WorldWideScience

Sample records for audiometry evoked response

  1. Sensorineural hearing loss among cerebellopontine-angle tumor patients examined with pure tone audiometry and brainstem-evoked response audiometry

    Science.gov (United States)

    Rinindra, A. M.; Zizlavsky, S.; Bashiruddin, J.; Aman, R. A.; Wulani, V.; Bardosono, S.

    2017-08-01

    Tumor in the cerebellopontine angle (CPA) accurs for approximately 5-10% of all intracranial tumors, where unilateral hearing loss and tinnitus are the most frequent symptoms. This study aimed to collect data on sensorineural hearing loss in CPA tumor patients in Dr. Cipto Mangunkusumo Hospital (CMH) using pure tone audiometry and brainstem-evoked response audiometry (BERA). It also aimed to obtaine data on CPA-tumor imaging through magnetic resonance imaging (MRI). This was a descriptive, analytic, and cross-sectional study. The subjects of this study were gathered using a total sampling method from secondary data between July 2012 and November 2016. From 104 patients, 30 matched the inclusion criteria. The CPA-tumor patients in the ENT CMH outpatient clinic were mostly female, middle-aged patients (41-60 years) whose clinical presentation was mostly tinnitus and severe, asymmetric sensorineural hearing loss in 10 subjects. From 30 subjects, 29 showed ipsilaterally impaired BERA results, and 17 subjects showed contralaterally impaired BERA results. There were 24 subjects who with large-sized tumors and 19 subjects who had intracanal tumors that had spread until they were extracanal in 19 subjects.

  2. Age-related hearing loss in dogs : Diagnosis with Brainstem-Evoked Response Audiometry and Treatment with Vibrant Soundbridge Middle Ear Implant.

    NARCIS (Netherlands)

    ter Haar, G.

    2009-01-01

    Age-related hearing loss (ARHL) is the most common cause of acquired hearing impairment in dogs. Diagnosis requires objective electrophysiological tests (brainstem evoked response audiometry [BERA]) evaluating the entire audible frequency range in dogs. In our laboratory a method was developed to

  3. Brainstem evoked response audiometry: an investigatory tool in detecting hepatic encephalopathy in decompensated chronic liver disease.

    Science.gov (United States)

    Kabali, Balasubramanian; Velayutham, Gowri; Kapali, Suresh Chander

    2014-01-01

    It is estimated that globally there is a marked increase in liver disease with reports of rising morbidity and mortality, particularly in younger age groups. Brainstem auditory evoked potential (BAEP) was recorded in 60 decompensated chronic liver disease (DCLD) subjects who fulfilled the selection criteria and compared to 60 age and gender matched healthy subjects with normal liver functions. DCLD subjects were divided into two inter groups based on presence or absence of hepatic encephalopathy (HE). Group 1 comprises of 30 subjects of grade- I HE and Group 2 included 30 subjects without hepatic encephalopathy (NHE). Absolute and interpeak wave latencies were measured. Results were analysed by student independent t- test using SPSS software 11 version. Statistical significance was tested using P value. From the present study it can be concluded that the central nervous system is involved in liver cirrhosis evidenced by an abnormal BAEP latencies parameters. This shows that there may be progressive demyelination occurring along with axonal loss or dysfunction in liver cirrhosis HE. This study suggests that periodic evaluation of cirrhotic individuals to such test will help in monitoring the progress of encephalopathy. The prime goal of this study is early diagnosis and initiation of treatment before the onset of coma can reduce the fatality rate.

  4. Hearing impairment in children with congenital cytomegalovirus (CMV) infection based on distortion product otoacoustic emissions (DPOAE) and brain evoked response audiometry stimulus click (BERA Click) examinations

    Science.gov (United States)

    Airlangga, T. J.; Mangunatmadja, I.; Prihartono, J.; Zizlavsky, S.

    2017-08-01

    Congenital cytomegalovirus (congenital CMV) infection is a leading factor of nongenetic sensorineural hearing loss in children. Hearing loss caused by CMV infection does not have a pathognomonic configuration hence further research is needed. The development of knowledge on hearing loss caused by congenital CMV infection is progressing in many countries. Due to a lack of research in the context of Indonesia, this study assesses hearing impairment in children with congenital CMV infection in Indonesia, more specifically in the Cipto Mangunkusumo Hospital. Our objective was to profile hearing impairment in children 0-5 years of age with congenital CMV infection using Distortion Product Otoacoustic Emissions (DPOAE) and Brain Evoked Response Audiometry Stimulus Click (BERA Click) examinations. This cross-sectional study was conducted in the Cipto Mangunkusum Hospital from November, 2015 to May 2016 with 27 children 0-5 years of age with congenital CMV infection. Of individual ears studied, 58.0% exhibited sensorineural hearing loss. There was a significant relationship between developmental delay and incidence of sensorineural hearing loss. Subjects with a developmental delay were 6.57 times more likely (CI 95%; 1.88-22.87) to experience sensorineural hearing loss. Congenital CMV infection has an important role in causing sensorineural hearing loss in children.

  5. Potenciais evocados auditivos de tronco encefálico de ex-usuários de drogas Brain stem evoked response audiometry of former drug users

    Directory of Open Access Journals (Sweden)

    Tainara Milbradt Weich

    2012-10-01

    Full Text Available As drogas ilícitas são conhecidas pelos seus efeitos deletérios no sistema nervoso central; no entanto, elas também podem atingir o sistema auditivo, provocando alterações. OBJETIVOS: Analisar e comparar os resultados dos potenciais evocados auditivos de tronco encefálico (PEATE de frequentadores de grupos de apoio a ex-usuários de drogas. MÉTODO: Estudo transversal, não experimental, descritivo e quantitativo. A amostra foi composta por 17 indivíduos divididos conforme o tipo de droga mais consumida: 10 indivíduos no grupo maconha (G1 e sete no grupo crack/cocaína (G2. Eles foram subdivididos pelo tempo de uso de drogas: um a cinco anos, seis a 10 anos e mais que 15 anos. A avaliação foi feita por meio de anamnese, audiometria tonal liminar, medidas de imitância acústica e PEATE. RESULTADOS: Ao comparar os resultados de G1 e G2, independente do tempo de uso de drogas, não se observou diferença estatisticamente significante nas latências absolutas e nos intervalos interpicos. No entanto, apenas cinco dos 17 indivíduos tiveram PEATE com resultados adequados para a faixa etária. CONCLUSÃO: Independentemente do tempo de utilização das drogas, o uso de maconha e crack/cocaína pode provocar alterações difusas no tronco encefálico, comprometendo a transmissão do estímulo auditivo.Illicit drugs are known for their deleterious effects upon the central nervous system and more specifically for how they adversely affect hearing. OBJECTIVE: This study aims to analyze and compare the hearing complaints and the results of brainstem evoked response audiometry (BERA of former drug user support group goers. METHODS: This is a cross-sectional non-experimental descriptive quantitative study. The sample consisted of 17 subjects divided by their preferred drug of use. Ten individuals were placed in the marijuana group (G1 and seven in the crack/cocaine group (G2. The subjects were further divided based on how long they had been using

  6. Audiometry

    Science.gov (United States)

    ... is about 20 to 20,000 Hz. Some animals can hear up to 50,000 Hz. Human ... Names Audiometry; Hearing test; Audiography (audiogram) Images Ear anatomy References Handelsman JA, Van Riper LA, Lesperance MM. ...

  7. Audiometria de resposta evocada de acordo com sexo e idade: achados e aplicabilidade Evoked response audiometry according to gender and age: findings and usefulness

    Directory of Open Access Journals (Sweden)

    Edmir Américo Lourenço

    2008-08-01

    Full Text Available A audiometria de respostas evocadas (ABR é um registro não-invasivo de potenciais elétricos auditivos nos primeiros 12 milissegundos, da orelha média ao córtex auditivo. ABR é importante na avaliação otoneurológica. OBJETIVO: Esclarecer as utilidades do exame, faixas etárias e sexo com maior incidência e topodiagnóstico segundo as latências absolutas e os intervalos interpicos. CASUÍSTICA E MÉTODO: Neste estudo retrospectivo foram analisados 403 prontuários de ABR realizados em clínica particular na cidade de Jundiaí/SP, Brasil, suspeitos de alteração auditiva e/ou doença do SNC, com os pacientes divididos por sexo e faixa etária. RESULTADOS E CONCLUSÕES: ABR é um importante exame para determinar a integridade da via auditiva, limiares eletrofisiológicos e topodiagnóstico, embora o teste não indique a etiologia das alterações. Foi demonstrado que ocorreu maior incidência de achados retrococleares na faixa etária de 12-20 anos e sexo masculino, contudo crianças menores de um ano com fatores de risco não apresentaram um aumento na incidência de alterações condutivas, cocleares e retrococleares em relação à população geral estudada. As latências absolutas das ondas I, III e V foram maiores no sexo masculino e as alterações dos intervalos interpicos foram similares em ambos os sexos, sendo que o intervalo I-III foi o mais freqüentemente alterado.Auditory evoked brainstem responses (ABR is a non-invasive electrical potential registration which evaluates the auditory tract from the middle ear to the auditory cortex in the first 12 milliseconds (ms. The ABR is an important otoneurological evaluation. AIM: confirm the test's usefulness, major incidence and topography according to are range gender considering the absolute latencies of the waves and interpeak intervals. MATERIALS AND METHOD: we retrospectively analyzed 403 tests from a private clinic in the city of Jundiaí-São Paulo State-Brazil, from

  8. In-air evoked potential audiometry of grey seals (Halichoerus grypus from the North and Baltic Seas.

    Directory of Open Access Journals (Sweden)

    Andreas Ruser

    Full Text Available In-air anthropogenic sound has the potential to affect grey seal (Halichoerus grypus behaviour and interfere with acoustic communication. In this study, a new method was used to deliver acoustic signals to grey seals as part of an in-air hearing assessment. Using in-ear headphones with adapted ear inserts allowed for the measurement of auditory brainstem responses (ABR on sedated grey seals exposed to 5-cycle (2-1-2 tone pips. Thresholds were measured at 10 frequencies between 1-20 kHz. Measurements were made using subcutaneous electrodes on wild seals from the Baltic and North Seas. Thresholds were determined by both visual and statistical approaches (single point F-test and good agreement was obtained between the results using both methods. The mean auditory thresholds were ≤40 dB re 20 µPa peak equivalent sound pressure level (peSPL between 4-20 kHz and showed similar patterns to in-air behavioural hearing tests of other phocid seals between 3 and 20 kHz. Below 3 kHz, a steep reduction in hearing sensitivity was observed, which differed from the rate of decline in sensitivity obtained in behavioural studies on other phocids. Differences in the rate of decline may reflect influence of the ear inserts on the ability to reliably transmit lower frequencies or interference from the structure of the distal end of the ear canal.

  9. Brainstem response audiometry in the determination of low-frequency hearing loss : a study of various methods for frequency-specific ABR-threshold assessment

    NARCIS (Netherlands)

    E.A.G.J. Conijn

    1992-01-01

    textabstractBrainstem Electric Response Audiometry (BERA) is a method to visualize some of the electric activity generated in the auditory nerve and the brainstem during the processing of sound. The amplitude of the Auditory Brainstem Response (ABR) is very small (0.05-0.5 flV). The potentials

  10. Genetic influence demonstrated for MEG-recorded somatosensory evoked responses

    NARCIS (Netherlands)

    van 't Ent, D.; van Soelen, I.L.C.; Stam, K.J.; de Geus, E.J.C.; Boomsma, D.I.

    2010-01-01

    We tested for a genetic influence on magnetoencephalogram (MEG)-recorded somatosensory evoked fields (SEFs) in 20 monozygotic (MZ) and 14 dizygotic (DZ) twin pairs. Previous electroencephalogram (EEG) studies that demonstrated a genetic contribution to evoked responses generally focused on

  11. Speech Evoked Auditory Brainstem Response in Stuttering

    Directory of Open Access Journals (Sweden)

    Ali Akbar Tahaei

    2014-01-01

    Full Text Available Auditory processing deficits have been hypothesized as an underlying mechanism for stuttering. Previous studies have demonstrated abnormal responses in subjects with persistent developmental stuttering (PDS at the higher level of the central auditory system using speech stimuli. Recently, the potential usefulness of speech evoked auditory brainstem responses in central auditory processing disorders has been emphasized. The current study used the speech evoked ABR to investigate the hypothesis that subjects with PDS have specific auditory perceptual dysfunction. Objectives. To determine whether brainstem responses to speech stimuli differ between PDS subjects and normal fluent speakers. Methods. Twenty-five subjects with PDS participated in this study. The speech-ABRs were elicited by the 5-formant synthesized syllable/da/, with duration of 40 ms. Results. There were significant group differences for the onset and offset transient peaks. Subjects with PDS had longer latencies for the onset and offset peaks relative to the control group. Conclusions. Subjects with PDS showed a deficient neural timing in the early stages of the auditory pathway consistent with temporal processing deficits and their abnormal timing may underlie to their disfluency.

  12. Early changes of auditory brain stem evoked response after radiotherapy for nasopharyngeal carcinoma - a prospective study

    Energy Technology Data Exchange (ETDEWEB)

    Lau, S K; Wei, W I; Sham, J S.T.; Choy, D T.K.; Hui, Y [Queen Mary Hospital, Hong Kong (Hong Kong)

    1992-10-01

    A prospective study of the effect of radiotherapy for nasopharyngeal carcinoma on hearing was carried out on 49 patients who had pure tone, impedance audiometry and auditory brain stem evoked response (ABR) recordings before, immediately, three, six and 12 months after radiotherapy. Fourteen patients complained of intermittent tinnitus after radiotherapy. We found that 11 initially normal ears of nine patients developed a middle ear effusion, three to six months after radiotherapy. There was mixed sensorineural and conductive hearing impairment after radiotherapy. Persistent impairment of ABR was detected immediately after completion of radiotherapy. The waves I-III and I-V interpeak latency intervals were significantly prolonged one year after radiotherapy. The study shows that radiotherapy for nasopharyngeal carcinoma impairs hearing by acting on the middle ear, the cochlea and the brain stem auditory pathway. (Author).

  13. Early changes of auditory brain stem evoked response after radiotherapy for nasopharyngeal carcinoma - a prospective study

    International Nuclear Information System (INIS)

    Lau, S.K.; Wei, W.I.; Sham, J.S.T.; Choy, D.T.K.; Hui, Y.

    1992-01-01

    A prospective study of the effect of radiotherapy for nasopharyngeal carcinoma on hearing was carried out on 49 patients who had pure tone, impedance audiometry and auditory brain stem evoked response (ABR) recordings before, immediately, three, six and 12 months after radiotherapy. Fourteen patients complained of intermittent tinnitus after radiotherapy. We found that 11 initially normal ears of nine patients developed a middle ear effusion, three to six months after radiotherapy. There was mixed sensorineural and conductive hearing impairment after radiotherapy. Persistent impairment of ABR was detected immediately after completion of radiotherapy. The waves I-III and I-V interpeak latency intervals were significantly prolonged one year after radiotherapy. The study shows that radiotherapy for nasopharyngeal carcinoma impairs hearing by acting on the middle ear, the cochlea and the brain stem auditory pathway. (Author)

  14. Psychological and physiological responses to odor-evoked autobiographic memory.

    Science.gov (United States)

    Matsunaga, Masahiro; Isowa, Tokiko; Yamakawa, Kaori; Kawanishi, Yoko; Tsuboi, Hirohito; Kaneko, Hiroshi; Sadato, Norihiro; Oshida, Akiko; Katayama, Atsushi; Kashiwagi, Mitsuyoshi; Ohira, Hideki

    2011-01-01

    The "Proust phenomenon" occurs when a certain smell evokes a specific memory. Recent studies have demonstrated that odor-evoked autobiographic memories are more emotional than those elicited by other sensory stimuli because of the direct neural communication between the olfactory system and the amygdala. The amygdala is known to regulate various physiological activities including the endocrine and immune systems; therefore, odor-evoked autobiographic memory may trigger various psychological and physiological responses; however, the responses elicited by this memory remains obscure. In this study, we aimed to investigate the psychological and physiological responses accompanying odor-evoked autobiographic memory. We recruited healthy male and female volunteers and investigated changes in their mood states and autonomic nervous, endocrine, and immune activities when autobiographic memory was evoked in the participants by asking them to smell an odor(s) that was nostalgic to them. The autobiographic memories associated with positive emotion resulted in increased positive mood states, such as comfort and happiness, and decreased negative mood states, such as anxiety. Furthermore, heart rate was decreased, skin-conductance level was increased, and peripheral interleukin-2 level was decreased after smelling the nostalgic odor. These psychological and physiological responses were significantly correlated. The present study suggests that odor-evoked autobiographic memory along with a positive feeling induce various physiological responses, including the autonomic nervous and immune activities. To the best of our knowledge, the present study is the first to observe an interaction between odor-evoked autobiographic memories and immune function.

  15. Evoked responses to sinusoidally modulated sound in unanaesthetized dogs

    NARCIS (Netherlands)

    Tielen, A.M.; Kamp, A.; Lopes da Silva, F.H.; Reneau, J.P.; Storm van Leeuwen, W.

    1. 1. Responses evoked by sinusoidally amplitude-modulated sound in unanaesthetized dogs have been recorded from inferior colliculus and from auditory cortex structures by means of chronically indwelling stainless steel wire electrodes. 2. 2. Harmonic analysis of the average responses demonstrated

  16. Occupational hearing loss: tonal audiometry X high frequencies audiometry

    Directory of Open Access Journals (Sweden)

    Lauris, José Roberto Pereira

    2009-09-01

    Full Text Available Introduction: Studies on the occupational exposure show that noise has been reaching a large part of the working population around the world, and NIHL (noise-induced hearing loss is the second most frequent disease of the hearing system. Objective: To review the audiometry results of employees at the campus of the University of São Paulo, Bauru. Method: 40 audiometry results were analyzed between 2007 and 2008, whose ages comprised between 32 and 59 years, of both sexes and several professions: gardeners, maintenance technicians, drivers etc. The participants were divided into 2 groups: those with tonal thresholds within acceptable thresholds and those who presented auditory thresholds alterations, that is tonal thresholds below 25 dB (NA in any frequency (Administrative Rule no. 19 of the Ministry of Labor 1998. In addition to the Conventional Audiologic Evaluation (250Hz to 8.000Hz we also carried out High Frequencies Audiometry (9000Hz, 10000Hz, 11200Hz, 12500Hz, 14000Hz and 16000Hz. Results: According to the classification proposed by FIORINI (1994, 25.0% (N=10 they presented with NIHL suggestive audiometric configurations. The results of high frequencies Audiometry confirmed worse thresholds than those obtained in the conventional audiometry in the 2 groups evaluated. Conclusion: The use of high frequencies audiometry proved to be an important register as a hearing alteration early detection method.

  17. Sympathetic skin response evoked by laser skin stimulation

    OpenAIRE

    Rossi, P.; Truini, A.; Serrao, M.; Iannetti, G. D.; Parisi, L.; Pozzessere, G.; Cruccu, G.

    2002-01-01

    The objective of this study was to evoke sympathetic skin responses (SSRs) in healthy subjects using laser stimulation and to compare these responses with those induced by conventional electrical stimuli. Twenty healthy subjects were investigated. SSRs were obtained using electrical and laser stimuli delivered to the wrist controlateral to the recording site. The sympathetic sudomotor conduction velocity (SSFCV) was measured in 8 subjects by simultaneously recording the SSR from the hand and ...

  18. Visual evoked responses during standing and walking

    Directory of Open Access Journals (Sweden)

    Klaus Gramann

    2010-10-01

    Full Text Available Human cognition has been shaped both by our body structure and by its complex interactionswith its environment. Our cognition is thus inextricably linked to our own and others’ motorbehavior. To model brain activity associated with natural cognition, we propose recording theconcurrent brain dynamics and body movements of human subjects performing normal actions.Here we tested the feasibility of such a mobile brain/body (MoBI imaging approach byrecording high-density electroencephalographic (EEG activity and body movements of subjectsstanding or walking on a treadmill while performing a visual oddball response task. Independentcomponent analysis (ICA of the EEG data revealed visual event-related potentials (ERPs thatduring standing, slow walking, and fast walking did not differ across movement conditions,demonstrating the viability of recording brain activity accompanying cognitive processes duringwhole body movement. Non-invasive and relatively low-cost MoBI studies of normal, motivatedactions might improve understanding of interactions between brain and body dynamics leadingto more complete biological models of cognition.

  19. Brain stem auditory evoked responses in chronic alcoholics.

    OpenAIRE

    Chan, Y W; McLeod, J G; Tuck, R R; Feary, P A

    1985-01-01

    Brain stem auditory evoked responses (BAERs) were performed on 25 alcoholic patients with Wernicke-Korsakoff syndrome, 56 alcoholic patients without Wernicke-Korsakoff syndrome, 24 of whom had cerebellar ataxia, and 37 control subjects. Abnormal BAERs were found in 48% of patients with Wernicke-Korsakoff syndrome, in 25% of alcoholic patients without Wernicke-Korsakoff syndrome but with cerebellar ataxia, and in 13% of alcoholic patients without Wernicke-Korsakoff syndrome or ataxia. The mean...

  20. Suicide attempts, platelet monoamine oxidase and the average evoked response

    International Nuclear Information System (INIS)

    Buchsbaum, M.S.; Haier, R.J.; Murphy, D.L.

    1977-01-01

    The relationship between suicides and suicide attempts and two biological measures, platelet monoamine oxidase levels (MAO) and average evoked response (AER) augmenting was examined in 79 off-medication psychiatric patients and in 68 college student volunteers chosen from the upper and lower deciles of MAO activity levels. In the patient sample, male individuals with low MAO and AER augmenting, a pattern previously associated with bipolar affective disorders, showed a significantly increased incidence of suicide attempts in comparison with either non-augmenting low MAO or high MAO patients. Within the normal volunteer group, all male low MAO probands with a family history of suicide or suicide attempts were AER augmenters themselves. Four completed suicides were found among relatives of low MAO probands whereas no high MAO proband had a relative who committed suicide. These findings suggest that the combination of low platelet MAO activity and AER augmenting may be associated with a possible genetic vulnerability to psychiatric disorders. (author)

  1. Development of Brainstem-Evoked Responses in Congenital Auditory Deprivation

    Directory of Open Access Journals (Sweden)

    J. Tillein

    2012-01-01

    Full Text Available To compare the development of the auditory system in hearing and completely acoustically deprived animals, naive congenitally deaf white cats (CDCs and hearing controls (HCs were investigated at different developmental stages from birth till adulthood. The CDCs had no hearing experience before the acute experiment. In both groups of animals, responses to cochlear implant stimulation were acutely assessed. Electrically evoked auditory brainstem responses (E-ABRs were recorded with monopolar stimulation at different current levels. CDCs demonstrated extensive development of E-ABRs, from first signs of responses at postnatal (p.n. day 3 through appearance of all waves of brainstem response at day 8 p.n. to mature responses around day 90 p.n.. Wave I of E-ABRs could not be distinguished from the artifact in majority of CDCs, whereas in HCs, it was clearly separated from the stimulus artifact. Waves II, III, and IV demonstrated higher thresholds in CDCs, whereas this difference was not found for wave V. Amplitudes of wave III were significantly higher in HCs, whereas wave V amplitudes were significantly higher in CDCs. No differences in latencies were observed between the animal groups. These data demonstrate significant postnatal subcortical development in absence of hearing, and also divergent effects of deafness on early waves II–IV and wave V of the E-ABR.

  2. Visual Evoked Response in Children Subjected to Prenatal Maternal ...

    African Journals Online (AJOL)

    neural conduction, or arousal level. S. Afr. Med. J., 48 ... pression treatment in either development or IQ, whether ... children in brain function at an electrophysiological level, ..... Perry, N. W. and Childers, D. G. (1969): The Human Visual Evoked.

  3. Gender differences in binaural speech-evoked auditory brainstem response: are they clinically significant?

    Science.gov (United States)

    Jalaei, Bahram; Azmi, Mohd Hafiz Afifi Mohd; Zakaria, Mohd Normani

    2018-05-17

    Binaurally evoked auditory evoked potentials have good diagnostic values when testing subjects with central auditory deficits. The literature on speech-evoked auditory brainstem response evoked by binaural stimulation is in fact limited. Gender disparities in speech-evoked auditory brainstem response results have been consistently noted but the magnitude of gender difference has not been reported. The present study aimed to compare the magnitude of gender difference in speech-evoked auditory brainstem response results between monaural and binaural stimulations. A total of 34 healthy Asian adults aged 19-30 years participated in this comparative study. Eighteen of them were females (mean age=23.6±2.3 years) and the remaining sixteen were males (mean age=22.0±2.3 years). For each subject, speech-evoked auditory brainstem response was recorded with the synthesized syllable /da/ presented monaurally and binaurally. While latencies were not affected (p>0.05), the binaural stimulation produced statistically higher speech-evoked auditory brainstem response amplitudes than the monaural stimulation (p0.80), substantive gender differences were noted in most of speech-evoked auditory brainstem response peaks for both stimulation modes. The magnitude of gender difference between the two stimulation modes revealed some distinct patterns. Based on these clinically significant results, gender-specific normative data are highly recommended when using speech-evoked auditory brainstem response for clinical and future applications. The preliminary normative data provided in the present study can serve as the reference for future studies on this test among Asian adults. Copyright © 2018 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  4. Sensitivity of cortical auditory evoked potential detection for hearing-impaired infants in response to short speech sounds

    Directory of Open Access Journals (Sweden)

    Bram Van Dun

    2012-01-01

    Full Text Available

    Background: Cortical auditory evoked potentials (CAEPs are an emerging tool for hearing aid fitting evaluation in young children who cannot provide reliable behavioral feedback. It is therefore useful to determine the relationship between the sensation level of speech sounds and the detection sensitivity of CAEPs.

    Design and methods: Twenty-five sensorineurally hearing impaired infants with an age range of 8 to 30 months were tested once, 18 aided and 7 unaided. First, behavioral thresholds of speech stimuli /m/, /g/, and /t/ were determined using visual reinforcement orientation audiometry (VROA. Afterwards, the same speech stimuli were presented at 55, 65, and 75 dB SPL, and CAEP recordings were made. An automatic statistical detection paradigm was used for CAEP detection.

    Results: For sensation levels above 0, 10, and 20 dB respectively, detection sensitivities were equal to 72 ± 10, 75 ± 10, and 78 ± 12%. In 79% of the cases, automatic detection p-values became smaller when the sensation level was increased by 10 dB.

    Conclusions: The results of this study suggest that the presence or absence of CAEPs can provide some indication of the audibility of a speech sound for infants with sensorineural hearing loss. The detection of a CAEP provides confidence, to a degree commensurate with the detection probability, that the infant is detecting that sound at the level presented. When testing infants where the audibility of speech sounds has not been established behaviorally, the lack of a cortical response indicates the possibility, but by no means a certainty, that the sensation level is 10 dB or less.

  5. Newborn hearing screening with transient evoked otoacoustic emissions and automatic auditory brainstem response

    Directory of Open Access Journals (Sweden)

    Renata Mota Mamede de Carvallo

    2008-09-01

    Full Text Available Objective: The aim of the present investigation was to check Transient Evoked Otoacoustic Emissions and Automatic Auditory Brainstem Response tests applied together in regular nurseries and Newborn Intensive Care Units (NICU, as well as to describe and compare the results obtained in both groups. Methods: We tested 150 newborns from regular nurseries and 70 from NICU. Rresults: The newborn hearing screening results using Transient Evoked Otoacoustic Emissions and Automatic Auditory Brainstem Response tests could be applied to all babies. The “pass” result for the group of babies from the nursery was 94.7% using Transient Evoked Otoacoustic Emissions and 96% using Automatic Auditory Brainstem Response. The newborn intensive care unit group obtained 87.1% on Transient Evoked Otoacoustic Emissions and 80% on the Automatic Auditory Brainstem Response, and there was no statistical difference between the procedures when the groups were evaluated individually. However, comparing the groups, Transient Evoked Otoacoustic Emissions were presented in 94.7% of the nursery babies and in 87.1% in the group from the newborn intensive care unit. Considering the Automatic Auditory Brainstem Response, we found 96 and 87%, respectively. Cconclusions: Transient Evoked Otoacoustic Emissions and Automatic Auditory Brainstem Response had similar “pass” and “fail” results when the procedures were applied to neonates from the regular nursery, and the combined tests were more precise to detect hearing impairment in the newborn intensive care unit babies.

  6. Enhanced brainstem and cortical evoked response amplitudes: single-trial covariance analysis.

    Science.gov (United States)

    Galbraith, G C

    2001-06-01

    The purpose of the present study was to develop analytic procedures that improve the definition of sensory evoked response components. Such procedures could benefit all recordings but would especially benefit difficult recordings where many trials are contaminated by muscle and movement artifacts. First, cross-correlation and latency adjustment analyses were applied to the human brainstem frequency-following response and cortical auditory evoked response recorded on the same trials. Lagged cross-correlation functions were computed, for each of 17 subjects, between single-trial data and templates consisting of the sinusoid stimulus waveform for the brainstem response and the subject's own smoothed averaged evoked response P2 component for the cortical response. Trials were considered in the analysis only if the maximum correlation-squared (r2) exceeded .5 (negatively correlated trials were thus included). Identical correlation coefficients may be based on signals with quite different amplitudes, but it is possible to assess amplitude by the nonnormalized covariance function. Next, an algorithm is applied in which each trial with negative covariance is matched to a trial with similar, but positive, covariance and these matched-trial pairs are deleted. When an evoked response signal is present in the data, the majority of trials positively correlate with the template. Thus, a residual of positively correlated trials remains after matched covariance trials are deleted. When these residual trials are averaged, the resulting brainstem and cortical responses show greatly enhanced amplitudes. This result supports the utility of this analysis technique in clarifying and assessing evoked response signals.

  7. Newborn hearing screening with transient evoked otoacoustic emissions and automatic auditory brainstem response

    OpenAIRE

    Renata Mota Mamede de Carvallo; Carla Gentile Matas; Isabela de Souza Jardim

    2008-01-01

    Objective: The aim of the present investigation was to check Transient Evoked Otoacoustic Emissions and Automatic Auditory Brainstem Response tests applied together in regular nurseries and Newborn Intensive Care Units (NICU), as well as to describe and compare the results obtained in both groups. Methods: We tested 150 newborns from regular nurseries and 70 from NICU. Rresults: The newborn hearing screening results using Transient Evoked Otoacoustic Emissions and Automatic Auditory Brainstem...

  8. Dynamic properties of sensory stimulation evoked responses in mouse cerebellar granule cell layer and molecular layer.

    Science.gov (United States)

    Bing, Yan-Hua; Zhang, Guang-Jian; Sun, Lei; Chu, Chun-Ping; Qiu, De-Lai

    2015-01-12

    Sensory information coming from climbing fiber and mossy fiber-granule cell pathways, generates motor-related outputs according to internal rules of integration and computation in the cerebellar cortex. However, the dynamic properties of sensory information processing in mouse cerebellar cortex are less understood. Here, we studied the dynamic properties of sensory stimulation-evoked responses in the cerebellar granule cell layer (GCL) and molecular layer (ML) by electrophysiological recordings method. Our data showed that air-puff stimulation (5-10 ms in duration) of the ipsilateral whisker pad evoked single-peak responses in the GCL and ML; whereas a duration of stimulation ≥30 ms in GCL and ≥60 ms in ML, evoked double-peak responses that corresponded with stimulation-on and -off responses via mossy fiber pathway. The highest frequency of stimulation train for evoking GCL responses was 33 Hz. In contrast, the highest frequency of stimulation train for evoking ML responses was 4 Hz. These results indicate that the cerebellar granule cells transfer the high-fidelity sensory information from mossy fibers, which is cut-off by molecular layer interneurons (MLIs). Our results suggest that the MLIs network acts as a low-pass filter during the processing of high-frequency sensory information. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Effect of peripherally and cortically evoked swallows on jaw reflex responses in anesthetized rabbits.

    Science.gov (United States)

    Suzuki, Taku; Yoshihara, Midori; Sakai, Shogo; Tsuji, Kojun; Nagoya, Kouta; Magara, Jin; Tsujimura, Takanori; Inoue, Makoto

    2018-05-03

    This study aimed to investigate whether the jaw-opening (JOR) and jaw-closing reflexes (JCR) are modulated during not only peripherally, but also centrally, evoked swallowing. Experiments were carried out on 24 adult male Japanese white rabbits. JORs were evoked by trigeminal stimulation at 1 Hz for 30 sec. In the middle 10 sec, either the superior laryngeal nerve (SLN) or cortical swallowing area (Cx) was simultaneously stimulated to evoke swallowing. The peak-to-peak JOR amplitude was reduced during the middle and late 10-sec periods (i.e., during and after SLN or Cx stimulation), and the reduction was dependent on the current intensity of SLN/Cx stimulation: greater SLN/Cx stimulus current resulted in greater JOR inhibition. The reduction rate was significantly greater during Cx stimulation than during SLN stimulation. The amplitude returned to baseline 2 min after 10-sec SLN/Cx stimulation. The effect of co-stimulation of SLN and Cx was significantly greater than that of SLN stimulation alone. There were no significant differences in any parameters of the JCR between conditions. These results clearly showed that JOR responses were significantly suppressed, not only during peripherally evoked swallowing but also during centrally evoked swallowing, and that the inhibitory effect is likely to be larger during centrally compared with peripherally evoked swallowing. The functional implications of these results are discussed. Copyright © 2018. Published by Elsevier B.V.

  10. Test person operated 2-Alternative Forced Choice Audiometry compared to traditional audiometry

    DEFF Research Database (Denmark)

    Schmidt, Jesper Hvass; Brandt, Christian; Christensen-Dalsgaard, Jakob

      Background: With a newly developed technique, hearing thresholds can be estimated with a system operated by the test persons themselves. This technique is based on the 2 Alternative Forced Choice paradigm known from the psychoacoustic research theory. Test persons can operate the system very......-likelihood and up-down methods has proven effective and reliable even under suboptimal test settings. In non-optimal testing conditions i.e. as a part of a hearing conservation programme the headphone Sennheiser HDA-200 has been used as it contains hearing protection. This test-method has been validated......-retest studies of 2AFC audiometry are comparable to test-retest results known from traditional audiometry under standard clinical settings.   Conclusions 2 Alternative Forced Choice audiometry can be a reliable alternative to traditional audiometry especially under certain circumstances, where it can...

  11. Altered Evoked Gamma-Band Responses Reveal Impaired Early Visual Processing in ADHD Children

    Science.gov (United States)

    Lenz, Daniel; Krauel, Kerstin; Flechtner, Hans-Henning; Schadow, Jeanette; Hinrichs, Hermann; Herrmann, Christoph S.

    2010-01-01

    Neurophysiological studies yield contrary results whether attentional problems of patients with attention-deficit/hyperactivity disorder (ADHD) are related to early visual processing deficits or not. Evoked gamma-band responses (GBRs), being among the first cortical responses occurring as early as 90 ms after visual stimulation in human EEG, have…

  12. Speech-evoked auditory brainstem responses in children with hearing loss.

    Science.gov (United States)

    Koravand, Amineh; Al Osman, Rida; Rivest, Véronique; Poulin, Catherine

    2017-08-01

    The main objective of the present study was to investigate subcortical auditory processing in children with sensorineural hearing loss. Auditory Brainstem Responses (ABRs) were recorded using click and speech/da/stimuli. Twenty-five children, aged 6-14 years old, participated in the study: 13 with normal hearing acuity and 12 with sensorineural hearing loss. No significant differences were observed for the click-evoked ABRs between normal hearing and hearing-impaired groups. For the speech-evoked ABRs, no significant differences were found for the latencies of the following responses between the two groups: onset (V and A), transition (C), one of the steady-state wave (F), and offset (O). However, the latency of the steady-state waves (D and E) was significantly longer for the hearing-impaired compared to the normal hearing group. Furthermore, the amplitude of the offset wave O and of the envelope frequency response (EFR) of the speech-evoked ABRs was significantly larger for the hearing-impaired compared to the normal hearing group. Results obtained from the speech-evoked ABRs suggest that children with a mild to moderately-severe sensorineural hearing loss have a specific pattern of subcortical auditory processing. Our results show differences for the speech-evoked ABRs in normal hearing children compared to hearing-impaired children. These results add to the body of the literature on how children with hearing loss process speech at the brainstem level. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. A translational study on looming-evoked defensive response and the underlying subcortical pathway in autism.

    Science.gov (United States)

    Hu, Yu; Chen, Zhuoming; Huang, Lu; Xi, Yue; Li, Bingxiao; Wang, Hong; Yan, Jiajian; Lee, Tatia M C; Tao, Qian; So, Kwok-Fai; Ren, Chaoran

    2017-11-07

    Rapidly approaching objects indicating threats can induce defensive response through activating a subcortical pathway comprising superior colliculus (SC), lateral posterior nucleus (LP), and basolateral amygdala (BLA). Abnormal defensive response has been reported in autism, and impaired synaptic connections could be the underlying mechanism. Whether the SC-LP-BLA pathway processes looming stimuli abnormally in autism is not clear. Here, we found that looming-evoked defensive response is impaired in a subgroup of the valproic acid (VPA) mouse model of autism. By combining the conventional neurotracer and transneuronal rabies virus tracing techniques, we demonstrated that synaptic connections in the SC-LP-BLA pathway were abnormal in VPA mice whose looming-evoked defensive responses were absent. Importantly, we further translated the finding to children with autism and observed that they did not present looming-evoked defensive response. Furthermore, the findings of the DTI with the probabilistic tractography showed that the structural connections of SC-pulvinar-amygdala in autism children were weak. The pulvinar is parallel to the LP in a mouse. Because looming-evoked defensive response is innate in humans and emerges much earlier than do social and language functions, the absence of defensive response could be an earlier sign of autism in children.

  14. Evoked responses of the superior olive to amplitude-modulated signals.

    Science.gov (United States)

    Andreeva, N G; Lang, T T

    1977-01-01

    Evoked potentials of some auditory centers of Rhinolophidae bats to amplitude-modulated signals were studied. A synchronization response was found in the cochlear nuclei (with respect to the fast component of the response) and in the superior olivary complex (with respect to both fast and slow components of the response) within the range of frequency modulation from 50 to 2000 Hz. In the inferior colliculus a synchronized response was recorded at modulation frequencies below 150 Hz, but in the medial geniculate bodies no such response was found. Evoked responses of the superior olivary complex were investigated in detail. The lowest frequencies of synchronization were recorded within the carrier frequency range of 15-30 and 80-86 kHz. The amplitude of the synchronized response is a function of the frequency and coefficient of modulation and also of the angle of stimulus presentation.

  15. Role of the autonomic nervous system and baroreflex in stress-evoked cardiovascular responses in rats.

    Science.gov (United States)

    Dos Reis, Daniel Gustavo; Fortaleza, Eduardo Albino Trindade; Tavares, Rodrigo Fiacadori; Corrêa, Fernando Morgan Aguiar

    2014-07-01

    Restraint stress (RS) is an experimental model to study stress-related cardiovascular responses, characterized by sustained pressor and tachycardiac responses. We used pharmacologic and surgical procedures to investigate the role played by sympathetic nervous system (SNS) and parasympathetic nervous system (PSNS) in the mediation of stress-evoked cardiovascular responses. Ganglionic blockade with pentolinium significantly reduced RS-evoked pressor and tachycardiac responses. Intravenous treatment with homatropine methyl bromide did not affect the pressor response but increased tachycardia. Pretreatment with prazosin reduced the pressor and increased the tachycardiac response. Pretreatment with atenolol did not affect the pressor response but reduced tachycardia. The combined treatment with atenolol and prazosin reduced both pressor and tachycardiac responses. Adrenal demedullation reduced the pressor response without affecting tachycardia. Sinoaortic denervation increased pressor and tachycardiac responses. The results indicate that: (1) the RS-evoked cardiovascular response is mediated by the autonomic nervous system without an important involvement of humoral factors; (2) hypertension results primarily from sympathovascular and sympathoadrenal activation, without a significant involvement of the cardiac sympathetic component (CSNS); (3) the abrupt initial peak in the hypertensive response to restraint is sympathovascular-mediated, whereas the less intense but sustained hypertensive response observed throughout the remaining restraint session is mainly mediated by sympathoadrenal activation and epinephrine release; (4) tachycardia results from CSNS activation, and not from PSNS inhibition; (5) RS evokes simultaneous CSNS and PSNS activation, and heart rate changes are a vector of both influences; (6) the baroreflex is functional during restraint, and modulates both the vascular and cardiac responses to restraint.

  16. Neuromagnetic Oscillations Predict Evoked-Response Latency Delays and Core Language Deficits in Autism Spectrum Disorders

    Science.gov (United States)

    Edgar, J. Christopher; Khan, Sarah Y.; Blaskey, Lisa; Chow, Vivian Y.; Rey, Michael; Gaetz, William; Cannon, Katelyn M.; Monroe, Justin F.; Cornew, Lauren; Qasmieh, Saba; Liu, Song; Welsh, John P.; Levy, Susan E.; Roberts, Timothy P. L.

    2015-01-01

    Previous studies have observed evoked response latency as well as gamma band superior temporal gyrus (STG) auditory abnormalities in individuals with autism spectrum disorders (ASD). A limitation of these studies is that associations between these two abnormalities, as well as the full extent of oscillatory phenomena in ASD in terms of frequency…

  17. The effect of ACTH analogues on motor behavior and visual evoked responses in rats

    NARCIS (Netherlands)

    Wolthuis, O.L.; Wied, D. de

    1976-01-01

    Averaged visual evoked responses (VER) in cortical area 17 were recorded one hour after the administration of 7-l-phe ACTH(4-10) or 7-d-phe ACTH(4-10) to artificially ventilated rats, paralysed with gallamine. In addition, the effects of these peptides on spontaneous motor behavior were analyzed.

  18. Visually-evoked pattern and photomyoclonic responses in video game and television epilepsy: case reports.

    Science.gov (United States)

    Anyanwu, E; Watson, N A

    1996-01-01

    This research paper reports a case study of two male photosensitive epileptic patients, aged 14 and 16 years old respectively, whose epileptic seizures were often triggered by the flickers from television and video games respectively. The 14-year old patient had no family history of epilepsy, while the 16 year old had a family history of epilepsy. A comprehensive electroencephalogram (EEG), including hyperventilation, intermittent photic stimulation (IPS) and pattern stimulation were carried out on them and EEG abnormalities including photoparoxysmal responses (PPR) and generalized myoclonic responses were evoked. A thorough analysis of the EEG morphology of the myclonic responses and the clinical manifestations showed evidence of two separate entitles of seizures namely: visually evoked pattern-myoclonic responses (PTMR) and visually evoked photomyoclonic responses (PMR). PTMR was independent of flash rate and occurred before a PPR and at the same time as the flash rate, while PMR occurred after the PPR and was dependent on flash rate. These findings suggest that "Video Game" epilepsy is probably a pattern sensitive epilepsy, electronic screen being the source of the triggering patterns; hence, the morphology and the family histories and the myoclonic phenomena differ from those of pure photosensitive epilepsy.

  19. Postural threat differentially affects the feedforward and feedback components of the vestibular-evoked balance response.

    Science.gov (United States)

    Osler, Callum J; Tersteeg, M C A; Reynolds, Raymond F; Loram, Ian D

    2013-10-01

    Circumstances may render the consequence of falling quite severe, thus maximising the motivation to control postural sway. This commonly occurs when exposed to height and may result from the interaction of many factors, including fear, arousal, sensory information and perception. Here, we examined human vestibular-evoked balance responses during exposure to a highly threatening postural context. Nine subjects stood with eyes closed on a narrow walkway elevated 3.85 m above ground level. This evoked an altered psycho-physiological state, demonstrated by a twofold increase in skin conductance. Balance responses were then evoked by galvanic vestibular stimulation. The sway response, which comprised a whole-body lean in the direction of the edge of the walkway, was significantly and substantially attenuated after ~800 ms. This demonstrates that a strong reason to modify the balance control strategy was created and subjects were highly motivated to minimise sway. Despite this, the initial response remained unchanged. This suggests little effect on the feedforward settings of the nervous system responsible for coupling pure vestibular input to functional motor output. The much stronger, later effect can be attributed to an integration of balance-relevant sensory feedback once the body was in motion. These results demonstrate that the feedforward and feedback components of a vestibular-evoked balance response are differently affected by postural threat. Although a fear of falling has previously been linked with instability and even falling itself, our findings suggest that this relationship is not attributable to changes in the feedforward vestibular control of balance. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  20. Event-related fields evoked by vocal response inhibition: a comparison of younger and older adults.

    Science.gov (United States)

    Castro-Meneses, Leidy J; Johnson, Blake W; Sowman, Paul F

    2016-06-01

    The current study examined event-related fields (ERFs) evoked by vocal response inhibition in a stimulus-selective stop-signal task. We compared inhibition-related ERFs across a younger and an older group of adults. Behavioural results revealed that stop-signal reaction times (RTs), go-RTs, ignore-stop RTs and failed stop RTs were longer in the older, relative to the younger group by 38, 123, 149 and 116 ms, respectively. The amplitude of the ERF M2 peak (approximately 200 ms after the stop signal) evoked on successful stop trials was larger compared to that evoked on both failed stop and ignore-stop trials. The M4 peak (approximately 450 ms after stop signal) was of larger amplitude in both successful and failed stops compared to ignore-stop trials. In the older group, the M2, M3 and M4 peaks were smaller in amplitude and peaked later in time (by 24, 50 and 76 ms, respectively). We demonstrate that vocal response inhibition-related ERFs exhibit a similar temporal evolution to those previously described for manual response inhibition: an early peak at 200 ms (i.e. M2) that differentiates successful from failed stopping, and a later peak (i.e. M4) that is consistent with a neural marker of response checking and error processing. Across groups, our data support a more general decline of stimulus processing speed with age.

  1. A comparison of myogenic motor evoked responses to electrical and magnetic transcranial stimulation during nitrous oxide/opioid anesthesia

    NARCIS (Netherlands)

    Ubags, L. H.; Kalkman, C. J.; Been, H. D.; Koelman, J. H.; Ongerboer de Visser, B. W.

    1999-01-01

    Transcranial motor evoked potentials (tc-MEPs) are used to monitor spinal cord integrity intraoperatively. We compared myogenic motor evoked responses with electrical and magnetic transcranial stimuli during nitrous oxide/opioid anesthesia. In 11 patients undergoing spinal surgery, anesthesia was

  2. Evaluation of Two Circumaural Earphones for Audiometry.

    Science.gov (United States)

    Smull, Clae C; Madsen, Brandon; Margolis, Robert H

    2018-05-08

    The Sennheiser HDA 200 earphone, a standard circumaural earphone used in audiometry for many years, is out of production and is replaced by the RadioEar DD450. The Sennheiser HD 280 Pro earphone is a consumer product that has characteristics that may be suitable for audiometry and may be a low-cost alternative to the DD450. The DD450 and HD 280 Pro earphones were compared with the HDA 200 for use in audiometry. RadioEar DD450 and Sennheiser HD 280 Pro earphones were evaluated for reference equivalent threshold sound pressure levels (RETSPLs), ambient-noise attenuation, and occlusion effects. Audiometric thresholds measured on a group of normal-hearing adults were used to determine RETSPLs. Ambient-noise attenuation was determined by measuring the sound pressure in the ear canal produced by a broadband signal from a loudspeaker with and without occlusion by the earphone. Acoustic occlusion effects were determined by measuring the ear-canal sound pressure produced by a bone-conducted source with and without occlusion by the earphone. The results were compared with measurements obtained from the HDA 200 earphone. Audiometric thresholds obtained using the DD450 earphone did not differ from those obtained with the HDA 200 earphones, indicating that the HDA 200 RETSPLs provided in the audiometer standards (ANSI S3.6-2010; ISO 389-8-2004) are transferable to the DD450. New RETSPLs for the HD 280 Pro earphone were determined from the threshold measurements. Ambient-noise attenuation provided by the DD450 was equivalent to the attenuation provided by the HDA 200. The HD 280 Pro provided less ambient-noise attenuation than the other circumaural earphones, but more than the supra-aural earphones commonly used in audiometry. The DD450 produced an occlusion effect 5 dB larger than that of the HDA 200 at 0.25 and 0.5 kHz; both earphones produced negligible occlusion effects at higher frequencies. The HD 280 Pro produced larger occlusion effects in the low frequencies than the

  3. EEG and EMG responses to emotion-evoking stimuli processed without conscious awareness.

    Science.gov (United States)

    Wexler, B E; Warrenburg, S; Schwartz, G E; Janer, L D

    1992-12-01

    Dichotic stimulus pairs were constructed with one word that was emotionally neutral and another that evoked either negative or positive feelings. Temporal and spectral overlap between the members of each pair was so great that the two words fused into a single auditory percept. Subjects were consciously aware of hearing only one word from most pairs; sometimes the emotion-evoking word was heard consciously, other times the neutral word was heard consciously. Subjects were instructed to let their thoughts wander in response to the word they heard, during which time EEG alpha activity over left and right frontal regions, and muscle activity (EMG) in the corrugator ("frowning") and zygomatic ("smiling") regions were recorded. Both EEG and EMG provided evidence of emotion-specific responses to stimuli that were processed without conscious awareness. Moreover both suggested relatively greater right hemisphere activity with unconscious rather than conscious processing.

  4. Is the auditory evoked P2 response a biomarker of learning?

    Directory of Open Access Journals (Sweden)

    Kelly eTremblay

    2014-02-01

    Full Text Available Even though auditory training exercises for humans have been shown to improve certain perceptual skills of individuals with and without hearing loss, there is a lack of knowledge pertaining to which aspects of training are responsible for the perceptual gains, and which aspects of perception are changed. To better define how auditory training impacts brain and behavior, electroencephalography and magnetoencephalography have been used to determine the time course and coincidence of cortical modulations associated with different types of training. Here we focus on P1-N1-P2 auditory evoked responses (AEP, as there are consistent reports of gains in P2 amplitude following various types of auditory training experiences; including music and speech-sound training. The purpose of this experiment was to determine if the auditory evoked P2 response is a biomarker of learning. To do this, we taught native English speakers to identify a new pre-voiced temporal cue that is not used phonemically in the English language so that coinciding changes in evoked neural activity could be characterized. To differentiate possible effects of repeated stimulus exposure and a button-pushing task from learning itself, we examined modulations in brain activity in a group of participants who learned to identify the pre-voicing contrast and compared it to participants, matched in time, and stimulus exposure, that did not. The main finding was that the amplitude of the P2 auditory evoked response increased across repeated EEG sessions for all groups, regardless of any change in perceptual performance. What’s more, these effects were retained for months. Changes in P2 amplitude were attributed to changes in neural activity associated with the acquisition process and not the learned outcome itself. A further finding was the expression of a late negativity (LN wave 600-900 ms post-stimulus onset, post-training, exclusively for the group that learned to identify the pre

  5. Fetal MEG evoked response latency from beamformer with random field theory.

    Science.gov (United States)

    McCubbin, J; Vrba, J; Murphy, P; Temple, J; Eswaran, H; Lowery, C L; Preissl, H

    2010-01-01

    Analysis of fetal magnetoencephalographic brain recordings is restricted by low signal to noise ratio (SNR) and non-stationarity of the sources. Beamformer techniques have been applied to improve SNR of fetal evoked responses. However, until now the effect of non-stationarity was not taken into account in detail, because the detection of evoked responses is in most cases determined by averaging a large number of trials. We applied a windowing technique to improve the stationarity of the data by using short time segments recorded during a flash-evoked study. In addition, we implemented a random field theory approach for more stringent control of false-positives in the statistical parametric map of the search volume for the beamformer. The search volume was based on detailed individual fetal/maternal biometrics from ultrasound scans and fetal heart localization. Average power over a sliding window within the averaged evoked response against a randomized average background power was used as the test z-statistic. The significance threshold was set at 10% over all members of a contiguous cluster of voxels. There was at least one significant response for 62% of fetal and 95% of newborn recordings with gestational age (GA) between 28 and 45 weeks from 29 subjects. We found that the latency was either substantially unchanged or decreased with increasing GA for most subjects, with a nominal rate of about -11 ms/week. These findings support the anticipated neurophysiological development, provide validation for the beamformer model search as a methodology, and may lead to a clinical test for fetal cognitive development.

  6. Habituation of evoked responses is greater in patients with familial hemiplegic migraine than in controls

    DEFF Research Database (Denmark)

    Hansen, Jakob Møller; Bolla, M; Magis, D

    2011-01-01

    have associated with disturbed ion homeostasis, altered cellular excitability, neurotransmitter release, and decreased threshold for cortical spreading depression. The common forms of migraine are characterized interictally by a habituation deficit of cortical and subcortical evoked responses that has...... been attributed to neuronal dysexcitability. FHM and the common forms of migraine are thought to belong to a spectrum of migraine phenotypes with similar pathophysiology, and we therefore examined whether an abnormal habituation pattern would also be found in FHM patients....

  7. Whiplash evokes descending muscle recruitment and sympathetic responses characteristic of startle

    Science.gov (United States)

    Mang, Daniel WH; Siegmund, Gunter P; Blouin, Jean-Sébastien

    2014-01-01

    Whiplash injuries are the most common injuries following rear-end collisions. During a rear-end collision, the human muscle response consists of both a postural and a startle response that may exacerbate injury. However, most previous studies only assessed the presence of startle using data collected from the neck muscles and head/neck kinematics. The startle response also evokes a descending pattern of muscle recruitment and changes in autonomic activity. Here we examined the recruitment of axial and appendicular muscles along with autonomic responses to confirm whether these other features of a startle response were present during the first exposure to a whiplash perturbation. Ten subjects experienced a single whiplash perturbation while recording electromyography, electrocardiogram, and electrodermal responses. All subjects exhibited a descending pattern of muscle recruitment, and increasing heart rate and electrodermal responses following the collision. Our results provide further support that the startle response is a component of the response to whiplash collisions. PMID:24932015

  8. Roux-en-Y gastric bypass augments the feeding responses evoked by gastrin releasing peptides

    Science.gov (United States)

    Washington, Martha C.; Mhalhal, Thaer R.; Berger, Tanisha Johnson-Rouse Jose; Heath, John; Seeley, Randy; Sayegh, Ayman I.

    2016-01-01

    Background Roux-en-Y gastric bypass (RYGB) is the most effective method for the treatment of obesity and metabolic disease Roux-en-Y gastric bypass (RYGB) may reduce body weight by altering the feeding responses evoked by the short term satiety peptides. Materials and Methods Here, we measured meal size (MS, chow), intermeal interval (IMI) length and satiety ratio (SR, IMI/MS; food consumed per a unit of time) by the small and the large forms of gastrin releasing peptide (GRP) in rats, GRP-10 and GRP-29 (0, 0.1, 0.5 nmol/kg) infused in the celiac artery (CA, supplies stomach and upper duodenum) and the cranial mesenteric artery (CMA, supplies small and large intestine) in a RYGB rat model. Results GRP-10 reduced MS, prolonged the IMI and increased the SR only in the RYGB group, whereas GRP-29 evoked these responses by both routes and in both groups. Conclusion The RYGB procedure augments the feeding responses evoked by exogenous GRP, possibly by decreasing total food intake, increasing latency to the first meal, decreasing number of meals or altering the sites of action regulating MS and IMI length by the two peptides. PMID:27884350

  9. Refractory episodic vertigo: role of intratympanic gentamicin and vestibular evoked myogenic potentials,

    Directory of Open Access Journals (Sweden)

    Erika Celis-Aguilar

    Full Text Available Abstract Introduction: Even today, the treatment of intractable vertigo remains a challenge. Vestibular ablation with intratympanic gentamicin stands as a good alternative in the management of refractory vertigo patients. Objective: To control intractable vertigo through complete saccular and horizontal canal vestibular ablation with intratympanic gentamicin treatment. Methods: Patients with refractory episodic vertigo were included. The inclusion criteria were: unilateral ear disease, moderate to profound sensorineural hearing loss, and failure to other treatments. Included patients underwent 0.5-0.8 mL of gentamicin intratympanic application at a 30 mg/mL concentration. Vestibular ablation was confirmed by the absence of response on cervical vestibular evoked myogenic potentials and no response on caloric tests. Audiometry, electronystagmography with iced water, and vestibular evoked myogenic potentials were performed in all patients. Results: Ten patients were included; nine patients with Meniere's disease and one patient with (late onset delayed hydrops. Nine patients showed an absent response on vestibular evoked myogenic potentials and no response on caloric tests. The only patient with low amplitude on cervical vestibular evoked myogenic potentials had vertigo recurrence. Vertigo control was achieved in 90% of the patients. One patient developed hearing loss >30 dB. Conclusions: Cervical vestibular evoked myogenic potentials confirmed vestibular ablation in patients treated with intratympanic gentamicin. High-grade vertigo control was due to complete saccular and horizontal canal ablation (no response to iced water in electronystagmography and no response on cervical vestibular evoked myogenic potentials.

  10. Infrared neural stimulation (INS) inhibits electrically evoked neural responses in the deaf white cat

    Science.gov (United States)

    Richter, Claus-Peter; Rajguru, Suhrud M.; Robinson, Alan; Young, Hunter K.

    2014-03-01

    Infrared neural stimulation (INS) has been used in the past to evoke neural activity from hearing and partially deaf animals. All the responses were excitatory. In Aplysia californica, Duke and coworkers demonstrated that INS also inhibits neural responses [1], which similar observations were made in the vestibular system [2, 3]. In deaf white cats that have cochleae with largely reduced spiral ganglion neuron counts and a significant degeneration of the organ of Corti, no cochlear compound action potentials could be observed during INS alone. However, the combined electrical and optical stimulation demonstrated inhibitory responses during irradiation with infrared light.

  11. Parabrachial complex glutamate receptors modulate the cardiorespiratory response evoked from hypothalamic defense area.

    Science.gov (United States)

    Díaz-Casares, A; López-González, M V; Peinado-Aragonés, C A; González-Barón, S; Dawid-Milner, M S

    2012-08-16

    To characterize the possible role of glutamate in the interaction between Hypothalamic Defense Area (HDA) and Parabrachial complex (PBc) nuclei, cardiorespiratory changes were analyzed in response to electrical stimulation of the HDA (1 ms pulses, 30-50 μA given at 100 Hz for 5s) before and after the microinjection of the nonspecific glutamate receptor antagonist kynurenic acid (50 nl, 5 nmol), NMDA receptor antagonist MK-801 (50 nl, 50 nmol), non-NMDA receptor antagonist CNQX (50 nl, 50 nmol) or metabotropic glutamate receptor antagonist MCPG (50 nl, 5 nmol) within the PBc. HDA stimulation evoked an inspiratory facilitatory response, consisting of an increase in respiratory rate (pHDA stimulation. Similarly, the magnitude of the tachycardia and the pressor response was decreased after the microinjection of MK-801 (pHDA stimulation but the respiratory response persisted unchanged after MK-801 or CNQX microinjection into the lPB. Kynurenic acid within the medial parabrachial region (mPB) abolished the tachycardia (pHDA stimulation. MK-801 and CNQX microinjection in this region decreased the magnitude of the tachycardia (pHDA stimulation was not changed after the microinjection of kynurenic acid, MK-801 or CNQX within the mPB. No changes were observed in the cardiorespiratory response evoked to HDA stimulation after MCPG microinjection within lPB and mPB. These results indicate that glutamate PBc receptors are involved in the cardiorespiratory response evoked from the HDA. The possible mechanisms involved in these interactions are discussed. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Inhibition of somatosensory-evoked cortical responses by a weak leading stimulus.

    Science.gov (United States)

    Nakagawa, Kei; Inui, Koji; Yuge, Louis; Kakigi, Ryusuke

    2014-11-01

    We previously demonstrated that auditory-evoked cortical responses were suppressed by a weak leading stimulus in a manner similar to the prepulse inhibition (PPI) of startle reflexes. The purpose of the present study was to investigate whether a similar phenomenon was present in the somatosensory system, and also whether this suppression reflected an inhibitory process. We recorded somatosensory-evoked magnetic fields following stimulation of the median nerve and evaluated the extent by which they were suppressed by inserting leading stimuli at an intensity of 2.5-, 1.5-, 1.1-, or 0.9-fold the sensory threshold (ST) in healthy participants (Experiment 1). The results obtained demonstrated that activity in the secondary somatosensory cortex in the hemisphere contralateral to the stimulated side (cSII) was significantly suppressed by a weak leading stimulus with the intensity larger than 1.1-fold ST. This result implied that the somatosensory system had an inhibitory process similar to that of PPI. We then presented two successive leading stimuli before the test stimulus, and compared the extent of suppression between the test stimulus-evoked responses and those obtained with the second prepulse alone and with two prepulses (first and second) (Experiment 2). When two prepulses were preceded, cSII responses to the second prepulse were suppressed by the first prepulse, whereas the ability of the second prepulse to suppress the test stimulus remained unchanged. These results suggested the presence of at least two individual pathways; response-generating and inhibitory pathways. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. DESCRIPTION OF BRAINSTEM AUDITORY EVOKED RESPONSES (AIR AND BONE CONDUCTION IN CHILDREN WITH NORMAL HEARING

    Directory of Open Access Journals (Sweden)

    A. V. Pashkov

    2014-01-01

    Full Text Available Diagnosis of hearing level in small children with conductive hearing loss associated with congenital craniofacial abnormalities, particularly with agenesis of external ear and external auditory meatus is a pressing issue. Conventional methods of assessing hearing in the first years of life, i. e. registration of brainstem auditory evoked responses to acoustic stimuli in the event of air conduction, does not give an indication of the auditory analyzer’s condition due to potential conductive hearing loss in these patients. This study was aimed at assessing potential of diagnosing the auditory analyzer’s function with registering brainstem auditory evoked responses (BAERs to acoustic stimuli transmitted by means of a bone vibrator. The study involved 17 children aged 3–10 years with normal hearing. We compared parameters of registering brainstem auditory evoked responses (peak V depending on the type of stimulus transmission (air/bone in children with normal hearing. The data on thresholds of the BAERs registered to acoustic stimuli in the event of air and bone conduction obtained in this study are comparable; hearing thresholds in the event of acoustic stimulation by means of a bone vibrator correlates with the results of the BAERs registered to the stimuli transmitted by means of air conduction earphones (r = 0.9. High correlation of thresholds of BAERs to the stimuli transmitted by means of a bone vibrator with thresholds of BAERs registered when air conduction earphones were used helps to assess auditory analyzer’s condition in patients with any form of conductive hearing loss.  

  14. Development of the acoustically evoked behavioral response in larval plainfin midshipman fish, Porichthys notatus.

    Directory of Open Access Journals (Sweden)

    Peter W Alderks

    Full Text Available The ontogeny of hearing in fishes has become a major interest among bioacoustics researchers studying fish behavior and sensory ecology. Most fish begin to detect acoustic stimuli during the larval stage which can be important for navigation, predator avoidance and settlement, however relatively little is known about the hearing capabilities of larval fishes. We characterized the acoustically evoked behavioral response (AEBR in the plainfin midshipman fish, Porichthys notatus, and used this innate startle-like response to characterize this species' auditory capability during larval development. Age and size of larval midshipman were highly correlated (r(2 = 0.92. The AEBR was first observed in larvae at 1.4 cm TL. At a size ≥ 1.8 cm TL, all larvae responded to a broadband stimulus of 154 dB re1 µPa or -15.2 dB re 1 g (z-axis. Lowest AEBR thresholds were 140-150 dB re 1 µPa or -33 to -23 dB re 1 g for frequencies below 225 Hz. Larval fish with size ranges of 1.9-2.4 cm TL had significantly lower best evoked frequencies than the other tested size groups. We also investigated the development of the lateral line organ and its function in mediating the AEBR. The lateral line organ is likely involved in mediating the AEBR but not necessary to evoke the startle-like response. The midshipman auditory and lateral line systems are functional during early development when the larvae are in the nest and the auditory system appears to have similar tuning characteristics throughout all life history stages.

  15. Development of the acoustically evoked behavioral response in larval plainfin midshipman fish, Porichthys notatus.

    Science.gov (United States)

    Alderks, Peter W; Sisneros, Joseph A

    2013-01-01

    The ontogeny of hearing in fishes has become a major interest among bioacoustics researchers studying fish behavior and sensory ecology. Most fish begin to detect acoustic stimuli during the larval stage which can be important for navigation, predator avoidance and settlement, however relatively little is known about the hearing capabilities of larval fishes. We characterized the acoustically evoked behavioral response (AEBR) in the plainfin midshipman fish, Porichthys notatus, and used this innate startle-like response to characterize this species' auditory capability during larval development. Age and size of larval midshipman were highly correlated (r(2) = 0.92). The AEBR was first observed in larvae at 1.4 cm TL. At a size ≥ 1.8 cm TL, all larvae responded to a broadband stimulus of 154 dB re1 µPa or -15.2 dB re 1 g (z-axis). Lowest AEBR thresholds were 140-150 dB re 1 µPa or -33 to -23 dB re 1 g for frequencies below 225 Hz. Larval fish with size ranges of 1.9-2.4 cm TL had significantly lower best evoked frequencies than the other tested size groups. We also investigated the development of the lateral line organ and its function in mediating the AEBR. The lateral line organ is likely involved in mediating the AEBR but not necessary to evoke the startle-like response. The midshipman auditory and lateral line systems are functional during early development when the larvae are in the nest and the auditory system appears to have similar tuning characteristics throughout all life history stages.

  16. Regularity increases middle latency evoked and late induced beta brain response following proprioceptive stimulation

    DEFF Research Database (Denmark)

    Arnfred, Sidse M.; Hansen, Lars Kai; Parnas, Josef

    2008-01-01

    as an indication of increased readiness. This is achieved through detailed analysis of both evoked and induced responses in the time-frequency domain. Electroencephalography in a 64 channels montage was recorded in four-teen healthy subjects. Two paradigms were explored: A Regular alternation between hand......). After initial exploration of the AvVVT and Induced collapsed files of all subjects using two-way factor analyses (Non-Negative Matrix Factorization), further data decomposition was performed in restricted windows of interest (WOI). Main effects of side of stimulation, onset or offset, regularity...

  17. Analog and digital filtering of the brain stem auditory evoked response.

    Science.gov (United States)

    Kavanagh, K T; Franks, R

    1989-07-01

    This study compared the filtering effects on the auditory evoked potential of zero and standard phase shift digital filters (the former was a mathematical approximation of a standard Butterworth filter). Conventional filters were found to decrease the height of the evoked response in the majority of waveforms compared to zero phase shift filters. A 36-dB/octave zero phase shift high pass filter with a cutoff frequency of 100 Hz produced a 16% reduction in wave amplitude compared to the unfiltered control. A 36-dB/octave, 100-Hz standard phase shift high pass filter produced a 41% reduction, and a 12-dB/octave, 150-Hz standard phase shift high pass filter produced a 38% reduction in wave amplitude compared to the unfiltered control. A decrease in the mean along with an increase in the variability of wave IV/V latency was also noted with conventional compared to zero phase shift filters. The increase in the variability of the latency measurement was due to the difficulty in waveform identification caused by the phase shift distortion of the conventional filter along with the variable decrease in wave latency caused by phase shifting responses with different spectral content. Our results indicated that a zero phase shift high pass filter of 100 Hz was the most desirable filter studied for the mitigation of spontaneous brain activity and random muscle artifact.

  18. Concurrent OCT imaging of stimulus evoked retinal neural activation and hemodynamic responses

    Science.gov (United States)

    Son, Taeyoon; Wang, Benquan; Lu, Yiming; Chen, Yanjun; Cao, Dingcai; Yao, Xincheng

    2017-02-01

    It is well established that major retinal diseases involve distortions of the retinal neural physiology and blood vascular structures. However, the details of distortions in retinal neurovascular coupling associated with major eye diseases are not well understood. In this study, a multi-modal optical coherence tomography (OCT) imaging system was developed to enable concurrent imaging of retinal neural activity and vascular hemodynamics. Flicker light stimulation was applied to mouse retinas to evoke retinal neural responses and hemodynamic changes. The OCT images were acquired continuously during the pre-stimulation, light-stimulation, and post-stimulation phases. Stimulus-evoked intrinsic optical signals (IOSs) and hemodynamic changes were observed over time in blood-free and blood regions, respectively. Rapid IOSs change occurred almost immediately after stimulation. Both positive and negative signals were observed in adjacent retinal areas. The hemodynamic changes showed time delays after stimulation. The signal magnitudes induced by light stimulation were observed in blood regions and did not show significant changes in blood-free regions. These differences may arise from different mechanisms in blood vessels and neural tissues in response to light stimulation. These characteristics agreed well with our previous observations in mouse retinas. Further development of the multimodal OCT may provide a new imaging method for studying how retinal structures and metabolic and neural functions are affected by age-related macular degeneration (AMD), glaucoma, diabetic retinopathy (DR), and other diseases, which promises novel noninvasive biomarkers for early disease detection and reliable treatment evaluations of eye diseases.

  19. Inattentional Deafness: Visual Load Leads to Time-Specific Suppression of Auditory Evoked Responses.

    Science.gov (United States)

    Molloy, Katharine; Griffiths, Timothy D; Chait, Maria; Lavie, Nilli

    2015-12-09

    Due to capacity limits on perception, conditions of high perceptual load lead to reduced processing of unattended stimuli (Lavie et al., 2014). Accumulating work demonstrates the effects of visual perceptual load on visual cortex responses, but the effects on auditory processing remain poorly understood. Here we establish the neural mechanisms underlying "inattentional deafness"--the failure to perceive auditory stimuli under high visual perceptual load. Participants performed a visual search task of low (target dissimilar to nontarget items) or high (target similar to nontarget items) load. On a random subset (50%) of trials, irrelevant tones were presented concurrently with the visual stimuli. Brain activity was recorded with magnetoencephalography, and time-locked responses to the visual search array and to the incidental presence of unattended tones were assessed. High, compared to low, perceptual load led to increased early visual evoked responses (within 100 ms from onset). This was accompanied by reduced early (∼ 100 ms from tone onset) auditory evoked activity in superior temporal sulcus and posterior middle temporal gyrus. A later suppression of the P3 "awareness" response to the tones was also observed under high load. A behavioral experiment revealed reduced tone detection sensitivity under high visual load, indicating that the reduction in neural responses was indeed associated with reduced awareness of the sounds. These findings support a neural account of shared audiovisual resources, which, when depleted under load, leads to failures of sensory perception and awareness. The present work clarifies the neural underpinning of inattentional deafness under high visual load. The findings of near-simultaneous load effects on both visual and auditory evoked responses suggest shared audiovisual processing capacity. Temporary depletion of shared capacity in perceptually demanding visual tasks leads to a momentary reduction in sensory processing of auditory

  20. Objective Audiometry using Ear-EEG

    DEFF Research Database (Denmark)

    Christensen, Christian Bech; Kidmose, Preben

    Recently, a novel electroencephalographic (EEG) method called ear-EEG [1], that enable recording of auditory evoked potentials (AEPs) from a personalized earpiece was introduced. Initial investigations show that well established AEPs, such as ASSR and P1-N1-P2 complex can be observed from ear-EEG...

  1. Effect of gabazine on sensory stimulation train evoked response in mouse cerebellar Purkinje cells.

    Science.gov (United States)

    Bing, Yan-Hua; Jin, Wen-Zhe; Sun, Lei; Chu, Chun-Ping; Qiu, De-Lai

    2015-02-01

    Cerebellar Purkinje cells (PCs) respond to sensory stimulation via climbing fiber and mossy fiber-granule cell pathways, and generate motor-related outputs according to internal rules of integration and computation. However, the dynamic properties of sensory information processed by PC in mouse cerebellar cortex are currently unclear. In the present study, we examined the effects of the gamma-aminobutyric acid receptor A (GABA(A)) antagonist, gabazine, on the stimulation train on the simple spike firing of PCs by electrophysiological recordings method. Our data showed that the output of cerebellar PCs could be significantly affected by all pulses of the low-frequency (0.25 -2 Hz) sensory stimulation train, but only by the 1st and 2nd pulses of the high-frequency (≥ 4 Hz) sensory stimulation train. In the presence of gabazine (20 μM), each pulse of 1 Hz facial stimulation evoked simple spike firing in the PCs, but only the 1st and 2nd pulses of 4 Hz stimulation induced an increase in simple spike firing of the PCs. These results indicated that GABAA receptor-mediated inhibition did not significantly affect the frequency properties of sensory stimulation evoked responses in the mouse cerebellar PCs.

  2. Voluntary muscle activation and evoked volitional-wave responses as a function of torque.

    Science.gov (United States)

    Hight, Robert E; Quarshie, Alwyn T; Black, Christopher D

    2018-08-01

    This study employed a unique stimulation paradigm which allowed for the simultaneous assessment of voluntary activation levels (VA) via twitch-interpolation, and the evoked V-wave responses of the plantar flexors during submaximal and maximal contractions. Test-retest reliability was also examined. Fourteen participants repeated a stimulation protocol over four visits to assess VA and evoked V-wave amplitude across torque levels ranging from 20% to 100% MVC. MVC torque and EMG amplitude were also measured. VA increased nonlinearly with torque production and plateaued by 80% MVC. V-wave amplitude increased linearly from 20% to 100% MVC. There were no differences in any dependent variable across visits (p > 0.05). VA demonstrated moderate to substantial reliability across all torque levels (ICC = 0.76-0.91) while V-wave amplitude exhibited fair to moderate reliability from 40% to 100% (ICC = 0.48-0.74). We were able to reliably collect VA and the V-wave simultaneously in the plantar flexors. Collection of VA and V-wave during the same contraction provides distinct information regarding the contribution of motor-unit recruitment and descending cortico-spinal drive/excitability to force production. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Auditory evoked responses to binaural beat illusion: stimulus generation and the derivation of the Binaural Interaction Component (BIC).

    Science.gov (United States)

    Ozdamar, Ozcan; Bohorquez, Jorge; Mihajloski, Todor; Yavuz, Erdem; Lachowska, Magdalena

    2011-01-01

    Electrophysiological indices of auditory binaural beats illusions are studied using late latency evoked responses. Binaural beats are generated by continuous monaural FM tones with slightly different ascending and descending frequencies lasting about 25 ms presented at 1 sec intervals. Frequency changes are carefully adjusted to avoid any creation of abrupt waveform changes. Binaural Interaction Component (BIC) analysis is used to separate the neural responses due to binaural involvement. The results show that the transient auditory evoked responses can be obtained from the auditory illusion of binaural beats.

  4. Automated audiometry using apple iOS-based application technology.

    Science.gov (United States)

    Foulad, Allen; Bui, Peggy; Djalilian, Hamid

    2013-11-01

    The aim of this study is to determine the feasibility of an Apple iOS-based automated hearing testing application and to compare its accuracy with conventional audiometry. Prospective diagnostic study. Setting Academic medical center. An iOS-based software application was developed to perform automated pure-tone hearing testing on the iPhone, iPod touch, and iPad. To assess for device variations and compatibility, preliminary work was performed to compare the standardized sound output (dB) of various Apple device and headset combinations. Forty-two subjects underwent automated iOS-based hearing testing in a sound booth, automated iOS-based hearing testing in a quiet room, and conventional manual audiometry. The maximum difference in sound intensity between various Apple device and headset combinations was 4 dB. On average, 96% (95% confidence interval [CI], 91%-100%) of the threshold values obtained using the automated test in a sound booth were within 10 dB of the corresponding threshold values obtained using conventional audiometry. When the automated test was performed in a quiet room, 94% (95% CI, 87%-100%) of the threshold values were within 10 dB of the threshold values obtained using conventional audiometry. Under standardized testing conditions, 90% of the subjects preferred iOS-based audiometry as opposed to conventional audiometry. Apple iOS-based devices provide a platform for automated air conduction audiometry without requiring extra equipment and yield hearing test results that approach those of conventional audiometry.

  5. Cortical stimulation evokes abnormal responses in the dopamine-depleted rat basal ganglia.

    Science.gov (United States)

    Kita, Hitoshi; Kita, Takako

    2011-07-13

    The motor cortex (MC) sends massive projections to the basal ganglia. Motor disabilities in patients and animal models of Parkinson's disease (PD) may be caused by dopamine (DA)-depleted basal ganglia that abnormally process the information originating from MC. To study how DA depletion alters signal transfer in the basal ganglia, MC stimulation-induced (MC-induced) unitary responses were recorded from the basal ganglia of control and 6-hydroxydopamine-treated hemi-parkinsonian rats anesthetized with isoflurane. This report describes new findings about how DA depletion alters MC-induced responses. MC stimulation evokes an excitation in normally quiescent striatal (Str) neurons projecting to the globus pallidus external segment (GPe). After DA-depletion, the spontaneous firing of Str-GPe neurons increases, and MC stimulation evokes a shorter latency excitation followed by a long-lasting inhibition that was invisible under normal conditions. The increased firing activity and the newly exposed long inhibition generate tonic inhibition and a disfacilitation in GPe. The disfacilitation in GPe is then amplified in basal ganglia circuitry and generates a powerful long inhibition in the basal ganglia output nucleus, the globus pallidus internal segment. Intra-Str injections of a behaviorally effective dose of DA precursor l-3,4-dihydroxyphenylalanine effectively reversed these changes. These newly observed mechanisms also support the generation of pauses and burst activity commonly observed in the basal ganglia of parkinsonian subjects. These results suggest that the generation of abnormal response sequences in the basal ganglia contributes to the development of motor disabilities in PD and that intra-Str DA supplements effectively suppress abnormal signal transfer.

  6. A5 region modulation of the cardiorespiratory responses evoked from parabrachial cell bodies in the anaesthetised rat.

    Science.gov (United States)

    Dawid Milner, M S; Lara, J P; López de Miguel, M P; López-González, M V; Spyer, K M; González-Barón, S

    2003-08-22

    We have examined the importance of the A5 region modulating cardiorespiratory responses evoked from the parabrachial complex (PB) in spontaneously breathing rats. Cardiorespiratory changes were analyzed in response to electrical stimulation and glutamate microinjections into the PB (10-20 nl, 1-2 nmol) before and after ipsilateral microinjection of muscimol (50 nl, 0.25 nmol) or lidocaine (50 nl, 0.5 nmol) within the A5 region. Stimulation of medial parabrachial and Kölliker-Fuse nuclei (mPB-KF) evoked a decrease in respiratory rate (Pinteractions between A5 and PB, extracellular recordings of putative A5 neurones were obtained during PB stimulation. Eighty-three A5 cells were recorded, 35 were activated from the mPB-KF (42%). The results indicate that neurones of the A5 region participate in the cardiorespiratory response evoked from the different regions of the PB complex. The possible mechanisms involved in these interactions are discussed.

  7. Modulation of Visually Evoked Postural Responses by Contextual Visual, Haptic and Auditory Information: A ‘Virtual Reality Check’

    Science.gov (United States)

    Meyer, Georg F.; Shao, Fei; White, Mark D.; Hopkins, Carl; Robotham, Antony J.

    2013-01-01

    Externally generated visual motion signals can cause the illusion of self-motion in space (vection) and corresponding visually evoked postural responses (VEPR). These VEPRs are not simple responses to optokinetic stimulation, but are modulated by the configuration of the environment. The aim of this paper is to explore what factors modulate VEPRs in a high quality virtual reality (VR) environment where real and virtual foreground objects served as static visual, auditory and haptic reference points. Data from four experiments on visually evoked postural responses show that: 1) visually evoked postural sway in the lateral direction is modulated by the presence of static anchor points that can be haptic, visual and auditory reference signals; 2) real objects and their matching virtual reality representations as visual anchors have different effects on postural sway; 3) visual motion in the anterior-posterior plane induces robust postural responses that are not modulated by the presence of reference signals or the reality of objects that can serve as visual anchors in the scene. We conclude that automatic postural responses for laterally moving visual stimuli are strongly influenced by the configuration and interpretation of the environment and draw on multisensory representations. Different postural responses were observed for real and virtual visual reference objects. On the basis that automatic visually evoked postural responses in high fidelity virtual environments should mimic those seen in real situations we propose to use the observed effect as a robust objective test for presence and fidelity in VR. PMID:23840760

  8. Modulation of visually evoked postural responses by contextual visual, haptic and auditory information: a 'virtual reality check'.

    Directory of Open Access Journals (Sweden)

    Georg F Meyer

    Full Text Available Externally generated visual motion signals can cause the illusion of self-motion in space (vection and corresponding visually evoked postural responses (VEPR. These VEPRs are not simple responses to optokinetic stimulation, but are modulated by the configuration of the environment. The aim of this paper is to explore what factors modulate VEPRs in a high quality virtual reality (VR environment where real and virtual foreground objects served as static visual, auditory and haptic reference points. Data from four experiments on visually evoked postural responses show that: 1 visually evoked postural sway in the lateral direction is modulated by the presence of static anchor points that can be haptic, visual and auditory reference signals; 2 real objects and their matching virtual reality representations as visual anchors have different effects on postural sway; 3 visual motion in the anterior-posterior plane induces robust postural responses that are not modulated by the presence of reference signals or the reality of objects that can serve as visual anchors in the scene. We conclude that automatic postural responses for laterally moving visual stimuli are strongly influenced by the configuration and interpretation of the environment and draw on multisensory representations. Different postural responses were observed for real and virtual visual reference objects. On the basis that automatic visually evoked postural responses in high fidelity virtual environments should mimic those seen in real situations we propose to use the observed effect as a robust objective test for presence and fidelity in VR.

  9. Modulation of visually evoked postural responses by contextual visual, haptic and auditory information: a 'virtual reality check'.

    Science.gov (United States)

    Meyer, Georg F; Shao, Fei; White, Mark D; Hopkins, Carl; Robotham, Antony J

    2013-01-01

    Externally generated visual motion signals can cause the illusion of self-motion in space (vection) and corresponding visually evoked postural responses (VEPR). These VEPRs are not simple responses to optokinetic stimulation, but are modulated by the configuration of the environment. The aim of this paper is to explore what factors modulate VEPRs in a high quality virtual reality (VR) environment where real and virtual foreground objects served as static visual, auditory and haptic reference points. Data from four experiments on visually evoked postural responses show that: 1) visually evoked postural sway in the lateral direction is modulated by the presence of static anchor points that can be haptic, visual and auditory reference signals; 2) real objects and their matching virtual reality representations as visual anchors have different effects on postural sway; 3) visual motion in the anterior-posterior plane induces robust postural responses that are not modulated by the presence of reference signals or the reality of objects that can serve as visual anchors in the scene. We conclude that automatic postural responses for laterally moving visual stimuli are strongly influenced by the configuration and interpretation of the environment and draw on multisensory representations. Different postural responses were observed for real and virtual visual reference objects. On the basis that automatic visually evoked postural responses in high fidelity virtual environments should mimic those seen in real situations we propose to use the observed effect as a robust objective test for presence and fidelity in VR.

  10. A novel method for extraction of neural response from single channel cochlear implant auditory evoked potentials.

    Science.gov (United States)

    Sinkiewicz, Daniel; Friesen, Lendra; Ghoraani, Behnaz

    2017-02-01

    Cortical auditory evoked potentials (CAEP) are used to evaluate cochlear implant (CI) patient auditory pathways, but the CI device produces an electrical artifact, which obscures the relevant information in the neural response. Currently there are multiple methods, which attempt to recover the neural response from the contaminated CAEP, but there is no gold standard, which can quantitatively confirm the effectiveness of these methods. To address this crucial shortcoming, we develop a wavelet-based method to quantify the amount of artifact energy in the neural response. In addition, a novel technique for extracting the neural response from single channel CAEPs is proposed. The new method uses matching pursuit (MP) based feature extraction to represent the contaminated CAEP in a feature space, and support vector machines (SVM) to classify the components as normal hearing (NH) or artifact. The NH components are combined to recover the neural response without artifact energy, as verified using the evaluation tool. Although it needs some further evaluation, this approach is a promising method of electrical artifact removal from CAEPs. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  11. Influenza A infection attenuates relaxation responses of mouse tracheal smooth muscle evoked by acrolein.

    Science.gov (United States)

    Cheah, Esther Y; Mann, Tracy S; Burcham, Philip C; Henry, Peter J

    2015-02-15

    The airway epithelium is an important source of relaxant mediators, and damage to the epithelium caused by respiratory tract viruses may contribute to airway hyperreactivity. The aim of this study was to determine whether influenza A-induced epithelial damage would modulate relaxation responses evoked by acrolein, a toxic and prevalent component of smoke. Male BALB/c mice were inoculated intranasally with influenza A/PR-8/34 (VIRUS-infected) or allantoic fluid (SHAM-infected). On day 4 post-inoculation, isometric tension recording studies were conducted on carbachol pre-contracted tracheal segments isolated from VIRUS and SHAM mice. Relaxant responses to acrolein (30 μM) were markedly smaller in VIRUS segments compared to SHAM segments (2 ± 1% relaxation vs. 28 ± 5%, n=14, pacrolein and SP were reduced in VIRUS segments (>35% reduction, n=6, pacrolein were profoundly diminished in tracheal segments isolated from influenza A-infected mice. The mechanism through which influenza A infection attenuates this response appears to involve reduced production of PGE2 in response to SP due to epithelial cell loss, and may provide insight into the airway hyperreactivity observed with influenza A infection. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Common cortical responses evoked by appearance, disappearance and change of the human face

    Directory of Open Access Journals (Sweden)

    Kida Tetsuo

    2009-04-01

    Full Text Available Abstract Background To segregate luminance-related, face-related and non-specific components involved in spatio-temporal dynamics of cortical activations to a face stimulus, we recorded cortical responses to face appearance (Onset, disappearance (Offset, and change (Change using magnetoencephalography. Results Activity in and around the primary visual cortex (V1/V2 showed luminance-dependent behavior. Any of the three events evoked activity in the middle occipital gyrus (MOG at 150 ms and temporo-parietal junction (TPJ at 250 ms after the onset of each event. Onset and Change activated the fusiform gyrus (FG, while Offset did not. This FG activation showed a triphasic waveform, consistent with results of intracranial recordings in humans. Conclusion Analysis employed in this study successfully segregated four different elements involved in the spatio-temporal dynamics of cortical activations in response to a face stimulus. The results show the responses of MOG and TPJ to be associated with non-specific processes, such as the detection of abrupt changes or exogenous attention. Activity in FG corresponds to a face-specific response recorded by intracranial studies, and that in V1/V2 is related to a change in luminance.

  13. Synaptic responses evoked by tactile stimuli in Purkinje cells in mouse cerebellar cortex Crus II in vivo.

    Directory of Open Access Journals (Sweden)

    Chun-Ping Chu

    Full Text Available Sensory stimuli evoke responses in cerebellar Purkinje cells (PCs via the mossy fiber-granule cell pathway. However, the properties of synaptic responses evoked by tactile stimulation in cerebellar PCs are unknown. The present study investigated the synaptic responses of PCs in response to an air-puff stimulation on the ipsilateral whisker pad in urethane-anesthetized mice.Thirty-three PCs were recorded from 48 urethane-anesthetized adult (6-8-week-old HA/ICR mice by somatic or dendritic patch-clamp recording and pharmacological methods. Tactile stimulation to the ipsilateral whisker pad was delivered by an air-puff through a 12-gauge stainless steel tube connected with a pressurized injection system. Under current-clamp conditions (I = 0, the air-puff stimulation evoked strong inhibitory postsynaptic potentials (IPSPs in the somata of PCs. Application of SR95531, a specific GABA(A receptor antagonist, blocked IPSPs and revealed stimulation-evoked simple spike firing. Under voltage-clamp conditions, tactile stimulation evoked a sequence of transient inward currents followed by strong outward currents in the somata and dendrites in PCs. Application of SR95531 blocked outward currents and revealed excitatory postsynaptic currents (EPSCs in somata and a temporal summation of parallel fiber EPSCs in PC dendrites. We also demonstrated that PCs respond to both the onset and offset of the air-puff stimulation.These findings indicated that tactile stimulation induced asynchronous parallel fiber excitatory inputs onto the dendrites of PCs, and failed to evoke strong EPSCs and spike firing in PCs, but induced the rapid activation of strong GABA(A receptor-mediated inhibitory postsynaptic currents in the somata and dendrites of PCs in the cerebellar cortex Crus II in urethane-anesthetized mice.

  14. The Duration of Motor Responses Evoked with Intracortical Microstimulation in Rats Is Primarily Modulated by Stimulus Amplitude and Train Duration.

    Directory of Open Access Journals (Sweden)

    Meghan Watson

    Full Text Available Microstimulation of brain tissue plays a key role in a variety of sensory prosthetics, clinical therapies and research applications, however the effects of stimulation parameters on the responses they evoke remain widely unknown. In particular, the effects of parameters when delivered in the form of a stimulus train as opposed to a single pulse are not well understood despite the prevalence of stimulus train use. We aimed to investigate the contribution of each parameter of a stimulus train to the duration of the motor responses they evoke in forelimb muscles. We used constant-current, biphasic, square wave pulse trains in acute terminal experiments under ketamine anaesthesia. Stimulation parameters were systematically tested in a pair-wise fashion in the caudal forelimb region of the motor cortex in 7 Sprague-Dawley rats while motor evoked potential (MEP recordings from the forelimb were used to quantify the influence of each parameter in the train. Stimulus amplitude and train duration were shown to be the dominant parameters responsible for increasing the total duration of the MEP, while interphase interval had no effect. Increasing stimulus frequency from 100-200 Hz or pulse duration from 0.18-0.34 ms were also effective methods of extending response durations. Response duration was strongly correlated with peak time and amplitude. Our findings suggest that motor cortex intracortical microstimulations are often conducted at a higher frequency rate and longer train duration than necessary to evoke maximal response duration. We demonstrated that the temporal properties of the evoked response can be both predicted by certain response metrics and modulated via alterations to the stimulation signal parameters.

  15. Speech-evoked brainstem frequency-following responses during verbal transformations due to word repetition.

    Science.gov (United States)

    Galbraith, G C; Jhaveri, S P; Kuo, J

    1997-01-01

    Speech-evoked brainstem frequency-following responses (FFRs) were recorded to repeated presentations of the same stimulus word. Word repetition results in illusory verbal transformations (VTs) in which word perceptions can differ markedly from the actual stimulus. Previous behavioral studies support an explanation of VTs based on changes in arousal or attention. Horizontal and vertical dipole FFRs were recorded to assess responses with putative origins in the auditory nerve and central brainstem, respectively. FFRs were recorded from 18 subjects when they correctly heard the stimulus and when they reported VTs. Although horizontal and vertical dipole FFRs showed different frequency response patterns, dipoles did not differentiate between perceptual conditions. However, when subjects were divided into low- and high-VT groups (based on percentage of VT trials), a significant Condition x Group interaction resulted. This interaction showed the largest difference in FFR amplitudes during VT trials, with the low-VT group showing increased amplitudes, and the high-VT group showing decreased amplitudes, relative to trials in which the stimulus was correctly perceived. These results demonstrate measurable subject differences in the early processing of complex signals, due to possible effects of attention on the brainstem FFR. The present research shows that the FFR is useful in understanding human language as it is coded and processed in the brainstem auditory pathway.

  16. Simultaneous recording of electroretinogram and visual evoked response. Focal stimulation under direct observation.

    Science.gov (United States)

    Hirose, T; Miyake, Y; Hara, A

    1977-07-01

    A system has been tested that allows simultaneous recording of the retinal response (electroretinogram [ERG]) and the occipital response (visual evoked response [VER]) with focal photic stimulation of the retina under direct observation of the fundus. A helium-neon gas laser is used as a stimulus source. The laser is chopped either by a pen motor or a rotating disc. The laser is attached to a biomicroscope through which the examiner can observe the fundus of the subject during the entire recording session. The optically clear contact lens is made with a flat surface that neutralizes refraction due to the cornea, thereby allowing fundus observation by microscope. Two metal wires mounted inside and outside of the lens serve as the electrode for the ERG. Graticules consisting of concentric circles and radial lines are projected onto the subject's fundus, providing a pattern that the examiner can use to determine the exact location to be stimulated in the fundus. With proper adjustment of stimulus and background illumination, local ERG and VER can be recorded simultaneously by stimulating the macula.

  17. Central amygdalar nucleus treated with orexin neuropeptides evoke differing feeding and grooming responses in the hamster.

    Science.gov (United States)

    Alò, Raffaella; Avolio, Ennio; Mele, Maria; Di Vito, Anna; Canonaco, Marcello

    2015-04-15

    Interaction of the orexinergic (ORXergic) neuronal system with the excitatory (glutamate, l-Glu) or the inhibitory (GABA) neurosignaling complexes evokes major homeostatic physiological events. In this study, effects of the two ORXergic neuropeptides (ORX-A/B) on their receptor (ORX-2R) expression changes were correlated to feeding and grooming actions of the hibernating hamster (Mesocricetus auratus). Infusion of the central amygdala nucleus (CeA) with ORX-A caused hamsters to consume notable quantities of food, while ORX-B accounted for a moderate increase. Interestingly the latter neuropeptide was responsible for greater frequencies of grooming with respect to both controls and the hamsters treated with ORX-A. These distinct behavioral changes turned out to be even greater in the presence of l-Glu agonist (NMDA) while the α1 GABAA receptor agonist (zolpidem, Zol) greatly reduced ORX-A-dependent feeding bouts. Moreover, ORX-A+NMDA mainly promoted greater ORX-2R expression levels with respect to ORX-A-treated hamsters while ORX-B+Zol was instead largely responsible for a down-regulatory trend. Overall, these features point to CeA ORX-2R sites as key sensory limbic elements capable of regulating eating and grooming responses, which may provide useful insights regarding the type of molecular mechanism(s) operating during feeding bouts. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Evoked response of heart rate variability using short-duration white noise.

    Science.gov (United States)

    Lee, Guo-She; Chen, Mei-Ling; Wang, Gin-You

    2010-06-24

    To investigate and to establish a model for evaluation of the instant cardiovascular responses to the noises of low-to-moderate intensity, sixteen healthy subjects were enrolled. The white noises were binaurally presented with a supra-aural earphone. The test intensities of noises were no noise, 50, 60, 70 and 80 dBA. Each noise was continued for 5 min and the electrocardiogram was simultaneously recorded. The cardiac autonomic responses were evaluated using power spectral analysis of the R-R contour obtained from digital signal processing of the ECG tracings. The result showed that the mean heart rate and mean blood pressure did not change significantly with the noises. However, the low-frequency power (LF) which represents cardiac autonomic modulations and the ratio (LHR) of LF to high-frequency power (HF) which reflects cardiac sympathetic modulations were significantly greater in the noise intensity of 50, 60, 70 and 80dBA (pnoise intensity (rho=0.90, pwhite noises can be detected using power spectral analysis of heart rate variability and the evoked responses may provide a sensitive way to evaluate the instant effect of noise to humans.

  19. Gender differences in rival characteristics that evoke jealousy in response to emotional versus sexual infidelity

    NARCIS (Netherlands)

    Buunk, Abraham (Bram); Dijkstra, Pieternel

    2004-01-01

    Previous research has shown that in men jealousy is evoked more by a rival's status-related characteristics than in women, whereas in women jealousy is evoked more by a rival's physical attractiveness than in men. The present study examined whether the occurrence of this gender difference depends

  20. Predictive value of neurological examination for early cortical responses to somatosensory evoked potentials in patients with postanoxic coma

    NARCIS (Netherlands)

    Bouwes, Aline; Binnekade, Jan M.; Verbaan, Bart W.; Zandbergen, Eveline G. J.; Koelman, Johannes H. T. M.; Weinstein, Henry C.; Hijdra, Albert; Horn, Janneke

    2012-01-01

    Bilateral absence of cortical N20 responses of median nerve somatosensory evoked potentials (SEP) predicts poor neurological outcome in postanoxic coma after cardiopulmonary resuscitation (CPR). Although SEP is easy to perform and available in most hospitals, it is worthwhile to know how

  1. Middle components of the auditory evoked response in bilateral temporal lobe lesions. Report on a patient with auditory agnosia

    DEFF Research Database (Denmark)

    Parving, A; Salomon, G; Elberling, Claus

    1980-01-01

    An investigation of the middle components of the auditory evoked response (10--50 msec post-stimulus) in a patient with auditory agnosia is reported. Bilateral temporal lobe infarctions were proved by means of brain scintigraphy, CAT scanning, and regional cerebral blood flow measurements...

  2. Neural responses to nostalgia-evoking music modeled by elements of dynamic musical structure and individual differences in affective traits.

    Science.gov (United States)

    Barrett, Frederick S; Janata, Petr

    2016-10-01

    Nostalgia is an emotion that is most commonly associated with personally and socially relevant memories. It is primarily positive in valence and is readily evoked by music. It is also an idiosyncratic experience that varies between individuals based on affective traits. We identified frontal, limbic, paralimbic, and midbrain brain regions in which the strength of the relationship between ratings of nostalgia evoked by music and blood-oxygen-level-dependent (BOLD) signal was predicted by affective personality measures (nostalgia proneness and the sadness scale of the Affective Neuroscience Personality Scales) that are known to modulate the strength of nostalgic experiences. We also identified brain areas including the inferior frontal gyrus, substantia nigra, cerebellum, and insula in which time-varying BOLD activity correlated more strongly with the time-varying tonal structure of nostalgia-evoking music than with music that evoked no or little nostalgia. These findings illustrate one way in which the reward and emotion regulation networks of the brain are recruited during the experiencing of complex emotional experiences triggered by music. These findings also highlight the importance of considering individual differences when examining the neural responses to strong and idiosyncratic emotional experiences. Finally, these findings provide a further demonstration of the use of time-varying stimulus-specific information in the investigation of music-evoked experiences. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Not all reading is alike: Task modulation of magnetic evoked response to visual word

    Directory of Open Access Journals (Sweden)

    Pavlova A. A.

    2017-09-01

    Full Text Available Background. Previous studies have shown that brain response to a written word depends on the task: whether the word is a target in a version of lexical decision task or should be read silently. Although this effect has been interpreted as an evidence for an interaction between word recognition processes and task demands, it also may be caused by greater attention allocation to the target word. Objective. We aimed to examine the task effect on brain response evoked by non- target written words. Design. Using MEG and magnetic source imaging, we compared spatial-temporal pattern of brain response elicited by a noun cue when it was read silently either without additional task (SR or with a requirement to produce an associated verb (VG. Results.The task demands penetrated into early (200-300 ms and late (500-800 ms stages of a word processing by enhancing brain response under VG versus SR condition. The cortical sources of the early response were localized to bilateral inferior occipitotemporal and anterior temporal cortex suggesting that more demanding VG task required elaborated lexical-semantic analysis. The late effect was observed in the associative auditory areas in middle and superior temporal gyri and in motor representation of articulators. Our results suggest that a remote goal plays a pivotal role in enhanced recruitment of cortical structures underlying orthographic, semantic and sensorimotor dimensions of written word perception from the early processing stages. Surprisingly, we found that to fulfil a more challenging goal the brain progressively engaged resources of the right hemisphere throughout all stages of silent reading. Conclusion. Our study demonstrates that a deeper processing of linguistic input amplifies activation of brain areas involved in integration of speech perception and production. This is consistent with theories that emphasize the role of sensorimotor integration in speech understanding.

  4. Modulation of electric brain responses evoked by pitch deviants through transcranial direct current stimulation.

    Science.gov (United States)

    Royal, Isabelle; Zendel, Benjamin Rich; Desjardins, Marie-Ève; Robitaille, Nicolas; Peretz, Isabelle

    2018-01-31

    Congenital amusia is a neurodevelopmental disorder, characterized by a difficulty detecting pitch deviation that is related to abnormal electrical brain responses. Abnormalities found along the right fronto-temporal pathway between the inferior frontal gyrus (IFG) and the auditory cortex (AC) are the likely neural mechanism responsible for amusia. To investigate the causal role of these regions during the detection of pitch deviants, we applied cathodal (inhibitory) transcranial direct current stimulation (tDCS) over right frontal and right temporal regions during separate testing sessions. We recorded participants' electrical brain activity (EEG) before and after tDCS stimulation while they performed a pitch change detection task. Relative to a sham condition, there was a decrease in P3 amplitude after cathodal stimulation over both frontal and temporal regions compared to pre-stimulation baseline. This decrease was associated with small pitch deviations (6.25 cents), but not large pitch deviations (200 cents). Overall, this demonstrates that using tDCS to disrupt regions around the IFG and AC can induce temporary changes in evoked brain activity when processing pitch deviants. These electrophysiological changes are similar to those observed in amusia and provide causal support for the connection between P3 and fronto-temporal brain regions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Baroreflexes of the rat. IV. ADN-evoked responses at the NTS.

    Science.gov (United States)

    Tang, Xiaorui; Dworkin, Barry R

    2007-12-01

    In a long-term (7-21 days) neuromuscular blocked (NMB) rat preparation, using precise single-pulse aortic depressor nerve (ADN) stimulation and stable chronic evoked response (ER) recordings from the dorsal-medial solitary nucleus (dmNTS), two different response patterns were observed: continuous and discrete. For the continuous pattern, activity began approximately 3 ms after the stimulus and persisted for 45 ms; for the discrete pattern, two complexes were separated by a gap from approximately 17 to 25 ms. The early complex was probably transmitted via A-fibers: it had a low stimulus current threshold and an average conduction velocity (CV) of 0.58-5.5 m/s; the high threshold late (HTL) complex had a CV = 0.26-0.58 m/s. The average stimulus amplitude-ER magnitude transduction curves for the A and HTL complexes were sigmoidal. For individual rats, in the linear range, mean r2 = 0.96 +/- 0.03 for both complexes. The average stimulus amplitude vs. the systolic blood pressure change (delta sBP) transduction curve was also approximately linear; however, for individual rats, the relationship was not consistently reliable: mean r2 = 0.48 +/- 0.19. Approximately 90% of recording sites had respiratory, and 50% had cardiac synchronism. The NMB preparation is useful for studying central baroreflex mechanisms that operate on time scales of days or weeks, such as adaptation and other kinds of neural plasticity.

  6. Conditioning stimulation techniques for enhancement of transcranially elicited evoked motor responses

    NARCIS (Netherlands)

    Journee, H. -L.; Polak, H. E.; De Kleuver, M.

    2007-01-01

    Introduction. - In spite of the use of multipulse, transcranial electrical stimulation (TES) is still insufficient in a subgroup of patients to elicit motor-evoked potentials during intraoperative neurophysiological monitoring (IONM). Classic facilitation methods used in awake patients are precluded

  7. Increased Evoked Potentials and Behavioral Indices in Response to Pain Among Individuals with Intellectual Disability.

    Science.gov (United States)

    Benromano, Tali; Pick, Chaim G; Granovsky, Yelena; Defrin, Ruth

    2017-09-01

    Previous studies on the sensitivity and reactivity to pain of individuals with intellectual disability (ID) are inconsistent. The inconsistency may result from the reliance on self-reports and facial expressions of pain that are subject to internal and external biases. The aim was therefore to evaluate the reactivity to pain of individuals with ID by recording pain-evoked potentials (EPs), here for the first time, and testing their association with behavioral pain indices. Forty-one healthy adults, 16 with mild-moderate ID and 25 controls. Subjects received series of phasic heat stimuli and rated their pain on self-report scales. Changes in facial expressions and in pain EPs were recorded and analyzed offline. Pain self-reports, facial expressions, and the N2P2 amplitudes of the EPs exhibited stimulus-response relationship with stimulation intensity in both groups. The facial expressions and N2P2 amplitudes of individuals with ID were increased and N2P2 latency prolonged compared with controls. N2P2 amplitudes correlated with self-reports only in controls. Individuals with ID are hypersensitive/reactive to pain, a finding bearing clinical implications. Although pain EPs may reflect a somewhat different aspect of pain than the behavioral indices do, there is evidence to support their use to record pain in noncommunicative individuals, pending further validation. © 2017 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  8. Multifocal visual evoked responses to dichoptic stimulation using virtual reality goggles: Multifocal VER to dichoptic stimulation.

    Science.gov (United States)

    Arvind, Hemamalini; Klistorner, Alexander; Graham, Stuart L; Grigg, John R

    2006-05-01

    Multifocal visual evoked potentials (mfVEPs) have demonstrated good diagnostic capabilities in glaucoma and optic neuritis. This study aimed at evaluating the possibility of simultaneously recording mfVEP for both eyes with dichoptic stimulation using virtual reality goggles and also to determine the stimulus characteristics that yield maximum amplitude. ten healthy volunteers were recruited and temporally sparse pattern pulse stimuli were presented dichoptically using virtual reality goggles. Experiment 1 involved recording responses to dichoptically presented checkerboard stimuli and also confirming true topographic representation by switching off specific segments. Experiment 2 involved monocular stimulation and comparison of amplitude with Experiment 1. In Experiment 3, orthogonally oriented gratings were dichoptically presented. Experiment 4 involved dichoptic presentation of checkerboard stimuli at different levels of sparseness (5.0 times/s, 2.5 times/s, 1.66 times/s and 1.25 times/s), where stimulation of corresponding segments of two eyes were separated by 16.7, 66.7,116.7 & 166.7 ms respectively. Experiment 1 demonstrated good traces in all regions and confirmed topographic representation. However, there was suppression of amplitude of responses to dichoptic stimulation by 17.9+/-5.4% compared to monocular stimulation. Experiment 3 demonstrated similar suppression between orthogonal and checkerboard stimuli (p = 0.08). Experiment 4 demonstrated maximum amplitude and least suppression (4.8%) with stimulation at 1.25 times/s with 166.7 ms separation between eyes. It is possible to record mfVEP for both eyes during dichoptic stimulation using virtual reality goggles, which present binocular simultaneous patterns driven by independent sequences. Interocular suppression can be almost eliminated by using a temporally sparse stimulus of 1.25 times/s with a separation of 166.7 ms between stimulation of corresponding segments of the two eyes.

  9. Refractory episodic vertigo: role of intratympanic gentamicin and vestibular evoked myogenic potentials.

    Science.gov (United States)

    Celis-Aguilar, Erika; Hinojosa-González, Ramon; Vales-Hidalgo, Olivia; Coutinho-Toledo, Heloisa

    Even today, the treatment of intractable vertigo remains a challenge. Vestibular ablation with intratympanic gentamicin stands as a good alternative in the management of refractory vertigo patients. To control intractable vertigo through complete saccular and horizontal canal vestibular ablation with intratympanic gentamicin treatment. Patients with refractory episodic vertigo were included. The inclusion criteria were: unilateral ear disease, moderate to profound sensorineural hearing loss, and failure to other treatments. Included patients underwent 0.5-0.8mL of gentamicin intratympanic application at a 30mg/mL concentration. Vestibular ablation was confirmed by the absence of response on cervical vestibular evoked myogenic potentials and no response on caloric tests. Audiometry, electronystagmography with iced water, and vestibular evoked myogenic potentials were performed in all patients. Ten patients were included; nine patients with Meniere's disease and one patient with (late onset) delayed hydrops. Nine patients showed an absent response on vestibular evoked myogenic potentials and no response on caloric tests. The only patient with low amplitude on cervical vestibular evoked myogenic potentials had vertigo recurrence. Vertigo control was achieved in 90% of the patients. One patient developed hearing loss >30dB. Cervical vestibular evoked myogenic potentials confirmed vestibular ablation in patients treated with intratympanic gentamicin. High-grade vertigo control was due to complete saccular and horizontal canal ablation (no response to iced water in electronystagmography and no response on cervical vestibular evoked myogenic potentials). Copyright © 2016 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  10. Role of the parabrachial complex in the cardiorespiratory response evoked from hypothalamic defense area stimulation in the anesthetized rat.

    Science.gov (United States)

    Díaz-Casares, Amelia; López-González, Manuel Víctor; Peinado-Aragonés, Carlos Antonio; Lara, José Pablo; González-Barón, Salvador; Dawid-Milner, Marc Stefan

    2009-07-07

    To analyze the role of parabrachial complex (PBc) in the modulation of cardiorespiratory response evoked from the hypothalamic defense area (HDA), cardiorespiratory changes were analyzed in spontaneously breathing anesthetised rats in response to electrical stimulation of the HDA (1 ms pulses, 30-50 microA, 100 Hz for 5 s) before and after the microinjection of muscimol (50 nl, 0.25 nmol, 5 s) within the PBc. HDA stimulation evoked an inspiratory facilitatory response, consisting of an increase in respiratory rate (pHDA stimulation (pHDA stimulation. The respiratory response persisted unchanged. Finally, extracellular recording of putative neurons from these regions were obtained during HDA stimulation to confirm functional interaction between HDA and parabrachial regions. 105 pontine cells were recorded during HDA stimulation, 57 from the lPB and 48 from the mPB-KF. In mPB-KF 34/48 (71%) and in lPB 38/57 (67%) cells were influenced from HDA. The results indicate that neurons from different regions of the PBc have an important function in mediating the cardiorespiratory response evoked from the HDA. The possible mechanisms involved in these interactions are discussed.

  11. Visual reinforcement audiometry: an Adobe Flash based approach.

    Science.gov (United States)

    Atherton, Steve

    2010-09-01

    Visual Reinforcement Audiometry (VRA) is a key behavioural test for young children. It is central to the diagnosis of hearing-impaired infants (1) . Habituation to the visual reinforcement can give misleading results. Medical Illustration ABM University Health Board has designed a collection of Flash animations to overcome this.

  12. Elevating Endogenous GABA Levels with GAT-1 Blockade Modulates Evoked but Not Induced Responses in Human Visual Cortex

    Science.gov (United States)

    Muthukumaraswamy, Suresh D; Myers, Jim F M; Wilson, Sue J; Nutt, David J; Hamandi, Khalid; Lingford-Hughes, Anne; Singh, Krish D

    2013-01-01

    The electroencephalographic/magnetoencephalographic (EEG/MEG) signal is generated primarily by the summation of the postsynaptic currents of cortical principal cells. At a microcircuit level, these glutamatergic principal cells are reciprocally connected to GABAergic interneurons. Here we investigated the relative sensitivity of visual evoked and induced responses to altered levels of endogenous GABAergic inhibition. To do this, we pharmacologically manipulated the GABA system using tiagabine, which blocks the synaptic GABA transporter 1, and so increases endogenous GABA levels. In a single-blinded and placebo-controlled crossover study of 15 healthy participants, we administered either 15 mg of tiagabine or a placebo. We recorded whole-head MEG, while participants viewed a visual grating stimulus, before, 1, 3 and 5 h post tiagabine ingestion. Using beamformer source localization, we reconstructed responses from early visual cortices. Our results showed no change in either stimulus-induced gamma-band amplitude increases or stimulus-induced alpha amplitude decreases. However, the same data showed a 45% reduction in the evoked response component at ∼80 ms. These data demonstrate that, in early visual cortex the evoked response shows a greater sensitivity compared with induced oscillations to pharmacologically increased endogenous GABA levels. We suggest that previous studies correlating GABA concentrations as measured by magnetic resonance spectroscopy to gamma oscillation frequency may reflect underlying variations such as interneuron/inhibitory synapse density rather than functional synaptic GABA concentrations. PMID:23361120

  13. Retinal, optic nerve and chiasmal function following radiation therapy demonstrated by visual evoked response testing

    International Nuclear Information System (INIS)

    Soni, A.B.; Constine, L.S.; Smith, D.; Palisca, M.; Ojomo, K.; Muhs, A.

    1997-01-01

    Purpose: To evaluate the tolerance of the retina, optic nerve, and optic chiasm to radiation doses conventionally used to treat patients with primary brain or pituitary tumors and to explore the character of detectable radiation effects. Visual evoked response (VER) testing is a noninvasive and sensitive method for identifying radiation injury to the visual system due to alterations in small vessel or myelin integrity. Such evaluations may increase our understanding of the threshold for and the pathogenesis of radiation injury. Materials and Methods: Twenty-four patients irradiated for brain or pituitary tumors between 1972 and 1996 had VER testing. Patients were included in study if the retina, optic nerves or chiasm were in the radiation (RT) field. At the time of RT patients ranged in age from 1.5 to 55 years (median 33). Mean doses were as follows: right retina, 29 Gy (range 10 - 60 Gy); left retina, 29.5 Gy (range 10 - 60 Gy); right optic nerve, 42.9 Gy (range 10 - 60 Gy); left optic nerve, 42.6 Gy (range 10 - 60 Gy); and optic chiasm, 48.2 Gy (range 10 - 65 Gy). Daily fractionation ranged from 1.5 to 1.8 Gy. Pattern VER testing distinguishes compressive or ischemic effects of tumor on the visual system from radiation retinopathy or optic neuropathy on the basis of the conduction amplitude and delay pattern. Prechiasm, chiasm, and postchiasm injuries are distinguishable by analyzing VER changes. Four evoked responses were obtained for each eye, each representing the average of 100 stimulus reversals. Results: VER was normal in 11 patients and abnormal in 13 patients. Only 2 patients (8%) had VER evidence of radiation injury to the visual system, one of whom had visual compromise. The other 11 abnormal patients had characteristic VER changes attributable to tumor or surgical damage. There was no significant difference in the radiation doses given to any subgroup. The one patient with radiation retinopathy had received 55-60 Gy to the posterior globe. Ten years

  14. Brainstem auditory evoked responses in an equine patient population: part I--adult horses.

    Science.gov (United States)

    Aleman, M; Holliday, T A; Nieto, J E; Williams, D C

    2014-01-01

    Brainstem auditory evoked response has been an underused diagnostic modality in horses as evidenced by few reports on the subject. To describe BAER findings, common clinical signs, and causes of hearing loss in adult horses. Study group, 76 horses; control group, 8 horses. Retrospective. BAER records from the Clinical Neurophysiology Laboratory were reviewed from the years of 1982 to 2013. Peak latencies, amplitudes, and interpeak intervals were measured when visible. Horses were grouped under disease categories. Descriptive statistics and a posthoc Bonferroni test were performed. Fifty-seven of 76 horses had BAER deficits. There was no breed or sex predisposition, with the exception of American Paint horses diagnosed with congenital sensorineural deafness. Eighty-six percent (n = 49/57) of the horses were younger than 16 years of age. The most common causes of BAER abnormalities were temporohyoid osteoarthropathy (THO, n = 20/20; abnormalities/total), congenital sensorineural deafness in Paint horses (17/17), multifocal brain disease (13/16), and otitis media/interna (4/4). Auditory loss was bilateral and unilateral in 74% (n = 42/57) and 26% (n = 15/57) of the horses, respectively. The most common causes of bilateral auditory loss were sensorineural deafness, THO, and multifocal brain disease whereas THO and otitis were the most common causes of unilateral deficits. Auditory deficits should be investigated in horses with altered behavior, THO, multifocal brain disease, otitis, and in horses with certain coat and eye color patterns. BAER testing is an objective and noninvasive diagnostic modality to assess auditory function in horses. Copyright © 2014 by the American College of Veterinary Internal Medicine.

  15. Objective assessment of spectral ripple discrimination in cochlear implant listeners using cortical evoked responses to an oddball paradigm.

    Science.gov (United States)

    Lopez Valdes, Alejandro; Mc Laughlin, Myles; Viani, Laura; Walshe, Peter; Smith, Jaclyn; Zeng, Fan-Gang; Reilly, Richard B

    2014-01-01

    Cochlear implants (CIs) can partially restore functional hearing in deaf individuals. However, multiple factors affect CI listener's speech perception, resulting in large performance differences. Non-speech based tests, such as spectral ripple discrimination, measure acoustic processing capabilities that are highly correlated with speech perception. Currently spectral ripple discrimination is measured using standard psychoacoustic methods, which require attentive listening and active response that can be difficult or even impossible in special patient populations. Here, a completely objective cortical evoked potential based method is developed and validated to assess spectral ripple discrimination in CI listeners. In 19 CI listeners, using an oddball paradigm, cortical evoked potential responses to standard and inverted spectrally rippled stimuli were measured. In the same subjects, psychoacoustic spectral ripple discrimination thresholds were also measured. A neural discrimination threshold was determined by systematically increasing the number of ripples per octave and determining the point at which there was no longer a significant difference between the evoked potential response to the standard and inverted stimuli. A correlation was found between the neural and the psychoacoustic discrimination thresholds (R2=0.60, p<0.01). This method can objectively assess CI spectral resolution performance, providing a potential tool for the evaluation and follow-up of CI listeners who have difficulty performing psychoacoustic tests, such as pediatric or new users.

  16. Circulatory response evoked by a 3 s bout of dynamic leg exercise in humans

    NARCIS (Netherlands)

    Wieling, W.; Harms, M. P.; ten Harkel, A. D.; van Lieshout, J. J.; Sprangers, R. L.

    1996-01-01

    1. The mechanisms underlying the pronounced transient fall in arterial blood pressure evoked by a 3 s bout of bicycle exercise were investigated in twenty healthy young adults and four patients with hypoadrenergic orthostatic hypotension. 2. In healthy subjects a 3 s bout of upright cycling induced

  17. Proprioceptive evoked potentials in man: cerebral responses to changing weight loads on the hand

    DEFF Research Database (Denmark)

    Arnfred, S; He, Chen; Eder, D

    2000-01-01

    We studied cerebral evoked potentials on the scalp to the stimulation of the right hand from a change in weight of 400-480 g in ten subjects. Rise-time was 20g/10 ms, Inter Stimulus Interval 2s and stimulus duration was 100 ms. The cerebral activations were a double positive contralateral C3'/P70...

  18. Quantification of baseline pupillary response and task-evoked pupillary response during constant and incremental task load.

    Science.gov (United States)

    Mosaly, Prithima R; Mazur, Lukasz M; Marks, Lawrence B

    2017-10-01

    The methods employed to quantify the baseline pupil size and task-evoked pupillary response (TEPR) may affect the overall study results. To test this hypothesis, the objective of this study was to assess variability in baseline pupil size and TEPR during two basic working memory tasks: constant load of 3-letters memorisation-recall (10 trials), and incremental load memorisation-recall (two trials of each load level), using two commonly used methods (1) change from trail/load specific baseline, (2) change from constant baseline. Results indicated that there was a significant shift in baseline between the trails for constant load, and between the load levels for incremental load. The TEPR was independent of shifts in baseline using method 1 only for constant load, and method 2 only for higher levels of incremental load condition. These important findings suggest that the assessment of both the baseline and methods to quantify TEPR are critical in ergonomics application, especially in studies with small number of trials per subject per condition. Practitioner Summary: Quantification of TEPR can be affected by shifts in baseline pupil size that are most likely affected by non-cognitive factors when other external factors are kept constant. Therefore, quantification methods employed to compute both baseline and TEPR are critical in understanding the information processing of humans in practical ergonomics settings.

  19. Low-intensity focused ultrasound alters the latency and spatial patterns of sensory-evoked cortical responses in vivo

    Science.gov (United States)

    Fisher, Jonathan A. N.; Gumenchuk, Iryna

    2018-06-01

    Objective. The use of transcranial, low intensity focused ultrasound (FUS) is an emerging neuromodulation technology that shows promise for both therapeutic and research applications. Among many, one of the most exciting applications is the use of FUS to rehabilitate or augment human sensory capabilities. While there is compelling empirical evidence demonstrating this capability, basic questions regarding the spatiotemporal extent of the modulatory effects remain. Our objective was to assess the basic, yet often overlooked hypothesis that FUS in fact alters sensory-evoked neural activity within the region of the cerebral cortex at the beam’s focus. Approach. To address this knowledge gap, we developed an approach to optically interrogate patterns of neural activity in the cortex directly at the acoustic focus, in vivo. Implementing simultaneous wide-field optical imaging and FUS stimulation in mice, our experiments probed somatosensory-evoked electrical activity through the use of voltage sensitive dyes (VSDs) and, in transgenic mice expressing GCaMP6f, monitored associated Ca2+ responses. Main results. Our results demonstrate that low-intensity FUS alters both the kinetics and spatial patterns of neural activity in primary somatosensory cortex at the acoustic focus. When preceded by 1 s of pulsed ultrasound at intensities below 1 W cm‑2 (I sppa), the onset of sensory-evoked cortical responses occurred 3.0  ±  0.7 ms earlier and altered the surface spatial morphology of Ca2+ responses. Significance. These findings support the heretofore unconfirmed assumption that FUS-induced sensory modulation reflects, at least in part, altered reactivity in primary sensory cortex at the site of sonication. The findings are significant given the interest in using FUS to target and alter spatial aspects of sensory receptive fields on the cerebral cortex.

  20. Low-intensity focused ultrasound alters the latency and spatial patterns of sensory-evoked cortical responses in vivo.

    Science.gov (United States)

    Fisher, Jonathan A N; Gumenchuk, Iryna

    2018-02-13

    The use of transcranial, low intensity focused ultrasound (FUS) is an emerging neuromodulation technology that shows promise for both therapeutic and research applications. Among many, one of the most exciting applications is the use of FUS to rehabilitate or augment human sensory capabilities. While there is compelling empirical evidence demonstrating this capability, basic questions regarding the spatiotemporal extent of the modulatory effects remain. Our objective was to assess the basic, yet often overlooked hypothesis that FUS in fact alters sensory-evoked neural activity within the region of the cerebral cortex at the beam's focus. To address this knowledge gap, we developed an approach to optically interrogate patterns of neural activity in the cortex directly at the acoustic focus, in vivo. Implementing simultaneous wide-field optical imaging and FUS stimulation in mice, our experiments probed somatosensory-evoked electrical activity through the use of voltage sensitive dyes (VSDs) and, in transgenic mice expressing GCaMP6f, monitored associated Ca 2+ responses. Our results demonstrate that low-intensity FUS alters both the kinetics and spatial patterns of neural activity in primary somatosensory cortex at the acoustic focus. When preceded by 1 s of pulsed ultrasound at intensities below 1 W cm -2 (I sppa ), the onset of sensory-evoked cortical responses occurred 3.0  ±  0.7 ms earlier and altered the surface spatial morphology of Ca 2+ responses. These findings support the heretofore unconfirmed assumption that FUS-induced sensory modulation reflects, at least in part, altered reactivity in primary sensory cortex at the site of sonication. The findings are significant given the interest in using FUS to target and alter spatial aspects of sensory receptive fields on the cerebral cortex.

  1. Language related differences of the sustained response evoked by natural speech sounds.

    Directory of Open Access Journals (Sweden)

    Christina Siu-Dschu Fan

    Full Text Available In tonal languages, such as Mandarin Chinese, the pitch contour of vowels discriminates lexical meaning, which is not the case in non-tonal languages such as German. Recent data provide evidence that pitch processing is influenced by language experience. However, there are still many open questions concerning the representation of such phonological and language-related differences at the level of the auditory cortex (AC. Using magnetoencephalography (MEG, we recorded transient and sustained auditory evoked fields (AEF in native Chinese and German speakers to investigate language related phonological and semantic aspects in the processing of acoustic stimuli. AEF were elicited by spoken meaningful and meaningless syllables, by vowels, and by a French horn tone. Speech sounds were recorded from a native speaker and showed frequency-modulations according to the pitch-contours of Mandarin. The sustained field (SF evoked by natural speech signals was significantly larger for Chinese than for German listeners. In contrast, the SF elicited by a horn tone was not significantly different between groups. Furthermore, the SF of Chinese subjects was larger when evoked by meaningful syllables compared to meaningless ones, but there was no significant difference regarding whether vowels were part of the Chinese phonological system or not. Moreover, the N100m gave subtle but clear evidence that for Chinese listeners other factors than purely physical properties play a role in processing meaningful signals. These findings show that the N100 and the SF generated in Heschl's gyrus are influenced by language experience, which suggests that AC activity related to specific pitch contours of vowels is influenced in a top-down fashion by higher, language related areas. Such interactions are in line with anatomical findings and neuroimaging data, as well as with the dual-stream model of language of Hickok and Poeppel that highlights the close and reciprocal interaction

  2. Language related differences of the sustained response evoked by natural speech sounds.

    Science.gov (United States)

    Fan, Christina Siu-Dschu; Zhu, Xingyu; Dosch, Hans Günter; von Stutterheim, Christiane; Rupp, André

    2017-01-01

    In tonal languages, such as Mandarin Chinese, the pitch contour of vowels discriminates lexical meaning, which is not the case in non-tonal languages such as German. Recent data provide evidence that pitch processing is influenced by language experience. However, there are still many open questions concerning the representation of such phonological and language-related differences at the level of the auditory cortex (AC). Using magnetoencephalography (MEG), we recorded transient and sustained auditory evoked fields (AEF) in native Chinese and German speakers to investigate language related phonological and semantic aspects in the processing of acoustic stimuli. AEF were elicited by spoken meaningful and meaningless syllables, by vowels, and by a French horn tone. Speech sounds were recorded from a native speaker and showed frequency-modulations according to the pitch-contours of Mandarin. The sustained field (SF) evoked by natural speech signals was significantly larger for Chinese than for German listeners. In contrast, the SF elicited by a horn tone was not significantly different between groups. Furthermore, the SF of Chinese subjects was larger when evoked by meaningful syllables compared to meaningless ones, but there was no significant difference regarding whether vowels were part of the Chinese phonological system or not. Moreover, the N100m gave subtle but clear evidence that for Chinese listeners other factors than purely physical properties play a role in processing meaningful signals. These findings show that the N100 and the SF generated in Heschl's gyrus are influenced by language experience, which suggests that AC activity related to specific pitch contours of vowels is influenced in a top-down fashion by higher, language related areas. Such interactions are in line with anatomical findings and neuroimaging data, as well as with the dual-stream model of language of Hickok and Poeppel that highlights the close and reciprocal interaction between

  3. [Cortical potentials evoked to response to a signal to make a memory-guided saccade].

    Science.gov (United States)

    Slavutskaia, M V; Moiseeva, V V; Shul'govskiĭ, V V

    2010-01-01

    The difference in parameters of visually guided and memory-guided saccades was shown. Increase in the memory-guided saccade latency as compared to that of the visually guided saccades may indicate the deceleration of saccadic programming on the basis of information extraction from the memory. The comparison of parameters and topography of evoked components N1 and P1 of the evoked potential on the signal to make a memory- or visually guided saccade suggests that the early stage of the saccade programming associated with the space information processing is performed predominantly with top-down attention mechanism before the memory-guided saccade and bottom-up mechanism before the visually guided saccade. The findings show that the increase in the latency of the memory-guided saccades is connected with decision making at the central stage of the saccade programming. We proposed that wave N2, which develops in the middle of the latent period of the memory-guided saccades, is correlated with this process. Topography and spatial dynamics of components N1, P1 and N2 testify that the memory-guided saccade programming is controlled by the frontal mediothalamic system of selective attention and left-hemispheric brain mechanisms of motor attention.

  4. The relation of ongoing brain activity, evoked neural responses, and cognition

    Directory of Open Access Journals (Sweden)

    Sepideh Sadaghiani

    2010-06-01

    Full Text Available Ongoing brain activity has been observed since the earliest neurophysiological recordings and is found over a wide range of temporal and spatial scales. It is characterized by remarkably large spontaneous modulations. Here, we review evidence for the functional role of these ongoing activity fluctuations and argue that they constitute an essential property of the neural architecture underlying cognition. The role of spontaneous activity fluctuations is probably best understood when considering both their spatiotemporal structure and their functional impact on cognition. We first briefly argue against a ‘segregationist’ view on ongoing activity, both in time and space, countering this view with an emphasis on integration within a hierarchical spatiotemporal organization of intrinsic activity. We then highlight the flexibility and context-sensitivity of intrinsic functional connectivity that suggest its involvement in functionally relevant information processing. This role in information processing is pursued by reviewing how ongoing brain activity interacts with afferent and efferent information exchange of the brain with its environment. We focus on the relationship between the variability of ongoing and evoked brain activity, and review recent reports that tie ongoing brain activity fluctuations to variability in human perception and behavior. Finally, these observations are discussed within the framework of the free-energy principle which – applied to human brain function - provides a theoretical account for a non-random, coordinated interaction of ongoing and evoked activity in perception and behaviour.

  5. Task-specific modulation of human auditory evoked responses in a delayed-match-to-sample task

    Directory of Open Access Journals (Sweden)

    Feng eRong

    2011-05-01

    Full Text Available In this study, we focus our investigation on task-specific cognitive modulation of early cortical auditory processing in human cerebral cortex. During the experiments, we acquired whole-head magnetoencephalography (MEG data while participants were performing an auditory delayed-match-to-sample (DMS task and associated control tasks. Using a spatial filtering beamformer technique to simultaneously estimate multiple source activities inside the human brain, we observed a significant DMS-specific suppression of the auditory evoked response to the second stimulus in a sound pair, with the center of the effect being located in the vicinity of the left auditory cortex. For the right auditory cortex, a non-invariant suppression effect was observed in both DMS and control tasks. Furthermore, analysis of coherence revealed a beta band (12 ~ 20 Hz DMS-specific enhanced functional interaction between the sources in left auditory cortex and those in left inferior frontal gyrus, which has been shown to involve in short-term memory processing during the delay period of DMS task. Our findings support the view that early evoked cortical responses to incoming acoustic stimuli can be modulated by task-specific cognitive functions by means of frontal-temporal functional interactions.

  6. Test-retest reliability of speech-evoked auditory brainstem response in healthy children at a low sensation level.

    Science.gov (United States)

    Zakaria, Mohd Normani; Jalaei, Bahram

    2017-11-01

    Auditory brainstem responses evoked by complex stimuli such as speech syllables have been studied in normal subjects and subjects with compromised auditory functions. The stability of speech-evoked auditory brainstem response (speech-ABR) when tested over time has been reported but the literature is limited. The present study was carried out to determine the test-retest reliability of speech-ABR in healthy children at a low sensation level. Seventeen healthy children (6 boys, 11 girls) aged from 5 to 9 years (mean = 6.8 ± 3.3 years) were tested in two sessions separated by a 3-month period. The stimulus used was a 40-ms syllable /da/ presented at 30 dB sensation level. As revealed by pair t-test and intra-class correlation (ICC) analyses, peak latencies, peak amplitudes and composite onset measures of speech-ABR were found to be highly replicable. Compared to other parameters, higher ICC values were noted for peak latencies of speech-ABR. The present study was the first to report the test-retest reliability of speech-ABR recorded at low stimulation levels in healthy children. Due to its good stability, it can be used as an objective indicator for assessing the effectiveness of auditory rehabilitation in hearing-impaired children in future studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Smartphone threshold audiometry in underserved primary health-care contexts.

    Science.gov (United States)

    Sandström, Josefin; Swanepoel, De Wet; Carel Myburgh, Hermanus; Laurent, Claude

    2016-01-01

    To validate a calibrated smartphone-based hearing test in a sound booth environment and in primary health-care clinics. A repeated-measure within-subject study design was employed whereby air-conduction hearing thresholds determined by smartphone-based audiometry was compared to conventional audiometry in a sound booth and a primary health-care clinic environment. A total of 94 subjects (mean age 41 years ± 17.6 SD and range 18-88; 64% female) were assessed of whom 64 were tested in the sound booth and 30 within primary health-care clinics without a booth. In the sound booth 63.4% of conventional and smartphone thresholds indicated normal hearing (≤15 dBHL). Conventional thresholds exceeding 15 dB HL corresponded to smartphone thresholds within ≤10 dB in 80.6% of cases with an average threshold difference of -1.6 dB ± 9.9 SD. In primary health-care clinics 13.7% of conventional and smartphone thresholds indicated normal hearing (≤15 dBHL). Conventional thresholds exceeding 15 dBHL corresponded to smartphone thresholds within ≤10 dB in 92.9% of cases with an average threshold difference of -1.0 dB ± 7.1 SD. Accurate air-conduction audiometry can be conducted in a sound booth and without a sound booth in an underserved community health-care clinic using a smartphone.

  8. Extracting the basal extracellular dopamine concentrations from the evoked responses: re-analysis of the dopamine kinetics.

    Science.gov (United States)

    Chen, Kevin C; Budygin, Evgeny A

    2007-08-15

    Fast-scan cyclic voltammetry in conjunction with carbon fiber microelectrode has been used to study dopamine (DA) release and uptake mechanisms in rat brains because of the smaller size of the electrode and the subsecond resolution. Current voltammetry data were analyzed by a DA kinetic model assuming a zero baseline, which is in conflict with existing microdialysis findings and a recent claim of the striatal extracellular DA concentration at micromolar levels. This work applied a new analysis approach based on a modified DA kinetic model to analyze the kinetics of electrically evoked DA overflow in the caudate-putamen of anesthetized rats. The DA uptake parameters were fitted from the electrical stimulation phase, and subsequently used to calculate theoretical DA uptake rates. Comparison of the theoretical uptake rates with experimental clearance rates allows for the study of the tonic DA release process following electrical stimulations. Analyses of DA voltammetry data suggest that the locally averaged basal level of extracellular DA in the rat striatum might be confined between 95 and 220 nM. The disparate time scales in the clearance kinetics of endogenous and exogenous DA were investigated. Long-distance diffusion could only partially explain the slow clearance time course of exogenous DA. Model simulations and parameter analyses on evoked DA responses indicate that suppression of the nonevoked DA release process immediately following electrical stimulation cannot completely account for the rapid clearance of the electrically evoked DA. Inconsistency in the measured uptake strengths in the literature studying endogenous and exogenous DA remains to be investigated in the future.

  9. Distinction between added-energy and phase-resetting mechanisms in non-invasively detected somatosensory evoked responses.

    Science.gov (United States)

    Fedele, T; Scheer, H-J; Burghoff, M; Waterstraat, G; Nikulin, V V; Curio, G

    2013-01-01

    Non-invasively recorded averaged event-related potentials (ERP) represent a convenient opportunity to investigate human brain perceptive and cognitive processes. Nevertheless, generative ERP mechanisms are still debated. Two previous approaches have been contested in the past: the added-energy model in which the response raises independently from the ongoing background activity, and the phase-reset model, based on stimulus-driven synchronization of oscillatory ongoing activity. Many criteria for the distinction of these two models have been proposed, but there is no definitive methodology to disentangle them, owing also to the limited information at the single trial level. Here, we propose a new approach combining low-noise EEG technology and multivariate decomposition techniques. We present theoretical analyses based on simulated data and identify in high-frequency somatosensory evoked responses an optimal target for the distinction between the two mechanisms.

  10. Pain Processing and Vegetative Dysfunction in Fibromyalgia: A Study by Sympathetic Skin Response and Laser Evoked Potentials

    Directory of Open Access Journals (Sweden)

    Marina de Tommaso

    2017-01-01

    Full Text Available Background. A dysfunction of pain processing at central and peripheral levels was reported in fibromyalgia (FM. We aimed to correlate laser evoked potentials (LEPs, Sympathetic Skin Response (SSR, and clinical features in FM patients. Methods. Fifty FM patients and 30 age-matched controls underwent LEPs and SSR by the right hand and foot. The clinical evaluation included FM disability (FIQ and severity scores (WPI, anxiety (SAS and depression (SDS scales, and questionnaires for neuropathic pain (DN4. Results. The LEP P2 latency and amplitude and the SSR latency were increased in FM group. This latter feature was more evident in anxious patients. The LEPs habituation was reduced in FM patients and correlated to pain severity scores. In a significant number of patients (32% with higher DN4 and FIQ scores, SSR or LEP responses were absent. Conclusions. LEPs and SSR might contribute to clarifying the peripheral and central nervous system involvement in FM patients.

  11. HCN channels segregate stimulation‐evoked movement responses in neocortex and allow for coordinated forelimb movements in rodents

    Science.gov (United States)

    Farrell, Jordan S.; Palmer, Laura A.; Singleton, Anna C.; Pittman, Quentin J.; Teskey, G. Campbell

    2016-01-01

    Key points The present study tested whether HCN channels contribute to the organization of motor cortex and to skilled motor behaviour during a forelimb reaching task.Experimental reductions in HCN channel signalling increase the representation of complex multiple forelimb movements in motor cortex as assessed by intracortical microstimulation.Global HCN1KO mice exhibit reduced reaching accuracy and atypical movements during a single‐pellet reaching task relative to wild‐type controls.Acute pharmacological inhibition of HCN channels in forelimb motor cortex decreases reaching accuracy and increases atypical movements during forelimb reaching. Abstract The mechanisms by which distinct movements of a forelimb are generated from the same area of motor cortex have remained elusive. Here we examined a role for HCN channels, given their ability to alter synaptic integration, in the expression of forelimb movement responses during intracortical microstimulation (ICMS) and movements of the forelimb on a skilled reaching task. We used short‐duration high‐resolution ICMS to evoke forelimb movements following pharmacological (ZD7288), experimental (electrically induced cortical seizures) or genetic approaches that we confirmed with whole‐cell patch clamp to substantially reduce I h current. We observed significant increases in the number of multiple movement responses evoked at single sites in motor maps to all three experimental manipulations in rats or mice. Global HCN1 knockout mice were less successful and exhibited atypical movements on a skilled‐motor learning task relative to wild‐type controls. Furthermore, in reaching‐proficient rats, reaching accuracy was reduced and forelimb movements were altered during infusion of ZD7288 within motor cortex. Thus, HCN channels play a critical role in the separation of overlapping movement responses and allow for successful reaching behaviours. These data provide a novel mechanism for the encoding of multiple

  12. Differences in receptor-evoked membrane electrical responses in native and mRNA-injected Xenopus oocytes.

    Science.gov (United States)

    Oron, Y; Gillo, B; Gershengorn, M C

    1988-06-01

    Xenopus laevis oocytes are giant cells suitable for studies of plasma membrane receptors and signal transduction pathways because of their capacity to express receptors after injection of heterologous mRNA. We studied depolarizing chloride currents evoked by acetylcholine (AcCho) in native oocytes ("intrinsic AcCho response"), by thyrotropin-releasing hormone (TRH) in oocytes injected with pituitary (GH3) cell RNA ("acquired TRH response"), and by AcCho in oocytes injected with rat brain RNA ("acquired AcCho response"). We found differences in the latencies and patterns of these responses and in the responsiveness to these agonists when applied to the animal or vegetal hemisphere, even though all of the responses are mediated by the same signal transduction pathway. The common intrinsic response to AcCho is characterized by minimal latency (0.86 +/- 0.05 sec), a rapid, transient depolarization followed by a distinct prolonged depolarization, and larger responses obtained after AcCho application at the vegetal rather than the animal hemisphere. By contrast, the acquired responses to TRH and AcCho are characterized by much longer latencies, 9.3 +/- 1.0 and 5.5 +/- 0.8 sec, respectively, and large rapid depolarizations followed by less distinct prolonged depolarizations. The responsiveness on the two hemispheres to TRH and AcCho in mRNA-injected oocytes is opposite to that for the common intrinsic AcCho response in that there is a much greater response when agonist is applied at the animal rather than the vegetal hemisphere. We suggest that the differences in these responses are caused by differences in the intrinsic properties of these receptors. Because different receptors appear to be segregated in the same oocyte in distinct localizations, Xenopus oocytes may be an important model system in which to study receptor sorting in polarized cells.

  13. Roles of N-methyl-d-aspartate receptors during the sensory stimulation-evoked field potential responses in mouse cerebellar cortical molecular layer.

    Science.gov (United States)

    Xu, Yin-Hua; Zhang, Guang-Jian; Zhao, Jing-Tong; Chu, Chun-Ping; Li, Yu-Zi; Qiu, De-Lai

    2017-11-01

    The functions of N-methyl-d-aspartate receptors (NMDARs) in cerebellar cortex have been widely studied under in vitro condition, but their roles during the sensory stimulation-evoked responses in the cerebellar cortical molecular layer in living animals are currently unclear. We here investigated the roles of NMDARs during the air-puff stimulation on ipsilateral whisker pad-evoked field potential responses in cerebellar cortical molecular layer in urethane-anesthetized mice by electrophysiological recording and pharmacological methods. Our results showed that cerebellar surface administration of NMDA induced a dose-dependent decrease in amplitude of the facial stimulation-evoked inhibitory responses (P1) in the molecular layer, accompanied with decreases in decay time, half-width and area under curve (AUC) of P1. The IC 50 of NMDA induced inhibition in amplitude of P1 was 46.5μM. In addition, application of NMDA induced significant increases in the decay time, half-width and AUC values of the facial stimulation-evoked excitatory responses (N1) in the molecular layer. Application of an NMDAR blocker, D-APV (250μM) abolished the facial stimulation-evoked P1 in the molecular layer. These results suggested that NMDARs play a critical role during the sensory information processing in cerebellar cortical molecular layer in vivo in mice. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Independent component analysis for cochlear implant artifacts attenuation from electrically evoked auditory steady-state response measurements

    Science.gov (United States)

    Deprez, Hanne; Gransier, Robin; Hofmann, Michael; van Wieringen, Astrid; Wouters, Jan; Moonen, Marc

    2018-02-01

    Objective. Electrically evoked auditory steady-state responses (EASSRs) are potentially useful for objective cochlear implant (CI) fitting and follow-up of the auditory maturation in infants and children with a CI. EASSRs are recorded in the electro-encephalogram (EEG) in response to electrical stimulation with continuous pulse trains, and are distorted by significant CI artifacts related to this electrical stimulation. The aim of this study is to evaluate a CI artifacts attenuation method based on independent component analysis (ICA) for three EASSR datasets. Approach. ICA has often been used to remove CI artifacts from the EEG to record transient auditory responses, such as cortical evoked auditory potentials. Independent components (ICs) corresponding to CI artifacts are then often manually identified. In this study, an ICA based CI artifacts attenuation method was developed and evaluated for EASSR measurements with varying CI artifacts and EASSR characteristics. Artifactual ICs were automatically identified based on their spectrum. Main results. For 40 Hz amplitude modulation (AM) stimulation at comfort level, in high SNR recordings, ICA succeeded in removing CI artifacts from all recording channels, without distorting the EASSR. For lower SNR recordings, with 40 Hz AM stimulation at lower levels, or 90 Hz AM stimulation, ICA either distorted the EASSR or could not remove all CI artifacts in most subjects, except for two of the seven subjects tested with low level 40 Hz AM stimulation. Noise levels were reduced after ICA was applied, and up to 29 ICs were rejected, suggesting poor ICA separation quality. Significance. We hypothesize that ICA is capable of separating CI artifacts and EASSR in case the contralateral hemisphere is EASSR dominated. For small EASSRs or large CI artifact amplitudes, ICA separation quality is insufficient to ensure complete CI artifacts attenuation without EASSR distortion.

  15. The Effect of Lamotrigine and Levetiracetam on TMS-Evoked EEG Responses Depends on Stimulation Intensity

    Directory of Open Access Journals (Sweden)

    Isabella Premoli

    2017-10-01

    Full Text Available The combination of transcranial magnetic stimulation and electroencephalography (TMS-EEG has uncovered underlying mechanisms of two anti-epileptic medications: levetiracetam and lamotrigine. Despite their different mechanism of action, both drugs modulated TMS-evoked EEG potentials (TEPs in a similar way. Since both medications increase resting motor threshold (RMT, the current aim was to examine the similarities and differences in post-drug TEPs, depending on whether stimulation intensity was adjusted to take account of post-drug RMT increase. The experiment followed a placebo controlled, double blind, crossover design, involving a single dose of either lamotrigine or levetiracetam. When a drug-induced increase of RMT occurred, post-drug measurements involved two blocks of stimulations, using unadjusted and adjusted stimulation intensity. A cluster based permutation analysis of differences in TEP amplitude between adjusted and unadjusted stimulation intensity showed that lamotrigine induced a stronger modulation of the N45 TEP component compared to levetiracetam. Results highlight the impact of adjusting stimulation intensity.

  16. Comparing the Performance of Popular MEG/EEG Artifact Correction Methods in an Evoked-Response Study

    DEFF Research Database (Denmark)

    Haumann, Niels Trusbak; Parkkonen, Lauri; Kliuchko, Marina

    2016-01-01

    We here compared results achieved by applying popular methods for reducing artifacts in magnetoencephalography (MEG) and electroencephalography (EEG) recordings of the auditory evoked Mismatch Negativity (MMN) responses in healthy adult subjects. We compared the Signal Space Separation (SSS......) and temporal SSS (tSSS) methods for reducing noise from external and nearby sources. Our results showed that tSSS reduces the interference level more reliably than plain SSS, particularly for MEG gradiometers, also for healthy subjects not wearing strongly interfering magnetic material. Therefore, tSSS...... is recommended over SSS. Furthermore, we found that better artifact correction is achieved by applying Independent Component Analysis (ICA) in comparison to Signal Space Projection (SSP). Although SSP reduces the baseline noise level more than ICA, SSP also significantly reduces the signal—slightly more than...

  17. Preattentive cortical-evoked responses to pure tones, harmonic tones, and speech: influence of music training.

    Science.gov (United States)

    Nikjeh, Dee A; Lister, Jennifer J; Frisch, Stefan A

    2009-08-01

    Cortical auditory evoked potentials, including mismatch negativity (MMN) and P3a to pure tones, harmonic complexes, and speech syllables, were examined across groups of trained musicians and nonmusicians. Because of the extensive formal and informal auditory training received by musicians throughout their lifespan, it was predicted that these electrophysiological indicators of preattentive pitch discrimination and involuntary attention change would distinguish musicians from nonmusicians and provide insight regarding the influence of auditory training and experience on central auditory function. A total of 102 (67 trained musicians, 35 nonmusicians) right-handed young women with normal hearing participated in three auditory stimulus conditions: pure tones (25 musicians/15 nonmusicians), harmonic tones (42 musicians/20 nonmusicians), and speech syllables (26 musicians/15 nonmusicians). Pure tone and harmonic tone stimuli were presented in multideviant oddball paradigms designed to elicit MMN and P3a. Each paradigm included one standard and two infrequently occurring deviants. For the pure tone condition, the standard pure tone was 1000 Hz, and the two deviant tones differed in frequency from the standard by either 1.5% (1015 Hz) or 6% (1060 Hz). The harmonic tone complexes were digitally created and contained a fundamental frequency (F0) and three harmonics. The amplitude of each harmonic was divided by its harmonic number to create a natural amplitude contour in the frequency spectrum. The standard tone was G4 (F0 = 392 Hz), and the two deviant tones differed in fundamental frequency from the standard by 1.5% (F0 = 386 Hz) or 6% (F0 = 370 Hz). The fundamental frequencies of the harmonic tones occur within the average female vocal range. The third condition to elicit MMN and P3a was designed for the presentation of speech syllables (/ba/ and /da/) and was structured as a traditional oddball paradigm (one standard/one infrequent deviant). Each speech stimulus was

  18. High-frequency audiometry: A means for early diagnosis of noise-induced hearing loss

    Directory of Open Access Journals (Sweden)

    Amir H Mehrparvar

    2011-01-01

    Full Text Available Noise-induced hearing loss (NIHL, an irreversible disorder, is a common problem in industrial settings. Early diagnosis of NIHL can help prevent the progression of hearing loss, especially in speech frequencies. For early diagnosis of NIHL, audiometry is performed routinely in conventional frequencies. We designed this study to compare the effect of noise on high-frequency audiometry (HFA and conventional audiometry. In a historical cohort study, we compared hearing threshold and prevalence of hearing loss in conventional and high frequencies of audiometry among textile workers divided into two groups: With and without exposure to noise more than 85 dB. The highest hearing threshold was observed at 4000 Hz, 6000 Hz and 16000 Hz in conventional right ear audiometry, conventional left ear audiometry and HFA in each ear, respectively. The hearing threshold was significantly higher at 16000 Hz compared to 4000. Hearing loss was more common in HFA than conventional audiometry. HFA is more sensitive to detect NIHL than conventional audiometry. It can be useful for early diagnosis of hearing sensitivity to noise, and thus preventing hearing loss in lower frequencies especially speech frequencies.

  19. Simultaneous EEG/fMRI analysis of the resonance phenomena in steady-state visual evoked responses.

    Science.gov (United States)

    Bayram, Ali; Bayraktaroglu, Zubeyir; Karahan, Esin; Erdogan, Basri; Bilgic, Basar; Ozker, Muge; Kasikci, Itir; Duru, Adil D; Ademoglu, Ahmet; Oztürk, Cengizhan; Arikan, Kemal; Tarhan, Nevzat; Demiralp, Tamer

    2011-04-01

    The stability of the steady-state visual evoked potentials (SSVEPs) across trials and subjects makes them a suitable tool for the investigation of the visual system. The reproducible pattern of the frequency characteristics of SSVEPs shows a global amplitude maximum around 10 Hz and additional local maxima around 20 and 40 Hz, which have been argued to represent resonant behavior of damped neuronal oscillators. Simultaneous electroencephalogram/functional magnetic resonance imaging (EEG/fMRI) measurement allows testing of the resonance hypothesis about the frequency-selective increases in SSVEP amplitudes in human subjects, because the total synaptic activity that is represented in the fMRI-Blood Oxygen Level Dependent (fMRI-BOLD) response would not increase but get synchronized at the resonance frequency. For this purpose, 40 healthy volunteers were visually stimulated with flickering light at systematically varying frequencies between 6 and 46 Hz, and the correlations between SSVEP amplitudes and the BOLD responses were computed. The SSVEP frequency characteristics of all subjects showed 3 frequency ranges with an amplitude maximum in each of them, which roughly correspond to alpha, beta and gamma bands of the EEG. The correlation maps between BOLD responses and SSVEP amplitude changes across the different stimulation frequencies within each frequency band showed no significant correlation in the alpha range, while significant correlations were obtained in the primary visual area for the beta and gamma bands. This non-linear relationship between the surface recorded SSVEP amplitudes and the BOLD responses of the visual cortex at stimulation frequencies around the alpha band supports the view that a resonance at the tuning frequency of the thalamo-cortical alpha oscillator in the visual system is responsible for the global amplitude maximum of the SSVEP around 10 Hz. Information gained from the SSVEP/fMRI analyses in the present study might be extrapolated to the

  20. Extended High Frequency Audiometry in Polycystic Ovary Syndrome

    Directory of Open Access Journals (Sweden)

    Cuneyt Kucur

    2013-01-01

    and BMI of PCOS and control groups were comparable. Each subject was tested with low (250–2000 Hz, high (4000–8000 Hz, and extended high frequency audiometry (8000–20000. Hormonal and biochemical values including LH, LH/FSH, testosterone, fasting glucose, fasting insulin, HOMA-I, and CRP were calculated. Results. PCOS patients showed high levels of LH, LH/FSH, testosterone, fasting insulin, glucose, HOMA-I, and CRP levels. The hearing thresholds of the groups were similar at frequencies of 250, 500, 1000, 2000, and 4000 Hz; statistically significant difference was observed in 8000–14000 Hz in PCOS group compared to control group. Conclusion. PCOS patients have hearing impairment especially in extended high frequencies. Further studies are needed to help elucidate the mechanism behind hearing impairment in association with PCOS.

  1. Automated smartphone audiometry: Validation of a word recognition test app.

    Science.gov (United States)

    Dewyer, Nicholas A; Jiradejvong, Patpong; Henderson Sabes, Jennifer; Limb, Charles J

    2018-03-01

    Develop and validate an automated smartphone word recognition test. Cross-sectional case-control diagnostic test comparison. An automated word recognition test was developed as an app for a smartphone with earphones. English-speaking adults with recent audiograms and various levels of hearing loss were recruited from an audiology clinic and were administered the smartphone word recognition test. Word recognition scores determined by the smartphone app and the gold standard speech audiometry test performed by an audiologist were compared. Test scores for 37 ears were analyzed. Word recognition scores determined by the smartphone app and audiologist testing were in agreement, with 86% of the data points within a clinically acceptable margin of error and a linear correlation value between test scores of 0.89. The WordRec automated smartphone app accurately determines word recognition scores. 3b. Laryngoscope, 128:707-712, 2018. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  2. Children Evoke Similar Affective and Instructional Responses from Their Teachers and Mothers

    Science.gov (United States)

    Silinskas, Gintautas; Dietrich, Julia; Pakarinen, Eija; Kiuru, Noona; Aunola, Kaisa; Lerkkanen, Marja-Kristiina; Hirvonen, Riikka; Muotka, Joona; Nurmi, Jari-Erik

    2015-01-01

    In the present study, we examined the extent to which the responses of teachers and mothers toward a particular child are similar in respect to their instructional support and affect, and whether child characteristics predict these responses. The data of 373 Finnish child-teacher-mother triads (178 girls, 195 boys) were analysed. Teachers and…

  3. Contrast sensitivity test and conventional and high frequency audiometry: information beyond that required to prescribe lenses and headsets

    Science.gov (United States)

    Comastri, S. A.; Martin, G.; Simon, J. M.; Angarano, C.; Dominguez, S.; Luzzi, F.; Lanusse, M.; Ranieri, M. V.; Boccio, C. M.

    2008-04-01

    In Optometry and in Audiology, the routine tests to prescribe correction lenses and headsets are respectively the visual acuity test (the first chart with letters was developed by Snellen in 1862) and conventional pure tone audiometry (the first audiometer with electrical current was devised by Hartmann in 1878). At present there are psychophysical non invasive tests that, besides evaluating visual and auditory performance globally and even in cases catalogued as normal according to routine tests, supply early information regarding diseases such as diabetes, hypertension, renal failure, cardiovascular problems, etc. Concerning Optometry, one of these tests is the achromatic luminance contrast sensitivity test (introduced by Schade in 1956). Concerning Audiology, one of these tests is high frequency pure tone audiometry (introduced a few decades ago) which yields information relative to pathologies affecting the basal cochlea and complements data resulting from conventional audiometry. These utilities of the contrast sensitivity test and of pure tone audiometry derive from the facts that Fourier components constitute the basis to synthesize stimuli present at the entrance of the visual and auditory systems; that these systems responses depend on frequencies and that the patient's psychophysical state affects frequency processing. The frequency of interest in the former test is the effective spatial frequency (inverse of the angle subtended at the eye by a cycle of a sinusoidal grating and measured in cycles/degree) and, in the latter, the temporal frequency (measured in cycles/sec). Both tests have similar duration and consist in determining the patient's threshold (corresponding to the inverse multiplicative of the contrast or to the inverse additive of the sound intensity level) for each harmonic stimulus present at the system entrance (sinusoidal grating or pure tone sound). In this article the frequencies, standard normality curves and abnormal threshold shifts

  4. Bradykinin Contributes to Sympathetic and Pressor Responses Evoked by Activation of Skeletal Muscle Afferents P2X in Heart Failure

    Directory of Open Access Journals (Sweden)

    Jihong Xing

    2016-11-01

    Full Text Available Background/Aims: Published data suggest that purinergic P2X receptors of muscle afferent nerves contribute to the enhanced sympathetic nervous activity (SNA and blood pressure (BP responses during static exercise in heart failure (HF. In this study, we examined engagement of bradykinin (BK in regulating responses of SNA and BP evoked by P2X stimulation in rats with HF. We further examined cellular mechanisms responsible for BK. We hypothesized that BK potentiates P2X currents of muscle dorsal root ganglion (DRG neurons, and this effect is greater in HF due to upregulation of BK kinin B2 and P2X3 receptor. As a result, BK amplifies muscle afferents P2X-mediated SNA and BP responses. Methods: Renal SNA and BP responses were recorded in control rats and rats with HF. Western Blot analysis and patch-clamp methods were employed to examine the receptor expression and function of DRG neurons involved in the effects of BK. Results: BK injected into the arterial blood supply of the hindlimb muscles heightened the reflex SNA and BP responses induced by P2X activation with α,β-methylene ATP to a greater degree in HF rats. In addition, HF upregulated the protein expression of kinin B2 and P2X3 in DRG and the prior application of BK increased the magnitude of α,β-methylene ATP-induced currents in muscle DRG neurons from HF rats. Conclusion: BK plays a facilitating role in modulating muscle afferent P2X-engaged reflex sympathetic and pressor responses. In HF, P2X responsivness is augmented due to increases in expression of kinin B2 and P2X3 receptors and P2X current activity.

  5. Repeated whisker stimulation evokes invariant neuronal responses in the dorsolateral striatum of anesthetized rats: a potential correlate of sensorimotor habits.

    Science.gov (United States)

    Mowery, Todd M; Harrold, Jon B; Alloway, Kevin D

    2011-05-01

    The dorsolateral striatum (DLS) receives extensive projections from primary somatosensory cortex (SI), but very few studies have used somesthetic stimulation to characterize the sensory coding properties of DLS neurons. In this study, we used computer-controlled whisker deflections to characterize the extracellular responses of DLS neurons in rats lightly anesthetized with isoflurane. When multiple whiskers were synchronously deflected by rapid back-and-forth movements, whisker-sensitive neurons in the DLS responded to both directions of movement. The latency and magnitude of these neuronal responses displayed very little variation with changes in the rate (2, 5, or 8 Hz) of whisker stimulation. Simultaneous recordings in SI barrel cortex and the DLS revealed important distinctions in the neuronal responses of these serially connected brain regions. In contrast to DLS neurons, SI neurons were activated by the initial deflection of the whiskers but did not respond when the whiskers moved back to their original position. As the rate of whisker stimulation increased, SI responsiveness declined, and the latencies of the responses increased. In fact, when whiskers were deflected at 5 or 8 Hz, many neurons in the DLS responded before the SI neurons. These results and earlier anatomic findings suggest that a component of the sensory-induced response in the DLS is mediated by inputs from the thalamus. Furthermore, the lack of sensory adaptation in the DLS may represent a critical part of the neural mechanism by which the DLS encodes stimulus-response associations that trigger motor habits and other stimulus-evoked behaviors that are not contingent on rewarded outcomes.

  6. Augmentation of sensory-evoked hemodynamic response in an early Alzheimer's disease mouse model.

    Science.gov (United States)

    Kim, Jinho; Jeong, Yong

    2013-01-01

    Based on enlarged blood oxygen level-dependent (BOLD) responses in cognitively normal subjects at risk for Alzheimer's disease (AD), compensatory neuronal hyperactivation has been proposed as an early marker for diagnosis of AD. The BOLD response results from neurovascular coupling, i.e., hemodynamic response induced by neuronal activity. However, there has been no evidence of task-induced increases in hemodynamic response in animal models of AD. Here, we observed an augmented hemodynamic response pattern in a transgenic AβPP(SWE)/PS1ΔE9 mouse model of AD using three in vivo imaging methods: intrinsic optical signal imaging, multi-photon laser scanning microscopy, and laser Doppler flowmetry. Sensory stimulation resulted in augmented and prolonged hemodynamic responses in transgenic mice evidenced by changes in total, oxygenated, and deoxygenated hemoglobin concentration. This difference between transgenic and wild-type mice was significant at 7 months of age when amyloid plaques and cerebral amyloid angiopathy had developed but not at younger or older ages. Correspondingly, sensory stimulation-induced pial arteriole diameter was also augmented and prolonged in transgenic mice at 7 months of age. Cerebral blood flow response in transgenic mice was augmented but not prolonged. These results are consistent with the existence of BOLD signal hyperactivation in non-demented AD-risk human subjects, supporting its potential use as an early diagnostic marker of AD.

  7. Normative findings of electrically evoked compound action potential measurements using the neural response telemetry of the Nucleus CI24M cochlear implant system.

    NARCIS (Netherlands)

    Cafarelli-Dees, D.; Dillier, N.; Lai, W.K.; Wallenberg, E. von; Dijk, B. van; Akdas, F.; Aksit, M.; Batman, C.; Beynon, A.J.; Burdo, S.; Chanal, J.M.; Collet, L.; Conway, M.; Coudert, C.; Craddock, L.; Cullington, H.; Deggouj, N.; Fraysse, B.; Grabel, S.; Kiefer, J.; Kiss, J.G.; Lenarz, T.; Mair, A.; Maune, S.; Muller-Deile, J.; Piron, J.P.; Razza, S.; Tasche, C.; Thai-Van, H.; Toth, F.; Truy, E.; Uziel, A.; Smoorenburg, G.F.

    2005-01-01

    One hundred and forty-seven adult recipients of the Nucleus 24 cochlear implant system, from 13 different European countries, were tested using neural response telemetry to measure the electrically evoked compound action potential (ECAP), according to a standardised postoperative measurement

  8. Evoked acoustic emission

    DEFF Research Database (Denmark)

    Elberling, C; Parbo, J; Johnsen, N J

    1985-01-01

    Stimulated acoustic emissions were recorded in response to tonal stimuli at 60 dB p.e. SPL in a small group of normal-hearing adults. Power spectral analysis reveals that the evoked activity from each ear contains energy in preferential frequency bands and the change of stimulus frequency has only...

  9. A cholinergic contribution to the circulatory responses evoked at the onset of handgrip exercise in humans

    DEFF Research Database (Denmark)

    Vianna, Lauro C; Fadel, Paul J; Secher, Niels H

    2015-01-01

    A cholinergic (muscarinic) contribution to the initial circulatory response to exercise in humans remains controversial. Herein, we posit that this may be due to exercise mode with a cholinergic contribution being important during isometric handgrip exercise, where the hyperemic response......-induced fall in SVR and, thereby, augmented the pressor response (+13 ± 3 mmHg at 10 s; P exercise. These findings suggest that a cholinergic mechanism is important for the BP...... resistance (SVR) in young healthy males, while performing either 20 s of isometric handgrip contraction at 40% maximum voluntary contraction (protocol 1; n = 9) or 20 s of low-intensity leg cycling exercise (protocol 2; n = 8, 42 ± 8 W). Exercise trials were conducted under control (no drug) conditions...

  10. Contribution of resolved and unresolved harmonic regions to brainstem speech-evoked responses in quiet and in background noise

    Directory of Open Access Journals (Sweden)

    M. Laroche

    2011-03-01

    Full Text Available Speech auditory brainstem responses (speech ABR reflect activity that is phase-locked to the harmonics of the fundamental frequency (F0 up to at least the first formant (F1. Recent evidence suggests that responses at F0 in the presence of noise are more robust than responses at F1, and are also dissociated in some learning-impaired children. Peripheral auditory processing can be broadly divided into resolved and unresolved harmonic regions. This study investigates the contribution of these two regions to the speech ABR, and their susceptibility to noise. We recorded, in quiet and in background white noise, evoked responses in twelve normal hearing adults in response to three variants of a synthetic vowel: i Allformants, which contains all first three formants, ii F1Only, which is dominated by resolved harmonics, and iii F2&F3Only, which is dominated by unresolved harmonics. There were no statistically significant differences in the response at F0 due to the three variants of the stimulus in quiet, nor did the noise affect this response with the Allformants and F1Only variants. On the other hand, the response at F0 with the F2&F3Only variant was significantly weaker in noise than with the two other variants (p<0.001. With the response at F1, there was no difference with the Allformants and F1Only variants in quiet, but was expectedly weaker with the F2&F3Only variant (p<0.01. The addition of noise significantly weakened the response at F1 with the F1Only variant (p<0.05, but this weakening only tended towards significance with the Allformants variant (p=0.07. The results of this study indicate that resolved and unresolved harmonics are processed in different but interacting pathways that converge in the upper brainstem. The results also support earlier work on the differential susceptibility of responses at F0 and F1 to added noise.

  11. Electroencephalographic evoked pain response is suppressed by spinal cord stimulation in complex regional pain syndrome: a case report.

    Science.gov (United States)

    Hylands-White, Nicholas; Duarte, Rui V; Beeson, Paul; Mayhew, Stephen D; Raphael, Jon H

    2016-12-01

    Pain is a subjective response that limits assessment. The purpose of this case report was to explore how the objectivity of the electroencephalographic response to thermal stimuli would be affected by concurrent spinal cord stimulation. A patient had been implanted with a spinal cord stimulator for the management of complex regional pain syndrome of both hands for 8 years. Following ethical approval and written informed consent we induced thermal stimuli using the Medoc PATHWAY Pain & Sensory Evaluation System on the right hand of the patient with the spinal cord stimulator switched off and with the spinal cord stimulator switched on. The patient reported a clinically significant reduction in thermal induced pain using the numerical rating scale (71.4 % reduction) with spinal cord stimulator switched on. Analysis of electroencephalogram recordings indicated the occurrence of contact heat evoked potentials (N2-P2) with spinal cord stimulator off, but not with spinal cord stimulator on. This case report suggests that thermal pain can be reduced in complex regional pain syndrome patients with the use of spinal cord stimulation and offers objective validation of the reported outcomes with this treatment.

  12. Lateralization and Binaural Interaction of Middle-Latency and Late-Brainstem Components of the Auditory Evoked Response.

    Science.gov (United States)

    Dykstra, Andrew R; Burchard, Daniel; Starzynski, Christian; Riedel, Helmut; Rupp, Andre; Gutschalk, Alexander

    2016-08-01

    We used magnetoencephalography to examine lateralization and binaural interaction of the middle-latency and late-brainstem components of the auditory evoked response (the MLR and SN10, respectively). Click stimuli were presented either monaurally, or binaurally with left- or right-leading interaural time differences (ITDs). While early MLR components, including the N19 and P30, were larger for monaural stimuli presented contralaterally (by approximately 30 and 36 % in the left and right hemispheres, respectively), later components, including the N40 and P50, were larger ipsilaterally. In contrast, MLRs elicited by binaural clicks with left- or right-leading ITDs did not differ. Depending on filter settings, weak binaural interaction could be observed as early as the P13 but was clearly much larger for later components, beginning at the P30, indicating some degree of binaural linearity up to early stages of cortical processing. The SN10, an obscure late-brainstem component, was observed consistently in individuals and showed linear binaural additivity. The results indicate that while the MLR is lateralized in response to monaural stimuli-and not ITDs-this lateralization reverses from primarily contralateral to primarily ipsilateral as early as 40 ms post stimulus and is never as large as that seen with fMRI.

  13. Differential effects of nitrous oxide and propofol on myogenic transcranial motor evoked responses during sufentanil anaesthesia

    NARCIS (Netherlands)

    Ubags, L. H.; Kalkman, C. J.; Been, H. D.; Drummond, J. C.

    1997-01-01

    We have compared the effects of 50% nitrous oxide and propofol, each administered concurrently with sufentanil, on the amplitudes and latencies of the compound muscle action potential (CMAP) response to transcranial electrical stimulation. Using a crossover design, 12 patients undergoing spinal

  14. A Pilot Study of Phase-Evoked Acoustic Responses From the Ears of Human Subjects

    DEFF Research Database (Denmark)

    Christensen, Anders Tornvig; Dewey, James; Dhar, Sumitrajit

    2015-01-01

    Temporal properties of otoacoustic emissions (OAEs) are of interest as they help understand the dynamic behavior and spatial distribution of the generating mechanisms. In particular, the ringing behavior of responses to clicks and tone bursts have been investigated, and times of arrival and round...

  15. Low-frequency versus high-frequency synchronisation in chirp-evoked auditory brainstem responses

    DEFF Research Database (Denmark)

    Rønne, Filip Munch; Gøtsche-Rasmussen, Kristian

    2011-01-01

    This study investigates the frequency specific contribution to the auditory brainstem response (ABR) of chirp stimuli. Frequency rising chirps were designed to compensate for the cochlear traveling wave delay, and lead to larger wave-V amplitudes than for click stimuli as more auditory nerve fibr...

  16. Visually Evoked 3-5 Hz Membrane Potential Oscillations Reduce the Responsiveness of Visual Cortex Neurons in Awake Behaving Mice.

    Science.gov (United States)

    Einstein, Michael C; Polack, Pierre-Olivier; Tran, Duy T; Golshani, Peyman

    2017-05-17

    Low-frequency membrane potential ( V m ) oscillations were once thought to only occur in sleeping and anesthetized states. Recently, low-frequency V m oscillations have been described in inactive awake animals, but it is unclear whether they shape sensory processing in neurons and whether they occur during active awake behavioral states. To answer these questions, we performed two-photon guided whole-cell V m recordings from primary visual cortex layer 2/3 excitatory and inhibitory neurons in awake mice during passive visual stimulation and performance of visual and auditory discrimination tasks. We recorded stereotyped 3-5 Hz V m oscillations where the V m baseline hyperpolarized as the V m underwent high amplitude rhythmic fluctuations lasting 1-2 s in duration. When 3-5 Hz V m oscillations coincided with visual cues, excitatory neuron responses to preferred cues were significantly reduced. Despite this disruption to sensory processing, visual cues were critical for evoking 3-5 Hz V m oscillations when animals performed discrimination tasks and passively viewed drifting grating stimuli. Using pupillometry and animal locomotive speed as indicators of arousal, we found that 3-5 Hz oscillations were not restricted to unaroused states and that they occurred equally in aroused and unaroused states. Therefore, low-frequency V m oscillations play a role in shaping sensory processing in visual cortical neurons, even during active wakefulness and decision making. SIGNIFICANCE STATEMENT A neuron's membrane potential ( V m ) strongly shapes how information is processed in sensory cortices of awake animals. Yet, very little is known about how low-frequency V m oscillations influence sensory processing and whether they occur in aroused awake animals. By performing two-photon guided whole-cell recordings from layer 2/3 excitatory and inhibitory neurons in the visual cortex of awake behaving animals, we found visually evoked stereotyped 3-5 Hz V m oscillations that disrupt

  17. PET measured evoked cerebral blood flow responses in an awake monkey

    International Nuclear Information System (INIS)

    Perlmutter, J.S.; Lich, L.L.; Margenau, W.; Buchholz, S.

    1991-01-01

    We have developed a method to measure task-related regional cerebral blood flow (BF) responses in an awake, trained monkey using positron emission tomography (PET) and H215O. We trained an animal with operant conditioning using only positive reinforcement to climb unassisted into a modified primate chair that was then positioned in the PET scanner. A special headholder and acrylic skull cap permitted precise placement and accurate repositioning. We measured BF qualitatively with bolus injection of H215O and 40-s scan. Each session included scans at rest interposed with scans during vibration of a forepaw. Regional responses were identified using subtraction image analysis. After global normalization, a resting image was subtracted on a pixel-by-pixel basis from a comparable image collected during vibration. The region of peak response occurred in contralateral sensorimotor cortex with a mean magnitude of 11.6% (+/- 3.2%) of the global mean value for 10 separate experiments, significantly greater than the mean qualitative BF change (0.4 +/- 3.6%; p less than 0.00001) in the same region for seven rest-rest pairs. This newly developed technique forms the basis for a wide variety of experiments

  18. Long-term evolution of brainstem electrical evoked responses to sound after restricted ablation of the auditory cortex.

    Directory of Open Access Journals (Sweden)

    Verónica Lamas

    Full Text Available INTRODUCTION: This study aimed to assess the top-down control of sound processing in the auditory brainstem of rats. Short latency evoked responses were analyzed after unilateral or bilateral ablation of auditory cortex. This experimental paradigm was also used towards analyzing the long-term evolution of post-lesion plasticity in the auditory system and its ability to self-repair. METHOD: Auditory cortex lesions were performed in rats by stereotactically guided fine-needle aspiration of the cerebrocortical surface. Auditory Brainstem Responses (ABR were recorded at post-surgery day (PSD 1, 7, 15 and 30. Recordings were performed under closed-field conditions, using click trains at different sound intensity levels, followed by statistical analysis of threshold values and ABR amplitude and latency variables. Subsequently, brains were sectioned and immunostained for GAD and parvalbumin to assess the location and extent of lesions accurately. RESULTS: Alterations in ABR variables depended on the type of lesion and post-surgery time of ABR recordings. Accordingly, bilateral ablations caused a statistically significant increase in thresholds at PSD1 and 7 and a decrease in waves amplitudes at PSD1 that recover at PSD7. No effects on latency were noted at PSD1 and 7, whilst recordings at PSD15 and 30 showed statistically significant decreases in latency. Conversely, unilateral ablations had no effect on auditory thresholds or latencies, while wave amplitudes only decreased at PSD1 strictly in the ipsilateral ear. CONCLUSION: Post-lesion plasticity in the auditory system acts in two time periods: short-term period of decreased sound sensitivity (until PSD7, most likely resulting from axonal degeneration; and a long-term period (up to PSD7, with changes in latency responses and recovery of thresholds and amplitudes values. The cerebral cortex may have a net positive gain on the auditory pathway response to sound.

  19. Characterisation of the p53-mediated cellular responses evoked in primary mouse cells following exposure to ultraviolet radiation.

    Directory of Open Access Journals (Sweden)

    Gillian D McFeat

    Full Text Available Exposure to ultraviolet (UV light can cause significant damage to mammalian cells and, although the spectrum of damage produced varies with the wavelength of UV, all parts of the UV spectrum are recognised as being detrimental to human health. Characterising the cellular response to different wavelengths of UV therefore remains an important aim so that risks and their moderation can be evaluated, in particular in relation to the initiation of skin cancer. The p53 tumour suppressor protein is central to the cellular response that protects the genome from damage by external agents such as UV, thus reducing the risk of tumorigenesis. In response to a variety of DNA damaging agents including UV light, wild-type p53 plays a role in mediating cell-cycle arrest, facilitating apoptosis and stimulating repair processes, all of which prevent the propagation of potentially mutagenic defects. In this study we examined the induction of p53 protein and its influence on the survival of primary mouse fibroblasts exposed to different wavelengths of UV light. UVC was found to elevate p53 protein and its sequence specific DNA binding capacity. Unexpectedly, UVA treatment failed to induce p53 protein accumulation or sequence specific DNA binding. Despite this, UVA exposure of wild-type cells induced a p53 dependent G1 cell cycle arrest followed by a wave of p53 dependent apoptosis, peaking 12 hours post-insult. Thus, it is demonstrated that the elements of the p53 cellular response evoked by exposure to UV radiation are wavelength dependent. Furthermore, the interrelationship between various endpoints is complex and not easily predictable. This has important implications not only for understanding the mode of action of p53 but also for the use of molecular endpoints in quantifying exposure to different wavelengths of UV in the context of human health protection.

  20. Linear combination of auditory steady-state responses evoked by co-modulated tones

    DEFF Research Database (Denmark)

    Guérit, François; Marozeau, Jeremy; Epp, Bastian

    2017-01-01

    Up to medium intensities and in the 80–100-Hz region, the auditory steady-state response (ASSR) to a multi-tone carrier is commonly considered to be a linear sum of the dipoles from each tone specific ASSR generator. Here, this hypothesis was investigated when a unique modulation frequency is used...... for all carrier components. Listeners were presented with a co-modulated dual-frequency carrier (1 and 4 kHz), from which the modulator starting phase Ui of the 1-kHz component was systematically varied. The results support the hypothesis of a linear superposition of the dipoles originating from different...

  1. High frequency switched-mode stimulation can evoke postsynaptic responses in cerebellar principal neurons

    Directory of Open Access Journals (Sweden)

    Marijn Van Dongen

    2015-03-01

    Full Text Available This paper investigates the efficacy of high frequency switched-mode neural stimulation. Instead of using a constant stimulation amplitude, the stimulus is switched on and off repeatedly with a high frequency (up to 100kHz duty cycled signal. By means of tissue modeling that includes the dynamic properties of both the tissue material as well as the axon membrane, it is first shown that switched-mode stimulation depolarizes the cell membrane in a similar way as classical constant amplitude stimulation.These findings are subsequently verified using in vitro experiments in which the response of a Purkinje cell is measured due to a stimulation signal in the molecular layer of the cerebellum of a mouse. For this purpose a stimulator circuit is developed that is able to produce a monophasic high frequency switched-mode stimulation signal. The results confirm the modeling by showing that switched-mode stimulation is able to induce similar responses in the Purkinje cell as classical stimulation using a constant current source. This conclusion opens up possibilities for novel stimulation designs that can improve the performance of the stimulator circuitry. Care has to be taken to avoid losses in the system due to the higher operating frequency.

  2. Contribuição do potencial evocado auditivo em pacientes com vertigem Results of brainstem evoked response in patients with vestibular complaints

    Directory of Open Access Journals (Sweden)

    Gisiane Munaro

    2010-06-01

    -sectional, retrospective, observational study, held with 56 dizzy patients assessed by means of audiometry, vecto-electronystagmography and brainstem evoked auditory potential, broken down into Group A, with 31 normal-hearing individuals and Group B with 25 hearing loss patients, compared to the control group made up of ten normal-hearing asymptomatic individuals. RESULTS: Patients from groups A and B were compared to the Control Group, although with values within the normal range. A common finding for both groups was the lack of wave I at 80 dBHL and it happened bilaterally in four individuals (12.9% and unilaterally in three (9.6% for Group A; and bilaterally in eight individuals from Group B (32%. In the two cases in which vecto-electronystagmography showed central vestibular alteration, there were no changes to the evoked potential parameters. CONCLUSION: patients with vertigo, normal-hearing and hearing loss individuals had increased absolute latencies when compared to the Control Group

  3. Sex-specific automatic responses to infant cries: TMS reveals greater excitability in females than males in motor evoked potentials

    Directory of Open Access Journals (Sweden)

    Irene eMessina

    2016-01-01

    Full Text Available Neuroimaging reveals that infant cries activate parts of the premotor cortical system. To validate this effect in a more direct way, we used event-related transcranial magnetic stimulation (TMS. Here, we investigated the presence and the time course of modulation of motor cortex excitability in young adults who listened to infant cries. Specifically, we recorded motor evoked potentials (MEPs from the biceps brachii (BB and interosseus dorsalis primus (ID1 muscles as produced by TMS delivered from 0 to 250 ms from sound onset in six steps of 50 ms in 10 females and 10 males. We observed an excitatory modulation of MEPs at 100 ms from the onset of the infant cry specific to females and to the ID1 muscle. We regard this modulation as a response to natural cry sounds because it was delayed, attenuated to stimuli increasingly different from natural cry, and was absent in a separate group of females who listened to non-cry stimuli physically matched to natural infant cries. Furthermore, the 100-ms latency of this modulation is not compatible with a voluntary reaction to the stimulus but suggests an automatic, bottom-up audiomotor association. The brains of adult females appear to be tuned to respond to infant cries with automatic motor excitation. This effect may reflect the greater and longstanding burden on females in caregiving infants.

  4. Estradiol suppresses ingestive response evoked by activation of 5-HT1A receptors in the lateral hypothalamus of ovariectomized rats.

    Science.gov (United States)

    Taschetto, Ana P D; Levone, Brunno R; Kochenborger, Larissa; da Silva, Eduardo S; Flores, Rafael A; Faria, Moacir S; Paschoalini, Marta A

    2018-03-08

    The present study investigated the effects of estradiol (E2) on ingestive behavior after activation of 5-HT1A receptors in the lateral hypothalamus (LH) of female rats habituated to eat a wet mash diet. Ovariectomized rats treated with corn oil (OVX) or estradiol cypionate (OVX+E) received local injections into the LH of vehicle or an agonist of 5-HT1A receptors, 8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH-DPAT; at a dose of 6 nmol). To determine the involvement of these receptors in food intake, some animals were pretreated with N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl) cyclohexane carboxamide maleate (WAY-100635, a 5-HT1A receptor full antagonist, at a dose of 0.37 nmol), followed by the injection of the agonist 8-OH-DPAT or its vehicle. The results showed that the injection of 8-OH-DPAT into the LH of OVX rats significantly increased food intake, and the duration and frequency of this behavior. The pretreatment with E2 suppressed the hyperphagic response induced by 8-OH-DPAT in OVX animals. The inhibition of 5-HT1A receptors after pretreatment with WAY-100635 blocked the hyperphagic effects evoked by 8-OH-DPAT in OVX. These results indicate that the activity of LH 5-HT1A receptors could be affected by blood E2 levels.

  5. Effects of glutamate receptor agonists on the P13 auditory evoked potential and startle response in the rat

    Directory of Open Access Journals (Sweden)

    Christen eSimon

    2011-01-01

    Full Text Available The P13 potential is the rodent equivalent of the P50 potential, which is an evoked response recorded at the vertex (Vx 50 msec following an auditory stimulus in humans. Both the P13 and P50 potentials are only present during waking and rapid eye movement (REM sleep, and are considered to be measures of level of arousal. The source of the P13 and P50 potentials appears to be the pedunculopontine nucleus (PPN, a brainstem nucleus with indirect ascending projections to the cortex through the intralaminar thalamus (ILT, mediating arousal, and descending inhibitory projections to the caudal pontine reticular formation (CPRF, which mediates the auditory startle response (SR. We tested the hypothesis that intracranial microinjection (ICM of glutamate (GLU or GLU receptor agonists will increase the activity of PPN neurons, resulting in an increased P13 potential response, and decreased SR due to inhibitory projections from the PPN to the CPRF, in freely moving animals. Cannulae were inserted into the PPN to inject neuroactive agents, screws were inserted into the Vx in order to record the P13 potential, and electrodes inserted into the dorsal nuchal muscle to record electromyograms (EMGs and SR amplitude. Our results showed that ICM of GLU into the PPN dose-dependently increased the amplitude of the P13 potential and decreased the amplitude of the SR. Similarly, ICM of NMDA or KA into the PPN increased the amplitude of the P13 potential. These findings indicate that glutamatergic input to the PPN plays a role in arousal control in vivo, and changes in glutamatergic input, or excitability of PPN neurons, could be implicated in a number of neuropsychiatric disorders with the common symptoms of hyperarousal and REM sleep dysregulation.

  6. Electroacupuncture reduces the evoked responses of the spinal dorsal horn neurons in ankle-sprained rats

    Science.gov (United States)

    Kim, Jae Hyo; Kim, Hee Young; Chung, Kyungsoon

    2011-01-01

    Acupuncture is shown to be effective in producing analgesia in ankle sprain pain in humans and animals. To examine the underlying mechanisms of the acupuncture-induced analgesia, the effects of electroacupuncture (EA) on weight-bearing forces (WBR) of the affected foot and dorsal horn neuron activities were examined in a rat model of ankle sprain. Ankle sprain was induced manually by overextending ligaments of the left ankle in the rat. Dorsal horn neuron responses to ankle movements or compression were recorded from the lumbar spinal cord using an in vivo extracellular single unit recording setup 1 day after ankle sprain. EA was applied to the SI-6 acupoint on the right forelimb (contralateral to the sprained ankle) by trains of electrical pulses (10 Hz, 1-ms pulse width, 2-mA intensity) for 30 min. After EA, WBR of the sprained foot significantly recovered and dorsal horn neuron activities were significantly suppressed in ankle-sprained rats. However, EA produced no effect in normal rats. The inhibitory effect of EA on hyperactivities of dorsal horn neurons of ankle-sprained rats was blocked by the α-adrenoceptor antagonist phentolamine (5 mg/kg ip) but not by the opioid receptor antagonist naltrexone (10 mg/kg ip). These data suggest that EA-induced analgesia in ankle sprain pain is mediated mainly by suppressing dorsal horn neuron activities through α-adrenergic descending inhibitory systems at the spinal level. PMID:21389301

  7. Type II collagen in cartilage evokes peptide-specific tolerance and skews the immune response.

    Science.gov (United States)

    Malmström, V; Kjellén, P; Holmdahl, R

    1998-06-01

    T cell recognition of type II collagen (CII) is a crucial event in the induction of collagen-induced arthritis in the mouse. Several CII peptides have been shown to be of importance, dependent on which MHC haplotype the mouse carries. By sequencing the rat CII and comparing the sequence with mouse, human, bovine and chicken CII, we have found that the immunodominant peptides all differ at critical positions compared with the autologous mouse sequence. Transgenic expression of the immunodominant Aq-restricted heterologous CII 256-270 epitope inserted into type I collagen (TSC mice) or type II collagen (MMC-1 mice) led to epitope-specific tolerance. Immunization of TSC mice with chick CII led to arthritis and immune responses, dependent on the subdominant, Aq-restricted and chick-specific CII 190-200 epitope. Immunization of F1 mice, expressing both H-2q and H-2r as well as transgenic expression of the Aq-restricted CII 256-270 epitope in cartilage, with bovine CII, led to arthritis, dependent on the Ar-restricted, bovine-specific epitope CII 607-621. These data show that the immunodominance of CII recognition is directed towards heterologous determinants, and that T cells directed towards the corresponding autologous epitopes are tolerated without evidence of active suppression.

  8. Workload assessment for mental arithmetic tasks using the task-evoked pupillary response

    Directory of Open Access Journals (Sweden)

    Gerhard Marquart

    2015-08-01

    Full Text Available Pupillometry is a promising method for assessing mental workload and could be helpful in the optimization of systems that involve human–computer interaction. The present study focuses on replicating the studies by Ahern (1978 and Klingner (2010, which found that for three levels of difficulty of mental multiplications, the more difficult multiplications yielded larger dilations of the pupil. Using a remote eye tracker, our research expands upon these two previous studies by statistically testing for each 1.5 s interval of the calculation period (1 the mean absolute pupil diameter (MPD, (2 the mean pupil diameter change (MPDC with respect to the pupil diameter during the pre-stimulus accommodation period, and (3 the mean pupil diameter change rate (MPDCR. An additional novelty of our research is that we compared the pupil diameter measures with a self-report measure of workload, the NASA Task Load Index (NASA-TLX, and with the mean blink rate (MBR. The results showed that the findings of Ahern and Klingner were replicated, and that the MPD and MPDC discriminated just as well between the lowest and highest difficulty levels as did the NASA-TLX. The MBR, on the other hand, did not differentiate between the difficulty levels. Moderate to strong correlations were found between the MPDC and the proportion of incorrect responses, indicating that the MPDC was higher for participants with a poorer performance. For practical applications, validity could be improved by combining pupillometry with other physiological techniques.

  9. Sustained visual-spatial attention produces costs and benefits in response time and evoked neural activity.

    Science.gov (United States)

    Mangun, G R; Buck, L A

    1998-03-01

    This study investigated the simple reaction time (RT) and event-related potential (ERP) correlates of biasing attention towards a location in the visual field. RTs and ERPs were recorded to stimuli flashed randomly and with equal probability to the left and right visual hemifields in the three blocked, covert attention conditions: (i) attention divided equally to left and right hemifield locations; (ii) attention biased towards the left location; or (iii) attention biased towards the right location. Attention was biased towards left or right by instructions to the subjects, and responses were required to all stimuli. Relative to the divided attention condition, RTs were significantly faster for targets occurring where more attention was allocated (benefits), and slower to targets where less attention was allocated (costs). The early P1 (100-140 msec) component over the lateral occipital scalp regions showed attentional benefits. There were no amplitude modulations of the occipital N1 (125-180 msec) component with attention. Between 200 and 500 msec latency, a late positive deflection (LPD) showed both attentional costs and benefits. The behavioral findings show that when sufficiently induced to bias attention, human observers demonstrate RT benefits as well as costs. The corresponding P1 benefits suggest that the RT benefits of spatial attention may arise as the result of modulations of visual information processing in the extrastriate visual cortex.

  10. Comparison of stretch reflex responses evoked during drop jumping in highly skilled atheles versus untrained subjects.

    Science.gov (United States)

    Judge, L W; Burke, J R

    2015-06-01

    The purpose of the study was to describe changes in the excitability of the stretch reflex response (SRR) during different drop jumps as a function of training background and as an adaptation to a preseason sport-specific resistance training program. Twelve collegiate field event athletes (discus, hammer, javelin, shot put, and weight; 9 males and 3 females) and 12 college-aged control subjects performed the following three jumps: (1) countermovement jump (CMJ); (2) countermovement drop jump; and (3) bounce-drop jump (BDJ). Neuromechanical changes in the performance of drop jumps by athletes were measured during the sport-specific resistance training program. Pre-post testing of drop jump performance by control subjects was included for comparison. For each jump trial, ground reaction forces (GRF), electromyograms (EMG) and cinematographic data were collected. There were no training adaptations. However, jump heights were greater for the athletes than the controls among the different jumps with the jump heights for all subjects being less during the BDJ than CMJ and CDJ. In athletes only, there was a differential modulation of the SRR from the gastrocnemius muscle with different levels of background muscle activity for the CDJ and BDJ. There were changes in excitability of SRR from the gastrocnemius muscle as a function of training background. Interrelated neuromechanical mechanisms to include landing biomechanics, intrinsic musculotendinous tissue properties of the ankle, and centrally regulated motor commands may underlie the facilitation of the SRR from the gastrocnemius muscle in athletes as compared to controls.

  11. Auditory brainstem evoked responses and temperature monitoring during pediatric cardiopulmonary bypass.

    Science.gov (United States)

    Rodriguez, R A; Edmonds, H L; Auden, S M; Austin, E H

    1999-09-01

    To examine the effects of temperature on auditory brainstem responses (ABRs) in infants during hypothermic cardiopulmonary bypass for total circulatory arrest (TCA). The relationship between ABRs (as a surrogate measure of core-brain temperature) and body temperature as measured at several temperature monitoring sites was determined. In a prospective, observational study, ABRs were recorded non-invasively at normothermia and at every 1 or 2 degrees C change in ear-canal temperature during cooling and rewarming in 15 infants (ages: 2 days to 14 months) that required TCA. The ABR latencies and amplitudes and the lowest temperatures at which an ABR was identified (the threshold) were measured during both cooling and rewarming. Temperatures from four standard temperature monitoring sites were simultaneously recorded. The latencies of ABRs increased and amplitudes decreased with cooling (P < 0.01), but rewarming reversed these effects. The ABR threshold temperature as related to each monitoring site (ear-canal, nasopharynx, esophagus and bladder) was respectively determined as 23 +/- 2.2 degrees C, 20.8 +/- 1.7 degrees C, 14.6 +/- 3.4 degrees C, and 21.5 +/- 3.8 degrees C during cooling and 21.8 +/- 1.6 degrees C, 22.4 +/- 2.0 degrees C, 27.6 +/- 3.6 degrees C, and 23.0 +/- 2.4 degrees C during rewarming. The rewarming latencies were shorter and Q10 latencies smaller than the corresponding cooling values (P < 0.01). Esophageal and bladder sites were more susceptible to temperature variations as compared with the ear-canal and nasopharynx. No temperature site reliably predicted an electrophysiological threshold. A faster latency recovery during rewarming suggests that body temperature monitoring underestimates the effects of rewarming in the core-brain. ABRs may be helpful to monitor the effects of cooling and rewarming on the core-brain during pediatric cardiopulmonary bypass.

  12. Noise-evoked otoacoustic emissions in humans

    NARCIS (Netherlands)

    Maat, B; Wit, HP; van Dijk, P

    2000-01-01

    Click-evoked otoacoustic emissions (CEOAEs) and acoustical responses evoked by bandlimited Gaussian noise (noise-evoked otoacoustic emissions; NEOAEs) were measured in three normal-hearing subjects. For the NEOAEs the first- and second-order Wiener kernel and polynomial correlation functions up to

  13. Time course and hemispheric lateralization effects of complex pitch processing: evoked magnetic fields in response to rippled noise stimuli.

    Science.gov (United States)

    Hertrich, Ingo; Mathiak, Klaus; Lutzenberger, Werner; Ackermann, Hermann

    2004-01-01

    To delineate the time course and processing stages of pitch encoding at the level of the supratemporal plane, the present study recorded evoked magnetic fields in response to rippled noise (RN) stimuli. RN largely masks simple tonotopic representations and addresses pitch processing within the temporal domain (periodicity encoding). Four dichotic stimulus types (111 or 133 Hz RN at one ear, white noise to the other one) were applied in randomized order during either visual distraction or selective auditory attention. Strictly periodic signals, noise-like events, and mixtures of both signals served as control conditions. (1) Attention-dependent ear x hemisphere interactions were observed within the time domain of the M50 field, indicating early streaming of auditory information. (2) M100 responses to strictly periodic stimuli were found lateralized to the right hemisphere. Furthermore, the higher-pitched stimuli yielded enhanced activation as compared to the lower-pitch signals (pitch scaling), conceivably reflecting sensory memory operations. (3) Besides right-hemisphere pitch scaling, the relatively late M100 component in association with the RN condition (latency = 136 ms) showed significantly stronger field strengths over the left hemisphere. Control experiments revealed this lateralization effect to be related to noise rather than pitch processing. Furthermore, subtle noise variations interacted with signal periodicity. Obviously, thus, complex task demands such as RN encoding give rise to functional segregation of auditory processing across the two hemispheres (left hemisphere: noise, right hemisphere: periodicity representation). The observed noise/periodicity interactions, furthermore, might reflect pitch-synchronous spectral evaluation at the level of the left supratemporal plane, triggered by right-hemisphere representation of signal periodicity. Copyright 2004 Elsevier Ltd.

  14. Extended high-frequency audiometry (9,000-20,000 Hz). Usefulness in audiological diagnosis.

    Science.gov (United States)

    Rodríguez Valiente, Antonio; Roldán Fidalgo, Amaya; Villarreal, Ithzel M; García Berrocal, José R

    2016-01-01

    Early detection and appropriate treatment of hearing loss are essential to minimise the consequences of hearing loss. In addition to conventional audiometry (125-8,000 Hz), extended high-frequency audiometry (9,000-20,000 Hz) is available. This type of audiometry may be useful in early diagnosis of hearing loss in certain conditions, such as the ototoxic effect of cisplatin-based treatment, noise exposure or oral misunderstanding, especially in noisy environments. Eleven examples are shown in which extended high-frequency audiometry has been useful in early detection of hearing loss, despite the subject having a normal conventional audiometry. The goal of the present paper was to highlight the importance of the extended high-frequency audiometry examination for it to become a standard tool in routine audiological examinations. Copyright © 2015 Elsevier España, S.L.U. y Sociedad Española de Otorrinolaringología y Patología Cérvico-Facial. All rights reserved.

  15. Imaging the impact of cortical microcirculation on synaptic structure and sensory-evoked hemodynamic responses in vivo.

    Directory of Open Access Journals (Sweden)

    Shengxiang Zhang

    2007-05-01

    Full Text Available In vivo two-photon microscopy was used to image in real time dendrites and their spines in a mouse photothrombotic stroke model that reduced somatosensory cortex blood flow in discrete regions of cortical functional maps. This approach allowed us to define relationships between blood flow, cortical structure, and function on scales not previously achieved with macroscopic imaging techniques. Acute ischemic damage to dendrites was triggered within 30 min when blood flow over >0.2 mm(2 of cortical surface was blocked. Rapid damage was not attributed to a subset of clotted or even leaking vessels (extravasation alone. Assessment of stroke borders revealed a remarkably sharp transition between intact and damaged synaptic circuitry that occurred over tens of mum and was defined by a transition between flowing and blocked vessels. Although dendritic spines were normally ~13 microm from small flowing vessels, we show that intact dendritic structure can be maintained (in areas without flowing vessels by blood flow from vessels that are on average 80 microm away. Functional imaging of intrinsic optical signals associated with activity-evoked hemodynamic responses in somatosensory cortex indicated that sensory-induced changes in signal were blocked in areas with damaged dendrites, but were present ~400 microm away from the border of dendritic damage. These results define the range of influence that blood flow can have on local cortical fine structure and function, as well as to demonstrate that peri-infarct tissues can be functional within the first few hours after stroke and well positioned to aid in poststroke recovery.

  16. Stimulus Dependency of Object-Evoked Responses in Human Visual Cortex: An Inverse Problem for Category Specificity

    Science.gov (United States)

    Graewe, Britta; De Weerd, Peter; Farivar, Reza; Castelo-Branco, Miguel

    2012-01-01

    Many studies have linked the processing of different object categories to specific event-related potentials (ERPs) such as the face-specific N170. Despite reports showing that object-related ERPs are influenced by visual stimulus features, there is consensus that these components primarily reflect categorical aspects of the stimuli. Here, we re-investigated this idea by systematically measuring the effects of visual feature manipulations on ERP responses elicited by both structure-from-motion (SFM)-defined and luminance-defined object stimuli. SFM objects elicited a novel component at 200–250 ms (N250) over parietal and posterior temporal sites. We found, however, that the N250 amplitude was unaffected by restructuring SFM stimuli into meaningless objects based on identical visual cues. This suggests that this N250 peak was not uniquely linked to categorical aspects of the objects, but is strongly determined by visual stimulus features. We provide strong support for this hypothesis by parametrically manipulating the depth range of both SFM- and luminance-defined object stimuli and showing that the N250 evoked by SFM stimuli as well as the well-known N170 to static faces were sensitive to this manipulation. Importantly, this effect could not be attributed to compromised object categorization in low depth stimuli, confirming a strong impact of visual stimulus features on object-related ERP signals. As ERP components linked with visual categorical object perception are likely determined by multiple stimulus features, this creates an interesting inverse problem when deriving specific perceptual processes from variations in ERP components. PMID:22363479

  17. Auditory evoked functions in ground crew working in high noise environment of Mumbai airport.

    Science.gov (United States)

    Thakur, L; Anand, J P; Banerjee, P K

    2004-10-01

    The continuous exposure to the relatively high level of noise in the surroundings of an airport is likely to affect the central pathway of the auditory system as well as the cognitive functions of the people working in that environment. The Brainstem Auditory Evoked Responses (BAER), Mid Latency Response (MLR) and P300 response of the ground crew employees working in Mumbai airport were studied to evaluate the effects of continuous exposure to high level of noise of the surroundings of the airport on these responses. BAER, P300 and MLR were recorded by using a Nicolet Compact-4 (USA) instrument. Audiometry was also monitored with the help of GSI-16 Audiometer. There was a significant increase in the peak III latency of the BAER in the subjects exposed to noise compared to controls with no change in their P300 values. The exposed group showed hearing loss at different frequencies. The exposure to the high level of noise caused a considerable decline in the auditory conduction upto the level of the brainstem with no significant change in conduction in the midbrain, subcortical areas, auditory cortex and associated areas. There was also no significant change in cognitive function as measured by P300 response.

  18. Dose-response characteristics of methylphenidate on locomotor behavior and on sensory evoked potentials recorded from the VTA, NAc, and PFC in freely behaving rats

    Directory of Open Access Journals (Sweden)

    Swann Alan C

    2006-01-01

    Full Text Available Abstract Background Methylphenidate (MPD is a psychostimulant commonly prescribed for attention deficit/hyperactivity disorder. The mode of action of the brain circuitry responsible for initiating the animals' behavior in response to psychostimulants is not well understood. There is some evidence that psychostimulants activate the ventral tegmental area (VTA, nucleus accumbens (NAc, and prefrontal cortex (PFC. Methods The present study was designed to investigate the acute dose-response of MPD (0.6, 2.5, and 10.0 mg/kg on locomotor behavior and sensory evoked potentials recorded from the VTA, NAc, and PFC in freely behaving rats previously implanted with permanent electrodes. For locomotor behavior, adult male Wistar-Kyoto (WKY; n = 39 rats were given saline on experimental day 1 and either saline or an acute injection of MPD (0.6, 2.5, or 10.0 mg/kg, i.p. on experimental day 2. Locomotor activity was recorded for 2-h post injection on both days using an automated, computerized activity monitoring system. Electrophysiological recordings were also performed in the adult male WKY rats (n = 10. Five to seven days after the rats had recovered from the implantation of electrodes, each rat was placed in a sound-insulated, electrophysiological test chamber where its sensory evoked field potentials were recorded before and after saline and 0.6, 2.5, and 10.0 mg/kg MPD injection. Time interval between injections was 90 min. Results Results showed an increase in locomotion with dose-response characteristics, while a dose-response decrease in amplitude of the components of sensory evoked field responses of the VTA, NAc, and PFC neurons. For example, the P3 component of the sensory evoked field response of the VTA decreased by 19.8% ± 7.4% from baseline after treatment of 0.6 mg/kg MPD, 37.8% ± 5.9% after 2.5 mg/kg MPD, and 56.5% ± 3.9% after 10 mg/kg MPD. Greater attenuation from baseline was observed in the NAc and PFC. Differences in the intensity of

  19. Emotional facial expressions evoke faster orienting responses, but weaker emotional responses at neural and behavioural levels compared to scenes: A simultaneous EEG and facial EMG study.

    Science.gov (United States)

    Mavratzakis, Aimee; Herbert, Cornelia; Walla, Peter

    2016-01-01

    In the current study, electroencephalography (EEG) was recorded simultaneously with facial electromyography (fEMG) to determine whether emotional faces and emotional scenes are processed differently at the neural level. In addition, it was investigated whether these differences can be observed at the behavioural level via spontaneous facial muscle activity. Emotional content of the stimuli did not affect early P1 activity. Emotional faces elicited enhanced amplitudes of the face-sensitive N170 component, while its counterpart, the scene-related N100, was not sensitive to emotional content of scenes. At 220-280ms, the early posterior negativity (EPN) was enhanced only slightly for fearful as compared to neutral or happy faces. However, its amplitudes were significantly enhanced during processing of scenes with positive content, particularly over the right hemisphere. Scenes of positive content also elicited enhanced spontaneous zygomatic activity from 500-750ms onwards, while happy faces elicited no such changes. Contrastingly, both fearful faces and negative scenes elicited enhanced spontaneous corrugator activity at 500-750ms after stimulus onset. However, relative to baseline EMG changes occurred earlier for faces (250ms) than for scenes (500ms) whereas for scenes activity changes were more pronounced over the whole viewing period. Taking into account all effects, the data suggests that emotional facial expressions evoke faster attentional orienting, but weaker affective neural activity and emotional behavioural responses compared to emotional scenes. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  20. The relationship between tinnitus pitch and parameters of audiometry and distortion product otoacoustic emissions.

    Science.gov (United States)

    Keppler, H; Degeest, S; Dhooge, I

    2017-11-01

    Chronic tinnitus is associated with reduced auditory input, which results in changes in the central auditory system. This study aimed to examine the relationship between tinnitus pitch and parameters of audiometry and distortion product otoacoustic emissions. For audiometry, the parameters represented the edge frequency of hearing loss, the frequency of maximum hearing loss and the frequency range of hearing loss. For distortion product otoacoustic emissions, the parameters were the frequency of lowest distortion product otoacoustic emission amplitudes and the frequency range of reduced distortion product otoacoustic emissions. Sixty-seven patients (45 males, 22 females) with subjective chronic tinnitus, aged 18 to 73 years, were included. No correlation was found between tinnitus pitch and parameters of audiometry and distortion product otoacoustic emissions. However, tinnitus pitch fell mostly within the frequency range of hearing loss. The current study seems to confirm the relationship between tinnitus pitch and the frequency range of hearing loss, thus supporting the homeostatic plasticity model.

  1. Vestibular Evoked Myogenic Potential Produced by Bone-Conducted Stimuli: A Study on its Basics and Clinical Applications in Patients with Conductive and Sensorineural Hearing Loss and a Group with Vestibular Schawannoma.

    Science.gov (United States)

    Mahdi, Parvane; Amali, Amin; Pourbakht, Akram; Karimi Yazdi, Alireza; Bassam, Ali

    2013-06-01

    Vestibular evoked myogenic potential (VEMP) has recently been broadly studied in vestibular disorders. As it is evoked by loud sound stimulation, even mild conductive hearing loss may affect VEMP results. Bone-conducted (BC) stimulus is an alternative stimulation for evoking this response. This study aims to assess the characteristics of BC-VEMP in different groups of patients. We performed a cross sectional analysis on 20 healthy volunteers with normal pure-tone audiometry as a control group; and on a group of patients consisted of 20 participants with conductive hearing loss, five with bilateral sensorineural hearing loss and four with vestibular schawannoma. AC and BC-VEMP were performed in all participants. In control group the VEMP responses to both kinds of stimuli had an acceptable morphology and consisted of p13 and n23 waves. Latency value of these main components in each type of stimulus was not significantly different (P>0.05). However, the mean amplitude was larger in BC modality than AC stimulation (P=0.025). In the group with conductive hearing loss, the VEMP response was absent in fifteen (46.87%) of the 32 ears using the AC method, whereas all (100%) displayed positive elicitability of VEMP by BC method. Normal VEMP responses in both stimuli were evoked in all patients with sensorineural hearing loss. In patients with unilateral vestibular schwannomas (VS), 2 (50.00%) had neither AC-VEMP nor BC-VEMP. Auditory stimuli delivered by bone conduction can evoke VEMP response. These responses are of vestibular origin and can be used in vestibular evaluation of patients with conductive hearing loss.

  2. Vestibular Evoked Myogenic Potential Produced by Bone-Conducted Stimuli: A Study on its Basics and Clinical Applications in Patients With Conductive and Sensorineural Hearing Loss and a Group With Vestibular Schawannoma

    Directory of Open Access Journals (Sweden)

    Parvane Mahdi

    2013-06-01

    Full Text Available Introduction: Vestibular evoked myogenic potential (VEMP has recently been broadly studied in vestibular disorders. As it is evoked by loud sound stimulation, even mild conductive hearing loss may affect VEMP results. Bone-conducted (BC stimulus is an alternative stimulation for evoking this response. This study aims to assess the characteristics of BC-VEMP in different groups of patients.   Materials and Methods: We performed a cross sectional analysis on 20 healthy volunteers with normal pure-tone audiometry as a control group; and on a group of patients consisted of 20 participants with conductive hearing loss, five with bilateral sensorineural hearing loss and four with vestibular schawannoma. AC and BC-VEMP were performed in all participants.   Results: In control group the VEMP responses to both kinds of stimuli had an acceptable morphology and consisted of p13 and n23 waves. Latency value of these main components in each type of stimulus was not significantly different (P>0.05. However, the mean amplitude was larger in BC modality than AC stimulation (P=0.025. In the group with conductive hearing loss, the VEMP response was absent in fifteen (46.87% of the 32 ears using the AC method, whereas all (100% displayed positive elicitability of VEMP by BC method. Normal VEMP responses in both stimuli were evoked in all patients with sensorineural hearing loss. In patients with unilateral vestibular schwannomas (VS, 2 (50.00% had neither AC-VEMP nor BC-VEMP. Conclusion:  Auditory stimuli delivered by bone conduction can evoke VEMP response. These responses are of vestibular origin and can be used in vestibular evaluation of patients with conductive hearing loss.

  3. Auditory-steady-state response reliability in the audiological diagnosis after neonatal hearing screening.

    Science.gov (United States)

    Núñez-Batalla, Faustino; Noriega-Iglesias, Sabel; Guntín-García, Maite; Carro-Fernández, Pilar; Llorente-Pendás, José Luis

    2016-01-01

    Conventional audiometry is the gold standard for quantifying and describing hearing loss. Alternative methods become necessary to assess subjects who are too young to respond reliably. Auditory evoked potentials constitute the most widely used method for determining hearing thresholds objectively; however, this stimulus is not frequency specific. The advent of the auditory steady-state response (ASSR) leads to more specific threshold determination. The current study describes and compares ASSR, auditory brainstem response (ABR) and conventional behavioural tone audiometry thresholds in a group of infants with various degrees of hearing loss. A comparison was made between ASSR, ABR and behavioural hearing thresholds in 35 infants detected in the neonatal hearing screening program. Mean difference scores (±SD) between ABR and high frequency ABR thresholds were 11.2 dB (±13) and 10.2 dB (±11). Pearson correlations between the ASSR and audiometry thresholds were 0.80 and 0.91 (500Hz); 0.84 and 0.82 (1000Hz); 0.85 and 0.84 (2000Hz); and 0.83 and 0.82 (4000Hz). The ASSR technique is a valuable extension of the clinical test battery for hearing-impaired children. Copyright © 2015 Elsevier España, S.L.U. and Sociedad Española de Otorrinolaringología y Cirugía de Cabeza y Cuello. All rights reserved.

  4. The Involvement of Endogenous Neural Oscillations in the Processing of Rhythmic Input: More Than a Regular Repetition of Evoked Neural Responses

    Science.gov (United States)

    Zoefel, Benedikt; ten Oever, Sanne; Sack, Alexander T.

    2018-01-01

    It is undisputed that presenting a rhythmic stimulus leads to a measurable brain response that follows the rhythmic structure of this stimulus. What is still debated, however, is the question whether this brain response exclusively reflects a regular repetition of evoked responses, or whether it also includes entrained oscillatory activity. Here we systematically present evidence in favor of an involvement of entrained neural oscillations in the processing of rhythmic input while critically pointing out which questions still need to be addressed before this evidence could be considered conclusive. In this context, we also explicitly discuss the potential functional role of such entrained oscillations, suggesting that these stimulus-aligned oscillations reflect, and serve as, predictive processes, an idea often only implicitly assumed in the literature. PMID:29563860

  5. Diagnosis of hearing loss using automated audiometry in an asynchronous telehealth model: A pilot accuracy study.

    Science.gov (United States)

    Brennan-Jones, Christopher G; Eikelboom, Robert H; Swanepoel, De Wet

    2017-02-01

    Introduction Standard criteria exist for diagnosing different types of hearing loss, yet audiologists interpret audiograms manually. This pilot study examined the feasibility of standardised interpretations of audiometry in a telehealth model of care. The aim of this study was to examine diagnostic accuracy of automated audiometry in adults with hearing loss in an asynchronous telehealth model using pre-defined diagnostic protocols. Materials and methods We recruited 42 study participants from a public audiology and otolaryngology clinic in Perth, Western Australia. Manual audiometry was performed by an audiologist either before or after automated audiometry. Diagnostic protocols were applied asynchronously for normal hearing, disabling hearing loss, conductive hearing loss and unilateral hearing loss. Sensitivity and specificity analyses were conducted using a two-by-two matrix and Cohen's kappa was used to measure agreement. Results The overall sensitivity for the diagnostic criteria was 0.88 (range: 0.86-1) and overall specificity was 0.93 (range: 0.86-0.97). Overall kappa ( k) agreement was 'substantial' k = 0.80 (95% confidence interval (CI) 0.70-0.89) and significant at p loss. This method has the potential to improve synchronous and asynchronous tele-audiology service delivery.

  6. High frequency audiometry in prospective clinical research of ototoxicity due to platinum derivatives

    NARCIS (Netherlands)

    van der Hulst, R. J.; Dreschler, W. A.; Urbanus, N. A.

    1988-01-01

    The results of clinical use of routine high frequency audiometry in monitoring the ototoxic side effects of platinum and its derivatives are described in this prospective study. After demonstrating the reproducibility of the technique, we discuss the first results of an analysis of ototoxic side

  7. Diagnostic Hearing Assessment in Schools: Validity and Time Efficiency of Automated Audiometry.

    Science.gov (United States)

    Mahomed-Asmail, Faheema; Swanepoel, De Wet; Eikelboom, Robert H

    2016-01-01

    Poor follow-up compliance from school-based hearing screening typically undermines the efficacy of school-based hearing screening programs. Onsite diagnostic audiometry with automation may reduce false positives and ensure directed referrals. To investigate the validity and time efficiency of automated diagnostic air- and bone-conduction audiometry for children in a natural school environment following hearing screening. A within-subject repeated measures design was employed to compare air- and bone-conduction pure-tone thresholds (0.5-4 kHz), measured by manual and automated pure-tone audiometry. Sixty-two children, 25 males and 37 females, with an average age of 8 yr (standard deviation [SD] = 0.92; range = 6-10 yr) were recruited for this study. The participants included 30 children who failed on a hearing screening and 32 children who passed a hearing screening. Threshold comparisons were made for air- and bone-conduction thresholds across ears tested with manual and automated audiometry. To avoid a floor effect thresholds of 15 dB HL were excluded in analyses. The Wilcoxon signed ranked test was used to compare threshold correspondence for manual and automated thresholds and the paired samples t-test was used to compare test time. Statistical significance was set as p ≤ 0.05. 85.7% of air-conduction thresholds and 44.6% of bone-conduction thresholds corresponded within the normal range (15 dB HL) for manual and automated audiometry. Both manual and automated audiometry air- and bone-conduction thresholds exceeded 15 dB HL in 9.9% and 34.0% of thresholds, respectively. For these thresholds, average absolute differences for air- and bone-conduction thresholds were 6.3 (SD = 8.3) and 2.2 dB (SD = 3.6) and they corresponded within 10 dB across frequencies in 87.7% and 100.0%, respectively. There was no significant difference between manual and automated air- and bone-conduction across frequencies for these thresholds. Using onsite automated diagnostic audiometry

  8. Longitudinal changes in task-evoked brain responses in Parkinson’s disease patients with and without mild cognitive impairment

    Directory of Open Access Journals (Sweden)

    Urban eEkman

    2014-07-01

    Full Text Available Cognitive deficits are common in Parkinson’s disease. Previous cross-sectional research has demonstrated a link between cognitive impairments and fronto-striatal dopaminergic dysmodulation. However, longitudinal studies that link disease progression with altered task-evoked brain activity are lacking. Therefore, our objective was to longitudinally evaluate working-memory related brain activity changes in Parkinson’s disease patients with and without mild cognitive impairment.Patients were recruited within a longitudinal cohort study of incident patients with idiopathic parkinsonism. We longitudinally (at baseline examination and at 12-months follow-up compared 28 patients with Parkinson’s disease without mild cognitive impairment with 11 patients with Parkinson’s disease and mild cognitive impairment. Functional MRI blood oxygen level dependent signal was measured during a verbal two-back working-memory task. Patients with mild cognitive impairment under-recruited bilateral medial prefrontal cortex, right putamen, and lateral parietal cortex at both time-points (main effect of group: p<0.001, uncorrected. Critically, a significant group-by-time interaction effect (p<0.001, uncorrected was found in the right fusiform gyrus, indicating that working-memory related activity decreased for patients with Parkinson’s disease and mild cognitive impairment between baseline and follow-up, while patients without mild cognitive impairment were stable across time-points. The functional connectivity between right fusiform gyrus and bilateral caudate nucleus was stronger for patients without MCI relative to patients with MCI.Our findings support the view that deficits in working-memory updating are related to persistent fronto-striatal under-recruitments in patients with early phase Parkinson’s disease and mild cognitive impairment. The longitudinal evolution of mild cognitive impairment in Parkinson’s disease translates into additional task-evoked

  9. High-frequency Audiometry Hearing on Monitoring of Individuals Exposed to Occupational Noise: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Antonioli, Cleonice Aparecida Silva

    2015-12-01

    Full Text Available Introduction The literature reports on high-frequency audiometry as one of the exams used on hearing monitoring of individuals exposed to high sound pressure in their work environment, due to the method́s greater sensitivity in early identification of hearing loss caused by noise. The frequencies that compose the exam are generally between 9 KHz and 20KHz, depending on the equipment. Objective This study aims to perform a retrospective and secondary systematic revision of publications on high-frequency audiometry on hearing monitoring of individuals exposed to occupational noise. Data Synthesis This systematic revision followed the methodology proposed in the Cochrane Handbook, focusing on the question: “Is High-frequency Audiometry more sensitive than Conventional Audiometry in the screening of early hearing loss individuals exposed to occupational noise?” The search was based on PubMed data, Base, Web of Science (Capes, Biblioteca Virtual em Saúde (BVS, and in the references cited in identified and selected articles. The search resulted in 6059 articles in total. Of these, only six studies were compatible with the criteria proposed in this study. Conclusion The performed meta-analysis does not definitively answer the study's proposed question. It indicates that the 16 KHz high frequency audiometry (HFA frequency is sensitive in early identification of hearing loss in the control group (medium difference (MD = 8.33, as well as the 4 KHz frequency (CA, this one being a little less expressive (MD = 5.72. Thus, others studies are necessary to confirm the HFA importance for the early screening of hearing loss on individuals exposed to noise at the workplace.

  10. Nonorganic hearing loss in children: audiometry, clinical characteristics, biographical history and recovery of hearing thresholds.

    Science.gov (United States)

    Schmidt, Claus-Michael; am Zehnhoff-Dinnesen, Antoinette; Matulat, Peter; Knief, Arne; Rosslau, Ken; Deuster, Dirk

    2013-07-01

    The term "nonorganic hearing loss" (NOHL) (pseudohypacusis, functional or psychogenic hearing loss) describes a hearing loss without a detectable corresponding pathology in the auditory system. It is characterized by a discrepancy between elevated pure tone audiometry thresholds and normal speech discrimination. The recommended audiological management of NOHL in children comprises history taking, diagnosis, and counseling. According to the literature, prognosis depends on the severity of the patient's school and/or personal problems. Routine referral to a child psychiatrist is discussed as being controversial. The clinical history of 34 children with NOHL was retrospectively evaluated. In 15 children, follow up audiometry was performed. Results of biographical history, subjective and objective audiometry, additional speech and language assessment, psychological investigations and follow up audiometry are presented and discussed. The prevalence of NOHL was 1.8% in children with suspected hearing loss. Mean age at diagnosis was 10.8 years. Girls were twice as often affected as boys. Patient history showed a high prevalence of emotional and school problems. Pre-existing organic hearing loss can be worsened by nonorganic causes. Children with a fast recovery of hearing thresholds (n=6) showed a high rate (4/6) of family, social and emotional problems. In children with continuous threshold elevation (n=9), biographical history showed no recognizable or obvious family, social or emotional problems; learning disability (4/9) was the most frequently presented characteristic. Due to advances in objective audiometry, the diagnosis of NOHL is less challenging than management and counseling. Considering the high frequency of personal and school problems, a multidisciplinary setting is helpful. On the basis of our results, drawing conclusions from hearing threshold recovery on the severity of underlying psychic problems seems inappropriate. As a consequence, a referral to a

  11. High-frequency Audiometry Hearing on Monitoring of Individuals Exposed to Occupational Noise: A Systematic Review.

    Science.gov (United States)

    Antonioli, Cleonice Aparecida Silva; Momensohn-Santos, Teresa Maria; Benaglia, Tatiana Aparecida Silva

    2016-07-01

    The literature reports on high-frequency audiometry as one of the exams used on hearing monitoring of individuals exposed to high sound pressure in their work environment, due to the method́s greater sensitivity in early identification of hearing loss caused by noise. The frequencies that compose the exam are generally between 9 KHz and 20KHz, depending on the equipment. This study aims to perform a retrospective and secondary systematic revision of publications on high-frequency audiometry on hearing monitoring of individuals exposed to occupational noise. This systematic revision followed the methodology proposed in the Cochrane Handbook, focusing on the question: "Is High-frequency Audiometry more sensitive than Conventional Audiometry in the screening of early hearing loss individuals exposed to occupational noise?" The search was based on PubMed data, Base, Web of Science (Capes), Biblioteca Virtual em Saúde (BVS), and in the references cited in identified and selected articles. The search resulted in 6059 articles in total. Of these, only six studies were compatible with the criteria proposed in this study. The performed meta-analysis does not definitively answer the study's proposed question. It indicates that the 16 KHz high frequency audiometry (HFA) frequency is sensitive in early identification of hearing loss in the control group (medium difference (MD = 8.33)), as well as the 4 KHz frequency (CA), this one being a little less expressive (MD = 5.72). Thus, others studies are necessary to confirm the HFA importance for the early screening of hearing loss on individuals exposed to noise at the workplace.

  12. Correlation between single-trial visual evoked potentials and the blood oxygenation level dependent response in simultaneously recorded electroencephalography-functional magnetic resonance imaging

    DEFF Research Database (Denmark)

    Fuglø, Dan; Pedersen, Henrik; Rostrup, Egill

    2012-01-01

    in different occipital and extraoccipital cortical areas not explained by the boxcar regressor. The results suggest that the P1-N2 regressor is the best EEG-based regressor to model the visual paradigm, but when looking for additional effects like habituation or attention modulation that cannot be modeled......To compare different electroencephalography (EEG)-based regressors and their ability to predict the simultaneously recorded blood oxygenation level dependent response during blocked visual stimulation, simultaneous EEG-functional magnetic resonance imaging in 10 healthy volunteers was performed....... The performance of different single-trial EEG regressors was compared in terms of predicting the measured blood oxygenation level dependent response. The EEG-based regressors were the amplitude and latency of the primary positive (P1) and negative (N2) peaks of the visual evoked potential, the combined P1-N2...

  13. Human sensory-evoked responses differ coincident with either "fusion-memory" or "flash-memory", as shown by stimulus repetition-rate effects

    Directory of Open Access Journals (Sweden)

    Baird Bill

    2006-02-01

    Full Text Available Abstract Background: A new method has been used to obtain human sensory evoked-responses whose time-domain waveforms have been undetectable by previous methods. These newly discovered evoked-responses have durations that exceed the time between the stimuli in a continuous stream, thus causing an overlap which, up to now, has prevented their detection. We have named them "A-waves", and added a prefix to show the sensory system from which the responses were obtained (visA-waves, audA-waves, somA-waves. Results: When A-waves were studied as a function of stimulus repetition-rate, it was found that there were systematic differences in waveshape at repetition-rates above and below the psychophysical region in which the sensation of individual stimuli fuse into a continuity. The fusion phenomena is sometimes measured by a "Critical Fusion Frequency", but for this research we can only identify a frequency-region [which we call the STZ (Sensation-Transition Zone]. Thus, the A-waves above the STZ differed from those below the STZ, as did the sensations. Study of the psychophysical differences in auditory and visual stimuli, as shown in this paper, suggest that different stimulus features are detected, and remembered, at stimulation rates above and below STZ. Conclusion: The results motivate us to speculate that: 1 Stimulus repetition-rates above the STZ generate waveforms which underlie "fusion-memory" whereas rates below the STZ show neuronal processing in which "flash-memory" occurs. 2 These two memories differ in both duration and mechanism, though they may occur in the same cell groups. 3 The differences in neuronal processing may be related to "figure" and "ground" differentiation. We conclude that A-waves provide a novel measure of neural processes that can be detected on the human scalp, and speculate that they may extend clinical applications of evoked response recordings. If A-waves also occur in animals, it is likely that A-waves will provide

  14. Human sensory-evoked responses differ coincident with either "fusion-memory" or "flash-memory", as shown by stimulus repetition-rate effects

    Science.gov (United States)

    Jewett, Don L; Hart, Toryalai; Larson-Prior, Linda J; Baird, Bill; Olson, Marram; Trumpis, Michael; Makayed, Katherine; Bavafa, Payam

    2006-01-01

    Background: A new method has been used to obtain human sensory evoked-responses whose time-domain waveforms have been undetectable by previous methods. These newly discovered evoked-responses have durations that exceed the time between the stimuli in a continuous stream, thus causing an overlap which, up to now, has prevented their detection. We have named them "A-waves", and added a prefix to show the sensory system from which the responses were obtained (visA-waves, audA-waves, somA-waves). Results: When A-waves were studied as a function of stimulus repetition-rate, it was found that there were systematic differences in waveshape at repetition-rates above and below the psychophysical region in which the sensation of individual stimuli fuse into a continuity. The fusion phenomena is sometimes measured by a "Critical Fusion Frequency", but for this research we can only identify a frequency-region [which we call the STZ (Sensation-Transition Zone)]. Thus, the A-waves above the STZ differed from those below the STZ, as did the sensations. Study of the psychophysical differences in auditory and visual stimuli, as shown in this paper, suggest that different stimulus features are detected, and remembered, at stimulation rates above and below STZ. Conclusion: The results motivate us to speculate that: 1) Stimulus repetition-rates above the STZ generate waveforms which underlie "fusion-memory" whereas rates below the STZ show neuronal processing in which "flash-memory" occurs. 2) These two memories differ in both duration and mechanism, though they may occur in the same cell groups. 3) The differences in neuronal processing may be related to "figure" and "ground" differentiation. We conclude that A-waves provide a novel measure of neural processes that can be detected on the human scalp, and speculate that they may extend clinical applications of evoked response recordings. If A-waves also occur in animals, it is likely that A-waves will provide new methods for

  15. An Idle-State Detection Algorithm for SSVEP-Based Brain-Computer Interfaces Using a Maximum Evoked Response Spatial Filter.

    Science.gov (United States)

    Zhang, Dan; Huang, Bisheng; Wu, Wei; Li, Siliang

    2015-11-01

    Although accurate recognition of the idle state is essential for the application of brain-computer interfaces (BCIs) in real-world situations, it remains a challenging task due to the variability of the idle state. In this study, a novel algorithm was proposed for the idle state detection in a steady-state visual evoked potential (SSVEP)-based BCI. The proposed algorithm aims to solve the idle state detection problem by constructing a better model of the control states. For feature extraction, a maximum evoked response (MER) spatial filter was developed to extract neurophysiologically plausible SSVEP responses, by finding the combination of multi-channel electroencephalogram (EEG) signals that maximized the evoked responses while suppressing the unrelated background EEGs. The extracted SSVEP responses at the frequencies of both the attended and the unattended stimuli were then used to form feature vectors and a series of binary classifiers for recognition of each control state and the idle state were constructed. EEG data from nine subjects in a three-target SSVEP BCI experiment with a variety of idle state conditions were used to evaluate the proposed algorithm. Compared to the most popular canonical correlation analysis-based algorithm and the conventional power spectrum-based algorithm, the proposed algorithm outperformed them by achieving an offline control state classification accuracy of 88.0 ± 11.1% and idle state false positive rates (FPRs) ranging from 7.4 ± 5.6% to 14.2 ± 10.1%, depending on the specific idle state conditions. Moreover, the online simulation reported BCI performance close to practical use: 22.0 ± 2.9 out of the 24 control commands were correctly recognized and the FPRs achieved as low as approximately 0.5 event/min in the idle state conditions with eye open and 0.05 event/min in the idle state condition with eye closed. These results demonstrate the potential of the proposed algorithm for implementing practical SSVEP BCI systems.

  16. Attenuation of insulin-evoked responses in brain networks controlling appetite and reward in insulin resistance: the cerebral basis for impaired control of food intake in metabolic syndrome?

    Science.gov (United States)

    Anthony, Karen; Reed, Laurence J; Dunn, Joel T; Bingham, Emma; Hopkins, David; Marsden, Paul K; Amiel, Stephanie A

    2006-11-01

    The rising prevalence of obesity and type 2 diabetes is a global challenge. A possible mechanism linking insulin resistance and weight gain would be attenuation of insulin-evoked responses in brain areas relevant to eating in systemic insulin resistance. We measured brain glucose metabolism, using [(18)F]fluorodeoxyglucose positron emission tomography, in seven insulin-sensitive (homeostasis model assessment of insulin resistance [HOMA-IR] = 1.3) and seven insulin-resistant (HOMA-IR = 6.3) men, during suppression of endogenous insulin by somatostatin, with and without an insulin infusion that elevated insulin to 24.6 +/- 5.2 and 23.2 +/- 5.8 mU/l (P = 0.76), concentrations similar to fasting levels of the resistant subjects and approximately threefold above those of the insulin-sensitive subjects. Insulin-evoked change in global cerebral metabolic rate for glucose was reduced in insulin resistance (+7 vs. +17.4%, P = 0.033). Insulin was associated with increased metabolism in ventral striatum and prefrontal cortex and with decreased metabolism in right amygdala/hippocampus and cerebellar vermis (P reward. Diminishing the link be-tween control of food intake and energy balance may contribute to development of obesity in insulin resistance.

  17. Texture-dependent effects of pseudo-chewing sound on perceived food texture and evoked feelings in response to nursing care foods.

    Science.gov (United States)

    Endo, Hiroshi; Ino, Shuichi; Fujisaki, Waka

    2017-09-01

    Because chewing sounds influence perceived food textures, unpleasant textures of texture-modified diets might be improved by chewing sound modulation. Additionally, since inhomogeneous food properties increase perceived sensory intensity, the effects of chewing sound modulation might depend on inhomogeneity. This study examined the influences of texture inhomogeneity on the effects of chewing sound modulation. Three kinds of nursing care foods in two food process types (minced-/puréed-like foods for inhomogeneous/homogeneous texture respectively) were used as sample foods. A pseudo-chewing sound presentation system, using electromyogram signals, was used to modulate chewing sounds. Thirty healthy elderly participants participated in the experiment. In two conditions with and without the pseudo-chewing sound, participants rated the taste, texture, and evoked feelings in response to sample foods. The results showed that inhomogeneity strongly influenced the perception of food texture. Regarding the effects of the pseudo-chewing sound, taste was less influenced, the perceived food texture tended to change in the minced-like foods, and evoked feelings changed in both food process types. Though there were some food-dependent differences in the effects of the pseudo-chewing sound, the presentation of the pseudo-chewing sounds was more effective in foods with an inhomogeneous texture. In addition, it was shown that the pseudo-chewing sound might have positively influenced feelings. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Cervical Vestibular Evoked Myogenic Potential in Hypoglossal Nerve Schwannoma: A Case Report.

    Science.gov (United States)

    Rajasekaran, Aravind Kumar; Savardekar, Amey Rajan; Shivashankar, Nagaraja Rao

    2018-02-01

    Schwannoma of the hypoglossal nerve is rare. This case report documents an atypical abnormality of the cervical vestibular evoked myogenic potential (cVEMP) in a patient with schwannoma of the hypoglossal nerve. The observed abnormality was attributed to the proximity of the hypoglossal nerve to the spinal accessory nerve in the medullary cistern and base of the skull. To report cVEMP abnormality in a patient with hypoglossal nerve schwannoma and provide an anatomical correlation for this abnormality. Case report. A 44-yr-old woman. Pure-tone and speech audiometry, tympanometry, acoustic stapedial reflex, auditory brainstem response, and cVEMP testing were performed. The audiological test results were normal except for the absence of cVEMP on the lesion side (right). A cVEMP abnormality indicating a compromised spinal accessory nerve was observed in a patient with hypoglossal nerve schwannoma. This case report highlights the importance of recording cVEMP in relevant neurological conditions and provides clinical proof for the involvement of the spinal accessory nerve in the vestibulocollic reflex pathway. American Academy of Audiology

  19. Amperometric Microsensors Monitoring Glutamate-Evoked In Situ Responses of Nitric Oxide and Carbon Monoxide from Live Human Neuroblastoma Cells

    Directory of Open Access Journals (Sweden)

    Yejin Ha

    2017-07-01

    Full Text Available In the brain, nitric oxide (NO and carbon monoxide (CO are important signaling gases which have multifaceted roles, such as neurotransmitters, neuromodulators, and vasodilators. Even though it is difficult to measure NO and CO in a living system due to their high diffusibility and extremely low release levels, electrochemical sensors are promising tools to measure in vivo and in vitro NO and CO gases. In this paper, using amperometric dual and septuple NO/CO microsensors, real-time NO and CO changes evoked by glutamate were monitored simultaneously for human neuroblastoma (SH-SY5Y cells. In cultures, the cells were differentiated and matured into functional neurons by retinoic acid and brain-derived neurotrophic factor. When glutamate was administrated to the cells, both NO and CO increases and subsequent decreases returning to the basal levels were observed with a dual NO/CO microsensor. In order to facilitate sensor’s measurement, a flower-type septuple NO/CO microsensor was newly developed and confirmed in terms of the sensitivity and selectivity. The septuple microsensor was employed for the measurements of NO and CO changes as a function of distances from the position of glutamate injection. Our sensor measurements revealed that only functionally differentiated cells responded to glutamate and released NO and CO.

  20. A NOS1 variant implicated in cognitive performance influences evoked neural responses during a high density EEG study of early visual perception.

    Science.gov (United States)

    O'Donoghue, Therese; Morris, Derek W; Fahey, Ciara; Da Costa, Andreia; Foxe, John J; Hoerold, Doreen; Tropea, Daniela; Gill, Michael; Corvin, Aiden; Donohoe, Gary

    2012-05-01

    The nitric oxide synthasase-1 gene (NOS1) has been implicated in mental disorders including schizophrenia and variation in cognition. The NOS1 variant rs6490121 identified in a genome wide association study of schizophrenia has recently been associated with variation in general intelligence and working memory in both patients and healthy participants. Whether this variant is also associated with variation in early sensory processing remains unclear. We investigated differences in the P1 visual evoked potential in a high density EEG study of 54 healthy participants. Given both NOS1's association with cognition and recent evidence that cognitive performance and P1 response are correlated, we investigated whether NOS1's effect on P1 response was independent of its effects on cognition using CANTAB's spatial working memory (SWM) task. We found that carriers of the previously identified risk "G" allele showed significantly lower P1 responses than non-carriers. We also found that while P1 response and SWM performance were correlated, NOS1 continued to explain a significant proportion of variation in P1 response even when its effects on cognition were accounted for. The schizophrenia implicated NOS1 variants rs6490121 influences visual sensory processing as measured by the P1 response, either as part of the gene's pleiotropic effects on multiple aspects of brain function, or because of a primary influence on sensory processing that mediates the effects already seen in higher cognitive processes. Copyright © 2011 Wiley-Liss, Inc.

  1. SNPs in genes implicated in radiation response are associated with radiotoxicity and evoke roles as predictive and prognostic biomarkers

    International Nuclear Information System (INIS)

    Alsbeih, Ghazi; El-Sebaie, Medhat; Al-Harbi, Najla; Al-Hadyan, Khaled; Shoukri, Mohamed; Al-Rajhi, Nasser

    2013-01-01

    Biomarkers are needed to individualize cancer radiation treatment. Therefore, we have investigated the association between various risk factors, including single nucleotide polymorphisms (SNPs) in candidate genes and late complications to radiotherapy in our nasopharyngeal cancer patients. A cohort of 155 patients was included. Normal tissue fibrosis was scored using RTOG/EORTC grading system. A total of 45 SNPs in 11 candidate genes (ATM, XRCC1, XRCC3, XRCC4, XRCC5, PRKDC, LIG4, TP53, HDM2, CDKN1A, TGFB1) were genotyped by direct genomic DNA sequencing. Patients with severe fibrosis (cases, G3-4, n = 48) were compared to controls (G0-2, n = 107). Univariate analysis showed significant association (P < 0.05) with radiation complications for 6 SNPs (ATM G/A rs1801516, HDM2 promoter T/G rs2279744 and T/A rs1196333, XRCC1 G/A rs25487, XRCC5 T/C rs1051677 and TGFB1 C/T rs1800469). In addition, Kaplan-Meier analyses have also highlighted significant association between genotypes and length of patients’ follow-up after radiotherapy. Multivariate logistic regression has further sustained these results suggesting predictive and prognostic roles of SNPs. Univariate and multivariate analysis suggest that radiation toxicity in radiotherapy patients are associated with certain SNPs, in genes including HDM2 promoter studied for the 1st time. These results support the use of SNPs as genetic predictive markers for clinical radiosensitivity and evoke a prognostic role for length of patients’ follow-up after radiotherapy

  2. Scent-evoked nostalgia.

    Science.gov (United States)

    Reid, Chelsea A; Green, Jeffrey D; Wildschut, Tim; Sedikides, Constantine

    2015-01-01

    Can scents evoke nostalgia; what might be the psychological implications of such an evocation? Participants sampled 12 scents and rated the extent to which each scent was familiar, arousing and autobiographically relevant, as well as the extent to which each scent elicited nostalgia. Participants who were high (compared to low) in nostalgia proneness reported more scent-evoked nostalgia, and scents elicited greater nostalgia to the extent that they were arousing, familiar and autobiographically relevant. Scent-evoked nostalgia predicted higher levels of positive affect, self-esteem, self-continuity, optimism, social connectedness and meaning in life. In addition, scent-evoked nostalgia was characterised by more positive emotions than either non-nostalgic autobiographical memories or non-nostalgic non-autobiographical memories. Finally, scent-evoked nostalgia predicted in-the-moment feelings of personal (general or object-specific) nostalgia. The findings represent a foray into understanding the triggers and affective signature of scent-evoked nostalgia.

  3. Optogenetic activation of CA1 pyramidal neurons at the dorsal and ventral hippocampus evokes distinct brain-wide responses revealed by mouse fMRI.

    Directory of Open Access Journals (Sweden)

    Norio Takata

    Full Text Available The dorsal and ventral hippocampal regions (dHP and vHP are proposed to have distinct functions. Electrophysiological studies have revealed intra-hippocampal variances along the dorsoventral axis. Nevertheless, the extra-hippocampal influences of dHP and vHP activities remain unclear. In this study, we compared the spatial distribution of brain-wide responses upon dHP or vHP activation and further estimate connection strengths between the dHP and the vHP with corresponding extra-hippocampal areas. To achieve this, we first investigated responses of local field potential (LFP and multi unit activities (MUA upon light stimulation in the hippocampus of an anesthetized transgenic mouse, whose CA1 pyramidal neurons expressed a step-function opsin variant of channelrhodopsin-2 (ChR2. Optogenetic stimulation increased hippocampal LFP power at theta, gamma, and ultra-fast frequency bands, and augmented MUA, indicating light-induced activation of CA1 pyramidal neurons. Brain-wide responses examined using fMRI revealed that optogenetic activation at the dHP or vHP caused blood oxygenation level-dependent (BOLD fMRI signals in situ. Although activation at the dHP induced BOLD responses at the vHP, the opposite was not observed. Outside the hippocampal formation, activation at the dHP, but not the vHP, evoked BOLD responses at the retrosplenial cortex (RSP, which is in line with anatomical evidence. In contrast, BOLD responses at the lateral septum (LS were induced only upon vHP activation, even though both dHP and vHP send axonal fibers to the LS. Our findings suggest that the primary targets of dHP and vHP activation are distinct, which concurs with attributed functions of the dHP and RSP in spatial memory, as well as of the vHP and LS in emotional responses.

  4. Hearing Tests Based on Biologically Calibrated Mobile Devices: Comparison With Pure-Tone Audiometry.

    Science.gov (United States)

    Masalski, Marcin; Grysiński, Tomasz; Kręcicki, Tomasz

    2018-01-10

    Hearing screening tests based on pure-tone audiometry may be conducted on mobile devices, provided that the devices are specially calibrated for the purpose. Calibration consists of determining the reference sound level and can be performed in relation to the hearing threshold of normal-hearing persons. In the case of devices provided by the manufacturer, together with bundled headphones, the reference sound level can be calculated once for all devices of the same model. This study aimed to compare the hearing threshold measured by a mobile device that was calibrated using a model-specific, biologically determined reference sound level with the hearing threshold obtained in pure-tone audiometry. Trial participants were recruited offline using face-to-face prompting from among Otolaryngology Clinic patients, who own Android-based mobile devices with bundled headphones. The hearing threshold was obtained on a mobile device by means of an open access app, Hearing Test, with incorporated model-specific reference sound levels. These reference sound levels were previously determined in uncontrolled conditions in relation to the hearing threshold of normal-hearing persons. An audiologist-assisted self-measurement was conducted by the participants in a sound booth, and it involved determining the lowest audible sound generated by the device within the frequency range of 250 Hz to 8 kHz. The results were compared with pure-tone audiometry. A total of 70 subjects, 34 men and 36 women, aged 18-71 years (mean 36, standard deviation [SD] 11) participated in the trial. The hearing threshold obtained on mobile devices was significantly different from the one determined by pure-tone audiometry with a mean difference of 2.6 dB (95% CI 2.0-3.1) and SD of 8.3 dB (95% CI 7.9-8.7). The number of differences not greater than 10 dB reached 89% (95% CI 88-91), whereas the mean absolute difference was obtained at 6.5 dB (95% CI 6.2-6.9). Sensitivity and specificity for a mobile

  5. Sound-Making Actions Lead to Immediate Plastic Changes of Neuromagnetic Evoked Responses and Induced β-Band Oscillations during Perception.

    Science.gov (United States)

    Ross, Bernhard; Barat, Masihullah; Fujioka, Takako

    2017-06-14

    Auditory and sensorimotor brain areas interact during the action-perception cycle of sound making. Neurophysiological evidence of a feedforward model of the action and its outcome has been associated with attenuation of the N1 wave of auditory evoked responses elicited by self-generated sounds, such as talking and singing or playing a musical instrument. Moreover, neural oscillations at β-band frequencies have been related to predicting the sound outcome after action initiation. We hypothesized that a newly learned action-perception association would immediately modify interpretation of the sound during subsequent listening. Nineteen healthy young adults (7 female, 12 male) participated in three magnetoencephalographic recordings while first passively listening to recorded sounds of a bell ringing, then actively striking the bell with a mallet, and then again listening to recorded sounds. Auditory cortex activity showed characteristic P1-N1-P2 waves. The N1 was attenuated during sound making, while P2 responses were unchanged. In contrast, P2 became larger when listening after sound making compared with the initial naive listening. The P2 increase occurred immediately, while in previous learning-by-listening studies P2 increases occurred on a later day. Also, reactivity of β-band oscillations, as well as θ coherence between auditory and sensorimotor cortices, was stronger in the second listening block. These changes were significantly larger than those observed in control participants (eight female, five male), who triggered recorded sounds by a key press. We propose that P2 characterizes familiarity with sound objects, whereas β-band oscillation signifies involvement of the action-perception cycle, and both measures objectively indicate functional neuroplasticity in auditory perceptual learning. SIGNIFICANCE STATEMENT While suppression of auditory responses to self-generated sounds is well known, it is not clear whether the learned action-sound association

  6. Development of the complex general linear model in the Fourier domain: application to fMRI multiple input-output evoked responses for single subjects.

    Science.gov (United States)

    Rio, Daniel E; Rawlings, Robert R; Woltz, Lawrence A; Gilman, Jodi; Hommer, Daniel W

    2013-01-01

    A linear time-invariant model based on statistical time series analysis in the Fourier domain for single subjects is further developed and applied to functional MRI (fMRI) blood-oxygen level-dependent (BOLD) multivariate data. This methodology was originally developed to analyze multiple stimulus input evoked response BOLD data. However, to analyze clinical data generated using a repeated measures experimental design, the model has been extended to handle multivariate time series data and demonstrated on control and alcoholic subjects taken from data previously analyzed in the temporal domain. Analysis of BOLD data is typically carried out in the time domain where the data has a high temporal correlation. These analyses generally employ parametric models of the hemodynamic response function (HRF) where prewhitening of the data is attempted using autoregressive (AR) models for the noise. However, this data can be analyzed in the Fourier domain. Here, assumptions made on the noise structure are less restrictive, and hypothesis tests can be constructed based on voxel-specific nonparametric estimates of the hemodynamic transfer function (HRF in the Fourier domain). This is especially important for experimental designs involving multiple states (either stimulus or drug induced) that may alter the form of the response function.

  7. Skin-transmitted pathogens and the heebie jeebies: evidence for a subclass of disgust stimuli that evoke a qualitatively unique emotional response.

    Science.gov (United States)

    Blake, Khandis R; Yih, Jennifer; Zhao, Kun; Sung, Billy; Harmon-Jones, Cindy

    2017-09-01

    Skin-transmitted pathogens have threatened humans since ancient times. We investigated whether skin-transmitted pathogens were a subclass of disgust stimuli that evoked an emotional response that was related to, but distinct from, disgust and fear. We labelled this response "the heebie jeebies". In Study 1, coding of 76 participants' experiences of disgust, fear, and the heebie jeebies showed that the heebie jeebies was elicited by unique stimuli which produced skin-crawling sensations and an urge to protect the skin. In Experiment 2,350 participants' responses to skin-transmitted pathogen, fear-inducing, and disgust-inducing vignettes showed that the vignettes elicited sensations and urges which loaded onto heebie jeebies, fear, and disgust factors, respectively. Experiment 3 largely replicated findings from Experiment 2 using video stimuli (178 participants). Results are consistent with the notion that skin-transmitted pathogens are a subclass of disgust stimuli which motivate behaviours that are functionally consistent with disgust yet qualitatively distinct.

  8. The Nicotine-Evoked Locomotor Response: A Behavioral Paradigm for Toxicity Screening in Zebrafish (Danio rerio Embryos and Eleutheroembryos Exposed to Methylmercury.

    Directory of Open Access Journals (Sweden)

    Francisco X Mora-Zamorano

    Full Text Available This study is an adaptation of the nicotine-evoked locomotor response (NLR assay, which was originally utilized for phenotype-based neurotoxicity screening in zebrafish embryos. Zebrafish embryos do not exhibit spontaneous swimming until roughly 4 days post-fertilization (dpf, however, a robust swimming response can be induced as early as 36 hours post-fertilization (hpf by means of acute nicotine exposure (30-240μM. Here, the NLR was tested as a tool for early detection of locomotor phenotypes in 36, 48 and 72 hpf mutant zebrafish embryos of the non-touch-responsive maco strain; this assay successfully discriminated mutant embryos from their non-mutant siblings. Then, methylmercury (MeHg was used as a proof-of-concept neurotoxicant to test the effectiveness of the NLR assay as a screening tool in toxicology. The locomotor effects of MeHg were evaluated in 6 dpf wild type eleutheroembryos exposed to waterborne MeHg (0, 0.01, 0.03 and 0.1μM. Afterwards, the NLR assay was tested in 48 hpf embryos subjected to the same MeHg exposure regimes. Embryos exposed to 0.01 and 0.03μM of MeHg exhibited significant increases in locomotion in both scenarios. These findings suggest that similar locomotor phenotypes observed in free swimming fish can be detected as early as 48 hpf, when locomotion is induced with nicotine.

  9. Gating of the vertex somatosensory and auditory evoked potential P50 and the correlation to skin conductance orienting response in healthy men

    DEFF Research Database (Denmark)

    Arnfred, S M; Eder, D N; Hemmingsen, R P

    2001-01-01

    A defect in auditory evoked potential (AEP) P50 gating supports the theory of information-processing deficits in schizophrenia. The relationship between gating of the mid-latency evoked potentials (EP) in the somatosensory and the auditory modalities has not been studied together before. In schiz...

  10. Artifact correction and source analysis of early electroencephalographic responses evoked by transcranial magnetic stimulation over primary motor cortex.

    Science.gov (United States)

    Litvak, Vladimir; Komssi, Soile; Scherg, Michael; Hoechstetter, Karsten; Classen, Joseph; Zaaroor, Menashe; Pratt, Hillel; Kahkonen, Seppo

    2007-08-01

    Analyzing the brain responses to transcranial magnetic stimulation (TMS) using electroencephalography (EEG) is a promising method for the assessment of functional cortical connectivity and excitability of areas accessible to this stimulation. However, until now it has been difficult to analyze the EEG responses during the several tens of milliseconds immediately following the stimulus due to TMS-induced artifacts. In the present study we show that by combining a specially adapted recording system with software artifact correction it is possible to remove a major part of the artifact and analyze the cortical responses as early as 10 ms after TMS. We used this methodology to examine responses of left and right primary motor cortex (M1) to TMS at different intensities. Based on the artifact-corrected data we propose a model for the cortical activation following M1 stimulation. The model revealed the same basic response sequence for both hemispheres. A large part of the response could be accounted for by two sources: a source close to the stimulation site (peaking approximately 15 ms after the stimulus) and a midline frontal source ipsilateral to the stimulus (peaking approximately 25 ms). In addition the model suggests responses in ipsilateral temporo-parietal junction areas (approximately 35 ms) and ipsilateral (approximately 30 ms) and middle (approximately 50 ms) cerebellum. Statistical analysis revealed significant dependence on stimulation intensity for the ipsilateral midline frontal source. The methodology developed in the present study paves the way for the detailed study of early responses to TMS in a wide variety of brain areas.

  11. Transient evoked otoacoustic emissions in rock musicians.

    Science.gov (United States)

    Høydal, Erik Harry; Lein Størmer, Carl Christian; Laukli, Einar; Stenklev, Niels Christian

    2017-09-01

    Our focus in this study was the assessment of transient evoked otoacoustic emissions (TEOAEs) in a large group of rock musicians. A further objective was to analyse tinnitus among rock musicians as related to TEOAEs. The study was a cross-sectional survey of rock musicians selected at random. A control group was included at random for comparison. We recruited 111 musicians and a control group of 40 non-musicians. Testing was conducted by using clinical examination, pure tone audiometry, TEOAEs and a questionnaire. TEOAE SNR in the half-octave frequency band centred on 4 kHz was significantly lower bilaterally in musicians than controls. This effect was strongly predicted by age and pure-tone hearing threshold levels in the 3-6 kHz range. Bilateral hearing thresholds were significantly higher at 6 kHz in musicians. Twenty percent of the musicians had permanent tinnitus. There was no association between the TEOAE parameters and permanent tinnitus. Our results suggest an incipient hearing loss at 6 kHz in rock musicians. Loss of TEOAE SNR in the 4 kHz half-octave frequency band was observed, but it was related to higher mean 3-6 kHz hearing thresholds and age. A large proportion of rock musicians have permanent tinnitus.

  12. Acupuncture-Evoked Response in Somatosensory and Prefrontal Cortices Predicts Immediate Pain Reduction in Carpal Tunnel Syndrome

    Directory of Open Access Journals (Sweden)

    Yumi Maeda

    2013-01-01

    Full Text Available The linkage between brain response to acupuncture and subsequent analgesia remains poorly understood. Our aim was to evaluate this linkage in chronic pain patients with carpal tunnel syndrome (CTS. Brain response to electroacupuncture (EA was evaluated with functional MRI. Subjects were randomized to 3 groups: (1 EA applied at local acupoints on the affected wrist (PC-7 to TW-5, (2 EA at distal acupoints (contralateral ankle, SP-6 to LV-4, and (3 sham EA at nonacupoint locations on the affected wrist. Symptom ratings were evaluated prior to and following the scan. Subjects in the local and distal groups reported reduced pain. Verum EA produced greater reduction of paresthesia compared to sham. Compared to sham EA, local EA produced greater activation in insula and S2 and greater deactivation in ipsilateral S1, while distal EA produced greater activation in S2 and deactivation in posterior cingulate cortex. Brain response to distal EA in prefrontal cortex (PFC and brain response to verum EA in S1, SMA, and PFC were correlated with pain reduction following stimulation. Thus, while greater activation to verum acupuncture in these regions may predict subsequent analgesia, PFC activation may specifically mediate reduced pain when stimulating distal acupoints.

  13. Affective responses to music in depressed individuals : Aesthetic judgments, emotions, and the impact of music-evoked autobiographical memories

    OpenAIRE

    Sakka, Laura Stavroula

    2018-01-01

    Music’s powerful influence on our affective states is often utilized in everyday life for emotion regulation and in music-therapeutic interventions against depression. Given this ability of music to influence emotions and symptoms in depressed people, it appears imperative to understand how these individuals affectively respond to music. The primary aim of this thesis is to explore whether depressed individuals have distinct affective responses to music, in terms of aesthetic judgments, emoti...

  14. Repeated whisker stimulation evokes invariant neuronal responses in the dorsolateral striatum of anesthetized rats: a potential correlate of sensorimotor habits

    OpenAIRE

    Mowery, Todd M.; Harrold, Jon B.; Alloway, Kevin D.

    2011-01-01

    The dorsolateral striatum (DLS) receives extensive projections from primary somatosensory cortex (SI), but very few studies have used somesthetic stimulation to characterize the sensory coding properties of DLS neurons. In this study, we used computer-controlled whisker deflections to characterize the extracellular responses of DLS neurons in rats lightly anesthetized with isoflurane. When multiple whiskers were synchronously deflected by rapid back-and-forth movements, whisker-sensitive neur...

  15. Controlled reperfusion decreased reperfusion induced oxidative stress and evoked inflammatory response in experimental aortic-clamping animal model.

    Science.gov (United States)

    Jancsó, G; Arató, E; Hardi, P; Nagy, T; Pintér, Ö; Fazekas, G; Gasz, B; Takacs, I; Menyhei, G; Kollar, L; Sínay, L

    2016-09-12

    Revascularization after long term aortic ischaemia in vascular surgery induces reperfusion injury accompanied with oxidative stress and inflammatory responses. The hypothesis of this study was that the aortic occlusion followed by controlled reperfusion (CR) can reduce the ischaemia-reperfusion injury, the systemic and local inflammatory response induced by oxidative stress.Animal model was used. animals underwent a 4-hour infrarenal aortic occlusion followed by continuous reperfusion. Treated group: animals were treated with CR: after a 4-hour infrarenal aortic occlusion we made CR for 30 minutes with the crystalloid reperfusion solution (blood: crystalloid solution ratio 1:1) on pressure 60 Hgmm. Blood samples were collected different times. The developing oxidative stress was detected by the plasma levels of malondialdehyde, reduced glutathion, thiol groups and superoxide dismutase. The inflammatory response was measured by phorbol myristate acetate-induced leukocyte reactive oxygen species production and detection of change in myeloperoxidase levels. The animals were anaesthetized one week after terminating ligation and biopsy was taken from quadriceps muscle and large parenchymal organs.CR significantly reduced the postischaemic oxydative stress and inflammatory responses in early reperfusion period. Pathophysiological results: The rate of affected muscle fibers by degeneration was significantly higher in the untreated animal group. The infiltration of leukocytes in muscle and parenchymal tissues was significantly lower in the treatedgroup.CR can improve outcome after acute lower-limb ischaemia. The results confirm that CR might be also a potential therapeutic approach in vascular surgery against reperfusion injury in acute limb ischaemia. Supported by OTKA K108596.

  16. Proprioceptive evoked gamma oscillations

    DEFF Research Database (Denmark)

    Arnfred, S.M.; Hansen, Lars Kai; Parnas, J.

    2007-01-01

    A proprioceptive stimulus consisting of a weight change of a handheld load has recently been shown to elicit an evoked potential. Previously, somatosensory gamma oscillations have only been evoked by electrical stimuli. We conjectured that a natural proprioceptive stimulus also would be able...... to evoke gamma oscillations. EEG was recorded using 64 channels in 14 healthy subjects. In each of three runs a stimulus of 100 g load increment in each hand was presented in 120 trials. Data were wavelet transformed and runs collapsed. Inter-trial phase coherence (ITPC) was computed as the best measure...

  17. Evoked Pressure Pain Sensitivity Is Associated with Differential Analgesic Response to Verum and Sham Acupuncture in Fibromyalgia.

    Science.gov (United States)

    Zucker, Noah A; Tsodikov, Alex; Mist, Scott D; Cina, Stephen; Napadow, Vitaly; Harris, Richard E

    2017-08-01

    Fibromyalgia is a chronic pain condition with few effective treatments. Many fibromyalgia patients seek acupuncture for analgesia; however, its efficacy is limited and not fully understood. This may be due to heterogeneous pathologies among participants in acupuncture clinical trials. We hypothesized that pressure pain tenderness would differentially classify treatment response to verum and sham acupuncture in fibromyalgia patients. Baseline pressure pain sensitivity at the thumbnail at baseline was used in linear mixed models as a modifier of differential treatment response to sham versus verum acupuncture. Similarly, needle-induced sensation was also analyzed to determine its differential effect of treatment on clinical pain. A cohort of 114 fibromyalgia patients received baseline pressure pain testing and were randomized to either verum (N = 59) or sham (N = 55) acupuncture. Participants received treatments from once a week to three times a week, increasing in three-week blocks for a total of 18 treatments. Clinical pain was measured on a 101-point visual analog scale, and needle sensation was measured by questionnaire throughout the trial. Participants who had higher pain pressure thresholds had greater reduction in clinical pain following verum acupuncture while participants who had lower pain pressure thresholds showed better analgesic response to sham acupuncture. Moreover, patients with lower pressure pain thresholds had exacerbated clinical pain following verum acupuncture. Similar relationships were observed for sensitivity to acupuncture needling. These findings suggest that acupuncture efficacy in fibromyalgia may be underestimated and a more personalized treatment for fibromyalgia may also be possible. © 2017 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  18. Self-test web-based pure-tone audiometry: validity evaluation and measurement error analysis.

    Science.gov (United States)

    Masalski, Marcin; Kręcicki, Tomasz

    2013-04-12

    Potential methods of application of self-administered Web-based pure-tone audiometry conducted at home on a PC with a sound card and ordinary headphones depend on the value of measurement error in such tests. The aim of this research was to determine the measurement error of the hearing threshold determined in the way described above and to identify and analyze factors influencing its value. The evaluation of the hearing threshold was made in three series: (1) tests on a clinical audiometer, (2) self-tests done on a specially calibrated computer under the supervision of an audiologist, and (3) self-tests conducted at home. The research was carried out on the group of 51 participants selected from patients of an audiology outpatient clinic. From the group of 51 patients examined in the first two series, the third series was self-administered at home by 37 subjects (73%). The average difference between the value of the hearing threshold determined in series 1 and in series 2 was -1.54dB with standard deviation of 7.88dB and a Pearson correlation coefficient of .90. Between the first and third series, these values were -1.35dB±10.66dB and .84, respectively. In series 3, the standard deviation was most influenced by the error connected with the procedure of hearing threshold identification (6.64dB), calibration error (6.19dB), and additionally at the frequency of 250Hz by frequency nonlinearity error (7.28dB). The obtained results confirm the possibility of applying Web-based pure-tone audiometry in screening tests. In the future, modifications of the method leading to the decrease in measurement error can broaden the scope of Web-based pure-tone audiometry application.

  19. Relations between perceptual measures of temporal processing, auditory-evoked brainstem responses and speech intelligibility in noise

    DEFF Research Database (Denmark)

    Papakonstantinou, Alexandra; Strelcyk, Olaf; Dau, Torsten

    2011-01-01

    This study investigates behavioural and objective measures of temporal auditory processing and their relation to the ability to understand speech in noise. The experiments were carried out on a homogeneous group of seven hearing-impaired listeners with normal sensitivity at low frequencies (up to 1...... kHz) and steeply sloping hearing losses above 1 kHz. For comparison, data were also collected for five normalhearing listeners. Temporal processing was addressed at low frequencies by means of psychoacoustical frequency discrimination, binaural masked detection and amplitude modulation (AM......) detection. In addition, auditory brainstem responses (ABRs) to clicks and broadband rising chirps were recorded. Furthermore, speech reception thresholds (SRTs) were determined for Danish sentences in speechshaped noise. The main findings were: (1) SRTs were neither correlated with hearing sensitivity...

  20. Homophobia Is Related to a Low Interest in Sexuality in General: An Analysis of Pupillometric Evoked Responses.

    Science.gov (United States)

    Cheval, Boris; Grob, Emmanuelle; Chanal, Julien; Ghisletta, Paolo; Bianchi-Demicheli, Francesco; Radel, Remi

    2016-10-01

    A recent study by Cheval et al (J Sex Med 2016;13:825-834) found that individuals high in homophobia look significantly less long at sex-related photographs, regardless of their nature (ie, homosexual or heterosexual). Because viewing time is under some conscious control, this result could indicate that individuals high in homophobia have a low sexual interest in any sexual stimuli or are consciously motivated to avoid sexual material in line with their conscious values. To determine the mechanism underlying shorter viewing time of sex-related photographs in individuals high in homophobia using pupil dilatation, which is considered a spontaneous, unconscious, and uncontrollable index of sexual interest. Heterosexual men (N = 36) completed a questionnaire assessing their level of homo-negativity and then performed a picture-viewing task with simultaneous eye-tracking recording to assess their pupillary responses to the presentation of sexually related or neutral photographs. Non-linear mixed models were carried out to fit the individual non-linear trajectories of pupillary reaction. Different parameters were obtained including the final asymptote of the pupillary response. Results showed that the final pupil size of men high in homophobia increased significantly less to the presentation of sex-related images (ie, heterosexual and homosexual) than the pupil size of men low in homophobia. In contrast, no significant difference in the final pupil size reaction toward homosexual images (vs heterosexual images) emerged between men high and men low in homophobia. Theoretically, these findings reinforce the necessity to consider that homophobia might reflect concerns about sexuality in general and not homosexuality in particular. Copyright © 2016 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.

  1. The dependencies of fronto-parietal BOLD responses evoked by covert visual search suggest eye-centred coding.

    Science.gov (United States)

    Atabaki, A; Dicke, P W; Karnath, H-O; Thier, P

    2013-04-01

    Visual scenes explored covertly are initially represented in a retinal frame of reference (FOR). On the other hand, 'later' stages of the cortical network allocating spatial attention most probably use non-retinal or non-eye-centred representations as they may ease the integration of different sensory modalities for the formation of supramodal representations of space. We tested if the cortical areas involved in shifting covert attention are based on eye-centred or non-eye-centred coding by using functional magnetic resonance imaging. Subjects were scanned while detecting a target item (a regularly oriented 'L') amidst a set of distractors (rotated 'L's). The array was centred either 5° right or left of the fixation point, independent of eye-gaze orientation, the latter varied in three steps: straight relative to the head, 10° left or 10° right. A quantitative comparison of the blood-oxygen-level-dependent (BOLD) responses for the three eye-gaze orientations revealed stronger BOLD responses in the right intraparietal sulcus (IPS) and the right frontal eye field (FEF) for search in the contralateral (i.e. left) eye-centred space, independent of whether the array was located in the right or left head-centred hemispace. The left IPS showed the reverse pattern, i.e. an activation by search in the right eye-centred hemispace. In other words, the IPS and the right FEF, members of the cortical network underlying covert search, operate in an eye-centred FOR. © 2013 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  2. Identifying cochlear implant channels with poor electrode-neuron interface: electrically-evoked auditory brainstem responses measured with the partial tripolar configuration

    Science.gov (United States)

    Bierer, Julie Arenberg; Faulkner, Kathleen F.; Tremblay, Kelly L.

    2011-01-01

    Objectives The goal of this study was to compare cochlear implant behavioral measures and electrically-evoked auditory brainstem responses (EABRs) obtained with a spatially focused electrode configuration. It has been shown previously that channels with high thresholds, when measured with the tripolar configuration, exhibit relatively broad psychophysical tuning curves (Bierer and Faulkner, 2010). The elevated threshold and degraded spatial/spectral selectivity of such channels are consistent with a poor electrode-neuron interface, such as suboptimal electrode placement or reduced nerve survival. However, the psychophysical methods required to obtain these data are time intensive and may not be practical during a clinical mapping procedure, especially for young children. Here we have extended the previous investigation to determine if a physiological approach could provide a similar assessment of channel functionality. We hypothesized that, in accordance with the perceptual measures, higher EABR thresholds would correlate with steeper EABR amplitude growth functions, reflecting a degraded electrode-neuron interface. Design Data were collected from six cochlear implant listeners implanted with the HiRes 90k cochlear implant (Advanced Bionics). Single-channel thresholds and most comfortable listening levels were obtained for stimuli that varied in presumed electrical field size by using the partial tripolar configuration, for which a fraction of current (σ) from a center active electrode returns through two neighboring electrodes and the remainder through a distant indifferent electrode. EABRs were obtained in each subject for the two channels having the highest and lowest tripolar (σ=1 or 0.9) behavioral threshold. Evoked potentials were measured with both the monopolar (σ=0) and a more focused partial tripolar (σ ≥ 0.50) configuration. Results Consistent with previous studies, EABR thresholds were highly and positively correlated with behavioral thresholds

  3. Identifying cochlear implant channels with poor electrode-neuron interfaces: electrically evoked auditory brain stem responses measured with the partial tripolar configuration.

    Science.gov (United States)

    Bierer, Julie Arenberg; Faulkner, Kathleen F; Tremblay, Kelly L

    2011-01-01

    The goal of this study was to compare cochlear implant behavioral measures and electrically evoked auditory brain stem responses (EABRs) obtained with a spatially focused electrode configuration. It has been shown previously that channels with high thresholds, when measured with the tripolar configuration, exhibit relatively broad psychophysical tuning curves. The elevated threshold and degraded spatial/spectral selectivity of such channels are consistent with a poor electrode-neuron interface, defined as suboptimal electrode placement or reduced nerve survival. However, the psychophysical methods required to obtain these data are time intensive and may not be practical during a clinical mapping session, especially for young children. Here, we have extended the previous investigation to determine whether a physiological approach could provide a similar assessment of channel functionality. We hypothesized that, in accordance with the perceptual measures, higher EABR thresholds would correlate with steeper EABR amplitude growth functions, reflecting a degraded electrode-neuron interface. Data were collected from six cochlear implant listeners implanted with the HiRes 90k cochlear implant (Advanced Bionics). Single-channel thresholds and most comfortable listening levels were obtained for stimuli that varied in presumed electrical field size by using the partial tripolar configuration, for which a fraction of current (σ) from a center active electrode returns through two neighboring electrodes and the remainder through a distant indifferent electrode. EABRs were obtained in each subject for the two channels having the highest and lowest tripolar (σ = 1 or 0.9) behavioral threshold. Evoked potentials were measured with both the monopolar (σ = 0) and a more focused partial tripolar (σ ≥ 0.50) configuration. Consistent with previous studies, EABR thresholds were highly and positively correlated with behavioral thresholds obtained with both the monopolar and partial

  4. Dendritic-cell-based immunotherapy evokes potent anti-tumor immune responses in CD105+ human renal cancer stem cells.

    Science.gov (United States)

    Zhang, Xiao-Fei; Weng, De-Sheng; Pan, Ke; Zhou, Zi-Qi; Pan, Qiu-Zhong; Zhao, Jing-Jing; Tang, Yan; Jiang, Shan-Shan; Chen, Chang-Long; Li, Yong-Qiang; Zhang, Hong-Xia; Chang, Alfred E; Wicha, Max S; Zeng, Yi-Xin; Li, Qiao; Xia, Jian-Chuan

    2017-11-01

    Cancer stem cells (CSCs) are responsible for tumor initiation, progression, and resistance to therapeutic agents; they are usually less sensitive to conventional cancer therapies, and could cause tumor relapse. An ideal therapeutic strategy would therefore be to selectively target and destroy CSCs, thereby preventing tumor relapse. The aim of the present study was to evaluate the effectiveness of dendritic cells (DCs) pulsed with antigen derived from CD105+ human renal cell carcinoma (RCC) CSCs against renal cancer cells in vitro and in vivo. We identified "stem-like" characteristics of CD105+ cells in two human RCC cell lines: A498 and SK-RC-39. Loading with cell lysates did not change the characteristics of the DCs. However, DCs loaded with lysates derived from CD105+ CSCs induced more functionally specific active T cells and specific antibodies against CSCs, and clearly depressed the tumor growth in mice. Our results could form the basis for a novel strategy to improve the efficacy of DC-based immunotherapy for human RCC. © 2017 Wiley Periodicals, Inc.

  5. Brainstem auditory evoked response characteristics in normal-hearing subjects with chronic tinnitus and in non-tinnitus group

    Directory of Open Access Journals (Sweden)

    Shadman Nemati

    2014-06-01

    Full Text Available Background and Aim: While most of the people with tinnitus have some degrees of hearing impairment, a small percent of patients admitted to ear, nose and throat clinics or hearing evaluation centers are those who complain of tinnitus despite having normal hearing thresholds. This study was performed to better understanding of the reasons of probable causes of tinnitus and to investigate possible changes in the auditory brainstem function in normal-hearing patients with chronic tinnitus.Methods: In this comparative cross-sectional, descriptive and analytic study, 52 ears (26 with and 26 without tinnitus were examined. Components of the auditory brainstem response (ABR including wave latencies and wave amplitudes were determined in the two groups and analyzed using appropriate statistical methods.Results: The mean differences between the absolute latencies of waves I, III and V was less than 0.1 ms between the two groups that was not statistically significant. Also, the interpeak latency values of waves I-III, III-V and I-V in both groups had no significant difference. Only, the V/I amplitude ratio in the tinnitus group was significantly higher (p=0.04.Conclusion: The changes observed in amplitude of waves, especially in the latter ones, can be considered as an indication of plastic changes in neuronal activity and its possible role in generation of tinnitus in normal-hearing patients.

  6. Affordable headphones for accessible screening audiometry: An evaluation of the Sennheiser HD202 II supra-aural headphone.

    Science.gov (United States)

    Van der Aerschot, Mathieu; Swanepoel, De Wet; Mahomed-Asmail, Faheema; Myburgh, Herman Carel; Eikelboom, Robert Henry

    2016-11-01

    Evaluation of the Sennheiser HD 202 II supra-aural headphones as an alternative headphone to enable more affordable hearing screening. Study 1 measured the equivalent threshold sound pressure levels (ETSPL) of the Sennheiser HD 202 II. Study 2 evaluated the attenuation of the headphones. Study 3 determined headphone characteristics by analyzing the total harmonic distortion (THD), frequency response and force of the headband. Twenty-five participants were included in study 1 and 15 in study 2 with ages ranging between 18 and 25. No participants were involved in study 3. The Sennheiser HD 202 II ETSPLs (250-16000 Hz) showed no significant effects on ETSPL for ear laterality, gender or age. Attenuation was not significantly different (p > 0.01) to TDH 39 except at 8000 Hz (p 3%. Sennheiser HD 202 II supra-aural headphones can be used as an affordable headphone for screening audiometry provided reported MPANLs, maximum intensities and ETSPL values are employed.

  7. Corticosteroid therapy in regressive autism: a retrospective study of effects on the Frequency Modulated Auditory Evoked Response (FMAER), language, and behavior.

    Science.gov (United States)

    Duffy, Frank H; Shankardass, Aditi; McAnulty, Gloria B; Eksioglu, Yaman Z; Coulter, David; Rotenberg, Alexander; Als, Heidelise

    2014-05-15

    Up to a third of children with Autism Spectrum Disorder (ASD) manifest regressive autism (R-ASD).They show normal early development followed by loss of language and social skills. Absent evidence-based therapies, anecdotal evidence suggests improvement following use of corticosteroids. This study examined the effects of corticosteroids for R-ASD children upon the 4 Hz frequency modulated evoked response (FMAER) arising from language cortex of the superior temporal gyrus (STG) and upon EEG background activity, language, and behavior. An untreated clinical convenience sample of ASD children served as control sample. Twenty steroid-treated R-ASD (STAR) and 24 not-treated ASD patients (NSA), aged 3 - 5 years, were retrospectively identified from a large database. All study participants had two sequential FMAER and EEG studies;Landau-Kleffner syndrome diagnosis was excluded. All subjects' records contained clinical receptive and expressive language ratings based upon a priori developed metrics. The STAR group additionally was scored behaviorally regarding symptom severity as based on the Diagnostic and Statistical Manual IV (DSM-IV) ASD criteria list. EEGs were visually scored for abnormalities. FMAER responses were assessed quantitatively by spectral analysis. Treated and untreated group means and standard deviations for the FMAER, EEG, language, and behavior, were compared by paired t-test and Fisher's exact tests. The STAR group showed a significant increase in the 4 Hz FMAER spectral response and a significant reduction in response distortion compared to the NSA group. Star group subjects' language ratings were significantly improved and more STAR than NSA group subjects showed significant language improvement. Most STAR group children showed significant behavioral improvement after treatment. STAR group language and behavior improvement was retained one year after treatment. Groups did not differ in terms of minor EEG abnormalities. Steroid treatment produced no

  8. Automated pure-tone audiometry: an analysis of capacity, need, and benefit.

    Science.gov (United States)

    Margolis, Robert H; Morgan, Donald E

    2008-12-01

    The rationale for automating pure-tone audiometry based on the need for hearing tests and the capacity of audiologists to provide testing is presented. The personnel time savings from automated testing are analyzed. Some possible effects of automated testing on the profession are explored. Need for testing was based on prevalence of hearing impairment, number of normal hearing patients seen for testing, and an assumption of the frequency of testing. Capacity is based on the number of audiologists and the number of audiograms performed in a typical workday. Time savings were estimated from the average duration of an audiogram and an assumption that 80% can be automated. A large gap exists between the need and the capacity of audiologists to provide testing. Automating 80% of audiograms would only partially close the gap. A significant time savings could accrue, permitting reallocation of time for doctoral level services. Although certain jobs could be affected, the gap between capacity and need is so great that automated audiometry will not significantly affect employment. Automation could increase the number of hearing impaired patients that could be served. The reallocation of personnel time would be a positive change for our patients and our profession.

  9. Right Ear Advantage of Speech Audiometry in Single-sided Deafness.

    Science.gov (United States)

    Wettstein, Vincent G; Probst, Rudolf

    2018-04-01

    Postlingual single-sided deafness (SSD) is defined as normal hearing in one ear and severely impaired hearing in the other ear. A right ear advantage and dominance of the left hemisphere are well established findings in individuals with normal hearing and speech processing. Therefore, it seems plausible that a right ear advantage would exist in patients with SSD. The audiometric database was searched to identify patients with SSD. Results from the German monosyllabic Freiburg word test and four-syllabic number test in quiet were evaluated. Results of right-sided SSD were compared with left-sided SSD. Statistical calculations were done with the Mann-Whitney U test. Four hundred and six patients with SSD were identified, 182 with right-sided and 224 with left-sided SSD. The two groups had similar pure-tone thresholds without significant differences. All test parameters of speech audiometry had better values for right ears (SSD left) when compared with left ears (SSD right). Statistically significant results (p right and 97.5 ± 4.7% left, p right and 93.9 ± 9.1% left, p right and 63.8 ± 11.1 dB SPL left, p right ear advantage of speech audiometry was found in patients with SSD in this retrospective study of audiometric test results.

  10. Adverse Weather Evokes Nostalgia.

    Science.gov (United States)

    van Tilburg, Wijnand A P; Sedikides, Constantine; Wildschut, Tim

    2018-03-01

    Four studies examined the link between adverse weather and the palliative role of nostalgia. We proposed and tested that (a) adverse weather evokes nostalgia (Hypothesis 1); (b) adverse weather causes distress, which predicts elevated nostalgia (Hypothesis 2); (c) preventing nostalgia exacerbates weather-induced distress (Hypothesis 3); and (d) weather-evoked nostalgia confers psychological benefits (Hypothesis 4). In Study 1, participants listened to recordings of wind, thunder, rain, and neutral sounds. Adverse weather evoked nostalgia. In Study 2, participants kept a 10-day diary recording weather conditions, distress, and nostalgia. We also obtained meteorological data. Adverse weather perceptions were positively correlated with distress, which predicted higher nostalgia. Also, adverse natural weather was associated with corresponding weather perceptions, which predicted elevated nostalgia. (Results were mixed for rain.) In Study 3, preventing nostalgia (via cognitive load) increased weather-evoked distress. In Study 4, weather-evoked nostalgia was positively associated with psychological benefits. The findings pioneer the relevance of nostalgia as source of comfort in adverse weather.

  11. Computational Pipeline for NIRS-EEG Joint Imaging of tDCS-Evoked Cerebral Responses-An Application in Ischemic Stroke.

    Science.gov (United States)

    Guhathakurta, Debarpan; Dutta, Anirban

    2016-01-01

    Transcranial direct current stimulation (tDCS) modulates cortical neural activity and hemodynamics. Electrophysiological methods (electroencephalography-EEG) measure neural activity while optical methods (near-infrared spectroscopy-NIRS) measure hemodynamics coupled through neurovascular coupling (NVC). Assessment of NVC requires development of NIRS-EEG joint-imaging sensor montages that are sensitive to the tDCS affected brain areas. In this methods paper, we present a software pipeline incorporating freely available software tools that can be used to target vascular territories with tDCS and develop a NIRS-EEG probe for joint imaging of tDCS-evoked responses. We apply this software pipeline to target primarily the outer convexity of the brain territory (superficial divisions) of the middle cerebral artery (MCA). We then present a computational method based on Empirical Mode Decomposition of NIRS and EEG time series into a set of intrinsic mode functions (IMFs), and then perform a cross-correlation analysis on those IMFs from NIRS and EEG signals to model NVC at the lesional and contralesional hemispheres of an ischemic stroke patient. For the contralesional hemisphere, a strong positive correlation between IMFs of regional cerebral hemoglobin oxygen saturation and the log-transformed mean-power time-series of IMFs for EEG with a lag of about -15 s was found after a cumulative 550 s stimulation of anodal tDCS. It is postulated that system identification, for example using a continuous-time autoregressive model, of this coupling relation under tDCS perturbation may provide spatiotemporal discriminatory features for the identification of ischemia. Furthermore, portable NIRS-EEG joint imaging can be incorporated into brain computer interfaces to monitor tDCS-facilitated neurointervention as well as cortical reorganization.

  12. Evoked Electromyographically Controlled Electrical Stimulation

    Directory of Open Access Journals (Sweden)

    Mitsuhiro Hayashibe

    2016-07-01

    Full Text Available Time-variant muscle responses under electrical stimulation (ES are often problematic for all the applications of neuroprosthetic muscle control. This situation limits the range of ES usage in relevant areas, mainly due to muscle fatigue and also to changes in stimulation electrode contact conditions, especially in transcutaneous ES. Surface electrodes are still the most widely used in noninvasive applications.Electrical field variations caused by changes in the stimulation contact condition markedly affect the resulting total muscle activation levels. Fatigue phenomena under functional electrical stimulation (FES are also well known source of time-varying characteristics coming from muscle response under ES. Therefore it is essential to monitor the actual muscle state and assess the expected muscle response by ES so as to improve the current ES system in favour of adaptive muscle-response-aware FES control. To deal with this issue, we have been studying a novel control technique using evoked electromyography (eEMG signals to compensate for these muscle time-variances under ES for stable neuroprosthetic muscle control. In this perspective article, I overview the background of this topic and highlight important points to be aware of when using ES to induce the desired muscle activation regardless of the time-variance. I also demonstrate how to deal with the common critical problem of ES to move toward robust neuroprosthetic muscle control with the Evoked Electromyographically Controlled Electrical Stimulation paradigm.

  13. A user-operated audiometry method based on the maximum likelihood principle and the two-alternative forced-choice paradigm

    DEFF Research Database (Denmark)

    Schmidt, Jesper Hvass; Brandt, Christian; Pedersen, Ellen Raben

    2014-01-01

    with standard deviation of differences from 3.9 dB to 5.2 dB in the frequency range of 250-8000 Hz. User-operated 2AFC audiometrygave thresholds 1-2 dB lower at most frequencies compared to traditional audiometry. Conclusions: User-operated 2AFC audiometry does not require specific operating skills...

  14. Neuronal responses to tactile stimuli and tactile sensations evoked by microstimulation in the human thalamic principal somatic sensory nucleus (ventral caudal).

    Science.gov (United States)

    Schmid, Anne-Christine; Chien, Jui-Hong; Greenspan, Joel D; Garonzik, Ira; Weiss, Nirit; Ohara, Shinji; Lenz, Frederick Arthur

    2016-06-01

    The normal organization and plasticity of the cutaneous core of the thalamic principal somatosensory nucleus (ventral caudal, Vc) have been studied by single-neuron recordings and microstimulation in patients undergoing awake stereotactic operations for essential tremor (ET) without apparent somatic sensory abnormality and in patients with dystonia or chronic pain secondary to major nervous system injury. In patients with ET, most Vc neurons responded to one of the four stimuli, each of which optimally activates one mechanoreceptor type. Sensations evoked by microstimulation were similar to those evoked by the optimal stimulus only among rapidly adapting neurons. In patients with ET, Vc was highly segmented somatotopically, and vibration, movement, pressure, and sharp sensations were usually evoked by microstimulation at separate sites in Vc. In patients with conditions including spinal cord transection, amputation, or dystonia, RFs were mismatched with projected fields more commonly than in patients with ET. The representation of the border of the anesthetic area (e.g., stump) or of the dystonic limb was much larger than that of the same part of the body in patients with ET. This review describes the organization and reorganization of human Vc neuronal activity in nervous system injury and dystonia and then proposes basic mechanisms. Copyright © 2016 the American Physiological Society.

  15. Evoked Brain Activity and Personnel Performance

    Science.gov (United States)

    1987-10-01

    Shucard and Horn (1972), Galbraith, Gliddon, and Busk (1970), and Callaway (1975), the latter using Navy recruits. Callaway’s own work was reported at...G.C., Gliddon, J.B., & Busk , J. (1970). Visual evoked responses in mentally retarded and nonretarded subjects. American Journal of Mental Deficiency

  16. Interhemispheric Asymmetries in Visual Evoked Potential Amplitude

    Science.gov (United States)

    1980-06-12

    Layne, 1965) and of patients with Korsakoff’s syndrome (Malerstein and Callaway, 1969) . In the schizophrenics, the high variability is related to poor...communication. Malerstein, A. J., Callaway, E. Two-tone average evoked response in Korsakoff patients. J. Psychiatr. Res. 6: 253-260, 1969. Marsh, G

  17. Brainstem evoked potentials in infantile spasms

    International Nuclear Information System (INIS)

    Miyazaki, Masahito; Hashimoto, Toshiaki; Murakawa, Kazuyoshi; Tayama, Masanobu; Kuroda, Yasuhiro

    1992-01-01

    In ten patients with infantile spasms, brainstem evoked potentials and MRI examinations were performed to evaluate the brainstem involvement. The result of short latency somatosensory evoked potentials (SSEP) following the right median nerve stimulation revealed abnormal findings including the absence or low amplitudes of the waves below wave P3 and delayed central conduction time in 7 of the ten patients. The result of auditory brainstem responses (ABR) revealed abnormal findings including low amplitudes of wave V, prolonged interpeak latency of waves I-V and absence of the waves below wave IV in 5 of the ten patients. The result of the MRI examinations revealed various degrees of the brainstem atrophy in 6 of the ten patients, all of whom showed abnormal brainstem evoked potentials. The result of this study demonstrates that patients with infantile spasms are frequently associated with brainstem dysfunction and raises the possibility that brainstem atrophy might be a cause of infantile spasms. (author)

  18. Absence of both auditory evoked potentials and auditory percepts dependent on timing cues.

    Science.gov (United States)

    Starr, A; McPherson, D; Patterson, J; Don, M; Luxford, W; Shannon, R; Sininger, Y; Tonakawa, L; Waring, M

    1991-06-01

    An 11-yr-old girl had an absence of sensory components of auditory evoked potentials (brainstem, middle and long-latency) to click and tone burst stimuli that she could clearly hear. Psychoacoustic tests revealed a marked impairment of those auditory perceptions dependent on temporal cues, that is, lateralization of binaural clicks, change of binaural masked threshold with changes in signal phase, binaural beats, detection of paired monaural clicks, monaural detection of a silent gap in a sound, and monaural threshold elevation for short duration tones. In contrast, auditory functions reflecting intensity or frequency discriminations (difference limens) were only minimally impaired. Pure tone audiometry showed a moderate (50 dB) bilateral hearing loss with a disproportionate severe loss of word intelligibility. Those auditory evoked potentials that were preserved included (1) cochlear microphonics reflecting hair cell activity; (2) cortical sustained potentials reflecting processing of slowly changing signals; and (3) long-latency cognitive components (P300, processing negativity) reflecting endogenous auditory cognitive processes. Both the evoked potential and perceptual deficits are attributed to changes in temporal encoding of acoustic signals perhaps occurring at the synapse between hair cell and eighth nerve dendrites. The results from this patient are discussed in relation to previously published cases with absent auditory evoked potentials and preserved hearing.

  19. International Evoked Potentials Symposium

    CERN Document Server

    1980-01-01

    The past decade has seen great progress in the measurement of evoked potentials in man; a steady increase in our understanding of their charac­ teristics, their origins and their usefulness; and a growing application in the field of clinical diagnosis. The topic is a truly multidisciplinary one. Important research contributions have been made by workers of many different backgrounds and clinical applications span the specialities. This book represents a revised and updated version of the work originally presented at the international evoked potential symposium held in Nottingham 4-6 1978. The Nottingham Symposium provided a forum for a state-of-the-art discussion amongst workers from many different disciplines and from many different countries. For each major topic in the field an expert review set the scene for discussion of current research presentations. This format is retained in the book: the chapters in Part A provide the context in which the research presented in Part B is set. The task of selecting m...

  20. An overview of changes in pressure values of the middle ear using impedance audiometry among diver candidates in a hyperbaric chamber before and after a pressure test

    Science.gov (United States)

    Anoraga, J. S.; Bramantyo, B.; Bardosono, S.; Simanungkalit, S. H.; Basiruddin, J.

    2017-08-01

    Impedance audiometry is not yet routinely used in pressure tests, especially in Indonesia. Direct exposure to pressure in a hyperbaric chamber is sometimes without any assessment of the middle ear or the Eustachian tube function (ETF) of ventilation. Impedance audiometry examinations are important to assess ETF ventilation. This study determined the middle ear pressure value changes associated with the ETF (ventilation) of prospective divers. This study included 29 prospective divers aged 20-40 years without conductive hearing loss. All subjects underwent a modified diving impedance audiometry examination both before and after the pressure test in a double-lock hyperbaric chamber. Using the Toynbee maneuver, the values obtained for changes of pressure in the middle ear were significant before and after the pressure test in the right and left ears: p < 0.001 and p = 0.018, respectively. The impedance audiometry examination is necessary for the selection of candidate divers undergoing pressure tests within a hyperbaric chamber.

  1. Music evokes vivid autobiographical memories.

    Science.gov (United States)

    Belfi, Amy M; Karlan, Brett; Tranel, Daniel

    2016-08-01

    Music is strongly intertwined with memories-for example, hearing a song from the past can transport you back in time, triggering the sights, sounds, and feelings of a specific event. This association between music and vivid autobiographical memory is intuitively apparent, but the idea that music is intimately tied with memories, seemingly more so than other potent memory cues (e.g., familiar faces), has not been empirically tested. Here, we compared memories evoked by music to those evoked by famous faces, predicting that music-evoked autobiographical memories (MEAMs) would be more vivid. Participants listened to 30 songs, viewed 30 faces, and reported on memories that were evoked. Memories were transcribed and coded for vividness as in Levine, B., Svoboda, E., Hay, J. F., Winocur, G., & Moscovitch, M. [2002. Aging and autobiographical memory: Dissociating episodic from semantic retrieval. Psychology and Aging, 17, 677-689]. In support of our hypothesis, MEAMs were more vivid than autobiographical memories evoked by faces. MEAMs contained a greater proportion of internal details and a greater number of perceptual details, while face-evoked memories contained a greater number of external details. Additionally, we identified sex differences in memory vividness: for both stimulus categories, women retrieved more vivid memories than men. The results show that music not only effectively evokes autobiographical memories, but that these memories are more vivid than those evoked by famous faces.

  2. Use of the novel contact heat evoked potential stimulator (CHEPS for the assessment of small fibre neuropathy: correlations with skin flare responses and intra-epidermal nerve fibre counts

    Directory of Open Access Journals (Sweden)

    Chizh Boris A

    2007-08-01

    Full Text Available Abstract Background The Contact Heat Evoked Potential Stimulator (CHEPS rapidly stimulates cutaneous small nerve fibres, and resulting evoked potentials can be recorded from the scalp. We have studied patients with symptoms of sensory neuropathy and controls using CHEPS, and validated the findings using other objective measures of small nerve fibres i.e. the histamine-induced skin flare response and intra-epidermal fibres (IEF, and also quantitative sensory testing (QST, a subjective measure. Methods In patients with symptoms of sensory neuropathy (n = 41 and healthy controls (n = 9 we performed clinical examination, QST (monofilament, vibration and thermal perception thresholds, nerve conduction studies, histamine-induced skin flares and CHEPS. Skin punch biopsies were immunostained using standard ABC immunoperoxidase for the nerve marker PGP 9.5 or the heat and capsaicin receptor TRPV1. Immunoreactive IEF were counted per length of tissue section and epidermal thickness recorded. Results Amplitudes of Aδ evoked potentials (μV following face, arm or leg stimulation were reduced in patients (e.g. for the leg: mean ± SEM – controls 11.7 ± 1.95, patients 3.63 ± 0.85, p = 0.0032. Patients showed reduced leg skin flare responses, which correlated with Aδ amplitudes (rs = 0.40, p = 0.010. In patient leg skin biopsies, PGP 9.5- and TRPV1-immunoreactive IEF were reduced and correlated with Aδ amplitudes (PGP 9.5, rs = 0.51, p = 0.0006; TRPV1, rs = 0.48, p = 0.0012. Conclusion CHEPS appears a sensitive measure, with abnormalities observed in some symptomatic patients who did not have significant IEF loss and/or QST abnormalities. Some of the latter patients may have early small fibre dysfunction or ion channelopathy. CHEPS provides a clinically practical, non-invasive and objective measure, and can be a useful additional tool for the assessment of sensory small fibre neuropathy. Although further evaluation is required, the technique shows

  3. Vibration and muscle contraction affect somatosensory evoked potentials

    OpenAIRE

    Cohen, LG; Starr, A

    1985-01-01

    We recorded potentials evoked by specific somatosensory stimuli over peripheral nerve, spinal cord, and cerebral cortex. Vibration attenuated spinal and cerebral potentials evoked by mixed nerve and muscle spindle stimulation; in one subject that was tested, there was no effect on cutaneous input. Presynaptic inhibition of Ia input in the spinal cord and muscle spindle receptor occupancy are probably the responsible mechanisms. In contrast, muscle contraction attenuated cerebral potentials to...

  4. Do ambient urban odors evoke basic emotions?

    Directory of Open Access Journals (Sweden)

    Sandra Theresia Weber-Glass

    2014-04-01

    Full Text Available Fragrances, such as plant odors, have been shown to evoke autonomic response patterns associated with Ekman’s (Ekman et al., 1983 basic emotions happiness, surprise, anger, fear, sadness and disgust. Inducing positive emotions by odors in highly frequented public spaces could serve to improve the quality of life in urban environments. Thus, the present study evaluated the potency of ambient odors connoted with an urban environment to evoke basic emotions on an autonomic and cognitive response level. Synthetic mixtures representing the odors of disinfectant, candles / bees wax, summer air, burnt smell, vomit and musty smell as well as odorless water as a control were presented five times in random order to 30 healthy, non-smoking human subjects with intact sense of smell. Skin temperature, skin conductance, breathing rate, forearm muscle activity, blink rate and heart rate were recorded simultaneously. Subjects rated the odors in terms of pleasantness, intensity and familiarity and gave verbal labels to each odor as well as cognitive associations with the basic emotions. The results showed that the amplitude of the skin conductance response varied as a function of odor presentation. Burnt smell and vomit elicited significantly higher electrodermal responses than summer air. Also, a negative correlation was revealed between the amplitude of the skin conductance response and hedonic odor valence indicating that the magnitude of the electrodermal response increased with odor unpleasantness. The analysis of the cognitive associations between odors and basic emotions showed that candles / bees wax and summer air were specifically associated with happiness whereas burnt smell and vomit were uniquely associated with disgust. Our findings suggest that city odors may evoke specific cognitive associations of basic emotions and that autonomic activity elicited by such odors is related to odor hedonics.

  5. An assessment of threshold shifts in nonprofessional pop/rock musicians using conventional and extended high-frequency audiometry.

    Science.gov (United States)

    Schmuziger, Nicolas; Patscheke, Jochen; Probst, Rudolf

    2007-09-01

    The clinical value of extended high-frequency audiometry for the detection of noise-induced hearing loss has not been established conclusively. The purpose of this study was to assess the relative temporary threshold shift (TTS) in two frequency regions (conventional versus extended high frequency). In this exploratory study, pure-tone thresholds from 0.5 to 14 kHz were measured in both ears of 16 nonprofessional pop/rock musicians (mean age, 35 yr; range, 27 to 49 yr), before and after a 90-minute rehearsal session. All had experienced repeated exposures to intense sound levels during at least 5 yr of their musical careers. After the rehearsal, median threshold levels were found to be significantly poorer for frequencies from 0.5 to 8 kHz (Wilcoxon signed rank test, p audiometry does not seem advantageous as a means of the early detection of noise-induced hearing loss.

  6. Evoked emotions predict food choice.

    Science.gov (United States)

    Dalenberg, Jelle R; Gutjar, Swetlana; Ter Horst, Gert J; de Graaf, Kees; Renken, Remco J; Jager, Gerry

    2014-01-01

    In the current study we show that non-verbal food-evoked emotion scores significantly improve food choice prediction over merely liking scores. Previous research has shown that liking measures correlate with choice. However, liking is no strong predictor for food choice in real life environments. Therefore, the focus within recent studies shifted towards using emotion-profiling methods that successfully can discriminate between products that are equally liked. However, it is unclear how well scores from emotion-profiling methods predict actual food choice and/or consumption. To test this, we proposed to decompose emotion scores into valence and arousal scores using Principal Component Analysis (PCA) and apply Multinomial Logit Models (MLM) to estimate food choice using liking, valence, and arousal as possible predictors. For this analysis, we used an existing data set comprised of liking and food-evoked emotions scores from 123 participants, who rated 7 unlabeled breakfast drinks. Liking scores were measured using a 100-mm visual analogue scale, while food-evoked emotions were measured using 2 existing emotion-profiling methods: a verbal and a non-verbal method (EsSense Profile and PrEmo, respectively). After 7 days, participants were asked to choose 1 breakfast drink from the experiment to consume during breakfast in a simulated restaurant environment. Cross validation showed that we were able to correctly predict individualized food choice (1 out of 7 products) for over 50% of the participants. This number increased to nearly 80% when looking at the top 2 candidates. Model comparisons showed that evoked emotions better predict food choice than perceived liking alone. However, the strongest predictive strength was achieved by the combination of evoked emotions and liking. Furthermore we showed that non-verbal food-evoked emotion scores more accurately predict food choice than verbal food-evoked emotions scores.

  7. The μ opioid agonist morphine modulates potentiation of capsaicin-evoked TRPV1 responses through a cyclic AMP-dependent protein kinase A pathway

    Directory of Open Access Journals (Sweden)

    Roberts-Thomson Sarah J

    2006-07-01

    Full Text Available Abstract Background The vanilloid receptor 1 (TRPV1 is critical in the development of inflammatory hyperalgesia. Several receptors including G-protein coupled prostaglandin receptors have been reported to functionally interact with the TRPV1 through a cAMP-dependent protein kinase A (PKA pathway to potentiate TRPV1-mediated capsaicin responses. Such regulation may have significance in inflammatory pain. However, few functional receptor interactions that inhibit PKA-mediated potentiation of TRPV1 responses have been described. Results In the present studies we investigated the hypothesis that the μ opioid receptor (MOP agonist morphine can modulate forskolin-potentiated capsaicin responses through a cAMP-dependent PKA pathway. HEK293 cells were stably transfected with TRPV1 and MOP, and calcium (Ca2+ responses to injection of the TRPV1 agonist capsaicin were monitored in Fluo-3-loaded cells. Pre-treatment with morphine did not inhibit unpotentiated capsaicin-induced Ca2+ responses but significantly altered capsaicin responses potentiated by forskolin. TRPV1-mediated Ca2+ responses potentiated by the direct PKA activator 8-Br-cAMP and the PKC activator Phorbol-12-myristate-13-acetatewere not modulated by morphine. Immunohistochemical studies confirmed that the TRPV1 and MOP are co-expressed on cultured Dorsal Root Ganglion neurones, pointing towards the existence of a functional relationship between the G-protein coupled MOP and nociceptive TRPV1. Conclusion The results presented here indicate that the opioid receptor agonist morphine acts via inhibition of adenylate cyclase to inhibit PKA-potentiated TRPV1 responses. Targeting of peripheral opioid receptors may therefore have therapeutic potential as an intervention to prevent potentiation of TRPV1 responses through the PKA pathway in inflammation.

  8. The auditory-evoked N2 and P3 components in the stop-signal task: indices of inhibition, response-conflict or error-detection?

    Science.gov (United States)

    Dimoska, Aneta; Johnstone, Stuart J; Barry, Robert J

    2006-11-01

    The N2 and P3 components have been separately associated with response inhibition in the stop-signal task, and more recently, the N2 has been implicated in the detection of response-conflict. To isolate response inhibition activity from early sensory processing, the present study compared processing of the stop-signal with that of a task-irrelevant tone, which subjects were instructed to ignore. Stop-signals elicited a larger N2 on failed-stop trials and a larger P3 on successful-stop trials, relative to ignore-signal trials, likely reflecting activity related to failed and successful stopping, respectively. ERPs between fast and slow reaction-time (RT) groups were also examined as it was hypothesised that greater inhibitory activation to stop faster responses would manifest in the component reflecting this process. Successful-stop P3 showed the anticipated effect (globally larger amplitude in the fast than slow RT group), supporting its association with the stopping of an ongoing response. In contrast, N2 was larger in the slow than fast RT group, and in contrast to the predictions of the response-conflict hypothesis, successful-stop N2 and the response-locked error-negativity (Ne) differed in scalp distribution. These findings indicate that the successful-stop N2 may be better explained as a deliberate form of response control or selection, which the slow RT group employed as a means of increasing the likelihood of a successful-stop. Finally, a comparison of stimulus and response-locked ERPs revealed that the failed-stop N2 and P3 appeared to reflect error-related activity, best observed in the response-locked Ne and error-positivity (Pe). Together these findings indicate that the successful-stop N2 and P3 reflect functionally distinct aspects of response control that are dependent upon performance strategies, while failed-stop N2 and P3 reflect error-related activity.

  9. Group Analysis in MNE-Python of Evoked Responses from a Tactile Stimulation Paradigm: A Pipeline for Reproducibility at Every Step of Processing, Going from Individual Sensor Space Representations to an across-Group Source Space Representation.

    Science.gov (United States)

    Andersen, Lau M

    2018-01-01

    An important aim of an analysis pipeline for magnetoencephalographic data is that it allows for the researcher spending maximal effort on making the statistical comparisons that will answer the questions of the researcher, while in turn spending minimal effort on the intricacies and machinery of the pipeline. I here present a set of functions and scripts that allow for setting up a clear, reproducible structure for separating raw and processed data into folders and files such that minimal effort can be spend on: (1) double-checking that the right input goes into the right functions; (2) making sure that output and intermediate steps can be accessed meaningfully; (3) applying operations efficiently across groups of subjects; (4) re-processing data if changes to any intermediate step are desirable. Applying the scripts requires only general knowledge about the Python language. The data analyses are neural responses to tactile stimulations of the right index finger in a group of 20 healthy participants acquired from an Elekta Neuromag System. Two analyses are presented: going from individual sensor space representations to, respectively, an across-group sensor space representation and an across-group source space representation. The processing steps covered for the first analysis are filtering the raw data, finding events of interest in the data, epoching data, finding and removing independent components related to eye blinks and heart beats, calculating participants' individual evoked responses by averaging over epoched data and calculating a grand average sensor space representation over participants. The second analysis starts from the participants' individual evoked responses and covers: estimating noise covariance, creating a forward model, creating an inverse operator, estimating distributed source activity on the cortical surface using a minimum norm procedure, morphing those estimates onto a common cortical template and calculating the patterns of activity

  10. Group Analysis in MNE-Python of Evoked Responses from a Tactile Stimulation Paradigm: A Pipeline for Reproducibility at Every Step of Processing, Going from Individual Sensor Space Representations to an across-Group Source Space Representation

    Directory of Open Access Journals (Sweden)

    Lau M. Andersen

    2018-01-01

    Full Text Available An important aim of an analysis pipeline for magnetoencephalographic data is that it allows for the researcher spending maximal effort on making the statistical comparisons that will answer the questions of the researcher, while in turn spending minimal effort on the intricacies and machinery of the pipeline. I here present a set of functions and scripts that allow for setting up a clear, reproducible structure for separating raw and processed data into folders and files such that minimal effort can be spend on: (1 double-checking that the right input goes into the right functions; (2 making sure that output and intermediate steps can be accessed meaningfully; (3 applying operations efficiently across groups of subjects; (4 re-processing data if changes to any intermediate step are desirable. Applying the scripts requires only general knowledge about the Python language. The data analyses are neural responses to tactile stimulations of the right index finger in a group of 20 healthy participants acquired from an Elekta Neuromag System. Two analyses are presented: going from individual sensor space representations to, respectively, an across-group sensor space representation and an across-group source space representation. The processing steps covered for the first analysis are filtering the raw data, finding events of interest in the data, epoching data, finding and removing independent components related to eye blinks and heart beats, calculating participants' individual evoked responses by averaging over epoched data and calculating a grand average sensor space representation over participants. The second analysis starts from the participants' individual evoked responses and covers: estimating noise covariance, creating a forward model, creating an inverse operator, estimating distributed source activity on the cortical surface using a minimum norm procedure, morphing those estimates onto a common cortical template and calculating the patterns

  11. Bursting response to current-evoked depolarization in rat CA1 pyramidal neurons is correlated with lucifer yellow dye coupling but not with the presence of calbindin-D28k

    International Nuclear Information System (INIS)

    Baimbridge, K.G.; Peet, M.J.; McLennan, H.; Church, J.

    1991-01-01

    Calbindin-D28k (CaBP) immunohistochemistry has been combined with electrophysiological recording and Lucifer Yellow (LY) cell identification in the CA1 region of the rat hippocampal formation. CaBP is shown to be contained within a distinct sub-population of CA1 pyramidal cells which is equivalent to the superficial layer described by Lorente de No (1934). The neurogenesis of these CaBP-positive neurons occurs 1-2 days later than the CaBP-negative neurons in the deep pyramidal cell layer, as shown by 3H-thymidine autoradiography. No correlation could be found between the presence or absence of CaBP and the type of electrophysiological response to current-evoked depolarizing pulses. The latter could be separated into bursting or non-bursting types, and the bursting-type response was nearly always found to be associated with the presence of LY dye coupling. Furthermore, when dye coupling involved three neurons, a characteristic pattern was observed which may represent the coupling of phenotypically identical neurons into distinct functional units within the CA1 pyramidal cell layer. In this particular case the three neurons were all likely to be CaBP-positive

  12. Muscle synergies evoked by microstimulation are preferentially encoded during behavior

    Directory of Open Access Journals (Sweden)

    Simon Alexander Overduin

    2014-03-01

    Full Text Available Electrical microstimulation studies provide some of the most direct evidence for the neural representation of muscle synergies. These synergies, i.e. coordinated activations of groups of muscles, have been proposed as building blocks for the construction of motor behaviors by the nervous system. Intraspinal or intracortical microstimulation has been shown to evoke muscle patterns that can be resolved into a small set of synergies similar to those seen in natural behavior. However, questions remain about the validity of microstimulation as a probe of neural function, particularly given the relatively long trains of supratheshold stimuli used in these studies. Here, we examined whether muscle synergies evoked during intracortical microstimulation in two rhesus macaques were similarly encoded by nearby motor cortical units during a purely voluntary behavior involving object reach, grasp, and carry movements. At each microstimulation site we identified the synergy most strongly evoked among those extracted from muscle patterns evoked over all microstimulation sites. For each cortical unit recorded at the same microstimulation site, we then identified the synergy most strongly encoded among those extracted from muscle patterns recorded during the voluntary behavior. We found that the synergy most strongly evoked at an intracortical microstimulation site matched the synergy most strongly encoded by proximal units more often than expected by chance. These results suggest a common neural substrate for microstimulation-evoked motor responses and for the generation of muscle patterns during natural behaviors.

  13. Brain-immune interaction accompanying odor-evoked autobiographic memory.

    Science.gov (United States)

    Matsunaga, Masahiro; Bai, Yu; Yamakawa, Kaori; Toyama, Asako; Kashiwagi, Mitsuyoshi; Fukuda, Kazuyuki; Oshida, Akiko; Sanada, Kazue; Fukuyama, Seisuke; Shinoda, Jun; Yamada, Jitsuhiro; Sadato, Norihiro; Ohira, Hideki

    2013-01-01

    The phenomenon in which a certain smell evokes a specific memory is known as the Proust phenomenon. Odor-evoked autobiographic memories are more emotional than those elicited by other sensory stimuli. The results of our previous study indicated that odor-evoked autobiographic memory accompanied by positive emotions has remarkable effects on various psychological and physiological activities, including the secretion of cytokines, which are immune-signaling molecules that modulate systemic inflammation. In this study, we aimed to clarify the neural substrates associated with the interaction between odor-evoked autobiographic memory and peripheral circulating cytokines. We recruited healthy male and female volunteers and investigated the association between brain responses and the concentration of several cytokines in the plasma by using positron emission tomography (PET) recordings when an autographic memory was evoked in participants by asking them to smell an odor that was nostalgic to them. Participants experienced positive emotions and autobiographic memories when nostalgic odors were presented to them. The levels of peripheral proinflammatory cytokines, such as the tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ), were significantly reduced after experiencing odor-evoked autobiographic memory. Subtraction analysis of PET images indicated that the medial orbitofrontal cortex (mOFC) and precuneus/posterior cingulate cortex (PCC) were significantly activated during experiences of odor-evoked autobiographic memory. Furthermore, a correlation analysis indicated that activities of the mOFC and precuneus/PCC were negatively correlated with IFN-γ concentration. These results indicate that the neural networks including the precuneus/PCC and mOFC might regulate the secretion of peripheral proinflammatory cytokines during the experience of odor-evoked autobiographic memories accompanied with positive emotions.

  14. Brain–Immune Interaction Accompanying Odor-Evoked Autobiographic Memory

    Science.gov (United States)

    Matsunaga, Masahiro; Bai, Yu; Yamakawa, Kaori; Toyama, Asako; Kashiwagi, Mitsuyoshi; Fukuda, Kazuyuki; Oshida, Akiko; Sanada, Kazue; Fukuyama, Seisuke; Shinoda, Jun; Yamada, Jitsuhiro; Sadato, Norihiro; Ohira, Hideki

    2013-01-01

    The phenomenon in which a certain smell evokes a specific memory is known as the Proust phenomenon. Odor-evoked autobiographic memories are more emotional than those elicited by other sensory stimuli. The results of our previous study indicated that odor-evoked autobiographic memory accompanied by positive emotions has remarkable effects on various psychological and physiological activities, including the secretion of cytokines, which are immune-signaling molecules that modulate systemic inflammation. In this study, we aimed to clarify the neural substrates associated with the interaction between odor-evoked autobiographic memory and peripheral circulating cytokines. We recruited healthy male and female volunteers and investigated the association between brain responses and the concentration of several cytokines in the plasma by using positron emission tomography (PET) recordings when an autographic memory was evoked in participants by asking them to smell an odor that was nostalgic to them. Participants experienced positive emotions and autobiographic memories when nostalgic odors were presented to them. The levels of peripheral proinflammatory cytokines, such as the tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ), were significantly reduced after experiencing odor-evoked autobiographic memory. Subtraction analysis of PET images indicated that the medial orbitofrontal cortex (mOFC) and precuneus/posterior cingulate cortex (PCC) were significantly activated during experiences of odor-evoked autobiographic memory. Furthermore, a correlation analysis indicated that activities of the mOFC and precuneus/PCC were negatively correlated with IFN-γ concentration. These results indicate that the neural networks including the precuneus/PCC and mOFC might regulate the secretion of peripheral proinflammatory cytokines during the experience of odor-evoked autobiographic memories accompanied with positive emotions. PMID:23977312

  15. Brain-immune interaction accompanying odor-evoked autobiographic memory.

    Directory of Open Access Journals (Sweden)

    Masahiro Matsunaga

    Full Text Available The phenomenon in which a certain smell evokes a specific memory is known as the Proust phenomenon. Odor-evoked autobiographic memories are more emotional than those elicited by other sensory stimuli. The results of our previous study indicated that odor-evoked autobiographic memory accompanied by positive emotions has remarkable effects on various psychological and physiological activities, including the secretion of cytokines, which are immune-signaling molecules that modulate systemic inflammation. In this study, we aimed to clarify the neural substrates associated with the interaction between odor-evoked autobiographic memory and peripheral circulating cytokines. We recruited healthy male and female volunteers and investigated the association between brain responses and the concentration of several cytokines in the plasma by using positron emission tomography (PET recordings when an autographic memory was evoked in participants by asking them to smell an odor that was nostalgic to them. Participants experienced positive emotions and autobiographic memories when nostalgic odors were presented to them. The levels of peripheral proinflammatory cytokines, such as the tumor necrosis factor-α (TNF-α and interferon-γ (IFN-γ, were significantly reduced after experiencing odor-evoked autobiographic memory. Subtraction analysis of PET images indicated that the medial orbitofrontal cortex (mOFC and precuneus/posterior cingulate cortex (PCC were significantly activated during experiences of odor-evoked autobiographic memory. Furthermore, a correlation analysis indicated that activities of the mOFC and precuneus/PCC were negatively correlated with IFN-γ concentration. These results indicate that the neural networks including the precuneus/PCC and mOFC might regulate the secretion of peripheral proinflammatory cytokines during the experience of odor-evoked autobiographic memories accompanied with positive emotions.

  16. Cortical evoked potentials to an auditory illusion: binaural beats.

    Science.gov (United States)

    Pratt, Hillel; Starr, Arnold; Michalewski, Henry J; Dimitrijevic, Andrew; Bleich, Naomi; Mittelman, Nomi

    2009-08-01

    To define brain activity corresponding to an auditory illusion of 3 and 6Hz binaural beats in 250Hz or 1000Hz base frequencies, and compare it to the sound onset response. Event-Related Potentials (ERPs) were recorded in response to unmodulated tones of 250 or 1000Hz to one ear and 3 or 6Hz higher to the other, creating an illusion of amplitude modulations (beats) of 3Hz and 6Hz, in base frequencies of 250Hz and 1000Hz. Tones were 2000ms in duration and presented with approximately 1s intervals. Latency, amplitude and source current density estimates of ERP components to tone onset and subsequent beats-evoked oscillations were determined and compared across beat frequencies with both base frequencies. All stimuli evoked tone-onset P(50), N(100) and P(200) components followed by oscillations corresponding to the beat frequency, and a subsequent tone-offset complex. Beats-evoked oscillations were higher in amplitude with the low base frequency and to the low beat frequency. Sources of the beats-evoked oscillations across all stimulus conditions located mostly to left lateral and inferior temporal lobe areas in all stimulus conditions. Onset-evoked components were not different across stimulus conditions; P(50) had significantly different sources than the beats-evoked oscillations; and N(100) and P(200) sources located to the same temporal lobe regions as beats-evoked oscillations, but were bilateral and also included frontal and parietal contributions. Neural activity with slightly different volley frequencies from left and right ear converges and interacts in the central auditory brainstem pathways to generate beats of neural activity to modulate activities in the left temporal lobe, giving rise to the illusion of binaural beats. Cortical potentials recorded to binaural beats are distinct from onset responses. Brain activity corresponding to an auditory illusion of low frequency beats can be recorded from the scalp.

  17. Evoked Emotions Predict Food Choice

    NARCIS (Netherlands)

    Dalenberg, Jelle R.; Gutjar, Swetlana; ter Horst, Gert J.; de Graaf, Kees; Renken, Remco J.; Jager, Gerry

    2014-01-01

    In the current study we show that non-verbal food-evoked emotion scores significantly improve food choice prediction over merely liking scores. Previous research has shown that liking measures correlate with choice. However, liking is no strong predictor for food choice in real life environments.

  18. Brain Activation in Response to Visually Evoked Sexual Arousal in Male-to-Female Transsexuals: 3.0 Tesla Functional Magnetic Resonance Imaging

    Science.gov (United States)

    Oh, Seok-Kyun; Kim, Gwang-Won; Yang, Jong-Chul; Kim, Seok-Kwun; Kang, Heoung-Keun

    2012-01-01

    Objective This study used functional magnetic resonance imaging (fMRI) to contrast the differential brain activation patterns in response to visual stimulation with both male and female erotic nude pictures in male-to-female (MTF) transsexuals who underwent a sex reassignment surgery. Materials and Methods A total of nine healthy MTF transsexuals after a sex reassignment surgery underwent fMRI on a 3.0 Tesla MR Scanner. The brain activation patterns were induced by visual stimulation with both male and female erotic nude pictures. Results The sex hormone levels of the postoperative MTF transsexuals were in the normal range of healthy heterosexual females. The brain areas, which were activated by viewing male nude pictures when compared with viewing female nude pictures, included predominantly the cerebellum, hippocampus, putamen, anterior cingulate gyrus, head of caudate nucleus, amygdala, midbrain, thalamus, insula, and body of caudate nucleus. On the other hand, brain activation induced by viewing female nude pictures was predominantly observed in the hypothalamus and the septal area. Conclusion Our findings suggest that distinct brain activation patterns associated with visual sexual arousal in postoperative MTF transsexuals reflect their sexual orientation to males. PMID:22563262

  19. Brain Activation in Response to Visually Evoked Sexual Arousal in Male-to-Female Transsexuals: 3.0 Tesla Functional Magnetic Resonance Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Seok Kyun; Kim, Gwang Won; Kang, Heoung Keun; Jeong, Gwang Woo [Chonnam National University, Gwangju (Korea, Republic of); Yang, Jong Chul [Chonbuk National University Medical School, Jeonju (Korea, Republic of); Kim, Seok Kwun [Dong-A University College of Medicine, Busan (Korea, Republic of)

    2012-06-15

    This study used functional magnetic resonance imaging (fMRI) to contrast the differential brain activation patterns in response to visual stimulation with both male and female erotic nude pictures in male-to-female (MTF) transsexuals who underwent a sex reassignment surgery. A total of nine healthy MTF transsexuals after a sex reassignment surgery underwent fMRI on a 3.0 Tesla MR Scanner. The brain activation patterns were induced by visual stimulation with both male and female erotic nude pictures. The sex hormone levels of the postoperative MTF transsexuals were in the normal range of healthy heterosexual females. The brain areas, which were activated by viewing male nude pictures when compared with viewing female nude pictures, included predominantly the cerebellum, hippocampus, putamen, anterior cingulate gyrus, head of caudate nucleus, amygdala, midbrain, thalamus, insula, and body of caudate nucleus. On the other hand, brain activation induced by viewing female nude pictures was predominantly observed in the hypothalamus and the septal area. Our findings suggest that distinct brain activation patterns associated with visual sexual arousal in postoperative MTF transsexuals reflect their sexual orientation to males.

  20. Brain Activation in Response to Visually Evoked Sexual Arousal in Male-to-Female Transsexuals: 3.0 Tesla Functional Magnetic Resonance Imaging

    International Nuclear Information System (INIS)

    Oh, Seok Kyun; Kim, Gwang Won; Kang, Heoung Keun; Jeong, Gwang Woo; Yang, Jong Chul; Kim, Seok Kwun

    2012-01-01

    This study used functional magnetic resonance imaging (fMRI) to contrast the differential brain activation patterns in response to visual stimulation with both male and female erotic nude pictures in male-to-female (MTF) transsexuals who underwent a sex reassignment surgery. A total of nine healthy MTF transsexuals after a sex reassignment surgery underwent fMRI on a 3.0 Tesla MR Scanner. The brain activation patterns were induced by visual stimulation with both male and female erotic nude pictures. The sex hormone levels of the postoperative MTF transsexuals were in the normal range of healthy heterosexual females. The brain areas, which were activated by viewing male nude pictures when compared with viewing female nude pictures, included predominantly the cerebellum, hippocampus, putamen, anterior cingulate gyrus, head of caudate nucleus, amygdala, midbrain, thalamus, insula, and body of caudate nucleus. On the other hand, brain activation induced by viewing female nude pictures was predominantly observed in the hypothalamus and the septal area. Our findings suggest that distinct brain activation patterns associated with visual sexual arousal in postoperative MTF transsexuals reflect their sexual orientation to males.

  1. Ocular vestibular evoked myogenic potentials in response to air-conducted 500 Hz short tones: Effect of stimulation procedure (monaural or binaural), age and gender.

    Science.gov (United States)

    Versino, Maurizio; Colnaghi, Silvia; Ranzani, Marina; Alloni, Roberto; Bolis, Carlotta; Sacco, Simone; Moglia, Arrigo; Callieco, Roberto

    2015-01-01

    The ocular vestibular myogenic potentials (oVEMP) can be elicited by monaural air-conducted sound stimulation, and are usually recorded from the contralateral eye. In clinical setting a binaural stimulation would save time and require less effort from the subjects. We evaluated the differences between monaural and binaural stimulation, and the possible effect of age and gender on oVEMP parameters. Air-conducted oVEMP were recorded by binaural and by monaural stimulation in a group of 54 normal subjects, aged from 12 to 83 years, and in 50 vestibular patients. From each side, we measured the latency of the N1 component, and the peak-to-peak N1-P1 amplitude. For both parameters we also computed the asymmetry ratio. In normal subjects binaural stimulation produced slightly larger responses than monaural stimulation; detectability, latency and amplitude ratio were the same for the two techniques. We found no differences related to gender, and the age-induced amplitude decline was likely to be negligible.oVEMP recorded not in an acute phase of their disorder, proved to be abnormal in about 20% of the patients, and the normal or abnormal findings obtained either with monaural or with binaural stimulation were always concordant. The oVEMP obtained after binaural and monaural stimulation are very similar, and they are largely independent from age and gender.

  2. cGMP-Dependent Protein Kinase Inhibition Extends the Upper Temperature Limit of Stimulus-Evoked Calcium Responses in Motoneuronal Boutons of Drosophila melanogaster Larvae.

    Science.gov (United States)

    Krill, Jennifer L; Dawson-Scully, Ken

    2016-01-01

    While the mammalian brain functions within a very narrow range of oxygen concentrations and temperatures, the fruit fly, Drosophila melanogaster, has employed strategies to deal with a much wider range of acute environmental stressors. The foraging (for) gene encodes the cGMP-dependent protein kinase (PKG), has been shown to regulate thermotolerance in many stress-adapted species, including Drosophila, and could be a potential therapeutic target in the treatment of hyperthermia in mammals. Whereas previous thermotolerance studies have looked at the effects of PKG variation on Drosophila behavior or excitatory postsynaptic potentials at the neuromuscular junction (NMJ), little is known about PKG effects on presynaptic mechanisms. In this study, we characterize presynaptic calcium ([Ca2+]i) dynamics at the Drosophila larval NMJ to determine the effects of high temperature stress on synaptic transmission. We investigated the neuroprotective role of PKG modulation both genetically using RNA interference (RNAi), and pharmacologically, to determine if and how PKG affects presynaptic [Ca2+]i dynamics during hyperthermia. We found that PKG activity modulates presynaptic neuronal Ca2+ responses during acute hyperthermia, where PKG activation makes neurons more sensitive to temperature-induced failure of Ca2+ flux and PKG inhibition confers thermotolerance and maintains normal Ca2+ dynamics under the same conditions. Targeted motoneuronal knockdown of PKG using RNAi demonstrated that decreased PKG expression was sufficient to confer thermoprotection. These results demonstrate that the PKG pathway regulates presynaptic motoneuronal Ca2+ signaling to influence thermotolerance of presynaptic function during acute hyperthermia.

  3. In vivo optical microprobe imaging for intracellular Ca2+ dynamics in response to dopaminergic signaling in deep brain evoked by cocaine

    Science.gov (United States)

    Luo, Zhongchi; Pan, Yingtian; Du, Congwu

    2012-02-01

    Ca2+ plays a vital role as second messenger in signal transduction and the intracellular Ca2+ ([Ca2+]i) change is an important indicator of neuronal activity in the brain, including both cortical and subcortical brain regions. Due to the highly scattering and absorption of brain tissue, it is challenging to optically access the deep brain regions (e.g., striatum at >3mm under the brain surface) and image [Ca2+]i changes with cellular resolutions. Here, we present two micro-probe approaches (i.e., microlens, and micro-prism) integrated with a fluorescence microscope modified to permit imaging of neuronal [Ca2+]i signaling in the striatum using a calcium indicator Rhod2(AM). While a micro-prism probe provides a larger field of view to image neuronal network from cortex to striatum, a microlens probe enables us to track [Ca2+]i dynamic change in individual neurons within the brain. Both techniques are validated by imaging neuronal [Ca2+]i changes in transgenic mice with dopamine receptors (D1R, D2R) expressing EGFP. Our results show that micro-prism images can map the distribution of D1R- and D2R-expressing neurons in various brain regions and characterize their different mean [Ca2+]i changes induced by an intervention (e.g., cocaine administration, 8mg/kg., i.p). In addition, microlens images can characterize the different [Ca2+]i dynamics of D1 and D2 neurons in response to cocaine, including new mechanisms of these two types of neurons in striatum. These findings highlight the power of the optical micro-probe imaging for dissecting the complex cellular and molecular insights of cocaine in vivo.

  4. Regarding the quantification of peripheral microcirculation--Comparing responses evoked in the in vivo human lower limb by postural changes, suprasystolic occlusion and oxygen breathing.

    Science.gov (United States)

    Silva, Henrique; Ferreira, Hugo; Bujan, Ma Julia; Rodrigues, Luis Monteiro

    2015-05-01

    The human skin is an interesting model to explore microcirculation, particularly if using noninvasive technologies such as LDF (Laser Doppler Flowmetry) and tc (transcutaneous) gasimetry and methods as near as possible from the normal physiological state. In this study, we combined those technologies with three classical approaches--leg raising from supine, suprasystolic occlusion (in the ankle), and normobaric oxygen breathing to explore distal peripheral circulation in the foot. These methods are often cited, but a comparative assessment has not been done. The goal of this study was to identify relevant flow related descriptors, method-related advantages and pitfalls, and eventually, to find the best experimental approach. Volunteers (both genders, 22.1 ± 3.7 years old) were subjected to these methods and variables registered during basal, challenge and stabilization phases. Descriptive and comparative statistics were obtained, adopting a 95% confidence level. All flow-related quantitative descriptors potentially useful for the analysis were identified and compared. As expected, male patients consistently showed higher LDF levels and transepidermal water loss (TEWL) and lower tcpO2 values. However, lower results were recorded in the supine position, suggesting a postural dependence. Both leg raising and suprasystolic occlusion produced a hyperemic response after provocation, although different in magnitude, significantly reducing LDF and tcpO2 during provocation. The oxygen breathing method provided the most patient-friendly protocol, consistently reducing LDF (potentially by the inhibition of production of local vasodilators). TEWL increased during the provocation phase in all protocols, although not significantly. Baseline tcpO2 was found to correlate positively with the peak tcpO2 during oxygen breathing and basal LDF with peak flow during leg raising and suprasystolic occlusion. No statistical correlation between TEWL and LDF could be demonstrated under the

  5. Music-Evoked Emotions—Current Studies

    Science.gov (United States)

    Schaefer, Hans-Eckhardt

    2017-01-01

    The present study is focused on a review of the current state of investigating music-evoked emotions experimentally, theoretically and with respect to their therapeutic potentials. After a concise historical overview and a schematic of the hearing mechanisms, experimental studies on music listeners and on music performers are discussed, starting with the presentation of characteristic musical stimuli and the basic features of tomographic imaging of emotional activation in the brain, such as functional magnetic resonance imaging (fMRI) and positron emission tomography (PET), which offer high spatial resolution in the millimeter range. The progress in correlating activation imaging in the brain to the psychological understanding of music-evoked emotion is demonstrated and some prospects for future research are outlined. Research in psychoneuroendocrinology and molecular markers is reviewed in the context of music-evoked emotions and the results indicate that the research in this area should be intensified. An assessment of studies involving measuring techniques with high temporal resolution down to the 10 ms range, as, e.g., electroencephalography (EEG), event-related brain potentials (ERP), magnetoencephalography (MEG), skin conductance response (SCR), finger temperature, and goose bump development (piloerection) can yield information on the dynamics and kinetics of emotion. Genetic investigations reviewed suggest the heredity transmission of a predilection for music. Theoretical approaches to musical emotion are directed to a unified model for experimental neurological evidence and aesthetic judgment. Finally, the reports on musical therapy are briefly outlined. The study concludes with an outlook on emerging technologies and future research fields. PMID:29225563

  6. The paradox of music-evoked sadness: an online survey.

    Directory of Open Access Journals (Sweden)

    Liila Taruffi

    Full Text Available This study explores listeners' experience of music-evoked sadness. Sadness is typically assumed to be undesirable and is therefore usually avoided in everyday life. Yet the question remains: Why do people seek and appreciate sadness in music? We present findings from an online survey with both Western and Eastern participants (N = 772. The survey investigates the rewarding aspects of music-evoked sadness, as well as the relative contribution of listener characteristics and situational factors to the appreciation of sad music. The survey also examines the different principles through which sadness is evoked by music, and their interaction with personality traits. Results show 4 different rewards of music-evoked sadness: reward of imagination, emotion regulation, empathy, and no "real-life" implications. Moreover, appreciation of sad music follows a mood-congruent fashion and is greater among individuals with high empathy and low emotional stability. Surprisingly, nostalgia rather than sadness is the most frequent emotion evoked by sad music. Correspondingly, memory was rated as the most important principle through which sadness is evoked. Finally, the trait empathy contributes to the evocation of sadness via contagion, appraisal, and by engaging social functions. The present findings indicate that emotional responses to sad music are multifaceted, are modulated by empathy, and are linked with a multidimensional experience of pleasure. These results were corroborated by a follow-up survey on happy music, which indicated differences between the emotional experiences resulting from listening to sad versus happy music. This is the first comprehensive survey of music-evoked sadness, revealing that listening to sad music can lead to beneficial emotional effects such as regulation of negative emotion and mood as well as consolation. Such beneficial emotional effects constitute the prime motivations for engaging with sad music in everyday life.

  7. The Paradox of Music-Evoked Sadness: An Online Survey

    Science.gov (United States)

    Taruffi, Liila; Koelsch, Stefan

    2014-01-01

    This study explores listeners’ experience of music-evoked sadness. Sadness is typically assumed to be undesirable and is therefore usually avoided in everyday life. Yet the question remains: Why do people seek and appreciate sadness in music? We present findings from an online survey with both Western and Eastern participants (N = 772). The survey investigates the rewarding aspects of music-evoked sadness, as well as the relative contribution of listener characteristics and situational factors to the appreciation of sad music. The survey also examines the different principles through which sadness is evoked by music, and their interaction with personality traits. Results show 4 different rewards of music-evoked sadness: reward of imagination, emotion regulation, empathy, and no “real-life” implications. Moreover, appreciation of sad music follows a mood-congruent fashion and is greater among individuals with high empathy and low emotional stability. Surprisingly, nostalgia rather than sadness is the most frequent emotion evoked by sad music. Correspondingly, memory was rated as the most important principle through which sadness is evoked. Finally, the trait empathy contributes to the evocation of sadness via contagion, appraisal, and by engaging social functions. The present findings indicate that emotional responses to sad music are multifaceted, are modulated by empathy, and are linked with a multidimensional experience of pleasure. These results were corroborated by a follow-up survey on happy music, which indicated differences between the emotional experiences resulting from listening to sad versus happy music. This is the first comprehensive survey of music-evoked sadness, revealing that listening to sad music can lead to beneficial emotional effects such as regulation of negative emotion and mood as well as consolation. Such beneficial emotional effects constitute the prime motivations for engaging with sad music in everyday life. PMID:25330315

  8. The paradox of music-evoked sadness: an online survey.

    Science.gov (United States)

    Taruffi, Liila; Koelsch, Stefan

    2014-01-01

    This study explores listeners' experience of music-evoked sadness. Sadness is typically assumed to be undesirable and is therefore usually avoided in everyday life. Yet the question remains: Why do people seek and appreciate sadness in music? We present findings from an online survey with both Western and Eastern participants (N = 772). The survey investigates the rewarding aspects of music-evoked sadness, as well as the relative contribution of listener characteristics and situational factors to the appreciation of sad music. The survey also examines the different principles through which sadness is evoked by music, and their interaction with personality traits. Results show 4 different rewards of music-evoked sadness: reward of imagination, emotion regulation, empathy, and no "real-life" implications. Moreover, appreciation of sad music follows a mood-congruent fashion and is greater among individuals with high empathy and low emotional stability. Surprisingly, nostalgia rather than sadness is the most frequent emotion evoked by sad music. Correspondingly, memory was rated as the most important principle through which sadness is evoked. Finally, the trait empathy contributes to the evocation of sadness via contagion, appraisal, and by engaging social functions. The present findings indicate that emotional responses to sad music are multifaceted, are modulated by empathy, and are linked with a multidimensional experience of pleasure. These results were corroborated by a follow-up survey on happy music, which indicated differences between the emotional experiences resulting from listening to sad versus happy music. This is the first comprehensive survey of music-evoked sadness, revealing that listening to sad music can lead to beneficial emotional effects such as regulation of negative emotion and mood as well as consolation. Such beneficial emotional effects constitute the prime motivations for engaging with sad music in everyday life.

  9. Evoked Emotions Predict Food Choice

    OpenAIRE

    Dalenberg, Jelle R.; Gutjar, Swetlana; ter Horst, Gert J.; de Graaf, Kees; Renken, Remco J.; Jager, Gerry

    2014-01-01

    In the current study we show that non-verbal food-evoked emotion scores significantly improve food choice prediction over merely liking scores. Previous research has shown that liking measures correlate with choice. However, liking is no strong predictor for food choice in real life environments. Therefore, the focus within recent studies shifted towards using emotion-profiling methods that successfully can discriminate between products that are equally liked. However, it is unclear how well ...

  10. The Relationship of Visual Evoked Potential Asymmetries to the Performance of Sonar Operators

    Science.gov (United States)

    1981-08-11

    also been related to EP variability. Schizophrenic adults and patients with Korsakoff’s Syndrome have shown higher evoked potential variability than...average evoked response in Korsakoff patients. J. Psychiatry Res. 6: 253-260, 1969. Santoro, T. and D. Fender. Rules for the perception of

  11. Prior Expectations Evoke Stimulus Templates in the Primary Visual Cortex

    NARCIS (Netherlands)

    Kok, P.; Failing, F.M.; de Lange, F.P.

    2014-01-01

    Exposure to rhythmic stimulation results in facilitated responses to events that appear in-phase with the rhythm and modulation of anticipatory and target-evoked brain activity, presumably reflecting "exogenous," unintentional temporal expectations. However, the extent to which this effect is

  12. Pattern visual evoked potentials in malingering.

    Science.gov (United States)

    Nakamura, A; Akio, T; Matsuda, E; Wakami, Y

    2001-03-01

    We previously developed a new method for estimating objective visual acuity by means of pattern visual evoked potentials (PVEP). In this study, this method was applied to the diagnosis of malingering. Six patients ranging in age from 40 to 54 years (mean 47 years) with suspected malingering were evaluated by means of the visual evoked potential test, optokinetic nystagmus (OKN) inhibition test, and the visual field test. In the PVEP study, the stimulus consisted of black and white checkerboards (39', 26', 15', and 9') with a visual angle of 8 degrees, contrast level of 15%, and a frequency of 0.7 Hz. One hundred PVEP responses were averaged per session. Routine ophthalmic examinations were normal in all patients. Five patients had a tubularly constricted visual field, and the remaining patient had a normal visual field. The objective visual acuities of the six patients estimated from PVEP were better than their subjective visual acuities estimated with Landolt rings. Among a variety of psychophysical and electrophysiologic ancillary tests, we consider our PVEP method a useful method for objectively determining visual acuity in a patient with signs of ocular malingering.

  13. Music-evoked emotions in schizophrenia.

    Science.gov (United States)

    Abe, Daijyu; Arai, Makoto; Itokawa, Masanari

    2017-07-01

    Previous studies have reported that people with schizophrenia have impaired musical abilities. Here we developed a simple music-based assay to assess patient's ability to associate a minor chord with sadness. We further characterize correlations between impaired musical responses and psychiatric symptoms. We exposed participants sequentially to two sets of sound stimuli, first a C-major progression and chord, and second a C-minor progression and chord. Participants were asked which stimulus they associated with sadness, the first set, the second set, or neither. The severity of psychiatric symptoms was assessed using the Positive and Negative Syndrome Scale (PANSS). Study participants were 29 patients diagnosed with schizophrenia and 29 healthy volunteers matched in age, gender and musical background. 37.9% (95% confidence interval [CI]:19.1-56.7) of patients with schizophrenia associated the minor chord set as sad, compared with 97.9% (95%CI: 89.5-103.6) of controls. Four patients were diagnosed with treatment-resistant schizophrenia, and all four failed to associate the minor chord with sadness. Patients who did not recognize minor chords as sad had significantly higher scores on all PANSS subscales. A simple test allows music-evoked emotions to be assessed in schizophrenia patient, and may show potential relationships between music-evoked emotions and psychiatric symptoms. Copyright © 2016. Published by Elsevier B.V.

  14. Auditory Evoked Responses in Neonates by MEG

    International Nuclear Information System (INIS)

    Hernandez-Pavon, J. C.; Sosa, M.; Lutter, W. J.; Maier, M.; Wakai, R. T.

    2008-01-01

    Magnetoencephalography is a biomagnetic technique with outstanding potential for neurodevelopmental studies. In this work, we have used MEG to determinate if newborns can discriminate between different stimuli during the first few months of life. Five neonates were stimulated during several minutes with auditory stimulation. The results suggest that the newborns are able to discriminate between different stimuli despite their early age

  15. Do video games evoke specific types of epileptic seizures?

    Science.gov (United States)

    Piccioli, Marta; Vigevano, Federico; Buttinelli, Carla; Kasteleijn-Nolst Trenité, Dorothée G A

    2005-11-01

    We determined whether epileptic clinical manifestations evoked by playing video games (VG) differ from those evoked by intermittent photic stimulation (IPS) or striped patterns (P). We exposed nine children who had TV- and VG-evoked seizures in daily life to 12 VG after standardized photic stimulation and pattern stimulation. Their EEGs were recorded continuously, analyzed, and then correlated with a video of their behavior. Similar types of clinical signs were seen during VG, P, and IPS, but the signs we observed were more subtle during the VG. Eight patients showed a clear lateralization. A new observation was the lowering of the eyelids to a state of half-closed. Our study suggests that the type of visual stimulus provoking a photoparoxysmal response or seizure is not particularly relevant. The children belonged to different epilepsy groups, and our findings add to the discussion on the boundaries of the epilepsy types.

  16. Auditory brainstem activity and development evoked by apical versus basal cochlear implant electrode stimulation in children.

    Science.gov (United States)

    Gordon, K A; Papsin, B C; Harrison, R V

    2007-08-01

    The role of apical versus basal cochlear implant electrode stimulation on central auditory development was examined. We hypothesized that, in children with early onset deafness, auditory development evoked by basal electrode stimulation would differ from that evoked more apically. Responses of the auditory nerve and brainstem, evoked by an apical and a basal implant electrode, were measured over the first year of cochlear implant use in 50 children with early onset severe to profound deafness who used hearing aids prior to implantation. Responses at initial stimulation were of larger amplitude and shorter latency when evoked by the apical electrode. No significant effects of residual hearing or age were found on initial response amplitudes or latencies. With implant use, responses evoked by both electrodes showed decreases in wave and interwave latencies reflecting decreased neural conduction time through the brainstem. Apical versus basal differences persisted with implant experience with one exception; eIII-eV interlatency differences decreased with implant use. Acute stimulation shows prolongation of basally versus apically evoked auditory nerve and brainstem responses in children with severe to profound deafness. Interwave latencies reflecting neural conduction along the caudal and rostral portions of the brainstem decreased over the first year of implant use. Differences in neural conduction times evoked by apical versus basal electrode stimulation persisted in the caudal but not rostral brainstem. Activity-dependent changes of the auditory brainstem occur in response to both apical and basal cochlear implant electrode stimulation.

  17. Proprioceptive evoked potentials in man

    DEFF Research Database (Denmark)

    Arnfred, S; Chen, A C; Eder, Derek N

    2000-01-01

    We studied cerebral evoked potentials on the scalp to the stimulation of the right hand from a change in weight of 400-480 g in ten subjects. Rise-time was 20g/10 ms, Inter Stimulus Interval 2s and stimulus duration was 100 ms. The cerebral activations were a double positive contralateral C3'/P70......). Further studies of the PEP are needed to assess the influence of load manipulations and of muscle contraction and to explore the effect of attentional manipulation....

  18. Spoken Word Recognition Errors in Speech Audiometry: A Measure of Hearing Performance?

    Directory of Open Access Journals (Sweden)

    Martine Coene

    2015-01-01

    Full Text Available This report provides a detailed analysis of incorrect responses from an open-set spoken word-repetition task which is part of a Dutch speech audiometric test battery. Single-consonant confusions were analyzed from 230 normal hearing participants in terms of the probability of choice of a particular response on the basis of acoustic-phonetic, lexical, and frequency variables. The results indicate that consonant confusions are better predicted by lexical knowledge than by acoustic properties of the stimulus word. A detailed analysis of the transmission of phonetic features indicates that “voicing” is best preserved whereas “manner of articulation” yields most perception errors. As consonant confusion matrices are often used to determine the degree and type of a patient’s hearing impairment, to predict a patient’s gain in hearing performance with hearing devices and to optimize the device settings in view of maximum output, the observed findings are highly relevant for the audiological practice. Based on our findings, speech audiometric outcomes provide a combined auditory-linguistic profile of the patient. The use of confusion matrices might therefore not be the method best suited to measure hearing performance. Ideally, they should be complemented by other listening task types that are known to have less linguistic bias, such as phonemic discrimination.

  19. High frequency oscillations evoked by peripheral magnetic stimulation.

    Science.gov (United States)

    Biller, S; Simon, L; Fiedler, P; Strohmeier, D; Haueisen, J

    2011-01-01

    The analysis of somatosensory evoked potentials (SEP) and / or fields (SEF) is a well-established and important tool for investigating the functioning of the peripheral and central human nervous system. A standard technique to evoke SEPs / SEFs is the stimulation of the median nerve by using a bipolar electrical stimulus. We aim at an alternative stimulation technique enabling stimulation of deep nerve structures while reducing patient stress and error susceptibility. In the current study, we apply a commercial transcranial magnetic stimulation system for peripheral magnetic stimulation of the median nerve. We compare the results of simultaneously recorded EEG signals to prove applicability of our technique to evoke SEPs including low frequency components (LFC) as well as high frequency oscillations (HFO). Therefore, we compare amplitude, latency and time-frequency characteristics of the SEP of 14 healthy volunteers after electric and magnetic stimulation. Both low frequency components and high frequency oscillations were detected. The HFOs were superimposed onto the primary cortical response N20. Statistical analysis revealed significantly lower amplitudes and increased latencies for LFC and HFO components after magnetic stimulation. The differences indicate the inability of magnetic stimulation to elicit supramaximal responses. A psycho-perceptual evaluation showed that magnetic stimulation was less unpleasant for 12 out of the 14 volunteers. In conclusion, we showed that LFC and HFO components related to median nerve stimulation can be evoked by peripheral magnetic stimulation.

  20. Recording visual evoked potentials and auditory evoked P300 at 9.4T static magnetic field.

    Science.gov (United States)

    Arrubla, Jorge; Neuner, Irene; Hahn, David; Boers, Frank; Shah, N Jon

    2013-01-01

    Simultaneous recording of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) has shown a number of advantages that make this multimodal technique superior to fMRI alone. The feasibility of recording EEG at ultra-high static magnetic field up to 9.4 T was recently demonstrated and promises to be implemented soon in fMRI studies at ultra high magnetic fields. Recording visual evoked potentials are expected to be amongst the most simple for simultaneous EEG/fMRI at ultra-high magnetic field due to the easy assessment of the visual cortex. Auditory evoked P300 measurements are of interest since it is believed that they represent the earliest stage of cognitive processing. In this study, we investigate the feasibility of recording visual evoked potentials and auditory evoked P300 in a 9.4 T static magnetic field. For this purpose, EEG data were recorded from 26 healthy volunteers inside a 9.4 T MR scanner using a 32-channel MR compatible EEG system. Visual stimulation and auditory oddball paradigm were presented in order to elicit evoked related potentials (ERP). Recordings made outside the scanner were performed using the same stimuli and EEG system for comparison purposes. We were able to retrieve visual P100 and auditory P300 evoked potentials at 9.4 T static magnetic field after correction of the ballistocardiogram artefact using independent component analysis. The latencies of the ERPs recorded at 9.4 T were not different from those recorded at 0 T. The amplitudes of ERPs were higher at 9.4 T when compared to recordings at 0 T. Nevertheless, it seems that the increased amplitudes of the ERPs are due to the effect of the ultra-high field on the EEG recording system rather than alteration in the intrinsic processes that generate the electrophysiological responses.

  1. Single-sweep spectral analysis of contact heat evoked potentials

    DEFF Research Database (Denmark)

    Hansen, Tine M; Graversen, Carina; Frøkjaer, Jens B

    2015-01-01

    AIMS: The cortical response to nociceptive thermal stimuli recorded as contact heat evoked potentials (CHEPs) may be altered by morphine. However, previous studies have averaged CHEPs over multiple stimuli, which are confounded by jitter between sweeps. Thus, the aim was to assess single-sweep ch......AIMS: The cortical response to nociceptive thermal stimuli recorded as contact heat evoked potentials (CHEPs) may be altered by morphine. However, previous studies have averaged CHEPs over multiple stimuli, which are confounded by jitter between sweeps. Thus, the aim was to assess single...... by 13% (P = 0.04) and 9% (P = 0.007), while the beta and gamma bands were increased by 10% (P = 0.006) and 24% (P = 0.04). CONCLUSION: The decreases in the delta and theta band are suggested to represent a decrease in the pain specific morphology of the CHEPs, which indicates a diminished pain response...

  2. Odor-evoked inhibition of olfactory sensory neurons drives olfactory perception in Drosophila.

    Science.gov (United States)

    Cao, Li-Hui; Yang, Dong; Wu, Wei; Zeng, Xiankun; Jing, Bi-Yang; Li, Meng-Tong; Qin, Shanshan; Tang, Chao; Tu, Yuhai; Luo, Dong-Gen

    2017-11-07

    Inhibitory response occurs throughout the nervous system, including the peripheral olfactory system. While odor-evoked excitation in peripheral olfactory cells is known to encode odor information, the molecular mechanism and functional roles of odor-evoked inhibition remain largely unknown. Here, we examined Drosophila olfactory sensory neurons and found that inhibitory odors triggered outward receptor currents by reducing the constitutive activities of odorant receptors, inhibiting the basal spike firing in olfactory sensory neurons. Remarkably, this odor-evoked inhibition of olfactory sensory neurons elicited by itself a full range of olfactory behaviors from attraction to avoidance, as did odor-evoked olfactory sensory neuron excitation. These results indicated that peripheral inhibition is comparable to excitation in encoding sensory signals rather than merely regulating excitation. Furthermore, we demonstrated that a bidirectional code with both odor-evoked inhibition and excitation in single olfactory sensory neurons increases the odor-coding capacity, providing a means of efficient sensory encoding.

  3. Skin denervation does not alter cortical potentials to surface concentric electrode stimulation: A comparison with laser evoked potentials and contact heat evoked potentials.

    Science.gov (United States)

    La Cesa, S; Di Stefano, G; Leone, C; Pepe, A; Galosi, E; Alu, F; Fasolino, A; Cruccu, G; Valeriani, M; Truini, A

    2018-01-01

    In the neurophysiological assessment of patients with neuropathic pain, laser evoked potentials (LEPs), contact heat evoked potentials (CHEPs) and the evoked potentials by the intraepidermal electrical stimulation via concentric needle electrode are widely agreed as nociceptive specific responses; conversely, the nociceptive specificity of evoked potentials by surface concentric electrode (SE-PREPs) is still debated. In this neurophysiological study we aimed at verifying the nociceptive specificity of SE-PREPs. We recorded LEPs, CHEPs and SE-PREPs in eleven healthy participants, before and after epidermal denervation produced by prolonged capsaicin application. We also used skin biopsy to verify the capsaicin-induced nociceptive nerve fibre loss in the epidermis. We found that whereas LEPs and CHEPs were suppressed after capsaicin-induced epidermal denervation, the surface concentric electrode stimulation of the same denervated skin area yielded unchanged SE-PREPs. The suppression of LEPs and CHEPs after nociceptive nerve fibre loss in the epidermis indicates that these techniques are selectively mediated by nociceptive system. Conversely, the lack of SE-PREP changes suggests that SE-PREPs do not provide selective information on nociceptive system function. Capsaicin-induced epidermal denervation abolishes laser evoked potentials (LEPs) and contact heat evoked potentials (CHEPs), but leaves unaffected pain-related evoked potentials by surface concentric electrode (SE-PREPs). These findings suggest that unlike LEPs and CHEPs, SE-PREPs are not selectively mediated by nociceptive system. © 2017 European Pain Federation - EFIC®.

  4. Potenciais Evocados Auditivos de Estado Estável no diagnóstico audiológico infantil: uma comparação com os Potenciais Evocados Auditivos de Tronco Encefálico Steady-state auditory evoked responses in audiological diagnosis in children: a comparison with brainstem evoked auditory responses

    Directory of Open Access Journals (Sweden)

    Gabriela Ribeiro Ivo Rodrigues

    2010-02-01

    Full Text Available Os Potenciais Evocados Auditivos de Estado Estável (PEAEE têm sido apontados como uma técnica promissora na avaliação audiológica infantil. OBJETIVO: Investigar o nível de concordância entre os resultados dos PEAEE e dos Potenciais Evocados Auditivos de Tronco Encefálico (PEATE-clique em um grupo de crianças com perda auditiva sensorioneural, averiguando assim a aplicabilidade clínica desta técnica na avaliação audiológica infantil. FORMA DE ESTUDO: Clínico prospectivo de coorte transversal. MATERIAL E MÉTODO: 15 crianças com idade entre dois e 36 meses e diagnóstico de perda auditiva sensorioneural. A concordância entre as respostas dos dois testes foi avaliada por meio do coeficiente de correlação intraclasse e o teste de McNemar comparou os dois testes quanto à probabilidade de ocorrência de resposta. RESULTADOS: Os coeficientes de correlação encontrados foram 0,70; 0,64; 0,49; 0,69; 0,63 e 0,68 respectivamente para as frequências de 1, 2, 4, 1-2, 2-4 e 1-2-4kHz. No teste de McNemar foi obtido p=0.000, indicando que a probabilidade de se obter resposta presente nos dois testes não é igual, sendo maior nos PEAEE. CONCLUSÃO: A boa concordância observada entre as técnicas sugere que um exame pode ser complementar ao outro. Os PEAEE, entretanto, promoveram informações adicionais nos casos de perdas severas e profundas, acrescentando dados importantes para a reabilitação destas crianças e proporcionando maior precisão no diagnóstico audiológico.Auditory Steady-State Responses (ASSR are being recognized as a promising technique in the assessment of hearing in children. AIM: To investigate the agreement level between results obtained from ASSR and click-ABR in a group of children with sensorineural hearing loss, in order to study the clinical applicability of this technique to evaluate the hearing status in young children. STUDY DESIGN: clinical prospective with a cross-sectional cohort. MATERIALS AND METHODS

  5. Visual evoked potentials in patients after methanol poisoning.

    Science.gov (United States)

    Urban, Pavel; Zakharov, Sergey; Diblík, Pavel; Pelclová, Daniela; Ridzoň, Petr

    2016-01-01

    We report the results of the visual evoked potentials (VEP) examination in patients after severe poisoning by methanol. The group of 47 patients (38 males and 9 females) was assembled out of persons who survived an outbreak of poisoning by the methanol adulterated alcohol beverages, which happened in the Czech Republic in 2012-2013. The visual evoked potentials examination was performed using monocular checkerboard pattern-reversal stimulation. Two criteria of abnormality were chosen: missing evoked response, and wave P1 latency > 117 ms. Non-parametric statistical methods (median, range, and the median test) were used to analyze factors influencing the VEP abnormality. The visual evoked potential was abnormal in 20 patients (43%), 5 of them had normal visual acuity on the Snellen chart. The VEP abnormality did not correlate significantly with initial serum concentrations of methanol, formic acid or lactate; however, it showed statistically significant inverse relation to the initial serum pH: the subgroup with the abnormal VEP had significantly lower median pH in comparison with the subgroup with the normal VEP (7.16 vs. 7.34, p = 0.04). The abnormality was not related to chronic alcohol abuse. The visual evoked potentials examination appeared sensitive enough to detected even subclinical impairment of the optic system. Metabolic acidosis is likely to be the key factor related to the development of visual damage induced by methanol. The examination performed with a delay of 1-9 months after the poisoning documented the situation relatively early after the event. It is considered as a baseline for the planned long-term follow-up of the patients, which will make it possible to assess the dynamics of the observed changes, their reversibility, and the occurrence of potential late sequelae. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  6. An inventory and update of jealousy-evoking partner behaviours in modern society.

    Science.gov (United States)

    Dijkstra, Pieternel; Barelds, Dick P H; Groothof, Hinke A K

    2010-01-01

    The goal of the present study was to identify the most important jealousy-evoking partner behaviours and to examine the extent to which these behaviours evoke jealousy. Based on the literature, a questionnaire was constructed containing 42 jealousy-evoking partner behaviours, including a partner's extra-dyadic involvement with someone else by means of modern communication devices, such as the Internet. A second study examined the extent to which undergraduates and a community sample experienced jealousy in response to these partner behaviours. Results showed that explicit unfaithful behaviours evoked most feelings of jealousy, followed by a partner's emotional or romantic involvement with someone else by means of modern communication devices. In general, older individuals responded with less jealousy in response to a partner's unfaithful and suspicious behaviours. Clinical implications are discussed. (c) 2009 John Wiley & Sons, Ltd.

  7. Normalization reduces intersubject variability in cervical vestibular evoked myogenic potentials.

    Science.gov (United States)

    van Tilburg, Mark J; Herrmann, Barbara S; Guinan, John J; Rauch, Steven D

    2014-09-01

    Cervical vestibular evoked myogenic potentials are used to assess saccular and inferior vestibular nerve function. Normalization of the VEMP waveform has been proposed to reduce the variability in vestibular evoked myogenic potentials by correcting for muscle activation. In this study, we test the hypothesis that normalization of the raw cervical VEMP waveform causes a significant decrease in the intersubject variability. Prospective cohort study. Large specialty hospital, department of otolaryngology. Twenty healthy subjects were used in this study. All subjects underwent cervical vestibular evoked myogenic potential testing using short tone bursts at 250, 500, 750, and 1,000 Hz. Both intersubject and intrasubject variability was assessed. Variability between raw and normalized peak-to-peak amplitudes was compared using the coefficient of variation. Intrasubject variability was assessed using the intraclass correlation coefficient and interaural asymmetry ratio. cVEMPs were present in most ears. Highest peak-to-peak amplitudes were recorded at 750 Hz. Normalization did not alter cVEMP tuning characteristics. Normalization of the cVEMP response caused a significant reduction in intersubject variability of the peak-to-peak amplitude. No significant change was seen in the intrasubject variability. Normalization significantly reduces cVEMP intersubject variability in healthy subjects without altering cVEMP characteristics. By reducing cVEMP amplitude variation due to nonsaccular, muscle-related factors, cVEMP normalization is expected to improve the ability to distinguish between healthy and pathologic responses in the clinical application of cVEMP testing.

  8. Automatic classification of visual evoked potentials based on wavelet decomposition

    Science.gov (United States)

    Stasiakiewicz, Paweł; Dobrowolski, Andrzej P.; Tomczykiewicz, Kazimierz

    2017-04-01

    Diagnosis of part of the visual system, that is responsible for conducting compound action potential, is generally based on visual evoked potentials generated as a result of stimulation of the eye by external light source. The condition of patient's visual path is assessed by set of parameters that describe the time domain characteristic extremes called waves. The decision process is compound therefore diagnosis significantly depends on experience of a doctor. The authors developed a procedure - based on wavelet decomposition and linear discriminant analysis - that ensures automatic classification of visual evoked potentials. The algorithm enables to assign individual case to normal or pathological class. The proposed classifier has a 96,4% sensitivity at 10,4% probability of false alarm in a group of 220 cases and area under curve ROC equals to 0,96 which, from the medical point of view, is a very good result.

  9. Comparison of middle latency responses in presbycusis patients with two different speech recognition scores.

    Science.gov (United States)

    Kirkim, Gunay; Madanoglu, Nevma; Akdas, Ferda; Serbetcioglu, M Bulent

    2007-12-01

    The purpose of this study is to evaluate whether the middle latency responses (MLR) can be used for an objective differentiation of patients with presbycusis having relatively good (Group I) and relatively poor speech recognition scores (Group II). All the participants of these groups had high frequency down-sloping hearing loss with an average of 26-60 dB HL. Data were collected from two described study groups and a control group, using pure tone audiometry, monosyllabic phonetically balanced word and synthetic sentence identification, as well as MLR. The study groups were compared with the control group. When patients in Group I were compared with the control group, only ipsilateral Na latency of middle latency evoked response was statistically significant in the right ear whereas ipsilateral Na latency in the right ear, ipsilateral and contralateral Na latency in the left ear of the patients in Group II were statistically significant. Thus, as an objective complementary tool for the evaluation of the speech perception ability of the patients with presbycusis, Na latency of MLR may be used in combination with the speech discrimination tests.

  10. Pharmacology of Bradykinin-Evoked Coughing in Guinea Pigs.

    Science.gov (United States)

    Hewitt, Matthew M; Adams, Gregory; Mazzone, Stuart B; Mori, Nanako; Yu, Li; Canning, Brendan J

    2016-06-01

    Bradykinin has been implicated as a mediator of the acute pathophysiological and inflammatory consequences of respiratory tract infections and in exacerbations of chronic diseases such as asthma. Bradykinin may also be a trigger for the coughing associated with these and other conditions. We have thus set out to evaluate the pharmacology of bradykinin-evoked coughing in guinea pigs. When inhaled, bradykinin induced paroxysmal coughing that was abolished by the bradykinin B2 receptor antagonist HOE 140. These cough responses rapidly desensitized, consistent with reports of B2 receptor desensitization. Bradykinin-evoked cough was potentiated by inhibition of both neutral endopeptidase and angiotensin-converting enzyme (with thiorphan and captopril, respectively), but was largely unaffected by muscarinic or thromboxane receptor blockade (atropine and ICI 192605), cyclooxygenase, or nitric oxide synthase inhibition (meclofenamic acid and N(G)-nitro-L-arginine). Calcium influx studies in bronchopulmonary vagal afferent neurons dissociated from vagal sensory ganglia indicated that the tachykinin-containing C-fibers arising from the jugular ganglia mediate bradykinin-evoked coughing. Also implicating the jugular C-fibers was the observation that simultaneous blockade of neurokinin2 (NK2; SR48968) and NK3 (SR142801 or SB223412) receptors nearly abolished the bradykinin-evoked cough responses. The data suggest that bradykinin induces coughing in guinea pigs by activating B2 receptors on bronchopulmonary C-fibers. We speculate that therapeutics targeting the actions of bradykinin may prove useful in the treatment of cough. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  11. The Role of Odor-Evoked Memory in Psychological and Physiological Health.

    Science.gov (United States)

    Herz, Rachel S

    2016-07-19

    This article discusses the special features of odor-evoked memory and the current state-of-the-art in odor-evoked memory research to show how these unique experiences may be able to influence and benefit psychological and physiological health. A review of the literature leads to the conclusion that odors that evoke positive autobiographical memories have the potential to increase positive emotions, decrease negative mood states, disrupt cravings, and reduce physiological indices of stress, including systemic markers of inflammation. Olfactory perception factors and individual difference characteristics that would need to be considered in therapeutic applications of odor-evoked-memory are also discussed. This article illustrates how through the experimentally validated mechanisms of odor-associative learning and the privileged neuroanatomical relationship that exists between olfaction and the neural substrates of emotion, odors can be harnessed to induce emotional and physiological responses that can improve human health and wellbeing.

  12. The Role of Odor-Evoked Memory in Psychological and Physiological Health

    Directory of Open Access Journals (Sweden)

    Rachel S. Herz

    2016-07-01

    Full Text Available This article discusses the special features of odor-evoked memory and the current state-of-the-art in odor-evoked memory research to show how these unique experiences may be able to influence and benefit psychological and physiological health. A review of the literature leads to the conclusion that odors that evoke positive autobiographical memories have the potential to increase positive emotions, decrease negative mood states, disrupt cravings, and reduce physiological indices of stress, including systemic markers of inflammation. Olfactory perception factors and individual difference characteristics that would need to be considered in therapeutic applications of odor-evoked-memory are also discussed. This article illustrates how through the experimentally validated mechanisms of odor-associative learning and the privileged neuroanatomical relationship that exists between olfaction and the neural substrates of emotion, odors can be harnessed to induce emotional and physiological responses that can improve human health and wellbeing.

  13. Perceptual learning of acoustic noise generates memory-evoked potentials.

    Science.gov (United States)

    Andrillon, Thomas; Kouider, Sid; Agus, Trevor; Pressnitzer, Daniel

    2015-11-02

    Experience continuously imprints on the brain at all stages of life. The traces it leaves behind can produce perceptual learning [1], which drives adaptive behavior to previously encountered stimuli. Recently, it has been shown that even random noise, a type of sound devoid of acoustic structure, can trigger fast and robust perceptual learning after repeated exposure [2]. Here, by combining psychophysics, electroencephalography (EEG), and modeling, we show that the perceptual learning of noise is associated with evoked potentials, without any salient physical discontinuity or obvious acoustic landmark in the sound. Rather, the potentials appeared whenever a memory trace was observed behaviorally. Such memory-evoked potentials were characterized by early latencies and auditory topographies, consistent with a sensory origin. Furthermore, they were generated even on conditions of diverted attention. The EEG waveforms could be modeled as standard evoked responses to auditory events (N1-P2) [3], triggered by idiosyncratic perceptual features acquired through learning. Thus, we argue that the learning of noise is accompanied by the rapid formation of sharp neural selectivity to arbitrary and complex acoustic patterns, within sensory regions. Such a mechanism bridges the gap between the short-term and longer-term plasticity observed in the learning of noise [2, 4-6]. It could also be key to the processing of natural sounds within auditory cortices [7], suggesting that the neural code for sound source identification will be shaped by experience as well as by acoustics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. A comparison of auditory evoked potentials to acoustic beats and to binaural beats.

    Science.gov (United States)

    Pratt, Hillel; Starr, Arnold; Michalewski, Henry J; Dimitrijevic, Andrew; Bleich, Naomi; Mittelman, Nomi

    2010-04-01

    The purpose of this study was to compare cortical brain responses evoked by amplitude modulated acoustic beats of 3 and 6 Hz in tones of 250 and 1000 Hz with those evoked by their binaural beats counterparts in unmodulated tones to indicate whether the cortical processes involved differ. Event-related potentials (ERPs) were recorded to 3- and 6-Hz acoustic and binaural beats in 2000 ms duration 250 and 1000 Hz tones presented with approximately 1 s intervals. Latency, amplitude and source current density estimates of ERP components to beats-evoked oscillations were determined and compared across beat types, beat frequencies and base (carrier) frequencies. All stimuli evoked tone-onset components followed by oscillations corresponding to the beat frequency, and a subsequent tone-offset complex. Beats-evoked oscillations were higher in amplitude in response to acoustic than to binaural beats, to 250 than to 1000 Hz base frequency and to 3 Hz than to 6 Hz beat frequency. Sources of the beats-evoked oscillations across all stimulus conditions located mostly to left temporal lobe areas. Differences between estimated sources of potentials to acoustic and binaural beats were not significant. The perceptions of binaural beats involve cortical activity that is not different than acoustic beats in distribution and in the effects of beat- and base frequency, indicating similar cortical processing. Copyright 2010 Elsevier B.V. All rights reserved.

  15. Awareness during anaesthesia for surgery requiring evoked potential monitoring: A pilot study

    Directory of Open Access Journals (Sweden)

    Pritish J Korula

    2017-01-01

    Full Text Available Background: Evoked potential monitoring such as somatosensory-evoked potential (SSEP or motor-evoked potential (MEP monitoring during surgical procedures in proximity to the spinal cord requires minimising the minimum alveolar concentrations (MACs below the anaesthetic concentrations normally required (1 MAC to prevent interference in amplitude and latency of evoked potentials. This could result in awareness. Our primary objective was to determine the incidence of awareness while administering low MAC inhalational anaesthetics for these unique procedures. The secondary objective was to assess the adequacy of our anaesthetic technique from neurophysiologist′s perspective. Methods: In this prospective observational pilot study, 61 American Society of Anesthesiologists 1 and 2 patients undergoing spinal surgery for whom intraoperative evoked potential monitoring was performed were included; during the maintenance phase, 0.7-0.8 MAC of isoflurane was targeted. We evaluated the intraoperative depth of anaesthesia using a bispectral (BIS index monitor as well as the patients response to surgical stimulus (PRST scoring system. Post-operatively, a modified Bruce questionnaire was used to verify awareness. The adequacy of evoked potential readings was also assessed. Results: Of the 61 patients, no patient had explicit awareness. Intraoperatively, 19 of 61 patients had a BIS value of above sixty at least once, during surgery. There was no correlation with PRST scoring and BIS during surgery. Fifty-four out of 61 patient′s evoked potential readings were deemed ′good′ or ′fair′ for the conduct of electrophysiological monitoring. Conclusions: This pilot study demonstrates that administering low MAC inhalational anaesthetics to facilitate evoked potential monitoring does not result in explicit awareness. However, larger studies are needed to verify this. The conduct of SSEP electrophysiological monitoring was satisfactory with the use of this

  16. Characterization of music-evoked autobiographical memories.

    Science.gov (United States)

    Janata, Petr; Tomic, Stefan T; Rakowski, Sonja K

    2007-11-01

    Despite music's prominence in Western society and its importance to individuals in their daily lives, very little is known about the memories and emotions that are often evoked when hearing a piece of music from one's past. We examined the content of music-evoked autobiographical memories (MEAMs) using a novel approach for selecting stimuli from a large corpus of popular music, in both laboratory and online settings. A set of questionnaires probed the cognitive and affective properties of the evoked memories. On average, 30% of the song presentations evoked autobiographical memories, and the majority of songs also evoked various emotions, primarily positive, that were felt strongly. The third most common emotion was nostalgia. Analyses of written memory reports found both general and specific levels of autobiographical knowledge to be represented, and several social and situational contexts for memory formation were common across many memories. The findings indicate that excerpts of popular music serve as potent stimuli for studying the structure of autobiographical memories.

  17. Slow cortical evoked potentials after noise exposure

    Energy Technology Data Exchange (ETDEWEB)

    von Wedel, H; Opitz, H J

    1979-07-01

    Human cortical evoked potentials under conditions of stimuation are registrated in the post-stimulatory phase of a five minutes lasting equally masking white noise (90 dB HL). Changes of the evoked potentials during adaptation, possible analogy with high tone losses after noise representation and the origin of tinnitus are examined. Stimulation was started 3 sec after the off-effect of the noise. For five minutes periodically tone bursts were represented. Each train of stimulation consists of tone bursts of three frequencies: 2 kcs, 4 kcs, 8 kcs. The 0.5 sec lasting tones were separated by pauses of 2 sec. During the experiment stimulation and analysis were controlled by a computer. Changes in latency and amplitudes of the cortical evoked potentials were registered. Changes of the adaptation patterns as a function of the poststimulatory time are discussed.

  18. Evoking prescribed spike times in stochastic neurons

    Science.gov (United States)

    Doose, Jens; Lindner, Benjamin

    2017-09-01

    Single cell stimulation in vivo is a powerful tool to investigate the properties of single neurons and their functionality in neural networks. We present a method to determine a cell-specific stimulus that reliably evokes a prescribed spike train with high temporal precision of action potentials. We test the performance of this stimulus in simulations for two different stochastic neuron models. For a broad range of parameters and a neuron firing with intermediate firing rates (20-40 Hz) the reliability in evoking the prescribed spike train is close to its theoretical maximum that is mainly determined by the level of intrinsic noise.

  19. Brain correlates of music-evoked emotions.

    Science.gov (United States)

    Koelsch, Stefan

    2014-03-01

    Music is a universal feature of human societies, partly owing to its power to evoke strong emotions and influence moods. During the past decade, the investigation of the neural correlates of music-evoked emotions has been invaluable for the understanding of human emotion. Functional neuroimaging studies on music and emotion show that music can modulate activity in brain structures that are known to be crucially involved in emotion, such as the amygdala, nucleus accumbens, hypothalamus, hippocampus, insula, cingulate cortex and orbitofrontal cortex. The potential of music to modulate activity in these structures has important implications for the use of music in the treatment of psychiatric and neurological disorders.

  20. A Parallel World for the World Bank: A Case Study of Urgent: Evoke, An Educational Alternate Reality Game

    Directory of Open Access Journals (Sweden)

    David I. Waddington

    2013-01-01

    Full Text Available In 2010, the World Bank launched Urgent: Evoke, an alternate reality game. Conceived in response to the demands of African universities, the game was designed to promote the World Bank Institute’s vision of positive global change through social innovation, and made substantial use of Web 2.0 tools such as blogs, personal profiles, and social networks. This article offers a case study of Urgent: Evoke, divided into four sections: first, the potential to use video games as citizenship education tools is discussed; second, the unique game genre (alternate reality games into which Evoke falls is explained and some possible uses of this genre in higher education are examined; third, the functioning of the Evoke game world is explained; and fourth, the results of the Evoke educational project are assessed. The case study concludes with some commentary on Evoke’s ideological message, which those less sympathetic to capitalism may view as problematic.

  1. Click-evoked otoacoustic emissions in children and adolescents with gender identity disorder

    NARCIS (Netherlands)

    Burke, Sarah M; Menks, Willeke M; Cohen-Kettenis, Peggy T; Klink, Daniel T; Bakker, J.

    2014-01-01

    Click-evoked otoacoustic emissions (CEOAEs) are echo-like sounds that are produced by the inner ear in response to click-stimuli. CEOAEs generally have a higher amplitude in women compared to men and neonates already show a similar sex difference in CEOAEs. Weaker responses in males are proposed to

  2. Click-Evoked Otoacoustic Emissions in Children and Adolescents with Gender Identity Disorder

    NARCIS (Netherlands)

    Burke, S.M.; Menks, W.M.; Cohen-Kettenis, P.T.; Klink, D.T.; Bakker, J.

    2014-01-01

    Click-evoked otoacoustic emissions (CEOAEs) are echo-like sounds that are produced by the inner ear in response to click-stimuli. CEOAEs generally have a higher amplitude in women compared to men and neonates already show a similar sex difference in CEOAEs. Weaker responses in males are proposed to

  3. Choline evokes fluid secretion by perfused rat mandibular gland without desensitization

    DEFF Research Database (Denmark)

    Murakami, M; Novak, I; Young, J A

    1986-01-01

    M and evoked secretory responses comparable with those of acetylcholine (0.05-1.0 microM) administered at similar Na concentrations. Continuous infusion of choline, in contrast to acetylcholine, did not lead to a fall off in the secretory response (desensitization or tachyphylaxis) until the choline...

  4. Evaluation of vestibular evoked myogenic potentials (VEMP) and electrocochleography for the diagnosis of Ménière's disease.

    Science.gov (United States)

    Lamounier, Pauliana; de Souza, Thiago Silva Almeida; Gobbo, Debora Aparecida; Bahmad, Fayez

    Ménière's disease (MD) is an inner ear disorder characterized by episodic vertigo, tinnitus, ear fullness, and fluctuating hearing. Its diagnosis can be especially difficult in cases where vestibular symptoms are present in isolation (vestibular MD). The definitive diagnosis is made histologically and can only be performed post-mortem, after analysis of the temporal bone. Endolymphatic hydrops is a histopathological finding of the disease and occurs more often in the cochlea and saccule, followed by the utricle and semicircular canals. Vestibular evoked myogenic potentials (VEMP) emerged as the method of assessment of vestibular function in 1994. Until then, there was no unique way of assessing saccular function and the inferior vestibular nerve. Given that the saccule is responsible for most cases of severe hydrops, VEMP appears as a new tool to assist in the diagnosis of MD. To evaluate the sensitivity and specificity of VEMP and electrocochleography (EcochG) in the diagnosis of definite MD compared with clinical diagnosis. The study includes 12 patients (24 ears) diagnosed with definite MD defined according to the clinical criteria proposed by the American Academy of Otolaryngology - Head and Neck Surgery (AAO-HNS) in 1995, as well as 12 healthy volunteers allocated to the control group (24 ears). A clinical diagnosis by the AAO-HNS criteria was considered as the gold standard. All patients underwent an otoneurological examination, including pure tone and speech audiometry, VEMP, and extratympanic EcochG. The sensitivity and specificity to detect the presence or absence of disease were calculated, as well as their 95% confidence intervals. The reliability of VEMP and EcochG in both ears was assessed using the kappa index. In both tests and in both ears, the ability to diagnose healthy cases was high, with specificity ranging from 84.6% to 100%. Moreover, the ability of the tests to diagnose the disease varied from low to moderate sensitivity, with values

  5. Behavioral analyses of wind-evoked escape of the cricket, Gryllodes sigillatus.

    Science.gov (United States)

    Kanou, Masamichi; Konishi, Atsuko; Suenaga, Rie

    2006-04-01

    The wind-evoked escape behavior of the cricket Gryllodes sigillatus was investigated using an air puff stimulus. A high velocity air puff elicited the escape behavior in many crickets. The crickets tended to escape away from the stimulus source, but the direction was not accurately oriented 180 degrees from the stimulus. After bilateral cercal ablation, only a few crickets showed wind-evoked escape behavior, and their response rates did not increase even 19 days after ablation. Therefore, information on air motion detected by cercal filiform hairs is essential for triggering wind-evoked behavior. After unilateral cercal ablation, the 81.3% response rate of intact crickets decreased to 16.5%, that is, it decreased to almost 20% that of intact crickets. One week after unilateral cercal ablation, the response rate recovered to more than 60% that of intact crickets. However, the accuracy rate of the escape direction of G. sigillatus showed no change even immediately after the unilateral cercal ablation. Therefore, both cerci are not necessarily required to determine the escape direction. The behavioral characteristics of wind-evoked escape of G. sigillatus are compared with those of another species of cricket, Gryllus bimaculatus. The two species of cricket employ different strategies for wind-evoked escape.

  6. Is Urgent Evoke a Digital Ba?

    DEFF Research Database (Denmark)

    Wichmand, Mette

    2018-01-01

    of such a platform, the World Bank’s online game Urgent Evoke, which has been designed with the pur- pose of engaging citizens in developing innovative solutions for sociopolitical problems like poverty. The analysis is based on Nonaka’s concept of Ba, which means “place” and is described as a platform for advancing...

  7. Auditory and visual evoked potentials during hyperoxia

    Science.gov (United States)

    Smith, D. B. D.; Strawbridge, P. J.

    1974-01-01

    Experimental study of the auditory and visual averaged evoked potentials (AEPs) recorded during hyperoxia, and investigation of the effect of hyperoxia on the so-called contingent negative variation (CNV). No effect of hyperoxia was found on the auditory AEP, the visual AEP, or the CNV. Comparisons with previous studies are discussed.

  8. Normalization of auditory evoked potential and visual evoked potential in patients with idiot savant.

    Science.gov (United States)

    Chen, X; Zhang, M; Wang, J; Lou, F; Liang, J

    1999-03-01

    To investigate the variations of auditory evoked potentials (AEP) and visual evoked potentials (VEP) of patients with idiot savant (IS) syndrome. Both AEP and VEP were recorded from 7 patients with IS syndrome, 21 mentally retarded (MR) children without the syndrome and 21 normally age-matched controls, using a Dantec concerto SEEG-16 BEAM instrument. Both AEP and VEP of MR group showed significantly longer latencies (P1 and P2 latencies of AEP, P savant syndrome presented normalized AEP and VEP.

  9. Visually Evoked Spiking Evolves While Spontaneous Ongoing Dynamics Persist

    DEFF Research Database (Denmark)

    Huys, Raoul; Jirsa, Viktor K; Darokhan, Ziauddin

    2016-01-01

    attractor. Its existence guarantees that evoked spiking return to the spontaneous state. However, the spontaneous ongoing spiking state and the visual evoked spiking states are qualitatively different and are separated by a threshold (separatrix). The functional advantage of this organization...

  10. Objective correlate of subjective pain perception by contact heat-evoked potentials.

    Science.gov (United States)

    Granovsky, Yelena; Granot, Michal; Nir, Rony-Reuven; Yarnitsky, David

    2008-01-01

    The method of pain-evoked potentials has gained considerable acceptance over the last 3 decades regarding its objectivity, repeatability, and quantifiability. The present study explored whether the relationship between pain-evoked potentials and pain psychophysics obtained by contact heat stimuli is similar to those observed for the conventionally used laser stimulation. Evoked potentials (EPs) were recorded in response to contact heat stimuli at different body sites in 24 healthy volunteers. Stimuli at various temperatures were applied to the forearm (43 degrees C, 46 degrees C, 49 degrees C, and 52 degrees C) and leg (46 degrees C and 49 degrees C). The amplitudes of both components (N2 and P2) were strongly associated with the intensity of the applied stimuli and with subjective pain perception. Yet, regression analysis revealed pain perception and not stimulus intensity as the major contributing factor. A significant correlation was found between the forearm and the leg for both psychophysics and EPs amplitude. Contact heat can generate readily distinguishable evoked potentials on the scalp, consistent between upper and lower limbs. Although these potentials bear positive correlation with both stimulus intensity and pain magnitude, the latter is the main contributor to the evoked brain response.

  11. Phantom somatosensory evoked potentials following selective intraneural electrical stimulation in two amputees.

    Science.gov (United States)

    Granata, Giuseppe; Di Iorio, Riccardo; Romanello, Roberto; Iodice, Francesco; Raspopovic, Stanisa; Petrini, Francesco; Strauss, Ivo; Valle, Giacomo; Stieglitz, Thomas; Čvančara, Paul; Andreu, David; Divoux, Jean-Louis; Guiraud, David; Wauters, Loic; Hiairrassary, Arthur; Jensen, Winnie; Micera, Silvestro; Rossini, Paolo Maria

    2018-06-01

    The aim of the paper is to objectively demonstrate that amputees implanted with intraneural interfaces are truly able to feel a sensation in the phantom hand by recording "phantom" somatosensory evoked potentials from the corresponding brain areas. We implanted four transverse intrafascicular multichannel electrodes, available with percutaneous connections to a multichannel electrical stimulator, in the median and ulnar nerves of two left trans-radial amputees. Two channels of the implants that were able to elicit sensations during intraneural nerve stimulation were chosen, in both patients, for recording somatosensory evoked potentials. We recorded reproducible evoked responses by stimulating the median and the ulnar nerves in both cases. Latencies were in accordance with the arrival of somatosensory information to the primary somatosensory cortex. Our results provide evidence that sensations generated by intraneural stimulation are truly perceived by amputees and located in the phantom hand. Moreover, our results strongly suggest that sensations perceived in different parts of the phantom hand result in different evoked responses. Somatosensory evoked potentials obtained by selective intraneural electrical stimulation in amputee patients are a useful tool to provide an objective demonstration of somatosensory feedback in new generation bidirectional prostheses. Copyright © 2018. Published by Elsevier B.V.

  12. Synaptically evoked glutamate transporter currents in Spinal Dorsal Horn Astrocytes

    Directory of Open Access Journals (Sweden)

    Dougherty Patrick M

    2009-07-01

    Full Text Available Abstract Background Removing and sequestering synaptically released glutamate from the extracellular space is carried out by specific plasma membrane transporters that are primarily located in astrocytes. Glial glutamate transporter function can be monitored by recording the currents that are produced by co-transportation of Na+ ions with the uptake of glutamate. The goal of this study was to characterize glutamate transporter function in astrocytes of the spinal cord dorsal horn in real time by recording synaptically evoked glutamate transporter currents. Results Whole-cell patch clamp recordings were obtained from astrocytes in the spinal substantia gelatinosa (SG area in spinal slices of young adult rats. Glutamate transporter currents were evoked in these cells by electrical stimulation at the spinal dorsal root entry zone in the presence of bicuculline, strychnine, DNQX and D-AP5. Transporter currents were abolished when synaptic transmission was blocked by TTX or Cd2+. Pharmacological studies identified two subtypes of glutamate transporters in spinal astrocytes, GLAST and GLT-1. Glutamate transporter currents were graded with stimulus intensity, reaching peak responses at 4 to 5 times activation threshold, but were reduced following low-frequency (0.1 – 1 Hz repetitive stimulation. Conclusion These results suggest that glutamate transporters of spinal astrocytes could be activated by synaptic activation, and recording glutamate transporter currents may provide a means of examining the real time physiological responses of glial cells in spinal sensory processing, sensitization, hyperalgesia and chronic pain.

  13. Thought-evoking approaches in engineering problems

    CERN Document Server

    2014-01-01

    In creating the value-added product in not distant future, it is necessary and inevitable to establish a holistic and though-evoking approach to the engineering problem, which should be at least associated with the inter-disciplinary knowledge and thought processes across the whole engineering spheres. It is furthermore desirable to integrate it with trans-disciplinary aspects ranging from manufacturing culture, through liberal-arts engineering, and industrial sociology.   The thought-evoking approach can be exemplified and typified by representative engineering problems: unveiling essential features in ‘Tangential Force Ratio and Interface Pressure’, prototype development for ‘Bio-mimetic Needle’ and application of ‘Water-jet Machining to Artificial Hip Joint’, product innovation in ‘Heat Sink for Computer’, application of ‘Graph Theory’ to similarity evaluation of production systems, leverage among reciprocity attributes in ‘Industrial and Engineering Designs for Machine Enclosure’,...

  14. Video outside versus video inside the web: do media setting and image size have an impact on the emotion-evoking potential of video?

    NARCIS (Netherlands)

    Verleur, R.; Verhagen, Pleunes Willem; Crawford, Margaret; Simonson, Michael; Lamboy, Carmen

    2001-01-01

    To explore the educational potential of video-evoked affective responses in a Web-based environment, the question was raised whether video in a Web-based environment is experienced differently from video in a traditional context. An experiment was conducted that studied the affect-evoking power of

  15. A comparison of auditory evoked potentials to acoustic beats and to binaural beats

    OpenAIRE

    Pratt, H; Starr, A; Michalewski, HJ; Dimitrijevic, A; Bleich, N; Mittelman, N

    2010-01-01

    The purpose of this study was to compare cortical brain responses evoked by amplitude modulated acoustic beats of 3 and 6 Hz in tones of 250 and 1000 Hz with those evoked by their binaural beats counterparts in unmodulated tones to indicate whether the cortical processes involved differ. Event-related potentials (ERPs) were recorded to 3- and 6-Hz acoustic and binaural beats in 2000 ms duration 250 and 1000 Hz tones presented with approximately 1 s intervals. Latency, amplitude and source cur...

  16. What reported food-evoked emotions may add : A model to predict consumer food choice

    NARCIS (Netherlands)

    Gutjar, Swetlana; Dalenberg, Jelle R.; de Graaf, Cees; de Wijk, Rene A.; Palascha, Aikaterini; Renken, Remco J.; Jager, Gerry

    2015-01-01

    Food-evoked emotions provide information that goes beyond the information from traditional hedonic ratings. The objectives of our study were: (i) to investigate how intrinsic (sensory) and extrinsic (packaging) cues affect consumers' emotional responses to foods, and (ii) to explore whether

  17. What reported food-evoked emotions may add: A model to predict consumer food choice

    NARCIS (Netherlands)

    Gutjar, S.; Dalenberg, J.R.; Graaf, de C.; Wijk, de R.A.; Palascha, A.; Renken, Remco J.; Jager, G.

    2015-01-01

    Food-evoked emotions provide information that goes beyond the information from traditional hedonic ratings. The objectives of our study were: (i) to investigate how intrinsic (sensory) and extrinsic (packaging) cues affect consumers’ emotional responses to foods, and (ii) to explore whether

  18. Effects of single cycle binaural beat duration on auditory evoked potentials.

    Science.gov (United States)

    Mihajloski, Todor; Bohorquez, Jorge; Özdamar, Özcan

    2014-01-01

    Binaural beat (BB) illusions are experienced as continuous central pulsations when two sounds with slightly different frequencies are delivered to each ear. It has been shown that steady-state auditory evoked potentials (AEPs) to BBs can be captured and investigated. The authors recently developed a new method of evoking transient AEPs to binaural beats using frequency modulated stimuli. This methodology was able to create single BBs in predetermined intervals with varying carrier frequencies. This study examines the effects of the BB duration and the frequency modulating component of the stimulus on the binaural beats and their evoked potentials. Normal hearing subjects were tested with a set of four durations (25, 50, 100, and 200 ms) with two stimulation configurations, binaural dichotic (binaural beats) and diotic (frequency modulation). The results obtained from the study showed that out of the given durations, the 100 ms beat, was capable of evoking the largest amplitude responses. The frequency modulation effect showed a decrease in peak amplitudes with increasing beat duration until their complete disappearance at 200 ms. Even though, at 200 ms, the frequency modulation effects were not present, the binaural beats were still perceived and captured as evoked potentials.

  19. Effect of mechanical tactile noise on amplitude of visual evoked potentials: multisensory stochastic resonance.

    Science.gov (United States)

    Méndez-Balbuena, Ignacio; Huidobro, Nayeli; Silva, Mayte; Flores, Amira; Trenado, Carlos; Quintanar, Luis; Arias-Carrión, Oscar; Kristeva, Rumyana; Manjarrez, Elias

    2015-10-01

    The present investigation documents the electrophysiological occurrence of multisensory stochastic resonance in the human visual pathway elicited by tactile noise. We define multisensory stochastic resonance of brain evoked potentials as the phenomenon in which an intermediate level of input noise of one sensory modality enhances the brain evoked response of another sensory modality. Here we examined this phenomenon in visual evoked potentials (VEPs) modulated by the addition of tactile noise. Specifically, we examined whether a particular level of mechanical Gaussian noise applied to the index finger can improve the amplitude of the VEP. We compared the amplitude of the positive P100 VEP component between zero noise (ZN), optimal noise (ON), and high mechanical noise (HN). The data disclosed an inverted U-like graph for all the subjects, thus demonstrating the occurrence of a multisensory stochastic resonance in the P100 VEP. Copyright © 2015 the American Physiological Society.

  20. Three-year experience with the Sophono in children with congenital conductive unilateral hearing loss: tolerability, audiometry, and sound localization compared to a bone-anchored hearing aid.

    Science.gov (United States)

    Nelissen, Rik C; Agterberg, Martijn J H; Hol, Myrthe K S; Snik, Ad F M

    2016-10-01

    Bone conduction devices (BCDs) are advocated as an amplification option for patients with congenital conductive unilateral hearing loss (UHL), while other treatment options could also be considered. The current study compared a transcutaneous BCD (Sophono) with a percutaneous BCD (bone-anchored hearing aid, BAHA) in 12 children with congenital conductive UHL. Tolerability, audiometry, and sound localization abilities with both types of BCD were studied retrospectively. The mean follow-up was 3.6 years for the Sophono users (n = 6) and 4.7 years for the BAHA users (n = 6). In each group, two patients had stopped using their BCD. Tolerability was favorable for the Sophono. Aided thresholds with the Sophono were unsatisfactory, as they did not reach under a mean pure tone average of 30 dB HL. Sound localization generally improved with both the Sophono and the BAHA, although localization abilities did not reach the level of normal hearing children. These findings, together with previously reported outcomes, are important to take into account when counseling patients and their caretakers. The selection of a suitable amplification option should always be made deliberately and on individual basis for each patient in this diverse group of children with congenital conductive UHL.

  1. Auditory- and visual-evoked potentials in Mexican infants are not affected by maternal supplementation with 400 mg/d docosahexaenoic acid in the second half of pregnancy.

    Science.gov (United States)

    Stein, Aryeh D; Wang, Meng; Rivera, Juan A; Martorell, Reynaldo; Ramakrishnan, Usha

    2012-08-01

    The evidence relating prenatal supplementation with DHA to offspring neurological development is limited. We investigated the effect of prenatal DHA supplementation on infant brainstem auditory-evoked responses and visual- evoked potentials in a double-blind, randomized controlled trial in Cuernavaca, Mexico. Pregnant women were supplemented daily with 400 mg DHA or placebo from gestation wk 18-22 through delivery. DHA and placebo groups did not differ in maternal characteristics at randomization or infant characteristics at birth. Brainstem auditory-evoked responses were measured at 1 and 3 mo in 749 and 664 infants, respectively, and visual-evoked potentials were measured at 3 and 6 mo in 679 and 817 infants, respectively. Left-right brainstem auditory-evoked potentials were moderately correlated (range, 0.26-0.43; all P right visual-evoked potentials were strongly correlated (range, 0.79-0.94; all P 0.10). We conclude that DHA supplementation during pregnancy did not influence brainstem auditory-evoked responses at 1 and 3 mo or visual-evoked potentials at 3 and 6 mo.

  2. Steady-state evoked potentials possibilities for mental-state estimation

    Science.gov (United States)

    Junker, Andrew M.; Schnurer, John H.; Ingle, David F.; Downey, Craig W.

    1988-01-01

    The use of the human steady-state evoked potential (SSEP) as a possible measure of mental-state estimation is explored. A method for evoking a visual response to a sum-of-ten sine waves is presented. This approach provides simultaneous multiple frequency measurements of the human EEG to the evoking stimulus in terms of describing functions (gain and phase) and remnant spectra. Ways in which these quantities vary with the addition of performance tasks (manual tracking, grammatical reasoning, and decision making) are presented. Models of the describing function measures can be formulated using systems engineering technology. Relationships between model parameters and performance scores during manual tracking are discussed. Problems of unresponsiveness and lack of repeatability of subject responses are addressed in terms of a need for loop closure of the SSEP. A technique to achieve loop closure using a lock-in amplifier approach is presented. Results of a study designed to test the effectiveness of using feedback to consciously connect humans to their evoked response are presented. Findings indicate that conscious control of EEG is possible. Implications of these results in terms of secondary tasks for mental-state estimation and brain actuated control are addressed.

  3. Role played by acid-sensitive ion channels in evoking the exercise pressor reflex.

    Science.gov (United States)

    Hayes, Shawn G; McCord, Jennifer L; Rainier, Jon; Liu, Zhuqing; Kaufman, Marc P

    2008-10-01

    The exercise pressor reflex arises from contracting skeletal muscle and is believed to play a role in evoking the cardiovascular responses to static exercise, effects that include increases in arterial pressure and heart rate. This reflex is believed to be evoked by the metabolic and mechanical stimulation of thin fiber muscle afferents. Lactic acid is known to be an important metabolic stimulus evoking the reflex. Until recently, the only antagonist for acid-sensitive ion channels (ASICs), the receptors to lactic acid, was amiloride, a substance that is also a potent antagonist for both epithelial sodium channels as well as voltage-gated sodium channels. Recently, a second compound, A-317567, has been shown to be an effective and selective antagonist to ASICs in vitro. Consequently, we measured the pressor responses to the static contraction of the triceps surae muscles in decerebrate cats before and after a popliteal arterial injection of A-317567 (10 mM solution; 0.5 ml). We found that this ASIC antagonist significantly attenuated by half (Pacid injection into the popliteal artery. In contrast, A-317567 had no effect on the pressor responses to tendon stretch, a pure mechanical stimulus, and to a popliteal arterial injection of capsaicin, which stimulated transient receptor potential vanilloid type 1 channels. We conclude that ASICs on thin fiber muscle afferents play a substantial role in evoking the metabolic component of the exercise pressor reflex.

  4. Visual evoked potentials in neuromyelitis optica and its spectrum disorders.

    Science.gov (United States)

    Ringelstein, Marius; Kleiter, Ingo; Ayzenberg, Ilya; Borisow, Nadja; Paul, Friedemann; Ruprecht, Klemens; Kraemer, Markus; Cohn, Eva; Wildemann, Brigitte; Jarius, Sven; Hartung, Hans-Peter; Aktas, Orhan; Albrecht, Philipp

    2014-04-01

    Optic neuritis (ON) is a key feature of neuromyelitis optica (NMO). Recently, NMO patients of predominantly Afro-Brazilian origin were evaluated by visual evoked potentials (VEPs) and showed marked amplitude reductions. Here, we analyzed VEPs in a predominantly Caucasian cohort, consisting of 43 patients with definite NMO, 18 with anti-aquaporin (AQP) 4 antibody-seropositive NMO spectrum disorders and 61 matched healthy controls. We found reduced amplitudes in only 12.3%, prolonged latencies in 41.9% and a lack of response in 14.0% of NMO eyes. Delayed P100 latencies in eyes without prior ON suggested this was a subclinical affection. The data indicate heterogenous patterns in NMO, warranting further investigation.

  5. Visual evoked potentials and selective attention to points in space

    Science.gov (United States)

    Van Voorhis, S.; Hillyard, S. A.

    1977-01-01

    Visual evoked potentials (VEPs) were recorded to sequences of flashes delivered to the right and left visual fields while subjects responded promptly to designated stimuli in one field at a time (focused attention), in both fields at once (divided attention), or to neither field (passive). Three stimulus schedules were used: the first was a replication of a previous study (Eason, Harter, and White, 1969) where left- and right-field flashes were delivered quasi-independently, while in the other two the flashes were delivered to the two fields in random order (Bernoulli sequence). VEPs to attended-field stimuli were enhanced at both occipital (O2) and central (Cz) recording sites under all stimulus sequences, but different components were affected at the two scalp sites. It was suggested that the VEP at O2 may reflect modality-specific processing events, while the response at Cz, like its auditory homologue, may index more general aspects of selective attention.

  6. Conscious wireless electroretinogram and visual evoked potentials in rats.

    Directory of Open Access Journals (Sweden)

    Jason Charng

    Full Text Available The electroretinogram (ERG, retina and visual evoked potential (VEP, brain are widely used in vivo tools assaying the integrity of the visual pathway. Current recordings in preclinical models are conducted under anesthesia, which alters neural physiology and contaminates responses. We describe a conscious wireless ERG and VEP recording platform in rats. Using a novel surgical technique to chronically implant electrodes subconjunctivally on the eye and epidurally over the visual cortex, we are able to record stable and repeatable conscious ERG and VEP signals over at least 1 month. We show that the use of anaesthetics, necessary for conventional ERG and VEP measurements, alters electrophysiology recordings. Conscious visual electrophysiology improves the viability of longitudinal studies by eliminating complications associated with repeated anaesthesia. It will also enable uncontaminated assessment of drug effects, allowing the eye to be used as an effective biomarker of the central nervous system.

  7. Endogenous attention signals evoked by threshold contrast detection in human superior colliculus.

    Science.gov (United States)

    Katyal, Sucharit; Ress, David

    2014-01-15

    Human superior colliculus (SC) responds in a retinotopically selective manner when attention is deployed on a high-contrast visual stimulus using a discrimination task. To further elucidate the role of SC in endogenous visual attention, high-resolution fMRI was used to demonstrate that SC also exhibits a retinotopically selective response for covert attention in the absence of significant visual stimulation using a threshold-contrast detection task. SC neurons have a laminar organization according to their function, with visually responsive neurons present in the superficial layers and visuomotor neurons in the intermediate layers. The results show that the response evoked by the threshold-contrast detection task is significantly deeper than the response evoked by the high-contrast speed discrimination task, reflecting a functional dissociation of the attentional enhancement of visuomotor and visual neurons, respectively. Such a functional dissociation of attention within SC laminae provides a subcortical basis for the oculomotor theory of attention.

  8. Interaural difference values of vestibular evoked myogenic.

    Directory of Open Access Journals (Sweden)

    Marziyeh Moallemi

    2015-01-01

    Full Text Available Migraine is a neurologic disease, which often is associated with a unilateral headache. Vestibular abnormalities are common in migraine. Vestibular evoked myogenic potentials (VEMPs assess otolith function in particular functional integrity of the saccule and the inferior vestibular nerve. We used VEMP to evaluate if the migraine headache can affect VEMP asymmetry parameters. A total of 25 patients with migraine (22 females and 3 males who were diagnosed according to the criteria of IHS-1988 were enrolled in this cross-sectional study. Control group consisted of 26 healthy participants (18 female and 8 male, without neurotological symptoms and history of migraine. The short tone burst (95 dB nHL, 500 Hz was presented to ears. VEMP was recorded with surface electromyography over the contracted ipsilateral sternocleidomastoid (SCM muscle. Although current results showed that the amplitude ratio is greater in migraine patients than normal group, there was no statistical difference between two groups in mean asymmetry parameters of VEMP. Asymmetry measurements in vestibular evoked myogenic potentials probably are not indicators of unilateral deficient in saccular pathways of migraine patients.

  9. Laser-evoked coloration in polymers

    International Nuclear Information System (INIS)

    Zheng, H.Y.; Rosseinsky, David; Lim, G.C.

    2005-01-01

    Laser-evoked coloration in polymers has long been a major aim of polymer technology for potential applications in product surface decoration, marking personalised images and logos. However, the coloration results reported so far were mostly attributed to laser-induced thermal-chemical reactions. The laser-irradiated areas are characterized with grooves due to material removal. Furthermore, only single color was laser-induced in any given polymer matrix. To induce multiple colors in a given polymer matrix with no apparent surface material removal is most desirable and challenging and may be achieved through laser-induced photo-chemical reactions. However, little public information is available at present. We report that two colors of red and green have been produced on an initially transparent CPV/PVA samples through UV laser-induced photo-chemical reactions. This is believed the first observation of laser-induced multiple-colors in the given polymer matrix. It is believed that the colorants underwent photo-effected electron transfer with suitable electron donors from the polymers to change from colorless bipyridilium Bipm 2+ to the colored Bipm + species. The discovery may lead to new approaches to the development of laser-evoked multiple coloration in polymers

  10. Brainstem auditory evoked potentials in horses

    Directory of Open Access Journals (Sweden)

    Juliana Almeida Nogueira da Gama

    2016-04-01

    Full Text Available ABSTRACT: The brainstem auditory evoked potential (BAEP evaluates the integrity of the auditory pathways to the brainstem. The aim of this study was to evoke BAEPs in 21 clinically normal horses. The animals were sedated with detomidine hydrochloride (0.013mg.kg-1 BW. Earphones were inserted and rarefaction clicks at 90 dB and noise masking at 40 dB were used. After performing the test, the latencies of waves (I, II, III, IV, and V and interpeaks(I-III, III-V, and I-V were identified. The mean latencies of the waves were as follows: wave I, 2.4 ms; wave II, 2.24 ms; wave III, 3.61ms; wave IV, 4.61ms; and wave V, 5.49ms. The mean latencies of the interpeaks were as follows: I-III, 1.37ms; III-V, 1.88ms; and I-V, 3.26ms. This is the first study using BAEPs in horses in Brazil, and the observed latencies will be used as normative data for the interpretation of tests performed on horses with changes related to auditory system or neurologic abnormalities.

  11. Evoked potentials in pediatric cerebral malaria

    Directory of Open Access Journals (Sweden)

    Minal Bhanushali

    2011-12-01

    Full Text Available Cortical evoked potentials (EP provide localized data regarding brain function and may offer prognostic information and insights into the pathologic mechanisms of malariamediated cerebral injury. As part of a prospective cohort study, we obtained somatosensory evoked potentials (SSEPs and brainstem auditory EPs (AEPs within 24 hours of admission on 27 consecutive children admitted with cerebral malaria (CM. Children underwent follow-up for 12 months to determine if they had any long term neurologic sequelae. EPs were obtained in 27 pediatric CM admissions. Two children died. Among survivors followed an average of 514 days, 7/25 (28.0% had at least one adverse neurologic outcome. Only a single subject had absent cortical EPs on admission and this child had a good neurologic outcome. Among pediatric CM survivors, cortical EPs are generally intact and do not predict adverse neurologic outcomes. Further study is needed to determine if alterations in cortical EPs can be used to predict a fatal outcome in CM.

  12. Fast detection of unexpected sound intensity decrements as revealed by human evoked potentials.

    Directory of Open Access Journals (Sweden)

    Heike Althen

    Full Text Available The detection of deviant sounds is a crucial function of the auditory system and is reflected by the automatically elicited mismatch negativity (MMN, an auditory evoked potential at 100 to 250 ms from stimulus onset. It has recently been shown that rarely occurring frequency and location deviants in an oddball paradigm trigger a more negative response than standard sounds at very early latencies in the middle latency response of the human auditory evoked potential. This fast and early ability of the auditory system is corroborated by the finding of neurons in the animal auditory cortex and subcortical structures, which restore their adapted responsiveness to standard sounds, when a rare change in a sound feature occurs. In this study, we investigated whether the detection of intensity deviants is also reflected at shorter latencies than those of the MMN. Auditory evoked potentials in response to click sounds were analyzed regarding the auditory brain stem response, the middle latency response (MLR and the MMN. Rare stimuli with a lower intensity level than standard stimuli elicited (in addition to an MMN a more negative potential in the MLR at the transition from the Na to the Pa component at circa 24 ms from stimulus onset. This finding, together with the studies about frequency and location changes, suggests that the early automatic detection of deviant sounds in an oddball paradigm is a general property of the auditory system.

  13. Estudo das latências e amplitudes dos potenciais evocados auditivos de média latência em indivíduos audiologicamente normais Middle latency response study of auditory evoked potentials’ amplitudes and lantencies audiologically normal individuals

    Directory of Open Access Journals (Sweden)

    Ivone Ferreira Neves

    2007-02-01

    Full Text Available Estudo de coorte contemporânea com corte transversal. O Potencial Evocado Auditivo de Média Latência (PEAML é gerado entre 10 e 80ms e possui múltiplos geradores, com maior contribuição da região tálamo-cortical. O estabelecimento de critérios de normalidade para os valores de latência e amplitude é necessário para uso clínico. OBJETIVOS: Analisar a latência e amplitude do PEAML em indivíduos sem alterações audiológicas, e verificar a confiabilidade da amplitude Pa-Nb. MATERIAL E MÉTODO: Foram coletados os PEAML de 25 indivíduos durante o ano de 2005 e analisados os componentes Na, Pa, Nb para cada orelha testada (A1 e A2, e posicionamento de eletrodo (C3 e C4. RESULTADOS: Observou-se diferença estatisticamente significante entre os valores médios de latência para C3A1 e C4A1 com relação aos componentes Na e Pa, não sendo encontrada esta diferença para o componente Nb e valores médios das amplitudes Na-Pa e Pa-Nb. CONCLUSÃO: Foram estabelecidos os valores das médias e desvios padrão para os parâmetros latência e amplitude dos componentes Na, Pa, Nb, e Na-Pa e Pa-Nb, nas condições C3A1, C4A1, C3A2, C4A2, proporcionando os parâmetros para a análise e interpretação deste potencial.Contemporary cohort cross-sectional study. Introduction: The auditory middle latency response (AMLR is generated between 10 and 80 ms and has multiple generators, with a greater contribution from the thalamus-cortical pathways. The establishment of normality criteria for latency and amplitude values is necessary for clinical use. AIM: to analyze the latency and amplitude of the AMLR in individuals without audiological disorders, and verify the reliability of Pa-Nb amplitude. MATERIALS AND METHODS: The AMLR of 25 individuals was collected during 2005 and the Na, Pa, Nb components were analyzed for each tested ear (A1 and A2, and electrode positioning (C3 and C4. RESULTS: A statistically significant difference was noticed among middle

  14. Music evokes vicarious emotions in listeners.

    Science.gov (United States)

    Kawakami, Ai; Furukawa, Kiyoshi; Okanoya, Kazuo

    2014-01-01

    Why do we listen to sad music? We seek to answer this question using a psychological approach. It is possible to distinguish perceived emotions from those that are experienced. Therefore, we hypothesized that, although sad music is perceived as sad, listeners actually feel (experience) pleasant emotions concurrent with sadness. This hypothesis was supported, which led us to question whether sadness in the context of art is truly an unpleasant emotion. While experiencing sadness may be unpleasant, it may also be somewhat pleasant when experienced in the context of art, for example, when listening to sad music. We consider musically evoked emotion vicarious, as we are not threatened when we experience it, in the way that we can be during the course of experiencing emotion in daily life. When we listen to sad music, we experience vicarious sadness. In this review, we propose two sides to sadness by suggesting vicarious emotion.

  15. Limb venous distension evokes sympathetic activation via stimulation of the limb afferents in humans

    Science.gov (United States)

    Cui, Jian; McQuillan, Patrick M.; Blaha, Cheryl; Kunselman, Allen R.

    2012-01-01

    We have recently shown that a saline infusion in the veins of an arterially occluded human forearm evokes a systemic response with increases in muscle sympathetic nerve activity (MSNA) and blood pressure. In this report, we examined whether this response was a reflex that was due to venous distension. Blood pressure (Finometer), heart rate, and MSNA (microneurography) were assessed in 14 young healthy subjects. In the saline trial (n = 14), 5% forearm volume normal saline was infused in an arterially occluded arm. To block afferents in the limb, 90 mg of lidocaine were added to the same volume of saline in six subjects during a separate visit. To examine whether interstitial perfusion of normal saline alone induced the responses, the same volume of albumin solution (5% concentration) was infused in 11 subjects in separate studies. Lidocaine abolished the MSNA and blood pressure responses seen with saline infusion. Moreover, compared with the saline infusion, an albumin infusion induced a larger (MSNA: Δ14.3 ± 2.7 vs. Δ8.5 ± 1.3 bursts/min, P blood pressure responses. These data suggest that venous distension activates afferent nerves and evokes a powerful systemic sympathoexcitatory reflex. We posit that the venous distension plays an important role in evoking the autonomic adjustments seen with postural stress in human subjects. PMID:22707559

  16. Thermoreceptive innervation of human glabrous and hairy skin: a contact heat evoked potential analysis.

    Science.gov (United States)

    Granovsky, Yelena; Matre, Dagfinn; Sokolik, Alexander; Lorenz, Jürgen; Casey, Kenneth L

    2005-06-01

    The human palm has a lower heat detection threshold and a higher heat pain threshold than hairy skin. Neurophysiological studies of monkeys suggest that glabrous skin has fewer low threshold heat nociceptors (AMH type 2) than hairy skin. Accordingly, we used a temperature-controlled contact heat evoked potential (CHEP) stimulator to excite selectively heat receptors with C fibers or Adelta-innervated AMH type 2 receptors in humans. On the dorsal hand, 51 degrees C stimulation produced painful pinprick sensations and 41 degrees C stimuli evoked warmth. On the glabrous thenar, 41 degrees C stimulation produced mild warmth and 51 degrees C evoked strong but painless heat sensations. We used CHEP responses to estimate the conduction velocities (CV) of peripheral fibers mediating these sensations. On hairy skin, 41 degrees C stimuli evoked an ultra-late potential (mean, SD; N wave latency: 455 (118) ms) mediated by C fibers (CV by regression analysis: 1.28 m/s, N=15) whereas 51 degrees C stimuli evoked a late potential (N latency: 267 (33) ms) mediated by Adelta afferents (CV by within-subject analysis: 12.9 m/s, N=6). In contrast, thenar responses to 41 and 51 degrees C were mediated by C fibers (average N wave latencies 485 (100) and 433 (73) ms, respectively; CVs 0.95-1.35 m/s by regression analysis, N=15; average CV=1.7 (0.41) m/s calculated from distal glabrous and proximal hairy skin stimulation, N=6). The exploratory range of the human and monkey palm is enhanced by the abundance of low threshold, C-innervated heat receptors and the paucity of low threshold AMH type 2 heat nociceptors.

  17. Effect of caffeine on vestibular evoked myogenic potential: a systematic review with meta-analysis.

    Science.gov (United States)

    Souza, Maria Eduarda Di Cavalcanti Alves de; Costa, Klinger Vagner Teixeira da; Menezes, Pedro de Lemos

    2017-12-24

    Caffeine can be considered the most consumed drug by adults worldwide, and can be found in several foods, such as chocolate, coffee, tea, soda and others. Overall, caffeine in moderate doses, results in increased physical and intellectual productivity, increases the capacity of concentration and reduces the time of reaction to sensory stimuli. On the other hand, high doses can cause noticeable signs of mental confusion and error induction in intellectual tasks, anxiety, restlessness, muscle tremors, tachycardia, labyrinthine changes, and tinnitus. Considering that the vestibular evoked myogenic potential is a clinical test that evaluates the muscular response of high intensity auditory stimulation, the present systematic review aimed to analyze the effects of caffeine on vestibular evoked myogenic potential. This study consisted of the search of the following databases: MEDLINE, CENTRAL, ScienceDirect, Scopus, Web of Science, LILACS, SciELO and ClinicalTrials.gov. Additionally, the gray literature was also searched. The search strategy included terms related to intervention (caffeine or coffee consumption) and the primary outcome (vestibular evoked myogenic potential). Based on the 253 potentially relevant articles identified through the database search, only two full-text publications were retrieved for further evaluation, which were maintained for qualitative analysis. Analyzing the articles found, caffeine has no effect on vestibular evoked myogenic potential in normal individuals. Copyright © 2017 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  18. Feasibility and performance evaluation of generating and recording visual evoked potentials using ambulatory Bluetooth based system.

    Science.gov (United States)

    Ellingson, Roger M; Oken, Barry

    2010-01-01

    Report contains the design overview and key performance measurements demonstrating the feasibility of generating and recording ambulatory visual stimulus evoked potentials using the previously reported custom Complementary and Alternative Medicine physiologic data collection and monitoring system, CAMAS. The methods used to generate visual stimuli on a PDA device and the design of an optical coupling device to convert the display to an electrical waveform which is recorded by the CAMAS base unit are presented. The optical sensor signal, synchronized to the visual stimulus emulates the brain's synchronized EEG signal input to CAMAS normally reviewed for the evoked potential response. Most importantly, the PDA also sends a marker message over the wireless Bluetooth connection to the CAMAS base unit synchronized to the visual stimulus which is the critical averaging reference component to obtain VEP results. Results show the variance in the latency of the wireless marker messaging link is consistent enough to support the generation and recording of visual evoked potentials. The averaged sensor waveforms at multiple CPU speeds are presented and demonstrate suitability of the Bluetooth interface for portable ambulatory visual evoked potential implementation on our CAMAS platform.

  19. [Audiometry in the cellulose industry].

    Science.gov (United States)

    Corrao, C R; Milano, L; Pedulla, P; Carlesi, G; Bacaloni, A; Monaco, E

    1993-01-01

    A noise level dosimetry and audiometric testing were conducted in a cellulose factory to determine the hazardous noise level and the prevalence of noise induced hearing loss among the exposed workers. The noise level was recorded up to 90 db (A) in several working areas. 18 workers, potentially exposed to noise injury, evidenced a significant hearing loss. While no evidence of noise injury was recorded in a control group of 100 subjects. This finding suggest a strict relationship between audiometric tests, the noise level recorded in the working place and the working seniority of exposed employers.

  20. Effects of insomnia disorder and knee osteoarthritis on resting and pain-evoked inflammatory markers.

    Science.gov (United States)

    Quartana, Phillip J; Finan, Patrick H; Page, Gayle G; Smith, Michael T

    2015-07-01

    Osteoarthritis is the most prevalent arthritic condition. Systemic inflammatory cytokines appear to have an important role in the onset and maintenance of the disease. Sleep disturbances are prevalent in osteoarthritis and associated with alterations in systemic inflammatory cytokines, suggesting a common pathophysiology across these conditions. A comparative investigation of the effects of insomnia disorder and osteoarthritis on pain-evoked cytokine responses has yet to be undertaken. We examined the influence of symptomatic knee osteoarthritis and insomnia disorder on resting C-reactive protein (CRP), interleukin (IL)-6, and IL-10 levels, and pain-evoked IL-6 and IL-10 responses. Participants were N=117 older adults (mean age=59.7years; 61.8% women) rigorously evaluated for knee osteoarthritis and insomnia disorder using established diagnostic guidelines. Results revealed no association of osteoarthritis or insomnia disorder with CRP. Resting IL-6 was greater in osteoarthritis participants versus those without osteoarthritis, although this association was largely attributable to BMI. IL-10 was highest among participants with osteoarthritis or insomnia disorder. Growth curve modeling revealed that participants with insomnia disorder had greater pain-evoked IL-6 responses than participants without insomnia disorder or osteoarthritis. These findings highlight the utility of laboratory pain testing methods for understanding individual differences in inflammatory cytokines. Moreover, our findings provide evidence for amplified pain-evoked pro-inflammatory cytokine reactivity among older adults with clinically diagnosed insomnia disorder, even after controlling for individual differences in BMI and age. Additional research will be required determine whether an amplified pain-related cytokine response contributes to OA, and possibly other age-related disease, associated with insomnia disorder. Published by Elsevier Inc.

  1. Membrane permeable C-terminal dopamine transporter peptides attenuate amphetamine-evoked dopamine release

    DEFF Research Database (Denmark)

    Rickhag, Karl Mattias; Owens, WA; Winkler, Marie-Therese

    2013-01-01

    The dopamine transporter (DAT) is responsible for sequestration of extracellular dopamine (DA). The psychostimulant amphetamine (AMPH) is a DAT substrate, which is actively transported into the nerve terminal, eliciting vesicular depletion and reversal of DA transport via DAT. Here, we investigate......-terminal protein-protein interactions are critical for AMPH-evoked DA efflux and suggest that it may be possible to target protein-protein interactions to modulate transporter function and interfere with psychostimulant effects....

  2. Modeling the Developmental Patterns of Auditory Evoked Magnetic Fields in Children

    OpenAIRE

    Kotecha, Rupesh; Pardos, Maria; Wang, Yingying; Wu, Ting; Horn, Paul; Brown, David; Rose, Douglas; deGrauw, Ton; Xiang, Jing

    2009-01-01

    BACKGROUND: As magnetoencephalography (MEG) is of increasing utility in the assessment of deficits and development delays in brain disorders in pediatrics, it becomes imperative to fully understand the functional development of the brain in children. METHODOLOGY: The present study was designed to characterize the developmental patterns of auditory evoked magnetic responses with respect to age and gender. Sixty children and twenty adults were studied with a 275-channel MEG system. CONCLUSIONS:...

  3. Changes of Transient Visual Evoked Potentials in Dyslexic Children

    Directory of Open Access Journals (Sweden)

    Ka Yan Leung

    2011-05-01

    Full Text Available Objectives: To investigate the characteristics of Visual Evoked Potentials (VEP in dyslexics. Methods: Fourteen children, 7 dyslexics and 7 control, aged 7 to 8 years were recruited. All dyslexic subjects were diagnosed by clinical psychologist. All subjects are from mainstream primary schools in Hong Kong, using Chinese and Cantonese as their primary written and spoken language, having normal visual acuity and IQ. Children with reported emotional or behavioral problems or binocular vision problem were excluded. All the subjects participated in pattern-reversal VEP measurements binocularly with 1000msec recording time. Four conditions of stimulations (checkersize: 180 min of arc were applied. (15-Hz at 15% contrast (25-Hz at 1% contrast (315-Hz at 15% contrast (415-Hz at 1% contrast Results: At 15% contrast stimulus, dyslexic subjects showed smaller amplitudes in both frequencies compared with the control group, especially in higher frequency. At 1% contrast stimulus, dyslexic subjects also showed smaller amplitudes in both frequencies and obvious reduction was observed at the later part of the recording period. No observable difference was showed in the latency of both contrast conditions. Conclusion: The attenuated VEP responses in higher frequency at low contrast condition in dyslexic group showed the changes of the transient visual response and this implies an abnormality in magnocellular pathway in dyslexia.

  4. Vestibular-Evoked Myogenic Potentials in Bilateral Vestibulopathy

    Directory of Open Access Journals (Sweden)

    Sally M. Rosengren

    2018-04-01

    Full Text Available Bilateral vestibulopathy (BVP is a chronic condition in which patients have a reduction or absence of vestibular function in both ears. BVP is characterized by bilateral reduction of horizontal canal responses; however, there is increasing evidence that otolith function can also be affected. Cervical and ocular vestibular-evoked myogenic potentials (cVEMPs/oVEMPs are relatively new tests of otolith function that can be used to test the saccule and utricle of both ears independently. Studies to date show that cVEMPs and oVEMPs are often small or absent in BVP but are in the normal range in a significant proportion of patients. The variability in otolith function is partly due to the heterogeneous nature of BVP but is also due to false negative and positive responses that occur because of the large range of normal VEMP amplitudes. Due to their variability, VEMPs are not part of the diagnosis of BVP; however, they are helpful complementary tests that can provide information about the extent of disease within the labyrinth. This article is a review of the use of VEMPs in BVP, summarizing the available data on VEMP abnormalities in patients and discussing the limitations of VEMPs in diagnosing bilateral loss of otolith function.

  5. Effect of practicing yoga on cervical vestibular evoked myogenic potential.

    Science.gov (United States)

    Shambhu, Tejaswini; Kumar, Shubhaganga Dhrruva; Prabhu, Prashanth

    2017-10-01

    The present study attempted to determine the effect of practicing yoga on functioning of sacculo-collic pathway using cervical vestibular evoked myogenic potential (cVEMP). cVEMP was recorded from 40 participants (20 who practice yoga regularly and 20 who do not practice yoga regularly). The differences in amplitude of P1, N1, P1-N1 complex, asymmetry ratio and latencies of P1 and N1 of cVEMP were compared between both the groups. The results of the study showed that there was a significant increase (p yoga was significantly lower (Mean = 6.73) compared to the control group (Mean = 19.13). Multivariate regression analyses suggested that the number of years of yoga practice significantly predicted the amplitude of P1-N1 complex (β = 0.70, p yoga improves postural control and strengthens the muscles and vestibular system leading to enhanced cVEMP responses. The plastic changes in the vestibular system and increased muscular strength because of constant practicing of yoga could have led to changes in cVEMP responses. However, further studies on a larger group of individuals are essential for better clinical applicability of the results.

  6. Visually Evoked Spiking Evolves While Spontaneous Ongoing Dynamics Persist

    Science.gov (United States)

    Huys, Raoul; Jirsa, Viktor K.; Darokhan, Ziauddin; Valentiniene, Sonata; Roland, Per E.

    2016-01-01

    Neurons in the primary visual cortex spontaneously spike even when there are no visual stimuli. It is unknown whether the spiking evoked by visual stimuli is just a modification of the spontaneous ongoing cortical spiking dynamics or whether the spontaneous spiking state disappears and is replaced by evoked spiking. This study of laminar recordings of spontaneous spiking and visually evoked spiking of neurons in the ferret primary visual cortex shows that the spiking dynamics does not change: the spontaneous spiking as well as evoked spiking is controlled by a stable and persisting fixed point attractor. Its existence guarantees that evoked spiking return to the spontaneous state. However, the spontaneous ongoing spiking state and the visual evoked spiking states are qualitatively different and are separated by a threshold (separatrix). The functional advantage of this organization is that it avoids the need for a system reorganization following visual stimulation, and impedes the transition of spontaneous spiking to evoked spiking and the propagation of spontaneous spiking from layer 4 to layers 2–3. PMID:26778982

  7. Auditory evoked potential measurements in elasmobranchs

    Science.gov (United States)

    Casper, Brandon; Mann, David

    2005-04-01

    Auditory evoked potentials (AEP) were first used to examine hearing in elasmobranchs by Corwin and Bullock in the late 1970s and early 1980s, marking the first time AEPs had been measured in fishes. Results of these experiments identified the regions of the ear and brain in which sound is processed, though no actual hearing thresholds were measured. Those initial experiments provided the ground work for future AEP experiments to measure fish hearing abilities in a manner that is much faster and more convenient than classical conditioning. Data will be presented on recent experiments in which AEPs were used to measure the hearing thresholds of two species of elasmobranchs: the nurse shark, Ginglymostoma cirratum, and the yellow stingray, Urobatis jamaicencis. Audiograms were analyzed and compared to previously published audiograms obtained using classical conditioning with results indicating that hearing thresholds were similar for the two methods. These data suggest that AEP testing is a viable option when measuring hearing in elasmobranchs and can increase the speed in which future hearing measurements can be obtained.

  8. Deconvolution of the vestibular evoked myogenic potential.

    Science.gov (United States)

    Lütkenhöner, Bernd; Basel, Türker

    2012-02-07

    The vestibular evoked myogenic potential (VEMP) and the associated variance modulation can be understood by a convolution model. Two functions of time are incorporated into the model: the motor unit action potential (MUAP) of an average motor unit, and the temporal modulation of the MUAP rate of all contributing motor units, briefly called rate modulation. The latter is the function of interest, whereas the MUAP acts as a filter that distorts the information contained in the measured data. Here, it is shown how to recover the rate modulation by undoing the filtering using a deconvolution approach. The key aspects of our deconvolution algorithm are as follows: (1) the rate modulation is described in terms of just a few parameters; (2) the MUAP is calculated by Wiener deconvolution of the VEMP with the rate modulation; (3) the model parameters are optimized using a figure-of-merit function where the most important term quantifies the difference between measured and model-predicted variance modulation. The effectiveness of the algorithm is demonstrated with simulated data. An analysis of real data confirms the view that there are basically two components, which roughly correspond to the waves p13-n23 and n34-p44 of the VEMP. The rate modulation corresponding to the first, inhibitory component is much stronger than that corresponding to the second, excitatory component. But the latter is more extended so that the two modulations have almost the same equivalent rectangular duration. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Surface electrical stimulation to evoke referred sensation.

    Science.gov (United States)

    Forst, Johanna C; Blok, Derek C; Slopsema, Julia P; Boss, John M; Heyboer, Lane A; Tobias, Carson M; Polasek, Katharine H

    2015-01-01

    Surface electrical stimulation (SES) is being investigated as a noninvasive method to evoke natural sensations distal to electrode location. This may improve treatment for phantom limb pain as well as provide an alternative method to deliver sensory feedback. The median and/or ulnar nerves of 35 subjects were stimulated at the elbow using surface electrodes. Strength-duration curves of hand sensation were found for each subject. All subjects experienced sensation in their hand, which was mostly described as a paresthesia-like sensation. The rheobase and chronaxie values were found to be lower for the median nerve than the ulnar nerve, with no significant difference between sexes. Repeated sessions with the same subject resulted in sufficient variability to suggest that recalculating the strength-duration curve for each electrode placement is necessary. Most of the recruitment curves in this study were generated with 28 to 36 data points. To quickly reproduce these curves with limited increase in error, we recommend 10 data points. Future studies will focus on obtaining different sensations using SES with the strength-duration curve defining the threshold of the effective parameter space.

  10. Torque decrease during submaximal evoked contractions of the quadriceps muscle is linked not only to muscle fatigue.

    Science.gov (United States)

    Matkowski, Boris; Lepers, Romuald; Martin, Alain

    2015-05-01

    The aim of this study was to analyze the neuromuscular mechanisms involved in the torque decrease induced by submaximal electromyostimulation (EMS) of the quadriceps muscle. It was hypothesized that torque decrease after EMS would reflect the fatigability of the activated motor units (MUs), but also a reduction in the number of MUs recruited as a result of changes in axonal excitability threshold. Two experiments were performed on 20 men to analyze 1) the supramaximal twitch superimposed and evoked at rest during EMS (Experiment 1, n = 9) and 2) the twitch response and torque-frequency relation of the MUs activated by EMS (Experiment 2, n = 11). Torque loss was assessed by 15 EMS-evoked contractions (50 Hz; 6 s on/6 s off), elicited at a constant intensity that evoked 20% of the maximal voluntary contraction (MVC) torque. The same stimulation intensity delivered over the muscles was used to induce the torque-frequency relation and the single electrical pulse evoked after each EMS contraction (Experiment 2). In Experiment 1, supramaximal twitch was induced by femoral nerve stimulation. Torque decreased by ~60% during EMS-evoked contractions and by only ~18% during MVCs. This was accompanied by a rightward shift of the torque-frequency relation of MUs activated and an increase of the ratio between the superimposed and posttetanic maximal twitch evoked during EMS contraction. These findings suggest that the torque decrease observed during submaximal EMS-evoked contractions involved muscular mechanisms but also a reduction in the number of MUs recruited due to changes in axonal excitability. Copyright © 2015 the American Physiological Society.

  11. Task-evoked brain functional magnetic susceptibility mapping by independent component analysis (χICA).

    Science.gov (United States)

    Chen, Zikuan; Calhoun, Vince D

    2016-03-01

    Conventionally, independent component analysis (ICA) is performed on an fMRI magnitude dataset to analyze brain functional mapping (AICA). By solving the inverse problem of fMRI, we can reconstruct the brain magnetic susceptibility (χ) functional states. Upon the reconstructed χ dataspace, we propose an ICA-based brain functional χ mapping method (χICA) to extract task-evoked brain functional map. A complex division algorithm is applied to a timeseries of fMRI phase images to extract temporal phase changes (relative to an OFF-state snapshot). A computed inverse MRI (CIMRI) model is used to reconstruct a 4D brain χ response dataset. χICA is implemented by applying a spatial InfoMax ICA algorithm to the reconstructed 4D χ dataspace. With finger-tapping experiments on a 7T system, the χICA-extracted χ-depicted functional map is similar to the SPM-inferred functional χ map by a spatial correlation of 0.67 ± 0.05. In comparison, the AICA-extracted magnitude-depicted map is correlated with the SPM magnitude map by 0.81 ± 0.05. The understanding of the inferiority of χICA to AICA for task-evoked functional map is an ongoing research topic. For task-evoked brain functional mapping, we compare the data-driven ICA method with the task-correlated SPM method. In particular, we compare χICA with AICA for extracting task-correlated timecourses and functional maps. χICA can extract a χ-depicted task-evoked brain functional map from a reconstructed χ dataspace without the knowledge about brain hemodynamic responses. The χICA-extracted brain functional χ map reveals a bidirectional BOLD response pattern that is unavailable (or different) from AICA. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. [Maturation of cerebral somatosensory evoked potentials].

    Science.gov (United States)

    Cadilhac, J; Zhu, Y; Georgesco, M; Echenne, B; Rodiere, M

    1985-07-01

    Cerebral somatosensory evoked potentials (SEPs) were elicited by stimulation of the median nerve and/or posterior tibial nerve in 117 children of 1 day to 16 years old. A major negative wave (N) was consistently recorded from the parietal region of the scalp when the arm was stimulated. The peak latency, the onset latency, the rising time and the duration of H wave are closely correlated with age and body length. The latencies are shortest in the subjects of 1-3 years old. SEPs to lower extremity stimulation were inconstant in the infants before the age of one. The major positive wave (P) has a variable topographic distribution along the middle line, over the scalp. The latencies are also very variable in the different subjects of the same age as well as in the same subject with different locations of active electrode. Among the parameters studied as for N wave, only the rising time of P wave is significantly correlated with age. The latencies of P wave have the shortest value in the subjects of 1-3 years old. The comparison of SEPs to upper and to lower limb stimulations shows that there is no relationship between them in respect to their morphology and amplitude. The minimum value of the latencies of N and P waves was observed at the same age but the difference between the peak latencies of P and N waves in the same subject increases considerably after 2 years of age and reaches the adult value after 5 years of age. These resultats indicate that the maturation of the peripheral somatosensory pathways proceeds at a higher rate than that of the central somatosensory pathways, that the maturation of the somatosensory pathways of the upper limb precedes that of the lower limb, and that the rising time of N or P waves is a good index of cortical maturation. The clinical utility of these SEPs in pediatrics is discussed.

  13. Pudendal somatosensory evoked potentials in normal women

    Directory of Open Access Journals (Sweden)

    Geraldo A. Cavalcanti

    2007-12-01

    Full Text Available OBJECTIVE: Somatosensory evoked potential (SSEP is an electrophysiological test used to evaluate sensory innervations in peripheral and central neuropathies. Pudendal SSEP has been studied in dysfunctions related to the lower urinary tract and pelvic floor. Although some authors have already described technical details pertaining to the method, the standardization and the influence of physiological variables in normative values have not yet been established, especially for women. The aim of the study was to describe normal values of the pudendal SSEP and to compare technical details with those described by other authors. MATERIALS AND METHODS: The clitoral sensory threshold and pudendal SSEP latency was accomplished in 38 normal volunteers. The results obtained from stimulation performed on each side of the clitoris were compared to ages, body mass index (BMI and number of pregnancies. RESULTS: The values of clitoral sensory threshold and P1 latency with clitoral left stimulation were respectively, 3.64 ± 1.01 mA and 37.68 ± 2.60 ms. Results obtained with clitoral right stimulation were 3.84 ± 1.53 mA and 37.42 ± 3.12 ms, respectively. There were no correlations between clitoral sensory threshold and P1 latency with age, BMI or height of the volunteers. A significant difference was found in P1 latency between nulliparous women and volunteers who had been previously submitted to cesarean section. CONCLUSIONS: The SSEP latency represents an accessible and reproducible method to investigate the afferent pathways from the genitourinary tract. These results could be used as normative values in studies involving genitourinary neuropathies in order to better clarify voiding and sexual dysfunctions in females.

  14. Effect of hearing aids use on speech stimulus decoding through speech-evoked ABR

    Directory of Open Access Journals (Sweden)

    Renata Aparecida Leite

    Full Text Available Abstract Introduction The electrophysiological responses obtained with the complex auditory brainstem response (cABR provide objective measures of subcortical processing of speech and other complex stimuli. The cABR has also been used to verify the plasticity in the auditory pathway in the subcortical regions. Objective To compare the results of cABR obtained in children using hearing aids before and after 9 months of adaptation, as well as to compare the results of these children with those obtained in children with normal hearing. Methods Fourteen children with normal hearing (Control Group - CG and 18 children with mild to moderate bilateral sensorineural hearing loss (Study Group - SG, aged 7-12 years, were evaluated. The children were submitted to pure tone and vocal audiometry, acoustic immittance measurements and ABR with speech stimulus, being submitted to the evaluations at three different moments: initial evaluation (M0, 3 months after the initial evaluation (M3 and 9 months after the evaluation (M9; at M0, the children assessed in the study group did not use hearing aids yet. Results When comparing the CG and the SG, it was observed that the SG had a lower median for the V-A amplitude at M0 and M3, lower median for the latency of the component V at M9 and a higher median for the latency of component O at M3 and M9. A reduction in the latency of component A at M9 was observed in the SG. Conclusion Children with mild to moderate hearing loss showed speech stimulus processing deficits and the main impairment is related to the decoding of the transient portion of this stimulus spectrum. It was demonstrated that the use of hearing aids promoted neuronal plasticity of the Central Auditory Nervous System after an extended time of sensory stimulation.

  15. Brainstem Auditory Evoked Potential in HIV-Positive Adults.

    Science.gov (United States)

    Matas, Carla Gentile; Samelli, Alessandra Giannella; Angrisani, Rosanna Giaffredo; Magliaro, Fernanda Cristina Leite; Segurado, Aluísio C

    2015-10-20

    To characterize the findings of brainstem auditory evoked potential in HIV-positive individuals exposed and not exposed to antiretroviral treatment. This research was a cross-sectional, observational, and descriptive study. Forty-five HIV-positive individuals (18 not exposed and 27 exposed to the antiretroviral treatment - research groups I and II, respectively - and 30 control group individuals) were assessed through brainstem auditory evoked potential. There were no significant between-group differences regarding wave latencies. A higher percentage of altered brainstem auditory evoked potential was observed in the HIV-positive groups when compared to the control group. The most common alteration was in the low brainstem. HIV-positive individuals have a higher percentage of altered brainstem auditory evoked potential that suggests central auditory pathway impairment when compared to HIV-negative individuals. There was no significant difference between individuals exposed and not exposed to antiretroviral treatment.

  16. Can visual evoked potentials be used in biometric identification?

    Science.gov (United States)

    Power, Alan J; Lalor, Edmund C; Reilly, Richard B

    2006-01-01

    Due to known differences in the anatomical structure of the visual pathways and generators in different individuals, the use of visual evoked potentials offers the possibility of an alternative to existing biometrics methods. A study based on visual evoked potentials from 13 individuals was carried out to assess the best combination of temporal, spectral and AR modeling features to realize a robust biometric. From the results it can be concluded that visual evoked potentials show considerable biometric qualities, with classification accuracies reaching a high of 86.54% and that a specific temporal and spectral combination was found to be optimal. Based on these results the visual evoked potential may be a useful tool in biometric identification when used in conjunction with more established biometric methods.

  17. Methodologic aspects of acetylcholine-evoked relaxation of rabbit aorta

    DEFF Research Database (Denmark)

    Larsen, Kirsten Vendelbo; Nedergaard, Ove A.

    1999-01-01

    The acetylcholine-evoked relaxation of rabbit isolated thoracic aorta precontracted by phenylephrine was studied. Phenylephrine caused a steady contraction that was maintained for 6 h. In the presence of calcium disodium ethylenediaminetetraacetate (EDTA) and ascorbic acid the contraction decreased...

  18. Towards a neural basis of music-evoked emotions.

    Science.gov (United States)

    Koelsch, Stefan

    2010-03-01

    Music is capable of evoking exceptionally strong emotions and of reliably affecting the mood of individuals. Functional neuroimaging and lesion studies show that music-evoked emotions can modulate activity in virtually all limbic and paralimbic brain structures. These structures are crucially involved in the initiation, generation, detection, maintenance, regulation and termination of emotions that have survival value for the individual and the species. Therefore, at least some music-evoked emotions involve the very core of evolutionarily adaptive neuroaffective mechanisms. Because dysfunctions in these structures are related to emotional disorders, a better understanding of music-evoked emotions and their neural correlates can lead to a more systematic and effective use of music in therapy. Copyright 2010 Elsevier Ltd. All rights reserved.

  19. A Study of Relationship between the Acoustic Sensitivity of Vestibular System and the Ability to Trigger Sound-Evoked Muscle Reflex of the Middle Ear in Adults with Normal Hearing

    Directory of Open Access Journals (Sweden)

    S.F. Emami

    2014-07-01

    Full Text Available Introduction & Objective: The vestibular system is sound sensitive and the sensitivity is related to the saccule. The vestibular afferents are projected to the middle ear muscles (such as the stapedius. The goal of this research was studying the relationship between the vestibular hearing and the sound-evoked muscle reflex of the middle ear to 500 HZ. Materials & Methods: This study was a cross sectional-comparison done in audiology department of Sheikholreis C‍‍linic (Hamadan, Iran. The study groups consisted of thirty healthy people and thirty patients with benign paroxysmal positional vertigo. Inclusion criteria of the present study were to have normal hearing on pure tone audiometry, acoustic reflex, and speech discrimination scores. Based on ipsilateral acoustic reflex test at 500HZ, they were divided to normal and abnormal groups. Then they were evaluated by cervical vestibular evoked myogenic potentials (cVEMPs and finally classified in three groups (N Normal ear , (CVUA Contra lateral vertiginous ear with unaffected saccular sensitivity to sound,(IVA Ipsilateral vertiginous ear with affected saccular sensitivity to sound. Results: Thirty affected ears (IVA with decreased vestibular excitability as detected by ab-normal cVEMPs, revealed abnormal findings of acoustic reflex at 500HZ. Whereas, both un-affected (CVUA and normal ears (N had normal results. Multiple comparisons of mean values of cVEMPs (p13,n23 and acoustic reflex at500HZ among the three groups were sig-nificant. The correlation between acoustic reflex at 500HZ and p13 latencies was significant. The n23 latencies showed significant correlation with acoustic reflex at 500HZ. Conclusion: The vestibular sensitivity to sound retains the ability to trigger sound-evoked re-flex of the middle ear at 500 HZ. (Sci J Hamadan Univ Med Sci 2014; 21 (2:99-104

  20. Sensory-Evoked Intrinsic Imaging Signals in the Olfactory Bulb Are Independent of Neurovascular Coupling

    Directory of Open Access Journals (Sweden)

    Roberto Vincis

    2015-07-01

    Full Text Available Functional brain-imaging techniques used in humans and animals, such as functional MRI and intrinsic optical signal (IOS imaging, are thought to largely rely on neurovascular coupling and hemodynamic responses. Here, taking advantage of the well-described micro-architecture of the mouse olfactory bulb, we dissected the nature of odor-evoked IOSs. Using in vivo pharmacology in transgenic mouse lines reporting activity in different cell types, we show that parenchymal IOSs are largely independent of neurotransmitter release and neurovascular coupling. Furthermore, our results suggest that odor-evoked parenchymal IOSs originate from changes in light scattering of olfactory sensory neuron axons, mostly due to water movement following action potential propagation. Our study sheds light on a direct correlate of neuronal activity, which may be used for large-scale functional brain imaging.

  1. Early event related fields during visually evoked pain anticipation.

    Science.gov (United States)

    Gopalakrishnan, Raghavan; Burgess, Richard C; Plow, Ela B; Floden, Darlene P; Machado, Andre G

    2016-03-01

    Pain experience is not only a function of somatosensory inputs. Rather, it is strongly influenced by cognitive and affective pathways. Pain anticipatory phenomena, an important limitation to rehabilitative efforts in the chronic state, are processed by associative and limbic networks, along with primary sensory cortices. Characterization of neurophysiological correlates of pain anticipation, particularly during very early stages of neural processing is critical for development of therapeutic interventions. Here, we utilized magnetoencephalography to study early event-related fields (ERFs) in healthy subjects exposed to a 3 s visual countdown task that preceded a painful stimulus, a non-painful stimulus or no stimulus. We found that the first countdown cue, but not the last cue, evoked critical ERFs signaling anticipation, attention and alertness to the noxious stimuli. Further, we found that P2 and N2 components were significantly different in response to first-cues that signaled incoming painful stimuli when compared to non-painful or no stimuli. The findings indicate that early ERFs are relevant neural substrates of pain anticipatory phenomena and could be potentially serve as biomarkers. These measures could assist in the development of neurostimulation approaches aimed at curbing the negative effects of pain anticipation during rehabilitation. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  2. Mapping human brain networks with cortico-cortical evoked potentials

    Science.gov (United States)

    Keller, Corey J.; Honey, Christopher J.; Mégevand, Pierre; Entz, Laszlo; Ulbert, Istvan; Mehta, Ashesh D.

    2014-01-01

    The cerebral cortex forms a sheet of neurons organized into a network of interconnected modules that is highly expanded in humans and presumably enables our most refined sensory and cognitive abilities. The links of this network form a fundamental aspect of its organization, and a great deal of research is focusing on understanding how information flows within and between different regions. However, an often-overlooked element of this connectivity regards a causal, hierarchical structure of regions, whereby certain nodes of the cortical network may exert greater influence over the others. While this is difficult to ascertain non-invasively, patients undergoing invasive electrode monitoring for epilepsy provide a unique window into this aspect of cortical organization. In this review, we highlight the potential for cortico-cortical evoked potential (CCEP) mapping to directly measure neuronal propagation across large-scale brain networks with spatio-temporal resolution that is superior to traditional neuroimaging methods. We first introduce effective connectivity and discuss the mechanisms underlying CCEP generation. Next, we highlight how CCEP mapping has begun to provide insight into the neural basis of non-invasive imaging signals. Finally, we present a novel approach to perturbing and measuring brain network function during cognitive processing. The direct measurement of CCEPs in response to electrical stimulation represents a potentially powerful clinical and basic science tool for probing the large-scale networks of the human cerebral cortex. PMID:25180306

  3. Humor drawings evoked temporal and spectral EEG processes

    Science.gov (United States)

    Kuo, Hsien-Chu; Chuang, Shang-Wen

    2017-01-01

    Abstract The study aimed to explore the humor processing elicited through the manipulation of artistic drawings. Using the Comprehension–Elaboration Theory of humor as the main research background, the experiment manipulated the head portraits of celebrities based on the independent variables of facial deformation (large/small) and addition of affective features (positive/negative). A 64-channel electroencephalography was recorded in 30 participants while viewing the incongruous drawings of celebrities. The electroencephalography temporal and spectral responses were measured during the three stages of humor which included incongruity detection, incongruity comprehension and elaboration of humor. Analysis of event-related potentials indicated that for humorous vs non-humorous drawings, facial deformation and the addition of affective features significantly affected the degree of humor elicited, specifically: large > small deformation; negative > positive affective features. The N170, N270, N400, N600-800 and N900-1200 components showed significant differences, particularly in the right prefrontal and frontal regions. Analysis of event-related spectral perturbation showed significant differences in the theta band evoked in the anterior cingulate cortex, parietal region and posterior cingulate cortex; and in the alpha and beta bands in the motor areas. These regions are involved in emotional processing, memory retrieval, and laughter and feelings of amusement induced by elaboration of the situation. PMID:28402573

  4. Humor drawings evoked temporal and spectral EEG processes.

    Science.gov (United States)

    Wang, Regina W Y; Kuo, Hsien-Chu; Chuang, Shang-Wen

    2017-08-01

    The study aimed to explore the humor processing elicited through the manipulation of artistic drawings. Using the Comprehension-Elaboration Theory of humor as the main research background, the experiment manipulated the head portraits of celebrities based on the independent variables of facial deformation (large/small) and addition of affective features (positive/negative). A 64-channel electroencephalography was recorded in 30 participants while viewing the incongruous drawings of celebrities. The electroencephalography temporal and spectral responses were measured during the three stages of humor which included incongruity detection, incongruity comprehension and elaboration of humor. Analysis of event-related potentials indicated that for humorous vs non-humorous drawings, facial deformation and the addition of affective features significantly affected the degree of humor elicited, specifically: large > small deformation; negative > positive affective features. The N170, N270, N400, N600-800 and N900-1200 components showed significant differences, particularly in the right prefrontal and frontal regions. Analysis of event-related spectral perturbation showed significant differences in the theta band evoked in the anterior cingulate cortex, parietal region and posterior cingulate cortex; and in the alpha and beta bands in the motor areas. These regions are involved in emotional processing, memory retrieval, and laughter and feelings of amusement induced by elaboration of the situation. © The Author (2017). Published by Oxford University Press.

  5. A Telehealth System for Remote Auditory Evoked Potential Monitoring

    OpenAIRE

    Millan, Jorge; Yunda, Leonardo

    2013-01-01

    A portable, Internet-based EEG/Auditory Evoked Potential (AEP) monitoring system was developed for remote electrophysiological studies during sleep. The system records EEG/AEP simultaneously at the subject?s home for increased comfort and flexibility. The system provides simultaneous recording and remote viewing of EEG, EMG and EOG waves and allows on-line averaging of auditory evoked potentials. The design allows the recording of all major AEP components (brainstem, middle and late latency E...

  6. Contact Heat Evoked Potentials (CHEPs) in Patients with Mild-Moderate Alzheimer's Disease and Matched Control-A Pilot Study

    DEFF Research Database (Denmark)

    Jensen-Dahm, Christina; Madsen, Caspar Skau; Waldemar, Gunhild

    2016-01-01

    OBJECTIVE: Clinical studies have found that patients with Alzheimer's disease report pain of less intensity and with a lower affective response, which has been thought to be due to altered pain processing. The authors wished to examine the cerebral processing of non-painful and painful stimuli...... threshold and heat pain threshold. Somatosensory evoked potentials, amplitude, and latency were within normal range and similar for the two groups. CONCLUSIONS: The findings suggest that the processing of non-painful and painful stimuli is preserved in patients with mild to moderate Alzheimer's disease....... using somatosensory evoked potentials and contact heat evoked potentials in patients with Alzheimer's disease and in healthy elderly controls. DESIGN: Case-control study SETTING AND SUBJECTS: Twenty outpatients with mild-moderate Alzheimer's disease and in 17 age- and gender-matched healthy controls...

  7. Relationship between median nerve somatosensory evoked potentials and spinal cord injury levels in patients with quadriplegia.

    Science.gov (United States)

    de Arruda Serra Gaspar, M I F; Cliquet, A; Fernandes Lima, V M; de Abreu, D C C

    2009-05-01

    Cross-sectional study. To observe if there is a relationship between the level of injury by the American Spinal Cord Injury Association (ASIA) and cortical somatosensory evoked potential (SSEP) recordings of the median nerve in patients with quadriplegia. Rehabilitation Outpatient Clinic at the university hospital in Brazil. Fourteen individuals with quadriplegia and 8 healthy individuals were evaluated. Electrophysiological assessment of the median nerve was performed by evoked potential equipment. The injury level was obtained by ASIA. N(9), N(13) and N(20) were analyzed based on the presence or absence of responses. The parameters used for analyzing these responses were the latency and the amplitude. Data were analyzed using mixed-effect models. N(9) responses were found in all patients with quadriplegia with a similar latency and amplitude observed in healthy individuals; N(13) responses were not found in any patients with quadriplegia. N(20) responses were not found in C5 patients with quadriplegia but it was present in C6 and C7 patients. Their latencies were similar to healthy individuals (P>0.05) but the amplitudes were decreased (P<0.05). This study suggests that the SSEP responses depend on the injury level, considering that the individuals with C6 and C7 injury levels, both complete and incomplete, presented SSEP recordings in the cortical area. It also showed a relationship between the level of spinal cord injury assessed by ASIA and the median nerve SSEP responses, through the latency and amplitude recordings.

  8. Beyond the evoked/intrinsic neural process dichotomy

    Directory of Open Access Journals (Sweden)

    Taylor Bolt

    2018-03-01

    Full Text Available Contemporary functional neuroimaging research has increasingly focused on characterization of intrinsic or “spontaneous” brain activity. Analysis of intrinsic activity is often contrasted with analysis of task-evoked activity that has traditionally been the focus of cognitive neuroscience. But does this evoked/intrinsic dichotomy adequately characterize human brain function? Based on empirical data demonstrating a close functional interdependence between intrinsic and task-evoked activity, we argue that the dichotomy between intrinsic and task-evoked activity as unobserved contributions to brain activity is artificial. We present an alternative picture of brain function in which the brain’s spatiotemporal dynamics do not consist of separable intrinsic and task-evoked components, but reflect the enaction of a system of mutual constraints to move the brain into and out of task-appropriate functional configurations. According to this alternative picture, cognitive neuroscientists are tasked with describing both the temporal trajectory of brain activity patterns across time, and the modulation of this trajectory by task states, without separating this process into intrinsic and task-evoked components. We argue that this alternative picture of brain function is best captured in a novel explanatory framework called enabling constraint. Overall, these insights call for a reconceptualization of functional brain activity, and should drive future methodological and empirical efforts.

  9. Guanfacine potentiates the activation of prefrontal cortex evoked by warning signals.

    Science.gov (United States)

    Clerkin, Suzanne M; Schulz, Kurt P; Halperin, Jeffrey M; Newcorn, Jeffrey H; Ivanov, Iliyan; Tang, Cheuk Y; Fan, Jin

    2009-08-15

    Warning signals evoke an alert state of readiness that prepares for a rapid response by priming a thalamo-frontal-striatal network that includes the dorsolateral prefrontal cortex (DLPFC). Animal models indicate that noradrenergic input is essential for this stimulus-driven activation of DLPFC, but the precise mechanisms involved have not been determined. We tested the role that postsynaptic alpha(2A) adrenoceptors play in the activation of DLPFC evoked by warning cues using a placebo-controlled challenge with the alpha(2A) agonist guanfacine. Sixteen healthy young adults were scanned twice with event-related functional magnetic resonance imaging (fMRI), while performing a simple cued reaction time (RT) task following administration of a single dose of oral guanfacine (1 mg) and placebo in counterbalanced order. The RT task temporally segregates the neural effects of warning cues and motor responses and minimizes mnemonic demands. Warning cues produced a marked reduction in RT accompanied by significant activation in a distributed thalamo-frontal-striatal network, including bilateral DLPFC. Guanfacine selectively increased the cue-evoked activation of the left DLPFC and right anterior cerebellum, although this increase was not accompanied by further reductions in RT. The effects of guanfacine on DLPFC activation were specifically associated with the warning cue and were not seen for visual- or target-related activation. Guanfacine produced marked increases in the cue-evoked activation of DLPFC that correspond to the well-described actions of postsynaptic alpha(2) adrenoceptor stimulation. The current procedures provide an opportunity to test postsynaptic alpha(2A) adrenoceptor function in the prefrontal cortex in the pathophysiology of several psychiatric disorders.

  10. Analysis of electrically evoked compound action potential of the auditory nerve in children with bilateral cochlear implants.

    Science.gov (United States)

    Caldas, Fernanda Ferreira; Cardoso, Carolina Costa; Barreto, Monique Antunes de Souza Chelminski; Teixeira, Marina Santos; Hilgenberg, Anacléia Melo da Silva; Serra, Lucieny Silva Martins; Bahmad Junior, Fayez

    2016-01-01

    The cochlear implant device has the capacity to measure the electrically evoked compound action potential of the auditory nerve. The neural response telemetry is used in order to measure the electrically evoked compound action potential of the auditory nerve. To analyze the electrically evoked compound action potential, through the neural response telemetry, in children with bilateral cochlear implants. This is an analytical, prospective, longitudinal, historical cohort study. Six children, aged 1-4 years, with bilateral cochlear implant were assessed at five different intervals during their first year of cochlear implant use. There were significant differences in follow-up time (p=0.0082) and electrode position (p=0.0019) in the T-NRT measure. There was a significant difference in the interaction between time of follow-up and electrode position (p=0.0143) when measuring the N1-P1 wave amplitude between the three electrodes at each time of follow-up. The electrically evoked compound action potential measurement using neural response telemetry in children with bilateral cochlear implants during the first year of follow-up was effective in demonstrating the synchronized bilateral development of the peripheral auditory pathways in the studied population. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  11. Paying attention to orthography: A visual evoked potential study

    Directory of Open Access Journals (Sweden)

    Anthony Thomas Herdman

    2013-05-01

    Full Text Available In adult readers, letters and words are rapidly identified within visual networks to allow for efficient reading abilities. Neuroimaging studies of orthography have mostly used words and letter strings that recruit many hierarchical levels in reading. Understanding how single letters are processed could provide further insight into orthographic processing. The present study investigated orthographic processing using single letters and pseudoletters when adults were encouraged to pay attention to or away from orthographic features. We measured evoked potentials (EPs to single letters and pseudoletters from adults while they performed an orthographic-discrimination task (letters vs. pseudoletters, a colour-discrimination task (red vs. blue, and a target-detection task (respond to #1 and #2. Larger and later peaking N1 responses (~170ms and larger P2 responses (~250 ms occurred to pseudoletters as compared to letters. This reflected greater visual processing for pseudoletters. Dipole analyses localized this effect to bilateral fusiform and inferior temporal cortices. Moreover, this letter-pseudoletter difference was not modulated by task and thus indicates that directing attention to or away from orthographic features didn’t affect early visual processing of single letters or pseudoletters within extrastriate regions. Paying attention to orthography or colour as compared to disregarding the stimuli (target-detection task elicited selection negativities at about 175 ms, which were followed by a classical N2-P3 complexes. This indicated that the tasks sufficiently drew participant’s attention to and away from the stimuli. Together these findings revealed that visual processing of single letters and pseudoletters, in adults, appeared to be sensory-contingent and independent of paying attention to stimulus features (e.g., orthography or colour.

  12. Lifting the veil on the dynamics of neuronal activities evoked by transcranial magnetic stimulation

    Science.gov (United States)

    Li, Bingshuo; Virtanen, Juha P; Oeltermann, Axel; Schwarz, Cornelius; Giese, Martin A; Ziemann, Ulf

    2017-01-01

    Transcranial magnetic stimulation (TMS) is a widely used non-invasive tool to study and modulate human brain functions. However, TMS-evoked activity of individual neurons has remained largely inaccessible due to the large TMS-induced electromagnetic fields. Here, we present a general method providing direct in vivo electrophysiological access to TMS-evoked neuronal activity 0.8–1 ms after TMS onset. We translated human single-pulse TMS to rodents and unveiled time-grained evoked activities of motor cortex layer V neurons that show high-frequency spiking within the first 6 ms depending on TMS-induced current orientation and a multiphasic spike-rhythm alternating between excitation and inhibition in the 6–300 ms epoch, all of which can be linked to various human TMS responses recorded at the level of spinal cord and muscles. The advance here facilitates a new level of insight into the TMS-brain interaction that is vital for developing this non-invasive tool to purposefully explore and effectively treat the human brain. PMID:29165241

  13. Neuromagnetic detection of the laryngeal area: Sensory-evoked fields to air-puff stimulation.

    Science.gov (United States)

    Miyaji, Hideaki; Hironaga, Naruhito; Umezaki, Toshiro; Hagiwara, Koichi; Shigeto, Hiroshi; Sawatsubashi, Motohiro; Tobimatsu, Shozo; Komune, Shizuo

    2014-03-01

    The sensory projections from the oral cavity, pharynx, and larynx are crucial in assuring safe deglutition, coughing, breathing, and voice production/speaking. Although several studies using neuroimaging techniques have demonstrated cortical activation related to pharyngeal and laryngeal functions, little is known regarding sensory projections from the laryngeal area to the somatosensory cortex. The purpose of this study was to establish the cortical activity evoked by somatic air-puff stimulation at the laryngeal mucosa using magnetoencephalography. Twelve healthy volunteers were trained to inhibit swallowing in response to air stimuli delivered to the larynx. Minimum norm estimates was performed on the laryngeal somatosensory evoked fields (LSEFs) to best differentiate the target activations from non-task-related activations. Evoked magnetic fields were recorded with acceptable reproducibility in the left hemisphere, with a peak latency of approximately 100ms in 10 subjects. Peak activation was estimated at the caudolateral region of the primary somatosensory area (S1). These results establish the ability to detect LSEFs with an acceptable reproducibility within a single subject and among subjects. These results also suggest the existence of laryngeal somatic afferent input to the caudolateral region of S1 in human. Our findings indicate that further investigation in this area is needed, and should focus on laryngeal lateralization, swallowing, and speech processing. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. The Role of Auditory Evoked Potentials in the Context of Cochlear Implant Provision.

    Science.gov (United States)

    Hoth, Sebastian; Dziemba, Oliver Christian

    2017-12-01

    : Auditory evoked potentials (AEP) are highly demanded during the whole process of equipping patients with cochlear implants (CI). They play an essential role in preoperative diagnostics, intraoperative testing, and postoperative monitoring of auditory performance and success. The versatility of AEP's is essentially enhanced by their property to be evokable by acoustic as well as electric stimuli. Thus, the electric responses of the auditory system following acoustic stimulation and recorded by the conventional surface technique as well as by transtympanic derivation from the promontory (Electrocochleography [ECochG]) are used for the quantitative determination of hearing loss and, additionally, electrically evoked compound actions potentials (ECAP) can be recorded with the intracochlear electrodes of the implant just adjacent to the stimulation electrode to check the functional integrity of the device and its coupling to the auditory system. The profile of ECAP thresholds is used as basis for speech processor fitting, the spread of excitation (SOE) allows the identification of electrode mislocations such as array foldover, and recovery functions may serve to optimize stimulus pulse rate. These techniques as well as those relying on scalp surface activity originating in the brainstem or the auditory cortex accompany the CI recipient during its whole life span and they offer valuable insights into functioning and possible adverse effects of the CI for clinical and scientific purposes.

  15. Lifting the veil on the dynamics of neuronal activities evoked by transcranial magnetic stimulation.

    Science.gov (United States)

    Li, Bingshuo; Virtanen, Juha P; Oeltermann, Axel; Schwarz, Cornelius; Giese, Martin A; Ziemann, Ulf; Benali, Alia

    2017-11-22

    Transcranial magnetic stimulation (TMS) is a widely used non-invasive tool to study and modulate human brain functions. However, TMS-evoked activity of individual neurons has remained largely inaccessible due to the large TMS-induced electromagnetic fields. Here, we present a general method providing direct in vivo electrophysiological access to TMS-evoked neuronal activity 0.8-1 ms after TMS onset. We translated human single-pulse TMS to rodents and unveiled time-grained evoked activities of motor cortex layer V neurons that show high-frequency spiking within the first 6 ms depending on TMS-induced current orientation and a multiphasic spike-rhythm alternating between excitation and inhibition in the 6-300 ms epoch, all of which can be linked to various human TMS responses recorded at the level of spinal cord and muscles. The advance here facilitates a new level of insight into the TMS-brain interaction that is vital for developing this non-invasive tool to purposefully explore and effectively treat the human brain.

  16. [Effects of sevoflurane and propofol on evoked potentials during neurosurgical anesthesia].

    Science.gov (United States)

    Nakagawa, Itsuo; Hidaka, Syozo; Okada, Hironori; Kubo, Takashi; Okamura, Kenta; Kato, Takahiro

    2006-06-01

    The effect of anesthetics on somatosensory evoked potential (SEP) and auditory brain stem response (ABR) has been a subject of intense reseach over the last two decades. In fact, volatile anesthetics have been repeatedly shown to decrease cortical amplitude in a dose-dependent fashion but the information regarding the effect of propofol is incomplete. The purpose of this study was to compare the effects of sevoflurane and propofol on evoked potentials during comparable depth of anesthesia guided by bispectral index (BIS). Forty four patients scheduled for neurosurgery were studied. Anesthesia was maintained with intravenous propofol using target controlled infusion (TCI). We measured the change of amplitude and latency of SEP(N20-P25), ABR (V wave) and visual evoked potential (VEP: P100) at three sets of sevoflurane (0%, 1%, 2%) or propofol concentrations (effect site concentration of 1.5, 2.0, 3.0 microug x ml(-1)). BIS monitor was used to measure relative depth of hypnosis. With increasing concentrations of sevoflurane (0, 1% and 2%), SEP showed dose-related reduction in its amplitude, ABR produced less marked changes and VEP showed a significant reduction at 1%. VEP at the propofol concentration of 3.0 microg x ml(-1) was decreased significantly compared with the amplitude at 1.5 microg x ml(-1) concentration. No significant change was observed with SEP and ABR during the change of propofol dosages. BIS values were almost the same with each anesthetics. VEP was most strongly affected with anesthetics, and ABR showed less marked influence of sevoflurane and propofol. Propofol based TIVA technique would induce less change in evoked potentials than sevoflurane.

  17. Associative learning in humans--conditioning of sensory-evoked brain activity.

    Science.gov (United States)

    Skrandies, W; Jedynak, A

    2000-01-01

    A classical conditioning paradigm was employed in two experiments performed on 35 human volunteers. In nine subjects, the presentation of Landolt rings (conditioned stimuli, CS + ) was paired with an electric stimulus (unconditioned stimuli, UCS) applied to the left median nerve. Neutral visual control stimuli were full circles (CS -) that were not paired with the UCS. The skin conductance response (SCR) was determined in a time interval of 5 s after onset of the visual stimuli, and it was measured in the acquisition and test phase. Associative learning was reflected by a SCR occurring selectively with CS +. The same experiment was repeated with another group of 26 adults while electroencephalogram (EEG) was recorded from 30 electrodes. For each subject, mean evoked potentials were computed. In 13 of the subjects, a conditioning paradigm was followed while the other subjects served as the control group (non-contingent stimulation). There were somatosensory and visual brain activity evoked by the stimuli. Conditioned components were identified by computing cross-correlation between evoked somatosensory components and the averaged EEG. In the visual evoked brain activity, three components with mean latencies of 105.4, 183.2, and 360.3 ms were analyzed. Somatosensory stimuli were followed by major components that occurred at mean latencies of 48.8, 132.5, 219.7, 294.8, and 374.2 ms latency after the shock. All components were analyzed in terms of latency, field strength, and topographic characteristics, and were compared between groups and experimental conditions. Both visual and somatosensory brain activity was significantly affected by classical conditioning. Our data illustrate how associative learning affects the topography of brain electrical activity elicited by presentation of conditioned visual stimuli.

  18. Short-interval and long-interval intracortical inhibition of TMS-evoked EEG potentials.

    Science.gov (United States)

    Premoli, Isabella; Király, Julia; Müller-Dahlhaus, Florian; Zipser, Carl M; Rossini, Pierre; Zrenner, Christoph; Ziemann, Ulf; Belardinelli, Paolo

    2018-03-15

    Inhibition in the human motor cortex can be probed by means of paired-pulse transcranial magnetic stimulation (ppTMS) at interstimulus intervals of 2-3 ms (short-interval intracortical inhibition, SICI) or ∼100 ms (long-interval intracortical inhibition, LICI). Conventionally, SICI and LICI are recorded as motor evoked potential (MEP) inhibition in the hand muscle. Pharmacological experiments indicate that they are mediated by GABAA and GABAB receptors, respectively. SICI and LICI of TMS-evoked EEG potentials (TEPs) and their pharmacological properties have not been systematically studied. Here, we sought to examine SICI by ppTMS-evoked compared to single-pulse TMS-evoked TEPs, to investigate its pharmacological manipulation and to compare SICI with our previous results on LICI. PpTMS-EEG was applied to the left motor cortex in 16 healthy subjects in a randomized, double-blind placebo-controlled crossover design, testing the effects of a single oral dose 20 mg of diazepam, a positive modulator at the GABAA receptor, vs. 50 mg of the GABAB receptor agonist baclofen on SICI of TEPs. We found significant SICI of the N100 and P180 TEPs prior to drug intake. Diazepam reduced SICI of the N100 TEP, while baclofen enhanced it. Compared to our previous ppTMS-EEG results on LICI, the SICI effects on TEPs, including their drug modulation, were largely analogous. Findings suggest a similar interaction of paired-pulse effects on TEPs irrespective of the interstimulus interval. Therefore, SICI and LICI as measured with TEPs cannot be directly derived from SICI and LICI measured with MEPs, but may offer novel insight into paired-pulse responses recorded directly from the brain rather than muscle. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Combined ocular and cervical vestibular evoked myogenic potential in individuals with vestibular hyporeflexia and in patients with Ménière's disease.

    Science.gov (United States)

    Silva, Tatiana Rocha; de Resende, Luciana Macedo; Santos, Marco Aurélio Rocha

    The vestibular evoked myogenic potential is a potential of mean latency that measures the muscle response to auditory stimulation. This potential can be generated from the contraction of the sternocleidomastoid muscle and also from the contraction of extraocular muscles in response to high-intensity sounds. This study presents a combined or simultaneous technique of cervical and ocular vestibular evoked myogenic potential in individuals with changes in the vestibular system, for use in otoneurologic diagnosis. To characterize the records and analyze the results of combined cervical and ocular VEMP in individuals with vestibular hyporeflexia and in those with Ménière's disease. The study included 120 subjects: 30 subjects with vestibular hyporeflexia, 30 with Ménière's disease, and 60 individuals with normal hearing. Data collection was performed by simultaneously recording the cervical and ocular vestibular evoked myogenic potential. There were differences between the study groups (individuals with vestibular hyporeflexia and individuals with Ménière's disease) and the control group for most of wave parameters in combined cervical and ocular vestibular evoked myogenic potential. For cervical vestibular evoked myogenic potential, it was observed that the prolongation of latency of the P13 and N23 waves was the most frequent finding in the group with vestibular hyporeflexia and in the group with Ménière's disease. For ocular vestibular evoked myogenic potential, prolonged latency of N10 and P15 waves was the most frequent finding in the study groups. Combined cervical and ocular vestibular evoked myogenic potential presented relevant results for individuals with vestibular hyporeflexia and for those with Ménière's disease. There were differences between the study groups and the control group for most of the wave parameters in combined cervical and ocular vestibular evoked myogenic potential. Copyright © 2016 Associação Brasileira de Otorrinolaringologia

  20. Head movements evoked in alert rhesus monkey by vestibular prosthesis stimulation: implications for postural and gaze stabilization.

    Directory of Open Access Journals (Sweden)

    Diana E Mitchell

    Full Text Available The vestibular system detects motion of the head in space and in turn generates reflexes that are vital for our daily activities. The eye movements produced by the vestibulo-ocular reflex (VOR play an essential role in stabilizing the visual axis (gaze, while vestibulo-spinal reflexes ensure the maintenance of head and body posture. The neuronal pathways from the vestibular periphery to the cervical spinal cord potentially serve a dual role, since they function to stabilize the head relative to inertial space and could thus contribute to gaze (eye-in-head + head-in-space and posture stabilization. To date, however, the functional significance of vestibular-neck pathways in alert primates remains a matter of debate. Here we used a vestibular prosthesis to 1 quantify vestibularly-driven head movements in primates, and 2 assess whether these evoked head movements make a significant contribution to gaze as well as postural stabilization. We stimulated electrodes implanted in the horizontal semicircular canal of alert rhesus monkeys, and measured the head and eye movements evoked during a 100 ms time period for which the contribution of longer latency voluntary inputs to the neck would be minimal. Our results show that prosthetic stimulation evoked significant head movements with latencies consistent with known vestibulo-spinal pathways. Furthermore, while the evoked head movements were substantially smaller than the coincidently evoked eye movements, they made a significant contribution to gaze stabilization, complementing the VOR to ensure that the appropriate gaze response is achieved. We speculate that analogous compensatory head movements will be evoked when implanted prosthetic devices are transitioned to human patients.

  1. [Recognition of the spatially transformed objects in men and women: an analysis of the behavior and evoked potentials].

    Science.gov (United States)

    Slavutskaia, A V; Gerasimenko, N Iu; Mikhaĭlova, E S

    2012-01-01

    In 16 men and 15 women analyzed the accuracy, reaction time and visual evoked potentials during the recognition of familiar objects at different levels of spatial transformation. We used the three levels of transformation: in a fixed position relative to each other details were carried out (1) the displacement of all the details in the radial direction and (2 and 3) a similar shift in conjunction with the rotation of all the details of the figure by +/- 0-45 and +/- 45-90 degrees. The task performance was not dependent on gender: the transformation of the image led to a deterioration of identification with the most identification impairment in the case of maximal details' rotation. Changes in evoked potentials (ERP) are different for men and women. Only in men early (100 ms after stimulus) response of the parietal cortex associated with the level of figure transformation: the more rotation evoked the higher the response. In women figure transformation evoked the ERP changes in the time window of negativity N170, they are associated with figure ungrouping but not with details rotation, and are localized in other visual areas--occipital and temporal. The data obtained are discussed in light of theory of gender specificity of the visual representations of space.

  2. Collaborative Learning in Higher Education: Evoking Positive Interdependence.

    Science.gov (United States)

    Scager, Karin; Boonstra, Johannes; Peeters, Ton; Vulperhorst, Jonne; Wiegant, Fred

    Collaborative learning is a widely used instructional method, but the learning potential of this instructional method is often underused in practice. Therefore, the importance of various factors underlying effective collaborative learning should be determined. In the current study, five different life sciences undergraduate courses with successful collaborative-learning results were selected. This study focuses on factors that increased the effectiveness of collaboration in these courses, according to the students. Nine focus group interviews were conducted and analyzed. Results show that factors evoking effective collaboration were student autonomy and self-regulatory behavior, combined with a challenging, open, and complex group task that required the students to create something new and original. The design factors of these courses fostered a sense of responsibility and of shared ownership of both the collaborative process and the end product of the group assignment. In addition, students reported the absence of any free riders in these group assignments. Interestingly, it was observed that students seemed to value their sense of achievement, their learning processes, and the products they were working on more than their grades. It is concluded that collaborative learning in higher education should be designed using challenging and relevant tasks that build shared ownership with students. © 2016 K. Scager et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  3. The effects of curiosity-evoking events on activity enjoyment.

    Science.gov (United States)

    Isikman, Elif; MacInnis, Deborah J; Ülkümen, Gülden; Cavanaugh, Lisa A

    2016-09-01

    Whereas prior literature has studied the positive effects of curiosity-evoking events that are integral to focal activities, we explore whether and how a curiosity-evoking event that is incidental to a focal activity induces negative outcomes for enjoyment. Four experiments and 1 field study demonstrate that curiosity about an event that is incidental to an activity in which individuals are engaged, significantly affects enjoyment of a concurrent activity. The reason why is that curiosity diverts attention away from the concurrent activity and focuses attention on the curiosity-evoking event. Thus, curiosity regarding an incidental event decreases enjoyment of a positive focal activity but increases enjoyment of a negative focal activity. PsycINFO Database Record (c) 2016 APA, all rights reserved

  4. Stimulator with arbitrary waveform for auditory evoked potentials

    International Nuclear Information System (INIS)

    Martins, H R; Romao, M; Placido, D; Provenzano, F; Tierra-Criollo, C J

    2007-01-01

    The technological improvement helps many medical areas. The audiometric exams involving the auditory evoked potentials can make better diagnoses of auditory disorders. This paper proposes the development of a stimulator based on Digital Signal Processor. This stimulator is the first step of an auditory evoked potential system based on the ADSP-BF533 EZ KIT LITE (Analog Devices Company - USA). The stimulator can generate arbitrary waveform like Sine Waves, Modulated Amplitude, Pulses, Bursts and Pips. The waveforms are generated through a graphical interface programmed in C++ in which the user can define the parameters of the waveform. Furthermore, the user can set the exam parameters as number of stimuli, time with stimulation (Time ON) and time without stimulus (Time OFF). In future works will be implemented another parts of the system that includes the acquirement of electroencephalogram and signal processing to estimate and analyze the evoked potential

  5. Stimulator with arbitrary waveform for auditory evoked potentials

    Energy Technology Data Exchange (ETDEWEB)

    Martins, H R; Romao, M; Placido, D; Provenzano, F; Tierra-Criollo, C J [Universidade Federal de Minas Gerais (UFMG), Departamento de Engenharia Eletrica (DEE), Nucleo de Estudos e Pesquisa em Engenharia Biomedica NEPEB, Av. Ant. Carlos, 6627, sala 2206, Pampulha, Belo Horizonte, MG, 31.270-901 (Brazil)

    2007-11-15

    The technological improvement helps many medical areas. The audiometric exams involving the auditory evoked potentials can make better diagnoses of auditory disorders. This paper proposes the development of a stimulator based on Digital Signal Processor. This stimulator is the first step of an auditory evoked potential system based on the ADSP-BF533 EZ KIT LITE (Analog Devices Company - USA). The stimulator can generate arbitrary waveform like Sine Waves, Modulated Amplitude, Pulses, Bursts and Pips. The waveforms are generated through a graphical interface programmed in C++ in which the user can define the parameters of the waveform. Furthermore, the user can set the exam parameters as number of stimuli, time with stimulation (Time ON) and time without stimulus (Time OFF). In future works will be implemented another parts of the system that includes the acquirement of electroencephalogram and signal processing to estimate and analyze the evoked potential.

  6. Cervical and ocular vestibular evoked potentials in Machado-Joseph disease: Functional involvement of otolith pathways.

    Science.gov (United States)

    Ribeiro, Rodrigo Souza; Pereira, Melissa Marques; Pedroso, José Luiz; Braga-Neto, Pedro; Barsottini, Orlando Graziani Povoas; Manzano, Gilberto Mastrocola

    2015-11-15

    Machado-Joseph disease is defined as an autosomal dominant ataxic disorder caused by degeneration of the cerebellum and its connections and is associated with a broad range of clinical symptoms. The involvement of the vestibular system is responsible for several symptoms and signs observed in the individuals affected by the disease. We measured cervical and ocular vestibular evoked myogenic potentials in a sample of Machado-Joseph disease patients in order to assess functional pathways involved. Bilateral measures of cervical and ocular vestibular evoked myogenic potentials (cVEMP and oVEMP) were obtained from 14 symptomatic patients with genetically proven Machado-Joseph disease and compared with those from a control group of 20 healthy subjects. Thirteen (93%) patients showed at least one abnormal test result; oVEMP and cVEMP responses were absent in 17/28 (61%) and 11/28 (39%) measures, respectively; and prolonged latency of cVEMP was found in 3/28 (11%) measures. Of the 13 patients with abnormal responses, 9/13 (69%) patients showed discordant abnormal responses: four with absent oVEMP and present cVEMP, two with absent cVEMP and present oVEMP, and three showed unilateral prolonged cVEMP latencies. Both otolith-related vestibulocollic and vestibulo-ocular pathways are severely affected in Machado-Joseph disease patients evaluated by VEMPs. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Auditory evoked potentials to abrupt pitch and timbre change of complex tones: electrophysiological evidence of 'streaming'?

    Science.gov (United States)

    Jones, S J; Longe, O; Vaz Pato, M

    1998-03-01

    Examination of the cortical auditory evoked potentials to complex tones changing in pitch and timbre suggests a useful new method for investigating higher auditory processes, in particular those concerned with 'streaming' and auditory object formation. The main conclusions were: (i) the N1 evoked by a sudden change in pitch or timbre was more posteriorly distributed than the N1 at the onset of the tone, indicating at least partial segregation of the neuronal populations responsive to sound onset and spectral change; (ii) the T-complex was consistently larger over the right hemisphere, consistent with clinical and PET evidence for particular involvement of the right temporal lobe in the processing of timbral and musical material; (iii) responses to timbral change were relatively unaffected by increasing the rate of interspersed changes in pitch, suggesting a mechanism for detecting the onset of a new voice in a constantly modulated sound stream; (iv) responses to onset, offset and pitch change of complex tones were relatively unaffected by interfering tones when the latter were of a different timbre, suggesting these responses must be generated subsequent to auditory stream segregation.

  8. Developmental Changes in Sensory-Evoked Optical Intrinsic Signals in the Rat Barrel Cortex

    Directory of Open Access Journals (Sweden)

    Mikhail Sintsov

    2017-12-01

    Full Text Available Optical Intrinsic Signal imaging (OISi is a powerful technique for optical brain studies. OIS mainly reflects the hemodynamic response (HR and metabolism, but it may also involve changes in tissue light scattering (LS caused by transient cellular swelling in the active tissue. Here, we explored the developmental features of sensory-evoked OIS in the rat barrel cortex during the first 3 months after birth. Multispectral OISi revealed that two temporally distinct components contribute to the neonatal OIS: an early phase of LS followed by a late phase of HR. The contribution of LS to the early response was also evidenced by an increase in light transmission through the active barrel. The early OIS phase correlated in time and amplitude with the sensory-evoked electrophysiological response. Application of the Modified Beer-Lambert Law (MBLL to the OIS data revealed that HR during the early phase involved only a slight decrease in blood oxygenation without any change in blood volume. In contrast, HR during the late phase manifested an adult-like increase in blood volume and oxygenation. During development, the peak time of the delayed HR progressively shortened with age, nearly reaching the stimulus onset and overlapping with the early LS phase by the fourth postnatal week. Thus, LS contributes to the sensory-evoked OIS in the barrel cortex of rats at all ages, and it dominates the early OIS phase in neonatal rats due to delayed HR. Our results are also consistent with the delayed blood oxygen level dependent (BOLD signal in human preterm infants.

  9. Sex differences in the refractory period of the 100 ms auditory evoked magnetic field.

    Science.gov (United States)

    Rojas, D C; Teale, P; Sheeder, J; Reite, M

    1999-11-08

    The 100 ms latency auditory evoked magnetic response (M100) has been implicated in the earliest stage of acoustic memory encoding in the brain. Sex differences in this response have been found in its location within the brain and its functional properties. We recorded the M100 in 25 adults in response to changes in interstimulus interval of an auditory stimulus. Response amplitudes of the M100 were used to compute a measure of the M100 refractory period, which has been proposed to index the decay time constant of echoic memory. This time constant was significantly longer in both hemispheres of the female participants when compared to the male participants. Possible implications of this for behavioral sex differences in human memory performance are discussed.

  10. Broad-Band Visually Evoked Potentials: Re(convolution in Brain-Computer Interfacing.

    Directory of Open Access Journals (Sweden)

    Jordy Thielen

    Full Text Available Brain-Computer Interfaces (BCIs allow users to control devices and communicate by using brain activity only. BCIs based on broad-band visual stimulation can outperform BCIs using other stimulation paradigms. Visual stimulation with pseudo-random bit-sequences evokes specific Broad-Band Visually Evoked Potentials (BBVEPs that can be reliably used in BCI for high-speed communication in speller applications. In this study, we report a novel paradigm for a BBVEP-based BCI that utilizes a generative framework to predict responses to broad-band stimulation sequences. In this study we designed a BBVEP-based BCI using modulated Gold codes to mark cells in a visual speller BCI. We defined a linear generative model that decomposes full responses into overlapping single-flash responses. These single-flash responses are used to predict responses to novel stimulation sequences, which in turn serve as templates for classification. The linear generative model explains on average 50% and up to 66% of the variance of responses to both seen and unseen sequences. In an online experiment, 12 participants tested a 6 × 6 matrix speller BCI. On average, an online accuracy of 86% was reached with trial lengths of 3.21 seconds. This corresponds to an Information Transfer Rate of 48 bits per minute (approximately 9 symbols per minute. This study indicates the potential to model and predict responses to broad-band stimulation. These predicted responses are proven to be well-suited as templates for a BBVEP-based BCI, thereby enabling communication and control by brain activity only.

  11. Blocking proteinase-activated receptor 2 alleviated neuropathic pain evoked by spinal cord injury.

    Science.gov (United States)

    Wei, H; Wei, Y; Tian, F; Niu, T; Yi, G

    2016-01-01

    Spinal cord injury (SCI) is an extremely serious type of physical trauma observed in clinics. Especially, neuropathic pain resulting from SCI has a lasting and significant impact on most aspects of daily life. Thus, a better understanding of the molecular pathways responsible for the cause of neuropathic pain observed in SCI is important to develop effectively therapeutic agents and treatment strategies. Proteinase-activated receptors (PARs) are a family member of G-protein-coupled receptors and are activated by a proteolytic mechanism. One of its subtypes PAR2 has been reported to be engaged in mechanical and thermal hyperalgesia. Thus, in this study we specifically examined the underlying mechanisms responsible for SCI evoked-neuropathic pain in a rat model. Overall, we demonstrated that SCI increases PAR2 and its downstream pathways TRPV1 and TRPA1 expression in the superficial dorsal horn of the spinal cord. Also, we showed that blocking spinal PAR2 by intrathecal injection of FSLLRY-NH2 significantly inhibits neuropathic pain responses induced by mechanical and thermal stimulation whereas FSLLRY-NH2 decreases the protein expression of TRPV1 and TRPA1 as well as the levels of substance P and calcitonin gene-related peptide. Results of this study have important implications, i.e. targeting one or more of these signaling molecules involved in activation of PAR2 and TRPV1/TRPA1 evoked by SCI may present new opportunities for treatment and management of neuropathic pain often observed in patients with SCI.

  12. The role of Magnetic Resonance Imaging and Visual Evoked ...

    African Journals Online (AJOL)

    Introduction: To report our experience in management of patients with optic neuritis. The effects of brain magnetic resonance imaging and visual evoked potential on management were investigated. Methods: This is a four years clinical trial that included patients presenting with first attack of optic neuritis older than 16 years ...

  13. [Communication and auditory behavior obtained by auditory evoked potentials in mammals, birds, amphibians, and reptiles].

    Science.gov (United States)

    Arch-Tirado, Emilio; Collado-Corona, Miguel Angel; Morales-Martínez, José de Jesús

    2004-01-01

    amphibians, Frog catesbiana (frog bull, 30 animals); reptiles, Sceloporus torcuatus (common small lizard, 22 animals); birds: Columba livia (common dove, 20 animals), and mammals, Cavia porcellus, (guinea pig, 20 animals). With regard to lodging, all animals were maintained at the Institute of Human Communication Disorders, were fed with special food for each species, and had water available ad libitum. Regarding procedure, for carrying out analysis of auditory evoked potentials of brain stem SPL amphibians, birds, and mammals were anesthetized with ketamine 20, 25, and 50 mg/kg, by injection. Reptiles were anesthetized by freezing (6 degrees C). Study subjects had needle electrodes placed in an imaginary line on the half sagittal line between both ears and eyes, behind right ear, and behind left ear. Stimulation was carried out inside a no noise site by means of a horn in free field. The sign was filtered at between 100 and 3,000 Hz and analyzed in a computer for provoked potentials (Racia APE 78). In data shown by amphibians, wave-evoked responses showed greater latency than those of the other species. In reptiles, latency was observed as reduced in comparison with amphibians. In the case of birds, lesser latency values were observed, while in the case of guinea pigs latencies were greater than those of doves but they were stimulated by 10 dB, which demonstrated best auditory threshold in the four studied species. Last, it was corroborated that as the auditory threshold of each species it descends conforms to it advances in the phylogenetic scale. Beginning with these registrations, we care able to say that response for evoked brain stem potential showed to be more complex and lesser values of absolute latency as we advance along the phylogenetic scale; thus, the opposing auditory threshold is better agreement with regard to the phylogenetic scale among studied species. These data indicated to us that seeking of auditory information is more complex in more

  14. Spectral entropy and haemodynamic response to surgery during ...

    African Journals Online (AJOL)

    Adele

    Spectral entropy and haemodynamic response to surgery during sevoflurane anaesthesia. Introduction. Apart from somatic responses, surgery also evokes autonomic responses, including haemodynamic responses. Spectral entropy has been validated as a means to monitor the hypnotic state during sevoflurane ...

  15. The effects of ultraviolet-A radiation on visual evoked potentials in the young human eye

    International Nuclear Information System (INIS)

    Sanford, B.E.; Beacham, S.; Hanifin, J.P.; Hannon, P.; Streletz, L.; Sliney, D.; Brainard, G.C.

    1996-01-01

    A recent study from this laboratory using visual evoked potentials (VEPs) demonstrated that children's eyes are capable of detecting ultraviolet radiation. The aim of this study was to compare dose-response relationships in two age groups, 6-10 years (n=10) and 20-25 years (n=10). Under photopic viewing conditions (550 lux), exposures of monochromatic UV-A (339 nm) and visible radiation (502 nm) were correlated to VEPs. The results demonstrate that monochromatic UV-A can elicit age and dose dependent responses in the human visual system, suggesting that the eyes of children are more responsive to UV stimuli than the eyes of young adults. (au) 17 refs

  16. A new method for registration of kinesthetic evoked potentials for studies of proprioceptive sensitivity in normal subjects and patients with organic lesions in the brain.

    Science.gov (United States)

    Gordeev, S A; Voronin, S G

    2015-01-01

    The proprioceptive sensitivity of healthy volunteers and convalescents after acute cerebrovascular episodes was studied by a new neurophysiological method for registration of kinesthetic evoked potentials emerging in response to passive 50(o) bending of the hand in the wrist joint with the angular acceleration of 350 rad/sec(2). Kinesthetic evoked potentials were recorded above the somatosensory cortex projection areas in the hemispheres contra- and ipsilateral to the stimulated limb. The patients exhibited significantly longer latencies and lesser amplitudes of the early components of response in the involved hemisphere in comparison with normal subjects. The method for registration of the kinesthetic evoked potentials allows a more detailed study of the mechanisms of kinesthetic sensitivity in health and in organic involvement of the brain.

  17. The effectiveness of FES-evoked EMG potentials to assess muscle force and fatigue in individuals with spinal cord injury.

    Science.gov (United States)

    Ibitoye, Morufu Olusola; Estigoni, Eduardo H; Hamzaid, Nur Azah; Wahab, Ahmad Khairi Abdul; Davis, Glen M

    2014-07-14

    The evoked electromyographic signal (eEMG) potential is the standard index used to monitor both electrical changes within the motor unit during muscular activity and the electrical patterns during evoked contraction. However, technical and physiological limitations often preclude the acquisition and analysis of the signal especially during functional electrical stimulation (FES)-evoked contractions. Hence, an accurate quantification of the relationship between the eEMG potential and FES-evoked muscle response remains elusive and continues to attract the attention of researchers due to its potential application in the fields of biomechanics, muscle physiology, and rehabilitation science. We conducted a systematic review to examine the effectiveness of eEMG potentials to assess muscle force and fatigue, particularly as a biofeedback descriptor of FES-evoked contractions in individuals with spinal cord injury. At the outset, 2867 citations were identified and, finally, fifty-nine trials met the inclusion criteria. Four hypotheses were proposed and evaluated to inform this review. The results showed that eEMG is effective at quantifying muscle force and fatigue during isometric contraction, but may not be effective during dynamic contractions including cycling and stepping. Positive correlation of up to r = 0.90 (p peak-to-peak amplitude of the eEMG and the decline in the force output during fatiguing isometric contractions has been reported. In the available prediction models, the performance index of the eEMG signal to estimate the generated muscle force ranged from 3.8% to 34% for 18 s to 70 s ahead of the actual muscle force generation. The strength and inherent limitations of the eEMG signal to assess muscle force and fatigue were evident from our findings with implications in clinical management of spinal cord injury (SCI) population.

  18. Multifocal Visual Evoked Potential in Eyes With Temporal Hemianopia From Chiasmal Compression: Correlation With Standard Automated Perimetry and OCT Findings.

    Science.gov (United States)

    Sousa, Rafael M; Oyamada, Maria K; Cunha, Leonardo P; Monteiro, Mário L R

    2017-09-01

    To verify whether multifocal visual evoked potential (mfVEP) can differentiate eyes with temporal hemianopia due to chiasmal compression from healthy controls. To assess the relationship between mfVEP, standard automated perimetry (SAP), and Fourier domain-optical coherence tomography (FD-OCT) macular and peripapillary retinal nerve fiber layer (RNFL) thickness measurements. Twenty-seven eyes with permanent temporal visual field (VF) defects from chiasmal compression on SAP and 43 eyes of healthy controls were submitted to mfVEP and FD-OCT scanning. Multifocal visual evoked potential was elicited using a stimulus pattern of 60 sectors and the responses were averaged for the four quadrants and two hemifields. Optical coherence tomography macular measurements were averaged in quadrants and halves, while peripapillary RNFL thickness was averaged in four sectors around the disc. Visual field loss was estimated in four quadrants and each half of the 24-2 strategy test points. Multifocal visual evoked potential measurements in the two groups were compared using generalized estimated equations, and the correlations between mfVEP, VF, and OCT findings were quantified. Multifocal visual evoked potential-measured temporal P1 and N2 amplitudes were significantly smaller in patients than in controls. No significant difference in amplitude was observed for nasal parameters. A significant correlation was found between mfVEP amplitudes and temporal VF loss, and between mfVEP amplitudes and the corresponding OCT-measured macular and RNFL thickness parameters. Multifocal visual evoked potential amplitude parameters were able to differentiate eyes with temporal hemianopia from controls and were significantly correlated with VF and OCT findings, suggesting mfVEP is a useful tool for the detection of visual abnormalities in patients with chiasmal compression.

  19. The Effectiveness of FES-Evoked EMG Potentials to Assess Muscle Force and Fatigue in Individuals with Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Morufu Olusola Ibitoye

    2014-07-01

    Full Text Available The evoked electromyographic signal (eEMG potential is the standard index used to monitor both electrical changes within the motor unit during muscular activity and the electrical patterns during evoked contraction. However, technical and physiological limitations often preclude the acquisition and analysis of the signal especially during functional electrical stimulation (FES-evoked contractions. Hence, an accurate quantification of the relationship between the eEMG potential and FES-evoked muscle response remains elusive and continues to attract the attention of researchers due to its potential application in the fields of biomechanics, muscle physiology, and rehabilitation science. We conducted a systematic review to examine the effectiveness of eEMG potentials to assess muscle force and fatigue, particularly as a biofeedback descriptor of FES-evoked contractions in individuals with spinal cord injury. At the outset, 2867 citations were identified and, finally, fifty-nine trials met the inclusion criteria. Four hypotheses were proposed and evaluated to inform this review. The results showed that eEMG is effective at quantifying muscle force and fatigue during isometric contraction, but may not be effective during dynamic contractions including cycling and stepping. Positive correlation of up to r = 0.90 (p < 0.05 between the decline in the peak-to-peak amplitude of the eEMG and the decline in the force output during fatiguing isometric contractions has been reported. In the available prediction models, the performance index of the eEMG signal to estimate the generated muscle force ranged from 3.8% to 34% for 18 s to 70 s ahead of the actual muscle force generation. The strength and inherent limitations of the eEMG signal to assess muscle force and fatigue were evident from our findings with implications in clinical management of spinal cord injury (SCI population.

  20. Audiometria de altas frequências no diagnóstico complementar em audiologia: uma revisão da literatura nacional High-frequency audiometry in audiological complementary diagnosis: a revision of the national literature

    Directory of Open Access Journals (Sweden)

    Karlin Fabianne Klagenberg

    2011-03-01

    Full Text Available A audiometria de altas frequências (AAF é um exame audiológico importante na detecção precoce de perdas auditivas por lesões na base do ducto coclear. Nos últimos anos, a sua utilização foi facilitada pelo fato de os audiômetros comercializados passarem a incorporar frequências superiores a 8 kHz. Porém, existem diferenças relacionadas aos equipamentos utilizados, às metodologias empregadas e/ou aos resultados e interpretação. Assim, o objetivo deste artigo foi analisar a produção científica nacional sobre a aplicação clínica com AAF, para compreender sua utilização atual. Foram pesquisados textos publicados e indexados nas bases de dados LILACS, SciELO e Medline, num período de tempo de dez anos, utilizando como descritor "audiometria de altas frequências/high-frequency audiometry". Encontraram-se 24 artigos científicos nacionais utilizando AAF, cuja população avaliada, em sua maioria, apresentava de 18 a 50 anos de idade; 13 dos estudos determinaram os limiares utilizando como referência decibel nível de audição (dBNA; alguns estudos realizaram a comparação dos limiares auditivos tonais entre grupos para definir a normalidade; os autores relataram diferenças significativas nos limiares auditivos de altas frequências entre as idades. A AAF é utilizada na clínica audiológica para identificação precoce de alterações auditivas e no acompanhamento da audição de sujeitos expostos a drogas ototóxicas e/ou agentes otoagressores.High-frequency audiometry (HFA is an important audiological test for early detection of hearing losses caused by leasions in the base of the cochlear duct. In recent years, its use was facilitated because audiometers began to identify frequencies higher than 8 kHz. However, there are differences related to the equipment used, the methodologies followed, and/or to the results and their interpretation. Therefore, the aim of this study was to analyze the national scientific production

  1. Ocular vestibular evoked myogenic potential in patients with benign paroxysmal positional vertigo

    Directory of Open Access Journals (Sweden)

    Mozhgan Masoom

    2014-06-01

    Full Text Available Background and Aim: Since utricle is the main damaged organ in benign paroxysmal positional vertigo (BPPV, ocular vestibular evoked myogenic potential (oVEMP may be an appropriate method to evaluate the utricule dysfunction and the effect of disease recurrence rate on it. This study aimed to record myogenic potential in patients with benign paroxysmal positional vertigo.Methods: In a cross-sectional study, ocular myogenic potential was recorded in 25 healthy subjects and 20 patients with benign paroxysmal positional vertigo using 500 Hz-tone bursts (95 dB nHL.Results: In the affected ear, mean amplitude was lower and mean threshold was higher than those in the unaffected ear and in the normal group (p<0.05. Mean amplitude asymmetry ratio of patients was more than the healthy subjects (p0.05. Frequencies of abnormal responses in the affected ears were higher than in unaffected ears and in the normal group (p<0.05. Furthermore, the patients with recurrent vertigo showed more abnormalities than the patients with non-recurrent (p=0.030.Conclusion: In the recurrent benign paroxysmal positional vertigo, ocular vestibular evoked myogenic potential showed more damage in the utricle, suggesting this response could be used to evaluate the patients with benign paroxysmal positional vertigo.

  2. Dynamic causal modeling of touch-evoked potentials in the rubber hand illusion.

    Science.gov (United States)

    Zeller, Daniel; Friston, Karl J; Classen, Joseph

    2016-09-01

    The neural substrate of bodily ownership can be disclosed by the rubber hand illusion (RHI); namely, the illusory self-attribution of an artificial hand that is induced by synchronous tactile stimulation of the subject's hand that is hidden from view. Previous studies have pointed to the premotor cortex (PMC) as a pivotal area in such illusions. To investigate the effective connectivity between - and within - sensory and premotor areas involved in bodily perceptions, we used dynamic causal modeling of touch-evoked responses in 13 healthy subjects. Each subject's right hand was stroked while viewing their own hand ("REAL"), or an artificial hand presented in an anatomically plausible ("CONGRUENT") or implausible ("INCONGRUENT") position. Bayesian model comparison revealed strong evidence for a differential involvement of the PMC in the generation of touch-evoked responses under the three conditions, confirming a crucial role of PMC in bodily self-attribution. In brief, the extrinsic (forward) connection from left occipital cortex to left PMC was stronger for CONGRUENT and INCONGRUENT as compared to REAL, reflecting the augmentation of bottom-up visual input when multisensory integration is challenged. Crucially, intrinsic connectivity in the primary somatosensory cortex (S1) was attenuated in the CONGRUENT condition, during the illusory percept. These findings support predictive coding models of the functional architecture of multisensory integration (and attenuation) in bodily perceptual experience. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Modeling the developmental patterns of auditory evoked magnetic fields in children.

    Directory of Open Access Journals (Sweden)

    Rupesh Kotecha

    Full Text Available BACKGROUND: As magnetoencephalography (MEG is of increasing utility in the assessment of deficits and development delays in brain disorders in pediatrics, it becomes imperative to fully understand the functional development of the brain in children. METHODOLOGY: The present study was designed to characterize the developmental patterns of auditory evoked magnetic responses with respect to age and gender. Sixty children and twenty adults were studied with a 275-channel MEG system. CONCLUSIONS: Three main responses were identified at approximately 46 ms (M50, 71 ms (M70 and 106 ms (M100 in latency for children. The latencies of M70 and M100 shortened with age in both hemispheres; the latency of M50 shortened with age only in the right hemisphere. Analysis of developmental lateralization patterns in children showed that the latency of the right hemispheric evoked responses shortened faster than the corresponding left hemispheric responses. The latency of M70 in the right hemisphere highly correlated to the age of the child. The amplitudes of the M70 responses increased with age and reached their peaks in children 12-14 years of age, after which they decreased with age. The source estimates for the M50 and M70 responses indicated that they were generated in different subareas in the Heschl's gyrus in children, while not localizable in adults. Furthermore, gender also affected developmental patterns. The latency of M70 in the right hemisphere was proposed to be an index of auditory development in children, the modeling equation is 85.72-1.240xAge (yrs. Our results demonstrate that there is a clear developmental pattern in the auditory cortex and underscore the importance of M50 and M70 in the developing brain.

  4. Time-varying bispectral analysis of visually evoked multi-channel EEG

    Science.gov (United States)

    Chandran, Vinod

    2012-12-01

    Theoretical foundations of higher order spectral analysis are revisited to examine the use of time-varying bicoherence on non-stationary signals using a classical short-time Fourier approach. A methodology is developed to apply this to evoked EEG responses where a stimulus-locked time reference is available. Short-time windowed ensembles of the response at the same offset from the reference are considered as ergodic cyclostationary processes within a non-stationary random process. Bicoherence can be estimated reliably with known levels at which it is significantly different from zero and can be tracked as a function of offset from the stimulus. When this methodology is applied to multi-channel EEG, it is possible to obtain information about phase synchronization at different regions of the brain as the neural response develops. The methodology is applied to analyze evoked EEG response to flash visual stimulii to the left and right eye separately. The EEG electrode array is segmented based on bicoherence evolution with time using the mean absolute difference as a measure of dissimilarity. Segment maps confirm the importance of the occipital region in visual processing and demonstrate a link between the frontal and occipital regions during the response. Maps are constructed using bicoherence at bifrequencies that include the alpha band frequency of 8Hz as well as 4 and 20Hz. Differences are observed between responses from the left eye and the right eye, and also between subjects. The methodology shows potential as a neurological functional imaging technique that can be further developed for diagnosis and monitoring using scalp EEG which is less invasive and less expensive than magnetic resonance imaging.

  5. An inventory and update of jealousy-evoking partner behaviours in modern society.

    NARCIS (Netherlands)

    Dijkstra, Pieternel; Barelds, Dick P. H.; Groothof, Hinke A. K.

    2010-01-01

    The goal of the present study was to identify the most important jealousy-evoking partner behaviours and to examine the extent to which these behaviours evoke jealousy. Based on the literature, a questionnaire was constructed containing 42 jealousy-evoking partner behaviours, including a partner's

  6. Light evokes melanopsin-dependent vocalization and neural activation associated with aversive experience in neonatal mice.

    Directory of Open Access Journals (Sweden)

    Anton Delwig

    Full Text Available Melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs are the only functional photoreceptive cells in the eye of newborn mice. Through postnatal day 9, in the absence of functional rods and cones, these ipRGCs mediate a robust avoidance behavior to a light source, termed negative phototaxis. To determine whether this behavior is associated with an aversive experience in neonatal mice, we characterized light-induced vocalizations and patterns of neuronal activation in regions of the brain involved in the processing of aversive and painful stimuli. Light evoked distinct melanopsin-dependent ultrasonic vocalizations identical to those emitted under stressful conditions, such as isolation from the litter. In contrast, light did not evoke the broad-spectrum calls elicited by acute mechanical pain. Using markers of neuronal activation, we found that light induced the immediate-early gene product Fos in the posterior thalamus, a brain region associated with the enhancement of responses to mechanical stimulation of the dura by light, and thought to be the basis for migrainous photophobia. Additionally, light induced the phosphorylation of extracellular-related kinase (pERK in neurons of the central amygdala, an intracellular signal associated with the processing of the aversive aspects of pain. However, light did not activate Fos expression in the spinal trigeminal nucleus caudalis, the primary receptive field for painful stimulation to the head. We conclude that these light-evoked vocalizations and the distinct pattern of brain activation in neonatal mice are consistent with a melanopsin-dependent neural pathway involved in processing light as an aversive but not acutely painful stimulus.

  7. The cortical spatiotemporal correlate of otolith stimulation: Vestibular evoked potentials by body translations.

    Science.gov (United States)

    Ertl, M; Moser, M; Boegle, R; Conrad, J; Zu Eulenburg, P; Dieterich, M

    2017-07-15

    The vestibular organ senses linear and rotational acceleration of the head during active and passive motion. These signals are necessary for bipedal locomotion, navigation, the coordination of eye and head movements in 3D space. The temporal dynamics of vestibular processing in cortical structures have hardly been studied in humans, let alone with natural stimulation. The aim was to investigate the cortical vestibular network related to natural otolith stimulation using a hexapod motion platform. We conducted two experiments, 1. to estimate the sources of the vestibular evoked potentials (VestEPs) by means of distributed source localization (n=49), and 2. to reveal modulations of the VestEPs through the underlying acceleration intensity (n=24). For both experiments subjects were accelerated along the main axis (left/right, up/down, fore/aft) while the EEG was recorded. We were able to identify five VestEPs (P1, N1, P2, N2, P3) with latencies between 38 and 461 ms as well as an evoked beta-band response peaking with a latency of 68 ms in all subjects and for all acceleration directions. Source localization gave the cingulate sulcus visual (CSv) area and the opercular-insular region as the main origin of the evoked potentials. No lateralization effects due to handedness could be observed. In the second experiment, area CSv was shown to be integral in the processing of acceleration intensities as sensed by the otolith organs, hinting at its potential role in ego-motion detection. These robust VestEPs could be used to investigate the mechanisms of inter-regional interaction in the natural context of vestibular processing and multisensory integration. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Contrasting protective effects of cannabinoids against oxidative stress and amyloid-β evoked neurotoxicity in vitro.

    Science.gov (United States)

    Harvey, Benjamin S; Ohlsson, Katharina S; Mååg, Jesper L V; Musgrave, Ian F; Smid, Scott D

    2012-01-01

    Cannabinoids have been widely reported to have neuroprotective properties in vitro and in vivo. In this study we compared the effects of CB1 and CB2 receptor-selective ligands, the endocannabinoid anandamide and the phytocannabinoid cannabidiol, against oxidative stress and the toxic hallmark Alzheimer's protein, β-amyloid (Aβ) in neuronal cell lines. PC12 or SH-SY5Y cells were selectively exposed to either hydrogen peroxide, tert-butyl hydroperoxide or Aβ, alone or in the presence of the CB1 specific agonist arachidonyl-2'-chloroethylamide (ACEA), CB2 specific agonist JWH-015, anandamide or cannabidiol. Cannabidiol improved cell viability in response to tert-butyl hydroperoxide in PC12 and SH-SY5Y cells, while hydrogen peroxide-mediated toxicity was unaffected by cannabidiol pretreatment. Aβ exposure evoked a loss of cell viability in PC12 cells. Of the cannabinoids tested, only anandamide was able to inhibit Aβ-evoked neurotoxicity. ACEA had no effect on Aβ-evoked neurotoxicity, suggesting a CB1 receptor-independent effect of anandamide. JWH-015 pretreatment was also without protective influence on PC12 cells from either pro-oxidant or Aβ exposure. None of the cannabinoids directly inhibited or disrupted preformed Aβ fibrils and aggregates. In conclusion, the endocannabinoid anandamide protects neuronal cells from Aβ exposure via a pathway unrelated to CB1 or CB2 receptor activation. The protective effect of cannabidiol against oxidative stress does not confer protection against Aβ exposure, suggesting divergent pathways for neuroprotection of these two cannabinoids. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Direct detection of a single evoked action potential with MRS in Lumbricus terrestris.

    Science.gov (United States)

    Poplawsky, Alexander J; Dingledine, Raymond; Hu, Xiaoping P

    2012-01-01

    Functional MRI (fMRI) measures neural activity indirectly by detecting the signal change associated with the hemodynamic response following brain activation. In order to alleviate the temporal and spatial specificity problems associated with fMRI, a number of attempts have been made to detect neural magnetic fields (NMFs) with MRI directly, but have thus far provided conflicting results. In this study, we used MR to detect axonal NMFs in the median giant fiber of the earthworm, Lumbricus terrestris, by examining the free induction decay (FID) with a sampling interval of 0.32 ms. The earthworm nerve cords were isolated from the vasculature and stimulated at the threshold of action potential generation. FIDs were acquired shortly after the stimulation, and simultaneous field potential recordings identified the presence or absence of single evoked action potentials. FIDs acquired when the stimulus did not evoke an action potential were summed as background. The phase of the background-subtracted FID exhibited a systematic change, with a peak phase difference of (-1.2 ± 0.3) × 10(-5) radians occurring at a time corresponding to the timing of the action potential. In addition, we calculated the possible changes in the FID magnitude and phase caused by a simulated action potential using a volume conductor model. The measured phase difference matched the theoretical prediction well in both amplitude and temporal characteristics. This study provides the first evidence for the direct detection of a magnetic field from an evoked action potential using MR. Copyright © 2011 John Wiley & Sons, Ltd.

  10. Abdominal acupuncture reduces laser-evoked potentials in healthy subjects

    DEFF Research Database (Denmark)

    Pazzaglia, C.; Liguori, S.; Minciotti, I.

    2015-01-01

    Objective: Acupuncture is known to reduce clinical pain, although the exact mechanism is unknown. The aim of the current study was to investigate the effect of acupuncture on laser-evoked potential amplitudes and laser pain perception. Methods: In order to evaluate whether abdominal acupuncture...... is able to modify pain perception, 10 healthy subjects underwent a protocol in which laser-evoked potentials (LEPs) and laser pain perception were collected before the test (baseline), during abdominal acupuncture, and 15. min after needle removal. The same subjects also underwent a similar protocol...... in which, however, sham acupuncture without any needle penetration was used. Results: During real acupuncture, both N1 and N2/P2 amplitudes were reduced, as compared to baseline (p . < 0.01). The reduction lasted up to 15. min after needle removal. Furthermore, laser pain perception was reduced during...

  11. Pharmacology of Bradykinin-Evoked Coughing in Guinea Pigs

    OpenAIRE

    Hewitt, Matthew M.; Adams, Gregory; Mazzone, Stuart B.; Mori, Nanako; Yu, Li; Canning, Brendan J.

    2016-01-01

    Bradykinin has been implicated as a mediator of the acute pathophysiological and inflammatory consequences of respiratory tract infections and in exacerbations of chronic diseases such as asthma. Bradykinin may also be a trigger for the coughing associated with these and other conditions. We have thus set out to evaluate the pharmacology of bradykinin-evoked coughing in guinea pigs. When inhaled, bradykinin induced paroxysmal coughing that was abolished by the bradykinin B2 receptor antagonis...

  12. Temporal suppression and augmentation of click-evoked otoacoustic emissions

    DEFF Research Database (Denmark)

    Verhulst, Sarah; Harte, James; Dau, Torsten

    2008-01-01

    This study investigates temporal suppression of click-evoked otoacoustic emissions (CEOAEs), occurring when a suppressor-click is presented close in time to a test-click (e.g. 0-8ms). Various temporal suppression methods for examining temporal changes in cochlear compression were evaluated and me...... under test. Temporal suppression was shown to be comparable for CEOAEs and SSOAEs, indicating similar underlying cochlear nonlinear mechanisms. This study contributes to a better understanding of the temporal properties of cochlear dynamics....

  13. Index finger somatosensory evoked potentials in blind Braille readers.

    Science.gov (United States)

    Giriyappa, Dayananda; Subrahmanyam, Roopakala Mysore; Rangashetty, Srinivasa; Sharma, Rajeev

    2009-01-01

    Traditionally, vision has been considered the dominant modality in our multi-sensory perception of the surrounding world. Sensory input via non-visual tracts becomes of greater behavioural relevance in totally blind individuals to enable effective interaction with the world around them. These include audition and tactile perceptions, leading to an augmentation in these perceptions when compared with normal sighted individuals. The objective of the present work was to study the index finger somatosensory evoked potentials (SEPs) in totally blind and normal sighted individuals. SEPs were recorded in 15 Braille reading totally blind females and compared with 15 age-matched normal sighted females. Latency and amplitudes of somatosensory evoked potential waveforms (N9, N13, and N20) were measured. Amplitude of N20 SEP (a cortical somatosensory evoked potential) was significantly larger in the totally blind than in normal sighted individuals (p Braille reading right index finger. Totally blind Braille readers have larger N20 amplitude, suggestive of greater somatosensory cortical representation of the Braille reading index finger.

  14. Neuronal Rac1 Is Required for Learning-Evoked Neurogenesis

    Science.gov (United States)

    Anderson, Matthew P.; Freewoman, Julia; Cord, Branden; Babu, Harish; Brakebusch, Cord

    2013-01-01

    Hippocampus-dependent learning and memory relies on synaptic plasticity as well as network adaptations provided by the addition of adult-born neurons. We have previously shown that activity-induced intracellular signaling through the Rho family small GTPase Rac1 is necessary in forebrain projection neurons for normal synaptic plasticity in vivo, and here we show that selective loss of neuronal Rac1 also impairs the learning-evoked increase in neurogenesis in the adult mouse hippocampus. Earlier work has indicated that experience elevates the abundance of adult-born neurons in the hippocampus primarily by enhancing the survival of neurons produced just before the learning event. Loss of Rac1 in mature projection neurons did reduce learning-evoked neurogenesis but, contrary to our expectations, these effects were not mediated by altering the survival of young neurons in the hippocampus. Instead, loss of neuronal Rac1 activation selectively impaired a learning-evoked increase in the proliferation and accumulation of neural precursors generated during the learning event itself. This indicates that experience-induced alterations in neurogenesis can be mechanistically resolved into two effects: (1) the well documented but Rac1-independent signaling cascade that enhances the survival of young postmitotic neurons; and (2) a previously unrecognized Rac1-dependent signaling cascade that stimulates the proliferative production and retention of new neurons generated during learning itself. PMID:23884931

  15. Binaural interaction in auditory evoked potentials: Brainstem, middle- and long-latency components

    OpenAIRE

    McPherson, DL; Starr, A

    1993-01-01

    Binaural interaction occurs in the auditory evoked potentials when the sum of the monaural auditory evoked potentials are not equivalent to the binaural evoked auditory potentials. Binaural interaction of the early- (0-10 ms), middle- (10-50 ms) and long-latency (50-200 ms) auditory evoked potentials was studied in 17 normal young adults. For the early components, binaural interaction was maximal at 7.35 ms accounting for a reduction of 21% of the amplitude of the binaural evoked potentials. ...

  16. Cold urticaria. Dissociation of cold-evoked histamine release and urticara following cold challenge.

    Science.gov (United States)

    Keahey, T M; Greaves, M W

    1980-02-01

    Nine patients with acquired cold urticaria were studied to assess the effects of beta-adrenergic agents, xanthines, and corticosteroids on cold-evoked histamine release from skin in vivo. The patients, in all of whom an immediate urticarial response developed after cooling of the forearm, demonstrated release of histamine into the venous blood draining that forearm. Following treatment with aminophylline and albuterol in combination or prednisone alone, suppression of histamine release occurred in all but one patient. In some patients, this was accompanied by a subjective diminution in pruritus or buring, but there was no significant improvement in the ensuing edema or erythema. In one patient, total suppression of histamine release was achieved without any effect on whealing and erythema in response to cold challenge. Our results suggest that histamine is not central to the pathogenesis of vascular changes in acquired cold urticaria.

  17. Sound detection by the longfin squid (em>Loligo pealeiiem>) studied with auditory evoked potentials: sensitivity to low-frequency particle motion and not pressure

    DEFF Research Database (Denmark)

    Mooney, T. Aran; Hanlon, Roger T; Christensen-Dalsgaard, Jakob

    2010-01-01

    of two wave types: (1) rapid stimulus-following waves, and (2) slower, high-amplitude waves, similar to some fish AEPs. Responses were obtained between 30 and 500 Hz with lowest thresholds between 100 and 200 Hz. At the best frequencies, AEP amplitudes were often >20 µV. Evoked potentials were...

  18. Basic emotions evoked by eugenol odor differ according to the dental experience. A neurovegetative analysis.

    Science.gov (United States)

    Robin, O; Alaoui-Ismaïli, O; Dittmar, A; Vernet-Maury, E

    1999-06-01

    Subjective individual experiences seem to indicate that odors may form strong connections with memories, especially those charged with emotional significance. In the dental field, this could be the case with the odorant eugenol, responsible for the typical clinging odor impregnating the dental office. The odor of eugenol could evoke memories of unpleasant dental experiences and, therefore, negative feelings such as anxiety and fear, since eugenates (cements containing eugenol) are used in potentially painful restorative dentistry. This hypothesis was tested by evaluating the emotional impact of the odor of eugenol through autonomic nervous system (ANS) analysis. The simultaneous variations of six ANS parameters (two electrodermal, two thermovascular and two cardiorespiratory), induced by the inhalation of this odorant, were recorded on volunteer subjects. Vanillin (a pleasant odorant) and propionic acid (an unpleasant one) served as controls. After the experiment, subjects were asked to rate the pleasantness versus unpleasantness of each odorant on an 11-point hedonic scale. The patterns of autonomic responses, obtained for each odorant and each subject, were transcribed into one of the six basic emotions defined by Ekman et al. (happiness, surprise, sadness, fear, anger and disgust). Results were compared between two groups of subjects divided according to their dental experience (fearful and non-fearful dental care subjects) and showed significant differences only for eugenol. This odorant was rated as pleasant by non-fearful dental subjects but unpleasant by fearful dental subjects. The evoked autonomic responses were mainly associated with positive basic emotions (happiness and surprise) in non-fearful dental subjects and with negative basic emotions (fear, anger, disgust) in fearful dental subjects. These results suggest that eugenol can be responsible for different emotional states depending on the subjects' dental experience, which seems to confirm the

  19. Evoking and Measuring Identification with Narrative Characters - A Linguistic Cues Framework.

    Science.gov (United States)

    van Krieken, Kobie; Hoeken, Hans; Sanders, José

    2017-01-01

    Current research on identification with narrative characters poses two problems. First, although identification is seen as a dynamic process of which the intensity varies during reading, it is usually measured by means of post-reading questionnaires containing self-report items. Second, it is not clear which linguistic characteristics evoke identification. The present paper proposes that an interdisciplinary framework allows for more precise manipulations and measurements of identification, which will ultimately advance our understanding of the antecedents and nature of this process. The central hypothesis of our Linguistic Cues Framework is that identification with a narrative character is a multidimensional experience for which different dimensions are evoked by different linguistic cues. The first part of the paper presents a literature review on identification, resulting in a renewed conceptualization of identification which distinguishes six dimensions: a spatiotemporal, a perceptual, a cognitive, a moral, an emotional, and an embodied dimension. The second part argues that each of these dimensions is influenced by specific linguistic cues which represent various aspects of the narrative character's perspective. The proposed relations between linguistic cues and identification dimensions are specified in six propositions. The third part discusses what psychological and neurocognitive methods enable the measurement of the various identification dimensions in order to test the propositions. By establishing explicit connections between the linguistic characteristics of narratives and readers' physical, psychological, and neurocognitive responses to narratives, this paper develops a research agenda for future empirical research on identification with narrative characters.

  20. Evoking and Measuring Identification with Narrative Characters – A Linguistic Cues Framework

    Science.gov (United States)

    van Krieken, Kobie; Hoeken, Hans; Sanders, José

    2017-01-01

    Current research on identification with narrative characters poses two problems. First, although identification is seen as a dynamic process of which the intensity varies during reading, it is usually measured by means of post-reading questionnaires containing self-report items. Second, it is not clear which linguistic characteristics evoke identification. The present paper proposes that an interdisciplinary framework allows for more precise manipulations and measurements of identification, which will ultimately advance our understanding of the antecedents and nature of this process. The central hypothesis of our Linguistic Cues Framework is that identification with a narrative character is a multidimensional experience for which different dimensions are evoked by different linguistic cues. The first part of the paper presents a literature review on identification, resulting in a renewed conceptualization of identification which distinguishes six dimensions: a spatiotemporal, a perceptual, a cognitive, a moral, an emotional, and an embodied dimension. The second part argues that each of these dimensions is influenced by specific linguistic cues which represent various aspects of the narrative character’s perspective. The proposed relations between linguistic cues and identification dimensions are specified in six propositions. The third part discusses what psychological and neurocognitive methods enable the measurement of the various identification dimensions in order to test the propositions. By establishing explicit connections between the linguistic characteristics of narratives and readers’ physical, psychological, and neurocognitive responses to narratives, this paper develops a research agenda for future empirical research on identification with narrative characters. PMID:28751875

  1. Clinical application of multifocal visual evoked potentials in children with epilepsy caused by intracranial disease

    International Nuclear Information System (INIS)

    Yukawa, Eiichi; Kim, Yeong-Jin; Kawasaki, Kensuke; Yoshii, Toshiaki; Hara, Yoshiaki

    2006-01-01

    We investigated whether visual field defects could be objectively evaluated using multifocal visual evoked potential (m-VEP) in two children with epilepsy caused by intracranial disease in whom it was difficult to measure the visual field. To determine normal waves in m-VEP, recording was performed using a visual evoked response imaging system (VERIS) Junior Science program (Mayo, Aichi, Japan) in 20 healthy children (20 eyes) peak latency and amplitude were used for assessment. In the two children with epilepsy, m-VEPs were recorded, and compared with the results of static perimetry or the lesions observed by Magnetic Resonance Imaging (MRI). In the 20 healthy children, there was no significant difference in the peak latency or amplitude among 4 quadrants by one-way analysis of variance. m-VEP in the children with epilepsy showed abnormal waves, corresponding to the visual field defects in the static perimetry or the lesions observed by MRI. Objective evaluation of visual field defects using m-VEP may be useful in children with epilepsy caused by intracranial disease in whom kinetic/static perimetry as a subjective examination is difficult. (author)

  2. Color vision in attention-deficit/hyperactivity disorder: a pilot visual evoked potential study.

    Science.gov (United States)

    Kim, Soyeon; Banaschewski, Tobias; Tannock, Rosemary

    2015-01-01

    Individuals with attention-deficit/hyperactivity disorder (ADHD) are reported to manifest visual problems (including ophthalmological and color perception, particularly for blue-yellow stimuli), but findings are inconsistent. Accordingly, this study investigated visual function and color perception in adolescents with ADHD using color Visual Evoked Potentials (cVEP), which provides an objective measure of color perception. Thirty-one adolescents (aged 13-18), 16 with a confirmed diagnosis of ADHD, and 15 healthy peers, matched for age, gender, and IQ participated in the study. All underwent an ophthalmological exam, as well as electrophysiological testing color Visual Evoked Potentials (cVEP), which measured the latency and amplitude of the neural P1 response to chromatic (blue-yellow, red-green) and achromatic stimuli. No intergroup differences were found in the ophthalmological exam. However, significantly larger P1 amplitude was found for blue and yellow stimuli, but not red/green or achromatic stimuli, in the ADHD group (particularly in the medicated group) compared to controls. Larger amplitude in the P1 component for blue-yellow in the ADHD group compared to controls may account for the lack of difference in color perception tasks. We speculate that the larger amplitude for blue-yellow stimuli in early sensory processing (P1) might reflect a compensatory strategy for underlying problems including compromised retinal input of s-cones due to hypo-dopaminergic tone. Copyright © 2014 Spanish General Council of Optometry. Published by Elsevier Espana. All rights reserved.

  3. Can a finding of cervical vestibular evoked myogenic potentials contribute to vestibular migraine diagnostics?

    Directory of Open Access Journals (Sweden)

    Tihana Vešligaj

    2016-02-01

    Full Text Available Aim To investigate differences in vestibular evoked myogenic potentials (VEMP results with patients suffering from vestibular migraine and healthy people, taking into consideration values of threshold and latency of occurrence of the characteristic wave complex, size of amplitude, and interaural amplitude ratio. According to the results, determine the importance and usefulness of VEMP in vestibular migraine diagnostics. Methods A total number of 62 subjects were included in the study, 32 of them belonging to a group of patients suffering from vestibular migraine (VM, while other 30 were in a control group of healthy subjects. Information was collected during the diagnostic evaluation. General and otoneurological history of patients and bedside tests, audiological results, videonystagmography and cervical vestibular evoked myogenic potentials (cVEMP were made. Results There was a difference in an interaural ratio of amplitudes in the experimental and control groups, but it was not found to be clinically significant. By ToneBurst 500 Hz method, the interaural amplitude ratio higher than 35% was measured in 46.97% subjects, while the response was totally unilaterally missing in 28.8% patients. Conclusion Even the sophisticated method as cVEMP does not give the ultimate result confirming the vestibular migraine diagnosis, and neither do other diagnostic methods. cVEMP result can contribute to the completion of full mosaic of vestibular migraine diagnostics.

  4. Recovery of voluntary and evoked muscle performance following intermittent-sprint exercise in the heat.

    Science.gov (United States)

    Duffield, Rob; King, Monique; Skein, Melissa

    2009-06-01

    This study investigated the effects of hot conditions on the acute recovery of voluntary and evoked muscle performance and physiological responses following intermittent exercise. Seven youth male and six female team-sport athletes performed two sessions separated by 7 d, involving a 30-min exercise protocol and 60-min passive recovery in either 22 degrees C or 33 degrees C and 40% relative humidity. The exercise protocol involved a 20-s maximal sprint every 5 min, separated by constant-intensity exercise at 100 W on a cycle ergometer. Maximal voluntary contraction (MVC) and a resting evoked twitch (Pf) of the right knee extensors were assessed before and immediately following exercise and again 15, 30, and 60 min postexercise, and capillary blood was obtained at the same time points to measure lactate, pH, and HCO3. During and following exercise, core temperature, heart rate and rating of perceived exertion (RPE) were also measured. No differences (P=0.73 to 0.95) in peak power during repeated sprints were present between conditions. Postexercise MVC was reduced (Pheat (83+/-10 vs 74+/-11% recovered). Both heart rate and core temperature were significantly higher (Precovery in the heat. Capillary blood values did not differ between conditions at any time point, whereas sessional RPE was higher 60 min postexercise in the heat. The current data suggests that passive recovery in warm temperatures not only delays cardiovascular and thermal recovery, but may also slow the recovery of MVC and RPE.

  5. Language performance and auditory evoked fields in 2- to 5-year-old children.

    Science.gov (United States)

    Yoshimura, Yuko; Kikuchi, Mitsuru; Shitamichi, Kiyomi; Ueno, Sanae; Remijn, Gerard B; Haruta, Yasuhiro; Oi, Manabu; Munesue, Toshio; Tsubokawa, Tsunehisa; Higashida, Haruhiro; Minabe, Yoshio

    2012-02-01

    Language development progresses at a dramatic rate in preschool children. As rapid temporal processing of speech signals is important in daily colloquial environments, we performed magnetoencephalography (MEG) to investigate the linkage between speech-evoked responses during rapid-rate stimulus presentation (interstimulus interval language performance in 2- to 5-year-old children (n = 59). Our results indicated that syllables with this short stimulus interval evoked detectable P50m, but not N100m, in most participants, indicating a marked influence of longer neuronal refractory period for stimulation. The results of equivalent dipole estimation showed that the intensity of the P50m component in the left hemisphere was positively correlated with language performance (conceptual inference ability). The observed positive correlations were suggested to reflect the maturation of synaptic organisation or axonal maturation and myelination underlying the acquisition of linguistic abilities. The present study is among the first to use MEG to study brain maturation pertaining to language abilities in preschool children. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  6. Contraction-evoked vasodilation and functional hyperaemia are compromised in branching skeletal muscle arterioles of young pre-diabetic mice.

    Science.gov (United States)

    Novielli, N M; Jackson, D N

    2014-06-01

    To investigate the effects of pre-diabetes on microvascular network function in contracting skeletal muscle. We hypothesized that pre-diabetes compromises contraction-evoked vasodilation of branching second-order (2A), third-order (3A) and fourth-order (4A) arterioles, where distal arterioles would be affected the greatest. Intravital video microscopy was used to measure arteriolar diameter (in 2A, 3A and 4A) and blood flow (in 2A and 3A) changes to electrical field stimulation of the gluteus maximus muscle in pre-diabetic (The Pound Mouse, PD) and control (c57bl6, CTRL) mice. Baseline diameter and blood flow were similar between groups (2A: ~20 μm, 3A: ~14 μm and 4A: ~8 μm; 2A: ~1 nL s(-1) and 3A: ~0.5 nL s(-1) ). Single tetanic contraction (100 Hz; 200, 400, 800 ms duration) evoked rapid-onset vasodilation (ROV) and blood flow responses that were blunted by ~50% and up to 81%, respectively, in PD vs. CTRL (P contraction (2 and 8 Hz, 30 s) evoked vasodilatory and blood flow responses that were also attenuated by ~50% and up to 71%, respectively, in PD vs. CTRL (P contraction was also up to 2.5-fold greater at 4A vs. 2A in CTRL; however spatial differences in vasodilation across arteriolar branch orders was disrupted in PD. Arteriolar dysregulation in pre-diabetes causes deficits in contraction-evoked dilation and blood flow, where greatest deficits occur at distal arterioles. © 2014 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  7. Non-linearity of visual evoked potentials in cerveau isolé and midpontine pretrigeminal cats.

    Science.gov (United States)

    Shibagaki, M; Kiyono, S; Kawashima, T; Watanabe, S

    1985-01-01

    Characteristics of the visual evoked responses to the flickering flash stimulation were studied in the cerveau isolé and midpontine pretrigeminal cats. The flash stimulation frequency was changed stepwise between 1 and 30 Hz in increasing and decreasing order. In all cases of both preparations, with drawing of fixed sweep speed of 200 msec in whole length, P1 and N1 latencies in the successive response slightly prolonged progressively 1 to about 20 Hz and thereafter shortened about 20-30 Hz stimulus frequencies in the course of the increasing phase, and vice versa in the course of the decreasing phase. Moreover, no difference in each latency (P1, N1, P2, N2) was found at the same stimulus frequency during increasing and decreasing phases. In the amplitude taken from the P1-N1 component, the peak was found in 5-9 Hz frequency bands. This peak was higher during the decreasing phase than during the increasing phase, which indicated a hysteresis phenomenon. A peak of power for the 1st harmonics was found at 3-6 Hz driving frequency bands, and that of the 2nd harmonics at 6-10 Hz. In the state without flash stimulus, no peaks or valleys in the power spectrum were found in specific frequencies, for example 3-10 Hz. The peak in the amplitude and that in the power spectrum at 3-10 Hz stimulus frequency bands suggested an entrainment phenomenon induced by forced oscillation. The phenomena of entrainment and hysteresis suggest the existence of a non-linear structure in the oscillation generating systems of visual evoked response.

  8. Brain Activity Associated with Slow Temporal Summation of C-fiber Evoked Pain in Fibromyalgia Patients and Healthy Controls

    OpenAIRE

    Staud, Roland; Craggs, Jason G.; Perlstein, William M.; Robinson, Michael E.; Price, Donald D.

    2008-01-01

    Temporal summation of “second pain” (TSSP) is the result of C-fiber-evoked responses of dorsal-horn neurons, termed ‘windup’. This phenomenon is dependent on stimulus frequency (≥0.33 Hz) and relevant for central sensitization as well as chronic pain. Whereas our previous functional magnetic resonance imaging (fMRI) study characterized neural correlates of TSSP in eleven healthy volunteers, the present study was designed to compare brain responses associated with TSSP across these healthy par...

  9. Auditory evoked potentials: predicting speech therapy outcomes in children with phonological disorders

    Directory of Open Access Journals (Sweden)

    Renata Aparecida Leite

    2014-03-01

    Full Text Available OBJECTIVES: This study investigated whether neurophysiologic responses (auditory evoked potentials differ between typically developed children and children with phonological disorders and whether these responses are modified in children with phonological disorders after speech therapy. METHODS: The participants included 24 typically developing children (Control Group, mean age: eight years and ten months and 23 children clinically diagnosed with phonological disorders (Study Group, mean age: eight years and eleven months. Additionally, 12 study group children were enrolled in speech therapy (Study Group 1, and 11 were not enrolled in speech therapy (Study Group 2. The subjects were submitted to the following procedures: conventional audiological, auditory brainstem response, auditory middle-latency response, and P300 assessments. All participants presented with normal hearing thresholds. The study group 1 subjects were reassessed after 12 speech therapy sessions, and the study group 2 subjects were reassessed 3 months after the initial assessment. Electrophysiological results were compared between the groups. RESULTS: Latency differences were observed between the groups (the control and study groups regarding the auditory brainstem response and the P300 tests. Additionally, the P300 responses improved in the study group 1 children after speech therapy. CONCLUSION: The findings suggest that children with phonological disorders have impaired auditory brainstem and cortical region pathways that may benefit from speech therapy.

  10. Cortical modulation of short-latency TMS-evoked potentials

    Directory of Open Access Journals (Sweden)

    Domenica eVeniero

    2013-01-01

    Full Text Available Transcranial magnetic stimulation - electroencephalogram (TMS-EEG co-registration offers the opportunity to test reactivity of brain areas across distinct conditions through TMS-evoked potentials (TEPs. Several TEPs have been described, their functional meaning being largely unknown. In particular, short-latency potentials peaking at 5 (P5 and 8 (N8 ms after the TMS pulse have been recently described, but because of their huge amplitude, the problem of whether their origin is cortical or not has been opened. To gain information about these components, we employed a protocol that modulates primary motor cortex excitability (MI through an exclusively cortical phenomena: low frequency stimulation of premotor area (PMC. TMS was applied simultaneously with EEG recording from 70 electrodes. Amplitude of TEPs evoked by 200 single-pulses TMS delivered over MI at 110% of resting motor threshold was measured before and after applying 900 TMS conditioning stimuli to left premotor cortex with 1 Hz repetition rate. Single subject analyses showed reduction in TEPs amplitude after PMC conditioning in a sample of participants and increase in TEPs amplitude in two subjects. No effects were found on corticospinal excitability as recorded by motor evoked potentials (MEPs. Furthermore, correlation analysis showed an inverse relation between the effects of the conditioning protocol on P5-N8 complex amplitude and MEPs amplitude. Because the effects of the used protocol have been ascribed to a cortical interaction between premotor area and MI, we suggest that despite the sign of P5-N8 amplitude modulation is not consistent across participant, this modulation could indicate, at least in part, their cortical origin. We conclude that with an accurate experimental procedure early-latency components can be used to evaluate the reactivity of the stimulated cortex.

  11. Temporal suppression and augmentation of click-evoked otoacoustic emissions

    DEFF Research Database (Denmark)

    Verhulst, Sarah; Harte, James; Dau, Torsten

    2008-01-01

    This study investigates and models temporal suppression of click-evoked otoacoustic emissions (CEOAEs). This suppression-effect is created when a suppressor-click is presented close in time to a test-click. The analysis was carried out for short time-frames of short- and long-latency CEOAEs...... suppression is present in all CEOAEs for inter-click intervals (ICIs) less than 8 ms. The long-latency CEOAEs showed augmentation (i.e., negative suppression) for ICIs of 6-7 ms which was not reported for the short-latency CEOAE at these ICIs. A phenomenological approach is adopted here to explain both...

  12. Temporary hyperthyroidism (hypertriiodothyroninemia) to be evoked by stress

    International Nuclear Information System (INIS)

    Ehni, A.; Kampmann, H.

    1982-01-01

    From patients of intensive care unit suffering from acute myocardial infarction, decompensated hypertension with left heart insufficiency, severe coronary heart disease, pulmonary infarction, cerebral ischemia 102 were selected with suspicion of hyperthyroidism because of clinical signs. 12 patients fulfilled the criteria of temporary hyperthyroidism, 6 patients revealed persistent hyperthyroidism. Excluding other causes for evoked hyperthyroidism as common etiological factor psychogenic stress is discussed. It is concluded, that increased thyroid hormone concentration in patients of intensive care units should be controlled within a short time in order to delineate temporary hyperthyroidism against permanent hyperthyroidism. (orig.) [de

  13. Temporary hyperthyroidism (hypertriiodothyroninemia) to be evoked by stress

    Energy Technology Data Exchange (ETDEWEB)

    Ehni, A.; Kampmann, H.

    1982-10-01

    From patients of intensive care unit suffering from acute myocardial infarction, decompensated hypertension with left heart insufficiency, severe coronary heart disease, pulmonary infarction, cerebral ischemia 102 were selected with suspicion of hyperthyroidism because of clinical signs. 12 patients fulfilled the criteria of temporary hyperthyroidism, 6 patients revealed persistent hyperthyroidism. Excluding other causes for evoked hyperthyroidism as common etiological factor psychogenic stress is discussed. It is concluded, that increased thyroid hormone concentration in patients of intensive care units should be controlled within a short time in order to delineate temporary hyperthyroidism against permanent hyperthyroidism.

  14. Light scattering changes follow evoked potentials from hippocampal Schaeffer collateral stimulation

    DEFF Research Database (Denmark)

    Rector, D M; Poe, G R; Kristensen, Morten Pilgaard

    1997-01-01

    , concurrently with larger population postsynaptic potentials. Optical signals occurred over a time course similar to that for electrical signals and increased with larger stimulation amplitude to a maximum, then decreased with further increases in stimulation current. Camera images revealed a topographic......We assessed relationships of evoked electrical and light scattering changes from cat dorsal hippocampus following Schaeffer collateral stimulation. Under anesthesia, eight stimulating electrodes were placed in the left hippocampal CA field and an optic probe, coupled to a photodiode or a charge....... Electrode recordings and photodiode output were simultaneously acquired at 2.4 kHz during single biphasic pulse stimuli 0.5 ms in duration with 0.1-Hz intervals. Camera images were digitized at 100 Hz. An average of 150 responses was calculated for each of six stimulating current levels. Stimuli elicited...

  15. Addition of visual noise boosts evoked potential-based brain-computer interface.

    Science.gov (United States)

    Xie, Jun; Xu, Guanghua; Wang, Jing; Zhang, Sicong; Zhang, Feng; Li, Yeping; Han, Chengcheng; Li, Lili

    2014-05-14

    Although noise has a proven beneficial role in brain functions, there have not been any attempts on the dedication of stochastic resonance effect in neural engineering applications, especially in researches of brain-computer interfaces (BCIs). In our study, a steady-state motion visual evoked potential (SSMVEP)-based BCI with periodic visual stimulation plus moderate spatiotemporal noise can achieve better offline and online performance due to enhancement of periodic components in brain responses, which was accompanied by suppression of high harmonics. Offline results behaved with a bell-shaped resonance-like functionality and 7-36% online performance improvements can be achieved when identical visual noise was adopted for different stimulation frequencies. Using neural encoding modeling, these phenomena can be explained as noise-induced input-output synchronization in human sensory systems which commonly possess a low-pass property. Our work demonstrated that noise could boost BCIs in addressing human needs.

  16. The effect of nucleotides and adenosine on stimulus-evoked glutamate release from rat brain cortical slices.

    Science.gov (United States)

    Bennett, G C; Boarder, M R

    2000-10-01

    Evidence has previously been presented that P1 receptors for adenosine, and P2 receptors for nucleotides such as ATP, regulate stimulus-evoked release of biogenic amines from nerve terminals in the brain. Here we investigated whether adenosine and nucleotides exert presynaptic control over depolarisation-elicited glutamate release. Slices of rat brain cortex were perfused and stimulated with pulses of 46 mM K(+) in the presence of the glutamate uptake inhibitor L-trans-pyrrolidine-2,4-dicarboxylic acid (0.2 mM). High K(+) substantially increased efflux of glutamate from the slices. Basal glutamate release was unchanged by the presence of nucleotides or adenosine at concentrations of 300 microM. Adenosine, ATP, ADP and adenosine 5'-O-(3-thiotriphoshate) at 300 microM attenuated depolarisation-evoked release of glutamate. However UTP, 2-methylthio ATP, 2-methylthio ADP, and alpha,beta-methylene ATP at 300 microM had no effect on stimulated glutamate efflux. Adenosine deaminase blocked the effect of adenosine, but left the response to ATP unchanged. The A(1) antagonist 8-cyclopentyl-1, 3-dipropylxanthine antagonised the inhibitory effect of both adenosine and ATP. Cibacron blue 3GA inhibited stimulus-evoked glutamate release when applied alone. When cibacron blue 3GA was present with ATP, stimulus-evoked glutamate release was almost eliminated. However, this P2 antagonist had no effect on the inhibition by adenosine. These results show that the release of glutamate from depolarised nerve terminals of the rat cerebral cortex is inhibited by adenosine and ATP. ATP appears to act directly and not through conversion to adenosine.

  17. Exchange transfusion with fluorocarbon for studying synaptically evoked optical signal in rat cortex.

    Science.gov (United States)

    Nomura, Y; Fujii, F; Sato, C; Nemoto, M; Tamura, M

    2000-02-01

    . Zieglgansberger, The intrinsic optical signal evoked by chiasm stimulation in the rat suprachiasmatic nuclei exhibits GABAergic day-night variation, Eur. J. Neurosci. 8 (1996) 319-328] [3] [9] [13] [24]. A spectral fitting method with three components is used for the analysis of intrinsic optical signal [M. Nemoto, Y. Nomura, C. Sato, M. Tamura, K. Houkin, I. Koyanagi, H. Abe, Analysis of optical signals evoked by peripheral nerve stimulation in rat somatosensory cortex: dynamic changes in hemoglobin concentration and oxygenation, J. Cereb. Blood Flow Metab. 19 (1999) 246-259] [17]. In order to validate the analysis, we need the knowledge on contribution of signal resulted from hemoglobin to total intrinsic optical signal. The exchange transfusion with fluorocarbon has the advantage that can change the spectral contribution of hemoglobin [M. Ferrari, M.A. Williams, D.A. Wilson, N.V. Thakor, R.J. Traystman, D.F. Hanley, Cat brain cytochrome-c oxidase redox changes induced by hypoxia after blood-fluorocarbon exchange transfusion, Am. J. Physiol. 269 (1995) H417-H424; A.L. Sylvia, C.A. Piantadosi, O(2) dependence of in vivo brain cytochrome redox responses and energy metabolism in bloodless rats, J. Cereb. Blood Flow Metab. 8 (1988) 163-172] [6] [23]. Here we describe a new method of the reduction of hemoglobin signal from somatosensory evoked optical intrinsic signal in rat cortex by the combination of exchange transfusion with fluorocarbon and imaging system of thinned skull cranial window. The method allows for the study of the synaptically evoked changes in light scattering as well as fluorescence of calcium indicator or voltage-sensitive dye without absorption of hemoglobin.

  18. Simultaneous detection of P300 and steady-state visually evoked potentials for hybrid brain-computer interface.

    Science.gov (United States)

    Combaz, Adrien; Van Hulle, Marc M

    2015-01-01

    We study the feasibility of a hybrid Brain-Computer Interface (BCI) combining simultaneous visual oddball and Steady-State Visually Evoked Potential (SSVEP) paradigms, where both types of stimuli are superimposed on a computer screen. Potentially, such a combination could result in a system being able to operate faster than a purely P300-based BCI and encode more targets than a purely SSVEP-based BCI. We analyse the interactions between the brain responses of the two paradigms, and assess the possibility to detect simultaneously the brain activity evoked by both paradigms, in a series of 3 experiments where EEG data are analysed offline. Despite differences in the shape of the P300 response between pure oddball and hybrid condition, we observe that the classification accuracy of this P300 response is not affected by the SSVEP stimulation. We do not observe either any effect of the oddball stimulation on the power of the SSVEP response in the frequency of stimulation. Finally results from the last experiment show the possibility of detecting both types of brain responses simultaneously and suggest not only the feasibility of such hybrid BCI but also a gain over pure oddball- and pure SSVEP-based BCIs in terms of communication rate.

  19. Blocking mammalian target of rapamycin (mTOR) improves neuropathic pain evoked by spinal cord injury.

    Science.gov (United States)

    Wang, Xiaoping; Li, Xiaojia; Huang, Bin; Ma, Shuai

    2016-01-01

    Spinal cord injury (SCI) is an extremely serious type of physical trauma observed in clinics. Neuropathic pain resulting from SCI has a lasting and significant impact on most aspects of daily life. Thus, a better understanding of the molecular pathways responsible for the cause of neuropathic pain observed in SCI is important to develop effective therapeutic agents and treatment strategies. Mammalian target of rapamycin (mTOR) is a serine/threonine protein kinase that is well known for its critical roles in regulating protein synthesis and growth. Furthermore, compelling evidence supports the notion that widespread dysregulation of mTOR and its downstream pathways are involved in neuropathic pain. Thus, in this study we specifically examined the underlying mechanisms by which mTOR and its signaling pathways are involved in SCI-evoked neuropathic pain in a rat model. Overall, we demonstrated that SCI increased the protein expression of p-mTOR, and mTORmediated- phosphorylation of 4E-binding protein 4 (4E-BP1) and p70 ribosomal S6 protein kinase 1 (S6K1) in the superficial dorsal horn of the spinal cord. Also, we showed that blocking spinal mTOR by intrathecal injection of rapamycin significantly inhibited pain responses induced by mechanical and thermal stimulation. In addition, blocking spinal phosphatidylinositide 3-kinase (p-PI3K) pathway significantly attenuated activities of p-mTOR pathways as well as mechanical and thermal hyperalgesia in SCI rats. Moreover, blocking mTOR and PI3K decreased the enhanced levels of substance P and calcitonin gene-related peptide (CGRP) in the dorsal horn of SCI rats. We revealed specific signaling pathways leading to SCI-evoked neuropathic pain, including the activation of PI3K, mTOR and its downstream signaling pathways. Targeting one or more of these signaling molecules may present new opportunities for treatment and management of neuropathic pain often observed in patients with SCI.

  20. Nostalgia-Evoked Inspiration: Mediating Mechanisms and Motivational Implications.

    Science.gov (United States)

    Stephan, Elena; Sedikides, Constantine; Wildschut, Tim; Cheung, Wing-Yee; Routledge, Clay; Arndt, Jamie

    2015-10-01

    Six studies examined the nostalgia-inspiration link and its motivational implications. In Study 1, nostalgia proneness was positively associated with inspiration frequency and intensity. In Studies 2 and 3, the recollection of nostalgic (vs. ordinary) experiences increased both general inspiration and specific inspiration to engage in exploratory activities. In Study 4, serial mediational analyses supported a model in which nostalgia increases social connectedness, which subsequently fosters self-esteem, which then boosts inspiration. In Study 5, a rigorous evaluation of this serial mediational model (with a novel nostalgia induction controlling for positive affect) reinforced the idea that nostalgia-elicited social connectedness increases self-esteem, which then heightens inspiration. Study 6 extended the serial mediational model by demonstrating that nostalgia-evoked inspiration predicts goal pursuit (intentions to pursue an important goal). Nostalgia spawns inspiration via social connectedness and attendant self-esteem. In turn, nostalgia-evoked inspiration bolsters motivation. © 2015 by the Society for Personality and Social Psychology, Inc.

  1. High-frequency combination coding-based steady-state visual evoked potential for brain computer interface

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Feng; Zhang, Xin; Xie, Jun; Li, Yeping; Han, Chengcheng; Lili, Li; Wang, Jing [School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Xu, Guang-Hua [School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710054 (China)

    2015-03-10

    This study presents a new steady-state visual evoked potential (SSVEP) paradigm for brain computer interface (BCI) systems. The goal of this study is to increase the number of targets using fewer stimulation high frequencies, with diminishing subject’s fatigue and reducing the risk of photosensitive epileptic seizures. The new paradigm is High-Frequency Combination Coding-Based High-Frequency Steady-State Visual Evoked Potential (HFCC-SSVEP).Firstly, we studied SSVEP high frequency(beyond 25 Hz)response of SSVEP, whose paradigm is presented on the LED. The SNR (Signal to Noise Ratio) of high frequency(beyond 40 Hz) response is very low, which is been unable to be distinguished through the traditional analysis method; Secondly we investigated the HFCC-SSVEP response (beyond 25 Hz) for 3 frequencies (25Hz, 33.33Hz, and 40Hz), HFCC-SSVEP produces n{sup n} with n high stimulation frequencies through Frequence Combination Code. Further, Animproved Hilbert-huang transform (IHHT)-based variable frequency EEG feature extraction method and a local spectrum extreme target identification algorithmare adopted to extract time-frequency feature of the proposed HFCC-SSVEP response.Linear predictions and fixed sifting (iterating) 10 time is used to overcome the shortage of end effect and stopping criterion,generalized zero-crossing (GZC) is used to compute the instantaneous frequency of the proposed SSVEP respondent signals, the improved HHT-based feature extraction method for the proposed SSVEP paradigm in this study increases recognition efficiency, so as to improve ITR and to increase the stability of the BCI system. what is more, SSVEPs evoked by high-frequency stimuli (beyond 25Hz) minimally diminish subject’s fatigue and prevent safety hazards linked to photo-induced epileptic seizures, So as to ensure the system efficiency and undamaging.This study tests three subjects in order to verify the feasibility of the proposed method.

  2. High-frequency combination coding-based steady-state visual evoked potential for brain computer interface

    International Nuclear Information System (INIS)

    Zhang, Feng; Zhang, Xin; Xie, Jun; Li, Yeping; Han, Chengcheng; Lili, Li; Wang, Jing; Xu, Guang-Hua

    2015-01-01

    This study presents a new steady-state visual evoked potential (SSVEP) paradigm for brain computer interface (BCI) systems. The goal of this study is to increase the number of targets using fewer stimulation high frequencies, with diminishing subject’s fatigue and reducing the risk of photosensitive epileptic seizures. The new paradigm is High-Frequency Combination Coding-Based High-Frequency Steady-State Visual Evoked Potential (HFCC-SSVEP).Firstly, we studied SSVEP high frequency(beyond 25 Hz)response of SSVEP, whose paradigm is presented on the LED. The SNR (Signal to Noise Ratio) of high frequency(beyond 40 Hz) response is very low, which is been unable to be distinguished through the traditional analysis method; Secondly we investigated the HFCC-SSVEP response (beyond 25 Hz) for 3 frequencies (25Hz, 33.33Hz, and 40Hz), HFCC-SSVEP produces n n with n high stimulation frequencies through Frequence Combination Code. Further, Animproved Hilbert-huang transform (IHHT)-based variable frequency EEG feature extraction method and a local spectrum extreme target identification algorithmare adopted to extract time-frequency feature of the proposed HFCC-SSVEP response.Linear predictions and fixed sifting (iterating) 10 time is used to overcome the shortage of end effect and stopping criterion,generalized zero-crossing (GZC) is used to compute the instantaneous frequency of the proposed SSVEP respondent signals, the improved HHT-based feature extraction method for the proposed SSVEP paradigm in this study increases recognition efficiency, so as to improve ITR and to increase the stability of the BCI system. what is more, SSVEPs evoked by high-frequency stimuli (beyond 25Hz) minimally diminish subject’s fatigue and prevent safety hazards linked to photo-induced epileptic seizures, So as to ensure the system efficiency and undamaging.This study tests three subjects in order to verify the feasibility of the proposed method

  3. Quantification of the proportion of motor neurons recruited by transcranial electrical stimulation during intraoperative motor evoked potential monitoring.

    Science.gov (United States)

    Tsutsui, Shunji; Yamada, Hiroshi; Hashizume, Hiroshi; Minamide, Akihito; Nakagawa, Yukihiro; Iwasaki, Hiroshi; Yoshida, Munehito

    2013-12-01

    Transcranial motor evoked potentials (TcMEPs) are widely used to monitor motor function during spinal surgery. However, they are much smaller and more variable in amplitude than responses evoked by maximal peripheral nerve stimulation, suggesting that a limited number of spinal motor neurons to the target muscle are excited by transcranial stimulation. The aim of this study was to quantify the proportion of motor neurons recruited during TcMEP monitoring under general anesthesia. In twenty patients who underwent thoracic and/or lumbar spinal surgery with TcMEP monitoring, the triple stimulation technique (TST) was applied to the unilateral upper arm intraoperatively. Total intravenous anesthesia was employed. Trains of four stimuli were delivered with maximal intensity and an inter-pulse interval of 1.5 ms. TST responses were recorded from the abductor digiti minimi muscle, and the negative peak amplitude and area were measured and compared between the TST test (two collisions between transcranial and proximal and distal peripheral stimulation) and control response (two collisions between two proximal and one distal peripheral stimulation). The highest degree of superimposition of the TST test and control responses was chosen from several trials per patient. The average ratios (test:control) were 17.1 % (range 1.8-38 %) for the amplitudes and 21.6 % (range 2.9-40 %) for the areas. The activity of approximately 80 % of the motor units to the target muscle cannot be detected by TcMEP monitoring. Therefore, changes in evoked potentials must be interpreted cautiously when assessing segmental motor function with TcMEP monitoring.

  4. Primary Generators of Visually Evoked Field Potentials Recorded in the Macaque Auditory Cortex

    Science.gov (United States)

    Smiley, John F.; Schroeder, Charles E.

    2017-01-01

    Prior studies have reported “local” field potential (LFP) responses to faces in the macaque auditory cortex and have suggested that such face-LFPs may be substrates of audiovisual integration. However, although field potentials (FPs) may reflect the synaptic currents of neurons near the recording electrode, due to the use of a distant reference electrode, they often reflect those of synaptic activity occurring in distant sites as well. Thus, FP recordings within a given brain region (e.g., auditory cortex) may be “contaminated” by activity generated elsewhere in the brain. To determine whether face responses are indeed generated within macaque auditory cortex, we recorded FPs and concomitant multiunit activity with linear array multielectrodes across auditory cortex in three macaques (one female), and applied current source density (CSD) analysis to the laminar FP profile. CSD analysis revealed no appreciable local generator contribution to the visual FP in auditory cortex, although we did note an increase in the amplitude of visual FP with cortical depth, suggesting that their generators are located below auditory cortex. In the underlying inferotemporal cortex, we found polarity inversions of the main visual FP components accompanied by robust CSD responses and large-amplitude multiunit activity. These results indicate that face-evoked FP responses in auditory cortex are not generated locally but are volume-conducted from other face-responsive regions. In broader terms, our results underscore the caution that, unless far-field contamination is removed, LFPs in general may reflect such “far-field” activity, in addition to, or in absence of, local synaptic responses. SIGNIFICANCE STATEMENT Field potentials (FPs) can index neuronal population activity that is not evident in action potentials. However, due to volume conduction, FPs may reflect activity in distant neurons superimposed upon that of neurons close to the recording electrode. This is

  5. Cortical Double-Opponent Cells in Color Perception: Perceptual Scaling and Chromatic Visual Evoked Potentials.

    Science.gov (United States)

    Nunez, Valerie; Shapley, Robert M; Gordon, James

    2018-01-01

    In the early visual cortex V1, there are currently only two known neural substrates for color perception: single-opponent and double-opponent cells. Our aim was to explore the relative contributions of these neurons to color perception. We measured the perceptual scaling of color saturation for equiluminant color checkerboard patterns (designed to stimulate double-opponent neurons preferentially) and uniformly colored squares (designed to stimulate only single-opponent neurons) at several cone contrasts. The spatially integrative responses of single-opponent neurons would produce the same response magnitude for checkerboards as for uniform squares of the same space-averaged cone contrast. However, perceived saturation of color checkerboards was higher than for the corresponding squares. The perceptual results therefore imply that double-opponent cells are involved in color perception of patterns. We also measured the chromatic visual evoked potential (cVEP) produced by the same stimuli; checkerboard cVEPs were much larger than those for corresponding squares, implying that double-opponent cells also contribute to the cVEP response. The total Fourier power of the cVEP grew sublinearly with cone contrast. However, the 6-Hz Fourier component's power grew linearly with contrast-like saturation perception. This may also indicate that cortical coding of color depends on response dynamics.

  6. Human cortical activity evoked by the assignment of authenticity when viewing works of art

    Directory of Open Access Journals (Sweden)

    Mengfei eHuang

    2011-11-01

    Full Text Available The expertise of others is a major social influence on our everyday decisions and actions. Many viewers of art, whether expert or naïve, are convinced that the full aesthetic appreciation of an artwork depends upon the assurance that the work is genuine rather than fake. Rembrandt portraits provide an interesting image set for testing this idea, as there is a large number of them and recent scholarship has determined that quite a few fakes and copies exist. Use of this image set allowed us to separate the brain's response to images of genuine and fake pictures from the brain's response to external advice about the authenticity of the paintings. Using functional magnetic resonance imaging, viewing of artworks assigned as ‘copy’, rather than ‘authentic’, evoked stronger responses in frontopolar cortex (FPC and right precuneus, regardless of whether the portrait was actually genuine. Advice about authenticity had no direct effect on the cortical visual areas responsive to the paintings, but there was a significant psychophysiological interaction between the FPC and the lateral occipital area, which suggests that these visual areas may be modulated by FPC. We propose that the activation of brain networks rather than a single cortical area in this paradigm supports the art-scholars’ view that aesthetic judgments are multi-faceted and multi-dimensional in nature.

  7. Click-Evoked Auditory Efferent Activity: Rate and Level Effects.

    Science.gov (United States)

    Boothalingam, Sriram; Kurke, Julianne; Dhar, Sumitrajit

    2018-05-07

    There currently are no standardized protocols to evaluate auditory efferent function in humans. Typical tests use broadband noise to activate the efferents, but only test the contralateral efferent pathway, risk activating the middle ear muscle reflex (MEMR), and are laborious for clinical use. In an attempt to develop a clinical test of bilateral auditory efferent function, we have designed a method that uses clicks to evoke efferent activity, obtain click-evoked otoacoustic emissions (CEOAEs), and monitor MEMR. This allows for near-simultaneous estimation of cochlear and efferent function. In the present study, we manipulated click level (60, 70, and 80 dB peak-equivalent sound pressure level [peSPL]) and rate (40, 50, and 62.5 Hz) to identify an optimal rate-level combination that evokes measurable efferent modulation of CEOAEs. Our findings (n = 58) demonstrate that almost all click levels and rates used caused significant inhibition of CEOAEs, with a significant interaction between level and rate effects. Predictably, bilateral activation produced greater inhibition compared to stimulating the efferents only in the ipsilateral or contralateral ear. In examining the click rate-level effects during bilateral activation in greater detail, we observed a 1-dB inhibition of CEOAE level for each 10-dB increase in click level, with rate held constant at 62.5 Hz. Similarly, a 10-Hz increase in rate produced a 0.74-dB reduction in CEOAE level, with click level held constant at 80 dB peSPL. The effect size (Cohen's d) was small for either monaural condition and medium for bilateral, faster-rate, and higher-level conditions. We were also able to reliably extract CEOAEs from efferent eliciting clicks. We conclude that clicks can indeed be profitably employed to simultaneously evaluate cochlear health using CEOAEs as well as their efferent modulation. Furthermore, using bilateral clicks allows the evaluation of both the crossed and uncrossed elements of the auditory

  8. Assessment of visual disability using visual evoked potentials.

    Science.gov (United States)

    Jeon, Jihoon; Oh, Seiyul; Kyung, Sungeun

    2012-08-06

    The purpose of this study is to validate the use of visual evoked potential (VEP) to objectively quantify visual acuity in normal and amblyopic patients, and determine if it is possible to predict visual acuity in disability assessment to register visual pathway lesions. A retrospective chart review was conducted of patients diagnosed with normal vision, unilateral amblyopia, optic neuritis, and visual disability who visited the university medical center for registration from March 2007 to October 2009. The study included 20 normal subjects (20 right eyes: 10 females, 10 males, ages 9-42 years), 18 unilateral amblyopic patients (18 amblyopic eyes, ages 19-36 years), 19 optic neuritis patients (19 eyes: ages 9-71 years), and 10 patients with visual disability having visual pathway lesions. Amplitude and latencies were analyzed and correlations with visual acuity (logMAR) were derived from 20 normal and 18 amblyopic subjects. Correlation of VEP amplitude and visual acuity (logMAR) of 19 optic neuritis patients confirmed relationships between visual acuity and amplitude. We calculated the objective visual acuity (logMAR) of 16 eyes from 10 patients to diagnose the presence or absence of visual disability using relations derived from 20 normal and 18 amblyopic eyes. Linear regression analyses between amplitude of pattern visual evoked potentials and visual acuity (logMAR) of 38 eyes from normal (right eyes) and amblyopic (amblyopic eyes) subjects were significant [y = -0.072x + 1.22, x: VEP amplitude, y: visual acuity (logMAR)]. There were no significant differences between visual acuity prediction values, which substituted amplitude values of 19 eyes with optic neuritis into function. We calculated the objective visual acuity of 16 eyes of 10 patients to diagnose the presence or absence of visual disability using relations of y = -0.072x + 1.22 (-0.072). This resulted in a prediction reference of visual acuity associated with malingering vs. real

  9. SOMATOSENSORY EVOKED POTENTIALS IN DIABETES MELLITUS TYPE - 2

    Directory of Open Access Journals (Sweden)

    Rekha

    2015-10-01

    Full Text Available Diabetes mellitus is the most common metabolic disorder affecting majority of population. It is estimated that over 400 million people throughout the world have diabetes. It has progressed to be a pandemic from an epidemic causing morbidity and mortality in the population. Among the many complications of diabetes, diabetic neuropathies contribute majorly to the morbidity associated with the disease. Axonal conduction is affected by elevated levels of protein kinase c causing neuronal ischemia; decreased ce llular myoinositol affecting sodium potassium ATPase pump leads to decreased nerve conduction; Somatosensory E voked P otentials (SSEPs reflect the activity of somatosensory pathways mediated through the dorsal columns of the spinal cord and the specific so matosensory cortex. Recording of Somatosensory Evoked Potentials in diabetics is done to assess the sensory involvement of spinal cord. Presence of SEPs provides clear evidence for axonal continuity and by using different stimulation sites, the rate of reg eneration can be determined. Both onset and peak latencies of all SEP components are prolonged in patients with diabetes. Present study is done to compare somatosensory evoked potentials in diabetics and normal subjects. MATERIALS AND METHOD S: The present study was undertaken at the Upgraded Department of Physiology, Osmania Medical College, Koti, Hyderabad. The study was conducted on subjects, both male and female in the age group of 45 to 55 years, suffering from type II diabetes excluding other neurologi cal disorders. Non - invasive method of estimation of nerve conduction studies using SFEMG/EP — Electromyography or evoked potential system (Nicolet systems — USA using surface electrodes with automated computerized monitor attached with printer is used. RESUL TS : ANOVA showed statistically significant N9 latency (right & left sides. Latencies of all the components of SSEPs were more significant than amplitudes in Diabetic

  10. Response

    Science.gov (United States)

    Higgins, Chris

    2012-01-01

    This article presents the author's response to the reviews of his book, "The Good Life of Teaching: An Ethics of Professional Practice." He begins by highlighting some of the main concerns of his book. He then offers a brief response, doing his best to address the main criticisms of his argument and noting where the four reviewers (Charlene…

  11. A template-free approach for determining the latency of single events of auditory evoked M100

    Energy Technology Data Exchange (ETDEWEB)

    Burghoff, M [Physikalisch-Technische Bundesanstalt (PTB), Berlin (Germany); Link, A [Physikalisch-Technische Bundesanstalt (PTB), Berlin (Germany); Salajegheh, A [Cognitive Neuroscience of Language Laboratory, University of Maryland College Park, MD (United States); Elster, C [Physikalisch-Technische Bundesanstalt (PTB), Berlin (Germany); Poeppel, D [Cognitive Neuroscience of Language Laboratory, University of Maryland College Park, MD (United States); Trahms, L [Physikalisch-Technische Bundesanstalt (PTB), Berlin (Germany)

    2005-02-07

    The phase of the complex output of a narrow band Gaussian filter is taken to define the latency of the auditory evoked response M100 recorded by magnetoencephalography. It is demonstrated that this definition is consistent with the conventional peak latency. Moreover, it provides a tool for reducing the number of averages needed for a reliable estimation of the latency. Single-event latencies obtained by this procedure can be used to improve the signal quality of the conventional average by latency adjusted averaging. (note)

  12. Visual evoked potentials in overt hypothyroid patients before and after achievement of euthyroidism

    Directory of Open Access Journals (Sweden)

    Aprajita

    2017-01-01

    Full Text Available Background: Visual evoked potential (VEP measures the time taken for visual stimulus to travel from the eye to the occipital cortex. Hypothyroidism affects the central nervous system (CNS through its role in gene expression, myelin production, axonal transportation, and neurotransmitters. Delay in the conduction of impulses results in abnormal VEP. Objective: Correlate the electrophysiological findings of VEP in newly diagnosed treatment-naive hypothyroid patients before and after 3 months of treatment and to find the correlation with serum thyroid-stimulating hormone (TSH levels. Materials and Methods: VEP was measured using Recorders and Medicare Systems Electromyograph Evoked Potential Mark II machine in 30 patients (serum TSH ≥10 mIU/L between 18 and 50 years of age who were followed up after 3 months of treatment. Results: The mean age (±standard deviation of the patients was 31.8 (±8.3 years. There was prolongation of VEP latencies which tends to decrease following hormone replacement therapy. It was found to be most significant for P100 (ms waveform (P < 0.001. The amplitude (P100-N75 mV which was decreased in hypothyroid patients showed improvement following achievement of euthyroidism. Significant positive correlation was found between P100, N75 latency and pretreatment serum TSH levels. Conclusion: Hypothyroid patients may have changes in the latencies and the amplitude of VEP which are reversible to a great extent with thyroxine replacement therapy. VEP thus acts as a dependable marker for CNS affection in thyroid diseases to detect subtle early changes and to assess the response to treatment in correlation with the clinical improvement.

  13. Vestibular myogenic and acoustical brainstem evoked potentials in neurological practice

    Directory of Open Access Journals (Sweden)

    O. S. Korepina

    2012-01-01

    Full Text Available Along with the inspection of acoustical cortex and brainstem EP in neurologic, otoneurologic and audiologic practice recently start to use so-called vestibular evoked myogenic potentials (VEMP. It is shown, that at ear stimulation by a loud sound and record of sterno-cleidomastoid contraction is possible to estimate function of the inferior vestibular nerve and vestibulospinal pathways, a sacculo-cervical reflex. In article some methodical and clinical questions of application of these kinds are presented. Combine research acoustic brainstem EP and VEMP allows to confirm effectively lesions of acoustical and vestibular ways at brainstem. The conclusion becomes, that this kind of inspection is important for revealing demielinisation and defeats in vestibulospinal tract, that quite often happens at MS, and at estimation of efficiency of treatment

  14. Auditory evoked field measurement using magneto-impedance sensors

    Energy Technology Data Exchange (ETDEWEB)

    Wang, K., E-mail: o-kabou@echo.nuee.nagoya-u.ac.jp; Tajima, S.; Song, D.; Uchiyama, T. [Graduate School of Engineering, Nagoya University, Nagoya (Japan); Hamada, N.; Cai, C. [Aichi Steel Corporation, Tokai (Japan)

    2015-05-07

    The magnetic field of the human brain is extremely weak, and it is mostly measured and monitored in the magnetoencephalography method using superconducting quantum interference devices. In this study, in order to measure the weak magnetic field of the brain, we constructed a Magneto-Impedance sensor (MI sensor) system that can cancel out the background noise without any magnetic shield. Based on our previous studies of brain wave measurements, we used two MI sensors in this system for monitoring both cerebral hemispheres. In this study, we recorded and compared the auditory evoked field signals of the subject, including the N100 (or N1) and the P300 (or P3) brain waves. The results suggest that the MI sensor can be applied to brain activity measurement.

  15. Visual evoked potentials of mildly mentally retarded and control children.

    Science.gov (United States)

    Gasser, T; Pietz, J; Schellberg, D; Köhler, W

    1988-10-01

    Visual evoked potentials (VEPs) were recorded from 25 10- to 13-year-old mildly mentally retarded children and compared with those from 31 control children of the same age-range. Correlations of VEPs with age were weak, but a relationship between VEPs and IQ was demonstrated for the control group. The retarded group had significantly longer latencies and higher amplitude peaks than the control group, with the differences occurring primarily over non-specific cortex and for secondary components. Analysis also showed that the retarded group were neurophysiologically heterogeneous. Since the same children had been analyzed earlier by quantitative EEG methods, comparisons are made with respect to these two methods of investigating brain function.

  16. Evoked bioelectrical brain activity following exposure to ionizing radiation.

    Science.gov (United States)

    Loganovsky, K; Kuts, K

    2017-12-01

    The article provides an overview of modern physiological evidence to support the hypothesis on cortico limbic sys tem dysfunction due to the hippocampal neurogenesis impairment as a basis of the brain interhemispheric asym metry and neurocognitive deficit after radiation exposure. The importance of the research of both evoked poten tials and fields as a highly sensitive and informative method is emphasized.Particular attention is paid to cerebral sensor systems dysfunction as a typical effect of ionizing radiation. Changes in functioning of the central parts of sensory analyzers of different modalities as well as the violation of brain integrative information processes under the influence of small doses of ionizing radiation can be critical when determining the radiation risks of space flight. The possible long term prospects for manned flights into space, including to Mars, given the effects identified are discussed. Potential risks to the central nervous system during space travel comprise cognitive functions impairment, including the volume of short term memory short ening, impaired motor functions, behavioral changes that could affect human performance and health. The remote risks for CNS are considered to be the following possible neuropsychiatric disorders: accelerated brain aging, Alzheimer's disease and other types of dementia. The new radiocerebral dose dependent effect, when applied cog nitive auditory evoked potentials P300 technique with a possible threshold dose of 0.05 Gy, manifesting in a form of disruption of information processing in the Wernicke's area is under discussion. In order to identify neurophys iological biological markers of ionizing radiation further international researches with adequate dosimetry support are necessary. K. Loganovsky, K. Kuts.

  17. Objective Audiometry using Ear-EEG

    DEFF Research Database (Denmark)

    Christensen, Christian Bech; Kidmose, Preben

    Hearing provides vital information about the surrounding environment and so sound detection and auditory perception are utilized to communicate, navigate and avoid dangers. Therefore, hearing loss has severe implications on both functional and social aspects of the affected individuals´ life. The...

  18. A level stimulator programmed for audiometry

    International Nuclear Information System (INIS)

    Fayart, Gerard

    1976-02-01

    This stimulator has been designed for automated audiometric experiments on lemurians. The variations of the transmission level are programmed on punched tape whose reading is controlled by an audiofrequency attenuator. The positive answers of the animal are stored in a seven-counter memory and the results are read by display [fr

  19. Modified cytoplasmic Ca2+ sequestration contributes to spinal cord injury-induced augmentation of nerve-evoked contractions in the rat tail artery.

    Directory of Open Access Journals (Sweden)

    Hussain Al Dera

    Full Text Available In rat tail artery (RTA, spinal cord injury (SCI increases nerve-evoked contractions and the contribution of L-type Ca2+ channels to these responses. In RTAs from unoperated rats, these channels play a minor role in contractions and Bay K8644 (L-type channel agonist mimics the effects of SCI. Here we investigated the mechanisms underlying the facilitatory actions of SCI and Bay K8644 on nerve-evoked contractions of RTAs and the hypothesis that Ca2+ entering via L-type Ca2+ channels is rapidly sequestered by the sarcoplasmic reticulum (SR limiting its role in contraction. In situ electrochemical detection of noradrenaline was used to assess if Bay K8644 increased noradrenaline release. Perforated patch recordings were used to assess if SCI changed the Ca2+ current recorded in RTA myocytes. Wire myography was used to assess if SCI modified the effects of Bay K8644 and of interrupting SR Ca2+ uptake on nerve-evoked contractions. Bay K8644 did not change noradrenaline-induced oxidation currents. Neither the size nor gating of Ca2+ currents differed between myocytes from sham-operated (control and SCI rats. Bay K8644 increased nerve-evoked contractions in RTAs from both control and SCI rats, but the magnitude of this effect was reduced by SCI. By contrast, depleting SR Ca2+ stores with ryanodine or cyclopiazonic acid selectively increased nerve-evoked contractions in control RTAs. Cyclopiazonic acid also selectively increased the blockade of these responses by nifedipine (L-type channel blocker in control RTAs, whereas ryanodine increased the blockade produced by nifedipine in both groups of RTAs. These findings suggest that Ca2+ entering via L-type channels is normally rapidly sequestered limiting its access to the contractile mechanism. Furthermore, the findings suggest SCI reduces the role of this mechanism.

  20. [The modified method registration of kinesthetic evoked potentials and its application for research of proprioceptive sensitivity disorders at spondylogenic cervical myelopathy].

    Science.gov (United States)

    Gordeev, S A; Voronin, S G

    2016-01-01

    To analyze the efficacy of modified (passive radiocarpal articulation flexion/extension) and «standard» (passive radiocarpal articulation flexion) methods of kinesthetic evoked potentials for proprioceptive sensitivity assessment in healthy subjects and patients with spondylotic cervical myelopathy. The study included 14 healthy subjects (4 women and 10 men, mean age 54.1±10.5 years) and 8 patients (2 women and 6 men, mean age 55.8±10.9 years) with spondylotic cervical myelopathy. Muscle-joint sensation was examined during the clinical study. A modified method of kinesthetic evoked potentials was developed. This method differed from the "standard" one by the organization of a cycle including several passive movements,where each new movement differed from the preceding one by the direction. The modified method of kinesthetic evoked potentials ensures more reliable kinesthetic sensitivity assessment due to movement variability. Asignificant increaseof the latent periods of the early components of the response was found in patients compared to healthy subjects. The modified method of kinesthetic evoked potentials can be used for objective diagnosis of proprioceptive sensitivity disorders in patients with spondylotic cervical myelopathy.

  1. Premature infants display increased noxious-evoked neuronal activity in the brain compared to healthy age-matched term-born infants.

    Science.gov (United States)

    Slater, Rebeccah; Fabrizi, Lorenzo; Worley, Alan; Meek, Judith; Boyd, Stewart; Fitzgerald, Maria

    2010-08-15

    This study demonstrates that infants who are born prematurely and who have experienced at least 40days of intensive or special care have increased brain neuronal responses to noxious stimuli compared to healthy newborns at the same postmenstrual age. We have measured evoked potentials generated by noxious clinically-essential heel lances in infants born at term (8 infants; born 37-40weeks) and in infants born prematurely (7 infants; born 24-32weeks) who had reached the same postmenstrual age (mean age at time of heel lance 39.2+/-1.2weeks). These noxious-evoked potentials are clearly distinguishable from shorter latency potentials evoked by non-noxious tactile sensory stimulation. While the shorter latency touch potentials are not dependent on the age of the infant at birth, the noxious-evoked potentials are significantly larger in prematurely-born infants. This enhancement is not associated with specific brain lesions but reflects a functional change in pain processing in the brain that is likely to underlie previously reported changes in pain sensitivity in older ex-preterm children. Our ability to quantify and measure experience-dependent changes in infant cortical pain processing will allow us to develop a more rational approach to pain management in neonatal intensive care. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  2. Evoked electromyography to rocuronium in orbicularis oris and gastrocnemius in facial nerve injury in rabbits.

    Science.gov (United States)

    Xing, Yian; Chen, Lianhua; Li, Shitong

    2013-11-01

    Muscles innervated by the facial nerve show different sensitivities to muscle relaxants than muscles innervated by somatic nerves, especially in the presence of facial nerve injury. We compared the evoked electromyography (EEMG) response of orbicularis oris and gastrocnemius in with and without a non-depolarizing muscle relaxant in a rabbit model of graded facial nerve injury. Differences in EEMG response and inhibition by rocuronium were measured in the orbicularis oris and gastrocnemius muscles 7 to 42 d after different levels of facial nerve crush injuries in adult rabbits. Baseline EEMG of orbicularis oris was significantly smaller than those of the gastrocnemius. Gastrocnemius was more sensitive to rocuronium than the facial muscles (P rocuronium was negatively correlated with the magnitude of facial nerve injury but the sensitivity to rocuronium was not. No significant difference was found in the onset time and the recovery time of rocuronium among gastrocnemius and normal or damaged facial muscles. Muscles innervated by somatic nerves are more sensitive to rocuronium than those innervated by the facial nerve, but while facial nerve injury reduced EEMG responses, the sensitivity to rocuronium is not altered. Partial neuromuscular blockade may be a suitable technique for conducting anesthesia and surgery safely when EEMG monitoring is needed to preserve and protect the facial nerve. Additional caution should be used if there is a risk of preexisting facial nerve injury. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Sex differences in the jealousy-evoking nature of a rival's body build

    NARCIS (Netherlands)

    Dijkstra, Pieternel; Buunk, Abraham (Bram)

    This study among 185 college students showed that potential rivals with a relatively low waist-to-hip ratio (WHR) evoked more jealousy in women than in men. In contrast, rivals with a relatively high shoulder-to-hip ratio (SHR) evoked more jealousy in men than in women, particularly when the rival

  4. Do Puzzle Pieces and Autism Puzzle Piece Logos Evoke Negative Associations?

    Science.gov (United States)

    Gernsbacher, Morton Ann; Raimond, Adam R.; Stevenson, Jennifer L.; Boston, Jilana S.; Harp, Bev

    2018-01-01

    Puzzle pieces have become ubiquitous symbols for autism. However, puzzle-piece imagery stirs debate between those who support and those who object to its use because they believe puzzle-piece imagery evokes negative associations. Our study empirically investigated whether puzzle pieces evoke negative associations in the general public.…

  5. Conduction velocity of the human spinothalamic tract as assessed by laser evoked potentials

    DEFF Research Database (Denmark)

    Cruccu, G.; Iannetti, G. D.; Agostino, R.

    2000-01-01

    To study the conduction velocity of the spinothalamic tract (STT) we delivered CO2 laser pulses, evoking pinprick sensations, to the skin overlying the vertebral spinous processes at different spinal levels from C5 to T10 and recorded evoked potentials (LEPs) in 15 healthy human subjects...

  6. Delayed P100-Like Latencies in Multiple Sclerosis: A Preliminary Investigation Using Visual Evoked Spread Spectrum Analysis

    Science.gov (United States)

    Kiiski, Hanni S. M.; Ní Riada, Sinéad; Lalor, Edmund C.; Gonçalves, Nuno R.; Nolan, Hugh; Whelan, Robert; Lonergan, Róisín; Kelly, Siobhán; O'Brien, Marie Claire; Kinsella, Katie; Bramham, Jessica; Burke, Teresa; Ó Donnchadha, Seán; Hutchinson, Michael; Tubridy, Niall; Reilly, Richard B.

    2016-01-01

    Conduction along the optic nerve is often slowed in multiple sclerosis (MS). This is typically assessed by measuring the latency of the P100 component of the Visual Evoked Potential (VEP) using electroencephalography. The Visual Evoked Spread Spectrum Analysis (VESPA) method, which involves modulating the contrast of a continuous visual stimulus over time, can produce a visually evoked response analogous to the P100 but with a higher signal-to-noise ratio and potentially higher sensitivity to individual differences in comparison to the VEP. The main objective of the study was to conduct a preliminary investigation into the utility of the VESPA method for probing and monitoring visual dysfunction in multiple sclerosis. The latencies and amplitudes of the P100-like VESPA component were compared between healthy controls and multiple sclerosis patients, and multiple sclerosis subgroups. The P100-like VESPA component activations were examined at baseline and over a 3-year period. The study included 43 multiple sclerosis patients (23 relapsing-remitting MS, 20 secondary-progressive MS) and 42 healthy controls who completed the VESPA at baseline. The follow-up sessions were conducted 12 months after baseline with 24 MS patients (15 relapsing-remitting MS, 9 secondary-progressive MS) and 23 controls, and again at 24 months post-baseline with 19 MS patients (13 relapsing-remitting MS, 6 secondary-progressive MS) and 14 controls. The results showed P100-like VESPA latencies to be delayed in multiple sclerosis compared to healthy controls over the 24-month period. Secondary-progressive MS patients had most pronounced delay in P100-like VESPA latency relative to relapsing-remitting MS and controls. There were no longitudinal P100-like VESPA response differences. These findings suggest that the VESPA method is a reproducible electrophysiological method that may have potential utility in the assessment of visual dysfunction in multiple sclerosis. PMID:26726800

  7. Delayed P100-Like Latencies in Multiple Sclerosis: A Preliminary Investigation Using Visual Evoked Spread Spectrum Analysis.

    Directory of Open Access Journals (Sweden)

    Hanni S M Kiiski

    Full Text Available Conduction along the optic nerve is often slowed in multiple sclerosis (MS. This is typically assessed by measuring the latency of the P100 component of the Visual Evoked Potential (VEP using electroencephalography. The Visual Evoked Spread Spectrum Analysis (VESPA method, which involves modulating the contrast of a continuous visual stimulus over time, can produce a visually evoked response analogous to the P100 but with a higher signal-to-noise ratio and potentially higher sensitivity to individual differences in comparison to the VEP. The main objective of the study was to conduct a preliminary investigation into the utility of the VESPA method for probing and monitoring visual dysfunction in multiple sclerosis. The latencies and amplitudes of the P100-like VESPA component were compared between healthy controls and multiple sclerosis patients, and multiple sclerosis subgroups. The P100-like VESPA component activations were examined at baseline and over a 3-year period. The study included 43 multiple sclerosis patients (23 relapsing-remitting MS, 20 secondary-progressive MS and 42 healthy controls who completed the VESPA at baseline. The follow-up sessions were conducted 12 months after baseline with 24 MS patients (15 relapsing-remitting MS, 9 secondary-progressive MS and 23 controls, and again at 24 months post-baseline with 19 MS patients (13 relapsing-remitting MS, 6 secondary-progressive MS and 14 controls. The results showed P100-like VESPA latencies to be delayed in multiple sclerosis compared to healthy controls over the 24-month period. Secondary-progressive MS patients had most pronounced delay in P100-like VESPA latency relative to relapsing-remitting MS and controls. There were no longitudinal P100-like VESPA response differences. These findings suggest that the VESPA method is a reproducible electrophysiological method that may have potential utility in the assessment of visual dysfunction in multiple sclerosis.

  8. [Intraoperative pain stimuli change somatosensory evoked potentials, but not auditory evoked potentials during isoflurane/nitrous oxide anesthesia].

    Science.gov (United States)

    Rundshagen, I; Kochs, E; Bischoff, P; Schulte am Esch, J

    1997-10-01

    Evoked potentials are used for intraoperative monitoring to assess changes of cerebral function. This prospective randomised study assesses the influence of surgical stimulation on midlatency components of somatosensory (SEPs) and auditory evoked potentials (AEPs) in anaesthetised patients. After approval of the Ethics Committee and written informed consent 36 orthopaedic patients (34 +/- 15 y, 73 +/- 14 kg. 1.71 +/- 0.07 m, ASA I-II) were randomly included in the study. Anaesthesia was induced with 1.5 micrograms/kg fentanyl, 0.3 mg/kg etomidate and 0.1 mg/kg vecuronium. The lungs were intubated and patients normoventilated in steady state anaesthesia with isoflurane (end-tidal 0.6%) and 66% nitrous oxide. 18 patients (group 1) were assigned to the SEP group: median nerve stimulation, recording at Erb, C 6 and the contralateral somatosensory cortex (N20, P25, N35) vs Fz. AEPs were recorded in group 2 (n = 18): binaural stimulation, recording at Cz versus linked mastoid (V, Na, Pa, Nb). Recordings were performed during 30 min before the start of surgery (baseline: BL), at skin incision (SURG1) and at the preparation of the periost (SURG2). Heart rate, mean arterial blood pressure, oxygen saturation, endtidal pCO2 and isoflurane (PetISO) concentrations were registered simultaneously. Data were analysed by one-way analysis of variance. Post hoc comparison were made by Mann-Whitney U-Wilcoxon Rank Sum Test with p beats/min) to SURG2 (76 +/- 12 beats/min). Increases of amplitudes of midlatency SEP amplitudes indicate increased nociceptive signal transmission which is not blunted by isoflurane-nitrous oxide anaesthesia. In contrast, unchanged AEPs indicate adequate levels of the hypnotic components of anaesthesia.

  9. Study on change of multi-modally evoked potentials in nasopharyngeal carcinoma patients after radiotherapy

    International Nuclear Information System (INIS)

    Qin Ling; Chen Jiaxin; Zhang Lixiang; Wang Tiejian; Han Min; Lu Xiaoling

    2001-01-01

    Objective: To investigate possible changes of multi-modally evoked potentials in nasopharyngeal carcinoma patients after radiotherapy. Methods: Altogether 48 nasopharyngeal carcinoma patients receiving primary conventional external beam irradiation were examined before and after radiotherapy to determine their brainstem auditory-evoked potential (BAEP), short-latency somatosensory-evoked potential (SLSEP) and pattern reversal visual-evoked potential (PRVEP). Results: In comparison with the conditions before radiotherapy, in different periods after radiotherapy abnormal peak latency and interval latency difference were found in BAEP, SLSEP and PRVEP. Conclusion: Nasopharyngeal carcinoma after radiotherapy may cause abnormal function of nerve conduction in early periods, which can be showed by BAEP, SLSEP, PRVEP, and injury can be timely detected if the three evoked potentials are used together. Thus authors suggest BAEP, SLSEP, PRVEP should be examined in nasopharyngeal carcinoma patients during and after the radiotherapy so as to find early damage in auditory somatosensory and visual conduction pathways

  10. The involuntary nature of music-evoked autobiographical memories in Alzheimer's disease.

    Science.gov (United States)

    El Haj, Mohamad; Fasotti, Luciano; Allain, Philippe

    2012-03-01

    The main objective of this paper was to examine the involuntary nature of music-evoked autobiographical memories. For this purpose, young adults, older adults, and patients with a clinical diagnosis of probable Alzheimer's disease (AD) were asked to remember autobiographical events in two conditions: after being exposed to their own chosen music, and in silence. Compared to memories evoked in silence, memories evoked in the "Music" condition were found to be more specific, accompanied by more emotional content and impact on mood, and retrieved faster. In addition, these memories engaged less executive processes. Thus, with all these characteristics and the fact that they are activated by a perceptual cue (i.e., music), music-evoked autobiographic memories have all the features to be considered as involuntary memories. Our paper reveals several characteristics of music-evoked autobiographical memories in AD patients and offers a theoretical background for this phenomenon. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Pupil constriction evoked in vitro by stimulation of the oculomotor nerve in the turtle (Trachemys scripta elegans).

    Science.gov (United States)

    Dearworth, James R; Brenner, J E; Blaum, J F; Littlefield, T E; Fink, D A; Romano, J M; Jones, M S

    2009-01-01

    The pond turtle (Trachemys scripta elegans) exhibits a notably sluggish pupillary light reflex (PLR), with pupil constriction developing over several minutes following light onset. In the present study, we examined the dynamics of the efferent branch of the reflex in vitro using preparations consisting of either the isolated head or the enucleated eye. Stimulation of the oculomotor nerve (nIII) using 100-Hz current trains resulted in a maximal pupil constriction of 17.4% compared to 27.1% observed in the intact animal in response to light. When current amplitude was systematically increased from 1 to 400 microA, mean response latency decreased from 64 to 45 ms, but this change was not statistically significant. Hill equations fitted to these responses indicated a current threshold of 3.8 microA. Stimulation using single pulses evoked a smaller constriction (3.8%) with response latencies and threshold similar to that obtained using train stimulation. The response evoked by postganglionic stimulation of the ciliary nerve using 100-Hz trains was largely indistinguishable from that of train stimulation of nIII. However, application of single-pulse stimulation postganglionically resulted in smaller pupil constriction at all current levels relative to that of nIII stimulation, suggesting that there is amplification of efferent drive at the ganglion. Time constants for constrictions ranged from 88 to 154 ms with relaxations occurring more slowly at 174-361 ms. These values for timing from in vitro are much faster than the time constant 1.66 min obtained for the light response in the intact animal. The rapid dynamics of pupil constriction observed here suggest that the slow PLR of the turtle observed in vivo is not due to limitations of the efferent pathway. Rather, the sluggish response probably results from photoreceptive mechanisms or central processing.

  12. Cannabinoid receptor activation in the rostral ventrolateral medulla oblongata evokes cardiorespiratory effects in anaesthetised rats

    Science.gov (United States)

    Padley, James R; Li, Qun; Pilowsky, Paul M; Goodchild, Ann K

    2003-01-01

    The nature of the cardiorespiratory effects mediated by cannabinoids in the hindbrain is poorly understood. In the present study we investigated whether cannabinoid receptor activation in the rostral ventrolateral medulla oblongata (RVLM) affects cardiovascular and/or respiratory function. Initially, we looked for evidence of CB1 receptor gene expression in rostral and caudal sections of the rat ventrolateral medulla (VLM) using reverse transcription–polymerase chain reaction. Second, the potent cannabinoid receptor agonists WIN55,212-2 (0.05, 0.5 or 5 pmol per 50 nl) and HU-210 (0.5 pmol per 50 nl) or the CB1 receptor antagonist/inverse agonist AM281 (1 pmol per 100 nl) were microinjected into the RVLM of urethane-anaesthetised, immobilised and mechanically ventilated male Sprague–Dawley rats (n=22). Changes in splanchnic nerve activity (sSNA), phrenic nerve activity (PNA), mean arterial pressure (MAP) and heart rate (HR) in response to cannabinoid administration were recorded. The CB1 receptor gene was expressed throughout the VLM. Unilateral microinjection of WIN55,212-2 into the RVLM evoked short-latency, dose-dependent increases in sSNA (0.5 pmol; 175±8%, n=5) and MAP (0.5 pmol; 26±3%, n=8) and abolished PNA (0.5 pmol; duration of apnoea: 5.4±0.4 s, n=8), with little change in HR (P<0.005). HU-210, structurally related to Δ9-tetrahydrocannabinol (THC), evoked similar effects when microinjected into the RVLM (n=4). Surprisingly, prior microinjection of AM281 produced agonist-like effects, as well as significantly attenuated the response to subsequent injection of WIN55,212-2 (0.5 pmol, n=4). The present study reveals CB1 receptor gene expression in the rat VLM and demonstrates sympathoexcitation, hypertension and respiratory inhibition in response to RVLM-administered cannabinoids. These findings suggest a novel link between CB1 receptors in this region of the hindbrain and the central cardiorespiratory effects of cannabinoids. The extent to which these

  13. Motor-evoked potential amplitudes elicited by transcranial magnetic stimulation do not differentiate between patients and normal controls.

    Science.gov (United States)

    Grunhaus, Leon; Polak, Dana; Amiaz, Revital; Dannon, Pinhas N

    2003-12-01

    Transcranial magnetic stimulation (TMS) applied over the motor cortex depolarizes neurons and leads to motor-evoked potentials (MEP). To assess cortico-spinal excitability we compared the motor threshold (MT) and the averaged MEP amplitude generated by TMS in patients with major depression (MD) and matched controls. Nineteen patients, who where participants in a protocol comparing the antidepressant effects of rTMS with those of ECT, and thirteen age- and gender-matched normal controls were studied. MT was similar between patients and normal controls. The MEP amplitude response was significantly increased by rTMS, however, the magnitude of the response was similar in patients and normal controls. Correlations between the averaged MEP amplitude and age revealed that older subjects demonstrated significantly lower responses at all time-points. We conclude that cortico-spinal excitability is increased following rTMS, however, differences between patients and normal controls were not apparent with the paradigm used.

  14. Analysis of retinal function using chromatic pupillography in retinitis pigmentosa and the relationship to electrically evoked phosphene thresholds.

    Science.gov (United States)

    Kelbsch, Carina; Maeda, Fumiatsu; Lisowska, Jolanta; Lisowski, Lukasz; Strasser, Torsten; Stingl, Krunoslav; Wilhelm, Barbara; Wilhelm, Helmut; Peters, Tobias

    2017-06-01

    To analyse pupil responses to specific chromatic stimuli in patients with advanced retinitis pigmentosa (RP) to ascertain whether chromatic pupillography can be used as an objective marker for residual retinal function. To examine correlations between parameters of the pupil response and the perception threshold of electrically evoked phosphenes. Chromatic pupillography was performed in 40 patients with advanced RP (visual acuity Chromatic pupillography demonstrated a significant decrease in outer retinal photoreceptor responses but a persisting and disinhibited intrinsic photosensitive retinal ganglion cell function in advanced RP. These phenomena may be useful as an objective marker for the efficacy of any interventional treatment for hereditary retinal diseases as well as for the selection of suitable patients for an electronic retinal implant. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  15. Comparison of sensitivity of magnetic resonance imaging and evoked potentials in the detection of brainstem involvement in multiple sclerosis

    International Nuclear Information System (INIS)

    Comi, G.; Martinelli, V.; Medaglini, S.; Locatelli, T.; Magnani, G.; Poggi, A.; Triulzi, F.

    1988-01-01

    A comparison was made of the sensitivity of magnetic resonance imaging and the combined use of Brainstem Auditory Evoked Potential and Median Somatosensory Evoked Potential in the detection of brainstem dysfunction in 54 multiple sclerosis patients. 10 refs.; 2 tabs

  16. Influence of visual angle on pattern reversal visual evoked potentials

    Directory of Open Access Journals (Sweden)

    Ruchi Kothari

    2014-01-01

    Full Text Available Purpose: The aim of this study was to find whether the visual evoked potential (VEP latencies and amplitude are altered with different visual angles in healthy adult volunteers or not and to determine the visual angle which is the optimum and most appropriate among a wide range of check sizes for the reliable interpretation of pattern reversal VEPs (PRVEPs. Materials and Methods: The present study was conducted on 40 healthy volunteers. The subjects were divided into two groups. One group consisted of 20 individuals (nine males and 11 females in the age range of 25-57 years and they were exposed to checks subtending a visual angle of 90, 120, and 180 minutes of arc. Another group comprised of 20 individuals (10 males and 10 females in the age range of 36-60 years and they were subjected to checks subtending a visual angle of 15, 30, and 120 minutes of arc. The stimulus configuration comprised of the transient pattern reversal method in which a black and white checker board is generated (full field on a VEP Monitor by an Evoked Potential Recorder (RMS EMG. EPMARK II. The statistical analysis was done by One Way Analysis of Variance (ANOVA using EPI INFO 6. Results: In Group I, the maximum (max. P100 latency of 98.8 ± 4.7 and the max. P100 amplitude of 10.05 ± 3.1 μV was obtained with checks of 90 minutes. In Group II, the max. P100 latency of 105.19 ± 4.75 msec as well as the max. P100 amplitude of 8.23 ± 3.30 μV was obtained with 15 minutes. The min. P100 latency in both the groups was obtained with checks of 120 minutes while the min. P100 amplitude was obtained with 180 minutes. A statistically significant difference was derived between means of P100 latency for 15 and 30 minutes with reference to its value for 120 minutes and between the mean value of P100 amplitude for 120 minutes and that of 90 and 180 minutes. Conclusion: Altering the size of stimulus (visual angle has an effect on the PRVEP parameters. Our study found that the 120

  17. Differences in cortical coding of heat evoked pain beyond the perceived intensity: an fMRI and EEG study.

    Science.gov (United States)

    Haefeli, Jenny; Freund, Patrick; Kramer, John L K; Blum, Julia; Luechinger, Roger; Curt, Armin

    2014-04-01

    Imaging studies have identified a wide network of brain areas activated by nociceptive stimuli and revealed differences in somatotopic representation of highly distinct stimulation sites (foot vs. hand) in the primary (S1) and secondary (S2) somatosensory cortices. Somatotopic organization between adjacent dermatomes and differences in cortical coding of similarly perceived nociceptive stimulation are less well studied. Here, cortical processing following contact heat nociceptive stimulation of cervical (C4, C6, and C8) and trunk (T10) dermatomes were recorded in 20 healthy subjects using functional magnetic resonance imaging (fMRI) and electroencephalography (EEG). Stimulation of T10 compared with the C6 and C8 revealed significant higher response intensity in the left S1 (contralateral) and the right S2 (ipsilateral) even when the perceived pain was equal between stimulation sites. Accordingly, contact heat evoked potentials following stimulation of T10 showed significantly higher N2P2 amplitudes compared to C6 and C8. Adjacent dermatomes did not reveal a distinct somatotopical representation. Within the assessed cervical and trunk dermatomes, nociceptive cortical processing to heat differs significantly in magnitude even when controlling for pain perception. This study provides evidence that controlling for pain perception is not sufficient to compare directly the magnitude of cortical processing [blood oxygen level dependence (BOLD) response and amplitude of evoked potentials] between body sites. Copyright © 2013 Wiley Periodicals, Inc.

  18. Effects of acoustic noise on the auditory nerve compound action potentials evoked by electric pulse trains.

    Science.gov (United States)

    Nourski, Kirill V; Abbas, Paul J; Miller, Charles A; Robinson, Barbara K; Jeng, Fuh-Cherng

    2005-04-01

    This study investigated the effects of acoustic noise on the auditory nerve compound action potentials in response to electric pulse trains. Subjects were adult guinea pigs, implanted with a minimally invasive electrode to preserve acoustic sensitivity. Electrically evoked compound action potentials (ECAP) were recorded from the auditory nerve trunk in response to electric pulse trains both during and after the presentation of acoustic white noise. Simultaneously presented acoustic noise produced a decrease in ECAP amplitude. The effect of the acoustic masker on the electric probe was greatest at the onset of the acoustic stimulus and it was followed by a partial recovery of the ECAP amplitude. Following cessation of the acoustic noise, ECAP amplitude recovered over a period of approximately 100-200 ms. The effects of the acoustic noise were more prominent at lower electric pulse rates (interpulse intervals of 3 ms and higher). At higher pulse rates, the ECAP adaptation to the electric pulse train alone was larger and the acoustic noise, when presented, produced little additional effect. The observed effects of noise on ECAP were the greatest at high electric stimulus levels and, for a particular electric stimulus level, at high acoustic noise levels.

  19. Purinergic receptors are involved in tooth-pulp evoked nocifensive behavior and brainstem neuronal activity

    Directory of Open Access Journals (Sweden)

    Sessle Barry J

    2010-09-01

    Full Text Available Abstract Background To evaluate whether P2X receptors are involved in responses to noxious pulp stimulation, the P2X3 and P2X2/3 receptor agonist α,β-methyleneATP (α,β-meATP was applied to the molar tooth pulp and nocifensive behavior and extracellular-signal regulated kinase (ERK phosphorylation in trigeminal spinal subnucleus caudalis (Vc, trigeminal spinal subnucleus interpolaris (Vi, upper cervical spinal cord (C1/C2 and paratrigeminal nucleus (Pa5 neurons were analyzed in rats. Results Genioglossus (GG muscle activity was evoked by pulpal application of 100 mM α,β-meATP and was significantly larger than GG activity following vehicle (phosphate-buffered saline PBS application (p 1, P2X3 and, P2X2/3 antagonist. A large number of pERK-LI cells were expressed in the Vc, Vi/Vc, C1/C2 and Pa5 at 5 min following pulpal application of 100 mM α,β-meATP compared to PBS application to the pulp (p Conclusions The present findings suggest that activation of P2X3 and P2X2/3 receptors in the tooth pulp is sufficient to elicit nociceptive behavioral responses and trigeminal brainstem neuronal activity.

  20. Background noise can enhance cortical auditory evoked potentials under certain conditions.

    Science.gov (United States)

    Papesh, Melissa A; Billings, Curtis J; Baltzell, Lucas S

    2015-07-01

    To use cortical auditory evoked potentials (CAEPs) to understand neural encoding in background noise and the conditions under which noise enhances CAEP responses. CAEPs from 16 normal-hearing listeners were recorded using the speech syllable/ba/presented in quiet and speech-shaped noise at signal-to-noise ratios of 10 and 30dB. The syllable was presented binaurally and monaurally at two presentation rates. The amplitudes of N1 and N2 peaks were often significantly enhanced in the presence of low-level background noise relative to quiet conditions, while P1 and P2 amplitudes were consistently reduced in noise. P1 and P2 amplitudes were significantly larger during binaural compared to monaural presentations, while N1 and N2 peaks were similar between binaural and monaural conditions. Methodological choices impact CAEP peaks in very different ways. Negative peaks can be enhanced by background noise in certain conditions, while positive peaks are generally enhanced by binaural presentations. Methodological choices significantly impact CAEPs acquired in quiet and in noise. If CAEPs are to be used as a tool to explore signal encoding in noise, scientists must be cognizant of how differences in acquisition and processing protocols selectively shape CAEP responses. Published by Elsevier Ireland Ltd.

  1. Steady-state visually evoked potential correlates of human body perception.

    Science.gov (United States)

    Giabbiconi, Claire-Marie; Jurilj, Verena; Gruber, Thomas; Vocks, Silja

    2016-11-01

    In cognitive neuroscience, interest in the neuronal basis underlying the processing of human bodies is steadily increasing. Based on functional magnetic resonance imaging studies, it is assumed that the processing of pictures of human bodies is anchored in a network of specialized brain areas comprising the extrastriate and the fusiform body area (EBA, FBA). An alternative to examine the dynamics within these networks is electroencephalography, more specifically so-called steady-state visually evoked potentials (SSVEPs). In SSVEP tasks, a visual stimulus is presented repetitively at a predefined flickering rate and typically elicits a continuous oscillatory brain response at this frequency. This brain response is characterized by an excellent signal-to-noise ratio-a major advantage for source reconstructions. The main goal of present study was to demonstrate the feasibility of this method to study human body perception. To that end, we presented pictures of bodies and contrasted the resulting SSVEPs to two control conditions, i.e., non-objects and pictures of everyday objects (chairs). We found specific SSVEPs amplitude differences between bodies and both control conditions. Source reconstructions localized the SSVEP generators to a network of temporal, occipital and parietal areas. Interestingly, only body perception resulted in activity differences in middle temporal and lateral occipitotemporal areas, most likely reflecting the EBA/FBA.

  2. Brain-stem evoked potentials and noise effects in seagulls.

    Science.gov (United States)

    Counter, S A

    1985-01-01

    Brain-stem auditory evoked potentials (BAEP) recorded from the seagull were large-amplitude, short-latency, vertex-positive deflections which originate in the eighth nerve and several brain-stem nuclei. BAEP waveforms were similar in latency and configurations to that reported for certain other lower vertebrates and some mammals. BAEP recorded at several pure tone frequencies throughout the seagull's auditory spectrum showed an area of heightened auditory sensitivity between 1 and 3 kHz. This range was also found to be the primary bandwidth of the vocalization output of young seagulls. Masking by white noise and pure tones had remarkable effects on several parameters of the BAEP. In general, the tone- and click-induced BAEP were either reduced or obliterated by both pure tone and white noise maskers of specific signal to noise ratios and high intensity levels. The masking effects observed in this study may be related to the manner in which seagulls respond to intense environmental noise. One possible conclusion is that intense environmental noise, such as aircraft engine noise, may severely alter the seagull's localization apparatus and induce sonogenic stress, both of which could cause collisions with low-flying aircraft.

  3. Ellagic acid radiosensitizes tumor cells by evoking apoptotic pathway

    International Nuclear Information System (INIS)

    Ahire, Vidhula R.; Mishra, K.P.

    2016-01-01

    Cancer causes millions of deaths each year globally. In most patients, the cause of treatment failure is found associated with the resistance to chemotherapy and radiotherapy. The development of tumor cell resistance evokes multiple intracellular molecular pathways. In addition, the limitation in treatment outcome arises due to unintended cytotoxic effects of the synthetic anticancer drugs to normal cells and tissues. Considerable focus of research is, therefore, devoted to examine plant-based herbal compounds which may prove potential anticancer drug for developing effective cancer therapy. Research results from our laboratory have shown that ellagic acid (EA), a natural flavonoid displays enhanced tumor toxicity in combination with gamma radiation to many types of cancers in vitro as well as in vivo. Studies on the underlying mechanisms of toxicity suggest that EA employs the cellular signaling pathways in producing the observed effects. This paper gives an account of molecular mechanisms of EA-induced apoptosis process in tumor cytotoxicity. It is suggested that EA acts as a novel radiosensitizer for tumors and a radioprotector for normal cells which may offer a novel protocol for cancer treatment. (author)

  4. Pattern reversal visual evoked potentials in migraine subjects without aura

    Directory of Open Access Journals (Sweden)

    Pedro F. Moreira Filho

    1994-12-01

    Full Text Available Twenty seven patients with migraine without aura were investigated. The age was between 12 and 54 years; 5 were men and 22 women. The diagnosis of migraine was made according to the classification proposed by the International Headache Society. The method of visual evoked potential was performed with pattern reversal (VEP-PR, with monocular stimulation. The stimulation was performed with pattern reversal with 4x4 cm black and white and red and green squared screen placed 1 meter from the nasion at stimulus frequency 1/s; 128 individual trials were analysed. The VEP-PR with black/white and red/green study showed a significant increase of value of the P-100 latency in 10 migraine patients. In 8 cases the LP100 in VEP-PR black/white was normal but in VEP-PR red/green the LP100 showed increase. Specifically in 1 of our cases, LP100 were normal in VEP-PR black/white but in the red/green there were no reproductice waves. On basis of these observations we consider that the method of VEP-PR is an useful instrument for investigation of migraine patients without aura.

  5. From acoustic descriptors to evoked quality of car door sounds.

    Science.gov (United States)

    Bezat, Marie-Céline; Kronland-Martinet, Richard; Roussarie, Vincent; Ystad, Sølvi

    2014-07-01

    This article describes the first part of a study aiming at adapting the mechanical car door construction to the drivers' expectancies in terms of perceived quality of cars deduced from car door sounds. A perceptual cartography of car door sounds is obtained from various listening tests aiming at revealing both ecological and analytical properties linked to evoked car quality. In the first test naive listeners performed absolute evaluations of five ecological properties (i.e., solidity, quality, weight, closure energy, and success of closure). Then experts in the area of automobile doors categorized the sounds according to organic constituents (lock, joints, door panel), in particular whether or not the lock mechanism could be perceived. Further, a sensory panel of naive listeners identified sensory descriptors such as classical descriptors or onomatopoeia that characterize the sounds, hereby providing an analytic description of the sounds. Finally, acoustic descriptors were calculated after decomposition of the signal into a lock and a closure component by the Empirical Mode Decomposition (EMD) method. A statistical relationship between the acoustic descriptors and the perceptual evaluations of the car door sounds could then be obtained through linear regression analysis.

  6. Pattern Visual Evoked Potentials Elicited by Organic Electroluminescence Screen

    Directory of Open Access Journals (Sweden)

    Celso Soiti Matsumoto

    2014-01-01

    Full Text Available Purpose. To determine whether organic electroluminescence (OLED screens can be used as visual stimulators to elicit pattern-reversal visual evoked potentials (p-VEPs. Method. Checkerboard patterns were generated on a conventional cathode-ray tube (S710, Compaq Computer Co., USA screen and on an OLED (17 inches, 320 × 230 mm, PVM-1741, Sony, Tokyo, Japan screen. The time course of the luminance changes of each monitor was measured with a photodiode. The p-VEPs elicited by these two screens were recorded from 15 eyes of 9 healthy volunteers (22.0 ± 0.8 years. Results. The OLED screen had a constant time delay from the onset of the trigger signal to the start of the luminescence change. The delay during the reversal phase from black to white for the pattern was 1.0 msec on the cathode-ray tube (CRT screen and 0.5 msec on the OLED screen. No significant differences in the amplitudes of P100 and the implicit times of N75 and P100 were observed in the p-VEPs elicited by the CRT and the OLED screens. Conclusion. The OLED screen can be used as a visual stimulator to elicit p-VEPs; however the time delay and the specific properties in the luminance change must be taken into account.

  7. Brainstem auditory evoked potential testing in Dalmatian dogs in Brazil

    Directory of Open Access Journals (Sweden)

    M.I.P. Palumbo

    2014-04-01

    Full Text Available The brain stem auditory-evoked potential (BAEP is an electrophysiologic test that detects and records the electrical activity in the auditory system from cochlea to midbrain, generated after an acoustic stimulus applied to the external ear. The aim of this study is to obtain normative data for BAEP in Dalmatian dogs in order to apply this to the evaluation of deafness and other neurologic disorders. BAEP were recorded from 30 Dalmatian dogs for a normative Brazilian study. Mean latencies for waves I, III, and V were 1.14 (±0.09, 2.62 (±0.10, and 3.46 (±0.14 ms, respectively. Mean inter-peak latencies for I-III, III-V, and I-V intervals were 1.48 (±0.17, 0.84 (±0.12, and 2.31 (±0.18 ms, respectively. Unilateral abnormalities were found in 16.7% of animals and bilateral deafness was seen in one dog. The normative data obtained in this paper is compatible with other published data. As far as we know this is the first report of deafness occurrence in Dalmatian dogs in Brazil.

  8. Optimization of visual evoked potential (VEP) recording systems.

    Science.gov (United States)

    Karanjia, Rustum; Brunet, Donald G; ten Hove, Martin W

    2009-01-01

    To explore the influence of environmental conditions on pattern visual evoked potential (VEP) recordings. Fourteen subjects with no known ocular pathology were recruited for the study. In an attempt to optimize the recording conditions, VEP recordings were performed in both the seated and recumbent positions. Comparisons were made between recordings using either LCD or CRT displays and recordings obtained in silence or with quiet background music. Paired recordings (in which only one variable was changed) were analyzed for changes in P100 latency, RMS noise, and variability. Baseline RMS noise demonstrated a significant decrease in the variability during the first 50msec accompanied by a 73% decrease in recording time for recumbent position when compared to the seated position (pmusic did not affect the amount of RMS noise during the first 50msec of the recordings. This study demonstrates that the use of the recumbent position increases patient comfort and improves the signal to noise ratio. In contrast, the addition of background music to relax the patient did not improve the recording signal. Furthermore, the study illustrates the importance of avoiding low-contrast visual stimulation patterns obtained with LCD as they lead to higher latencies resulting in false positive recordings. These findings are important when establishing or modifying a pattern VEP recording protocol.

  9. Pattern visual evoked potentials elicited by organic electroluminescence screen.

    Science.gov (United States)

    Matsumoto, Celso Soiti; Shinoda, Kei; Matsumoto, Harue; Funada, Hideaki; Sasaki, Kakeru; Minoda, Haruka; Iwata, Takeshi; Mizota, Atsushi

    2014-01-01

    To determine whether organic electroluminescence (OLED) screens can be used as visual stimulators to elicit pattern-reversal visual evoked potentials (p-VEPs). Checkerboard patterns were generated on a conventional cathode-ray tube (S710, Compaq Computer Co., USA) screen and on an OLED (17 inches, 320 × 230 mm, PVM-1741, Sony, Tokyo, Japan) screen. The time course of the luminance changes of each monitor was measured with a photodiode. The p-VEPs elicited by these two screens were recorded from 15 eyes of 9 healthy volunteers (22.0 ± 0.8 years). The OLED screen had a constant time delay from the onset of the trigger signal to the start of the luminescence change. The delay during the reversal phase from black to white for the pattern was 1.0 msec on the cathode-ray tube (CRT) screen and 0.5 msec on the OLED screen. No significant differences in the amplitudes of P100 and the implicit times of N75 and P100 were observed in the p-VEPs elicited by the CRT and the OLED screens. The OLED screen can be used as a visual stimulator to elicit p-VEPs; however the time delay and the specific properties in the luminance change must be taken into account.

  10. Effect of word familiarity on visually evoked magnetic fields.

    Science.gov (United States)

    Harada, N; Iwaki, S; Nakagawa, S; Yamaguchi, M; Tonoike, M

    2004-11-30

    This study investigated the effect of word familiarity of visual stimuli on the word recognizing function of the human brain. Word familiarity is an index of the relative ease of word perception, and is characterized by facilitation and accuracy on word recognition. We studied the effect of word familiarity, using "Hiragana" (phonetic characters in Japanese orthography) characters as visual stimuli, on the elicitation of visually evoked magnetic fields with a word-naming task. The words were selected from a database of lexical properties of Japanese. The four "Hiragana" characters used were grouped and presented in 4 classes of degree of familiarity. The three components were observed in averaged waveforms of the root mean square (RMS) value on latencies at about 100 ms, 150 ms and 220 ms. The RMS value of the 220 ms component showed a significant positive correlation (F=(3/36); 5.501; p=0.035) with the value of familiarity. ECDs of the 220 ms component were observed in the intraparietal sulcus (IPS). Increments in the RMS value of the 220 ms component, which might reflect ideographical word recognition, retrieving "as a whole" were enhanced with increments of the value of familiarity. The interaction of characters, which increased with the value of familiarity, might function "as a large symbol"; and enhance a "pop-out" function with an escaping character inhibiting other characters and enhancing the segmentation of the character (as a figure) from the ground.

  11. Changes in vestibular evoked myogenic potentials after Meniere attacks.

    Science.gov (United States)

    Kuo, Shih-Wei; Yang, Ting-Hua; Young, Yi-Ho

    2005-09-01

    The aim of this study was to apply videonystagmography (VNG) and vestibular evoked myogenic potential (VEMP) tests to patients with Meniere attacks, to explore the mechanics of where saccular disorders may affect the semicircular canals. From January 2001 to December 2003, 12 consecutive patients with unilateral definite Meniere's disease with vertiginous attacks underwent VNG for recording spontaneous nystagmus, as well as VEMP tests. At the very beginning of the Meniere attack, the spontaneous nystagmus beat toward the lesion side in 5 patients (42%) and toward the healthy side in 7 patients (58%). Twenty-four hours later, only 6 patients (50%) showed spontaneous nystagmus beating toward the healthy side. Nevertheless, spontaneous nystagmus subsided in all patients within 48 hours. The VEMP test was performed within 24 hours of a Meniere attack; the VEMPs were normal in 4 patients and abnormal in 8 patients (67%). After 48 hours, 4 patients with initially abnormal VEMPs had resolution and return to normal VEMPs, and the other 4 patients still had absent VEMPs. Most patients (67%) with Meniere attacks revealed abnormal VEMPs, indicating that the saccule participates in a Meniere attack. This is an important idea that stimulates consideration of the mechanism of Meniere attacks.

  12. Pyrethroid insecticides evoke neurotransmitter release from rabbit striatal slices

    International Nuclear Information System (INIS)

    Eells, J.T.; Dubocovich, M.L.

    1988-01-01

    The effects of the synthetic pyrethroid insecticide fenvalerate ([R,S]-alpha-cyano-3-phenoxybenzyl[R,S]-2-(4-chlorophenyl)-3- methylbutyrate) on neurotransmitter release in rabbit brain slices were investigated. Fenvalerate evoked a calcium-dependent release of [ 3 H]dopamine and [ 3 H]acetylcholine from rabbit striatal slices that was concentration-dependent and specific for the toxic stereoisomer of the insecticide. The release of [ 3 H]dopamine and [ 3 H]acetylcholine by fenvalerate was modulated by D2 dopamine receptor activation and antagonized completely by the sodium channel blocker, tetrodotoxin. These findings are consistent with an action of fenvalerate on the voltage-dependent sodium channels of the presynaptic membrane resulting in membrane depolarization, and the release of dopamine and acetylcholine by a calcium-dependent exocytotic process. In contrast to results obtained in striatal slices, fenvalerate did not elicit the release of [ 3 H]norepinephrine or [ 3 H]acetylcholine from rabbit hippocampal slices indicative of regional differences in sensitivity to type II pyrethroid actions

  13. Blocking mammalian target of rapamycin (mTOR improves neuropathic pain evoked by spinal cord injury

    Directory of Open Access Journals (Sweden)

    Wang Xiaoping

    2016-01-01

    Full Text Available Spinal cord injury (SCI is an extremely serious type of physical trauma observed in clinics. Neuropathic pain resulting from SCI has a lasting and significant impact on most aspects of daily life. Thus, a better understanding of the molecular pathways responsible for the cause of neuropathic pain observed in SCI is important to develop effective therapeutic agents and treatment strategies. Mammalian target of rapamycin (mTOR is a serine/threonine protein kinase that is well known for its critical roles in regulating protein synthesis and growth. Furthermore, compelling evidence supports the notion that widespread dysregulation of mTOR and its downstream pathways are involved in neuropathic pain. Thus, in this study we specifically examined the underlying mechanisms by which mTOR and its signaling pathways are involved in SCI-evoked neuropathic pain in a rat model. Overall, we demonstrated that SCI increased the protein expression of p-mTOR, and mTORmediated- phosphorylation of 4E–binding protein 4 (4E-BP1 and p70 ribosomal S6 protein kinase 1 (S6K1 in the superficial dorsal horn of the spinal cord. Also, we showed that blocking spinal mTOR by intrathecal injection of rapamycin significantly inhibited pain responses induced by mechanical and thermal stimulation. In addition, blocking spinal phosphatidylinositide 3-kinase (p-PI3K pathway significantly attenuated activities of p-mTOR pathways as well as mechanical and thermal hyperalgesia in SCI rats. Moreover, blocking mTOR and PI3K decreased the enhanced levels of substance P and calcitonin gene-related peptide (CGRP in the dorsal horn of SCI rats. We revealed specific signaling pathways leading to SCI-evoked neuropathic pain, including the activation of PI3K, mTOR and its downstream signaling pathways. Targeting one or more of these signaling molecules may present new opportunities for treatment and management of neuropathic pain often observed in patients with SCI.

  14. An approach for brain-controlled prostheses based on Scene Graph Steady-State Visual Evoked Potentials.

    Science.gov (United States)

    Li, Rui; Zhang, Xiaodong; Li, Hanzhe; Zhang, Liming; Lu, Zhufeng; Chen, Jiangcheng

    2018-08-01

    Brain control technology can restore communication between the brain and a prosthesis, and choosing a Brain-Computer Interface (BCI) paradigm to evoke electroencephalogram (EEG) signals is an essential step for developing this technology. In this paper, the Scene Graph paradigm used for controlling prostheses was proposed; this paradigm is based on Steady-State Visual Evoked Potentials (SSVEPs) regarding the Scene Graph of a subject's intention. A mathematic model was built to predict SSVEPs evoked by the proposed paradigm and a sinusoidal stimulation method was used to present the Scene Graph stimulus to elicit SSVEPs from subjects. Then, a 2-degree of freedom (2-DOF) brain-controlled prosthesis system was constructed to validate the performance of the Scene Graph-SSVEP (SG-SSVEP)-based BCI. The classification of SG-SSVEPs was detected via the Canonical Correlation Analysis (CCA) approach. To assess the efficiency of proposed BCI system, the performances of traditional SSVEP-BCI system were compared. Experimental results from six subjects suggested that the proposed system effectively enhanced the SSVEP responses, decreased the degradation of SSVEP strength and reduced the visual fatigue in comparison with the traditional SSVEP-BCI system. The average signal to noise ratio (SNR) of SG-SSVEP was 6.31 ± 2.64 dB, versus 3.38 ± 0.78 dB of traditional-SSVEP. In addition, the proposed system achieved good performances in prosthesis control. The average accuracy was 94.58% ± 7.05%, and the corresponding high information transfer rate (IRT) was 19.55 ± 3.07 bit/min. The experimental results revealed that the SG-SSVEP based BCI system achieves the good performance and improved the stability relative to the conventional approach. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Passive language mapping combining real-time oscillation analysis with cortico-cortical evoked potentials for awake craniotomy.

    Science.gov (United States)

    Tamura, Yukie; Ogawa, Hiroshi; Kapeller, Christoph; Prueckl, Robert; Takeuchi, Fumiya; Anei, Ryogo; Ritaccio, Anthony; Guger, Christoph; Kamada, Kyousuke

    2016-12-01

    OBJECTIVE Electrocortical stimulation (ECS) is the gold standard for functional brain mapping; however, precise functional mapping is still difficult in patients with language deficits. High gamma activity (HGA) between 80 and 140 Hz on electrocorticography is assumed to reflect localized cortical processing, whereas the cortico-cortical evoked potential (CCEP) can reflect bidirectional responses evoked by monophasic pulse stimuli to the language cortices when there is no patient cooperation. The authors propose the use of "passive" mapping by combining HGA mapping and CCEP recording without active tasks during conscious resections of brain tumors. METHODS Five patients, each with an intraaxial tumor in their dominant hemisphere, underwent conscious resection of their lesion with passive mapping. The authors performed functional localization for the receptive language area, using real-time HGA mapping, by listening passively to linguistic sounds. Furthermore, single electrical pulses were delivered to the identified receptive temporal language area to detect CCEPs in the frontal lobe. All mapping results were validated by ECS, and the sensitivity and specificity were evaluated. RESULTS Linguistic HGA mapping quickly identified the language area in the temporal lobe. Electrical stimulation by linguistic HGA mapping to the identified temporal receptive language area evoked CCEPs on the frontal lobe. The combination of linguistic HGA and frontal CCEPs needed no patient cooperation or effort. In this small case series, the sensitivity and specificity were 93.8% and 89%, respectively. CONCLUSIONS The described technique allows for simple and quick functional brain mapping with higher sensitivity and specificity than ECS mapping. The authors believe that this could improve the reliability of functional brain mapping and facilitate rational and objective operations. Passive mapping also sheds light on the underlying physiological mechanisms of language in the human brain.

  16. Visual cortical somatosensory and brainstem auditory evoked potentials following incidental irradiation of the rhombencephalon

    International Nuclear Information System (INIS)

    Nightingale, S.; Schofield, I.S.; Dawes, P.J.D.K.

    1984-01-01

    Visual, cortical somatosensory and brainstem auditory evoked potentials were recorded before incidental irradiation of the rhombencephalon during radiotherapy in and around the middle ear, and at 11 weeks and eight months after completion of treatment. No patient experienced neurological symptoms during this period. No consistent changes in evoked potentials were found. The failure to demonstrate subclinical radiation-induced demyelination suggests either that the syndrome of early-delayed radiation rhombencephalopathy occurs in an idiosyncratic manner, or that any subclinical lesions are not detectable by serial evoked potential recordings. (author)

  17. Music-evoked emotions: principles, brain correlates, and implications for therapy.

    Science.gov (United States)

    Koelsch, Stefan

    2015-03-01

    This paper describes principles underlying the evocation of emotion with music: evaluation, resonance, memory, expectancy/tension, imagination, understanding, and social functions. Each of these principles includes several subprinciples, and the framework on music-evoked emotions emerging from these principles and subprinciples is supposed to provide a starting point for a systematic, coherent, and comprehensive theory on music-evoked emotions that considers both reception and production of music, as well as the relevance of emotion-evoking principles for music therapy. © 2015 New York Academy of Sciences.

  18. Visual cortical somatosensory and brainstem auditory evoked potentials following incidental irradiation of the rhombencephalon

    Energy Technology Data Exchange (ETDEWEB)

    Nightingale, S. (Royal Victoria Infirmary, Newcastle upon Tyne (UK)); Schofield, I.S.; Dawes, P.J.D.K. (Newcastle upon Tyne Univ. (UK). Ne