wake on auditory Go/No-Go task performance, with greater impairment in response times and accuracy during extended wakefulness. Our results suggest that the ability to divide attention between multiple tasks is impaired during exposure to sleep deprivation. These findings have potential implications for occupations that require multi-tasking combined with long work hours and exposure to sleep loss.

  19. Difference in Perseverative Errors during a Visual Attention Task with Auditory Distractors in Alpha-9 Nicotinic Receptor Subunit Wild Type and Knock-Out Mice.

    Science.gov (United States)

    Jorratt, Pascal; Delano, Paul H; Delgado, Carolina; Dagnino-Subiabre, Alexies; Terreros, Gonzalo

    2017-01-01

    The auditory efferent system is a neural network that originates in the auditory cortex and projects to the cochlear receptor through olivocochlear (OC) neurons. Medial OC neurons make cholinergic synapses with outer hair cells (OHCs) through nicotinic receptors constituted by α9 and α10 subunits. One of the physiological functions of the α9 nicotinic receptor subunit (α9-nAChR) is the suppression of auditory distractors during selective attention to visual stimuli. In a recent study we demonstrated that the behavioral performance of alpha-9 nicotinic receptor knock-out (KO) mice is altered during selective attention to visual stimuli with auditory distractors since they made less correct responses and more omissions than wild type (WT) mice. As the inhibition of the behavioral responses to irrelevant stimuli is an important mechanism of the selective attention processes, behavioral errors are relevant measures that can reflect altered inhibitory control. Errors produced during a cued attention task can be classified as premature, target and perseverative errors. Perseverative responses can be considered as an inability to inhibit the repetition of an action already planned, while premature responses can be considered as an index of the ability to wait or retain an action. Here, we studied premature, target and perseverative errors during a visual attention task with auditory distractors in WT and KO mice. We found that α9-KO mice make fewer perseverative errors with longer latencies than WT mice in the presence of auditory distractors. In addition, although we found no significant difference in the number of target error between genotypes, KO mice made more short-latency target errors than WT mice during the presentation of auditory distractors. The fewer perseverative error made by α9-KO mice could be explained by a reduced motivation for reward and an increased impulsivity during decision making with auditory distraction in KO mice.

  20. Difference in Perseverative Errors during a Visual Attention Task with Auditory Distractors in Alpha-9 Nicotinic Receptor Subunit Wild Type and Knock-Out Mice

    Directory of Open Access Journals (Sweden)

    Pascal Jorratt

    2017-11-01

    Full Text Available The auditory efferent system is a neural network that originates in the auditory cortex and projects to the cochlear receptor through olivocochlear (OC neurons. Medial OC neurons make cholinergic synapses with outer hair cells (OHCs through nicotinic receptors constituted by α9 and α10 subunits. One of the physiological functions of the α9 nicotinic receptor subunit (α9-nAChR is the suppression of auditory distractors during selective attention to visual stimuli. In a recent study we demonstrated that the behavioral performance of alpha-9 nicotinic receptor knock-out (KO mice is altered during selective attention to visual stimuli with auditory distractors since they made less correct responses and more omissions than wild type (WT mice. As the inhibition of the behavioral responses to irrelevant stimuli is an important mechanism of the selective attention processes, behavioral errors are relevant measures that can reflect altered inhibitory control. Errors produced during a cued attention task can be classified as premature, target and perseverative errors. Perseverative responses can be considered as an inability to inhibit the repetition of an action already planned, while premature responses can be considered as an index of the ability to wait or retain an action. Here, we studied premature, target and perseverative errors during a visual attention task with auditory distractors in WT and KO mice. We found that α9-KO mice make fewer perseverative errors with longer latencies than WT mice in the presence of auditory distractors. In addition, although we found no significant difference in the number of target error between genotypes, KO mice made more short-latency target errors than WT mice during the presentation of auditory distractors. The fewer perseverative error made by α9-KO mice could be explained by a reduced motivation for reward and an increased impulsivity during decision making with auditory distraction in KO mice.

  1. Bottom-up influences of voice continuity in focusing selective auditory attention

    OpenAIRE

    Bressler, Scott; Masud, Salwa; Bharadwaj, Hari; Shinn-Cunningham, Barbara

    2014-01-01

    Selective auditory attention causes a relative enhancement of the neural representation of important information and suppression of the neural representation of distracting sound, which enables a listener to analyze and interpret information of interest. Some studies suggest that in both vision and in audition, the “unit” on which attention operates is an object: an estimate of the information coming from a particular external source out in the world. In this view, which object ends up in the...

  2. Neuronal Effects of Auditory Distraction on Visual Attention

    Science.gov (United States)

    Smucny, Jason; Rojas, Donald C.; Eichman, Lindsay C.; Tregellas, Jason R.

    2013-01-01

    Selective attention in the presence of distraction is a key aspect of healthy cognition. The underlying neurobiological processes, have not, however, been functionally well characterized. In the present study, we used functional magnetic resonance imaging to determine how ecologically relevant distracting noise affects cortical activity in 27…

  3. Long-Term Memory Biases Auditory Spatial Attention

    Science.gov (United States)

    Zimmermann, Jacqueline F.; Moscovitch, Morris; Alain, Claude

    2017-01-01

    Long-term memory (LTM) has been shown to bias attention to a previously learned visual target location. Here, we examined whether memory-predicted spatial location can facilitate the detection of a faint pure tone target embedded in real world audio clips (e.g., soundtrack of a restaurant). During an initial familiarization task, participants…

  4. Incorporating modern neuroscience findings to improve brain-computer interfaces: tracking auditory attention.

    Science.gov (United States)

    Wronkiewicz, Mark; Larson, Eric; Lee, Adrian Kc

    2016-10-01

    Brain-computer interface (BCI) technology allows users to generate actions based solely on their brain signals. However, current non-invasive BCIs generally classify brain activity recorded from surface electroencephalography (EEG) electrodes, which can hinder the application of findings from modern neuroscience research. In this study, we use source imaging-a neuroimaging technique that projects EEG signals onto the surface of the brain-in a BCI classification framework. This allowed us to incorporate prior research from functional neuroimaging to target activity from a cortical region involved in auditory attention. Classifiers trained to detect attention switches performed better with source imaging projections than with EEG sensor signals. Within source imaging, including subject-specific anatomical MRI information (instead of using a generic head model) further improved classification performance. This source-based strategy also reduced accuracy variability across three dimensionality reduction techniques-a major design choice in most BCIs. Our work shows that source imaging provides clear quantitative and qualitative advantages to BCIs and highlights the value of incorporating modern neuroscience knowledge and methods into BCI systems.

  5. Coupling between Theta Oscillations and Cognitive Control Network during Cross-Modal Visual and Auditory Attention: Supramodal vs Modality-Specific Mechanisms.

    Science.gov (United States)

    Wang, Wuyi; Viswanathan, Shivakumar; Lee, Taraz; Grafton, Scott T

    2016-01-01

    Cortical theta band oscillations (4-8 Hz) in EEG signals have been shown to be important for a variety of different cognitive control operations in visual attention paradigms. However the synchronization source of these signals as defined by fMRI BOLD activity and the extent to which theta oscillations play a role in multimodal attention remains unknown. Here we investigated the extent to which cross-modal visual and auditory attention impacts theta oscillations. Using a simultaneous EEG-fMRI paradigm, healthy human participants performed an attentional vigilance task with six cross-modal conditions using naturalistic stimuli. To assess supramodal mechanisms, modulation of theta oscillation amplitude for attention to either visual or auditory stimuli was correlated with BOLD activity by conjunction analysis. Negative correlation was localized to cortical regions associated with the default mode network and positively with ventral premotor areas. Modality-associated attention to visual stimuli was marked by a positive correlation of theta and BOLD activity in fronto-parietal area that was not observed in the auditory condition. A positive correlation of theta and BOLD activity was observed in auditory cortex, while a negative correlation of theta and BOLD activity was observed in visual cortex during auditory attention. The data support a supramodal interaction of theta activity with of DMN function, and modality-associated processes within fronto-parietal networks related to top-down theta related cognitive control in cross-modal visual attention. On the other hand, in sensory cortices there are opposing effects of theta activity during cross-modal auditory attention.

  6. Comparative Evaluation of Auditory Attention in 7 to 9 Year Old Learning Disabled Students

    Directory of Open Access Journals (Sweden)

    Fereshteh Amiriani

    2011-06-01

    Full Text Available Background and Aim: Learning disability is a term referes to a group of disorders manifesting listening, reading, writing, or mathematical problems. These children mostly have attention difficulties in classroom that leads to many learning problems. In this study we aimed to compare the auditory attention of 7 to 9 year old children with learning disability to non- learning disability age matched normal group.Methods: Twenty seven male 7 to 9 year old students with learning disability and 27 age and sex matched normal conrols were selected with unprobable simple sampling. 27 In order to evaluate auditory selective and divided attention, Farsi versions of speech in noise and dichotic digit test were used respectively.Results: Comparison of mean scores of Farsi versions of speech in noise in both ears of 7 and 8 year-old students in two groups indicated no significant difference (p>0.05 Mean scores of 9 year old controls was significant more than those of the cases only in the right ear (p=0.033. However, no significant difference was observed between mean scores of dichotic digit test assessing the right ear of 9 year-old learning disability and non learning disability students (p>0.05. Moreover, mean scores of 7 and 8 year- old students with learning disability was less than those of their normal peers in the left ear (p>0.05.Conclusion: Selective auditory attention is not affected in the optimal signal to noise ratio, while divided attention seems to be affected by maturity delay of auditory system or central auditory system disorders.

  7. An online brain-computer interface based on shifting attention to concurrent streams of auditory stimuli

    Science.gov (United States)

    Hill, N J; Schölkopf, B

    2012-01-01

    We report on the development and online testing of an EEG-based brain-computer interface (BCI) that aims to be usable by completely paralysed users—for whom visual or motor-system-based BCIs may not be suitable, and among whom reports of successful BCI use have so far been very rare. The current approach exploits covert shifts of attention to auditory stimuli in a dichotic-listening stimulus design. To compare the efficacy of event-related potentials (ERPs) and steady-state auditory evoked potentials (SSAEPs), the stimuli were designed such that they elicited both ERPs and SSAEPs simultaneously. Trial-by-trial feedback was provided online, based on subjects’ modulation of N1 and P3 ERP components measured during single 5-second stimulation intervals. All 13 healthy subjects were able to use the BCI, with performance in a binary left/right choice task ranging from 75% to 96% correct across subjects (mean 85%). BCI classification was based on the contrast between stimuli in the attended stream and stimuli in the unattended stream, making use of every stimulus, rather than contrasting frequent standard and rare “oddball” stimuli. SSAEPs were assessed offline: for all subjects, spectral components at the two exactly-known modulation frequencies allowed discrimination of pre-stimulus from stimulus intervals, and of left-only stimuli from right-only stimuli when one side of the dichotic stimulus pair was muted. However, attention-modulation of SSAEPs was not sufficient for single-trial BCI communication, even when the subject’s attention was clearly focused well enough to allow classification of the same trials via ERPs. ERPs clearly provided a superior basis for BCI. The ERP results are a promising step towards the development of a simple-to-use, reliable yes/no communication system for users in the most severely paralysed states, as well as potential attention-monitoring and -training applications outside the context of assistive technology. PMID:22333135

  8. Auditory selective attention in adolescents with major depression: An event-related potential study.

    Science.gov (United States)

    Greimel, E; Trinkl, M; Bartling, J; Bakos, S; Grossheinrich, N; Schulte-Körne, G

    2015-02-01

    Major depression (MD) is associated with deficits in selective attention. Previous studies in adults with MD using event-related potentials (ERPs) reported abnormalities in the neurophysiological correlates of auditory selective attention. However, it is yet unclear whether these findings can be generalized to MD in adolescence. Thus, the aim of the present ERP study was to explore the neural mechanisms of auditory selective attention in adolescents with MD. 24 male and female unmedicated adolescents with MD and 21 control subjects were included in the study. ERPs were collected during an auditory oddball paradigm. Depressive adolescents tended to show a longer N100 latency to target and non-target tones. Moreover, MD subjects showed a prolonged latency of the P200 component to targets. Across groups, longer P200 latency was associated with a decreased tendency of disinhibited behavior as assessed by a behavioral questionnaire. To be able to draw more precise conclusions about differences between the neural bases of selective attention in adolescents vs. adults with MD, future studies should include both age groups and apply the same experimental setting across all subjects. The study provides strong support for abnormalities in the neurophysiolgical bases of selective attention in adolecents with MD at early stages of auditory information processing. Absent group differences in later ERP components reflecting voluntary attentional processes stand in contrast to results reported in adults with MD and may suggest that adolescents with MD possess mechanisms to compensate for abnormalities in the early stages of selective attention. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. [Some electrophysiological and hemodynamic characteristics of auditory selective attention in norm and schizophrenia].

    Science.gov (United States)

    Lebedeva, I S; Akhadov, T A; Petriaĭkin, A V; Kaleda, V G; Barkhatova, A N; Golubev, S A; Rumiantseva, E E; Vdovenko, A M; Fufaeva, E A; Semenova, N A

    2011-01-01

    Six patients in the state of remission after the first episode ofjuvenile schizophrenia and seven sex- and age-matched mentally healthy subjects were examined by fMRI and ERP methods. The auditory oddball paradigm was applied. Differences in P300 parameters didn't reach the level of significance, however, a significantly higher hemodynamic response to target stimuli was found in patients bilaterally in the supramarginal gyrus and in the right medial frontal gyrus, which points to pathology of these brain areas in supporting of auditory selective attention.

  10. Auditory attention in childhood and adolescence: An event-related potential study of spatial selective attention to one of two simultaneous stories.

    Science.gov (United States)

    Karns, Christina M; Isbell, Elif; Giuliano, Ryan J; Neville, Helen J

    2015-06-01

    Auditory selective attention is a critical skill for goal-directed behavior, especially where noisy distractions may impede focusing attention. To better understand the developmental trajectory of auditory spatial selective attention in an acoustically complex environment, in the current study we measured auditory event-related potentials (ERPs) across five age groups: 3-5 years; 10 years; 13 years; 16 years; and young adults. Using a naturalistic dichotic listening paradigm, we characterized the ERP morphology for nonlinguistic and linguistic auditory probes embedded in attended and unattended stories. We documented robust maturational changes in auditory evoked potentials that were specific to the types of probes. Furthermore, we found a remarkable interplay between age and attention-modulation of auditory evoked potentials in terms of morphology and latency from the early years of childhood through young adulthood. The results are consistent with the view that attention can operate across age groups by modulating the amplitude of maturing auditory early-latency evoked potentials or by invoking later endogenous attention processes. Development of these processes is not uniform for probes with different acoustic properties within our acoustically dense speech-based dichotic listening task. In light of the developmental differences we demonstrate, researchers conducting future attention studies of children and adolescents should be wary of combining analyses across diverse ages. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Auditory attention in childhood and adolescence: An event-related potential study of spatial selective attention to one of two simultaneous stories

    Science.gov (United States)

    Karns, Christina M.; Isbell, Elif; Giuliano, Ryan J.; Neville, Helen J.

    2015-01-01

    Auditory selective attention is a critical skill for goal-directed behavior, especially where noisy distractions may impede focusing attention. To better understand the developmental trajectory of auditory spatial selective attention in an acoustically complex environment, in the current study we measured auditory event-related potentials (ERPs) in human children across five age groups: 3–5 years; 10 years; 13 years; 16 years; and young adults using a naturalistic dichotic listening paradigm, characterizing the ERP morphology for nonlinguistic and linguistic auditory probes embedded in attended and unattended stories. We documented robust maturational changes in auditory evoked potentials that were specific to the types of probes. Furthermore, we found a remarkable interplay between age and attention-modulation of auditory evoked potentials in terms of morphology and latency from the early years of childhood through young adulthood. The results are consistent with the view that attention can operate across age groups by modulating the amplitude of maturing auditory early-latency evoked potentials or by invoking later endogenous attention processes. Development of these processes is not uniform for probes with different acoustic properties within our acoustically dense speech-based dichotic listening task. In light of the developmental differences we demonstrate, researchers conducting future attention studies of children and adolescents should be wary of combining analyses across diverse ages. PMID:26002721

  12. Pre-attentive, context-specific representation of fear memory in the auditory cortex of rat.

    Directory of Open Access Journals (Sweden)

    Akihiro Funamizu

    Full Text Available Neural representation in the auditory cortex is rapidly modulated by both top-down attention and bottom-up stimulus properties, in order to improve perception in a given context. Learning-induced, pre-attentive, map plasticity has been also studied in the anesthetized cortex; however, little attention has been paid to rapid, context-dependent modulation. We hypothesize that context-specific learning leads to pre-attentively modulated, multiplex representation in the auditory cortex. Here, we investigate map plasticity in the auditory cortices of anesthetized rats conditioned in a context-dependent manner, such that a conditioned stimulus (CS of a 20-kHz tone and an unconditioned stimulus (US of a mild electrical shock were associated only under a noisy auditory context, but not in silence. After the conditioning, although no distinct plasticity was found in the tonotopic map, tone-evoked responses were more noise-resistive than pre-conditioning. Yet, the conditioned group showed a reduced spread of activation to each tone with noise, but not with silence, associated with a sharpening of frequency tuning. The encoding accuracy index of neurons showed that conditioning deteriorated the accuracy of tone-frequency representations in noisy condition at off-CS regions, but not at CS regions, suggesting that arbitrary tones around the frequency of the CS were more likely perceived as the CS in a specific context, where CS was associated with US. These results together demonstrate that learning-induced plasticity in the auditory cortex occurs in a context-dependent manner.

  13. Pre-attentive, context-specific representation of fear memory in the auditory cortex of rat.

    Science.gov (United States)

    Funamizu, Akihiro; Kanzaki, Ryohei; Takahashi, Hirokazu

    2013-01-01

    Neural representation in the auditory cortex is rapidly modulated by both top-down attention and bottom-up stimulus properties, in order to improve perception in a given context. Learning-induced, pre-attentive, map plasticity has been also studied in the anesthetized cortex; however, little attention has been paid to rapid, context-dependent modulation. We hypothesize that context-specific learning leads to pre-attentively modulated, multiplex representation in the auditory cortex. Here, we investigate map plasticity in the auditory cortices of anesthetized rats conditioned in a context-dependent manner, such that a conditioned stimulus (CS) of a 20-kHz tone and an unconditioned stimulus (US) of a mild electrical shock were associated only under a noisy auditory context, but not in silence. After the conditioning, although no distinct plasticity was found in the tonotopic map, tone-evoked responses were more noise-resistive than pre-conditioning. Yet, the conditioned group showed a reduced spread of activation to each tone with noise, but not with silence, associated with a sharpening of frequency tuning. The encoding accuracy index of neurons showed that conditioning deteriorated the accuracy of tone-frequency representations in noisy condition at off-CS regions, but not at CS regions, suggesting that arbitrary tones around the frequency of the CS were more likely perceived as the CS in a specific context, where CS was associated with US. These results together demonstrate that learning-induced plasticity in the auditory cortex occurs in a context-dependent manner.

  14. Auditory working memory load impairs visual ventral stream processing: toward a unified model of attentional load.

    Science.gov (United States)

    Klemen, Jane; Büchel, Christian; Bühler, Mira; Menz, Mareike M; Rose, Michael

    2010-03-01

    Attentional interference between tasks performed in parallel is known to have strong and often undesired effects. As yet, however, the mechanisms by which interference operates remain elusive. A better knowledge of these processes may facilitate our understanding of the effects of attention on human performance and the debilitating consequences that disruptions to attention can have. According to the load theory of cognitive control, processing of task-irrelevant stimuli is increased by attending in parallel to a relevant task with high cognitive demands. This is due to the relevant task engaging cognitive control resources that are, hence, unavailable to inhibit the processing of task-irrelevant stimuli. However, it has also been demonstrated that a variety of types of load (perceptual and emotional) can result in a reduction of the processing of task-irrelevant stimuli, suggesting a uniform effect of increased load irrespective of the type of load. In the present study, we concurrently presented a relevant auditory matching task [n-back working memory (WM)] of low or high cognitive load (1-back or 2-back WM) and task-irrelevant images at one of three object visibility levels (0%, 50%, or 100%). fMRI activation during the processing of the task-irrelevant visual stimuli was measured in the lateral occipital cortex and found to be reduced under high, compared to low, WM load. In combination with previous findings, this result is suggestive of a more generalized load theory, whereby cognitive load, as well as other types of load (e.g., perceptual), can result in a reduction of the processing of task-irrelevant stimuli, in line with a uniform effect of increased load irrespective of the type of load.

  15. Primate auditory recognition memory performance varies with sound type.

    Science.gov (United States)

    Ng, Chi-Wing; Plakke, Bethany; Poremba, Amy

    2009-10-01

    Neural correlates of auditory processing, including for species-specific vocalizations that convey biological and ethological significance (e.g., social status, kinship, environment), have been identified in a wide variety of areas including the temporal and frontal cortices. However, few studies elucidate how non-human primates interact with these vocalization signals when they are challenged by tasks requiring auditory discrimination, recognition and/or memory. The present study employs a delayed matching-to-sample task with auditory stimuli to examine auditory memory performance of rhesus macaques (Macaca mulatta), wherein two sounds are determined to be the same or different. Rhesus macaques seem to have relatively poor short-term memory with auditory stimuli, and we examine if particular sound types are more favorable for memory performance. Experiment 1 suggests memory performance with vocalization sound types (particularly monkey), are significantly better than when using non-vocalization sound types, and male monkeys outperform female monkeys overall. Experiment 2, controlling for number of sound exemplars and presentation pairings across types, replicates Experiment 1, demonstrating better performance or decreased response latencies, depending on trial type, to species-specific monkey vocalizations. The findings cannot be explained by acoustic differences between monkey vocalizations and the other sound types, suggesting the biological, and/or ethological meaning of these sounds are more effective for auditory memory. 2009 Elsevier B.V.

  16. Auditory Selective Attention: an introduction and evidence for distinct facilitation and inhibition mechanisms

    OpenAIRE

    Mikyska, Constanze Elisabeth Anna

    2012-01-01

    Objective Auditory selective attention is a complex brain function that is still not completely understood. The classic example is the so-called “cocktail party effect” (Cherry, 1953), which describes the impressive ability to focus one’s attention on a single voice from a multitude of voices. This means that particular stimuli in the environment are enhanced in contrast to other ones of lower priority that are ignored. To be able to understand how attention can influence the perception and p...

  17. Increased psychophysiological parameters of attention in non-psychotic individuals with auditory verbal hallucinations

    DEFF Research Database (Denmark)

    van Lutterveld, Remko; Oranje, Bob; Abramovic, Lucija

    2010-01-01

    with an auditory oddball paradigm in 18 non-psychotic individuals with AVH and 18 controls. RESULTS: P300 amplitude was increased in the AVH group as compared to controls, reflecting superior effortful attention. A trend in the same direction was found for processing negativity. No significant differences were...... found for mismatch negativity. CONCLUSION: Contrary to our expectations, non-psychotic individuals with AVH show increased rather than decreased psychophysiological measures of effortful attention compared to healthy controls, refuting a pivotal role of decreased effortful attention...

  18. Effects of emotionally charged auditory stimulation on gait performance in the elderly: a preliminary study.

    Science.gov (United States)

    Rizzo, John-Ross; Raghavan, Preeti; McCrery, J R; Oh-Park, Mooyeon; Verghese, Joe

    2015-04-01

    To evaluate the effect of a novel divided attention task-walking under auditory constraints-on gait performance in older adults and to determine whether this effect was moderated by cognitive status. Validation cohort. General community. Ambulatory older adults without dementia (N=104). Not applicable. In this pilot study, we evaluated walking under auditory constraints in 104 older adults who completed 3 pairs of walking trials on a gait mat under 1 of 3 randomly assigned conditions: 1 pair without auditory stimulation and 2 pairs with emotionally charged auditory stimulation with happy or sad sounds. The mean age of subjects was 80.6±4.9 years, and 63% (n=66) were women. The mean velocity during normal walking was 97.9±20.6cm/s, and the mean cadence was 105.1±9.9 steps/min. The effect of walking under auditory constraints on gait characteristics was analyzed using a 2-factorial analysis of variance with a 1-between factor (cognitively intact and minimal cognitive impairment groups) and a 1-within factor (type of auditory stimuli). In both happy and sad auditory stimulation trials, cognitively intact older adults (n=96) showed an average increase of 2.68cm/s in gait velocity (F1.86,191.71=3.99; P=.02) and an average increase of 2.41 steps/min in cadence (F1.75,180.42=10.12; Pactivities of daily living accounted for these differences. Our results provide preliminary evidence of the differentiating effect of emotionally charged auditory stimuli on gait performance in older individuals with minimal cognitive impairment compared with those without minimal cognitive impairment. A divided attention task using emotionally charged auditory stimuli might be able to elicit compensatory improvement in gait performance in cognitively intact older individuals, but lead to decompensation in those with minimal cognitive impairment. Further investigation is needed to compare gait performance under this task to gait on other dual-task paradigms and to separately examine the

  19. Aberrant interference of auditory negative words on attention in patients with schizophrenia.

    Directory of Open Access Journals (Sweden)

    Norichika Iwashiro

    Full Text Available Previous research suggests that deficits in attention-emotion interaction are implicated in schizophrenia symptoms. Although disruption in auditory processing is crucial in the pathophysiology of schizophrenia, deficits in interaction between emotional processing of auditorily presented language stimuli and auditory attention have not yet been clarified. To address this issue, the current study used a dichotic listening task to examine 22 patients with schizophrenia and 24 age-, sex-, parental socioeconomic background-, handedness-, dexterous ear-, and intelligence quotient-matched healthy controls. The participants completed a word recognition task on the attended side in which a word with emotionally valenced content (negative/positive/neutral was presented to one ear and a different neutral word was presented to the other ear. Participants selectively attended to either ear. In the control subjects, presentation of negative but not positive word stimuli provoked a significantly prolonged reaction time compared with presentation of neutral word stimuli. This interference effect for negative words existed whether or not subjects directed attention to the negative words. This interference effect was significantly smaller in the patients with schizophrenia than in the healthy controls. Furthermore, the smaller interference effect was significantly correlated with severe positive symptoms and delusional behavior in the patients with schizophrenia. The present findings suggest that aberrant interaction between semantic processing of negative emotional content and auditory attention plays a role in production of positive symptoms in schizophrenia. (224 words.

  20. Auditory and cognitive performance in elderly musicians and nonmusicians.

    Directory of Open Access Journals (Sweden)

    Massimo Grassi

    Full Text Available Musicians represent a model for examining brain and behavioral plasticity in terms of cognitive and auditory profile, but few studies have investigated whether elderly musicians have better auditory and cognitive abilities than nonmusicians. The aim of the present study was to examine whether being a professional musician attenuates the normal age-related changes in hearing and cognition. Elderly musicians still active in their profession were compared with nonmusicians on auditory performance (absolute threshold, frequency intensity, duration and spectral shape discrimination, gap and sinusoidal amplitude-modulation detection, and on simple (short-term memory and more complex and higher-order (working memory [WM] and visuospatial abilities cognitive tasks. The sample consisted of adults at least 65 years of age. The results showed that older musicians had similar absolute thresholds but better supra-threshold discrimination abilities than nonmusicians in four of the six auditory tasks administered. They also had a better WM performance, and stronger visuospatial abilities than nonmusicians. No differences were found between the two groups' short-term memory. Frequency discrimination and gap detection for the auditory measures, and WM complex span tasks and one of the visuospatial tasks for the cognitive ones proved to be very good classifiers of the musicians. These findings suggest that life-long music training may be associated with enhanced auditory and cognitive performance, including complex cognitive skills, in advanced age. However, whether this music training represents a protective factor or not needs further investigation.

  1. Age-dependent impairment of auditory processing under spatially focused and divided attention: an electrophysiological study.

    Science.gov (United States)

    Wild-Wall, Nele; Falkenstein, Michael

    2010-01-01

    By using event-related potentials (ERPs) the present study examines if age-related differences in preparation and processing especially emerge during divided attention. Binaurally presented auditory cues called for focused (valid and invalid) or divided attention to one or both ears. Responses were required to subsequent monaurally presented valid targets (vowels), but had to be suppressed to non-target vowels or invalidly cued vowels. Middle-aged participants were more impaired under divided attention than young ones, likely due to an age-related decline in preparatory attention following cues as was reflected in a decreased CNV. Under divided attention, target processing was increased in the middle-aged, likely reflecting compensatory effort to fulfill task requirements in the difficult condition. Additionally, middle-aged participants processed invalidly cued stimuli more intensely as was reflected by stimulus ERPs. The results suggest an age-related impairment in attentional preparation after auditory cues especially under divided attention and latent difficulties to suppress irrelevant information.

  2. Frequency-specific attentional modulation in human primary auditory cortex and midbrain.

    Science.gov (United States)

    Riecke, Lars; Peters, Judith C; Valente, Giancarlo; Poser, Benedikt A; Kemper, Valentin G; Formisano, Elia; Sorger, Bettina

    2018-07-01

    Paying selective attention to an audio frequency selectively enhances activity within primary auditory cortex (PAC) at the tonotopic site (frequency channel) representing that frequency. Animal PAC neurons achieve this 'frequency-specific attentional spotlight' by adapting their frequency tuning, yet comparable evidence in humans is scarce. Moreover, whether the spotlight operates in human midbrain is unknown. To address these issues, we studied the spectral tuning of frequency channels in human PAC and inferior colliculus (IC), using 7-T functional magnetic resonance imaging (FMRI) and frequency mapping, while participants focused on different frequency-specific sounds. We found that shifts in frequency-specific attention alter the response gain, but not tuning profile, of PAC frequency channels. The gain modulation was strongest in low-frequency channels and varied near-monotonically across the tonotopic axis, giving rise to the attentional spotlight. We observed less prominent, non-tonotopic spatial patterns of attentional modulation in IC. These results indicate that the frequency-specific attentional spotlight in human PAC as measured with FMRI arises primarily from tonotopic gain modulation, rather than adapted frequency tuning. Moreover, frequency-specific attentional modulation of afferent sound processing in human IC seems to be considerably weaker, suggesting that the spotlight diminishes toward this lower-order processing stage. Our study sheds light on how the human auditory pathway adapts to the different demands of selective hearing. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Visually Evoked Visual-Auditory Changes Associated with Auditory Performance in Children with Cochlear Implants

    Directory of Open Access Journals (Sweden)

    Maojin Liang

    2017-10-01

    Full Text Available Activation of the auditory cortex by visual stimuli has been reported in deaf children. In cochlear implant (CI patients, a residual, more intense cortical activation in the frontotemporal areas in response to photo stimuli was found to be positively associated with poor auditory performance. Our study aimed to investigate the mechanism by which visual processing in CI users activates the auditory-associated cortex during the period after cochlear implantation as well as its relation to CI outcomes. Twenty prelingually deaf children with CI were recruited. Ten children were good CI performers (GCP and ten were poor (PCP. Ten age- and sex- matched normal-hearing children were recruited as controls, and visual evoked potentials (VEPs were recorded. The characteristics of the right frontotemporal N1 component were analyzed. In the prelingually deaf children, higher N1 amplitude was observed compared to normal controls. While the GCP group showed significant decreases in N1 amplitude, and source analysis showed the most significant decrease in brain activity was observed in the primary visual cortex (PVC, with a downward trend in the primary auditory cortex (PAC activity, but these did not occur in the PCP group. Meanwhile, higher PVC activation (comparing to controls before CI use (0M and a significant decrease in source energy after CI use were found to be related to good CI outcomes. In the GCP group, source energy decreased in the visual-auditory cortex with CI use. However, no significant cerebral hemispheric dominance was found. We supposed that intra- or cross-modal reorganization and higher PVC activation in prelingually deaf children may reflect a stronger potential ability of cortical plasticity. Brain activity evolution appears to be related to CI auditory outcomes.

  4. Visually Evoked Visual-Auditory Changes Associated with Auditory Performance in Children with Cochlear Implants.

    Science.gov (United States)

    Liang, Maojin; Zhang, Junpeng; Liu, Jiahao; Chen, Yuebo; Cai, Yuexin; Wang, Xianjun; Wang, Junbo; Zhang, Xueyuan; Chen, Suijun; Li, Xianghui; Chen, Ling; Zheng, Yiqing

    2017-01-01

    Activation of the auditory cortex by visual stimuli has been reported in deaf children. In cochlear implant (CI) patients, a residual, more intense cortical activation in the frontotemporal areas in response to photo stimuli was found to be positively associated with poor auditory performance. Our study aimed to investigate the mechanism by which visual processing in CI users activates the auditory-associated cortex during the period after cochlear implantation as well as its relation to CI outcomes. Twenty prelingually deaf children with CI were recruited. Ten children were good CI performers (GCP) and ten were poor (PCP). Ten age- and sex- matched normal-hearing children were recruited as controls, and visual evoked potentials (VEPs) were recorded. The characteristics of the right frontotemporal N1 component were analyzed. In the prelingually deaf children, higher N1 amplitude was observed compared to normal controls. While the GCP group showed significant decreases in N1 amplitude, and source analysis showed the most significant decrease in brain activity was observed in the primary visual cortex (PVC), with a downward trend in the primary auditory cortex (PAC) activity, but these did not occur in the PCP group. Meanwhile, higher PVC activation (comparing to controls) before CI use (0M) and a significant decrease in source energy after CI use were found to be related to good CI outcomes. In the GCP group, source energy decreased in the visual-auditory cortex with CI use. However, no significant cerebral hemispheric dominance was found. We supposed that intra- or cross-modal reorganization and higher PVC activation in prelingually deaf children may reflect a stronger potential ability of cortical plasticity. Brain activity evolution appears to be related to CI auditory outcomes.

  5. Task-irrelevant auditory feedback facilitates motor performance in musicians

    Directory of Open Access Journals (Sweden)

    Virginia eConde

    2012-05-01

    Full Text Available An efficient and fast auditory–motor network is a basic resource for trained musicians due to the importance of motor anticipation of sound production in musical performance. When playing an instrument, motor performance always goes along with the production of sounds and the integration between both modalities plays an essential role in the course of musical training. The aim of the present study was to investigate the role of task-irrelevant auditory feedback during motor performance in musicians using a serial reaction time task (SRTT. Our hypothesis was that musicians, due to their extensive auditory–motor practice routine during musical training, have a superior performance and learning capabilities when receiving auditory feedback during SRTT relative to musicians performing the SRTT without any auditory feedback. Here we provide novel evidence that task-irrelevant auditory feedback is capable to reinforce SRTT performance but not learning, a finding that might provide further insight into auditory-motor integration in musicians on a behavioral level.

  6. Music-induced positive mood broadens the scope of auditory attention.

    Science.gov (United States)

    Putkinen, Vesa; Makkonen, Tommi; Eerola, Tuomas

    2017-07-01

    Previous studies indicate that positive mood broadens the scope of visual attention, which can manifest as heightened distractibility. We used event-related potentials (ERP) to investigate whether music-induced positive mood has comparable effects on selective attention in the auditory domain. Subjects listened to experimenter-selected happy, neutral or sad instrumental music and afterwards participated in a dichotic listening task. Distractor sounds in the unattended channel elicited responses related to early sound encoding (N1/MMN) and bottom-up attention capture (P3a) while target sounds in the attended channel elicited a response related to top-down-controlled processing of task-relevant stimuli (P3b). For the subjects in a happy mood, the N1/MMN responses to the distractor sounds were enlarged while the P3b elicited by the target sounds was diminished. Behaviorally, these subjects tended to show heightened error rates on target trials following the distractor sounds. Thus, the ERP and behavioral results indicate that the subjects in a happy mood allocated their attentional resources more diffusely across the attended and the to-be-ignored channels. Therefore, the current study extends previous research on the effects of mood on visual attention and indicates that even unfamiliar instrumental music can broaden the scope of auditory attention via its effects on mood. © The Author (2017). Published by Oxford University Press.

  7. The effects of distraction and a brief intervention on auditory and visual-spatial working memory in college students with attention deficit hyperactivity disorder.

    Science.gov (United States)

    Lineweaver, Tara T; Kercood, Suneeta; O'Keeffe, Nicole B; O'Brien, Kathleen M; Massey, Eric J; Campbell, Samantha J; Pierce, Jenna N

    2012-01-01

    Two studies addressed how young adult college students with attention deficit hyperactivity disorder (ADHD) (n = 44) compare to their nonaffected peers (n = 42) on tests of auditory and visual-spatial working memory (WM), are vulnerable to auditory and visual distractions, and are affected by a simple intervention. Students with ADHD demonstrated worse auditory WM than did controls. A near significant trend indicated that auditory distractions interfered with the visual WM of both groups and that, whereas controls were also vulnerable to visual distractions, visual distractions improved visual WM in the ADHD group. The intervention was ineffective. Limited correlations emerged between self-reported ADHD symptoms and objective test performances; students with ADHD who perceived themselves as more symptomatic often had better WM and were less vulnerable to distractions than their ADHD peers.

  8. Modulation of auditory spatial attention by visual emotional cues: differential effects of attentional engagement and disengagement for pleasant and unpleasant cues.

    Science.gov (United States)

    Harrison, Neil R; Woodhouse, Rob

    2016-05-01

    Previous research has demonstrated that threatening, compared to neutral pictures, can bias attention towards non-emotional auditory targets. Here we investigated which subcomponents of attention contributed to the influence of emotional visual stimuli on auditory spatial attention. Participants indicated the location of an auditory target, after brief (250 ms) presentation of a spatially non-predictive peripheral visual cue. Responses to targets were faster at the location of the preceding visual cue, compared to at the opposite location (cue validity effect). The cue validity effect was larger for targets following pleasant and unpleasant cues compared to neutral cues, for right-sided targets. For unpleasant cues, the crossmodal cue validity effect was driven by delayed attentional disengagement, and for pleasant cues, it was driven by enhanced engagement. We conclude that both pleasant and unpleasant visual cues influence the distribution of attention across modalities and that the associated attentional mechanisms depend on the valence of the visual cue.

  9. The absence of an auditory-visual attentional blink is not due to echoic memory.

    Science.gov (United States)

    Van der Burg, Erik; Olivers, Christian N; Bronkhorst, Adelbei W; Koelewijn, Thomas; Theeuwes, Jan

    2007-10-01

    The second of two targets is often missed when presented shortly after the first target--a phenomenon referred to as the attentional blink (AB). Whereas the AB is a robust phenomenon within sensory modalities, the evidence for cross-modal ABs is rather mixed. Here, we test the possibility that the absence of an auditory-visual AB for visual letter recognition when streams of tones are used is due to the efficient use of echoic memory, allowing for the postponement of auditory processing. However, forcing participants to immediately process the auditory target, either by presenting interfering sounds during retrieval or by making the first target directly relevant for a speeded response to the second target, did not result in a return of a cross-modal AB. Thefindings argue against echoic memory as an explanation for efficient cross-modal processing. Instead, we hypothesized that a cross-modal AB may be observed when the different modalities use common representations, such as semantic representations. In support of this, a deficit for visual letter recognition returned when the auditory task required a distinction between spoken digits and letters.

  10. Is the effect of tinnitus on auditory steady-state response amplitude mediated by attention?

    Directory of Open Access Journals (Sweden)

    Eugen eDiesch

    2012-05-01

    Full Text Available Objectives: The amplitude of the auditory steady-state response (ASSR is enhanced in tinnitus. As ASSR ampli¬tude is also enhanced by attention, the effect of tinnitus on ASSR amplitude could be interpreted as an effect of attention mediated by tinnitus. As attention effects on the N1 are signi¬fi¬cantly larger than those on the ASSR, if the effect of tinnitus on ASSR amplitude were due to attention, there should be similar amplitude enhancement effects in tinnitus for the N1 component of the auditory evoked response. Methods: MEG recordings of auditory evoked responses which were previously examined for the ASSR (Diesch et al. 2010 were analysed with respect to the N1m component. Like the ASSR previously, the N1m was analysed in the source domain (source space projection. Stimuli were amplitude-modulated tones with one of three carrier fre¬quen¬cies matching the tinnitus frequency or a surrogate frequency 1½ octaves above the audio¬metric edge frequency in con¬trols, the audiometric edge frequency, and a frequency below the audio¬metric edgeResults: In the earlier ASSR study (Diesch et al., 2010, the ASSR amplitude in tinnitus patients, but not in controls, was significantly larger in the (surrogate tinnitus condition than in the edge condition. In the present study, both tinnitus patients and healthy controls show an N1m-amplitude profile identical to the one of ASSR amplitudes in healthy controls. N1m amplitudes elicited by tonal frequencies located at the audiometric edge and at the (surrogate tinnitus frequency are smaller than N1m amplitudes elicited by sub-edge tones and do not differ among each other.Conclusions: There is no N1-amplitude enhancement effect in tinnitus. The enhancement effect of tinnitus on ASSR amplitude cannot be accounted for in terms of attention induced by tinnitus.

  11. Preconditioning of Spatial and Auditory Cues: Roles of the Hippocampus, Frontal Cortex, and Cue-Directed Attention

    Directory of Open Access Journals (Sweden)

    Andrew C. Talk

    2016-12-01

    Full Text Available Loss of function of the hippocampus or frontal cortex is associated with reduced performance on memory tasks, in which subjects are incidentally exposed to cues at specific places in the environment and are subsequently asked to recollect the location at which the cue was experienced. Here, we examined the roles of the rodent hippocampus and frontal cortex in cue-directed attention during encoding of memory for the location of a single incidentally experienced cue. During a spatial sensory preconditioning task, rats explored an elevated platform while an auditory cue was incidentally presented at one corner. The opposite corner acted as an unpaired control location. The rats demonstrated recollection of location by avoiding the paired corner after the auditory cue was in turn paired with shock. Damage to either the dorsal hippocampus or the frontal cortex impaired this memory ability. However, we also found that hippocampal lesions enhanced attention directed towards the cue during the encoding phase, while frontal cortical lesions reduced cue-directed attention. These results suggest that the deficit in spatial sensory preconditioning caused by frontal cortical damage may be mediated by inattention to the location of cues during the latent encoding phase, while deficits following hippocampal damage must be related to other mechanisms such as generation of neural plasticity.

  12. Preconditioning of Spatial and Auditory Cues: Roles of the Hippocampus, Frontal Cortex, and Cue-Directed Attention

    Science.gov (United States)

    Talk, Andrew C.; Grasby, Katrina L.; Rawson, Tim; Ebejer, Jane L.

    2016-01-01

    Loss of function of the hippocampus or frontal cortex is associated with reduced performance on memory tasks, in which subjects are incidentally exposed to cues at specific places in the environment and are subsequently asked to recollect the location at which the cue was experienced. Here, we examined the roles of the rodent hippocampus and frontal cortex in cue-directed attention during encoding of memory for the location of a single incidentally experienced cue. During a spatial sensory preconditioning task, rats explored an elevated platform while an auditory cue was incidentally presented at one corner. The opposite corner acted as an unpaired control location. The rats demonstrated recollection of location by avoiding the paired corner after the auditory cue was in turn paired with shock. Damage to either the dorsal hippocampus or the frontal cortex impaired this memory ability. However, we also found that hippocampal lesions enhanced attention directed towards the cue during the encoding phase, while frontal cortical lesions reduced cue-directed attention. These results suggest that the deficit in spatial sensory preconditioning caused by frontal cortical damage may be mediated by inattention to the location of cues during the latent encoding phase, while deficits following hippocampal damage must be related to other mechanisms such as generation of neural plasticity. PMID:27999366

  13. Effect- and Performance-Based Auditory Feedback on Interpersonal Coordination

    Directory of Open Access Journals (Sweden)

    Tong-Hun Hwang

    2018-03-01

    Full Text Available When two individuals interact in a collaborative task, such as carrying a sofa or a table, usually spatiotemporal coordination of individual motor behavior will emerge. In many cases, interpersonal coordination can arise independently of verbal communication, based on the observation of the partners' movements and/or the object's movements. In this study, we investigate how social coupling between two individuals can emerge in a collaborative task under different modes of perceptual information. A visual reference condition was compared with three different conditions with new types of additional auditory feedback provided in real time: effect-based auditory feedback, performance-based auditory feedback, and combined effect/performance-based auditory feedback. We have developed a new paradigm in which the actions of both participants continuously result in a seamlessly merged effect on an object simulated by a tablet computer application. Here, participants should temporally synchronize their movements with a 90° phase difference and precisely adjust the finger dynamics in order to keep the object (a ball accurately rotating on a given circular trajectory on the tablet. Results demonstrate that interpersonal coordination in a joint task can be altered by different kinds of additional auditory information in various ways.

  14. Attention Cueing and Activity Equally Reduce False Alarm Rate in Visual-Auditory Associative Learning through Improving Memory.

    Science.gov (United States)

    Nikouei Mahani, Mohammad-Ali; Haghgoo, Hojjat Allah; Azizi, Solmaz; Nili Ahmadabadi, Majid

    2016-01-01

    In our daily life, we continually exploit already learned multisensory associations and form new ones when facing novel situations. Improving our associative learning results in higher cognitive capabilities. We experimentally and computationally studied the learning performance of healthy subjects in a visual-auditory sensory associative learning task across active learning, attention cueing learning, and passive learning modes. According to our results, the learning mode had no significant effect on learning association of congruent pairs. In addition, subjects' performance in learning congruent samples was not correlated with their vigilance score. Nevertheless, vigilance score was significantly correlated with the learning performance of the non-congruent pairs. Moreover, in the last block of the passive learning mode, subjects significantly made more mistakes in taking non-congruent pairs as associated and consciously reported lower confidence. These results indicate that attention and activity equally enhanced visual-auditory associative learning for non-congruent pairs, while false alarm rate in the passive learning mode did not decrease after the second block. We investigated the cause of higher false alarm rate in the passive learning mode by using a computational model, composed of a reinforcement learning module and a memory-decay module. The results suggest that the higher rate of memory decay is the source of making more mistakes and reporting lower confidence in non-congruent pairs in the passive learning mode.

  15. Mobile EEG on the bike: disentangling attentional and physical contributions to auditory attention tasks

    Science.gov (United States)

    Zink, Rob; Hunyadi, Borbála; Van Huffel, Sabine; De Vos, Maarten

    2016-08-01

    Objective. In the past few years there has been a growing interest in studying brain functioning in natural, real-life situations. Mobile EEG allows to study the brain in real unconstrained environments but it faces the intrinsic challenge that it is impossible to disentangle observed changes in brain activity due to increase in cognitive demands by the complex natural environment or due to the physical involvement. In this work we aim to disentangle the influence of cognitive demands and distractions that arise from such outdoor unconstrained recordings. Approach. We evaluate the ERP and single trial characteristics of a three-class auditory oddball paradigm recorded in outdoor scenario’s while peddling on a fixed bike or biking freely around. In addition we also carefully evaluate the trial specific motion artifacts through independent gyro measurements and control for muscle artifacts. Main results. A decrease in P300 amplitude was observed in the free biking condition as compared to the fixed bike conditions. Above chance P300 single-trial classification in highly dynamic real life environments while biking outdoors was achieved. Certain significant artifact patterns were identified in the free biking condition, but neither these nor the increase in movement (as derived from continuous gyrometer measurements) can explain the differences in classification accuracy and P300 waveform differences with full clarity. The increased cognitive load in real-life scenarios is shown to play a major role in the observed differences. Significance. Our findings suggest that auditory oddball results measured in natural real-life scenarios are influenced mainly by increased cognitive load due to being in an unconstrained environment.

  16. Attention effects at auditory periphery derived from human scalp potentials: displacement measure of potentials.

    Science.gov (United States)

    Ikeda, Kazunari; Hayashi, Akiko; Sekiguchi, Takahiro; Era, Shukichi

    2006-10-01

    It is known in humans that electrophysiological measures such as the auditory brainstem response (ABR) are difficult to identify the attention effect at the auditory periphery, whereas the centrifugal effect has been detected by measuring otoacoustic emissions. This research developed a measure responsive to the shift of human scalp potentials within a brief post-stimulus period (13 ms), that is, displacement percentage, and applied it to an experiment to retrieve the peripheral attention effect. In the present experimental paradigm, tone pips were exposed to the left ear whereas the other ear was masked by white noise. Twelve participants each conducted two conditions of either ignoring or attending to the tone pips. Relative to averaged scalp potentials in the ignoring condition, the shift of the potentials was found within early component range during the attentive condition, and displacement percentage then revealed a significant magnitude difference between the two conditions. These results suggest that, using a measure representing the potential shift itself, the peripheral effect of attention can be detected from human scalp potentials.

  17. A right-ear bias of auditory selective attention is evident in alpha oscillations.

    Science.gov (United States)

    Payne, Lisa; Rogers, Chad S; Wingfield, Arthur; Sekuler, Robert

    2017-04-01

    Auditory selective attention makes it possible to pick out one speech stream that is embedded in a multispeaker environment. We adapted a cued dichotic listening task to examine suppression of a speech stream lateralized to the nonattended ear, and to evaluate the effects of attention on the right ear's well-known advantage in the perception of linguistic stimuli. After being cued to attend to input from either their left or right ear, participants heard two different four-word streams presented simultaneously to the separate ears. Following each dichotic presentation, participants judged whether a spoken probe word had been in the attended ear's stream. We used EEG signals to track participants' spatial lateralization of auditory attention, which is marked by interhemispheric differences in EEG alpha (8-14 Hz) power. A right-ear advantage (REA) was evident in faster response times and greater sensitivity in distinguishing attended from unattended words. Consistent with the REA, we found strongest parietal and right frontotemporal alpha modulation during the attend-right condition. These findings provide evidence for a link between selective attention and the REA during directed dichotic listening. © 2016 Society for Psychophysiological Research.

  18. Auditory measures of selective and divided attention in young and older adults using single-talker competition.

    Science.gov (United States)

    Humes, Larry E; Lee, Jae Hee; Coughlin, Maureen P

    2006-11-01

    In this study, two experiments were conducted on auditory selective and divided attention in which the listening task involved the identification of words in sentences spoken by one talker while a second talker produced a very similar competing sentence. Ten young normal-hearing (YNH) and 13 elderly hearing-impaired (EHI) listeners participated in each experiment. The type of attention cue used was the main difference between experiments. Across both experiments, several consistent trends were observed. First, in eight of the nine divided-attention tasks across both experiments, the EHI subjects performed significantly worse than the YNH subjects. By comparison, significant differences in performance between age groups were only observed on three of the nine selective-attention tasks. Finally, there were consistent individual differences in performance across both experiments. Correlational analyses performed on the data from the 13 older adults suggested that the individual differences in performance were associated with individual differences in memory (digit span). Among the elderly, differences in age or differences in hearing loss did not contribute to the individual differences observed in either experiment.

  19. Self-supervised, mobile-application based cognitive training of auditory attention: A behavioral and fMRI evaluation

    Directory of Open Access Journals (Sweden)

    Josef J. Bless

    2014-07-01

    Full Text Available Emerging evidence of the validity of collecting data in natural settings using smartphone applications has opened new possibilities for psychological assessment, treatment, and research. In this study we explored the feasibility and effectiveness of using a mobile application for self-supervised training of auditory attention. In addition, we investigated the neural underpinnings of the training procedure with functional magnetic resonance imaging (fMRI, as well as possible transfer effects to untrained cognitive interference tasks. Subjects in the training group performed the training task on an iPod touch two times a day (morning/evening for three weeks; subjects in the control group received no training, but were tested at the same time interval as the training group. Behavioral responses were measured before and after the training period in both groups, together with measures of task-related neural activations by fMRI. The results showed an expected performance increase after training that corresponded to activation decreases in brain regions associated with selective auditory processing (left posterior temporal gyrus and executive functions (right middle frontal gyrus, indicating more efficient processing in task-related neural networks after training. Our study suggests that cognitive training delivered via mobile applications is feasible and improves the ability to focus attention with corresponding effects on neural plasticity. Future research should focus on the clinical benefits of mobile cognitive training. Limitations of the study are discussed including reduced experimental control and lack of transfer effects.

  20. Perception of parents about the auditory attention skills of his kid with cleft lip and palate: retrospective study

    Directory of Open Access Journals (Sweden)

    Mondelli, Maria Fernanda Capoani Garcia

    2012-01-01

    Full Text Available Introduction: To process and decode the acoustic stimulation are necessary cognitive and neurophysiological mechanisms. The hearing stimulation is influenced by cognitive factor from the highest levels, such as the memory, attention and learning. The sensory deprivation caused by hearing loss from the conductive type, frequently in population with cleft lip and palate, can affect many cognitive functions - among them the attention, besides harm the school performance, linguistic and interpersonal. Objective: Verify the perception of the parents of children with cleft lip and palate about the hearing attention of their kids. Method: Retrospective study of infants with any type of cleft lip and palate, without any genetic syndrome associate which parents answered a relevant questionnaire about the auditory attention skills. Results: 44 are from the male kind and 26 from the female kind, 35,71% of the answers were affirmative for the hearing loss and 71,43% to otologic infections. Conclusion: Most of the interviewed parents pointed at least one of the behaviors related to attention contained in the questionnaire, indicating that the presence of cleft lip and palate can be related to difficulties in hearing attention.

  1. Children's auditory working memory performance in degraded listening conditions.

    Science.gov (United States)

    Osman, Homira; Sullivan, Jessica R

    2014-08-01

    The objectives of this study were to determine (a) whether school-age children with typical hearing demonstrate poorer auditory working memory performance in multitalker babble at degraded signal-to-noise ratios than in quiet; and (b) whether the amount of cognitive demand of the task contributed to differences in performance in noise. It was hypothesized that stressing the working memory system with the presence of noise would impede working memory processes in real time and result in poorer working memory performance in degraded conditions. Twenty children with typical hearing between 8 and 10 years old were tested using 4 auditory working memory tasks (Forward Digit Recall, Backward Digit Recall, Listening Recall Primary, and Listening Recall Secondary). Stimuli were from the standardized Working Memory Test Battery for Children. Each task was administered in quiet and in 4-talker babble noise at 0 dB and -5 dB signal-to-noise ratios. Children's auditory working memory performance was systematically decreased in the presence of multitalker babble noise compared with quiet. Differences between low-complexity and high-complexity tasks were observed, with children performing more poorly on tasks with greater storage and processing demands. There was no interaction between noise and complexity of task. All tasks were negatively impacted similarly by the addition of noise. Auditory working memory performance was negatively impacted by the presence of multitalker babble noise. Regardless of complexity of task, noise had a similar effect on performance. These findings suggest that the addition of noise inhibits auditory working memory processes in real time for school-age children.

  2. Desempenho nas habilidades auditivas de atenção seletiva e memória auditiva em um grupo de idosos protetizados: influência de perda auditiva, idade e gênero Performance in the auditory abilities of selective attention and hearing memory in a group of elderly with hearing aids: Influence of hearing loss, age and gender

    Directory of Open Access Journals (Sweden)

    Leonardo Henrique Buss

    2012-01-01

    Full Text Available OBJETIVOS: verificar o desempenho nas habilidades auditivas de atenção seletiva e memória auditiva de idosos protetizados e relacioná-lo com o grau e configuração de perda auditiva, o gênero e a idade. MÉTODO: foram avaliados 29 idosos de 60 a 84 anos, sendo 17 (58,62% do gênero feminino e 12 (41,38% do gênero masculino. As avaliações realizadas incluíram meatoscopia, audiometria tonal liminar e aplicação do teste SSW em português. RESULTADOS: a análise dos dados permitiu verificar que, neste grupo de indivíduos, a idade e o grau de perda auditiva influenciaram significantemente nos escores obtidos na avaliação do processamento auditivo, diferentemente das demais variáveis. Os idosos que apresentaram perda auditiva de grau leve com configuração horizontal obtiveram escores significantemente superiores na avaliação do processamento auditivo comparados com os portadores de perda auditiva de grau moderado com configuração horizontal ou grau moderado com configuração descendente. Idosos pertencentes a faixa etária de 60-69 obtiveram desempenho superiormente significante comparado com idosos na faixa etária de 80-89 CONCLUSÃO: concluiu-se que o grau de perda auditiva e a idade influenciam nos resultados da avaliação do processamento auditivo. O gênero e a configuração de perda auditiva não foram fatores determinantes na avaliação do processamento auditivo.PURPOSE: to verify the performance in the auditory abilities of selective attention and hearing memory of elderly with prosthesis and relate it to the degree and the configuration of hearing loss, the gender and the age. METHOD: 29 elderly people from 60 to 84 years old were evaluated, 17 of them (58,62% females and 12 (41,38% males. The evaluations carried out included meatoscopy, audiometry evaluation and the use of the SSW test in Portuguese. RESULTS: the analysis of the data showed that, in this group of individuals, the age and the degree of auditory loss

  3. Startle Auditory Stimuli Enhance the Performance of Fast Dynamic Contractions

    Science.gov (United States)

    Fernandez-Del-Olmo, Miguel; Río-Rodríguez, Dan; Iglesias-Soler, Eliseo; Acero, Rafael M.

    2014-01-01

    Fast reaction times and the ability to develop a high rate of force development (RFD) are crucial for sports performance. However, little is known regarding the relationship between these parameters. The aim of this study was to investigate the effects of auditory stimuli of different intensities on the performance of a concentric bench-press exercise. Concentric bench-presses were performed by thirteen trained subjects in response to three different conditions: a visual stimulus (VS); a visual stimulus accompanied by a non-startle auditory stimulus (AS); and a visual stimulus accompanied by a startle auditory stimulus (SS). Peak RFD, peak velocity, onset movement, movement duration and electromyography from pectoralis and tricep muscles were recorded. The SS condition induced an increase in the RFD and peak velocity and a reduction in the movement onset and duration, in comparison with the VS and AS condition. The onset activation of the pectoralis and tricep muscles was shorter for the SS than for the VS and AS conditions. These findings point out to specific enhancement effects of loud auditory stimulation on the rate of force development. This is of relevance since startle stimuli could be used to explore neural adaptations to resistance training. PMID:24489967

  4. Startle auditory stimuli enhance the performance of fast dynamic contractions.

    Directory of Open Access Journals (Sweden)

    Miguel Fernandez-Del-Olmo

    Full Text Available Fast reaction times and the ability to develop a high rate of force development (RFD are crucial for sports performance. However, little is known regarding the relationship between these parameters. The aim of this study was to investigate the effects of auditory stimuli of different intensities on the performance of a concentric bench-press exercise. Concentric bench-presses were performed by thirteen trained subjects in response to three different conditions: a visual stimulus (VS; a visual stimulus accompanied by a non-startle auditory stimulus (AS; and a visual stimulus accompanied by a startle auditory stimulus (SS. Peak RFD, peak velocity, onset movement, movement duration and electromyography from pectoralis and tricep muscles were recorded. The SS condition induced an increase in the RFD and peak velocity and a reduction in the movement onset and duration, in comparison with the VS and AS condition. The onset activation of the pectoralis and tricep muscles was shorter for the SS than for the VS and AS conditions. These findings point out to specific enhancement effects of loud auditory stimulation on the rate of force development. This is of relevance since startle stimuli could be used to explore neural adaptations to resistance training.

  5. The effects of auditory stimulation on the arithmetic performance of children with ADHD and nondisabled children.

    Science.gov (United States)

    Abikoff, H; Courtney, M E; Szeibel, P J; Koplewicz, H S

    1996-05-01

    This study evaluated the impact of extra-task stimulation on the academic task performance of children with attention-deficit/hyperactivity disorder (ADHD). Twenty boys with ADHD and 20 nondisabled boys worked on an arithmetic task during high stimulation (music), low stimulation (speech), and no stimulation (silence). The music "distractors" were individualized for each child, and the arithmetic problems were at each child's ability level. A significant Group x Condition interaction was found for number of correct answers. Specifically, the nondisabled youngsters performed similarly under all three auditory conditions. In contrast, the children with ADHD did significantly better under the music condition than speech or silence conditions. However, a significant Group x Order interaction indicated that arithmetic performance was enhanced only for those children with ADHD who received music as the first condition. The facilitative effects of salient auditory stimulation on the arithmetic performance of the children with ADHD provide some support for the underarousal/optimal stimulation theory of ADHD.

  6. Cold-Blooded Attention: Finger Temperature Predicts Attentional Performance.

    Science.gov (United States)

    Vergara, Rodrigo C; Moënne-Loccoz, Cristóbal; Maldonado, Pedro E

    2017-01-01

    Thermal stress has been shown to increase the chances of unsafe behavior during industrial and driving performances due to reductions in mental and attentional resources. Nonetheless, establishing appropriate safety standards regarding environmental temperature has been a major problem, as modulations are also be affected by the task type, complexity, workload, duration, and previous experience with the task. To bypass this attentional and thermoregulatory problem, we focused on the body rather than environmental temperature. Specifically, we measured tympanic, forehead, finger and environmental temperatures accompanied by a battery of attentional tasks. We considered a 10 min baseline period wherein subjects were instructed to sit and relax, followed by three attentional tasks: a continuous performance task (CPT), a flanker task (FT) and a counting task (CT). Using multiple linear regression models, we evaluated which variable(s) were the best predictors of performance. The results showed a decrement in finger temperature due to instruction and task engagement that was absent when the subject was instructed to relax. No changes were observed in tympanic or forehead temperatures, while the environmental temperature remained almost constant for each subject. Specifically, the magnitude of the change in finger temperature was the best predictor of performance in all three attentional tasks. The results presented here suggest that finger temperature can be used as a predictor of alertness, as it predicted performance in attentional tasks better than environmental temperature. These findings strongly support that peripheral temperature can be used as a tool to prevent unsafe behaviors and accidents.

  7. Cold-Blooded Attention: Finger Temperature Predicts Attentional Performance

    Directory of Open Access Journals (Sweden)

    Rodrigo C. Vergara

    2017-09-01

    Full Text Available Thermal stress has been shown to increase the chances of unsafe behavior during industrial and driving performances due to reductions in mental and attentional resources. Nonetheless, establishing appropriate safety standards regarding environmental temperature has been a major problem, as modulations are also be affected by the task type, complexity, workload, duration, and previous experience with the task. To bypass this attentional and thermoregulatory problem, we focused on the body rather than environmental temperature. Specifically, we measured tympanic, forehead, finger and environmental temperatures accompanied by a battery of attentional tasks. We considered a 10 min baseline period wherein subjects were instructed to sit and relax, followed by three attentional tasks: a continuous performance task (CPT, a flanker task (FT and a counting task (CT. Using multiple linear regression models, we evaluated which variable(s were the best predictors of performance. The results showed a decrement in finger temperature due to instruction and task engagement that was absent when the subject was instructed to relax. No changes were observed in tympanic or forehead temperatures, while the environmental temperature remained almost constant for each subject. Specifically, the magnitude of the change in finger temperature was the best predictor of performance in all three attentional tasks. The results presented here suggest that finger temperature can be used as a predictor of alertness, as it predicted performance in attentional tasks better than environmental temperature. These findings strongly support that peripheral temperature can be used as a tool to prevent unsafe behaviors and accidents.

  8. Differential relationship of recent self-reported stress and acute anxiety with divided attention performance.

    Science.gov (United States)

    Petrac, D C; Bedwell, J S; Renk, K; Orem, D M; Sims, V

    2009-07-01

    There have been relatively few studies on the relationship between recent perceived environmental stress and cognitive performance, and the existing studies do not control for state anxiety during the cognitive testing. The current study addressed this need by examining recent self-reported environmental stress and divided attention performance, while controlling for state anxiety. Fifty-four university undergraduates who self-reported a wide range of perceived recent stress (10-item perceived stress scale) completed both single and dual (simultaneous auditory and visual stimuli) continuous performance tests. Partial correlation analysis showed a statistically significant positive correlation between perceived stress and the auditory omission errors from the dual condition, after controlling for state anxiety and auditory omission errors from the single condition (r = 0.41). This suggests that increased environmental stress relates to decreased divided attention performance in auditory vigilance. In contrast, an increase in state anxiety (controlling for perceived stress) was related to a decrease in auditory omission errors from the dual condition (r = - 0.37), which suggests that state anxiety may improve divided attention performance. Results suggest that further examination of the neurobiological consequences of environmental stress on divided attention and other executive functioning tasks is needed.

  9. Predictors of auditory performance in hearing-aid users: The role of cognitive function and auditory lifestyle (A)

    DEFF Research Database (Denmark)

    Vestergaard, Martin David

    2006-01-01

    no objective benefit can be measured. It has been suggested that lack of agreement between various hearing-aid outcome components can be explained by individual differences in cognitive function and auditory lifestyle. We measured speech identification, self-report outcome, spectral and temporal resolution...... of hearing, cognitive skills, and auditory lifestyle in 25 new hearing-aid users. The purpose was to assess the predictive power of the nonauditory measures while looking at the relationships between measures from various auditory-performance domains. The results showed that only moderate correlation exists...... between objective and subjective hearing-aid outcome. Different self-report outcome measures showed a different amount of correlation with objective auditory performance. Cognitive skills were found to play a role in explaining speech performance and spectral and temporal abilities, and auditory lifestyle...

  10. Development of Attentional Control of Verbal Auditory Perception from Middle to Late Childhood: Comparisons to Healthy Aging

    Science.gov (United States)

    Passow, Susanne; Müller, Maike; Westerhausen, René; Hugdahl, Kenneth; Wartenburger, Isabell; Heekeren, Hauke R.; Lindenberger, Ulman; Li, Shu-Chen

    2013-01-01

    Multitalker situations confront listeners with a plethora of competing auditory inputs, and hence require selective attention to relevant information, especially when the perceptual saliency of distracting inputs is high. This study augmented the classical forced-attention dichotic listening paradigm by adding an interaural intensity manipulation…

  11. Global dynamics of selective attention and its lapses in primary auditory cortex.

    Science.gov (United States)

    Lakatos, Peter; Barczak, Annamaria; Neymotin, Samuel A; McGinnis, Tammy; Ross, Deborah; Javitt, Daniel C; O'Connell, Monica Noelle

    2016-12-01

    Previous research demonstrated that while selectively attending to relevant aspects of the external world, the brain extracts pertinent information by aligning its neuronal oscillations to key time points of stimuli or their sampling by sensory organs. This alignment mechanism is termed oscillatory entrainment. We investigated the global, long-timescale dynamics of this mechanism in the primary auditory cortex of nonhuman primates, and hypothesized that lapses of entrainment would correspond to lapses of attention. By examining electrophysiological and behavioral measures, we observed that besides the lack of entrainment by external stimuli, attentional lapses were also characterized by high-amplitude alpha oscillations, with alpha frequency structuring of neuronal ensemble and single-unit operations. Entrainment and alpha-oscillation-dominated periods were strongly anticorrelated and fluctuated rhythmically at an ultra-slow rate. Our results indicate that these two distinct brain states represent externally versus internally oriented computational resources engaged by large-scale task-positive and task-negative functional networks.

  12. Detection of auditory signals in quiet and noisy backgrounds while performing a visuo-spatial task

    Directory of Open Access Journals (Sweden)

    Vishakha W Rawool

    2016-01-01

    Full Text Available Context: The ability to detect important auditory signals while performing visual tasks may be further compounded by background chatter. Thus, it is important to know how task performance may interact with background chatter to hinder signal detection. Aim: To examine any interactive effects of speech spectrum noise and task performance on the ability to detect signals. Settings and Design: The setting was a sound-treated booth. A repeated measures design was used. Materials and Methods: Auditory thresholds of 20 normal adults were determined at 0.5, 1, 2 and 4 kHz in the following conditions presented in a random order: (1 quiet with attention; (2 quiet with a visuo-spatial task or puzzle (distraction; (3 noise with attention and (4 noise with task. Statistical Analysis: Multivariate analyses of variance (MANOVA with three repeated factors (quiet versus noise, visuo-spatial task versus no task, signal frequency. Results: MANOVA revealed significant main effects for noise and signal frequency and significant noise–frequency and task–frequency interactions. Distraction caused by performing the task worsened the thresholds for tones presented at the beginning of the experiment and had no effect on tones presented in the middle. At the end of the experiment, thresholds (4 kHz were better while performing the task than those obtained without performing the task. These effects were similar across the quiet and noise conditions. Conclusion: Detection of auditory signals is difficult at the beginning of a distracting visuo-spatial task but over time, task learning and auditory training effects can nullify the effect of distraction and may improve detection of high frequency sounds.

  13. Frequency-Selective Attention in Auditory Scenes Recruits Frequency Representations Throughout Human Superior Temporal Cortex.

    Science.gov (United States)

    Riecke, Lars; Peters, Judith C; Valente, Giancarlo; Kemper, Valentin G; Formisano, Elia; Sorger, Bettina

    2017-05-01

    A sound of interest may be tracked amid other salient sounds by focusing attention on its characteristic features including its frequency. Functional magnetic resonance imaging findings have indicated that frequency representations in human primary auditory cortex (AC) contribute to this feat. However, attentional modulations were examined at relatively low spatial and spectral resolutions, and frequency-selective contributions outside the primary AC could not be established. To address these issues, we compared blood oxygenation level-dependent (BOLD) responses in the superior temporal cortex of human listeners while they identified single frequencies versus listened selectively for various frequencies within a multifrequency scene. Using best-frequency mapping, we observed that the detailed spatial layout of attention-induced BOLD response enhancements in primary AC follows the tonotopy of stimulus-driven frequency representations-analogous to the "spotlight" of attention enhancing visuospatial representations in retinotopic visual cortex. Moreover, using an algorithm trained to discriminate stimulus-driven frequency representations, we could successfully decode the focus of frequency-selective attention from listeners' BOLD response patterns in nonprimary AC. Our results indicate that the human brain facilitates selective listening to a frequency of interest in a scene by reinforcing the fine-grained activity pattern throughout the entire superior temporal cortex that would be evoked if that frequency was present alone. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Action video games improve reading abilities and visual-to-auditory attentional shifting in English-speaking children with dyslexia.

    Science.gov (United States)

    Franceschini, Sandro; Trevisan, Piergiorgio; Ronconi, Luca; Bertoni, Sara; Colmar, Susan; Double, Kit; Facoetti, Andrea; Gori, Simone

    2017-07-19

    Dyslexia is characterized by difficulties in learning to read and there is some evidence that action video games (AVG), without any direct phonological or orthographic stimulation, improve reading efficiency in Italian children with dyslexia. However, the cognitive mechanism underlying this improvement and the extent to which the benefits of AVG training would generalize to deep English orthography, remain two critical questions. During reading acquisition, children have to integrate written letters with speech sounds, rapidly shifting their attention from visual to auditory modality. In our study, we tested reading skills and phonological working memory, visuo-spatial attention, auditory, visual and audio-visual stimuli localization, and cross-sensory attentional shifting in two matched groups of English-speaking children with dyslexia before and after they played AVG or non-action video games. The speed of words recognition and phonological decoding increased after playing AVG, but not non-action video games. Furthermore, focused visuo-spatial attention and visual-to-auditory attentional shifting also improved only after AVG training. This unconventional reading remediation program also increased phonological short-term memory and phoneme blending skills. Our report shows that an enhancement of visuo-spatial attention and phonological working memory, and an acceleration of visual-to-auditory attentional shifting can directly translate into better reading in English-speaking children with dyslexia.

  15. Effect of background music on auditory-verbal memory performance

    OpenAIRE

    Sona Matloubi; Ali Mohammadzadeh; Zahra Jafari; Alireza Akbarzade Baghban

    2014-01-01

    Background and Aim: Music exists in all cultures; many scientists are seeking to understand how music effects cognitive development such as comprehension, memory, and reading skills. More recently, a considerable number of neuroscience studies on music have been developed. This study aimed to investigate the effects of null and positive background music in comparison with silence on auditory-verbal memory performance.Methods: Forty young adults (male and female) with normal hearing, aged betw...

  16. Level of intrauterine cocaine exposure and neuropsychological test scores in preadolescence: subtle effects on auditory attention and narrative memory.

    Science.gov (United States)

    Beeghly, Marjorie; Rose-Jacobs, Ruth; Martin, Brett M; Cabral, Howard J; Heeren, Timothy C; Frank, Deborah A

    2014-01-01

    Neuropsychological processes such as attention and memory contribute to children's higher-level cognitive and language functioning and predict academic achievement. The goal of this analysis was to evaluate whether level of intrauterine cocaine exposure (IUCE) alters multiple aspects of preadolescents' neuropsychological functioning assessed using a single age-referenced instrument, the NEPSY: A Developmental Neuropsychological Assessment (NEPSY) (Korkman et al., 1998), after controlling for relevant covariates. Participants included 137 term 9.5-year-old children from low-income urban backgrounds (51% male, 90% African American/Caribbean) from an ongoing prospective longitudinal study. Level of IUCE was assessed in the newborn period using infant meconium and maternal report. 52% of the children had IUCE (65% with lighter IUCE, and 35% with heavier IUCE), and 48% were unexposed. Infants with Fetal Alcohol Syndrome, HIV seropositivity, or intrauterine exposure to illicit substances other than cocaine and marijuana were excluded. At the 9.5-year follow-up visit, trained examiners masked to IUCE and background variables evaluated children's neuropsychological functioning using the NEPSY. The association between level of IUCE and NEPSY outcomes was evaluated in a series of linear regressions controlling for intrauterine exposure to other substances and relevant child, caregiver, and demographic variables. Results indicated that level of IUCE was associated with lower scores on the Auditory Attention and Narrative Memory tasks, both of which require auditory information processing and sustained attention for successful performance. However, results did not follow the expected ordinal, dose-dependent pattern. Children's neuropsychological test scores were also altered by a variety of other biological and psychosocial factors. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Level of Intrauterine Cocaine Exposure and Neuropsychological Test Scores in Preadolescence: Subtle Effects on Auditory Attention and Narrative Memory

    Science.gov (United States)

    Beeghly, Marjorie; Rose-Jacobs, Ruth; Martin, Brett M.; Cabral, Howard J.; Heeren, Timothy C.; Frank, Deborah A.

    2014-01-01

    Neuropsychological processes such as attention and memory contribute to children's higher-level cognitive and language functioning and predict academic achievement. The goal of this analysis was to evaluate whether level of intrauterine cocaine exposure (IUCE) alters multiple aspects of preadolescents' neuropsychological functioning assessed using a single age-referenced instrument, the NEPSY: A Developmental Neuropsychological Assessment (NEPSY) [71], after controlling for relevant covariates. Participants included 137 term 9.5-year-old children from low-income urban backgrounds (51% male, 90% African American/Caribbean) from an ongoing prospective longitudinal study. Level of IUCE was assessed in the newborn period using infant meconium and maternal report. 52% of the children had IUCE (65% with lighter IUCE, and 35% with heavier IUCE), and 48% were unexposed. Infants with Fetal Alcohol Syndrome, HIV seropositivity, or intrauterine exposure to illicit substances other than cocaine and marijuana were excluded. At the 9.5-year follow-up visit, trained examiners masked to IUCE and background variables evaluated children's neuropsychological functioning using the NEPSY. The association between level of IUCE and NEPSY outcomes was evaluated in a series of linear regressions controlling for intrauterine exposure to other substances and relevant child, caregiver, and demographic variables. Results indicated that level of IUCE was associated with lower scores on the Auditory Attention and Narrative Memory tasks, both of which require auditory information processing and sustained attention for successful performance. However, results did not follow the expected ordinal, dose-dependent pattern. Children's neuropsychological test scores were also altered by a variety of other biological and psychosocial factors. PMID:24978115

  18. Auditory and Visual Working Memory Functioning in College Students with Attention-Deficit/Hyperactivity Disorder and/or Learning Disabilities.

    Science.gov (United States)

    Liebel, Spencer W; Nelson, Jason M

    2017-12-01

    We investigated the auditory and visual working memory functioning in college students with attention-deficit/hyperactivity disorder, learning disabilities, and clinical controls. We examined the role attention-deficit/hyperactivity disorder subtype status played in working memory functioning. The unique influence that both domains of working memory have on reading and math abilities was investigated. A sample of 268 individuals seeking postsecondary education comprise four groups of the present study: 110 had an attention-deficit/hyperactivity disorder diagnosis only, 72 had a learning disability diagnosis only, 35 had comorbid attention-deficit/hyperactivity disorder and learning disability diagnoses, and 60 individuals without either of these disorders comprise a clinical control group. Participants underwent a comprehensive neuropsychological evaluation, and licensed psychologists employed a multi-informant, multi-method approach in obtaining diagnoses. In the attention-deficit/hyperactivity disorder only group, there was no difference between auditory and visual working memory functioning, t(100) = -1.57, p = .12. In the learning disability group, however, auditory working memory functioning was significantly weaker compared with visual working memory, t(71) = -6.19, p attention-deficit/hyperactivity disorder only group, there were no auditory or visual working memory functioning differences between participants with either a predominantly inattentive type or a combined type diagnosis. Visual working memory did not incrementally contribute to the prediction of academic achievement skills. Individuals with attention-deficit/hyperactivity disorder did not demonstrate significant working memory differences compared with clinical controls. Individuals with a learning disability demonstrated weaker auditory working memory than individuals in either the attention-deficit/hyperactivity or clinical control groups. © The Author 2017. Published by Oxford University

  19. Measuring the performance of visual to auditory information conversion.

    Directory of Open Access Journals (Sweden)

    Shern Shiou Tan

    Full Text Available BACKGROUND: Visual to auditory conversion systems have been in existence for several decades. Besides being among the front runners in providing visual capabilities to blind users, the auditory cues generated from image sonification systems are still easier to learn and adapt to compared to other similar techniques. Other advantages include low cost, easy customizability, and universality. However, every system developed so far has its own set of strengths and weaknesses. In order to improve these systems further, we propose an automated and quantitative method to measure the performance of such systems. With these quantitative measurements, it is possible to gauge the relative strengths and weaknesses of different systems and rank the systems accordingly. METHODOLOGY: Performance is measured by both the interpretability and also the information preservation of visual to auditory conversions. Interpretability is measured by computing the correlation of inter image distance (IID and inter sound distance (ISD whereas the information preservation is computed by applying Information Theory to measure the entropy of both visual and corresponding auditory signals. These measurements provide a basis and some insights on how the systems work. CONCLUSIONS: With an automated interpretability measure as a standard, more image sonification systems can be developed, compared, and then improved. Even though the measure does not test systems as thoroughly as carefully designed psychological experiments, a quantitative measurement like the one proposed here can compare systems to a certain degree without incurring much cost. Underlying this research is the hope that a major breakthrough in image sonification systems will allow blind users to cost effectively regain enough visual functions to allow them to lead secure and productive lives.

  20. Evidence of Reliability and Validity for a Children’s Auditory Continuous Performance Test

    Directory of Open Access Journals (Sweden)

    Michael J. Lasee

    2013-11-01

    Full Text Available Continuous Performance Tests (CPTs are commonly utilized clinical measures of attention and response inhibition. While there have been many studies of CPTs that utilize a visual format, there is considerably less research employing auditory CPTs. The current study provides initial reliability and validity evidence for the Auditory Vigilance Screening Measure (AVSM, a newly developed CPT. Participants included 105 five- to nine-year-old children selected from two rural Midwestern school districts. Reliability data for the AVSM was collected through retesting of 42 participants. Validity was evaluated through correlation of AVSM scales with subscales from the ADHD Rating Scale–IV. Test–retest reliability coefficients ranged from .62 to .74 for AVSM subscales. A significant (r = .31 correlation was obtained between the AVSM Impulsivity Scale and teacher ratings of inattention. Limitations and implications for future study are discussed.

  1. Early auditory evoked potential is modulated by selective attention and related to individual differences in visual working memory capacity.

    Science.gov (United States)

    Giuliano, Ryan J; Karns, Christina M; Neville, Helen J; Hillyard, Steven A

    2014-12-01

    A growing body of research suggests that the predictive power of working memory (WM) capacity for measures of intellectual aptitude is due to the ability to control attention and select relevant information. Crucially, attentional mechanisms implicated in controlling access to WM are assumed to be domain-general, yet reports of enhanced attentional abilities in individuals with larger WM capacities are primarily within the visual domain. Here, we directly test the link between WM capacity and early attentional gating across sensory domains, hypothesizing that measures of visual WM capacity should predict an individual's capacity to allocate auditory selective attention. To address this question, auditory ERPs were recorded in a linguistic dichotic listening task, and individual differences in ERP modulations by attention were correlated with estimates of WM capacity obtained in a separate visual change detection task. Auditory selective attention enhanced ERP amplitudes at an early latency (ca. 70-90 msec), with larger P1 components elicited by linguistic probes embedded in an attended narrative. Moreover, this effect was associated with greater individual estimates of visual WM capacity. These findings support the view that domain-general attentional control mechanisms underlie the wide variation of WM capacity across individuals.

  2. Early Auditory Evoked Potential Is Modulated by Selective Attention and Related to Individual Differences in Visual Working Memory Capacity

    Science.gov (United States)

    Giuliano, Ryan J.; Karns, Christina M.; Neville, Helen J.; Hillyard, Steven A.

    2015-01-01

    A growing body of research suggests that the predictive power of working memory (WM) capacity for measures of intellectual aptitude is due to the ability to control attention and select relevant information. Crucially, attentional mechanisms implicated in controlling access to WM are assumed to be domain-general, yet reports of enhanced attentional abilities in individuals with larger WM capacities are primarily within the visual domain. Here, we directly test the link between WM capacity and early attentional gating across sensory domains, hypothesizing that measures of visual WM capacity should predict an individual’s capacity to allocate auditory selective attention. To address this question, auditory ERPs were recorded in a linguistic dichotic listening task, and individual differences in ERP modulations by attention were correlated with estimates of WM capacity obtained in a separate visual change detection task. Auditory selective attention enhanced ERP amplitudes at an early latency (ca. 70–90 msec), with larger P1 components elicited by linguistic probes embedded in an attended narrative. Moreover, this effect was associated with greater individual estimates of visual WM capacity. These findings support the view that domain-general attentional control mechanisms underlie the wide variation of WM capacity across individuals. PMID:25000526

  3. Auditory Working Memory Load Impairs Visual Ventral Stream Processing: Toward a Unified Model of Attentional Load

    Science.gov (United States)

    Klemen, Jane; Buchel, Christian; Buhler, Mira; Menz, Mareike M.; Rose, Michael

    2010-01-01

    Attentional interference between tasks performed in parallel is known to have strong and often undesired effects. As yet, however, the mechanisms by which interference operates remain elusive. A better knowledge of these processes may facilitate our understanding of the effects of attention on human performance and the debilitating consequences…

  4. Auditory spatial attention to speech and complex non-speech sounds in children with autism spectrum disorder.

    Science.gov (United States)

    Soskey, Laura N; Allen, Paul D; Bennetto, Loisa

    2017-08-01

    One of the earliest observable impairments in autism spectrum disorder (ASD) is a failure to orient to speech and other social stimuli. Auditory spatial attention, a key component of orienting to sounds in the environment, has been shown to be impaired in adults with ASD. Additionally, specific deficits in orienting to social sounds could be related to increased acoustic complexity of speech. We aimed to characterize auditory spatial attention in children with ASD and neurotypical controls, and to determine the effect of auditory stimulus complexity on spatial attention. In a spatial attention task, target and distractor sounds were played randomly in rapid succession from speakers in a free-field array. Participants attended to a central or peripheral location, and were instructed to respond to target sounds at the attended location while ignoring nearby sounds. Stimulus-specific blocks evaluated spatial attention for simple non-speech tones, speech sounds (vowels), and complex non-speech sounds matched to vowels on key acoustic properties. Children with ASD had significantly more diffuse auditory spatial attention than neurotypical children when attending front, indicated by increased responding to sounds at adjacent non-target locations. No significant differences in spatial attention emerged based on stimulus complexity. Additionally, in the ASD group, more diffuse spatial attention was associated with more severe ASD symptoms but not with general inattention symptoms. Spatial attention deficits have important implications for understanding social orienting deficits and atypical attentional processes that contribute to core deficits of ASD. Autism Res 2017, 10: 1405-1416. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. © 2017 International Society for Autism Research, Wiley Periodicals, Inc.

  5. Contingent capture of involuntary visual attention interferes with detection of auditory stimuli

    OpenAIRE

    Kamke, Marc R.; Harris, Jill

    2014-01-01

    The involuntary capture of attention by salient visual stimuli can be influenced by the behavioral goals of an observer. For example, when searching for a target item, irrelevant items that possess the target-defining characteristic capture attention more strongly than items not possessing that feature. Such contingent capture involves a shift of spatial attention toward the item with the target-defining characteristic. It is not clear, however, if the associated decrements in performance for...

  6. Predictive Power of Attention and Reading Readiness Variables on Auditory Reasoning and Processing Skills of Six-Year-Old Children

    Science.gov (United States)

    Erbay, Filiz

    2013-01-01

    The aim of present research was to describe the relation of six-year-old children's attention and reading readiness skills (general knowledge, word comprehension, sentences, and matching) with their auditory reasoning and processing skills. This was a quantitative study based on scanning model. Research sampling consisted of 204 kindergarten…

  7. Developmental Dyslexia: Exploring How Much Phonological and Visual Attention Span Disorders Are Linked to Simultaneous Auditory Processing Deficits

    Science.gov (United States)

    Lallier, Marie; Donnadieu, Sophie; Valdois, Sylviane

    2013-01-01

    The simultaneous auditory processing skills of 17 dyslexic children and 17 skilled readers were measured using a dichotic listening task. Results showed that the dyslexic children exhibited difficulties reporting syllabic material when presented simultaneously. As a measure of simultaneous visual processing, visual attention span skills were…

  8. Paying More Attention to Attention: Improving the Performance of Convolutional Neural Networks via Attention Transfer

    OpenAIRE

    Zagoruyko, Sergey; Komodakis, Nikos

    2016-01-01

    Attention plays a critical role in human visual experience. Furthermore, it has recently been demonstrated that attention can also play an important role in the context of applying artificial neural networks to a variety of tasks from fields such as computer vision and NLP. In this work we show that, by properly defining attention for convolutional neural networks, we can actually use this type of information in order to significantly improve the performance of a student CNN network by forcin...

  9. Attention deficits revealed by passive auditory change detection for pure tones and lexical tones in ADHD children.

    Science.gov (United States)

    Yang, Ming-Tao; Hsu, Chun-Hsien; Yeh, Pei-Wen; Lee, Wang-Tso; Liang, Jao-Shwann; Fu, Wen-Mei; Lee, Chia-Ying

    2015-01-01

    Inattention (IA) has been a major problem in children with attention deficit/hyperactivity disorder (ADHD), accounting for their behavioral and cognitive dysfunctions. However, there are at least three processing steps underlying attentional control for auditory change detection, namely pre-attentive change detection, involuntary attention orienting, and attention reorienting for further evaluation. This study aimed to examine whether children with ADHD would show deficits in any of these subcomponents by using mismatch negativity (MMN), P3a, and late discriminative negativity (LDN) as event-related potential (ERP) markers, under the passive auditory oddball paradigm. Two types of stimuli-pure tones and Mandarin lexical tones-were used to examine if the deficits were general across linguistic and non-linguistic domains. Participants included 15 native Mandarin-speaking children with ADHD and 16 age-matched controls (across groups, age ranged between 6 and 15 years). Two passive auditory oddball paradigms (lexical tones and pure tones) were applied. The pure tone oddball paradigm included a standard stimulus (1000 Hz, 80%) and two deviant stimuli (1015 and 1090 Hz, 10% each). The Mandarin lexical tone oddball paradigm's standard stimulus was /yi3/ (80%) and two deviant stimuli were /yi1/ and /yi2/ (10% each). The results showed no MMN difference, but did show attenuated P3a and enhanced LDN to the large deviants for both pure and lexical tone changes in the ADHD group. Correlation analysis showed that children with higher ADHD tendency, as indexed by parents' and teachers' ratings on ADHD symptoms, showed less positive P3a amplitudes when responding to large lexical tone deviants. Thus, children with ADHD showed impaired auditory change detection for both pure tones and lexical tones in both involuntary attention switching, and attention reorienting for further evaluation. These ERP markers may therefore be used for the evaluation of anti-ADHD drugs that aim to

  10. Attention deficits revealed by passive auditory change detection for pure tones and lexical tones in ADHD children

    Directory of Open Access Journals (Sweden)

    Ming-Tao eYang

    2015-08-01

    Full Text Available Inattention has been a major problem in children with attention deficit/hyperactivity disorder (ADHD, accounting for their behavioral and cognitive dysfunctions. However, there are at least three processing steps underlying attentional control for auditory change detection, namely pre-attentive change detection, involuntary attention orienting, and attention reorienting for further evaluation. This study aimed to examine whether children with ADHD would show deficits in any of these subcomponents by using mismatch negativity (MMN, P3a, and late discriminative negativity (LDN as event-related potential (ERP markers, under the passive auditory oddball paradigm. Two types of stimuli - pure tones and Mandarin lexical tones - were used to examine if the deficits were general across linguistic and non-linguistic domains. Participants included 15 native Mandarin-speaking children with ADHD and 16 age-matched controls (across groups, age ranged between 6 and 15 years. Two passive auditory oddball paradigms (lexical tones and pure tones were applied. Pure tone paradigm included standard stimuli (1000 Hz, 80% and two deviant stimuli (1015 Hz and 1090 Hz, 10% each. The Mandarin lexical tone paradigm’s standard stimuli was /yi3/ (80% and two deviant stimuli were /yi1/ and /yi2/ (10% each. The results showed no MMN difference, but did show attenuated P3a and enhanced LDN to the large deviants for both pure and lexical tone changes in the ADHD group. Correlation analysis showed that children with higher ADHD tendency, as indexed by parents’ and teachers’ rating on ADHD symptoms, showed less positive P3a amplitudes when responding to large lexical tone deviants. Thus, children with ADHD showed impaired auditory change detection for both pure tones and lexical tones in both involuntary attention switching, and attention reorienting for further evaluation. These ERP markers may therefore be used for evaluation of anti-ADHD drugs that aim to alleviate these

  11. Background music: effects on attention performance.

    Science.gov (United States)

    Shih, Yi-Nuo; Huang, Rong-Hwa; Chiang, Hsin-Yu

    2012-01-01

    Previous studies indicate that noise may affect worker attention. However, some background music in the work environment can increase worker satisfaction and productivity. This study compared how music with, and without, lyrics affects human attention. One hundred and two participants, aged 20-24 years, were recruited into this study. Fifty-six males and 46 females participated in this study. Background music with, and without lyrics, was tested for effects on listener concentration in attention testing using a randomized controlled trial (RCT) study. The comparison results revealed that background music with lyrics had significant negative effects on concentration and attention. The findings suggest that, if background music is played in the work environment, music without lyrics is preferable because songs with lyrics are likely to reduce worker attention and performance.

  12. Spatial selective attention in a complex auditory environment such as polyphonic music.

    Science.gov (United States)

    Saupe, Katja; Koelsch, Stefan; Rübsamen, Rudolf

    2010-01-01

    To investigate the influence of spatial information in auditory scene analysis, polyphonic music (three parts in different timbres) was composed and presented in free field. Each part contained large falling interval jumps in the melody and the task of subjects was to detect these events in one part ("target part") while ignoring the other parts. All parts were either presented from the same location (0 degrees; overlap condition) or from different locations (-28 degrees, 0 degrees, and 28 degrees or -56 degrees, 0 degrees, and 56 degrees in the azimuthal plane), with the target part being presented either at 0 degrees or at one of the right-sided locations. Results showed that spatial separation of 28 degrees was sufficient for a significant improvement in target detection (i.e., in the detection of large interval jumps) compared to the overlap condition, irrespective of the position (frontal or right) of the target part. A larger spatial separation of the parts resulted in further improvements only if the target part was lateralized. These data support the notion of improvement in the suppression of interfering signals with spatial sound source separation. Additionally, the data show that the position of the relevant sound source influences auditory performance.

  13. The right planum temporale is involved in stimulus-driven, auditory attention--evidence from transcranial magnetic stimulation.

    Directory of Open Access Journals (Sweden)

    Marco Hirnstein

    Full Text Available It is well known that the planum temporale (PT area in the posterior temporal lobe carries out spectro-temporal analysis of auditory stimuli, which is crucial for speech, for example. There are suggestions that the PT is also involved in auditory attention, specifically in the discrimination and selection of stimuli from the left and right ear. However, direct evidence is missing so far. To examine the role of the PT in auditory attention we asked fourteen participants to complete the Bergen Dichotic Listening Test. In this test two different consonant-vowel syllables (e.g., "ba" and "da" are presented simultaneously, one to each ear, and participants are asked to verbally report the syllable they heard best or most clearly. Thus attentional selection of a syllable is stimulus-driven. Each participant completed the test three times: after their left and right PT (located with anatomical brain scans had been stimulated with repetitive transcranial magnetic stimulation (rTMS, which transiently interferes with normal brain functioning in the stimulated sites, and after sham stimulation, where participants were led to believe they had been stimulated but no rTMS was applied (control. After sham stimulation the typical right ear advantage emerged, that is, participants reported relatively more right than left ear syllables, reflecting a left-hemispheric dominance for language. rTMS over the right but not left PT significantly reduced the right ear advantage. This was the result of participants reporting more left and fewer right ear syllables after right PT stimulation, suggesting there was a leftward shift in stimulus selection. Taken together, our findings point to a new function of the PT in addition to auditory perception: particularly the right PT is involved in stimulus selection and (stimulus-driven, auditory attention.

  14. Acute stress alters auditory selective attention in humans independent of HPA: a study of evoked potentials.

    Directory of Open Access Journals (Sweden)

    Ludger Elling

    Full Text Available BACKGROUND: Acute stress is a stereotypical, but multimodal response to a present or imminent challenge overcharging an organism. Among the different branches of this multimodal response, the consequences of glucocorticoid secretion have been extensively investigated, mostly in connection with long-term memory (LTM. However, stress responses comprise other endocrine signaling and altered neuronal activity wholly independent of pituitary regulation. To date, knowledge of the impact of such "paracorticoidal" stress responses on higher cognitive functions is scarce. We investigated the impact of an ecological stressor on the ability to direct selective attention using event-related potentials in humans. Based on research in rodents, we assumed that a stress-induced imbalance of catecholaminergic transmission would impair this ability. METHODOLOGY/PRINCIPAL FINDINGS: The stressor consisted of a single cold pressor test. Auditory negative difference (Nd and mismatch negativity (MMN were recorded in a tonal dichotic listening task. A time series of such tasks confirmed an increased distractibility occurring 4-7 minutes after onset of the stressor as reflected by an attenuated Nd. Salivary cortisol began to rise 8-11 minutes after onset when no further modulations in the event-related potentials (ERP occurred, thus precluding a causal relationship. This effect may be attributed to a stress-induced activation of mesofrontal dopaminergic projections. It may also be attributed to an activation of noradrenergic projections. Known characteristics of the modulation of ERP by different stress-related ligands were used for further disambiguation of causality. The conjuncture of an attenuated Nd and an increased MMN might be interpreted as indicating a dopaminergic influence. The selective effect on the late portion of the Nd provides another tentative clue for this. CONCLUSIONS/SIGNIFICANCE: Prior studies have deliberately tracked the adrenocortical influence

  15. The impact of educational level on performance on auditory processing tests

    Directory of Open Access Journals (Sweden)

    Cristina F.B. Murphy

    2016-03-01

    Full Text Available Research has demonstrated that a higher level of education is associated with better performance on cognitive tests among middle-aged and elderly people. However, the effects of education on auditory processing skills have not yet been evaluated. Previous demonstrations of sensory-cognitive interactions in the aging process indicate the potential importance of this topic. Therefore, the primary purpose of this study was to investigate the performance of middle-aged and elderly people with different levels of formal education on auditory processing tests. A total of 177 adults with no evidence of cognitive, psychological or neurological conditions took part in the research. The participants completed a series of auditory assessments, including dichotic digit, frequency pattern and speech-in-noise tests. A working memory test was also performed to investigate the extent to which auditory processing and cognitive performance were associated. The results demonstrated positive but weak correlations between years of schooling and performance on all of the tests applied. The factor years of schooling was also one of the best predictors of frequency pattern and speech-in-noise test performance. Additionally, performance on the working memory, frequency pattern and dichotic digit tests was also correlated, suggesting that the influence of educational level on auditory processing performance might be associated with the cognitive demand of the auditory processing tests rather than auditory sensory aspects itself. Longitudinal research is required to investigate the causal relationship between educational level and auditory processing skills.

  16. Influence of auditory attention on sentence recognition captured by the neural phase.

    Science.gov (United States)

    Müller, Jana Annina; Kollmeier, Birger; Debener, Stefan; Brand, Thomas

    2018-03-07

    The aim of this study was to investigate whether attentional influences on speech recognition are reflected in the neural phase entrained by an external modulator. Sentences were presented in 7 Hz sinusoidally modulated noise while the neural response to that modulation frequency was monitored by electroencephalogram (EEG) recordings in 21 participants. We implemented a selective attention paradigm including three different attention conditions while keeping physical stimulus parameters constant. The participants' task was either to repeat the sentence as accurately as possible (speech recognition task), to count the number of decrements implemented in modulated noise (decrement detection task), or to do both (dual task), while the EEG was recorded. Behavioural analysis revealed reduced performance in the dual task condition for decrement detection, possibly reflecting limited cognitive resources. EEG analysis revealed no significant differences in power for the 7 Hz modulation frequency, but an attention-dependent phase difference between tasks. Further phase analysis revealed a significant difference 500 ms after sentence onset between trials with correct and incorrect responses for speech recognition, indicating that speech recognition performance and the neural phase are linked via selective attention mechanisms, at least shortly after sentence onset. However, the neural phase effects identified were small and await further investigation. © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  17. Development of Auditory Selective Attention: Why Children Struggle to Hear in Noisy Environments

    Science.gov (United States)

    Jones, Pete R.; Moore, David R.; Amitay, Sygal

    2015-01-01

    Children's hearing deteriorates markedly in the presence of unpredictable noise. To explore why, 187 school-age children (4-11 years) and 15 adults performed a tone-in-noise detection task, in which the masking noise varied randomly between every presentation. Selective attention was evaluated by measuring the degree to which listeners were…

  18. Rejection Positivity Predicts Trial-to-Trial Reaction Times in an Auditory Selective Attention Task: A Computational Analysis of Inhibitory Control

    Directory of Open Access Journals (Sweden)

    Sufen eChen

    2014-08-01

    Full Text Available A series of computer simulations using variants of a formal model of attention (Melara & Algom, 2003 probed the role of rejection positivity (RP, a slow-wave electroencephalographic (EEG component, in the inhibitory control of distraction. Behavioral and EEG data were recorded as participants performed auditory selective attention tasks. Simulations that modulated processes of distractor inhibition accounted well for reaction-time (RT performance, whereas those that modulated target excitation did not. A model that incorporated RP from actual EEG recordings in estimating distractor inhibition was superior in predicting changes in RT as a function of distractor salience across conditions. A model that additionally incorporated momentary fluctuations in EEG as the source of trial-to-trial variation in performance precisely predicted individual RTs within each condition. The results lend support to the linking proposition that RP controls the speed of responding to targets through the inhibitory control of distractors.

  19. Changes in auditory memory performance following the use of frequency-modulated system in children with suspected auditory processing disorders.

    Science.gov (United States)

    Umat, Cila; Mukari, Siti Z; Ezan, Nurul F; Din, Normah C

    2011-08-01

    To examine the changes in the short-term auditory memory following the use of frequency-modulated (FM) system in children with suspected auditory processing disorders (APDs), and also to compare the advantages of bilateral over unilateral FM fitting. This longitudinal study involved 53 children from Sekolah Kebangsaan Jalan Kuantan 2, Kuala Lumpur, Malaysia who fulfilled the inclusion criteria. The study was conducted from September 2007 to October 2008 in the Department of Audiology and Speech Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia. The children's age was between 7-10 years old, and they were assigned into 3 groups: 15 in the control group (not fitted with FM); 19 in the unilateral; and 19 in the bilateral FM-fitting group. Subjects wore the FM system during school time for 12 weeks. Their working memory (WM), best learning (BL), and retention of information (ROI) were measured using the Rey Auditory Verbal Learning Test at pre-fitting, post (after 12 weeks of FM usage), and at long term (one year after the usage of FM system ended). There were significant differences in the mean WM (p=0.001), BL (p=0.019), and ROI (p=0.005) scores at the different measurement times, in which the mean scores at long-term were consistently higher than at pre-fitting, despite similar performances at the baseline (p>0.05). There was no significant difference in performance between unilateral- and bilateral-fitting groups. The use of FM might give a long-term effect on improving selected short-term auditory memories of some children with suspected APDs. One may not need to use 2 FM receivers to receive advantages on auditory memory performance.

  20. Effects of background music on objective and subjective performance measures in an auditory BCI

    Directory of Open Access Journals (Sweden)

    Sijie Zhou

    2016-10-01

    Full Text Available Several studies have explored brain computer interface (BCI systems based on auditory stimuli, which could help patients with visual impairments. Usability and user satisfaction are important considerations in any BCI. Although background music can influence emotion and performance in other task environments, and many users may wish to listen to music while using a BCI, auditory and other BCIs are typically studied without background music. Some work has explored the possibility of using polyphonic music in auditory BCI systems. However, this approach requires users with good musical skills, and has not been explored in online experiments. Our hypothesis was that an auditory BCI with background music would be preferred by subjects over a similar BCI without background music, without any difference in BCI performance. We introduce a simple paradigm (which does not require musical skill using percussion instrument sound stimuli and background music, and evaluated it in both offline and online experiments. The result showed that subjects preferred the auditory BCI with background music. Different performance measures did not reveal any significant performance effect when comparing background music vs. no background. Since the addition of background music does not impair BCI performance but is preferred by users, auditory (and perhaps other BCIs should consider including it. Our study also indicates that auditory BCIs can be effective even if the auditory channel is simultaneously otherwise engaged.

  1. Effects of distractors on upright balance performance in school-aged children with attention deficit hyperactivity disorder, preliminary study.

    Science.gov (United States)

    Aydinli, Fatma Esen; Çak, Tuna; Kirazli, Meltem Çiğdem; Çinar, Betül Çiçek; Pektaş, Alev; Çengel, Ebru Kültür; Aksoy, Songül

    2016-11-17

    Attention deficit hyperactivity disorder is a common impairing neuropsychiatric disorder with onset in early childhood. Almost half of the children with attention deficit hyperactivity disorder also experience a variety of motor-related dysfunctions ranging from fine/gross motor control problems to difficulties in maintaining balance. The main purpose of this study was to investigate the effects of distractors two different auditory distractors namely, relaxing music and white noise on upright balance performance in children with attention deficit hyperactivity disorder. We compared upright balance performance and the involvement of different sensory systems in the presence of auditory distractors between school-aged children with attention deficit hyperactivity disorder (n=26) and typically developing controls (n=20). Neurocom SMART Balance Master Dynamic Posturography device was used for the sensory organization test. Sensory organization test was repeated three times for each participant in three different test environments. The balance scores in the silence environment were lower in the attention deficit hyperactivity disorder group but the differences were not statistically significant. In addition to lower balance scores the visual and vestibular ratios were also lower. Auditory distractors affected the general balance performance positively for both groups. More challenging conditions, using an unstable platform with distorted somatosensory signals were more affected. Relaxing music was more effective in the control group, and white noise was more effective in the attention deficit hyperactivity disorder group and the positive effects of white noise became more apparent in challenging conditions. To the best of our knowledge, this is the first study evaluating balance performance in children with attention deficit hyperactivity disorder under the effects of auditory distractors. Although more studies are needed, our results indicate that auditory distractors

  2. Asymmetry in auditory and spatial attention span in normal elderly genetically at risk for Alzheimer's disease.

    Science.gov (United States)

    Jacobson, Mark W; Delis, Dean C; Bondi, Mark W; Salmon, David P

    2005-02-01

    Some studies of elderly individuals with the ApoE-e4 genotype noted subtle deficits on tests of attention such as the WAIS-R Digit Span subtest, but these findings have not been consistently reported. One possible explanation for the inconsistent results could be the presence of subgroups of e4+ individuals with asymmetric cognitive profiles (i.e., significant discrepancies between verbal and visuospatial skills). Comparing genotype groups with individual, modality-specific tests might obscure subtle differences between verbal and visuospatial attention in these asymmetric subgroups. In this study, we administered the WAIS-R Digit Span and WMS-R Visual Memory Span subtests to 21 nondemented elderly e4+ individuals and 21 elderly e4- individuals matched on age, education, and overall cognitive ability. We hypothesized that a) the e4+ group would show a higher incidence of asymmetric cognitive profiles when comparing Digit Span/Visual Memory Span performance relative to the e4- group; and (b) an analysis of individual test performance would fail to reveal differences between the two subject groups. Although the groups' performances were comparable on the individual attention span tests, the e4+ group showed a significantly larger discrepancy between digit span and spatial span scores compared to the e4- group. These findings suggest that contrast measures of modality-specific attentional skills may be more sensitive to subtle group differences in at-risk groups, even when the groups do not differ on individual comparisons of standardized test means. The increased discrepancy between verbal and visuospatial attention may reflect the presence of "subgroups" within the ApoE-e4 group that are qualitatively similar to asymmetric subgroups commonly associated with the earliest stages of AD.

  3. Neuronal activity in primate auditory cortex during the performance of audiovisual tasks.

    Science.gov (United States)

    Brosch, Michael; Selezneva, Elena; Scheich, Henning

    2015-03-01

    This study aimed at a deeper understanding of which cognitive and motivational aspects of tasks affect auditory cortical activity. To this end we trained two macaque monkeys to perform two different tasks on the same audiovisual stimulus and to do this with two different sizes of water rewards. The monkeys had to touch a bar after a tone had been turned on together with an LED, and to hold the bar until either the tone (auditory task) or the LED (visual task) was turned off. In 399 multiunits recorded from core fields of auditory cortex we confirmed that during task engagement neurons responded to auditory and non-auditory stimuli that were task-relevant, such as light and water. We also confirmed that firing rates slowly increased or decreased for several seconds during various phases of the tasks. Responses to non-auditory stimuli and slow firing changes were observed during both the auditory and the visual task, with some differences between them. There was also a weak task-dependent modulation of the responses to auditory stimuli. In contrast to these cognitive aspects, motivational aspects of the tasks were not reflected in the firing, except during delivery of the water reward. In conclusion, the present study supports our previous proposal that there are two response types in the auditory cortex that represent the timing and the type of auditory and non-auditory elements of a auditory tasks as well the association between elements. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  4. Primate Auditory Recognition Memory Performance Varies With Sound Type

    OpenAIRE

    Chi-Wing, Ng; Bethany, Plakke; Amy, Poremba

    2009-01-01

    Neural correlates of auditory processing, including for species-specific vocalizations that convey biological and ethological significance (e.g. social status, kinship, environment),have been identified in a wide variety of areas including the temporal and frontal cortices. However, few studies elucidate how non-human primates interact with these vocalization signals when they are challenged by tasks requiring auditory discrimination, recognition, and/or memory. The present study employs a de...

  5. Hippocampal volume and auditory attention on a verbal memory task with adult survivors of pediatric brain tumor.

    Science.gov (United States)

    Jayakar, Reema; King, Tricia Z; Morris, Robin; Na, Sabrina

    2015-03-01

    We examined the nature of verbal memory deficits and the possible hippocampal underpinnings in long-term adult survivors of childhood brain tumor. 35 survivors (M = 24.10 ± 4.93 years at testing; 54% female), on average 15 years post-diagnosis, and 59 typically developing adults (M = 22.40 ± 4.35 years, 54% female) participated. Automated FMRIB Software Library (FSL) tools were used to measure hippocampal, putamen, and whole brain volumes. The California Verbal Learning Test-Second Edition (CVLT-II) was used to assess verbal memory. Hippocampal, F(1, 91) = 4.06, ηp² = .04; putamen, F(1, 91) = 11.18, ηp² = .11; and whole brain, F(1, 92) = 18.51, ηp² = .17, volumes were significantly lower for survivors than controls (p memory indices of auditory attention list span (Trial 1: F(1, 92) = 12.70, η² = .12) and final list learning (Trial 5: F(1, 92) = 6.01, η² = .06) were significantly lower for survivors (p attention, but none of the other CVLT-II indices. Secondary analyses for the effect of treatment factors are presented. Volumetric differences between survivors and controls exist for the whole brain and for subcortical structures on average 15 years post-diagnosis. Treatment factors seem to have a unique effect on subcortical structures. Memory differences between survivors and controls are largely contingent upon auditory attention list span. Only hippocampal volume is associated with the auditory attention list span component of verbal memory. These findings are particularly robust for survivors treated with radiation. PsycINFO Database Record (c) 2015 APA, all rights reserved.

  6. Self-estimates of attention performance

    Directory of Open Access Journals (Sweden)

    CHRISTOPH MENGELKAMP

    2007-09-01

    Full Text Available In research on self-estimated IQ, gender differences are often found. The present study investigates whether these findings are true for self-estimation of attention, too. A sample of 100 female and 34 male students were asked to fill in the test of attention d2. After taking the test, the students estimated their results in comparison to their fellow students. The results show that the students underestimate their percent rank compared with the actual percent rank they achieved in the test, but estimate their rank order fairly accurately. Moreover, males estimate their performance distinctly higher than females do. This last result remains true even when the real test score is statistically controlled. The results are discussed with regard to research on positive illusions and gender stereotypes.

  7. Rendering visual events as sounds: Spatial attention capture by auditory augmented reality.

    Science.gov (United States)

    Stone, Scott A; Tata, Matthew S

    2017-01-01

    Many salient visual events tend to coincide with auditory events, such as seeing and hearing a car pass by. Information from the visual and auditory senses can be used to create a stable percept of the stimulus. Having access to related coincident visual and auditory information can help for spatial tasks such as localization. However not all visual information has analogous auditory percepts, such as viewing a computer monitor. Here, we describe a system capable of detecting and augmenting visual salient events into localizable auditory events. The system uses a neuromorphic camera (DAVIS 240B) to detect logarithmic changes of brightness intensity in the scene, which can be interpreted as salient visual events. Participants were blindfolded and asked to use the device to detect new objects in the scene, as well as determine direction of motion for a moving visual object. Results suggest the system is robust enough to allow for the simple detection of new salient stimuli, as well accurately encoding direction of visual motion. Future successes are probable as neuromorphic devices are likely to become faster and smaller in the future, making this system much more feasible.

  8. Rendering visual events as sounds: Spatial attention capture by auditory augmented reality.

    Directory of Open Access Journals (Sweden)

    Scott A Stone

    Full Text Available Many salient visual events tend to coincide with auditory events, such as seeing and hearing a car pass by. Information from the visual and auditory senses can be used to create a stable percept of the stimulus. Having access to related coincident visual and auditory information can help for spatial tasks such as localization. However not all visual information has analogous auditory percepts, such as viewing a computer monitor. Here, we describe a system capable of detecting and augmenting visual salient events into localizable auditory events. The system uses a neuromorphic camera (DAVIS 240B to detect logarithmic changes of brightness intensity in the scene, which can be interpreted as salient visual events. Participants were blindfolded and asked to use the device to detect new objects in the scene, as well as determine direction of motion for a moving visual object. Results suggest the system is robust enough to allow for the simple detection of new salient stimuli, as well accurately encoding direction of visual motion. Future successes are probable as neuromorphic devices are likely to become faster and smaller in the future, making this system much more feasible.

  9. Auditory feedback and memory for music performance: sound evidence for an encoding effect.

    Science.gov (United States)

    Finney, Steven A; Palmer, Caroline

    2003-01-01

    Research on the effects of context and task on learning and memory has included approaches that emphasize processes during learning (e.g., Craik & Tulving, 1975) and approaches that emphasize a match of conditions during learning with conditions during a later test of memory (e.g., Morris, Bransford, & Franks, 1977; Proteau, 1992; Tulving & Thomson, 1973). We investigated the effects of auditory context on learning and retrieval in three experiments on memorized music performance (a form of serial recall). Auditory feedback (presence or absence) was manipulated while pianists learned musical pieces from notation and when they later played the pieces from memory. Auditory feedback during learning significantly improved later recall. However, auditory feedback at test did not significantly affect recall, nor was there an interaction between conditions at learning and test. Auditory feedback in music performance appears to be a contextual factor that affects learning but is relatively independent of retrieval conditions.

  10. The effects of interstimulus interval on event-related indices of attention: an auditory selective attention test of perceptual load theory.

    Science.gov (United States)

    Gomes, Hilary; Barrett, Sophia; Duff, Martin; Barnhardt, Jack; Ritter, Walter

    2008-03-01

    We examined the impact of perceptual load by manipulating interstimulus interval (ISI) in two auditory selective attention studies that varied in the difficulty of the target discrimination. In the paradigm, channels were separated by frequency and target/deviant tones were softer in intensity. Three ISI conditions were presented: fast (300ms), medium (600ms) and slow (900ms). Behavioral (accuracy and RT) and electrophysiological measures (Nd, P3b) were observed. In both studies, participants evidenced poorer accuracy during the fast ISI condition than the slow suggesting that ISI impacted task difficulty. However, none of the three measures of processing examined, Nd amplitude, P3b amplitude elicited by unattended deviant stimuli, or false alarms to unattended deviants, were impacted by ISI in the manner predicted by perceptual load theory. The prediction based on perceptual load theory, that there would be more processing of irrelevant stimuli under conditions of low as compared to high perceptual load, was not supported in these auditory studies. Task difficulty/perceptual load impacts the processing of irrelevant stimuli in the auditory modality differently than predicted by perceptual load theory, and perhaps differently than in the visual modality.

  11. The effect of divided attention on novices and experts in laparoscopic task performance.

    Science.gov (United States)

    Ghazanfar, Mudassar Ali; Cook, Malcolm; Tang, Benjie; Tait, Iain; Alijani, Afshin

    2015-03-01

    Attention is important for the skilful execution of surgery. The surgeon's attention during surgery is divided between surgery and outside distractions. The effect of this divided attention has not been well studied previously. We aimed to compare the effect of dividing attention of novices and experts on a laparoscopic task performance. Following ethical approval, 25 novices and 9 expert surgeons performed a standardised peg transfer task in a laboratory setup under three randomly assigned conditions: silent as control condition and two standardised auditory distracting tasks requiring response (easy and difficult) as study conditions. Human reliability assessment was used for surgical task analysis. Primary outcome measures were correct auditory responses, task time, number of surgical errors and instrument movements. Secondary outcome measures included error rate, error probability and hand specific differences. Non-parametric statistics were used for data analysis. 21109 movements and 9036 total errors were analysed. Novices had increased mean task completion time (seconds) (171 ± 44SD vs. 149 ± 34, p 0.05). Divided attention conditions in theatre environment require careful consideration during surgical training as the junior surgeons are less able to focus their attention during these conditions.

  12. Differences in Speech Recognition Between Children with Attention Deficits and Typically Developed Children Disappear When Exposed to 65 dB of Auditory Noise.

    Science.gov (United States)

    Söderlund, Göran B W; Jobs, Elisabeth Nilsson

    2016-01-01

    The most common neuropsychiatric condition in the in children is attention deficit hyperactivity disorder (ADHD), affecting ∼6-9% of the population. ADHD is distinguished by inattention and hyperactive, impulsive behaviors as well as poor performance in various cognitive tasks often leading to failures at school. Sensory and perceptual dysfunctions have also been noticed. Prior research has mainly focused on limitations in executive functioning where differences are often explained by deficits in pre-frontal cortex activation. Less notice has been given to sensory perception and subcortical functioning in ADHD. Recent research has shown that children with ADHD diagnosis have a deviant auditory brain stem response compared to healthy controls. The aim of the present study was to investigate if the speech recognition threshold differs between attentive and children with ADHD symptoms in two environmental sound conditions, with and without external noise. Previous research has namely shown that children with attention deficits can benefit from white noise exposure during cognitive tasks and here we investigate if noise benefit is present during an auditory perceptual task. For this purpose we used a modified Hagerman's speech recognition test where children with and without attention deficits performed a binaural speech recognition task to assess the speech recognition threshold in no noise and noise conditions (65 dB). Results showed that the inattentive group displayed a higher speech recognition threshold than typically developed children and that the difference in speech recognition threshold disappeared when exposed to noise at supra threshold level. From this we conclude that inattention can partly be explained by sensory perceptual limitations that can possibly be ameliorated through noise exposure.

  13. Differences in Speech Recognition Between Children with Attention Deficits and Typically Developed Children Disappear when Exposed to 65 dB of Auditory Noise

    Directory of Open Access Journals (Sweden)

    Göran B W Söderlund

    2016-01-01

    Full Text Available The most common neuropsychiatric condition in the in children is attention deficit hyperactivity disorder (ADHD, affecting approximately 6-9 % of the population. ADHD is distinguished by inattention and hyperactive, impulsive behaviors as well as poor performance in various cognitive tasks often leading to failures at school. Sensory and perceptual dysfunctions have also been noticed. Prior research has mainly focused on limitations in executive functioning where differences are often explained by deficits in pre-frontal cortex activation. Less notice has been given to sensory perception and subcortical functioning in ADHD. Recent research has shown that children with ADHD diagnosis have a deviant auditory brain stem response compared to healthy controls. The aim of the present study was to investigate if the speech recognition threshold differs between attentive and children with ADHD symptoms in two environmental sound conditions, with and without external noise. Previous research has namely shown that children with attention deficits can benefit from white noise exposure during cognitive tasks and here we investigate if noise benefit is present during an auditory perceptual task. For this purpose we used a modified Hagerman’s speech recognition test where children with and without attention deficits performed a binaural speech recognition task to assess the speech recognition threshold in no noise and noise conditions (65 dB. Results showed that the inattentive group displayed a higher speech recognition threshold than typically developed children (TDC and that the difference in speech recognition threshold disappeared when exposed to noise at supra threshold level. From this we conclude that inattention can partly be explained by sensory perceptual limitations that can possibly be ameliorated through noise exposure.

  14. Real-Time Tracking of Selective Auditory Attention From M/EEG: A Bayesian Filtering Approach

    Science.gov (United States)

    Miran, Sina; Akram, Sahar; Sheikhattar, Alireza; Simon, Jonathan Z.; Zhang, Tao; Babadi, Behtash

    2018-01-01

    Humans are able to identify and track a target speaker amid a cacophony of acoustic interference, an ability which is often referred to as the cocktail party phenomenon. Results from several decades of studying this phenomenon have culminated in recent years in various promising attempts to decode the attentional state of a listener in a competing-speaker environment from non-invasive neuroimaging recordings such as magnetoencephalography (MEG) and electroencephalography (EEG). To this end, most existing approaches compute correlation-based measures by either regressing the features of each speech stream to the M/EEG channels (the decoding approach) or vice versa (the encoding approach). To produce robust results, these procedures require multiple trials for training purposes. Also, their decoding accuracy drops significantly when operating at high temporal resolutions. Thus, they are not well-suited for emerging real-time applications such as smart hearing aid devices or brain-computer interface systems, where training data might be limited and high temporal resolutions are desired. In this paper, we close this gap by developing an algorithmic pipeline for real-time decoding of the attentional state. Our proposed framework consists of three main modules: (1) Real-time and robust estimation of encoding or decoding coefficients, achieved by sparse adaptive filtering, (2) Extracting reliable markers of the attentional state, and thereby generalizing the widely-used correlation-based measures thereof, and (3) Devising a near real-time state-space estimator that translates the noisy and variable attention markers to robust and statistically interpretable estimates of the attentional state with minimal delay. Our proposed algorithms integrate various techniques including forgetting factor-based adaptive filtering, ℓ1-regularization, forward-backward splitting algorithms, fixed-lag smoothing, and Expectation Maximization. We validate the performance of our proposed

  15. Real-Time Tracking of Selective Auditory Attention From M/EEG: A Bayesian Filtering Approach

    Directory of Open Access Journals (Sweden)

    Sina Miran

    2018-05-01

    Full Text Available Humans are able to identify and track a target speaker amid a cacophony of acoustic interference, an ability which is often referred to as the cocktail party phenomenon. Results from several decades of studying this phenomenon have culminated in recent years in various promising attempts to decode the attentional state of a listener in a competing-speaker environment from non-invasive neuroimaging recordings such as magnetoencephalography (MEG and electroencephalography (EEG. To this end, most existing approaches compute correlation-based measures by either regressing the features of each speech stream to the M/EEG channels (the decoding approach or vice versa (the encoding approach. To produce robust results, these procedures require multiple trials for training purposes. Also, their decoding accuracy drops significantly when operating at high temporal resolutions. Thus, they are not well-suited for emerging real-time applications such as smart hearing aid devices or brain-computer interface systems, where training data might be limited and high temporal resolutions are desired. In this paper, we close this gap by developing an algorithmic pipeline for real-time decoding of the attentional state. Our proposed framework consists of three main modules: (1 Real-time and robust estimation of encoding or decoding coefficients, achieved by sparse adaptive filtering, (2 Extracting reliable markers of the attentional state, and thereby generalizing the widely-used correlation-based measures thereof, and (3 Devising a near real-time state-space estimator that translates the noisy and variable attention markers to robust and statistically interpretable estimates of the attentional state with minimal delay. Our proposed algorithms integrate various techniques including forgetting factor-based adaptive filtering, ℓ1-regularization, forward-backward splitting algorithms, fixed-lag smoothing, and Expectation Maximization. We validate the performance of our

  16. The Effects of an Auditory Versus a Visual Presentation of Information on Soldier Performance

    National Research Council Canada - National Science Library

    Glumm, Monica

    1999-01-01

    This report describes a field study designed to measure the effects of an auditory versus a visual presentation of position information on soldier performance of land navigation and target acquisition tasks...

  17. A Characterization of Visual, Semantic and Auditory Memory in Children with Combination-Type Attention Deficit, Primarily Inattentive, and a Control Group

    Science.gov (United States)

    Ramirez, Luz Angela; Arenas, Angela Maria; Henao, Gloria Cecilia

    2005-01-01

    Introduction: This investigation describes and compares characteristics of visual, semantic and auditory memory in a group of children diagnosed with combined-type attention deficit with hyperactivity, attention deficit predominating, and a control group. Method: 107 boys and girls were selected, from 7 to 11 years of age, all residents in the…

  18. Intentional switching in auditory selective attention: Exploring age-related effects in a spatial setup requiring speech perception.

    Science.gov (United States)

    Oberem, Josefa; Koch, Iring; Fels, Janina

    2017-06-01

    Using a binaural-listening paradigm, age-related differences in the ability to intentionally switch auditory selective attention between two speakers, defined by their spatial location, were examined. Therefore 40 normal-hearing participants (20 young, Ø 24.8years; 20 older Ø 67.8years) were tested. The spatial reproduction of stimuli was provided by headphones using head-related-transfer-functions of an artificial head. Spoken number words of two speakers were presented simultaneously to participants from two out of eight locations on the horizontal plane. Guided by a visual cue indicating the spatial location of the target speaker, the participants were asked to categorize the target's number word into smaller vs. greater than five while ignoring the distractor's speech. Results showed significantly higher reaction times and error rates for older participants. The relative influence of the spatial switch of the target-speaker (switch or repetition of speaker's direction in space) was identical across age groups. Congruency effects (stimuli spoken by target and distractor may evoke the same answer or different answers) were increased for older participants and depend on the target's position. Results suggest that the ability to intentionally switch auditory attention to a new cued location was unimpaired whereas it was generally harder for older participants to suppress processing the distractor's speech. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Auditory N1 reveals planning and monitoring processes during music performance.

    Science.gov (United States)

    Mathias, Brian; Gehring, William J; Palmer, Caroline

    2017-02-01

    The current study investigated the relationship between planning processes and feedback monitoring during music performance, a complex task in which performers prepare upcoming events while monitoring their sensory outcomes. Theories of action planning in auditory-motor production tasks propose that the planning of future events co-occurs with the perception of auditory feedback. This study investigated the neural correlates of planning and feedback monitoring by manipulating the contents of auditory feedback during music performance. Pianists memorized and performed melodies at a cued tempo in a synchronization-continuation task while the EEG was recorded. During performance, auditory feedback associated with single melody tones was occasionally substituted with tones corresponding to future (next), present (current), or past (previous) melody tones. Only future-oriented altered feedback disrupted behavior: Future-oriented feedback caused pianists to slow down on the subsequent tone more than past-oriented feedback, and amplitudes of the auditory N1 potential elicited by the tone immediately following the altered feedback were larger for future-oriented than for past-oriented or noncontextual (unrelated) altered feedback; larger N1 amplitudes were associated with greater slowing following altered feedback in the future condition only. Feedback-related negativities were elicited in all altered feedback conditions. In sum, behavioral and neural evidence suggests that future-oriented feedback disrupts performance more than past-oriented feedback, consistent with planning theories that posit similarity-based interference between feedback and planning contents. Neural sensory processing of auditory feedback, reflected in the N1 ERP, may serve as a marker for temporal disruption caused by altered auditory feedback in auditory-motor production tasks. © 2016 Society for Psychophysiological Research.

  20. White Matter Integrity Dissociates Verbal Memory and Auditory Attention Span in Emerging Adults with Congenital Heart Disease.

    Science.gov (United States)

    Brewster, Ryan C; King, Tricia Z; Burns, Thomas G; Drossner, David M; Mahle, William T

    2015-01-01

    White matter disruptions have been identified in individuals with congenital heart disease (CHD). However, no specific theory-driven relationships between microstructural white matter disruptions and cognition have been established in CHD. We conducted a two-part study. First, we identified significant differences in fractional anisotropy (FA) of emerging adults with CHD using Tract-Based Spatial Statistics (TBSS). TBSS analyses between 22 participants with CHD and 18 demographically similar controls identified five regions of normal appearing white matter with significantly lower FA in CHD, and two higher. Next, two regions of lower FA in CHD were selected to examine theory-driven differential relationships with cognition: voxels along the left uncinate fasciculus (UF; a tract theorized to contribute to verbal memory) and voxels along the right middle cerebellar peduncle (MCP; a tract previously linked to attention). In CHD, a significant positive correlation between UF FA and memory was found, r(20)=.42, p=.049 (uncorrected). There was no correlation between UF and auditory attention span. A positive correlation between MCP FA and auditory attention span was found, r(20)=.47, p=.027 (uncorrected). There was no correlation between MCP and memory. In controls, no significant relationships were identified. These results are consistent with previous literature demonstrating lower FA in younger CHD samples, and provide novel evidence for disrupted white matter integrity in emerging adults with CHD. Furthermore, a correlational double dissociation established distinct white matter circuitry (UF and MCP) and differential cognitive correlates (memory and attention span, respectively) in young adults with CHD.

  1. Development of the auditory system

    Science.gov (United States)

    Litovsky, Ruth

    2015-01-01

    Auditory development involves changes in the peripheral and central nervous system along the auditory pathways, and these occur naturally, and in response to stimulation. Human development occurs along a trajectory that can last decades, and is studied using behavioral psychophysics, as well as physiologic measurements with neural imaging. The auditory system constructs a perceptual space that takes information from objects and groups, segregates sounds, and provides meaning and access to communication tools such as language. Auditory signals are processed in a series of analysis stages, from peripheral to central. Coding of information has been studied for features of sound, including frequency, intensity, loudness, and location, in quiet and in the presence of maskers. In the latter case, the ability of the auditory system to perform an analysis of the scene becomes highly relevant. While some basic abilities are well developed at birth, there is a clear prolonged maturation of auditory development well into the teenage years. Maturation involves auditory pathways. However, non-auditory changes (attention, memory, cognition) play an important role in auditory development. The ability of the auditory system to adapt in response to novel stimuli is a key feature of development throughout the nervous system, known as neural plasticity. PMID:25726262

  2. Functional Imaging of Audio-Visual Selective Attention in Monkeys and Humans: How do Lapses in Monkey Performance Affect Cross-Species Correspondences?

    Science.gov (United States)

    Rinne, Teemu; Muers, Ross S; Salo, Emma; Slater, Heather; Petkov, Christopher I

    2017-06-01

    The cross-species correspondences and differences in how attention modulates brain responses in humans and animal models are poorly understood. We trained 2 monkeys to perform an audio-visual selective attention task during functional magnetic resonance imaging (fMRI), rewarding them to attend to stimuli in one modality while ignoring those in the other. Monkey fMRI identified regions strongly modulated by auditory or visual attention. Surprisingly, auditory attention-related modulations were much more restricted in monkeys than humans performing the same tasks during fMRI. Further analyses ruled out trivial explanations, suggesting that labile selective-attention performance was associated with inhomogeneous modulations in wide cortical regions in the monkeys. The findings provide initial insights into how audio-visual selective attention modulates the primate brain, identify sources for "lost" attention effects in monkeys, and carry implications for modeling the neurobiology of human cognition with nonhuman animals. © The Author 2017. Published by Oxford University Press.

  3. Functional Imaging of Audio–Visual Selective Attention in Monkeys and Humans: How do Lapses in Monkey Performance Affect Cross-Species Correspondences?

    Science.gov (United States)

    Muers, Ross S.; Salo, Emma; Slater, Heather; Petkov, Christopher I.

    2017-01-01

    Abstract The cross-species correspondences and differences in how attention modulates brain responses in humans and animal models are poorly understood. We trained 2 monkeys to perform an audio–visual selective attention task during functional magnetic resonance imaging (fMRI), rewarding them to attend to stimuli in one modality while ignoring those in the other. Monkey fMRI identified regions strongly modulated by auditory or visual attention. Surprisingly, auditory attention-related modulations were much more restricted in monkeys than humans performing the same tasks during fMRI. Further analyses ruled out trivial explanations, suggesting that labile selective-attention performance was associated with inhomogeneous modulations in wide cortical regions in the monkeys. The findings provide initial insights into how audio–visual selective attention modulates the primate brain, identify sources for “lost” attention effects in monkeys, and carry implications for modeling the neurobiology of human cognition with nonhuman animals. PMID:28419201

  4. Working memory capacity and visual-verbal cognitive load modulate auditory-sensory gating in the brainstem: toward a unified view of attention.

    Science.gov (United States)

    Sörqvist, Patrik; Stenfelt, Stefan; Rönnberg, Jerker

    2012-11-01

    Two fundamental research questions have driven attention research in the past: One concerns whether selection of relevant information among competing, irrelevant, information takes place at an early or at a late processing stage; the other concerns whether the capacity of attention is limited by a central, domain-general pool of resources or by independent, modality-specific pools. In this article, we contribute to these debates by showing that the auditory-evoked brainstem response (an early stage of auditory processing) to task-irrelevant sound decreases as a function of central working memory load (manipulated with a visual-verbal version of the n-back task). Furthermore, individual differences in central/domain-general working memory capacity modulated the magnitude of the auditory-evoked brainstem response, but only in the high working memory load condition. The results support a unified view of attention whereby the capacity of a late/central mechanism (working memory) modulates early precortical sensory processing.

  5. Investigating the influence of continuous babble on auditory short-term memory performance.

    Science.gov (United States)

    Heinrich, Antje; Schneider, Bruce A; Craik, Fergus I M

    2008-05-01

    A number of factors could explain the adverse effect that babble noise has on memory for spoken words (Murphy, Craik, Li, & Schneider, 2000). Babble could degrade the perceptual representation of words to such an extent that it compromises their subsequent processing, or the presence of speech noise in the period between word presentations could interfere with rehearsal. Thirdly, the top-down processes needed to extract the words from the babble could draw on resources that otherwise would be used for encoding. We tested all these hypotheses by presenting babble either only during word presentation or rehearsal, or by gating the babble on and off 500 ms before and after each word pair. Only the last condition led to a decline in memory. We propose that this decline in memory occurred because participants were focusing their attention on the auditory stream (to enable them to better segregate the words from the noise background) rather than on remembering the words they had heard. To further support our claim we show that a similar memory deficit results when participants perform the same memory task in quiet together with a nonauditory attention-demanding secondary task.

  6. Central auditory processing outcome after stroke in children

    Directory of Open Access Journals (Sweden)

    Karla M. I. Freiria Elias

    2014-09-01

    Full Text Available Objective To investigate central auditory processing in children with unilateral stroke and to verify whether the hemisphere affected by the lesion influenced auditory competence. Method 23 children (13 male between 7 and 16 years old were evaluated through speech-in-noise tests (auditory closure; dichotic digit test and staggered spondaic word test (selective attention; pitch pattern and duration pattern sequence tests (temporal processing and their results were compared with control children. Auditory competence was established according to the performance in auditory analysis ability. Results Was verified similar performance between groups in auditory closure ability and pronounced deficits in selective attention and temporal processing abilities. Most children with stroke showed an impaired auditory ability in a moderate degree. Conclusion Children with stroke showed deficits in auditory processing and the degree of impairment was not related to the hemisphere affected by the lesion.

  7. Auditory brainstem response as a diagnostic tool for patients suffering from schizophrenia, attention deficit hyperactivity disorder, and bipolar disorder: protocol.

    Science.gov (United States)

    Wahlström, Viktor; Åhlander, Fredrik; Wynn, Rolf

    2015-02-12

    Psychiatric disorders, such as schizophrenia, attention deficit hyperactivity disorder (ADHD), and bipolar disorder, may sometimes be difficult to diagnose. There is a great need for a valid and reliable diagnostic tool to aid clinicians in arriving at the diagnoses in a timely and accurate manner. Prior studies have suggested that patients suffering from schizophrenia and ADHD may process certain sound stimuli in the brainstem in an unusual manner. When these patient groups have been examined with the electrophysiological method of brainstem audiometry, some studies have found illness-specific aberrations. Such aberrations may also exist for patients suffering from bipolar disorder. In this study, we will examine whether the method of brainstem audiometry can be used as a diagnostic tool for patients suffering from schizophrenia, ADHD, and bipolar disorder. The method includes three steps: (1) auditory stimulation with specific sound stimuli, (2) simultaneous measurement of brainstem activity, and (3) automated interpretation of the resulting brain stem audiograms with data-based signal analysis. We will compare three groups of 12 individuals with confirmed diagnoses of schizophrenia, ADHD, or bipolar disorder with 12 healthy subjects under blinded conditions for a total of 48 participants. The extent to which the method can be used to reach the correct diagnosis will be investigated. The project is now in a recruiting phase. When all patients and controls have been recruited and the measurements have been performed, the data will be analyzed according to a previously arranged algorithm. We expect the recruiting phase and measurements to be completed in early 2015, the analyses to be performed in mid-2015, and the results of the study to be published in early 2016. If the results support previous findings, this will lend strength to the idea that brainstem audiometry can offer objective diagnostic support for patients suffering from schizophrenia, ADHD, and

  8. Influence of auditory spatial attention on cross-modal semantic priming effect: evidence from N400 effect.

    Science.gov (United States)

    Wang, Hongyan; Zhang, Gaoyan; Liu, Baolin

    2017-01-01

    Semantic priming is an important research topic in the field of cognitive neuroscience. Previous studies have shown that the uni-modal semantic priming effect can be modulated by attention. However, the influence of attention on cross-modal semantic priming is unclear. To investigate this issue, the present study combined a cross-modal semantic priming paradigm with an auditory spatial attention paradigm, presenting the visual pictures as the prime stimuli and the semantically related or unrelated sounds as the target stimuli. Event-related potentials results showed that when the target sound was attended to, the N400 effect was evoked. The N400 effect was also observed when the target sound was not attended to, demonstrating that the cross-modal semantic priming effect persists even though the target stimulus is not focused on. Further analyses revealed that the N400 effect evoked by the unattended sound was significantly lower than the effect evoked by the attended sound. This contrast provides new evidence that the cross-modal semantic priming effect can be modulated by attention.

  9. Age effects on preattentive and early attentive auditory processing of redundant stimuli: is sensory gating affected by physiological aging?

    Science.gov (United States)

    Gmehlin, Dennis; Kreisel, Stefan H; Bachmann, Silke; Weisbrod, Matthias; Thomas, Christine

    2011-10-01

    The frontal hypothesis of aging predicts an age-related decline in cognitive functions requiring inhibitory or attentional regulation. In Alzheimer's disease, preattentive gating out of redundant information is impaired. Our study aimed to examine changes associated with physiological aging in both pre- and early attentive inhibition of recurrent acoustic information. Using a passive double-click paradigm, we recorded mid-latency (P30-P50) and late-latency (N100 and P200) evoked potentials in healthy young (26 ± 5 years) and healthy elderly subjects (72 ± 5 years). Physiological aging did not affect auditory gating in amplitude measures. Both age groups exhibited clear inhibition in preattentive P50 and attention-modulated (N100) components, whereas P30 was not attenuated. Irrespective of age, the magnitude of inhibition differed significantly, being most pronounced for N100 gating. Inhibition of redundant information seems to be preserved with physiological aging. Early attentive N100 gating showed the maximum effect. Further studies are warranted to evaluate sensory gating as a suitable biomarker of underlying neurodegenerative disease.

  10. Relationship between self-focused attention, mindfulness and distress in individuals with auditory verbal hallucinations.

    Science.gov (United States)

    Úbeda-Gómez, J; León-Palacios, M G; Escudero-Pérez, S; Barros-Albarrán, M D; López-Jiménez, A M; Perona-Garcelán, S

    2015-01-01

    The purpose of this study was to investigate the relationships among self-focused attention, mindfulness and distress caused by the voices in psychiatric patients. Fifty-one individuals with a psychiatric diagnosis participated in this study. The Psychotic Symptom Rating Scale (PSYRATS) emotional factor was applied to measure the distress caused by the voices, the Self-Absorption Scale (SAS) was given for measuring the levels of self-focused attention, and the Mindful Attention Awareness Scale (MAAS) was used to measure mindfulness. The results showed that distress caused by the voices correlated positively with self-focused attention (private and public) and negatively with mindfulness. A negative correlation was also found between mindfulness and self-focused attention (private and public). Finally, multiple linear regression analysis showed that public self-focus was the only factor predicting distress caused by the voices. Intervention directed at diminishing public self-focused attention and increasing mindfulness could improve distress caused by the voices.

  11. Gender effect on pre-attentive change detection in major depressive disorder patients revealed by auditory MMN.

    Science.gov (United States)

    Qiao, Zhengxue; Yang, Aiying; Qiu, Xiaohui; Yang, Xiuxian; Zhang, Congpei; Zhu, Xiongzhao; He, Jincai; Wang, Lin; Bai, Bing; Sun, Hailian; Zhao, Lun; Yang, Yanjie

    2015-10-30

    Gender differences in rates of major depressive disorder (MDD) are well established, but gender differences in cognitive function have been little studied. Auditory mismatch negativity (MMN) was used to investigate gender differences in pre-attentive information processing in first episode MDD. In the deviant-standard reverse oddball paradigm, duration auditory MMN was obtained in 30 patients (15 males) and 30 age-/education-matched controls. Over frontal-central areas, mean amplitude of increment MMN (to a 150-ms deviant tone) was smaller in female than male patients; there was no sex difference in decrement MMN (to a 50-ms deviant tone). Neither increment nor decrement MMN differed between female and male patients over temporal areas. Frontal-central MMN and temporal MMN did not differ between male and female controls in any condition. Over frontal-central areas, mean amplitude of increment MMN was smaller in female patients than female controls; there was no difference in decrement MMN. Neither increment nor decrement MMN differed between female patients and female controls over temporal areas. Frontal-central MMN and temporal MMN did not differ between male patients and male controls. Mean amplitude of increment MMN in female patients did not correlate with symptoms, suggesting this sex-specific deficit is a trait- not a state-dependent phenomenon. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Effects of acute nicotine on event-related potential and performance indices of auditory distraction in nonsmokers.

    Science.gov (United States)

    Knott, Verner J; Bolton, Kiley; Heenan, Adam; Shah, Dhrasti; Fisher, Derek J; Villeneuve, Crystal

    2009-05-01

    Although nicotine has been purported to enhance attentional processes, this has been evidenced mostly in tasks of sustained attention, and its effects on selective attention and attentional control under conditions of distraction are less convincing. This study investigated the effects of nicotine on distractibility in 21 (11 males) nonsmokers with event-related potentials (ERPs) and behavioral performance measures extracted from an auditory discrimination task requiring a choice reaction time response to short- and long-duration tones, with and without imbedded deviants. Administered in a randomized, double-blind, placebo-controlled crossover design, nicotine gum (6 mg) failed to counter deviant-elicited behavioral distraction characterized by longer reaction times and increased response errors. Of the deviant-elicited ERP components, nicotine did not alter the P3a-indexed attentional switching to the deviant, but in females, it tended to diminish the automatic processing of the deviant as shown by a smaller mismatch negativity component, and it attenuated attentional reorienting following deviant-elicited distraction, as reflected by a reduced reorienting negativity ERP component. Results are discussed in relation to attentional models of nicotine and with respect to future research directions.

  13. Divided multimodal attention sensory trace and context coding strategies in spatially congruent auditory and visual presentation.

    Science.gov (United States)

    Kristjánsson, Tómas; Thorvaldsson, Tómas Páll; Kristjánsson, Arni

    2014-01-01

    Previous research involving both unimodal and multimodal studies suggests that single-response change detection is a capacity-free process while a discriminatory up or down identification is capacity-limited. The trace/context model assumes that this reflects different memory strategies rather than inherent differences between identification and detection. To perform such tasks, one of two strategies is used, a sensory trace or a context coding strategy, and if one is blocked, people will automatically use the other. A drawback to most preceding studies is that stimuli are presented at separate locations, creating the possibility of a spatial confound, which invites alternative interpretations of the results. We describe a series of experiments, investigating divided multimodal attention, without the spatial confound. The results challenge the trace/context model. Our critical experiment involved a gap before a change in volume and brightness, which according to the trace/context model blocks the sensory trace strategy, simultaneously with a roaming pedestal, which should block the context coding strategy. The results clearly show that people can use strategies other than sensory trace and context coding in the tasks and conditions of these experiments, necessitating changes to the trace/context model.

  14. Atypical auditory refractory periods in children from lower socio-economic status backgrounds: ERP evidence for a role of selective attention.

    Science.gov (United States)

    Stevens, Courtney; Paulsen, David; Yasen, Alia; Neville, Helen

    2015-02-01

    Previous neuroimaging studies indicate that lower socio-economic status (SES) is associated with reduced effects of selective attention on auditory processing. Here, we investigated whether lower SES is also associated with differences in a stimulus-driven aspect of auditory processing: the neural refractory period, or reduced amplitude response at faster rates of stimulus presentation. Thirty-two children aged 3 to 8 years participated, and were divided into two SES groups based on maternal education. Event-related brain potentials were recorded to probe stimuli presented at interstimulus intervals (ISIs) of 200, 500, or 1000 ms. These probes were superimposed on story narratives when attended and ignored, permitting a simultaneous experimental manipulation of selective attention. Results indicated that group differences in refractory periods differed as a function of attention condition. Children from higher SES backgrounds showed full neural recovery by 500 ms for attended stimuli, but required at least 1000 ms for unattended stimuli. In contrast, children from lower SES backgrounds showed similar refractory effects to attended and unattended stimuli, with full neural recovery by 500 ms. Thus, in higher SES children only, one functional consequence of selective attention is attenuation of the response to unattended stimuli, particularly at rapid ISIs, altering basic properties of the auditory refractory period. Together, these data indicate that differences in selective attention impact basic aspects of auditory processing in children from lower SES backgrounds. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Selective attention and the auditory vertex potential. 2: Effects of signal intensity and masking noise

    Science.gov (United States)

    Schwent, V. L.; Hillyard, S. A.; Galambos, R.

    1975-01-01

    A randomized sequence of tone bursts was delivered to subjects at short inter-stimulus intervals with the tones originating from one of three spatially and frequency specific channels. The subject's task was to count the tones in one of the three channels at a time, ignoring the other two, and press a button after each tenth tone. In different conditions, tones were given at high and low intensities and with or without a background white noise to mask the tones. The N sub 1 component of the auditory vertex potential was found to be larger in response to attended channel tones in relation to unattended tones. This selective enhancement of N sub 1 was minimal for loud tones presented without noise and increased markedly for the lower tone intensity and in noise added conditions.

  16. Effectiveness of auditory and tactile crossmodal cues in a dual-task visual and auditory scenario.

    Science.gov (United States)

    Hopkins, Kevin; Kass, Steven J; Blalock, Lisa Durrance; Brill, J Christopher

    2017-05-01

    In this study, we examined how spatially informative auditory and tactile cues affected participants' performance on a visual search task while they simultaneously performed a secondary auditory task. Visual search task performance was assessed via reaction time and accuracy. Tactile and auditory cues provided the approximate location of the visual target within the search display. The inclusion of tactile and auditory cues improved performance in comparison to the no-cue baseline conditions. In comparison to the no-cue conditions, both tactile and auditory cues resulted in faster response times in the visual search only (single task) and visual-auditory (dual-task) conditions. However, the effectiveness of auditory and tactile cueing for visual task accuracy was shown to be dependent on task-type condition. Crossmodal cueing remains a viable strategy for improving task performance without increasing attentional load within a singular sensory modality. Practitioner Summary: Crossmodal cueing with dual-task performance has not been widely explored, yet has practical applications. We examined the effects of auditory and tactile crossmodal cues on visual search performance, with and without a secondary auditory task. Tactile cues aided visual search accuracy when also engaged in a secondary auditory task, whereas auditory cues did not.

  17. The role of auditory transient and deviance processing in distraction of task performance: a combined behavioral and event-related brain potential study

    Directory of Open Access Journals (Sweden)

    Stefan eBerti

    2013-07-01

    Full Text Available Distraction of goal-oriented performance by a sudden change in the auditory environment is an everyday life experience. Different types of changes can be distracting, including a sudden onset of a transient sound and a slight deviation of otherwise regular auditory background stimulation. With regard to deviance detection, it is assumed that slight changes in a continuous sequence of auditory stimuli are detected by a predictive coding mechanisms and it has been demonstrated that this mechanism is capable of distracting ongoing task performance. In contrast, it is open whether transient detection – which does not rely on predictive coding mechanisms – can trigger behavioral distraction, too. In the present study, the effect of rare auditory changes on visual task performance is tested in an auditory-visual cross-modal distraction paradigm. The rare changes are either embedded within a continuous standard stimulation (triggering deviance detection or are presented within an otherwise silent situation (triggering transient detection. In the event-related brain potentials, deviants elicited the mismatch negativity (MMN while transients elicited an enhanced N1 component, mirroring pre-attentive change detection in both conditions but on the basis of different neuro-cognitive processes. These sensory components are followed by attention related ERP components including the P3a and the reorienting negativity (RON. This demonstrates that both types of changes trigger switches of attention. Finally, distraction of task performance is observable, too, but the impact of deviants is higher compared to transients. These findings suggest different routes of distraction allowing for the automatic processing of a wide range of potentially relevant changes in the environment as a pre-requisite for adaptive behavior.

  18. N-Back auditory test performance in normal individuals

    Directory of Open Access Journals (Sweden)

    Vanessa Tomé Gonçalves

    Full Text Available Abstract The working memory construct refers to the capacity to maintain information for a limited time. Objectives: To devise stimuli and adapt the 5-back test and to verify the effect of age in normal Brazilian individuals. Methods: 31 healthy adults (15 young adults and 16 older adults were evaluated by batteries of auditory stimuli to verify the inter-group differences (age effect in working memory span, total correct answers and intrusions, and the intra-group effect of type of stimulus. Results: There was no intra-group stimulus effect. Individuals from both groups processed di and tri-syllables similarly. No difference between groups (no age effect was observed for any N-Back parameters: total score, span, number of intrusions, in either di or tri-syllable presentation. Conclusion: the processing capacity of 5 elements in phonological working memory was not affected by age.

  19. Verbal cues effectively orient children's auditory attention in a CV-syllable dichotic listening paradigm.

    Science.gov (United States)

    Phélip, Marion; Donnot, Julien; Vauclair, Jacques

    2015-12-18

    In their groundbreaking work featuring verbal dichotic listening tasks, Mondor and Bryden showed that tone cues do not enhance children's attentional orienting, in contrast to adults. The magnitude of the children's right-ear advantage was not attenuated when their attention was directed to the left ear. Verbal cues did, however, appear to favour the orientation of attention at around 10 years, although stimulus-onset asynchronies (SOAs), which ranged between 450 and 750 ms, were not rigorously controlled. The aim of our study was therefore to investigate the role of both types of cues in a typical CV-syllable dichotic listening task administered to 8- to 10-year-olds, applying a protocol as similar as possible to that used by Mondor and Bryden, but controlling for SOA as well as for cued ear. Results confirmed that verbal cues are more effective than tone cues in orienting children's attention. However, in contrast to adults, no effect of SOA was observed. We discuss the relative difficulty young children have processing CV syllables, as well as the role of top-down processes in attentional orienting abilities.

  20. Attentional models of multitask pilot performance using advanced display technology.

    Science.gov (United States)

    Wickens, Christopher D; Goh, Juliana; Helleberg, John; Horrey, William J; Talleur, Donald A

    2003-01-01

    In the first part of the reported research, 12 instrument-rated pilots flew a high-fidelity simulation, in which air traffic control presentation of auditory (voice) information regarding traffic and flight parameters was compared with advanced display technology presentation of equivalent information regarding traffic (cockpit display of traffic information) and flight parameters (data link display). Redundant combinations were also examined while pilots flew the aircraft simulation, monitored for outside traffic, and read back communications messages. The data suggested a modest cost for visual presentation over auditory presentation, a cost mediated by head-down visual scanning, and no benefit for redundant presentation. The effects in Part 1 were modeled by multiple-resource and preemption models of divided attention. In the second part of the research, visual scanning in all conditions was fit by an expected value model of selective attention derived from a previous experiment. This model accounted for 94% of the variance in the scanning data and 90% of the variance in a second validation experiment. Actual or potential applications of this research include guidance on choosing the appropriate modality for presenting in-cockpit information and understanding task strategies induced by introducing new aviation technology.

  1. Children's Auditory Working Memory Performance in Degraded Listening Conditions

    Science.gov (United States)

    Osman, Homira; Sullivan, Jessica R.

    2014-01-01

    Purpose: The objectives of this study were to determine (a) whether school-age children with typical hearing demonstrate poorer auditory working memory performance in multitalker babble at degraded signal-to-noise ratios than in quiet; and (b) whether the amount of cognitive demand of the task contributed to differences in performance in noise. It…

  2. Memory-based pre-attentive auditory N1 elicited by sound movement.

    Science.gov (United States)

    Ohoyama, Keiko; Motomura, Eishi; Inui, Koji; Nishihara, Makoto; Otsuru, Naofumi; Oi, Motoyasu; Kakigi, Ryusuke; Okada, Motohiro

    2012-07-01

    Quickly detecting changes in the surrounding environment is one of the most important functions of sensory processing. Comparison of a new event with preceding sensory conditions is necessary for the change-detection process. A sudden change in a continuous sound elicits auditory evoked potentials that peak approximately 100 ms after the onset of the change (Change-N1). In the present study, we recorded Change-N1 under an oddball paradigm in 19 healthy subjects using an abruptly moving sound (SM-stimulus) as a deviant stimulus and investigated effects of the probability of the SM-stimulus to reveal whether Change-N1 is a memory-based response. We compared the amplitude and latency of Change-N1 elicited by the SM-stimulus among three probability conditions (33, 50 and 100%). As the probability of the SM-stimulus decreased, the amplitude of Change-N1 increased and its latency decreased. The present results indicate that the preceding sensory history affects Change-N1 elicited by the SM-stimulus. Copyright © 2012 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  3. Attention.

    Science.gov (United States)

    Callahan, Patrick M; Terry, Alvin V

    2015-01-01

    The ability to focus one's attention on important environmental stimuli while ignoring irrelevant stimuli is fundamental to human cognition and intellectual function. Attention is inextricably linked to perception, learning and memory, and executive function; however, it is often impaired in a variety of neuropsychiatric disorders, including Alzheimer's disease, schizophrenia, depression, and attention deficit hyperactivity disorder (ADHD). Accordingly, attention is considered as an important therapeutic target in these disorders. The purpose of this chapter is to provide an overview of the most common behavioral paradigms of attention that have been used in animals (particularly rodents) and to review the literature where these tasks have been employed to elucidate neurobiological substrates of attention as well as to evaluate novel pharmacological agents for their potential as treatments for disorders of attention. These paradigms include two tasks of sustained attention that were developed as rodent analogues of the human Continuous Performance Task (CPT), the Five-Choice Serial Reaction Time Task (5-CSRTT) and the more recently introduced Five-Choice Continuous Performance Task (5C-CPT), and the Signal Detection Task (SDT) which was designed to emphasize temporal components of attention.

  4. Decoding auditory attention to instruments in polyphonic music using single-trial EEG classification

    DEFF Research Database (Denmark)

    Treder, Matthias S.; Purwins, Hendrik; Miklody, Daniel

    2014-01-01

    . Here, we explore polyphonic music as a novel stimulation approach for future use in a brain-computer interface. In a musical oddball experiment, we had participants shift selective attention to one out of three different instruments in music audio clips, with each instrument occasionally playing one...... 11 participants. This is a proof of concept that attention paid to a particular instrument in polyphonic music can be inferred from ongoing EEG, a finding that is potentially relevant for both brain-computer interface and music research....

  5. Acute nicotine fails to alter event-related potential or behavioral performance indices of auditory distraction in cigarette smokers.

    Science.gov (United States)

    Knott, Verner J; Scherling, Carole S; Blais, Crystal M; Camarda, Jordan; Fisher, Derek J; Millar, Anne; McIntosh, Judy F

    2006-04-01

    Behavioral studies have shown that nicotine enhances performance in sustained attention tasks, but they have not shown convincing support for the effects of nicotine on tasks requiring selective attention or attentional control under conditions of distraction. We investigated distractibility in 14 smokers (7 females) with event-related brain potentials (ERPs) and behavioral performance measures extracted from an auditory discrimination task requiring a choice reaction time response to short- and long-duration tones, both with and without embedded deviants. Nicotine gum (4 mg), administered in a randomized, double-blind, placebo-controlled crossover design, failed to counter deviant-elicited behavioral distraction (i.e., slower reaction times and increased response errors), and it did not influence the distracter-elicited mismatch negativity, the P300a, or the reorienting negativity ERP components reflecting acoustic change detection, involuntary attentional switching, and attentional reorienting, respectively. Results are discussed in relation to a stimulus-filter model of smoking and in relation to future research directions.

  6. Arousal and attention re-orienting in autism spectrum disorders: evidence from auditory event-related potentials

    Directory of Open Access Journals (Sweden)

    Elena V Orekhova

    2014-02-01

    Full Text Available The extended phenotype of autism spectrum disorders (ASD includes a combination of arousal regulation problems, sensory modulation difficulties, and attention re-orienting deficit. A slow and inefficient re-orienting to stimuli that appear outside of the attended sensory stream is thought to be especially detrimental for social functioning. Event-related potentials (ERPs and magnetic fields (ERFs may help to reveal which processing stages underlying brain response to unattended but salient sensory event are affected in individuals with ASD. Previous research focusing on two sequential stages of the brain response - automatic detection of physical changes in auditory stream, indexed by mismatch negativity (MMN, and evaluation of stimulus novelty, indexed by P3a component, - found in individuals with ASD either increased, decreased or normal processing of deviance and novelty. The review examines these apparently conflicting results, notes gaps in previous findings, and suggests a potentially unifying hypothesis relating the dampened responses to unattended sensory events to the deficit in rapid arousal process. Specifically, ‘sensory gating’ studies focused on pre-attentive arousal consistently demonstrated that brain response to unattended and temporally novel sound in ASD is already affected at around 100 ms after stimulus onset. We hypothesize that abnormalities in nicotinic cholinergic arousal pathways, previously reported in individuals with ASD, may contribute to these ERP/ERF aberrations and result in attention re-orienting deficit. Such cholinergic dysfunction may be present in individuals with ASD early in life and can influence both sensory processing and attention re-orienting behavior. Identification of early neurophysiological biomarkers for cholinergic deficit would help to detect infants at risk who can potentially benefit from particular types of therapies or interventions.

  7. Effects of alcohol on attention orienting and dual-task performance during simulated driving: an event-related potential study.

    Science.gov (United States)

    Wester, Anne E; Verster, Joris C; Volkerts, Edmund R; Böcker, Koen B E; Kenemans, J Leon

    2010-09-01

    Driving is a complex task and is susceptible to inattention and distraction. Moreover, alcohol has a detrimental effect on driving performance, possibly due to alcohol-induced attention deficits. The aim of the present study was to assess the effects of alcohol on simulated driving performance and attention orienting and allocation, as assessed by event-related potentials (ERPs). Thirty-two participants completed two test runs in the Divided Attention Steering Simulator (DASS) with blood alcohol concentrations (BACs) of 0.00%, 0.02%, 0.05%, 0.08% and 0.10%. Sixteen participants performed the second DASS test run with a passive auditory oddball to assess alcohol effects on involuntary attention shifting. Sixteen other participants performed the second DASS test run with an active auditory oddball to assess alcohol effects on dual-task performance and active attention allocation. Dose-dependent impairments were found for reaction times, the number of misses and steering error, even more so in dual-task conditions, especially in the active oddball group. ERP amplitudes to novel irrelevant events were also attenuated in a dose-dependent manner. The P3b amplitude to deviant target stimuli decreased with blood alcohol concentration only in the dual-task condition. It is concluded that alcohol increases distractibility and interference from secondary task stimuli, as well as reduces attentional capacity and dual-task integrality.

  8. Cortical Response Variability as a Developmental Index of Selective Auditory Attention

    Science.gov (United States)

    Strait, Dana L.; Slater, Jessica; Abecassis, Victor; Kraus, Nina

    2014-01-01

    Attention induces synchronicity in neuronal firing for the encoding of a given stimulus at the exclusion of others. Recently, we reported decreased variability in scalp-recorded cortical evoked potentials to attended compared with ignored speech in adults. Here we aimed to determine the developmental time course for this neural index of auditory…

  9. The absence of an auditory-visual attentional blink is not due to echoic memory

    NARCIS (Netherlands)

    Burg, E. van der; Olivers, C.N.L.; Bronkhorst, A.W.; Koelewijn, T.; Theeuwes, J.

    2007-01-01

    Als binnen een halve seconde twee visuele items in een serieel aangeboden stroom moeten worden geselecteerd, is de prestatie voor het tweede item vaak relatief slecht (er treedt een “attentional blink” op); wanneer het eerste echter item auditief wordt aangeboden, verdwijnt de blink meestal. We

  10. Auditory Attentional Capture during Serial Recall: Violations at Encoding of an Algorithm-Based Neural Model?

    Science.gov (United States)

    Hughes, Robert W.; Vachon, Francois; Jones, Dylan M.

    2005-01-01

    A novel attentional capture effect is reported in which visual-verbal serial recall was disrupted if a single deviation in the interstimulus interval occurred within otherwise regularly presented task-irrelevant spoken items. The degree of disruption was the same whether the temporal deviant was embedded in a sequence made up of a repeating item…

  11. Costs of switching auditory spatial attention in following conversational turn-taking

    Directory of Open Access Journals (Sweden)

    Gaven eLin

    2015-04-01

    Full Text Available Following a multi-talker conversation relies on the ability to rapidly and efficiently shift the focus of spatial attention from one talker to another. The current study investigated the listening costs associated with shifts in spatial attention during conversational turn-taking in 16 normally-hearing listeners using a novel sentence recall task. Three pairs of syntactically fixed but semantically unpredictable matrix sentences, recorded from a single male talker, were presented concurrently through an array of three loudspeakers (directly ahead and +/-30° azimuth. Subjects attended to one spatial location, cued by a tone, and followed the target conversation from one sentence to the next using the call-sign at the beginning of each sentence. Subjects were required to report the last three words of each sentence (speech recall task or answer multiple choice questions related to the target material (speech comprehension task. The reading span test, attention network test, and trail making test were also administered to assess working memory, attentional control, and executive function. There was a 10.7 ± 1.3% decrease in word recall, a pronounced primacy effect, and a rise in masker confusion errors and word omissions when the target switched location between sentences. Switching costs were independent of the location, direction, and angular size of the spatial shift but did appear to be load dependent and only significant for complex questions requiring multiple cognitive operations. Reading span scores were positively correlated with total words recalled, and negatively correlated with switching costs and word omissions. Task switching speed (Trail-B time was also significantly correlated with recall accuracy. Overall, this study highlights i the listening costs associated with shifts in spatial attention and ii the important role of working memory in maintaining goal relevant information and extracting meaning from dynamic multi

  12. Localizing pre-attentive auditory memory-based comparison: magnetic mismatch negativity to pitch change.

    Science.gov (United States)

    Maess, Burkhard; Jacobsen, Thomas; Schröger, Erich; Friederici, Angela D

    2007-08-15

    Changes in the pitch of repetitive sounds elicit the mismatch negativity (MMN) of the event-related brain potential (ERP). There exist two alternative accounts for this index of automatic change detection: (1) A sensorial, non-comparator account according to which ERPs in oddball sequences are affected by differential refractory states of frequency-specific afferent cortical neurons. (2) A cognitive, comparator account stating that MMN reflects the outcome of a memory comparison between a neuronal model of the frequently presented standard sound with the sensory memory representation of the changed sound. Using a condition controlling for refractoriness effects, the two contributions to MMN can be disentangled. The present study used whole-head MEG to further elucidate the sensorial and cognitive contributions to frequency MMN. Results replicated ERP findings that MMN to pitch change is a compound of the activity of a sensorial, non-comparator mechanism and a cognitive, comparator mechanism which could be separated in time. The sensorial part of frequency MMN consisting of spatially dipolar patterns was maximal in the late N1 range (105-125 ms), while the cognitive part peaked in the late MMN-range (170-200 ms). Spatial principal component analyses revealed that the early part of the traditionally measured MMN (deviant minus standard) is mainly due to the sensorial mechanism while the later mainly due to the cognitive mechanism. Inverse modeling revealed sources for both MMN contributions in the gyrus temporales transversus, bilaterally. These MEG results suggest temporally distinct but spatially overlapping activities of non-comparator-based and comparator-based mechanisms of automatic frequency change detection in auditory cortex.

  13. Effects of training and motivation on auditory P300 brain-computer interface performance.

    Science.gov (United States)

    Baykara, E; Ruf, C A; Fioravanti, C; Käthner, I; Simon, N; Kleih, S C; Kübler, A; Halder, S

    2016-01-01

    Brain-computer interface (BCI) technology aims at helping end-users with severe motor paralysis to communicate with their environment without using the natural output pathways of the brain. For end-users in complete paralysis, loss of gaze control may necessitate non-visual BCI systems. The present study investigated the effect of training on performance with an auditory P300 multi-class speller paradigm. For half of the participants, spatial cues were added to the auditory stimuli to see whether performance can be further optimized. The influence of motivation, mood and workload on performance and P300 component was also examined. In five sessions, 16 healthy participants were instructed to spell several words by attending to animal sounds representing the rows and columns of a 5 × 5 letter matrix. 81% of the participants achieved an average online accuracy of ⩾ 70%. From the first to the fifth session information transfer rates increased from 3.72 bits/min to 5.63 bits/min. Motivation significantly influenced P300 amplitude and online ITR. No significant facilitative effect of spatial cues on performance was observed. Training improves performance in an auditory BCI paradigm. Motivation influences performance and P300 amplitude. The described auditory BCI system may help end-users to communicate independently of gaze control with their environment. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  14. The Attentional Boost Effect: Transient increases in attention to one task enhance performance in a second task.

    Science.gov (United States)

    Swallow, Khena M; Jiang, Yuhong V

    2010-04-01

    Recent work on event perception suggests that perceptual processing increases when events change. An important question is how such changes influence the way other information is processed, particularly during dual-task performance. In this study, participants monitored a long series of distractor items for an occasional target as they simultaneously encoded unrelated background scenes. The appearance of an occasional target could have two opposite effects on the secondary task: It could draw attention away from the second task, or, as a change in the ongoing event, it could improve secondary task performance. Results were consistent with the second possibility. Memory for scenes presented simultaneously with the targets was better than memory for scenes that preceded or followed the targets. This effect was observed when the primary detection task involved visual feature oddball detection, auditory oddball detection, and visual color-shape conjunction detection. It was eliminated when the detection task was omitted, and when it required an arbitrary response mapping. The appearance of occasional, task-relevant events appears to trigger a temporal orienting response that facilitates processing of concurrently attended information (Attentional Boost Effect). Copyright 2009 Elsevier B.V. All rights reserved.

  15. Attending to auditory memory.

    Science.gov (United States)

    Zimmermann, Jacqueline F; Moscovitch, Morris; Alain, Claude

    2016-06-01

    Attention to memory describes the process of attending to memory traces when the object is no longer present. It has been studied primarily for representations of visual stimuli with only few studies examining attention to sound object representations in short-term memory. Here, we review the interplay of attention and auditory memory with an emphasis on 1) attending to auditory memory in the absence of related external stimuli (i.e., reflective attention) and 2) effects of existing memory on guiding attention. Attention to auditory memory is discussed in the context of change deafness, and we argue that failures to detect changes in our auditory environments are most likely the result of a faulty comparison system of incoming and stored information. Also, objects are the primary building blocks of auditory attention, but attention can also be directed to individual features (e.g., pitch). We review short-term and long-term memory guided modulation of attention based on characteristic features, location, and/or semantic properties of auditory objects, and propose that auditory attention to memory pathways emerge after sensory memory. A neural model for auditory attention to memory is developed, which comprises two separate pathways in the parietal cortex, one involved in attention to higher-order features and the other involved in attention to sensory information. This article is part of a Special Issue entitled SI: Auditory working memory. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Measuring Distribution Performance? Benchmarking Warrants Your Attention

    Energy Technology Data Exchange (ETDEWEB)

    Ericson, Sean J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Alvarez, Paul [The Wired Group

    2018-04-13

    Identifying, designing, and measuring performance metrics is critical to securing customer value, but can be a difficult task. This article examines the use of benchmarks based on publicly available performance data to set challenging, yet fair, metrics and targets.

  17. A habilidade de atenção auditiva sustentada em crianças com fissura labiopalatina e transtorno fonológico Sustained auditory attention ability in children with cleft lip and palate and phonological disorders

    Directory of Open Access Journals (Sweden)

    Tâmyne Ferreira Duarte de Moraes

    2011-12-01

    Full Text Available OBJETIVO: Verificar a habilidade de atenção auditiva sustentada em crianças com fissura labiopalatina e transtorno fonológico, comparando o desempenho com crianças com fissura labiopalatina e ausência de transtorno fonológico. MÉTODOS: Dezessete crianças com idade entre 6 e 11 anos, com fissura labiopalatina transforame unilateral operada e ausência de queixa e/ou alteração auditiva, separadas em dois grupos: GI (com transtorno fonológico e GII (com auŝencia de transtorno fonológico. Para detecção de alteração auditiva foram realizadas audiometria e timpanometria. Para avaliação fonológica foram utilizados os seguintes instrumentos: Teste de Linguagem Infantil e Consciência Fonológica: Instrumento de Avaliação Sequencial. Para avaliar a habilidade de atenção auditiva foi aplicado o Teste da Habilidade de Atenção Auditiva Sustentada. RESULTADOS: Das sete crianças com transtorno fonológico (41%, duas (29% apresentaram alteração nos resultados do Teste da Habilidade de Atenção Auditiva Sustentada. Não houve diferença entre as crianças com fissura labiopalatina e transtorno fonológico e as crianças com fissura labiopalatina e ausência de transtorno fonológico quanto aos resultados do Teste de Habilidade de Atenção Auditiva Sustentada. CONCLUSÃO: A habilidade de atenção auditiva sustentada nas crianças com fissura labiopalatina e transtorno fonológico não difere da habilidade de atenção auditiva sustentada de crianças com fissura labiopalatina sem transtorno fonológico.PURPOSE: To verify the ability of sustained auditory attention in children with cleft lip and palate and phonological disorder, in comparison with the performance of children with cleft lip and palate and absence of phonological disorder. METHODS: Seventeen children with ages between 6 and 11 years, with repaired unilateral complete cleft lip and palate and absence of auditory complaints or hearing problems, were divided into two

  18. Lifespan Differences in Nonlinear Dynamics during Rest and Auditory Oddball Performance

    Science.gov (United States)

    Muller, Viktor; Lindenberger, Ulman

    2012-01-01

    Electroencephalographic recordings (EEG) were used to assess age-associated differences in nonlinear brain dynamics during both rest and auditory oddball performance in children aged 9.0-12.8 years, younger adults, and older adults. We computed nonlinear coupling dynamics and dimensional complexity, and also determined spectral alpha power as an…

  19. Performance on Paced Auditory Serial Addition Test and cerebral blood flow in multiple sclerosis

    NARCIS (Netherlands)

    D'haeseleer, M.; Steen, C.; Hoogduin, J. M.; van Osch, M. J. P.; Fierens, Y.; Cambron, M.; Koch, M. W.; De Keyser, J.

    BackgroundTo assess the relationship between performance on the Paced Auditory Serial Addition Test (PASAT) and both cerebral blood flow (CBF) and axonal metabolic integrity in normal appearing white matter (NAWM) of the centrum semiovale in patients with multiple sclerosis (MS). MethodsNormal

  20. Visual and auditory digit-span performance in native and nonnative speakers

    NARCIS (Netherlands)

    Olsthoorn, N.M.; Andringa, S.; Hulstijn, J.H.

    2014-01-01

    We compared 121 native and 114 non-native speakers of Dutch (with 35 different first languages) on four digit-span tasks, varying modality (visual/auditory) and direction (forward/backward). An interaction was observed between nativeness and modality, such that, while natives performed better than

  1. Decision criterion dynamics in animals performing an auditory detection task.

    Directory of Open Access Journals (Sweden)

    Robert W Mill

    Full Text Available Classical signal detection theory attributes bias in perceptual decisions to a threshold criterion, against which sensory excitation is compared. The optimal criterion setting depends on the signal level, which may vary over time, and about which the subject is naïve. Consequently, the subject must optimise its threshold by responding appropriately to feedback. Here a series of experiments was conducted, and a computational model applied, to determine how the decision bias of the ferret in an auditory signal detection task tracks changes in the stimulus level. The time scales of criterion dynamics were investigated by means of a yes-no signal-in-noise detection task, in which trials were grouped into blocks that alternately contained easy- and hard-to-detect signals. The responses of the ferrets implied both long- and short-term criterion dynamics. The animals exhibited a bias in favour of responding "yes" during blocks of harder trials, and vice versa. Moreover, the outcome of each single trial had a strong influence on the decision at the next trial. We demonstrate that the single-trial and block-level changes in bias are a manifestation of the same criterion update policy by fitting a model, in which the criterion is shifted by fixed amounts according to the outcome of the previous trial and decays strongly towards a resting value. The apparent block-level stabilisation of bias arises as the probabilities of outcomes and shifts on single trials mutually interact to establish equilibrium. To gain an intuition into how stable criterion distributions arise from specific parameter sets we develop a Markov model which accounts for the dynamic effects of criterion shifts. Our approach provides a framework for investigating the dynamics of decisions at different timescales in other species (e.g., humans and in other psychological domains (e.g., vision, memory.

  2. An fMRI study to investigate auditory attention. A model of the cocktail party phenomenon

    International Nuclear Information System (INIS)

    Nakai, Toshiharu; Kato, Chikako; Matsuo, Kayako

    2005-01-01

    In human life, discrimination of a target voice from other voices or sounds is indispensable, and inability for such discrimination results in sensory aphasia. To investigate the neuronal basis of the attentional system for human voices, we evaluated brain activity during listening comprehension tasks using functional magnetic resonance imaging (fMRI) at 3T. Diotic listening comprehension tasks, in which a narration was superimposed by another given by the same speaker (SV experiment) or by a different speaker (DV experiment), were presented to normal volunteers. The story indicated in the baseline task blocks, in which only one narration was presented, was intensively followed during the superimposed task blocks. In each experiment, 6 task blocks, 3 blocks for each condition, and 7 rest blocks were alternatively repeated, and the contrast of the superimposed condition to the baseline condition in each session was obtained. In the DV experiment, compared with the control condition, activation in Wernicke's area (BA22) was increased. In the SV experiment, activation in the frontal association cortex (BA6, BA9/46, BA32, BA13/47) was additionally increased. These results suggested that difficulty in phonological processing to discriminate human voices calls for further semantic, syntactic, and prosodic processing, as well as augmented selective attention. (author)

  3. Active listening impairs visual perception and selectivity: an ERP study of auditory dual-task costs on visual attention.

    Science.gov (United States)

    Gherri, Elena; Eimer, Martin

    2011-04-01

    The ability to drive safely is disrupted by cell phone conversations, and this has been attributed to a diversion of attention from the visual environment. We employed behavioral and ERP measures to study whether the attentive processing of spoken messages is, in itself, sufficient to produce visual-attentional deficits. Participants searched for visual targets defined by a unique feature (Experiment 1) or feature conjunction (Experiment 2), and simultaneously listened to narrated text passages that had to be recalled later (encoding condition), or heard backward-played speech sounds that could be ignored (control condition). Responses to targets were slower in the encoding condition, and ERPs revealed that the visual processing of search arrays and the attentional selection of target stimuli were less efficient in the encoding relative to the control condition. Results demonstrate that the attentional processing of visual information is impaired when concurrent spoken messages are encoded and maintained, in line with cross-modal links in selective attention, but inconsistent with the view that attentional resources are modality-specific. The distraction of visual attention by active listening could contribute to the adverse effects of cell phone use on driving performance.

  4. Motor Performance in Relation with Sustained Attention in Children with Attention Deficit Hyperactivity Disorder

    Directory of Open Access Journals (Sweden)

    Solmaz Solouki

    2012-04-01

    Full Text Available Objective: Present study compares relationship between motor performance, sustained attention and impulse control in children with Attention Deficit Hyperactivity Disorder and normal children. Materials & Methods: In this descriptive-analytic study, 21 boys with ADHD and 21 normal boys in the age range of 7- 10 years old were participated. Motor performance by using Bruininks Oseretsky Test of Motor Proficiency and sustained attention and impulse control by using Continuous Performance Test were evaluated. Results: Analysis by T-Test and Mann-Whitney revealed significant difference between ADHD group and normal group in gross, fine and battery motor performance also sustained attention and impulse control (P<0.0001. Analysis by Z-Fisher test indicated no significant difference between Correlation Coefficient of inattention and gross motor performance in two groups (P=0.276 but significant difference between Correlation Coefficient of inattention and fine (P<0.0001 and battery (P<0.0001 motor performance were shown. Correlation Coefficient impulsivity and gross (P=0.379, fine (P=0.92 and battery (P=0.562 motor performance shown no significant difference between two groups. Conclusion: According to study results there was a positive relation between sustained attention and impulse control and most of motor performance in both groups. Therefore these findings help Occupational Therapist to determine rehabilitation priorities and to use exact strategies in order to enhance motor performance in children.

  5. Training Attentional Control Improves Cognitive and Motor Task Performance.

    Science.gov (United States)

    Ducrocq, Emmanuel; Wilson, Mark; Vine, Sam; Derakshan, Nazanin

    2016-10-01

    Attentional control is a necessary function for the regulation of goal-directed behavior. In three experiments we investigated whether training inhibitory control using a visual search task could improve task-specific measures of attentional control and performance. In Experiment 1 results revealed that training elicited a near-transfer effect, improving performance on a cognitive (antisaccade) task assessing inhibitory control. In Experiment 2 an initial far-transfer effect of training was observed on an index of attentional control validated for tennis. The principal aim of Experiment 3 was to expand on these findings by assessing objective gaze measures of inhibitory control during the performance of a tennis task. Training improved inhibitory control and performance when pressure was elevated, confirming the mechanisms by which cognitive anxiety impacts performance. These results suggest that attentional control training can improve inhibition and reduce taskspecific distractibility with promise of transfer to more efficient sporting performance in competitive contexts.

  6. Ring a bell? Adaptive Auditory Game Feedback to Sustain Performance in Stroke Rehabilitation

    DEFF Research Database (Denmark)

    Hald, Kasper; Knoche, Hendrik

    2016-01-01

    This paper investigates the effect of adaptive auditory feed- back on continued player performance for stroke patients in a Whack- a-Mole style tablet game. The feedback consisted of accumulatively in- creasing the pitch of positive feedback sounds on tasks with fast reaction time and resetting...... it after slow reaction times. The analysis was based on data was obtained in a field trial with lesion patients during their regular rehabilitation. The auditory feedback events were categorized by feedback type (positive/negative) and the associated pitch change of ei- ther high or low magnitude. Both...... feedback type and magnitude had a significant effect on players performance. Negative feedback improved re- action time on the subsequent hit by 0.42 second and positive feedback impaired performance by 0.15 seconds....

  7. The Role of Visual and Auditory Stimuli in Continuous Performance Tests: Differential Effects on Children With ADHD.

    Science.gov (United States)

    Simões, Eunice N; Carvalho, Ana L Novais; Schmidt, Sergio L

    2018-04-01

    Continuous performance tests (CPTs) usually utilize visual stimuli. A previous investigation showed that inattention is partially independent of modality, but response inhibition is modality-specific. Here we aimed to compare performance on visual and auditory CPTs in ADHD and in healthy controls. The sample consisted of 160 elementary and high school students (43 ADHD, 117 controls). For each sensory modality, five variables were extracted: commission errors (CEs) and omission errors (OEs), reaction time (RT), variability of reaction time (VRT), and coefficient of variability (CofV = VRT / RT). The ADHD group exhibited higher rates for all test variables. The discriminant analysis indicated that auditory OE was the most reliable variable for discriminating between groups, followed by visual CE, auditory CE, and auditory CofV. Discriminant equation classified ADHD with 76.3% accuracy. Auditory parameters in the inattention domain (OE and VRT) can discriminate ADHD from controls. For the hyperactive/impulsive domain (CE), the two modalities are equally important.

  8. Effects of dynamic range compression on spatial selective auditory attention in normal-hearing listeners.

    Science.gov (United States)

    Schwartz, Andrew H; Shinn-Cunningham, Barbara G

    2013-04-01

    Many hearing aids introduce compressive gain to accommodate the reduced dynamic range that often accompanies hearing loss. However, natural sounds produce complicated temporal dynamics in hearing aid compression, as gain is driven by whichever source dominates at a given moment. Moreover, independent compression at the two ears can introduce fluctuations in interaural level differences (ILDs) important for spatial perception. While independent compression can interfere with spatial perception of sound, it does not always interfere with localization accuracy or speech identification. Here, normal-hearing listeners reported a target message played simultaneously with two spatially separated masker messages. We measured the amount of spatial separation required between the target and maskers for subjects to perform at threshold in this task. Fast, syllabic compression that was independent at the two ears increased the required spatial separation, but linking the compressors to provide identical gain to both ears (preserving ILDs) restored much of the deficit caused by fast, independent compression. Effects were less clear for slower compression. Percent-correct performance was lower with independent compression, but only for small spatial separations. These results may help explain differences in previous reports of the effect of compression on spatial perception of sound.

  9. Rhythm synchronization performance and auditory working memory in early- and late-trained musicians.

    Science.gov (United States)

    Bailey, Jennifer A; Penhune, Virginia B

    2010-07-01

    Behavioural and neuroimaging studies provide evidence for a possible "sensitive" period in childhood development during which musical training results in long-lasting changes in brain structure and auditory and motor performance. Previous work from our laboratory has shown that adult musicians who begin training before the age of 7 (early-trained; ET) perform better on a visuomotor task than those who begin after the age of 7 (late-trained; LT), even when matched on total years of musical training and experience. Two questions were raised regarding the findings from this experiment. First, would this group performance difference be observed using a more familiar, musically relevant task such as auditory rhythms? Second, would cognitive abilities mediate this difference in task performance? To address these questions, ET and LT musicians, matched on years of musical training, hours of current practice and experience, were tested on an auditory rhythm synchronization task. The task consisted of six woodblock rhythms of varying levels of metrical complexity. In addition, participants were tested on cognitive subtests measuring vocabulary, working memory and pattern recognition. The two groups of musicians differed in their performance of the rhythm task, such that the ET musicians were better at reproducing the temporal structure of the rhythms. There were no group differences on the cognitive measures. Interestingly, across both groups, individual task performance correlated with auditory working memory abilities and years of formal training. These results support the idea of a sensitive period during the early years of childhood for developing sensorimotor synchronization abilities via musical training.

  10. Did You Listen to the Beat? Auditory Steady-State Responses in the Human Electroencephalogram at 4 and 7 Hz Modulation Rates Reflect Selective Attention.

    Science.gov (United States)

    Jaeger, Manuela; Bleichner, Martin G; Bauer, Anna-Katharina R; Mirkovic, Bojana; Debener, Stefan

    2018-02-27

    The acoustic envelope of human speech correlates with the syllabic rate (4-8 Hz) and carries important information for intelligibility, which is typically compromised in multi-talker, noisy environments. In order to better understand the dynamics of selective auditory attention to low frequency modulated sound sources, we conducted a two-stream auditory steady-state response (ASSR) selective attention electroencephalogram (EEG) study. The two streams consisted of 4 and 7 Hz amplitude and frequency modulated sounds presented from the left and right side. One of two streams had to be attended while the other had to be ignored. The attended stream always contained a target, allowing for the behavioral confirmation of the attention manipulation. EEG ASSR power analysis revealed a significant increase in 7 Hz power for the attend compared to the ignore conditions. There was no significant difference in 4 Hz power when the 4 Hz stream had to be attended compared to when it had to be ignored. This lack of 4 Hz attention modulation could be explained by a distracting effect of a third frequency at 3 Hz (beat frequency) perceivable when the 4 and 7 Hz streams are presented simultaneously. Taken together our results show that low frequency modulations at syllabic rate are modulated by selective spatial attention. Whether attention effects act as enhancement of the attended stream or suppression of to be ignored stream may depend on how well auditory streams can be segregated.

  11. White matter abnormalities and their impact on attentional performance in adult attention-deficit/hyperactivity disorder.

    Science.gov (United States)

    Konrad, Andreas; Dielentheis, Thomas F; El Masri, Dschamil; Dellani, Paulo R; Stoeter, Peter; Vucurevic, Goran; Winterer, Georg

    2012-06-01

    Inattention is the most important behavioral feature of adult patients with attention-deficit/hyperactivity disorder (ADHD). Neuroimaging studies in ADHD have demonstrated abnormalities primarily in the frontostriatal circuitry and were mostly conducted in children. We investigated white matter (WM) integrity in adult ADHD patients and the correlation of WM microstructure and neuropsychological parameters in 37 (21 men) never-medicated adult ADHD patients and 34 age- and gender-matched healthy controls. All subjects underwent clinical interviews, rating scales, and neuropsychological tests of attentional performance. Diffusion tensor imaging (DTI) was acquired, and 12 WM regions-of-interest (ROIs) within the attentional network were chosen. Group differences of mean fractional anisotropy (FA) and mean diffusivity (MD) values were calculated for each ROI, and patients' DTI measures were then correlated with measures of attentional performance. FA values in ADHD patients were significantly reduced in the left inferior longitudinal fasciculus (ILF), while MD values were significantly increased in ADHD patients in the frontal portion of the left frontooccipital fasciculus (IFO). In ADHD patients, MD values were negatively correlated with attentional performance in the left ILF. Our findings provide further support for disturbed frontostriatal structural connectivity and also point to an involvement of the left temporal white matter with an impact on attentional performance.

  12. Task-irrelevant novel sounds improve attentional performance in children with and without ADHD

    Directory of Open Access Journals (Sweden)

    Jana eTegelbeckers

    2016-01-01

    Full Text Available Task-irrelevant salient stimuli involuntarily capture attention and can lead to distraction from an ongoing task, especially in children with ADHD. However, there has been tentative evidence that the presentation of novel sounds can have beneficial effects on cognitive performance. In the present study, we aimed to investigate the influence of novel sounds compared to no sound and a repeatedly presented standard sound on attentional performance in children and adolescents with and without ADHD. We therefore had 32 patients with ADHD and 32 typically developing children and adolescents (8 to 13 years executed a flanker task in which each trial was preceded either by a repeatedly presented standard sound (33%, an unrepeated novel sound (33% or no auditory stimulation (33%. Task-irrelevant novel sounds facilitated attentional performance similarly in children with and without ADHD, as indicated by reduced omission error rates, reaction times, and reaction time variability without compromising performance accuracy. By contrast, standard sounds, while also reducing omission error rates and reaction times, led to increased commission error rates. Therefore, the beneficial effect of novel sounds exceeds cueing of the target display by potentially increased alerting and/or enhanced behavioral control.

  13. Random Gap Detection Test (RGDT) performance of individuals with central auditory processing disorders from 5 to 25 years of age.

    Science.gov (United States)

    Dias, Karin Ziliotto; Jutras, Benoît; Acrani, Isabela Olszanski; Pereira, Liliane Desgualdo

    2012-02-01

    The aim of the present study was to assess the auditory temporal resolution ability in individuals with central auditory processing disorders, to examine the maturation effect and to investigate the relationship between the performance on a temporal resolution test with the performance on other central auditory tests. Participants were divided in two groups: 131 with Central Auditory Processing Disorder and 94 with normal auditory processing. They had pure-tone air-conduction thresholds no poorer than 15 dB HL bilaterally, normal admittance measures and presence of acoustic reflexes. Also, they were assessed with a central auditory test battery. Participants who failed at least one or more tests were included in the Central Auditory Processing Disorder group and those in the control group obtained normal performance on all tests. Following the auditory processing assessment, the Random Gap Detection Test was administered to the participants. A three-way ANOVA was performed. Correlation analyses were also done between the four Random Gap Detection Test subtests data as well as between Random Gap Detection Test data and the other auditory processing test results. There was a significant difference between the age-group performances in children with and without Central Auditory Processing Disorder. Also, 48% of children with Central Auditory Processing Disorder failed the Random Gap Detection Test and the percentage decreased as a function of age. The highest percentage (86%) was found in the 5-6 year-old children. Furthermore, results revealed a strong significant correlation between the four Random Gap Detection Test subtests. There was a modest correlation between the Random Gap Detection Test results and the dichotic listening tests. No significant correlation was observed between the Random Gap Detection Test data and the results of the other tests in the battery. Random Gap Detection Test should not be administered to children younger than 7 years old because

  14. EEG cross-frequency coupling associated with attentional performance: An RDoC approach to attention

    NARCIS (Netherlands)

    Gerrits, B.J.L.; Vollebregt, M.A.; Olbrich, S.; Kessels, R.P.C.; Palmer, D.; Gordon, E.; Arns, M.W.

    2016-01-01

    19th biennial IPEG Meeting: Nijmegen, The Netherlands. 26-30 October 2016. The quality of attentional performance plays a crucial role in goaldirected behavior in daily life activities, cognitive task performance, and in multiple psychiatric illnesses. The Research Domain Criteria (RDoC) approach

  15. Continuous Performance Tasks: Not Just about Sustaining Attention

    Science.gov (United States)

    Roebuck, Hettie; Freigang, Claudia; Barry, Johanna G.

    2016-01-01

    Purpose: Continuous performance tasks (CPTs) are used to measure individual differences in sustained attention. Many different stimuli have been used as response targets without consideration of their impact on task performance. Here, we compared CPT performance in typically developing adults and children to assess the role of stimulus processing…

  16. What we expect is not always what we get: evidence for both the direction-of-change and the specific-stimulus hypotheses of auditory attentional capture.

    Directory of Open Access Journals (Sweden)

    Anatole Nöstl

    Full Text Available Participants were requested to respond to a sequence of visual targets while listening to a well-known lullaby. One of the notes in the lullaby was occasionally exchanged with a pattern deviant. Experiment 1 found that deviants capture attention as a function of the pitch difference between the deviant and the replaced/expected tone. However, when the pitch difference between the expected tone and the deviant tone is held constant, a violation to the direction-of-pitch change across tones can also capture attention (Experiment 2. Moreover, in more complex auditory environments, wherein it is difficult to build a coherent neural model of the sound environment from which expectations are formed, deviations can capture attention but it appears to matter less whether this is a violation from a specific stimulus or a violation of the current direction-of-change (Experiment 3. The results support the expectation violation account of auditory distraction and suggest that there are at least two different expectations that can be violated: One appears to be bound to a specific stimulus and the other would seem to be bound to a more global cross-stimulus rule such as the direction-of-change based on a sequence of preceding sound events. Factors like base-rate probability of tones within the sound environment might become the driving mechanism of attentional capture--rather than violated expectations--in complex sound environments.

  17. What we expect is not always what we get: evidence for both the direction-of-change and the specific-stimulus hypotheses of auditory attentional capture.

    Science.gov (United States)

    Nöstl, Anatole; Marsh, John E; Sörqvist, Patrik

    2014-01-01

    Participants were requested to respond to a sequence of visual targets while listening to a well-known lullaby. One of the notes in the lullaby was occasionally exchanged with a pattern deviant. Experiment 1 found that deviants capture attention as a function of the pitch difference between the deviant and the replaced/expected tone. However, when the pitch difference between the expected tone and the deviant tone is held constant, a violation to the direction-of-pitch change across tones can also capture attention (Experiment 2). Moreover, in more complex auditory environments, wherein it is difficult to build a coherent neural model of the sound environment from which expectations are formed, deviations can capture attention but it appears to matter less whether this is a violation from a specific stimulus or a violation of the current direction-of-change (Experiment 3). The results support the expectation violation account of auditory distraction and suggest that there are at least two different expectations that can be violated: One appears to be bound to a specific stimulus and the other would seem to be bound to a more global cross-stimulus rule such as the direction-of-change based on a sequence of preceding sound events. Factors like base-rate probability of tones within the sound environment might become the driving mechanism of attentional capture--rather than violated expectations--in complex sound environments.

  18. Natural stimuli improve auditory BCIs with respect to ergonomics and performance

    Science.gov (United States)

    Höhne, Johannes; Krenzlin, Konrad; Dähne, Sven; Tangermann, Michael

    2012-08-01

    Moving from well-controlled, brisk artificial stimuli to natural and less-controlled stimuli seems counter-intuitive for event-related potential (ERP) studies. As natural stimuli typically contain a richer internal structure, they might introduce higher levels of variance and jitter in the ERP responses. Both characteristics are unfavorable for a good single-trial classification of ERPs in the context of a multi-class brain-computer interface (BCI) system, where the class-discriminant information between target stimuli and non-target stimuli must be maximized. For the application in an auditory BCI system, however, the transition from simple artificial tones to natural syllables can be useful despite the variance introduced. In the presented study, healthy users (N = 9) participated in an offline auditory nine-class BCI experiment with artificial and natural stimuli. It is shown that the use of syllables as natural stimuli does not only improve the users’ ergonomic ratings; also the classification performance is increased. Moreover, natural stimuli obtain a better balance in multi-class decisions, such that the number of systematic confusions between the nine classes is reduced. Hopefully, our findings may contribute to make auditory BCI paradigms more user friendly and applicable for patients.

  19. A Decline in Response Variability Improves Neural Signal Detection during Auditory Task Performance.

    Science.gov (United States)

    von Trapp, Gardiner; Buran, Bradley N; Sen, Kamal; Semple, Malcolm N; Sanes, Dan H

    2016-10-26

    The detection of a sensory stimulus arises from a significant change in neural activity, but a sensory neuron's response is rarely identical to successive presentations of the same stimulus. Large trial-to-trial variability would limit the central nervous system's ability to reliably detect a stimulus, presumably affecting perceptual performance. However, if response variability were to decrease while firing rate remained constant, then neural sensitivity could improve. Here, we asked whether engagement in an auditory detection task can modulate response variability, thereby increasing neural sensitivity. We recorded telemetrically from the core auditory cortex of gerbils, both while they engaged in an amplitude-modulation detection task and while they sat quietly listening to the identical stimuli. Using a signal detection theory framework, we found that neural sensitivity was improved during task performance, and this improvement was closely associated with a decrease in response variability. Moreover, units with the greatest change in response variability had absolute neural thresholds most closely aligned with simultaneously measured perceptual thresholds. Our findings suggest that the limitations imposed by response variability diminish during task performance, thereby improving the sensitivity of neural encoding and potentially leading to better perceptual sensitivity. The detection of a sensory stimulus arises from a significant change in neural activity. However, trial-to-trial variability of the neural response may limit perceptual performance. If the neural response to a stimulus is quite variable, then the response on a given trial could be confused with the pattern of neural activity generated when the stimulus is absent. Therefore, a neural mechanism that served to reduce response variability would allow for better stimulus detection. By recording from the cortex of freely moving animals engaged in an auditory detection task, we found that variability

  20. Interaction of hypertension and age in visual selective attention performance.

    Science.gov (United States)

    Madden, D J; Blumenthal, J A

    1998-01-01

    Previous research suggests that some aspects of cognitive performance decline as a joint function of age and hypertension. In this experiment, 51 unmedicated individuals with mild essential hypertension and 48 normotensive individuals, 18-78 years of age, performed a visual search task. The estimated time required to identify a display character and shift attention between display positions increased with age. This attention shift time did not differ significantly between hypertensive and normotensive participants, but regression analyses indicated some mediation of the age effect by blood pressure. For individuals less than 60 years of age, the error rate was greater for hypertensive than for normotensive participants. Although the present design could detect effects of only moderate to large size, the results suggest that effects of hypertension may be more evident in a relatively general measure of performance (mean error rate) than in the speed of shifting visual attention.

  1. An integrative framework of stress, attention, and visuomotor performance

    Directory of Open Access Journals (Sweden)

    Samuel James Vine

    2016-11-01

    Full Text Available The aim of this article is to present an integrative conceptual framework that depicts the effect of acute stress on the performance of visually guided motor skills. We draw upon seminal theories highlighting the importance of subjective interpretations of stress on subsequent performance and outline how models of disrupted attentional control might explain this effect through impairments in visuomotor control. We first synthesize and critically discuss empirical support for theories examining these relationships in isolation. We then outline our integrative framework that seeks to provide a more complete picture of the interacting influences of stress responses (challenge and threat and attention in explaining how elevated stress may lead to different visuomotor performance outcomes. We propose a number of mechanisms that explain why evaluations of stress are related to attentional control, and highlight the emotion of anxiety as the most likely candidate to explain why negative reactions to stress lead to disrupted attention and poor visuomotor skill performance. Finally, we propose a number of feedback loops that explain why stress responses are often self-perpetuating, as well as a number of proposed interventions that are designed to help improve or maintain performance in real world performance environments (e.g., sport, surgery, military, and aviation.

  2. Pilot feasibility study of binaural auditory beats for reducing symptoms of inattention in children and adolescents with attention-deficit/hyperactivity disorder.

    Science.gov (United States)

    Kennel, Susan; Taylor, Ann Gill; Lyon, Debra; Bourguignon, Cheryl

    2010-02-01

    The purpose of this pilot study was to explore the potential for the use of binaural auditory beat stimulation to reduce the symptom of inattention in children and adolescents with attention-deficit/hyperactivity disorder. This pilot study had a randomized, double-blind, placebo-controlled design. Twenty participants were randomly assigned to listen to either an audio program on compact disk that contained binaural auditory beats or a sham audio program that did not have binaural beats for 20 minutes, three times a week for 3 weeks. The Children's Color Trails Test, the Color Trails Test, the Test of Variables of Attention (TOVA), and the Homework Problem Checklist were used to measure changes in inattention pre- and postintervention. Repeated measures analysis of variance was used to analyze pre- and postintervention scores on the Color Trails Tests, Homework Problem Checklist, and the TOVA. The effect of time was significant on the Color Trails Test. However, there were no significant group differences on the Color Trails Test or the TOVA scores postintervention. Parents reported that the study participants had fewer homework problems postintervention. The results from this study indicate that binaural auditory beat stimulation did not significantly reduce the symptom of inattention in the experimental group. However, parents and adolescents stated that homework problems due to inattention improved during the 3-week study. Parents and participants stated that the modality was easy to use and helpful. Therefore, this modality should be studied over a longer time frame in a larger sample to further its effectiveness to reduce the symptom of inattention in those diagnosed with attention-deficit/hyperactivity disorder. Copyright 2010 Elsevier Inc. All rights reserved.

  3. An Objective Measurement of the Build-Up of Auditory Streaming and of Its Modulation by Attention

    Science.gov (United States)

    Thompson, Sarah K.; Carlyon, Robert P.; Cusack, Rhodri

    2011-01-01

    Three experiments studied auditory streaming using sequences of alternating "ABA" triplets, where "A" and "B" were 50-ms tones differing in frequency by [delta]f semitones and separated by 75-ms gaps. Experiment 1 showed that detection of a short increase in the gap between a B tone and the preceding A tone, imposed on one ABA triplet, was better…

  4. Auditory Processing Disorder in Relation to Developmental Disorders of Language, Communication and Attention: A Review and Critique

    Science.gov (United States)

    Dawes, Piers; Bishop, Dorothy

    2009-01-01

    Background: Auditory Processing Disorder (APD) does not feature in mainstream diagnostic classifications such as the "Diagnostic and Statistical Manual of Mental Disorders, 4th Edition" (DSM-IV), but is frequently diagnosed in the United States, Australia and New Zealand, and is becoming more frequently diagnosed in the United Kingdom. Aims: To…

  5. Tai Chi practitioners have better postural control and selective attention in stepping down with and without a concurrent auditory response task.

    Science.gov (United States)

    Lu, Xi; Siu, Ka-Chun; Fu, Siu N; Hui-Chan, Christina W Y; Tsang, William W N

    2013-08-01

    To compare the performance of older experienced Tai Chi practitioners and healthy controls in dual-task versus single-task paradigms, namely stepping down with and without performing an auditory response task, a cross-sectional study was conducted in the Center for East-meets-West in Rehabilitation Sciences at The Hong Kong Polytechnic University, Hong Kong. Twenty-eight Tai Chi practitioners (73.6 ± 4.2 years) and 30 healthy control subjects (72.4 ± 6.1 years) were recruited. Participants were asked to step down from a 19-cm-high platform and maintain a single-leg stance for 10 s with and without a concurrent cognitive task. The cognitive task was an auditory Stroop test in which the participants were required to respond to different tones of voices regardless of their word meanings. Postural stability after stepping down under single- and dual-task paradigms, in terms of excursion of the subject's center of pressure (COP) and cognitive performance, was measured for comparison between the two groups. Our findings demonstrated significant between-group differences in more outcome measures during dual-task than single-task performance. Thus, the auditory Stroop test showed that Tai Chi practitioners achieved not only significantly less error rate in single-task, but also significantly faster reaction time in dual-task, when compared with healthy controls similar in age and other relevant demographics. Similarly, the stepping-down task showed that Tai Chi practitioners not only displayed significantly less COP sway area in single-task, but also significantly less COP sway path than healthy controls in dual-task. These results showed that Tai Chi practitioners achieved better postural stability after stepping down as well as better performance in auditory response task than healthy controls. The improved performance that was magnified by dual motor-cognitive task performance may point to the benefits of Tai Chi being a mind-and-body exercise.

  6. Decreased attention to object size information in scale errors performers

    NARCIS (Netherlands)

    Grzyb, B.J.; Cangelosi, A.; Cattani, A.; Floccia, C.

    2017-01-01

    Young children sometimes make serious attempts to perform impossible actions on miniature objects as if they were full-size objects. The existing explanations of these curious action errors assume (but never explicitly tested) children’s decreased attention to object size information. This study

  7. Maturation of Rapid Auditory Temporal Processing and Subsequent Nonword Repetition Performance in Children

    Science.gov (United States)

    Fox, Allison M.; Reid, Corinne L.; Anderson, Mike; Richardson, Cassandra; Bishop, Dorothy V. M.

    2012-01-01

    According to the rapid auditory processing theory, the ability to parse incoming auditory information underpins learning of oral and written language. There is wide variation in this low-level perceptual ability, which appears to follow a protracted developmental course. We studied the development of rapid auditory processing using event-related…

  8. Different effects of adding white noise on cognitive performance of sub-, normal and super-attentive school children.

    Directory of Open Access Journals (Sweden)

    Suzannah K Helps

    Full Text Available Noise often has detrimental effects on performance. However, because of the phenomenon of stochastic resonance (SR, auditory white noise (WN can alter the "signal to noise" ratio and improve performance. The Moderate Brain Arousal (MBA model postulates different levels of internal "neural noise" in individuals with different attentional capacities. This in turn determines the particular WN level most beneficial in each individual case-with one level of WN facilitating poor attenders but hindering super-attentive children. The objective of the present study is to find out if added WN affects cognitive performance differently in children that differ in attention ability.Participants were teacher-rated super- (N = 25; normal- (N = 29 and sub-attentive (N = 36 children (aged 8 to 10 years. Two non-executive function (EF tasks (a verbal episodic recall task and a delayed verbal recognition task and two EF tasks (a visuo-spatial working memory test and a Go-NoGo task were performed under three WN levels. The non-WN condition was only used to control for potential differences in background noise in the group testing situations.There were different effects of WN on performance in the three groups-adding moderate WN worsened the performance of super-attentive children for both task types and improved EF performance in sub-attentive children. The normal-attentive children's performance was unaffected by WN exposure. The shift from moderate to high levels of WN had little further effect on performance in any group.The predicted differential effect of WN on performance was confirmed. However, the failure to find evidence for an inverted U function challenges current theories. Alternative explanations are discussed. We propose that WN therapy should be further investigated as a possible non-pharmacological treatment for inattention.

  9. Different effects of adding white noise on cognitive performance of sub-, normal and super-attentive school children.

    Science.gov (United States)

    Helps, Suzannah K; Bamford, Susan; Sonuga-Barke, Edmund J S; Söderlund, Göran B W

    2014-01-01

    Noise often has detrimental effects on performance. However, because of the phenomenon of stochastic resonance (SR), auditory white noise (WN) can alter the "signal to noise" ratio and improve performance. The Moderate Brain Arousal (MBA) model postulates different levels of internal "neural noise" in individuals with different attentional capacities. This in turn determines the particular WN level most beneficial in each individual case-with one level of WN facilitating poor attenders but hindering super-attentive children. The objective of the present study is to find out if added WN affects cognitive performance differently in children that differ in attention ability. Participants were teacher-rated super- (N = 25); normal- (N = 29) and sub-attentive (N = 36) children (aged 8 to 10 years). Two non-executive function (EF) tasks (a verbal episodic recall task and a delayed verbal recognition task) and two EF tasks (a visuo-spatial working memory test and a Go-NoGo task) were performed under three WN levels. The non-WN condition was only used to control for potential differences in background noise in the group testing situations. There were different effects of WN on performance in the three groups-adding moderate WN worsened the performance of super-attentive children for both task types and improved EF performance in sub-attentive children. The normal-attentive children's performance was unaffected by WN exposure. The shift from moderate to high levels of WN had little further effect on performance in any group. The predicted differential effect of WN on performance was confirmed. However, the failure to find evidence for an inverted U function challenges current theories. Alternative explanations are discussed. We propose that WN therapy should be further investigated as a possible non-pharmacological treatment for inattention.

  10. Effects of Online Synchronous Instruction with an Attention Monitoring and Alarm Mechanism on Sustained Attention and Learning Performance

    Science.gov (United States)

    Chen, Chih-Ming; Wang, Jung-Ying

    2018-01-01

    Many studies have shown that learners' sustained attention strongly affects e-learning performance, particularly during online synchronous instruction. This work thus develops a novel attention monitoring and alarm mechanism (AMAM) based on brainwave signals to improve learning performance via monitoring the attention state of individual learners…

  11. Full versus divided attention and implicit memory performance.

    Science.gov (United States)

    Wolters, G; Prinsen, A

    1997-11-01

    Effects of full and divided attention during study on explicit and implicit memory performance were investigated in two experiments. Study time was manipulated in a third experiment. Experiment 1 showed that both similar and dissociative effects can be found in the two kinds of memory test, depending on the difficulty of the concurrent tasks used in the divided-attention condition. In this experiment, however, standard implicit memory tests were used and contamination by explicit memory influences cannot be ruled out. Therefore, in Experiments 2 and 3 the process dissociation procedure was applied. Manipulations of attention during study and of study time clearly affected the controlled (explicit) memory component, but had no effect on the automatic (implicit) memory component. Theoretical implications of these findings are discussed.

  12. Effects of age and auditory and visual dual tasks on closed-road driving performance.

    Science.gov (United States)

    Chaparro, Alex; Wood, Joanne M; Carberry, Trent

    2005-08-01

    This study investigated how driving performance of young and old participants is affected by visual and auditory secondary tasks on a closed driving course. Twenty-eight participants comprising two age groups (younger, mean age = 27.3 years; older, mean age = 69.2 years) drove around a 5.1-km closed-road circuit under both single and dual task conditions. Measures of driving performance included detection and identification of road signs, detection and avoidance of large low-contrast road hazards, gap judgment, lane keeping, and time to complete the course. The dual task required participants to verbally report the sums of pairs of single-digit numbers presented through either a computer speaker (auditorily) or a dashboard-mounted monitor (visually) while driving. Participants also completed a vision and cognitive screening battery, including LogMAR visual acuity, Pelli-Robson letter contrast sensitivity, the Trails test, and the Digit Symbol Substitution (DSS) test. Drivers reported significantly fewer signs, hit more road hazards, misjudged more gaps, and increased their time to complete the course under the dual task (visual and auditory) conditions compared with the single task condition. The older participants also reported significantly fewer road signs and drove significantly more slowly than the younger participants, and this was exacerbated for the visual dual task condition. The results of the regression analysis revealed that cognitive aging (measured by the DSS and Trails test) rather than chronologic age was a better predictor of the declines seen in driving performance under dual task conditions. An overall z score was calculated, which took into account both driving and the secondary task (summing) performance under the two dual task conditions. Performance was significantly worse for the auditory dual task compared with the visual dual task, and the older participants performed significantly worse than the young subjects. These findings demonstrate

  13. Quantifying the impact on navigation performance in visually impaired: Auditory information loss versus information gain enabled through electronic travel aids.

    Directory of Open Access Journals (Sweden)

    Alex Kreilinger

    Full Text Available This study's purpose was to analyze and quantify the impact of auditory information loss versus information gain provided by electronic travel aids (ETAs on navigation performance in people with low vision. Navigation performance of ten subjects (age: 54.9±11.2 years with visual acuities >1.0 LogMAR was assessed via the Graz Mobility Test (GMT. Subjects passed through a maze in three different modalities: 'Normal' with visual and auditory information available, 'Auditory Information Loss' with artificially reduced hearing (leaving only visual information, and 'ETA' with a vibrating ETA based on ultrasonic waves, thereby facilitating visual, auditory, and tactile information. Main performance measures comprised passage time and number of contacts. Additionally, head tracking was used to relate head movements to motion direction. When comparing 'Auditory Information Loss' to 'Normal', subjects needed significantly more time (p<0.001, made more contacts (p<0.001, had higher relative viewing angles (p = 0.002, and a higher percentage of orientation losses (p = 0.011. The only significant difference when comparing 'ETA' to 'Normal' was a reduced number of contacts (p<0.001. Our study provides objective, quantifiable measures of the impact of reduced hearing on the navigation performance in low vision subjects. Significant effects of 'Auditory Information Loss' were found for all measures; for example, passage time increased by 17.4%. These findings show that low vision subjects rely on auditory information for navigation. In contrast, the impact of the ETA was not significant but further analysis of head movements revealed two different coping strategies: half of the subjects used the ETA to increase speed, whereas the other half aimed at avoiding contacts.

  14. Decreased attention to object size information in scale errors performers.

    Science.gov (United States)

    Grzyb, Beata J; Cangelosi, Angelo; Cattani, Allegra; Floccia, Caroline

    2017-05-01

    Young children sometimes make serious attempts to perform impossible actions on miniature objects as if they were full-size objects. The existing explanations of these curious action errors assume (but never explicitly tested) children's decreased attention to object size information. This study investigated the attention to object size information in scale errors performers. Two groups of children aged 18-25 months (N=52) and 48-60 months (N=23) were tested in two consecutive tasks: an action task that replicated the original scale errors elicitation situation, and a looking task that involved watching on a computer screen actions performed with adequate to inadequate size object. Our key finding - that children performing scale errors in the action task subsequently pay less attention to size changes than non-scale errors performers in the looking task - suggests that the origins of scale errors in childhood operate already at the perceptual level, and not at the action level. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Pupil Size Tracks Attentional Performance In Attention-Deficit/Hyperactivity Disorder.

    Science.gov (United States)

    Wainstein, G; Rojas-Líbano, D; Crossley, N A; Carrasco, X; Aboitiz, F; Ossandón, T

    2017-08-15

    Attention-deficit/hyperactivity disorder (ADHD) diagnosis is based on reported symptoms, which carries the potential risk of over- or under-diagnosis. A biological marker that helps to objectively define the disorder, providing information about its pathophysiology, is needed. A promising marker of cognitive states in humans is pupil size, which reflects the activity of an 'arousal' network, related to the norepinephrine system. We monitored pupil size from ADHD and control subjects, during a visuo-spatial working memory task. A sub group of ADHD children performed the task twice, with and without methylphenidate, a norepinephrine-dopamine reuptake inhibitor. Off-medication patients showed a decreased pupil diameter during the task. This difference was no longer present when patients were on-medication. Pupil size correlated with the subjects' performance and reaction time variability, two vastly studied indicators of attention. Furthermore, this effect was modulated by medication. Through pupil size, we provide evidence of an involvement of the noradrenergic system during an attentional task. Our results suggest that pupil size could serve as a biomarker in ADHD.

  16. Visual and kinesthetic locomotor imagery training integrated with auditory step rhythm for walking performance of patients with chronic stroke.

    Science.gov (United States)

    Kim, Jin-Seop; Oh, Duck-Won; Kim, Suhn-Yeop; Choi, Jong-Duk

    2011-02-01

    To compare the effect of visual and kinesthetic locomotor imagery training on walking performance and to determine the clinical feasibility of incorporating auditory step rhythm into the training. Randomized crossover trial. Laboratory of a Department of Physical Therapy. Fifteen subjects with post-stroke hemiparesis. Four locomotor imagery trainings on walking performance: visual locomotor imagery training, kinesthetic locomotor imagery training, visual locomotor imagery training with auditory step rhythm and kinesthetic locomotor imagery training with auditory step rhythm. The timed up-and-go test and electromyographic and kinematic analyses of the affected lower limb during one gait cycle. After the interventions, significant differences were found in the timed up-and-go test results between the visual locomotor imagery training (25.69 ± 16.16 to 23.97 ± 14.30) and the kinesthetic locomotor imagery training with auditory step rhythm (22.68 ± 12.35 to 15.77 ± 8.58) (P kinesthetic locomotor imagery training exhibited significantly increased activation in a greater number of muscles and increased angular displacement of the knee and ankle joints compared with the visual locomotor imagery training, and these effects were more prominent when auditory step rhythm was integrated into each form of locomotor imagery training. The activation of the hamstring during the swing phase and the gastrocnemius during the stance phase, as well as kinematic data of the knee joint, were significantly different for posttest values between the visual locomotor imagery training and the kinesthetic locomotor imagery training with auditory step rhythm (P kinesthetic locomotor imagery training than in the visual locomotor imagery training. The auditory step rhythm together with the locomotor imagery training produces a greater positive effect in improving the walking performance of patients with post-stroke hemiparesis.

  17. Auditory memory function in expert chess players.

    Science.gov (United States)

    Fattahi, Fariba; Geshani, Ahmad; Jafari, Zahra; Jalaie, Shohreh; Salman Mahini, Mona

    2015-01-01

    Chess is a game that involves many aspects of high level cognition such as memory, attention, focus and problem solving. Long term practice of chess can improve cognition performances and behavioral skills. Auditory memory, as a kind of memory, can be influenced by strengthening processes following long term chess playing like other behavioral skills because of common processing pathways in the brain. The purpose of this study was to evaluate the auditory memory function of expert chess players using the Persian version of dichotic auditory-verbal memory test. The Persian version of dichotic auditory-verbal memory test was performed for 30 expert chess players aged 20-35 years and 30 non chess players who were matched by different conditions; the participants in both groups were randomly selected. The performance of the two groups was compared by independent samples t-test using SPSS version 21. The mean score of dichotic auditory-verbal memory test between the two groups, expert chess players and non-chess players, revealed a significant difference (p≤ 0.001). The difference between the ears scores for expert chess players (p= 0.023) and non-chess players (p= 0.013) was significant. Gender had no effect on the test results. Auditory memory function in expert chess players was significantly better compared to non-chess players. It seems that increased auditory memory function is related to strengthening cognitive performances due to playing chess for a long time.

  18. Attention in aviation. [to aircraft design and pilot performance

    Science.gov (United States)

    Wickens, Christopher D.

    1987-01-01

    The relevance of four principles or mechanisms of human attention to the design of aviation systems and the performance of pilots in multitask environments, including workload prediction and measurement, control-display integration, and the use of voice and head-up displays is discussed. The principles are: the mental energy that supplies task performance (resources), the resulting cross-talk between tasks as they are made more similar (confusion), the combination of different task elements (integration), and the way in which one task is processed and another is ignored (selection or tunneling). The introduction of greater levels of complexity into the validation of attentional theories in order to approach the demands of the cockpit or ATC console is proposed.

  19. Motor performance of pupils with attention deficit hyperactivity disorder (ADHD).

    OpenAIRE

    Otipková, Zuzana

    2012-01-01

    Title: Motor performance of pupils with attention deficit hyperactivity disorder (ADHD). Objectives: The aim of the work was to determine the level of fine and gross motor skills of upper extremities of the pupils with diagnosis ADHD at schools specialized on these pupils and compare it with the fine and gross motor skills of upper extremities of children without this diagnosis at common elementary school. Further work objective was to determine the level of gross motor skills of lower limbs ...

  20. The power of auditory-motor synchronization in sports: Enhancing running performance by coupling cadence with the right beats

    NARCIS (Netherlands)

    Bood, R.J.; Nijssen, M; van der Kamp, J.; Roerdink, M.

    2013-01-01

    Acoustic stimuli, like music and metronomes, are often used in sports. Adjusting movement tempo to acoustic stimuli (i.e., auditory-motor synchronization) may be beneficial for sports performance. However, music also possesses motivational qualities that may further enhance performance. Our

  1. Auditory-motor learning influences auditory memory for music.

    Science.gov (United States)

    Brown, Rachel M; Palmer, Caroline

    2012-05-01

    In two experiments, we investigated how auditory-motor learning influences performers' memory for music. Skilled pianists learned novel melodies in four conditions: auditory only (listening), motor only (performing without sound), strongly coupled auditory-motor (normal performance), and weakly coupled auditory-motor (performing along with auditory recordings). Pianists' recognition of the learned melodies was better following auditory-only or auditory-motor (weakly coupled and strongly coupled) learning than following motor-only learning, and better following strongly coupled auditory-motor learning than following auditory-only learning. Auditory and motor imagery abilities modulated the learning effects: Pianists with high auditory imagery scores had better recognition following motor-only learning, suggesting that auditory imagery compensated for missing auditory feedback at the learning stage. Experiment 2 replicated the findings of Experiment 1 with melodies that contained greater variation in acoustic features. Melodies that were slower and less variable in tempo and intensity were remembered better following weakly coupled auditory-motor learning. These findings suggest that motor learning can aid performers' auditory recognition of music beyond auditory learning alone, and that motor learning is influenced by individual abilities in mental imagery and by variation in acoustic features.

  2. Selective attention and the auditory vertex potential. I - Effects of stimulus delivery rate. II - Effects of signal intensity and masking noise

    Science.gov (United States)

    Schwent, V. L.; Hillyard, S. A.; Galambos, R.

    1976-01-01

    The effects of varying the rate of delivery of dichotic tone pip stimuli on selective attention measured by evoked-potential amplitudes and signal detectability scores were studied. The subjects attended to one channel (ear) of tones, ignored the other, and pressed a button whenever occasional targets - tones of a slightly higher pitch were detected in the attended ear. Under separate conditions, randomized interstimulus intervals were short, medium, and long. Another study compared the effects of attention on the N1 component of the auditory evoked potential for tone pips presented alone and when white noise was added to make the tones barely above detectability threshold in a three-channel listening task. Major conclusions are that (1) N1 is enlarged to stimuli in an attended channel only in the short interstimulus interval condition (averaging 350 msec), (2) N1 and P3 are related to different modes of selective attention, and (3) attention selectivity in multichannel listening task is greater when tones are faint and/or difficult to detect.

  3. Strategic predictors of performance in a divided attention task

    Science.gov (United States)

    Faragó, Kinga Bettina; Lőrincz, András

    2018-01-01

    In this study we investigate the strategies of subjects in a complex divided attention task. We conducted a series of experiments with ten participants and evaluated their performance. After an extensive analysis, we identified four strategic measures that justify the achievement of the participants, by highlighting the individual differences and predicting performance in a regression analysis using generalized estimating equations. Selecting the more urgent task and user action between multiple simultaneous possibilities form two of the strategic decisions, respectively. The third one refers to choosing a response within the same task when the opportunity is present. The fourth and most important measure of strategy involves thinking ahead and executing an action before a situation would become critical. This latter one has the effect of reducing later cognitive load or timing constraints and it is shown to explain almost as much variance in performance as the other three, more straightforward predictors together. In addition to determining these strategic predictors, we also show how manipulating task difficulty induces a shift in strategy, thus impairing human performance in the rehearsed task. The results of this study indicate that considerable differences in the divided attention ability of normal subjects can be identified early and with simple measurements. The importance of describing and analyzing strategies is also emphasized, which can substantially influence performance in complex tasks and may serve training needs. PMID:29621292

  4. Strategic predictors of performance in a divided attention task.

    Directory of Open Access Journals (Sweden)

    Róbert Adrian Rill

    Full Text Available In this study we investigate the strategies of subjects in a complex divided attention task. We conducted a series of experiments with ten participants and evaluated their performance. After an extensive analysis, we identified four strategic measures that justify the achievement of the participants, by highlighting the individual differences and predicting performance in a regression analysis using generalized estimating equations. Selecting the more urgent task and user action between multiple simultaneous possibilities form two of the strategic decisions, respectively. The third one refers to choosing a response within the same task when the opportunity is present. The fourth and most important measure of strategy involves thinking ahead and executing an action before a situation would become critical. This latter one has the effect of reducing later cognitive load or timing constraints and it is shown to explain almost as much variance in performance as the other three, more straightforward predictors together. In addition to determining these strategic predictors, we also show how manipulating task difficulty induces a shift in strategy, thus impairing human performance in the rehearsed task. The results of this study indicate that considerable differences in the divided attention ability of normal subjects can be identified early and with simple measurements. The importance of describing and analyzing strategies is also emphasized, which can substantially influence performance in complex tasks and may serve training needs.

  5. Strategic predictors of performance in a divided attention task.

    Science.gov (United States)

    Rill, Róbert Adrian; Faragó, Kinga Bettina; Lőrincz, András

    2018-01-01

    In this study we investigate the strategies of subjects in a complex divided attention task. We conducted a series of experiments with ten participants and evaluated their performance. After an extensive analysis, we identified four strategic measures that justify the achievement of the participants, by highlighting the individual differences and predicting performance in a regression analysis using generalized estimating equations. Selecting the more urgent task and user action between multiple simultaneous possibilities form two of the strategic decisions, respectively. The third one refers to choosing a response within the same task when the opportunity is present. The fourth and most important measure of strategy involves thinking ahead and executing an action before a situation would become critical. This latter one has the effect of reducing later cognitive load or timing constraints and it is shown to explain almost as much variance in performance as the other three, more straightforward predictors together. In addition to determining these strategic predictors, we also show how manipulating task difficulty induces a shift in strategy, thus impairing human performance in the rehearsed task. The results of this study indicate that considerable differences in the divided attention ability of normal subjects can be identified early and with simple measurements. The importance of describing and analyzing strategies is also emphasized, which can substantially influence performance in complex tasks and may serve training needs.

  6. Early Auditory Evoked Potential Is Modulated by Selective Attention and Related to Individual Differences in Visual Working Memory Capacity

    OpenAIRE

    Giuliano, Ryan J.; Karns, Christina M.; Neville, Helen J.; Hillyard, Steven A.

    2014-01-01

    A growing body of research suggests that the predictive power of working memory (WM) capacity for measures of intellectual aptitude is due to the ability to control attention and select relevant information. Crucially, attentional mechanisms implicated in controlling access to WM are assumed to be domain-general, yet reports of enhanced attentional abilities in individuals with larger WM capacities are primarily within the visual domain. Here, we directly test the link between WM capacity and...

  7. 视听整合连续测试对脑电生物反馈治疗ADHD疗效的评估%Application of integrated visual and auditory continuous performance test to evaluate the curative effect of EEG biofeedback on attention deficit hyperactivity disorder (ADHD)

    Institute of Scientific and Technical Information of China (English)

    任灵敏; 张赟; 和慧丽; 陈静静

    2014-01-01

    目的 应用视听整合连续测试对脑电生物反馈治疗注意缺陷多动障碍(attention deficit and hyperactivity disorder,ADHD)的疗效进行评估.方法 参照《美国精神疾病诊断和统计手册》第4版(Diagnostic and Statistical Manual of Mental Disorders-Ⅳ,DSM-Ⅳ)中关于ADHD的诊断标准,选取2013年1月到2014年3月在郑州市儿童医院心理科诊断明确的ADHD患儿50例,进行脑电(electroencephalographic,EEG)生物反馈训练,每周训练5次,每次30 min,每20次为1个疗程,所有患儿均连续训练2个疗程.在治疗前后应用视听整合连续测试的方法检测听、视觉控制力和注意力,对比各相关商数的变化,从而对脑电生物反馈的疗效进行综合评估.结果 经过训练,患儿的综合控制力和综合注意力均得到明显改善(P <0.001),其他各项观察指标也有所提高.除了毅力商数和速度商数外,差异均有统计学意义(P <0.005).结论 脑电生物反馈训练是针对ADHD的一种有效方法,值得临床推广.

  8. The effect of defined auditory conditions versus mental loading on the laparoscopic motor skill performance of experts.

    Science.gov (United States)

    Conrad, Claudius; Konuk, Yusuf; Werner, Paul; Cao, Caroline G; Warshaw, Andrew; Rattner, David; Jones, Daniel B; Gee, Denise

    2010-06-01

    Music and noise are frequent occurrences in the operating room. To date, the effects of these auditory conditions on the performance of laparoscopic surgery experts have not been evaluated. Eight internationally recognized experts were recruited for a crossover study. The experts were randomized to perform three simple tasks on a laparoscopic simulator, SurgicalSIM VR. The tasks were equal in difficulty and performed under the following conditions: silence, dichaotic music (auditory stress), classical music (auditory relaxation), and mental loading (mental arithmetic tasks). Permutations of the conditions were created to account for a learning effect. The tasks were performed twice to test for memory consolidation and to accommodate baseline variability. Time until task completion and task accuracy via instrument tip trajectory (path of the tip through space) were recorded. Performance was correlated with responses on the Brief Musical Experience Questionnaire (MEQ). The study demonstrated that dichaotic music has a negative impact on time until task completion but not on task accuracy. In addition, memory consolidation of accuracy is negatively influenced. Classical music has a variable effect on experts' time until task completion, yet all the experts performed the tasks more accurately. Classical music had no effect on recall of a procedure. Mental loading increased time until completion, but did not affect accuracy or recall. The experience of music varied among experts and influenced how each of the conditions affected their performance. The study demonstrated that, contrary to common belief, proficiency in surgery does not protect against stressful auditory influences or the influence of mental preoccupation. Interestingly, relaxing auditory influences such as classical music can even have a positive impact on the accuracy of experts. Previous musical experience could help to identify surgeons whose performance may be specifically affected by music or noise.

  9. The Effect of Bio/Neurofeedback Training on Performance, Audio and Visual Attention in Elite Shooters

    Directory of Open Access Journals (Sweden)

    Farzaneh Bagheri asl

    2017-10-01

    Full Text Available The aim of this study was the effect of Bio/Neurofeedback training on performance, audio and visual attention of elite shooters. In this study 36 elite shooters of Kermanshah Province participated. They divided in three groups. Two groups were experimental groups how participated biofeedback and neurofeedback training and one group was control group. All participants were tried that their trainings as well as the number of shoots were closely controlled in order to assure their physical and special trainings. In this study, for attention affects the computerized Integrated Visual and Auditory test (IVA was used. This test has been considered as both a pretest and a posttest after the therapeutic intervention in three groups. The score of shooting also were collected before and after intervention. Each athlete in neurofeedback training group carried out the neurofeedback training for 20 sessions, each lasting 45 minutes. To do so, both auricles and T3 and PZ of each individual were cleaned using alcohol and new-perp gel to prepare for the neurofeedback training. The biofeedback training was heart rate and respiratory training.  To compare the results of the pretest and the posttest in each group, the dependent t-test was used. For compare three groups we used ANOVA test. The significance level was set at 0.05. The results indicated that there is a significant difference in three groups. It indicates a significant increase in the total score for attention after the implementation of the biofeedback and neurofeedback training. The results showed that the attention mean scores in three visual, audio, and total variables were higher in the posttest than in the pretest for two experimental groups. The results also indicated that the scores of the shoots were improved after training.  According the research finding, we can be said that the neurofeedback and biofeedback  training act on the waves of the sensory-motor beats and which are responsible

  10. Children's Performance on Pseudoword Repetition Depends on Auditory Trace Quality: Evidence from Event-Related Potentials.

    Science.gov (United States)

    Ceponiene, Rita; Service, Elisabet; Kurjenluoma, Sanna; Cheour, Marie; Naatanen, Risto

    1999-01-01

    Compared the mismatch-negativity (MMN) component of auditory event-related brain potentials to explore the relationship between phonological short-term memory and auditory-sensory processing in 7- to 9-year olds scoring the highest and lowest on a pseudoword repetition test. Found that high and low repeaters differed in MMN amplitude to speech…

  11. Auditory and Visual Continuous Performance Tests: Relationships with Age, Gender, Cognitive Functioning, and Classroom Behavior

    Science.gov (United States)

    Lehman, Elyse Brauch; Olson, Vanessa A.; Aquilino, Sally A.; Hall, Laura C.

    2006-01-01

    Elementary school children in three grade groups (Grades K/1, 3, and 5/6) completed either the auditory or the visual 1/9 vigilance task from the Gordon Diagnostic System (GDS) as well as subtests from the Wechsler Intelligence Scale for Children--Third Edition and auditory or visual processing subtests from the Woodcock-Johnson Tests of Cognitive…

  12. Visual Attention and Academic Performance in Children with Developmental Disabilities and Behavioural Attention Deficits

    Science.gov (United States)

    Kirk, Hannah E.; Gray, Kylie; Riby, Deborah M.; Taffe, John; Cornish, Kim M.

    2017-01-01

    Despite well-documented attention deficits in children with intellectual and developmental disabilities (IDD), distinctions across types of attention problems and their association with academic attainment has not been fully explored. This study examines visual attention capacities and inattentive/hyperactive behaviours in 77 children aged 4 to…

  13. Desempenho de escolares com distúrbio de aprendizagem e dislexia em testes de processamento auditivo Performance of students with learning disabilities and dyslexia on auditory processing tests

    Directory of Open Access Journals (Sweden)

    Adriana Marques de Oliveira

    2011-06-01

    performance. METHODS: thirty students ranging from the ages 8 to 16 year old, from both genders, took part in this study and were divided as follows: Group I (GI: composed of 10 students with interdisciplinary diagnosis of learning disabilities. Group II (GII: composed of 10 students with dyslexia diagnosis. Group III (GIII: composed of 10 students, attending grades two to four, with good academic performance, paired up according to gender and age with groups I and II. A basic auditory evaluation and an evaluation of central auditory processing were conducted. RESULTS: the students of GIII showed statistically superior performance in auditory processing tests compared to the students of GI and GII. GI showed lower performance in auditory abilities assessed in the tests of dichotic digits, alternating dissyllable, pediatric speech intelligibility, sound localization, memory for verbal and non-verbal sounds, and GII also showed the same changes as GI, except in the pediatric speech intelligibility test. CONCLUSION: the students with learning disabilities showed lower performance in auditory processing tests, and the students with learning disorders had the highest number of altered abilities when compared with the students with dyslexia, which can be explained by the fact that this group shows reduced sustained attention. The dyslexia group showed alterations derived from the difficulty related to the auditory stimulus encoding and decoding.

  14. Neurofeedback training improves attention and working memory performance.

    Science.gov (United States)

    Wang, Jinn-Rong; Hsieh, Shulan

    2013-12-01

    The present study aimed to investigate the effectiveness of the frontal-midline theta (fmθ) activity uptraining protocol on attention and working memory performance of older and younger participants. Thirty-two participants were recruited. Participants within each age group were randomly assigned to either the neurofeedback training (fmθ uptraining) group or the sham-neurofeedback training group. There was a significant improvement in orienting scores in the older neurofeedback training group. In addition, there was a significant improvement in conflict scores in both the older and young neurofeedback training groups. However, alerting scores failed to increase. In addition, the fmθ training was found to improve working memory function in the older participants. The results further showed that fmθ training can modulate resting EEG for both neurofeedback groups. Our study demonstrated that fmθ uptraining improved attention and working memory performance and theta activity in the resting state for normal aging adults. In addition, younger participants also benefited from the present protocol in terms of improving their executive function. The current findings contribute to a better understanding of the mechanisms underlying neurofeedback training in cognitive function, and suggest that the fmθ uptraining protocol is an effective intervention program for cognitive aging. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  15. Auditory Integration Training

    Directory of Open Access Journals (Sweden)

    Zahra Jafari

    2002-07-01

    Full Text Available Auditory integration training (AIT is a hearing enhancement training process for sensory input anomalies found in individuals with autism, attention deficit hyperactive disorder, dyslexia, hyperactivity, learning disability, language impairments, pervasive developmental disorder, central auditory processing disorder, attention deficit disorder, depressin, and hyperacute hearing. AIT, recently introduced in the United States, and has received much notice of late following the release of The Sound of a Moracle, by Annabel Stehli. In her book, Mrs. Stehli describes before and after auditory integration training experiences with her daughter, who was diagnosed at age four as having autism.

  16. Review: Auditory Integration Training

    Directory of Open Access Journals (Sweden)

    Zahra Ja'fari

    2003-01-01

    Full Text Available Auditory integration training (AIT is a hearing enhancement training process for sensory input anomalies found in individuals with autism, attention deficit hyperactive disorder, dyslexia, hyperactivity, learning disability, language impairments, pervasive developmental disorder, central auditory processing disorder, attention deficit disorder, depression, and hyper acute hearing. AIT, recently introduced in the United States, and has received much notice of late following the release of the sound of a miracle, by Annabel Stehli. In her book, Mrs. Stehli describes before and after auditory integration training experiences with her daughter, who was diagnosed at age four as having autism.

  17. Auditory perception and attention as reflected by the brain event-related potentials in children with Asperger syndrome.

    Science.gov (United States)

    Lepistö, T; Silokallio, S; Nieminen-von Wendt, T; Alku, P; Näätänen, R; Kujala, T

    2006-10-01

    Language development is delayed and deviant in individuals with autism, but proceeds quite normally in those with Asperger syndrome (AS). We investigated auditory-discrimination and orienting in children with AS using an event-related potential (ERP) paradigm that was previously applied to children with autism. ERPs were measured to pitch, duration, and phonetic changes in vowels and to corresponding changes in non-speech sounds. Active sound discrimination was evaluated with a sound-identification task. The mismatch negativity (MMN), indexing sound-discrimination accuracy, showed right-hemisphere dominance in the AS group, but not in the controls. Furthermore, the children with AS had diminished MMN-amplitudes and decreased hit rates for duration changes. In contrast, their MMN to speech pitch changes was parietally enhanced. The P3a, reflecting involuntary orienting to changes, was diminished in the children with AS for speech pitch and phoneme changes, but not for the corresponding non-speech changes. The children with AS differ from controls with respect to their sound-discrimination and orienting abilities. The results of the children with AS are relatively similar to those earlier obtained from children with autism using the same paradigm, although these clinical groups differ markedly in their language development.

  18. Multisensory teamwork: using a tactile or an auditory display to exchange gaze information improves performance in joint visual search.

    Science.gov (United States)

    Wahn, Basil; Schwandt, Jessika; Krüger, Matti; Crafa, Daina; Nunnendorf, Vanessa; König, Peter

    2016-06-01

    In joint tasks, adjusting to the actions of others is critical for success. For joint visual search tasks, research has shown that when search partners visually receive information about each other's gaze, they use this information to adjust to each other's actions, resulting in faster search performance. The present study used a visual, a tactile and an auditory display, respectively, to provide search partners with information about each other's gaze. Results showed that search partners performed faster when the gaze information was received via a tactile or auditory display in comparison to receiving it via a visual display or receiving no gaze information. Findings demonstrate the effectiveness of tactile and auditory displays for receiving task-relevant information in joint tasks and are applicable to circumstances in which little or no visual information is available or the visual modality is already taxed with a demanding task such as air-traffic control. Practitioner Summary: The present study demonstrates that tactile and auditory displays are effective for receiving information about actions of others in joint tasks. Findings are either applicable to circumstances in which little or no visual information is available or when the visual modality is already taxed with a demanding task.

  19. Examination of the Relation between an Assessment of Skills and Performance on Auditory-Visual Conditional Discriminations for Children with Autism Spectrum Disorder

    Science.gov (United States)

    Kodak, Tiffany; Clements, Andrea; Paden, Amber R.; LeBlanc, Brittany; Mintz, Joslyn; Toussaint, Karen A.

    2015-01-01

    The current investigation evaluated repertoires that may be related to performance on auditory-to-visual conditional discrimination training with 9 students who had been diagnosed with autism spectrum disorder. The skills included in the assessment were matching, imitation, scanning, an auditory discrimination, and a visual discrimination. The…

  20. Flexible attention allocation to visual and auditory working memory tasks : manipulating reward induces a trade-off

    NARCIS (Netherlands)

    Morey, Candice Coker; Cowan, Nelson; Morey, Richard D.; Rouder, Jeffery N.

    Prominent roles for general attention resources are posited in many models of working memory, but the manner in which these can be allocated differs between models or is not sufficiently specified. We varied the payoffs for correct responses in two temporally-overlapping recognition tasks, a visual

  1. A quick visual mind can be a slow auditory mind : Individual differences in attentional selection across modalities

    NARCIS (Netherlands)

    Martens, Sander; Johnson, Addie; Bolle, Martje; Borst, Jelmer

    2009-01-01

    The human mind is severely limited in processing concurrent information at a conscious level of awareness. These temporal restrictions are clearly reflected in the attentional blink (AB), a deficit in reporting the second of two targets when it occurs 200-500 ms after the first. However, we recently

  2. Effect of rhythmic auditory stimulation on gait performance in children with spastic cerebral palsy.

    Science.gov (United States)

    Kwak, Eunmi Emily

    2007-01-01

    The purpose of this study was to use Rhythmic Auditory Stimulation (RAS) for children with spastic cerebral palsy (CP) in a clinical setting in order to determine its effectiveness in gait training for ambulation. RAS has been shown to improve gait performance in patients with significant gait deficits. All 25 participants (6 to 20 years old) had spastic CP and were ambulatory, but needed to stabilize and gain more coordinated movement. Participants were placed in three groups: the control group, the therapist-guided training (TGT) group, and the self-guided training (SGT) group. The TGT group showed a statistically significant difference in stride length, velocity, and symmetry. The analysis of the results in SGT group suggests that the self-guided training might not be as effective as therapist-guided depending on motivation level. The results of this study support three conclusions: (a) RAS does influence gait performance of people with CP; (b) individual characteristics, such as cognitive functioning, support of parents, and physical ability play an important role in designing a training application, the effectiveness of RAS, and expected benefits from the training; and (c) velocity and stride length can be improved by enhancing balance, trajectory, and kinematic stability without increasing cadence.

  3. Working-memory performance is related to spatial breadth of attention.

    Science.gov (United States)

    Kreitz, Carina; Furley, Philip; Memmert, Daniel; Simons, Daniel J

    2015-11-01

    Working memory and attention are closely related constructs. Models of working memory often incorporate an attention component, and some even equate working memory and attentional control. Although some attention-related processes, including inhibitory control of response conflict and interference resolution, are strongly associated with working memory, for other aspects of attention the link is less clear. We examined the association between working-memory performance and attentional breadth, the ability to spread attention spatially. If the link between attention and working memory is broader than inhibitory and interference resolution processes, then working-memory performance might also be associated with other attentional abilities, including attentional breadth. We tested 123 participants on a variety of working-memory and attentional-breadth measures, finding a strong correlation between performances on these two types of tasks. This finding demonstrates that the link between working memory and attention extends beyond inhibitory processes.

  4. Sustained attention and executive functioning performance in attention-deficit/hyperactivity disorder.

    NARCIS (Netherlands)

    Stins, J.F.; Tollenaar, M.S.; Slaats-Willemse, D.I.E.; Buitelaar, J.K.; Swaab-Barneveld, H.J.; Verhulst, F.C.; Polderman, T.J.C.; Boomsma, D.I.

    2005-01-01

    The aim of this study was to further refine the cognitive phenotype of attention-deficit/hyperactivity disorder (ADHD), with respect to the ability to sustain attention and executive functioning. Participants were 34 boys with ADHD (combined type) and 28 normal controls. The groups were closely

  5. Sustained attention and executive functioning performance in attention-deficit/hyperactivity disorder

    NARCIS (Netherlands)

    Stins, J.F.; Tollenaar, M.S.; Slaats-Willemse, D.I.E.; Buitelaar, J.K.; Swaab, H.J.T.; Verhulst, F.C.; Polderman, T.J.C.; Boomsma, D.I.

    2005-01-01

    The aim of this study was to further refine the cognitive phenotype of attention-deficit hyperactivity disorder (ADHD), with respect to the ability to sustain attention and executive functioning. Participants were 34 boys with ADHD (combined type) and 28 normal controls. The groups were closely

  6. Sustained attention and executive functioning performance in attention-deficit/hyperactivity disorder

    NARCIS (Netherlands)

    Stins, J.F.; Tollenaar, M.S.; Slaats-Willemse, D.I.E.; Buitelaar, J.K.; Swaab-Barneveld, H.J.T.; Verhulst, F.C.; Polderman, J.C.; Boomsma, D.I.

    2005-01-01

    The aim of this study was to further refine the cognitive phenotype of attention-deficit/ hyperactivity disorder (ADHD), with respect to the ability to sustain attention and executive functioning. Participants were 34 boys with ADHD (combined type) and 28 normal controls. The groups were closely

  7. Auditory and Visual Differences in Time Perception? An Investigation from a Developmental Perspective with Neuropsychological Tests

    Science.gov (United States)

    Zelanti, Pierre S.; Droit-Volet, Sylvie

    2012-01-01

    Adults and children (5- and 8-year-olds) performed a temporal bisection task with either auditory or visual signals and either a short (0.5-1.0s) or long (4.0-8.0s) duration range. Their working memory and attentional capacities were assessed by a series of neuropsychological tests administered in both the auditory and visual modalities. Results…

  8. Frequency-specific modulation of population-level frequency tuning in human auditory cortex

    Directory of Open Access Journals (Sweden)

    Roberts Larry E

    2009-01-01

    Full Text Available Abstract Background Under natural circumstances, attention plays an important role in extracting relevant auditory signals from simultaneously present, irrelevant noises. Excitatory and inhibitory neural activity, enhanced by attentional processes, seems to sharpen frequency tuning, contributing to improved auditory performance especially in noisy environments. In the present study, we investigated auditory magnetic fields in humans that were evoked by pure tones embedded in band-eliminated noises during two different stimulus sequencing conditions (constant vs. random under auditory focused attention by means of magnetoencephalography (MEG. Results In total, we used identical auditory stimuli between conditions, but presented them in a different order, thereby manipulating the neural processing and the auditory performance of the listeners. Constant stimulus sequencing blocks were characterized by the simultaneous presentation of pure tones of identical frequency with band-eliminated noises, whereas random sequencing blocks were characterized by the simultaneous presentation of pure tones of random frequencies and band-eliminated noises. We demonstrated that auditory evoked neural responses were larger in the constant sequencing compared to the random sequencing condition, particularly when the simultaneously presented noises contained narrow stop-bands. Conclusion The present study confirmed that population-level frequency tuning in human auditory cortex can be sharpened in a frequency-specific manner. This frequency-specific sharpening may contribute to improved auditory performance during detection and processing of relevant sound inputs characterized by specific frequency distributions in noisy environments.

  9. Single-channel in-ear-EEG detects the focus of auditory attention to concurrent tone streams and mixed speech

    Science.gov (United States)

    Fiedler, Lorenz; Wöstmann, Malte; Graversen, Carina; Brandmeyer, Alex; Lunner, Thomas; Obleser, Jonas

    2017-06-01

    Objective. Conventional, multi-channel scalp electroencephalography (EEG) allows the identification of the attended speaker in concurrent-listening (‘cocktail party’) scenarios. This implies that EEG might provide valuable information to complement hearing aids with some form of EEG and to install a level of neuro-feedback. Approach. To investigate whether a listener’s attentional focus can be detected from single-channel hearing-aid-compatible EEG configurations, we recorded EEG from three electrodes inside the ear canal (‘in-Ear-EEG’) and additionally from 64 electrodes on the scalp. In two different, concurrent listening tasks, participants (n  =  7) were fitted with individualized in-Ear-EEG pieces and were either asked to attend to one of two dichotically-presented, concurrent tone streams or to one of two diotically-presented, concurrent audiobooks. A forward encoding model was trained to predict the EEG response at single EEG channels. Main results. Each individual participants’ attentional focus could be detected from single-channel EEG response recorded from short-distance configurations consisting only of a single in-Ear-EEG electrode and an adjacent scalp-EEG electrode. The differences in neural responses to attended and ignored stimuli were consistent in morphology (i.e. polarity and latency of components) across subjects. Significance. In sum, our findings show that the EEG response from a single-channel, hearing-aid-compatible configuration provides valuable information to identify a listener’s focus of attention.

  10. Sex differences in attentional performance and their modulation by methylphenidate in children with attention-deficit/hyperactivity disorder.

    Science.gov (United States)

    Günther, Thomas; Herpertz-Dahlmann, Beate; Konrad, Kerstin

    2010-06-01

    Still little is known about neuropsychological differences between boys and girls with attention-deficit/hyperactivity disorder (ADHD) and whether there are sex-specific differences in the modulation of attentional performance by methylphenidate (MPH). In this study, 27 males and 27 females between 8-12 years old and with ADHD were investigated in a double-blind, placebo-controlled trial on five computerized attention tests (0.25 vs. 0.5 mg/kg MPH as a single dose, versus placebo). Boys and girls with ADHD did not differ with respect to age, intelligence quotient (IQ), symptom severity, co-morbidity patterns, and ADHD subtype. However, ADHD boys were more impulsive on a sustained attention task, whereas girls with ADHD had more deficits on tasks measuring selective attention. Attentional performance increased differentially as a function of MPH dose, with some tasks showing linear improvement with higher dosage whereas more complex tasks in particular showed inverse U-shaped patterns of MPH effects. However, these effects were comparable between girls and boys. Our data suggest that there are some gender differences in attentional performance in subjects with ADHD in a clinical sample, even if symptom severity and co-morbidity are controlled; however, modulation of attention by MPH does not seem to differ between sexes.

  11. The effect of different stimulus attributes on the attentional performance of children with attention deficit/hyperactivity disorder and dyslexia.

    Science.gov (United States)

    Wang, Li-Chih; Tsai, Huang-Ju; Yang, Hsien-Ming

    2013-11-01

    While teachers have traditionally used the interesting objects to increase student attention in the classroom, evidence supporting the effectiveness of this method is lacking. The present study investigated the influence of different stimulus attributes for typical developing students and for students with attention deficit/hyperactivity disorder (ADHD) and dyslexia. Thirty children with ADHD, 30 children with dyslexia, and 30 typical developing students were tested using a measuring tool that was constructed by the authors to assess their sustained attention and selective attention on the geometric-figure assessment and the interesting-figure assessment. The geometric-figure assessment included a square, circle, trapezium, and triangle; and the interesting-figure assessment included a house, cat, hand, and tree. While the typical developing group showed better selective attention on the geometric-figure assessment, there was no difference between the dyslexic group and the ADHD group with respect to selective attention. Furthermore, the typical developing and dyslexic groups did not differ in the geometric-figure assessment in sustained attention and were both better in this area than the ADHD group. In the interesting-figure assessment, the typical developing and dyslexic groups performed similarly in sustained attention, but selective attention of the dyslexic group improved more than the ADHD group, similar to the typical developing group. Both selective attention of the dyslexic group and sustained attention of the ADHD group showed positive significant differences in the interesting-figure assessment, but sustained attention of the dyslexic group and selective attention of the ADHD group showed little difference in the interesting-figure assessment. Surprisingly, the typical developing group did not show any significant difference in the interesting-figure assessment, possibly because they had previously demonstrated a ceiling effect in the geometric

  12. Processamento auditivo em gagos: análise do desempenho das orelhas direita e esquerda Auditory processing in stutterers: performance of right and left ears

    Directory of Open Access Journals (Sweden)

    Adriana Neves de Andrade

    2008-03-01

    Full Text Available OBJETIVO: Comparar a diferença entre as orelhas nos testes comportamentais do processamento auditivo e os resultados de sujeitos com diferentes graus de gravidade de gagueira em cada teste do processamento auditivo. MÉTODOS: Cinqüenta e seis indivíduos, com idades entre quatro e 34 anos, foram encaminhados pelo Ambulatório de Avaliação Fonoaudiológica da UNIFESP para avaliação comportamental do processamento auditivo. Todos os pacientes foram submetidos à avaliação de audição, fala e linguagem. A disfluência foi classificada segundo o protocolo de Riley (1994, o qual prevê os seguintes graus de gravidade da gagueira: muito leve, leve, moderado, severo e muito severo. Os testes para avaliação do processamento auditivo foram selecionados e analisados de acordo com a idade do paciente e a proposta de Pereira & Schochat (1997. RESULTADOS: Observamos prevalência da gagueira de grau leve nas faixas etárias de quatro a sete anos e de 12 a 34 anos de idade, e de grau moderado nos indivíduos de oito a 11 anos de idade. Dos 56 indivíduos avaliados 92,85% apresentaram alteração do processamento auditivo. Houve diferença estatisticamente significante entre as orelhas direita e esquerda na etapa de atenção direcionada do teste dicótico não verbal, em todas as faixas etárias estudadas. Não foram encontradas diferenças significativas entre os graus de gravidade da gagueira em nenhum dos testes de processamento auditivo. CONCLUSÕES: A orelha direita apresentou melhor desempenho do que a esquerda nos diferentes testes comportamentais. O grau de gravidade da gagueira não interferiu no resultado de cada teste.PURPOSE: To compare the difference between the performances of right and left ears in behavioral tests of auditory processing and to compare the results obtained by subjects with different stuttering severity classifications in each auditory processing test. METHODS: Fifty six subjects (49 male, 7 female, with ages ranging

  13. Training leads to increased auditory brain-computer interface performance of end-users with motor impairments.

    Science.gov (United States)

    Halder, S; Käthner, I; Kübler, A

    2016-02-01

    Auditory brain-computer interfaces are an assistive technology that can restore communication for motor impaired end-users. Such non-visual brain-computer interface paradigms are of particular importance for end-users that may lose or have lost gaze control. We attempted to show that motor impaired end-users can learn to control an auditory speller on the basis of event-related potentials. Five end-users with motor impairments, two of whom with additional visual impairments, participated in five sessions. We applied a newly developed auditory brain-computer interface paradigm with natural sounds and directional cues. Three of five end-users learned to select symbols using this method. Averaged over all five end-users the information transfer rate increased by more than 1800% from the first session (0.17 bits/min) to the last session (3.08 bits/min). The two best end-users achieved information transfer rates of 5.78 bits/min and accuracies of 92%. Our results show that an auditory BCI with a combination of natural sounds and directional cues, can be controlled by end-users with motor impairment. Training improves the performance of end-users to the level of healthy controls. To our knowledge, this is the first time end-users with motor impairments controlled an auditory brain-computer interface speller with such high accuracy and information transfer rates. Further, our results demonstrate that operating a BCI with event-related potentials benefits from training and specifically end-users may require more than one session to develop their full potential. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  14. Auditory-cognitive training improves language performance in prelingually deafened cochlear implant recipients.

    Science.gov (United States)

    Ingvalson, Erin M; Young, Nancy M; Wong, Patrick C M

    2014-10-01

    Phonological and working memory skills have been shown to be important for the development of spoken language. Children who use a cochlear implant (CI) show performance deficits relative to normal hearing (NH) children on all constructs: phonological skills, working memory, and spoken language. Given that phonological skills and working memory have been shown to be important for spoken language development in NH children, we hypothesized that training these foundational skills would result in improved spoken language performance in CI-using children. Nineteen prelingually deafened CI-using children aged 4- to 7-years-old participated. All children had been using their implants for at least one year and were matched on pre-implant hearing thresholds, hearing thresholds at study enrollment, and non-verbal IQ. Children were assessed on expressive vocabulary, listening language, spoken language, and composite language. Ten children received four weeks of training on phonological skills including rhyme, sound blending, and sound discrimination and auditory working memory. The remaining nine children continued with their normal classroom activities for four weeks. Language assessments were repeated following the training/control period. Children who received combined phonological-working memory training showed significant gains on expressive and composite language scores. Children who did not receive training showed no significant improvements at post-test. On average, trained children had gain scores of 6.35 points on expressive language and gain scores of 6.15 points whereas the untrained children had test-retest gain scores of 2.89 points for expressive language and 2.56 for composite language. Our results suggest that training to improve the phonological and working memory skills in CI-using children may lead to improved language performance. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. The power of auditory-motor synchronization in sports: enhancing running performance by coupling cadence with the right beats.

    Directory of Open Access Journals (Sweden)

    Robert Jan Bood

    Full Text Available Acoustic stimuli, like music and metronomes, are often used in sports. Adjusting movement tempo to acoustic stimuli (i.e., auditory-motor synchronization may be beneficial for sports performance. However, music also possesses motivational qualities that may further enhance performance. Our objective was to examine the relative effects of auditory-motor synchronization and the motivational impact of acoustic stimuli on running performance. To this end, 19 participants ran to exhaustion on a treadmill in 1 a control condition without acoustic stimuli, 2 a metronome condition with a sequence of beeps matching participants' cadence (synchronization, and 3 a music condition with synchronous motivational music matched to participants' cadence (synchronization+motivation. Conditions were counterbalanced and measurements were taken on separate days. As expected, time to exhaustion was significantly longer with acoustic stimuli than without. Unexpectedly, however, time to exhaustion did not differ between metronome and motivational music conditions, despite differences in motivational quality. Motivational music slightly reduced perceived exertion of sub-maximal running intensity and heart rates of (near-maximal running intensity. The beat of the stimuli -which was most salient during the metronome condition- helped runners to maintain a consistent pace by coupling cadence to the prescribed tempo. Thus, acoustic stimuli may have enhanced running performance because runners worked harder as a result of motivational aspects (most pronounced with motivational music and more efficiently as a result of auditory-motor synchronization (most notable with metronome beeps. These findings imply that running to motivational music with a very prominent and consistent beat matched to the runner's cadence will likely yield optimal effects because it helps to elevate physiological effort at a high perceived exertion, whereas the consistent and correct cadence induced by

  16. The power of auditory-motor synchronization in sports: enhancing running performance by coupling cadence with the right beats.

    Science.gov (United States)

    Bood, Robert Jan; Nijssen, Marijn; van der Kamp, John; Roerdink, Melvyn

    2013-01-01

    Acoustic stimuli, like music and metronomes, are often used in sports. Adjusting movement tempo to acoustic stimuli (i.e., auditory-motor synchronization) may be beneficial for sports performance. However, music also possesses motivational qualities that may further enhance performance. Our objective was to examine the relative effects of auditory-motor synchronization and the motivational impact of acoustic stimuli on running performance. To this end, 19 participants ran to exhaustion on a treadmill in 1) a control condition without acoustic stimuli, 2) a metronome condition with a sequence of beeps matching participants' cadence (synchronization), and 3) a music condition with synchronous motivational music matched to participants' cadence (synchronization+motivation). Conditions were counterbalanced and measurements were taken on separate days. As expected, time to exhaustion was significantly longer with acoustic stimuli than without. Unexpectedly, however, time to exhaustion did not differ between metronome and motivational music conditions, despite differences in motivational quality. Motivational music slightly reduced perceived exertion of sub-maximal running intensity and heart rates of (near-)maximal running intensity. The beat of the stimuli -which was most salient during the metronome condition- helped runners to maintain a consistent pace by coupling cadence to the prescribed tempo. Thus, acoustic stimuli may have enhanced running performance because runners worked harder as a result of motivational aspects (most pronounced with motivational music) and more efficiently as a result of auditory-motor synchronization (most notable with metronome beeps). These findings imply that running to motivational music with a very prominent and consistent beat matched to the runner's cadence will likely yield optimal effects because it helps to elevate physiological effort at a high perceived exertion, whereas the consistent and correct cadence induced by auditory

  17. The Power of Auditory-Motor Synchronization in Sports: Enhancing Running Performance by Coupling Cadence with the Right Beats

    Science.gov (United States)

    Bood, Robert Jan; Nijssen, Marijn; van der Kamp, John; Roerdink, Melvyn

    2013-01-01

    Acoustic stimuli, like music and metronomes, are often used in sports. Adjusting movement tempo to acoustic stimuli (i.e., auditory-motor synchronization) may be beneficial for sports performance. However, music also possesses motivational qualities that may further enhance performance. Our objective was to examine the relative effects of auditory-motor synchronization and the motivational impact of acoustic stimuli on running performance. To this end, 19 participants ran to exhaustion on a treadmill in 1) a control condition without acoustic stimuli, 2) a metronome condition with a sequence of beeps matching participants’ cadence (synchronization), and 3) a music condition with synchronous motivational music matched to participants’ cadence (synchronization+motivation). Conditions were counterbalanced and measurements were taken on separate days. As expected, time to exhaustion was significantly longer with acoustic stimuli than without. Unexpectedly, however, time to exhaustion did not differ between metronome and motivational music conditions, despite differences in motivational quality. Motivational music slightly reduced perceived exertion of sub-maximal running intensity and heart rates of (near-)maximal running intensity. The beat of the stimuli –which was most salient during the metronome condition– helped runners to maintain a consistent pace by coupling cadence to the prescribed tempo. Thus, acoustic stimuli may have enhanced running performance because runners worked harder as a result of motivational aspects (most pronounced with motivational music) and more efficiently as a result of auditory-motor synchronization (most notable with metronome beeps). These findings imply that running to motivational music with a very prominent and consistent beat matched to the runner’s cadence will likely yield optimal effects because it helps to elevate physiological effort at a high perceived exertion, whereas the consistent and correct cadence induced by

  18. Comparative Impacts of Scala Vestibuli Versus Scala Tympani Cochlear Implantation on Auditory Performances and Programming Parameters in Partially Ossified Cochleae.

    Science.gov (United States)

    Trudel, Mathieu; Côté, Mathieu; Philippon, Daniel; Simonyan, David; Villemure-Poliquin, Noémie; Bussières, Richard

    2018-07-01

    To compare scala vestibuli versus scala tympani cochlear implantation in terms of postoperative auditory performances and programming parameters in patients with severe scala tympani ossification. Retrospective case-control study. Tertiary referral center. One hundred three pediatric and adult patients who underwent cochlear implant surgery between 2000 and 2016. Three groups were formed: a scala vestibuli group, a scala tympani with ossification group, and a scala tympani without ossification group. Patients were matched based on their age, sex, duration of deafness, and side of implantation (ratio of 1:2:2). Postoperative evaluation of auditory performances and programming parameters following intensive functional rehabilitation program completion. Multimedia adaptive test (MAT), hearing in noise test (HINT SNR +10 dB, HINT SNR +5 dB, and HINT SNR +0 dB), impedances, neural response telemetry thresholds (NRT), neural response imaging thresholds (NRI), comfortable levels (C-levels), and threshold levels (T-levels) were compared between groups. Twenty-one patients underwent scala vestibuli cochlear implantation: 19 adults and two children. Auditory performances were similar between groups, although sentence recognition in a noisy environment was slightly higher in the scala vestibuli group. Impedance values were also higher in the scala vestibuli group, but all other programming parameters were similar between groups. We present the largest series of patients with scala vestibuli cochlear implantation. This approach provides at least comparable auditory performances without having any deleterious effects on programming parameters. This viable and useful insertion route might be the primary surgical alternative when facing partial cochlear ossification.

  19. Virtual-reality-based attention assessment of ADHD: ClinicaVR: Classroom-CPT versus a traditional continuous performance test.

    Science.gov (United States)

    Neguț, Alexandra; Jurma, Anda Maria; David, Daniel

    2017-08-01

    Virtual-reality-based assessment may be a good alternative to classical or computerized neuropsychological assessment due to increased ecological validity. ClinicaVR: Classroom-CPT (VC) is a neuropsychological test embedded in virtual reality that is designed to assess attention deficits in children with attention deficit hyperactivity disorder (ADHD) or other conditions associated with impaired attention. The present study aimed to (1) investigate the diagnostic validity of VC in comparison to a traditional continuous performance test (CPT), (2) explore the task difficulty of VC, (3) address the effect of distractors on the performance of ADHD participants and typically-developing (TD) controls, and (4) compare the two measures on cognitive absorption. A total of 33 children diagnosed with ADHD and 42 TD children, aged between 7 and 13 years, participated in the study and were tested with a traditional CPT or with VC, along with several cognitive measures and an adapted version of the Cognitive Absorption Scale. A mixed multivariate analysis of covariance (MANCOVA) revealed that the children with ADHD performed worse on correct responses had more commissions and omissions errors than the TD children, as well as slower target reaction times . The results showed significant differences between performance in the virtual environment and the traditional computerized one, with longer reaction times in virtual reality. The data analysis highlighted the negative influence of auditory distractors on attention performance in the case of the children with ADHD, but not for the TD children. Finally, the two measures did not differ on the cognitive absorption perceived by the children.

  20. Glucose administration prior to a divided attention task improves tracking performance but not word recognition: evidence against differential memory enhancement?

    Science.gov (United States)

    Scholey, Andrew B; Sünram-Lea, Sandra I; Greer, Joanna; Elliott, Jade; Kennedy, David O

    2009-01-01

    The cognition-enhancing effects of glucose administration to humans have been well-documented; however, it remains unclear whether this effect preferentially targets episodic memory or other cognitive domains. The effect of glucose on the allocation of attentional resources during memory encoding was assessed using a sensitive dual-attention paradigm. One hundred and twenty volunteers (mean age 21.60, SD 4.89, 77 females) took part in this randomised, double-blind, placebo-controlled, parallel groups study where each consumed a 25-g glucose drink or a placebo. Half of the participants in each drink condition attempted to track a moving on-screen target during auditory word presentation. The distance between the cursor and the tracking target was used as an index of attentional cost during encoding. Effects of drink and tracking on recognition memory and drink on tracking performance were assessed. Self-rated appetite and mood were co-monitored. Co-performing the tracking task significantly impaired memory performance irrespective of drink condition. In the placebo-tracking condition, there was a cost to tracking manifest as greater deviation from target during and immediately following word presentation. Compared with placebo, the glucose drink significantly improved tracking performance during encoding. There were significant time-related changes in thirst and alertness ratings but these were not differentially affected by drink or tracking conditions. Tracking but not memory was enhanced by glucose. This finding suggests that, under certain task conditions, glucose administrations does not preferentially enhance memory performance. One mechanism through which glucose acts as a cognition enhancer is through allowing greater allocation of attentional resources.

  1. Serotonergic neurotransmission and lapses of attention in children and adolescents with attention deficit hyperactivity disorder: availability of tryptophan influences attentional performance.

    Science.gov (United States)

    Zepf, Florian D; Gaber, Tilman J; Baurmann, David; Bubenzer, Sarah; Konrad, Kerstin; Herpertz-Dahlmann, Beate; Stadler, Christina; Poustka, Fritz; Wöckel, Lars

    2010-08-01

    Deficiencies in serotonergic (5-HT) neurotransmission have frequently been linked to altered attention and memory processes. With attention deficit hyperactivity disorder (ADHD) being associated with impaired attention and working memory, this study investigated the effects of a diminished 5-HT turnover achieved by rapid tryptophan depletion (RTD) on attentional performance in children and adolescents with ADHD. Twenty-two male patients with ADHD (aged 9-15 yr) received the RTD procedure Moja-De and a tryptophan (Trp)-balanced placebo (Pla) in a randomized, double-blind, within-subject crossover design on two separate study days. Lapses of attention (LA) and phasic alertness (PA) were assessed within the test battery for attentional performance under depleted and sham-depleted conditions 120 (T1), 220 (T2) and 300 (T3) min after intake of RTD/Pla. At T1 there was a significant main effect for RTD, indicating more LA under intake of a Trp-balanced Pla compared to diminished 5-HT neurotransmission. For T2/T3 there were no such effects. PA was not affected by the factors RTD/Pla and time. Interactions of 5-HT with other neurotransmitters as possible underlying neurochemical processes could be subject to further investigations involving healthy controls as regards altered attentional performance in children and adolescents.

  2. Effects of Multimodal Displays About Threat Location on Target Acquisition and Attention to Visual and Auditory Communications

    National Research Council Canada - National Science Library

    Glumm, Monica M; Kehring, Kathy L; White, Timothy L

    2007-01-01

    This laboratory experiment examined the effects of paired sensory cues that indicate the location of targets on target acquisition performance, the recall of information presented in concurrent visual...

  3. Attention in Williams Syndrome and Down's Syndrome: Performance on the New Early Childhood Attention Battery

    Science.gov (United States)

    Breckenridge, Kate; Braddick, Oliver; Anker, Shirley; Woodhouse, Margaret; Atkinson, Janette

    2013-01-01

    Attentional problems are commonly reported as a feature of the behavioural profile in both Williams syndrome (WS) and Down's syndrome (DS). Recent studies have begun to investigate these impairments empirically, acknowledging the need for an approach that considers cross-syndrome comparisons and developmental changes across the different component…

  4. Performance effects of nicotine during selective attention, divided attention, and simple stimulus detection: an fMRI study.

    Science.gov (United States)

    Hahn, Britta; Ross, Thomas J; Wolkenberg, Frank A; Shakleya, Diaa M; Huestis, Marilyn A; Stein, Elliot A

    2009-09-01

    Attention-enhancing effects of nicotine appear to depend on the nature of the attentional function. Underlying neuroanatomical mechanisms, too, may vary depending on the function modulated. This functional magnetic resonance imaging study recorded blood oxygen level-dependent (BOLD) activity in minimally deprived smokers during tasks of simple stimulus detection, selective attention, or divided attention after single-blind application of a transdermal nicotine (21 mg) or placebo patch. Smokers' performance in the placebo condition was unimpaired as compared with matched nonsmokers. Nicotine reduced reaction time (RT) in the stimulus detection and selective attention but not divided attention condition. Across all task conditions, nicotine reduced activation in frontal, temporal, thalamic, and visual regions and enhanced deactivation in so-called "default" regions. Thalamic effects correlated with RT reduction selectively during stimulus detection. An interaction with task condition was observed in middle and superior frontal gyri, where nicotine reduced activation only during stimulus detection. A visuomotor control experiment provided evidence against nonspecific effects of nicotine. In conclusion, although prefrontal activity partly displayed differential modulation by nicotine, most BOLD effects were identical across tasks, despite differential performance effects, suggesting that common neuronal mechanisms can selectively benefit different attentional functions. Overall, the effects of nicotine may be explained by increased functional efficiency and downregulated task-independent "default" functions.

  5. Structure and Topology Dynamics of Hyper-Frequency Networks during Rest and Auditory Oddball Performance.

    Science.gov (United States)

    Müller, Viktor; Perdikis, Dionysios; von Oertzen, Timo; Sleimen-Malkoun, Rita; Jirsa, Viktor; Lindenberger, Ulman

    2016-01-01

    Resting-state and task-related recordings are characterized by oscillatory brain activity and widely distributed networks of synchronized oscillatory circuits. Electroencephalographic recordings (EEG) were used to assess network structure and network dynamics during resting state with eyes open and closed, and auditory oddball performance through phase synchronization between EEG channels. For this assessment, we constructed a hyper-frequency network (HFN) based on within- and cross-frequency coupling (WFC and CFC, respectively) at 10 oscillation frequencies ranging between 2 and 20 Hz. We found that CFC generally differentiates between task conditions better than WFC. CFC was the highest during resting state with eyes open. Using a graph-theoretical approach (GTA), we found that HFNs possess small-world network (SWN) topology with a slight tendency to random network characteristics. Moreover, analysis of the temporal fluctuations of HFNs revealed specific network topology dynamics (NTD), i.e., temporal changes of different graph-theoretical measures such as strength, clustering coefficient, characteristic path length (CPL), local, and global efficiency determined for HFNs at different time windows. The different topology metrics showed significant differences between conditions in the mean and standard deviation of these metrics both across time and nodes. In addition, using an artificial neural network approach, we found stimulus-related dynamics that varied across the different network topology metrics. We conclude that functional connectivity dynamics (FCD), or NTD, which was found using the HFN approach during rest and stimulus processing, reflects temporal and topological changes in the functional organization and reorganization of neuronal cell assemblies.

  6. Attentional Control Buffers the Effect of Public Speaking Anxiety on Performance.

    Science.gov (United States)

    Jones, Christopher R; Fazio, Russell H; Vasey, Michael W

    2012-09-01

    We explored dispositional differences in the ability to self-regulate attentional processes in the domain of public speaking. Participants first completed measures of speech anxiety and attentional control. In a second session, participants prepared and performed a short speech. Fear of public speaking negatively impacted performance only for those low in attentional control. Thus, attentional control appears to act as a buffer that facilitates successful self-regulation despite performance anxiety.

  7. Evaluation of Auditory Verbal Memory and Learning Performance of 18-30 Year Old Persian-Speaking Healthy Women

    Directory of Open Access Journals (Sweden)

    Reyhane Toufan

    2012-10-01

    Full Text Available Background and Aim: Auditory memory plays an important role in developing language skills and learning. The aim of the present study was to assess auditory verbal memory and learning performanceof 18-30 year old healthy adults using the Persian version of the Rey Auditory-Verbal Learning Test(RAVLT.Methods: This descriptive, cross-sectional study was coducted on seventy 18-30 year old healthy females with the mean age of 23.2 years and a standard deviation (SD of 2.4 years. Different aspectsof memory, like immediate recall, delayed recall, recognition, forgetting rate, interference and learning, were assessed using the Persian version of RAVLT.Results: Mean score increased from 8.94 (SD=1.91 on the first trial to 13.70 (SD=1.18 on the fifth trial. Total learning mean score was 12.19 (SD=1.08, and mean learning rate was 4.76. Mean scoresof the participants on the delayed recall and recognition trials were 13.47 (SD=1.2, and 14.72(SD=0.53, respectively. The proactive and retroactive interference scores were 0.86 and 0.96,respectively. The forgetting rate score was 1.01 and the retrieval score was 0.90.Conclusion: The auditory-verbal memory and learning performance of healthy Persian-speaking females was similar to the performance of the same population in other countries. Therefore, the Persian version of RAVLT is valid for assessment of memory function in the Persian-speaking female population.

  8. Dividing time: concurrent timing of auditory and visual events by young and elderly adults.

    Science.gov (United States)

    McAuley, J Devin; Miller, Jonathan P; Wang, Mo; Pang, Kevin C H

    2010-07-01

    This article examines age differences in individual's ability to produce the durations of learned auditory and visual target events either in isolation (focused attention) or concurrently (divided attention). Young adults produced learned target durations equally well in focused and divided attention conditions. Older adults, in contrast, showed an age-related increase in timing variability in divided attention conditions that tended to be more pronounced for visual targets than for auditory targets. Age-related impairments were associated with a decrease in working memory span; moreover, the relationship between working memory and timing performance was largest for visual targets in divided attention conditions.

  9. Learning Auditory Discrimination with Computer-Assisted Instruction: A Comparison of Two Different Performance Objectives.

    Science.gov (United States)

    Steinhaus, Kurt A.

    A 12-week study of two groups of 14 college freshmen music majors was conducted to determine which group demonstrated greater achievement in learning auditory discrimination using computer-assisted instruction (CAI). The method employed was a pre-/post-test experimental design using subjects randomly assigned to a control group or an experimental…

  10. Auditory Brainstem Response to Complex Sounds Predicts Self-Reported Speech-in-Noise Performance

    Science.gov (United States)

    Anderson, Samira; Parbery-Clark, Alexandra; White-Schwoch, Travis; Kraus, Nina

    2013-01-01

    Purpose: To compare the ability of the auditory brainstem response to complex sounds (cABR) to predict subjective ratings of speech understanding in noise on the Speech, Spatial, and Qualities of Hearing Scale (SSQ; Gatehouse & Noble, 2004) relative to the predictive ability of the Quick Speech-in-Noise test (QuickSIN; Killion, Niquette,…

  11. Brain activity associated with selective attention, divided attention and distraction.

    Science.gov (United States)

    Salo, Emma; Salmela, Viljami; Salmi, Juha; Numminen, Jussi; Alho, Kimmo

    2017-06-01

    Top-down controlled selective or divided attention to sounds and visual objects, as well as bottom-up triggered attention to auditory and visual distractors, has been widely investigated. However, no study has systematically compared brain activations related to all these types of attention. To this end, we used functional magnetic resonance imaging (fMRI) to measure brain activity in participants performing a tone pitch or a foveal grating orientation discrimination task, or both, distracted by novel sounds not sharing frequencies with the tones or by extrafoveal visual textures. To force focusing of attention to tones or gratings, or both, task difficulty was kept constantly high with an adaptive staircase method. A whole brain analysis of variance (ANOVA) revealed fronto-parietal attention networks for both selective auditory and visual attention. A subsequent conjunction analysis indicated partial overlaps of these networks. However, like some previous studies, the present results also suggest segregation of prefrontal areas involved in the control of auditory and visual attention. The ANOVA also suggested, and another conjunction analysis confirmed, an additional activity enhancement in the left middle frontal gyrus related to divided attention supporting the role of this area in top-down integration of dual task performance. Distractors expectedly disrupted task performance. However, contrary to our expectations, activations specifically related to the distractors were found only in the auditory and visual cortices. This suggests gating of the distractors from further processing perhaps due to strictly focused attention in the current demanding discrimination tasks. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Auditory interfaces: The human perceiver

    Science.gov (United States)

    Colburn, H. Steven

    1991-01-01

    A brief introduction to the basic auditory abilities of the human perceiver with particular attention toward issues that may be important for the design of auditory interfaces is presented. The importance of appropriate auditory inputs to observers with normal hearing is probably related to the role of hearing as an omnidirectional, early warning system and to its role as the primary vehicle for communication of strong personal feelings.

  13. The impact of visual gaze direction on auditory object tracking.

    Science.gov (United States)

    Pomper, Ulrich; Chait, Maria

    2017-07-05

    Subjective experience suggests that we are able to direct our auditory attention independent of our visual gaze, e.g when shadowing a nearby conversation at a cocktail party. But what are the consequences at the behavioural and neural level? While numerous studies have investigated both auditory attention and visual gaze independently, little is known about their interaction during selective listening. In the present EEG study, we manipulated visual gaze independently of auditory attention while participants detected targets presented from one of three loudspeakers. We observed increased response times when gaze was directed away from the locus of auditory attention. Further, we found an increase in occipital alpha-band power contralateral to the direction of gaze, indicative of a suppression of distracting input. Finally, this condition also led to stronger central theta-band power, which correlated with the observed effect in response times, indicative of differences in top-down processing. Our data suggest that a misalignment between gaze and auditory attention both reduce behavioural performance and modulate underlying neural processes. The involvement of central theta-band and occipital alpha-band effects are in line with compensatory neural mechanisms such as increased cognitive control and the suppression of task irrelevant inputs.

  14. Selective Attention, Anxiety, Depressive Symptomatology and Academic Performance in Adolescents

    Science.gov (United States)

    Fernandez-Castillo, Antonio; Gutierrez-Rojas, Maria Esperanza

    2009-01-01

    Introduction: In this cross-sectional, descriptive research we studied the relation between three psychological variables (anxiety, depression and attention) in order to analyze their possible association with and predictive power for academic achievement (as expressed in school grades) in a sample of secondary students. Method: For this purpose…

  15. Teste de Habilidade de Atenção Auditiva Sustentada (THAAS em crianças de sete anos com fissura labiopalatina Sustained Auditory Attention Ability Test (SAAAT in seven-year-old children with cleft lip and palate

    Directory of Open Access Journals (Sweden)

    Isabel Cristina Cavalcanti Lemos

    2010-04-01

    Full Text Available A fissura labiopalatina é um indicador de risco para alterações de orelha média, o que pode prejudicar o desenvolvimento de habilidades auditivas tais como a atenção, que é essencial para o aprendizado de novas habilidades, comunicação oral e escrita. O estudo do processo atencional na população com fissura labiopalatina é algo recente e pouco explorado na literatura específica consultada, assim, este trabalho poderá contribuir com novos subsídios na área, uma vez que tem como objetivo verificar o desempenho de crianças com fissura labiopalatina no Teste de Habilidade de Atenção Auditiva Sustentada (THAAS. MATERIAL E MÉTODO: Comparação do desempenho no THAAS de crianças com e sem fissura labiopalatina. Estudo Prospectivo. RESULTADOS: Para estudar a associação entre os resultados do THAAS e as variáveis grupo e gênero foi utilizado um modelo de análise de variância (ANOVA com dois fatores, com o qual foi possível observar que o grupo com fissura labiopalatina apresentou média 2,5 unidades maior que o grupo controle, esta diferença encontra-se entre 0,7 e 4,4 com 95% de confiança. CONCLUSÃO: As crianças com fissura labiopalatina apresentaram desempenho no THAAS inferior àquelas sem essa anomalia craniofacial apenas para o decréscimo da vigilância.Cleft lip and palate (CLP is a risk indicator to middle ear alterations, which may damage the development of auditory abilities such as attention that is essential to learn new skills, oral and written communication. Studies on attention process with CLP population are recent and poorly explored in the specific literature. Thus, this study aims to contribute with new subsidies in the field as it investigates the performance of children with CLP in Sustained Auditory Attention Ability Test (SAAAT. MATERIAL AND METHOD: Comparison of SAAAT performance between children with CLP and children without it. Prospective study. RESULTS: ANOVA was used as variance analysis model

  16. Correlation between clinical manifestations of nocturnal enuresis and attentional performance in children with attention deficit hyperactivity disorder (ADHD).

    Science.gov (United States)

    Yang, Teng-Kai; Huang, Kuo-How; Chen, Shyh-Chyan; Chang, Hong-Chiang; Yang, Hung-Ju; Guo, Ya-Jun

    2013-01-01

    Children with attention deficit hyperactivity disorder (ADHD) tend to be more vulnerable to various forms of voiding dysfunction and nocturnal enuresis (NE). We attempt to compare the clinical manifestations and attentional performance between ADHD children with NE and those without NE. We consecutively enrolled children diagnosed with ADHD in child and adolescent psychiatric clinics. The questionnaires for evaluation of ADHD symptoms and voiding dysfunction symptoms were administered to all study participants. All participants also received the Test Battery for Attention Performance (TAP) for assessment of attentional function. A total of 53 children were enrolled in this study, comprising 47 boys and six girls. The prevalence rate of NE was 28.3%. Children in the NE group had statistically significant higher dysfunctional voiding symptom score (5.40 ± 3.66 vs.3.16 ± 2.74; p = 0.018) and two subscales of "When I wet myself, my underwear is soaked" (p attention than the non-NE group. Children with ADHD have a high prevalence of NE. ADHD children with NE had a significantly higher dysfunctional voiding symptom score and shorter reaction time in most domains of the TAP test. Further study is needed to discern the impact of NE on the neuropsychological function of ADHD children. Copyright © 2012. Published by Elsevier B.V.

  17. Influence of Methylphenidate on Motor Performance and Attention in Children with Developmental Coordination Disorder and Attention Deficit Hyperactive Disorder

    Science.gov (United States)

    Bart, Orit; Daniel, Liron; Dan, Orrie; Bar-Haim, Yair

    2013-01-01

    Individuals with attention deficit hyperactive disorder (ADHD) often have coexisting developmental coordination disorder (DCD). The positive therapeutic effect of methylphenidate on ADHD symptoms is well documented, but its effects on motor coordination are less studied. We assessed the influence of methylphenidate on motor performance in children…

  18. [Attention characteristics of children with different clinical subtypes of attention deficit hyperactivity disorder].

    Science.gov (United States)

    Liu, Wen-Long; Zhao, Xu; Tan, Jian-Hui; Wang, Juan

    2014-09-01

    To explore the attention characteristics of children with different clinical subtypes of attention deficit hyperactivity disorder (ADHD) and to provide a basis for clinical intervention. A total of 345 children diagnosed with ADHD were selected and the subtypes were identified. Attention assessment was performed by the intermediate visual and auditory continuous performance test at diagnosis, and the visual and auditory attention characteristics were compared between children with different subtypes. A total of 122 normal children were recruited in the control group and their attention characteristics were compared with those of children with ADHD. The scores of full scale attention quotient (AQ) and full scale response control quotient (RCQ) of children with all three subtypes of ADHD were significantly lower than those of normal children (Phyperactive/impulsive subtype (Pattention function of children with ADHD is worse than that of normal children, and the impairment of visual attention function is severer than that of auditory attention function. The degree of functional impairment of visual or auditory attention shows no significant differences between three subtypes of ADHD.

  19. Effects of Task Performance and Task Complexity on the Validity of Computational Models of Attention

    NARCIS (Netherlands)

    Koning, L. de; Maanen, P.P. van; Dongen, K. van

    2008-01-01

    Computational models of attention can be used as a component of decision support systems. For accurate support, a computational model of attention has to be valid and robust. The effects of task performance and task complexity on the validity of three different computational models of attention were

  20. Competition between auditory and visual spatial cues during visual task performance

    NARCIS (Netherlands)

    Koelewijn, T.; Bronkhorst, A.; Theeuwes, J.

    2009-01-01

    There is debate in the crossmodal cueing literature as to whether capture of visual attention by means of sound is a fully automatic process. Recent studies show that when visual attention is endogenously focused sound still captures attention. The current study investigated whether there is

  1. The effect of auditory perception training on reading performance of the 8-9-year old female students with dyslexia: A preliminary study

    Directory of Open Access Journals (Sweden)

    Nafiseh Vatandoost

    2014-01-01

    Full Text Available Background and Aim: Dyslexia is the most common learning disability. One of the main factors have role in this disability is auditory perception imperfection that cause a lot of problems in education. We aimed to study the effect of auditory perception training on reading performance of female students with dyslexia at the third grade of elementary school.Methods: Thirty-eight female students at the third grade of elementary schools of Khomeinishahr City, Iran, were selected by multistage cluster random sampling of them, 20 students which were diagnosed dyslexic by Reading test and Wechsler test, devided randomly to two equal groups of experimental and control. For experimental group, during ten 45-minute sessions, auditory perception training were conducted, but no intervention was done for control group. An participants were re-assessed by Reading test after the intervention (pre- and post- test method. Data were analyed by covariance test.Results: The effect of auditory perception training on reading performance (81% was significant (p<0.0001 for all subtests execpt the separate compound word test.Conclusion: Findings of our study confirm the hypothesis that auditory perception training effects on students' functional reading. So, auditory perception training seems to be necessary for the students with dyslexia.

  2. Optimal distance of an external focus of attention in standing long jump performance of athletes

    Directory of Open Access Journals (Sweden)

    Gh. Lotfi

    2018-06-01

    Full Text Available Background and Study Aim: Recently, studies have shown that an external focus of attention improves the performance of individuals. Some studies have also confirmed the superiority of distances away from body for external focus of attention. The aim of this study was to determine the optimal distance of an external focus of attention when performing athletes' standing long jump. Material and Method: 51 volunteer students (M age= 23.31 ± 5.26 years were selected as sample. At first all they performed a standing long jump in control status (without instruction for focus of attention. Then in an interpersonal counterbalanced design, a pair of jumps was performed with four different distances of an external focus of attention. These distances included 0.5, 2.5, 4 and 8 meters from the jump start line marked with colored tapes on the ground. Results: The results showed that having an external focus of attention compare to the control conditions has a significant advantage in the performance of the athlete's standing long jump. Also, the performance of athletes at different distances of an external focus of attention was compared. Results showed that the four-meter distance was significantly better performance than the half-meter distance of an external focus of attention. Conclusion: Four-meter distance can be introduced as the optimal distance of an external focus of attention in the performance of athletes’ standing long jump.

  3. Short-term plasticity in auditory cognition.

    Science.gov (United States)

    Jääskeläinen, Iiro P; Ahveninen, Jyrki; Belliveau, John W; Raij, Tommi; Sams, Mikko

    2007-12-01

    Converging lines of evidence suggest that auditory system short-term plasticity can enable several perceptual and cognitive functions that have been previously considered as relatively distinct phenomena. Here we review recent findings suggesting that auditory stimulation, auditory selective attention and cross-modal effects of visual stimulation each cause transient excitatory and (surround) inhibitory modulations in the auditory cortex. These modulations might adaptively tune hierarchically organized sound feature maps of the auditory cortex (e.g. tonotopy), thus filtering relevant sounds during rapidly changing environmental and task demands. This could support auditory sensory memory, pre-attentive detection of sound novelty, enhanced perception during selective attention, influence of visual processing on auditory perception and longer-term plastic changes associated with perceptual learning.

  4. Visual attention and emotional memory: recall of aversive pictures is partially mediated by concurrent task performance.

    Science.gov (United States)

    Pottage, Claire L; Schaefer, Alexandre

    2012-02-01

    The emotional enhancement of memory is often thought to be determined by attention. However, recent evidence using divided attention paradigms suggests that attention does not play a significant role in the formation of memories for aversive pictures. We report a study that investigated this question using a paradigm in which participants had to encode lists of randomly intermixed negative and neutral pictures under conditions of full attention and divided attention followed by a free recall test. Attention was divided by a highly demanding concurrent task tapping visual processing resources. Results showed that the advantage in recall for aversive pictures was still present in the DA condition. However, mediation analyses also revealed that concurrent task performance significantly mediated the emotional enhancement of memory under divided attention. This finding suggests that visual attentional processes play a significant role in the formation of emotional memories. PsycINFO Database Record (c) 2012 APA, all rights reserved

  5. Sustained and transient attention in the Continuous Performance Task

    NARCIS (Netherlands)

    Smid, HGOM; de Witte, MR; Homminga, [No Value; van den Bosch, RJ

    One of the most frequently applied methods to study abnormal cognition is the Continuous Performance Task (CPT). It is unclear, however, which cognitive functions are engaged in normal CPT performance. The aims of the present study were to identify the neurocognitive functions engaged in the main

  6. Evaluating the Performance of a Visually Guided Hearing Aid Using a Dynamic Auditory-Visual Word Congruence Task.

    Science.gov (United States)

    Roverud, Elin; Best, Virginia; Mason, Christine R; Streeter, Timothy; Kidd, Gerald

    2017-12-15

    The "visually guided hearing aid" (VGHA), consisting of a beamforming microphone array steered by eye gaze, is an experimental device being tested for effectiveness in laboratory settings. Previous studies have found that beamforming without visual steering can provide significant benefits (relative to natural binaural listening) for speech identification in spatialized speech or noise maskers when sound sources are fixed in location. The aim of the present study was to evaluate the performance of the VGHA in listening conditions in which target speech could switch locations unpredictably, requiring visual steering of the beamforming. To address this aim, the present study tested an experimental simulation of the VGHA in a newly designed dynamic auditory-visual word congruence task. Ten young normal-hearing (NH) and 11 young hearing-impaired (HI) adults participated. On each trial, three simultaneous spoken words were presented from three source positions (-30, 0, and 30 azimuth). An auditory-visual word congruence task was used in which participants indicated whether there was a match between the word printed on a screen at a location corresponding to the target source and the spoken target word presented acoustically from that location. Performance was compared for a natural binaural condition (stimuli presented using impulse responses measured on KEMAR), a simulated VGHA condition (BEAM), and a hybrid condition that combined lowpass-filtered KEMAR and highpass-filtered BEAM information (BEAMAR). In some blocks, the target remained fixed at one location across trials, and in other blocks, the target could transition in location between one trial and the next with a fixed but low probability. Large individual variability in performance was observed. There were significant benefits for the hybrid BEAMAR condition relative to the KEMAR condition on average for both NH and HI groups when the targets were fixed. Although not apparent in the averaged data, some

  7. Long-range correlation properties in timing of skilled piano performance: the influence of auditory feedback and deep brain stimulation.

    Directory of Open Access Journals (Sweden)

    Maria eHerrojo Ruiz

    2014-09-01

    Full Text Available Unintentional timing deviations during musical performance can be conceived of as timing errors. However, recent research on humanizing computer-generated music has demonstrated that timing fluctuations that exhibit long-range temporal correlations (LRTC are preferred by human listeners. This preference can be accounted for by the ubiquitous presence of LRTC in human tapping and rhythmic performances. Interestingly, the manifestation of LRTC in tapping behavior seems to be driven in a subject-specific manner by the LRTC properties of resting-state background cortical oscillatory activity. In this framework, the current study aimed to investigate whether propagation of timing deviations during the skilled, memorized piano performance (without metronome of 17 professional pianists exhibits LRTC and whether the structure of the correlations is influenced by the presence or absence of auditory feedback.As an additional goal, we set out to investigate the influence of altering the dynamics along the cortico-basal-ganglia-thalamo-cortical network via deep brain stimulation (DBS on the LRTC properties of musical performance. Specifically, we investigated temporal deviations during the skilled piano performance of a non-professional pianist who was treated with subthalamic-deep brain stimulation (STN-DBS due to severe Parkinson's disease, with predominant tremor affecting his right upper extremity. In the tremor-affected right hand, the timing fluctuations of the performance exhibited random correlations with DBS OFF. By contrast, DBS restored long-range dependency in the temporal fluctuations, corresponding with the general motor improvement on DBS.Overall, the present investigations are the first to demonstrate the presence of LRTC in skilled piano performances, indicating that unintentional temporal deviations are correlated over a wide range of time scales. This phenomenon is stable after removal of the auditory feedback, but is altered by STN

  8. Auditory agnosia.

    Science.gov (United States)

    Slevc, L Robert; Shell, Alison R

    2015-01-01

    Auditory agnosia refers to impairments in sound perception and identification despite intact hearing, cognitive functioning, and language abilities (reading, writing, and speaking). Auditory agnosia can be general, affecting all types of sound perception, or can be (relatively) specific to a particular domain. Verbal auditory agnosia (also known as (pure) word deafness) refers to deficits specific to speech processing, environmental sound agnosia refers to difficulties confined to non-speech environmental sounds, and amusia refers to deficits confined to music. These deficits can be apperceptive, affecting basic perceptual processes, or associative, affecting the relation of a perceived auditory object to its meaning. This chapter discusses what is known about the behavioral symptoms and lesion correlates of these different types of auditory agnosia (focusing especially on verbal auditory agnosia), evidence for the role of a rapid temporal processing deficit in some aspects of auditory agnosia, and the few attempts to treat the perceptual deficits associated with auditory agnosia. A clear picture of auditory agnosia has been slow to emerge, hampered by the considerable heterogeneity in behavioral deficits, associated brain damage, and variable assessments across cases. Despite this lack of clarity, these striking deficits in complex sound processing continue to inform our understanding of auditory perception and cognition. © 2015 Elsevier B.V. All rights reserved.

  9. The role of time on task performance in modifying the effects of gum chewing on attention.

    Science.gov (United States)

    Tucha, Lara; Simpson, William

    2011-04-01

    Recent research examined the effects of chewing gum on attention and reported a significant interaction of gum chewing with time. Using a crossover within-subject design, the present study examined the effect of gum chewing on sustained attention in healthy adults over a period of 30 min. The results revealed a significant main effect of time and a significant interaction between gum chewing and time. The findings suggest that gum chewing differentially affects attention performance. While gum chewing has detrimental effects on sustained attention in earlier stages of the task, beneficial effects on sustained attention were observed at later stages. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. When size matters: attention affects performance by contrast or response gain.

    Science.gov (United States)

    Herrmann, Katrin; Montaser-Kouhsari, Leila; Carrasco, Marisa; Heeger, David J

    2010-12-01

    Covert attention, the selective processing of visual information in the absence of eye movements, improves behavioral performance. We found that attention, both exogenous (involuntary) and endogenous (voluntary), can affect performance by contrast or response gain changes, depending on the stimulus size and the relative size of the attention field. These two variables were manipulated in a cueing task while stimulus contrast was varied. We observed a change in behavioral performance consonant with a change in contrast gain for small stimuli paired with spatial uncertainty and a change in response gain for large stimuli presented at one location (no uncertainty) and surrounded by irrelevant flanking distracters. A complementary neuroimaging experiment revealed that observers' attention fields were wider with than without spatial uncertainty. Our results support important predictions of the normalization model of attention and reconcile previous, seemingly contradictory findings on the effects of visual attention.

  11. Adaptive aspirations and performance heterogeneity : Attention allocation among multiple reference points

    NARCIS (Netherlands)

    Blettner, D.P.; He, Z.; Hu, S.; Bettis, R.

    Organizations learn and adapt their aspiration levels based on reference points (prior aspiration, prior performance, and prior performance of reference groups). The relative attention that organizations allocate to these reference points impacts organizational search and strategic decisions.

  12. Attention, Exposure Duration, and Gaze Shifting in Naming Performance

    Science.gov (United States)

    Roelofs, Ardi

    2011-01-01

    Two experiments are reported in which the role of attribute exposure duration in naming performance was examined by tracking eye movements. Participants were presented with color-word Stroop stimuli and left- or right-pointing arrows on different sides of a computer screen. They named the color attribute and shifted their gaze to the arrow to…

  13. Neural responses to complex auditory rhythms: the role of attending

    Directory of Open Access Journals (Sweden)

    Heather L Chapin

    2010-12-01

    Full Text Available The aim of this study was to explore the role of attention in pulse and meter perception using complex rhythms. We used a selective attention paradigm in which participants attended to either a complex auditory rhythm or a visually presented word list. Performance on a reproduction task was used to gauge whether participants were attending to the appropriate stimulus. We hypothesized that attention to complex rhythms – which contain no energy at the pulse frequency – would lead to activations in motor areas involved in pulse perception. Moreover, because multiple repetitions of a complex rhythm are needed to perceive a pulse, activations in pulse related areas would be seen only after sufficient time had elapsed for pulse perception to develop. Selective attention was also expected to modulate activity in sensory areas specific to the modality. We found that selective attention to rhythms led to increased BOLD responses in basal ganglia, and basal ganglia activity was observed only after the rhythms had cycled enough times for a stable pulse percept to develop. These observations suggest that attention is needed to recruit motor activations associated with the perception of pulse in complex rhythms. Moreover, attention to the auditory stimulus enhanced activity in an attentional sensory network including primary auditory, insula, anterior cingulate, and prefrontal cortex, and suppressed activity in sensory areas associated with attending to the visual stimulus.

  14. Attentional Performance is Correlated with the Local Regional Efficiency of Intrinsic Brain Networks

    Directory of Open Access Journals (Sweden)

    Junhai eXu

    2015-07-01

    Full Text Available Attention is a crucial brain function for human beings. Using neuropsychological paradigms and task-based functional brain imaging, previous studies have indicated that widely distributed brain regions are engaged in three distinct attention subsystems: alerting, orienting and executive control (EC. Here, we explored the potential contribution of spontaneous brain activity to attention by examining whether resting-state activity could account for individual differences of the attentional performance in normal individuals. The resting-state functional images and behavioral data from attention network test (ANT task were collected in 59 healthy subjects. Graph analysis was conducted to obtain the characteristics of functional brain networks and linear regression analyses were used to explore their relationships with behavioral performances of the three attentional components. We found that there was no significant relationship between the attentional performance and the global measures, while the attentional performance was associated with specific local regional efficiency. These regions related to the scores of alerting, orienting and EC largely overlapped with the regions activated in previous task-related functional imaging studies, and were consistent with the intrinsic dorsal and ventral attention networks (DAN/VAN. In addition, the strong associations between the attentional performance and specific regional efficiency suggested that there was a possible relationship between the DAN/VAN and task performances in the ANT. We concluded that the intrinsic activity of the human brain could reflect the processing efficiency of the attention system. Our findings revealed a robust evidence for the functional significance of the efficiently organized intrinsic brain network for highly productive cognitions and the hypothesized role of the DAN/ VAN at rest.

  15. Modality-specificity of Selective Attention Networks

    OpenAIRE

    Stewart, Hannah J.; Amitay, Sygal

    2015-01-01

    Objective: To establish the modality specificity and generality of selective attention networks. Method: Forty-eight young adults completed a battery of four auditory and visual selective attention tests based upon the Attention Network framework: the visual and auditory Attention Network Tests (vANT, aANT), the Test of Everyday Attention (TEA), and the Test of Attention in Listening (TAiL). These provided independent measures for auditory and visual alerting, orienting, and conflict resoluti...

  16. Visual Attention and Math Performance in Survivors of Childhood Acute Lymphoblastic Leukemia.

    Science.gov (United States)

    Richard, Annette E; Hodges, Elise K; Heinrich, Kimberley P

    2018-01-24

    Attentional and academic difficulties, particularly in math, are common in survivors of childhood acute lymphoblastic leukemia (ALL). Of cognitive deficits experienced by survivors of childhood ALL, attention deficits may be particularly responsive to intervention. However, it is unknown whether deficits in particular aspects of attention are associated with deficits in math skills. The current study investigated relationships between math calculation skills, performance on an objective measure of sustained attention, and parent- and teacher-reported attention difficulties. Twenty-four survivors of childhood ALL (Mage = 13.5 years, SD= 2.8 years) completed a computerized measure of sustained attention and response control and a written measure of math calculation skills in the context of a comprehensive clinical neuropsychological evaluation. Parent and teacher ratings of inattention and impulsivity were obtained. Visual response control and visual attention accounted for 26.4% of the variance observed among math performance scores after controlling for IQ (p < .05). Teacher-rated, but not parent-rated, inattention was significantly negatively correlated with math calculation scores. Consistency of responses to visual stimuli on a computerized measure of attention is a unique predictor of variance in math performance among survivors of childhood ALL. Objective testing of visual response control, rather than parent-rated attentional problems, may have clinical utility in identifying ALL survivors at risk for math difficulties. © The Author(s) 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Executive and Attentional Functions in Chronic Pain: Does Performance Decrease with Increasing Task Load?

    Directory of Open Access Journals (Sweden)

    Joukje M Oosterman

    2012-01-01

    Full Text Available BACKGROUND: Diminished executive function and attentional control has been reported in chronic pain patients. However, the precise pattern of impairment in these aspects of cognition in chronic pain remains unclear. Moreover, a decline in psychomotor speed could potentially influence executive and attentional control performance in pain patients.

  18. Improvement of attention with amphetamine in low- and high-performing rats.

    Science.gov (United States)

    Turner, Karly M; Burne, Thomas H J

    2016-09-01

    Attentional deficits occur in a range of neuropsychiatric disorders, such as schizophrenia and attention deficit hyperactivity disorder. Psychostimulants are one of the main treatments for attentional deficits, yet there are limited reports of procognitive effects of amphetamine in preclinical studies. Therefore, task development may be needed to improve predictive validity when measuring attention in rodents. This study aimed to use a modified signal detection task (SDT) to determine if and at what doses amphetamine could improve attention in rats. Sprague-Dawley rats were trained on the SDT prior to amphetamine challenge (0.1, 0.25, 0.75 and 1.25 mg/kg). This dose range was predicted to enhance and disrupt cognition with the effect differing between individuals depending on baseline performance. Acute low dose amphetamine (0.1 and 0.25 mg/kg) improved accuracy, while the highest dose (1.25 mg/kg) significantly disrupted performance. The effects differed for low- and high-performing groups across these doses. The effect of amphetamine on accuracy was found to significantly correlate with baseline performance in rats. This study demonstrates that improvement in attentional performance with systemic amphetamine is dependent on baseline accuracy in rats. Indicative of the inverted U-shaped relationship between dopamine and cognition, there was a baseline-dependent shift in performance with increasing doses of amphetamine. The SDT may be a useful tool for investigating individual differences in attention and response to psychostimulants in rodents.

  19. Elucidating the relationship between work attention performance and emotions arising from listening to music.

    Science.gov (United States)

    Shih, Yi-Nuo; Chien, Wei-Hsien; Chiang, Han-Sun

    2016-10-17

    In addition to demonstrating that human emotions improve work attention performance, numerous studies have also established that music alters human emotions. Given the pervasiveness of background music in the workplace, exactly how work attention, emotions and music listening are related is of priority concern in human resource management. This preliminary study investigates the relationship between work attention performance and emotions arising from listening to music. Thirty one males and 34 females, ranging from 20-24 years old, participated in this study following written informed consent. A randomized controlled trial (RCT) was performed in this study, which consisted of six steps and the use of the standard attention test and emotion questionnaire. Background music with lyrics adversely impacts attention performance more than that without lyrics. Analysis results also indicate that listeners self-reported feeling "loved" while music played that implied a higher score on their work-attention performance. Moreover, a greater ability of music to make listeners feel sad implied a lower score on their work-attention performance. Results of this preliminary study demonstrate that background music in the workplace should focus mainly on creating an environment in which listeners feel loved or taken care and avoiding music that causes individuals to feel stressed or sad. We recommend that future research increase the number of research participants to enhance the applicability and replicability of these findings.

  20. The modality effect of ego depletion: Auditory task modality reduces ego depletion.

    Science.gov (United States)

    Li, Qiong; Wang, Zhenhong

    2016-08-01

    An initial act of self-control that impairs subsequent acts of self-control is called ego depletion. The ego depletion phenomenon has been observed consistently. The modality effect refers to the effect of the presentation modality on the processing of stimuli. The modality effect was also robustly found in a large body of research. However, no study to date has examined the modality effects of ego depletion. This issue was addressed in the current study. In Experiment 1, after all participants completed a handgrip task, one group's participants completed a visual attention regulation task and the other group's participants completed an auditory attention regulation task, and then all participants again completed a handgrip task. The ego depletion phenomenon was observed in both the visual and the auditory attention regulation task. Moreover, participants who completed the visual task performed worse on the handgrip task than participants who completed the auditory task, which indicated that there was high ego depletion in the visual task condition. In Experiment 2, participants completed an initial task that either did or did not deplete self-control resources, and then they completed a second visual or auditory attention control task. The results indicated that depleted participants performed better on the auditory attention control task than the visual attention control task. These findings suggest that altering task modality may reduce ego depletion. © 2016 Scandinavian Psychological Associations and John Wiley & Sons Ltd.

  1. For Better or Worse: The Effect of Prismatic Adaptation on Auditory Neglect

    Directory of Open Access Journals (Sweden)

    Isabel Tissieres

    2017-01-01

    Full Text Available Patients with auditory neglect attend less to auditory stimuli on their left and/or make systematic directional errors when indicating sound positions. Rightward prismatic adaptation (R-PA was repeatedly shown to alleviate symptoms of visuospatial neglect and once to restore partially spatial bias in dichotic listening. It is currently unknown whether R-PA affects only this ear-related symptom or also other aspects of auditory neglect. We have investigated the effect of R-PA on left ear extinction in dichotic listening, space-related inattention assessed by diotic listening, and directional errors in auditory localization in patients with auditory neglect. The most striking effect of R-PA was the alleviation of left ear extinction in dichotic listening, which occurred in half of the patients with initial deficit. In contrast to nonresponders, their lesions spared the right dorsal attentional system and posterior temporal cortex. The beneficial effect of R-PA on an ear-related performance contrasted with detrimental effects on diotic listening and auditory localization. The former can be parsimoniously explained by the SHD-VAS model (shift in hemispheric dominance within the ventral attentional system; Clarke and Crottaz-Herbette 2016, which is based on the R-PA-induced shift of the right-dominant ventral attentional system to the left hemisphere. The negative effects in space-related tasks may be due to the complex nature of auditory space encoding at a cortical level.

  2. Selective Entrainment of Theta Oscillations in the Dorsal Stream Causally Enhances Auditory Working Memory Performance.

    Science.gov (United States)

    Albouy, Philippe; Weiss, Aurélien; Baillet, Sylvain; Zatorre, Robert J

    2017-04-05

    The implication of the dorsal stream in manipulating auditory information in working memory has been recently established. However, the oscillatory dynamics within this network and its causal relationship with behavior remain undefined. Using simultaneous MEG/EEG, we show that theta oscillations in the dorsal stream predict participants' manipulation abilities during memory retention in a task requiring the comparison of two patterns differing in temporal order. We investigated the causal relationship between brain oscillations and behavior by applying theta-rhythmic TMS combined with EEG over the MEG-identified target (left intraparietal sulcus) during the silent interval between the two stimuli. Rhythmic TMS entrained theta oscillation and boosted participants' accuracy. TMS-induced oscillatory entrainment scaled with behavioral enhancement, and both gains varied with participants' baseline abilities. These effects were not seen for a melody-comparison control task and were not observed for arrhythmic TMS. These data establish theta activity in the dorsal stream as causally related to memory manipulation. VIDEO ABSTRACT. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Attentional performance in children and adolescents with tic disorder and co-occurring attention-deficit/hyperactivity disorder: new insights from a 2 × 2 factorial design study.

    Science.gov (United States)

    Greimel, Ellen; Wanderer, Sina; Rothenberger, Aribert; Herpertz-Dahlmann, Beate; Konrad, Kerstin; Roessner, Veit

    2011-08-01

    The aim of the present study was to investigate the effect of both tic disorder (TD) and attention-deficit/hyperactivity disorder (ADHD) on attentional functions. N=96 children and adolescents participated in the study, including n=21 subjects with TD, n=23 subjects with ADHD, n=25 subjects with TD+ADHD, and n=27 controls. Attentional performance was tested based on four computerized attention tasks (sustained attention, divided attention, go/nogo and set shifting). The effect of TD as well as ADHD on attentional performance was tested using a 2 × 2 factorial approach. A diagnosis of TD had no negative impact on attentional functions but was associated with improved performance in the set shifting task. By contrast, regardless of a diagnosis of TD, subjects with ADHD were found to perform worse in the sustained attention, divided attention and go/nogo task. No interaction effect between the factors TD and ADHD was revealed for any of the attention measures. Our results add to findings from other areas of research, showing that in subjects with TD and ADHD, ADHD psychopathology is often the main source of impairment, whereas a diagnosis of TD has little or no impact on neuropsychological performance in most cases and even seems to be associated with adaptive mechanisms.

  4. Attentional fluctuations in preschoolers: Direct and indirect relations with task accuracy, academic readiness, and school performance.

    Science.gov (United States)

    Isbell, Elif; Calkins, Susan D; Swingler, Margaret M; Leerkes, Esther M

    2018-03-01

    Attentional control fluctuates in the presence of internal and external distractors, wandering on and off a given task. The current study investigated individual differences in attentional fluctuations in 250 preschoolers. Attentional fluctuations were assessed via intra-individual variability in response time in a Go/No-Go task. Greater fluctuations in attentional control were linked to lower task accuracy. In addition, greater attentional fluctuations predicted lower performance in a task of cognitive flexibility, the Dimensional Change Card Sort task. Attentional fluctuations were also associated with laboratory measures of academic readiness in preschool, as assessed by the Applied Problems and Letter-Word Identification subscales of the Woodcock-Johnson III Tests of Achievement, which in turn predicted teacher reports of academic performance in first grade. Attentional fluctuations also had indirect associations with emergent math skills in preschool, via cognitive flexibility, as well as indirect associations with first-grade teacher reports of academic performance, via the relations between cognitive flexibility and emergent math skills in preschool. These results suggest that consistency is an important aspect of attentional control during early childhood. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Widespread auditory deficits in tune deafness.

    Science.gov (United States)

    Jones, Jennifer L; Zalewski, Christopher; Brewer, Carmen; Lucker, Jay; Drayna, Dennis

    2009-02-01

    The goal of this study was to investigate auditory function in individuals with deficits in musical pitch perception. We hypothesized that such individuals have deficits in nonspeech areas of auditory processing. We screened 865 randomly selected individuals to identify those who scored poorly on the Distorted Tunes test (DTT), a measure of musical pitch recognition ability. Those who scored poorly were given a comprehensive audiologic examination, and those with hearing loss or other confounding audiologic factors were excluded from further testing. Thirty-five individuals with tune deafness constituted the experimental group. Thirty-four individuals with normal hearing and normal DTT scores, matched for age, gender, handedness, and education, and without overt or reported psychiatric disorders made up the normal control group. Individual and group performance for pure-tone frequency discrimination at 1000 Hz was determined by measuring the difference limen for frequency (DLF). Auditory processing abilities were assessed using tests of pitch pattern recognition, duration pattern recognition, and auditory gap detection. In addition, we evaluated both attention and short- and long-term memory as variables that might influence performance on our experimental measures. Differences between groups were evaluated statistically using Wilcoxon nonparametric tests and t-tests as appropriate. The DLF at 1000 Hz in the group with tune deafness was significantly larger than that of the normal control group. However, approximately one-third of participants with tune deafness had DLFs within the range of performance observed in the control group. Many individuals with tune deafness also displayed a high degree of variability in their intertrial frequency discrimination performance that could not be explained by deficits in memory or attention. Pitch and duration pattern discrimination and auditory gap-detection ability were significantly poorer in the group with tune deafness

  6. Characteristics of Pediatric Performance on a Test Battery Commonly Used in the Diagnosis of Central Auditory Processing Disorder.

    Science.gov (United States)

    Weihing, Jeffrey; Guenette, Linda; Chermak, Gail; Brown, Mallory; Ceruti, Julianne; Fitzgerald, Krista; Geissler, Kristin; Gonzalez, Jennifer; Brenneman, Lauren; Musiek, Frank

    2015-01-01

    Although central auditory processing disorder (CAPD) test battery performance has been examined in adults with neurologic lesions of the central auditory nervous system (CANS), similar data on children being referred for CAPD evaluations are sparse. This study characterizes CAPD test battery performance in children using tests commonly administered to diagnose the disorder. Specifically, this study describes failure rates for various test combinations, relationships between CAPD tests used in the battery, and the influence of cognitive function on CAPD test performance and CAPD diagnosis. A comparison is also made between the performance of children with CAPD and data from patients with neurologic lesions of the CANS. A retrospective study. Fifty-six pediatric patients were referred for CAPD testing. Participants were administered four CAPD tests, including frequency patterns (FP), low-pass filtered speech (LPFS), dichotic digits (DD), and competing sentences (CS). In addition, they were given the Wechsler Intelligence Scale for Children (WISC). Descriptive analyses examined the failure rates of various test combinations, as well as how often children with CAPD failed certain combinations when compared with adults with CANS lesions. A principal components analysis was performed to examine interrelationships between tests. Correlations and regressions were conducted to determine the relationship between CAPD test performance and the WISC. Results showed that the FP and LPFS tests were most commonly failed by children with CAPD. Two-test combinations that included one or both of these two tests and excluded DD tended to be failed more often. Including the DD and CS test in a battery benefited specificity. Tests thought to measure interhemispheric transfer tended to be correlated. Compared with adult patients with neurologic lesions, children with CAPD tended to fail LPFS more frequently and DD less frequently. Both groups failed FP with relatively equal frequency

  7. Memory functions in chronic pain: examining contributions of attention and age to test performance.

    Science.gov (United States)

    Oosterman, Joukje M; Derksen, Laura C; van Wijck, Albert J M; Veldhuijzen, Dieuwke S; Kessels, Roy P C

    2011-01-01

    Previous studies have revealed that memory performance is diminished in chronic pain patients. Few studies, however, have assessed multiple components of memory in a single sample. It is currently also unknown whether attentional problems, which are commonly observed in chronic pain, mediate the decline in memory. Finally, previous studies have focused on middle-aged adults, and a possible detrimental effect of aging on memory performance in chronic pain patients has been commonly disregarded. This study, therefore, aimed at describing the pattern of semantic, working, and visual and verbal episodic memory performance in participants with chronic pain, while testing for possible contributions of attention and age to task performance. Thirty-four participants with chronic pain and 32 pain-free participants completed tests of episodic, semantic, and working memory to assess memory performance and a test of attention. Participants with chronic pain performed worse on tests of working memory and verbal episodic memory. A decline in attention explained some, but not all, group differences in memory performance. Finally, no additional effect of age on the diminished task performance in participants with chronic pain was observed. Taken together, the results indicate that chronic pain significantly affects memory performance. Part of this effect may be caused by underlying attentional dysfunction, although this could not fully explain the observed memory decline. An increase in age in combination with the presence of chronic pain did not additionally affect memory performance.

  8. Effects of STN DBS and auditory cueing on the performance of sequential movements and the occurrence of action tremor in Parkinson’s disease

    NARCIS (Netherlands)

    Heida, Tjitske; Wentink, E.C.; Zhao, Yan; Marani, Enrico

    2014-01-01

    Background: Parkinson’s disease (PD) patients show a higher ability to perform repetitive movements when they are cued by external stimuli, suggesting that rhythmic synchronization with an auditory timekeeper can be achieved in the absence of intact basal ganglia function. Deep brain stimulation

  9. Assessing attentional systems in children with Attention Deficit Hyperactivity Disorder.

    Science.gov (United States)

    Casagrande, Maria; Martella, Diana; Ruggiero, Maria Cleonice; Maccari, Lisa; Paloscia, Claudio; Rosa, Caterina; Pasini, Augusto

    2012-01-01

    The aim of this study was to evaluate the efficiency and interactions of attentional systems in children with Attention Deficit Hyperactivity Disorder (ADHD) by considering the effects of reinforcement and auditory warning on each component of attention. Thirty-six drug-naïve children (18 children with ADHD/18 typically developing children) performed two revised versions of the Attentional Network Test, which assess the efficiency of alerting, orienting, and executive systems. In feedback trials, children received feedback about their accuracy, whereas in the no-feedback trials, feedback was not given. In both conditions, children with ADHD performed more slowly than did typically developing children. They also showed impairments in the ability to disengage attention and in executive functioning, which improved when alertness was increased by administering the auditory warning. The performance of the attentional networks appeared to be modulated by the absence or the presence of reinforcement. We suggest that the observed executive system deficit in children with ADHD could depend on their low level of arousal rather than being an independent disorder. © The Author 2011. Published by Oxford University Press. All rights reserved.

  10. Neural Determinants of Task Performance during Feature-Based Attention in Human Cortex

    Science.gov (United States)

    Gong, Mengyuan

    2018-01-01

    Abstract Studies of feature-based attention have associated activity in a dorsal frontoparietal network with putative attentional priority signals. Yet, how this neural activity mediates attentional selection and whether it guides behavior are fundamental questions that require investigation. We reasoned that endogenous fluctuations in the quality of attentional priority should influence task performance. Human subjects detected a speed increment while viewing clockwise (CW) or counterclockwise (CCW) motion (baseline task) or while attending to either direction amid distracters (attention task). In an fMRI experiment, direction-specific neural pattern similarity between the baseline task and the attention task revealed a higher level of similarity for correct than incorrect trials in frontoparietal regions. Using transcranial magnetic stimulation (TMS), we disrupted posterior parietal cortex (PPC) and found a selective deficit in the attention task, but not in the baseline task, demonstrating the necessity of this cortical area during feature-based attention. These results reveal that frontoparietal areas maintain attentional priority that facilitates successful behavioral selection. PMID:29497703

  11. More insight into the interplay of response selection and visual attention in dual-tasks: masked visual search and response selection are performed in parallel.

    Science.gov (United States)

    Reimer, Christina B; Schubert, Torsten

    2017-09-15

    Both response selection and visual attention are limited in capacity. According to the central bottleneck model, the response selection processes of two tasks in a dual-task situation are performed sequentially. In conjunction search, visual attention is required to select the items and to bind their features (e.g., color and form), which results in a serial search process. Search time increases as items are added to the search display (i.e., set size effect). When the search display is masked, visual attention deployment is restricted to a brief period of time and target detection decreases as a function of set size. Here, we investigated whether response selection and visual attention (i.e., feature binding) rely on a common or on distinct capacity limitations. In four dual-task experiments, participants completed an auditory Task 1 and a conjunction search Task 2 that were presented with an experimentally modulated temporal interval between them (Stimulus Onset Asynchrony, SOA). In Experiment 1, Task 1 was a two-choice discrimination task and the conjunction search display was not masked. In Experiment 2, the response selection difficulty in Task 1 was increased to a four-choice discrimination and the search task was the same as in Experiment 1. We applied the locus-of-slack method in both experiments to analyze conjunction search time, that is, we compared the set size effects across SOAs. Similar set size effects across SOAs (i.e., additive effects of SOA and set size) would indicate sequential processing of response selection and visual attention. However, a significantly smaller set size effect at short SOA compared to long SOA (i.e., underadditive interaction of SOA and set size) would indicate parallel processing of response selection and visual attention. In both experiments, we found underadditive interactions of SOA and set size. In Experiments 3 and 4, the conjunction search display in Task 2 was masked. Task 1 was the same as in Experiments 1 and 2

  12. Auditory Neuropathy

    Science.gov (United States)

    ... children and adults with auditory neuropathy. Cochlear implants (electronic devices that compensate for damaged or nonworking parts ... and Drug Administration: Information on Cochlear Implants Telecommunications Relay Services Your Baby's Hearing Screening News Deaf health ...

  13. Mindfulness Training Improves Attentional Task Performance in Incarcerated Youth: A Group Randomized Controlled Intervention Trial

    Directory of Open Access Journals (Sweden)

    Noelle R Leonard

    2013-11-01

    Full Text Available We investigated the impact of cognitive behavioral therapy and mindfulness training (CBT/MT on attentional task performance in incarcerated adolescents. Attention is a cognitive system necessary for managing cognitive demands and regulating emotions. Yet persistent and intensive demands, such as those experienced during high-stress intervals like incarceration and the events leading to incarceration, may deplete attention resulting in cognitive failures, emotional disturbances, and impulsive behavior. We hypothesized that CBT/MT may mitigate these deleterious effects of high stress and protect against degradation in attention over the high-stress interval of incarceration. Using a group randomized controlled trial design, we randomly assigned dormitories of incarcerated youth, ages 16 to 18, to a CBT/MT intervention (youth n = 147 or an active control intervention (youth n = 117. Both arms received approximately 750 minutes of intervention in a small-group setting over a 3-5 week period. Youth in the CBT/MT arm also logged the amount of out-of-session time spent practicing MT exercises. The Attention Network Test was used to index attentional task performance at baseline and 4 months post-baseline. Overall, task performance degraded over time in all participants. The magnitude of performance degradation was significantly less in the CBT/MT vs. control arm. Further, within the CBT/MT arm, performance degraded over time in those with no outside-of-class practice time, but remained stable over time in those who practiced mindfulness exercises outside of the session meetings. Thus, these findings suggest that sufficient CBT/MT practice may protect against functional attentional impairments associated with high-stress intervals. Keywords: adolescent development, incarcerated adolescents, detained adolescents, stress, attention, mindfulness meditation.

  14. Auditory processing during deep propofol sedation and recovery from unconsciousness.

    Science.gov (United States)

    Koelsch, Stefan; Heinke, Wolfgang; Sammler, Daniela; Olthoff, Derk

    2006-08-01

    Using evoked potentials, this study investigated effects of deep propofol sedation, and effects of recovery from unconsciousness, on the processing of auditory information with stimuli suited to elicit a physical MMN, and a (music-syntactic) ERAN. Levels of sedation were assessed using the Bispectral Index (BIS) and the Modified Observer's Assessment of Alertness and Sedation Scale (MOAAS). EEG-measurements were performed during wakefulness, deep propofol sedation (MOAAS 2-3, mean BIS=68), and a recovery period. Between deep sedation and recovery period, the infusion rate of propofol was increased to achieve unconsciousness (MOAAS 0-1, mean BIS=35); EEG measurements of recovery period were performed after subjects regained consciousness. During deep sedation, the physical MMN was markedly reduced, but still significant. No ERAN was observed in this level. A clear P3a was elicited during deep sedation by those deviants, which were task-relevant during the awake state. As soon as subjects regained consciousness during the recovery period, a normal MMN was elicited. By contrast, the P3a was absent in the recovery period, and the P3b was markedly reduced. Results indicate that the auditory sensory memory (as indexed by the physical MMN) is still active, although strongly reduced, during deep sedation (MOAAS 2-3). The presence of the P3a indicates that attention-related processes are still operating during this level. Processes of syntactic analysis appear to be abolished during deep sedation. After propofol-induced anesthesia, the auditory sensory memory appears to operate normal as soon as subjects regain consciousness, whereas the attention-related processes indexed by P3a and P3b are markedly impaired. Results inform about effects of sedative drugs on auditory and attention-related mechanisms. The findings are important because these mechanisms are prerequisites for auditory awareness, auditory learning and memory, as well as language perception during anesthesia.

  15. The effects of divided attention on implicit and explicit memory performance.

    Science.gov (United States)

    Schmitter-Edgecombe, M

    1996-03-01

    This study explored the nature of the relationship between attention available at learning and subsequent implicit and explicit memory performance. One hundred neurologically normal subjects rated their liking of target words on a five-point scale. Half of the subjects completed the word-rating task in a full attention condition and the other half performed the task in a divided attention condition. Following administration of the word-rating task, all subjects completed five memory tests, three implicit (category association, tachistoscopic identification, and perceptual clarification) and two explicit (semantic-cued recall and graphemic-cued recall), each bearing on a different subset of the list of previously presented target words. The results revealed that subjects in the divided attention condition performed significantly more poorly than subjects in the full attention condition on the explicit memory measures. In contrast, there were no significant group differences in performance on the implicit memory measures. These findings suggest that the attention to an episode that is necessary to produce later explicit memory may differ from that necessary to produce unconscious influences. The relationship between implicit memory, neurologic injury and automatic processes is discussed.

  16. Memory Performance for Everyday Motivational and Neutral Objects Is Dissociable from Attention

    Directory of Open Access Journals (Sweden)

    Judith Schomaker

    2017-06-01

    Full Text Available Episodic memory is typically better for items coupled with monetary reward or punishment during encoding. It is yet unclear whether memory is also enhanced for everyday objects with appetitive or aversive values learned through a lifetime of experience, and to what extent episodic memory enhancement for motivational and neutral items is attributable to attention. In a first experiment, we investigated attention to everyday motivational objects using eye-tracking during free-viewing and subsequently tested episodic memory using a remember/know procedure. Attention was directed more to aversive stimuli, as evidenced by longer viewing durations, whereas recollection was higher for both appetitive and aversive objects. In the second experiment, we manipulated the visual contrast of neutral objects through changes of contrast to further dissociate attention and memory encoding. While objects presented with high visual contrast were looked at longer, recollection was best for objects presented in unmodified, medium contrast. Generalized logistic mixed models on recollection performance showed that attention as measured by eye movements did not enhance subsequent memory, while motivational value (Experiment 1 and visual contrast (Experiment 2 had quadratic effects in opposite directions. Our findings suggest that an enhancement of incidental memory encoding for appetitive items can occur without an increase in attention and, vice versa, that enhanced attention towards salient neutral objects is not necessarily associated with memory improvement. Together, our results provide evidence for a double dissociation of attention and memory effects under certain conditions.

  17. Memory Performance for Everyday Motivational and Neutral Objects Is Dissociable from Attention

    Science.gov (United States)

    Schomaker, Judith; Wittmann, Bianca C.

    2017-01-01

    Episodic memory is typically better for items coupled with monetary reward or punishment during encoding. It is yet unclear whether memory is also enhanced for everyday objects with appetitive or aversive values learned through a lifetime of experience, and to what extent episodic memory enhancement for motivational and neutral items is attributable to attention. In a first experiment, we investigated attention to everyday motivational objects using eye-tracking during free-viewing and subsequently tested episodic memory using a remember/know procedure. Attention was directed more to aversive stimuli, as evidenced by longer viewing durations, whereas recollection was higher for both appetitive and aversive objects. In the second experiment, we manipulated the visual contrast of neutral objects through changes of contrast to further dissociate attention and memory encoding. While objects presented with high visual contrast were looked at longer, recollection was best for objects presented in unmodified, medium contrast. Generalized logistic mixed models on recollection performance showed that attention as measured by eye movements did not enhance subsequent memory, while motivational value (Experiment 1) and visual contrast (Experiment 2) had quadratic effects in opposite directions. Our findings suggest that an enhancement of incidental memory encoding for appetitive items can occur without an increase in attention and, vice versa, that enhanced attention towards salient neutral objects is not necessarily associated with memory improvement. Together, our results provide evidence for a double dissociation of attention and memory effects under certain conditions. PMID:28694774

  18. Memory Performance for Everyday Motivational and Neutral Objects Is Dissociable from Attention.

    Science.gov (United States)

    Schomaker, Judith; Wittmann, Bianca C

    2017-01-01

    Episodic memory is typically better for items coupled with monetary reward or punishment during encoding. It is yet unclear whether memory is also enhanced for everyday objects with appetitive or aversive values learned through a lifetime of experience, and to what extent episodic memory enhancement for motivational and neutral items is attributable to attention. In a first experiment, we investigated attention to everyday motivational objects using eye-tracking during free-viewing and subsequently tested episodic memory using a remember/know procedure. Attention was directed more to aversive stimuli, as evidenced by longer viewing durations, whereas recollection was higher for both appetitive and aversive objects. In the second experiment, we manipulated the visual contrast of neutral objects through changes of contrast to further dissociate attention and memory encoding. While objects presented with high visual contrast were looked at longer, recollection was best for objects presented in unmodified, medium contrast. Generalized logistic mixed models on recollection performance showed that attention as measured by eye movements did not enhance subsequent memory, while motivational value (Experiment 1) and visual contrast (Experiment 2) had quadratic effects in opposite directions. Our findings suggest that an enhancement of incidental memory encoding for appetitive items can occur without an increase in attention and, vice versa, that enhanced attention towards salient neutral objects is not necessarily associated with memory improvement. Together, our results provide evidence for a double dissociation of attention and memory effects under certain conditions.

  19. Auditory hallucinations.

    Science.gov (United States)

    Blom, Jan Dirk

    2015-01-01

    Auditory hallucinations constitute a phenomenologically rich group of endogenously mediated percepts which are associated with psychiatric, neurologic, otologic, and other medical conditions, but which are also experienced by 10-15% of all healthy individuals in the general population. The group of phenomena is probably best known for its verbal auditory subtype, but it also includes musical hallucinations, echo of reading, exploding-head syndrome, and many other types. The subgroup of verbal auditory hallucinations has been studied extensively with the aid of neuroimaging techniques, and from those studies emerges an outline of a functional as well as a structural network of widely distributed brain areas involved in their mediation. The present chapter provides an overview of the various types of auditory hallucination described in the literature, summarizes our current knowledge of the auditory networks involved in their mediation, and draws on ideas from the philosophy of science and network science to reconceptualize the auditory hallucinatory experience, and point out directions for future research into its neurobiologic substrates. In addition, it provides an overview of known associations with various clinical conditions and of the existing evidence for pharmacologic and non-pharmacologic treatments. © 2015 Elsevier B.V. All rights reserved.

  20. Evaluating the Relationship between Team Performance and Joint Attention with Longitudinal Multivariate Mixed Models

    Science.gov (United States)

    2016-09-23

    Sweller, J. (2005). Cognitive load theory and complex learning: Recent developments and future directions. Educational Psychology Review, 17(2), 147–177...Relationship between Team Performance and Joint Attention with Longitudinal Multivariate Mixed Models 5a. CONTRACT NUMBER FA8650-14-D-6501-0009 5b...Annual Meeting, 19-23 September 2016. 14. Previous research indicates that measures of joint attention provide unique insight into team cognition

  1. Location versus task relevance: The impact of differing internal focus of attention instructions on motor performance.

    Science.gov (United States)

    Pelleck, Valerie; Passmore, Steven R

    2017-05-01

    Impaired performance while executing a motor task is attributed to a disruption of normal automatic processes when an internal focus of attention is used. What remains unclear is whether the specificity of internally focused task instructions may impact task performance. The present study assessed the implications of changing the attentional focus of novice and skilled golfers by measuring behavioural, neurophysiological and kinematic changes during a golf putting task. Over six blocks of ten putting trials each, attention was directed either externally (towards the target) or internally in one of two ways: 1) proximal (keeping the elbows extended and the hands gripping the putter); or 2) distal (keeping the weight evenly distributed between both legs) to the critical elements of the task. Results provided evidence that when novice participants use an internal focus of attention more closely associated with task performance that their: 1) execution; 2) accuracy; 3) variability of surface electromyography (sEMG) activity; and 4) kinematics of the putter movement are all adversely affected. Skilled golfers are much more resilient to changes in attentional focus, while all participants interpret a distal internal focus of attention similar to an external focus. All participants produced decreased activity in the muscle (tibialis anterior) associated with the distal (less task relevant) focus of attention even when the "internal" focus was on the lower extremity. Our results provide evidence that the skill level of the participant and the distance of the internal focus of attention from the key elements of a motor skill directly impact the execution, muscle activity, and movement kinematics associated with skilled motor task performance. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Attention deficit/hyperactivity disorder at work: Does it impact job performance?

    OpenAIRE

    Nikos Bozionelos; Giorgos Bozionelos

    2013-01-01

    Avaible online: http://dx.doi.org/10.5465/amp.2013.0107; International audience; The article focuses on Attention Deficit/Hyperactivity Disorder (ADHD), which affects a substantial proportion of the adult population and it often remains undiagnosed. Because of its symptoms, which include inability to focus and maintain attention, problems in time management and procrastination, ADHD is suspected as a cause of poor performance in the workplace. A recent contemplation suggests a mechanism for t...

  3. The effect of internal and external focus of attention on game performance in tennis

    Directory of Open Access Journals (Sweden)

    Marina Tsetseli

    2016-12-01

    Full Text Available Background: Great importance has been given in recent years to the impact of focus of attention cues during skills execution but not during real game play, where more cognitive skills are involved besides technical performance. Objective: The purpose of the present study was to examine the effect of internal and external focus of attention instructions on the components of the game performance (decision making, skill execution, base in tennis. Methods: The participants (N = 60 were divided into three groups and followed an intervention training program that lasted 6 weeks; IF group (n = 20 under internal focus of attention instructions, EF group (n = 20 under external focus of attention instructions and CON group (n = 20 under no attentional focus instructions. Three measurements took place (pre, post and ret in which the participants were recorded on video while playing matches in real scoring conditions. Game Performance Assessment Instrument (GPAI was used to evaluate the components of game performance in tennis in three game situations; service, return of the service, base line game. Results: ANOVA repeated measures in a 3 (groups: IF, EF & CON × 3 (measurements: pre, post, ret revealed a significant interaction between groups and measurements and post hoc analysis indicated that the group that was instructed to focus externally improved significantly only in decision making compared to the internal focus of attention and to the control group. The score difference was maintained at the retention test as well, which indicates that the impact concerned not only performance but also learning. Conclusions: Instructions that aim to an external focus of attention enhance decision making skills, which are considered the most important element of game performance in tennis.

  4. Performance on selected visual and auditory subtests of the Wechsler Memory Scale-Fourth Edition during laboratory-induced pain.

    Science.gov (United States)

    Etherton, Joseph L; Tapscott, Brian E

    2015-01-01

    Although chronic pain patients commonly report problems with concentration and memory, recent research indicates that induced pain alone causes little or no impairment on several Wechsler Adult Intelligence Scale-Fourth Edition (WAIS-IV) subtests, suggesting that cognitive complaints in chronic pain may be attributable to factors other than pain. The current studies examined potential effects of induced pain on Wechsler Memory Scale-Fourth Edition (WMS-IV) visual working memory index (VWM) subtests (Experiment 1, n = 32) and on the immediate portions of WMS-IV auditory memory (IAM) subtests (Experiment 2, n = 55). In both studies, participants were administered one of two subtests (Symbol Span or Spatial Addition for Experiment 1; Logical Memory or Verbal Paired Associates for Experiment 2) normally and were then administered the alternate subtest while experiencing either cold pressor pain induction or a nonpainful control condition. Results indicate that induced pain in nonclinical volunteers did not impair performance on either VWM or IAM performance, suggesting that pain alone does not account for complaints or deficits in these domains in chronic pain patients. Nonpainful variables such as sleep deprivation or emotional disturbance may be responsible for reported cognitive complaints in chronic pain patients.

  5. Object-Based Attention on Social Units: Visual Selection of Hands Performing a Social Interaction.

    Science.gov (United States)

    Yin, Jun; Xu, Haokui; Duan, Jipeng; Shen, Mowei

    2018-05-01

    Traditionally, objects of attention are characterized either as full-fledged entities or either as elements grouped by Gestalt principles. Because humans appear to use social groups as units to explain social activities, we proposed that a socially defined group, according to social interaction information, would also be a possible object of attentional selection. This hypothesis was examined using displays with and without handshaking interactions. Results demonstrated that object-based attention, which was measured by an object-specific attentional advantage (i.e., shorter response times to targets on a single object), was extended to two hands performing a handshake but not to hands that did not perform meaningful social interactions, even when they did perform handshake-like actions. This finding cannot be attributed to the familiarity of the frequent co-occurrence of two handshaking hands. Hence, object-based attention can select a grouped object whose parts are connected within a meaningful social interaction. This finding implies that object-based attention is constrained by top-down information.

  6. The effects of arousal reappraisal on stress responses, performance and attention.

    Science.gov (United States)

    Sammy, Nadine; Anstiss, Paul A; Moore, Lee J; Freeman, Paul; Wilson, Mark R; Vine, Samuel J

    2017-11-01

    This study examined the effects of arousal reappraisal on cardiovascular responses, demand and resource evaluations, self-confidence, performance and attention under pressurized conditions. A recent study by Moore et al. [2015. Reappraising threat: How to optimize performance under pressure. Journal of Sport and Exercise Psychology, 37(3), 339-343. doi: 10.1123/jsep.2014-0186 ] suggested that arousal reappraisal is beneficial to the promotion of challenge states and leads to improvements in single-trial performance. This study aimed to further the work of Moore and colleagues (2015) by examining the effects of arousal reappraisal on cardiovascular responses, demand and resource evaluations, self-confidence, performance and attention in a multi-trial pressurized performance situation. Participants were randomly assigned to either an arousal reappraisal intervention or control condition, and completed a pressurized dart throwing task. The intervention encouraged participants to view their physiological arousal as facilitative rather than debilitative to performance. Measures of cardiovascular reactivity, demand and resource evaluations, self-confidence, task performance and attention were recorded. The reappraisal group displayed more favorable cardiovascular reactivity and reported higher resource evaluations and higher self-confidence than the control group but no task performance or attention effects were detected. These findings demonstrate the strength of arousal reappraisal in promoting adaptive stress responses, perceptions of resources and self-confidence.

  7. Effects of Attentional Focus and Age on Suprapostural Task Performance and Postural Control

    Science.gov (United States)

    McNevin, Nancy; Weir, Patricia; Quinn, Tiffany

    2013-01-01

    Purpose: Suprapostural task performance (manual tracking) and postural control (sway and frequency) were examined as a function of attentional focus, age, and tracking difficulty. Given the performance benefits often found under external focus conditions, it was hypothesized that external focus instructions would promote superior tracking and…

  8. The effect of organizational learning from performance feedback on team attention focus

    NARCIS (Netherlands)

    Lucas, G.J.M.; Zijlmans, Marius; Meeus, M.T.H.; Blettner, D.P.; Sund, K.J.; Galavan, R.J.; Huff, A.S.

    2016-01-01

    In this chapter, we present a theory on how organizational performance feedback influences individual decision-maker cognitions and thereby changes a team’s attention focus in terms of strategy. We argue that when performance compares unfavorably to aspiration levels, decision-makers reconsider

  9. Loss-Aversion or Loss-Attention: The Impact of Losses on Cognitive Performance

    Science.gov (United States)

    Yechiam, Eldad; Hochman, Guy

    2013-01-01

    Losses were found to improve cognitive performance, and this has been commonly explained by increased weighting of losses compared to gains (i.e., loss aversion). We examine whether effects of losses on performance could be modulated by two alternative processes: an attentional effect leading to increased sensitivity to task incentives; and a…

  10. Cognitive mechanisms associated with auditory sensory gating

    Science.gov (United States)

    Jones, L.A.; Hills, P.J.; Dick, K.M.; Jones, S.P.; Bright, P.

    2016-01-01

    Sensory gating is a neurophysiological measure of inhibition that is characterised by a reduction in the P50 event-related potential to a repeated identical stimulus. The objective of this work was to determine the cognitive mechanisms that relate to the neurological phenomenon of auditory sensory gating. Sixty participants underwent a battery of 10 cognitive tasks, including qualitatively different measures of attentional inhibition, working memory, and fluid intelligence. Participants additionally completed a paired-stimulus paradigm as a measure of auditory sensory gating. A correlational analysis revealed that several tasks correlated significantly with sensory gating. However once fluid intelligence and working memory were accounted for, only a measure of latent inhibition and accuracy scores on the continuous performance task showed significant sensitivity to sensory gating. We conclude that sensory gating reflects the identification of goal-irrelevant information at the encoding (input) stage and the subsequent ability to selectively attend to goal-relevant information based on that previous identification. PMID:26716891

  11. Selective effects of cholinergic modulation on task performance during selective attention.

    Science.gov (United States)

    Furey, Maura L; Pietrini, Pietro; Haxby, James V; Drevets, Wayne C

    2008-03-01

    The cholinergic neurotransmitter system is critically linked to cognitive functions including attention. The current studies were designed to evaluate the effect of a cholinergic agonist and an antagonist on performance during a selective visual attention task where the inherent salience of attended/unattended stimuli was modulated. Two randomized, placebo-controlled, crossover studies were performed, one (n=9) with the anticholinesterase physostigmine (1.0 mg/h), and the other (n=30) with the anticholinergic scopolamine (0.4 mc/kg). During the task, two double-exposure pictures of faces and houses were presented side by side. Subjects were cued to attend to either the face or the house component of the stimuli, and were instructed to perform a matching task with the two exemplars from the attended category. The cue changed every 4-7 trials to instruct subjects to shift attention from one stimulus component to the other. During placebo in both studies, reaction time (RT) associated with the first trial following a cued shift in attention was longer than RT associated with later trials (pattention to houses condition (pattention to faces. Scopolamine increased RT relative to placebo selectively during trials greater than one (pattention to faces condition (pselective attention (ie trials greater than 1). Moreover, effects of cholinergic manipulation depend on the selective attention condition (ie faces vs houses), which may suggest that cholinergic activity interacts with stimulus salience. The findings are discussed within the context of the role of acetylcholine both in stimulus processing and stimulus salience, and in establishing attention biases through top-down and bottom-up mechanisms of attention.

  12. Comprehensive evaluation of a child with an auditory brainstem implant.

    Science.gov (United States)

    Eisenberg, Laurie S; Johnson, Karen C; Martinez, Amy S; DesJardin, Jean L; Stika, Carren J; Dzubak, Danielle; Mahalak, Mandy Lutz; Rector, Emily P

    2008-02-01

    We had an opportunity to evaluate an American child whose family traveled to Italy to receive an auditory brainstem implant (ABI). The goal of this evaluation was to obtain insight into possible benefits derived from the ABI and to begin developing assessment protocols for pediatric clinical trials. Case study. Tertiary referral center. Pediatric ABI Patient 1 was born with auditory nerve agenesis. Auditory brainstem implant surgery was performed in December, 2005, in Verona, Italy. The child was assessed at the House Ear Institute, Los Angeles, in July 2006 at the age of 3 years 11 months. Follow-up assessment has continued at the HEAR Center in Birmingham, Alabama. Auditory brainstem implant. Performance was assessed for the domains of audition, speech and language, intelligence and behavior, quality of life, and parental factors. Patient 1 demonstrated detection of sound, speech pattern perception with visual cues, and inconsistent auditory-only vowel discrimination. Language age with signs was approximately 2 years, and vocalizations were increasing. Of normal intelligence, he exhibited attention deficits with difficulty completing structured tasks. Twelve months later, this child was able to identify speech patterns consistently; closed-set word identification was emerging. These results were within the range of performance for a small sample of similarly aged pediatric cochlear implant users. Pediatric ABI assessment with a group of well-selected children is needed to examine risk versus benefit in this population and to analyze whether open-set speech recognition is achievable.

  13. Auditory Perceptual Abilities Are Associated with Specific Auditory Experience

    Directory of Open Access Journals (Sweden)

    Yael Zaltz

    2017-11-01

    Full Text Available The extent to which auditory experience can shape general auditory perceptual abilities is still under constant debate. Some studies show that specific auditory expertise may have a general effect on auditory perceptual abilities, while others show a more limited influence, exhibited only in a relatively narrow range associated with the area of expertise. The current study addresses this issue by examining experience-dependent enhancement in perceptual abilities in the auditory domain. Three experiments were performed. In the first experiment, 12 pop and rock musicians and 15 non-musicians were tested in frequency discrimination (DLF, intensity discrimination, spectrum discrimination (DLS, and time discrimination (DLT. Results showed significant superiority of the musician group only for the DLF and DLT tasks, illuminating enhanced perceptual skills in the key features of pop music, in which miniscule changes in amplitude and spectrum are not critical to performance. The next two experiments attempted to differentiate between generalization and specificity in the influence of auditory experience, by comparing subgroups of specialists. First, seven guitar players and eight percussionists were tested in the DLF and DLT tasks that were found superior for musicians. Results showed superior abilities on the DLF task for guitar players, though no difference between the groups in DLT, demonstrating some dependency of auditory learning on the specific area of expertise. Subsequently, a third experiment was conducted, testing a possible influence of vowel density in native language on auditory perceptual abilities. Ten native speakers of German (a language characterized by a dense vowel system of 14 vowels, and 10 native speakers of Hebrew (characterized by a sparse vowel system of five vowels, were tested in a formant discrimination task. This is the linguistic equivalent of a DLS task. Results showed that German speakers had superior formant

  14. The impact of attentional and emotional demands on memory performance in obsessive-compulsive disorder.

    Science.gov (United States)

    Fink, Jakob; Hendrikx, Friederike; Stierle, Christian; Stengler, Katarina; Jahn, Ina; Exner, Cornelia

    2017-08-01

    Lower performance on memory tests in obsessive-compulsive disorder (OCD) has been repeatedly observed. However, the origins of these performance deficits are not sufficiently explained. In this study we tested if OCD-related extensive focus of attention on thoughts (heightened self-consciousness) could be an explanatory mechanism for lower memory performance. Heightened situational self-consciousness was manipulated by instructing participants to either monitor neutral thoughts or to monitor OCD-related thoughts. We included a Behavioral Avoidance Task based on individual obsessions and compulsions to induce OCD-related thoughts. Participants were asked to perform these monitoring tasks in parallel to a taxing verbal memory task, resulting in learning under divided attention. The two conditions of learning under divided attention were compared to a single-task condition. Twenty-four participants with OCD and 24 healthy controls took part in these three learning conditions. The results indicate that in both groups memory performance deteriorated in the two conditions with divided attention compared to the single task condition. In the OCD-related thought monitoring condition (OTM) self-consciousness and Behavioral Avoidance Task-induced stress and fear were particularly increased and memory performance further deteriorated in the OCD group. This finding highlights an important and underestimated mechanism (personal involvement) which might serve to better understand lower memory performance in OCD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. The moderating role of attention-deficit/hyperactivity disorder in the work engagement-performance process.

    Science.gov (United States)

    Halbesleben, Jonathon R B; Wheeler, Anthony R; Shanine, Kristen K

    2013-04-01

    Attention-deficit/hyperactivity disorder (ADHD) is a cognitive disability that affects millions. Although individuals with ADHD are employed throughout many organizations and there is evidence that their performance is lower, scant research exists describing how ADHD impacts an individual's performance. In this article, we extend attentional control theory to examine how ADHD impacts both the effectiveness and efficiency of employee performance. Across 3 samples, 2 of general working adults (n = 257 and 170) and 1 of nurses (n = 243), we found that ADHD was associated with lower performance (rated via self-, coworker, and supervisor ratings) and that the relationship was strongest for in-role performance, suggesting that employees with ADHD may be diverting attention away from task-relevant behaviors. Furthermore, although work engagement was associated with higher performance, that relationship was diminished among those who experienced higher levels of ADHD, suggesting lower performance efficiency. We discuss the implications of these findings for research on attentional control and the management of those with ADHD at work.

  16. Optimizing performance through intrinsic motivation and attention for learning: The OPTIMAL theory of motor learning.