WorldWideScience

Sample records for au-rich messenger rna

  1. Messenger RNA 3' end formation in plants.

    Science.gov (United States)

    Hunt, A G

    2008-01-01

    Messenger RNA 3' end formation is an integral step in the process that gives rise to mature, translated messenger RNAs in eukaryotes. With this step, a pre-messenger RNA is processed and polyadenylated, giving rise to a mature mRNA bearing the characteristic poly(A) tract. The poly(A) tract is a fundamental feature of mRNAs, participating in the process of translation initiation and being the focus of control mechanisms that define the lifetime of mRNAs. Thus messenger RNA 3' end formation impacts two steps in mRNA biogenesis and function. Moreover, mRNA 3' end formation is something of a bridge that integrates numerous other steps in mRNA biogenesis and function. While the process is essential for the expression of most genes, it is also one that is subject to various forms of regulation, such that both quantitative and qualitative aspects of gene expression may be modulated via the polyadenylation complex. In this review, the current status of understanding of mRNA 3' end formation in plants is discussed. In particular, the nature of mRNA 3' ends in plants is reviewed, as are recent studies that are beginning to yield insight into the functioning and regulation of plant polyadenylation factor subunits.

  2. Nuclear Export of Messenger RNA

    Directory of Open Access Journals (Sweden)

    Jun Katahira

    2015-03-01

    Full Text Available Transport of messenger RNA (mRNA from the nucleus to the cytoplasm is an essential step of eukaryotic gene expression. In the cell nucleus, a precursor mRNA undergoes a series of processing steps, including capping at the 5' ends, splicing and cleavage/polyadenylation at the 3' ends. During this process, the mRNA associates with a wide variety of proteins, forming a messenger ribonucleoprotein (mRNP particle. Association with factors involved in nuclear export also occurs during transcription and processing, and thus nuclear export is fully integrated into mRNA maturation. The coupling between mRNA maturation and nuclear export is an important mechanism for providing only fully functional and competent mRNA to the cytoplasmic translational machinery, thereby ensuring accuracy and swiftness of gene expression. This review describes the molecular mechanism of nuclear mRNA export mediated by the principal transport factors, including Tap-p15 and the TREX complex.

  3. Nuclear Export of Messenger RNA

    Science.gov (United States)

    Katahira, Jun

    2015-01-01

    Transport of messenger RNA (mRNA) from the nucleus to the cytoplasm is an essential step of eukaryotic gene expression. In the cell nucleus, a precursor mRNA undergoes a series of processing steps, including capping at the 5' ends, splicing and cleavage/polyadenylation at the 3' ends. During this process, the mRNA associates with a wide variety of proteins, forming a messenger ribonucleoprotein (mRNP) particle. Association with factors involved in nuclear export also occurs during transcription and processing, and thus nuclear export is fully integrated into mRNA maturation. The coupling between mRNA maturation and nuclear export is an important mechanism for providing only fully functional and competent mRNA to the cytoplasmic translational machinery, thereby ensuring accuracy and swiftness of gene expression. This review describes the molecular mechanism of nuclear mRNA export mediated by the principal transport factors, including Tap-p15 and the TREX complex. PMID:25836925

  4. Messenger RNA surveillance: neutralizing natural nonsense

    DEFF Research Database (Denmark)

    Weischelfeldt, Joachim Lütken; Lykke-Andersen, Jens; Porse, Bo

    2005-01-01

    Messenger RNA transcripts that contain premature stop codons are degraded by a process termed nonsense-mediated mRNA decay (NMD). Although previously thought of as a pathway that rids the cell of non-functional mRNAs arising from mutations and processing errors, new research suggests a more general...

  5. Radiation sensitivity of messenger RNA

    International Nuclear Information System (INIS)

    Ponta, H.; Pfennig-Yeh, M.L.; Herrlich, P.; Karlsruhe Univ.; Wagner, E.F.; Schweiger, M.

    1979-01-01

    Messenger RNA function is inactivated by irradiation with ultraviolet light. A unit length mRNA (in bases) is 2-3 times more sensitive than a unit length of DNA (in base pairs) with respect to the inactivation of template function. These data stem from four experimental systems all of which do not repair DNA: the translation of E. coli mRNA in rifampicin-treated cells, of T7 mRNA in infected E.coli, of f2 phage RNA in vivo, and of stable mRNA in chromosomeless minicells. The comparison of relative sensitivities to UV is relevant to the technique of UV mapping of transcription units which enjoys increasing popularity in pro- and eukaryotic genetic research. (orig.) [de

  6. Radiation sensitivity of messenger RNA

    Energy Technology Data Exchange (ETDEWEB)

    Ponta, H; Pfennig-Yeh, M L; Herrlich, P [Kernforschungszentrum Karlsruhe G.m.b.H. (Germany, F.R.). Inst. fuer Genetik und Toxikologie von Spaltstoffen; Karlsruhe Univ. (TH) (Germany, F.R.). Inst. fuer Genetik); Wagner, E F; Schweiger, M [Innsbruck Univ. (Austria). Inst. fuer Biochemie

    1979-08-01

    Messenger RNA function is inactivated by irradiation with ultraviolet light. A unit length mRNA (in bases) is 2-3 times more sensitive than a unit length of DNA (in base pairs) with respect to the inactivation of template function. These data stem from four experimental systems all of which do not repair DNA: the translation of E. coli mRNA in rifampicin-treated cells, of T7 mRNA in infected E.coli, of f2 phage RNA in vivo, and of stable mRNA in chromosomeless minicells. The comparison of relative sensitivities to UV is relevant to the technique of UV mapping of transcription units which enjoys increasing popularity in pro- and eukaryotic genetic research.

  7. Bifurcations in the interplay of messenger RNA, protein and nonprotein coding RNA

    International Nuclear Information System (INIS)

    Zhdanov, Vladimir P

    2008-01-01

    The interplay of messenger RNA (mRNA), protein, produced via translation of this RNA, and nonprotein coding RNA (ncRNA) may include regulation of the ncRNA production by protein and (i) ncRNA-protein association resulting in suppression of the protein regulatory activity or (ii) ncRNA-mRNA association resulting in degradation of the miRNA-mRNA complex. The kinetic models describing these two scenarios are found to predict bistability provided that protein suppresses the ncRNA formation

  8. Localization of calcium-binding proteins and GABA transporter (GAT-1) messenger RNA in the human subthalamic nucleus

    International Nuclear Information System (INIS)

    Augood, S.J.; Waldvogel, H.J.; Muenkle, M.C.; Faull, R.L.M.; Emson, P.C.

    1999-01-01

    The distribution of messenger RNA encoding the human GAT-1 (a high-affinity GABA transporter) was investigated in the subthalamic nucleus of 10 neurologically normal human post mortem cases. Further, the distribution of messenger RNA and protein encoding the three neuronally expressed calcium-binding proteins (calbindin D28k, parvalbumin and calretinin) was similarly investigated using in situ hybridization and immunohistochemical techniques. Cellular sites of calbindin D28k, parvalbumin, calretinin and GAT-1 messenger RNA expression were localized using human-specific oligonucleotide probes radiolabelled with [ 35 S]dATP. Sites of protein localization were visualized using specific anti-calbindin D28k, anti-parvalbumin and anti-calretinin antisera. Examination of emulsion-coated tissue sections processed for in situ hybridization revealed an intense signal for GAT-1 messenger RNA within the human subthalamic nucleus, indeed the majority of Methylene Blue-counterstained cells were enriched in this transcript. Further, a marked heterogeneity was noted with regard to the expression of the messenger RNA's encoding the three calcium-binding proteins; this elliptical nucleus was highly enriched in parvalbumin messenger RNA-positive neurons and calretinin mRNA-positive cells but not calbindin messenger RNA-positive cells. Indeed, only an occasional calbindin messenger RNA-positive cell was detected within the mediolateral extent of the nucleus. In marked contrast, numerous parvalbumin messenger RNA-positive cells and calretinin messenger RNA-positive cells were detected and they were topographically distributed; parvalbumin messenger RNA-positive cells were highly enriched in the dorsal subthalamic nucleus extending mediolaterally; calretinin messenger RNA-positive cells were more enriched ventrally although some degree of overlap was apparent. Computer-assisted analysis of the average cross-sectional somatic area of parvalbumin, calretinin and GAT-1 messenger RNA

  9. Phenotypic characterization of neurotensin messenger RNA-expressing cells in the neuroleptic-treated rat striatum: a detailed cellular co-expression study

    Energy Technology Data Exchange (ETDEWEB)

    Emson, P C; Westmore, K; Augood, S J [MRC Molecular Neuroscience Group, The Department of Neurobiology, The Babraham Institute, Babraham, Cambridge (United Kingdom)

    1996-12-11

    The chemical phenotype of proneurotensin messenger RNA-expressing cells was determined in the acute haloperidol-treated rat striatum using a combination of [{sup 35}S]-labelled and alkaline phosphatase-labelled oligonucleotides. Cellular sites of proneurotensin messenger RNA expression were visualized simultaneously on tissue sections processed to reveal cellular sites of preproenkephalin A messenger RNA or the dopamine and adenylate cyclase phosphoprotein-32, messenger RNA. The cellular co-expression of preproenkepahlin A and preprotachykinin messenger RNA was also examined within forebrain structures. Cellular sites of preproenkephalin A and dopamine and adenylate cyclase phosphoprotein-32 messenger RNAs were visualized using alkaline phosphatase-labelled oligonucleotides whilst sites of preprotachykinin and proneurotensin messenger RNA expression were detected using [{sup 35}S]-labelled oligos. Cellular sites of enkephalin and dopamine and adenylate cyclase phosphoprotein-32 gene expression were identified microscopically by the concentration of purple alkaline phosphatase reaction product within the cell cytoplasm, whereas sites of substance P and proneurotensin gene expression were identified by the dense clustering of silver grains overlying cells.An intense hybridization signal was detected for all three neuropeptide messenger RNAs in the striatum, the nucleus accumbens and septum. Dopamine and adenylate cyclase phosphoprotein-32 messenger RNA was detected within the neostriatum but not within the septum. In all forebrain regions examined, with the exception of the islands of Cajella, the cellular expression of enkephalin messenger RNA and substance P messenger RNA was discordant; the two neuropeptide messenger RNAs were detected essentially in different cells, although in the striatum and nucleus accumbens occasional isolated cells were detected which contained both hybridization signals; dense clusters of silver grains overlay alkaline phosphatase

  10. Phenotypic characterization of neurotensin messenger RNA-expressing cells in the neuroleptic-treated rat striatum: a detailed cellular co-expression study

    International Nuclear Information System (INIS)

    Emson, P.C.; Westmore, K.; Augood, S.J.

    1996-01-01

    The chemical phenotype of proneurotensin messenger RNA-expressing cells was determined in the acute haloperidol-treated rat striatum using a combination of [ 35 S]-labelled and alkaline phosphatase-labelled oligonucleotides. Cellular sites of proneurotensin messenger RNA expression were visualized simultaneously on tissue sections processed to reveal cellular sites of preproenkephalin A messenger RNA or the dopamine and adenylate cyclase phosphoprotein-32, messenger RNA. The cellular co-expression of preproenkepahlin A and preprotachykinin messenger RNA was also examined within forebrain structures. Cellular sites of preproenkephalin A and dopamine and adenylate cyclase phosphoprotein-32 messenger RNAs were visualized using alkaline phosphatase-labelled oligonucleotides whilst sites of preprotachykinin and proneurotensin messenger RNA expression were detected using [ 35 S]-labelled oligos. Cellular sites of enkephalin and dopamine and adenylate cyclase phosphoprotein-32 gene expression were identified microscopically by the concentration of purple alkaline phosphatase reaction product within the cell cytoplasm, whereas sites of substance P and proneurotensin gene expression were identified by the dense clustering of silver grains overlying cells.An intense hybridization signal was detected for all three neuropeptide messenger RNAs in the striatum, the nucleus accumbens and septum. Dopamine and adenylate cyclase phosphoprotein-32 messenger RNA was detected within the neostriatum but not within the septum. In all forebrain regions examined, with the exception of the islands of Cajella, the cellular expression of enkephalin messenger RNA and substance P messenger RNA was discordant; the two neuropeptide messenger RNAs were detected essentially in different cells, although in the striatum and nucleus accumbens occasional isolated cells were detected which contained both hybridization signals; dense clusters of silver grains overlay alkaline phosphatase-positive cells

  11. ESTRADIOL-INDUCED SYNTHESIS OF VITELLOGENIN .3. ISOLATION AND CHARACTERIZATION OF VITELLOGENIN MESSENGER-RNA FROM AVIAN LIVER

    NARCIS (Netherlands)

    AB, G.; Roskam, W. G.; Dijkstra, J.; Mulder, J.; Willems, M.; van der Ende, A.; Gruber, M.

    1976-01-01

    The messenger RNA of the hormone-induced protein vitellogenin was isolated from the liver of estrogen-treated roosters. Starting from total polysomal RNA, the vitellogenin messenger was purified 67-fold by oligo (dT)-cellulose chromatography and sizing on a sucrose gradient. The messenger was

  12. Effects of ionizing radiation and partial hepatectomy on messenger RNA synthesis

    International Nuclear Information System (INIS)

    Abdel-Halim, M.N.

    1979-01-01

    Newly synthesized messenger RNA, as measured by a 40 min uptake of the radioactive precursor (6- 14 C) orotic acid, was studied in the regenerating livers of non-irradiated and gamma-irradiated (1800 rad) adrenal-intact and adrenalectomized rats 24 and 48 hours after partial hepatectomy. Two groups of rats, one with and one without adrenal glands were each divided into four subgroups: (1) control rats, (2) irradiated rats, (3) partially hepatectomized rats and (4) irradiated, partially hepatectomized rats. The radioactive profile of polyribosome formation and distribution was determined by sucrose density gradient centrifugation (10 to 40 per cent). The result of this study indicates that ionizing radiation decreases the synthesis of newly formed messenger RNA in regenerating livers of adrenal-intact rats. However, adrenalectomy largely abolished that inhibition. These data suggest that the decrease in messenger RNA synthesis may be explained by the disturbance of adrenal hormones induced by partial hepatectomy and ionizing radiation. (author)

  13. Characterization of long noncoding RNA and messenger RNA signatures in melanoma tumorigenesis and metastasis.

    Directory of Open Access Journals (Sweden)

    Siqi Wang

    Full Text Available The incidence of melanoma, the most aggressive and life-threatening form of skin cancer, has significantly risen over recent decades. Therefore, it is essential to identify the mechanisms that underlie melanoma tumorigenesis and metastasis and to explore novel and effective melanoma treatment strategies. Accumulating evidence s uggests that aberrantly expressed long noncoding RNAs (lncRNAs have vital functions in multiple cancers. However, lncRNA functions in melanoma tumorigenesis and metastasis remain unclear. In this study, we investigated lncRNA and messenger RNA (mRNA expression profiles in primary melanomas, metastatic melanomas and normal skin samples from the Gene Expression Omnibus database. We used GSE15605 as the training set (n = 74 and GSE7553 as the validation set (n = 58. In three comparisons (primary melanoma versus normal skin, metastatic melanoma versus normal skin, and metastatic melanoma versus primary melanoma, 178, 295 and 48 lncRNAs and 847, 1758, and 295 mRNAs were aberrantly expressed, respectively. We performed Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses to examine the differentially expressed mRNAs, and potential core lncRNAs were predicted by lncRNA-mRNA co-expression networks. Based on our results, 15 lncRNAs and 144 mRNAs were significantly associated with melanoma tumorigenesis and metastasis. A subsequent analysis suggested a critical role for a five-lncRNA signature during melanoma tumorigenesis and metastasis. Low expression of U47924.27 was significantly associated with decreased survival of patients with melanoma. To the best of our knowledge, this study is the first to explore the expression patterns of lncRNAs and mRNAs during melanoma tumorigenesis and metastasis by re-annotating microarray data from the Gene Expression Omnibus (GEO microarray dataset. These findings reveal potential roles for lncRNAs during melanoma tumorigenesis and metastasis and provide a rich candidate

  14. The Velocity Distribution Of Pickup He+ Measured at 0.3 AU by MESSENGER

    Science.gov (United States)

    Gershman, Daniel J.; Fisk, Lennard A.; Gloeckler, George; Raines, Jim M.; Slavin, James A.; Zurbuchen, Thomas H.; Solomon, Sean C.

    2014-06-01

    During its interplanetary trajectory in 2007-2009, the MErcury Surface, Space ENvrionment, GEochemistry, and Ranging (MESSENGER) spacecraft passed through the gravitational focusing cone for interstellar helium multiple times at a heliocentric distance R ≈ 0.3 AU. Observations of He+ interstellar pickup ions made by the Fast Imaging Plasma Spectrometer sensor on MESSENGER during these transits provide a glimpse into the structure of newly formed inner heliospheric pickup-ion distributions. This close to the Sun, these ions are picked up in a nearly radial interplanetary magnetic field. Compared with the near-Earth environment, pickup ions observed near 0.3 AU will not have had sufficient time to be energized substantially. Such an environment results in a nearly pristine velocity distribution function that should depend only on pickup-ion injection velocities (related to the interstellar gas), pitch-angle scattering, and cooling processes. From measured energy-per-charge spectra obtained during multiple spacecraft observational geometries, we have deduced the phase-space density of He+ as a function of magnetic pitch angle. Our measurements are most consistent with a distribution that decreases nearly monotonically with increasing pitch angle, rather than the more commonly modeled isotropic or hemispherically symmetric forms. These results imply that pitch-angle scattering of He+ may not be instantaneous, as is often assumed, and instead may reflect the velocity distribution of initially injected particles. In a slow solar wind stream, we find a parallel-scattering mean free path of λ || ~ 0.1 AU and a He+ production rate of ~0.05 m-3 s-1 within 0.3 AU.

  15. A Contemporary, Laboratory-Intensive Course on Messenger RNA Transcription and Processing

    Science.gov (United States)

    Carson, Sue; Miller, Heather

    2012-01-01

    Messenger ribonucleic acid (mRNA) plays a pivotal role in the central dogma of molecular biology. Importantly, molecular events occurring during and after mRNA synthesis have the potential to create multiple proteins from one gene, leading to some of the remarkable protein diversity that genomes hold. The North Carolina State University…

  16. Tissue distribution of human acetylcholinesterase and butyrylcholinesterase messenger RNA

    Energy Technology Data Exchange (ETDEWEB)

    Jbilo, O.; Barteles, C.F.; Chatonnet, A.; Toutant, J.P.; Lockridge, O.

    1994-12-31

    Tissue distribution of human acetyicholinesterase and butyryicholinesterase messenger RNA. 1 Cholinesterase inhibitors occur naturally in the calabar bean (eserine), green potatoes (solanine), insect-resistant crab apples, the coca plant (cocaine) and snake venom (fasciculin). There are also synthetic cholinesterase inhibitors, for example man-made insecticides. These inhibitors inactivate acetyicholinesterase and butyrylcholinesterase as well as other targets. From a study of the tissue distribution of acetylcholinesterase and butyrylcholinesterase mRNA by Northern blot analysis, we have found the highest levels of butyrylcholinesterase mRNA in the liver and lungs, tissues known as the principal detoxication sites of the human body. These results indicate that butyrylcholinesterase may be a first line of defense against poisons that are eaten or inhaled.

  17. Dependence of the Interplanetary Magnetic Field on Heliocentric Distance between 0.3 and 1.7 AU from MESSENGER, ACE and MAVEN data

    Science.gov (United States)

    Hanneson, C.; Johnson, C.; Al Asad, M.

    2017-12-01

    Magnetometer data from the MErcury Surface, Space ENvironment, GEochemistry and Ranging (MESSENGER), Advanced Composition Explorer (ACE) and Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft were used to characterize the variation of the interplanetary magnetic field (IMF) with heliocentric distance from 0.3 to 1.7 AU. MESSENGER and ACE data form a set of simultaneous observations that spans eight years, from March 2007 until April 2015, with ACE observations continuing until the present. MAVEN data have been collected since November 2014. Furthermore, for the period 2008-2015, MESSENGER and ACE observations were taken over the same range of heliocentric distances: 0.31-0.47 AU and 0.94-1.00 AU respectively. The IMF varies with the solar sunspot cycle, and so data taken simultaneously at different heliocentric distances allow solar-cycle effects to be decoupled from the radial evolution of the IMF. The data were averaged temporally by taking 1-hour means, and median values were then computed in 0.01-AU bins. For the time interval spanned by all observations, the median value of the magnitude of the IMF decreases steadily from 30.1 nT at 0.3 AU to 4.3 nT at 1.0 AU and 2.5 nT at 1.6 AU. The magnitude of the IMF was found to decay with heliocentric distance according to an inverse power law with an exponent equal to the adiabatic index for an ideal monatomic gas, 5/3, within 95% confidence limits. The magnitude of the radial component decays with distance as an inverse square law within 95% confidence limits. We also consider temporal variations of the heliocentric-dependence of the IMF over the current solar cycle by computing power law fits to the simultaneous MESSENGER and ACE observations using a moving window. Our study complements the recent study of Gruesbeck et al. (2017) that used Juno data to consider the variation in IMF properties over the heliocentric distance range 1 to 6 AU.

  18. Design of a synthetic luminescent probe from a biomolecule binding domain: selective detection of AU-rich mRNA sequences.

    Science.gov (United States)

    Raibaut, Laurent; Vasseur, William; Shimberg, Geoffrey D; Saint-Pierre, Christine; Ravanat, Jean-Luc; Michel, Sarah L J; Sénèque, Olivier

    2017-02-01

    We report the design of a luminescent sensor based upon the zinc finger (ZF) protein TIS11d, that allows for the selective time-resolved detection of the UUAUUUAUU sequence of the 3'-untranslated region of messenger RNA. This sensor is composed of the tandem ZF RNA binding domain of TIS11d functionalized with a luminescent Tb 3+ complex on one of the ZFs and a sensitizing antenna on the other. This work provides the proof of principle that an RNA binding protein can be re-engineered as an RNA sensor and, more generally, that tunable synthetic luminescent probes for biomolecules can be obtained by modifying biomolecule-binding domains.

  19. The microRNA and messengerRNA profile of the RNA-induced silencing complex in human primary astrocyte and astrocytoma cells.

    Science.gov (United States)

    Moser, Joanna J; Fritzler, Marvin J

    2010-10-18

    GW/P bodies are cytoplasmic ribonucleoprotein-rich foci involved in microRNA (miRNA)-mediated messenger RNA (mRNA) silencing and degradation. The mRNA regulatory functions within GW/P bodies are mediated by GW182 and its binding partner hAgo2 that bind miRNA in the RNA-induced silencing complex (RISC). To date there are no published reports of the profile of miRNA and mRNA targeted to the RISC or a comparison of the RISC-specific miRNA/mRNA profile differences in malignant and non-malignant cells. RISC mRNA and miRNA components were profiled by microarray analysis of malignant human U-87 astrocytoma cells and its non-malignant counterpart, primary human astrocytes. Total cell RNA as well as RNA from immunoprecipitated RISC was analyzed. The novel findings were fourfold: (1) miRNAs were highly enriched in astrocyte RISC compared to U-87 astrocytoma RISC, (2) astrocytoma and primary astrocyte cells each contained unique RISC miRNA profiles as compared to their respective cellular miRNA profiles, (3) miR-195, 10b, 29b, 19b, 34a and 455-3p levels were increased and the miR-181b level was decreased in U-87 astrocytoma RISC as compared to astrocyte RISC, and (4) the RISC contained decreased levels of mRNAs in primary astrocyte and U-87 astrocytoma cells. The observation that miR-34a and miR-195 levels were increased in the RISC of U-87 astrocytoma cells suggests an oncogenic role for these miRNAs. Differential regulation of mRNAs by specific miRNAs is evidenced by the observation that three miR34a-targeted mRNAs and two miR-195-targeted mRNAs were downregulated while one miR-195-targeted mRNA was upregulated. Biological pathway analysis of RISC mRNA components suggests that the RISC plays a pivotal role in malignancy and other conditions. This study points to the importance of the RISC and ultimately GW/P body composition and function in miRNA and mRNA deregulation in astrocytoma cells and possibly in other malignancies.

  20. The microRNA and messengerRNA profile of the RNA-induced silencing complex in human primary astrocyte and astrocytoma cells.

    Directory of Open Access Journals (Sweden)

    Joanna J Moser

    2010-10-01

    Full Text Available GW/P bodies are cytoplasmic ribonucleoprotein-rich foci involved in microRNA (miRNA-mediated messenger RNA (mRNA silencing and degradation. The mRNA regulatory functions within GW/P bodies are mediated by GW182 and its binding partner hAgo2 that bind miRNA in the RNA-induced silencing complex (RISC. To date there are no published reports of the profile of miRNA and mRNA targeted to the RISC or a comparison of the RISC-specific miRNA/mRNA profile differences in malignant and non-malignant cells.RISC mRNA and miRNA components were profiled by microarray analysis of malignant human U-87 astrocytoma cells and its non-malignant counterpart, primary human astrocytes. Total cell RNA as well as RNA from immunoprecipitated RISC was analyzed. The novel findings were fourfold: (1 miRNAs were highly enriched in astrocyte RISC compared to U-87 astrocytoma RISC, (2 astrocytoma and primary astrocyte cells each contained unique RISC miRNA profiles as compared to their respective cellular miRNA profiles, (3 miR-195, 10b, 29b, 19b, 34a and 455-3p levels were increased and the miR-181b level was decreased in U-87 astrocytoma RISC as compared to astrocyte RISC, and (4 the RISC contained decreased levels of mRNAs in primary astrocyte and U-87 astrocytoma cells.The observation that miR-34a and miR-195 levels were increased in the RISC of U-87 astrocytoma cells suggests an oncogenic role for these miRNAs. Differential regulation of mRNAs by specific miRNAs is evidenced by the observation that three miR34a-targeted mRNAs and two miR-195-targeted mRNAs were downregulated while one miR-195-targeted mRNA was upregulated. Biological pathway analysis of RISC mRNA components suggests that the RISC plays a pivotal role in malignancy and other conditions. This study points to the importance of the RISC and ultimately GW/P body composition and function in miRNA and mRNA deregulation in astrocytoma cells and possibly in other malignancies.

  1. Alterations in messenger RNA and small nuclear RNA metabolism resulting from fluorouracil incorporation

    International Nuclear Information System (INIS)

    Armstrong, R.D.; Cadman, E.C.

    1985-01-01

    Studies were completed to examine the effect of 5-fluorouracil (FUra) incorporation on messenger RNA (mRNA) and small molecular weight nuclear RNA (SnRNA) metabolism. Studies of mRNA were completed using cDNA-mRNA hybridization methods to specifically examine dihydrofolate reductase (DHFR) mRNA. C 3 -L5178Y murine leukemia cells which are gene-amplified for DHFR, were exposed to FUra for 6, 12 or 24 hr, and the nuclear and cytoplasmic levels of DHFR-mRNA determined by hybridization with 32 P-DHFR-cDNA. FUra produced a dose-dependent increase in nuclear DHFR-mRNA levels, while total cytoplasmic DHFR-mRNA levels appeared to be unchanged. To examine only mRNA synthesized during FUra exposure, cells were also treated concurrently with [ 3 H] cytidine, and the [ 3 H]mRNA-cDNA hybrids measured following S 1 -nuclease treatment. FUra produced a concentration-dependent increase in nascent nuclear DHFR-mRNA levels, and a decrease in nascent cytoplasmic DHFR-mRNAs levels. These results suggest that FUra produces either an inhibition of mRNA processing, or an inhibition of nuclear-cytoplasmic transport. Preliminary experiments to examine ATP-dependent mRNA transport were completed with isolated nuclei from cells treated with FUra for 1 or 24 hr and then pulse-labeled for 1 hr with [ 3 H] cytidine. The results demonstrate a FUra-concentration and time-dependent inhibition of ATP-mediated mRNA efflux

  2. Identification of messenger RNA of fetoplacental source in maternal plasma of women with normal pregnancies and pregnancies with intrauterine growth restriction.

    Science.gov (United States)

    Ayala Ramírez, Paola; García Robles, Reggie; Rojas, Juan Diego; Bermúdez, Martha; Bernal, Jaime

    2012-07-01

    to quantify placenta-specific RNA in plasma of women carrying foetuses with intrauterine growth restriction and pregnant women with normal pregnancies. 8 pregnant women with foetuses with intrauterine growth restriction were studied as well as 18 women with uncomplicated pregnancies in the third pregnancy trimester. Total free RNA was quantified in maternal plasma by spectrophotometry and the gene expression of hPL (Human Placental Lactogen) at the messenger RNA level through technical Real Time-Chain Reaction Polymerase. plasma RNA of fetoplacental origin was successfully detected in 100% of pregnant women. There were no statistically significant differences between the values of total RNA extracted from plasma (p= 0.5975) nor in the messenger RNA expression of hPL gene (p= 0.5785) between cases and controls. messenger RNA of fetoplacental origin can be detected in maternal plasma during pregnancy.

  3. Postage for the messenger: Designating routes for Nuclear mRNA Export

    Science.gov (United States)

    Natalizio, Barbara J.; Wente, Susan R.

    2013-01-01

    Transcription of messenger(m) RNA occurs in the nucleus, making the translocation of mRNA across the nuclear envelope (NE) boundary a critical determinant of proper gene expression and cell survival. A major mRNA export route occurs via the NXF1-dependent pathway through the nuclear pore complexes (NPCs) embedded in the NE. However, recent findings have discovered new evidence supporting the existence of multiple mechanisms for crossing the NE, including both NPC-mediated and NE budding-mediated pathways. An analysis of the trans-acting factors and cis components that define these pathways reveals shared elements as well as mechanistic differences. We review here the current understanding of the mechanisms that characterize each pathway and highlight the determinants that influence mRNA transport fate. PMID:23583578

  4. v-Src oncogene product increases sphingosine kinase 1 expression through mRNA stabilization: alteration of AU-rich element-binding proteins.

    Science.gov (United States)

    Sobue, S; Murakami, M; Banno, Y; Ito, H; Kimura, A; Gao, S; Furuhata, A; Takagi, A; Kojima, T; Suzuki, M; Nozawa, Y; Murate, T

    2008-10-09

    Sphingosine kinase 1 (SPHK1) is overexpressed in solid tumors and leukemia. However, the mechanism of SPHK1 overexpression by oncogenes has not been defined. We found that v-Src-transformed NIH3T3 cells showed a high SPHK1 mRNA, SPHK1 protein and SPHK enzyme activity. siRNA of SPHK1 inhibited the growth of v-Src-NIH3T3, suggesting the involvement of SPHK1 in v-Src-induced oncogenesis. v-Src-NIH3T3 showed activations of protein kinase C-alpha, signal transducers and activators of transcription 3 and c-Jun NH(2)-terminal kinase. Their inhibition suppressed SPHK1 expression in v-Src-NIH3T3, whereas their overexpression increased SPHK1 mRNA in NIH3T3. Unexpectedly, the nuclear run-on assay and the promoter analysis using 5'-promoter region of mouse SPHK1 did not show any significant difference between mock- and v-Src-NIH3T3. Furthermore, the half-life of SPHK1 mRNA in mock-NIH3T3 was nearly 15 min, whereas that of v-Src-NIH3T3 was much longer. Examination of two AU-rich region-binding proteins, AUF1 and HuR, that regulate mRNA decay reciprocally, showed decreased total AUF1 protein associated with increased tyrosine-phosphorylated form and increased serine-phosphorylated HuR protein in v-Src-NIH3T3. Modulation of AUF1 and HuR by their overexpression or siRNA revealed that SPHK1 mRNA in v-Src- and mock-NIH3T3 was regulated reciprocally by these factors. Our results showed, for the first time, a novel mechanism of v-Src-induced SPHK1 overexpression.

  5. Processivity and coupling in messenger RNA transcription.

    Directory of Open Access Journals (Sweden)

    Stuart Aitken

    2010-01-01

    Full Text Available The complexity of messenger RNA processing is now being uncovered by experimental techniques that are capable of detecting individual copies of mRNA in cells, and by quantitative real-time observations that reveal the kinetics. This processing is commonly modelled by permitting mRNA to be transcribed only when the promoter is in the on state. In this simple on/off model, the many processes involved in active transcription are represented by a single reaction. These processes include elongation, which has a minimum time for completion and processing that is not captured in the model.In this paper, we explore the impact on the mRNA distribution of representing the elongation process in more detail. Consideration of the mechanisms of elongation leads to two alternative models of the coupling between the elongating polymerase and the state of the promoter: Processivity allows polymerases to complete elongation irrespective of the promoter state, whereas coupling requires the promoter to be active to produce a full-length transcript. We demonstrate that these alternatives have a significant impact on the predicted distributions. Models are simulated by the Gillespie algorithm, and the third and fourth moments of the resulting distribution are computed in order to characterise the length of the tail, and sharpness of the peak. By this methodology, we show that the moments provide a concise summary of the distribution, showing statistically-significant differences across much of the feasible parameter range.We conclude that processivity is not fully consistent with the on/off model unless the probability of successfully completing elongation is low--as has been observed. The results also suggest that some form of coupling between the promoter and a rate-limiting step in transcription may explain the cell's inability to maintain high mRNA levels at low noise--a prediction of the on/off model that has no supporting evidence.

  6. Expression of μ, κ, and δ opioid receptor messenger RNA in the human CNS: a 33P in situ hybridization study

    International Nuclear Information System (INIS)

    Peckys, D.; Landwehrmeyer, G.B.

    1999-01-01

    The existence of at least three opioid receptor types, referred to as μ, κ, and δ, is well established. Complementary DNAs corresponding to the pharmacologically defined μ, κ, and δ opioid receptors have been isolated in various species including man. The expression patterns of opioid receptor transcripts in human brain has not been established with a cellular resolution, in part because of the low apparent abundance of opioid receptor messenger RNAs in human brain. To visualize opioid receptor messenger RNAs we developed a sensitive in situ hybridization histochemistry method using 33 P-labelled RNA probes. In the present study we report the regional and cellular expression of μ, κ, and δ opioid receptor messenger RNAs in selected areas of the human brain. Hybridization of the different opioid receptor probes resulted in distinct labelling patterns. For the μ and κ opioid receptor probes, the most intense regional signals were observed in striatum, thalamus, hypothalamus, cerebral cortex, cerebellum and certain brainstem areas as well as the spinal cord. The most intense signals for the δ opioid receptor probe were found in cerebral cortex. Expression of opioid receptor transcripts was restricted to subpopulations of neurons within most regions studied demonstrating differences in the cellular expression patterns of μ, κ, and δ opioid receptor messenger RNAs in numerous brain regions. The messenger RNA distribution patterns for each opioid receptor corresponded in general to the distribution of opioid receptor binding sites as visualized by receptor autoradiography. However, some mismatches, for instance between μ opioid receptor receptor binding and μ opioid receptor messenger RNA expression in the anterior striatum, were observed. A comparison of the distribution patterns of opioid receptor messenger RNAs in the human brain and that reported for the rat suggests a homologous expression pattern in many regions. However, in the human brain, κ

  7. Different modes of interaction by TIAR and HuR with target RNA and DNA

    OpenAIRE

    Kim, Henry S.; Wilce, Matthew C. J.; Yoga, Yano M. K.; Pendini, Nicole R.; Gunzburg, Menachem J.; Cowieson, Nathan P.; Wilson, Gerald M.; Williams, Bryan R. G.; Gorospe, Myriam; Wilce, Jacqueline A.

    2011-01-01

    TIAR and HuR are mRNA-binding proteins that play important roles in the regulation of translation. They both possess three RNA recognition motifs (RRMs) and bind to AU-rich elements (AREs), with seemingly overlapping specificity. Here we show using SPR that TIAR and HuR bind to both U-rich and AU-rich RNA in the nanomolar range, with higher overall affinity for U-rich RNA. However, the higher affinity for U–rich sequences is mainly due to faster association with U-rich RNA, which we propose i...

  8. The synthesis of polyadenylated messenger RNA in herpes simplex type I virus infected BHK cells.

    Science.gov (United States)

    Harris, T J; Wildy, P

    1975-09-01

    The pattern of polyadenylated messenger RNA (mRNA) synthesis in BHK cell monolayers, infected under defined conditions with herpes simplex type I virus has been investigated by polyacrylamide gel electrophoresis or pulse-labelled RNA isolated by oligo dT-cellulose chromatography. Two classes of mRNA molecules were synthesized in infected cells; these were not detected in uninfected cells. The rate of synthesis of the larger, 18 to 30S RNA class reached a maximum soon after injection and then declined, whereas the rate of synthesis of the 7 to 11 S RNA class did not reach a maximum until much later and did not decline. In the presence of cytosine arabinoside, the rate of mRNA synthesis in infected cells was reduced but the electrophoretic pattern remained the same.

  9. Early changes of placenta-derived messenger RNA in maternal plasma – potential value for preeclampsia prediction?

    Directory of Open Access Journals (Sweden)

    Surugiu Sebastian

    2015-12-01

    Full Text Available Objective: the pourpose of the study was to determine if there are any differences between placenta derived plasmatic levels of messenger RNA in normal and future preeclamptic pregnancies and if these placental transcripts can predict preeclampsia long before clinical onset

  10. Deletion of AU-rich elements within the Bcl2 3'UTR reduces protein expression and B cell survival in vivo.

    Directory of Open Access Journals (Sweden)

    Manuel D Díaz-Muñoz

    Full Text Available Post-transcriptional mRNA regulation by RNA binding proteins (RBPs associated with AU-rich elements (AREs present in the 3' untranslated region (3'UTR of specific mRNAs modulates transcript stability and translation in eukaryotic cells. Here we have functionally characterised the importance of the AREs present within the Bcl2 3'UTR in order to maintain Bcl2 expression. Gene targeting deletion of 300 nucleotides of the Bcl2 3'UTR rich in AREs diminishes Bcl2 mRNA stability and protein levels in primary B cells, decreasing cell lifespan. Generation of chimeric mice indicates that Bcl2-ARE∆/∆ B cells have an intrinsic competitive disadvantage compared to wild type cells. Biochemical assays and predictions using a bioinformatics approach show that several RBPs bind to the Bcl2 AREs, including AUF1 and HuR proteins. Altogether, association of RBPs to Bcl2 AREs contributes to Bcl2 protein expression by stabilizing Bcl2 mRNA and promotes B cell maintenance.

  11. Interactions between the HIV-1 Unspliced mRNA and Host mRNA Decay Machineries

    Directory of Open Access Journals (Sweden)

    Daniela Toro-Ascuy

    2016-11-01

    Full Text Available The human immunodeficiency virus type-1 (HIV-1 unspliced transcript is used both as mRNA for the synthesis of structural proteins and as the packaged genome. Given the presence of retained introns and instability AU-rich sequences, this viral transcript is normally retained and degraded in the nucleus of host cells unless the viral protein REV is present. As such, the stability of the HIV-1 unspliced mRNA must be particularly controlled in the nucleus and the cytoplasm in order to ensure proper levels of this viral mRNA for translation and viral particle formation. During its journey, the HIV-1 unspliced mRNA assembles into highly specific messenger ribonucleoproteins (mRNPs containing many different host proteins, amongst which are well-known regulators of cytoplasmic mRNA decay pathways such as up-frameshift suppressor 1 homolog (UPF1, Staufen double-stranded RNA binding protein 1/2 (STAU1/2, or components of miRNA-induced silencing complex (miRISC and processing bodies (PBs. More recently, the HIV-1 unspliced mRNA was shown to contain N6-methyladenosine (m6A, allowing the recruitment of YTH N6-methyladenosine RNA binding protein 2 (YTHDF2, an m6A reader host protein involved in mRNA decay. Interestingly, these host proteins involved in mRNA decay were shown to play positive roles in viral gene expression and viral particle assembly, suggesting that HIV-1 interacts with mRNA decay components to successfully accomplish viral replication. This review summarizes the state of the art in terms of the interactions between HIV-1 unspliced mRNA and components of different host mRNA decay machineries.

  12. Au-rich filamentary behavior and associated subband gap optical absorption in hyperdoped Si

    Science.gov (United States)

    Yang, W.; Akey, A. J.; Smillie, L. A.; Mailoa, J. P.; Johnson, B. C.; McCallum, J. C.; Macdonald, D.; Buonassisi, T.; Aziz, M. J.; Williams, J. S.

    2017-12-01

    Au-hyperdoped Si, synthesized by ion implantation and pulsed laser melting, is known to exhibit a strong sub-band gap photoresponse that scales monotonically with the Au concentration. However, there is thought to be a limit to this behavior since ultrahigh Au concentrations (>1 ×1020c m-3 ) are expected to induce cellular breakdown during the rapid resolidification of Si, a process that is associated with significant lateral impurity precipitation. This work shows that the cellular morphology observed in Au-hyperdoped Si differs from that in conventional, steady-state cellular breakdown. In particular, Rutherford backscattering spectrometry combined with channeling and transmission electron microscopy revealed an inhomogeneous Au distribution and a subsurface network of Au-rich filaments, within which the Au impurities largely reside on substitutional positions in the crystalline Si lattice, at concentrations as high as ˜3 at. %. The measured substitutional Au dose, regardless of the presence of Au-rich filaments, correlates strongly with the sub-band gap optical absorptance. Upon subsequent thermal treatment, the supersaturated Au forms precipitates, while the Au substitutionality and the sub-band gap optical absorption both decrease. These results offer insight into a metastable filamentary regime in Au-hyperdoped Si that has important implications for Si-based infrared optoelectronics.

  13. An AU-rich element in the 3{prime} untranslated region of the spinach chloroplast petD gene participates in sequence-specific RNA-protein complex formation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qiuyun; Adams, C.C.; Usack, L. [Cornell Univ., Ithaca, NY (United States)] [and others

    1995-04-01

    In chloroplasts, the 3{prime} untranslated regions of most mRNAs contain a stem-loop-forming inverted repeat (IR) sequence that is required for mRNA stability and correct 3{prime}-end formation. The IR regions of several mRNAs are also known to bind chloroplast proteins, as judged from in vitro gel mobility shift and UV cross-linking assays, and these RNA-protein interactions may be involved in the regulation of chloroplast mRNA processing and/or stability. Here we describe in detail the RNA and protein components that are involved in 3{prime} IR-containing RNA (3{prime} IR-RNA)-protein complex formation for the spinach chloroplast petD gene, which encodes subunit IV of the cytochrome b{sub 6}/f complex. We show that the complex contains 55-, 41-, and 29-kDa RNA-binding proteins (ribonucleoproteins [RNPs]). These proteins together protect a 90-nucleotide segment of RNA from RNase T{sub 1} digestion; this RNA contains the IR and downstream flanking sequences. Competition experiments using 3{prime} IR-RNAs from the psbA or rbcL gene demonstrate that the RNPs have a strong specificity for the petD sequence. Site-directed mutagenesis was carried out to define the RNA sequence elements required for complex formation. These studies identified an 8-nucleotide AU-rich sequence downstream of the IR; mutations within this sequence had moderate to severe effects on RNA-protein complex formation. Although other similar sequences are present in the petD 3{prime} untranslated region, only a single copy, which we have termed box II, appears to be essential for in vivo protein binding. In addition, the IR itself is necessary for optimal complex formation. These two sequence elements together with an RNP complex may direct correct 3{prime}-end processing and/or influence the stability of petD mRNA in chloroplasts. 48 refs., 9 figs., 2 tabs.

  14. The ribosome uses two active mechanisms to unwind messenger RNA during translation.

    Science.gov (United States)

    Qu, Xiaohui; Wen, Jin-Der; Lancaster, Laura; Noller, Harry F; Bustamante, Carlos; Tinoco, Ignacio

    2011-07-06

    The ribosome translates the genetic information encoded in messenger RNA into protein. Folded structures in the coding region of an mRNA represent a kinetic barrier that lowers the peptide elongation rate, as the ribosome must disrupt structures it encounters in the mRNA at its entry site to allow translocation to the next codon. Such structures are exploited by the cell to create diverse strategies for translation regulation, such as programmed frameshifting, the modulation of protein expression levels, ribosome localization and co-translational protein folding. Although strand separation activity is inherent to the ribosome, requiring no exogenous helicases, its mechanism is still unknown. Here, using a single-molecule optical tweezers assay on mRNA hairpins, we find that the translation rate of identical codons at the decoding centre is greatly influenced by the GC content of folded structures at the mRNA entry site. Furthermore, force applied to the ends of the hairpin to favour its unfolding significantly speeds translation. Quantitative analysis of the force dependence of its helicase activity reveals that the ribosome, unlike previously studied helicases, uses two distinct active mechanisms to unwind mRNA structure: it destabilizes the helical junction at the mRNA entry site by biasing its thermal fluctuations towards the open state, increasing the probability of the ribosome translocating unhindered; and it mechanically pulls apart the mRNA single strands of the closed junction during the conformational changes that accompany ribosome translocation. The second of these mechanisms ensures a minimal basal rate of translation in the cell; specialized, mechanically stable structures are required to stall the ribosome temporarily. Our results establish a quantitative mechanical basis for understanding the mechanism of regulation of the elongation rate of translation by structured mRNAs. ©2011 Macmillan Publishers Limited. All rights reserved

  15. Alterations in polyribosome and messenger ribonucleic acid metabolism and messenger ribonucleoprotein utilization in osmotically stressed plant seedlings

    International Nuclear Information System (INIS)

    Mason, H.S.

    1986-01-01

    Polyribosome aggregation state in growing tissues of barley and wheat leaf of stems of pea and squash was studied in relation to seedling growth and water status of the growing tissue in plants at various levels of osmotic stress. It was found to be highly correlated with water potential and osmotic potential of the growing tissue and with leaf of stem elongation rate. Stress rapidly reduced polyribosome content and water status in growing tissues of barley leaves; changes were slow and slight in the non-growing leaf blade. Membrane-bound and free polyribosomes were equally sensitive to stress-induced disaggregation. Incorporation of 32 PO 4 3- into ribosomal RNA was rapidly inhibited by stress, but stability of poly(A) + RNA relative to ribosomal RNA was similar in stressed and unstressed tissues, with a half-life of about 12 hours. Stress also caused progressive loss of poly(A) + RNA from these tissues. Quantitation of poly(A) and in vitro messenger template activity in polysome gradient fractions showed a shift of activity from the polysomal region to the region of 20-60 S in stressed plants. Messenger RNA in the 20-60 S region coded for the same peptides as mRNA found in the polysomal fraction. Nonpolysomal and polysome-derived messenger ribonucleoprotein complexes (mRNP) were isolated, and characteristic proteins were found associated with either fraction. Polysomal mRNP from stressed or unstressed plants were translated with similar efficiency in a wheat germ cell-free system. It was concluded that no translational inhibitory activity was associated with nonpolysomal mRNP from barley prepared as described

  16. In vivo expression of ß-galactosidase by rat oviduct exposed to naked DNA or messenger RNA

    Directory of Open Access Journals (Sweden)

    MARIANA RIOS

    2002-01-01

    Full Text Available Intra-oviductal administration of RNA obtained from oviducts of estradiol-treated rats resulted in accelerated egg transport (Ríos et al., 1997. It is probable that estradiol-induced messenger RNA (mRNA entered oviductal cells and was translated into the proteins involved in accelerated egg transport. In order to test this interpretation we deposited in vivo 50 µg of pure ß-galactosidase (ß-gal mRNA, 50 µg of pure DNA from the reporter gene ß-gal under SV40 promoter or the vehicle (control oviducts into the oviductal lumen of rats. Twenty four hours later the ß-gal activity was assayed in oviductal tissue homogenates using o-nitrophenyl-ß-D-galactopyranoside as a substrate. The administration of ß-gal mRNA and pSVBgal plasmid increased ß-gal activity by 71% and 142%, respectively, over the control oviducts. These results indicate that naked DNA and mRNA coding for ß-gal can enter oviductal cells and be translated into an active enzyme. They are consistent with the interpretation that embryo transport acceleration caused by the injection of estradiol-induced RNA in the oviduct involves translation of the injected mRNA

  17. Primary structure of the α-subunit of Na+, K+-ATPase. II. Isolation, reverse transcription, and cloning of messenger RNA

    International Nuclear Information System (INIS)

    Petrukhin, K.E.; Broude, N.E.; Arsenyan, S.G.; Grishin, A.V.; Dzhandzhugazyan, K.N.; Modyanov, N.N.

    1986-01-01

    The messenger RNA coding the α-subunit of Na + ,K + -ATPase has been isolated from the outer medullary layer of porcine kidneys. The mRNA gives a specific hybridization band in the 25S-26S region with three oligonucleotide probes synthesized on the basis of information on the structure of three peptides isolated from a tryptic hydrolyzate of the α-subunit of Na + ,K + -ATPase. The translation of the mRNA in Xenopus laevis oocytes followed by immunochemical identification of the products of synthesis confirmed the presence of the mRNA of the α-subunit of Na + ,K + -ATPase in an enriched fraction of poly(A + )-RNA. This preparation has been used for the synthesis of cloning of double-stranded cDNA

  18. Altered expression of estrogen receptor-α variant messenger RNAs between adjacent normal breast and breast tumor tissues

    International Nuclear Information System (INIS)

    Leygue, Etienne; Dotzlaw, Helmut; Watson, Peter H; Murphy, Leigh C

    2000-01-01

    Using semiquantitative reverse transcription-polymerase chain reaction assays, we investigated the expression of variant messenger RNAs relative to wild-type estrogen receptor (ER)-α messenger RNA in normal breast tissues and their adjacent matched breast tumor tissues. Higher ER variant truncated after sequences encoding exon 2 of the wild-type ER-α (ERC4) messenger RNA and a lower exon 3 deleted ER-α variant (ERD3) messenger RNA relative expression in the tumor compartment were observed in the ER-positive/PR-positive and the ER-positive subsets, respectively. A significantly higher relative expression of exon 5 deleted ER-α varient (ERD5) messenger RNA was observed in tumor components overall. These data demonstrate that changes in the relative expression of ER-α variant messenger RNAs occur between adjacent normal and neoplastic breast tissues. We suggest that these changes might be involved in the mechanisms that underlie breast tumorigenesis. Estrogen receptor (ER)-α and ER-β are believed to mediate the action of estradiol in target tissues. Several ER-α and ER-β variant messenger RNAs have been identified in both normal and neoplastic human tissues. Most of these variants contain a deletion of one or more exons of the wild-type (WT) ER messenger RNAs. The putative proteins that are encoded by these variant messenger RNAs would therefore be missing some functional domains of the WT receptors, and might interfere with WT-ER signaling pathways. The detection of ER-α variants in both normal and neoplastic human breast tissues raised the question of their possible role in breast tumorigenesis. We have previously reported an increased relative expression of exon 5 deleted ER-α variant (ERD5) messenger RNA and of another ER-α variant truncated of all sequences following the exon 2 of the WT ER-α (ERC4) messenger RNA in breast tumor samples versus independent normal breast tissues. In contrast, a decreased relative expression of exon 3 deleted ER

  19. Antigen-presenting cells transfected with Hsp65 messenger RNA fail to treat experimental tuberculosis

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, C.D.; Trombone, A.P.F.; Lorenzi, J.C.C.; Almeida, L.P.; Gembre, A.F.; Padilha, E. [Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Ramos, S.G. [Departamento de Patologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Silva, C.L.; Coelho-Castelo, A.A.M. [Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil)

    2012-09-21

    In the last several years, the use of dendritic cells has been studied as a therapeutic strategy against tumors. Dendritic cells can be pulsed with peptides or full-length protein, or they can be transfected with DNA or RNA. However, comparative studies suggest that transfecting dendritic cells with messenger RNA (mRNA) is superior to other antigen-loading techniques in generating immunocompetent dendritic cells. In the present study, we evaluated a new therapeutic strategy to fight tuberculosis using dendritic cells and macrophages transfected with Hsp65 mRNA. First, we demonstrated that antigen-presenting cells transfected with Hsp65 mRNA exhibit a higher level of expression of co-stimulatory molecules, suggesting that Hsp65 mRNA has immunostimulatory properties. We also demonstrated that spleen cells obtained from animals immunized with mock and Hsp65 mRNA-transfected dendritic cells were able to generate a mixed Th1/Th2 response with production not only of IFN-γ but also of IL-5 and IL-10. In contrast, cells recovered from mice immunized with Hsp65 mRNA-transfected macrophages were able to produce only IL-5. When mice were infected with Mycobacterium tuberculosis and treated with antigen-presenting cells transfected with Hsp65 mRNA (therapeutic immunization), we did not detect any decrease in the lung bacterial load or any preservation of the lung parenchyma, indicating the inability of transfected cells to confer curative effects against tuberculosis. In spite of the lack of therapeutic efficacy, this study reports for the first time the use of antigen-presenting cells transfected with mRNA in experimental tuberculosis.

  20. Unusually effective microRNA targeting within repeat-rich coding regions of mammalian mRNAs

    Science.gov (United States)

    Schnall-Levin, Michael; Rissland, Olivia S.; Johnston, Wendy K.; Perrimon, Norbert; Bartel, David P.; Berger, Bonnie

    2011-01-01

    MicroRNAs (miRNAs) regulate numerous biological processes by base-pairing with target messenger RNAs (mRNAs), primarily through sites in 3′ untranslated regions (UTRs), to direct the repression of these targets. Although miRNAs have sometimes been observed to target genes through sites in open reading frames (ORFs), large-scale studies have shown such targeting to be generally less effective than 3′ UTR targeting. Here, we show that several miRNAs each target significant groups of genes through multiple sites within their coding regions. This ORF targeting, which mediates both predictable and effective repression, arises from highly repeated sequences containing miRNA target sites. We show that such sequence repeats largely arise through evolutionary duplications and occur particularly frequently within families of paralogous C2H2 zinc-finger genes, suggesting the potential for their coordinated regulation. Examples of ORFs targeted by miR-181 include both the well-known tumor suppressor RB1 and RBAK, encoding a C2H2 zinc-finger protein and transcriptional binding partner of RB1. Our results indicate a function for repeat-rich coding sequences in mediating post-transcriptional regulation and reveal circumstances in which miRNA-mediated repression through ORF sites can be reliably predicted. PMID:21685129

  1. Covalent Strategies for Targeting Messenger and Non-Coding RNAs: An Updated Review on siRNA, miRNA and antimiR Conjugates

    Directory of Open Access Journals (Sweden)

    Santiago Grijalvo

    2018-02-01

    Full Text Available Oligonucleotide-based therapy has become an alternative to classical approaches in the search of novel therapeutics involving gene-related diseases. Several mechanisms have been described in which demonstrate the pivotal role of oligonucleotide for modulating gene expression. Antisense oligonucleotides (ASOs and more recently siRNAs and miRNAs have made important contributions either in reducing aberrant protein levels by sequence-specific targeting messenger RNAs (mRNAs or restoring the anomalous levels of non-coding RNAs (ncRNAs that are involved in a good number of diseases including cancer. In addition to formulation approaches which have contributed to accelerate the presence of ASOs, siRNAs and miRNAs in clinical trials; the covalent linkage between non-viral vectors and nucleic acids has also added value and opened new perspectives to the development of promising nucleic acid-based therapeutics. This review article is mainly focused on the strategies carried out for covalently modifying siRNA and miRNA molecules. Examples involving cell-penetrating peptides (CPPs, carbohydrates, polymers, lipids and aptamers are discussed for the synthesis of siRNA conjugates whereas in the case of miRNA-based drugs, this review article makes special emphasis in using antagomiRs, locked nucleic acids (LNAs, peptide nucleic acids (PNAs as well as nanoparticles. The biomedical applications of siRNA and miRNA conjugates are also discussed.

  2. Different modes of interaction by TIAR and HuR with target RNA and DNA.

    Science.gov (United States)

    Kim, Henry S; Wilce, Matthew C J; Yoga, Yano M K; Pendini, Nicole R; Gunzburg, Menachem J; Cowieson, Nathan P; Wilson, Gerald M; Williams, Bryan R G; Gorospe, Myriam; Wilce, Jacqueline A

    2011-02-01

    TIAR and HuR are mRNA-binding proteins that play important roles in the regulation of translation. They both possess three RNA recognition motifs (RRMs) and bind to AU-rich elements (AREs), with seemingly overlapping specificity. Here we show using SPR that TIAR and HuR bind to both U-rich and AU-rich RNA in the nanomolar range, with higher overall affinity for U-rich RNA. However, the higher affinity for U-rich sequences is mainly due to faster association with U-rich RNA, which we propose is a reflection of the higher probability of association. Differences between TIAR and HuR are observed in their modes of binding to RNA. TIAR is able to bind deoxy-oligonucleotides with nanomolar affinity, whereas HuR affinity is reduced to a micromolar level. Studies with U-rich DNA reveal that TIAR binding depends less on the 2'-hydroxyl group of RNA than HuR binding. Finally we show that SAXS data, recorded for the first two domains of TIAR in complex with RNA, are more consistent with a flexible, elongated shape and not the compact shape that the first two domains of Hu proteins adopt upon binding to RNA. We thus propose that these triple-RRM proteins, which compete for the same binding sites in cells, interact with their targets in fundamentally different ways.

  3. RNA decay by messenger RNA interferases

    DEFF Research Database (Denmark)

    Christensen-Dalsgaard, Mikkel; Overgaard, Martin; Winther, Kristoffer Skovbo

    2008-01-01

    Two abundant toxin-antitoxin (TA) gene families, relBE and mazEF, encode mRNA cleaving enzymes whose ectopic overexpression abruptly inhibits translation and thereby induces a bacteriostatic condition. Here we describe and discuss protocols for the overproduction, purification, and analysis of mR...... cleaving enzymes such as RelE of Escherichia coli and the corresponding antitoxin RelB. In particular, we describe a set of plasmid vectors useful for the detailed analysis of cleavage sites in model mRNAs.......Two abundant toxin-antitoxin (TA) gene families, relBE and mazEF, encode mRNA cleaving enzymes whose ectopic overexpression abruptly inhibits translation and thereby induces a bacteriostatic condition. Here we describe and discuss protocols for the overproduction, purification, and analysis of mRNA...

  4. DNA Methylation of MMP9 Is Associated with High Levels of MMP-9 Messenger RNA in Periapical Inflammatory Lesions.

    Science.gov (United States)

    Campos, Kelma; Gomes, Carolina Cavalieri; Farias, Lucyana Conceição; Silva, Renato Menezes; Letra, Ariadne; Gomez, Ricardo Santiago

    2016-01-01

    Matrix metalloproteinases (MMPs) are the major class of enzymes responsible for degradation of extracellular matrix components and participate in the pathogenesis of periapical inflammatory lesions. MMP expression may be regulated by DNA methylation. The purpose of the present investigation was to analyze the expression of MMP2 and MMP9 in periapical granulomas and radicular cysts and to test the hypothesis that, in these lesions, their transcription may be modulated by DNA methylation. Methylation-specific polymerase chain reaction was used to evaluate the DNA methylation pattern of the MMP2 gene in 13 fresh periapical granuloma samples and 10 fresh radicular cyst samples. Restriction enzyme digestion was used to assess methylation of the MMP9 gene in 12 fresh periapical granuloma samples and 10 fresh radicular cyst samples. MMP2 and MMP9 messenger RNA transcript levels were measured by quantitative real-time polymerase chain reaction. All periapical lesions and healthy mucosa samples showed partial methylation of the MMP2 gene; however, periapical granulomas showed higher MMP2 mRNA expression levels than healthy mucosa (P = .014). A higher unmethylated profile of the MMP9 gene was found in periapical granulomas and radicular cysts compared with healthy mucosa. In addition, higher MMP9 mRNA expression was observed in the periapical lesions compared with healthy tissues. The present study suggests that the unmethylated status of the MMP9 gene in periapical lesions may explain the observed up-regulation of messenger RNA transcription in these lesions. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  5. Skeletal muscle microRNA and messenger RNA profiling in cofilin-2 deficient mice reveals cell cycle dysregulation hindering muscle regeneration.

    Directory of Open Access Journals (Sweden)

    Sarah U Morton

    Full Text Available Congenital myopathies are rare skeletal muscle diseases presenting in early age with hypotonia and weakness often linked to a genetic defect. Mutations in the gene for cofilin-2 (CFL2 have been identified in several families as a cause of congenital myopathy with nemaline bodies and cores. Here we explore the global messenger and microRNA expression patterns in quadriceps muscle samples from cofillin-2-null mice and compare them with sibling-matched wild-type mice to determine the molecular pathways and mechanisms involved. Cell cycle processes are markedly dysregulated, with altered expression of genes involved in mitotic spindle formation, and evidence of loss of cell cycle checkpoint regulation. Importantly, alterations in cell cycle, apoptosis and proliferation pathways are present in both mRNA and miRNA expression patterns. Specifically, p21 transcript levels were increased, and the expression of p21 targets, such as cyclin D and cyclin E, was decreased. We therefore hypothesize that deficiency of cofilin-2 is associated with interruption of the cell cycle at several checkpoints, hindering muscle regeneration. Identification of these pathways is an important step towards developing appropriate therapies against various congenital myopathies.

  6. Detailed mapping of serotonin 5-HT1B and 5-HT1D receptor messenger RNA and ligand binding sites in guinea-pig brain and trigeminal ganglion: clues for function

    International Nuclear Information System (INIS)

    Leysen, J.E.; Schotte, A.; Jurzak, M.; Luyten, W.H.M.L.; Voorn, P.; Bonaventure, P.

    1997-01-01

    The similar pharmacology of the 5-HT 1B and 5-HT 1D receptors, and the lack of selective compounds sufficiently distinguishing between the two receptor subtypes, have hampered functional studies on these receptors. In order to provide clues for differential functional roles of the two subtypes, we performed a parallel localization study throughout the guinea-pig brain and the trigeminal ganglia by means of quantitative in situ hybridization histochemistry (using [ 35 S]-labelled riboprobes probes for receptor messenger RNA) and receptor autoradiography (using a new radioligand [ 3 H]alniditan).The anatomical patterns of 5-HT 1B and 5-HT 1D receptor messenger RNA were quite different. While 5-HT 1B receptor messenger RNA was abundant throughout the brain (with highest levels in the striatum, nucleus accumbens, olfactory tubercle, cortex, hypothalamus, hippocampal formation, amygdala, thalamus, dorsal raphe and cerebellum), 5-HT 1D receptor messenger RNA exhibited a more restricted pattern; it was found mainly in the olfactory tubercle, entorhinal cortex, dorsal raphe, cerebellum, mesencephalic trigeminal nucleus and in the trigeminal ganglion. The density of 5-HT 1B/1D binding sites (combined) obtained with [ 3 H]alniditan autoradiography was high in the substantia nigra, superior colliculus and globus pallidus, whereas lower levels were detected in the caudate-putamen, hypothalamus, hippocampal formation, amygdala, thalamus and central gray. This distribution pattern was indistinguishable from specific 5-HT 1B receptor labelling in the presence of ketanserin under conditions to occlude 5-HT 1D receptor labelling; hence the latter were below detection level. Relationships between the regional distributions of the receptor messenger RNAs and binding sites and particular neuroanatomical pathways are discussed with respect to possible functional roles of the 5-HT 1B and 5-HT 1D receptors. (Copyright (c) 1997 Elsevier Science B.V., Amsterdam. All rights reserved.)

  7. Reprogramming human umbilical cord mesenchymal stromal cells to islet-like cells with the use of in vitro-synthesized pancreatic-duodenal homebox 1 messenger RNA.

    Science.gov (United States)

    Wang, Xiao Li; Hu, Pei; Guo, Xing Rong; Yan, Ding; Yuan, Yahong; Yan, Shi Rong; Li, Dong Sheng

    2014-11-01

    Human umbilical cord mesenchymal stromal cells (hUC-MSCs) hold great potential as a therapeutic candidate to treat diabetes, owing to their unlimited source and ready availability. In this study, we differentiated hUC-MSCs with in vitro-synthesized pancreatic-duodenal homebox 1 (PDX1) messenger (m)RNA into islet-like cell clusters. hUC-MSCs were confirmed by both biomarker detection and functional differentiation. In vitro-synthesized PDX1 messenger RNA can be transfected into hUC-MSCs efficiently. The upregulated expression of PDX1 protein can be detected 4 h after transfection and remains detectable for 36 h. The induction of islet-like structures was confirmed by means of morphology and dithizone staining. Reverse transcriptase-polymerase chain reaction results revealed the expression of some key pancreatic transcription factors, such as PDX1, NeuroD, NKX6.1, Glut-2 and insulin in islet-like cell clusters. Immunofluorescence analysis showed that differentiated cells express both insulin and C-peptide. Enzyme-linked immunosorbent assay analysis validated the insulin secretion of islet-like cell clusters in response to the glucose stimulation. Our results demonstrate the use of in vitro-synthesized PDX1 messenger RNA to differentiate hUC-MSCs into islet-like cells and pave the way toward the development of reprogramming and directed-differentiation methods for the expression of encoded proteins. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  8. Electrochemical Branched-DNA Assay for Polymerase Chain Reaction-Free Detection and Quantification of Oncogenes in Messenger RNA

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ai Cheng; Dai, Ziyu; Chen, Baowei; Wu, Hong; Wang, Jun; Zhang, Aiguo; Zhang, Lurong; Lim, Tit-Meng; Lin, Yuehe

    2008-12-01

    We describe a novel electrochemical branched-DNA (bDNA) assay for polymerase chain reaction (PCR)-free detection and quantification of p185 BCR-ABL leukemia fusion transcript in the population of messenger RNA (mRNA) extracted from cell lines. The bDNA amplifier carrying high loading of alkaline phosphatase (ALP) tracers was used to amplify targets signal. The targets were captured on microplate well surfaces through cooperative sandwich hybridization prior to the labeling of bDNA. The activity of captured ALP was monitored by square-wave voltammetric (SWV) analysis of the electroactive enzymatic product in the presence of 1-napthyl-phosphate. The specificity and sensitivity of assay enabled direct detection of target transcript in as little as 4.6 ng mRNA without PCR amplification. In combination with the use of a well-quantified standard, the electrochemical bDNA assay was capable of direct use for a PCR-free quantitative analysis of target transcript in total mRNA population. The approach thus provides a simple, sensitive, accurate and quantitative tool alternate to the RQ-PCR for early disease diagnosis.

  9. Primary structure of the. cap alpha. -subunit of Na/sup +/, K/sup +/-ATPase. II. Isolation, reverse transcription, and cloning of messenger RNA

    Energy Technology Data Exchange (ETDEWEB)

    Petrukhin, K.E.; Broude, N.E.; Arsenyan, S.G.; Grishin, A.V.; Dzhandzhugazyan, K.N.; Modyanov, N.N.

    1986-10-01

    The messenger RNA coding the ..cap alpha..-subunit of Na/sup +/,K/sup +/-ATPase has been isolated from the outer medullary layer of porcine kidneys. The mRNA gives a specific hybridization band in the 25S-26S region with three oligonucleotide probes synthesized on the basis of information on the structure of three peptides isolated from a tryptic hydrolyzate of the ..cap alpha..-subunit of Na/sup +/,K/sup +/-ATPase. The translation of the mRNA in Xenopus laevis oocytes followed by immunochemical identification of the products of synthesis confirmed the presence of the mRNA of the ..cap alpha..-subunit of Na/sup +/,K/sup +/-ATPase in an enriched fraction of poly(A/sup +/)-RNA. This preparation has been used for the synthesis of cloning of double-stranded cDNA.

  10. Blockade of OX40/OX40 ligand to decrease cytokine messenger RNA expression in acute renal allograft rejection in vitro.

    Science.gov (United States)

    Wang, Y-L; Li, G; Fu, Y-X; Wang, H; Shen, Z-Y

    2013-01-01

    The aim of this study was to investigate cytokine messenger RNA (mRNA) expression by peripheral blood mononuclear cells (PBMCs) from renal recipients experiencing acute rejection by blocking OX40-OX40L interactions with recombinant human OX40-Fc fusion protein (rhOX40Fc) in vitro. PBMCs were isolated from 20 recipients experiencing acute rejection episodes (rejection group) and 20 recipients with stable graft function (stable group). Levels of Th1 (interferon [IFN]-γ) and Th2 (interleukin [IL]-4) mRNA expressions by PBMCs were measured using real-time reverse transcriptase-polymerase chain reactions. IFN-γ mRNA expression levels were significantly higher in the rejection than the stable group (P rejection group, rhOX40Fc reduced significantly the expression of IFN-γ and IL-4 mRNA by anti-CD3-monoclonal antibody stimulated PBMCs (P type cytokines. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Detrimental ELAVL-1/HuR-dependent GSK3β mRNA stabilization impairs resolution in acute respiratory distress syndrome.

    Directory of Open Access Journals (Sweden)

    Olivia Hoffman

    Full Text Available A hallmark of acute respiratory distress syndrome (ARDS is accumulation of protein-rich edema in the distal airspaces and its removal is critical for patient survival. Previous studies have shown a detrimental role of Glycogen Synthase Kinase (GSK 3β during ARDS via inhibition of alveolar epithelial protein transport. We hypothesized that post-transcriptional regulation of GSK3β could play a functional role in ARDS resolution. To address this hypothesis, we performed an in silico analysis to identify regulatory genes whose expression correlation to GSK3β messenger RNA utilizing two lung cancer cell line array datasets. Among potential regulatory partners of GSK3β, these studies identified the RNA-binding protein ELAVL-1/HuR (Embryonic Lethal, Abnormal Vision, Drosophila-Like as a central component in a likely GSK3β signaling network. ELAVL-1/HuR is a RNA-binding protein that selectively binds to AU-rich elements of mRNA and enhances its stability thereby increasing target gene expression. Subsequent studies with siRNA suppression of ELAVL-1/HuR demonstrated deceased GSK3β mRNA and protein expression and improved clearance of FITC-albumin in A549 cells. Conversely, stabilization of ELAVL-1/HuR with the proteasome inhibitor MG-132 resulted in induction of GSK3β at mRNA and protein level and attenuated FITC-albumin clearance. Utilizing ventilator-induced lung injury or intra-tracheal installation of hydrochloric acid to induce ARDS in mice, we observed increased mRNA and protein expression of ELAVL-1/HuR and GSK3β. Together, our findings indicate a previously unknown interaction between GSK3β and ELAV-1 during ARDS, and suggest the inhibition of the ELAV-1- GSK3β pathways as a novel ARDS treatment approach.

  12. Global Distribution of Mercury's Neutrals from MESSENGER Measurements Combined with a Tomographic Method

    Science.gov (United States)

    Sarantos, Menelaos; McClintock, Bill; Vervack, Ron, Jr.; Killen, Rosemary; Merkel, Aimee; Slavin, James; Solomon, Sean C.

    2011-01-01

    The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft entered orbit about Mercury on March 18, 2011. Since then, the Ultraviolet and Visible Spectrometer (UVVS) onboard this spacecraft has been observing Mercury's collisionless exosphere. We present measurements by MESSENGER UVVS of the sodium, calcium, and magnesium distributions that were obtained during multiple passes through the tail over a period of one month. Global maps of the exosphere were constructed daily from such measurements using a recently developed tomographic technique. During this period, Mercury moved towards the Sun from being about 0.44 astronomical units (AU) to approximately 0.32 AU from the Sun. Hence, our reconstructions provide information about the three-dimensional structure of the exosphere, the source processes for these species, and their dependence with orbital distance during the entire in-leg of Mercury's orbit.

  13. Isolation and characterization of the messenger RNA and the gene coding for a proline-rich zein from corn endosperm

    International Nuclear Information System (INIS)

    Wang, S.Z.

    1985-01-01

    Gamma-zein, a proline-rich protein from corn endosperm, was investigated at the molecular level. Immunological and electrophoretic data indicated that gamma-zein was deposited into protein bodies in corn endosperm. Both isolated polysomes and poly(A) + mRNA were found to direct into vitro synthesis of gamma-zein in a wheat germ system. In vitro synthesized gamma-zein was immunoprecipitated from the total in vitro translation products. A cDNA expression library was constructed by reverse transcription of total poly(A) + mRNA using pUC8 plasmid as vector and E. coli strain DH1 as host. The library was screened for the expression of gamma-zein and alpha-zein by specific antibodies. The library was also screened with 32 P-labeled gamma-zein and alpha-zein cDNA probes. The results indicated that gamma-zein and its fragments were readily expressed in E. coli while alpha-zein was not. Seven independently selected clones, six of which were selected by antibody and one by a cDNA probe, were sequenced. A comparison of sequence information from seven clones revealed that their overlapping regions were identical. This suggests that gamma-zein is encoded by a single gene. This finding is in conflict with what was expected on the basis of extensive charge heterogeneity of gamma-zein in isoelectric focusing. Individual bands cut from an IEF gel were rerun and shown to give several bands suggesting that the charge heterogeneity of gamma-zein may be an artifact. Sequence information of gamma-zein indicated that the gene encodes a mature protein whose primary structure includes 204 amino acids and has a molecular weight of 21,824 daltons

  14. Maternal provision of non-sex-specific transformer messenger RNA in sex determination of the wasp Asobara tabida.

    Science.gov (United States)

    Geuverink, E; Verhulst, E C; van Leussen, M; van de Zande, L; Beukeboom, L W

    2018-02-01

    In many insect species maternal provision of sex-specifically spliced messenger RNA (mRNA) of sex determination genes is an essential component of the sex determination mechanism. In haplodiploid Hymenoptera, maternal provision in combination with genomic imprinting has been shown for the parasitoid Nasonia vitripennis, known as maternal effect genomic imprinting sex determination (MEGISD). Here, we characterize the sex determination cascade of Asobara tabida, another hymenopteran parasitoid. We show the presence of the conserved sex determination genes doublesex (dsx), transformer (tra) and transformer-2 (tra2) orthologues in As. tabida. Of these, At-dsx and At-tra are sex-specifically spliced, indicating a conserved function in sex determination. At-tra and At-tra2 mRNA is maternally provided to embryos but, in contrast to most studied insects, As. tabida females transmit a non-sex-specific splice form of At-tra mRNA to the eggs. In this respect, As. tabida sex determination differs from the MEGISD mechanism. How the paternal genome can induce female development in the absence of maternal provision of sex-specifically spliced mRNA remains an open question. Our study reports a hitherto unknown variant of maternal effect sex determination and accentuates the diversity of insect sex determination mechanisms. © 2017 The Authors. Insect Molecular Biology published by John Wiley & Sons Ltd on behalf of Royal Entomological Society.

  15. Detailed mapping of serotonin 5-HT{sub 1B} and 5-HT{sub 1D} receptor messenger RNA and ligand binding sites in guinea-pig brain and trigeminal ganglion: clues for function

    Energy Technology Data Exchange (ETDEWEB)

    Leysen, J.E. [Graduate School Neurosciences, Amsterdam (Netherlands); Schotte, A.; Jurzak, M.; Luyten, W.H.M.L. [Department of Biochemical Pharmacology, Janssen Research Foundation, Beerse (Belgium); Voorn, P.; Bonaventure, P. [Graduate School Neurosciences, Amsterdam (Netherlands)

    1997-10-17

    The similar pharmacology of the 5-HT{sub 1B} and 5-HT{sub 1D} receptors, and the lack of selective compounds sufficiently distinguishing between the two receptor subtypes, have hampered functional studies on these receptors. In order to provide clues for differential functional roles of the two subtypes, we performed a parallel localization study throughout the guinea-pig brain and the trigeminal ganglia by means of quantitative in situ hybridization histochemistry (using [{sup 35}S]-labelled riboprobes probes for receptor messenger RNA) and receptor autoradiography (using a new radioligand [{sup 3}H]alniditan).The anatomical patterns of 5-HT{sub 1B} and 5-HT{sub 1D} receptor messenger RNA were quite different. While 5-HT{sub 1B} receptor messenger RNA was abundant throughout the brain (with highest levels in the striatum, nucleus accumbens, olfactory tubercle, cortex, hypothalamus, hippocampal formation, amygdala, thalamus, dorsal raphe and cerebellum), 5-HT{sub 1D} receptor messenger RNA exhibited a more restricted pattern; it was found mainly in the olfactory tubercle, entorhinal cortex, dorsal raphe, cerebellum, mesencephalic trigeminal nucleus and in the trigeminal ganglion. The density of 5-HT{sub 1B/1D} binding sites (combined) obtained with [{sup 3}H]alniditan autoradiography was high in the substantia nigra, superior colliculus and globus pallidus, whereas lower levels were detected in the caudate-putamen, hypothalamus, hippocampal formation, amygdala, thalamus and central gray. This distribution pattern was indistinguishable from specific 5-HT{sub 1B} receptor labelling in the presence of ketanserin under conditions to occlude 5-HT{sub 1D} receptor labelling; hence the latter were below detection level. Relationships between the regional distributions of the receptor messenger RNAs and binding sites and particular neuroanatomical pathways are discussed with respect to possible functional roles of the 5-HT{sub 1B} and 5-HT{sub 1D} receptors. (Copyright (c

  16. Determination of chromium combined with DNA, RNA and protein in chromium-rich brewer's yeast

    International Nuclear Information System (INIS)

    Ding Wenjun; Qian Qinfang; Hou Xiaolin; Feng Weiyue; Chai Zhifang

    2000-01-01

    The contents of chromium in the DNA, RNA and protein fractions separated from chromium-rich and normal brewer's yeast were determined with the neutron activation analysis in order to study the combination of Cr with DNA, RNA and protein in chromium-rich brewer's yeast. The results showed that the extracting rats and concentrations of DNA, RNA and protein had no significant difference in two types of yeast, but the chromium contents of DNA, RNA and protein in the chromium-rich yeast were significantly higher than those in the normal. In addition, the content of chromium in DNA was much higher than that in RNA and protein, which indicated that the inorganic chromium compounds entered into the yeast cell, during the yeast cultivation in the culture medium containing chromium were converted into organic chromium compounds combined with DNA, RNA and protein

  17. Effect of Thymine Starvation on Messenger Ribonucleic Acid Synthesis in Escherichia coli

    Science.gov (United States)

    Luzzati, Denise

    1966-01-01

    Luzzati, Denise (Institut de Biologie Physico-Chimique, Paris, France). Effect of thymine starvation on messenger ribonucleic acid synthesis in Escherichia coli. J. Bacteriol. 92:1435–1446. 1966.—During the course of thymine starvation, the rate of synthesis of messenger ribonucleic acid (mRNA, the rapidly labeled fraction of the RNA which decays in the presence of dinitrophenol or which hybridizes with deoxyribonucleic acid) decreases exponentially, in parallel with the viability of the thymine-starved bacteria. The ability of cell-free extracts of starved bacteria to incorporate ribonucleoside triphosphates into RNA was determined; it was found to be inferior to that of extracts from control cells. The analysis of the properties of cell-free extracts of starved cells shows that their decreased RNA polymerase activity is the consequence of a modification of their deoxyribonucleic acid, the ability of which to serve as a template for RNA polymerase decreases during starvation. PMID:5332402

  18. Guardian of Genetic Messenger-RNA-Binding Proteins

    Directory of Open Access Journals (Sweden)

    Antje Anji

    2016-01-01

    Full Text Available RNA in cells is always associated with RNA-binding proteins that regulate all aspects of RNA metabolism including RNA splicing, export from the nucleus, RNA localization, mRNA turn-over as well as translation. Given their diverse functions, cells express a variety of RNA-binding proteins, which play important roles in the pathologies of a number of diseases. In this review we focus on the effect of alcohol on different RNA-binding proteins and their possible contribution to alcohol-related disorders, and discuss the role of these proteins in the development of neurological diseases and cancer. We further discuss the conventional methods and newer techniques that are employed to identify RNA-binding proteins.

  19. An unusual Ni-Sb-Ag-Au association of ullmannite, allargentum, Au-rich silver and Au-bearing dyscrasite from Oselské pásmo “silver” Lode of Kutná Hora Pb-Zn-Ag ore district (Czech Republic)

    Czech Academy of Sciences Publication Activity Database

    Pažout, R.; Šrein, V.; Korbelová, Zuzana

    2017-01-01

    Roč. 62, č. 4 (2017), s. 247-252 ISSN 1802-6222 Institutional support: RVO:67985831 Keywords : ullmannite * allargentum * Au-rich silver * Au- bearing dyscrasite * chemistry * Kutná Hora ore district Subject RIV: DO - Wilderness Conservation OBOR OECD: Environmental sciences (social aspects to be 5.7) Impact factor: 0.609, year: 2016

  20. Diagnostic accuracy of circulating thyrotropin receptor messenger RNA combined with neck ultrasonography in patients with Bethesda III-V thyroid cytology.

    Science.gov (United States)

    Aliyev, Altay; Patel, Jinesh; Brainard, Jennifer; Gupta, Manjula; Nasr, Christian; Hatipoglu, Betul; Siperstein, Allan; Berber, Eren

    2016-01-01

    The aim of this study was to analyze the usefulness of thyrotropin receptor messenger RNA (TSHR-mRNA) combined with neck ultrasonography (US) in the management of thyroid nodules with Bethesda III-V cytology. Cytology slides of patients with a preoperative fine needle aspiration (FNA) and TSHR-mRNA who underwent thyroidectomy between 2002 and 2011 were recategorized based on the Bethesda classification. Results of thyroid FNA, TSHR-mRNA, and US were compared with the final pathology. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were calculated. There were 12 patients with Bethesda III, 112 with Bethesda IV, and 58 with Bethesda V cytology. The sensitivity of TSHR-mRNA in predicting cancer was 33%, 65%, and 79 %, and specificity was 67%, 66%, and 71%, for Bethesda III, IV, and V categories, respectively. For the same categories, the PPV of TSHR-mRNA was 25%, 33%, and 79%, respectively; whereas the NPV was 75%, 88%, and 71%, respectively. The addition of neck US to TSHR-mRNA increased the NPV to 100% for Bethesda III, and 86%, for Bethesda IV, and 82% for Bethesda V disease. This study documents the potential usefulness of TSHR-mRNA for thyroid nodules with Bethesda III-V FNA categories. TSHR-mRNA may be used to exclude Bethesda IV disease. A large sample analysis is needed to determine its accuracy for Bethesda category III nodules. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Natural RNA circles function as efficient microRNA sponges

    DEFF Research Database (Denmark)

    Hansen, Thomas Birkballe; Jensen, Trine I; Clausen, Bettina Hjelm

    2013-01-01

    MicroRNAs (miRNAs) are important post-transcriptional regulators of gene expression that act by direct base pairing to target sites within untranslated regions of messenger RNAs. Recently, miRNA activity has been shown to be affected by the presence of miRNA sponge transcripts, the so-called comp......MicroRNAs (miRNAs) are important post-transcriptional regulators of gene expression that act by direct base pairing to target sites within untranslated regions of messenger RNAs. Recently, miRNA activity has been shown to be affected by the presence of miRNA sponge transcripts, the so......-called competing endogenous RNA in humans and target mimicry in plants. We previously identified a highly expressed circular RNA (circRNA) in human and mouse brain. Here we show that this circRNA acts as a miR-7 sponge; we term this circular transcript ciRS-7 (circular RNA sponge for miR-7). ciRS-7 contains more...... sponge, suggesting that miRNA sponge effects achieved by circRNA formation are a general phenomenon. This study serves as the first, to our knowledge, functional analysis of a naturally expressed circRNA....

  2. Fox-2 protein regulates the alternative splicing of scleroderma-associated lysyl hydroxylase 2 messenger RNA.

    Science.gov (United States)

    Seth, Puneet; Yeowell, Heather N

    2010-04-01

    Scleroderma (systemic sclerosis [SSc]) is a complex connective tissue disorder characterized by hardening and thickening of the skin. One hallmark of scleroderma is excessive accumulation of collagen accompanied by increased levels of pyridinoline collagen crosslinks derived from hydroxylysine residues in the collagen telopeptide domains. Lysyl hydroxylase 2 (LH2), an important alternatively spliced enzyme in collagen biosynthesis, acts as a collagen telopeptide hydroxylase. Changes in the pattern of LH2 alternative splicing, favoring increased inclusion of the alternatively spliced LH2 exon 13A, thereby increasing the levels of the long transcript of LH2 (LH2[long]), are linked to scleroderma disease. This study was undertaken to examine the role played by RNA binding protein Fox-2 in regulating exon 13A inclusion, which leads to the generation of scleroderma-associated LH2(long) messenger RNA (mRNA). Phylogenetic sequence analysis of introns flanking exon 13A was performed. A tetracycline-inducible system in T-Rex 293 cells was used to induce Fox-2 protein, and endogenous LH2(long) mRNA was determined by reverse transcriptase-polymerase chain reaction. An LH2 minigene was designed, validated, and used in Fox-2 overexpression and mutagenesis experiments. Knockdown of Fox-2 was performed in mouse embryonic fibroblasts and in fibroblasts from SSc patients. Overexpression of Fox-2 enhanced the inclusion of exon 13A and increased the generation of LH2(long) mRNA, whereas knockdown of Fox-2 decreased LH2(long) transcripts. Mutational analysis of an LH2 minigene demonstrated that 2 of the 4 Fox binding motifs flanking LH2 exon 13A are required for inclusion of exon 13A. In early passage fibroblasts derived from patients with scleroderma, the knockdown of Fox-2 protein significantly decreased the endogenous levels of LH2(long) mRNA. Our findings indicate that Fox-2 plays an integral role in the regulation of LH2 splicing. Knockdown of Fox-2 and other methods to decrease

  3. Shielding the messenger (RNA): microRNA-based anticancer therapies

    Science.gov (United States)

    Sotillo, Elena; Thomas-Tikhonenko, Andrei

    2011-01-01

    It has been a decade since scientists realized that microRNAs (miRNAs) are not an oddity invented by worms to regulate gene expression at post-transcriptional levels. Rather, many of these 21–22-nucleotide-short RNAs exist in invertebrates and vertebrates alike and some of them are in fact highly conserved. miRNAs are now recognized as an important class of non-coding small RNAs that inhibit gene expression by targeting mRNA stability and translation. In the last ten years, our knowledge of the miRNAs world was expanding at vertiginous speed, propelled by the development of computational engines for miRNA identification and target prediction, biochemical tools and techniques to modulate miRNA activity, and last but not least, the emergence of miRNA-centric animal models. One important conclusion that has emerged from this effort is that many microRNAs and their cognate targets are strongly implicated in cancer, either as oncogenes or tumor and metastasis suppressors. In this review we will discuss the diverse role that miRNAs play in cancer initiation and progression and also the tools with which miRNA expression could be corrected in vivo. While the idea of targeting microRNAs towards therapeutic ends is getting considerable traction, basic, translational, and clinical research done in the next few years will tell whether this promise is well-founded. PMID:21514318

  4. Rich Ground State Chemical Ordering in Nanoparticles: Exact Solution of a Model for Ag-Au Clusters

    DEFF Research Database (Denmark)

    Larsen, Peter Mahler; Jacobsen, Karsten Wedel; Schiøtz, Jakob

    2018-01-01

    We show that nanoparticles can have very rich ground state chemical order. This is illustrated by determining the chemical ordering of Ag-Au 309-atom Mackay icosahedral nanoparticles. The energy of the nanoparticles is described using a cluster expansion model, and a Mixed Integer Programming (MIP......) approach is used to find the exact ground state configurations for all stoichiometries. The chemical ordering varies widely between the different stoichiometries, and display a rich zoo of structures with non-trivial ordering....

  5. Photoreversible UV-inactivation of messenger RNA in an insect embryo (Smittia spec., chironomidae, diptera)

    International Nuclear Information System (INIS)

    Jaeckle, H.; Kalthoff, K.

    1980-01-01

    Smittia embryos were UV-irradiated during intravitelline cleavage while nuclei are heavily shielded by yolk-rich cytoplasm and do not synthesize detectable amounts of RNA. Irradiation at 265, 285 and 295 nm wavelength caused biological inactivation, and pyrimidine dimer formation in maternal RNA. Marked effects on protein synthesis were also observed: (1) the overall rate of 35 S-methionine incorporation in vivo was reduced to less than half of the normal rate, (2) two dimensional gel electrophoresis revealed quantitative variations in the synthetic rate of some polypeptides and the appearance of new ones in UV-irradiated embryos, (3) translation of polyadenylated RNA from Smittia embryos in a cell-free system was inhibited by UV-irradiation in vivo, (4) the apparent degradation during early embryogenesis, of maternal polyadenylated RNA was retarded in UV-irradiated embryos. Exposure to light (400 nm) after UV caused partial photoreversal of all UV effects observed. This is the first data showing that animal mRNA, after UV-irradiation, can be photoreactivated in vivo. The results also strongly suggest that the photorepairable lesions consist of pyrimidine dimers generated in a photosensitized reaction. (author)

  6. Highly accessible AU-rich regions in 3’ untranslated regions are hotspots for binding of regulatory factors

    Science.gov (United States)

    2017-01-01

    Post-transcriptional regulation is regarded as one of the major processes involved in the regulation of gene expression. It is mainly performed by RNA binding proteins and microRNAs, which target RNAs and typically affect their stability. Recent efforts from the scientific community have aimed at understanding post-transcriptional regulation at a global scale by using high-throughput sequencing techniques such as cross-linking and immunoprecipitation (CLIP), which facilitates identification of binding sites of these regulatory factors. However, the diversity in the experimental procedures and bioinformatics analyses has hindered the integration of multiple datasets and thus limited the development of an integrated view of post-transcriptional regulation. In this work, we have performed a comprehensive analysis of 107 CLIP datasets from 49 different RBPs in HEK293 cells to shed light on the complex interactions that govern post-transcriptional regulation. By developing a more stringent CLIP analysis pipeline we have discovered the existence of conserved regulatory AU-rich regions in the 3’UTRs where miRNAs and RBPs that regulate several processes such as polyadenylation or mRNA stability bind. Analogous to promoters, many factors have binding sites overlapping or in close proximity in these hotspots and hence the regulation of the mRNA may depend on their relative concentrations. This hypothesis is supported by RBP knockdown experiments that alter the relative concentration of RBPs in the cell. Upon AGO2 knockdown (KD), transcripts containing “free” target sites show increased expression levels compared to those containing target sites in hotspots, which suggests that target sites within hotspots are less available for miRNAs to bind. Interestingly, these hotspots appear enriched in genes with regulatory functions such as DNA binding and RNA binding. Taken together, our results suggest that hotspots are functional regulatory elements that define an extra layer

  7. The binding of TIA-1 to RNA C-rich sequences is driven by its C-terminal RRM domain.

    Science.gov (United States)

    Cruz-Gallardo, Isabel; Aroca, Ángeles; Gunzburg, Menachem J; Sivakumaran, Andrew; Yoon, Je-Hyun; Angulo, Jesús; Persson, Cecilia; Gorospe, Myriam; Karlsson, B Göran; Wilce, Jacqueline A; Díaz-Moreno, Irene

    2014-01-01

    T-cell intracellular antigen-1 (TIA-1) is a key DNA/RNA binding protein that regulates translation by sequestering target mRNAs in stress granules (SG) in response to stress conditions. TIA-1 possesses three RNA recognition motifs (RRM) along with a glutamine-rich domain, with the central domains (RRM2 and RRM3) acting as RNA binding platforms. While the RRM2 domain, which displays high affinity for U-rich RNA sequences, is primarily responsible for interaction with RNA, the contribution of RRM3 to bind RNA as well as the target RNA sequences that it binds preferentially are still unknown. Here we combined nuclear magnetic resonance (NMR) and surface plasmon resonance (SPR) techniques to elucidate the sequence specificity of TIA-1 RRM3. With a novel approach using saturation transfer difference NMR (STD-NMR) to quantify protein-nucleic acids interactions, we demonstrate that isolated RRM3 binds to both C- and U-rich stretches with micromolar affinity. In combination with RRM2 and in the context of full-length TIA-1, RRM3 significantly enhanced the binding to RNA, particularly to cytosine-rich RNA oligos, as assessed by biotinylated RNA pull-down analysis. Our findings provide new insight into the role of RRM3 in regulating TIA-1 binding to C-rich stretches, that are abundant at the 5' TOPs (5' terminal oligopyrimidine tracts) of mRNAs whose translation is repressed under stress situations.

  8. Multifunctional G-rich and RRM-containing domains of TbRGG2 perform separate yet essential functions in trypanosome RNA editing.

    Science.gov (United States)

    Foda, Bardees M; Downey, Kurtis M; Fisk, John C; Read, Laurie K

    2012-09-01

    Efficient editing of Trypanosoma brucei mitochondrial RNAs involves the actions of multiple accessory factors. T. brucei RGG2 (TbRGG2) is an essential protein crucial for initiation and 3'-to-5' progression of editing. TbRGG2 comprises an N-terminal G-rich region containing GWG and RG repeats and a C-terminal RNA recognition motif (RRM)-containing domain. Here, we perform in vitro and in vivo separation-of-function studies to interrogate the mechanism of TbRGG2 action in RNA editing. TbRGG2 preferentially binds preedited mRNA in vitro with high affinity attributable to its G-rich region. RNA-annealing and -melting activities are separable, carried out primarily by the G-rich and RRM domains, respectively. In vivo, the G-rich domain partially complements TbRGG2 knockdown, but the RRM domain is also required. Notably, TbRGG2's RNA-melting activity is dispensable for RNA editing in vivo. Interactions between TbRGG2 and MRB1 complex proteins are mediated by both G-rich and RRM-containing domains, depending on the binding partner. Overall, our results are consistent with a model in which the high-affinity RNA binding and RNA-annealing activities of the G-rich domain are essential for RNA editing in vivo. The RRM domain may have key functions involving interactions with the MRB1 complex and/or regulation of the activities of the G-rich domain.

  9. Ultra-sensitive DNA assay based on single-molecule detection coupled with fluorescent quantum dot-labeling and its application to determination of messenger RNA

    International Nuclear Information System (INIS)

    Li Li; Li Xincang; Li Lu; Wang Jinxing; Jin Wenrui

    2011-01-01

    An ultra-sensitive single-molecule detection (SMD) method for quantification of DNA using total internal reflection fluorescence microscopy (TIRFM) coupled with fluorescent quantum dot (QD)-labeling was developed. In this method, the target DNA (tDNA) was captured by the capture DNA immobilized on the silanized coverslip blocked with ethanolamine and bovine serum albumin. Then, the QD-labeled probe DNA was hybridized to the tDNA. Ten fluorescent images of the QD-labeled sandwich DNA hybrids on the coverslip were taken by a high-sensitive CCD. The tDNA was quantified by counting the bright spots on the images using a calibration curve. The LOD of the method was 1 x 10 -14 mol L -1 . Several key factors, including image acquirement, fluorescence probe, substrate preparation, noise elimination from solutions and glass coverslips, and nonspecific adsorption and binding of solution-phase detection probes were discussed in detail. The method could be applied to quantify messenger RNA (mRNA) in cells. In order to determine mRNA, double-stranded RNA-DNA hybrids consisting of mRNA and corresponding cDNA were synthesized from the cellular mRNA template using reverse transcription in the presence of reverse transcriptase. After removing the mRNA in the double-stranded hybrids using ribonuclease, cDNA was quantified using the SMD-based TIRFM. Osteopontin mRNA in decidual stromal cells was chosen as the model analyte.

  10. Advancing viral RNA structure prediction: measuring the thermodynamics of pyrimidine-rich internal loops.

    Science.gov (United States)

    Phan, Andy; Mailey, Katherine; Saeki, Jessica; Gu, Xiaobo; Schroeder, Susan J

    2017-05-01

    Accurate thermodynamic parameters improve RNA structure predictions and thus accelerate understanding of RNA function and the identification of RNA drug binding sites. Many viral RNA structures, such as internal ribosome entry sites, have internal loops and bulges that are potential drug target sites. Current models used to predict internal loops are biased toward small, symmetric purine loops, and thus poorly predict asymmetric, pyrimidine-rich loops with >6 nucleotides (nt) that occur frequently in viral RNA. This article presents new thermodynamic data for 40 pyrimidine loops, many of which can form UU or protonated CC base pairs. Uracil and protonated cytosine base pairs stabilize asymmetric internal loops. Accurate prediction rules are presented that account for all thermodynamic measurements of RNA asymmetric internal loops. New loop initiation terms for loops with >6 nt are presented that do not follow previous assumptions that increasing asymmetry destabilizes loops. Since the last 2004 update, 126 new loops with asymmetry or sizes greater than 2 × 2 have been measured. These new measurements significantly deepen and diversify the thermodynamic database for RNA. These results will help better predict internal loops that are larger, pyrimidine-rich, and occur within viral structures such as internal ribosome entry sites. © 2017 Phan et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  11. Ultra-sensitive DNA assay based on single-molecule detection coupled with fluorescent quantum dot-labeling and its application to determination of messenger RNA

    Energy Technology Data Exchange (ETDEWEB)

    Li Li [School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Li Xincang [School of Life Sciences, Shandong University, Jinan 250100 (China); Li Lu [School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Wang Jinxing [School of Life Sciences, Shandong University, Jinan 250100 (China); Jin Wenrui, E-mail: jwr@sdu.edu.cn [School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China)

    2011-01-24

    An ultra-sensitive single-molecule detection (SMD) method for quantification of DNA using total internal reflection fluorescence microscopy (TIRFM) coupled with fluorescent quantum dot (QD)-labeling was developed. In this method, the target DNA (tDNA) was captured by the capture DNA immobilized on the silanized coverslip blocked with ethanolamine and bovine serum albumin. Then, the QD-labeled probe DNA was hybridized to the tDNA. Ten fluorescent images of the QD-labeled sandwich DNA hybrids on the coverslip were taken by a high-sensitive CCD. The tDNA was quantified by counting the bright spots on the images using a calibration curve. The LOD of the method was 1 x 10{sup -14} mol L{sup -1}. Several key factors, including image acquirement, fluorescence probe, substrate preparation, noise elimination from solutions and glass coverslips, and nonspecific adsorption and binding of solution-phase detection probes were discussed in detail. The method could be applied to quantify messenger RNA (mRNA) in cells. In order to determine mRNA, double-stranded RNA-DNA hybrids consisting of mRNA and corresponding cDNA were synthesized from the cellular mRNA template using reverse transcription in the presence of reverse transcriptase. After removing the mRNA in the double-stranded hybrids using ribonuclease, cDNA was quantified using the SMD-based TIRFM. Osteopontin mRNA in decidual stromal cells was chosen as the model analyte.

  12. Structure, dynamics and RNA binding of the multi-domain splicing factor TIA-1

    Science.gov (United States)

    Wang, Iren; Hennig, Janosch; Jagtap, Pravin Kumar Ankush; Sonntag, Miriam; Valcárcel, Juan; Sattler, Michael

    2014-01-01

    Alternative pre-messenger ribonucleic acid (pre-mRNA) splicing is an essential process in eukaryotic gene regulation. The T-cell intracellular antigen-1 (TIA-1) is an apoptosis-promoting factor that modulates alternative splicing of transcripts, including the pre-mRNA encoding the membrane receptor Fas. TIA-1 is a multi-domain ribonucleic acid (RNA) binding protein that recognizes poly-uridine tract RNA sequences to facilitate 5′ splice site recognition by the U1 small nuclear ribonucleoprotein (snRNP). Here, we characterize the RNA interaction and conformational dynamics of TIA-1 by nuclear magnetic resonance (NMR), isothermal titration calorimetry (ITC) and small angle X-ray scattering (SAXS). Our NMR-derived solution structure of TIA-1 RRM2–RRM3 (RRM2,3) reveals that RRM2 adopts a canonical RNA recognition motif (RRM) fold, while RRM3 is preceded by an non-canonical helix α0. NMR and SAXS data show that all three RRMs are largely independent structural modules in the absence of RNA, while RNA binding induces a compact arrangement. RRM2,3 binds to pyrimidine-rich FAS pre-mRNA or poly-uridine (U9) RNA with nanomolar affinities. RRM1 has little intrinsic RNA binding affinity and does not strongly contribute to RNA binding in the context of RRM1,2,3. Our data unravel the role of binding avidity and the contributions of the TIA-1 RRMs for recognition of pyrimidine-rich RNAs. PMID:24682828

  13. Magnetic susceptibilities of liquid Cr-Au, Mn-Au and Fe-Au alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, S.; Shimakura, H. [Niigata University of Pharmacy and Applied Life Sciences, Higashijima, Akiha-ku, Niigata 956-8603 (Japan); Tahara, S. [Faculty of Science, University of the Ryukyus, Nishihara-cho, Okinawa 903-0213 (Japan); Okada, T. [Niigata College of Technology, Kamishin’eicho, Nishi-ku, Niigata 950-2076 (Japan)

    2015-08-17

    The magnetic susceptibility of liquid Cr-Au, Mn-Au, Fe-Au and Cu-Au alloys was investigated as a function of temperature and composition. Liquid Cr{sub 1-c}Au{sub c} with 0.5 ≤ c and Mn{sub 1-c}Au{sub c} with 0.3≤c obeyed the Curie-Weiss law with regard to their dependence of χ on temperature. The magnetic susceptibilities of liquid Fe-Au alloys also exhibited Curie-Weiss behavior with a reasonable value for the effective number of Bohr magneton. On the Au-rich side, the composition dependence of χ for liquid TM-Au (TM=Cr, Mn, Fe) alloys increased rapidly with increasing TM content, respectively. Additionally, the composition dependences of χ for liquid Cr-Au, Mn-Au, and Fe-Au alloys had maxima at compositions of 50 at% Cr, 70 at% Mn, and 85 at% Fe, respectively. We compared the composition dependences of χ{sub 3d} due to 3d electrons for liquid binary TM-M (M=Au, Al, Si, Sb), and investigated the relationship between χ{sub 3d} and E{sub F} in liquid binary TM-M alloys at a composition of 50 at% TM.

  14. Determination of chromium combined with DNA, RNA and proteins in chromium-rich brewer's yeast by NAA

    International Nuclear Information System (INIS)

    Ding, W.J.; Qian, Q.F.; Hou, X.L.; Feng, W.Y.; Chai, Z.F.

    2000-01-01

    The content of chromium in the DNA, RNA and protein fractions separated from chromium-rich and normal brewer's yeast was determined by neutron activation analysis (NAA). Our results show that the extracted relative amounts and concentrations of DNA, RNA and proteins have no significant difference for two types of yeast, but the chromium content in DNA, RNA and proteins fractions extracted from the chromium-rich yeast are substantially higher than those from the normal. In addition, the concentration of chromium in DNA is much higher than that in RNA and proteins. It is evident that the inorganic chromium compounds can enter the yeast cell during the yeast cultivation in the chromium-containing culture medium and are converted into organic chromium species, which are combined with DNA, RNA and proteins. (author)

  15. Design of a synthetic luminescent probe from a biomolecule binding domain: selective detection of AU-rich mRNA sequences† †Electronic supplementary information (ESI) available: Details of synthetic procedures of LTISTb, recombinant expression of TTP-2D and spectroscopic characterization of LTISTb and its RNA-binding properties. See DOI: 10.1039/c6sc04086a Click here for additional data file.

    Science.gov (United States)

    Raibaut, Laurent; Vasseur, William; Shimberg, Geoffrey D.; Saint-Pierre, Christine; Ravanat, Jean-Luc

    2017-01-01

    We report the design of a luminescent sensor based upon the zinc finger (ZF) protein TIS11d, that allows for the selective time-resolved detection of the UUAUUUAUU sequence of the 3′-untranslated region of messenger RNA. This sensor is composed of the tandem ZF RNA binding domain of TIS11d functionalized with a luminescent Tb3+ complex on one of the ZFs and a sensitizing antenna on the other. This work provides the proof of principle that an RNA binding protein can be re-engineered as an RNA sensor and, more generally, that tunable synthetic luminescent probes for biomolecules can be obtained by modifying biomolecule-binding domains. PMID:28451295

  16. TargetRNA: a tool for predicting targets of small RNA action in bacteria

    OpenAIRE

    Tjaden, Brian

    2008-01-01

    Many small RNA (sRNA) genes in bacteria act as posttranscriptional regulators of target messenger RNAs. Here, we present TargetRNA, a web tool for predicting mRNA targets of sRNA action in bacteria. TargetRNA takes as input a genomic sequence that may correspond to an sRNA gene. TargetRNA then uses a dynamic programming algorithm to search each annotated message in a specified genome for mRNAs that evince basepair-binding potential to the input sRNA sequence. Based on the calculated basepair-...

  17. Trans-acting GC-rich non-coding RNA at var expression site modulates gene counting in malaria parasite.

    Science.gov (United States)

    Guizetti, Julien; Barcons-Simon, Anna; Scherf, Artur

    2016-11-16

    Monoallelic expression of the var multigene family enables immune evasion of the malaria parasite Plasmodium falciparum in its human host. At a given time only a single member of the 60-member var gene family is expressed at a discrete perinuclear region called the 'var expression site'. However, the mechanism of var gene counting remains ill-defined. We hypothesize that activation factors associating specifically with the expression site play a key role in this process. Here, we investigate the role of a GC-rich non-coding RNA (ncRNA) gene family composed of 15 highly homologous members. GC-rich genes are positioned adjacent to var genes in chromosome-central gene clusters but are absent near subtelomeric var genes. Fluorescence in situ hybridization demonstrates that GC-rich ncRNA localizes to the perinuclear expression site of central and subtelomeric var genes in trans. Importantly, overexpression of distinct GC-rich ncRNA members disrupts the gene counting process at the single cell level and results in activation of a specific subset of var genes in distinct clones. We identify the first trans-acting factor targeted to the elusive perinuclear var expression site and open up new avenues to investigate ncRNA function in antigenic variation of malaria and other protozoan pathogens. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. Translation of a nonpolyadenylated viral RNA is enhanced by binding of viral coat protein or polyadenylation of the RNA.

    Science.gov (United States)

    Neeleman, L; Olsthoorn, R C; Linthorst, H J; Bol, J F

    2001-12-04

    On entering a host cell, positive-strand RNA virus genomes have to serve as messenger for the translation of viral proteins. Efficient translation of cellular messengers requires interactions between initiation factors bound to the 5'-cap structure and the poly(A) binding protein bound to the 3'-poly(A) tail. Initiation of infection with the tripartite RNA genomes of alfalfa mosaic virus (AMV) and viruses from the genus Ilarvirus requires binding of a few molecules of coat protein (CP) to the 3' end of the nonpolyadenylated viral RNAs. Moreover, infection with the genomic RNAs can be initiated by addition of the subgenomic messenger for CP, RNA 4. We report here that extension of the AMV RNAs with a poly(A) tail of 40 to 80 A-residues permitted initiation of infection independently of CP or RNA 4 in the inoculum. Specifically, polyadenylation of RNA 1 relieved an apparent bottleneck in the translation of the viral RNAs. Translation of RNA 4 in plant protoplasts was autocatalytically stimulated by its encoded CP. Mutations that interfered with CP binding to the 3' end of viral RNAs reduced translation of RNA 4 to undetectable levels. Possibly, CP of AMV and ilarviruses stimulates translation of viral RNAs by acting as a functional analogue of poly(A) binding protein or other cellular proteins.

  19. Gold nanoparticle-based beacon to detect STAT5b mRNA expression in living cells: a case optimized by bioinformatics screen.

    Science.gov (United States)

    Deng, Dawei; Li, Yang; Xue, Jianpeng; Wang, Jie; Ai, Guanhua; Li, Xin; Gu, Yueqing

    2015-01-01

    Messenger RNA (mRNA), a single-strand ribonucleic acid with functional gene information is usually abnormally expressed in cancer cells and has become a promising biomarker for the study of tumor progress. Hairpin DNA-coated gold nanoparticle (hDAuNP) beacon containing a bare gold nanoparticle (AuNP) as fluorescence quencher and thiol-terminated fluorescently labeled stem-loop-stem oligonucleotide sequences attached by Au-S bond is currently a new nanoscale biodiagnostic platform capable of mRNA detection, in which the design of the loop region sequence is crucial for hybridizing with the target mRNA. Hence, in this study, to improve the sensitivity and selectivity of hDAuNP beacon simultaneously, the loop region of hairpin DNA was screened by bioinformatics strategy. Here, signal transducer and activator of transcription 5b (STAT5b) mRNA was selected and used as a practical example. The results from the combined characterizations using optical techniques, flow cytometry assay, and cell microscopic imaging showed that after optimization, the as-prepared hDAuNP beacon had higher selectivity and sensitivity for the detection of STAT5b mRNA in living cells, as compared with our previous beacon. Thus, the bioinformatics method may be a promising new strategy for assisting in the designing of the hDAuNP beacon, extending its application in the detection of mRNA expression and the resultant mRNA-based biological processes and disease pathogenesis.

  20. Exosomes as divine messengers: are they the Hermes of modern molecular oncology?

    Science.gov (United States)

    Braicu, C; Tomuleasa, C; Monroig, P; Cucuianu, A; Berindan-Neagoe, I; Calin, G A

    2015-01-01

    Exosomes are cell-derived vesicles that convey key elements with the potential to modulate intercellular communication. They are known to be secreted from all types of cells, and are crucial messengers that can regulate cellular processes by ‘trafficking' molecules from cells of one tissue to another. The exosomal content has been shown to be broad, composed of different types of cytokines, growth factors, proteins, or nucleic acids. Besides messenger RNA (mRNA) they can also contain noncoding transcripts such as microRNAs (miRNAs), which are small endogenous cellular regulators of protein expression. In diseases such as cancer, exosomes can facilitate tumor progression by altering their vesicular content and supplying the tumor niche with molecules that favor the progression of oncogenic processes such as proliferation, invasion and metastasis, or even drug resistance. The packaging of their molecular content is known to be tissue specific, a fact that makes them interesting tools in clinical diagnostics and ideal candidates for biomarkers. In the current report, we describe the main properties of exosomes and explain their involvement in processes such as cell differentiation and cell death. Furthermore, we emphasize the need of developing patient-targeted treatments by applying the conceptualization of exosomal-derived miRNA-based therapeutics. PMID:25236394

  1. microRNA-independent recruitment of Argonaute 1 to nanos mRNA through the Smaug RNA-binding protein.

    Science.gov (United States)

    Pinder, Benjamin D; Smibert, Craig A

    2013-01-01

    Argonaute (Ago) proteins are typically recruited to target messenger RNAs via an associated small RNA such as a microRNA (miRNA). Here, we describe a new mechanism of Ago recruitment through the Drosophila Smaug RNA-binding protein. We show that Smaug interacts with the Ago1 protein, and that Ago1 interacts with and is required for the translational repression of the Smaug target, nanos mRNA. The Ago1/nanos mRNA interaction does not require a miRNA, but it does require Smaug. Taken together, our data suggest a model whereby Smaug directly recruits Ago1 to nanos mRNA in a miRNA-independent manner, thereby repressing translation.

  2. Effect of escitalopram versus placebo on GRα messenger RNA expression in peripheral blood cells of healthy individuals with a family history of depression - a secondary outcome analysis from the randomized AGENDA trial

    DEFF Research Database (Denmark)

    Knorr, Ulla; Koefoed, Pernille; Gluud, Christian

    2016-01-01

    Background Selective serotonin reuptake inhibitors (SSRIs) are widely prescribed as first-line drugs for the treatment of depression. However, the mechanisms of action for SSRIs are unclear and besides neurotransmitter modulation may depend on modulation of the hypothalamic-pituitary-adrenal (HPA......) system. The glucocorticoid receptor (GR) isoform α plays an important role in the negative feedback regulation of the HPA axis and reduced GRα messenger RNA (mRNA) expression has been shown in mood disorder patients and first-degree relatives compared to healthy individuals with no family history...

  3. Insulin-like growth factor II messenger RNA-binding protein-3 is an independent prognostic factor in uterine leiomyosarcoma.

    Science.gov (United States)

    Yasutake, Nobuko; Ohishi, Yoshihiro; Taguchi, Kenichi; Hiraki, Yuka; Oya, Masafumi; Oshiro, Yumi; Mine, Mari; Iwasaki, Takeshi; Yamamoto, Hidetaka; Kohashi, Kenichi; Sonoda, Kenzo; Kato, Kiyoko; Oda, Yoshinao

    2018-04-01

    The aim of this study was to identify the prognostic factors of uterine leiomyosarcoma (ULMS). We reviewed 60 cases of surgically resected ULMSs and investigated conventional clinicopathological factors, together with the expression of insulin-like growth factor II messenger RNA-binding protein-3 (IMP3), hormone receptors and cell cycle regulatory markers by immunohistochemistry. Mediator complex subunit 12 (MED12) mutation analysis was also performed. Univariate analyses revealed that advanced stage (P < 0.0001), older age (P = 0.0244) and IMP3 expression (P = 0.0011) were significant predictors of a poor outcome. Multivariate analysis revealed advanced stage (P < 0.0001) and IMP3 (P = 0.0373) as independent predictors of a poor prognosis. Expressions of cell cycle markers and hormone receptors, and MED12 mutations (12% in ULMSs) were not identified as prognostic markers in this study. IMP3 expression in ULMS could be a marker of a poor prognosis. © 2017 John Wiley & Sons Ltd.

  4. Analysis of RNA metabolism in fission yeast

    DEFF Research Database (Denmark)

    Wise, Jo Ann; Nielsen, Olaf

    2017-01-01

    Here we focus on the biogenesis and function of messenger RNA (mRNA) in fission yeast cells. Following a general introduction that also briefly touches on other classes of RNA, we provide an overview of methods used to analyze mRNAs throughout their life cycles....

  5. Dynamical Messengers for Gauge Mediation

    Energy Technology Data Exchange (ETDEWEB)

    Hook, Anson; Torroba, Gonzalo; /SLAC /Stanford U., Phys. Dept.

    2011-08-17

    We construct models of indirect gauge mediation where the dynamics responsible for breaking supersymmetry simultaneously generates a weakly coupled subsector of messengers. This provides a microscopic realization of messenger gauge mediation where the messenger and hidden sector fields are unified into a single sector. The UV theory is SQCD with massless and massive quarks plus singlets, and at low energies it flows to a weakly coupled quiver gauge theory. One node provides the primary source of supersymmetry breaking, which is then transmitted to the node giving rise to the messenger fields. These models break R-symmetry spontaneously, produce realistic gaugino and sfermion masses, and give a heavy gravitino.

  6. Production of neutron-rich isotopes by cold fragmentation in the reaction 197Au + Be at 950 A MeV

    International Nuclear Information System (INIS)

    Benlliure, J.; Pereira, J.; Schmidt, K.H.; Cortina-Gil, D.; Enqvist, T.; Heinz, A.; Junghans, A.R.; Farget, F.; Taieb, J.

    1999-09-01

    The production cross sections and longitudinal-momentum distributions of very neutron-rich isotopes have been investigated in the fragmentation of a 950 A MeV 179 Au beam in a beryllium target. Seven new isotopes ( 193 Re, 194 Re, 191 W, 192 W, 189 Ta, 187 Hf and 188 Hf) and the five-proton-removal channel were observed for the first time. The reaction mechanism leading to the formation of these very neutron-rich isotopes is explained in terms of the cold-fragmentation process. An analytical model describing this reaction mechanism is presented. (orig.)

  7. Return to Mercury: a global perspective on MESSENGER's first Mercury flyby.

    Science.gov (United States)

    Solomon, Sean C; McNutt, Ralph L; Watters, Thomas R; Lawrence, David J; Feldman, William C; Head, James W; Krimigis, Stamatios M; Murchie, Scott L; Phillips, Roger J; Slavin, James A; Zuber, Maria T

    2008-07-04

    In January 2008, the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft became the first probe to fly past the planet Mercury in 33 years. The encounter revealed that Mercury is a dynamic system; its liquid iron-rich outer core is coupled through a dominantly dipolar magnetic field to the surface, exosphere, and magnetosphere, all of which interact with the solar wind. MESSENGER images confirm that lobate scarps are the dominant tectonic landform and record global contraction associated with cooling of the planet. The history of contraction can be related to the history of volcanism and cratering, and the total contractional strain is at least one-third greater than inferred from Mariner 10 images. On the basis of measurements of thermal neutrons made during the flyby, the average abundance of iron in Mercury's surface material is less than 6% by weight.

  8. Development of Anti-Human Mesothelin-Targeted Chimeric Antigen Receptor Messenger RNA-transfected Peripheral Blood Lymphocytes for Ovarian Cancer Therapy.

    Science.gov (United States)

    Hung, Chien-Fu; Xu, Xuequn; Li, Linhong; Ma, Ying; Jin, Qiu; Viley, Angelia; Allen, Cornell; Natarajan, Pachai; Shivakumar, Rama; Peshwa, Madhusudan V; Emens, Leisha A

    2018-04-02

    CD19-targeted chimeric antigen receptor (CAR) engineered T/natural killer (NK)-cell therapies can result in durable clinical responses in B-cell malignancies. However, CAR-based immunotherapies have been much less successful in solid cancers, in part due to "on-target off-tumor" toxicity related to expression of target tumor antigens on normal tissue. Based on preliminary observations of safety and clinical activity in proof-of-concept clinical trials, tumor antigen-specific messenger RNA (mRNA) CAR transfection into selected, activated, and expanded T/NK cells may permit prospective control of "on-target off-tumor" toxicity. To develop a commercial product for solid tumors, mesothelin was selected as an antigen target based on its association with poor prognosis and overexpression in multiple solid cancers. It was hypothesized that selecting, activating, and expanding cells ex vivo prior to mRNA CAR transfection would not be necessary, thus simplifying the complexity and cost of manufacturing. Now, the development of anti-human mesothelin mRNA CAR transfected peripheral blood lymphocytes (CARMA-hMeso) is reported, demonstrating the manufacture and cryopreservation of multiple cell aliquots for repeat administrations from a single human leukapheresis. A rapid, automated, closed system for cGMP-compliant transfection of mRNA CAR in up to 20 × 10 9 peripheral blood lymphocytes was developed. Here we show that CARMA-hMeso cells recognize and lyse tumor cells in a mesothelin-specific manner. Expression of CAR was detectable over approximately 7 days in vitro, with a progressive decline of CAR expression that appears to correlate with in vitro cell expansion. In a murine ovarian cancer model, a single intraperitoneal injection of CARMA-hMeso resulted in the dose-dependent inhibition of tumor growth and improved survival of mice. Furthermore, repeat weekly intraperitoneal administrations of the optimal CARMA-hMeso dose further prolonged disease control and survival

  9. Regulatory RNAs derived from transfer RNA?

    Science.gov (United States)

    Pederson, Thoru

    2010-10-01

    Four recent studies suggest that cleavages of transfer RNAs generate products with microRNA-like features, with some evidence of function. If their regulatory functions were to be confirmed, these newly revealed RNAs would add to the expanding repertoire of small noncoding RNAs and would also provide new perspectives on the coevolution of transfer RNA and messenger RNA.

  10. Magnesium-rich Basalts on Mercury

    Science.gov (United States)

    Martel, L. M. V.

    2013-05-01

    X-ray and gamma-ray spectrometers on NASA's MESSENGER spacecraft are making key measurements regarding the composition and properties of the surface of Mercury, allowing researchers to more clearly decipher the planet's formation and geologic history. The origin of the igneous rocks in the crust of Mercury is the focus of recent research by Karen Stockstill-Cahill and Tim McCoy (National Museum of Natural History, Smithsonian Institution), along with Larry Nittler and Shoshana Weider (Carnegie Institution of Washington) and Steven Hauck II (Case Western Reserve University). Using the well-known MELTS computer code Stockstill-Cahill and coauthors worked with MESSENGER-derived and rock-analog compositions to constrain petrologic models of the lavas that erupted on the surface of Mercury. Rock analogs included a partial melt of the Indarch meteorite and a range of Mg-rich terrestrial rocks. Their work shows the lavas on Mercury are most similar to terrestrial magnesian basalt (with lowered FeO content). The implications of the modeling are that Mg-rich lavas came from high-temperature sources in Mercury's mantle and erupted at high temperature with exceptionally low viscosity into thinly bedded and laterally extensive flows, concepts open to further evaluation by laboratory experiments and by geologic mapping of Mercury's surface using MESSENGER's imaging system and laser altimeter to document flow features and dimensions.

  11. The Messenger Mission to Mercury

    CERN Document Server

    Domingue, D. L

    2007-01-01

    NASA’s MESSENGER mission, launched on 3 August, 2004 is the seventh mission in the Discovery series. MESSENGER encounters the planet Mercury four times, culminating with an insertion into orbit on 18 March 2011. It carries a comprehensive package of geophysical, geological, geochemical, and space environment experiments to complete the complex investigations of this solar-system end member, which begun with Mariner 10. The articles in this book, written by the experts in each area of the MESSENGER mission, describe the mission, spacecraft, scientific objectives, and payload. The book is of interest to all potential users of the data returned by the MESSENGER mission, to those studying the nature of the planet Mercury, and by all those interested in the design and implementation of planetary exploration missions.

  12. Rich RNA Structure Landscapes Revealed by Mutate-and-Map Analysis.

    Directory of Open Access Journals (Sweden)

    Pablo Cordero

    2015-11-01

    Full Text Available Landscapes exhibiting multiple secondary structures arise in natural RNA molecules that modulate gene expression, protein synthesis, and viral infection [corrected]. We report herein that high-throughput chemical experiments can isolate an RNA's multiple alternative secondary structures as they are stabilized by systematic mutagenesis (mutate-and-map, M2 and that a computational algorithm, REEFFIT, enables unbiased reconstruction of these states' structures and populations. In an in silico benchmark on non-coding RNAs with complex landscapes, M2-REEFFIT recovers 95% of RNA helices present with at least 25% population while maintaining a low false discovery rate (10% and conservative error estimates. In experimental benchmarks, M2-REEFFIT recovers the structure landscapes of a 35-nt MedLoop hairpin, a 110-nt 16S rRNA four-way junction with an excited state, a 25-nt bistable hairpin, and a 112-nt three-state adenine riboswitch with its expression platform, molecules whose characterization previously required expert mutational analysis and specialized NMR or chemical mapping experiments. With this validation, M2-REEFFIT enabled tests of whether artificial RNA sequences might exhibit complex landscapes in the absence of explicit design. An artificial flavin mononucleotide riboswitch and a randomly generated RNA sequence are found to interconvert between three or more states, including structures for which there was no design, but that could be stabilized through mutations. These results highlight the likely pervasiveness of rich landscapes with multiple secondary structures in both natural and artificial RNAs and demonstrate an automated chemical/computational route for their empirical characterization.

  13. Lower glutamic acid decarboxylase 65-kDa isoform messenger RNA and protein levels in the prefrontal cortex in schizoaffective disorder but not schizophrenia.

    Science.gov (United States)

    Glausier, Jill R; Kimoto, Sohei; Fish, Kenneth N; Lewis, David A

    2015-01-15

    Altered gamma-aminobutyric acid (GABA) signaling in the prefrontal cortex (PFC) has been associated with cognitive dysfunction in patients with schizophrenia and schizoaffective disorder. Levels of the GABA-synthesizing enzyme glutamic acid decarboxylase 67-kDa isoform (GAD67) in the PFC have been consistently reported to be lower in patients with these disorders, but the status of the second GABA-synthesizing enzyme, glutamic acid decarboxylase 65-kDa isoform (GAD65), remains unclear. GAD65 messenger RNA (mRNA) levels were quantified in PFC area 9 by quantitative polymerase chain reaction from 62 subjects with schizophrenia or schizoaffective disorder and 62 matched healthy comparison subjects. In a subset of subject pairs, GAD65 relative protein levels were quantified by confocal immunofluorescence microscopy. Mean GAD65 mRNA levels were 13.6% lower in subjects with schizoaffective disorder but did not differ in subjects with schizophrenia relative to their matched healthy comparison subjects. In the subjects with schizoaffective disorder, mean GAD65 protein levels were 19.4% lower and were correlated with GAD65 mRNA levels. Lower GAD65 mRNA and protein levels within subjects with schizoaffective disorder were not attributable to factors commonly comorbid with the diagnosis. In concert with previous studies, these findings suggest that schizoaffective disorder is associated with lower levels of both GAD65 and GAD67 mRNA and protein in the PFC, whereas subjects with schizophrenia have lower mean levels of only GAD67 mRNA and protein. Because cognitive function is generally better preserved in patients with schizoaffective disorder relative to patients with schizophrenia, these findings may support an interpretation that GAD65 downregulation provides a homeostatic response complementary to GAD67 downregulation that serves to reduce inhibition in the face of lower PFC network activity. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc

  14. LONGITUDINAL AND RADIAL DEPENDENCE OF SOLAR ENERGETIC PARTICLE PEAK INTENSITIES: STEREO, ACE, SOHO, GOES, AND MESSENGER OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Lario, D.; Ho, G. C.; Decker, R. B.; Roelof, E. C. [The Johns Hopkins University, Applied Physics Laboratory, Laurel, MD 20723 (United States); Aran, A. [Departament d' Astronomia i Meteorologia, Institut de Ciencies del Cosmos, Universitat de Barcelona, Barcelona (Spain); Gomez-Herrero, R.; Dresing, N.; Heber, B., E-mail: david.lario@jhuapl.edu [Institute of Experimental and Applied Physics, Christian-Albrechts University of Kiel, Kiel (Germany)

    2013-04-10

    Simultaneous measurements of solar energetic particle (SEP) events by two or more of the spacecraft located near 1 AU during the rising phase of solar cycle 24 (i.e., STEREO-A, STEREO-B, and near-Earth spacecraft such as ACE, SOHO, and GOES) are used to determine the longitudinal dependence of 71-112 keV electron, 0.7-3 MeV electron, 15-40 MeV proton, and 25-53 MeV proton peak intensities measured in the prompt component of SEP events. Distributions of the peak intensities for the selected 35 events with identifiable solar origin are approximated by the form exp [ - ({phi} - {phi}{sub 0}){sup 2}/2{sigma}{sup 2}], where {phi} is the longitudinal separation between the parent active region and the footpoint of the nominal interplanetary magnetic field (IMF) line connecting each spacecraft with the Sun, {phi}{sub 0} is the distribution centroid, and {sigma} determines the longitudinal gradient. The MESSENGER spacecraft, at helioradii R < 1 AU, allows us to determine a lower limit to the radial dependence of the 71-112 keV electron peak intensities measured along IMF lines. We find five events for which the nominal magnetic footpoint of MESSENGER was less than 20 Degree-Sign apart from the nominal footpoint of a spacecraft near 1 AU. Although the expected theoretical radial dependence for the peak intensity of the events observed along the same field line can be approximated by a functional form R {sup -{alpha}} with {alpha} < 3, we find two events for which {alpha} > 3. These two cases correspond to SEP events occurring in a complex interplanetary medium that favored the enhancement of peak intensities near Mercury but hindered the SEP transport to 1 AU.

  15. The gold-rich indide Eu{sub 5}Au{sub 17.7}In{sub 4.3} and its relation with the structures of SrAu{sub 4.76}In{sub 1.24} and BaLi{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Muts, Ihor [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Ivan Franko National Univ. of Lviv (Ukraine). Inorganic Chemistry Dept.; Rodewald, Ute C.; Poettgen, Rainer [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Zaremba, Vasyl' I.; Pavlosyuk, Orest [Ivan Franko National Univ. of Lviv (Ukraine). Inorganic Chemistry Dept.

    2012-02-15

    The gold-rich indide Eu{sub 5}Au{sub 17.7}In{sub 4.3} was synthesized from the elements in a sealed tantalum ampoule that was heated in a high-frequency furnace. Eu{sub 5}Au{sub 17.7}In{sub 4.3} crystallizes with a new monoclinic structure type: C2/m, a = 902.7(2), b = 722.8(3), c = 1734.1(4) pm, {beta} = 94.31(3) , wR2 = 0.0907, 2640 F{sup 2} values and 74 variables. Eu{sub 5}Au{sub 17.7}In{sub 4.3} has a pronounced gold substructure with Au.Au distances ranging from 278 to 300 pm. The striking structural motifs in the gold substructure are networks of Au6 hexagons and discrete units of corner- and edge-sharing Au{sub 4} tetrahedra. Eu{sub 5}Au{sub 17.70}In{sub 4.30} exhibits a small homogeneity range with In/Au mixing on two Wyckoff sites. Geometrically, the Eu{sub 5}Au{sub 17.7}In{sub 4.3} structure can be explained as an intergrowth variant of slightly distorted SrAu{sub 4.76}In{sub 1.24}- and BaLi{sub 4}-related slabs. The europium coordination in the BaLi{sub 4} slabs is similar to binary EuAu{sub 2}. (orig.)

  16. Effects of insulin on messenger RNA activities in rat liver

    International Nuclear Information System (INIS)

    Hill, R.E.; Lee, K.L.; Kenney, F.T.

    1981-01-01

    Liver poly(A) RNA, isolated from adrenalectomized rats after insulin treatment, was translated in a nuclease-treated lysate of rabbit reticulocytes and quantitated for both total activity and the capacity to synthesize the insulin-inducible enzyme tyrosine amino-transferase. Analysis of the translated products from poly(A) RNA isolated 1 h after insulin treatment showed a 2.7-fold increase in activity of tyrosine aminotransferase mRNA. During the same interval, the capacity of poly(A) RNA to direct the synthesis of total protein in lysates also changed, showing a 30 to 40% increase in translational activity/unit of RNA. Increased translatability was apparent in all fractions of poly(A) RNA separated by centrifugation on sucrose gradients. Insulin thus appears to mediated a generalized changed in mRNAs leading to increased capacity for translation; induction of tyrosine aminotransferase may reflect unusual sensitivity to this effect of the hormone

  17. Structure of Escherichia coli Hfq bound to polyriboadenylate RNA

    DEFF Research Database (Denmark)

    Link, Todd M; Valentin-Hansen, Poul; Brennan, Richard G

    2009-01-01

    (A) RNA, A(15). The structure reveals a unique RNA binding mechanism. Unlike uridine-containing sequences, which bind to the "proximal" face, the poly(A) tract binds to the "distal" face of Hfq using 6 tripartite binding motifs. Each motif consists of an adenosine specificity site (A site), which......Hfq is a small, highly abundant hexameric protein that is found in many bacteria and plays a critical role in mRNA expression and RNA stability. As an "RNA chaperone," Hfq binds AU-rich sequences and facilitates the trans annealing of small RNAs (sRNAs) to their target mRNAs, typically resulting...... in the down-regulation of gene expression. Hfq also plays a key role in bacterial RNA decay by binding tightly to polyadenylate [poly(A)] tracts. The structural mechanism by which Hfq recognizes and binds poly(A) is unknown. Here, we report the crystal structure of Escherichia coli Hfq bound to the poly...

  18. Three RNA recognition motifs participate in RNA recognition and structural organization by the pro-apoptotic factor TIA-1

    Science.gov (United States)

    Bauer, William J.; Heath, Jason; Jenkins, Jermaine L.; Kielkopf, Clara L.

    2012-01-01

    T-cell intracellular antigen-1 (TIA-1) regulates developmental and stress-responsive pathways through distinct activities at the levels of alternative pre-mRNA splicing and mRNA translation. The TIA-1 polypeptide contains three RNA recognition motifs (RRMs). The central RRM2 and C-terminal RRM3 associate with cellular mRNAs. The N-terminal RRM1 enhances interactions of a C-terminal Q-rich domain of TIA-1 with the U1-C splicing factor, despite linear separation of the domains in the TIA-1 sequence. Given the expanded functional repertoire of the RRM family, it was unknown whether TIA-1 RRM1 contributes to RNA binding as well as documented protein interactions. To address this question, we used isothermal titration calorimetry and small-angle X-ray scattering (SAXS) to dissect the roles of the TIA-1 RRMs in RNA recognition. Notably, the fas RNA exhibited two binding sites with indistinguishable affinities for TIA-1. Analyses of TIA-1 variants established that RRM1 was dispensable for binding AU-rich fas sites, yet all three RRMs were required to bind a polyU RNA with high affinity. SAXS analyses demonstrated a `V' shape for a TIA-1 construct comprising the three RRMs, and revealed that its dimensions became more compact in the RNA-bound state. The sequence-selective involvement of TIA-1 RRM1 in RNA recognition suggests a possible role for RNA sequences in regulating the distinct functions of TIA-1. Further implications for U1-C recruitment by the adjacent TIA-1 binding sites of the fas pre-mRNA and the bent TIA-1 shape, which organizes the N- and C-termini on the same side of the protein, are discussed. PMID:22154808

  19. MESSENGER'S First Flyby of Mercury

    Science.gov (United States)

    Slavin, James A.

    2008-01-01

    The MESSENGER mission to Mercury offers our first opportunity to explore this planet's miniature magnetosphere since Mariner 10's brief fly-bys in 1974-5. The magnetosphere of Mercury is the smallest in the solar system with its magnetic field typically standing off the solar wind only - 1000 to 2000 km above the surface. An overview of the MESSENGER mission and its January 14th close flyby of Mercury will be provided. Primary science objectives and the science instrumentation will be described. Initial results from MESSENGER'S first flyby on January 14th, 2008 will be discussed with an emphasis on the magnetic field and charged particle measurements.

  20. siRNAs targeted to certain polyadenylation sites promote specific, RISC-independent degradation of messenger RNAs.

    Science.gov (United States)

    Vickers, Timothy A; Crooke, Stanley T

    2012-07-01

    While most siRNAs induce sequence-specific target mRNA cleavage and degradation in a process mediated by Ago2/RNA-induced silencing complex (RISC), certain siRNAs have also been demonstrated to direct target RNA reduction through deadenylation and subsequent degradation of target transcripts in a process which involves Ago1/RISC and P-bodies. In the current study, we present data suggesting that a third class of siRNA exist, which are capable of promoting target RNA reduction that is independent of both Ago and RISC. These siRNAs bind the target messenger RNA at the polyA signal and are capable of redirecting a small amount of polyadenylation to downstream polyA sites when present, however, the majority of the activity appears to be due to inhibition of polyadenylation or deadenylation of the transcript, followed by exosomal degradation of the immature mRNA.

  1. Defect-rich Ni-Ti layered double hydroxide as a highly efficient support for Au nanoparticles in base-free and solvent-free selective oxidation of benzyl alcohol.

    Science.gov (United States)

    Liu, Mengran; Fan, Guoli; Yu, Jiaying; Yang, Lan; Li, Feng

    2018-04-17

    Tuning the surface properties of supported metal catalysts is of vital importance for governing their catalytic performances in nanocatalysis. Here, we report highly dispersed nanometric gold nanoparticles (NPs) supported on Ni-Ti layered double hydroxides (NiTi-LDHs), which were employed in solvent-free and base-free selective oxidation of benzyl alcohol. A series of characterization techniques demonstrated that defect-rich NiTi-LDHs could efficiently stabilize Au NPs and decrease surface electron density of Au NPs. The as-formed Au/NiTi-LDH catalyst with a Ni/Ti molar ratio of 3 : 1 and an Au loading of 0.71 wt% yielded the highest turnover frequency value of ∼4981 h-1 at 120 °C among tested Au/NiTi-LDH catalysts with different Ni/Ti molar ratios, along with a high benzaldehyde selectivity of 98%. High catalytic efficiency of the catalyst was mainly correlated with surface cooperation between unique defects (i.e. defective Ti3+ species and oxygen vacancies) and abundant hydroxyl groups on the brucite-like layers of the NiTi-LDH support, which could lead to the preferential adsorption and activation of an alcohol hydroxyl moiety in benzyl alcohol and oxygen molecule, as well as the formation of more electron-deficient Ni3+ and Au0 species on the catalyst surface. Furthermore, the present Au/NiTi-LDH catalyst tolerated the oxidation of a wide variety of substrate structures into the corresponding aldehydes, acids or ketones. Our primary results illustrate that defect-rich NiTi-LDHs are promising supports which can efficiently modify surface structure and electronic properties of supported metal catalysts and consequently improve their catalytic performances.

  2. Translational Influence on Messenger Stability

    DEFF Research Database (Denmark)

    Eriksen, Mette

    -termination to be a global phenomena in gene regulation. The influence of codon usage in the early coding region on messenger stability was examined, in order to establish how fast or slow the ribosome has to decode the sequence for it to protect the messenger from degradation. The experiments demonstrated that very fast...

  3. Ultraviolet electroluminescence from Au/MgO/MgxZn1−xO heterojunction diodes and the observation of Zn-rich cluster emission

    International Nuclear Information System (INIS)

    Liu, C.Y.; Xu, H.Y.; Sun, Y.; Zhang, C.; Ma, J.G.; Liu, Y.C.

    2014-01-01

    In this work, ultraviolet (UV) electroluminescence (EL) is achieved from Au/MgO/Mg x Zn 1−x O heterojunction diodes. The EL mechanism and laser forming process are discussed based on the energy band diagram, impact-ionization process and disordered optical structure. For ZnO and low Mg-content MgZnO devices, their EL spectra show single near-band-edge (NBE) emission. While in high Mg-content MgZnO devices, the emission from self-formed Zn-rich MgZnO clusters is observed and also contribute to the UV EL band. These Zn-rich clusters can act as thermally-stable luminescence centers, suggesting a promising route for developing MgZnO-based UV light-emitting devices. -- Highlights: • A series of Au/MgO/Mg x Zn 1−x O heterojunction diodes with multiple Mg compositions are fabricated and ultraviolet electroluminescence is achieved. • EL mechanism and laser forming process are discussed based on energy band diagram, impact-ionization process and disordered optical structure. • The transition from spontaneous to stimulated emission is observed in these heterojunctions, and the lasing mode is random laser. • In high Mg-content MgZnO devices, the emission from self-formed Zn-rich clusters is observed, which are thermally stable luminescence centers

  4. Role of transcription factor Sp1 and RNA binding protein HuR in the downregulation of Dr+ Escherichia coli receptor protein decay accelerating factor (DAF or CD55) by nitric oxide.

    Science.gov (United States)

    Banadakoppa, Manu; Liebenthal, Daniel; Nowak, David E; Urvil, Petri; Yallampalli, Uma; Wilson, Gerald M; Kishor, Aparna; Yallampalli, Chandra

    2013-02-01

    We previously reported that nitric oxide (NO) reduces the rate of bacteremia and maternal mortality in pregnant rats with uterine infection by Escherichia coli expressing the Dr Fimbria (Dr(+) ). The epithelial invasion of Dr(+) E. coli is dependent on the expression level of its cellular receptor decay accelerating factor (DAF). NO reduces the rate of bacteremia by downregulating the expression of DAF. In this study, we elucidated the role of transcription factor Sp1 and RNA binding protein HuR in the downregulation of human DAF by NO. We generated a series of deletion mutant constructs of DAF gene 5'-untranslated region and mapped the NO-response region upstream to the core promoter region of the DAF gene. One of the several Sp1 binding sites in the DAF 5'-untranslated region was located within the NO-response region. The binding of Sp1 to this site was inhibited by NO. Furthermore, NO also promoted the degradation of DAF mRNA. The 3'-untranslated region of DAF harbors an AU-rich element and this element destabilized the mRNA transcript. NO promoted the rapid degradation of DAF mRNA by inhibiting the binding of mRNA stabilizing protein HuR to this AU-rich region. The inhibition of binding of HuR to the AU-rich region was due to the S-nitrosylation of one or more cysteine residues by NO. Thus, these data reveal the molecular mediators of transcriptional and post-transcriptional regulation of DAF by NO with implications in pathophysiology related to DAF. © 2012 The Authors Journal compilation © 2012 FEBS.

  5. Crystal Structure of the N-Terminal RNA Recognition Motif of mRNA Decay Regulator AUF1

    Directory of Open Access Journals (Sweden)

    Young Jun Choi

    2016-01-01

    Full Text Available AU-rich element binding/degradation factor 1 (AUF1 plays a role in destabilizing mRNAs by forming complexes with AU-rich elements (ARE in the 3′-untranslated regions. Multiple AUF1-ARE complexes regulate the translation of encoded products related to the cell cycle, apoptosis, and inflammation. AUF1 contains two tandem RNA recognition motifs (RRM and a Gln- (Q- rich domain in their C-terminal region. To observe how the two RRMs are involved in recognizing ARE, we obtained the AUF1-p37 protein covering the two RRMs. However, only N-terminal RRM (RRM1 was crystallized and its structure was determined at 1.7 Å resolution. It appears that the RRM1 and RRM2 separated before crystallization. To demonstrate which factors affect the separate RRM1-2, we performed limited proteolysis using trypsin. The results indicated that the intact proteins were cleaved by unknown proteases that were associated with them prior to crystallization. In comparison with each of the monomers, the conformations of the β2-β3 loops were highly variable. Furthermore, a comparison with the RRM1-2 structures of HuR and hnRNP A1 revealed that a dimer of RRM1 could be one of the possible conformations of RRM1-2. Our data may provide a guidance for further structural investigations of AUF1 tandem RRM repeat and its mode of ARE binding.

  6. The RNA-binding protein HOS5 and serine/arginine-rich proteins RS40 and RS41 participate in miRNA biogenesis in Arabidopsis

    KAUST Repository

    Chen, Tao

    2015-07-30

    MicroRNAs are a class of small regulatory RNAs that are generated from primary miRNA (pri-miRNA) transcripts with a stem-loop structure. Accuracy of the processing of pri-miRNA into mature miRNA in plants can be enhanced by SERRATE (SE) and HYPONASTIC LEAVES 1 (HYL1). HYL1 activity is regulated by the FIERY2 (FRY2)/RNA polymerase II C-terminal domain phosphatase-like 1 (CPL1). Here, we discover that HIGH OSMOTIC STRESS GENE EXPRESSION 5 (HOS5) and two serine/arginine-rich splicing factors RS40 and RS41, previously shown to be involved in pre-mRNA splicing, affect the biogenesis of a subset of miRNA. These proteins are required for correct miRNA strand selection and the maintenance of miRNA levels. FRY2 dephosphorylates HOS5 whose phosphorylation status affects its subnuclear localization. HOS5 and the RS proteins bind both intronless and intron-containing pri-miRNAs. Importantly, all of these splicing-related factors directly interact with both HYL1 and SE in nuclear splicing speckles. Our results indicate that these splicing factors are directly involved in the biogenesis of a group of miRNA.

  7. Interactions of a didomain fragment of the Drosophila Sex-lethal protein with single-stranded uridine-rich oligoribonucleotides derived from the transformer and Sex-lethal messenger RNA precursors: NMR with residue-selective [5-2H]uridine substitutions

    International Nuclear Information System (INIS)

    Kim, Insil; Muto, Yutaka; Watanabe, Satoru; Kitamura, Aya; Futamura, Yasuhiro; Yokoyama, Shigeyuki; Hosono, Kazumi; Kawai, Gota; Takaku, Hiroshi; Dohmae, Naoshi; Takio, Koji; Sakamoto, Hiroshi; Shimura, Yoshiro

    2000-01-01

    Proteins that contain two or more copies of the RNA-binding domain [ribonucleoprotein (RNP) domain or RNA recognition motif (RRM)] are considered to be involved in the recognition of single-stranded RNA, but the mechanisms of this recognition are poorly understood at the molecular level. For an NMR analysis of a single-stranded RNA complexed with a multi-RBD protein, residue-selective stable-isotope labeling techniques are necessary, rather than common assignment methods based on the secondary structure of RNA. In the present study, we analyzed the interaction of a Drosophila Sex-lethal (Sxl) protein fragment, consisting of two RBDs (RBD1-RBD2), with two distinct target RNAs derived from the tra and Sxl mRNA precursors with guanosine and adenosine, respectively, in a position near the 5'-terminus of a uridine stretch. First, we prepared a [5- 2 H]uridine phosphoramidite, and synthesized a series of 2 H-labeled RNAs, in which all of the uridine residues except one were replaced by [5- 2 H]uridine in the target sequence, GU 8 C. By observing the H5-H6 TOCSY cross peaks of the series of 2 H-labeled RNAs complexed with the Sxl RBD1-RBD2, all of the base H5-H6 proton resonances of the target RNA were unambiguously assigned. Then, the H5-H6 cross peaks of other target RNAs, GU 2 GU 8 , AU 8 , and UAU 8 , were assigned by comparison with those of GU 8 C. We found that the uridine residue prior to the G or A residue is essential for proper interaction with the protein, and that the interaction is tighter for A than for G. Moreover, the H1' resonance assignments were achieved from the H5-H6 assignments. The results revealed that all of the protein-bound nucleotide residues, except for only two, are in the unusual C2'-endo ribose conformation in the complex

  8. Interactions of a didomain fragment of the Drosophila Sex-lethal protein with single-stranded uridine-rich oligoribonucleotides derived from the transformer and Sex-lethal messenger RNA precursors: NMR with residue-selective [5-2H]uridine substitutions

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Insil; Muto, Yutaka; Watanabe, Satoru; Kitamura, Aya; Futamura, Yasuhiro; Yokoyama, Shigeyuki [University of Tokyo, Department of Biophysics and Biochemistry, Graduate School of Science (Japan); Hosono, Kazumi; Kawai, Gota; Takaku, Hiroshi [Chiba Institute of Technology, Department of Industrial Chemistry (Japan); Dohmae, Naoshi; Takio, Koji [Institute of Physical and Chemical Research (RIKEN) (Japan); Sakamoto, Hiroshi [Kobe University, Department of Biology, Faculty of Science (Japan); Shimura, Yoshiro [Biomolecular Engineering Research Institute (Japan)

    2000-06-15

    Proteins that contain two or more copies of the RNA-binding domain [ribonucleoprotein (RNP) domain or RNA recognition motif (RRM)] are considered to be involved in the recognition of single-stranded RNA, but the mechanisms of this recognition are poorly understood at the molecular level. For an NMR analysis of a single-stranded RNA complexed with a multi-RBD protein, residue-selective stable-isotope labeling techniques are necessary, rather than common assignment methods based on the secondary structure of RNA. In the present study, we analyzed the interaction of a Drosophila Sex-lethal (Sxl) protein fragment, consisting of two RBDs (RBD1-RBD2), with two distinct target RNAs derived from the tra and Sxl mRNA precursors with guanosine and adenosine, respectively, in a position near the 5'-terminus of a uridine stretch. First, we prepared a [5-{sup 2}H]uridine phosphoramidite, and synthesized a series of {sup 2}H-labeled RNAs, in which all of the uridine residues except one were replaced by [5-{sup 2}H]uridine in the target sequence, GU{sub 8}C. By observing the H5-H6 TOCSY cross peaks of the series of {sup 2}H-labeled RNAs complexed with the Sxl RBD1-RBD2, all of the base H5-H6 proton resonances of the target RNA were unambiguously assigned. Then, the H5-H6 cross peaks of other target RNAs, GU{sub 2}GU{sub 8}, AU{sub 8}, and UAU{sub 8}, were assigned by comparison with those of GU{sub 8}C. We found that the uridine residue prior to the G or A residue is essential for proper interaction with the protein, and that the interaction is tighter for A than for G. Moreover, the H1' resonance assignments were achieved from the H5-H6 assignments. The results revealed that all of the protein-bound nucleotide residues, except for only two, are in the unusual C2'-endo ribose conformation in the complex.

  9. Higgs mass from neutrino-messenger mixing

    International Nuclear Information System (INIS)

    Byakti, Pritibhajan; Khosa, Charanjit K.; Mummidi, V.S.; Vempati, Sudhir K.

    2017-01-01

    The discovery of the Higgs particle at 125 GeV has put strong constraints on minimal messenger models of gauge mediation, pushing the stop masses into the multi-TeV regime. Extensions of these models with matter-messenger mixing terms have been proposed to generate a large trilinear parameter, A t , relaxing these constraints. The detailed survey of these models (DOI: 10.1007/JHEP05(2013)055; 10.1007/JHEP08(2013)093 ) so far considered messenger mixings with only MSSM superfields. In the present work, we extend the survey to MSSM with inverse-seesaw mechanism. The neutrino-sneutrino corrections to the Higgs mass in the inverse seesaw model are not significant in the minimal gauge mediation model, unless one considers messenger-matter interaction terms. We classify all possible models with messenger-matter interactions and perform thorough numerical analysis to find out the promising models. We found that out of the 17 possible models 9 of them can lead to Higgs mass within the observed value without raising the sfermion masses significantly. The successful models have stop masses ∼1.5 TeV with small or negligible mixing and yet a light CP even Higgs at 125 GeV.

  10. Martini Coarse-Grained Force Field : Extension to RNA

    NARCIS (Netherlands)

    Uusitalo, Jaakko J.; Ingolfsson, Helgi I.; Marrink, Siewert J.; Faustino, Ignacio

    2017-01-01

    RNA has an important role not only as the messenger of genetic information but also as a regulator of gene expression. Given its central role in cell biology, there is significant interest in studying the structural and dynamic behavior of RNA in relation to other biomolecules. Coarse-grain

  11. Mapping Hfq-RNA interaction surfaces using tryptophan fluorescence quenching

    Science.gov (United States)

    Robinson, Kirsten E.; Orans, Jillian; Kovach, Alexander R.; Link, Todd M.; Brennan, Richard G.

    2014-01-01

    Hfq is a posttranscriptional riboregulator and RNA chaperone that binds small RNAs and target mRNAs to effect their annealing and message-specific regulation in response to environmental stressors. Structures of Hfq-RNA complexes indicate that U-rich sequences prefer the proximal face and A-rich sequences the distal face; however, the Hfq-binding sites of most RNAs are unknown. Here, we present an Hfq-RNA mapping approach that uses single tryptophan-substituted Hfq proteins, all of which retain the wild-type Hfq structure, and tryptophan fluorescence quenching (TFQ) by proximal RNA binding. TFQ properly identified the respective distal and proximal binding of A15 and U6 RNA to Gram-negative Escherichia coli (Ec) Hfq and the distal face binding of (AA)3A, (AU)3A and (AC)3A to Gram-positive Staphylococcus aureus (Sa) Hfq. The inability of (GU)3G to bind the distal face of Sa Hfq reveals the (R-L)n binding motif is a more restrictive (A-L)n binding motif. Remarkably Hfq from Gram-positive Listeria monocytogenes (Lm) binds (GU)3G on its proximal face. TFQ experiments also revealed the Ec Hfq (A-R-N)n distal face-binding motif should be redefined as an (A-A-N)n binding motif. TFQ data also demonstrated that the 5′-untranslated region of hfq mRNA binds both the proximal and distal faces of Ec Hfq and the unstructured C-terminus. PMID:24288369

  12. Messengers of the universe

    International Nuclear Information System (INIS)

    Becker, J.K.; Spurio, M.

    2011-01-01

    The observation of the solar neutrinos and of a neutrino burst from the supernova explosion 1987A opened a new observation field which in the next years could be complemented with the detection of astrophysical highenergy neutrinos. Neutrino astronomy is a young discipline derived from the fundamental necessity of extending conventional astronomy beyond the usual electro-magnetic messengers. This is a summary of recent results on those new 'messengers of the universe', based on the presentations in Branch IV of the Neutrino Oscillation Workshop 2010 (NOW2010).

  13. Growth differentiation factor 3 is induced by bone morphogenetic protein 6 (BMP-6) and BMP-7 and increases luteinizing hormone receptor messenger RNA expression in human granulosa cells.

    Science.gov (United States)

    Shi, Jia; Yoshino, Osamu; Osuga, Yutaka; Akiyama, Ikumi; Harada, Miyuki; Koga, Kaori; Fujimoto, Akihisa; Yano, Tetsu; Taketani, Yuji

    2012-04-01

    To examine the relevance of growth differentiation factor 3 (GDF-3) and bone morphogenetic protein (BMP) cytokines in human ovary. Molecular studies. Research laboratory. Eight women undergoing salpingo-oophorectomy and 30 women undergoing ovarian stimulation for in vitro fertilization. Localizing GDF-3 protein in human ovaries; granulosa cells (GC) cultured with GDF-3, BMP-6, or BMP-7 followed by RNA extraction. The localization of GDF-3 protein in normal human ovaries via immunohistochemical analysis, GDF-3 messenger RNA (mRNA) expression evaluation via quantitative real-time reverse transcription and polymerase chain reaction (RT-PCR), and evaluation of the effect of GDF-3 on leuteinizing hormone (LH) receptor mRNA expression via quantitative real-time RT-PCR. In the ovary, BMP cytokines, of the transforming growth factor beta (TGF-β) superfamily, are known as a luteinization inhibitor by suppressing LH receptor expression in GC. Growth differentiation factor 3, a TGF-β superfamily cytokine, is recognized as an inhibitor of BMP cytokines in other cells. Immunohistochemical analysis showed that GDF-3 was strongly detected in the GC of antral follicles. An in vitro assay revealed that BMP-6 or BMP-7 induced GDF-3 mRNA in GC. Also, GDF-3 increased LH receptor mRNA expression and inhibited the effect of BMP-7, which suppressed the LH receptor mRNA expression in GC. GDF-3, induced with BMP-6 and BMP-7, might play a role in folliculogenesis by inhibiting the effect of BMP cytokines. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  14. Higgs mass from neutrino-messenger mixing

    Energy Technology Data Exchange (ETDEWEB)

    Byakti, Pritibhajan [Center for High Energy Physics, Indian Institute of Science,C.V. Raman Ave, Bangalore 560012 (India); Department of Theoretical Physics, Indian Association for the Cultivation of Science,2A & 2B Raja S.C. Mullick Road, Kolkata 700 032 (India); Khosa, Charanjit K. [Center for High Energy Physics, Indian Institute of Science,C.V. Raman Ave, Bangalore 560012 (India); Mummidi, V.S. [Harish-Chandra Research Institute,Chhatnag Road, Jhusi, Allahabad 211019 (India); Vempati, Sudhir K. [Center for High Energy Physics, Indian Institute of Science,C.V. Raman Ave, Bangalore 560012 (India)

    2017-03-06

    The discovery of the Higgs particle at 125 GeV has put strong constraints on minimal messenger models of gauge mediation, pushing the stop masses into the multi-TeV regime. Extensions of these models with matter-messenger mixing terms have been proposed to generate a large trilinear parameter, A{sub t}, relaxing these constraints. The detailed survey of these models (DOI: 10.1007/JHEP05(2013)055; 10.1007/JHEP08(2013)093 ) so far considered messenger mixings with only MSSM superfields. In the present work, we extend the survey to MSSM with inverse-seesaw mechanism. The neutrino-sneutrino corrections to the Higgs mass in the inverse seesaw model are not significant in the minimal gauge mediation model, unless one considers messenger-matter interaction terms. We classify all possible models with messenger-matter interactions and perform thorough numerical analysis to find out the promising models. We found that out of the 17 possible models 9 of them can lead to Higgs mass within the observed value without raising the sfermion masses significantly. The successful models have stop masses ∼1.5 TeV with small or negligible mixing and yet a light CP even Higgs at 125 GeV.

  15. Expression of somatotropin receptor messenger ribonucleic acid in bovine tissues

    International Nuclear Information System (INIS)

    Lucy, M.C.; Boyd, C.K.; Koenigsfeld, A.T.; Okamura, C.S.

    1998-01-01

    The somatotropin receptor mRNA is controlled by at least two different gene promoters that generate 2 two variants with different exon 1 sequences (1A and 1B). The location of 1A and 1B somatotropin receptor mRNA within cattle tissues and, hence, the tissue specificity of the 1A and 1B promoters are unknown. In addition, the cDNA sequence of the 1B somatotropin receptor has not been determined. Our objective, therefore, was to sequence a cDNA for the 1B somatotropin receptor and to analyze bovine tissues for expression of 1A and 1B somatotropin receptor mRNA. Twenty adult tissues and six fetal tissues were collected at slaughter from each of four cows and two fetuses. Messenger RNA was analyzed using ribonuclease protection assays. The adult liver expressed both 1A and 1B mRNA. All other adult tissues expressed 1B mRNA but not 1A mRNA. The greatest amount of 1B mRNA was detected in liver and adipose (abdominal and subcutaneous) tissues. Other tissues had approximately one-half to one-tenth of the amount of 1B mRNA in the liver or adipose tissue. Fetal tissues (including fetal liver) expressed 1B mRNA and not 1A mRNA. Based on cDNA sequencing, the protein encoded by the 1A and 1B mRNA was nearly identical. We concluded that 1A somatotropin receptor mRNA is specific to adult bovine liver. Other adult and fetal bovine tissues expressed 1B somatotropin receptor mRNA with a predicted protein sequence that was similar to the 1A somatotropin receptor

  16. High-quality total RNA isolation from melon (Cucumis melo L. fruits rich in polysaccharides

    Directory of Open Access Journals (Sweden)

    Gabrielle Silveira de Campos

    2017-08-01

    Full Text Available Melon, a member of the family Cucurbitaceae, is the fourth most important fruit in the world market and, on a volume basis, is Brazil’s main fresh fruit export. Many molecular techniques used to understand the maturation of these fruits require high concentrations of highly purified RNA. However, melons are rich in polyphenolic compounds and polysaccharides, which interfere with RNA extraction. This study aimed to determine the most appropriate method for total RNA extraction from melon fruits. Six extraction buffers were tested: T1 guanidine thiocyanate/phenol/chloroform; T2 sodium azide/?-mercaptoethanol; T3 phenol/guanidine thiocyanate; T4 CTAB/PVP/?-mercaptoethanol; T5 SDS/sodium perchlorate/PVP/?-mercaptoethanol, and T6 sarkosyl/PVP/guanidine thiocyanate, using the AxyPrepTM Multisource Total RNA Miniprep Kit. The best method for extracting RNA from both mature and green fruit was based on the SDS/PVP/?-mercaptoethanol buffer, because it rapidly generated a high quality and quantity of material. In general, higher amounts of RNA were obtained from green than mature fruits, probably due to the lower concentration of polysaccharides and water. The purified material can be used as a template in molecular techniques, such as microarrays, RT-PCR, and in the construction of cDNA and RNA-seq data.

  17. Alternative RNA splicing and cancer

    Science.gov (United States)

    Liu, Sali; Cheng, Chonghui

    2015-01-01

    Alternative splicing of pre-messenger RNA (mRNA) is a fundamental mechanism by which a gene can give rise to multiple distinct mRNA transcripts, yielding protein isoforms with different, even opposing, functions. With the recognition that alternative splicing occurs in nearly all human genes, its relationship with cancer-associated pathways has emerged as a rapidly growing field. In this review, we summarize recent findings that have implicated the critical role of alternative splicing in cancer and discuss current understandings of the mechanisms underlying dysregulated alternative splicing in cancer cells. PMID:23765697

  18. Spontaneous reverse movement of mRNA-bound tRNA through the ribosome.

    Science.gov (United States)

    Konevega, Andrey L; Fischer, Niels; Semenkov, Yuri P; Stark, Holger; Wintermeyer, Wolfgang; Rodnina, Marina V

    2007-04-01

    During the translocation step of protein synthesis, a complex of two transfer RNAs bound to messenger RNA (tRNA-mRNA) moves through the ribosome. The reaction is promoted by an elongation factor, called EF-G in bacteria, which, powered by GTP hydrolysis, induces an open, unlocked conformation of the ribosome that allows for spontaneous tRNA-mRNA movement. Here we show that, in the absence of EF-G, there is spontaneous backward movement, or retrotranslocation, of two tRNAs bound to mRNA. Retrotranslocation is driven by the gain in affinity when a cognate E-site tRNA moves into the P site, which compensates the affinity loss accompanying the movement of peptidyl-tRNA from the P to the A site. These results lend support to the diffusion model of tRNA movement during translocation. In the cell, tRNA movement is biased in the forward direction by EF-G, which acts as a Brownian ratchet and prevents backward movement.

  19. Sweet Spot Supersymmetry and Composite Messengers

    International Nuclear Information System (INIS)

    Ibe, Masahiro; Kitano, Ryuichiro

    2007-01-01

    Sweet spot supersymmetry is a phenomenologically and cosmologically perfect framework to realize a supersymmetric world at short distance. We discuss a class of dynamical models of supersymmetry breaking and its mediation whose low-energy effective description falls into this framework. Hadron fields in the dynamical models play a role of the messengers of the supersymmetry breaking. As is always true in the models of the sweet spot supersymmetry, the messenger scale is predicted to be 10 5 GeV ∼ mess ∼ 10 GeV. Various values of the effective number of messenger fields N mess are possible depending on the choice of the gauge group

  20. Mercury's Reference Frames After the MESSENGER Mission

    Science.gov (United States)

    Stark, A.; Oberst, J.; Preusker, F.; Burmeister, S.; Steinbrügge, G.; Hussmann, H.

    2018-05-01

    We provide an overview of Mercury's reference frames based on MESSENGER observations. We discuss the dynamical, the principal-axes, the ellipsoid, as well as the cartographic frame, which was adopted for MESSENGER data products.

  1. Illuminating Messengers: An Update and Outlook on RNA Visualization in Bacteria

    Directory of Open Access Journals (Sweden)

    Lieke A. van Gijtenbeek

    2017-06-01

    Full Text Available To be able to visualize the abundance and spatiotemporal features of RNAs in bacterial cells would permit obtaining a pivotal understanding of many mechanisms underlying bacterial cell biology. The first methods that allowed observing single mRNA molecules in individual cells were introduced by Bertrand et al. (1998 and Femino et al. (1998. Since then, a plethora of techniques to image RNA molecules with the aid of fluorescence microscopy has emerged. Many of these approaches are useful for the large eukaryotic cells but their adaptation to study RNA, specifically mRNA molecules, in bacterial cells progressed relatively slow. Here, an overview will be given of fluorescent techniques that can be used to reveal specific RNA molecules inside fixed and living single bacterial cells. It includes a critical evaluation of their caveats as well as potential solutions.

  2. Genetic recombination in plant-infecting messenger-sense RNA viruses: overview and research perspectives.

    Science.gov (United States)

    Bujarski, Jozef J

    2013-01-01

    RNA recombination is one of the driving forces of genetic variability in (+)-strand RNA viruses. Various types of RNA-RNA crossovers were described including crosses between the same or different viral RNAs or between viral and cellular RNAs. Likewise, a variety of molecular mechanisms are known to support RNA recombination, such as replicative events (based on internal or end-to-end replicase switchings) along with non-replicative joining among RNA fragments of viral and/or cellular origin. Such mechanisms as RNA decay or RNA interference are responsible for RNA fragmentation and trans-esterification reactions which are likely accountable for ligation of RNA fragments. Numerous host factors were found to affect the profiles of viral RNA recombinants and significant differences in recombination frequency were observed among various RNA viruses. Comparative analyses of viral sequences allowed for the development of evolutionary models in order to explain adaptive phenotypic changes and co-evolving sites. Many questions remain to be answered by forthcoming RNA recombination research. (1) How various factors modulate the ability of viral replicase to switch templates, (2) What is the intracellular location of RNA-RNA template switchings, (3) Mechanisms and factors responsible for non-replicative RNA recombination, (4) Mechanisms of integration of RNA viral sequences with cellular genomic DNA, and (5) What is the role of RNA splicing and ribozyme activity. From an evolutionary stand point, it is not known how RNA viruses parasitize new host species via recombination, nor is it obvious what the contribution of RNA recombination is among other RNA modification pathways. We do not understand why the frequency of RNA recombination varies so much among RNA viruses and the status of RNA recombination as a form of sex is not well documented.

  3. Genetic recombination in plant-infecting messenger-sense RNA viruses: overview and research perspectives

    Directory of Open Access Journals (Sweden)

    Jozef Julian Bujarski

    2013-03-01

    Full Text Available RNA recombination is one of the driving forces of genetic variability in (+-strand RNA viruses. Various types of RNA-RNA crossovers were described including crosses between the same or different viral RNAs or between viral and cellular RNAs. Likewise, a variety of molecular mechanisms are known to support RNA recombination, such as replicative events (based on internal or end-to-end replicase switchings along with nonreplicative joining among RNA fragments of viral and/or cellular origin. Such mechanisms as RNA decay or RNA interference are responsible for RNA fragmentation and trans-esterification reactions which are likely accountable for ligation of RNA fragments. Numerous host factors were found to affect the profiles of viral RNA recombinants and significant differences in recombination frequency were observed among various RNA viruses. Comparative analyses of viral sequences allowed for the development of evolutionary models in order to explain adaptive phenotypic changes and co-evolving sites. Many questions remain to be answered by forthcoming RNA recombination research. (i How various factors modulate the ability of viral replicase to switch templates, (ii What is the intracellular location of RNA-RNA template switchings, (iii Mechanisms and factors responsible for non-replicative RNA recombination, (iv Mechanisms of integration of RNA viral sequences with cellular genomic DNA, and (v What is the role of RNA splicing and ribozyme activity. From an evolutionary stand point, it is not known how RNA viruses parasitize new host species via recombination, nor is it obvious what the contribution of RNA recombination is among other RNA modification pathways. We do not understand why the frequency of RNA recombination varies so much among RNA viruses and the status of RNA recombination as a form of sex is not well documented.

  4. Semiautomated improvement of RNA alignments

    DEFF Research Database (Denmark)

    Andersen, Ebbe Sloth; Lind-Thomsen, Allan; Knudsen, Bjarne

    2007-01-01

    connects to external tools to provide a flexible semiautomatic editing environment. A new method, Pcluster, is introduced for dividing the sequences of an RNA alignment into subgroups with secondary structure differences. Pcluster was used to evaluate 574 seed alignments obtained from the Rfam database...... and we identified 71 alignments with significant prediction of inconsistent base pairs and 102 alignments with significant prediction of novel base pairs. Four RNA families were used to illustrate how SARSE can be used to manually or automatically correct the inconsistent base pairs detected by Pcluster......: the mir-399 RNA, vertebrate telomase RNA (vert-TR), bacterial transfer-messenger RNA (tmRNA), and the signal recognition particle (SRP) RNA. The general use of the method is illustrated by the ability to accommodate pseudoknots and handle even large and divergent RNA families. The open architecture...

  5. Application of RNA interference in treating human diseases

    Indian Academy of Sciences (India)

    ference than either strand individually. After injection into ... antisense strand to messenger RNAs (mRNAs) that bear ... processing of longer dsRNA and stem loop precursors (Nov- ... RNAi has several applications in biomedical research,.

  6. Mercury's Messenger

    Science.gov (United States)

    Chapman, Clark R.

    2004-01-01

    Forty years after Mariner 2, planetary exploration has still only just begun, and many more missions are on drawing boards, nearing the launch pad, or even en route across interplanetary space to their targets. One of the most challenging missions that will be conducted this decade is sending the MESSENGER spacecraft to orbit the planet Mercury.…

  7. A thermostable messenger RNA based vaccine against rabies.

    Science.gov (United States)

    Stitz, Lothar; Vogel, Annette; Schnee, Margit; Voss, Daniel; Rauch, Susanne; Mutzke, Thorsten; Ketterer, Thomas; Kramps, Thomas; Petsch, Benjamin

    2017-12-01

    Although effective rabies virus vaccines have been existing for decades, each year, rabies virus infections still cause around 50.000 fatalities worldwide. Most of these cases occur in developing countries, where these vaccines are not available. The reasons for this are the prohibitive high costs of cell culture or egg grown rabies virus vaccines and the lack of a functional cold chain in many regions in which rabies virus is endemic. Here, we describe the excellent temperature resistance of a non-replicating mRNA based rabies virus vaccine encoding the rabies virus glycoprotein (RABV-G). Prolonged storage of the vaccine from -80°C to up to +70°C for several months did not impact the protective capacity of the mRNA vaccine. Efficacy after storage was demonstrated by the induction of rabies specific virus neutralizing antibodies and protection in mice against lethal rabies infection. Moreover, storing the vaccine at oscillating temperatures between +4° and +56°C for 20 cycles in order to simulate interruptions of the cold chain during vaccine transport, did not affect the vaccine's immunogenicity and protective characteristics, indicating that maintenance of a cold chain is not essential for this vaccine.

  8. Pd-Au/C catalysts with different alloying degrees for ethanol oxidation in alkaline media

    International Nuclear Information System (INIS)

    Qin, Yuan-Hang; Li, Yunfeng; Lv, Ren-Liang; Wang, Tie-Lin; Wang, Wei-Guo; Wang, Cun-Wen

    2014-01-01

    High alloyed Pd-Au/C catalyst is prepared through a rate-limiting strategy in water/ethylene glycol solution. Pd/C and low alloyed Pd-Au/C catalysts are prepared with trisodium citrate and sodium borohydride as stabilizing and reducing agents, respectively. Transmission electron microscopy (TEM) shows that the synthesized Pd(Au) particles are well dispersed on the catalysts. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) show that the high alloyed Pd-Au/C catalyst presents a relatively homogenous structure while the low alloyed Pd-Au/C catalyst presents a Pd-rich shell/Au-rich core structure. Electrochemical characterization shows that the low alloyed Pd-Au/C catalyst exhibits the best catalytic activity for ethanol oxidation reaction (EOR) in alkaline media, which could be attributed to its relatively large exposed Pd surface area as compared with the high alloyed Pd-Au/C catalyst due to its Pd-rich shell structure and its enhanced adsorption of OH ads as compared with Pd/C catalyst due to its core-shell structure

  9. Mobile MSN Messenger: Still a Complement?

    Directory of Open Access Journals (Sweden)

    Marcus Nyberg

    2008-10-01

    Full Text Available In order to understand how mobile instant messaging services can fit into the users’ current communication behavior, Ericsson Research performed a qualitative user study in Sweden in May 2007. The results showed that the respondents were positive towards (free of charge mobile MSN Messenger and perceived it as an ex¬tension of the computer-based version that could be used anywhere. However, although MSN Messenger on the com¬puter definitely was considered as a ‘must-have’ application, the mobile version was only perceived as a ‘nice-to-have’ application and a complement to text mes¬saging (SMS. Almost one year later, in April 2008, Ericsson Research performed a short qualita¬tive follow-up study with the same set of respondents to un¬derstand if and how the mobile MSN Messenger usage had changed. The results actually revealed that none of the re¬spondents used mobile MSN Messenger anymore as the application no longer was free of charge. On a general level, the study highlights important considera¬tions when intro¬ducing computer-based concepts and Internet services in a mo¬bile environment.

  10. Precipitation hardening of a Cu-free Au-Ag-Pd-In dental alloy

    Energy Technology Data Exchange (ETDEWEB)

    Seol, Hyo-Joung [Department of Dental Materials, College of Dentistry and Research Institute for Oral Biotechnology, Pusan National University, 1-10 Ami-dong, Seo-gu, Pusan 602-739 (Korea, Republic of); Son, Kuk-Hyeon [Department of Dental Materials, College of Dentistry and Research Institute for Oral Biotechnology, Pusan National University, 1-10 Ami-dong, Seo-gu, Pusan 602-739 (Korea, Republic of); Yu, Chin-Ho [Department of Dental Materials, College of Dentistry and Research Institute for Oral Biotechnology, Pusan National University, 1-10 Ami-dong, Seo-gu, Pusan 602-739 (Korea, Republic of); Kwon, Yong Hoon [Department of Dental Materials, College of Dentistry and Research Institute for Oral Biotechnology, Pusan National University, 1-10 Ami-dong, Seo-gu, Pusan 602-739 (Korea, Republic of); Kim, Hyung-Il [Department of Dental Materials, College of Dentistry and Research Institute for Oral Biotechnology, Pusan National University, 1-10 Ami-dong, Seo-gu, Pusan 602-739 (Korea, Republic of)]. E-mail: hilkim@pusan.ac.kr

    2005-10-27

    The hardening mechanism and related microstructural changes of the Cu-free dental casting alloy composed of Au-Ag-Pd-In was examined by means of hardness test, X-ray diffraction (XRD), scanning electron microscopic (SEM) observations and electron probe microanalysis (EPMA). The Au-Ag-Pd-In alloy showed apparent age-hardenability. In the SEM photograph, three phases were observed in the solution-treated specimen, that is, the Au-Ag based phase with small amounts of In and Pd as matrix, the InPd phase as particle-like structures, and the Pd-rich phase as lamellar precipitates. By aging the specimen, the very fine Pd-rich inter-granular precipitates grew toward the grain interior as lamellar structure, and finally the coarsened Pd-rich precipitates covered a large part of the Au-Ag based matrix. The hardness increase in the early stage of the age-hardening process was assumed to be caused by the diffusion and aggregation of Pd atoms from the Au-Ag based matrix. The hardness decrease in the later stage of age-hardening process was caused by coarsening of the lamellar precipitates composed of the Pd-rich phase.

  11. Precipitation hardening of a Cu-free Au-Ag-Pd-In dental alloy

    International Nuclear Information System (INIS)

    Seol, Hyo-Joung; Son, Kuk-Hyeon; Yu, Chin-Ho; Kwon, Yong Hoon; Kim, Hyung-Il

    2005-01-01

    The hardening mechanism and related microstructural changes of the Cu-free dental casting alloy composed of Au-Ag-Pd-In was examined by means of hardness test, X-ray diffraction (XRD), scanning electron microscopic (SEM) observations and electron probe microanalysis (EPMA). The Au-Ag-Pd-In alloy showed apparent age-hardenability. In the SEM photograph, three phases were observed in the solution-treated specimen, that is, the Au-Ag based phase with small amounts of In and Pd as matrix, the InPd phase as particle-like structures, and the Pd-rich phase as lamellar precipitates. By aging the specimen, the very fine Pd-rich inter-granular precipitates grew toward the grain interior as lamellar structure, and finally the coarsened Pd-rich precipitates covered a large part of the Au-Ag based matrix. The hardness increase in the early stage of the age-hardening process was assumed to be caused by the diffusion and aggregation of Pd atoms from the Au-Ag based matrix. The hardness decrease in the later stage of age-hardening process was caused by coarsening of the lamellar precipitates composed of the Pd-rich phase

  12. Thermodynamic and spectroscopic investigations of TMPyP4 association with guanine- and cytosine-rich DNA and RNA repeats of C9orf72.

    Science.gov (United States)

    Alniss, Hasan; Zamiri, Bita; Khalaj, Melisa; Pearson, Christopher E; Macgregor, Robert B

    2018-01-22

    An expansion of the hexanucleotide repeat (GGGGCC)n·(GGCCCC)n in the C9orf72 promoter has been shown to be the cause of Amyotrophic lateral sclerosis and frontotemporal dementia (ALS-FTD). The C9orf72 repeat can form four-stranded structures; the cationic porphyrin (TMPyP4) binds and distorts these structures. Isothermal titration calorimetry (ITC), and circular dichroism (CD) were used to study the binding of TMPyP4 to the C-rich and G-rich DNA and RNA oligos containing the hexanucleotide repeat at pH 7.5 and 0.1 M K + . The CD spectra of G-rich DNA and RNA TMPyP4 complexes showed features of antiparallel and parallel G-quadruplexes, respectively. The shoulder at 260 nm in the CD spectrum becomes more intense upon formation of complexes between TMPyP4 and the C-rich DNA. The peak at 290 nm becomes more intense in the c-rich RNA molecules, suggesting induction of an i-motif structure. The ITC data showed that TMPyP4 binds at two independent sites for all DNA and RNA molecules. For DNA, the data are consistent with TMPyP4 stacking on the terminal tetrads and intercalation. For RNA, the thermodynamics of the two binding modes are consistent with groove binding and intercalation. In both cases, intercalation is the weaker binding mode. These findings are considered with respect to the structural differences of the folded DNA and RNA molecules and the energetics of the processes that drive site-specific recognition by TMPyP4; these data will be helpful in efforts to optimize the specificity and affinity of the binding of porphyrin-like molecules. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. miRNA-target chimeras reveal miRNA 3'-end pairing as a major determinant of Argonaute target specificity

    DEFF Research Database (Denmark)

    Moore, Michael J; Scheel, Troels K H; Luna, Joseph M

    2015-01-01

    microRNAs (miRNAs) act as sequence-specific guides for Argonaute (AGO) proteins, which mediate posttranscriptional silencing of target messenger RNAs. Despite their importance in many biological processes, rules governing AGO-miRNA targeting are only partially understood. Here we report a modifie...

  14. Identifying Cancer Subtypes from miRNA-TF-mRNA Regulatory Networks and Expression Data.

    Directory of Open Access Journals (Sweden)

    Taosheng Xu

    Full Text Available Identifying cancer subtypes is an important component of the personalised medicine framework. An increasing number of computational methods have been developed to identify cancer subtypes. However, existing methods rarely use information from gene regulatory networks to facilitate the subtype identification. It is widely accepted that gene regulatory networks play crucial roles in understanding the mechanisms of diseases. Different cancer subtypes are likely caused by different regulatory mechanisms. Therefore, there are great opportunities for developing methods that can utilise network information in identifying cancer subtypes.In this paper, we propose a method, weighted similarity network fusion (WSNF, to utilise the information in the complex miRNA-TF-mRNA regulatory network in identifying cancer subtypes. We firstly build the regulatory network where the nodes represent the features, i.e. the microRNAs (miRNAs, transcription factors (TFs and messenger RNAs (mRNAs and the edges indicate the interactions between the features. The interactions are retrieved from various interatomic databases. We then use the network information and the expression data of the miRNAs, TFs and mRNAs to calculate the weight of the features, representing the level of importance of the features. The feature weight is then integrated into a network fusion approach to cluster the samples (patients and thus to identify cancer subtypes. We applied our method to the TCGA breast invasive carcinoma (BRCA and glioblastoma multiforme (GBM datasets. The experimental results show that WSNF performs better than the other commonly used computational methods, and the information from miRNA-TF-mRNA regulatory network contributes to the performance improvement. The WSNF method successfully identified five breast cancer subtypes and three GBM subtypes which show significantly different survival patterns. We observed that the expression patterns of the features in some miRNA-TF-mRNA

  15. Fluorescence Correlation Spectroscopy to find the critical balance between extracellular association and intracellular dissociation of mRNA-complexes.

    Science.gov (United States)

    Zhang, Heyang; De Smedt, Stefaan C; Remaut, Katrien

    2018-05-10

    Fluorescence Correlation Spectroscopy (FCS) is a promising tool to study interactions on a single molecule level. The diffusion of fluorescent molecules in and out of the excitation volume of a confocal microscope leads to the fluorescence fluctuations that give information on the average number of fluorescent molecules present in the excitation volume and their diffusion coefficients. In this context, we complexed mRNA into lipoplexes and polyplexes and explored the association/dissociation degree of complexes by using gel electrophoresis and FCS. FCS enabled us to measure the association and dissociation degree of mRNA-based complexes both in buffer and protein-rich biological fluids such as human serum and ascitic fluid, which is a clear advantage over gel electrophoresis that was only applicable in protein-free buffer solutions. Furthermore, following the complex stability in buffer and biological fluids by FCS assisted to understand how complex characteristics, such as charge ratio and strength of mRNA binding, correlated to the transfection efficiency. We found that linear polyethyleneimine prevented efficient translation of mRNA, most likely due to a too strong mRNA binding, whereas the lipid based carrier Lipofectamine ® messengerMAX did succeed in efficient release and subsequent translation of mRNA in the cytoplasm of the cells. Overall, FCS is a reliable tool for the in depth characterization of mRNA complexes and can help us to find the critical balance keeping mRNA bound in complexes in the extracellular environment and efficient intracellular mRNA release leading to protein production. The delivery of messenger RNA (mRNA) to cells is promising to treat a variety of diseases. Therefore, the mRNA is typically packed in small lipid particles or polymer particles that help the mRNA to reach the cytoplasm of the cells. These particles should bind and carry the mRNA in the extracellular environment (e.g. blood, peritoneal fluid, ...), but should release

  16. Ni2+-binding RNA motifs with an asymmetric purine-rich internal loop and a G-A base pair.

    Science.gov (United States)

    Hofmann, H P; Limmer, S; Hornung, V; Sprinzl, M

    1997-01-01

    RNA molecules with high affinity for immobilized Ni2+ were isolated from an RNA pool with 50 randomized positions by in vitro selection-amplification. The selected RNAs preferentially bind Ni2+ and Co2+ over other cations from first series transition metals. Conserved structure motifs, comprising about 15 nt, were identified that are likely to represent the Ni2+ binding sites. Two conserved motifs contain an asymmetric purine-rich internal loop and probably a mismatch G-A base pair. The structure of one of these motifs was studied with proton NMR spectroscopy and formation of the G-A pair at the junction of helix and internal loop was demonstrated. Using Ni2+ as a paramagnetic probe, a divalent metal ion binding site near this G-A base pair was identified. Ni2+ ions bound to this motif exert a specific stabilization effect. We propose that small asymmetric purine-rich loops that contain a G-A interaction may represent a divalent metal ion binding site in RNA. PMID:9409620

  17. Exploring the Effect of Au/Pt Ratio on Glycerol Oxidation in Presence and Absence of a Base

    Directory of Open Access Journals (Sweden)

    Alberto Villa

    2018-01-01

    Full Text Available Bimetallic AuPt nanoparticles with different Au:Pt ratios (molar ratio: 9-1, 8-2, 6-4, 2-8, 1-9 and the corresponding Au and Pt monometallic ones were prepared by sol immobilization and immobilized on commercial TiO2 (P25. The catalytic activity was evaluated in the liquid phase glycerol oxidation in presence and absence of a base (NaOH. It was found that the Au:Pt molar ratio and reaction conditions strongly influence the catalytic performance. In the presence of NaOH, Au-rich catalysts were more active than Pt-rich ones, with the highest activity observed for Au9Pt1/TiO2 (6575 h−1. In absence of a base, a higher content of Pt is needed to produce the most active catalyst (Au6Pt4/TiO2, 301 h−1. In terms of selectivity, in presence of NaOH, Au-rich catalysts showed a high selectivity to C3 products (63–72% whereas Pt-rich catalysts promote the formation of formic and glycolic acids. The opposite trend was observed in absence of a base with Pt-rich catalysts showing higher selectivity to C3 products (83–88%.

  18. Accurate microRNA target prediction correlates with protein repression levels

    Directory of Open Access Journals (Sweden)

    Simossis Victor A

    2009-09-01

    Full Text Available Abstract Background MicroRNAs are small endogenously expressed non-coding RNA molecules that regulate target gene expression through translation repression or messenger RNA degradation. MicroRNA regulation is performed through pairing of the microRNA to sites in the messenger RNA of protein coding genes. Since experimental identification of miRNA target genes poses difficulties, computational microRNA target prediction is one of the key means in deciphering the role of microRNAs in development and disease. Results DIANA-microT 3.0 is an algorithm for microRNA target prediction which is based on several parameters calculated individually for each microRNA and combines conserved and non-conserved microRNA recognition elements into a final prediction score, which correlates with protein production fold change. Specifically, for each predicted interaction the program reports a signal to noise ratio and a precision score which can be used as an indication of the false positive rate of the prediction. Conclusion Recently, several computational target prediction programs were benchmarked based on a set of microRNA target genes identified by the pSILAC method. In this assessment DIANA-microT 3.0 was found to achieve the highest precision among the most widely used microRNA target prediction programs reaching approximately 66%. The DIANA-microT 3.0 prediction results are available online in a user friendly web server at http://www.microrna.gr/microT

  19. Peroxisome proliferator-activated receptors, estrogenic responses and biotransformation system in the liver of salmon exposed to tributyltin and second messenger activator

    Energy Technology Data Exchange (ETDEWEB)

    Pavlikova, Nela [Department of Biology, Norwegian University of Science and Technology (NTNU), Hogskoleringen 5, 7491 Trondheim (Norway); RECETOX Research Centre for Environmental Chemistry and Ecotoxicology, Masaryk University, Kamenice 3, CZ62500 Brno (Czech Republic); Kortner, Trond M. [Department of Biology, Norwegian University of Science and Technology (NTNU), Hogskoleringen 5, 7491 Trondheim (Norway); Arukwe, Augustine, E-mail: arukwe@bio.ntnu.no [Department of Biology, Norwegian University of Science and Technology (NTNU), Hogskoleringen 5, 7491 Trondheim (Norway)

    2010-08-15

    The mechanisms by which organotin compounds produce modulations of the endocrine systems and other biological responses are not fully understood. In this study, juvenile salmon were force-fed diet containing TBT (0: solvent control, 0.1, 1 and 10 mg/kg fish) for 72 h. Subsequently, fish exposed to solvent control and 10 mg TBT were exposed to waterborne concentration (200 {mu}g/l) of the adenylate cyclase (AC) stimulator, forskolin for 2 and 4 h. The overall aim of the study was to explore whether TBT endocrine disruptive effects involve second messenger activation. Liver was sampled from individual fish (n = 8) at the end of the exposures. The transcription patterns of peroxisome proliferator-activated receptor (PPAR) isotype and acyl-coenzyme A oxidase 1 (ACOX1), aromatase isoform, estrogen receptor-{alpha} (ER{alpha}), pregnane X receptor (PXR), CYP3A and glutathione S-transferase (GST) genes were measured by quantitative polymerase chain reaction (qPCR). Our data showed a consistent increase in PPAR{alpha}, PPAR{beta} and PPAR{gamma} mRNA and protein expression after TBT exposure that were inversely correlated with ACOX1 mRNA levels. Forskolin produced PPAR isotype-specific mRNA and protein effects that were modulated by TBT. ACOX1 expression was decreased (at 2 h) and increased (at 4 h) by forskolin and the presence of TBT potentiated these effects. TBT apparently increased mRNA and protein levels of cyp19a, compared to the solvent control, whereas cyp19b mRNA levels were unaffected by TBT treatment. Combined TBT and forskolin exposure produced respective decrease and increase of mRNA levels of cyp19a and cyp19b, compared with control. TBT decreased ER{alpha} mRNA at low dose (1 mg/kg) and forskolin exposure alone produced a consistent decrease of ER{alpha} mRNA levels that were not affected by the presence of TBT. Interestingly, PXR and CYP3A mRNA levels were differentially affected, either decreased or increased, after exposure to TBT and forskolin, singly

  20. Peroxisome proliferator-activated receptors, estrogenic responses and biotransformation system in the liver of salmon exposed to tributyltin and second messenger activator

    International Nuclear Information System (INIS)

    Pavlikova, Nela; Kortner, Trond M.; Arukwe, Augustine

    2010-01-01

    The mechanisms by which organotin compounds produce modulations of the endocrine systems and other biological responses are not fully understood. In this study, juvenile salmon were force-fed diet containing TBT (0: solvent control, 0.1, 1 and 10 mg/kg fish) for 72 h. Subsequently, fish exposed to solvent control and 10 mg TBT were exposed to waterborne concentration (200 μg/l) of the adenylate cyclase (AC) stimulator, forskolin for 2 and 4 h. The overall aim of the study was to explore whether TBT endocrine disruptive effects involve second messenger activation. Liver was sampled from individual fish (n = 8) at the end of the exposures. The transcription patterns of peroxisome proliferator-activated receptor (PPAR) isotype and acyl-coenzyme A oxidase 1 (ACOX1), aromatase isoform, estrogen receptor-α (ERα), pregnane X receptor (PXR), CYP3A and glutathione S-transferase (GST) genes were measured by quantitative polymerase chain reaction (qPCR). Our data showed a consistent increase in PPARα, PPARβ and PPARγ mRNA and protein expression after TBT exposure that were inversely correlated with ACOX1 mRNA levels. Forskolin produced PPAR isotype-specific mRNA and protein effects that were modulated by TBT. ACOX1 expression was decreased (at 2 h) and increased (at 4 h) by forskolin and the presence of TBT potentiated these effects. TBT apparently increased mRNA and protein levels of cyp19a, compared to the solvent control, whereas cyp19b mRNA levels were unaffected by TBT treatment. Combined TBT and forskolin exposure produced respective decrease and increase of mRNA levels of cyp19a and cyp19b, compared with control. TBT decreased ERα mRNA at low dose (1 mg/kg) and forskolin exposure alone produced a consistent decrease of ERα mRNA levels that were not affected by the presence of TBT. Interestingly, PXR and CYP3A mRNA levels were differentially affected, either decreased or increased, after exposure to TBT and forskolin, singly and also in combination. GST mRNA was

  1. RNA Localization in Astrocytes

    DEFF Research Database (Denmark)

    Thomsen, Rune

    2012-01-01

    , regulation of the blood brain barrier and glial scar tissue formation. Despite the involvement in various CNS functions only a limited number of studies have addressed mRNA localization in astrocytes. This PhD project was initially focused on developing and implementing methods that could be used to asses mRNA......Messenger RNA (mRNA) localization is a mechanism by which polarized cells can regulate protein synthesis to specific subcellular compartments in a spatial and temporal manner, and plays a pivotal role in multiple physiological processes from embryonic development to cell differentiation...... localization in astrocyte protrusions, and following look into the subcellular localization pattern of specific mRNA species of both primary astrocytes isolated from cortical hemispheres of newborn mice, and the mouse astrocyte cell line, C8S. The Boyden chamber cell fractionation assay was optimized, in a way...

  2. Geodesy at Mercury with MESSENGER

    Science.gov (United States)

    Smith, David E.; Zuber, Maria t.; Peale, Stanley J.; Phillips, Roger J.; Solomon, Sean C.

    2006-01-01

    In 2011 the MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) spacecraft will enter Mercury orbit and begin the mapping phase of the mission. As part of its science objectives the MESSENGER mission will determine the shape and gravity field of Mercury. These observations will enable the topography and the crustal thickness to be derived for the planet and will determine the small libration of the planet about its axis, the latter critical to constraining the state of the core. These measurements require very precise positioning of the MESSENGER spacecraft in its eccentric orbit, which has a periapsis altitude as low as 200 km, an apoapsis altitude near 15,000 km, and a closest approach to the surface varying from latitude 60 to about 70 N. The X-band tracking of MESSENGER and the laser altimetry are the primary data that will be used to measure the planetary shape and gravity field. The laser altimeter, which has an expected range of 1000 to 1200 km, is expected to provide significant data only over the northern hemisphere because of MESSENGER's eccentric orbit. For the southern hemisphere, radio occultation measurements obtained as the spacecraft passes behind the planet as seen from Earth and images obtained with the imaging system will be used to provide the long-wavelength shape of the planet. Gravity, derived from the tracking data, will also have greater resolution in the northern hemisphere, but full global models for both topography and gravity will be obtained at low harmonic order and degree. The limiting factor for both gravity and topography is expected to be knowledge of the spacecraft location. Present estimations are that in a combined tracking, altimetry, and occultation solution the spacecraft position uncertainty is likely to be of order 10 m. This accuracy should be adequate for establishing an initial geodetic coordinate system for Mercury that will enable positioning of imaged features on the surface, determination of

  3. MESSENGER'S First and Second Flybys of Mercury

    Science.gov (United States)

    Slavin, James A.

    2009-01-01

    The MESSENGER mission to Mercury offers our first opportunity to explore this planet's miniature magnetosphere since Mariner 10's brief fly-bys in 1974-5. The magnetosphere of Mercury is the smallest in the solar system with its magnetic field typically standing off the solar wind only approximately 1000 km above the surface. An overview of the MESSENGER mission and its January 14th and October 6th, 2008 close flybys of Mercury will be provided. Primary science objectives and the science instrumentation will be described. Initial results from MESSENGER will be discussed with an emphasis on the magnetic field and charged particle measurements.

  4. Nucleolin Mediates MicroRNA-directed CSF-1 mRNA Deadenylation but Increases Translation of CSF-1 mRNA*

    Science.gov (United States)

    Woo, Ho-Hyung; Baker, Terri; Laszlo, Csaba; Chambers, Setsuko K.

    2013-01-01

    CSF-1 mRNA 3′UTR contains multiple unique motifs, including a common microRNA (miRNA) target in close proximity to a noncanonical G-quadruplex and AU-rich elements (AREs). Using a luciferase reporter system fused to CSF-1 mRNA 3′UTR, disruption of the miRNA target region, G-quadruplex, and AREs together dramatically increased reporter RNA levels, suggesting important roles for these cis-acting regulatory elements in the down-regulation of CSF-1 mRNA. We find that nucleolin, which binds both G-quadruplex and AREs, enhances deadenylation of CSF-1 mRNA, promoting CSF-1 mRNA decay, while having the capacity to increase translation of CSF-1 mRNA. Through interaction with the CSF-1 3′UTR miRNA common target, we find that miR-130a and miR-301a inhibit CSF-1 expression by enhancing mRNA decay. Silencing of nucleolin prevents the miRNA-directed mRNA decay, indicating a requirement for nucleolin in miRNA activity on CSF-1 mRNA. Downstream effects followed by miR-130a and miR-301a inhibition of directed cellular motility of ovarian cancer cells were found to be dependent on nucleolin. The paradoxical effects of nucleolin on miRNA-directed CSF-1 mRNA deadenylation and on translational activation were explored further. The nucleolin protein contains four acidic stretches, four RNA recognition motifs (RRMs), and nine RGG repeats. All three domains in nucleolin regulate CSF-1 mRNA and protein levels. RRMs increase CSF-1 mRNA, whereas the acidic and RGG domains decrease CSF-1 protein levels. This suggests that nucleolin has the capacity to differentially regulate both CSF-1 RNA and protein levels. Our finding that nucleolin interacts with Ago2 indirectly via RNA and with poly(A)-binding protein C (PABPC) directly suggests a nucleolin-Ago2-PABPC complex formation on mRNA. This complex is in keeping with our suggestion that nucleolin may work with PABPC as a double-edged sword on both mRNA deadenylation and translational activation. Our findings underscore the complexity of

  5. DHA-rich n-3 fatty acid supplementation decreases DNA methylation in blood leukocytes: the OmegAD study.

    Science.gov (United States)

    Karimi, Mohsen; Vedin, Inger; Freund Levi, Yvonne; Basun, Hans; Faxén Irving, Gerd; Eriksdotter, Maria; Wahlund, Lars-Olof; Schultzberg, Marianne; Hjorth, Erik; Cederholm, Tommy; Palmblad, Jan

    2017-10-01

    Background: Dietary fish oils, rich in long-chain n-3 (ω-3) fatty acids (FAs) [e.g., docosahexaenoic acid (DHA, 22:6n-3) and eicosapentaenoic acid (EPA, 20:5n-3)], modulate inflammatory reactions through various mechanisms, including gene expression, which is measured as messenger RNA concentration. However, the effects of long-term treatment of humans with DHA and EPA on various epigenetic factors-such as DNA methylation, which controls messenger RNA generation-are poorly described. Objective: We wanted to determine the effects of 6 mo of dietary supplementation with an n-3 FA preparation rich in DHA on global DNA methylation of peripheral blood leukocytes (PBLs) and the relation to plasma EPA and DHA concentrations in Alzheimer disease (AD) patients. Design: In the present study, DNA methylation in four 5'-cytosine-phosphate-guanine-3' (CpG) sites of long interspersed nuclear element-1 repetitive sequences was assessed in a group of 63 patients (30 given the n-3 FA preparation and 33 given placebo) as an estimation of the global DNA methylation in blood cells. Patients originated from the randomized, double-blind, placebo-controlled OmegAD study, in which 174 AD patients received either 1.7 g DHA and 0.6 g EPA (the n-3 FA group) or placebo daily for 6 mo. Results: At 6 mo, the n-3 FA group displayed marked increases in DHA and EPA plasma concentrations (2.6- and 3.5-fold), as well as decreased methylation in 2 out of 4 CpG sites ( P DHA concentration, and were not related to apolipoprotein E-4 allele frequency. Conclusion: Supplementation with n-3 FA for 6 mo was associated with global DNA hypomethylation in PBLs. Our data may be of importance in measuring various effects of marine oils, including gene expression, in patients with AD and in other patients taking n-3 FA supplements. This trial was registered at clinicaltrials.gov as NCT00211159. © 2017 American Society for Nutrition.

  6. Moessbauer investigation of gold-bearing pyrite-rich concentrates

    International Nuclear Information System (INIS)

    Wagner, F.E.; Harris, D.C.

    1994-01-01

    A gold-bearing pyrite-rich concentrate of a refractory ore from the Golden Bear mine, northwestern British Columbia, and a pyrite-rich concentrate from Newhawk's west zone, Brucejack Lake area, northern British Columbia, containing 38 and 316 ppm Au and 0.57% and 0.19% As, respectively, have been investigated using 197 Au and 57 Fe Moessbauer spectroscopy. In the Golden Bear sample, the gold is mainly chemically bound in the pyrite with minor amounts present as an Au-Ag alloy, whereas in the Newhawk sample, the gold occurs mainly as an Au-Ag alloy with a composition close to Au 0.5 Ag 0.5 and is only partly bound in the pyrite. Having mean isomer shifts of +3.2 and +4.0 mm/s with respect to a Pt metal source, the gold in pyrite exhibits shifts similar to those observed for gold in arsenopyrite. The nature of the lattice sites occupied by the gold in pyrite is discussed. (orig.)

  7. Transfecting Human Monocytes with RNA.

    Science.gov (United States)

    Dannull, Jens; Nair, Smita K

    2016-01-01

    Targeting monocytes as a delivery system for drugs or nucleic acids, and thereby harnessing their natural tissue-infiltrating capacity, has become an area of intense investigation in both basic and clinical research. Herein we describe an efficient method to deliver mRNA (messenger RNA) or siRNA (small interfering RNA) into human monocytes by electroporation. This method can be applied in the laboratory to monocytes isolated via magnetic bead-based techniques, or in a clinical setting using monocytes that were collected via counterflow centrifugation elutriation using the Elutra(®) Cell Separation System. We further demonstrate that electroporation of monocytes with RNA represents a robust and highly relevant approach to modify monocytes for cell-based therapies. Last, the procedure described can readily be adapted to monocytes from different species, hence facilitating research in animal models.

  8. RNA-Based Vaccines in Cancer Immunotherapy

    Directory of Open Access Journals (Sweden)

    Megan A. McNamara

    2015-01-01

    Full Text Available RNA vaccines traditionally consist of messenger RNA synthesized by in vitro transcription using a bacteriophage RNA polymerase and template DNA that encodes the antigen(s of interest. Once administered and internalized by host cells, the mRNA transcripts are translated directly in the cytoplasm and then the resulting antigens are presented to antigen presenting cells to stimulate an immune response. Alternatively, dendritic cells can be loaded with either tumor associated antigen mRNA or total tumor RNA and delivered to the host to elicit a specific immune response. In this review, we will explain why RNA vaccines represent an attractive platform for cancer immunotherapy, discuss modifications to RNA structure that have been developed to optimize mRNA vaccine stability and translational efficiency, and describe strategies for nonviral delivery of mRNA vaccines, highlighting key preclinical and clinical data related to cancer immunotherapy.

  9. Cytoplasmic Control of Sense-Antisense mRNA Pairs

    Directory of Open Access Journals (Sweden)

    Flore Sinturel

    2015-09-01

    Full Text Available Transcriptome analyses have revealed that convergent gene transcription can produce many 3′-overlapping mRNAs in diverse organisms. Few studies have examined the fate of 3′-complementary mRNAs in double-stranded RNA-dependent nuclear phenomena, and nothing is known about the cytoplasmic destiny of 3′-overlapping messengers or their impact on gene expression. Here, we demonstrate that the complementary tails of 3′-overlapping mRNAs can interact in the cytoplasm and promote post-transcriptional regulatory events including no-go decay (NGD in Saccharomyces cerevisiae. Genome-wide experiments confirm that these messenger-interacting mRNAs (mimRNAs form RNA duplexes in wild-type cells and thus have potential roles in modulating the mRNA levels of their convergent gene pattern under different growth conditions. We show that the post-transcriptional fate of hundreds of mimRNAs is controlled by Xrn1, revealing the extent to which this conserved 5′-3′ cytoplasmic exoribonuclease plays an unexpected but key role in the post-transcriptional control of convergent gene expression.

  10. Cytoplasmic Control of Sense-Antisense mRNA Pairs.

    Science.gov (United States)

    Sinturel, Flore; Navickas, Albertas; Wery, Maxime; Descrimes, Marc; Morillon, Antonin; Torchet, Claire; Benard, Lionel

    2015-09-22

    Transcriptome analyses have revealed that convergent gene transcription can produce many 3'-overlapping mRNAs in diverse organisms. Few studies have examined the fate of 3'-complementary mRNAs in double-stranded RNA-dependent nuclear phenomena, and nothing is known about the cytoplasmic destiny of 3'-overlapping messengers or their impact on gene expression. Here, we demonstrate that the complementary tails of 3'-overlapping mRNAs can interact in the cytoplasm and promote post-transcriptional regulatory events including no-go decay (NGD) in Saccharomyces cerevisiae. Genome-wide experiments confirm that these messenger-interacting mRNAs (mimRNAs) form RNA duplexes in wild-type cells and thus have potential roles in modulating the mRNA levels of their convergent gene pattern under different growth conditions. We show that the post-transcriptional fate of hundreds of mimRNAs is controlled by Xrn1, revealing the extent to which this conserved 5'-3' cytoplasmic exoribonuclease plays an unexpected but key role in the post-transcriptional control of convergent gene expression. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  11. MESSENGER at Mercury: Early Orbital Operations

    Science.gov (United States)

    McNutt, Ralph L., Jr; Solomon, Sean C.; Bedini, Peter D.; Anderson, Brian J.; Blewett, David T.; Evans, Larry G.; Gold, Robert E.; Krimigis, Stamatios M.; Murchie, Scott L.; Nittler, Larry R.; hide

    2013-01-01

    The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, launched in August 2004 under NASA's Discovery Program, was inserted into orbit about the planet Mercury in March 2011. MESSENGER's three flybys of Mercury in 2008-2009 marked the first spacecraft visits to the innermost planet since the Mariner 10 flybys in 1974-1975. The unprecedented orbital operations are yielding new insights into the nature and evolution of Mercury. The scientific questions that frame the MESSENGER mission led to the mission measurement objectives to be achieved by the seven payload instruments and the radio science experiment. Interweaving the full set of required orbital observations in a manner that maximizes the opportunity to satisfy all mission objectives and yet meet stringent spacecraft pointing and thermal constraints was a complex optimization problem that was solved with a software tool that simulates science observations and tracks progress toward meeting each objective. The final orbital observation plan, the outcome of that optimization process, meets all mission objectives. MESSENGER's Mercury Dual Imaging System is acquiring a global monochromatic image mosaic at better than 90% coverage and at least 250 m average resolution, a global color image mosaic at better than 90% coverage and at least 1 km average resolution, and global stereo imaging at better than 80% coverage and at least 250 m average resolution. Higher-resolution images are also being acquired of targeted areas. The elemental remote sensing instruments, including the Gamma-Ray and Neutron Spectrometer and the X-Ray Spectrometer, are being operated nearly continuously and will establish the average surface abundances of most major elements. The Visible and Infrared Spectrograph channel of MESSENGER's Mercury Atmospheric and Surface Composition Spectrometer is acquiring a global map of spectral reflectance from 300 to 1450 nm wavelength at a range of incidence and emission

  12. Guide totheNomenclatureofKinetoplastidRNA Editing: AProposal

    Czech Academy of Sciences Publication Activity Database

    Simpson, L.; Aphasizhev, R.; Lukeš, Julius; Cruz-Reyes, J.

    2010-01-01

    Roč. 161, č. 1 (2010), s. 2-6 ISSN 1434-4610 Institutional research plan: CEZ:AV0Z60220518 Keywords : TRYPANOSOMA-BRUCEI MITOCHONDRIA * BINDING COMPLEX * EDITOSOME INTEGRITY * MESSENGER-RNA * U-DELETION * LEISHMANIA Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.329, year: 2010

  13. MicroRNA and Cancer: Tiny Molecules with Major Implications

    OpenAIRE

    VandenBoom II, Timothy G; Li, Yiwei; Philip, Philip A; Sarkar, Fazlul H

    2008-01-01

    Cancer is currently a major public health problem and, as such, emerging research is making significant progress in identifying major players in its biology. One recent topic of interest involves microRNAs (miRNAs) which are small, non-coding RNA molecules that inhibit gene expression post-transcriptionally. They accomplish this by binding to the 3? untranslated region (3?UTR) of target messengerRNA (mRNA), resulting in either their degradation or inhibition of translation, depending on the d...

  14. Appendix: a solution hybridization assay to detect radioactive globin messenger RNA nucleotide sequences

    Energy Technology Data Exchange (ETDEWEB)

    Ross, J

    1976-09-15

    In view of the sensitivity and specificity of the solution hybridization assay for unlabeled globin mRNA a similar technique has been devised to detect radioactive globin mRNA sequences with unlabeled globin cDNA. Several properties of the hybridization reaction are presented since RNA kinetic experiments reported recently depend on the validity of this assay. Data on hybridization analysis of (/sup 3/H)RNA from mouse fetal liver or erythroleukemia cell cytoplasm are presented. These data indicate that the excess cDNA solution assay for radioactive globin mRNA detection is specific for globin mRNA sequences. It can be performed rapidly and is highly reproducible from experiment. It is at least 500-fold less sensitive than the assay for unlabeled globin mRNA, due to the RNAase backgrounds of 0.05 to 0.15 %. However, this limitation has not affected kinetic experiments with non-dividing fetal liver erythroid cells, which synthesize relatively large quantities of globin mRNA.

  15. Pou1f1, the key transcription factor related to somatic growth in tilapia (Orechromis niloticus), is regulated by two independent post-transcriptional regulation mechanisms.

    Science.gov (United States)

    Wang, Dongfang; Qin, Jingkai; Jia, Jirong; Yan, Peipei; Li, Wensheng

    2017-01-29

    This study aims to determine the post-transcriptional regulation mechanism of the transcription factor pou1f1 (pou class 1 homeobox 1), which is the key gene for pituitary development, somatic growth in vertebrates, and transcription of several hormone genes in teleost fish. MicroRNA miR-223-3p was identified as a bona fide target of pou1f; overexpression of miR-223-3p in primary pituitary cells led to the down-regulation of pou1f1 and downstream genes, and inhibition of miR-223-3p led to the up-regulation of pou1f1 in Nile tilapia dispersed primary pituitary cells. An adenylate-uridylate-rich element (AU-Rich element) was found in the 3'UTR of pou1f1 mRNA, and deletion of the AU-Rich element led to slower mRNA decay and therefore more protein output. A potential mutual relationship between miR-223-3p and the AU-rich element was also investigated, and the results demonstrated that with or without the AU-Rich element, miR-223-3p induced the up-regulation of a reporter system under serum starvation conditions, indicating that miR-223-3p and the AU-Rich element function independent of each other. This study is the first to investigate the post-transcriptional mechanism of pou1f1, which revealed that miR-223-3p down-regulated pou1f1 and downstream gene expressions, and the AU-Rich element led to rapid decay of pou1f1 mRNA. MicroRNA miR-223-3p and the AU-Rich element co-regulated the post-transcriptional expression of pou1f1 independently in Nile tilapia, demonstrating that pou1f1 is under the control of a dual post-transcription regulation mechanism. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Capturing microRNA targets using an RNA-induced silencing complex (RISC)-trap approach.

    Science.gov (United States)

    Cambronne, Xiaolu A; Shen, Rongkun; Auer, Paul L; Goodman, Richard H

    2012-12-11

    Identifying targets is critical for understanding the biological effects of microRNA (miRNA) expression. The challenge lies in characterizing the cohort of targets for a specific miRNA, especially when targets are being actively down-regulated in miRNA- RNA-induced silencing complex (RISC)-messengerRNA (mRNA) complexes. We have developed a robust and versatile strategy called RISCtrap to stabilize and purify targets from this transient interaction. Its utility was demonstrated by determining specific high-confidence target datasets for miR-124, miR-132, and miR-181 that contained known and previously unknown transcripts. Two previously unknown miR-132 targets identified with RISCtrap, adaptor protein CT10 regulator of kinase 1 (CRK1) and tight junction-associated protein 1 (TJAP1), were shown to be endogenously regulated by miR-132 in adult mouse forebrain. The datasets, moreover, differed in the number of targets and in the types and frequency of microRNA recognition element (MRE) motifs, thus revealing a previously underappreciated level of specificity in the target sets regulated by individual miRNAs.

  17. Messenger Observations of Mercury's Bow Shock and Magnetopause

    Science.gov (United States)

    Slavin J. A.; Acuna, M. H.; Anderson, B. J.; Benna, M.; Gloeckler, G.; Krimigis, S. M.; Raines, M.; Schriver, D.; Travnicek, P.; Zurbuchen, T. H.

    2008-01-01

    The MESSENGER spacecraft made the first of three flybys of Mercury on January 14.2008 (1). New observations of solar wind interaction with Mercury were made with MESSENGER'S Magnetometer (MAG) (2.3) and Energetic Particle and Plasma Spectrometer (EPPS) - composed of the Energetic Particle Spectrometer (EPS) and Fast Imaging Plasma Spectrometer (FIPS) (3,4). These MESSENGER observations show that Mercury's magnetosphere has a large-scale structure that is distinctly Earth-like, but it is immersed in a comet-like cloud of planetary ions [5]. Fig. 1 provides a schematic view of the coupled solar wind - magnetosphere - neutral atmosphere - solid planet system at Mercury.

  18. Bacterial nucleotide-based second messengers.

    Science.gov (United States)

    Pesavento, Christina; Hengge, Regine

    2009-04-01

    In all domains of life nucleotide-based second messengers transduce signals originating from changes in the environment or in intracellular conditions into appropriate cellular responses. In prokaryotes cyclic di-GMP has emerged as an important and ubiquitous second messenger regulating bacterial life-style transitions relevant for biofilm formation, virulence, and many other bacterial functions. This review describes similarities and differences in the architecture of the cAMP, (p)ppGpp, and c-di-GMP signaling systems and their underlying signaling principles. Moreover, recent advances in c-di-GMP-mediated signaling will be presented and the integration of c-di-GMP signaling with other nucleotide-based signaling systems will be discussed.

  19. Cosmic Microwave Background Mapmaking with a Messenger Field

    Science.gov (United States)

    Huffenberger, Kevin M.; Næss, Sigurd K.

    2018-01-01

    We apply a messenger field method to solve the linear minimum-variance mapmaking equation in the context of Cosmic Microwave Background (CMB) observations. In simulations, the method produces sky maps that converge significantly faster than those from a conjugate gradient descent algorithm with a diagonal preconditioner, even though the computational cost per iteration is similar. The messenger method recovers large scales in the map better than conjugate gradient descent, and yields a lower overall χ2. In the single, pencil beam approximation, each iteration of the messenger mapmaking procedure produces an unbiased map, and the iterations become more optimal as they proceed. A variant of the method can handle differential data or perform deconvolution mapmaking. The messenger method requires no preconditioner, but a high-quality solution needs a cooling parameter to control the convergence. We study the convergence properties of this new method and discuss how the algorithm is feasible for the large data sets of current and future CMB experiments.

  20. Fragile X Mental Retardation Protein and Dendritic Local Translation of the Alpha Subunit of the Calcium/Calmodulin-Dependent Kinase II Messenger RNA Are Required for the Structural Plasticity Underlying Olfactory Learning.

    Science.gov (United States)

    Daroles, Laura; Gribaudo, Simona; Doulazmi, Mohamed; Scotto-Lomassese, Sophie; Dubacq, Caroline; Mandairon, Nathalie; Greer, Charles August; Didier, Anne; Trembleau, Alain; Caillé, Isabelle

    2016-07-15

    In the adult brain, structural plasticity allowing gain or loss of synapses remodels circuits to support learning. In fragile X syndrome, the absence of fragile X mental retardation protein (FMRP) leads to defects in plasticity and learning deficits. FMRP is a master regulator of local translation but its implication in learning-induced structural plasticity is unknown. Using an olfactory learning task requiring adult-born olfactory bulb neurons and cell-specific ablation of FMRP, we investigated whether learning shapes adult-born neuron morphology during their synaptic integration and its dependence on FMRP. We used alpha subunit of the calcium/calmodulin-dependent kinase II (αCaMKII) mutant mice with altered dendritic localization of αCaMKII messenger RNA, as well as a reporter of αCaMKII local translation to investigate the role of this FMRP messenger RNA target in learning-dependent structural plasticity. Learning induces profound changes in dendritic architecture and spine morphology of adult-born neurons that are prevented by ablation of FMRP in adult-born neurons and rescued by an metabotropic glutamate receptor 5 antagonist. Moreover, dendritically translated αCaMKII is necessary for learning and associated structural modifications and learning triggers an FMRP-dependent increase of αCaMKII dendritic translation in adult-born neurons. Our results strongly suggest that FMRP mediates structural plasticity of olfactory bulb adult-born neurons to support olfactory learning through αCaMKII local translation. This reveals a new role for FMRP-regulated dendritic local translation in learning-induced structural plasticity. This might be of clinical relevance for the understanding of critical periods disruption in autism spectrum disorder patients, among which fragile X syndrome is the primary monogenic cause. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  1. A non-canonical landscape of the microRNA system

    Directory of Open Access Journals (Sweden)

    Gabriel Adelman Cipolla

    2014-09-01

    Full Text Available Microribonucleic acids, best known as microRNAs or miRNAs, are small, non-coding RNAs with important regulatory roles in eukaryotic cells. Here, I present a broad review about highly relevant but generally non-depicted features of miRNAs, among which stand out the non-conventional miRNA seed sites, the unusual messenger RNA (mRNA target regions, the non-canonical miRNA-guided mechanisms of gene expression regulation and the recently identified new class of miRNA ligands. Furthermore, I address the miRNA uncommon genomic location, transcription, and subcellular localization. Altogether, these unusual features and roles place the miRNA system as a very diverse, complex and intriguing biological mechanism.

  2. Observation of Au + AuAu + Au + ρ0 and Au + AuAu* + Au* + ρ0 with STAR

    International Nuclear Information System (INIS)

    Spencer, K.

    2002-01-01

    First observation of the reactions Au + AuAu + Au + ρ 0 and Au + AuAu* + Au* + ρ 0 with the STAR detector are reported. The ρ are produced at small perpendicular momentum, as expected if they couple coherently to both nuclei. Models of vector meson production and the correlation with nuclear breakup are discussed, as well as a fundamental test of quantum mechanics that is possible with the system. (author)

  3. tRNA--the golden standard in molecular biology.

    Science.gov (United States)

    Barciszewska, Mirosława Z; Perrigue, Patrick M; Barciszewski, Jan

    2016-01-01

    Transfer RNAs (tRNAs) represent a major class of RNA molecules. Their primary function is to help decode a messenger RNA (mRNA) sequence in order to synthesize protein and thus ensures the precise translation of genetic information that is imprinted in DNA. The discovery of tRNA in the late 1950's provided critical insight into a genetic machinery when little was known about the central dogma of molecular biology. In 1965, Robert Holley determined the first nucleotide sequence of alanine transfer RNA (tRNA(Ala)) which earned him the 1968 Nobel Prize in Physiology or Medicine. Today, tRNA is one of the best described and characterized biological molecules. Here we review some of the key historical events in tRNA research which led to breakthrough discoveries and new developments in molecular biology.

  4. Trypanosome RNA editing: the complexity of getting U in and taking U out

    Czech Academy of Sciences Publication Activity Database

    Read, L. K.; Lukeš, Julius; Hashimi, Hassan

    2016-01-01

    Roč. 7, č. 1 (2016), s. 33-51 ISSN 1757-7004 R&D Projects: GA ČR GA15-21974S EU Projects: European Commission(XE) 289007 Institutional support: RVO:60077344 Keywords : messenger RNA * guide RNA * mitochondria Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.838, year: 2016

  5. Structural Insights into RNA Recognition by the Alternate-Splicing Regulator CUG-Binding Protein 1

    Energy Technology Data Exchange (ETDEWEB)

    M Teplova; J Song; H Gaw; A Teplov; D Patel

    2011-12-31

    CUG-binding protein 1 (CUGBP1) regulates multiple aspects of nuclear and cytoplasmic mRNA processing, with implications for onset of myotonic dystrophy. CUGBP1 harbors three RRM domains and preferentially targets UGU-rich mRNA elements. We describe crystal structures of CUGBP1 RRM1 and tandem RRM1/2 domains bound to RNAs containing tandem UGU(U/G) elements. Both RRM1 in RRM1-RNA and RRM2 in RRM1/2-RNA complexes use similar principles to target UGU(U/G) elements, with recognition mediated by face-to-edge stacking and water-mediated hydrogen-bonding networks. The UG step adopts a left-handed Z-RNA conformation, with the syn guanine recognized through Hoogsteen edge-protein backbone hydrogen-bonding interactions. NMR studies on the RRM1/2-RNA complex establish that both RRM domains target tandem UGUU motifs in solution, whereas filter-binding assays identify a preference for recognition of GU over AU or GC steps. We discuss the implications of CUGBP1-mediated targeting and sequestration of UGU(U/G) elements on pre-mRNA alternative-splicing regulation, translational regulation, and mRNA decay.

  6. Reproducible pattern of microRNA in normal human skin

    DEFF Research Database (Denmark)

    Holst, Line; Kaczkowski, Bogumil; Gniadecki, Robert

    2010-01-01

    RNA expression pattern in normal human skin. Here we investigated miRNA expression profiles from skin biopsies of 8 healthy volunteers taken from sun protected and mildly photo damaged skin using the modified protocol for miRNA extraction. We were able to show a constant pattern of miRNA expression between......MicroRNAs (miRNAs) regulate cell growth, differentiation and apoptosis via specific targeting of messenger RNA (mRNA). Aberrant mRNA expression contributes to pathological processes such as carcinogenesis. To take advantage of miRNA profiling in skin disease it is essential to investigate mi...... different individuals. We did not find any significant differences in miRNA expression between sun protected and mildly photodamaged skin. These results may be valuable for future design of studies on miRNA expression in skin disease....

  7. Reproducible pattern of microRNA in normal human skin

    DEFF Research Database (Denmark)

    Holst, Line; Kaczkowski, Bogumil; Gniadecki, Robert

    2010-01-01

    RNA expression pattern in normal human skin. Here we investigated miRNA expression profiles from skin biopsies of 8 healthy volunteers taken from sun protected and mildly photo damaged skin using the modified protocol for miRNA extraction. We were able to show a constant pattern of miRNA expression between...... different individuals. We did not find any significant differences in miRNA expression between sun protected and mildly photodamaged skin. These results may be valuable for future design of studies on miRNA expression in skin disease.......MicroRNAs (miRNAs) regulate cell growth, differentiation and apoptosis via specific targeting of messenger RNA (mRNA). Aberrant mRNA expression contributes to pathological processes such as carcinogenesis. To take advantage of miRNA profiling in skin disease it is essential to investigate mi...

  8. An SFG and DFG investigation of polycrystalline Au, Au-Cu and Au-Ag-Cu electrodes in contact with aqueous solutions containing KCN

    International Nuclear Information System (INIS)

    Bozzini, Benedetto; Busson, Bertrand; De Gaudenzi, Gian Pietro; Mele, Claudio; Tadjeddine, Abderrahmane

    2007-01-01

    In this paper, the behaviour of polycrystalline Au, Au-Cu (Cu 25%) and Au-Ag-Cu (Ag 10%, Cu 15%) electrodes in contact with neutral aqueous solutions of KCN has been studied as a function of potential by means of in situ sum frequency generation (SFG) and difference frequency generation (DFG) spectroscopies. The potential-dependent spectra have been analysed quantitatively with a model for the second-order non-linear susceptibility accounting for vibrational and electronic effects. The potential-dependence of the CN - stretching band position and of the free-electron contribution to the real part of the non-resonant component of the second-order susceptibility have been accounted for. Spectroelectrochemical results were complemented by cyclic voltammetric measurements. The chief stress in this work has been placed on systematising and quantifying the interaction between the vibrational and electronic structures of the electrodic interfaces studied. The effects of adsorbates on the electronic structure of the adsorbing electrode, as a function of electrode alloy composition and applied potential are particularly critical for the understanding of Au-alloy electrochemistry in the presence of cyanide and cyanocomplexes. The systematic comparison of SFG and DFG spectra measured under the same electrochemical conditions for Au, Au-Cu and Au-Ag-Cu electrodes discloses a rich phenomenology related to the electronic structure of the interface

  9. An SFG and DFG investigation of polycrystalline Au, Au-Cu and Au-Ag-Cu electrodes in contact with aqueous solutions containing KCN

    Energy Technology Data Exchange (ETDEWEB)

    Bozzini, Benedetto [Dipartimento di Ingegneria dell' Innovazione, Universita di Lecce, v. Monteroni, I-73100 Lecce (Italy)]. E-mail: benedetto.bozzini@unile.it; Busson, Bertrand [CLIO-LCP, Universite Paris-Sud, 91405 Orsay Cedex (France); De Gaudenzi, Gian Pietro [Dipartimento di Ingegneria dell' Innovazione, Universita di Lecce, v. Monteroni, I-73100 Lecce (Italy); Mele, Claudio [Dipartimento di Ingegneria dell' Innovazione, Universita di Lecce, v. Monteroni, I-73100 Lecce (Italy); Tadjeddine, Abderrahmane [UDIL-CNRS, Bat. 201, Centre Universitaire Paris-Sud, BP 34, 91898 Orsay Cedex (France)

    2007-01-16

    In this paper, the behaviour of polycrystalline Au, Au-Cu (Cu 25%) and Au-Ag-Cu (Ag 10%, Cu 15%) electrodes in contact with neutral aqueous solutions of KCN has been studied as a function of potential by means of in situ sum frequency generation (SFG) and difference frequency generation (DFG) spectroscopies. The potential-dependent spectra have been analysed quantitatively with a model for the second-order non-linear susceptibility accounting for vibrational and electronic effects. The potential-dependence of the CN{sup -} stretching band position and of the free-electron contribution to the real part of the non-resonant component of the second-order susceptibility have been accounted for. Spectroelectrochemical results were complemented by cyclic voltammetric measurements. The chief stress in this work has been placed on systematising and quantifying the interaction between the vibrational and electronic structures of the electrodic interfaces studied. The effects of adsorbates on the electronic structure of the adsorbing electrode, as a function of electrode alloy composition and applied potential are particularly critical for the understanding of Au-alloy electrochemistry in the presence of cyanide and cyanocomplexes. The systematic comparison of SFG and DFG spectra measured under the same electrochemical conditions for Au, Au-Cu and Au-Ag-Cu electrodes discloses a rich phenomenology related to the electronic structure of the interface.

  10. The gold-rich indide Sr{sub 5}Au{sub 13.5}In{sub 8.5}

    Energy Technology Data Exchange (ETDEWEB)

    Muts, Ihor [Ivan Franko National Univ. of Lviv (Ukraine). Inorganic Chemistry Dept.; Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Rodewald, Ute C.; Poettgen, Rainer [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Zaremba, Vasyl' I. [Ivan Franko National Univ. of Lviv (Ukraine). Inorganic Chemistry Dept.

    2011-11-15

    The orthorhombic indide Sr{sub 5}Au{sub 13.5}In{sub 8.5} was obtained during phase-analytical studies of the Sr-Au-In system. This new indide is formed upon melting of the elements in a sealed tantalum tube. Sr{sub 5}Au{sub 13.5}In{sub 8.5} was characterized on the basis of powder and single-crystal X-ray diffraction: Pmmn, a = 476.37(9), b = 2927.5(9), c = 894.9(2) pm, wR2 = 0.056, 2355 F{sup 2} values, 87 variables. The structure is of a new type. The gold and indium atoms build up a complex three-dimensional [Au{sub 13.5}In{sub 8.5}] polyanionic network in which the strontium atoms fill channels which extend in the a direction. One site within the polyanion shows Au/In mixing. The Sr{sub 5}Au{sub 13.5}In{sub 8.5} structure is composed of SrAu{sub 3}In{sub 3-} and SrAu-related slabs. (orig.)

  11. A comparison of cell-free placental messenger ribonucleic acid and color Doppler ultrasound for the prediction of placental invasion in patients with placenta accreta

    OpenAIRE

    Naghshineh, Elham; Khorvash, Elahe; Kamali, Sara

    2015-01-01

    Background: The aim of the present study was to comparison between cell-free placental messenger ribonucleic acid (mRNA) and Doppler ultrasound for the prediction of placental invasion in women with placenta accreta. Materials and Methods: In this cross-sectional study, 50 pregnant women at risk for placenta accreta underwent color Doppler and assessment of cell-free placental mRNA. Real-time reverse-transcription polymerase chain reaction was used for measurement of cell-free placental m...

  12. A small RNA activates CFA synthase by isoform-specific mRNA stabilization.

    Science.gov (United States)

    Fröhlich, Kathrin Sophie; Papenfort, Kai; Fekete, Agnes; Vogel, Jörg

    2013-11-13

    Small RNAs use a diversity of well-characterized mechanisms to repress mRNAs, but how they activate gene expression at the mRNA level remains not well understood. The predominant activation mechanism of Hfq-associated small RNAs has been translational control whereby base pairing with the target prevents the formation of an intrinsic inhibitory structure in the mRNA and promotes translation initiation. Here, we report a translation-independent mechanism whereby the small RNA RydC selectively activates the longer of two isoforms of cfa mRNA (encoding cyclopropane fatty acid synthase) in Salmonella enterica. Target activation is achieved through seed pairing of the pseudoknot-exposed, conserved 5' end of RydC to an upstream region of the cfa mRNA. The seed pairing stabilizes the messenger, likely by interfering directly with RNase E-mediated decay in the 5' untranslated region. Intriguingly, this mechanism is generic such that the activation is equally achieved by seed pairing of unrelated small RNAs, suggesting that this mechanism may be utilized in the design of RNA-controlled synthetic circuits. Physiologically, RydC is the first small RNA known to regulate membrane stability.

  13. Imbalanced expression of RANKL and osteoprotegerin mRNA in pannus tissue of rheumatoid arthritis.

    Science.gov (United States)

    Ainola, M; Mandelin, J; Liljeström, M; Konttinen, Y T; Salo, J

    2008-01-01

    To test if the pannus tissue is characterized by a high receptor activator of nuclear factor kappaB ligand to osteoprotegerin (RANKL:OPG) ratio, which could explain local osteoclastogenesis and formation of bony erosions. Messenger RNA and protein expressions of RANKL and OPG in rheumatoid and osteoarthritic tissue samples were measured using quantitative real-time RT-PCR and Western blot/densitometry. Pannus and synovitis fibroblasts explanted from tissue samples were cultured in vitro without and with TNF-alpha, IL-1Beta or IL-17 and analyzed quantitatively for RANKL expression. The ability of pannus fibroblasts to induce formation of multinuclear osteoclast-like cells from human monocytes, with macrophage-colony stimulating factor (M-CSF) but without RANKL added, was tested. Histochemical staining was used to assess the eventual presence of RANKL and tartrate resistant acid phosphatase positive osteoclast-like cells at the pannus-bone interface. RANKL:OPG ratios of messenger RNA (ppannus (2.06+/-0.73 and 2.2+/-0.65) compared to rheumatoid (0.62+/-0.13 and 1.31+/-0.69) and osteoarthritis (0.62+/-0.32 and 0.52+/-0.16) synovial membranes. Resting and stimulated (p dependent on the cytokine used) pannus fibroblasts produced RANKL in excess (p=0.0005) and unstimulated pannus fibroblasts also effectively induced osteoclast-like cell formation from monocytes in vitro without any exogenous RANKL added. Compatible with these findings, multinuclear osteoclasts-like cells were frequent in the fibroblast- and macrophage-rich pannus tissue at the soft tissue-to-bone interface. The high RANKL:OPG ratio, together with close fibroblast-to-monocyte contacts in pannus tissue, probably favor local generation of bone resorbing osteoclasts at the site of erosion in rheumatoid arthritis.

  14. Efficient ex vivo delivery of chemically modified messenger RNA using lipofection and magnetofection.

    Science.gov (United States)

    Badieyan, Zohreh Sadat; Pasewald, Tamara; Mykhaylyk, Olga; Rudolph, Carsten; Plank, Christian

    2017-01-22

    Recently, chemically modified mRNA (cmRNA) therapeutics have been the subject of extensive application-oriented research in both academia and industry as a safer alternative for gene and recombinant protein therapies. However, the lack of an efficient delivery system hinders widespread application. Here we used ∼100-nm lipoplexes and magnetic lipoplexes that can protect cmRNA from RNases and efficiently deliver it into muscle and fat tissues as well as to the endothelium of the carotid artery. Establishing magnetofection for ex vivo cmRNA delivery for the first time, we suggest this method for potential enhanced and targeted delivery of cmRNA. This study introduces optimal cmRNA complexes with high ex vivo efficiency as good candidates for further in vivo cmRNA delivery. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Pre-mRNA Splicing in Plants: In Vivo Functions of RNA-Binding Proteins Implicated in the Splicing Process

    Directory of Open Access Journals (Sweden)

    Katja Meyer

    2015-07-01

    Full Text Available Alternative pre-messenger RNA splicing in higher plants emerges as an important layer of regulation upon exposure to exogenous and endogenous cues. Accordingly, mutants defective in RNA-binding proteins predicted to function in the splicing process show severe phenotypic alterations. Among those are developmental defects, impaired responses to pathogen threat or abiotic stress factors, and misregulation of the circadian timing system. A suite of splicing factors has been identified in the model plant Arabidopsis thaliana. Here we summarize recent insights on how defects in these splicing factors impair plant performance.

  16. Precise engineering of siRNA delivery vehicles to tumors using polyion complexes and gold nanoparticles.

    Science.gov (United States)

    Kim, Hyun Jin; Takemoto, Hiroyasu; Yi, Yu; Zheng, Meng; Maeda, Yoshinori; Chaya, Hiroyuki; Hayashi, Kotaro; Mi, Peng; Pittella, Frederico; Christie, R James; Toh, Kazuko; Matsumoto, Yu; Nishiyama, Nobuhiro; Miyata, Kanjiro; Kataoka, Kazunori

    2014-09-23

    For systemic delivery of siRNA to solid tumors, a size-regulated and reversibly stabilized nanoarchitecture was constructed by using a 20 kDa siRNA-loaded unimer polyion complex (uPIC) and 20 nm gold nanoparticle (AuNP). The uPIC was selectively prepared by charge-matched polyionic complexation of a poly(ethylene glycol)-b-poly(L-lysine) (PEG-PLL) copolymer bearing ∼40 positive charges (and thiol group at the ω-end) with a single siRNA bearing 40 negative charges. The thiol group at the ω-end of PEG-PLL further enabled successful conjugation of the uPICs onto the single AuNP through coordinate bonding, generating a nanoarchitecture (uPIC-AuNP) with a size of 38 nm and a narrow size distribution. In contrast, mixing thiolated PEG-PLLs and AuNPs produced a large aggregate in the absence of siRNA, suggesting the essential role of the preformed uPIC in the formation of nanoarchitecture. The smart uPIC-AuNPs were stable in serum-containing media and more resistant against heparin-induced counter polyanion exchange, compared to uPICs alone. On the other hand, the treatment of uPIC-AuNPs with an intracellular concentration of glutathione substantially compromised their stability and triggered the release of siRNA, demonstrating the reversible stability of these nanoarchitectures relative to thiol exchange and negatively charged AuNP surface. The uPIC-AuNPs efficiently delivered siRNA into cultured cancer cells, facilitating significant sequence-specific gene silencing without cytotoxicity. Systemically administered uPIC-AuNPs showed appreciably longer blood circulation time compared to controls, i.e., bare AuNPs and uPICs, indicating that the conjugation of uPICs onto AuNP was crucial for enhancing blood circulation time. Finally, the uPIC-AuNPs efficiently accumulated in a subcutaneously inoculated luciferase-expressing cervical cancer (HeLa-Luc) model and achieved significant luciferase gene silencing in the tumor tissue. These results demonstrate the strong

  17. Translation affects YoeB and MazF messenger RNA interferase activities by different mechanisms

    DEFF Research Database (Denmark)

    Christensen-Dalsgaard, Mikkel; Gerdes, Kenn

    2008-01-01

    Prokaryotic toxin-antitoxin loci encode mRNA cleaving enzymes that inhibit translation. Two types are known: those that cleave mRNA codons at the ribosomal A site and those that cleave any RNA site specifically. RelE of Escherichia coli cleaves mRNA at the ribosomal A site in vivo and in vitro bu...

  18. Transforming growth factor-beta messenger RNA and protein in murine colitis

    DEFF Research Database (Denmark)

    Whiting, C V; Williams, A M; Claesson, Mogens Helweg

    2001-01-01

    Using a CD4+ T-cell-transplanted SCID mouse model of colitis, we have analyzed TGF-beta transcription and translation in advanced disease. By in situ hybridization, the epithelium of both control and inflamed tissues transcribed TGF-beta1 and TGF-beta3 mRNAs, but both were expressed significantly...... farther along the crypt axis in disease. Control lamina propria cells transcribed little TGF-beta1 or TGF-beta3 mRNA, but in inflamed tissues many cells expressed mRNA for both isoforms. No TGF-beta2 message was detected in either control or inflamed tissues. Immunohistochemistry for latent and active TGF...

  19. Increased efficiency of exogenous messenger RNA translation in a Krebs ascites cell lysate.

    Science.gov (United States)

    Metafora, S; Terada, M; Dow, L W; Marks, P A; Bank, A

    1972-05-01

    Addition of a 0.5 M KCl wash fraction from rabbit reticulocyte ribosomes causes a 3- to 10-fold increase in the extent of translation of natural mRNAs by Krebs-cell lysates. In the presence of the wash fraction, 1 pmol of rabbit or mouse 10S RNA directs the incorporation of 80 pmol of leucine into rabbit globin. The addition of human 10S RNA results in the synthesis of equal amounts of human alpha and beta chains, identified by column chromatography. The stimulation by the wash fraction is almost completely dependent on added mammalian tRNA. In contrast to the wash fraction from rabbit reticulocytes, the wash fraction isolated from Krebs-cell ribosomes is inhibitory to both endogenous and exogenous mRNA translation. The stimulation by the wash fraction from rabbit ribosomes is not specific for globin mRNAs, but also increases endogenous, phage Qbeta, and viral RNA-directed protein synthesis.

  20. Energy hyperspace for stacking interaction in AU/AU dinucleotide step: Dispersion-corrected density functional theory study.

    Science.gov (United States)

    Mukherjee, Sanchita; Kailasam, Senthilkumar; Bansal, Manju; Bhattacharyya, Dhananjay

    2014-01-01

    Double helical structures of DNA and RNA are mostly determined by base pair stacking interactions, which give them the base sequence-directed features, such as small roll values for the purine-pyrimidine steps. Earlier attempts to characterize stacking interactions were mostly restricted to calculations on fiber diffraction geometries or optimized structure using ab initio calculations lacking variation in geometry to comment on rather unusual large roll values observed in AU/AU base pair step in crystal structures of RNA double helices. We have generated stacking energy hyperspace by modeling geometries with variations along the important degrees of freedom, roll, and slide, which were chosen via statistical analysis as maximally sequence dependent. Corresponding energy contours were constructed by several quantum chemical methods including dispersion corrections. This analysis established the most suitable methods for stacked base pair systems despite the limitation imparted by number of atom in a base pair step to employ very high level of theory. All the methods predict negative roll value and near-zero slide to be most favorable for the purine-pyrimidine steps, in agreement with Calladine's steric clash based rule. Successive base pairs in RNA are always linked by sugar-phosphate backbone with C3'-endo sugars and this demands C1'-C1' distance of about 5.4 Å along the chains. Consideration of an energy penalty term for deviation of C1'-C1' distance from the mean value, to the recent DFT-D functionals, specifically ωB97X-D appears to predict reliable energy contour for AU/AU step. Such distance-based penalty improves energy contours for the other purine-pyrimidine sequences also. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 107-120, 2014. Copyright © 2013 Wiley Periodicals, Inc.

  1. Novel condensation of Au-centered trigonal prisms in rare-earth-metal-rich tellurides: Er7Au2Te2 and Lu7Au2Te2.

    Science.gov (United States)

    Gupta, Shalabh; Corbett, John D

    2010-07-14

    A new monoclinic structure occurs for Er(7)Au(2)Te(2) according to X-ray diffraction analysis of single crystals grown at 1200 degrees C: C2/m, Z = 4, a = 17.8310(9) A, b = 3.9819(5) A, c = 16.9089(9) A, beta = 104.361(4) degrees. The isostructural Lu(7)Au(2)Te(2) also exists according to X-ray powder pattern means, a = 17.536(4) A, b = 3.9719(4) A, c = 16.695(2) A, beta = 104.33(1) degrees. The structure contains zigzag chains of condensed, Au-centered tricapped trigonal prisms (TCTP) of Er along c that also share basal faces along b to generate puckered sheets. Further bi-face-capping Er atoms between these generate the three dimensional network along a, with tellurium in cavities outlined by augmented trigonal prismatic Er polyhedra. Bonding analysis via LMTO-DFT methods reveal very significant Er-Au bonding interactions, as quantified by their energy-weighted Hamilton overlap populations (-ICOHP), approximately 49% of the total for all interactions. These and similar Er-Te contributions sharply contrast with the small Er-Er population, only approximately 14% of the total in spite of the high proportion of Er-Er contacts. The strong polar bonding of Er to the electronegative Au and Te leaves Er relatively oxidized, with many of its 5d states falling above the Fermi level and empty. The contradiction with customary representations of structures that highlight rare-earth metal clusters is manifest. The large Er-Au Hamilton overlap population is in accord with the strong bonding between early and late transition metals first noted by Brewer in 1973. The relationship of this structure to the more distorted orthorhombic (Imm2) structure type of neighboring Dy(7)Ir(2)Te(2) is considered.

  2. Holographic gauge mediation via strongly coupled messengers

    International Nuclear Information System (INIS)

    McGuirk, Paul; Shiu, Gary; Sumitomo, Yoske

    2010-01-01

    We consider a relative of semidirect gauge mediation where the hidden sector exists at large 't Hooft coupling. Such scenarios can be difficult to describe using perturbative field theory methods but may fall into the class of holographic gauge mediation scenarios, meaning that they are amenable to the techniques of gauge/gravity duality. We use a recently found gravity solution to examine one such case, where the hidden sector is a cascading gauge theory resulting in a confinement scale not much smaller than the messenger mass. In the original construction of holographic gauge mediation, as in other examples of semidirect gauge mediation at strong coupling, the primary contributions to visible sector soft terms come from weakly coupled messenger mesons. In contrast to these examples, we describe the dual of a gauge theory where there are significant contributions from scales in which the strongly coupled messenger quarks are the effective degrees of freedom. In this regime, the visible sector gaugino mass can be calculated entirely from holography.

  3. Ethanol electro-oxidation in an alkaline medium using Pd/C, Au/C and PdAu/C electrocatalysts prepared by electron beam irradiation

    International Nuclear Information System (INIS)

    Geraldes, Adriana Napoleão; Furtunato da Silva, Dionisio; Pino, Eddy Segura; Martins da Silva, Júlio César; Brambilla de Souza, Rodrigo Fernando; Hammer, Peter; Spinacé, Estevam Vitório; Neto, Almir Oliveira; Linardi, Marcelo; Coelho dos Santos, Mauro

    2013-01-01

    Carbon-supported Pd, Au and bimetallic PdAu (Pd:Au 90:10, 50:50 and 30:70 atomic ratios) electrocatalysts were prepared using electron beam irradiation. The obtained materials were characterized by energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD) and transmission electron microscopy (TEM), and their catalytic activities toward ethanol electro-oxidation were evaluated in an alkaline medium using electrochemical techniques, in situ attenuated total reflectance Fourier transformed infrared spectroscopy (ATR-FTIR) analysis and a single alkaline direct ethanol fuel cell (ADEFC). EDX analyses showed that the actual Pd:Au atomic ratios were very similar to the nominal ones. X-ray diffractograms of PdAu/C electrocatalysts evidenced the presence of Pd-rich (fcc) and Au-rich (fcc) phases. TEM analysis showed a homogeneous dispersion of nanoparticles on the carbon support, with an average size in the range of 3–5 nm and broad size distributions. Cyclic voltammetry (CV) and chronoamperometry (CA) experiments revealed the superior ambient activity toward ethanol electro-oxidation of PdAu/C electrocatalysts with Pd:Au ratios of 90:10 and 50:50. In situ ATR-FTIR spectroscopy measurements have shown that the mechanism for ethanol electro-oxidation is dependent on catalyst composition, leading to different reaction products, such as acetaldehyde and acetate, depending on the number of electrons transferred. Experiments on a single ADEFC were conducted between 50 and 90 °C, and the best performance of 44 mW cm −2 in 2.0 mol L −1 ethanol was obtained at 85 °C for the Pd:Au 90:10 catalysts. This superior performance is most likely associated with enhancement of ethanol adsorption on Pd, oxidation of the intermediates, the presence of gold oxide-hydroxyl species, low mean particle diameters and better distribution of particles on the support

  4. Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes

    OpenAIRE

    Pardi, Norbert; Tuyishime, Steven; Muramatsu, Hiromi; Kariko, Katalin; Mui, Barbara L; Tam, Ying K; Madden, Thomas D; Hope, Michael J; Weissman, Drew

    2015-01-01

    In recent years, in vitro transcribed messenger RNA (mRNA) has emerged as a potential therapeutic platform. To fulfill its promise, effective delivery of mRNA to specific cell types and tissues needs to be achieved. Lipid nanoparticles (LNPs) are efficient carriers for short-interfering RNAs and have entered clinical trials. However, little is known about the potential of LNPs to deliver mRNA. Here, we generated mRNA-LNPs by incorporating HPLC purified, 1-methylpseudouridine-containing mRNA c...

  5. The major-element composition of Mercury's surface from MESSENGER X-ray spectrometry.

    Science.gov (United States)

    Nittler, Larry R; Starr, Richard D; Weider, Shoshana Z; McCoy, Timothy J; Boynton, William V; Ebel, Denton S; Ernst, Carolyn M; Evans, Larry G; Goldsten, John O; Hamara, David K; Lawrence, David J; McNutt, Ralph L; Schlemm, Charles E; Solomon, Sean C; Sprague, Ann L

    2011-09-30

    X-ray fluorescence spectra obtained by the MESSENGER spacecraft orbiting Mercury indicate that the planet's surface differs in composition from those of other terrestrial planets. Relatively high Mg/Si and low Al/Si and Ca/Si ratios rule out a lunarlike feldspar-rich crust. The sulfur abundance is at least 10 times higher than that of the silicate portion of Earth or the Moon, and this observation, together with a low surface Fe abundance, supports the view that Mercury formed from highly reduced precursor materials, perhaps akin to enstatite chondrite meteorites or anhydrous cometary dust particles. Low Fe and Ti abundances do not support the proposal that opaque oxides of these elements contribute substantially to Mercury's low and variable surface reflectance.

  6. Controlling the stereochemistry and regularity of butanethiol self-assembled monolayers on Au(111)

    DEFF Research Database (Denmark)

    Yan, Jiawei; Ouyang, Runhai; Jensen, Palle Skovhus

    2014-01-01

    The rich stereochemistry of the self-assembled monolayers (SAMs) of four butanethiols on Au(111) is described, the SAMs containing up to 12 individual C, S, or Au chiral centers per surface unit cell. This is facilitated by synthesis of enantiomerically pure 2-butanethiol (the smallest unsubstitu......The rich stereochemistry of the self-assembled monolayers (SAMs) of four butanethiols on Au(111) is described, the SAMs containing up to 12 individual C, S, or Au chiral centers per surface unit cell. This is facilitated by synthesis of enantiomerically pure 2-butanethiol (the smallest...... when R is achiral, while adatom binding leads to rectangular plane groups that suppress long-range expression of chirality. Binding as RS• also inhibits the pitting intrinsically associated with adatom binding, desirably producing more regularly structured SAMs....

  7. Gravity field and internal structure of Mercury from MESSENGER.

    Science.gov (United States)

    Smith, David E; Zuber, Maria T; Phillips, Roger J; Solomon, Sean C; Hauck, Steven A; Lemoine, Frank G; Mazarico, Erwan; Neumann, Gregory A; Peale, Stanton J; Margot, Jean-Luc; Johnson, Catherine L; Torrence, Mark H; Perry, Mark E; Rowlands, David D; Goossens, Sander; Head, James W; Taylor, Anthony H

    2012-04-13

    Radio tracking of the MESSENGER spacecraft has provided a model of Mercury's gravity field. In the northern hemisphere, several large gravity anomalies, including candidate mass concentrations (mascons), exceed 100 milli-Galileos (mgal). Mercury's northern hemisphere crust is thicker at low latitudes and thinner in the polar region and shows evidence for thinning beneath some impact basins. The low-degree gravity field, combined with planetary spin parameters, yields the moment of inertia C/MR(2) = 0.353 ± 0.017, where M and R are Mercury's mass and radius, and a ratio of the moment of inertia of Mercury's solid outer shell to that of the planet of C(m)/C = 0.452 ± 0.035. A model for Mercury's radial density distribution consistent with these results includes a solid silicate crust and mantle overlying a solid iron-sulfide layer and an iron-rich liquid outer core and perhaps a solid inner core.

  8. Gravity Field and Internal Structure of Mercury from MESSENGER

    Science.gov (United States)

    Smith, David E.; Zuber, Maria T.; Phillips, Roger J.; Solomon, Sean C.; Hauck, Steven A., II; Lemoine, Frank G.; Mazarico, Erwan; Neumann, Gregory A.; Peale, Stanton J.; Margot, Jean-Luc; hide

    2012-01-01

    Radio tracking of the MESSENGER spacecraft has provided a model of Mercury's gravity field. In the northern hemisphere, several large gravity anomalies, including candidate mass concentrations (mascons), exceed 100 milli-Galileos (mgal). Mercury's northern hemisphere crust is thicker at low latitudes and thinner in the polar region and shows evidence for thinning beneath some impact basins. The low-degree gravity field, combined with planetary spin parameters, yields the moment of inertia C/M(R(exp 2) = 0.353 +/- 0.017, where M and R are Mercury's mass and radius, and a ratio of the moment of inertia of Mercury's solid outer shell to that of the planet of C(sub m)/C = 0.452 +/- 0.035. A model for Mercury s radial density distribution consistent with these results includes a solid silicate crust and mantle overlying a solid iron-sulfide layer and an iron-rich liquid outer core and perhaps a solid inner core.

  9. Evidence of significant covalent bonding in Au(CN)(2)(-).

    Science.gov (United States)

    Wang, Xue-Bin; Wang, Yi-Lei; Yang, Jie; Xing, Xiao-Peng; Li, Jun; Wang, Lai-Sheng

    2009-11-18

    The Au(CN)(2)(-) ion is the most stable Au compound known for centuries, yet a detailed understanding of its chemical bonding is still lacking. Here we report direct experimental evidence of significant covalent bonding character in the Au-C bonds in Au(CN)(2)(-) using photoelectron spectroscopy and comparisons with its lighter congeners, Ag(CN)(2)(-) and Cu(CN)(2)(-). Vibrational progressions in the Au-C stretching mode were observed for all detachment transitions for Au(CN)(2)(-), in contrast to the atomic-like transitions for Cu(CN)(2)(-), revealing the Au-C covalent bonding character. In addition, rich electronic structural information was obtained for Au(CN)(2)(-) by employing 118 nm detachment photons. Density functional theory and high-level ab initio calculations were carried out to understand the photoelectron spectra and obtain insight into the nature of the chemical bonding in the M(CN)(2)(-) complexes. Significant covalent character in the Au-C bonding due to the strong relativistic effects was revealed in Au(CN)(2)(-), consistent with its high stability.

  10. Physical change in cytoplasmic messenger ribonucleoproteins in cells treated with inhibitors of mRNA transcription

    International Nuclear Information System (INIS)

    Dreyfuss, G.; Adam, S.A.; Choi, Y.D.

    1984-01-01

    Exposure of intact cells to UV light brings about cross-linking of polyadenylated mRNA to a set of cytoplasmic proteins which are in direct contact with the mRNA in vivo. Substantial amounts of an additional protein of molecular weight 38,000 become cross-linked to the mRNA when cells are treated with inhibitors of mRNA synthesis (actinomycin D, camptothecin, and 5,6-dichloro-1-beta-D-ribofuranosyl benzimidazole) or after infection with vesicular stomatitis virus. Cordycepin, which inhibits polyadenylation but not mRNA synthesis, has no such effect. Inhibitors of protein synthesis and of rRNA synthesis are also without effect on 38K cross-linking to mRNA. The onset of the effect of inhibitors of mRNA synthesis on the UV cross-linkable interaction between mRNA and 38K is rapid and reaches a maximal level in less than 60 min, and it is completely and rapidly reversible. In cells treated with actinomycin D, the amount of 38K which becomes cross-linked to mRNA is proportional to the extent of inhibition of mRNA synthesis. The association of 38K with mRNA during transcriptional arrest does not require protein synthesis because simultaneous treatment with the protein synthesis inhibitor emetine does not interfere with it. The effectors which promote the interaction of 38K with mRNA do not affect the proteins which are in contact with polyadenylated heterogeneous nuclear RNA and do not markedly affect protein synthesis in the cell. The 38K protein can be isolated with the polyribosomal polyadenylated fraction from which it was purified, and monoclonal antibodies against it were prepared

  11. MESSENGER MERCURY RSS/MLA LEVEL 5 DERIVED DATA V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains archival results from radio science investigations conducted during the MESSENGER mission. Radio measurements were made using the MESSENGER...

  12. Characterization of intronic uridine-rich sequence elements acting as possible targets for nuclear proteins during pre-mRNA splicing in Nicotiana plumbaginifolia.

    Science.gov (United States)

    Gniadkowski, M; Hemmings-Mieszczak, M; Klahre, U; Liu, H X; Filipowicz, W

    1996-02-15

    Introns of nuclear pre-mRNAs in dicotyledonous plants, unlike introns in vertebrates or yeast, are distinctly rich in A+U nucleotides and this feature is essential for their processing. In order to define more precisely sequence elements important for intron recognition in plants, we investigated the effects of short insertions, either U-rich or A-rich, on splicing of synthetic introns in transfected protoplast of Nicotiana plumbaginifolia. It was found that insertions of U-rich (sequence UUUUUAU) but not A-rich (AUAAAAA) segments can activate splicing of a GC-rich synthetic infron, and that U-rich segments, or multimers thereof, can function irrespective of the site of insertion within the intron. Insertions of multiple U-rich segments, either at the same or different locations, generally had an additive, stimulatory effect on splicing. Mutational analysis showed that replacement of one or two U residues in the UUUUUAU sequence with A or C residues had only a small effect on splicing, but replacement with G residues was strongly inhibitory. Proteins that interact with fragments of natural and synthetic pre-mRNAs in vitro were identified in nuclear extracts of N.plumbaginifolia by UV cross- linking. The profile of cross-linked plant proteins was considerably less complex than that obtained with a HeLa cell nuclear extract. Two major cross-linkable plant proteins had apparent molecular mass of 50 and 54 kDa and showed affinity for oligouridilates present in synGC introns or for poly(U).

  13. Nuclease-resistant c-di-AMP derivatives that differentially recognize RNA and protein receptors

    Science.gov (United States)

    Meehan, Robert E.; Torgerson, Chad D.; Gaffney, Barbara L.; Jones, Roger A.; Strobel, Scott A.

    2016-01-01

    The ability of bacteria to sense environmental cues and adapt is essential for their survival. The use of second-messenger signaling molecules to translate these cues into a physiological response is a common mechanism employed by bacteria. The second messenger 3’-5’-cyclic diadenosine monophosphate (c-di-AMP) has been linked to a diverse set of biological processes involved in maintaining cell viability and homeostasis, as well as pathogenicity. A complex network of both protein and RNA receptors inside the cell activate specific pathways and mediate phenotypic outputs in response to c-di-AMP. Structural analysis of these RNA and protein receptors has revealed the different recognition elements employed by these effectors to bind the same small molecule. Herein, using a series of c-di-AMP analogs, we probed the interactions made with a riboswitch and a phosphodiesterase protein to identify the features important for c-di-AMP binding and recognition. We found that the ydaO riboswitch binds c-di-AMP in two discrete sites with near identical affinity and a Hill coefficient of 1.6. The ydaO riboswitch distinguishes between c-di-AMP and structurally related second messengers by discriminating against an amine at the C2 position, more than a carbonyl at the C6 position. We also identified phosphate-modified analogs that bind both the ydaO RNA and GdpP protein with high affinity, while symmetrically-modified ribose analogs exhibited a substantial decrease in ydaO affinity, but retained high affinity for GdpP. These ligand modifications resulted in increased resistance to enzyme-catalyzed hydrolysis by the GdpP enzyme. Together, these data suggest that these c-di-AMP analogs could be useful as chemical tools to specifically target subsections of the second-messenger signaling pathways. PMID:26789423

  14. Transfer-messenger RNA controls the translation of cell-cycle and stress proteins in Streptomyces

    DEFF Research Database (Denmark)

    Barends, Sharief; Zehl, Martin; Bialek, Sylwia

    2010-01-01

    coelicolor, trans-translation has a specialized role in stress management. Analysis of proteins that were carboxy-terminally His(8)-tagged by a recombinant tmRNA identified only 10 targets, including the stress proteins: DnaK heat-shock protein 70, thiostrepton-induced protein A, universal stress protein A...... functionality for tmRNA, promoting the translation of the same mRNA it targets, at the expense of sacrificing the first nascent protein. In streptomycetes, tmRNA has evolved into a dedicated task force that ensures the instantaneous response to the exposure to stress....

  15. Maintenance of the marginal-zone B cell compartment specifically requires the RNA-binding protein ZFP36L1.

    Science.gov (United States)

    Newman, Rebecca; Ahlfors, Helena; Saveliev, Alexander; Galloway, Alison; Hodson, Daniel J; Williams, Robert; Besra, Gurdyal S; Cook, Charlotte N; Cunningham, Adam F; Bell, Sarah E; Turner, Martin

    2017-06-01

    RNA-binding proteins of the ZFP36 family are best known for inhibiting the expression of cytokines through binding to AU-rich elements in the 3' untranslated region and promoting mRNA decay. Here we identified an indispensable role for ZFP36L1 as the regulator of a post-transcriptional hub that determined the identity of marginal-zone B cells by promoting their proper localization and survival. ZFP36L1 controlled a gene-expression program related to signaling, cell adhesion and locomotion; it achieved this in part by limiting expression of the transcription factors KLF2 and IRF8, which are known to enforce the follicular B cell phenotype. These mechanisms emphasize the importance of integrating transcriptional and post-transcriptional processes by RNA-binding proteins for maintaining cellular identity among closely related cell types.

  16. Methylation of miRNA genes and oncogenesis.

    Science.gov (United States)

    Loginov, V I; Rykov, S V; Fridman, M V; Braga, E A

    2015-02-01

    Interaction between microRNA (miRNA) and messenger RNA of target genes at the posttranscriptional level provides fine-tuned dynamic regulation of cell signaling pathways. Each miRNA can be involved in regulating hundreds of protein-coding genes, and, conversely, a number of different miRNAs usually target a structural gene. Epigenetic gene inactivation associated with methylation of promoter CpG-islands is common to both protein-coding genes and miRNA genes. Here, data on functions of miRNAs in development of tumor-cell phenotype are reviewed. Genomic organization of promoter CpG-islands of the miRNA genes located in inter- and intragenic areas is discussed. The literature and our own results on frequency of CpG-island methylation in miRNA genes from tumors are summarized, and data regarding a link between such modification and changed activity of miRNA genes and, consequently, protein-coding target genes are presented. Moreover, the impact of miRNA gene methylation on key oncogenetic processes as well as affected signaling pathways is discussed.

  17. Combining miRNA and mRNA Expression Profiles in Wilms Tumor Subtypes

    Directory of Open Access Journals (Sweden)

    Nicole Ludwig

    2016-03-01

    Full Text Available Wilms tumor (WT is the most common childhood renal cancer. Recent findings of mutations in microRNA (miRNA processing proteins suggest a pivotal role of miRNAs in WT genesis. We performed miRNA expression profiling of 36 WTs of different subtypes and four normal kidney tissues using microarrays. Additionally, we determined the gene expression profile of 28 of these tumors to identify potentially correlated target genes and affected pathways. We identified 85 miRNAs and 2107 messenger RNAs (mRNA differentially expressed in blastemal WT, and 266 miRNAs and 1267 mRNAs differentially expressed in regressive subtype. The hierarchical clustering of the samples, using either the miRNA or mRNA profile, showed the clear separation of WT from normal kidney samples, but the miRNA pattern yielded better separation of WT subtypes. A correlation analysis of the deregulated miRNA and mRNAs identified 13,026 miRNA/mRNA pairs with inversely correlated expression, of which 2844 are potential interactions of miRNA and their predicted mRNA targets. We found significant upregulation of miRNAs-183, -301a/b and -335 for the blastemal subtype, and miRNAs-181b, -223 and -630 for the regressive subtype. We found marked deregulation of miRNAs regulating epithelial to mesenchymal transition, especially in the blastemal subtype, and miRNAs influencing chemosensitivity, especially in regressive subtypes. Further research is needed to assess the influence of preoperative chemotherapy and tumor infiltrating lymphocytes on the miRNA and mRNA patterns in WT.

  18. Some Metabolites Act as Second Messengers in Yeast Chronological Aging

    Directory of Open Access Journals (Sweden)

    Karamat Mohammad

    2018-03-01

    Full Text Available The concentrations of some key metabolic intermediates play essential roles in regulating the longevity of the chronologically aging yeast Saccharomyces cerevisiae. These key metabolites are detected by certain ligand-specific protein sensors that respond to concentration changes of the key metabolites by altering the efficiencies of longevity-defining cellular processes. The concentrations of the key metabolites that affect yeast chronological aging are controlled spatially and temporally. Here, we analyze mechanisms through which the spatiotemporal dynamics of changes in the concentrations of the key metabolites influence yeast chronological lifespan. Our analysis indicates that a distinct set of metabolites can act as second messengers that define the pace of yeast chronological aging. Molecules that can operate both as intermediates of yeast metabolism and as second messengers of yeast chronological aging include reduced nicotinamide adenine dinucleotide phosphate (NADPH, glycerol, trehalose, hydrogen peroxide, amino acids, sphingolipids, spermidine, hydrogen sulfide, acetic acid, ethanol, free fatty acids, and diacylglycerol. We discuss several properties that these second messengers of yeast chronological aging have in common with second messengers of signal transduction. We outline how these second messengers of yeast chronological aging elicit changes in cell functionality and viability in response to changes in the nutrient, energy, stress, and proliferation status of the cell.

  19. Prediction of Fetal Growth Restriction by Analyzing the Messenger RNAs of Angiogenic Factor in the Plasma of Pregnant Women.

    Science.gov (United States)

    Takenaka, Shin; Ventura, Walter; Sterrantino, Anna Freni; Kawashima, Akihiro; Koide, Keiko; Hori, Kyoko; Farina, Antonio; Sekizawa, Akihiko

    2015-06-01

    To predict the occurrence of fetal growth restriction (FGR) by analyzing messenger RNA (mRNA) expression levels of vascular endothelial growth factor receptor 1 (fms-like tyrosine kinase 1 [Flt-1]) in maternal blood. Eleven women with FGR were matched with 88 controls. Plasma samples were obtained during each trimester. The Flt-1 mRNA expression levels were compared between groups. Predicted probabilities were calculated, and sensitivity-specificity (receiver-operating characteristic [ROC]) curves were assessed based on regression models for each trimester measurement and possible combinations of measurements. The mRNA levels of the FGR group during all trimesters were significantly higher than those of the control group. The ROC curve of combined first and second trimester data yielded a detection rate of 60% at a 10% false-positive rate, with an area under curve of 0.79. The Flt-1 mRNA expression in maternal blood can be used as a marker to predict the development of FGR, long before a clinical diagnosis is made. © The Author(s) 2014.

  20. RNA in defense: CRISPRs protect prokaryotes against mobile genetic elements

    NARCIS (Netherlands)

    Jore, M.M.; Brouns, S.J.J.; Oost, van der J.

    2010-01-01

    Once thought to be just a messenger that allows genetic information encoded in DNA to direct the formation of proteins, RNA (ribonucleic acid) is now known to be a highly versatile molecule that has multiple roles in cells. It can function as an enzyme, scaffold various subcellular structures, and

  1. Intense fluorescence of Au 20

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Chongqi; Harbich, Wolfgang; Sementa, Luca; Ghiringhelli, Luca; Apra, Edoardo; Stener, Mauro; Fortunelli, Alessandro; Brune, Harald

    2017-08-21

    Ligand-protected Au clusters are non-bleaching fluorescence markers in bio- and medical applications. We show that their fluorescence is an intrinsic property of the Au cluster itself. We find a very intense and sharp fluorescence peak located at λ =739.2 nm (1.68 eV) for Au20 clusters in a Ne matrix held at 6 K. The fluorescence reflects the HOMO-LUMO diabatic bandgap of the cluster. The cluster shows a very rich absorption fine structure reminiscent of well defined molecule-like quantum levels. These levels are resolved since Au20 has only one stable isomer (tetrahedral), therefore our sample is mono-disperse in cluster size and conformation. Density-functional theory (DFT) and time-dependent DFT calculations clarify the nature of optical absorptionand predict both main absorption peaks and intrinsic fluorescence in good agreement with experiment.

  2. Gravity, Topography, and Magnetic Field of Mercury from Messenger

    Science.gov (United States)

    Neumann, Gregory A.; Solomon, Sean C.; Zuber, Maria T.; Phillips, Roger J.; Barnouin, Olivier; Ernst, Carolyn; Goosens, Sander; Hauck, Steven A., II; Head, James W., III; Johnson, Catherine L.; hide

    2012-01-01

    On 18 March 2011, the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft was inserted into a 12-hour, near-polar orbit around Mercury, with an initial periapsis altitude of 200 km, initial periapse latitude of 60 deg N, and apoapsis at approximately 15,200 km altitude in the southern hemisphere. This orbit has permitted the mapping of regional gravitational structure in the northern hemisphere, and laser altimetry from the MESSENGER spacecraft has yielded a geodetically controlled elevation model for the same hemisphere. The shape of a planet combined with gravity provides fundamental information regarding its internal structure and geologic and thermal evolution. Elevations in the northern hemisphere exhibit a unimodal distribution with a dynamic range of 9.63 km, less than that of the Moon (19.9 km), but consistent with Mercury's higher surface gravitational acceleration. After one Earth-year in orbit, refined models of gravity and topography have revealed several large positive gravity anomalies that coincide with major impact basins. These candidate mascons have anomalies that exceed 100 mGal and indicate substantial crustal thinning and superisostatic uplift of underlying mantle. An additional uncompensated 1000-km-diameter gravity and topographic high at 68 deg N, 33 deg E lies within Mercury's northern volcanic plains. Mercury's northern hemisphere crust is generally thicker at low latitudes than in the polar region. The low-degree gravity field, combined with planetary spin parameters, yields the moment of inertia C/MR2 = 0.353 +/- 0.017, where M=3.30 x 10(exp 23) kg and R=2440 km are Mercury's mass and radius, and a ratio of the moment of inertia of Mercury's solid outer shell to that of the planet of Cm/C = 0.452 +/- 0.035. One proposed model for Mercury's radial density distribution consistent with these results includes silicate crust and mantle layers overlying a dense solid (possibly Fe-S) layer, a liquid Fe-rich

  3. UV-fs-LA-ICP-MS Analysis of CO2-Rich Fluid Inclusions in a Frozen State: Example from the Dahu Au-Mo Deposit, Xiaoqinling Region, Central China

    Directory of Open Access Journals (Sweden)

    Wei Jian

    2018-01-01

    Full Text Available The recently developed technique of ultraviolet femtosecond laser ablation inductively coupled plasma mass spectrometry (UV-fs-LA-ICP-MS combined with a freezing cell is expected to improve the analysis of CO2-rich fluid inclusions by decreasing their internal pressure and avoiding the common problem of uncontrolled explosive fluid release on ablation. Here, we report the application of this technique through the case study of CO2-rich fluid inclusions from the quartz vein-style Au-Mo deposit of Dahu in the Xiaoqinling region of central China. The concentrations of Li, B, Na, Al, K, Ca, Mn, Fe, Cu, Zn, Rb, Sr, Mo, Ag, Te, Cs, Ba, Au, Pb, and Bi were analyzed in 124 (not all for Al and Ca fluid inclusions, which have low to moderate salinity and multiphase composition (liquid H2O + liquid CO2  ± vapor CO2  ± solids. The Dahu fluids are dominated by Na and K. The concentrations of Mo are always below the detection limit from 0.005 to 2 ppm (excluding values obtained from fluid inclusions with accidentally trapped solids. The Dahu ore fluids differ from metamorphic fluids in compositions and most likely represent two separate pulses of spent fluids evolved from an unexposed and oxidized magmatic system. The UV-fs-LA-ICP-MS analysis of fluid inclusions in a frozen state improves the overpressure problem of CO2-rich fluid inclusions during laser ablation. The transformation of gaseous and liquid CO2 into the solid state leads to a significant decline in the internal pressure of the fluid inclusions, while femtosecond laser pulses generate a minimal heat input in the sample and thus maintain the frozen state during ablation. Transient signals of CO2-rich fluid inclusions obtained in this study typically had one or multiple peaks lasting for more than 15 seconds, without an initial short signal spike as obtained by ns-LA-ICP-MS analysis of CO2-rich fluid inclusions at room temperature.

  4. High $P\\perp$ spectra from Au+Au collisions at $\\sqrt{s_{NN}}$ = 130 GeV

    CERN Document Server

    Dunlop, J C

    2002-01-01

    We report on hadron production at high transverse momentum from Au+Au collisions at _/sNN = 130GeV, measured with the STAR detector at the Relativistic Heavy Ion Collider (RHIC). Preliminary negative hadron spectra up to p| relative to a reference from p + p collisions. Preliminary azimuthal anisotropies have been measured up to p| = 4.5 GeV/c, which are described well by a hydrodynamical calculation below 1.5 GeV/c, but show a significant deviation at higher p|. A preliminary ratio p/p has been measured by the STAR-RICH detector in the range p| = 2-2.5 GeV/c.

  5. Intragraft interleukin 2 mRNA expression during acute cellular rejection and left ventricular total wall thickness after heart transplantation

    NARCIS (Netherlands)

    de Groot-Kruseman, H A; Baan, C C; Hagman, E M; Mol, W M; Niesters, H G; Maat, A P; Zondervan, P E; Weimar, W; Balk, A H

    OBJECTIVE: To assess whether diastolic graft function is influenced by intragraft interleukin 2 (IL-2) messenger RNA (mRNA) expression in rejecting cardiac allografts. DESIGN: 16 recipients of cardiac allografts were monitored during the first three months after transplantation. The presence of IL-2

  6. Host apolipoprotein B messenger RNA-editing enzyme catalytic polypeptide-like 3G is an innate defensive factor and drug target against hepatitis C virus.

    Science.gov (United States)

    Peng, Zong-Gen; Zhao, Zhi-Yun; Li, Yan-Ping; Wang, Yu-Ping; Hao, Lan-Hu; Fan, Bo; Li, Yu-Huan; Wang, Yue-Ming; Shan, Yong-Qiang; Han, Yan-Xing; Zhu, Yan-Ping; Li, Jian-Rui; You, Xue-Fu; Li, Zhuo-Rong; Jiang, Jian-Dong

    2011-04-01

    Host cellular factor apolipoprotein B messenger RNA (mRNA)-editing enzyme catalytic polypeptide-like 3G (hA3G) is a cytidine deaminase that inhibits a group of viruses including human immunodeficiency virus-1 (HIV-1). In the continuation of our research on hA3G, we found that hA3G stabilizing compounds significantly inhibited hepatitis C virus (HCV) replication. Therefore, this study investigated the role of hA3G in HCV replication. Introduction of external hA3G into HCV-infected Huh7.5 human hepatocytes inhibited HCV replication; knockdown of endogenous hA3G enhanced HCV replication. Exogenous HIV-1 virion infectivity factor (Vif) decreased intracellular hA3G and therefore enhanced HCV proliferation, suggesting that the presence of Vif might be an explanation for the HIV-1/HCV coinfection often observed in HIV-1(+) individuals. Treatment of the HCV-infected Huh7.5 cells with RN-5 or IMB-26, two known hA3G stabilizing compounds, increased intracellular hA3G and accordingly inhibited HCV replication. The compounds inhibit HCV through increasing the level of hA3G incorporated into HCV particles, but not through inhibiting HCV enzymes. However, G/A hypermutation in the HCV genome were not detected, suggesting a new antiviral mechanism of hA3G in HCV, different from that in HIV-1. Stabilization of hA3G by RN-5 was safe in vivo. hA3G appears to be a cellular restrict factor against HCV and could be a potential target for drug discovery. 2011 American Association for the Study of Liver Diseases.

  7. Cellular mRNA decay factors involved in the hepatitis C virus life cycle

    OpenAIRE

    Mina Ibarra, Leonardo Bruno

    2010-01-01

    The group of positive strand RNA ((+)RNA) viruses includes numerous plant, animal and human pathogens such as the hepatitis C virus (HCV). Their viral genomes mimic cellular mRNAs, however, besides acting as messengers for translation of viral proteins, they also act as templates for viral replication. Since these two functions are mutually exclusive, a key step in the replication of all (+) RNA viruses is the regulated exit of the genomic RNAs from the cellular translation machinery to the v...

  8. LONGITUDINAL AND RADIAL DEPENDENCE OF SOLAR ENERGETIC PARTICLE PEAK INTENSITIES: STEREO, ACE, SOHO, GOES, AND MESSENGER OBSERVATIONS

    International Nuclear Information System (INIS)

    Lario, D.; Ho, G. C.; Decker, R. B.; Roelof, E. C.; Aran, A.; Gómez-Herrero, R.; Dresing, N.; Heber, B.

    2013-01-01

    Simultaneous measurements of solar energetic particle (SEP) events by two or more of the spacecraft located near 1 AU during the rising phase of solar cycle 24 (i.e., STEREO-A, STEREO-B, and near-Earth spacecraft such as ACE, SOHO, and GOES) are used to determine the longitudinal dependence of 71-112 keV electron, 0.7-3 MeV electron, 15-40 MeV proton, and 25-53 MeV proton peak intensities measured in the prompt component of SEP events. Distributions of the peak intensities for the selected 35 events with identifiable solar origin are approximated by the form exp [ – (φ – φ 0 ) 2 /2σ 2 ], where φ is the longitudinal separation between the parent active region and the footpoint of the nominal interplanetary magnetic field (IMF) line connecting each spacecraft with the Sun, φ 0 is the distribution centroid, and σ determines the longitudinal gradient. The MESSENGER spacecraft, at helioradii R –α with α 3. These two cases correspond to SEP events occurring in a complex interplanetary medium that favored the enhancement of peak intensities near Mercury but hindered the SEP transport to 1 AU.

  9. How MESSENGER Meshes Simulations and Games with Citizen Science

    Science.gov (United States)

    Hirshon, B.; Chapman, C. R.; Edmonds, J.; Goldstein, J.; Hallau, K. G.; Solomon, S. C.; Vanhala, H.; Weir, H. M.; Messenger Education; Public Outreach (Epo) Team

    2010-12-01

    How MESSENGER Meshes Simulations and Games with Citizen Science In the film The Last Starfighter, an alien civilization grooms their future champion—a kid on Earth—using a video game. As he gains proficiency in the game, he masters the skills he needs to pilot a starship and save their civilization. The NASA MESSENGER Education and Public Outreach (EPO) Team is using the same tactic to train citizen scientists to help the Science Team explore the planet Mercury. We are building a new series of games that appear to be designed primarily for fun, but that guide players through a knowledge and skill set that they will need for future science missions in support of MESSENGER mission scientists. As players score points, they gain expertise. Once they achieve a sufficiently high score, they will be invited to become participants in Mercury Zoo, a new program being designed by Zooniverse. Zooniverse created Galaxy Zoo and Moon Zoo, programs that allow interested citizens to participate in the exploration and interpretation of galaxy and lunar data. Scientists use the citizen interpretations to further refine their exploration of the same data, thereby narrowing their focus and saving precious time. Mercury Zoo will be designed with input from the MESSENGER Science Team. This project will not only support the MESSENGER mission, but it will also add to the growing cadre of informed members of the public available to help with other citizen science projects—building on the concept that engaged, informed citizens can help scientists make new discoveries. The MESSENGER EPO Team comprises individuals from the American Association for the Advancement of Science (AAAS); Carnegie Academy for Science Education (CASE); Center for Educational Resources (CERES) at Montana State University (MSU) - Bozeman; National Center for Earth and Space Science Education (NCESSE); Johns Hopkins University Applied Physics Laboratory (JHU/APL); National Air and Space Museum (NASM); Science

  10. Targeted siRNA Delivery and mRNA Knockdown Mediated by Bispecific Digoxigenin-binding Antibodies

    Directory of Open Access Journals (Sweden)

    Britta Schneider

    2012-01-01

    Full Text Available Bispecific antibodies (bsAbs that bind to cell surface antigens and to digoxigenin (Dig were used for targeted small interfering RNA (siRNA delivery. They are derivatives of immunoglobulins G (IgGs that bind tumor antigens, such as Her2, IGF1-R, CD22, and LeY, with stabilized Dig-binding variable domains fused to the C-terminal ends of the heavy chains. siRNA that was digoxigeninylated at its 3′end was bound in a 2:1 ratio to the bsAbs. These bsAb–siRNA complexes delivered siRNAs specifically to cells that express the corresponding antigen as demonstrated by flow cytometry and confocal microscopy. The complexes internalized into endosomes and Dig-siRNAs separated from bsAbs, but Dig-siRNA was not released into the cytoplasm; bsAb-targeting alone was thus not sufficient for effective mRNA knockdown. This limitation was overcome by formulating the Dig-siRNA into nanoparticles consisting of dynamic polyconjugates (DPCs or into lipid-based nanoparticles (LNPs. The resulting complexes enabled bsAb-targeted siRNA-specific messenger RNA (mRNA knockdown with IC50 siRNA values in the low nanomolar range for a variety of bsAbs, siRNAs, and target cells. Furthermore, pilot studies in mice bearing tumor xenografts indicated mRNA knockdown in endothelial cells following systemic co-administration of bsAbs and siRNA formulated in LNPs that were targeted to the tumor vasculature.

  11. Gold nanoparticle-based beacon to detect STAT5b mRNA expression in living cells: a case optimized by bioinformatics screen

    Directory of Open Access Journals (Sweden)

    Deng D

    2015-04-01

    Full Text Available Dawei Deng,* Yang Li,* Jianpeng Xue, Jie Wang, Guanhua Ai, Xin Li, Yueqing GuDepartment of Biomedical Engineering, China Pharmaceutical University, Nanjing, People’s Republic of China*These authors contributed equally to this workAbstract: Messenger RNA (mRNA, a single-strand ribonucleic acid with functional gene information is usually abnormally expressed in cancer cells and has become a promising biomarker for the study of tumor progress. Hairpin DNA-coated gold nanoparticle (hDAuNP beacon containing a bare gold nanoparticle (AuNP as fluorescence quencher and thiol-terminated fluorescently labeled stem–loop–stem oligonucleotide sequences attached by Au–S bond is currently a new nanoscale biodiagnostic platform capable of mRNA detection, in which the design of the loop region sequence is crucial for hybridizing with the target mRNA. Hence, in this study, to improve the sensitivity and selectivity of hDAuNP beacon simultaneously, the loop region of hairpin DNA was screened by bioinformatics strategy. Here, signal transducer and activator of transcription 5b (STAT5b mRNA was selected and used as a practical example. The results from the combined characterizations using optical techniques, flow cytometry assay, and cell microscopic imaging showed that after optimization, the as-prepared hDAuNP beacon had higher selectivity and sensitivity for the detection of STAT5b mRNA in living cells, as compared with our previous beacon. Thus, the bioinformatics method may be a promising new strategy for assisting in the designing of the hDAuNP beacon, extending its application in the detection of mRNA expression and the resultant mRNA-based biological processes and disease pathogenesis.Keywords: molecular beacon, bioinformatics, gold nanoparticle, STAT5b mRNA, visual detection

  12. Ultra-relativistic Au+Au and d+Au collisions:

    Science.gov (United States)

    Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Hauer, M.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Seals, H.; Sedykh, I.; Skulski, W.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tang, J.-L.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Wenger, E.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    In this talk I will review PHOBOS data on charged particle multiplicities, obtained in Au+Au and d+Au collisions at RHIC. The general features of the Au+Au pseudorapidity distributions results will be discussed and compared to those of /line{p}p collisions. The total charged particle multiplicity, scaled by the number of participant pairs, is observed to be about 40% higher in Au+Au collisions than in /line{p}p and d+Au systems, but, surprisingly at the same level of e+e- collisions. Limiting fragmentation scaling is seen to be obeyed in Au+Au collisions.

  13. Nuclear Imprisonment: Viral Strategies to Arrest Host mRNA Nuclear Export

    Directory of Open Access Journals (Sweden)

    Beatriz M. A. Fontoura

    2013-07-01

    Full Text Available Viruses possess many strategies to impair host cellular responses to infection. Nuclear export of host messenger RNAs (mRNA that encode antiviral factors is critical for antiviral protein production and control of viral infections. Several viruses have evolved sophisticated strategies to inhibit nuclear export of host mRNAs, including targeting mRNA export factors and nucleoporins to compromise their roles in nucleo-cytoplasmic trafficking of cellular mRNA. Here, we present a review of research focused on suppression of host mRNA nuclear export by viruses, including influenza A virus and vesicular stomatitis virus, and the impact of this viral suppression on host antiviral responses.

  14. Nuclear Imprisonment: Viral Strategies to Arrest Host mRNA Nuclear Export

    Science.gov (United States)

    Kuss, Sharon K.; Mata, Miguel A.; Zhang, Liang; Fontoura, Beatriz M. A.

    2013-01-01

    Viruses possess many strategies to impair host cellular responses to infection. Nuclear export of host messenger RNAs (mRNA) that encode antiviral factors is critical for antiviral protein production and control of viral infections. Several viruses have evolved sophisticated strategies to inhibit nuclear export of host mRNAs, including targeting mRNA export factors and nucleoporins to compromise their roles in nucleo-cytoplasmic trafficking of cellular mRNA. Here, we present a review of research focused on suppression of host mRNA nuclear export by viruses, including influenza A virus and vesicular stomatitis virus, and the impact of this viral suppression on host antiviral responses. PMID:23872491

  15. A Double Selection Approach to Achieve Specific Expression of Toxin Genes for Ovarian Cancer Gene Therapy

    Science.gov (United States)

    2007-11-01

    2005a). Southern blot analysis of DNA from different species using a cDNA probe identified homologous sequences in genomic DNA of yeast , monkey, cow, dog...regulated in melanocytes and melanoma cells by AU-rich sequences in their 3V-UTR ( Brewer et al., 2003). The presence of AU-rich sequences in eukaryotic mRNA...Biology. Totowa, NJ: Humana Press Inc. Brewer , G., Saccani, S., Sarkar, S., Lewis, A., & Pestka, S. (2003). Increased interleukin-10 mRNA stability in

  16. Good quality Vitis RNA obtained from an adapted DNA isolation protocol

    Directory of Open Access Journals (Sweden)

    Isabel Baiges

    2003-03-01

    Full Text Available Grapevine is a woody plant, whose high carbohydrate and phenolic compound contents usually interferes with nucleic acid isolation. After we tried several protocols for isolating RNA from the Vitis rootstock Richter- 110 (R-110 with little or no success, we adapted a method reported to be satisfactory for grapevine DNA isolation, to extract RNA. With slight protocol modifications, we succeeded to obtain polysaccharide- and phenolic-free RNA preparations from all vegetative tissues, without excessive sample handling. RNA isolated by the reported method permitted to obtain highly pure mRNA (messenger RNA to construct a cDNA (complementary DNA library and allowed gene transcription analysis by reverse Northern, which guarantees RNA integrity. This method may also be suitable for other plant species with high polysaccharide or phenolic contents.

  17. Annotating RNA motifs in sequences and alignments.

    Science.gov (United States)

    Gardner, Paul P; Eldai, Hisham

    2015-01-01

    RNA performs a diverse array of important functions across all cellular life. These functions include important roles in translation, building translational machinery and maturing messenger RNA. More recent discoveries include the miRNAs and bacterial sRNAs that regulate gene expression, the thermosensors, riboswitches and other cis-regulatory elements that help prokaryotes sense their environment and eukaryotic piRNAs that suppress transposition. However, there can be a long period between the initial discovery of a RNA and determining its function. We present a bioinformatic approach to characterize RNA motifs, which are critical components of many RNA structure-function relationships. These motifs can, in some instances, provide researchers with functional hypotheses for uncharacterized RNAs. Moreover, we introduce a new profile-based database of RNA motifs--RMfam--and illustrate some applications for investigating the evolution and functional characterization of RNA. All the data and scripts associated with this work are available from: https://github.com/ppgardne/RMfam. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. Structure and function of initiator methionine tRNA from the mitochondria of Neurospora crassa

    International Nuclear Information System (INIS)

    Heckman, J.E.; Hecker, L.I.; Schwartzbach, S.D.; Barnett, W.E.; Baumstark, B.; RajBhandary, U.L.

    1978-01-01

    Initiator methionine tRNA from the mitochondria of Neurospora crassa has been purified and sequenced. This mitochondrial tRNA can be aminoacylated and formylated by E. coli enzymes, and is capable of initiating protein synthesis in E. coli extracts. The nucleotide composition of the mitochondrial initiator tRNA (the first mitochondrial tRNA subjected to sequence analysis) is very rich in A + U, like that reported for total mitochondrial tRNA. In two of the unique features which differentiate procaryotic from eucaryotic cytoplasmic initiator tRNAs, the mitochondrial tRNA appears to resemble the eucaryotic initiator tRNAs. Thus unlike procaryotic initiator tRNAs in which the 5' terminal nucleotide cannot form a Watson-Crick base pair to the fifth nucleotide from 3' end, the mitochondrial tRNA can form such a base pair; and like the eucaryotic cytoplasmic initiator tRNAs, the mitochondrial initiator tRNA lacks the sequence - T psiCG(or A) in loop IV. The corresponding sequence in the mitochondrial tRNA, however, is -UGCA- and not -AU(or psi)CG- as found in all eucaryotic cytoplasmic initiator tRNAs. In spite of some similarity of the mitochondrial initiator tRNA to both eucaryotic and procaryotic initiator tRNAs, the mitochondrial initiator tRNA is basically different from both these tRNAs. Between these two classes of initiator tRNAs, however, it is more homologous in sequence to procaryotic (56 to 60%) than to eucaryotic cytoplasmic initiator tRNAs

  19. Specific Regional and Age-Related Small Noncoding RNA Expression Patterns Within Superior Temporal Gyrus of Typical Human Brains Are Less Distinct in Autism Brains.

    Science.gov (United States)

    Stamova, Boryana; Ander, Bradley P; Barger, Nicole; Sharp, Frank R; Schumann, Cynthia M

    2015-12-01

    Small noncoding RNAs play a critical role in regulating messenger RNA throughout brain development and when altered could have profound effects leading to disorders such as autism spectrum disorders (ASD). We assessed small noncoding RNAs, including microRNA and small nucleolar RNA, in superior temporal sulcus association cortex and primary auditory cortex in typical and ASD brains from early childhood to adulthood. Typical small noncoding RNA expression profiles were less distinct in ASD, both between regions and changes with age. Typical micro-RNA coexpression associations were absent in ASD brains. miR-132, miR-103, and miR-320 micro-RNAs were dysregulated in ASD and have previously been associated with autism spectrum disorders. These diminished region- and age-related micro-RNA expression profiles are in line with previously reported findings of attenuated messenger RNA and long noncoding RNA in ASD brain. This study demonstrates alterations in superior temporal sulcus in ASD, a region implicated in social impairment, and is the first to demonstrate molecular alterations in the primary auditory cortex. © The Author(s) 2015.

  20. Interactions between mRNA export commitment, 3'-end quality control, and nuclear degradation

    DEFF Research Database (Denmark)

    Libri, Domenico; Dower, Ken; Boulay, Jocelyne

    2002-01-01

    Several aspects of eukaryotic mRNA processing are linked to transcription. In Saccharomyces cerevisiae, overexpression of the mRNA export factor Sub2p suppresses the growth defect of hpr1 null cells, yet the protein Hpr1p and the associated THO protein complex are implicated in transcriptional el...... results show that several classes of defective RNPs are subject to a quality control step that impedes release from transcription site foci and suggest that suboptimal messenger ribonucleoprotein assembly leads to RNA degradation by Rrp6p....

  1. Observation of H-bond mediated 3hJH2H3coupling constants across Watson-Crick AU base pairs in RNA

    International Nuclear Information System (INIS)

    Luy, Burkhard; Richter, Uwe; DeJong, Eric S.; Sorensen, Ole W.; Marino, John P.

    2002-01-01

    3h J H2H3 trans-hydrogen bond scalar coupling constants have been observed for the first time in Watson-Crick AU base pairs in uniformly 15 N-labeled RNA oligonucleotides using a new 2h J NN -HNN-E. COSY experiment. The experiment utilizes adenosine H2 (AH2) for original polarization and detection, while employing 2h J NN couplings for coherence transfer across the hydrogen bonds (H-bonds). The H3 protons of uracil bases are unperturbed throughout the experiment so that these protons appear as passive spins in E. COSY patterns. 3h J H2H3 coupling constants can therefore be accurately measured in the acquisition dimension from the displacement of the E. COSY multiplet components, which are separated by the relatively large 1 J H3N3 coupling constants in the indirect dimension of the two-dimensional experiment. The 3h J H2H3 scalar coupling constants determined for AU base pairs in the two RNA hairpins examined here have been found to be positive and range in magnitude up to 1.8 Hz. Using a molecular fragment representation of an AU base pair, density functional theory/finite field perturbation theory (DFT/FPT) methods have been applied to attempt to predict the relative contributions of H-bond length and angular geometry to the magnitude of 3h J H2H3 coupling constants. Although the DFT/FPT calculations did not reproduce the full range of magnitude observed experimentally for the 3h J H2H3 coupling constants, the calculations do predict the correct sign and general trends in variation in size of these coupling constants. The calculations suggest that the magnitude of the coupling constants depends largely on H-bond length, but can also vary with differences in base pair geometry. The dependency of the 3h J H2H3 coupling constant on H-bond strength and geometry makes it a new probe for defining base pairs in NMR studies of nucleic acids

  2. Age-hardening and related phase transformation in an experimental Ag-Cu-Pd-Au alloy

    International Nuclear Information System (INIS)

    Seol, Hyo-Joung; Lee, Doung-Hun; Lee, Hee-Kyung; Takada, Yukyo; Okuno, Osamu; Kwon, Yong Hoon; Kim, Hyung-Il

    2006-01-01

    The age-hardening behaviour, phase transformation and related microstructural changes of an experimental Ag-Cu-Pd-Au alloy were examined by means of hardness test, X-ray diffraction (XRD), scanning electron microscopic (SEM) observations and electron probe microanalysis (EPMA). The specimen alloy showed apparent age-hardenability at the aging temperatures of 350 deg. C and 400 deg. C. By aging the solution-treated specimen at 400 deg. C, two phases of the Ag-rich α 1 phase and the Pd-containing Cu-rich α 2 phase were transformed into four phases of the Ag-rich α 1 ' phase, the Cu-rich α 2 ' phase, the CsCl-type CuPd phase and the AuCu(I) ordered phase. Microstructure of the solution-treated specimen consisted of the Ag-rich α 1 matrix, Cu-rich α 2 particle-like structures of various sizes and the lamellar structure of the α 1 and α 2 phases. When the peak hardness was obtained, the very fine lamellar structure consisting of the Ag-rich α 1 ' and Cu-rich α 2 ' phases was newly formed in the matrix. By further aging, the very fine lamellar structure grew and coarsened apparently, and the matrix was covered with the coarsened lamellar structure. The hardness increase was considered to be caused mainly by the diffusion and precipitation of Cu from the Ag-rich α 1 matrix, and the hardness decrease in the latter stage of age-hardening process was caused by the coarsening of the very fine lamellar structure. The CsCl-type CuPd phase and the AuCu(I) ordered phase did not contribute to the hardness increase

  3. Messengers of the universe: Session IV Summary

    International Nuclear Information System (INIS)

    Bernardini, Elisa; Serpico, Pasquale Dario

    2013-01-01

    Being stable, light and neutral weakly interacting particles, neutrinos are ideal messengers of the deep universe and a channel of choice in particular to explore the very high energy Galactic and Extragalactic sky, playing a synergic role most notably with gamma-ray observations. Neutrino astronomy—long after the SN1987A detection in the MeV range—is mature enough for decisive tests of astrophysical paradigms. Its current status constitutes one of the two big pillars of the “Messengers of the universe” session of the Neutrino Oscillation Workshop 2012. Neutrinos may also play a role in some cosmological contexts, such as the early universe and the dark matter problem. We review both aspects in this session summary report

  4. Synthesis and crystal structure of a new Cu3Au-type ternary phase in the Au-In-Pd system: distribution of atoms over crystallographic positions.

    Science.gov (United States)

    Ptashkina, Evgeniya A; Kabanova, Elizaveta G; Tursina, Anna I; Yatsenko, Alexandr V; Kuznetsov, Victor N

    2018-03-01

    A new Cu 3 Au-type ternary phase (τ phase) is found in the AuPd-rich part of the Au-In-Pd system. It has a broad homogeneity range based on extensive (Pd,Au) and (In,Au) replacement, with the composition varying between Au 17.7 In 25.3 Pd 57.0 and Au 50.8 In 16.2 Pd 33.0 . The occupancies of the crystallographic positions were studied by single-crystal X-ray diffraction for three samples of different composition. The sites with m-3m symmetry are occupied by atoms with a smaller scattering power than the atoms located on 4/mmm sites. Two extreme structure models were refined. Within the first, the occupation type changes from (Au,In,Pd) 3 (Pd,In) to (Au,Pd) 3 (In,Pd,Au) with an increase in the Au gross content. For the second model, the occupation type (Au,In,Pd) 3 (Pd,Au) remains essentially unchanged for all Au concentrations. Although the diffraction data do not allow the choice of one of these models, the latter model, where Au substitutes In on 4/mmm sites, seems to be preferable, since it agrees with the fact that the homogeneity range of the τ phase is inclined to the Au corner and provides the same occupation type for all the studied samples of different compositions.

  5. Expression of preprotachykinin-A and neuropeptide-Y messenger RNA in the thymus.

    Science.gov (United States)

    Ericsson, A; Geenen, V; Robert, F; Legros, J J; Vrindts-Gevaert, Y; Franchimont, P; Brene, S; Persson, H

    1990-08-01

    The preprotachykinin-A gene, the common gene of mRNAs encoding both substance-P (SP) and neurokinin-A (NKA), was shown to be expressed in Sprague-Dawley rat thymus by detection of specific mRNA in gel-blot analyses. In situ hybridization revealed dispersed PPT-A-labeled cells in sections from rat thymus, with a concentration of grains over a subpopulation of cells in the thymic medulla. Also, neuropeptide-Y mRNA-expressing cells were found in the rat thymus, primarily in the thymic medulla. Rat thymic extracts contained SP-like immunoreactivity (SP-LI), and the major part of the immunoreactivity coeluted with authentic SP and SP sulfoxide standards. SP-LI was also detected in human thymus, which contained between 0.09-0.88 ng SP-LI/g wet wt. Evidence for translation of preprotachykinin-A mRNA in the rat thymus was obtained from the demonstration of NKA-LI in thymic cells with an epithelial-like cell morphology. Combined with previous observations on the immunoregulatory roles of tachykinin peptides and the existence of specific receptors on immunocompetent cells, the demonstration of intrathymic synthesis of NKA suggests a role for NKA-LI peptides in T-cell differentiation in the thymus.

  6. Effect of iodine on the corrosion of Au-Al wire bonds

    DEFF Research Database (Denmark)

    Verdingovas, Vadimas; Müller, Lutz; Jellesen, Morten Stendahl

    2015-01-01

    Corrosion study was performed on Au-Al wire bonds, thin layers of sputter deposited Au and Al, and Au-Al intermetallic nuggets. The test environment was iodine-vapour in air (1. mg/L) at 85 °C with varying relative humidity, and 500 mg/L of KI in water. GDOES, XRD, SEM EDS, wire bond shear......, and electrochemical testing were used to characterize the samples. Failures of Au-Al wire bonds were found to be primarily attributed to the corrosion of Al via formation of Al iodides and consequent formation of Al oxides and/or hydroxides. Most susceptible to corrosion are Al metallization and Al rich intermetallic...

  7. RNA Editing in Plant Mitochondria

    Science.gov (United States)

    Hiesel, Rudolf; Wissinger, Bernd; Schuster, Wolfgang; Brennicke, Axel

    1989-12-01

    Comparative sequence analysis of genomic and complementary DNA clones from several mitochondrial genes in the higher plant Oenothera revealed nucleotide sequence divergences between the genomic and the messenger RNA-derived sequences. These sequence alterations could be most easily explained by specific post-transcriptional nucleotide modifications. Most of the nucleotide exchanges in coding regions lead to altered codons in the mRNA that specify amino acids better conserved in evolution than those encoded by the genomic DNA. Several instances show that the genomic arginine codon CGG is edited in the mRNA to the tryptophan codon TGG in amino acid positions that are highly conserved as tryptophan in the homologous proteins of other species. This editing suggests that the standard genetic code is used in plant mitochondria and resolves the frequent coincidence of CGG codons and tryptophan in different plant species. The apparently frequent and non-species-specific equivalency of CGG and TGG codons in particular suggests that RNA editing is a common feature of all higher plant mitochondria.

  8. HuR binding to AU-rich elements present in the 3' untranslated region of Classical swine fever virus

    Directory of Open Access Journals (Sweden)

    Huang Chin-Cheng

    2011-07-01

    Full Text Available Abstract Background Classical swine fever virus (CSFV is the member of the genus Pestivirus under the family Flaviviridae. The 5' untranslated region (UTR of CSFV contains the IRES, which is a highly structured element that recruits the translation machinery. The 3' UTR is usually the recognition site of the viral replicase to initiate minus-strand RNA synthesis. Adenosine-uridine rich elements (ARE are instability determinants present in the 3' UTR of short-lived mRNAs. However, the presence of AREs in the 3' UTR of CSFV conserved in all known strains has never been reported. This study inspects a possible role of the ARE in the 3' UTR of CSFV. Results Using RNA pull-down and LC/MS/MS assays, this study identified at least 32 possible host factors derived from the cytoplasmic extracts of PK-15 cells that bind to the CSFV 3' UTR, one of which is HuR. HuR is known to bind the AREs and protect the mRNA from degradation. Using recombinant GST-HuR, this study demonstrates that HuR binds to the ARE present in the 3' UTR of CSFV in vitro and that the binding ability is conserved in strains irrespective of virulence. Conclusions This study identified one of the CSFV 3' UTR binding proteins HuR is specifically binding to in the ARE region.

  9. The decapping activator Edc3 and the Q/N-rich domain of Lsm4 function together to enhance mRNA stability and alter mRNA decay pathway dependence in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Susanne Huch

    2016-10-01

    Full Text Available The rate and regulation of mRNA decay are major elements in the proper control of gene expression. Edc3 and Lsm4 are two decapping activator proteins that have previously been shown to function in the assembly of RNA granules termed P bodies. Here, we show that deletion of edc3, when combined with a removal of the glutamine/asparagine rich region of Lsm4 (edc3Δ lsm4ΔC reduces mRNA stability and alters pathways of mRNA degradation. Multiple tested mRNAs exhibited reduced stability in the edc3Δ lsm4ΔC mutant. The destabilization was linked to an increased dependence on Ccr4-mediated deadenylation and mRNA decapping. Unlike characterized mutations in decapping factors that either are neutral or are able to stabilize mRNA, the combined edc3Δ lsm4ΔC mutant reduced mRNA stability. We characterized the growth and activity of the major mRNA decay systems and translation in double mutant and wild-type yeast. In the edc3Δ lsm4ΔC mutant, we observed alterations in the levels of specific mRNA decay factors as well as nuclear accumulation of the catalytic subunit of the decapping enzyme Dcp2. Hence, we suggest that the effects on mRNA stability in the edc3Δ lsm4ΔC mutant may originate from mRNA decay protein abundance or changes in mRNPs, or alternatively may imply a role for P bodies in mRNA stabilization.

  10. Phase transformations in Au(Fe) nano- and microparticles obtained by solid state dewetting of thin Au–Fe bilayer films

    International Nuclear Information System (INIS)

    Amram, D.; Klinger, L.; Rabkin, E.

    2013-01-01

    Sub-micrometer-sized particles of Au–Fe alloys were obtained by solid-state dewetting of single-crystalline Au–Fe bilayer films, deposited on c-plane sapphire (α-Al 2 O 3 ) substrates. Depending on the annealing parameters, precipitation of an Fe-rich phase occurred on the side facets of the particles in an interface-limited reaction. Based on the literature values of surface and interface energies in the system, the precipitates were expected to grow inside the Au(Fe) particles, resulting in an (Fe) core–(Au) shell morphology. However, more complex, time-dependent precipitate morphologies were observed, with faceted Fe-rich precipitates attached to the parent faceted Au-rich particles of the same height being dominant at the last stages of the transformation. Our high-resolution transmission electron microscopy observations revealed a nanometric segregation layer of Au on the surface of Fe-rich particles and at their interface with sapphire. This segregation layer modified the surface and interface energies of the Fe-rich particles. A thermodynamic transformation model based on the concept of weighted mean curvature was developed, describing the kinetics of precipitations and morphology evolution of the particles during the dewetting process. Employing the values of surface and interface energies modified by segregation resulted in a good qualitative agreement between theory and experiment

  11. Dual RNA Processing Roles of Pat1b via Cytoplasmic Lsm1-7 and Nuclear Lsm2-8 Complexes

    Directory of Open Access Journals (Sweden)

    Caroline Vindry

    2017-08-01

    Full Text Available Pat1 RNA-binding proteins, enriched in processing bodies (P bodies, are key players in cytoplasmic 5′ to 3′ mRNA decay, activating decapping of mRNA in complex with the Lsm1-7 heptamer. Using co-immunoprecipitation and immunofluorescence approaches coupled with RNAi, we provide evidence for a nuclear complex of Pat1b with the Lsm2-8 heptamer, which binds to the spliceosomal U6 small nuclear RNA (snRNA. Furthermore, we establish the set of interactions connecting Pat1b/Lsm2-8/U6 snRNA/SART3 and additional U4/U6.U5 tri-small nuclear ribonucleoprotein particle (tri-snRNP components in Cajal bodies, the site of snRNP biogenesis. RNA sequencing following Pat1b depletion revealed the preferential upregulation of mRNAs normally found in P bodies and enriched in 3′ UTR AU-rich elements. Changes in >180 alternative splicing events were also observed, characterized by skipping of regulated exons with weak donor sites. Our data demonstrate the dual role of a decapping enhancer in pre-mRNA processing as well as in mRNA decay via distinct nuclear and cytoplasmic Lsm complexes.

  12. Age-hardening and related phase transformation in an experimental Ag-Cu-Pd-Au alloy

    Energy Technology Data Exchange (ETDEWEB)

    Seol, Hyo-Joung [Department of Dental Materials, College of Dentistry, Pusan National University, 1-10 Ami-dong, Seo-gu, Pusan 602-739 (Korea, Republic of); Lee, Doung-Hun [Department of Dental Materials, College of Dentistry, Pusan National University, 1-10 Ami-dong, Seo-gu, Pusan 602-739 (Korea, Republic of); Lee, Hee-Kyung [Department of Dental Technology, Daegu Health College, San 7 Taejeon-dong, Buk-gu, Daegu 702-722 (Korea, Republic of); Takada, Yukyo [Division of Dental Biomaterials, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575 (Japan); Okuno, Osamu [Division of Dental Biomaterials, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575 (Japan); Kwon, Yong Hoon [Department of Dental Materials, College of Dentistry, Pusan National University, 1-10 Ami-dong, Seo-gu, Pusan 602-739 (Korea, Republic of); Kim, Hyung-Il [Department of Dental Materials, College of Dentistry, Pusan National University, 1-10 Ami-dong, Seo-gu, Pusan 602-739 (Korea, Republic of)]. E-mail: hilkim@pusan.ac.kr

    2006-01-05

    The age-hardening behaviour, phase transformation and related microstructural changes of an experimental Ag-Cu-Pd-Au alloy were examined by means of hardness test, X-ray diffraction (XRD), scanning electron microscopic (SEM) observations and electron probe microanalysis (EPMA). The specimen alloy showed apparent age-hardenability at the aging temperatures of 350 deg. C and 400 deg. C. By aging the solution-treated specimen at 400 deg. C, two phases of the Ag-rich {alpha}{sub 1} phase and the Pd-containing Cu-rich {alpha}{sub 2} phase were transformed into four phases of the Ag-rich {alpha}{sub 1}{sup '} phase, the Cu-rich {alpha}{sub 2}{sup '} phase, the CsCl-type CuPd phase and the AuCu(I) ordered phase. Microstructure of the solution-treated specimen consisted of the Ag-rich {alpha}{sub 1} matrix, Cu-rich {alpha}{sub 2} particle-like structures of various sizes and the lamellar structure of the {alpha}{sub 1} and {alpha}{sub 2} phases. When the peak hardness was obtained, the very fine lamellar structure consisting of the Ag-rich {alpha}{sub 1}{sup '} and Cu-rich {alpha}{sub 2}{sup '} phases was newly formed in the matrix. By further aging, the very fine lamellar structure grew and coarsened apparently, and the matrix was covered with the coarsened lamellar structure. The hardness increase was considered to be caused mainly by the diffusion and precipitation of Cu from the Ag-rich {alpha}{sub 1} matrix, and the hardness decrease in the latter stage of age-hardening process was caused by the coarsening of the very fine lamellar structure. The CsCl-type CuPd phase and the AuCu(I) ordered phase did not contribute to the hardness increase.

  13. Structure of eutectic alloys of Au with Si and Ge

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, S. [Faculty of Sciences, Kyushu University, 4-2-1, Ropponmatsu, Fukuoka 810-8560 (Japan)], E-mail: takeda@rc.kyushu-u.ac.jp; Fujii, H. [Graduate School of Sciences, Kyushu University, 4-2-1, Ropponmatsu, Fukuoka 810-8560 (Japan); Kawakita, Y. [Faculty of Sciences, Kyushu University, 4-2-1, Ropponmatsu, Fukuoka 810-8560 (Japan); Tahara, S.; Nakashima, S. [Graduate School of Sciences, Kyushu University, 4-2-1, Ropponmatsu, Fukuoka 810-8560 (Japan); Kohara, S.; Itou, M. [Japan Synchrotron Radiation Research Institute, 1-1-1 Koto Sayo-cho, Sayo Hyogo 679-5198 (Japan)

    2008-03-06

    Au-Si and Au-Ge alloy systems have a deep eutectic point in the Au-rich concentration region where the melting point falls down to 633 K. In order to investigate the liquid structure in relation to the glass-forming tendency of these alloys, high-energy X-ray diffraction measurements have been carried out at the eutectic composition and at compositions with excess amounts of Au or IVb element. The nearest neighbor correlations in the eutectic liquids are intense and sharp in the pair distribution function and exhibit a rather small temperature dependence in comparison with those alloys of other than the eutectic composition. Structural models for these liquid alloys are proposed with the aid of reverse Monte Carlo simulation. The reproduced atomic arrangements around the eutectic region exhibit a substitutional-type structure where the dense random packing of Au atoms is preserved and Si or Ge atoms occupy the Au-sites at random.

  14. Exotic high activity surface patterns in PtAu nanoclusters

    KAUST Repository

    Mokkath, Junais Habeeb

    2013-05-09

    The structure and chemical ordering of PtAu nanoclusters of 79, 135, and 201 atoms are studied via a combination of a basin hopping atom-exchange technique (to locate the lowest energy homotops at fixed composition), a symmetry orbit technique (to find the high symmetry isomers), and density functional theory local reoptimization (for determining the most stable homotop). The interatomic interactions between Pt and Au are derived from the empirical Gupta potential. The lowest energy structures show a marked tendency toward PtcoreAushell chemical ordering by enrichment of the more cohesive Pt in the core region and of Au in the shell region. We observe a preferential segregation of Pt atoms to (111) facets and Au atoms to (100) facets of the truncated octahedron cluster motif. Exotic surface patterns are obtained particularly for Pt-rich compositions, where Pt atoms are being surrounded by Au atoms. These surface arrangements boost the catalytic activity by creating a large number of active sites. © 2013 American Chemical Society.

  15. On cryptographic security of end-to-end encrypted connections in WhatsApp and Telegram messengers

    Directory of Open Access Journals (Sweden)

    Sergey V. Zapechnikov

    2017-11-01

    Full Text Available The aim of this work is to analyze the available possibilities for improving secure messaging with end-to-end connections under conditions of external violator actions and distrusted service provider. We made a comparative analysis of cryptographic security mechanisms for two widely used messengers: Telegram and WhatsApp. It was found that Telegram is based on MTProto protocol, while WhatsApp is based on the alternative Signal protocol. We examine the specific features of messengers implementation associated with random number generation on the most popular Android mobile platform. It was shown that Signal has better security properties. It is used in several other popular messengers such as TextSecure, RedPhone, GoogleAllo, FacebookMessenger, Signal along with WhatsApp. A number of possible attacks on both messengers were analyzed in details. In particular, we demonstrate that the metadata are poorly protected in both messengers. Metadata security may be one of the goals for further studies.

  16. What Might We Learn About Magnetospheric Substorms at the Earth from the MESSENGER Measurements at Mercury?

    Science.gov (United States)

    Slavin, James A.

    2008-01-01

    Satellite observations at the Earth, supported by theory and modeling, have established a close connection between the episodes of intense magnetospheric convection termed substorms and the occurrence of magnetic reconnection. Magnetic reconnection at the dayside magnetopause results in strong energy input to the magnetosphere. This energy can either be stored or used immediately to power the magnetospheric convection that produces the phenomena that collectively define the 'substorm.' However, many aspects of magnetic reconnection and the dynamic response of the coupled solar wind - magnetosphere - ionosphere system at the Earth during substorms remain poorly understood. For example, the rate of magnetic reconnection is thought to be proportional to the local Alfven speed, but the limited range of changes in this solar wind parameter at 1 AU have made it difficult to detect its influence over energy input to the Earth's magnetosphere. In addition, the electrical conductance of the ionosphere and how it changes in response to auroral charged particle precipitation are hypothesized to play a critical role in the development of substorms, but the nature of this electrodynamic interaction remain difficult to deduce from Earth observations alone. The amount of energy the terrestrial magnetosphere can store in its tail, the duration of the storage, and the trigger(s) for its dissipation are all thought to be determined by not only the microphysics of the cross-tail current layer, but also the properties of the coupled magnetosphere - ionosphere system. Again, the separation of microphysics effects from system response has proved very difficult using measurements taken only at the Earth. If MESSENGER'S charged particle and magnetic field measurements confirm the occurrence of terrestrial-style substorms in Mercury's miniature magnetosphere, then it may be possible to determine how magnetospheric convection, field-aligned currents, charged particle acceleration

  17. Growth and morphological analysis of segmented AuAg alloy nanowires created by pulsed electrodeposition in ion-track etched membranes

    Directory of Open Access Journals (Sweden)

    Ina Schubert

    2015-06-01

    Full Text Available Background: Multicomponent heterostructure nanowires and nanogaps are of great interest for applications in sensorics. Pulsed electrodeposition in ion-track etched polymer templates is a suitable method to synthesise segmented nanowires with segments consisting of two different types of materials. For a well-controlled synthesis process, detailed analysis of the deposition parameters and the size-distribution of the segmented wires is crucial.Results: The fabrication of electrodeposited AuAg alloy nanowires and segmented Au-rich/Ag-rich/Au-rich nanowires with controlled composition and segment length in ion-track etched polymer templates was developed. Detailed analysis by cyclic voltammetry in ion-track membranes, energy-dispersive X-ray spectroscopy and scanning electron microscopy was performed to determine the dependency between the chosen potential and the segment composition. Additionally, we have dissolved the middle Ag-rich segments in order to create small nanogaps with controlled gap sizes. Annealing of the created structures allows us to influence their morphology.Conclusion: AuAg alloy nanowires, segmented wires and nanogaps with controlled composition and size can be synthesised by electrodeposition in membranes, and are ideal model systems for investigation of surface plasmons.

  18. Exotic high activity surface patterns in PtAu nanoclusters

    KAUST Repository

    Mokkath, Junais Habeeb; Schwingenschlö gl, Udo

    2013-01-01

    of the truncated octahedron cluster motif. Exotic surface patterns are obtained particularly for Pt-rich compositions, where Pt atoms are being surrounded by Au atoms. These surface arrangements boost the catalytic activity by creating a large number of active

  19. On the preferential crystallographic orientation of Au nanoparticles: Effect of electrodeposition time

    International Nuclear Information System (INIS)

    El-Deab, Mohamed S.

    2009-01-01

    The crystallographic orientation of Au nanoparticles electrodeposited at glassy carbon (nano-Au/GC) electrodes (prepared by potential step electrolysis) is markedly influenced by the width of the potential step. The oxygen reduction reaction (ORR) and the reductive desorption of cysteine have been studied on nano-Au/GC electrodes. Furthermore, electron backscatter diffraction (EBSD) technique has been used to probe the crystallographic orientation of the electrodeposited Au nanoparticles. That is, Au nanoparticles prepared in short time (5-60 s) have been found rich in the Au(1 1 1) facet orientation and are characterized by a relatively small particle size (ca. 10-50 nm) as well as high particle density (number of particles per unit area) as revealed by SEM images. Whereas Au nanoparticles prepared by longer electrolysis time (>60 s) are found to be much enriched in the Au(1 0 0) and Au(1 1 0) facets and are characterized by a relatively large particle size (>100 nm). EBSD patterns provided definitive information about the crystal orientations mapping of Au nanoparticles prepared at various deposition times.

  20. Fetuin and fetuin messenger RNA in granulosa cells of the rat ovary

    DEFF Research Database (Denmark)

    Høyer, Poul Erik; Terkelsen, O B; Grete Byskov, A

    2001-01-01

    during maturation of the oocyte. We demonstrated fetuin mRNA in the rat ovary by reverse transcriptase-polymerase chain reaction and localized it by in situ hybridization. Fetuin mRNA was present in all granulosa cells of growing and large follicles. Immunohistochemical analysis revealed that the fetuin...... protein was only present in some of the small, growing follicles. In large, healthy follicles, fetuin protein was confined to cumulus cells and granulosa cells bordering the antrum. Fetuin was present in atretic follicles, but the staining pattern differed from that of healthy follicles. The follicular...... antrum contained a substantial amount of fetuin, but whether granulosa cells secreted it or it originated in the ovarian blood supply could not be confirmed. We concluded that at least a portion of the fetuin is produced by granulosa cells of growing and large follicles, suggesting that fetuin may...

  1. Single Nucleotide Polymorphisms Can Create Alternative Polyadenylation Signals and Affect Gene Expression through Loss of MicroRNA-Regulation

    Science.gov (United States)

    Thomas, Laurent F.; Sætrom, Pål

    2012-01-01

    Alternative polyadenylation (APA) can for example occur when a protein-coding gene has several polyadenylation (polyA) signals in its last exon, resulting in messenger RNAs (mRNAs) with different 3′ untranslated region (UTR) lengths. Different 3′UTR lengths can give different microRNA (miRNA) regulation such that shortened transcripts have increased expression. The APA process is part of human cells' natural regulatory processes, but APA also seems to play an important role in many human diseases. Although altered APA in disease can have many causes, we reasoned that mutations in DNA elements that are important for the polyA process, such as the polyA signal and the downstream GU-rich region, can be one important mechanism. To test this hypothesis, we identified single nucleotide polymorphisms (SNPs) that can create or disrupt APA signals (APA-SNPs). By using a data-integrative approach, we show that APA-SNPs can affect 3′UTR length, miRNA regulation, and mRNA expression—both between homozygote individuals and within heterozygote individuals. Furthermore, we show that a significant fraction of the alleles that cause APA are strongly and positively linked with alleles found by genome-wide studies to be associated with disease. Our results confirm that APA-SNPs can give altered gene regulation and that APA alleles that give shortened transcripts and increased gene expression can be important hereditary causes for disease. PMID:22915998

  2. Phosphatidic acid produced by phospholipase D promotes RNA replication of a plant RNA virus.

    Directory of Open Access Journals (Sweden)

    Kiwamu Hyodo

    2015-05-01

    Full Text Available Eukaryotic positive-strand RNA [(+RNA] viruses are intracellular obligate parasites replicate using the membrane-bound replicase complexes that contain multiple viral and host components. To replicate, (+RNA viruses exploit host resources and modify host metabolism and membrane organization. Phospholipase D (PLD is a phosphatidylcholine- and phosphatidylethanolamine-hydrolyzing enzyme that catalyzes the production of phosphatidic acid (PA, a lipid second messenger that modulates diverse intracellular signaling in various organisms. PA is normally present in small amounts (less than 1% of total phospholipids, but rapidly and transiently accumulates in lipid bilayers in response to different environmental cues such as biotic and abiotic stresses in plants. However, the precise functions of PLD and PA remain unknown. Here, we report the roles of PLD and PA in genomic RNA replication of a plant (+RNA virus, Red clover necrotic mosaic virus (RCNMV. We found that RCNMV RNA replication complexes formed in Nicotiana benthamiana contained PLDα and PLDβ. Gene-silencing and pharmacological inhibition approaches showed that PLDs and PLDs-derived PA are required for viral RNA replication. Consistent with this, exogenous application of PA enhanced viral RNA replication in plant cells and plant-derived cell-free extracts. We also found that a viral auxiliary replication protein bound to PA in vitro, and that the amount of PA increased in RCNMV-infected plant leaves. Together, our findings suggest that RCNMV hijacks host PA-producing enzymes to replicate.

  3. Templated Control of Au nanospheres in Silica Nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Tringe, J W; Vanamu, G; Zaidi, S H

    2007-03-15

    The formation of regularly-spaced metal nanostructures in selectively-placed insulating nanowires is an important step toward realization of a wide range of nano-scale electronic and opto-electronic devices. Here we report templated synthesis of Au nanospheres embedded in silica nanowires, with nanospheres consistently spaced with a period equal to three times their diameter. Under appropriate conditions, nanowires form exclusively on Si nanostructures because of enhanced local oxidation and reduced melting temperatures relative to templates with larger dimensions. We explain the spacing of the nanospheres with a general model based on a vapor-liquid-solid mechanism, in which an Au/Si alloy dendrite remains liquid in the nanotube until a critical Si concentration is achieved locally by silicon oxide-generated nanowire growth. Additional Si oxidation then locally reduces the surface energy of the Au-rich alloy by creating a new surface with minimum area inside of the nanotube. The isolated liquid domain subsequently evolves to become an Au nanosphere, and the process is repeated.

  4. Mercury's Na Exosphere from MESSENGER Data

    Science.gov (United States)

    Killen, Rosemary M.; Burger, M. H.; Cassidy, T. A.; Sarantos, M.; Vervack, R. J.; McClintock, W. El; Merkel, A. W.; Sprague, A. L.; Solomon, S. C.

    2012-01-01

    MESSENGER entered orbit about Mercury on March 18, 2011. Since then, the Ultraviolet and Visible Spectrometer (UWS) channel of MESSENGER's Mercury Atmospheric and Surface Composition Spectrometer (MASCS) has been observing Mercury's exosphere nearly continuously. Daily measurements of Na brightness were fitted with non-uniform exospheric models. With Monte Carlo sampling we traced the trajectories of a representative number of test particles, generally one million per run per source process, until photoionization, escape from the gravitational well, or permanent sticking at the surface removed the atom from the simulation. Atoms were assumed to partially thermally accommodate on each encounter with the surface with accommodation coefficient 0.25. Runs for different assumed source processes are run separately, scaled and co-added. Once these model results were saved onto a 3D grid, we ran lines of sight from the MESSENGER spacecraft :0 infinity using the SPICE kernels and we computed brightness integrals. Note that only particles that contribute to the measurement can be constrained with our method. Atoms and molecules produced on the nightside must escape the shadow in order to scatter light if the excitation process is resonant-light scattering, as assumed here. The aggregate distribution of Na atoms fits a 1200 K gas, with a PSD distribution, along with a hotter component. Our models constrain the hot component, assumed to be impact vaporization, to be emitted with a 2500 K Maxwellian. Most orbits show a dawnside enhancement in the hot component broadly spread over the leading hemisphere. However, on some dates there is no dawn/dusk asymmetry. The portion of the hot/cold source appears to be highly variable.

  5. Tumor-specific RNA interference targeting Pokemon suppresses tumor growth and induces apoptosis in prostate cancer.

    Science.gov (United States)

    Li, Yining; Xu, Shuxiong; Wang, Xiangwei; Shi, Hua; Sun, Zhaolin; Yang, Zhao

    2013-02-01

    To explore the exact mechanism of Pokemon in prostate cancer. Pokemon is a member of the POK family of transcriptional repressors. Its main function is suppression of the p14ARF (alternate reading frame) tumor suppressor gene. Although Pokemon expression has been found to be increased in various types of lymphoma, the exact mechanism of the gene in prostate cancer is not clear. In the present study, prostate cancer cells were transfected with the specific short hairpin ribonucleic acid (RNA) expression vector targeting Pokemon. The expression of Pokemon messenger RNA and its protein was detected by semiquantitative reverse transcriptase-polymerase chain reaction and Western blotting, respectively. The cell growth and cell apoptosis were also examined using the methyl thiazolyl tetrazolium assay and flow cytometry. The results demonstrated that specific RNA interference (RNAi) could decrease the expression levels of Pokemon gene messenger RNA and protein in prostate cancer cells. In addition, that specific RNAi significantly inhibited the cell proliferation and increased the apoptotic rate. In vivo experiments showed that specific RNAi inhibited the tumorigenicity of prostate cancer cells and significantly suppressed tumor growth. Therefore, an RNAi-targeted Pokemon gene strategy could be a potential approach to prostate cancer therapy. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. A conceptual model linking functional gene expression and reductive dechlorination rates of chlorinated ethenes in clay rich groundwater sediment

    DEFF Research Database (Denmark)

    Bælum, Jacob; Chambon, Julie Claire Claudia; Scheutz, Charlotte

    2013-01-01

    We used current knowledge of cellular processes involved in reductive dechlorination to develop a conceptual model to describe the regulatory system of dechlorination at the cell level; the model links bacterial growth and substrate consumption to the abundance of messenger RNA of functional gene...

  7. Real-time dynamics of RNA Polymerase II clustering in live human cells

    Science.gov (United States)

    Cisse, Ibrahim

    2014-03-01

    Transcription is the first step in the central dogma of molecular biology, when genetic information encoded on DNA is made into messenger RNA. How this fundamental process occurs within living cells (in vivo) is poorly understood,[1] despite extensive biochemical characterizations with isolated biomolecules (in vitro). For high-order organisms, like humans, transcription is reported to be spatially compartmentalized in nuclear foci consisting of clusters of RNA Polymerase II, the enzyme responsible for synthesizing all messenger RNAs. However, little is known of when these foci assemble or their relative stability. We developed an approach based on photo-activation localization microscopy (PALM) combined with a temporal correlation analysis, which we refer to as tcPALM. The tcPALM method enables the real-time characterization of biomolecular spatiotemporal organization, with single-molecule sensitivity, directly in living cells.[2] Using tcPALM, we observed that RNA Polymerase II clusters form transiently, with an average lifetime of 5.1 (+/- 0.4) seconds. Stimuli affecting transcription regulation yielded orders of magnitude changes in the dynamics of the polymerase clusters, implying that clustering is regulated and plays a role in the cells ability to effect rapid response to external signals. Our results suggest that the transient crowding of enzymes may aid in rate-limiting steps of genome regulation.

  8. Hg(2+) detection using a phosphorothioate RNA probe adsorbed on graphene oxide and a comparison with thymine-rich DNA.

    Science.gov (United States)

    Huang, Po-Jung Jimmy; van Ballegooie, Courtney; Liu, Juewen

    2016-06-07

    Mercury is a highly toxic heavy metal and many DNA-based biosensors have been recently developed for Hg(2+) detection in water. Among them, thymine-rich DNA is the most commonly used for designing Hg(2+) sensors. However, the thymine-Hg(2+) interaction is strongly affected by the buffer conditions. We recently reported a molecular beacon containing phosphorothioate (PS)-modified RNA linkages that can be cleaved by Hg(2+). In this work, the fluorescence quenching and DNA adsorption properties of nano-sized graphene oxide (NGO) were used to develop a new sensor using the PS-RNA chemistry. Three DNA probes, containing one, three and five PS-RNA linkages, respectively, were tested. Finally, a fluorophore-labeled poly-A DNA with five PS-RNA linkages was selected and adsorbed by NGO. In the presence of Hg(2+), the fluorophore was released from NGO due to the cleavage reaction, resulting in a fluorescence enhancement. This sensor is highly selective for Hg(2+) with a detection limit of 8.5 nM Hg(2+). For comparison, a fluorophore-labeled poly-T DNA was also tested, which responded to Hg(2+) more slowly and was inhibited by high NaCl concentrations, while the PS-RNA probe was more tolerant to different buffer conditions. This work indicates a new method for interfacing DNA with NGO for Hg(2+) detection.

  9. Computational and Empirical Trans-hydrogen Bond Deuterium Isotope Shifts Suggest that N1-N3 A:U Hydrogen Bonds of RNA are Shorter than those of A:T Hydrogen Bonds of DNA

    International Nuclear Information System (INIS)

    Kim, Yong-Ick; Manalo, Marlon N.; Perez, Lisa M.; LiWang, Andy

    2006-01-01

    Density functional theory calculations of isolated Watson-Crick A:U and A:T base pairs predict that adenine 13 C2 trans-hydrogen bond deuterium isotope shifts due to isotopic substitution at the pyrimidine H3, 2h Δ 13 C2, are sensitive to the hydrogen-bond distance between the N1 of adenine and the N3 of uracil or thymine, which supports the notion that 2h Δ 13 C2 is sensitive to hydrogen-bond strength. Calculated 2h Δ 13 C2 values at a given N1-N3 distance are the same for isolated A:U and A:T base pairs. Replacing uridine residues in RNA with 5-methyl uridine and substituting deoxythymidines in DNA with deoxyuridines do not statistically shift empirical 2h Δ 13 C2 values. Thus, we show experimentally and computationally that the C7 methyl group of thymine has no measurable affect on 2h Δ 13 C2 values. Furthermore, 2h Δ 13 C2 values of modified and unmodified RNA are more negative than those of modified and unmodified DNA, which supports our hypothesis that RNA hydrogen bonds are stronger than those of DNA. It is also shown here that 2h Δ 13 C2 is context dependent and that this dependence is similar for RNA and DNA

  10. HuR/ELAVL1 RNA binding protein modulates interleukin-8 induction by muco-active ribotoxin deoxynivalenol

    International Nuclear Information System (INIS)

    Choi, Hye Jin; Yang, Hyun; Park, Seong Hwan; Moon, Yuseok

    2009-01-01

    HuR/Elav-like RNA binding protein 1 (ELAVL1) positively regulates mRNA stability of AU-rich elements (ARE)-containing transcript such as pro-inflammatory cytokines. Ribotoxic stresses can trigger the production of pro-inflammatory mediators by enhancing mRNA stability and the transcriptional activity. We investigated the effects of ribotoxin deoxynivalenol (DON) on HuR translocation and its involvement in the regulation of the pro-inflammatory interleukin-8 (IL-8) mRNA stability. Exposure to the muco-active DON induced nuclear export of both endogenous and exogenous HuR RNA binding protein in human intestinal epithelial cells. Moreover, the interference with HuR protein production suppressed ribotoxic DON-induced IL-8 secretion and its mRNA stability. Cytoplasmic HuR protein interacted with IL-8 mRNA and the complex stabilization was due to the presence of 3'-untranslated region of the transcript. Partly in terms of IL-8-modulating transcription factors, HuR protein was demonstrated to be positively and negatively associated with DON-induced early growth response gene 1 (EGR-1) and activating transcription factor 3 (ATF3), respectively. HuR was a critical mechanistic link between ribotoxic stress and the pro-inflammatory cytokine production, and may have a broader functional significance with regard to mucosal insults since ribotoxic stress responses are also produced upon interactions with the diverse environment of gut.

  11. Maintenance of the marginal zone B cell compartment specifically requires the RNA-binding protein ZFP36L1

    Science.gov (United States)

    Newman, Rebecca; Ahlfors, Helena; Saveliev, Alexander; Galloway, Alison; Hodson, Daniel J; Williams, Robert; Besra, Gurdyal S.; Cook, Charlotte N; Cunningham, Adam F; Bell, Sarah E; Turner, Martin

    2017-01-01

    RNA binding proteins (RBP) of the ZFP36 family are best known for inhibiting the expression of cytokines through binding to AU rich elements in the 3’UTR and promoting mRNA decay. Here we show an indispensible role for ZFP36L1 as the regulator of a post-transcriptional hub that determined the identity of marginal zone (MZ) B cells by promoting their proper localization and survival. ZFP36L1 controlled a gene expression program related to signaling, cell-adhesion and locomotion, in part by limiting the expression of the transcription factors KLF2 and IRF8, which are known to enforce the follicular B cell phenotype. These mechanisms emphasize the importance of integrating transcriptional and post-transcriptional processes by RBP for maintaining cellular identity between closely related cell types. PMID:28394372

  12. Generalized messengers of supersymmetry breaking and the sparticle mass spectrum

    International Nuclear Information System (INIS)

    Martin, S.P.

    1997-01-01

    We investigate the sparticle spectrum in models of gauge-mediated supersymmetry breaking. In these models, supersymmetry is spontaneously broken at an energy scale only a few orders of magnitude above the electroweak scale. The breakdown of supersymmetry is communicated to the standard model particles and their superpartners by open-quotes messengerclose quotes fields through their ordinary gauge interactions. We study the effects of a messenger sector in which the supersymmetry-violating F-term contributions to messenger scalar masses are comparable to the supersymmetry-preserving ones. We also argue that it is not particularly natural to restrict attention to models in which the messenger fields lie in complete SU(5) ground unified theory multiplets, and we identify a much larger class of viable models. Remarkably, however, we find that the superpartner mass parameters in these models are still subject to many significant contraints. copyright 1997 The American Physical Society

  13. Dissecting mechanisms of nuclear mRNA surveillance in THO/sub2 complex mutants

    DEFF Research Database (Denmark)

    Rougemaille, Mathieu; Gudipati, Rajani Kanth; Olesen, Jens Raabjerg

    2007-01-01

    by appending oligo(A)-tails onto structured substrates. Another role of the nuclear exosome is that of mRNA surveillance. In strains harboring a mutated THO/Sub2p system, involved in messenger ribonucleoprotein particle biogenesis and nuclear export, the exosome-associated 3' 5' exonuclease Rrp6p is required...

  14. The Gravity Field of Mercury After the Messenger Low-Altitude Campaign

    Science.gov (United States)

    Mazarico, Erwan; Genova, Antonio; Goossens, Sander; Lemoine, Frank G.; Smith, David E.; Zuber, Maria T.; Neumann, Gary A.; Solomon, Sean C.

    2015-01-01

    The final year of the MESSENGER mission was designed to take advantage of the remaining propellant onboard to provide a series of lowaltitude observation campaigns and acquire novel scientific data about the innermost planet. The lower periapsis altitude greatly enhances the sensitivity to the short-wavelength gravity field, but only when the spacecraft is in view of Earth. After more than 3 years in orbit around Mercury, the MESSENGER spacecraft was tracked for the first time below 200-km altitude on 5 May 2014 by the NASA Deep Space Network (DSN). Between August and October, periapsis passages down to 25-km altitude were routinely tracked. These periods considerably improved the quality of the data coverage. Before the end of its mission, MESSENGER will fly at very low altitudes for extended periods of time. Given the orbital geometry, however the periapses will not be visible from Earth and so no new tracking data will be available for altitudes lower than 75 km. Nevertheless, the continuous tracking of MESSENGER in the northern hemisphere will help improve the uniformity of the spatial coverage at altitudes lower than 150 km, which will further improve the overall quality of the Mercury gravity field.

  15. Messenger RNA biomarker signatures for forensic body fluid identification revealed by targeted RNA sequencing.

    Science.gov (United States)

    Hanson, E; Ingold, S; Haas, C; Ballantyne, J

    2018-05-01

    The recovery of a DNA profile from the perpetrator or victim in criminal investigations can provide valuable 'source level' information for investigators. However, a DNA profile does not reveal the circumstances by which biological material was transferred. Some contextual information can be obtained by a determination of the tissue or fluid source of origin of the biological material as it is potentially indicative of some behavioral activity on behalf of the individual that resulted in its transfer from the body. Here, we sought to improve upon established RNA based methods for body fluid identification by developing a targeted multiplexed next generation mRNA sequencing assay comprising a panel of approximately equal sized gene amplicons. The multiplexed biomarker panel includes several highly specific gene targets with the necessary specificity to definitively identify most forensically relevant biological fluids and tissues (blood, semen, saliva, vaginal secretions, menstrual blood and skin). In developing the biomarker panel we evaluated 66 gene targets, with a progressive iteration of testing target combinations that exhibited optimal sensitivity and specificity using a training set of forensically relevant body fluid samples. The current assay comprises 33 targets: 6 blood, 6 semen, 6 saliva, 4 vaginal secretions, 5 menstrual blood and 6 skin markers. We demonstrate the sensitivity and specificity of the assay and the ability to identify body fluids in single source and admixed stains. A 16 sample blind test was carried out by one lab with samples provided by the other participating lab. The blinded lab correctly identified the body fluids present in 15 of the samples with the major component identified in the 16th. Various classification methods are being investigated to permit inference of the body fluid/tissue in dried physiological stains. These include the percentage of reads in a sample that are due to each of the 6 tissues/body fluids tested and

  16. 12 CFR 7.1012 - Messenger service.

    Science.gov (United States)

    2010-01-01

    ... service” means any service, such as a courier service or armored car service, used by a national bank and... service do not advertise, or otherwise represent, that the bank itself is providing the service, although the bank may advertise that its customers may use one or more third party messenger services to...

  17. Changes in growth hormone (GH) messenger RNA (GH mRNA) expression in the rat anterior pituitary after single interferon (IFN) alpha administration

    International Nuclear Information System (INIS)

    Romanowski, W.; Braczkowski, R.; Nowakowska-Zajdel, E.; Muc-Wierzgon, M.; Zubelewicz-Szkodzinska, B.; Kosiewicz, J.; Korzonek, I.

    2006-01-01

    Introduction: Interferon a (IFN-a) is a cytokine with pleiotropic effects which, via different pathways, influences the secretion of certain cytokines and hormones. Growth hormone (GH) secreted from the pituitary has physiological effects on various target tissues. The question is how IFN-a administered in various types of disease influences GH secretion. This study investigated the acute effect of IFN-a on GH mRNA expression in the rat anterior pituitary. Objective: The aim of the study was to measure the cellular expression of GH mRNA by in situ hybridisation in the anterior pituitary after a single administration of IFN-a. Material and methods: Rats were administered an intraperitoneal injection of IFN-a or saline. The rat pituitaries were taken 2 and 4 hours after IFN/saline administration and kept frozen until in situ hybridisation histochemistry. A 31 - base 35S -labelled oligonucleotide probe complementary to part of the exonic mRNA sequence coding for GH mRNA was used. All control and experimental sections were hybridised in the same hybridisation reaction. Results: Acute administration of interferon a increased GH mRNA expression in the anterior pituitary in the 4-hour group in comparison with the control group, and there was no difference between the control group and the 2-hour rats. Conclusion: A single IFN-a administration was found to exert an influence on anterior pituitary GH mRNA expression. These observations may pave the way for presenting a possible new action of IFN-a. (author) GH mRNA, anterior pituitary, interferon

  18. Basic science for the clinician 49: expanding the description of the RNA universe.

    Science.gov (United States)

    Sigal, Leonard H

    2009-03-01

    We have come a long way in paying RNA its due respect. Originally thought to be nothing more than a shuttle of information from DNA to protein, a bearer of amino acids to the ribosome, and a splicer of messenger RNA, we now know that other RNA species are pivotal in controlling cellular functions that assure normal development and differentiation of immune cells, modulation of inflammatory mechanisms, control of proliferation of a number of hematologic lineages, and spermatogenesis (clearly, vital for the maintenance of the species!). In the future, ribozymes, antisense RNA and oligonucleotides, decoy RNA, peptide-nucleic acid chimeras, and other RNAs will probably be part of the routine armamentarium in a variety of medical practices. Targeting these to the appropriate cell may allow for highly directed therapies, maximizing efficacy and minimizing toxicity. It is a new world, an RNA world, and we will all benefit from the insights broadly outlined in this article. When I was in college and medical school, RNA was known to come in only a few varieties. There was messenger RNA, ribosomal RNA, transfer RNA, and double-stranded RNA in some viruses. And that was that! My, how times have changed!! The truth, as always, is much more complicated than we had thought. We now know that RNA is involved in splicing of mRNA and in cleaving RNA. And, recent studies have revealed even more: DNA transcription, mRNA stability, and levels of protein synthesis are all, to some degree, controlled by an entirely different set of RNAs, such as small RNAs, which come in at least 3 different broad varieties. Thus, there are now at least 10 varieties of RNAs of which I am aware at the time I write these words, and who is to say that there are not more out there? Just as the entire repertoire of the known classes of small RNAs has not yet been described, there may be different RNAs out there yet to be identified. If, in fact, the bio-universe was initially determined by RNA, not DNA, there

  19. MESSENGER: Exploring Mercury's Magnetosphere

    Science.gov (United States)

    Slavin, James A.

    2008-01-01

    The MESSENGER mission to Mercury offers our first opportunity to explore this planet's miniature magnetosphere since Mariner 10's brief fly-bys in 1974-5. Mercury's magnetosphere is unique in many respects. The magnetosphere of Mercury is the smallest in the solar system with its magnetic field typically standing off the solar wind only - 1000 to 2000 km above the surface. For this reason there are no closed dri-fi paths for energetic particles and, hence, no radiation belts; the characteristic time scales for wave propagation and convective transport are short possibly coupling kinetic and fluid modes; magnetic reconnection at the dayside magnetopause may erode the subsolar magnetosphere allowing solar wind ions to directly impact the dayside regolith; inductive currents in Mercury's interior should act to modify the solar In addition, Mercury's magnetosphere is the only one with its defining magnetic flux tubes rooted in a planetary regolith as opposed to an atmosphere with a conductive ionosphere. This lack of an ionosphere is thought to be the underlying reason for the brevity of the very intense, but short lived, approx. 1-2 min, substorm-like energetic particle events observed by Mariner 10 in Mercury's magnetic tail. In this seminar, we review what we think we know about Mercury's magnetosphere and describe the MESSENGER science team's strategy for obtaining answers to the outstanding science questions surrounding the interaction of the solar wind with Mercury and its small, but dynamic magnetosphere.

  20. Impairment of FOS mRNA stabilization following translation arrest in granulocytes from myelodysplastic syndrome patients.

    Science.gov (United States)

    Feng, Xiaomin; Shikama, Yayoi; Shichishima, Tsutomu; Noji, Hideyoshi; Ikeda, Kazuhiko; Ogawa, Kazuei; Kimura, Hideo; Takeishi, Yasuchika; Kimura, Junko

    2013-01-01

    Although quantitative and qualitative granulocyte defects have been described in myelodysplastic syndromes (MDS), the underlying molecular basis of granulocyte dysfunction in MDS is largely unknown. We recently found that FOS mRNA elevation under translation-inhibiting stimuli was significantly smaller in granulocytes from MDS patients than in healthy individuals. The aim of this study is to clarify the cause of the impaired FOS induction in MDS. We first examined the mechanisms of FOS mRNA elevation using granulocytes from healthy donors cultured with the translation inhibitor emetine. Emetine increased both transcription and mRNA stability of FOS. p38 MAPK inhibition abolished the emetine-induced increase of FOS transcription but did not affect FOS mRNA stabilization. The binding of an AU-rich element (ARE)-binding protein HuR to FOS mRNA containing an ARE in 3'UTR was increased by emetine, and the knockdown of HuR reduced the FOS mRNA stabilizing effect of emetine. We next compared the emetine-induced transcription and mRNA stabilization of FOS between MDS patients and healthy controls. Increased rates of FOS transcription by emetine were similar in MDS and controls. In the absence of emetine, FOS mRNA decayed to nearly 17% of initial levels in 45 min in both groups. In the presence of emetine, however, 76.7±19.8% of FOS mRNA remained after 45 min in healthy controls, versus 37.9±25.5% in MDS (Pknowledge, this is the first report demonstrating attenuation of stress-induced FOS mRNA stabilization in MDS granulocytes.

  1. Extremely Re-Rich Molybdenite from Porphyry Cu-Mo-Au Prospects in Northeastern Greece: Mode of Occurrence, Causes of Enrichment, and Implications for Gold Exploration

    Directory of Open Access Journals (Sweden)

    Tamara Kartal

    2013-05-01

    Full Text Available Extremely Re-rich molybdenite occurs with pyrite in sodic–calcic, sodic–sericitic and sericitic-altered porphyritic stocks of granodioritic–tonalitic and granitic composition in the Sapes–Kirki–Esymi, Melitena and Maronia areas, northeastern Greece. Molybdenite in the Pagoni Rachi and Sapes deposits is spatially associated with rheniite, as well as with intermediate (Mo,ReS2 and (Re,MoS2 phases, with up to 46 wt % Re. Nanodomains and/or microinclusions of rheniite may produce the observed Re enrichment in the intermediate molybdenite–rheniite phases. The extreme Re content in molybdenite and the unique presence of rheniite in porphyry-type mineralization, combined with preliminary geochemical data (Cu/Mo ratio, Au grades may indicate that these deposits have affinities with Cu–Au deposits, and should be considered potential targets for gold mineralization in the porphyry environment. In the post-subduction tectonic regime of northern Greece, the extreme Re and Te enrichments in the magmatic-hydrothermal systems over a large areal extent are attributed to an anomalous source (e.g., chemical inhomogenities in the mantle-wedge triggered magmatism, although local scale processes cannot be underestimated.

  2. Multi-Messenger Astronomy with Gravitational Waves

    Indian Academy of Sciences (India)

    Sound + images show Bailey was out in the India-Australia match on 12 Jan 2016. Image credit: Rediff / Fox news / Twitter. Page 10. Electromagnetic follow up: the Indian context. Page 11. Multi-Messenger Astronomy with Gravitational Waves | LIGO-G1601377-v2. Varun Bhalerao (IUCAA) | 1 July 2016. 11. 20 – 60 keV:.

  3. Multi-Messenger Astronomy and Dark Matter

    Science.gov (United States)

    Bergström, Lars

    This chapter presents the elaborated lecture notes on Multi-Messenger Astronomy and Dark Matter given by Lars Bergström at the 40th Saas-Fee Advanced Course on "Astrophysics at Very High Energies". One of the main problems of astrophysics and astro-particle physics is that the nature of dark matter remains unsolved. There are basically three complementary approaches to try to solve this problem. One is the detection of new particles with accelerators, the second is the observation of various types of messengers from radio waves to gamma-ray photons and neutrinos, and the third is the use of ingenious experiments for direct detection of dark matter particles. After giving an introduction to the particle universe, the author discusses the relic density of particles, basic cross sections for neutrinos and gamma-rays, supersymmetric dark matter, detection methods for neutralino dark matter, particular dark matter candidates, the status of dark matter detection, a detailled calculation on an hypothetical "Saas-Fee Wimp", primordial black holes, and gravitational waves.

  4. Altered expression of circulating microRNA in plasma of patients with primary osteoarthritis and in silico analysis of their pathways.

    Directory of Open Access Journals (Sweden)

    Verónica M Borgonio Cuadra

    Full Text Available OBJECTIVE: To analyze a set of circulating microRNA (miRNA in plasma from patients with primary Osteoarthritis (OA and describe the biological significance of altered miRNA in OA based on an in silico analysis of their target genes. METHODS: miRNA expression was analyzed using TaqMan Low Density Arrays and independent assays. The search for potential messenger RNA (mRNA targets of the differentially expressed miRNA was performed by means of the miRWalk and miRecords database; we conducted the biological relevance of the predicted miRNA targets by pathway analysis with the Reactome and DAVID databases. RESULTS: We measured the expression of 380 miRNA in OA; 12 miRNA were overexpressed under the OA condition (p value, ≤0.05; fold change, >2. These results were validated by the detection of some selected miRNA by quantitative PCR (qPCR. In silico analysis showed that target messenger RNA (mRNA were potentially regulated by these miRNA, including genes such as SMAD1, IL-1B, COL3A, VEGFA, and FGFR1, important in chondrocyte maintenance and differentiation. Some metabolic pathways affected by the miRNA: mRNA ratio are signaling Bone morphogenetic proteins (BMP, Platelet-derived growth factor (PDGF, and Nerve growth factor (NGF, these latter two involved in the process of pain. CONCLUSIONS: We identified 12 miRNA in the plasma of patients with primary OA. Specific miRNA that are altered in the disease could be released into plasma, either due to cartilage damage or to an inherent cellular mechanism. Several miRNA could regulate genes and pathways related with development of the disease; eight of these circulating miRNA are described, to our knowledge, for first time in OA.

  5. Biophysical Characterization of G-Quadruplex Recognition in the PITX1 mRNA by the Specificity Domain of the Helicase RHAU.

    Directory of Open Access Journals (Sweden)

    Emmanuel O Ariyo

    Full Text Available Nucleic acids rich in guanine are able to fold into unique structures known as G-quadruplexes. G-quadruplexes consist of four tracts of guanylates arranged in parallel or antiparallel strands that are aligned in stacked G-quartet planes. The structure is further stabilized by Hoogsteen hydrogen bonds and monovalent cations centered between the planes. RHAU (RNA helicase associated with AU-rich element is a member of the ATP-dependent DExH/D family of RNA helicases and can bind and resolve G-quadruplexes. RHAU contains a core helicase domain with an N-terminal extension that enables recognition and full binding affinity to RNA and DNA G-quadruplexes. PITX1, a member of the bicoid class of homeobox proteins, is a transcriptional activator active during development of vertebrates, chiefly in the anterior pituitary gland and several other organs. We have previously demonstrated that RHAU regulates PITX1 levels through interaction with G-quadruplexes at the 3'-end of the PITX1 mRNA. To understand the structural basis of G-quadruplex recognition by RHAU, we characterize a purified minimal PITX1 G-quadruplex using a variety of biophysical techniques including electrophoretic mobility shift assays, UV-VIS spectroscopy, circular dichroism, dynamic light scattering, small angle X-ray scattering and nuclear magnetic resonance spectroscopy. Our biophysical analysis provides evidence that the RNA G-quadruplex, but not its DNA counterpart, can adopt a parallel orientation, and that only the RNA can interact with N-terminal domain of RHAU via the tetrad face of the G-quadruplex. This work extends our insight into how the N-terminal region of RHAU recognizes parallel G-quadruplexes.

  6. Inhibition of Xenograft tumor growth by gold nanoparticle-DNA oligonucleotide conjugates-assisted delivery of BAX mRNA.

    Directory of Open Access Journals (Sweden)

    Ji-Hyun Yeom

    Full Text Available Use of non-biological agents for mRNA delivery into living systems in order to induce heterologous expression of functional proteins may provide more advantages than the use of DNA and/or biological vectors for delivery. However, the low efficiency of mRNA delivery into live animals, using non-biological systems, has hampered the use of mRNA as a therapeutic molecule. Here, we show that gold nanoparticle-DNA oligonucleotide (AuNP-DNA conjugates can serve as universal vehicles for more efficient delivery of mRNA into human cells, as well as into xenograft tumors generated in mice. Injections of BAX mRNA loaded on AuNP-DNA conjugates into xenograft tumors resulted in highly efficient mRNA delivery. The delivered mRNA directed the efficient production of biologically functional BAX protein, a pro-apoptotic factor, consequently inhibiting tumor growth. These results demonstrate that mRNA delivery by AuNP-DNA conjugates can serve as a new platform for the development of safe and efficient gene therapy.

  7. MCT-1 protein interacts with the cap complex and modulates messenger RNA translational profiles

    DEFF Research Database (Denmark)

    Reinert, Line; Shi, B; Nandi, S

    2006-01-01

    MCT-1 is an oncogene that was initially identified in a human T cell lymphoma and has been shown to induce cell proliferation as well as activate survival-related pathways. MCT-1 contains the PUA domain, a recently described RNA-binding domain that is found in several tRNA and rRNA modification...... enzymes. Here, we established that MCT-1 protein interacts with the cap complex through its PUA domain and recruits the density-regulated protein (DENR/DRP), containing the SUI1 translation initiation domain. Through the use of microarray analysis on polysome-associated mRNAs, we showed that up......-regulation of MCT-1 was able to modulate the translation profiles of BCL2L2, TFDP1, MRE11A, cyclin D1, and E2F1 mRNAs, despite equivalent levels of mRNAs in the cytoplasm. Our data establish a role for MCT-1 in translational regulation, and support a linkage between translational control and oncogenesis....

  8. Phenomenologies of Higgs messenger models

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Sibo; Yu Yao; Wu Xinggang [Department of Physics, Chongqing University, Chongqing 401331 (China)

    2011-08-11

    In this Letter, we investigate the phenomenologies of models where the Higgs sector plays the role of messengers in gauge mediation. The minimal Higgs sector and its extension are considered respectively. We find that there exist viable models when an appropriate parity is imposed. Phenomenological features in these kind of models include three sum rules for scalar masses, light gluino as well as one-loop {mu} and two-loop B{mu} terms.

  9. Structural and optical studies of Au doped titanium oxide films

    International Nuclear Information System (INIS)

    Alves, E.; Franco, N.; Barradas, N.P.; Nunes, B.; Lopes, J.; Cavaleiro, A.; Torrell, M.; Cunha, L.; Vaz, F.

    2012-01-01

    Thin films of TiO 2 were doped with Au by ion implantation and in situ during the deposition. The films were grown by reactive magnetron sputtering and deposited in silicon and glass substrates at a temperature around 150 °C. The undoped films were implanted with Au fluences in the range of 5 × 10 15 Au/cm 2 –1 × 10 17 Au/cm 2 with a energy of 150 keV. At a fluence of 5 × 10 16 Au/cm 2 the formation of Au nanoclusters in the films is observed during the implantation at room temperature. The clustering process starts to occur during the implantation where XRD estimates the presence of 3–5 nm precipitates. After annealing in a reducing atmosphere, the small precipitates coalesce into larger ones following an Ostwald ripening mechanism. In situ XRD studies reveal that Au atoms start to coalesce at 350 °C, reaching the precipitates dimensions larger than 40 nm at 600 °C. Annealing above 700 °C promotes drastic changes in the Au profile of in situ doped films with the formation of two Au rich regions at the interface and surface respectively. The optical properties reveal the presence of a broad band centered at 550 nm related to the plasmon resonance of gold particles visible in AFM maps.

  10. Complex degradation processes lead to non-exponential decay patterns and age-dependent decay rates of messenger RNA.

    Directory of Open Access Journals (Sweden)

    Carlus Deneke

    Full Text Available Experimental studies on mRNA stability have established several, qualitatively distinct decay patterns for the amount of mRNA within the living cell. Furthermore, a variety of different and complex biochemical pathways for mRNA degradation have been identified. The central aim of this paper is to bring together both the experimental evidence about the decay patterns and the biochemical knowledge about the multi-step nature of mRNA degradation in a coherent mathematical theory. We first introduce a mathematical relationship between the mRNA decay pattern and the lifetime distribution of individual mRNA molecules. This relationship reveals that the mRNA decay patterns at steady state expression level must obey a general convexity condition, which applies to any degradation mechanism. Next, we develop a theory, formulated as a Markov chain model, that recapitulates some aspects of the multi-step nature of mRNA degradation. We apply our theory to experimental data for yeast and explicitly derive the lifetime distribution of the corresponding mRNAs. Thereby, we show how to extract single-molecule properties of an mRNA, such as the age-dependent decay rate and the residual lifetime. Finally, we analyze the decay patterns of the whole translatome of yeast cells and show that yeast mRNAs can be grouped into three broad classes that exhibit three distinct decay patterns. This paper provides both a method to accurately analyze non-exponential mRNA decay patterns and a tool to validate different models of degradation using decay data.

  11. Astronomy's New Messengers: A traveling exhibit on gravitational-wave physics

    International Nuclear Information System (INIS)

    Cavaglia, Marco; Hendry, Martin; Marka, Szabolcs; Reitze, David H; Riles, Keith

    2010-01-01

    The Laser Interferometer Gravitational-wave Observatory exhibit Astronomy's New Messengers: Listening to the Universe with Gravitational Waves is traveling to colleges, universities, museums and other public institutions throughout the United States. Astronomy's New Messengers primarily communicates with an adolescent and young adult audience, potentially inspiring them into the field of science. Acknowledging that this audience is traditionally a difficult one to attract, the exhibit publicly announces itself in a charismatic fashion to reach its principal goals of broadening the community of people interested in science and encouraging interest in science among young people.

  12. FMRP acts as a key messenger for dopamine modulation in the forebrain.

    Science.gov (United States)

    Wang, Hansen; Wu, Long-Jun; Kim, Susan S; Lee, Frank J S; Gong, Bo; Toyoda, Hiroki; Ren, Ming; Shang, Yu-Ze; Xu, Hui; Liu, Fang; Zhao, Ming-Gao; Zhuo, Min

    2008-08-28

    The fragile X mental retardation protein (FMRP) is an RNA-binding protein that controls translational efficiency and regulates synaptic plasticity. Here, we report that FMRP is involved in dopamine (DA) modulation of synaptic potentiation. AMPA glutamate receptor subtype 1 (GluR1) surface expression and phosphorylation in response to D1 receptor stimulation were reduced in cultured Fmr1(-/-) prefrontal cortex (PFC) neurons. Furthermore, D1 receptor signaling was impaired, accompanied by D1 receptor hyperphosphorylation at serine sites and subcellular redistribution of G protein-coupled receptor kinase 2 (GRK2) in both PFC and striatum of Fmr1(-/-) mice. FMRP interacted with GRK2, and pharmacological inhibition of GRK2 rescued D1 receptor signaling in Fmr1(-/-) neurons. Finally, D1 receptor agonist partially rescued hyperactivity and enhanced the motor function of Fmr1(-/-) mice. Our study has identified FMRP as a key messenger for DA modulation in the forebrain and may provide insights into the cellular and molecular mechanisms underlying fragile X syndrome.

  13. Soilborne wheat mosaic virus (SBWMV 19K protein belongs to a class of cysteine rich proteins that suppress RNA silencing

    Directory of Open Access Journals (Sweden)

    Howard Amanda

    2005-03-01

    Full Text Available Abstract Amino acid sequence analyses indicate that the Soilborne wheat mosaic virus (SBWMV 19K protein is a cysteine-rich protein (CRP and shares sequence homology with CRPs derived from furo-, hordei-, peclu- and tobraviruses. Since the hordei- and pecluvirus CRPs were shown to be pathogenesis factors and/or suppressors of RNA silencing, experiments were conducted to determine if the SBWMV 19K CRP has similar activities. The SBWMV 19K CRP was introduced into the Potato virus X (PVX viral vector and inoculated to tobacco plants. The SBWMV 19K CRP aggravated PVX-induced symptoms and restored green fluorescent protein (GFP expression to GFP silenced tissues. These observations indicate that the SBWMV 19K CRP is a pathogenicity determinant and a suppressor of RNA silencing.

  14. Light third-generation squarks from flavour gauge messengers

    International Nuclear Information System (INIS)

    Brümmer, Felix; McGarrie, Moritz; Weiler, Andreas

    2014-01-01

    We study models of gauge-mediated supersymmetry breaking with a gauged horizontal SU(3) F symmetry acting on the quark superfields. If SU(3) F is broken non-supersymmetrically by F-term vacuum expectation values, the massive gauge bosons and gauginos become messengers for SUSY breaking mediation. These gauge messenger fields induce a flavour-dependent, negative contribution to the soft masses of the squarks at one loop. In combination with the soft terms from standard gauge mediation, one obtains large and degenerate first- and second-generation squark masses, while the stops and sbottoms are light. We discuss the implications of this mechanism for the superparticle spectrum and for flavour precision observables. We also provide an explicit realization in a model with simultaneous SUSY and SU(3) F breaking

  15. Light third-generation squarks from flavour gauge messengers

    International Nuclear Information System (INIS)

    Bruemmer, Felix; McGarrie, Moritz; Univ. of the Witwatersrand, Johannesburg; Weiler, Andreas; CERN - European Organization for Nuclear Research, Geneva

    2014-04-01

    We study models of gauge-mediated supersymmetry breaking with a gauged horizontal SU(3) F symmetry acting on the quark superfields. If SU(3) F is broken non-supersymmetrically by F-term vacuum expectation values, the massive gauge bosons and gauginos become messengers for SUSY breaking mediation. These gauge messenger fields induce a flavour-dependent, negative contribution to the soft masses of the squarks at one loop. In combination with the soft terms from standard gauge mediation, one obtains large and degenerate first- and second-generation squark masses, while the stops and sbottoms are light. We discuss the implications of this mechanism for the superparticle spectrum and for flavour precision observables. We also provide an explicit realization in a model with simultaneous SUSY and SU(3) F breaking.

  16. New species of RNA formed during tobacco mosaic virus infection

    Energy Technology Data Exchange (ETDEWEB)

    Siegel, A.; Hari, V.; Montgomery, I.; Kolacz, K.

    1976-01-01

    Previous investigations have demonstrated that extracts of TMV infected leaf tissue contain several unique virus related RNA species, including viral RNA, RF, RI and a low-molecular-weight component (LMC) of approximately 2.5 x 10/sup 5/ daltons. We have found that LMC becomes heavily labelled when infected tissue is incubated in the dark in the presence of actinomycin D and /sup 3/H-uridine. This component was isolated by sucrose-density gradient centrifugation and polyacrylamide gel electrophoresis and was used as a messenger in a wheat-germ derived cell-free protein synthesizing system. Analysis of the products produced by SDS-gel electrophoresis revealed a protein the same size as TMV coat protein. It was confirmed as coat protein by its reaction with specific antiserum in a gel-diffusion test. We conclude that LMC acts as a messenger for coat protein in the in vitro system and deduce that it probably does so in vivo. During the course of isolating LMC, we have observed several previously unreported new RNA species, probably unique to infected tissue. Among these are a component of approximately 1.1 x 10/sup 6/ daltons and another of a size similar to that of, but distinct from, viral RNA. There are indications that other unique RNA species may also be present and evidence for these will be presented. Our evidence to date points to the likelihood that TMV RNA may be processed into smaller pieces for translation rather than, as in the case of poliovirus, being translated into a polyprotein. It is possible that other groups of non-split genome plant viruses may behave in manner similar to that of TMV in this regard. We have observed that tobacco etch virus (a member of the Pot Y group) infected tissue also contains a component similar to that of LMC but larger (ca. 350,000 daltons). A peculiar feature of this system is that it appears to be sensitive to actinomycin D.

  17. Origins and Early Evolution of the tRNA Molecule

    Directory of Open Access Journals (Sweden)

    Koji Tamura

    2015-12-01

    Full Text Available Modern transfer RNAs (tRNAs are composed of ~76 nucleotides and play an important role as “adaptor” molecules that mediate the translation of information from messenger RNAs (mRNAs. Many studies suggest that the contemporary full-length tRNA was formed by the ligation of half-sized hairpin-like RNAs. A minihelix (a coaxial stack of the acceptor stem on the T-stem of tRNA can function both in aminoacylation by aminoacyl tRNA synthetases and in peptide bond formation on the ribosome, indicating that it may be a vestige of the ancestral tRNA. The universal CCA-3′ terminus of tRNA is also a typical characteristic of the molecule. “Why CCA?” is the fundamental unanswered question, but several findings give a comprehensive picture of its origin. Here, the origins and early evolution of tRNA are discussed in terms of various perspectives, including nucleotide ligation, chiral selectivity of amino acids, genetic code evolution, and the organization of the ribosomal peptidyl transferase center (PTC. The proto-tRNA molecules may have evolved not only as adaptors but also as contributors to the composition of the ribosome.

  18. Label-Free Platform for MicroRNA Detection Based on the Fluorescence Quenching of Positively Charged Gold Nanoparticles to Silver Nanoclusters.

    Science.gov (United States)

    Miao, Xiangmin; Cheng, Zhiyuan; Ma, Haiyan; Li, Zongbing; Xue, Ning; Wang, Po

    2018-01-16

    A novel strategy was developed for microRNA-155 (miRNA-155) detection based on the fluorescence quenching of positively charged gold nanoparticles [(+)AuNPs] to Ag nanoclusters (AgNCs). In the designed system, DNA-stabilized Ag nanoclusters (DNA/AgNCs) were introduced as fluorescent probes, and DNA-RNA heteroduplexes were formed upon the addition of target miRNA-155. Meanwhile, the (+)AuNPs could be electrostatically adsorbed on the negatively charged single-stranded DNA (ssDNA) or DNA-RNA heteroduplexes to quench the fluorescence signal. In the presence of duplex-specific nuclease (DSN), DNA-RNA heteroduplexes became a substrate for the enzymatic hydrolysis of the DNA strand to yield a fluorescence signal due to the diffusion of AgNCs away from (+)AuNPs. Under the optimal conditions, (+)AuNPs displayed very high quenching efficiency to AgNCs, which paved the way for ultrasensitive detection with a low detection limit of 33.4 fM. In particular, the present strategy demonstrated excellent specificity and selectivity toward the detection of target miRNA against control miRNAs, including mutated miRNA-155, miRNA-21, miRNA-141, let-7a, and miRNA-182. Moreover, the practical application value of the system was confirmed by the evaluation of the expression levels of miRNA-155 in clinical serum samples with satisfactory results, suggesting that the proposed sensing platform is promising for applications in disease diagnosis as well as the fundamental research of biochemistry.

  19. Guanine is indispensable for immunoglobulin switch region RNA-DNA hybrid formation

    International Nuclear Information System (INIS)

    Mizuta, Ryushin; Mizuta, Midori; Kitamura, Daisuke

    2005-01-01

    It is suggested that the formation of the switch (S) region RNA-DNA hybrid and the subsequent generation of higher-order chromatin structures including R-loop initiate a class switch recombination of the immunoglobulin gene. The primary factor of this recombination is the S-region derived noncoding RNA. However, the biochemical character of this guanine-rich (G-rich) transcript is poorly understood. The present study was performed to analyze the structure of this G-rich RNA using atomic force microscope (AFM). The in vitro transcribed S-region RNA was spread on a mica plate, air-dried and observed by non-contact mode AFM in air. The G-rich transcripts tend to aggregate on the template DNA and to generate a higher-order RNA-DNA complex. However, the transcripts that incorporated guanine analogues as substitutes for guanine neither aggregated nor generated higher-order structures. Incorporation of guanine analogues in transcribes RNA partially disrupts hydrogen bonds related to guanine, such as Watson-Crick GC-base pair and Hoogsteen bond GG-base pair. Thus, aggregation of S-region RNA and generation of the higher-order RNA-DNA complex are attributed to hydrogen bonds of guanine. (author)

  20. RNA Export through the NPC in Eukaryotes.

    Science.gov (United States)

    Okamura, Masumi; Inose, Haruko; Masuda, Seiji

    2015-03-20

    In eukaryotic cells, RNAs are transcribed in the nucleus and exported to the cytoplasm through the nuclear pore complex. The RNA molecules that are exported from the nucleus into the cytoplasm include messenger RNAs (mRNAs), ribosomal RNAs (rRNAs), transfer RNAs (tRNAs), small nuclear RNAs (snRNAs), micro RNAs (miRNAs), and viral mRNAs. Each RNA is transported by a specific nuclear export receptor. It is believed that most of the mRNAs are exported by Nxf1 (Mex67 in yeast), whereas rRNAs, snRNAs, and a certain subset of mRNAs are exported in a Crm1/Xpo1-dependent manner. tRNAs and miRNAs are exported by Xpot and Xpo5. However, multiple export receptors are involved in the export of some RNAs, such as 60S ribosomal subunit. In addition to these export receptors, some adapter proteins are required to export RNAs. The RNA export system of eukaryotic cells is also used by several types of RNA virus that depend on the machineries of the host cell in the nucleus for replication of their genome, therefore this review describes the RNA export system of two representative viruses. We also discuss the NPC anchoring-dependent mRNA export factors that directly recruit specific genes to the NPC.

  1. Rice MEL2, the RNA recognition motif (RRM) protein, binds in vitro to meiosis-expressed genes containing U-rich RNA consensus sequences in the 3'-UTR.

    Science.gov (United States)

    Miyazaki, Saori; Sato, Yutaka; Asano, Tomoya; Nagamura, Yoshiaki; Nonomura, Ken-Ichi

    2015-10-01

    Post-transcriptional gene regulation by RNA recognition motif (RRM) proteins through binding to cis-elements in the 3'-untranslated region (3'-UTR) is widely used in eukaryotes to complete various biological processes. Rice MEIOSIS ARRESTED AT LEPTOTENE2 (MEL2) is the RRM protein that functions in the transition to meiosis in proper timing. The MEL2 RRM preferentially associated with the U-rich RNA consensus, UUAGUU[U/A][U/G][A/U/G]U, dependently on sequences and proportionally to MEL2 protein amounts in vitro. The consensus sequences were located in the putative looped structures of the RNA ligand. A genome-wide survey revealed a tendency of MEL2-binding consensus appearing in 3'-UTR of rice genes. Of 249 genes that conserved the consensus in their 3'-UTR, 13 genes spatiotemporally co-expressed with MEL2 in meiotic flowers, and included several genes whose function was supposed in meiosis; such as Replication protein A and OsMADS3. The proteome analysis revealed that the amounts of small ubiquitin-related modifier-like protein and eukaryotic translation initiation factor3-like protein were dramatically altered in mel2 mutant anthers. Taken together with transcriptome and gene ontology results, we propose that the rice MEL2 is involved in the translational regulation of key meiotic genes on 3'-UTRs to achieve the faithful transition of germ cells to meiosis.

  2. Mesoporous silica nanorods toward efficient loading and intracellular delivery of siRNA

    Science.gov (United States)

    Chen, Lijue; She, Xiaodong; Wang, Tao; Shigdar, Sarah; Duan, Wei; Kong, Lingxue

    2018-02-01

    The technology of RNA interference (RNAi) that uses small interfering RNA (siRNA) to silence the gene expression with complementary messenger RNA (mRNA) sequence has great potential for the treatment of cancer in which certain genes were usually found overexpressed. However, the carry and delivery of siRNA to the target site in the human body can be challenging for this technology to be used clinically to silence the cancer-related gene expression. In this work, rod shaped mesoporous silica nanoparticles (MSNs) were developed as siRNA delivery system for specific intracellular delivery. The rod MSNs with an aspect ratio of 1.5 had a high surface area of 934.28 m2/g and achieved a siRNA loading of more than 80 mg/g. With the epidermal growth factor (EGF) grafted on the surface of the MSNs, siRNA can be delivered to the epidermal growth factor receptor (EGFR) overexpressed colorectal cancer cells with high intracellular concentration compared to MSNs without EGF and lead to survivin gene knocking down to less than 30%.

  3. Modulation of microRNA activity by semi-microRNAs (smiRNAs

    Directory of Open Access Journals (Sweden)

    Isabelle ePlante

    2012-06-01

    Full Text Available The ribonuclease Dicer plays a central role in the microRNA pathway by catalyzing the formation of 19 to 24-nucleotide (nt long microRNAs. Subsequently incorporated into Ago2 effector complexes, microRNAs are known to regulate messenger RNA (mRNA translation. Whether shorter RNA species derived from microRNAs exist and play a role in mRNA regulation remains unknown. Here, we report the serendipitous discovery of a 12-nt long RNA species corresponding to the 5’ region of the microRNA let-7, and tentatively termed semi-microRNA, or smiRNA. Using a smiRNA derived from the precursor of miR-223 as a model, we show that 12-nt long smiRNA species are devoid of any direct mRNA regulatory activity, as assessed in a reporter gene activity assay in transfected cultured human cells. However, smiR-223 was found to modulate the ability of the microRNA from which it derives to mediate translational repression or cleavage of reporter mRNAs. Our findings suggest that smiRNAs may be generated along the microRNA pathway and participate to the control of gene expression by regulating the activity of the related full-length mature microRNA in vivo.

  4. Small, synthetic, GC-rich mRNA stem-loop modules 5' proximal to the AUG start-codon predictably tune gene expression in yeast.

    Science.gov (United States)

    Lamping, Erwin; Niimi, Masakazu; Cannon, Richard D

    2013-07-29

    A large range of genetic tools has been developed for the optimal design and regulation of complex metabolic pathways in bacteria. However, fewer tools exist in yeast that can precisely tune the expression of individual enzymes in novel metabolic pathways suitable for industrial-scale production of non-natural compounds. Tuning expression levels is critical for reducing the metabolic burden of over-expressed proteins, the accumulation of toxic intermediates, and for redirecting metabolic flux from native pathways involving essential enzymes without negatively affecting the viability of the host. We have developed a yeast membrane protein hyper-expression system with critical advantages over conventional, plasmid-based, expression systems. However, expression levels are sometimes so high that they adversely affect protein targeting/folding or the growth and/or phenotype of the host. Here we describe the use of small synthetic mRNA control modules that allowed us to predictably tune protein expression levels to any desired level. Down-regulation of expression was achieved by engineering small GC-rich mRNA stem-loops into the 5' UTR that inhibited translation initiation of the yeast ribosomal 43S preinitiation complex (PIC). Exploiting the fact that the yeast 43S PIC has great difficulty scanning through GC-rich mRNA stem-loops, we created yeast strains containing 17 different RNA stem-loop modules in the 5' UTR that expressed varying amounts of the fungal multidrug efflux pump reporter Cdr1p from Candida albicans. Increasing the length of mRNA stem-loops (that contained only GC-pairs) near the AUG start-codon led to a surprisingly large decrease in Cdr1p expression; ~2.7-fold for every additional GC-pair added to the stem, while the mRNA levels remained largely unaffected. An mRNA stem-loop of seven GC-pairs (∆G = -15.8 kcal/mol) reduced Cdr1p expression levels by >99%, and even the smallest possible stem-loop of only three GC-pairs (∆G = -4.4 kcal/mol) inhibited

  5. Planetary Ions at Mercury: Unanswered Questions After MESSENGER

    Science.gov (United States)

    Raines, J. M.

    2018-05-01

    We will discuss the key open questions relating to planetary ions, including the behavior of recently created photoions, the near absence of Ca+ / K+ in MESSENGER ion measurements, and the role of ion sputtering in the system.

  6. RNA Binding of T-cell Intracellular Antigen-1 (TIA-1) C-terminal RNA Recognition Motif Is Modified by pH Conditions*

    Science.gov (United States)

    Cruz-Gallardo, Isabel; Aroca, Ángeles; Persson, Cecilia; Karlsson, B. Göran; Díaz-Moreno, Irene

    2013-01-01

    T-cell intracellular antigen-1 (TIA-1) is a DNA/RNA-binding protein that regulates critical events in cell physiology by the regulation of pre-mRNA splicing and mRNA translation. TIA-1 is composed of three RNA recognition motifs (RRMs) and a glutamine-rich domain and binds to uridine-rich RNA sequences through its C-terminal RRM2 and RRM3 domains. Here, we show that RNA binding mediated by either isolated RRM3 or the RRM23 construct is controlled by slight environmental pH changes due to the protonation/deprotonation of TIA-1 RRM3 histidine residues. The auxiliary role of the C-terminal RRM3 domain in TIA-1 RNA recognition is poorly understood, and this work provides insight into its binding mechanisms. PMID:23902765

  7. Structural and optical studies of Au doped titanium oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Alves, E., E-mail: ealves@itn.pt [Instituto Tecnologico e Nuclear (ITN), 2686-953 Sacavem (Portugal); Centro de Fisica Nuclear da Universidade de Lisboa, Av. Gama Pinto, 21649-003 Lisboa (Portugal); Franco, N.; Barradas, N.P. [Instituto Tecnologico e Nuclear (ITN), 2686-953 Sacavem (Portugal); Centro de Fisica Nuclear da Universidade de Lisboa, Av. Gama Pinto, 21649-003 Lisboa (Portugal); Nunes, B. [Instituto Tecnologico e Nuclear (ITN), 2686-953 Sacavem (Portugal); Lopes, J. [Instituto Superior de Engenharia de Lisboa (Portugal); Cavaleiro, A. [SEC-CEMUC - Universidade de Coimbra, Dept. Eng. Mecanica, Polo II, 3030-788 Coimbra (Portugal); Torrell, M.; Cunha, L.; Vaz, F. [Centro de Fisica, Universidade do Minho, 4800-058 Guimaraes (Portugal)

    2012-02-01

    Thin films of TiO{sub 2} were doped with Au by ion implantation and in situ during the deposition. The films were grown by reactive magnetron sputtering and deposited in silicon and glass substrates at a temperature around 150 Degree-Sign C. The undoped films were implanted with Au fluences in the range of 5 Multiplication-Sign 10{sup 15} Au/cm{sup 2}-1 Multiplication-Sign 10{sup 17} Au/cm{sup 2} with a energy of 150 keV. At a fluence of 5 Multiplication-Sign 10{sup 16} Au/cm{sup 2} the formation of Au nanoclusters in the films is observed during the implantation at room temperature. The clustering process starts to occur during the implantation where XRD estimates the presence of 3-5 nm precipitates. After annealing in a reducing atmosphere, the small precipitates coalesce into larger ones following an Ostwald ripening mechanism. In situ XRD studies reveal that Au atoms start to coalesce at 350 Degree-Sign C, reaching the precipitates dimensions larger than 40 nm at 600 Degree-Sign C. Annealing above 700 Degree-Sign C promotes drastic changes in the Au profile of in situ doped films with the formation of two Au rich regions at the interface and surface respectively. The optical properties reveal the presence of a broad band centered at 550 nm related to the plasmon resonance of gold particles visible in AFM maps.

  8. Differential effects of common variants in SCN2A on general cognitive ability, brain physiology, and messenger RNA expression in schizophrenia cases and control individuals.

    Science.gov (United States)

    Dickinson, Dwight; Straub, Richard E; Trampush, Joey W; Gao, Yuan; Feng, Ningping; Xie, Bin; Shin, Joo Heon; Lim, Hun Ki; Ursini, Gianluca; Bigos, Kristin L; Kolachana, Bhaskar; Hashimoto, Ryota; Takeda, Masatoshi; Baum, Graham L; Rujescu, Dan; Callicott, Joseph H; Hyde, Thomas M; Berman, Karen F; Kleinman, Joel E; Weinberger, Daniel R

    2014-06-01

    One approach to understanding the genetic complexity of schizophrenia is to study associated behavioral and biological phenotypes that may be more directly linked to genetic variation. To identify single-nucleotide polymorphisms associated with general cognitive ability (g) in people with schizophrenia and control individuals. Genomewide association study, followed by analyses in unaffected siblings and independent schizophrenia samples, functional magnetic resonance imaging studies of brain physiology in vivo, and RNA sequencing in postmortem brain samples. The discovery cohort and unaffected siblings were participants in the National Institute of Mental Health Clinical Brain Disorders Branch schizophrenia genetics studies. Additional schizophrenia cohorts were from psychiatric treatment settings in the United States, Japan, and Germany. The discovery cohort comprised 339 with schizophrenia and 363 community control participants. Follow-up analyses studied 147 unaffected siblings of the schizophrenia cases and independent schizophrenia samples including a total of an additional 668 participants. Imaging analyses included 87 schizophrenia cases and 397 control individuals. Brain tissue samples were available for 64 cases and 61 control individuals. We studied genomewide association with g, by group, in the discovery cohort. We used selected genotypes to test specific associations in unaffected siblings and independent schizophrenia samples. Imaging analyses focused on activation in the prefrontal cortex during working memory. Brain tissue studies yielded messenger RNA expression levels for RefSeq transcripts. The schizophrenia discovery cohort showed genomewide-significant association of g with polymorphisms in sodium channel gene SCN2A, accounting for 10.4% of g variance (rs10174400, P = 9.27 × 10(-10)). Control individuals showed a trend for g/genotype association with reversed allelic directionality. The genotype-by-group interaction was also genomewide

  9. Intracellular microRNA profiles form in the Xenopus laevis oocyte that may contribute to asymmetric cell division

    Czech Academy of Sciences Publication Activity Database

    Šídová, Monika; Šindelka, Radek; Castoldi, M.; Benes, V.; Kubista, Mikael

    2015-01-01

    Roč. 5, č. 11157 (2015) ISSN 2045-2322 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:86652036 Keywords : VG1 MESSENGER-RNA * VEGETAL CORTEX * FROG OOCYTE Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.228, year: 2015

  10. Mercury's Atmosphere and Magnetosphere: MESSENGER Third Flyby Observations

    Science.gov (United States)

    Slavin, James A.; Anderson, Brian J.; Baker, Daniel N.; Benna, Mehdi; Johnson, Catherine L.; Gloeckler, George; Killen, Rosemary M.; Krimigis, Stamatios M.; McClintock, William; McNutt, Ralph L., Jr.; hide

    2009-01-01

    MESSENGER's third flyby of Mercury en route to orbit insertion about the innermost planet took place on 29 September 2009. The earlier 14 January and 6 October 2008 encounters revealed that Mercury's magnetic field is highly dipolar and stable over the 35 years since its discovery by Mariner 10; that a structured, temporally variable exosphere extends to great altitudes on the dayside and forms a long tail in the anti-sunward direction; a cloud of planetary ions encompasses the magnetosphere from the dayside bow shock to the downstream magnetosheath and magnetotail; and that the magnetosphere undergoes extremely intense magnetic reconnect ion in response to variations in the interplanetary magnetic field. Here we report on new results derived from observations from MESSENGER's Mercury Atmospheric and Surface Composition Spectrometer (MASCS), Magnetometer (MAG), and Energetic Particle and Plasma Spectrometer (EPPS) taken during the third flyby.

  11. Pathophysiological implications of the chemical messengers

    International Nuclear Information System (INIS)

    Blazquez Fernandez, E.

    2009-01-01

    To maintain a physical organization and a different composition of its surroundings environment, living beings use a great part of the energy that they produce. Vital processes require an elevated number of reactions which are regulated and integrated by chemical messengers. They use autocrine, paracrine, endocrine and synaptic signals through receptors of cell surface, nuclear or associated with ionic channels, enzymes, trim eric G proteins and to intracellular kinases. Through these mechanisms pheromones play an important role in the relationships between different individuals, and hormones are able to regulate the integrative functions of our organism. In the nervous system, neurotransmitters, neuromodulators, sensors and receptors between other messengers, play functions of great relevance, while growth factors stimulate cell proliferation and cytokines have many effects but the most important is the ones related with the control of the immflamatory process. Alterations of these messengers permit us a better understanding of the diseases and possibly of its treatments in a near future. Modifications of the expression of genes from the nuclear and mitochondrial genomes are responsible of monogenic, polygenic and mitochondrial diseases, while alterations in the activities of dopamine and serotonin neurotransmitters are related with schizophrenia, Parkinson disease and depression, respectively. Other example is the hyperthyroidism of the Graves-Bassedow disease due to the competitive interference of the LATS immunoglobulin with TSH at the level of the follicular cells producing thyroid hormones Twenty five years ago in the reviews on the mechanisms of insulin action, there was presentations in which the insulin receptor was located in the plasma membrane of the target cells while in the cytoplasm only a big interrogative was observed, that at present is replaced by chemical mediators cascades responsible of the multiple effects of insulin. This finding is similar

  12. Role of nucleocytoplasmic RNA transport during the life cycle of retroviruses

    Directory of Open Access Journals (Sweden)

    Hisatoshi eShida

    2012-05-01

    Full Text Available Retroviruses have evolved mechanisms for transporting their intron-containing RNAs (including genomic and messenger RNAs, which encode virion components from the nucleus to the cytoplasm of the infected cell. Human retroviruses, such as human immunodeficiency virus (HIV and human T cell leukemia virus type 1 (HTLV-1, encode the regulatory proteins Rev and Rex, which form a bridge between the viral RNA and the export receptor CRM1. Recent studies show that these transport systems are not only involved in RNA export, but also in the encapsidation of genomic RNA; furthermore, they influence subsequent events in the cytoplasm, including the translation of the cognate mRNA, transport of Gag proteins to the plasma membrane, and the formation of virus particles. Moreover, the mode of interaction between the viral and cellular RNA transport machinery underlies the species-specific propagation of HIV-1 and HTLV-1, forming the basis for constructing animal models of infection. This review article discusses recent progress regarding these issues.

  13. Cyanobacteria contain a structural homologue of the Hfq protein with altered RNA binding properties

    DEFF Research Database (Denmark)

    Bøggild, Andreas; Overgaard, Martin; Valentin-Hansen, Poul

    2009-01-01

    Hfq proteins are common in many species of enterobacteria, where they participate in RNA folding and translational regulation through pairing of small RNAs and messenger RNAs. Hfq proteins share the distinctive Sm fold, and form ring-shaped structures similar to those of the Sm/Lsm proteins...... proteins from the cyanobacteria Synechocystis sp. PCC 6803 and Anabaena PCC 7120 at 1.3 and 2.3 A resolution, respectively, and show that they retain the classic Sm fold despite low sequence conservation. In addition, the intersubunit contacts and RNA-binding site are divergent, and we show biochemically...

  14. Cyanobacteria contain a structural homologue of the Hfq protein with altered RNA-binding properties

    DEFF Research Database (Denmark)

    Bøggild, Andreas; Overgaard, Martin; Valentin-Hansen, Poul

    2009-01-01

    Hfq proteins are common in many species of enterobacteria, where they participate in RNA folding and translational regulation through pairing of small RNAs and messenger RNAs. Hfq proteins share the distinctive Sm fold, and form ring-shaped structures similar to those of the Sm/Lsm proteins...... proteins from the cyanobacteria Synechocystis sp. PCC 6803 and Anabaena PCC 7120 at 1.3 and 2.3 A resolution, respectively, and show that they retain the classic Sm fold despite low sequence conservation. In addition, the intersubunit contacts and RNA-binding site are divergent, and we show biochemically...

  15. Detection of bacteriophage phi 6 minus-strand RNA and novel mRNA isoconformers synthesized in vivo and in vitro, by strand-separating agarose gels

    International Nuclear Information System (INIS)

    Pagratis, N.; Revel, H.R.

    1990-01-01

    Two urea-free agarose gel protocols that resolve the six individual strands of bacteriophage phi 6 dsRNA were developed and used to analyze phage RNA synthesis in vivo and in vitro. Citrate gels separate strands of the large and medium chromosomes while Tris-borate-EDTA (TBE) gels resolve the medium and small dsRNA segments. Minus strands migrate faster than plus strands on citrate gels but are retarded on TBE gels. A study of electrophoretic conditions showed that pH affects strand resolution on citrate gels, and that voltage gradient, agarose concentration, and ethidium bromide significantly alter strand migration on TBE gels. Analysis of native phi 6 RNA synthesized in vivo and in vitro showed that the large and medium message RNAs comigrate with the corresponding plus strands of denatured virion dsRNA. The small messenger RNA is exceptional. Native small mRNA was detected as three isoconformers in vivo and in vitro. The isoconformers were converted by heat denaturation to a single RNA species that comigrates with the virion s+ strand. Minus strands labeled in vivo were detected only after heat denaturation. Minus strand synthesis was detected also in heat-denatured samples from in vitro phi 6 nucleocapsid RNA polymerase reactions at pH values suboptimal for transcription

  16. WhatsApp Messenger as an Adjunctive Tool for Telemedicine: An Overview.

    Science.gov (United States)

    Giordano, Vincenzo; Koch, Hilton; Godoy-Santos, Alexandre; Dias Belangero, William; Esteves Santos Pires, Robinson; Labronici, Pedro

    2017-07-21

    The advent of telemedicine has allowed physicians to deliver medical treatment to patients from a distance. Mobile apps such as WhatsApp Messenger, an instant messaging service, came as a novel concept in all fields of social life, including medicine. The use of instant messaging services has been shown to improve communication within medical teams by providing means for quick teleconsultation, information sharing, and starting treatment as soon as possible. The aim of this study was to perform a comprehensive systematic review of present literature on the use of the WhatsApp Messenger app as an adjunctive health care tool for medical doctors. Searches were performed in PubMed, EMBASE, and the Cochrane Library using the term "whatsapp*" in articles published before January 2016. A bibliography of all relevant original articles that used the WhatsApp Messenger app was created. The level of evidence of each study was determined according to the Oxford Levels of Evidence ranking system produced by the Oxford Centre for Evidence-Based Medicine. The impact and the indications of WhatsApp Messenger are discussed in order to understand the extent to which this app currently functions as an adjunctive tool for telemedicine. The database search identified a total of 30 studies in which the term "whatsapp*" was used. Each article's list of references was evaluated item-by-item. After literature reviews, letters to the editor, and low-quality studies were excluded, a total of 10 studies were found to be eligible for inclusion. Of these studies, 9 had been published in the English language and 1 had been published in Spanish. Five were published by medical doctors. The pooled data presents compelling evidence that the WhatsApp Messenger app is a promising system, whether used as a communication tool between health care professionals, as a means of communication between health care professionals and the general public, or as a learning tool for providing health care information

  17. Segundos mensajeros Second messengers

    Directory of Open Access Journals (Sweden)

    Diana Patricia Díaz Hernández

    1989-01-01

    Full Text Available

    En esta revisión se describen, de manera esquemática, los mecanismos de acción empleados por los SEGUNDOS MENSAJEROS comenzando por el estimulo del receptor y continuando con las reacciones en cadena que conducen finalmente a una respuesta celular.

    This review schematically describes the different mechanisms of action that Second Messengers employ to stimulate receptors and then Initiate a chain of reactions that finally lead to appropriate cellular responses.

  18. Nucleophosmin integrates within the nucleolus via multi-modal interactions with proteins displaying R-rich linear motifs and rRNA.

    Science.gov (United States)

    Mitrea, Diana M; Cika, Jaclyn A; Guy, Clifford S; Ban, David; Banerjee, Priya R; Stanley, Christopher B; Nourse, Amanda; Deniz, Ashok A; Kriwacki, Richard W

    2016-02-02

    The nucleolus is a membrane-less organelle formed through liquid-liquid phase separation of its components from the surrounding nucleoplasm. Here, we show that nucleophosmin (NPM1) integrates within the nucleolus via a multi-modal mechanism involving multivalent interactions with proteins containing arginine-rich linear motifs (R-motifs) and ribosomal RNA (rRNA). Importantly, these R-motifs are found in canonical nucleolar localization signals. Based on a novel combination of biophysical approaches, we propose a model for the molecular organization within liquid-like droplets formed by the N-terminal domain of NPM1 and R-motif peptides, thus providing insights into the structural organization of the nucleolus. We identify multivalency of acidic tracts and folded nucleic acid binding domains, mediated by N-terminal domain oligomerization, as structural features required for phase separation of NPM1 with other nucleolar components in vitro and for localization within mammalian nucleoli. We propose that one mechanism of nucleolar localization involves phase separation of proteins within the nucleolus.

  19. The Morphology of Craters on Mercury: Results from MESSENGER Flybys

    Science.gov (United States)

    Barnouin, Oliver S.; Zuber, Maria T.; Smith, David E.; Neumann, Gregory A.; Herrick, Robert R.; Chappelow, John E.; Murchie, Scott L.; Prockter, Louise M.

    2012-01-01

    Topographic data measured from the Mercury Laser Altimeter (MLA) and the Mercury Dual Imaging System (MDIS) aboard the MESSENGER spacecraft were used for investigations of the relationship between depth and diameter for impact craters on Mercury. Results using data from the MESSENGER flybys of the innermost planet indicate that most of the craters measured with MLA are shallower than those previously measured by using Mariner 10 images. MDIS images of these same MLA-measured craters show that they have been modified. The use of shadow measurement techniques, which were found to be accurate relative to the MLA results, indicate that both small bowl-shaped and large complex craters that are fresh possess depth-to-diameter ratios that are in good agreement with those measured from Mariner 10 images. The preliminary data also show that the depths of modified craters are shallower relative to fresh ones, and might provide quantitative estimates of crater in-filling by subsequent volcanic or impact processes. The diameter that defines the transition from simple to complex craters on Mercury based on MESSENGER data is consistent with that reported from Mariner 10 data.

  20. DDX6 regulates sequestered nuclear CUG-expanded DMPK-mRNA in dystrophia myotonica type 1

    DEFF Research Database (Denmark)

    Pettersson, Olof Joakim; Aagaard, Lars; Andrejeva, Diana

    2014-01-01

    RNA to ‘sponge’ splicing factors of the muscleblind family. Although nuclear aggregation of CUG-containing mRNPs in distinct foci is a hallmark of DM1, the mechanisms of their homeostasis have not been completely elucidated. Here we show that a DEAD-box helicase, DDX6, interacts with CUG triplet-repeat m......RNA in primary fibroblasts from DM1 patients and with CUG–RNA in vitro. DDX6 overexpression relieves DM1 mis-splicing, and causes a significant reduction in nuclear DMPK-mRNA foci. Conversely, knockdown of endogenous DDX6 leads to a significant increase in DMPK-mRNA foci count and to increased sequestration...... in vitro in an adenosinetriphosphate-dependent manner, suggesting that DDX6 can remodel and release nuclear DMPK messenger ribonucleoprotein foci, leading to normalization of pathogenic alternative splicing events...

  1. Computational tools for genome-wide miRNA prediction and study

    KAUST Repository

    Malas, T.B.

    2012-11-02

    MicroRNAs (miRNAs) are single-stranded non-coding RNA susually of 22 nucleotidesin length that play an important post-transcriptional regulation role in many organisms. MicroRNAs bind a seed sequence to the 3-untranslated region (UTR) region of the target messenger RNA (mRNA), inducing degradation or inhibition of translation and resulting in a reduction in the protein level. This regulatory mechanism is central to many biological processes and perturbation could lead to diseases such as cancer. Given the biological importance, of miRNAs, there is a great need to identify and study their targets and functions. However, miRNAs are very difficult to clone in the lab and this has hindered the identification of novel miRNAs. Next-generation sequencing coupled with new computational tools has recently evolved to help researchers efficiently identify large numbers of novel miRNAs. In this review, we describe recent miRNA prediction tools and discuss their priorities, advantages and disadvantages. Malas and Ravasi.

  2. Computational tools for genome-wide miRNA prediction and study

    KAUST Repository

    Malas, T.B.; Ravasi, Timothy

    2012-01-01

    MicroRNAs (miRNAs) are single-stranded non-coding RNA susually of 22 nucleotidesin length that play an important post-transcriptional regulation role in many organisms. MicroRNAs bind a seed sequence to the 3-untranslated region (UTR) region of the target messenger RNA (mRNA), inducing degradation or inhibition of translation and resulting in a reduction in the protein level. This regulatory mechanism is central to many biological processes and perturbation could lead to diseases such as cancer. Given the biological importance, of miRNAs, there is a great need to identify and study their targets and functions. However, miRNAs are very difficult to clone in the lab and this has hindered the identification of novel miRNAs. Next-generation sequencing coupled with new computational tools has recently evolved to help researchers efficiently identify large numbers of novel miRNAs. In this review, we describe recent miRNA prediction tools and discuss their priorities, advantages and disadvantages. Malas and Ravasi.

  3. Wetting Behavior of Ternary Au-Ge-X (X = Sb, Sn) Alloys on Cu and Ni

    Science.gov (United States)

    Jin, S.; Valenza, F.; Novakovic, R.; Leinenbach, C.

    2013-06-01

    Au-Ge-based alloys are potential substitutes for Pb-rich solders currently used for high-temperature applications. In the present work, the wetting behavior of two Au-Ge-X (X = Sb, Sn) ternary alloys, i.e., Au-15Ge-17Sb and Au-13.7 Ge-15.3Sn (at.%), in contact with Cu and Ni substrates has been investigated. Au-13.7Ge-15.3Sn alloy showed complete wetting on both Cu and Ni substrates. Total spreading of Au-15Ge-17Sb alloy on Cu was also observed, while the final contact angle of this alloy on Ni was about 29°. Pronounced dissolution of Cu substrates into the solder alloys investigated was detected, while the formation of Ni-Ge intermetallic compounds at the interface of both solder/Ni systems suppressed the dissolution of Ni into the solder.

  4. MicroRNA-encoding long non-coding RNAs

    Directory of Open Access Journals (Sweden)

    Zhu Xiaopeng

    2008-05-01

    Full Text Available Abstract Background Recent analysis of the mouse transcriptional data has revealed the existence of ~34,000 messenger-like non-coding RNAs (ml-ncRNAs. Whereas the functional properties of these ml-ncRNAs are beginning to be unravelled, no functional information is available for the large majority of these transcripts. Results A few ml-ncRNA have been shown to have genomic loci that overlap with microRNA loci, leading us to suspect that a fraction of ml-ncRNA may encode microRNAs. We therefore developed an algorithm (PriMir for specifically detecting potential microRNA-encoding transcripts in the entire set of 34,030 mouse full-length ml-ncRNAs. In combination with mouse-rat sequence conservation, this algorithm detected 97 (80 of them were novel strong miRNA-encoding candidates, and for 52 of these we obtained experimental evidence for the existence of their corresponding mature microRNA by microarray and stem-loop RT-PCR. Sequence analysis of the microRNA-encoding RNAs revealed an internal motif, whose presence correlates strongly (R2 = 0.9, P-value = 2.2 × 10-16 with the occurrence of stem-loops with characteristics of known pre-miRNAs, indicating the presence of a larger number microRNA-encoding RNAs (from 300 up to 800 in the ml-ncRNAs population. Conclusion Our work highlights a unique group of ml-ncRNAs and offers clues to their functions.

  5. Nitric oxide: a physiologic messenger.

    Science.gov (United States)

    Lowenstein, C J; Dinerman, J L; Snyder, S H

    1994-02-01

    To review the physiologic role of nitric oxide, an unusual messenger molecule that mediates blood vessel relaxation, neurotransmission, and pathogen suppression. A MEDLINE search of articles published from 1987 to 1993 that addressed nitric oxide and the enzyme that synthesizes it, nitric oxide synthase. Animal and human studies were selected from 3044 articles to analyze the clinical importance of nitric oxide. Descriptions of the structure and function of nitric oxide synthase were selected to show how nitric oxide acts as a biological messenger molecule. Biochemical and physiologic studies were analyzed if the same results were found by three or more independent observers. Two major classes of nitric oxide synthase enzymes produce nitric oxide. The constitutive isoforms found in endothelial cells and neurons release small amounts of nitric oxide for brief periods to signal adjacent cells, whereas the inducible isoform found in macrophages releases large amounts of nitric oxide continuously to eliminate bacteria and parasites. By diffusing into adjacent cells and binding to enzymes that contain iron, nitric oxide plays many important physiologic roles. It regulates blood pressure, transmits signals between neurons, and suppresses pathogens. Excess amounts, however, can damage host cells, causing neurotoxicity during strokes and causing the hypotension associated with sepsis. Nitric oxide is a simple molecule with many physiologic roles in the cardiovascular, neurologic, and immune systems. Although the general principles of nitric oxide synthesis are known, further research is necessary to determine what role it plays in causing disease.

  6. GLYCINE-RICH RNA-BINDING PROTEIN1 interacts with RECEPTOR-LIKE CYTOPLASMIC PROTEIN KINASE1 and suppresses cell death and defense responses in pepper (Capsicum annuum).

    Science.gov (United States)

    Kim, Dae Sung; Kim, Nak Hyun; Hwang, Byung Kook

    2015-01-01

    Plants use a variety of innate immune regulators to trigger cell death and defense responses against pathogen attack. We identified pepper (Capsicum annuum) GLYCINE-RICH RNA-BINDING PROTEIN1 (CaGRP1) as a RECEPTOR-LIKE CYTOPLASMIC PROTEIN KINASE1 (CaPIK1)-interacting partner, based on bimolecular fluorescence complementation and coimmunoprecipitation analyses as well as gene silencing and transient expression analysis. CaGRP1 contains an N-terminal RNA recognition motif and a glycine-rich region at the C-terminus. The CaGRP1 protein had DNA- and RNA-binding activity in vitro. CaGRP1 interacted with CaPIK1 in planta. CaGRP1 and CaGRP1-CaPIK1 complexes were localized to the nucleus in plant cells. CaPIK1 phosphorylated CaGRP1 in vitro and in planta. Transient coexpression of CaGRP1 with CaPIK1 suppressed the CaPIK1-triggered cell death response, accompanied by a reduced CaPIK1-triggered reactive oxygen species (ROS) burst. The RNA recognition motif region of CaGRP1 was responsible for the nuclear localization of CaGRP1 as well as the suppression of the CaPIK1-triggered cell death response. CaGRP1 silencing in pepper conferred enhanced resistance to Xanthomonas campestris pv vesicatoria (Xcv) infection; however, CaPIK1-silenced plants were more susceptible to Xcv. CaGRP1 interacts with CaPIK1 and negatively regulates CaPIK1-triggered cell death and defense responses by suppressing ROS accumulation. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  7. Mercury's Sodium Exosphere: Observations during the MESSENGER Orbital Phase

    Science.gov (United States)

    Killen, Rosemary M.; Cassidy, Timothy A.; Vervack, Ronald J., Jr.; Burger, Matthew H.; Merkel, Aimee W.; Sarantos, Menelaos; Sprague, Ann L.; McClintock, William E.; Benna, Mehdi; Solomon, Sean C.

    2012-01-01

    The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft entered into orbit about Mercury on March 18,2011. We now have approximately five Mercury years of data from orbit. Prior to the MESSENGER mission, Mercury's surface-bounded exosphere was known to contain H, He, Na. K, and Ca. The Ultraviolet and Visible Spectrometer (UVVS) began routine orbital observations of both the dayside and nightside exosphere on March 29. 2011, measuring altitude profiles for all previously detected neutral species except for He and K. We focus here on what we have learned about the sodium exosphere: its spatial, seasonal, and sporadic variation. Observations to date permit delineation of the relative roles of photon-stimulated desorption (PSD) and impact vaporization (IV) from seasonal and spatial effects, as well as of the roles of ions both as sputtering agents and in their possible role to enhance the efficiency of PSD. Correlations of Mercury's neutral sodium exosphere with measurements from MESSENGER's Magnetometer (MAG) and Energetic Particle and Plasma Spectrometer (EPPS) provide insight into the roles of ions and electrons. Models incorporating MAG observations provide a basis for identifying the location and area of the surface exposed to solar wind plasma, and EPPS observations reveal episodic populations of energetic electrons in the magnetosphere and the presence of planetary He(+), 0(+), and Na(+),

  8. MESSENGER Observations of Magnetic Reconnection in Mercury's Magnetosphere

    Science.gov (United States)

    Slavin. James A.

    2009-01-01

    During MESSENGER'S second flyby of Mercury on October 6,2008, very intense reconnection was observed between the planet's magnetic field and a steady southward interplanetary magnetic field (IMF). The dawn magnetopause was threaded by a strong magnetic field normal to its surface, approx.14 nT, that implies a rate of reconnection approx.10 times the typical rate at Earth and a cross-magnetospheric electric potential drop of approx.30 kV. The highest magnetic field observed during this second flyby, approx.160 nT, was found at the core of a large dayside flux transfer event (FTE). This FTE is estimated to contain magnetic flux equal to approx.5% that of Mercury's magnetic tail or approximately one order of magnitude higher fraction of the tail flux than is typically found for FTEs at Earth. Plasmoid and traveling compression region (TCR) signatures were observed throughout MESSENGER'S traversal of Mercury's magnetotail with a repetition rate comparable to the Dungey cycle time of approx.2 min. The TCR signatures changed from south-north, indicating tailward motion, to north-south, indicating sunward motion, at a distance approx.2.6 RM (where RM is Mercury's radius) behind the terminator indicating that the near-Mercury magnetotail neutral line was crossed at that point. Overall, these new MESSENGER observations suggest that magnetic reconnection at the dayside magnetopause is very intense relative to what is found at Earth and other planets, while reconnection in Mercury's tail is similar to that in other planetary magnetospheres, but with a very short Dungey cycle time.

  9. Small, synthetic, GC-rich mRNA stem-loop modules 5′ proximal to the AUG start-codon predictably tune gene expression in yeast

    Science.gov (United States)

    2013-01-01

    Background A large range of genetic tools has been developed for the optimal design and regulation of complex metabolic pathways in bacteria. However, fewer tools exist in yeast that can precisely tune the expression of individual enzymes in novel metabolic pathways suitable for industrial-scale production of non-natural compounds. Tuning expression levels is critical for reducing the metabolic burden of over-expressed proteins, the accumulation of toxic intermediates, and for redirecting metabolic flux from native pathways involving essential enzymes without negatively affecting the viability of the host. We have developed a yeast membrane protein hyper-expression system with critical advantages over conventional, plasmid-based, expression systems. However, expression levels are sometimes so high that they adversely affect protein targeting/folding or the growth and/or phenotype of the host. Here we describe the use of small synthetic mRNA control modules that allowed us to predictably tune protein expression levels to any desired level. Down-regulation of expression was achieved by engineering small GC-rich mRNA stem-loops into the 5′ UTR that inhibited translation initiation of the yeast ribosomal 43S preinitiation complex (PIC). Results Exploiting the fact that the yeast 43S PIC has great difficulty scanning through GC-rich mRNA stem-loops, we created yeast strains containing 17 different RNA stem-loop modules in the 5′ UTR that expressed varying amounts of the fungal multidrug efflux pump reporter Cdr1p from Candida albicans. Increasing the length of mRNA stem-loops (that contained only GC-pairs) near the AUG start-codon led to a surprisingly large decrease in Cdr1p expression; ~2.7-fold for every additional GC-pair added to the stem, while the mRNA levels remained largely unaffected. An mRNA stem-loop of seven GC-pairs (∆G = −15.8 kcal/mol) reduced Cdr1p expression levels by >99%, and even the smallest possible stem-loop of only three GC-pairs (

  10. RNA degradation in Archaea and Gram-negative bacteria different from Escherichia coli.

    Science.gov (United States)

    Evguenieva-Hackenberg, Elena; Klug, Gabriele

    2009-01-01

    Exoribonucleolytic and endoribonucleolytic activities are important for controlled degradation of RNA and contribute to the regulation of gene expression at the posttranscriptional level by influencing the half-lives of specific messenger RNAs. The RNA half-lives are determined by the characteristics of the RNA substrates and by the availability and the properties of the involved proteins-ribonucleases and assisting polypeptides. Much is known about RNA degradation in Eukarya and Bacteria, but there is limited information about RNA-degrading enzymes and RNA destabilizing or stabilizing elements in the domain of the Archaea. The recent progress in the understanding of the structure and function of the archaeal exosome, a protein complex with RNA-degrading and RNA-tailing capabilities, has given some first insights into the mechanisms of RNA degradation in the third domain of life and into the evolution of RNA-degrading enzymes. Moreover, other archaeal RNases with degrading potential have been described and a new mechanism for protection of the 5'-end of RNA in Archaea was discovered. Here, we summarize the current knowledge on RNA degradation in the Archaea. Additionally, RNA degradation mechanisms in Rhodobacter capsulatus and Pseudomonas syringae are compared to those in the major model organism for Gram-negatives, Escherichia coli, which dominates our view on RNA degradation in Bacteria.

  11. Instant messenger-facilitated knowledge sharing and team performance

    NARCIS (Netherlands)

    Ou, C.X.J.; Davison, R.M.; Leung, D.

    2014-01-01

    The instant messenger (IM) is frequently encountered as a facilitator of communication in both social and working contexts. Nevertheless, there are concerns about the extent to which IMs bring organizational benefits, thereby overcoming interruptions to work. In this study, we focus on how IM tools

  12. Iron and chlorine as guides to stratiform Cu-Co-Au deposits, Idaho Cobalt Belt, USA

    Science.gov (United States)

    Nash, J.T.; Connor, J.J.

    1993-01-01

    The Cu-Co-Au deposits of the Idaho Cobalt Belt are in lithostratigraphic zones of the Middle Proterozoic Yellowjacket Formation characterized by distinctive chemical and mineralogical compositions including high concentrations of Fe (15- > 30 wt. percent Fe2O3), Cl (0.1-1.10 wt. percent), and magnetite or biotite (> 50 vol. percent). The Cu-Co-Au deposits of the Blackbird mine are stratabound in Fe-silicate facies rocks that are rich in biotite, Fe, and Cl, but stratigraphically equivalent rocks farther than 10 km from ore deposits have similar compositions. A lower lithostratigraphic zone containing magnetite and small Cu-Co-Au deposits extends for more than 40 km. The Fe-rich strata are probably exhalative units related to mafic volcanism and submarine hot springs, but the origin of the high Cl concentrations is less clear. Former chlorine-rich pore fluids are suggested by the presence of supersaline fluid inclusions, by Cl-rich biotite and scapolite (as much as 1.87 percent Cl in Fe-rich biotite), and by high Cl concentrations in rock samples. Chlorine is enriched in specific strata and in zones characterized by soft-sediment deformation, thus probably was introduced during sedimentation or diagenesis. Unlike some metasedimentary rocks containing scapolite and high Cl, the Yellowjacket Formation lacks evidence for evaporitic strata that could have been a source of Cl. More likely, the Cl reflects a submarine brine that carried Fe, K, and base metals. Strata containing anomalous Fe-K-Cl are considered to be a guide to sub-basins favorable for the occurrence of stratiform base-metal deposits. ?? 1993 Springer-Verlag.

  13. Optimal and fast E/B separation with a dual messenger field

    Science.gov (United States)

    Kodi Ramanah, Doogesh; Lavaux, Guilhem; Wandelt, Benjamin D.

    2018-05-01

    We adapt our recently proposed dual messenger algorithm for spin field reconstruction and showcase its efficiency and effectiveness in Wiener filtering polarized cosmic microwave background (CMB) maps. Unlike conventional preconditioned conjugate gradient (PCG) solvers, our preconditioner-free technique can deal with high-resolution joint temperature and polarization maps with inhomogeneous noise distributions and arbitrary mask geometries with relative ease. Various convergence diagnostics illustrate the high quality of the dual messenger reconstruction. In contrast, the PCG implementation fails to converge to a reasonable solution for the specific problem considered. The implementation of the dual messenger method is straightforward and guarantees numerical stability and convergence. We show how the algorithm can be modified to generate fluctuation maps, which, combined with the Wiener filter solution, yield unbiased constrained signal realizations, consistent with observed data. This algorithm presents a pathway to exact global analyses of high-resolution and high-sensitivity CMB data for a statistically optimal separation of E and B modes. It is therefore relevant for current and next-generation CMB experiments, in the quest for the elusive primordial B-mode signal.

  14. Dissection of the couplings between cellular messengers and the circadian clock

    International Nuclear Information System (INIS)

    Tong Jian; Edmunds, L.N.

    1995-12-01

    It has been known in recent years that living cells can exhibit circadian rhythms in totally different physiological processes. Intracellular messengers were demonstrated to mediate the entrained pathways linking rhythmic components between circadian clock and its output signalling. Levels of cyclic AMP and cyclic GMP in synchronized cells, and activities of the two key enzymes (AC and PDE) responsible for the cyclic AMP metabolism were measured by applying the isotopic techniques. Bimodal circadian oscillations of the messenger levels and the enzyme activities were disclosed in LD: 12, 12 cycle and constant darkness, as well as in the dividing and non-dividing cultures of the Euglena ZC mutant. Interference experiments with the enzyme activator and inhibitor such as forskolin, 8-Br-cGMP and LY 83583, and analysis of the cell division cycle (CDC) and coupling messengers suggested that the peak pulse of cyclic AMP, circadian oscillation of the AC-cAMP-PDE system and phase-dependent regulation by cyclic GMP might be important coupling factors in downstream mediation between the circadian clock and the CDC. (7 figs.)

  15. Realising effective theories of tribrid inflation: are there effects from messenger fields?

    International Nuclear Information System (INIS)

    Antusch, Stefan; Nolde, David

    2015-01-01

    Tribrid inflation is a variant of supersymmetric hybrid inflation in which the inflaton is a matter field (which can be charged under gauge symmetries) and inflation ends by a GUT-scale phase transition of a waterfall field. These features make tribrid inflation a promising framework for realising inflation with particularly close connections to particle physics. Superpotentials of tribrid inflation involve effective operators suppressed by some cutoff scale, which is often taken as the Planck scale. However, these operators may also be generated by integrating out messenger superfields with masses below the Planck scale, which is in fact quite common in GUT and/or flavour models. The values of the inflaton field during inflation can then lie above this mass scale, which means that for reliably calculating the model predictions one has to go beyond the effective theory description. We therefore discuss realisations of effective theories of tribrid inflation and specify in which cases effects from the messenger fields are expected, and under which conditions they can safely be neglected. In particular, we point out how to construct realisations where, despite the fact that the inflaton field values are above the messenger mass scale, the predictions for the observables are (to a good approximation) identical to the ones calculated in the effective theory treatment where the messenger mass scale is identified with the (apparent) cutoff scale

  16. Realising effective theories of tribrid inflation: are there effects from messenger fields?

    Science.gov (United States)

    Antusch, Stefan; Nolde, David

    2015-09-01

    Tribrid inflation is a variant of supersymmetric hybrid inflation in which the inflaton is a matter field (which can be charged under gauge symmetries) and inflation ends by a GUT-scale phase transition of a waterfall field. These features make tribrid inflation a promising framework for realising inflation with particularly close connections to particle physics. Superpotentials of tribrid inflation involve effective operators suppressed by some cutoff scale, which is often taken as the Planck scale. However, these operators may also be generated by integrating out messenger superfields with masses below the Planck scale, which is in fact quite common in GUT and/or flavour models. The values of the inflaton field during inflation can then lie above this mass scale, which means that for reliably calculating the model predictions one has to go beyond the effective theory description. We therefore discuss realisations of effective theories of tribrid inflation and specify in which cases effects from the messenger fields are expected, and under which conditions they can safely be neglected. In particular, we point out how to construct realisations where, despite the fact that the inflaton field values are above the messenger mass scale, the predictions for the observables are (to a good approximation) identical to the ones calculated in the effective theory treatment where the messenger mass scale is identified with the (apparent) cutoff scale.

  17. Realising effective theories of tribrid inflation: are there effects from messenger fields?

    Energy Technology Data Exchange (ETDEWEB)

    Antusch, Stefan [Department of Physics, University of Basel,Klingelbergstr. 82, CH-4056 Basel (Switzerland); Max-Planck-Institut für Physik (Werner-Heisenberg-Institut),Föhringer Ring 6, D-80805 München (Germany); Nolde, David [Department of Physics, University of Basel,Klingelbergstr. 82, CH-4056 Basel (Switzerland)

    2015-09-22

    Tribrid inflation is a variant of supersymmetric hybrid inflation in which the inflaton is a matter field (which can be charged under gauge symmetries) and inflation ends by a GUT-scale phase transition of a waterfall field. These features make tribrid inflation a promising framework for realising inflation with particularly close connections to particle physics. Superpotentials of tribrid inflation involve effective operators suppressed by some cutoff scale, which is often taken as the Planck scale. However, these operators may also be generated by integrating out messenger superfields with masses below the Planck scale, which is in fact quite common in GUT and/or flavour models. The values of the inflaton field during inflation can then lie above this mass scale, which means that for reliably calculating the model predictions one has to go beyond the effective theory description. We therefore discuss realisations of effective theories of tribrid inflation and specify in which cases effects from the messenger fields are expected, and under which conditions they can safely be neglected. In particular, we point out how to construct realisations where, despite the fact that the inflaton field values are above the messenger mass scale, the predictions for the observables are (to a good approximation) identical to the ones calculated in the effective theory treatment where the messenger mass scale is identified with the (apparent) cutoff scale.

  18. Comparing Strategies for Health Information Dissemination: Messengers That Can Help or Hinder.

    Science.gov (United States)

    Fishman, Jessica; Greenberg, Patricia; Bagga, Margy Barbieri; Casarett, David; Propert, Kathleen

    2018-05-01

    To test the effects of different messengers on the dissemination of health information. An experimental study exposed participants to 12 news articles pertaining to 1 of 3 health topics framed from the perspective of 4 generic messengers: religious figures, doctors, celebrity patients, or ordinary patients. Participants select as many of the 12 articles as desired. A cancer clinic within a large, urban hospital serving a sociodemographically diverse patient population. Eighty-nine patients with a history of cancer. The primary outcome was the frequency with which each news story was selected. Summary statistics and a general estimating equation model. For each health topic, news articles using celebrity messengers were the least likely to be selected; almost half of the participants (36 [41.4%] of 87) rejected all such articles. Articles linked to religious figures were equally unpopular ( P = .59). Articles that used doctors or ordinary patients as the messenger were very likely to be selected: Nearly all women (84 [96.6%] of 87) selected at least one of these. Furthermore, the odds of choosing articles linked to celebrities or religious leaders were statistically significantly lower than the odds of choosing those linked to ordinary patients or doctors ( P dissemination of information. Health materials linked to celebrities or religious figures were consistently less likely to be selected than those linked to ordinary patients, or doctors.

  19. Effects of the foliar-applied protein "Harpin(Ea)" (messenger) on tomatoes infected with Phytophthora infestans.

    Science.gov (United States)

    Fontanilla, M; Montes, M; De Prado, R

    2005-01-01

    The active ingredient in Messenger, is Harpin(Ea), a naturally occurring protein derived from Erwinia amylovora, a causal agent of fire blight. When Messenger is applied to a plant, the protein Harpin(Ea) binds foliar receptors to it. The receptors recognize the presence of Harpin(Ea), sending a signal that a pathogen is present, actually "tricking" the plant into thinking that it is under attack. This binding process triggers a cascade of responses affecting a global change of gene expressions, stimulating several distinct biochemical pathways within the plant responsible for growth and disease and insect resistance. The objective of this work is to characterize the development of an induced resistance against Phytophthora infestans. No effective treatment is currently available against this pathogenic agent, which causes the loss of complete harvests of different crops. Tomato plants with and without Messenger applications were inoculated with Phytophthora infestans in the same way. In addition, some plants with and without Messenger applications were not inoculated. Inoculated plants were symptomatologically checked for local and systemic symptoms. Evaluations of the number of tomatoes produced, with or without damage, and their growth, were also carried out. Based on the data obtained from the assays, significant changes were observed in the parameters measured due to Messenger treatment. The severe damage of this disease was reduced in the plants which received Messenger applications. These results open up new pathways in the control of diseases like Phytophthora infestans, in which effective means to combat them still do not exist, or these means are harmful to the environment.

  20. On the electronic, structural, and thermodynamic properties of Au supported on α-Fe{sub 2}O{sub 3} surfaces and their interaction with CO

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Manh-Thuong, E-mail: manhth.nguyen@gmail.com; Gebauer, Ralph [The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste (Italy); Farnesi Camellone, Matteo, E-mail: mfarnesi@sissa.it [CNR-IOM DEMOCRITOS, Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche and SISSA Scuola Internazionale di Studi Superiori Avanzati, Via Bonomea 265, I-34136 Trieste (Italy)

    2015-07-21

    Extensive first principles calculations are carried out to investigate Au monomers and dimers supported on α-Fe{sub 2}O{sub 3}(0001) surfaces in terms of structure optimizations, electronic structure analyses, and ab initio thermodynamics calculations of surface phase diagrams. All computations rely on density functional theory in the generalized gradient approximation (Perdew-Burke-Ernzerhof (PBE)) and account for on-site Coulomb interactions via inclusion of a Hubbard correction (PBE+U). The relative stability of Au monomers/dimers on the stoichiometric termination of α-Fe{sub 2}O{sub 3}(0001) decorated with various vacancies (multiple oxygen vacancies, iron vacancy, and mixed iron-oxygen vacancies) has been computed as a function of the oxygen chemical potential. The charge rearrangement induced by Au at the oxide contact is analyzed in detail and discussed. On one hand, ab initio thermodynamics predicts that under O-rich conditions, structures obtained by replacing a surface Fe atom with a Au atom are thermodynamically stable over a wide range of temperatures. On the other hand, the complex of a CO molecule on a Au atom substituting surface Fe atoms is thermodynamically stable only in a much more narrow range of values of the O chemical potential under O-rich conditions. In the case of a Au dimer, under O-rich conditions, supported Au atoms at an O-Fe di-vacancy are more stable. However, upon CO adsorption, the complex of a CO molecule and 2 Au atoms located at a single Fe vacancy is more favorable.

  1. Choline acetyltransferase expression during periods of behavioral activity and across natural sleep-wake states in the basal forebrain.

    Science.gov (United States)

    Greco, M A; McCarley, R W; Shiromani, P J

    1999-01-01

    The present study examined whether the expression of the messenger RNA encoding the protein responsible for acetylcholine synthesis is associated with sleep-wakefulness. Choline acetyltransferase messenger RNA levels were analysed using a semi-quantitative assay in which reverse transcription was coupled to complementary DNA amplification using the polymerase chain reaction. To examine the relationship between steady-state messenger RNA and behavioral activity, rats were killed during the day (4.00 p.m.) or night (4.00 a.m.), and tissue from the vertical and horizontal limbs of the diagonal bands of Broca was analysed. Choline acetyltransferase messenger RNA levels were higher during the day than during the night. The second study examined more closely the association between choline acetyltransferase messenger RNA levels and individual bouts of wakefulness, slow-wave sleep or rapid eye movement sleep. Choline acetyltransferase messenger RNA levels were low during wakefulness, intermediate in slow-wave sleep and high during rapid eye movement sleep. In contrast, protein activity, measured at a projection site of cholinergic neurons of the basal forebrain, was higher during wakefulness than during sleep. These findings suggest that choline acetyltransferase protein and messenger RNA levels exhibit an inverse relationship during sleep and wakefulness. The increased messenger RNA expression during sleep is consistent with a restorative function of sleep.

  2. Stress induction of Bm1 RNA in silkworm larvae: SINEs, an unusual class of stress genes

    Science.gov (United States)

    Kimura, Richard H.; Choudary, Prabhakara V.; Stone, Koni K.; Schmid, Carl W.

    2001-01-01

    This study surveys the induction of RNA polymerase III (Pol III)–directed expression of short interspersed element (SINE) transcripts by various stresses in an animal model, silkworm larvae. Sublethal heat shock and exposure to several toxic compounds increase the level of Bm1 RNA, the silkworm SINE transcript, while also transiently increasing expression of a well-characterized stress-induced transcript, Hsp70 messenger RNA (mRNA). In certain cases, the Bm1 RNA response coincides with that of Hsp70 mRNA, but more often Bm1 RNA responds later in recovery. Baculovirus infection and exposure to certain toxic compounds increase Bm1 RNA but not Hsp70 mRNA, showing that SINE induction is not necessarily coupled to transcription of this particular heat shock gene. SINEs behave as an additional class of stress-inducible genes in living animals but are unusual as stress genes because of their high copy number, genomic dispersion, and Pol III–directed transcription. PMID:11599568

  3. Detecting microRNA activity from gene expression data

    LENUS (Irish Health Repository)

    Madden, Stephen F

    2010-05-18

    Abstract Background MicroRNAs (miRNAs) are non-coding RNAs that regulate gene expression by binding to the messenger RNA (mRNA) of protein coding genes. They control gene expression by either inhibiting translation or inducing mRNA degradation. A number of computational techniques have been developed to identify the targets of miRNAs. In this study we used predicted miRNA-gene interactions to analyse mRNA gene expression microarray data to predict miRNAs associated with particular diseases or conditions. Results Here we combine correspondence analysis, between group analysis and co-inertia analysis (CIA) to determine which miRNAs are associated with differences in gene expression levels in microarray data sets. Using a database of miRNA target predictions from TargetScan, TargetScanS, PicTar4way PicTar5way, and miRanda and combining these data with gene expression levels from sets of microarrays, this method produces a ranked list of miRNAs associated with a specified split in samples. We applied this to three different microarray datasets, a papillary thyroid carcinoma dataset, an in-house dataset of lipopolysaccharide treated mouse macrophages, and a multi-tissue dataset. In each case we were able to identified miRNAs of biological importance. Conclusions We describe a technique to integrate gene expression data and miRNA target predictions from multiple sources.

  4. Detecting microRNA activity from gene expression data.

    LENUS (Irish Health Repository)

    Madden, Stephen F

    2010-01-01

    BACKGROUND: MicroRNAs (miRNAs) are non-coding RNAs that regulate gene expression by binding to the messenger RNA (mRNA) of protein coding genes. They control gene expression by either inhibiting translation or inducing mRNA degradation. A number of computational techniques have been developed to identify the targets of miRNAs. In this study we used predicted miRNA-gene interactions to analyse mRNA gene expression microarray data to predict miRNAs associated with particular diseases or conditions. RESULTS: Here we combine correspondence analysis, between group analysis and co-inertia analysis (CIA) to determine which miRNAs are associated with differences in gene expression levels in microarray data sets. Using a database of miRNA target predictions from TargetScan, TargetScanS, PicTar4way PicTar5way, and miRanda and combining these data with gene expression levels from sets of microarrays, this method produces a ranked list of miRNAs associated with a specified split in samples. We applied this to three different microarray datasets, a papillary thyroid carcinoma dataset, an in-house dataset of lipopolysaccharide treated mouse macrophages, and a multi-tissue dataset. In each case we were able to identified miRNAs of biological importance. CONCLUSIONS: We describe a technique to integrate gene expression data and miRNA target predictions from multiple sources.

  5. An ultra-sensitive colorimetric Hg(2+)-sensing assay based on DNAzyme-modified Au NP aggregation, MNPs and an endonuclease.

    Science.gov (United States)

    Li, Chao; Dai, Peiqing; Rao, Xinyi; Shao, Lin; Cheng, Guifang; He, Pingang; Fang, Yuzhi

    2015-01-01

    This paper reports the development of an ultra-sensitive colorimetric method for the detection of trace mercury ions involving DNAzymes, Au nanoparticle aggregation, magnetic nanoparticles and an endonuclease. DNAzyme-sensing elements are conjugated to the surface of Au nanoparticle-2, which can crosslink with the T-rich strands coated on Au nanoparticle-1 to form Au nanoparticle aggregation. Other T-rich stands are immobilized on the surface of MNPs. The specific hybridization of these two T-rich strands depends on the presence of Hg(2+), resulting in the formation of a T-Hg(2+)-T structure. Added endonuclease then digests the hybridized strands, and DNAzyme-modified Au NP aggregation is released, catalysing the conversion of the colourless ABTS into a blue-green product by H2O2-mediated oxidation. The increase in the adsorption spectrum of ABTS(+) at 421 nm is related to the concentration of Hg(2+). This assay was validated by detecting mercury ion concentrations in river water. The colorimetric responses were not significantly altered in the presence of 100-fold excesses of other metal ions such as Zn(2+), Pb(2+), Cd(2+), Mn(2+), Ca(2+) and Ni(2+). The inclusion of both Au NP aggregation and an endonuclease enables the assay to eliminate interference from the magnetic nanoparticles with colorimetric detection, decrease the background and improve the detection sensitivity. The calibration curve of the assay was linear over the range of Hg(2+) concentrations from 1 to 30 nM, and the detection limit was 0.8 nM, which is far lower than the 10 nM US EPA limit for drinking water. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Early MESSENGER Results for Less Abundant or Weakly Emitting Species in Mercury's Exosphere

    Science.gov (United States)

    Vervack, Ronald J., Jr.; McClintock, William E.; Killen, Rosemary M.; Sprague, Ann L.; Burger, Matthew H.; Merkel, Aimee W.; Sarantos, Menelaos

    2011-01-01

    Now that the Messenger spacecraft is in orbit about Mercury, the extended observing time enables searches for exospheric species that are less abundant or weakly emitting compared with those for which emission has previously been detected. Many of these species cannot be observed from the ground because of terrestrial atmospheric absorption. We report here on the status of MESSENGER orbital-phase searches for additional species in Mercury's exosphere.

  7. Solid-state dewetting of Au/Ni bilayers: The effect of alloying on morphology evolution

    International Nuclear Information System (INIS)

    Herz, A.; Wang, D.; Kups, Th.; Schaaf, P.

    2014-01-01

    The solid-state dewetting of thin Au/Ni bilayers deposited onto SiO 2 /Si substrates is investigated. A rapid thermal treatment is used to induce the dewetting process by an increase in temperature. The evolution of the (111) peaks of X-ray diffraction reveals a characteristic change due to mixing of Au and Ni. At low temperature, the Au-Ni thin film is found to break up at the phase boundaries and growing voids are shown to be surrounded by a Ni-rich phase. Branch-like void growth is observed. Upon annealing at increasing temperatures, Au-Ni solid solutions are formed well above the bulk equilibrium solubility of Au and Ni. It is found that this metastable phase formation makes the Au-Ni thin film less vulnerable to rupturing. Moreover, growth mode of still evolving voids changes into a more regular, faceted one due to alloying. Finally, it is shown that annealing above the miscibility gap forms supersaturated, well-oriented Au-Ni solid solution agglomerates via dewetting.

  8. Solid-state dewetting of Au/Ni bilayers: The effect of alloying on morphology evolution

    Energy Technology Data Exchange (ETDEWEB)

    Herz, A.; Wang, D., E-mail: dong.wang@tu-ilmenau.de; Kups, Th.; Schaaf, P. [Institute of Materials Engineering and Institute of Micro- and Nanotechnologies MacroNano, Chair Materials for Electronics and Electrical Engineering, TU Ilmenau, Ilmenau 98693 (Germany)

    2014-07-28

    The solid-state dewetting of thin Au/Ni bilayers deposited onto SiO{sub 2}/Si substrates is investigated. A rapid thermal treatment is used to induce the dewetting process by an increase in temperature. The evolution of the (111) peaks of X-ray diffraction reveals a characteristic change due to mixing of Au and Ni. At low temperature, the Au-Ni thin film is found to break up at the phase boundaries and growing voids are shown to be surrounded by a Ni-rich phase. Branch-like void growth is observed. Upon annealing at increasing temperatures, Au-Ni solid solutions are formed well above the bulk equilibrium solubility of Au and Ni. It is found that this metastable phase formation makes the Au-Ni thin film less vulnerable to rupturing. Moreover, growth mode of still evolving voids changes into a more regular, faceted one due to alloying. Finally, it is shown that annealing above the miscibility gap forms supersaturated, well-oriented Au-Ni solid solution agglomerates via dewetting.

  9. 40Ar-39Ar dating of Archean iron oxide Cu-Au and Paleoproterozoic granite-related Cu-Au deposits in the Carajás Mineral Province, Brazil: implications for genetic models

    Science.gov (United States)

    Pollard, Peter J.; Taylor, Roger G.; Peters, Lisa; Matos, Fernando; Freitas, Cantidiano; Saboia, Lineu; Huhn, Sergio

    2018-05-01

    40Ar-39Ar dating of biotite from IOCG and granite-related Cu-Au deposits in the Carajás Mineral Province provides evidence for the timing of mineralization and constraints on genetic models of ore formation. Ages of biotite from greisen and quartz-rich vein and breccia deposits, Alvo 118—1885 ± 4 Ma, Breves—1886 ± 5 Ma, Estrela—1896 ± 7 Ma, and Gameleira—1908 ± 7 Ma, demonstrate the close temporal relationship between Cu-Au mineralization and subjacent A-type granites. Mineralization is hosted within granite cupolas (Breves) or in vein/breccia systems emanating from the cupolas (Estrela and Gameleira), consistent with a genetic relationship of mineralization to the B-Li-F-rich granites. Plateau and minimum ages of biotite from IOCG deposits, including Igarapé Bahia, Cristalino, Corta Goela, and GT34, range from 2537 ± 6 Ma to 2193 ± 4 Ma. The 40Ar-39Ar age of biotite from Igarapé Bahia (2537 ± 6 Ma) is similar to a previous SHRIMP 207Pb-206Pb age for monazite of 2575 ± 12 Ma when the uncertainties in the respective analyses and standards are taken into account. The age spectrum for biotite from Cristalino shows increasing ages for successive steps, consistent with post-crystallization Ar loss, and the age of 2388 ± 5 Ma for the last three steps is considered a minimum age for Cu-Au mineralization. The age of biotite from the GT34 prospect (2512 ± 7 Ma) coincides with a previously identified period of basement reactivation and may indicate the formation of Cu-Au mineralization at this time or resetting of biotite from an older mineralization event at this time. At Corta Goela, within the Canaã Shear Zone, the biotite age of 2193 ± 4 Ma lies between the ages of IOCG (2.57-2.76 Ga) and granite-related Cu-Au ( 1.88 Ga) deposits elsewhere in the Carajás district but is similar to previously reported 40Ar-39Ar ages for amphibole from Sossego, possibly indicating that mineralization at both Sossego and Corta Goela was affected by a thermal event at

  10. RNA search engines empower the bacterial intranet.

    Science.gov (United States)

    Dendooven, Tom; Luisi, Ben F

    2017-08-15

    RNA acts not only as an information bearer in the biogenesis of proteins from genes, but also as a regulator that participates in the control of gene expression. In bacteria, small RNA molecules (sRNAs) play controlling roles in numerous processes and help to orchestrate complex regulatory networks. Such processes include cell growth and development, response to stress and metabolic change, transcription termination, cell-to-cell communication, and the launching of programmes for host invasion. All these processes require recognition of target messenger RNAs by the sRNAs. This review summarizes recent results that have provided insights into how bacterial sRNAs are recruited into effector ribonucleoprotein complexes that can seek out and act upon target transcripts. The results hint at how sRNAs and their protein partners act as pattern-matching search engines that efficaciously regulate gene expression, by performing with specificity and speed while avoiding off-target effects. The requirements for efficient searches of RNA patterns appear to be common to all domains of life. © 2017 The Author(s).

  11. Facilitating RNA structure prediction with microarrays.

    Science.gov (United States)

    Kierzek, Elzbieta; Kierzek, Ryszard; Turner, Douglas H; Catrina, Irina E

    2006-01-17

    Determining RNA secondary structure is important for understanding structure-function relationships and identifying potential drug targets. This paper reports the use of microarrays with heptamer 2'-O-methyl oligoribonucleotides to probe the secondary structure of an RNA and thereby improve the prediction of that secondary structure. When experimental constraints from hybridization results are added to a free-energy minimization algorithm, the prediction of the secondary structure of Escherichia coli 5S rRNA improves from 27 to 92% of the known canonical base pairs. Optimization of buffer conditions for hybridization and application of 2'-O-methyl-2-thiouridine to enhance binding and improve discrimination between AU and GU pairs are also described. The results suggest that probing RNA with oligonucleotide microarrays can facilitate determination of secondary structure.

  12. The Crust of Mercury After the MESSENGER Gravity Investigation

    Science.gov (United States)

    Mazarico, E.; Genova, A.; Goossens, S.; Neumann, G. A.; Smith, D. E.; Zuber, M. T.

    2018-05-01

    We present the results of an improved analysis of the entire MESSENGER radio tracking dataset to derive key geophysical parameters of Mercury such as its gravity field. In particular, we derive and interpret a new crustal thickness model.

  13. Etude des caractéristiques structurales et des propriétés de verres riches en terres rares destinés au confinement des produits de fission et éléments à vie longue

    OpenAIRE

    Bardez , Isabelle

    2004-01-01

    Une nouvelle matrice vitreuse riche en terres rares, capable d'incorporer les déchets issus du retraitement de combustibles nucléaires UOX à hauts taux de combustion (60 GWj/t, à comparer à 33 GWj/t pour le combustible de référence actuel) a été mise au point et étudiée au niveau structural. Sa composition molaire simplifiée est la suivante : 61 ,79 SiO2 - 8,94 B2O3 - 3,05 Al2O3 - 14,41 Na2O - 6,32 CaO - 1,89 ZrO2 - 3,60 TR2O3 (avec TR = La, Ce, Pr et Nd) En particulier, l'environnement local...

  14. Detection of small interfering RNA (siRNA) by mass spectrometry procedures in doping controls.

    Science.gov (United States)

    Thomas, Andreas; Walpurgis, Katja; Delahaut, Philippe; Kohler, Maxie; Schänzer, Wilhelm; Thevis, Mario

    2013-01-01

    Uncovering manipulation of athletic performance via small interfering (si)RNA is an emerging field in sports drug testing. Due to the potential to principally knock down every target gene in the organism by means of the RNA interference pathway, this facet of gene doping has become a realistic scenario. In the present study, two distinct model siRNAs comprising 21 nucleotides were designed as double strands which were perfect counterparts to a sequence of the respective messenger RNA coding the muscle regulator myostatin of Rattus norvegicus. Several modified nucleotides were introduced in both the sense and the antisense strand comprising phosphothioates, 2'-O-methylation, 2'-fluoro-nucleotides, locked nucleic acids and a cholesterol tag at the 3'-end. The model siRNAs were applied to rats at 1 mg/kg (i.v.) and blood as well as urine samples were collected. After isolation of the RNA by means of a RNA purification kit, the target analytes were detected by liquid chromatography - high resolution/high accuracy mass spectrometry (LC-HRMS). Analytes were detected as modified nucleotides after alkaline hydrolysis, as intact oligonucleotide strands (top-down) and by means of denaturing SDS-PAGE analysis. The gel-separated siRNA was further subjected to in-gel hydrolysis with different RNases and subsequent identification of the fragments by untargeted LC-HRMS analysis (bottom-up, 'experimental RNomics'). Combining the results of all approaches, the identification of several 3'-truncated urinary metabolites was accomplished and target analytes were detected up to 24 h after a single administration. Simultaneously collected blood samples yielded no promising results. The methods were validated and found fit-for-purpose for doping controls. Copyright © 2013 John Wiley & Sons, Ltd.

  15. Relationship between variant forms of estrogen receptor RNA and an apoptosis-related RNA, TRPM-2, with survival in patients with breast cancer.

    Science.gov (United States)

    Rennie, P S; Mawji, N R; Coldman, A J; Godolphin, W; Jones, E C; Vielkind, J R; Bruchovsky, N

    1993-12-15

    Although smaller variant forms of estrogen receptor (ER) messenger RNA (mRNA) have been detected in breast tumors, neither their prevalence nor their prognostic significance have been evaluated. Similarly, TRPM-2 mRNA, the product of a gene induced principally during the onset of apoptosis, is present in mouse and human breast cancer cell lines, but whether it also occurs in primary breast tumors and is related to disease outcome is unknown. The relative expression and transcript size of ER mRNA and TRPM-2 mRNA in 126 primary breast tumors were measured by Northern analysis and compared with tumor grade, hormone receptor status, extent of tumor necrosis, and survival. In ER-positive tumors, 64% of the tumors had only the normal 6.5 kb ER mRNA, an additional 9% had the normal plus smaller ER mRNA, and 2% had variant forms. Only 8% of ER-negative tumors had ER mRNA transcripts. There were significant relationships between the occurrence of ER mRNA and low tumor grade, ER-positive receptor status, and better survival. In contrast, TRPM-2 mRNA was found in only 17% of breast tumors, none of which could be grouped with respect to grade, hormone receptor status, or survival. The presence of smaller variant forms of ER mRNA either alone or in association with the normal ER transcript is not indicative of an unfavorable prognosis, whereas TRPM-2 mRNA occurs in many primary breast tumors, but has no apparent relationship to survival.

  16. Insights into the Nature of Mercury's Exosphere: Early Results from the MESSENGER Orbital Mission Phase

    Science.gov (United States)

    McClintock, William E.; Burger, Matthew H.; Killen, Rosemary M.; Merkel, Aimee W.; Sarantos, Menelaos; Sprague, Ann L.; Solomon, Sean C.; Vervack, Ronald J., Jr.

    2011-01-01

    The Ultraviolet and Visible Spectrometer aboard the MESSENGER spacecraft has been making routine observations of Mercury's exosphere since March 29, 2011. Correlations of the spatial distributions of Ca, Mg, and Na with MESSENGER magnetic field and energetic particle distribution data provide insight into the processes that populate the neutral exosphere

  17. MicroRNA-27a-mediated repression of cysteine-rich secretory protein 2 translation in asthenoteratozoospermic patients

    Directory of Open Access Journals (Sweden)

    Jun-Hao Zhou

    2017-01-01

    Full Text Available Cysteine-rich secretory protein 2 (CRISP2 is an important protein in spermatozoa that plays roles in modulating sperm flagellar motility, the acrosome reaction, and gamete fusion. Spermatozoa lacking CRISP2 exhibit low sperm motility and abnormal morphology. However, the molecular mechanisms underlying the reduction of CRISP2 in asthenoteratozoospermia (ATZ remain unknown. In this study, low expression of CRISP2 protein rather than its mRNA was observed in the ejaculated spermatozoa from ATZ patients as compared with normozoospermic males. Subsequently, bioinformatic prediction, luciferase reporter assays, and microRNA-27a (miR-27a transfection experiments revealed that miR-27a specifically targets CRISP2 by binding to its 3′ untranslated region (3′-UTR, suppressing CRISP2 expression posttranscriptionally. Further evidence was provided by the clinical observation of high miR-27a expression in ejaculated spermatozoa from ATZ patients and a negative correlation between miR-27a expression and CRISP2 protein expression. Finally, a retrospective follow-up study supported that both high miR-27a expression and low CRISP2 protein expression were associated with low progressive sperm motility, abnormal morphology, and infertility. This study demonstrates a novel mechanism responsible for reduced CRISP2 expression in ATZ, which may offer a potential therapeutic target for treating male infertility, or for male contraception.

  18. Hardening mechanism of an Ag-Pd-Cu-Au dental casting alloy

    International Nuclear Information System (INIS)

    Seol, Hyo-Joung; Kim, Gi-Chul; Son, Kuk-Hyeon; Kwon, Yong Hoon; Kim, Hyung-Il

    2005-01-01

    Age-hardening behaviour and the related microstructural changes were studied to elucidate the hardening mechanism of an Ag-Pd-Cu-Au dental casting alloy by means of hardness test, X-ray diffraction (XRD), scanning electron microscopic (SEM) observations and electron probe microanalysis (EPMA). By considering hardness test and XRD results together, it was revealed that the hardness increased during the early stage of phase transformation of α into α 1 . In the SEM photographs, two phases of matrix and particle-like structures were observed, and the precipitation of element from the matrix progressed during isothermal aging. By SEM observations and EPMA analysis, it could be supposed that the increase in hardness was caused by the diffusion and aggregation of Cu atoms from the Ag-rich α matrix containing Au and Cu in the early stage of age-hardening process, and that the decrease in hardness was caused by the progress of coarsening of Cu-rich lamellar precipitates in the later stage of the age-hardening process. The changes in the Ag-rich matrix caused both the increase and decrease in hardness, and the CuPd phase containing small amounts of Zn and Sn did not contribute to the hardness changes

  19. tmRDB (tmRNA database)

    DEFF Research Database (Denmark)

    Zwieb, Christian; Gorodkin, Jan; Knudsen, Bjarne

    2003-01-01

    Maintained at the University of Texas Health Science Center at Tyler, Texas, the tmRNA database (tmRDB) is accessible at the URL http://psyche.uthct.edu/dbs/tmRDB/tmRDB.html with mirror sites located at Auburn University, Auburn, Alabama (http://www.ag.auburn.edu/mirror/tmRDB/) and the Bioinforma......Maintained at the University of Texas Health Science Center at Tyler, Texas, the tmRNA database (tmRDB) is accessible at the URL http://psyche.uthct.edu/dbs/tmRDB/tmRDB.html with mirror sites located at Auburn University, Auburn, Alabama (http......://www.ag.auburn.edu/mirror/tmRDB/) and the Bioinformatics Research Center, Aarhus, Denmark (http://www.bioinf.au.dk/tmRDB/). The tmRDB collects and distributes information relevant to the study of tmRNA. In trans-translation, this molecule combines properties of tRNA and mRNA and binds several proteins to form the tmRNP. Related RNPs are likely...

  20. Reference genes for real-time PCR quantification of messenger RNAs and microRNAs in mouse model of obesity.

    Science.gov (United States)

    Matoušková, Petra; Bártíková, Hana; Boušová, Iva; Hanušová, Veronika; Szotáková, Barbora; Skálová, Lenka

    2014-01-01

    Obesity and metabolic syndrome is increasing health problem worldwide. Among other ways, nutritional intervention using phytochemicals is important method for treatment and prevention of this disease. Recent studies have shown that certain phytochemicals could alter the expression of specific genes and microRNAs (miRNAs) that play a fundamental role in the pathogenesis of obesity. For study of the obesity and its treatment, monosodium glutamate (MSG)-injected mice with developed central obesity, insulin resistance and liver lipid accumulation are frequently used animal models. To understand the mechanism of phytochemicals action in obese animals, the study of selected genes expression together with miRNA quantification is extremely important. For this purpose, real-time quantitative PCR is a sensitive and reproducible method, but it depends on proper normalization entirely. The aim of present study was to identify the appropriate reference genes for mRNA and miRNA quantification in MSG mice treated with green tea catechins, potential anti-obesity phytochemicals. Two sets of reference genes were tested: first set contained seven commonly used genes for normalization of messenger RNA, the second set of candidate reference genes included ten small RNAs for normalization of miRNA. The expression stability of these reference genes were tested upon treatment of mice with catechins using geNorm, NormFinder and BestKeeper algorithms. Selected normalizers for mRNA quantification were tested and validated on expression of quinone oxidoreductase, biotransformation enzyme known to be modified by catechins. The effect of selected normalizers for miRNA quantification was tested on two obesity- and diabetes- related miRNAs, miR-221 and miR-29b, respectively. Finally, the combinations of B2M/18S/HPRT1 and miR-16/sno234 were validated as optimal reference genes for mRNA and miRNA quantification in liver and 18S/RPlP0/HPRT1 and sno234/miR-186 in small intestine of MSG mice. These

  1. Mercury Conditions for the MESSENGER Mission Simulated in High- Solar-Radiation Vacuum Tests

    Science.gov (United States)

    Wong, Wayne A.

    2003-01-01

    The MESSENGER (Mercury Surface, Space Environment, Geochemistry, and Ranging) spacecraft, planned for launch in March 2004, will perform two flybys of Mercury before entering a year-long orbit of the planet in September 2009. The mission will provide opportunities for detailed characterization of the surface, interior, atmosphere, and magnetosphere of the closest planet to the Sun. The NASA Glenn Research Center and the MESSENGER spacecraft integrator, the Johns Hopkins University Applied Physics Laboratory, have partnered under a Space Act Agreement to characterize a variety of critical components and materials under simulated conditions expected near Mercury. Glenn's Vacuum Facility 6, which is equipped with a solar simulator, can simulate the vacuum and high solar radiation anticipated in Mercury orbit. The MESSENGER test hardware includes a variety of materials and components that are being characterized during the Tank 6 vacuum tests, where the hardware will be exposed to up to 11 suns insolation, simulating conditions expected in Mercury orbit. In 2002, ten solar vacuum tests were conducted, including beginning of life, end of life, backside exposure, and solar panel thermal shock cycling tests. Components tested include candidate solar array panels, sensors, thermal shielding materials, and communication devices. As an example, for the solar panel thermal shock cycling test, two candidate solar array panels were suspended on a lift mechanism that lowered the panels into a liquid-nitrogen-cooled box. After reaching -140 C, the panels were then lifted out of the box and exposed to the equivalent of 6 suns (8.1 kilowatts per square meters). After five cold soak/heating cycles were completed successfully, there was no apparent degradation in panel performance. An anticipated 100-hr thermal shield life test is planned for autumn, followed by solar panel flight qualification tests in winter. Glenn's ongoing support to the MESSENGER program has been instrumental in

  2. Correlation between particle multiplicity and location on virion RNA of the assembly initiation site for viruses of the tobacco mosaic virus group.

    Science.gov (United States)

    Fukuda, M; Meshi, T; Okada, Y; Otsuki, Y; Takebe, I

    1981-07-01

    The initiation site for reconstitution on genome RNA was determined by electron microscopic serology for a watermelon strain of cucumber green mottle mosaic virus (CGMMV-W), which is chemically and serologically related to tobacco mosaic virus (TMV). The initiation site was located at the same position as that of the cowpea strain, a virus that produces short rods of encapsidated subgenomic messenger RNA for the coat protein (a two-component TMV), being about 320 nucleotides away from the 3' terminus, and hence within the coat protein cistron. Although CGMMV-W was until now believed to be a single-component TMV, the location of the initiation site indicated the presence of short rods containing coat protein messenger RNA in CGMMV-W-infected tissue, as in the case for the cowpea strain. We found such short rods in CGMMV-W-infected tissue. The results confirmed our previous hypothesis that the site of the initiation region for reconstitution determines the rod multiplicity of TMV. The finding of the second two-component TMV, CGMMV, indicates that the cowpea strain of TMV is not unique in being a two-component virus and that the location of the assembly initiation site on the genome RNA can be a criterion for grouping of viruses.

  3. Coronal mass ejection hits mercury: A.I.K.E.F. hybrid-code results compared to MESSENGER data

    Science.gov (United States)

    Exner, W.; Heyner, D.; Liuzzo, L.; Motschmann, U.; Shiota, D.; Kusano, K.; Shibayama, T.

    2018-04-01

    Mercury is the closest orbiting planet around the sun and is therefore embedded in an intensive and highly varying solar wind. In-situ data from the MESSENGER spacecraft of the plasma environment near Mercury indicates that a coronal mass ejection (CME) passed the planet on 23 November 2011 over the span of the 12 h MESSENGER orbit. Slavin et al. (2014) derived the upstream parameters of the solar wind at the time of that orbit, and were able to explain the observed MESSENGER data in the cusp and magnetopause segments of MESSENGER's trajectory. These upstream parameters will be used for our first simulation run. We use the hybrid code A.I.K.E.F. which treats ions as individual particles and electrons as a mass-less fluid, to conduct hybrid simulations of Mercury's magnetospheric response to the impact of the CME on ion gyro time scales. Results from the simulation are in agreement with magnetic field measurements from the inner day-side magnetosphere and the bow-shock region. However, at the planet's nightside, Mercury's plasma environment seemed to be governed by different solar wind conditions, in conclusion, Mercury's interaction with the CME is not sufficiently describable by only one set of upstream parameters. Therefore, to simulate the magnetospheric response while MESSENGER was located in the tail region, we use parameters obtained from the MHD solar wind simulation code SUSANOO (Shiota et al. (2014)) for our second simulation run. The parameters of the SUSANOO model achieve a good agreement of the data concerning the plasma tail crossing and the night-side approach to Mercury. However, the polar and closest approach are hardly described by both upstream parameters, namely, neither upstream dataset is able to reproduce the MESSENGER crossing of Mercury's magnetospheric cusp. We conclude that the respective CME was too variable on the timescale of the MESSENGER orbit to be described by only two sets of upstream conditions. Our results suggest locally strong

  4. DeepMirTar: a deep-learning approach for predicting human miRNA targets.

    Science.gov (United States)

    Wen, Ming; Cong, Peisheng; Zhang, Zhimin; Lu, Hongmei; Li, Tonghua

    2018-06-01

    MicroRNAs (miRNAs) are small noncoding RNAs that function in RNA silencing and post-transcriptional regulation of gene expression by targeting messenger RNAs (mRNAs). Because the underlying mechanisms associated with miRNA binding to mRNA are not fully understood, a major challenge of miRNA studies involves the identification of miRNA-target sites on mRNA. In silico prediction of miRNA-target sites can expedite costly and time-consuming experimental work by providing the most promising miRNA-target-site candidates. In this study, we reported the design and implementation of DeepMirTar, a deep-learning-based approach for accurately predicting human miRNA targets at the site level. The predicted miRNA-target sites are those having canonical or non-canonical seed, and features, including high-level expert-designed, low-level expert-designed, and raw-data-level, were used to represent the miRNA-target site. Comparison with other state-of-the-art machine-learning methods and existing miRNA-target-prediction tools indicated that DeepMirTar improved overall predictive performance. DeepMirTar is freely available at https://github.com/Bjoux2/DeepMirTar_SdA. lith@tongji.edu.cn, hongmeilu@csu.edu.cn. Supplementary data are available at Bioinformatics online.

  5. The effect of tissue decalcification on mRNA retention within bone for in-situ hybridization studies.

    Science.gov (United States)

    Walsh, L; Freemont, A J; Hoyland, J A

    1993-06-01

    Tissue decalcification is a routine part of the preparation of bone tissue for histological studies. Although in-situ hybridization has been employed to localize mRNA of collagenous and non-collagenous bone related proteins in skeletal tissue, little is known regarding the effects of decalcifying agents on mRNA retention within tissue. In this study in-situ hybridization using an oligonucleotide probe (i.e. a poly d(T) probe) to detect total messenger RNA has been employed to investigate the effects of the decalcifying agents nitric acid, formic acid and EDTA on mRNA retention compared to undeacalcified tissue. The results show that formalin fixation and EDTA decalcification preserve substantial amounts of mRNA within the tissue. In particular, this study illustrates that it is possible to perform in-situ hybridization on formalin fixed decalcified paraffin embedded tissue.

  6. Coulomb interactions between cytoplasmic electric fields and phosphorylated messenger proteins optimize information flow in cells.

    Directory of Open Access Journals (Sweden)

    Robert A Gatenby

    2010-08-01

    Full Text Available Normal cell function requires timely and accurate transmission of information from receptors on the cell membrane (CM to the nucleus. Movement of messenger proteins in the cytoplasm is thought to be dependent on random walk. However, Brownian motion will disperse messenger proteins throughout the cytosol resulting in slow and highly variable transit times. We propose that a critical component of information transfer is an intracellular electric field generated by distribution of charge on the nuclear membrane (NM. While the latter has been demonstrated experimentally for decades, the role of the consequent electric field has been assumed to be minimal due to a Debye length of about 1 nanometer that results from screening by intracellular Cl- and K+. We propose inclusion of these inorganic ions in the Debye-Huckel equation is incorrect because nuclear pores allow transit through the membrane at a rate far faster than the time to thermodynamic equilibrium. In our model, only the charged, mobile messenger proteins contribute to the Debye length.Using this revised model and published data, we estimate the NM possesses a Debye-Huckel length of a few microns and find this is consistent with recent measurement using intracellular nano-voltmeters. We demonstrate the field will accelerate isolated messenger proteins toward the nucleus through Coulomb interactions with negative charges added by phosphorylation. We calculate transit times as short as 0.01 sec. When large numbers of phosphorylated messenger proteins are generated by increasing concentrations of extracellular ligands, we demonstrate they generate a self-screening environment that regionally attenuates the cytoplasmic field, slowing movement but permitting greater cross talk among pathways. Preliminary experimental results with phosphorylated RAF are consistent with model predictions.This work demonstrates that previously unrecognized Coulomb interactions between phosphorylated messenger

  7. Programmable RNA recognition and cleavage by CRISPR/Cas9.

    Science.gov (United States)

    O'Connell, Mitchell R; Oakes, Benjamin L; Sternberg, Samuel H; East-Seletsky, Alexandra; Kaplan, Matias; Doudna, Jennifer A

    2014-12-11

    The CRISPR-associated protein Cas9 is an RNA-guided DNA endonuclease that uses RNA-DNA complementarity to identify target sites for sequence-specific double-stranded DNA (dsDNA) cleavage. In its native context, Cas9 acts on DNA substrates exclusively because both binding and catalysis require recognition of a short DNA sequence, known as the protospacer adjacent motif (PAM), next to and on the strand opposite the twenty-nucleotide target site in dsDNA. Cas9 has proven to be a versatile tool for genome engineering and gene regulation in a large range of prokaryotic and eukaryotic cell types, and in whole organisms, but it has been thought to be incapable of targeting RNA. Here we show that Cas9 binds with high affinity to single-stranded RNA (ssRNA) targets matching the Cas9-associated guide RNA sequence when the PAM is presented in trans as a separate DNA oligonucleotide. Furthermore, PAM-presenting oligonucleotides (PAMmers) stimulate site-specific endonucleolytic cleavage of ssRNA targets, similar to PAM-mediated stimulation of Cas9-catalysed DNA cleavage. Using specially designed PAMmers, Cas9 can be specifically directed to bind or cut RNA targets while avoiding corresponding DNA sequences, and we demonstrate that this strategy enables the isolation of a specific endogenous messenger RNA from cells. These results reveal a fundamental connection between PAM binding and substrate selection by Cas9, and highlight the utility of Cas9 for programmable transcript recognition without the need for tags.

  8. A new method to study the change of miRNA-mRNA interactions due to environmental exposures.

    Science.gov (United States)

    Petralia, Francesca; Aushev, Vasily N; Gopalakrishnan, Kalpana; Kappil, Maya; W Khin, Nyan; Chen, Jia; Teitelbaum, Susan L; Wang, Pei

    2017-07-15

    Integrative approaches characterizing the interactions among different types of biological molecules have been demonstrated to be useful for revealing informative biological mechanisms. One such example is the interaction between microRNA (miRNA) and messenger RNA (mRNA), whose deregulation may be sensitive to environmental insult leading to altered phenotypes. The goal of this work is to develop an effective data integration method to characterize deregulation between miRNA and mRNA due to environmental toxicant exposures. We will use data from an animal experiment designed to investigate the effect of low-dose environmental chemical exposure on normal mammary gland development in rats to motivate and evaluate the proposed method. We propose a new network approach-integrative Joint Random Forest (iJRF), which characterizes the regulatory system between miRNAs and mRNAs using a network model. iJRF is designed to work under the high-dimension low-sample-size regime, and can borrow information across different treatment conditions to achieve more accurate network inference. It also effectively takes into account prior information of miRNA-mRNA regulatory relationships from existing databases. When iJRF is applied to the data from the environmental chemical exposure study, we detected a few important miRNAs that regulated a large number of mRNAs in the control group but not in the exposed groups, suggesting the disruption of miRNA activity due to chemical exposure. Effects of chemical exposure on two affected miRNAs were further validated using breast cancer human cell lines. R package iJRF is available at CRAN. pei.wang@mssm.edu or susan.teitelbaum@mssm.edu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  9. Ethanol electro-oxidation in alkaline medium using Pd/MWCNT and PdAuSn/MWCNT electrocatalysts prepared by electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Geraldes, Adriana Napoleao; Silva, Dionisio Furtunato da; Andrade e Silva, Leonardo Gondin de; Spinace, Estevam Vitorio; Oliveira Neto, Almir, E-mail: drinager@ig.com.br, E-mail: dfsilva@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Santos, Mauro Coelho dos [Universidade Federal do ABC (LEMN/CCNH/UFABC), Santo Andre, SP (Brazil)

    2015-07-01

    Environmental problems and the world growing demand for energy has mobilized the scientific community in finding of clean and renewable energy sources. In this context, fuel cells appear as appropriate technology for generating electricity through alcohols electro-oxidation. Multi Wall Carbon Nanotubes (MWCNT)-supported Pd and trimetallic PdAuSn (Pd:Au:Sn 50:10:40 atomic ratio) electrocatalysts were prepared using electron beam irradiation. The obtained materials were characterized by VC, Chronoamperometry, EDX, TEM and XRD. The catalytic activities of electrocatalysts toward ethanol electro-oxidation were evaluated in alkaline medium in a single alkaline direct ethanol fuel cell (ADEFC) in a range temperature 60 to 90 deg C. The best performances were obtained at 85 deg C: 33 mW.cm{sup -2} and 31 mW.cm{sup -2} for Pd/ MWCNT and PdAuSn/MWCNT electrocatalysts, respectively. X-ray diffractograms of electrocatalysts showed the presence of Pd-rich (fcc) and Au-rich (fcc) phases. Cyclic voltammetry and chronoamperometry experiments showed that PdAuSn/MWCNT electrocatalyst demonstrated similar activity toward ethanol electro-oxidation at room temperature, compared to electrocatalyst Pd/MWCNT. (author)

  10. Ethanol electro-oxidation in alkaline medium using Pd/MWCNT and PdAuSn/MWCNT electrocatalysts prepared by electron beam irradiation

    International Nuclear Information System (INIS)

    Geraldes, Adriana Napoleao; Silva, Dionisio Furtunato da; Andrade e Silva, Leonardo Gondin de; Spinace, Estevam Vitorio; Oliveira Neto, Almir; Santos, Mauro Coelho dos

    2015-01-01

    Environmental problems and the world growing demand for energy has mobilized the scientific community in finding of clean and renewable energy sources. In this context, fuel cells appear as appropriate technology for generating electricity through alcohols electro-oxidation. Multi Wall Carbon Nanotubes (MWCNT)-supported Pd and trimetallic PdAuSn (Pd:Au:Sn 50:10:40 atomic ratio) electrocatalysts were prepared using electron beam irradiation. The obtained materials were characterized by VC, Chronoamperometry, EDX, TEM and XRD. The catalytic activities of electrocatalysts toward ethanol electro-oxidation were evaluated in alkaline medium in a single alkaline direct ethanol fuel cell (ADEFC) in a range temperature 60 to 90 deg C. The best performances were obtained at 85 deg C: 33 mW.cm -2 and 31 mW.cm -2 for Pd/ MWCNT and PdAuSn/MWCNT electrocatalysts, respectively. X-ray diffractograms of electrocatalysts showed the presence of Pd-rich (fcc) and Au-rich (fcc) phases. Cyclic voltammetry and chronoamperometry experiments showed that PdAuSn/MWCNT electrocatalyst demonstrated similar activity toward ethanol electro-oxidation at room temperature, compared to electrocatalyst Pd/MWCNT. (author)

  11. The models evaluating courier and messenger companies in Poland

    Directory of Open Access Journals (Sweden)

    Chodakowska Ewa

    2016-12-01

    Full Text Available Data Envelopment Analysis (DEA is a well-established, popular, and often used method for efficiency evaluation of units from all sector, both commercial and non-profit organisations, of any scale of operations. Network DEA models are a relatively recent approach used to examine the efficiency of decision-making units (DMUs having an internal structure of sub-processes. The article presents the concept of DEA network models in estimating the efficiency of courier and messenger companies with relations to their business clients. The considerations are supported by an example of data concerning leaders from the sector of couriers and messengers in Poland and one of the biggest and most popular online stores. The results are compared with the traditional DEA approach. In addition, to measure reliability for DEA scores, the jackknife procedure was performed. The author proves the usefulness of network DEA as a research and management tool.

  12. INDUCTION OF INTERLEUKIN-1-BETA MESSENGER-RNA AFTER FOCAL CEREBRAL-ISCHEMIA IN THE RAT

    NARCIS (Netherlands)

    BUTTINI, M; SAUTER, A; BODDEKE, HWGM

    The expression of interleukin-1beta (IL-1beta) mRNA in the brain in response to cerebral ischaemia in rats was examined using in situ hybridization histochemistry. Focal cerebral ischaemia was induced in spontaneously hypertensive rats by permanent occlusion of the left middle cerebral artery

  13. Dashboard Monitoring System Berbasis Web Sebagai Pemantau Layanan liteBIG Instant Messenger

    Directory of Open Access Journals (Sweden)

    Gigih Forda Nama

    2017-04-01

    Full Text Available Saat ini hampir semua pengguna ponsel pintar menggunakan layanan perpesanan instan sebagai media komunikasi dikarenakan layanan perpesanan instan lebih hemat biaya dengan hanya menggunakan jaringan internet dibandingkan layanan pesan singkat (SMS. Layanan yang diberikan harus dapat melayani pengguna dengan baik agar pesan yang dikirim oleh pengirim dapat diterima oleh penerima dengan cepat dan akurat. Layanan ini juga harus dijaga keandalannya untuk menjamin kualitas pelayanan dan untuk menghindari ketidaknyamanan pengguna. Sehingga, diperlukan adanya sistem pemantauan berupa perangkat lunak untuk pengawasan status layanan setiap saat dapat diakses dari manapun dan kapanpun. PT.Sandika Cahaya Mandiri memiliki produk layanan perpesanan instan dengan brand name liteBIG Messenger. Perusahaan ini memerlukan perangkat lunak untuk pemantauan layanan liteBIG Messenger. Dengan adanya perangkat lunak pemantauan layanan, petugas pemantauan dapat melihat secara realtime status layanan utama pada setiap komputer server, pemakaian sumber daya (cpu, memory, dan harddisk, dan statistik pengguna baru liteBIG Messenger  melalui antarmuka web. Petugas pemantauan juga akan mendapat pemberitahuan ketika terjadi masalah pada layanan sehingga masalah dapat lebih dini diketahui dan downtime dapat dikurangi.

  14. Labeling of eukaryotic messenger RNA 5' terminus with phosphorus -32: use of tobacco acid pyrophosphatase for removal of cap structures

    International Nuclear Information System (INIS)

    Lockard, R.E.; Rieser, L.; Vournakis, J.N.

    1981-01-01

    In recent years, there has been a growing appreciation of the potential applications of 5'- 32 P-end-labeled mRNA, not only for screening recombinant clones and mapping gene structure, but also for revealing possible nucleotide sequence and structural signals within mRNA molecules themselves, which may be important for eukaryotic mRNA processing and turnover and for controlling differential rates of translational initiation. Three major problems, however, have retarded progress in this area, lack of methods for efficient and reproducible removal of m7G5ppp5'-cap structures, which maintain the integrity of an RNA molecule; inability to generate a sufficient amount of labeled mRNA, owing to the limited availability of most pure mRNA species; and the frequent problem of RNA degradation during in vitro end-labeling owing to RNAse contamination. The procedures presented here permit one to decap and label minute quantities of mRNA, effectively. Tobacco acid pyrophosphatase is relatively efficient in removing cap structures from even nanogram quantities of available mRNA, and enough radioactivity can be easily generated from minute amounts ofintact mRNA with very high-specific-activity [gamma- 32 P]ATP and the inhibition of ribonuclease contamination with diethylpyrocarbonate. These procedures can be modified and applied to almost any other type of RNA molecule as well. In Section III of this volume, we explore in detail how effectively 5'-end-labeled mRNA can be used not only for nucleotide sequence analysis, but also for mapping mRNA secondary structure

  15. Association of Myosin Va and Schwann cells-derived RNA in mammal myelinated axons, analyzed by immunocytochemistry and confocal FRET microscopy.

    Science.gov (United States)

    Canclini, Lucía; Wallrabe, Horst; Di Paolo, Andrés; Kun, Alejandra; Calliari, Aldo; Sotelo-Silveira, José Roberto; Sotelo, José Roberto

    2014-03-15

    Evidence from multiple sources supports the hypothesis that Schwann cells in the peripheral nervous system transfer messenger RNA and ribosomes to the axons they ensheath. Several technical and methodological difficulties exist for investigators to unravel this process in myelinated axons - a complex two-cell unit. We present an experimental design to demonstrate that newly synthesized RNA is transferred from Schwann cells to axons in association with Myosin Va. The use of quantitative confocal FRET microscopy to track newly-synthesized RNA and determine the molecular association with Myosin Va, is described in detail. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. cDNA cloning and mRNA expression of cat and dog Cdkal1

    Directory of Open Access Journals (Sweden)

    Sako T

    2012-08-01

    Full Text Available Ichiro Yamamoto, Shingo Ishikawa, Li Gebin, Hiroshi Takemitsu, Megumi Fujiwara, Nobuko Mori, Yutaka Hatano, Tomoko Suzuki, Akihiro Mori, Nobuhiro Nakao, Koh Kawasumi, Toshinori Sako, Toshiro AraiLaboratory of Veterinary Biochemistry, Nippon Veterinary and Life Science University, Tokyo, JapanAbstract: The cyclin-dependent kinase 5 regulatory subunit–associated protein 1–like 1 (CDKAL1 gene encodes methylthiotransferase, and the gene contains risk variants for type 2 diabetes in humans. In this study, we performed complementary DNA cloning for Cdkal1 in the cat and dog and characterized the tissue expression profiles of its messenger RNA. Cat and dog Cdkal1 complementary DNA encoded 576 and 578 amino acids, showing very high sequence homology to mammalian CDKAL1 (>88.4%. Real-time polymerase chain reaction analyses revealed that Cdkal1 messenger RNA is highly expressed in smooth muscle and that tissue distribution of Cdkal1 is similar in cats and dogs. Genotyping analysis of single-nucleotide polymorphism for cat Cdkal1 revealed that obese cats had different tendencies from normal cats. These findings suggest that the cat and dog Cdkal1 gene is highly conserved among mammals and that cat Cdkal1 may be a candidate marker for genetic diagnosis of obesity.Keywords: cat, dog, Cdkal1, obese, cDNA cloning, Q-PCR

  17. The Energy Messenger, Number 1, Volume 4

    International Nuclear Information System (INIS)

    Stancil, J.

    1995-01-01

    'The Energy Messenger' is a Department of Energy publication on energy activities of interest to American Indians. The first issue of 1995 (in a magazine format) includes articles on: tribes winning grants to develop energy resources, recruiting of internships for DOE, information about Title XXVI-Indian Energy Resources, American Indian Heritage Month, tribal perspective on DOE actions, joint ventures between tribes and the DOE, and brief description of recent DOE activities

  18. The Energy Messenger, Number 1, Volume 4

    Energy Technology Data Exchange (ETDEWEB)

    Stancil, J. [ed.

    1995-01-01

    `The Energy Messenger` is a Department of Energy publication on energy activities of interest to American Indians. The first issue of 1995 (in a magazine format) includes articles on: tribes winning grants to develop energy resources, recruiting of internships for DOE, information about Title XXVI-Indian Energy Resources, American Indian Heritage Month, tribal perspective on DOE actions, joint ventures between tribes and the DOE, and brief description of recent DOE activities.

  19. Oligoadenylate is present in the mitochondrial RNA of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Yuckenberg, P.D.; Phillips, S.L.

    1982-01-01

    The authors examined Saccharomyces cerevisiae mitochondrial RNA for polyadenylate. Using hybridization to [/sup 3/H]polyuridylate as the assay for adenylate sequences, they found adenylate-rich oligonucleotides approximately 8 residues long. Longer polyadenylate was not detected. Most of the adenylate-rich sequence is associated with the large mitochondrial rRNA. The remainder is associated with the 10-12S group of transcripts

  20. Absolute and direct microRNA quantification using DNA-gold nanoparticle probes.

    Science.gov (United States)

    Degliangeli, Federica; Kshirsagar, Prakash; Brunetti, Virgilio; Pompa, Pier Paolo; Fiammengo, Roberto

    2014-02-12

    DNA-gold nanoparticle probes are implemented in a simple strategy for direct microRNA (miRNA) quantification. Fluorescently labeled DNA-probe strands are immobilized on PEGylated gold nanoparticles (AuNPs). In the presence of target miRNA, DNA-RNA heteroduplexes are formed and become substrate for the endonuclease DSN (duplex-specific nuclease). Enzymatic hydrolysis of the DNA strands yields a fluorescence signal due to diffusion of the fluorophores away from the gold surface. We show that the molecular design of our DNA-AuNP probes, with the DNA strands immobilized on top of the PEG-based passivation layer, results in nearly unaltered enzymatic activity toward immobilized heteroduplexes compared to substrates free in solution. The assay, developed in a real-time format, allows absolute quantification of as little as 0.2 fmol of miR-203. We also show the application of the assay for direct quantification of cancer-related miR-203 and miR-21 in samples of extracted total RNA from cell cultures. The possibility of direct and absolute quantification may significantly advance the use of microRNAs as biomarkers in the clinical praxis.

  1. Identification of miRNA-mRNA regulatory modules by exploring collective group relationships.

    Science.gov (United States)

    Masud Karim, S M; Liu, Lin; Le, Thuc Duy; Li, Jiuyong

    2016-01-11

    microRNAs (miRNAs) play an essential role in the post-transcriptional gene regulation in plants and animals. They regulate a wide range of biological processes by targeting messenger RNAs (mRNAs). Evidence suggests that miRNAs and mRNAs interact collectively in gene regulatory networks. The collective relationships between groups of miRNAs and groups of mRNAs may be more readily interpreted than those between individual miRNAs and mRNAs, and thus are useful for gaining insight into gene regulation and cell functions. Several computational approaches have been developed to discover miRNA-mRNA regulatory modules (MMRMs) with a common aim to elucidate miRNA-mRNA regulatory relationships. However, most existing methods do not consider the collective relationships between a group of miRNAs and the group of targeted mRNAs in the process of discovering MMRMs. Our aim is to develop a framework to discover MMRMs and reveal miRNA-mRNA regulatory relationships from the heterogeneous expression data based on the collective relationships. We propose DIscovering COllective group RElationships (DICORE), an effective computational framework for revealing miRNA-mRNA regulatory relationships. We utilize the notation of collective group relationships to build the computational framework. The method computes the collaboration scores of the miRNAs and mRNAs on the basis of their interactions with mRNAs and miRNAs, respectively. Then it determines the groups of miRNAs and groups of mRNAs separately based on their respective collaboration scores. Next, it calculates the strength of the collective relationship between each pair of miRNA group and mRNA group using canonical correlation analysis, and the group pairs with significant canonical correlations are considered as the MMRMs. We applied this method to three gene expression datasets, and validated the computational discoveries. Analysis of the results demonstrates that a large portion of the regulatory relationships discovered by

  2. Cluster-to-cluster transformation among Au6, Au8 and Au11 nanoclusters.

    Science.gov (United States)

    Ren, Xiuqing; Fu, Junhong; Lin, Xinzhang; Fu, Xuemei; Yan, Jinghui; Wu, Ren'an; Liu, Chao; Huang, Jiahui

    2018-05-22

    We present the cluster-to-cluster transformations among three gold nanoclusters, [Au6(dppp)4]2+ (Au6), [Au8(dppp)4Cl2]2+ (Au8) and [Au11(dppp)5]3+ (Au11). The conversion process follows a rule that states that the transformation of a small cluster to a large cluster is achieved through an oxidation process with an oxidizing agent (H2O2) or with heating, while the conversion of a large cluster to a small one occurs through a reduction process with a reducing agent (NaBH4). All the reactions were monitored using UV-Vis spectroscopy and ESI-MS. This work may provide an alternative approach to the synthesis of novel gold nanoclusters and a further understanding of the structural transformation relationship of gold nanoclusters.

  3. Hypothesis: A Role for Fragile X Mental Retardation Protein in Mediating and Relieving MicroRNA-Guided Translational Repression?

    Directory of Open Access Journals (Sweden)

    Isabelle Plante

    2006-01-01

    Full Text Available MicroRNA (miRNA-guided messenger RNA (mRNA translational repression is believed to be mediated by effector miRNA-containing ribonucleoprotein (miRNP complexes harboring fragile X mental retardation protein (FMRP. Recent studies documented the nucleic acid chaperone properties of FMRP and characterized its role and importance in RNA silencing in mammalian cells. We propose a model in which FMRP could facilitate miRNA assembly on target mRNAs in a process involving recognition of G quartet structures. Functioning within a duplex miRNP, FMRP may also mediate mRNA targeting through a strand exchange mechanism, in which the miRNA* of the duplex is swapped for the mRNA. Furthermore, FMRP may contribute to the relief of miRNA-guided mRNA repression through a reverse strand exchange reaction, possibly initiated by a specific cellular signal, that would liberate the mRNA for translation. Suboptimal utilization of miRNAs may thus account for some of themolecular defects in patients with the fragile X syndrome.

  4. Synthesis of Au@Ag core-shell nanocubes containing varying shaped cores and their localized surface plasmon resonances.

    Science.gov (United States)

    Gong, Jianxiao; Zhou, Fei; Li, Zhiyuan; Tang, Zhiyong

    2012-06-19

    We have synthesized Au@Ag core-shell nanocubes containing Au cores with varying shapes and sizes through modified seed-mediated methods. Bromide ions are found to be crucial in the epitaxial growth of Ag atoms onto Au cores and in the formation of the shell's cubic shape. The Au@Ag core-shell nanocubes exhibit very abundant and distinct localized surface plasmon resonance (LSPR) properties, which are core-shape and size-dependent. With the help of theoretical calculation, the physical origin and the resonance mode profile of each LSPR peak are identified and studied. The core-shell nanocrystals with varying shaped cores offer a new rich category for LSPR control through the plasmonic coupling effect between core and shell materials.

  5. First-principles theory of short-range order in size-mismatched metal alloys: Cu-Au, Cu-Ag, and Ni-Au

    International Nuclear Information System (INIS)

    Wolverton, C.; Ozolins, V.; Zunger, A.

    1998-01-01

    We describe a first-principles technique for calculating the short-range order (SRO) in disordered alloys, even in the presence of large anharmonic atomic relaxations. The technique is applied to several alloys possessing large size mismatch: Cu-Au, Cu-Ag, Ni-Au, and Cu-Pd. We find the following: (i) The calculated SRO in Cu-Au alloys peaks at (or near) the left-angle 100 right-angle point for all compositions studied, in agreement with diffuse scattering measurements. (ii) A fourfold splitting of the X-point SRO exists in both Cu 0.75 Au 0.25 and Cu 0.70 Pd 0.30 , although qualitative differences in the calculated energetics for these two alloys demonstrate that the splitting in Cu 0.70 Pd 0.30 may be accounted for by T=0 K energetics while T≠0 K configurational entropy is necessary to account for the splitting in Cu 0.75 Au 0.25 . Cu 0.75 Au 0.25 shows a significant temperature dependence of the splitting, in agreement with recent in situ measurements, while the splitting in Cu 0.70 Pd 0.30 is predicted to have a much smaller temperature dependence. (iii) Although no measurements exist, the SRO of Cu-Ag alloys is predicted to be of clustering type with peaks at the left-angle 000 right-angle point. Streaking of the SRO peaks in the left-angle 100 right-angle and left-angle 1 (1) /(2) 0 right-angle directions for Ag- and Cu-rich compositions, respectively, is correlated with the elastically soft directions for these compositions. (iv) Even though Ni-Au phase separates at low temperatures, the calculated SRO pattern in Ni 0.4 Au 0.6 , like the measured data, shows a peak along the left-angle ζ00 right-angle direction, away from the typical clustering-type left-angle 000 right-angle point. (v) The explicit effect of atomic relaxation on SRO is investigated and it is found that atomic relaxation can produce significant qualitative changes in the SRO pattern, changing the pattern from ordering to clustering type, as in the case of Cu-Ag. copyright 1998 The American

  6. The origin and effect of small RNA signaling in plants

    Directory of Open Access Journals (Sweden)

    Jean-Sébastien eParent

    2012-08-01

    Full Text Available Given their sessile condition, land plants need to integrate environmental cues rapidly and send signal throughout the organism to modify their metabolism accordingly. Small RNA (sRNA molecules are among the messengers that plant cells use to carry such signals. These molecules originate from fold-back stem-loops transcribed from endogenous loci or from perfect double-stranded RNA produced through the action of RNA-dependent RNA polymerases. Once produced, sRNAs associate with Argonaute and other proteins to form the RNA-induced silencing complex (RISC that executes silencing of complementary RNA molecules. Depending on the nature of the RNA target and the Argonaute protein involved, RISC triggers either DNA methylation and chromatin modification (leading to transcriptional gene silencing, TGS or RNA cleavage or translational inhibition (leading to post-transcriptional gene silencing, PTGS. In some cases, sRNAs move to neighboring cells and/or to the vascular tissues for long-distance trafficking. Many genes are involved in the biogenesis of sRNAs and recent studies have shown that both their origin and their protein partners have great influence on their activity and range. Here we summarize the work done to uncover the mode of action of the different classes of small RNA with special emphasis on their movement and how plants can take advantage of their mobility. We also review the various genetic requirements needed for production, movement and perception of the silencing signal.

  7. Science, technologie, nature et humain ont rendez-vous au jardin

    Directory of Open Access Journals (Sweden)

    Dargent Olivier

    2015-01-01

    Full Text Available Un jardin expérimental est un espace riche en activités pédagogiques pour les élèves. Il recueille, à priori, naturellement, l’adhésion de chacun, élèves, équipe éducative et parents. Il est enfin une occasion d’avoir une approche différente de celle de la classe, les élèves étant confrontés au vivant dans son environnement. Lors de ces activités proposées dans ce contexte, leur rapport au vivant est directement confronté à la réalité. Quels sont les enjeux didactiques d’une pédagogie axée autour d’activités au jardin expérimental ? A partir de deux activités ; un « totem à insectes » et un « nichoir connecté ». La confrontation du vivant et de leur représentation est analysée.

  8. Single-cell mRNA transfection studies: delivery, kinetics and statistics by numbers.

    Science.gov (United States)

    Leonhardt, Carolin; Schwake, Gerlinde; Stögbauer, Tobias R; Rappl, Susanne; Kuhr, Jan-Timm; Ligon, Thomas S; Rädler, Joachim O

    2014-05-01

    In artificial gene delivery, messenger RNA (mRNA) is an attractive alternative to plasmid DNA (pDNA) since it does not require transfer into the cell nucleus. Here we show that, unlike for pDNA transfection, the delivery statistics and dynamics of mRNA-mediated expression are generic and predictable in terms of mathematical modeling. We measured the single-cell expression time-courses and levels of enhanced green fluorescent protein (eGFP) using time-lapse microscopy and flow cytometry (FC). The single-cell analysis provides direct access to the distribution of onset times, life times and expression rates of mRNA and eGFP. We introduce a two-step stochastic delivery model that reproduces the number distribution of successfully delivered and translated mRNA molecules and thereby the dose-response relation. Our results establish a statistical framework for mRNA transfection and as such should advance the development of RNA carriers and small interfering/micro RNA-based drugs. This team of authors established a statistical framework for mRNA transfection by using a two-step stochastic delivery model that reproduces the number distribution of successfully delivered and translated mRNA molecules and thereby their dose-response relation. This study establishes a nice connection between theory and experimental planning and will aid the cellular delivery of mRNA molecules. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Gravitational Waves and Multi-Messenger Astronomy

    Science.gov (United States)

    Centrella, Joan M.

    2010-01-01

    Gravitational waves are produced by a wide variety of sources throughout the cosmos, including the mergers of black hole and neutron star binaries/compact objects spiraling into central black holes in galactic nuclei, close compact binaries/and phase transitions and quantum fluctuations in the early universe. Observing these signals can bring new, and often very precise, information about their sources across vast stretches of cosmic time. In this talk we will focus on thee opening of this gravitational-wave window on the universe, highlighting new opportunities for discovery and multi-messenger astronomy.

  10. Facet-controlled phase separation in supersaturated Au-Ni nanoparticles upon shape equilibration

    Energy Technology Data Exchange (ETDEWEB)

    Herz, A., E-mail: andreas.herz@tu-ilmenau.de, E-mail: dong.wang@tu-ilmenau.de; Rossberg, D.; Hentschel, M.; Theska, F.; Wang, D., E-mail: andreas.herz@tu-ilmenau.de, E-mail: dong.wang@tu-ilmenau.de; Schaaf, P. [Department of Materials for Electronics and Electrical Engineering, Institute of Materials Science and Engineering and Institute of Micro- and Nanotechnologies MacroNano, TU Ilmenau, D-98693 Ilmenau (Germany); Friák, M. [Institute of Physics of Materials, Academy of Sciences of the Czech Republic, v.v.i., Žižkova 22, CZ-616 62 Brno (Czech Republic); Central European Institute of Technology, CEITEC MU, Masaryk University, Kamenice 5, CZ-625 00 Brno (Czech Republic); Holec, D. [Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, A-8700 Leoben (Austria); Šob, M. [Central European Institute of Technology, CEITEC MU, Masaryk University, Kamenice 5, CZ-625 00 Brno (Czech Republic); Institute of Physics of Materials, Academy of Sciences of the Czech Republic, v.v.i., Žižkova 22, CZ-616 62 Brno (Czech Republic); Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, CZ-611 37 Brno (Czech Republic); Schneeweiss, O. [Institute of Physics of Materials, Academy of Sciences of the Czech Republic, v.v.i., Žižkova 22, CZ-616 62 Brno (Czech Republic)

    2015-08-17

    Solid-state dewetting is used to fabricate supersaturated, submicron-sized Au-Ni solid solution particles out of thin Au/Ni bilayers by means of a rapid thermal annealing technique. Phase separation in such particles is studied with respect to their equilibrium crystal (or Wulff) shape by subsequent annealing at elevated temperature. It is found that (100) faceting planes of the equilibrated particles are enriched with Ni and (111) faces with Au. Both phases are considered by quantum-mechanical calculations in combination with an error-reduction scheme that was developed to compensate for a missing exchange-correlation potential that would reliably describe both Au and Ni. The observed phase configuration is then related to the minimization of strongly anisotropic elastic energies of Au- and Ni-rich phases and results in a rather unique nanoparticle composite state that is characterized by nearly uniform value of elastic response to epitaxial strains all over the faceted surface. The same conclusion is yielded also by evaluating bi-axial elastic moduli when employing interpolated experimental elastic constants. This work demonstrates a useful route for studying features of physical metallurgy at the mesoscale.

  11. Identification and Characterization of 293T Cell-Derived Exosomes by Profiling the Protein, mRNA and MicroRNA Components.

    Directory of Open Access Journals (Sweden)

    Jing Li

    Full Text Available Cell-derived exosomes are leading candidates for in vivo drug delivery carriers. In particular, exosomes derived from 293T cells are used most frequently, although exosome dosing has varied greatly among studies. Considering their biological origin, it is crucial to characterize the molecular composition of exosomes if large doses are to be administered in clinical settings. In this study, we present the first comprehensive analysis of the protein, messenger RNA and microRNA profiles of 293T cell-derived exosomes; then, we characterized these data using Gene Ontology annotation and Kyoto Encyclopedia for Genes and Genomes pathway analysis. Our study will provide the basis for the selection of 293T cell-derived exosome drug delivery systems. Profiling the exosomal signatures of 293T cells will lead to a better understanding of 293T exosome biology and will aid in the identification of any harmful factors in exosomes that could cause adverse clinical effects.

  12. mRNA Traffic Control Reviewed: N6-Methyladenosine (m6 A) Takes the Driver's Seat.

    Science.gov (United States)

    Visvanathan, Abhirami; Somasundaram, Kumaravel

    2018-01-01

    Messenger RNA is a flexible tool box that plays a key role in the dynamic regulation of gene expression. RNA modifications variegate the message conveyed by the mRNA. Similar to DNA and histone modifications, mRNA modifications are reversible and play a key role in the regulation of molecular events. Our understanding about the landscape of RNA modifications is still rudimentary in contrast to DNA and histone modifications. The major obstacle has been the lack of sensitive detection methods since they are non-editing events. However, with the advent of next-generation sequencing techniques, RNA modifications are being identified precisely at single nucleotide resolution. In recent years, methylation at the N6 position of adenine (m 6 A) has gained the attention of RNA biologists. The m 6 A modification has a set of writers (methylases), erasers (demethylases), and readers. Here, we provide a summary of interesting facts, conflicting findings, and recent advances in the technical and functional aspects of the m 6 A epitranscriptome. © 2017 WILEY Periodicals, Inc.

  13. Sodium ion exosphere of Mercury during MESSENGER flybys

    Czech Academy of Sciences Publication Activity Database

    Paral, Jan; Trávníček, Pavel M.; Rankin, R.; Schriver, D.

    2010-01-01

    Roč. 37, č. 19 (2010), L19102/1-L19102/5 ISSN 0094-8276 Institutional research plan: CEZ:AV0Z30420517; CEZ:AV0Z10030501 Keywords : MESSENGER flybys * solar wind sputtering * photo-stimulated desorption Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 3.505, year: 2010 http://onlinelibrary.wiley.com/doi/10.1029/2010GL044413/abstract

  14. Coupling between magnetic and optical properties of stable Au-Fe solid solution nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    De Julian Fernandez, C; Novak, R L; Bogani, L; Caneschi, A [INSTM RU at the Department of Chemistry of the University of Firenze, via della Lastruccia 3, 50019 Sesto Fiorentino (Italy); Mattei, G; Mazzoldi, P [Department of Physics, CNISM and University of Padova, via Marzolo 8, 35131 Padova (Italy); Paz, E; Palomares, F J [Instituto de Ciencia de Materiales de Madrid (CSIC), Cantoblanco, 28049 Madrid (Spain); Cavigli, L, E-mail: cesar.dejulian@unifi.it [Department of Physics-LENS, University of Florence, via Sansone 1, 50019 Sesto Fiorentino (Italy)

    2010-04-23

    Au-Fe nanoparticles constitute one of the simplest prototypes of a multifunctional nanomaterial that can exhibit both magnetic and optical (plasmonic) properties. This solid solution, not feasible in the bulk phase diagram in thermal equilibrium, can be formed as a nanostructure by out-of-equilibrium processes. Here, the novel magnetic, optical and magneto-optical properties of ion-implanted Au-Fe solid solution nanoparticles dispersed in a SiO{sub 2} matrix are investigated and correlated. The surface plasmon resonance of the Au-Fe nanoparticles with almost equicomposition is strongly damped when compared to pure Au and to Au-rich Au-Fe nanoparticles. In all cases, the Au atoms are magnetically polarized, as measured by x-ray magnetic circular dichroism, and ferromagnetically coupled with Fe atoms. Although the chemical stability of Au-Fe nanoparticles is larger than that of Fe nanoparticles, both the magnetic moment per Fe atom and the order temperature are smaller. These results suggest that electronic and magnetic properties are more influenced by the hybridization of the electronic bands in the Au-Fe solid solution than by size effects. On the other hand, the magneto-optical transitions allowed in the vis-nIR spectral regions are very similar. In addition, we also observe, after studying the properties of thermally treated samples, that the Au-Fe alloy is stabilized, not by surface effects, but by the combination of the out-of-equilibrium nature of the ion implantation technique and by changes in the properties due to size effects.

  15. Coupling between magnetic and optical properties of stable Au-Fe solid solution nanoparticles

    International Nuclear Information System (INIS)

    De Julian Fernandez, C; Novak, R L; Bogani, L; Caneschi, A; Mattei, G; Mazzoldi, P; Paz, E; Palomares, F J; Cavigli, L

    2010-01-01

    Au-Fe nanoparticles constitute one of the simplest prototypes of a multifunctional nanomaterial that can exhibit both magnetic and optical (plasmonic) properties. This solid solution, not feasible in the bulk phase diagram in thermal equilibrium, can be formed as a nanostructure by out-of-equilibrium processes. Here, the novel magnetic, optical and magneto-optical properties of ion-implanted Au-Fe solid solution nanoparticles dispersed in a SiO 2 matrix are investigated and correlated. The surface plasmon resonance of the Au-Fe nanoparticles with almost equicomposition is strongly damped when compared to pure Au and to Au-rich Au-Fe nanoparticles. In all cases, the Au atoms are magnetically polarized, as measured by x-ray magnetic circular dichroism, and ferromagnetically coupled with Fe atoms. Although the chemical stability of Au-Fe nanoparticles is larger than that of Fe nanoparticles, both the magnetic moment per Fe atom and the order temperature are smaller. These results suggest that electronic and magnetic properties are more influenced by the hybridization of the electronic bands in the Au-Fe solid solution than by size effects. On the other hand, the magneto-optical transitions allowed in the vis-nIR spectral regions are very similar. In addition, we also observe, after studying the properties of thermally treated samples, that the Au-Fe alloy is stabilized, not by surface effects, but by the combination of the out-of-equilibrium nature of the ion implantation technique and by changes in the properties due to size effects.

  16. Coupling between magnetic and optical properties of stable Au-Fe solid solution nanoparticles

    Science.gov (United States)

    de Julián Fernández, C.; Mattei, G.; Paz, E.; Novak, R. L.; Cavigli, L.; Bogani, L.; Palomares, F. J.; Mazzoldi, P.; Caneschi, A.

    2010-04-01

    Au-Fe nanoparticles constitute one of the simplest prototypes of a multifunctional nanomaterial that can exhibit both magnetic and optical (plasmonic) properties. This solid solution, not feasible in the bulk phase diagram in thermal equilibrium, can be formed as a nanostructure by out-of-equilibrium processes. Here, the novel magnetic, optical and magneto-optical properties of ion-implanted Au-Fe solid solution nanoparticles dispersed in a SiO2 matrix are investigated and correlated. The surface plasmon resonance of the Au-Fe nanoparticles with almost equicomposition is strongly damped when compared to pure Au and to Au-rich Au-Fe nanoparticles. In all cases, the Au atoms are magnetically polarized, as measured by x-ray magnetic circular dichroism, and ferromagnetically coupled with Fe atoms. Although the chemical stability of Au-Fe nanoparticles is larger than that of Fe nanoparticles, both the magnetic moment per Fe atom and the order temperature are smaller. These results suggest that electronic and magnetic properties are more influenced by the hybridization of the electronic bands in the Au-Fe solid solution than by size effects. On the other hand, the magneto-optical transitions allowed in the vis-nIR spectral regions are very similar. In addition, we also observe, after studying the properties of thermally treated samples, that the Au-Fe alloy is stabilized, not by surface effects, but by the combination of the out-of-equilibrium nature of the ion implantation technique and by changes in the properties due to size effects.

  17. Antisense RNA: a genetic approach to cell resistance against Parvovirus; RNA antisentido: una aproximacion de resistencia genetica a Parvovirus

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez Martinez, J.C.

    1992-12-31

    The Minute Virus of Mice (MVMp), an autonomous Parvovirus that replicates cytolytically in the A9 mouse fibroblast cell line, was interfered by constitutive expression of an antisense RNA targeted against the major non-structural NS-1 protein. Permanently transfected A9 clones expressing NS-1 antisense, showed increased proliferative capacity upon virus infection, and likewise cultures infected at low multiplicity by MVMp reached confluence overcoming virus growth. Correspondingly, an inhibition in virus multiplication was demonstrated by a significant lower virus production and plaque forming ability in clones expressing antisense RNa. At the molecular level, several fold reduction in viral DNA, RNA and proteins was quantitated by respective analysis of Southern, RNase protection and bidimensional gels. Remarkably, the accumulation of all three viral messengers(R1,R2,R3) was decreased both in the cytoplasm and in the nucleus, suggesting that antisense-mediated inhibition is primarily exerted at the level of viral transcription or nuclear post-transcriptional events. Thus, this system illustrates the possibility to create an antisense-mediated protective stage to highly cytotoxic viruses in permissive cells, by down-modulation the expression of a transactivator of virus genes. (author)180 refs., 25 figs.

  18. Antisense RNA: a genetic approach to cell resistance against Parvovirus. RNA antisentido: una aproximacion de resistencia genetica a Parvovirus

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez Martinez, J.C.

    1992-01-01

    The Minute Virus of Mice (MVMp), an autonomous Parvovirus that replicates cytolytically in the A9 mouse fibroblast cell line, was interfered by constitutive expression of an antisense RNA targeted against the major non-structural NS-1 protein. Permanently transfected A9 clones expressing NS-1 antisense, showed increased proliferative capacity upon virus infection, and likewise cultures infected at low multiplicity by MVMp reached confluence overcoming virus growth. Correspondingly, an inhibition in virus multiplication was demonstrated by a significant lower virus production and plaque forming ability in clones expressing antisense RNa. At the molecular level, several fold reduction in viral DNA, RNA and proteins was quantitated by respective analysis of Southern, RNase protection and bidimensional gels. Remarkably, the accumulation of all three viral messengers(R1,R2,R3) was decreased both in the cytoplasm and in the nucleus, suggesting that antisense-mediated inhibition is primarily exerted at the level of viral transcription or nuclear post-transcriptional events. Thus, this system illustrates the possibility to create an antisense-mediated protective stage to highly cytotoxic viruses in permissive cells, by down-modulation the expression of a transactivator of virus genes. (author)180 refs., 25 figs.

  19. Potential microRNA-mediated oncogenic intercellular communication revealed by pan-cancer analysis

    Science.gov (United States)

    Li, Yue; Zhang, Zhaolei

    2014-11-01

    Carcinogenesis consists of oncogenesis and metastasis, and intriguingly microRNAs (miRNAs) are involved in both processes. Although aberrant miRNA activities are prevalent in diverse tumor types, the exact mechanisms for how they regulate cancerous processes are not always clear. To this end, we performed a large-scale pan-cancer analysis via a novel probabilistic approach to infer recurrent miRNA-target interactions implicated in 12 cancer types using data from The Cancer Genome Atlas. We discovered ~20,000 recurrent miRNA regulations, which are enriched for cancer-related miRNAs/genes. Notably, miRNA 200 family (miR-200/141/429) is among the most prominent miRNA regulators, which is known to be involved in metastasis. Importantly, the recurrent miRNA regulatory network is not only enriched for cancer pathways but also for extracellular matrix (ECM) organization and ECM-receptor interactions. The results suggest an intriguing cancer mechanism involving miRNA-mediated cell-to-cell communication, which possibly involves delivery of tumorigenic miRNA messengers to adjacent cells via exosomes. Finally, survival analysis revealed 414 recurrent-prognostic associations, where both gene and miRNA involved in each interaction conferred significant prognostic power in one or more cancer types. Together, our comprehensive pan-cancer analysis provided not only biological insights into metastasis but also brought to bear the clinical relevance of the proposed recurrent miRNA-gene associations.

  20. Changes in insulin-like growth factor-binding protein-3 messenger ribonucleic acid in endothelial cells of the human corpus luteum: a possible role in luteal development and rescue.

    Science.gov (United States)

    Fraser, H M; Lunn, S F; Kim, H; Duncan, W C; Rodger, F E; Illingworth, P J; Erickson, G F

    2000-04-01

    In the human menstrual cycle, extensive angiogenesis accompanies luteinization; and the process is physiologically important for corpus luteum (CL) function. During luteolysis, the vasculature collapses, and the endothelial cells die. In a conceptual cycle, the CL persists both functionally and structurally beyond the luteoplacental shift. Although luteal rescue is not associated with increased angiogenesis, endothelial survival is extended. Despite the central role of the luteal vasculature in fertility, the mechanisms regulating its development and demise are poorly understood. There is increasing evidence that insulin-like growth factors (IGFs) and their binding proteins (IGFBPs) may be important effectors of luteal function. Here, we have found that IGFBP-3 messenger RNA is expressed in the endothelium of the human CL and that the levels of message change during luteal development and rescue by human CG. The signal was strong during the early luteal phase, but it showed significant reduction during the mid- and late luteal phases. Interestingly, administration of human CG caused a marked increase in the levels of IGFBP-3 messenger RNA in luteal endothelial cells that was comparable to that observed during the early luteal phase. We conclude that endothelial cell IGFBP-3 expression is a physiological property of the CL of menstruation and pregnancy. These observations raise the intriguing possibility that the regulated expression of endothelial IGFBP-3 may play a role in controlling angiogenesis and cell responses in the human CL by autocrine/paracrine mechanisms.

  1. Mercury's Interior from MESSENGER Radio Science Data

    Science.gov (United States)

    Genova, A.; Mazarico, E.; Goossens, S. J.; Lemoine, F. G.; Neumann, G. A.; Smith, D. E.; Zuber, M. T.

    2017-12-01

    The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft provided precise radio tracking data in orbit about Mercury for more than 4 years, from March 2011 to April 2015. These geodetic measurements enable us to investigate the interior structure of the planet from the inner core to the crust. The first three years of radio data allowed us to determine the gravity field of Mercury with a resolution of 150 km in the northern hemisphere (degree and order 50 in spherical harmonics) since the periapsis was located at higher latitudes (>65˚N) and 200-500 km altitudes. The comparison of this gravity solution with Mercury's topography, which was retrieved by using over 25 million individual measurements of the Mercury Laser Altimeter (MLA), resulted in a preliminary map of the crustal thickness of the planet. However, those results were limited by the resolution of the gravity field since the topography was defined in spherical harmonics up to degree and order 125. The last year of the MESSENGER extended mission was dedicated to a low-altitude campaign, where the spacecraft periapsis was maintained at altitudes between 25 and 100 km. The radio data collected during this mission phase allowed us to significantly improve the resolution of the gravity field locally in the northern hemisphere up to degree and order 100 in spherical harmonics. We present the gravity anomalies and crustal thickness maps that lead to a better understanding on the formation and evolution of specific regions. We present our estimated orientation model, which slightly differs from the solutions that were obtained by using Earth-based radar measurements and the co-registration of MESSENGER imaging and altimetry data. These previous estimates provide a direct measurement of the surface response, whereas the orientation model from gravity is more sensitive to the inner and outer core. A discrepancy between core and surface obliquities may provide fundamental

  2. The effect of addiction to mobile messenger software and mental health among physical education students

    Directory of Open Access Journals (Sweden)

    Mostafa Bagherianfar

    2017-08-01

    Full Text Available Introduction: The objective of the present study is to the effect of addiction to mobile messenger software on mental health among physical education university students of Torbat-e-Heydarieh city.  Materials and Methods: The statistical population of this descriptive-correlational study included all physical education university students of Torbat-e-Heydarieh city. 169 students out of 302 were chosen as the sample of study, for which stratified sampling method was applied. In order to collect data, Goldberg general health questionnaire and addiction to mobile messenger software inventory were used. Data were analyzed using descriptive and illative statistics.  Results: The research findings showed that there is a statistically significant relationship between addiction to mobile messenger software's and mental health among the students of physical education (P

  3. Modeling MESSENGER Observations of Calcium in Mercury's Exosphere

    Science.gov (United States)

    Burger, Matthew Howard; Killen, Rosemary M.; McClintock, William E.; Vervack, Ronald J., Jr.; Merkel, Aimee W.; Sprague, Ann L.; Sarantos, Menelaos

    2012-01-01

    The Mercury Atmospheric and Surface Composition Spectrometer (MASCS) on the MESSENGER spacecraft has made the first high-spatial-resolution observations of exospheric calcium at Mercury. We use a Monte Carlo model of the exosphere to track the trajectories of calcium atoms ejected from the surface until they are photoionized, escape from the system, or stick to the surface. This model permits an exploration of exospheric source processes and interactions among neutral atoms, solar radiation, and the planetary surface. The MASCS data have suggested that a persistent, high-energy source of calcium that was enhanced in the dawn, equatorial region of Mercury was active during MESSENGER's three flybys of Mercury and during the first seven orbits for which MASCS obtained data. The total Ca source rate from the surface varied between 1.2x10(exp 23) and 2.6x10(exp 23) Ca atoms/s, if its temperature was 50,000 K. The origin of this high-energy, asymmetric source is unknown, although from this limited data set it does not appear to be consistent with micrometeoroid impact vaporization, ion sputtering, electron-stimulated desorption, or vaporization at dawn of material trapped on the cold nightside.

  4. Statistical Use of Argonaute Expression and RISC Assembly in microRNA Target Identification

    Science.gov (United States)

    Stanhope, Stephen A.; Sengupta, Srikumar; den Boon, Johan; Ahlquist, Paul; Newton, Michael A.

    2009-01-01

    MicroRNAs (miRNAs) posttranscriptionally regulate targeted messenger RNAs (mRNAs) by inducing cleavage or otherwise repressing their translation. We address the problem of detecting m/miRNA targeting relationships in homo sapiens from microarray data by developing statistical models that are motivated by the biological mechanisms used by miRNAs. The focus of our modeling is the construction, activity, and mediation of RNA-induced silencing complexes (RISCs) competent for targeted mRNA cleavage. We demonstrate that regression models accommodating RISC abundance and controlling for other mediating factors fit the expression profiles of known target pairs substantially better than models based on m/miRNA expressions alone, and lead to verifications of computational target pair predictions that are more sensitive than those based on marginal expression levels. Because our models are fully independent of exogenous results from sequence-based computational methods, they are appropriate for use as either a primary or secondary source of information regarding m/miRNA target pair relationships, especially in conjunction with high-throughput expression studies. PMID:19779550

  5. The nucleotide sequence of satellite RNA in grapevine fanleaf virus, strain F13.

    Science.gov (United States)

    Fuchs, M; Pinck, M; Serghini, M A; Ravelonandro, M; Walter, B; Pinck, L

    1989-04-01

    The nucleotide sequence of cDNA copies of grapevine fanleaf virus (strain F13) satellite RNA has been determined. The primary structure obtained was 1114 nucleotides in length, excluding the poly(A) tail, and contained only one long open reading frame encoding a 341 residue, highly hydrophilic polypeptide of Mr37275. The coding sequence was bordered by a leader of 14 nucleotides and a 3'-terminal non-coding region of 74 nucleotides. No homology has been found with small satellite RNAs associated with other nepoviruses. Two limited homologies of eight nucleotides have been detected between the satellite RNA in grapevine fanleaf virus and those in tomato black ring virus, and a consensus sequence U.G/UGAAAAU/AU/AU/A at the 5' end of nepovirus RNAs is reported. A less extended consensus exists in this region in comovirus and picornavirus RNA.

  6. Advances in the delivery of RNA therapeutics: from concept to clinical reality.

    Science.gov (United States)

    Kaczmarek, James C; Kowalski, Piotr S; Anderson, Daniel G

    2017-06-27

    The rapid expansion of the available genomic data continues to greatly impact biomedical science and medicine. Fulfilling the clinical potential of genetic discoveries requires the development of therapeutics that can specifically modulate the expression of disease-relevant genes. RNA-based drugs, including short interfering RNAs and antisense oligonucleotides, are particularly promising examples of this newer class of biologics. For over two decades, researchers have been trying to overcome major challenges for utilizing such RNAs in a therapeutic context, including intracellular delivery, stability, and immune response activation. This research is finally beginning to bear fruit as the first RNA drugs gain FDA approval and more advance to the final phases of clinical trials. Furthermore, the recent advent of CRISPR, an RNA-guided gene-editing technology, as well as new strides in the delivery of messenger RNA transcribed in vitro, have triggered a major expansion of the RNA-therapeutics field. In this review, we discuss the challenges for clinical translation of RNA-based therapeutics, with an emphasis on recent advances in delivery technologies, and present an overview of the applications of RNA-based drugs for modulation of gene/protein expression and genome editing that are currently being investigated both in the laboratory as well as in the clinic.

  7. Differentiation of the mRNA transcripts originating from the alpha 1- and alpha 2-globin loci in normals and alpha-thalassemics.

    OpenAIRE

    Liebhaber, S A; Kan, Y W

    1981-01-01

    The alpha-globin polypeptide is encoded by two adjacent genes, alpha 1 and alpha 2. In the normal diploid state (alpha alpha/alpha alpha) all four alpha-globin genes are expressed. Loss or dysfunction of one or more of these genes leads to deficient alpha-globin production and results in alpha-thalassemia. We present a technique to differentially assess the steady-state levels of the alpha 1- and alpha-2-globin messenger RNA (mRNA) transcripts and thus delineate the relative level of expressi...

  8. Generalized messenger sector for gauge mediation of supersymmetry breaking and the soft spectrum

    International Nuclear Information System (INIS)

    Marques, Diego

    2009-01-01

    We consider a generic renormalizable and gauge invariant messenger sector and derive the sparticle mass spectrum using the formalism introduced for General Gauge Mediation. Our results recover many expressions found in the literature in various limits. Constraining the messenger sector with a global symmetry under which the spurion field is charged, we analyze Extraordinary Gauge Mediation beyond the small SUSY breaking limit. Finally, we include D-term contributions and compute their corrections to the soft masses. This leads to a perturbative framework allowing to explore models capable of fully covering the parameter space of General Gauge Mediation to the Supersymmetric Standard Model.

  9. Chiral magnetic effect search in p+Au, d+Au and Au+Au collisions at RHIC

    Science.gov (United States)

    Zhao, Jie

    2018-01-01

    Metastable domains of fluctuating topological charges can change the chirality of quarks and induce local parity violation in quantum chromodynamics. This can lead to observable charge separation along the direction of the strong magnetic field produced by spectator protons in relativistic heavy-ion collisions, a phenomenon called the chiral magnetic effect (CME). A major background source for CME measurements using the charge-dependent azimuthal correlator (Δϒ) is the intrinsic particle correlations (such as resonance decays) coupled with the azimuthal elliptical anisotropy (v2). In heavy-ion collisions, the magnetic field direction and event plane angle are correlated, thus the CME and the v2-induced background are entangled. In this report, we present two studies from STAR to shed further lights on the background issue. (1) The Δϒ should be all background in small system p+Au and d+Au collisions, because the event plane angles are dominated by geometry fluctuations uncorrelated to the magnetic field direction. However, significant Δϒ is observed, comparable to the peripheral Au+Au data, suggesting a background dominance in the latter, and likely also in the mid-central Au+Au collisions where the multiplicity and v2 scaled correlator is similar. (2) A new approach is devised to study Δϒ as a function of the particle pair invariant mass (minv) to identify the resonance backgrounds and hence to extract the possible CME signal. Signal is consistent with zero within uncertainties at high minv. Signal at low minv, extracted from a two-component model assuming smooth mass dependence, is consistent with zero within uncertainties.

  10. Mapping the Topography of Mercury with MESSENGER Laser Altimetry

    Science.gov (United States)

    Sun, Xiaoli; Cavanaugh, John F.; Neumann, Gregory A.; Smith, David E..; Zubor, Maria T.

    2012-01-01

    The Mercury Laser Altimeter onboard MESSENGER involves unique design elements that deal with the challenges of being in orbit around Mercury. The Mercury Laser Altimeter (MLA) is one of seven instruments on NASA's MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft. MESSENGER was launched on 3 August 2004, and entered into orbit about Mercury on 18 March 2011 after a journey through the inner solar system. This involved six planetary flybys, including three of Mercury. MLA is designed to map the topography and landforms of Mercury's surface. It also measures the planet's forced libration (motion about the spin axis), which helps constrain the state of the core. The first science measurements from orbit taken with MLA were made on 29 March 2011 and continue to date. MLA had accumulated about 8.3 million laser ranging measurements to Mercury's surface, as of 31 July 2012, i.e., over six Mercury years (528 Earth days). Although MLA is the third planetary lidar built at the NASA Goddard Space Flight Center (GSFC), MLA must endure a much harsher thermal environment near Mercury than the previous instruments on Mars and Earth satellites. The design of MLA was derived in part from that of the Mars Orbiter Laser Altimeter on Mars Global Surveyor. However, MLA must range over greater distances and often in off-nadir directions from a highly eccentric orbit. In MLA we use a single-mode diode-pumped Nd:YAG (neodymium-doped yttrium aluminum garnet) laser that is highly collimated to maintain a small footprint on the planet. The receiver has both a narrow field of view and a narrow spectral bandwidth to minimize the amount of background light detected from the sunlit hemisphere of Mercury. We achieve the highest possible receiver sensitivity by employing the minimum receiver detection threshold.

  11. Structure of Human cGAS Reveals a Conserved Family of Second-Messenger Enzymes in Innate Immunity

    Directory of Open Access Journals (Sweden)

    Philip J. Kranzusch

    2013-05-01

    Full Text Available Innate immune recognition of foreign nucleic acids induces protective interferon responses. Detection of cytosolic DNA triggers downstream immune signaling through activation of cyclic GMP-AMP synthase (cGAS. We report here the crystal structure of human cGAS, revealing an unanticipated zinc-ribbon DNA-binding domain appended to a core enzymatic nucleotidyltransferase scaffold. The catalytic core of cGAS is structurally homologous to the RNA-sensing enzyme, 2′-5′ oligo-adenylate synthase (OAS, and divergent C-terminal domains account for specific ligand-activation requirements of each enzyme. We show that the cGAS zinc ribbon is essential for STING-dependent induction of the interferon response and that conserved amino acids displayed within the intervening loops are required for efficient cytosolic DNA recognition. These results demonstrate that cGAS and OAS define a family of innate immunity sensors and that structural divergence from a core nucleotidyltransferase enables second-messenger responses to distinct foreign nucleic acids.

  12. The SmpB C-terminal tail helps tmRNA to recognize and enter stalled ribosomes

    Directory of Open Access Journals (Sweden)

    Mickey R. Miller

    2014-09-01

    Full Text Available In bacteria, transfer-messenger RNA (tmRNA and SmpB comprise the most common and effective system for rescuing stalled ribosomes. Ribosomes stall on mRNA transcripts lacking stop codons and are rescued as the defective mRNA is swapped for the tmRNA template in a process known as trans-translation. The tmRNA–SmpB complex is recruited to the ribosome independent of a codon–anticodon interaction. Given that the ribosome uses robust discriminatory mechanisms to select against non-cognate tRNAs during canonical decoding, it has been hard to explain how this can happen. Recent structural and biochemical studies show that SmpB licenses tmRNA entry through its interactions with the decoding center and mRNA channel. In particular, the C-terminal tail of SmpB promotes both EFTu activation and accommodation of tmRNA, the former through interactions with 16S rRNA nucleotide G530 and the latter through interactions with the mRNA channel downstream of the A site. Here we present a detailed model of the earliest steps in trans-translation, and in light of these mechanistic considerations, revisit the question of how tmRNA preferentially reacts with stalled, non-translating ribosomes.

  13. Organism-specific rRNA capture system for application in next-generation sequencing.

    Directory of Open Access Journals (Sweden)

    Sai-Kam Li

    Full Text Available RNA-sequencing is a powerful tool in studying RNomics. However, the highly abundance of ribosomal RNAs (rRNA and transfer RNA (tRNA have predominated in the sequencing reads, thereby hindering the study of lowly expressed genes. Therefore, rRNA depletion prior to sequencing is often performed in order to preserve the subtle alteration in gene expression especially those at relatively low expression levels. One of the commercially available methods is to use DNA or RNA probes to hybridize to the target RNAs. However, there is always a concern with the non-specific binding and unintended removal of messenger RNA (mRNA when the same set of probes is applied to different organisms. The degree of such unintended mRNA removal varies among organisms due to organism-specific genomic variation. We developed a computer-based method to design probes to deplete rRNA in an organism-specific manner. Based on the computation results, biotinylated-RNA-probes were produced by in vitro transcription and were used to perform rRNA depletion with subtractive hybridization. We demonstrated that the designed probes of 16S rRNAs and 23S rRNAs can efficiently remove rRNAs from Mycobacterium smegmatis. In comparison with a commercial subtractive hybridization-based rRNA removal kit, using organism-specific probes is better in preserving the RNA integrity and abundance. We believe the computer-based design approach can be used as a generic method in preparing RNA of any organisms for next-generation sequencing, particularly for the transcriptome analysis of microbes.

  14. Rational design of avian metapneumovirus live attenuated vaccines by inhibiting viral messenger RNA cap methyltransferase

    Science.gov (United States)

    Avian metapneumovirus (aMPV), also known as avian pneumovirus or turkey rhinotracheitis, is a non-segmented negative-sense RNA virus belonging to the family of Paramyxoviridae, the subfamily Pneumovirinae, and the genus Metapneumovirus. aMPV is the causative agent of respiratory tract infection and ...

  15. Evidence for young volcanism on Mercury from the third MESSENGER flyby.

    Science.gov (United States)

    Prockter, Louise M; Ernst, Carolyn M; Denevi, Brett W; Chapman, Clark R; Head, James W; Fassett, Caleb I; Merline, William J; Solomon, Sean C; Watters, Thomas R; Strom, Robert G; Cremonese, Gabriele; Marchi, Simone; Massironi, Matteo

    2010-08-06

    During its first two flybys of Mercury, the MESSENGER spacecraft acquired images confirming that pervasive volcanism occurred early in the planet's history. MESSENGER's third Mercury flyby revealed a 290-kilometer-diameter peak-ring impact basin, among the youngest basins yet seen, having an inner floor filled with spectrally distinct smooth plains. These plains are sparsely cratered, postdate the formation of the basin, apparently formed from material that once flowed across the surface, and are therefore interpreted to be volcanic in origin. An irregular depression surrounded by a halo of bright deposits northeast of the basin marks a candidate explosive volcanic vent larger than any previously identified on Mercury. Volcanism on the planet thus spanned a considerable duration, perhaps extending well into the second half of solar system history.

  16. MESSENGER Observations of Extreme Loading and Unloading of Mercury's Magnetic Tail

    Science.gov (United States)

    Slavin, James A.; Anderson, Brian J.; Baker, Daniel N.; Benna, Mehdi; Boardsen, Scott A.; Gloeckler, George; Gold, Robert E.; Ho, George C.; Korth, Haje; Krimigis, Stamatios M.; hide

    2010-01-01

    During MESSENGER's third flyby of Mercury, the magnetic field in the planet's magnetotail increased by factors of 2 to 3.5 over intervals of 2 to 3 min. Magnetospheric substorms at Earth are powered by similar tail loading, but the amplitude is approx.10 times less and typical durations are approx.1 hour. The extreme tail loading observed at Mercury implies that the relative intensity of sub storms must be much larger than at Earth. The correspondence between the duration of tail field enhancements and the characteristic time for the Dungey cycle, which describes plasma circulation through Mercury's magnetosphere. suggests that such circulation determines substorm timescale. A key aspect of tail unloading during terrestrial substorms is the acceleration of energetic charged particles, but no acceleration signatures were seen during the MESSENGER flyby.

  17. MESSENGER observations of Mercury's exosphere: detection of magnesium and distribution of constituents.

    Science.gov (United States)

    McClintock, William E; Vervack, Ronald J; Bradley, E Todd; Killen, Rosemary M; Mouawad, Nelly; Sprague, Ann L; Burger, Matthew H; Solomon, Sean C; Izenberg, Noam R

    2009-05-01

    Mercury is surrounded by a tenuous exosphere that is supplied primarily by the planet's surface materials and is known to contain sodium, potassium, and calcium. Observations by the Mercury Atmospheric and Surface Composition Spectrometer during MESSENGER's second Mercury flyby revealed the presence of neutral magnesium in the tail (anti-sunward) region of the exosphere, as well as differing spatial distributions of magnesium, calcium, and sodium atoms in both the tail and the nightside, near-planet exosphere. Analysis of these observations, supplemented by observations during the first Mercury flyby, as well as those by other MESSENGER instruments, suggests that the distinct spatial distributions arise from a combination of differences in source, transfer, and loss processes.

  18. RNA Regulation of Estrogen

    Science.gov (United States)

    2010-08-01

    Berglund, Rodger Voelker, Paul Barber and Julien Diegel 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING...estrogen  receptors  [reviewed  in  (3,  4)],  also   functions   by  interacting  directly  with  RNA  to  alter  RNA...Mog myelin oligodendrocyte glycoprotein 6.06 207115_x_at mbtd1 mbt domain containing 1 6.06 208004_at Prol1 proline rich, lacrimal 1 6.06 205247_at

  19. Selective small-molecule inhibition of an RNA structural element

    Energy Technology Data Exchange (ETDEWEB)

    Howe, John A.; Wang, Hao; Fischmann, Thierry O.; Balibar, Carl J.; Xiao, Li; Galgoci, Andrew M.; Malinverni, Juliana C.; Mayhood, Todd; Villafania, Artjohn; Nahvi, Ali; Murgolo, Nicholas; Barbieri, Christopher M.; Mann, Paul A.; Carr, Donna; Xia, Ellen; Zuck, Paul; Riley, Dan; Painter, Ronald E.; Walker, Scott S.; Sherborne, Brad; de Jesus, Reynalda; Pan, Weidong; Plotkin, Michael A.; Wu, Jin; Rindgen, Diane; Cummings, John; Garlisi, Charles G.; Zhang, Rumin; Sheth, Payal R.; Gill, Charles J.; Tang, Haifeng; Roemer , Terry (Merck)

    2015-09-30

    Riboswitches are non-coding RNA structures located in messenger RNAs that bind endogenous ligands, such as a specific metabolite or ion, to regulate gene expression. As such, riboswitches serve as a novel, yet largely unexploited, class of emerging drug targets. Demonstrating this potential, however, has proven difficult and is restricted to structurally similar antimetabolites and semi-synthetic analogues of their cognate ligand, thus greatly restricting the chemical space and selectivity sought for such inhibitors. Here we report the discovery and characterization of ribocil, a highly selective chemical modulator of bacterial riboflavin riboswitches, which was identified in a phenotypic screen and acts as a structurally distinct synthetic mimic of the natural ligand, flavin mononucleotide, to repress riboswitch-mediated ribB gene expression and inhibit bacterial cell growth. Our findings indicate that non-coding RNA structural elements may be more broadly targeted by synthetic small molecules than previously expected.

  20. Animal experiments to study the connection between the radioreaction of the RNA metabolism of the liver and the activity of the protein metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Peters, E

    1973-02-05

    After selective deep X-ray irradiation of rat livers with 200 KeV X-rays, an enhanced incorporation of tritium uridine into various RNA species is observed. The extent and the rate of the radioreaction could be modified by experimentally changing the metabolic status of the liver cells. Partial deproteinisation of the plasma by means of an exchange function lead to a marked rise in the RNA synthesis rate of the liver for a short period of time. Additional irradiation had an inhibiting and delaying effect on the induction-dependent increase in tritium uridine incorporation in the case of transfer-RNA and m-RNA, while there was an enhanced incorporation in the messenger RNA of the heavy ribosome and polymer fraction.

  1. Mpn1, Mutated in Poikiloderma with Neutropenia Protein 1, Is a Conserved 3′-to-5′ RNA Exonuclease Processing U6 Small Nuclear RNA

    Directory of Open Access Journals (Sweden)

    Vadim Shchepachev

    2012-10-01

    Full Text Available Clericuzio-type poikiloderma with neutropenia (PN is a rare genodermatosis associated with mutations in the C16orf57 gene, which codes for the uncharacterized protein hMpn1. We show here that, in both fission yeasts and humans, Mpn1 processes the spliceosomal U6 small nuclear RNA (snRNA posttranscriptionally. In Mpn1-deficient cells, U6 molecules carry 3′ end polyuridine tails that are longer than those in normal cells and lack a terminal 2′,3′ cyclic phosphate group. In mpn1Δ yeast cells, U6 snRNA and U4/U6 di-small nuclear RNA protein complex levels are diminished, leading to precursor messenger RNA splicing defects, which are reverted by expression of either yeast or human Mpn1 and by overexpression of U6. Recombinant hMpn1 is a 3′-to-5′ RNA exonuclease that removes uridines from U6 3′ ends, generating terminal 2′,3′ cyclic phosphates in vitro. Finally, U6 degradation rates increase in mpn1Δ yeasts and in lymphoblasts established from individuals affected by PN. Our data indicate that Mpn1 promotes U6 stability through 3′ end posttranscriptional processing and implicate altered U6 metabolism as a potential mechanism for PN pathogenesis.

  2. MESSENGER E/V/H GRNS 3 NEUTRON SPECTROMETER CDR V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — Abstract ======== This data set consists of the MESSENGER Neutron Spectrometer (NS) calibrated data records (CDRs). The NS experiment is a neutron spectrometer...

  3. MESSENGER E/V/H/SW EPPS CALIBRATED FIPS DDR V2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — Abstract ======== This data set consists of the MESSENGER Energetic Particle and Plasma Spectrometer (EPPS) calibrated observations, also known as DDRs. The system...

  4. Neuronal chemokines : Versatile messengers in central nervous system cell interaction

    NARCIS (Netherlands)

    de Haas, A. H.; van Weering, H. R. J.; de Jong, E. K.; Boddeke, H. W. G. M.; Biber, K. P. H.

    2007-01-01

    Whereas chemokines are well known for their ability to induce cell migration, only recently it became evident that chemokines also control a variety of other cell functions and are versatile messengers in the interaction between a diversity of cell types. In the central nervous system (CNS),

  5. Targeted Sterically Stabilized Phospholipid siRNA Nanomedicine for Hepatic and Renal Fibrosis

    Directory of Open Access Journals (Sweden)

    Fatima Khaja

    2016-01-01

    Full Text Available Since its discovery, small interfering RNA (siRNA has been considered a potent tool for modulating gene expression. It has the ability to specifically target proteins via selective degradation of messenger RNA (mRNA not easily accessed by conventional drugs. Hence, RNA interference (RNAi therapeutics have great potential in the treatment of many diseases caused by faulty protein expression such as fibrosis and cancer. However, for clinical application siRNA faces a number of obstacles, such as poor in vivo stability, and off-target effects. Here we developed a unique targeted nanomedicine to tackle current siRNA delivery issues by formulating a biocompatible, biodegradable and relatively inexpensive nanocarrier of sterically stabilized phospholipid nanoparticles (SSLNPs. This nanocarrier is capable of incorporating siRNA in its core through self-association with a novel cationic lipid composed of naturally occuring phospholipids and amino acids. This overall assembly protects and delivers sufficient amounts of siRNA to knockdown over-expressed protein in target cells. The siRNA used in this study, targets connective tissue growth factor (CTGF, an important regulator of fibrosis in both hepatic and renal cells. Furthermore, asialoglycoprotein receptors are targeted by attaching the galactosamine ligand to the nanocarries which enhances the uptake of nanoparticles by hepatocytes and renal tubular epithelial cells, the major producers of CTGF in fibrosis. On animals this innovative nanoconstruct, small interfering RNA in sterically stabilized phospholipid nanoparticles (siRNA-SSLNP, showed favorable pharmacokinetic properties and accumulated mostly in hepatic and renal tissues making siRNA-SSLNP a suitable system for targeting liver and kidney fibrotic diseases.

  6. Successful synthesis and thermal stability of immiscible metal Au-Rh, Au-Ir andAu-Ir-Rh nanoalloys

    Science.gov (United States)

    Shubin, Yury; Plyusnin, Pavel; Sharafutdinov, Marat; Makotchenko, Evgenia; Korenev, Sergey

    2017-05-01

    We successfully prepared face-centred cubic nanoalloys in systems of Au-Ir, Au-Rh and Au-Ir-Rh, with large bulk miscibility gaps, in one-run reactions under thermal decomposition of specially synthesised single-source precursors, namely, [AuEn2][Ir(NO2)6], [AuEn2][Ir(NO2)6] х [Rh(NO2)6]1-х and [AuEn2][Rh(NO2)6]. The precursors employed contain all desired metals ‘mixed’ at the atomic level, thus providing significant advantages for obtaining alloys. The observations using high-resolution transmission electron microscopy show that the nanoalloy structures are composed of well-dispersed aggregates of crystalline domains with a mean size of 5 ± 3 nm. Еnergy dispersive x-ray spectroscopy and x-ray powder diffraction (XRD) measurements confirm the formation of AuIr, AuRh, AuIr0.75Rh0.25, AuIr0.50Rh0.50 and AuIr0.25Rh0.75 metastable solid solutions. In situ high-temperature synchrotron XRD (HTXRD) was used to study the formation mechanism of nanoalloys. The observed transformations are described by the ‘conversion chemistry’ mechanism characterised by the primary development of particles comprising atoms of only one type, followed by a chemical reaction resulting in the final formation of a nanoalloy. The obtained metastable nanoalloys exhibit essential thermal stability. Exposure to 180 °C for 30 h does not cause any dealloying process.

  7. Plant RNA Regulatory Network and RNA Granules in Virus Infection

    Directory of Open Access Journals (Sweden)

    Kristiina Mäkinen

    2017-12-01

    Full Text Available Regulation of post-transcriptional gene expression on mRNA level in eukaryotic cells includes translocation, translation, translational repression, storage, mRNA decay, RNA silencing, and nonsense-mediated decay. These processes are associated with various RNA-binding proteins and cytoplasmic ribonucleoprotein complexes many of which are conserved across eukaryotes. Microscopically visible aggregations formed by ribonucleoprotein complexes are termed RNA granules. Stress granules where the translationally inactive mRNAs are stored and processing bodies where mRNA decay may occur present the most studied RNA granule types. Diverse RNP-granules are increasingly being assigned important roles in viral infections. Although the majority of the molecular level studies on the role of RNA granules in viral translation and replication have been conducted in mammalian systems, some studies link also plant virus infection to RNA granules. An increasing body of evidence indicates that plant viruses require components of stress granules and processing bodies for their replication and translation, but how extensively the cellular mRNA regulatory network is utilized by plant viruses has remained largely enigmatic. Antiviral RNA silencing, which is an important regulator of viral RNA stability and expression in plants, is commonly counteracted by viral suppressors of RNA silencing. Some of the RNA silencing suppressors localize to cellular RNA granules and have been proposed to carry out their suppression functions there. Moreover, plant nucleotide-binding leucine-rich repeat protein-mediated virus resistance has been linked to enhanced processing body formation and translational repression of viral RNA. Many interesting questions relate to how the pathways of antiviral RNA silencing leading to viral RNA degradation and/or repression of translation, suppression of RNA silencing and viral RNA translation converge in plants and how different RNA granules and

  8. Plant RNA Regulatory Network and RNA Granules in Virus Infection.

    Science.gov (United States)

    Mäkinen, Kristiina; Lõhmus, Andres; Pollari, Maija

    2017-01-01

    Regulation of post-transcriptional gene expression on mRNA level in eukaryotic cells includes translocation, translation, translational repression, storage, mRNA decay, RNA silencing, and nonsense-mediated decay. These processes are associated with various RNA-binding proteins and cytoplasmic ribonucleoprotein complexes many of which are conserved across eukaryotes. Microscopically visible aggregations formed by ribonucleoprotein complexes are termed RNA granules. Stress granules where the translationally inactive mRNAs are stored and processing bodies where mRNA decay may occur present the most studied RNA granule types. Diverse RNP-granules are increasingly being assigned important roles in viral infections. Although the majority of the molecular level studies on the role of RNA granules in viral translation and replication have been conducted in mammalian systems, some studies link also plant virus infection to RNA granules. An increasing body of evidence indicates that plant viruses require components of stress granules and processing bodies for their replication and translation, but how extensively the cellular mRNA regulatory network is utilized by plant viruses has remained largely enigmatic. Antiviral RNA silencing, which is an important regulator of viral RNA stability and expression in plants, is commonly counteracted by viral suppressors of RNA silencing. Some of the RNA silencing suppressors localize to cellular RNA granules and have been proposed to carry out their suppression functions there. Moreover, plant nucleotide-binding leucine-rich repeat protein-mediated virus resistance has been linked to enhanced processing body formation and translational repression of viral RNA. Many interesting questions relate to how the pathways of antiviral RNA silencing leading to viral RNA degradation and/or repression of translation, suppression of RNA silencing and viral RNA translation converge in plants and how different RNA granules and their individual

  9. Protection against lethal Marburg virus infection mediated by lipid encapsulated small interfering RNA.

    Science.gov (United States)

    Ursic-Bedoya, Raul; Mire, Chad E; Robbins, Marjorie; Geisbert, Joan B; Judge, Adam; MacLachlan, Ian; Geisbert, Thomas W

    2014-02-15

    Marburg virus (MARV) infection causes severe morbidity and mortality in humans and nonhuman primates. Currently, there are no licensed therapeutics available for treating MARV infection. Here, we present the in vitro development and in vivo evaluation of lipid-encapsulated small interfering RNA (siRNA) as a potential therapeutic for the treatment of MARV infection. The activity of anti-MARV siRNAs was assessed using dual luciferase reporter assays followed by in vitro testing against live virus. Lead candidates were tested in lethal guinea pig models of 3 different MARV strains (Angola, Ci67, Ravn). Treatment resulted in 60%-100% survival of guinea pigs infected with MARV. Although treatment with siRNA targeting other MARV messenger RNA (mRNA) had a beneficial effect, targeting the MARV NP mRNA resulted in the highest survival rates. NP-718m siRNA in lipid nanoparticles provided 100% protection against MARV strains Angola and Ci67, and 60% against Ravn. A cocktail containing NP-718m and NP-143m provided 100% protection against MARV Ravn. These data show protective efficacy against the most pathogenic Angola strain of MARV. Further development of the lipid nanoparticle technology has the potential to yield effective treatments for MARV infection.

  10. PACCMIT/PACCMIT-CDS: identifying microRNA targets in 3' UTRs and coding sequences.

    Science.gov (United States)

    Šulc, Miroslav; Marín, Ray M; Robins, Harlan S; Vaníček, Jiří

    2015-07-01

    The purpose of the proposed web server, publicly available at http://paccmit.epfl.ch, is to provide a user-friendly interface to two algorithms for predicting messenger RNA (mRNA) molecules regulated by microRNAs: (i) PACCMIT (Prediction of ACcessible and/or Conserved MIcroRNA Targets), which identifies primarily mRNA transcripts targeted in their 3' untranslated regions (3' UTRs), and (ii) PACCMIT-CDS, designed to find mRNAs targeted within their coding sequences (CDSs). While PACCMIT belongs among the accurate algorithms for predicting conserved microRNA targets in the 3' UTRs, the main contribution of the web server is 2-fold: PACCMIT provides an accurate tool for predicting targets also of weakly conserved or non-conserved microRNAs, whereas PACCMIT-CDS addresses the lack of similar portals adapted specifically for targets in CDS. The web server asks the user for microRNAs and mRNAs to be analyzed, accesses the precomputed P-values for all microRNA-mRNA pairs from a database for all mRNAs and microRNAs in a given species, ranks the predicted microRNA-mRNA pairs, evaluates their significance according to the false discovery rate and finally displays the predictions in a tabular form. The results are also available for download in several standard formats. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Synthesis of ultrathin face-centered-cubic Au@Pt and Au@Pd core-shell nanoplates from hexagonal-close-packed Au square sheets

    KAUST Repository

    Fan, Zhanxi

    2015-03-17

    The synthesis of ultrathin face-centered-cubic (fcc) Au@Pt rhombic nanoplates is reported through the epitaxial growth of Pt on hexagonal-close-packed (hcp) Au square sheets (AuSSs). The Pt-layer growth results in a hcp-to-fcc phase transformation of the AuSSs under ambient conditions. Interestingly, the obtained fcc Au@Pt rhombic nanoplates demonstrate a unique (101)f orientation with the same atomic arrangement extending from the Au core to the Pt shell. Importantly, this method can be extended to the epitaxial growth of Pd on hcp AuSSs, resulting in the unprecedented formation of fcc Au@Pd rhombic nanoplates with (101)f orientation. Additionally, a small amount of fcc (100)f-oriented Au@Pt and Au@Pd square nanoplates are obtained with the Au@Pt and Au@Pd rhombic nanoplates, respectively. We believe that these findings will shed new light on the synthesis of novel noble bimetallic nanostructures. Phase change: Ultrathin Au@Pt and Au@Pd core-shell nanoplates were prepared from Au square sheets. A phase transformation from hexagonal close-packed (hcp) to face-centered cubic (fcc) is observed upon coating the hcp Au square sheets with Pt or Pd under ambient conditions. The prepared fcc Au@Pt and Au@Pd rhombic nanoplates demonstrate unique (101)f orientation (picture shows a typical fcc Au@Pt rhombic nanoplate). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. MESSENGER H XRS 5 REDUCED DATA RECORD (RDR) FOOTPRINTS V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — Abstract ======== This data set consists of the MESSENGER XRS reduced data record (RDR) footprints which are derived from the navigational meta-data for each...

  13. Finding Order in Randomness: Single-Molecule Studies Reveal Stochastic RNA Processing | Center for Cancer Research

    Science.gov (United States)

    Producing a functional eukaryotic messenger RNA (mRNA) requires the coordinated activity of several large protein complexes to initiate transcription, elongate nascent transcripts, splice together exons, and cleave and polyadenylate the 3’ end. Kinetic competition between these various processes has been proposed to regulate mRNA maturation, but this model could lead to multiple, randomly determined, or stochastic, pathways or outcomes. Regulatory checkpoints have been suggested as a means of ensuring quality control. However, current methods have been unable to tease apart the contributions of these processes at a single gene or on a time scale that could provide mechanistic insight. To begin to investigate the kinetic relationship between transcription and splicing, Daniel Larson, Ph.D., of CCR’s Laboratory of Receptor Biology and Gene Expression, and his colleagues employed a single-molecule RNA imaging approach to monitor production and processing of a human β-globin reporter gene in living cells.

  14. Fluctuations between multiple EF-G-induced chimeric tRNA states during translocation on the ribosome

    Science.gov (United States)

    Adio, Sarah; Senyushkina, Tamara; Peske, Frank; Fischer, Niels; Wintermeyer, Wolfgang; Rodnina, Marina V.

    2015-06-01

    The coupled translocation of transfer RNA and messenger RNA through the ribosome entails large-scale structural rearrangements, including step-wise movements of the tRNAs. Recent structural work has visualized intermediates of translocation induced by elongation factor G (EF-G) with tRNAs trapped in chimeric states with respect to 30S and 50S ribosomal subunits. The functional role of the chimeric states is not known. Here we follow the formation of translocation intermediates by single-molecule fluorescence resonance energy transfer. Using EF-G mutants, a non-hydrolysable GTP analogue, and fusidic acid, we interfere with either translocation or EF-G release from the ribosome and identify several rapidly interconverting chimeric tRNA states on the reaction pathway. EF-G engagement prevents backward transitions early in translocation and increases the fraction of ribosomes that rapidly fluctuate between hybrid, chimeric and posttranslocation states. Thus, the engagement of EF-G alters the energetics of translocation towards a flat energy landscape, thereby promoting forward tRNA movement.

  15. Radiative natural SUSY spectrum from deflected AMSB scenario with messenger-matter interactions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Fei [School of Physics, Zhengzhou University,Zhengzhou 450000 (China); State Key Laboratory of Theoretical Physics,Institute of Theoretical Physics, Chinese Academy of Sciences,Beijing 100080 (China); Yang, Jin Min [State Key Laboratory of Theoretical Physics,Institute of Theoretical Physics, Chinese Academy of Sciences,Beijing 100080 (China); Department of Physics, Tohoku University,Sendai 980-8578 (Japan); Zhang, Yang [State Key Laboratory of Theoretical Physics,Institute of Theoretical Physics, Chinese Academy of Sciences,Beijing 100080 (China)

    2016-04-29

    A radiative natural SUSY spectrum are proposed in the deflected anomaly mediation scenario with general messenger-matter interactions. Due to the contributions from the new interactions, positive slepton masses as well as a large |A{sub t}| term can naturally be obtained with either sign of deflection parameter and few messenger species (thus avoid the possible Landau pole problem). In this scenario, in contrast to the ordinary (radiative) natural SUSY scenario with under-abundance of dark matter (DM), the DM can be the mixed bino-higgsino and have the right relic density. The 125 GeV Higgs mass can also be easily obtained in our scenario. The majority of low EW fine tuning points can be covered by the XENON-1T direct detection experiments.

  16. 3',5'-cIMP as Potential Second Messenger in the Vascular Wall.

    Science.gov (United States)

    Leung, Susan W S; Gao, Yuansheng; Vanhoutte, Paul M

    2017-01-01

    Traditionally, only the 3',5'-cyclic monophosphates of adenosine and guanosine (produced by adenylyl cyclase and guanylyl cyclase, respectively) are regarded as true "second messengers" in the vascular wall, despite the presence of other cyclic nucleotides in different tissues. Among these noncanonical cyclic nucleotides, inosine 3',5'-cyclic monophosphate (cIMP) is synthesized by soluble guanylyl cyclase in porcine coronary arteries in response to hypoxia, when the enzyme is activated by endothelium-derived nitric oxide. Its production is associated with augmentation of vascular contraction mediated by stimulation of Rho kinase. Based on these findings, cIMP appears to meet most, if not all, of the criteria required for it to be accepted as a "second messenger," at least in the vascular wall.

  17. The Electronic Properties and L3 XANES of Au and Nano-Au

    International Nuclear Information System (INIS)

    Yiu, Y.M.; Zhang, P.; Sham, T.K.

    2004-01-01

    The electronic properties of Au crystal and nano Au have been investigated by theory and experiment. Molecularly capped nano-Au was synthesized using the two-phase method. Au nano-particles have been characterized by X-Ray Diffraction (XRD) and Transmission Electron Microscopy (TEM). They retain the fcc crystal structure. Their sizes have been determined to be in a range from 5.5 nm to 1.7 nm. The L3 X-ray Absorption Near Edge Structure (XANES) of nano-Au and Au foil have been recorded using synchrotron radiation, and examined by theoretical calculation based on the first principles. Both theory and experiment show that the nano-Au particles have essentially all the Au L3 XANES features of bulk Au in the near edge region with less pronounced resonance peaks. It is also shown that nano Au exhibits lower 4f binding energy than bulk Au in good agreement with quantum confined Au systems reported previously.

  18. Triangular Zn{sub 3} and Ga{sub 3} units in Sr{sub 2}Au{sub 6}Zn{sub 3}, Eu{sub 2}Au{sub 6}Zn{sub 3}, Sr{sub 2}Au{sub 6}Ga{sub 3}, and Eu{sub 2}Au{sub 6}Ga{sub 3}. Structure, magnetism, {sup 151}Eu Moessbauer and {sup 69;71}Ga solid state NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gerke, Birgit; Niehaus, Oliver; Poettgen, Rainer [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Korthaus, Alexander; Haarmann, Frank [RWTH Aachen Univ. (Germany). Inst. fuer Anorganische Chemie

    2016-08-01

    The gold-rich intermetallic compounds Sr{sub 2}Au{sub 6}Zn{sub 3}, Eu{sub 2}Au{sub 6}Zn{sub 3}, Sr{sub 2}Au{sub 6}Ga{sub 3}, and Eu{sub 2}Au{sub 6}Ga{sub 3} were synthesized from the elements in sealed tantalum ampoules in induction or muffle furnaces. The europium compounds are reported for the first time and their structures were refined from single crystal X-ray diffractometer data: Sr{sub 2}Au{sub 6}Zn{sub 3} type, R anti 3c, a = 837.7(1), c = 2184.5(4) pm, wR2 = 0.0293, 572 F{sup 2} values for Eu{sub 2}Au{sub 6.04}Zn{sub 2.96} and a = 838.1(2), c = 2191.7(5) pm, wR2 = 0.0443, 513 F{sup 2} values for Eu{sub 2}Au{sub 6.07}Ga{sub 2.93} with 20 variables per refinement. The structures consist of a three-dimensional gold network with a 6R stacking sequence, similar to the respective diamond polytype. The cavities of the network are filled in a ratio of 2:1 by strontium (europium) atoms and Ga{sub 3} (Zn{sub 3}) triangles in an ordered manner. Sr{sub 2}Au{sub 6}Zn{sub 3} and Sr{sub 2}Au{sub 6}Ga{sub 3} are diamagnetic with room temperature susceptibilities of -3.5 x 10{sup -4} emu mol{sup -1}. Temperature dependent susceptibility and {sup 151}Eu Moessbauer spectroscopic measurements show a stable divalent ground state for both europium compounds. Eu{sub 2}Au{sub 6}Zn{sub 3} and Eu{sub 2}Au{sub 6}Ga{sub 3} order antiferromagnetically below Neel temperatures of 16.3 and 12.1 K, respectively. Anisotropic electrical conductivity of Sr{sub 2}Au{sub 6}Ga{sub 3} is proven by an alignment of the crystallites in the magnetic field. Orientation-dependent {sup 69;71}Ga NMR experiments combined with quantum mechanical calculations (QM) give evidence for a highly anisotropic charge distribution of the Ga atoms.

  19. 100-MeV proton beam intensity measurement by Au activation analysis using {sup 197}Au(p, pn){sup 196}Au and {sup 197}Au(p, p3n){sup 194}Au reactions

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtari Oranj, Leila [Division of Advanced Nuclear Engineering, POSTECH, Pohang 37673 (Korea, Republic of); Jung, Nam-Suk; Oh, Joo-Hee [Pohang Accelerator Laboratory, POSTECH, Pohang 37673 (Korea, Republic of); Lee, Hee-Seock, E-mail: lee@postech.ac.kr [Pohang Accelerator Laboratory, POSTECH, Pohang 37673 (Korea, Republic of)

    2016-05-15

    The proton beam intensity of a 100-MeV proton linac at the Korea Multi-purpose Accelerator Complex (KOMAC) was measured by an Au activation analysis using {sup 197}Au(p, pn){sup 196}Au and {sup 197}Au(p, p3n){sup 194}Au reactions to determine the accuracy and precision of beam intensity measurement using Gafchromic film dosimetry method. The target, irradiated by 100-MeV protons, was arranged in a stack consisting of Au, Al foils and Pb plates. The yields of produced radio-nuclei in Au foils were obtained by gamma-ray spectroscopy. The FLUKA code was employed to calculate the energy spectrum of protons onto the front surface of Au foils located at three different depth points of the target and also to investigate the condition of incident beam on the target. A good agreement was found between the beam intensity measurements using the activation analysis method at three different depth points of the target. An excellent agreement was also observed between the beam intensity measurements using the Au activation analysis method and the dosimetry method using Gafchromic film.

  20. Bleomycin Can Cleave an Oncogenic Noncoding RNA.

    Science.gov (United States)

    Angelbello, Alicia J; Disney, Matthew D

    2018-01-04

    Noncoding RNAs are pervasive in cells and contribute to diseases such as cancer. A question in biomedical research is whether noncoding RNAs are targets of medicines. Bleomycin is a natural product that cleaves DNA; however, it is known to cleave RNA in vitro. Herein, an in-depth analysis of the RNA cleavage preferences of bleomycin A5 is presented. Bleomycin A5 prefers to cleave RNAs with stretches of AU base pairs. Based on these preferences and bioinformatic analysis, the microRNA-10b hairpin precursor was identified as a potential substrate for bleomycin A5. Both in vitro and cellular experiments demonstrated cleavage. Importantly, chemical cleavage by bleomycin A5 in the microRNA-10b hairpin precursors occurred near the Drosha and Dicer enzymatic processing sites and led to destruction of the microRNA. Evidently, oncogenic noncoding RNAs can be considered targets of cancer medicines and might elicit their pharmacological effects by targeting noncoding RNA. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Effect of PEG biofunctional spacers and TAT peptide on dsRNA loading on gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sanz, Vanesa; Conde, Joao; Hernandez, Yulan [Universidad de Zaragoza, Instituto de Nanociencia de Aragon (Spain); Baptista, Pedro V. [Universidade Nova de Lisboa, Departamento de Ciencias da Vida, Faculdade de Ciencias e Tecnologia, Centro de Investigacao em Genetica Molecular Humana (Portugal); Ibarra, M. R.; Fuente, Jesus M. de la, E-mail: jmfuente@unizar.es [Universidad de Zaragoza, Instituto de Nanociencia de Aragon (Spain)

    2012-06-15

    The surface chemistry of gold nanoparticles (AuNPs) plays a critical role in the self-assembly of thiolated molecules and in retaining the biological function of the conjugated biomolecules. According to the well-established gold-thiol interaction the undefined ionic species on citrate-reduced gold nanoparticle surface can be replaced with a self-assembled monolayer of certain thiolate derivatives and other biomolecules. Understanding the effect of such derivatives in the functionalization of several types of biomolecules, such as PEGs, peptides or nucleic acids, has become a significant challenge. Here, an approach to attach specific biomolecules to the AuNPs ({approx}14 nm) surface is presented together with a study of their effect in the functionalization with other specific derivatives. The effect of biofunctional spacers such as thiolated poly(ethylene glycol) (PEG) chains and a positive peptide, TAT, in dsRNA loading on AuNPs is reported. Based on the obtained data, we hypothesize that loading of oligonucleotides onto the AuNP surface may be controlled by ionic and weak interactions positioning the entry of the oligo through the PEG layer. We demonstrate that there is a synergistic effect of the TAT peptide and PEG chains with specific functional groups on the enhancement of dsRNA loading onto AuNPs.

  2. Effect of PEG biofunctional spacers and TAT peptide on dsRNA loading on gold nanoparticles

    International Nuclear Information System (INIS)

    Sanz, Vanesa; Conde, João; Hernández, Yulán; Baptista, Pedro V.; Ibarra, M. R.; Fuente, Jesús M. de la

    2012-01-01

    The surface chemistry of gold nanoparticles (AuNPs) plays a critical role in the self-assembly of thiolated molecules and in retaining the biological function of the conjugated biomolecules. According to the well-established gold–thiol interaction the undefined ionic species on citrate-reduced gold nanoparticle surface can be replaced with a self-assembled monolayer of certain thiolate derivatives and other biomolecules. Understanding the effect of such derivatives in the functionalization of several types of biomolecules, such as PEGs, peptides or nucleic acids, has become a significant challenge. Here, an approach to attach specific biomolecules to the AuNPs (∼14 nm) surface is presented together with a study of their effect in the functionalization with other specific derivatives. The effect of biofunctional spacers such as thiolated poly(ethylene glycol) (PEG) chains and a positive peptide, TAT, in dsRNA loading on AuNPs is reported. Based on the obtained data, we hypothesize that loading of oligonucleotides onto the AuNP surface may be controlled by ionic and weak interactions positioning the entry of the oligo through the PEG layer. We demonstrate that there is a synergistic effect of the TAT peptide and PEG chains with specific functional groups on the enhancement of dsRNA loading onto AuNPs.

  3. Solar system expansion and strong equivalence principle as seen by the NASA MESSENGER mission

    Science.gov (United States)

    Genova, Antonio; Mazarico, Erwan; Goossens, Sander; Lemoine, Frank G.; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.

    2018-01-01

    The NASA MESSENGER mission explored the innermost planet of the solar system and obtained a rich data set of range measurements for the determination of Mercury's ephemeris. Here we use these precise data collected over 7 years to estimate parameters related to general relativity and the evolution of the Sun. These results confirm the validity of the strong equivalence principle with a significantly refined uncertainty of the Nordtvedt parameter η = (-6.6 ± 7.2) × 10-5. By assuming a metric theory of gravitation, we retrieved the post-Newtonian parameter β = 1 + (-1.6 ± 1.8) × 10-5 and the Sun's gravitational oblateness, J2⊙J2⊙ = (2.246 ± 0.022) × 10-7. Finally, we obtain an estimate of the time variation of the Sun gravitational parameter, GM⊙°/GM⊙GM⊙°/GM⊙ = (-6.13 ± 1.47) × 10-14, which is consistent with the expected solar mass loss due to the solar wind and interior processes. This measurement allows us to constrain ∣∣G°∣∣/GG°/G to be <4 × 10-14 per year.

  4. A comparison of cell-free placental messenger ribonucleic acid and color Doppler ultrasound for the prediction of placental invasion in patients with placenta accreta.

    Science.gov (United States)

    Naghshineh, Elham; Khorvash, Elahe; Kamali, Sara

    2015-01-01

    The aim of the present study was to comparison between cell-free placental messenger ribonucleic acid (mRNA) and Doppler ultrasound for the prediction of placental invasion in women with placenta accreta. In this cross-sectional study, 50 pregnant women at risk for placenta accreta underwent color Doppler and assessment of cell-free placental mRNA. Real-time reverse-transcription polymerase chain reaction was used for measurement of cell-free placental mRNA in maternal plasma. Based on the findings at cesarean delivery and histological examination, patients were divided into two groups of women with and without placenta accrete. To compare of the mean of mRNA levels between the two groups we used independent t-test and to compare of the mean of age and gestational age at sonography we used Mann-Whitney test. For determination of sensitivity and specificity and the cut-off point of mRNA levels we used the receiver operating characteristic curve. A total of 50 women with a mean age of 30.24 ± 4.905 years entered the study and 12 (24%) patients were diagnosed with placenta accreta. The sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of Doppler ultrasound were 83.3%, 78.9%, 56% and 94%, respectively. Results of our study showed if we consider a cut-off point equal to 3.325, with sensitivity and specificity of 0.917 and 0.789, respectively and the sensitivity, specificity, PPV and NPV of mRNA with were cut-off point of 3.325 were 91.7%, 78.9%, 57.9% and 96.8%, respectively. Cell-free mRNA is an acceptable, easy made, functional test with sensitivity, specificity, PPV and NPV more than Doppler ultrasound for diagnosis and prediction of incidence of placenta accrete and we recommend the use of cell-free mRNA test for diagnosis of placenta accreta.

  5. RNA Regulation by Estrogen

    Science.gov (United States)

    2011-08-01

    Julien Diegel, Amy Mahady, and Micah Bodner 5e. TASK NUMBER E-Mail: aberglund@molbio.uoregon.edu 5f. WORK UNIT NUMBER 7. PERFORMING...4)],  also   functions   by  interacting  directly  with  RNA  to  alter  RNA  processing  events  such  as  splicing...1 6.06 208004_at Prol1 proline rich, lacrimal 1 6.06 205247_at NOTCH4 Notch homolog 4 (Drosophila) 6.06 211203_s_at Cntn1 contactin 1 6.06 220689_at

  6. Cardiac Gene Expression Knockdown Using Small Inhibitory RNA-Loaded Microbubbles and Ultrasound.

    Directory of Open Access Journals (Sweden)

    Jonathan A Kopechek

    Full Text Available RNA interference has potential therapeutic value for cardiac disease, but targeted delivery of interfering RNA is a challenge. Custom designed microbubbles, in conjunction with ultrasound, can deliver small inhibitory RNA to target tissues in vivo. The efficacy of cardiac RNA interference using a microbubble-ultrasound theranostic platform has not been demonstrated in vivo. Therefore, our objective was to test the hypothesis that custom designed microbubbles and ultrasound can mediate effective delivery of small inhibitory RNA to the heart. Microbubble and ultrasound mediated cardiac RNA interference was tested in transgenic mice displaying cardiac-restricted luciferase expression. Luciferase expression was assayed in select tissues of untreated mice (n = 14. Mice received intravenous infusion of cationic microbubbles bearing small inhibitory RNA directed against luciferase (n = 9 or control RNA (n = 8 during intermittent cardiac-directed ultrasound at mechanical index of 1.6. Simultaneous echocardiography in a separate group of mice (n = 3 confirmed microbubble destruction and replenishment during treatment. Three days post treatment, cardiac luciferase messenger RNA and protein levels were significantly lower in ultrasound-treated mice receiving microbubbles loaded with small inhibitory RNA directed against luciferase compared to mice receiving microbubbles bearing control RNA (23±7% and 33±7% of control mice, p<0.01 and p = 0.03, respectively. Passive cavitation detection focused on the heart confirmed that insonification resulted in inertial cavitation. In conclusion, small inhibitory RNA-loaded microbubbles and ultrasound directed at the heart significantly reduced the expression of a reporter gene. Ultrasound-targeted destruction of RNA-loaded microbubbles may be an effective image-guided strategy for therapeutic RNA interference in cardiac disease.

  7. Protein evolution of Toll-like receptors 4, 5 and 7 within Galloanserae birds

    Czech Academy of Sciences Publication Activity Database

    Vinkler, M.; Bainová, H.; Bryja, Josef

    2014-01-01

    Roč. 46, č. 72 (2014), s. 72 ISSN 0999-193X R&D Projects: GA ČR GAP505/10/1871; GA MŠk EE2.3.20.0303 Institutional support: RVO:68081766 Keywords : in-silico identification * ligand-binding domain * leucine-rich repeats * structural basis * positive selection * crystal-structure * messenger-RNA * functional characterization * molecular evolution * maximum-likelihood Subject RIV: EG - Zoology Impact factor: 3.821, year: 2014 http://www.gsejournal.org/content/46/1/72

  8. tRNA conjugation with chitosan nanoparticles: An AFM imaging study.

    Science.gov (United States)

    Agudelo, D; Kreplak, L; Tajmir-Riahi, H A

    2016-04-01

    The conjugation of tRNA with chitosan nanoparticles of different sizes 15,100 and 200 kDa was investigated in aqueous solution using multiple spectroscopic methods and atomic force microscopy (AFM). Structural analysis showed that chitosan binds tRNA via G-C and A-U base pairs as well as backbone PO2 group, through electrostatic, hydrophilic and H-bonding contacts with overall binding constants of KCh-15-tRNA=4.1 (±0.60)×10(3)M(-1), KCh-100-tRNA=5.7 (±0.8)×10(3)M(-1) and KCh-200-tRNA=1.2 (±0.3)×10(4)M(-1). As chitosan size increases more stable polymer-tRNA conjugate is formed. AFM images showed major tRNA aggregation and particle formation occurred as chitosan concentration increased. Even though chitosan induced major biopolymer structural changes, tRNA remains in A-family structure. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Dual RNA regulatory control of a Staphylococcus aureus virulence factor.

    Science.gov (United States)

    Chabelskaya, Svetlana; Bordeau, Valérie; Felden, Brice

    2014-04-01

    In pathogens, the accurate programming of virulence gene expression is essential for infection. It is achieved by sophisticated arrays of regulatory proteins and ribonucleic acids (sRNAs), but in many cases their contributions and connections are not yet known. Based on genetic, biochemical and structural evidence, we report that the expression pattern of a Staphylococcus aureus host immune evasion protein is enabled by the collaborative actions of RNAIII and small pathogenicity island RNA D (SprD). Their combined expression profiles during bacterial growth permit early and transient synthesis of Sbi to avoid host immune responses. Together, these two sRNAs use antisense mechanisms to monitor Sbi expression at the translational level. Deletion analysis combined with structural analysis of RNAIII in complex with its novel messenger RNA (mRNA) target indicate that three distant RNAIII domains interact with distinct sites of the sbi mRNA and that two locations are deep in the sbi coding region. Through distinct domains, RNAIII lowers production of two proteins required for avoiding innate host immunity, staphylococcal protein A and Sbi. Toeprints and in vivo mutational analysis reveal a novel regulatory module within RNAIII essential for attenuation of Sbi translation. The sophisticated translational control of mRNA by two differentially expressed sRNAs ensures supervision of host immune escape by a major pathogen.

  10. Quantitative correlation between promoter methylation and messenger RNA levels of the reduced folate carrier

    Directory of Open Access Journals (Sweden)

    Kheradpour Albert

    2008-05-01

    Full Text Available Abstract Background Methotrexate (MTX uptake is mediated by the reduced folate carrier (RFC. Defective drug uptake in association with decreased RFC expression is a common mechanism of MTX resistance in many tumor types. Heavy promoter methylation was previously identified as a basis for the complete silencing of RFC in MDA-MB-231 breast cancer cells, its role and prevalence in RFC transcription regulation are, however, not widely studied. Methods In the current study, RFC promoter methylation was assessed using methylation specific PCR in a panel of malignant cell lines (n = 8, including MDA-MB-231, and M805, a MTX resistant cell line directly established from the specimen of a patient with malignant fibrohistocytoma, whom received multiple doses of MTX. A quantitative approach of real-time PCR for measuring the extent of RFC promoter methylation was developed, and was validated by direct bisulfite genomic sequencing. RFC mRNA levels were determined by quantitative real-time RT-PCR and were related to the extent of promoter methylation in these cell lines. Results A partial promoter methylation and RFC mRNA down-regulation were observed in M805. Using the quantitative approach, a reverse correlation (correlation coefficient = -0.59, p Conclusion This study further suggests that promoter methylation is a potential basis for MTX resistance. The quantitative correlation identified in this study implies that promoter methylation is possibly a mechanism involved in the fine regulation of RFC transcription.

  11. Dwell-Time Distribution, Long Pausing and Arrest of Single-Ribosome Translation through the mRNA Duplex.

    Science.gov (United States)

    Xie, Ping

    2015-10-09

    Proteins in the cell are synthesized by a ribosome translating the genetic information encoded on the single-stranded messenger RNA (mRNA). It has been shown that the ribosome can also translate through the duplex region of the mRNA by unwinding the duplex. Here, based on our proposed model of the ribosome translation through the mRNA duplex we study theoretically the distribution of dwell times of the ribosome translation through the mRNA duplex under the effect of a pulling force externally applied to the ends of the mRNA to unzip the duplex. We provide quantitative explanations of the available single molecule experimental data on the distribution of dwell times with both short and long durations, on rescuing of the long paused ribosomes by raising the pulling force to unzip the duplex, on translational arrests induced by the mRNA duplex and Shine-Dalgarno(SD)-like sequence in the mRNA. The functional consequences of the pauses or arrests caused by the mRNA duplex and the SD sequence are discussed and compared with those obtained from other types of pausing, such as those induced by "hungry" codons or interactions of specific sequences in the nascent chain with the ribosomal exit tunnel.

  12. High-p$_{T}$ Tomography of d+Au and Au+Au at SPS, RHIC, and LHC

    CERN Document Server

    Vitev, I; Vitev, Ivan; Gyulassy, Miklos

    2002-01-01

    The interplay of nuclear effects on the p_T > 2 GeV inclusive hadron spectra in d+Au and Au+Au reactions at root(s) = 17, 200, 5500 GeV is compared to leading order perturbative QCD calculations for elementary p+p (p-bar+p) collisions. The competition between nuclear shadowing, Cronin effect, and jet energy loss due to medium-induced gluon radiation is predicted to lead to a striking energy dependence of the nuclear suppression/enhancement pattern in A+A reactions. We show that future d+Au data can used to disentangle the initial and final state effects.

  13. Reliable PCR quantitation of estrogen, progesterone and ERBB2 receptor mRNA from formalin-fixed, paraffin-embedded tissue is independent of prior macro-dissection

    DEFF Research Database (Denmark)

    Tramm, Trine; Hennig, Guido; Kyndi, Marianne

    2013-01-01

    Gene expression analysis on messenger RNA (mRNA) purified from formalin-fixed, paraffin-embedded tissue is increasingly used for research purposes. Tissue heterogeneity may question specificity and interpretation of results from mRNA isolated from a whole slide section, and thresholds for minimal...... tumor content in the paraffin block or macrodissection are used to avoid contamination from non-neoplastic tissue. The aim was to test if mRNA from tissue surrounding breast cancer affected quantification of estrogen receptor α (ESR1), progesterone receptor (PGR) and human epidermal growth factor...... receptor 2 (ERBB2), by comparing gene expression from whole slide and tumor-enriched sections, and correlating gene expression from whole slide sections with corresponding immunohistochemistry. Gene expression, based on mRNA extracted from a training set (36 paraffin blocks) and two validation sets (133...

  14. Mercury's exosphere: observations during MESSENGER's First Mercury flyby.

    Science.gov (United States)

    McClintock, William E; Bradley, E Todd; Vervack, Ronald J; Killen, Rosemary M; Sprague, Ann L; Izenberg, Noam R; Solomon, Sean C

    2008-07-04

    During MESSENGER's first Mercury flyby, the Mercury Atmospheric and Surface Composition Spectrometer measured Mercury's exospheric emissions, including those from the antisunward sodium tail, calcium and sodium close to the planet, and hydrogen at high altitudes on the dayside. Spatial variations indicate that multiple source and loss processes generate and maintain the exosphere. Energetic processes connected to the solar wind and magnetospheric interaction with the planet likely played an important role in determining the distributions of exospheric species during the flyby.

  15. Local structure of disordered Au-Cu and Au-Ag alloys

    International Nuclear Information System (INIS)

    Frenkel, A. I.; Machavariani, V. Sh.; Rubshtein, A.; Rosenberg, Yu.; Voronel, A.; Stern, E. A.

    2000-01-01

    X-ray-absorption fine structure (XAFS) and x-ray-diffraction (XRD) measurements of disordered alloys Au x Cu 1-x and Au 0.5 Ag 0.5 prepared by melt spinning were performed. In the Au 0.5 Ag 0.5 alloy, no significant local deviations of the atoms from the average fcc lattice were detected while in Au x Cu 1-x alloys, significant deviations of atoms from the average fcc lattice were found. Mean-square vibrations of the Cu-Cu distances revealed by the XAFS in Au x Cu 1-x alloys indicate the weakening of contact between Cu atoms in the dilute limit. Our computer simulation for Au x Cu 1-x clusters of 10 5 atoms reproduces the main features of both the XAFS and XRD data

  16. A novel albumin nanocomplex containing both small interfering RNA and gold nanorods for synergetic anticancer therapy

    Science.gov (United States)

    Choi, Jin-Ha; Hwang, Hai-Jin; Shin, Seung Won; Choi, Jeong-Woo; Um, Soong Ho; Oh, Byung-Keun

    2015-05-01

    Therapeutic nanocomplexes have been extensively developed for the effective treatment of aggressive cancers because of their outstanding versatility, easy manipulation, and low cytotoxicity. In this study, we describe the synthesis of a novel bovine serum albumin (BSA)-based nanocomplex harboring both Bcl-2-specific small interfering RNA (siRNA) and gold (Au) nanorods (siRNA and rods encapsulated in BSA; SREB) with the aim of developing a targeted breast cancer therapeutic. The SREB complexes contained 2 × 105 siRNA molecules and eight Au nanorods per BSA complex and were successively functionalized with polyethylene glycol (PEG) and anti-ErbB-2 antibodies to facilitate active targeting. The synergetic therapeutic activity originating from the two components effectively induced cell death (~80% reduction in viability compared with control cells) in target breast cancer cells after a single dose of laser irradiation. Intracellular SREB nanocomplex decomposition by proteolytic enzymes resulted in simultaneous RNA interference and thermal ablation, thus leading to apoptosis in the targeted cancer cells. Moreover, these therapeutic effects were sustained for approximately 72 hours. The intrinsic biocompatibility, multifunctionality, and potent in vitro anticancer properties of these SREB nanocomplexes indicate that they have great therapeutic potential for in vivo targeted cancer therapy, in addition to other areas of nanomedicine.Therapeutic nanocomplexes have been extensively developed for the effective treatment of aggressive cancers because of their outstanding versatility, easy manipulation, and low cytotoxicity. In this study, we describe the synthesis of a novel bovine serum albumin (BSA)-based nanocomplex harboring both Bcl-2-specific small interfering RNA (siRNA) and gold (Au) nanorods (siRNA and rods encapsulated in BSA; SREB) with the aim of developing a targeted breast cancer therapeutic. The SREB complexes contained 2 × 105 siRNA molecules and eight Au

  17. INTERMEDIATE-MASS HOT CORES AT ∼500 AU: DISKS OR OUTFLOWS?

    International Nuclear Information System (INIS)

    Palau, Aina; Girart, Josep M.; Fuente, Asunción; Alonso-Albi, Tomás; Fontani, Francesco; Sánchez-Monge, Álvaro; Boissier, Jérémie; Piétu, Vincent; Neri, Roberto; Busquet, Gemma; Estalella, Robert; Zapata, Luis A.; Zhang, Qizhou; Ho, Paul T. P.; Audard, Marc

    2011-01-01

    Observations with the Plateau de Bure Interferometer in the most extended configuration toward two intermediate-mass star-forming regions, IRAS 22198+6336 and AFGL 5142, reveal the presence of several complex organic molecules at ∼500 AU scales, confirming the presence of hot cores in both regions. The hot cores are not rich in CN-bearing molecules, as often seen in massive hot cores, and are mainly traced by CH 3 CH 2 OH, (CH 2 OH) 2 , CH 3 COCH 3 , and CH 3 OH, with, additionally, CH 3 CHO, CH 3 OD, and HCOOD for IRAS 22198+6336, and C 6 H and O 13 CS for AFGL 5142. The emission of complex molecules is resolved down to sizes of ∼300 and ∼600 AU, for IRAS 22198+6336 and AFGL 5142, respectively, and most likely is tracing protostellar disks rather than flattened envelopes or toroids as is usually found. This is especially clear for the case of IRAS 22198+6336, where we detect a velocity gradient for all the mapped molecules perpendicular to the most chemically rich outflow of the region, yielding a dynamic mass ∼> 4 M ☉ . As for AFGL 5142, the hot core emission is resolved into two elongated cores separated ∼1800 AU. A detailed comparison of the complex molecule peaks to the new CO (2-1) data and H 2 O maser data from the literature suggests also that for AFGL 5142 the complex molecules are mainly associated with disks, except for a faint and extended molecular emission found to the west, which is possibly produced in the interface between one of the outflows and the dense surrounding gas.

  18. Downregulation of telomerase activity in human promyelocytic cell line using RNA interference.

    Science.gov (United States)

    Miri-Moghaddam, E; Deezagi, A; Soheili, Z S

    2009-12-01

    Telomerase is a ribonucleoprotein complex. It consists of two main components, human telomerase reverse transcriptase (hTERT) and human telomerase RNA. High telomerase activity is present in most malignant cells, but it is barely detectable in majority of somatic cells. The direct correlation between telomerase reactivation and carcinogens has made hTERT a key target for anticancer therapeutic studies. In this study, for the first time, we evaluated the ability of the new generation of short interfering RNA (siRNA) to regulate telomerase activity in the human promyelocytic leukemia cell line (HL-60). Transient transfection cell line by hTERT siRNAs resulted in statistically significant suppression of hTERT messenger RNAs which were detected by quantitative real-time polymerase chain reaction, while the expressed hTERT protein levels were measured by flow cytometry. The results of telomeric repeat amplification protocol showed that telomerase activity was significantly reduced upon transfection of the HL-60 cell line with hTERT siRNAs. The results of this study showed that telomerase activity and cell proliferation were efficiently inhibited in the hTERT siRNA-treated leukemic cell line.

  19. Social and Virtual Networks: Evaluating Synchronous Online Interviewing Using Instant Messenger

    Science.gov (United States)

    Hinchcliffe, Vanessa; Gavin, Helen

    2009-01-01

    This paper describes an evaluation of the quality and utility of synchronous online interviewing for data collection in social network research. Synchronous online interviews facilitated by Instant Messenger as the communication medium, were undertaken with ten final year university students. Quantitative and qualitative content analysis of…

  20. Nuclear spin of 185Au and hyperfine structure of 188Au

    International Nuclear Information System (INIS)

    Ekstroem, C.; Ingelman, S.; Wannberg, G.

    1977-03-01

    The nuclear spin of 185 Au, I = 5/2, and the hyperfine separation of 188 Au, Δγ = +- 2992(30) MHz, have been measured with the atomic-beam magnetic resonance method. The spin of 185 Au indicates a deformed nuclear shape in the ground state. The small magnetic moment of 188 Au is close in value to those of the heavier I = 1 gold isotopes 190 192 194 Au, being located in a typical transition region. (Auth.)

  1. 12th International Conference on Second Messengers and Phosphoproteins

    Czech Academy of Sciences Publication Activity Database

    Tuháčková, Zdena

    2004-01-01

    Roč. 32, č. 3 (2004), s. 89-91 ISSN 1211-2526. [International conference on second messengers and phosphoproteins /12./. Montreal, 03.08.2004-07.08.2004] R&D Projects: GA ČR GA301/04/0550; GA AV ČR KSK5020115 Institutional research plan: CEZ:AV0Z5052915 Keywords : MTOR -PI3-K signalling * p70 S 6 kinase * v-Src Subject RIV: CE - Biochemistry

  2. Species richness in soil bacterial communities: a proposed approach to overcome sample size bias.

    Science.gov (United States)

    Youssef, Noha H; Elshahed, Mostafa S

    2008-09-01

    Estimates of species richness based on 16S rRNA gene clone libraries are increasingly utilized to gauge the level of bacterial diversity within various ecosystems. However, previous studies have indicated that regardless of the utilized approach, species richness estimates obtained are dependent on the size of the analyzed clone libraries. We here propose an approach to overcome sample size bias in species richness estimates in complex microbial communities. Parametric (Maximum likelihood-based and rarefaction curve-based) and non-parametric approaches were used to estimate species richness in a library of 13,001 near full-length 16S rRNA clones derived from soil, as well as in multiple subsets of the original library. Species richness estimates obtained increased with the increase in library size. To obtain a sample size-unbiased estimate of species richness, we calculated the theoretical clone library sizes required to encounter the estimated species richness at various clone library sizes, used curve fitting to determine the theoretical clone library size required to encounter the "true" species richness, and subsequently determined the corresponding sample size-unbiased species richness value. Using this approach, sample size-unbiased estimates of 17,230, 15,571, and 33,912 were obtained for the ML-based, rarefaction curve-based, and ACE-1 estimators, respectively, compared to bias-uncorrected values of 15,009, 11,913, and 20,909.

  3. Evidence of final-state suppression of high-p{_ T} hadrons in Au + Au collisions using d + Au measurements at RHIC

    Science.gov (United States)

    Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Becker, B.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Harrington, A. S.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Lee, J. W.; Lin, W. T.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Roland, C.; Roland, G.; Sagerer, J.; Sarin, P.; Sedykh, I.; Skulski, W.; Smith, C. E.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Veres, G. I.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wysłouch, B.; Zhang, J.

    Transverse momentum spectra of charged hadrons with pT 2 GeV/c). In contrast, the d + Au nuclear modification factor exhibits no suppression of the high-pT yields. These measurements suggest a large energy loss of the high-pT particles in the highly interacting medium created in the central Au + Au collisions. The lack of suppression in d + Au collisions suggests that it is unlikely that initial state effects can explain the suppression in the central Au + Au collisions. PACS: 25.75.-q

  4. Rapid RNase L-driven arrest of protein synthesis in the dsRNA response without degradation of translation machinery.

    Science.gov (United States)

    Donovan, Jesse; Rath, Sneha; Kolet-Mandrikov, David; Korennykh, Alexei

    2017-11-01

    Mammalian cells respond to double-stranded RNA (dsRNA) by activating a translation-inhibiting endoribonuclease, RNase L. Consensus in the field indicates that RNase L arrests protein synthesis by degrading ribosomal RNAs (rRNAs) and messenger RNAs (mRNAs). However, here we provide evidence for a different and far more efficient mechanism. By sequencing abundant RNA fragments generated by RNase L in human cells, we identify site-specific cleavage of two groups of noncoding RNAs: Y-RNAs, whose function is poorly understood, and cytosolic tRNAs, which are essential for translation. Quantitative analysis of human RNA cleavage versus nascent protein synthesis in lung carcinoma cells shows that RNase L stops global translation when tRNAs, as well as rRNAs and mRNAs, are still intact. Therefore, RNase L does not have to degrade the translation machinery to stop protein synthesis. Our data point to a rapid mechanism that transforms a subtle RNA cleavage into a cell-wide translation arrest. © 2017 Donovan et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  5. Regulation of gene expression in Escherichia coli and its bacteriophage

    International Nuclear Information System (INIS)

    Higgins, C.F.

    1986-01-01

    This chapter reviews the study of prokaryotic gene expression beginning with a look at the regulation of the lactose operon and the mechanism of attenuation in the tryptophan operon to the more recent development of recombinant DNA technology. The chapter deals almost entirely with escherichia coli and its bacteriophage. The only experimental technique which the authors explore in some detail is the construction and use of gene and operon fusions which have revolutionized the study of gene expression. Various mechanisms by which E. Coli regulate the cellular levels of individual messenger-RNA species are described. Translational regulation of the cellular levels of messenger-RNA include signals encoded within the messenger-RNA molecule itself and regulatory molecules which interact with the messenger-RNA and alter it translational efficiency

  6. MESSENGER E/V/H MLA 3/4 CDR/RDR DATA V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — Abstract ======== This data set consists of the MESSENGER Mercury Laser Altimeter (MLA) Calibrated Data Record (CDR) and Reduced Data Record (RDR) products. The MLA...

  7. microRNA as a potential vector for the propagation of robustness in protein expression and oscillatory dynamics within a ceRNA network.

    Directory of Open Access Journals (Sweden)

    Claude Gérard

    Full Text Available microRNAs (miRNAs are small noncoding RNAs that are important post-transcriptional regulators of gene expression. miRNAs can induce thresholds in protein synthesis. Such thresholds in protein output can be also achieved by oligomerization of transcription factors (TF for the control of gene expression. First, we propose a minimal model for protein expression regulated by miRNA and by oligomerization of TF. We show that miRNA and oligomerization of TF generate a buffer, which increases the robustness of protein output towards molecular noise as well as towards random variation of kinetics parameters. Next, we extend the model by considering that the same miRNA can bind to multiple messenger RNAs, which accounts for the dynamics of a minimal competing endogenous RNAs (ceRNAs network. The model shows that, through common miRNA regulation, TF can control the expression of all proteins formed by the ceRNA network, even if it drives the expression of only one gene in the network. The model further suggests that the threshold in protein synthesis mediated by the oligomerization of TF can be propagated to the other genes, which can increase the robustness of the expression of all genes in such ceRNA network. Furthermore, we show that a miRNA could increase the time delay of a "Goodwin-like" oscillator model, which may favor the occurrence of oscillations of large amplitude. This result predicts important roles of miRNAs in the control of the molecular mechanisms leading to the emergence of biological rhythms. Moreover, a model for the latter oscillator embedded in a ceRNA network indicates that the oscillatory behavior can be propagated, via the shared miRNA, to all proteins formed by such ceRNA network. Thus, by means of computational models, we show that miRNAs could act as vectors allowing the propagation of robustness in protein synthesis as well as oscillatory behaviors within ceRNA networks.

  8. A Comprehensive tRNA Deletion Library Unravels the Genetic Architecture of the tRNA Pool

    Science.gov (United States)

    Bloom-Ackermann, Zohar; Navon, Sivan; Gingold, Hila; Towers, Ruth; Pilpel, Yitzhak; Dahan, Orna

    2014-01-01

    Deciphering the architecture of the tRNA pool is a prime challenge in translation research, as tRNAs govern the efficiency and accuracy of the process. Towards this challenge, we created a systematic tRNA deletion library in Saccharomyces cerevisiae, aimed at dissecting the specific contribution of each tRNA gene to the tRNA pool and to the cell's fitness. By harnessing this resource, we observed that the majority of tRNA deletions show no appreciable phenotype in rich medium, yet under more challenging conditions, additional phenotypes were observed. Robustness to tRNA gene deletion was often facilitated through extensive backup compensation within and between tRNA families. Interestingly, we found that within tRNA families, genes carrying identical anti-codons can contribute differently to the cellular fitness, suggesting the importance of the genomic surrounding to tRNA expression. Characterization of the transcriptome response to deletions of tRNA genes exposed two disparate patterns: in single-copy families, deletions elicited a stress response; in deletions of genes from multi-copy families, expression of the translation machinery increased. Our results uncover the complex architecture of the tRNA pool and pave the way towards complete understanding of their role in cell physiology. PMID:24453985

  9. Regulation of human histone gene expression: transcriptional and posttranscriptional control in the coupling of histone messenger RNA stability with DNA replication

    International Nuclear Information System (INIS)

    Baumbach, L.L.; Stein, G.S.; Stein, J.L.

    1987-01-01

    The extent to which transcriptional and posttranscriptional regulation contributes to the coupling of histone gene expression and DNA replication was examined during the cell cycle in synchronized HeLa S3 cells. Rates of transcription were determined in vitro in isolated nuclei. A 3-5-fold increase in cell cycle dependent histone gene transcription was observed in early S phase, prior to the peak of DNA synthesis. This result is consistent with a previous determination of histone mRNA synthesis in intact cells. The transcription of these genes did not change appreciably after inhibition of DNA replication by hydroxyurea treatment, although Northern blot analysis indicated that cellular levels of histone mRNA decreased rapidly in the presence of the drug. Total cellular levels of histone mRNA closely parallel the rate of DNA synthesis as a function of cell cycle progression, reaching a maximal 20-fold increase as compared with non S phase levels. This DNA synthesis dependent accumulation of histone mRNA occurs predominantly in the cytoplasm and appears to be mediated primarily by control of histone mRNA stability. Changes in nuclear histone mRNA levels were less pronounced. These combined observations suggest that both transcriptional regulation and posttranscriptional regulation contribute toward control of the cell cycle dependent accumulation of histone mRNA during S phase, while the stability of histone mRNA throughout S phase and the selective turnover of histone mRNAs, either at the natural termination of S phase or following inhibition of DNA synthesis, are posttranscriptionally regulated

  10. Astronomy's New Messengers: A traveling exhibit to out to a young adult audience

    International Nuclear Information System (INIS)

    Cavaglia, Marco; Hendry, Martin; Marka, Szabolcs; Reitze, David H; Riles, Keith

    2010-01-01

    The Laser Interferometer Gravitational-wave Observatory exhibit Astronomy's New Messengers: Listening to the Universe with Gravitational Waves is traveling to colleges, universities, museums and other public institutions throughout the United States. In 2010, an extended version of this exhibit will appear in a New York City venue that is accessible to a large and diverse cross section of the general public. Astronomy's New Messengers primarily communicates with an adolescent and young adult audience, potentially inspiring them into the field of science. Acknowledging that this audience is traditionally a difficult one to attract, the exhibit publicly announces itself in a charismatic fashion to reach its principal goals of broadening the community of people interested in science and encouraging interest in science among young people.

  11. Comparative efficiencies of photothermal destruction of malignant cells using antibody-coated silica-Au nanoshells, hollow Au/Ag nanospheres and Au nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Fong-Yu; Chen, Chen-Tai; Yeh, Chen-Sheng, E-mail: csyeh@mail.ncku.edu.t [Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan (China)

    2009-10-21

    Three Au-based nanomaterials (silica-Au nanoshells, hollow Au/Ag nanospheres and Au nanorods) were evaluated for their comparative photothermal efficiencies at killing three types of malignant cells (A549 lung cancer cells, HeLa cervix cancer cells and TCC bladder cancer cells) using a CW NIR laser. Photodestructive efficiency was evaluated as a function of the number of nanoparticles required to destroy the cancer cells under 808 nm laser wavelength at fixed laser power. Of the three nanomaterials, silica/Au nanoshells needed the minimum number of particles to produce effective photodestruction, whereas Au nanorods needed the largest number of particles. Together with the calculated photothermal conversion efficiency, the photothermal efficiency rankings are silica-Au nanoshells > hollow Au/Ag nanospheres > Au nanorods. Additionally, we found that HeLa cells seem to present better heat tolerance than the other two cancer cell lines.

  12. Detection of the argonaute protein Ago2 and microRNAs in the RNA induced silencing complex (RISC) using a monoclonal antibody.

    Science.gov (United States)

    Ikeda, Keigo; Satoh, Minoru; Pauley, Kaleb M; Fritzler, Marvin J; Reeves, Westley H; Chan, Edward K L

    2006-12-20

    MicroRNAs (miRNAs) are short RNA molecules responsible for post-transcriptional gene silencing by the degradation or translational inhibition of their target messenger RNAs (mRNAs). This process of gene silencing, known as RNA interference (RNAi), is mediated by highly conserved Argonaute (Ago) proteins which are the key components of the RNA induced silencing complex (RISC). In humans, Ago2 is responsible for the endonuclease cleavage of targeted mRNA and it interacts with the mRNA-binding protein GW182, which is a marker for cytoplasmic foci referred to as GW bodies (GWBs). We demonstrated that the anti-Ago2 monoclonal antibody 4F9 recognized GWBs in a cell cycle dependent manner and was capable of capturing miRNAs associated with Ago2. Since Ago2 protein is the effector protein of RNAi, anti-Ago2 monoclonal antibody may be useful in capturing functional miRNAs.

  13. Evidence for rRNA 2'-O-methylation plasticity: Control of intrinsic translational capabilities of human ribosomes.

    Science.gov (United States)

    Erales, Jenny; Marchand, Virginie; Panthu, Baptiste; Gillot, Sandra; Belin, Stéphane; Ghayad, Sandra E; Garcia, Maxime; Laforêts, Florian; Marcel, Virginie; Baudin-Baillieu, Agnès; Bertin, Pierre; Couté, Yohann; Adrait, Annie; Meyer, Mélanie; Therizols, Gabriel; Yusupov, Marat; Namy, Olivier; Ohlmann, Théophile; Motorin, Yuri; Catez, Frédéric; Diaz, Jean-Jacques

    2017-12-05

    Ribosomal RNAs (rRNAs) are main effectors of messenger RNA (mRNA) decoding, peptide-bond formation, and ribosome dynamics during translation. Ribose 2'-O-methylation (2'-O-Me) is the most abundant rRNA chemical modification, and displays a complex pattern in rRNA. 2'-O-Me was shown to be essential for accurate and efficient protein synthesis in eukaryotic cells. However, whether rRNA 2'-O-Me is an adjustable feature of the human ribosome and a means of regulating ribosome function remains to be determined. Here we challenged rRNA 2'-O-Me globally by inhibiting the rRNA methyl-transferase fibrillarin in human cells. Using RiboMethSeq, a nonbiased quantitative mapping of 2'-O-Me, we identified a repertoire of 2'-O-Me sites subjected to variation and demonstrate that functional domains of ribosomes are targets of 2'-O-Me plasticity. Using the cricket paralysis virus internal ribosome entry site element, coupled to in vitro translation, we show that the intrinsic capability of ribosomes to translate mRNAs is modulated through a 2'-O-Me pattern and not by nonribosomal actors of the translational machinery. Our data establish rRNA 2'-O-Me plasticity as a mechanism providing functional specificity to human ribosomes.

  14. RNA- and protein-mediated control of Listeria monocytogenes virulence gene expression

    Science.gov (United States)

    Lebreton, Alice; Cossart, Pascale

    2017-01-01

    ABSTRACT The model opportunistic pathogen Listeria monocytogenes has been the object of extensive research, aiming at understanding its ability to colonize diverse environmental niches and animal hosts. Bacterial transcriptomes in various conditions reflect this efficient adaptability. We review here our current knowledge of the mechanisms allowing L. monocytogenes to respond to environmental changes and trigger pathogenicity, with a special focus on RNA-mediated control of gene expression. We highlight how these studies have brought novel concepts in prokaryotic gene regulation, such as the ‘excludon’ where the 5′-UTR of a messenger also acts as an antisense regulator of an operon transcribed in opposite orientation, or the notion that riboswitches can regulate non-coding RNAs to integrate complex metabolic stimuli into regulatory networks. Overall, the Listeria model exemplifies that fine RNA tuners act together with master regulatory proteins to orchestrate appropriate transcriptional programmes. PMID:27217337

  15. SrAu{sub 4.76}In{sub 1.24} with YbMo{sub 2}Al{sub 4}-type structure

    Energy Technology Data Exchange (ETDEWEB)

    Muts, Ihor [Ivan Franko National Univ., Lviv (Ukraine). Inorganic Chemistry Dept.; Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Matar, Samir F. [CNRS, Univ. de Bordeaux, Pessac (France). ICMCB; Rodewald, Ute C.; Poettgen, Rainer [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Zaremba, Vasyl' I. [Ivan Franko National Univ., Lviv (Ukraine). Inorganic Chemistry Dept.

    2011-10-15

    The gold-rich intermetallic compound SrAu{sub 4.76}In{sub 1.24} was synthesized by high-frequence-melting of the elements in a sealed tantalum tube and subsequent annealing. The structure was refined from single-crystal X-ray diffraction data: YbMo{sub 2}Al{sub 4}-type, I4/mmm, Z = 2, a = 718.77(7), c = 552.79(9) pm, wR2 = 0.0760, 149 F{sup 2} values and 11 parameters. The 4d (0.62 In + 0.38 Au) Wyckoff position shows mixed occupancy leading to the composition SrAu{sub 4.76}In{sub 1.24} for the investigated crystal. The strontium atoms are located in a large cage built up by 12 Au + 8 In atoms. The gold and indium atoms show segregation into substructures. The striking structural motifs are Au4 squares (278 pm Au-Au) and indium chains (276 pm In-In). The squares and chains are connected via weaker Au-Au (299 pm) and Au-In (295 pm) bonds to a three-dimensional network. The In chains show the motif of rod packing. Electronic structure calculations show anisotropy within the structure with different responses to compressions along In-In chains and Au planes, also illustrated by the electron localization contour plots. The metallic behavior is found to be of itinerant electron type (like Cu), and the chemical bonding includes stabilizing Au-In interactions. (orig.)

  16. The RNA-binding protein HOS5 and serine/arginine-rich proteins RS40 and RS41 participate in miRNA biogenesis in Arabidopsis

    KAUST Repository

    Chen, Tao; Cui, Peng; Xiong, Liming

    2015-01-01

    MicroRNAs are a class of small regulatory RNAs that are generated from primary miRNA (pri-miRNA) transcripts with a stem-loop structure. Accuracy of the processing of pri-miRNA into mature miRNA in plants can be enhanced by SERRATE (SE

  17. MESSENGER E/V/H GRNS 3 GAMMA RAY SPECTROMETER CALIBDATA V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — Abstract ======== This data set consists of the MESSENGER GRS calibrated observations (CDRs) and the reduced data product (RDR). The GRS experiment is a gamma ray...

  18. Adipose expression of adipocytokines in women with polycystic ovary syndrome

    DEFF Research Database (Denmark)

    Fog Svendsen, Pernille; Christiansen, Michael; Hedley, Paula Louise

    2012-01-01

    To investigate the role of adipocytokines in the pathophysiology of polycystic ovary syndrome (PCOS) by analyzing the messenger RNA (mRNA) expression and plasma levels of adipocytokines.......To investigate the role of adipocytokines in the pathophysiology of polycystic ovary syndrome (PCOS) by analyzing the messenger RNA (mRNA) expression and plasma levels of adipocytokines....

  19. Clinical values of AFP, GPC3 mRNA in peripheral blood for prediction of hepatocellular carcinoma recurrence following OLT: AFP, GPC3 mRNA for prediction of HCC.

    Science.gov (United States)

    Wang, Yuliang; Shen, Zhongyang; Zhu, Zhijun; Han, Ruifa; Huai, Mingsheng

    2011-03-01

    Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. Annually, about 200,000 patients died of HCC in China. Liver transplantation (LT) holds great theoretical appeal in treating HCC. However, the high recurrence rate after transplantation is the most important limiting factor for long-term survival. To assess the value of alpha-fetoprotein (AFP) messenger RNA (mRNA), Glypican-3 (GPC3) mRNA-expressing cells in the peripheral blood (PB) for prediction of HCC recurrence following orthotopic liver transplantation (OLT). 29 patients with HCC who underwent OLT with a minimum clinical follow-up of 12 months were included in this retrospective study. We detected AFP mRNA, GPC3 mRNA-expressing cells in the PB by TaqMan real-time reverse transcriptase-polymerase chain reaction (RT-PCR), pre-, intra- and post-operatively. The early recurrence of patients was evaluated. 8 (28%), 15 (52%), and 9 (31%) patients had AFP mRNA detected pre-, intra-, and post-operatively, respectively. With 12 months of follow-up, HCC recurred in 7 (24%) patients. Univariate analysis revealed that positive pre- and post-operative AFP mRNA, TNM stage as well as vascular invasion were significant predictors for the HCC recurrence. Multivariate analysis revealed that being positive for AFP mRNA pre-operatively remained a significant risk factor for HCC recurrence after OLT. GPC3 mRNA was expressed in all PB samples. There was no significant difference in the expression levels of GPC3 mRNA between the HCC and control groups. There were no significant differences in GPC3 mRNA expression values between those patients with and without tumor recurrence. The pre-operative detection of circulating AFP mRNA-expressing cells could be a useful predictor for HCC recurrence following OLT. GPC3 mRNA-expressing cells in PB seem to have no diagnostic value.

  20. Synthesis of nir-sensitive Au-Au{sub 2}S nanocolloids for drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Ren, L.; Chow, G.M

    2003-01-15

    Near IR (NIR) sensitive Au-Au{sub 2}S nanocolloids were prepared by mixing HAuCl{sub 4} and Na{sub 2}S in aqueous solutions. An anti-tumor drug, cis-platin, was adsorbed onto Au-Au{sub 2}S nanoparticle surface via the 11-mercaptoundecanoic acid (MUA) layers. The results show that the degree of adsorption of cis-platin onto Au-Au{sub 2}S nanoparticles was controlled by the solution pH value, and the drug release was sensitive to near-infrared irradiation. The cis-platin-loaded Au-Au{sub 2}S nanocolloids can be potentially applied as NIR activated drug delivery carrier.

  1. Mercury's Exosphere During MESSENGER's Second Flyby: Detection of Magnesium and Distinct Distributions of Neutral Species

    Science.gov (United States)

    McClintock, William E.; Vervack, Ronald J., Jr.; Bradley, E. Todd; Killen, Rosemary M.; Mouawad, Nelly; Sprague, Ann L.; Burger, Matthew H.; Solomon, Sean C.; Izenberg, Noam R.

    2009-01-01

    During MESSENGER's second Mercury flyby, the Mercury Atmospheric and Surface Composition Spectrometer observed emission from Mercury's neutral exosphere. These observations include the first detection of emission from magnesium. Differing spatial distributions for sodium, calcium, and magnesium were revealed by observations beginning in Mercury's tail region, approximately 8 Mercury radii anti-sunward of the planet, continuing past the nightside, and ending near the dawn terminator. Analysis of these observations, supplemented by observations during the first Mercury flyby as well as those by other MESSENGER instruments, suggests that the distinct spatial distributions arise from a combination of differences in source, transfer, and loss processes.

  2. English for au pairs the au pair's guide to learning English

    CERN Document Server

    Curtis, Lucy

    2014-01-01

    English for Au Pairs has interlinked stories about a group of au pairs new to England. Marta, an 18-year-old from Poland arrives in the UK to work as an au pair. Throughout her year-long stay she has many different experiences - some bad, some good - but with the support of her host family she finds new friends and improves her English. English for Au Pairs offers insight into the joys and difficulties of being an au pair while at the same time reinforcing English language learning through grammar explanations and exercises.

  3. cWords - systematic microRNA regulatory motif discovery from mRNA expression data

    DEFF Research Database (Denmark)

    Rasmussen, Simon Horskjær; Jacobsen, Anders; Krogh, Anders

    2013-01-01

    and statistical methods of cWords, resulting in at least a factor 100 speed gain over the previous implementation. On a benchmark dataset of 19 microRNA (miRNA) perturbation experiments cWords showed equal or better performance than two comparable methods, miReduce and Sylamer. We have developed rigorous motif...... that demonstrate comparable or better performance than other existing methods. Rich visualization of results promotes intuitive and efficient interpretation of data. cWords is available as a stand-alone Open Source program at Github https://github.com/simras/cWords webcite and as a web-service at: http...

  4. MicroRNA Expression Profiling by Bead Array Technology in Human Tumor Cell Lines Treated with Interferon-Alpha-2a

    Directory of Open Access Journals (Sweden)

    Siegrist Fredy

    2009-01-01

    Full Text Available Abstract MicroRNAs are positive and negative regulators of eukaryotic gene expression that modulate transcript abundance by specific binding to sequence motifs located prevalently in the 3' untranslated regions of target messenger RNAs (mRNA. Interferon-alpha-2a (IFNα induces a large set of protein coding genes mediating antiproliferative and antiviral responses. Here we use a global microarray-based microRNA detection platform to identify genes that are induced by IFNα in hepatoma- or melanoma-derived human tumor cell lines. Despite the enormous differences in expression levels between these models, we were able to identify microRNAs that are upregulated by IFNα in both lines suggesting the possibility that interferon-regulated microRNAs are involved in the transcriptional repression of mRNA relevant to cytokine responses.

  5. Electron diffraction on amorphous and crystalline AuAl2 , AuGa2 and AuIn2 thin films

    International Nuclear Information System (INIS)

    Bohorquez, A.

    1991-01-01

    Experimental (in situ) measurements of electron diffraction and resistivity of amorphous and crystalline AuAl 2 , AuGa 2 and AuIn 2 thin films were performed. Thin films were produced by quench condensation. Interference and atomic distribution functions were analyzed assuming the same short range order for the three systems in the amorphous phase. The experimental results do not agree with this assumption, giving evidence that the short range order is not the same for the three amorphous systems. Further discussion of interference and atomic distribution functions shows a more evident tendency in amorphous AuIn 2 where short order of AuIn 2 and In can be inferred. (Author)

  6. Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes.

    Science.gov (United States)

    Pardi, Norbert; Tuyishime, Steven; Muramatsu, Hiromi; Kariko, Katalin; Mui, Barbara L; Tam, Ying K; Madden, Thomas D; Hope, Michael J; Weissman, Drew

    2015-11-10

    In recent years, in vitro transcribed messenger RNA (mRNA) has emerged as a potential therapeutic platform. To fulfill its promise, effective delivery of mRNA to specific cell types and tissues needs to be achieved. Lipid nanoparticles (LNPs) are efficient carriers for short-interfering RNAs and have entered clinical trials. However, little is known about the potential of LNPs to deliver mRNA. Here, we generated mRNA-LNPs by incorporating HPLC purified, 1-methylpseudouridine-containing mRNA comprising codon-optimized firefly luciferase into stable LNPs. Mice were injected with 0.005-0.250mg/kg doses of mRNA-LNPs by 6 different routes and high levels of protein translation could be measured using in vivo imaging. Subcutaneous, intramuscular and intradermal injection of the LNP-encapsulated mRNA translated locally at the site of injection for up to 10days. For several days, high levels of protein production could be achieved in the lung from the intratracheal administration of mRNA. Intravenous and intraperitoneal and to a lesser extent intramuscular and intratracheal deliveries led to trafficking of mRNA-LNPs systemically resulting in active translation of the mRNA in the liver for 1-4 days. Our results demonstrate that LNPs are appropriate carriers for mRNA in vivo and have the potential to become valuable tools for delivering mRNA encoding therapeutic proteins. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. P-body loss is concomitant with formation of a messenger RNA storage domain in mouse oocytes

    Czech Academy of Sciences Publication Activity Database

    Flemr, Matyáš; Ma, J.; Schultz, R. M.; Svoboda, Petr

    2010-01-01

    Roč. 82, č. 5 (2010), s. 1008-1017 ISSN 0006-3363 R&D Project s: GA MŠk ME09039 Grant - others:EMBO SDIG(DE) project 1483 Institutional research plan: CEZ:AV0Z50520514 Keywords : oocyte * mRNA * cortex Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.870, year: 2010

  8. Polyadenylation of RNA transcribed from mammalian SINEs by RNA polymerase III: Complex requirements for nucleotide sequences.

    Science.gov (United States)

    Borodulina, Olga R; Golubchikova, Julia S; Ustyantsev, Ilia G; Kramerov, Dmitri A

    2016-02-01

    It is generally accepted that only transcripts synthesized by RNA polymerase II (e.g., mRNA) were subject to AAUAAA-dependent polyadenylation. However, we previously showed that RNA transcribed by RNA polymerase III (pol III) from mouse B2 SINE could be polyadenylated in an AAUAAA-dependent manner. Many species of mammalian SINEs end with the pol III transcriptional terminator (TTTTT) and contain hexamers AATAAA in their A-rich tail. Such SINEs were united into Class T(+), whereas SINEs lacking the terminator and AATAAA sequences were classified as T(-). Here we studied the structural features of SINE pol III transcripts that are necessary for their polyadenylation. Eight and six SINE families from classes T(+) and T(-), respectively, were analyzed. The replacement of AATAAA with AACAAA in T(+) SINEs abolished the RNA polyadenylation. Interestingly, insertion of the polyadenylation signal (AATAAA) and pol III transcription terminator in T(-) SINEs did not result in polyadenylation. The detailed analysis of three T(+) SINEs (B2, DIP, and VES) revealed areas important for the polyadenylation of their pol III transcripts: the polyadenylation signal and terminator in A-rich tail, β region positioned immediately downstream of the box B of pol III promoter, and τ region located upstream of the tail. In DIP and VES (but not in B2), the τ region is a polypyrimidine motif which is also characteristic of many other T(+) SINEs. Most likely, SINEs of different mammals acquired these structural features independently as a result of parallel evolution. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Expression of small leucine-rich proteoglycans in rat anterior pituitary gland.

    Science.gov (United States)

    Horiguchi, Kotaro; Syaidah, Rahimi; Fujiwara, Ken; Tsukada, Takehiro; Ramadhani, Dini; Jindatip, Depicha; Kikuchi, Motoshi; Yashiro, Takashi

    2013-01-01

    Proteoglycans are components of the extracellular matrix and comprise a specific core protein substituted with covalently linked glycosaminoglycan chains. Small leucine-rich proteoglycans (SLRPs) are a major family of proteoglycans and have key roles as potent effectors in cellular signaling pathways. Research during the last two decades has shown that SLRPs regulate biological functions in many tissues such as skin, tendon, kidney, liver, and heart. However, little is known of the expression of SLRPs, or the characteristics of the cells that produce them, in the anterior pituitary gland. Therefore, we have determined whether SLRPs are present in rat anterior pituitary gland. We have used real-time reverse transcription with the polymerase chain reaction to analyze the expression of SLRP genes and have identified the cells that produce SLRPs by using in situ hybridization with a digoxigenin-labeled cRNA probe. We have clearly detected the mRNA expression of SLRP genes, and cells expressing decorin, biglycan, fibromodulin, lumican, proline/arginine-rich end leucine-rich repeat protein (PRELP), and osteoglycin are located in the anterior pituitary gland. We have also investigated the possible double-staining of SLRP mRNA and pituitary hormones, S100 protein (a marker of folliculostellate cells), desmin (a marker of capillary pericytes), and isolectin B4 (a marker of endothelial cells). Decorin, biglycan, fibromodulin, lumican, PRELP, and osteoglycin mRNA have been identified in S100-protein-positive and desmin-positive cells. Thus, we conclude that folliculostellate cells and pericytes produce SLRPs in rat anterior pituitary gland.

  10. Induction of vitellogenin synthesis by estrogen in avian liver: relationship between level of vitellogenin mRNA and vitellogenin synthesis.

    Science.gov (United States)

    Mullinix, K P; Wetekam, W; Deeley, R G; Gordon, J I; Meyers, M; Kent, K A; Goldberger, R F

    1976-01-01

    We have investigated the estrogen-mediated induction of vitellogenin synthesis in rooster liver. We compared the concentrations of vitellogenin messenger RNA (mRNA) in the liver with the concentrations of vitellogenin in the sera of roosters that had recieved various treatments with estrogen. We found no vitellogenin mRNA in the livers of the unstimulated roosters. An initial injection of estrogen was attended by de novo synthesis of vitellogenin mRNA in the liver and accumulation of vitellogenin in the serum. When vitellogenin was no longer present in the serum or liver (the "post-estrogen-serum-negative" state), the liver was found to contain appreciable amounts of vitellogenin mRNA. This mRNA was of the same size as that found in the liver of the rooster actively synthesizing vitellogenin in response to estrogen. Whereas vitellogenin mRNA was in large polysomes in the livers of the roosters actively synthesizing vitellogenin, the vitellogenin mRNA in the liver of the post-estrogen-serum-negative rooster was not associated with polysomes. The possible relevance of these findings to the fact that the rooster responds differently to a primary stimulation with estrogen than to subsequent stimulations is discussed. PMID:1064017

  11. Urinary mRNA for the Diagnosis of Renal Allograft Rejection: The Issue of Normalization.

    Science.gov (United States)

    Galichon, P; Amrouche, L; Hertig, A; Brocheriou, I; Rabant, M; Xu-Dubois, Y-C; Ouali, N; Dahan, K; Morin, L; Terzi, F; Rondeau, E; Anglicheau, D

    2016-10-01

    Urinary messenger RNA (mRNA) quantification is a promising method for noninvasive diagnosis of renal allograft rejection (AR), but the quantification of mRNAs in urine remains challenging due to degradation. RNA normalization may be warranted to overcome these issues, but the strategies of gene normalization have been poorly evaluated. Herein, we address this issue in a case-control study of 108 urine samples collected at time of allograft biopsy in kidney recipients with (n = 52) or without (n = 56) AR by comparing the diagnostic value of IP-10 and CD3ε mRNAs-two biomarkers of AR-after normalization by the total amount of RNA, normalization by one of the three widely used reference RNAs-18S, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and Hypoxanthine-guanine phosphoribosyltransferase (HPRT)-or normalization using uroplakin 1A (UPK) mRNA as a possible urine-specific reference mRNA. Our results show that normalization based on the total quantity of RNA is not substantially improved by additional normalization and may even be worsened with some classical reference genes that are overexpressed during rejection. However, considering that normalization by a reference gene is necessary to ensure polymerase chain reaction (PCR) quality and reproducibility and to suppress the effect of RNA degradation, we suggest that GAPDH and UPK1A are preferable to 18S or HPRT RNA. © Copyright 2016 The American Society of Transplantation and the American Society of Transplant Surgeons.

  12. Mercury's complex exosphere: results from MESSENGER's third flyby.

    Science.gov (United States)

    Vervack, Ronald J; McClintock, William E; Killen, Rosemary M; Sprague, Ann L; Anderson, Brian J; Burger, Matthew H; Bradley, E Todd; Mouawad, Nelly; Solomon, Sean C; Izenberg, Noam R

    2010-08-06

    During MESSENGER's third flyby of Mercury, the Mercury Atmospheric and Surface Composition Spectrometer detected emission from ionized calcium concentrated 1 to 2 Mercury radii tailward of the planet. This measurement provides evidence for tailward magnetospheric convection of photoions produced inside the magnetosphere. Observations of neutral sodium, calcium, and magnesium above the planet's north and south poles reveal altitude distributions that are distinct for each species. A two-component sodium distribution and markedly different magnesium distributions above the two poles are direct indications that multiple processes control the distribution of even single species in Mercury's exosphere.

  13. Mercury's Complex Exosphere: Results from MESSENGER's Third Flyby

    Science.gov (United States)

    Vervack, Ronald J., Jr.; McClintock, William E.; Killen, Rosemary M.; Sprague, Ann L.; Anderson, Brian J.; Burger, Matthew H.; Bradley, E. Todd; Mouawad, Nelly; Solomon, Sean C.; Izenberg, Noam R.

    2010-01-01

    During MESSENGER's third flyby of Mercury, the Mercury Atmospheric and Surface Composition Spectrometer detected emission from ionized calcium concentrated 1 to 2 Mercury radii tailward of the planet. This measurement provides evidence for tailward magnetospheric convection of photoions produced inside the magnetosphere. Observations of neutral sodium, calcium, and magnesium above the planet's north and south poles reveal attitude distributions that are distinct for each species. A two-component sodium distribution and markedly different magnesium distributions above the two poles are direct indications that multiple processes control the distribution of even single species in Mercury's exosphere,

  14. PACCMIT/PACCMIT-CDS: identifying microRNA targets in 3′ UTRs and coding sequences

    Science.gov (United States)

    Šulc, Miroslav; Marín, Ray M.; Robins, Harlan S.; Vaníček, Jiří

    2015-01-01

    The purpose of the proposed web server, publicly available at http://paccmit.epfl.ch, is to provide a user-friendly interface to two algorithms for predicting messenger RNA (mRNA) molecules regulated by microRNAs: (i) PACCMIT (Prediction of ACcessible and/or Conserved MIcroRNA Targets), which identifies primarily mRNA transcripts targeted in their 3′ untranslated regions (3′ UTRs), and (ii) PACCMIT-CDS, designed to find mRNAs targeted within their coding sequences (CDSs). While PACCMIT belongs among the accurate algorithms for predicting conserved microRNA targets in the 3′ UTRs, the main contribution of the web server is 2-fold: PACCMIT provides an accurate tool for predicting targets also of weakly conserved or non-conserved microRNAs, whereas PACCMIT-CDS addresses the lack of similar portals adapted specifically for targets in CDS. The web server asks the user for microRNAs and mRNAs to be analyzed, accesses the precomputed P-values for all microRNA–mRNA pairs from a database for all mRNAs and microRNAs in a given species, ranks the predicted microRNA–mRNA pairs, evaluates their significance according to the false discovery rate and finally displays the predictions in a tabular form. The results are also available for download in several standard formats. PMID:25948580

  15. Detection of Viral RNA in Tissues following Plasma Clearance from an Ebola Virus Infected Patient.

    Directory of Open Access Journals (Sweden)

    Mirella Biava

    2017-01-01

    Full Text Available An unprecedented Ebola virus (EBOV epidemic occurred in 2013-2016 in West Africa. Over this time the epidemic exponentially grew and moved to Europe and North America, with several imported cases and many Health Care Workers (HCW infected. Better understanding of EBOV infection patterns in different body compartments is mandatory to develop new countermeasures, as well as to fully comprehend the pathways of human-to-human transmission. We have longitudinally explored the persistence of EBOV-specific negative sense genomic RNA (neg-RNA and the presence of positive sense RNA (pos-RNA, including both replication intermediate (antigenomic-RNA and messenger RNA (mRNA molecules, in the upper and lower respiratory tract, as compared to plasma, in a HCW infected with EBOV in Sierra Leone, who was hospitalized in the high isolation facility of the National Institute for Infectious Diseases "Lazzaro Spallanzani" (INMI, Rome, Italy. We observed persistence of pos-RNA and neg-RNAs in longitudinally collected specimens of the lower respiratory tract, even after viral clearance from plasma, suggesting possible local replication. The purpose of the present study is to enhance the knowledge on the biological features of EBOV that can contribute to the human-to-human transmissibility and to develop effective intervention strategies. However, further investigation is needed in order to better understand the clinical meaning of viral replication and shedding in the respiratory tract.

  16. Complementary DNA and derived amino acid sequence of the α subunit of human complement protein C8: evidence for the existence of a separate α subunit messenger RNA

    International Nuclear Information System (INIS)

    Rao, A.G.; Howard, O.M.Z.; Ng, S.C.; Whitehead, A.S.; Colten, H.R.; Sodetz, J.M.

    1987-01-01

    The entire amino acid sequence of the α subunit (M/sub r/ 64,000) of the eight component of complement (C8) was determined by characterizing cDNA clones isolated from a human liver cDNA library. Two clones with overlapping inserts of net length 2.44 kilobases (kb) were isolated and found to contain the entire α coding region [1659 base pairs (bp)]. The 5' end consists of an untranslated region and a leader sequence of 30 amino acids. This sequence contains an apparent initiation Met, signal peptide, and propeptide which ends with an arginine-rich sequence that is characteristic of proteolytic processing sites found in the pro form of protein precursors. The 3' untranslated region contains two polyadenylation signals and a poly(A)sequence. RNA blot analysis of total cellular RNA from the human hepatoma cell line HepG2 revealed a message size of ∼2.5 kb. Features of the 5' and 3' sequences and the message size suggest that a separate mRNA codes for α and argues against the occurrence of a single-chain precursor form of the disulfide-linked α-λ subunit found in mature C8. Analysis of the derived amino acid sequence revealed several membrane surface seeking domains and a possible transmembrane domain. Analysis of the carbohydrate composition indicates 1 or 2 asparagine-linked but no O-linked oligosaccharide chains, a result consistent with predictions from the amino acid sequence. Most significantly, it exhibits a striking overall homology to human C9, with values of 24% on the basis of identity and 46% when conserved substitutions are allowed. As described in an accompanying report this homology also extends to the β subunit of C8

  17. Solar system expansion and strong equivalence principle as seen by the NASA MESSENGER mission.

    Science.gov (United States)

    Genova, Antonio; Mazarico, Erwan; Goossens, Sander; Lemoine, Frank G; Neumann, Gregory A; Smith, David E; Zuber, Maria T

    2018-01-18

    The NASA MESSENGER mission explored the innermost planet of the solar system and obtained a rich data set of range measurements for the determination of Mercury's ephemeris. Here we use these precise data collected over 7 years to estimate parameters related to general relativity and the evolution of the Sun. These results confirm the validity of the strong equivalence principle with a significantly refined uncertainty of the Nordtvedt parameter η = (-6.6 ± 7.2) × 10 -5 . By assuming a metric theory of gravitation, we retrieved the post-Newtonian parameter β = 1 + (-1.6 ± 1.8) × 10 -5 and the Sun's gravitational oblateness, [Formula: see text] = (2.246 ± 0.022) × 10 -7 . Finally, we obtain an estimate of the time variation of the Sun gravitational parameter, [Formula: see text] = (-6.13 ± 1.47) × 10 -14 , which is consistent with the expected solar mass loss due to the solar wind and interior processes. This measurement allows us to constrain [Formula: see text] to be <4 × 10 -14 per year.

  18. Estrogen binding, receptor mRNA, and biologic response in osteoblast-like osteosarcoma cells

    International Nuclear Information System (INIS)

    Komm, B.S.; Terpening, C.M.; Benz, D.J.; Graeme, K.A.; Gallegos, A.; Korc, M.; Greene, G.L.; O'Malley, B.W.; Haussler, M.R.

    1988-01-01

    High specific activity estradiol labeled with iodine-125 was used to detect approximately 200 saturable, high-affinity (dissociation constant approximately equal to 1.0 nM) nuclear binding sites in rat (ROS 17/2.8) and human (HOS TE85) clonal osteoblast-like osteosarcoma cells. Of the steroids tested, only testosterone exhibited significant cross-reactivity with estrogen binding. RNA blot analysis with a complementary DNA probe to the human estrogen receptor revealed putative receptor transcripts of 6 to 6.2 kilobases in both rat and human osteosarcoma cells. Type I procollagen and transforming growth factor-beta messenger RNA levels were enhanced in cultured human osteoblast-like cells treated with 1 nM estradiol. Thus, estrogen can act directly on osteoblasts by a receptor-mediated mechanism and thereby modulate the extracellular matrix and other proteins involved in the maintenance of skeletal mineralization and remodeling

  19. Ribogenomics: the Science and Knowledge of RNA

    Directory of Open Access Journals (Sweden)

    Jiayan Wu

    2014-04-01

    Full Text Available Ribonucleic acid (RNA deserves not only a dedicated field of biological research — a discipline or branch of knowledge — but also explicit definitions of its roles in cellular processes and molecular mechanisms. Ribogenomics is to study the biology of cellular RNAs, including their origin, biogenesis, structure and function. On the informational track, messenger RNAs (mRNAs are the major component of ribogenomes, which encode proteins and serve as one of the four major components of the translation machinery and whose expression is regulated at multiple levels by other operational RNAs. On the operational track, there are several diverse types of RNAs — their length distribution is perhaps the most simplistic stratification — involving in major cellular activities, such as chromosomal structure and organization, DNA replication and repair, transcriptional/post-transcriptional regulation, RNA processing and routing, translation and cellular energy/metabolism regulation. An all-out effort exceeding the magnitude of the Human Genome Project is of essence to construct just mammalian transcriptomes in multiple contexts including embryonic development, circadian and seasonal rhythms, defined life-span stages, pathological conditions and anatomy-driven tissue/organ/cell types.

  20. Di-hadron correlations with identified leading hadrons in 200 GeV Au + Au and d + Au collisions at STAR

    Science.gov (United States)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Averichev, G. S.; Bai, X.; Bairathi, V.; Banerjee, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, D.; Brandin, A. V.; Bunzarov, I.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Cervantes, M. C.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, X.; Chen, J. H.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; di Ruzza, B.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Eppley, G.; Esha, R.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, S.; Gupta, A.; Guryn, W.; Hamad, A.; Hamed, A.; Haque, R.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, T.; Huang, B.; Huang, H. Z.; Huang, X.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Jia, J.; Jiang, K.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z. H.; Kikoła, D. P.; Kisiel, A.; Kochenda, L.; Koetke, D. D.; Kosarzewski, L. K.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kumar, L.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, X.; Li, W.; Li, Z. M.; Li, Y.; Li, C.; Li, X.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, G. L.; Ma, Y. G.; Ma, R.; Ma, L.; Magdy, N.; Majka, R.; Manion, A.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; Meehan, K.; Mei, J. C.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V.; Olvitt, D.; Page, B. S.; Pak, R.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Peterson, A.; Pile, P.; Pluta, J.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roy, A.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, B.; Sharma, M. K.; Shen, W. Q.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stepanov, M.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Summa, B.; Sun, Y.; Sun, Z.; Sun, X. M.; Sun, X.; Surrow, B.; Svirida, D. N.; Szelezniak, M. A.; Tang, A. H.; Tang, Z.; Tarnowsky, T.; Tawfik, A.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Todoroki, T.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Varma, R.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, J. S.; Wang, F.; Wang, H.; Wang, G.; Wang, Y.; Wang, Y.; Webb, G.; Webb, J. C.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Wu; Xiao, Z. G.; Xie, W.; Xin, K.; Xu, H.; Xu, Z.; Xu, Q. H.; Xu, Y. F.; Xu, N.; Yang, S.; Yang, Y.; Yang, Q.; Yang, Y.; Yang, C.; Yang, Y.; Ye, Z.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, Y.; Zhang, Z.; Zhang, J. B.; Zhang, J.; Zhang, X. P.; Zhang, S.; Zhang, J.; Zhao, J.; Zhong, C.; Zhou, L.; Zhu, X.; Zoulkarneeva, Y.

    2015-12-01

    The STAR Collaboration presents for the first time two-dimensional di-hadron correlations with identified leading hadrons in 200 GeV central Au + Au and minimum-bias d + Au collisions to explore hadronization mechanisms in the quark gluon plasma. The enhancement of the jet-like yield for leading pions in Au + Au data with respect to the d + Au reference and the absence of such an enhancement for leading non-pions (protons and kaons) are discussed within the context of a quark recombination scenario. The correlated yield at large angles, specifically in the ridge region, is found to be significantly higher for leading non-pions than pions. The consistencies of the constituent quark scaling, azimuthal harmonic model and a mini-jet modification model description of the data are tested, providing further constraints on hadronization.

  1. Preliminary crystallographic analysis of the RNA-binding domain of HuR and its poly(U)-binding properties

    International Nuclear Information System (INIS)

    Wang, Hong; Li, Heng; Shi, Hui; Liu, Yang; Liu, Huihui; Zhao, Hui; Niu, Liwen; Teng, Maikun; Li, Xu

    2011-01-01

    Here, the recombinant ARE-binding region of HuR (residues 18–186) was crystallized in space group P2 1 2 1 2, with unit-cell parameters a = 41.2, b = 133.1, c = 31.4 Å. Human antigen R (HuR), a ubiquitously expressed member of the Hu protein family, is an important post-transcriptional regulator which has three RNA-recognition motif (RRM) domains. The two tandem N-terminal RRM domains can selectively bind to the AU-rich element (ARE), while the third one interacts with the poly(A) tail and other proteins. Here, the recombinant ARE-binding region of HuR (residues 18–186) was crystallized in space group P2 1 2 1 2, with unit-cell parameters a = 41.2, b = 133.1, c = 31.4 Å. X-ray diffraction data were collected to a resolution of 2.8 Å. Mutagenesis analysis and SPR assays revealed its poly(U)-binding properties

  2. Impaired embryonic development in mice overexpressing the RNA-binding protein TIAR.

    Directory of Open Access Journals (Sweden)

    Yacine Kharraz

    Full Text Available BACKGROUND: TIA-1-related (TIAR protein is a shuttling RNA-binding protein involved in several steps of RNA metabolism. While in the nucleus TIAR participates to alternative splicing events, in the cytoplasm TIAR acts as a translational repressor on specific transcripts such as those containing AU-Rich Elements (AREs. Due to its ability to assemble abortive pre-initiation complexes coalescing into cytoplasmic granules called stress granules, TIAR is also involved in the general translational arrest observed in cells exposed to environmental stress. However, the in vivo role of this protein has not been studied so far mainly due to severe embryonic lethality upon tiar invalidation. METHODOLOGY/PRINCIPAL FINDINGS: To examine potential TIAR tissue-specificity in various cellular contexts, either embryonic or adult, we constructed a TIAR transgenic allele (loxPGFPloxPTIAR allowing the conditional expression of TIAR protein upon Cre recombinase activity. Here, we report the role of TIAR during mouse embryogenesis. We observed that early TIAR overexpression led to low transgene transmission associated with embryonic lethality starting at early post-implantation stages. Interestingly, while pre-implantation steps evolved correctly in utero, in vitro cultured embryos were very sensitive to culture medium. Control and transgenic embryos developed equally well in the G2 medium, whereas culture in M16 medium led to the phosphorylation of eIF2alpha that accumulated in cytoplasmic granules precluding transgenic blastocyst hatching. Our results thus reveal a differential TIAR-mediated embryonic response following artificial or natural growth environment. CONCLUSIONS/SIGNIFICANCE: This study reports the importance of the tightly balanced expression of the RNA-binding protein TIAR for normal embryonic development, thereby emphasizing the role of post-transcriptional regulations in early embryonic programming.

  3. MESSENGER E/V/H MASCS 5 VIRS DERIVED ANALYSIS DATA V2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — Abstract ======== This data set consists of the MESSENGER MASCS VIRS derived analysis product, also known as the DAP. The DAP is a 500 meter per pixel mosaic map of...

  4. MESSENGER E/V/H MASCS 5 VIRS DERIVED ANALYSIS DATA V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — Abstract ======== This data set consists of the MESSENGER MASCS VIRS derived analysis product, also known as the DAP. The DAP is a 500 meter per pixel mosaic map of...

  5. INTERMEDIATE-MASS HOT CORES AT {approx}500 AU: DISKS OR OUTFLOWS?

    Energy Technology Data Exchange (ETDEWEB)

    Palau, Aina; Girart, Josep M. [Institut de Ciencies de l' Espai (CSIC-IEEC), Campus UAB-Facultat de Ciencies, Torre C5-parell 2, 08193 Bellaterra, Catalunya (Spain); Fuente, Asuncion; Alonso-Albi, Tomas [Observatorio Astronomico Nacional, P.O. Box 112, 28803 Alcala de Henares, Madrid (Spain); Fontani, Francesco; Sanchez-Monge, Alvaro [Osservatorio Astrofisico di Arcetri, INAF, Largo E. Fermi 5, 50125 Firenze (Italy); Boissier, Jeremie [Istituto di Radioastronomia, INAF, Via Gobetti 101, Bologna (Italy); Pietu, Vincent; Neri, Roberto [IRAM, 300 Rue de la piscine, 38406 Saint Martin d' Heres (France); Busquet, Gemma [Istituto di Fisica dello Spazio Interplanetario, INAF, Area di Recerca di Tor Vergata, Via Fosso Cavaliere 100, 00133 Roma (Italy); Estalella, Robert [Departament d' Astronomia i Meteorologia (IEEC-UB), Institut Ciencies Cosmos, Universitat Barcelona, Marti Franques 1, 08028 Barcelona (Spain); Zapata, Luis A. [Centro de Radioastronomia y Astrofisica, Universidad Nacional Autonoma de Mexico, P.O. Box 3-72, 58090 Morelia, Michoacan (Mexico); Zhang, Qizhou; Ho, Paul T. P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Audard, Marc, E-mail: palau@ieec.uab.es [Geneva Observatory, University of Geneva, Ch. des Maillettes 51, 1290 Versoix (Switzerland)

    2011-12-20

    Observations with the Plateau de Bure Interferometer in the most extended configuration toward two intermediate-mass star-forming regions, IRAS 22198+6336 and AFGL 5142, reveal the presence of several complex organic molecules at {approx}500 AU scales, confirming the presence of hot cores in both regions. The hot cores are not rich in CN-bearing molecules, as often seen in massive hot cores, and are mainly traced by CH{sub 3}CH{sub 2}OH, (CH{sub 2}OH){sub 2}, CH{sub 3}COCH{sub 3}, and CH{sub 3}OH, with, additionally, CH{sub 3}CHO, CH{sub 3}OD, and HCOOD for IRAS 22198+6336, and C{sub 6}H and O{sup 13}CS for AFGL 5142. The emission of complex molecules is resolved down to sizes of {approx}300 and {approx}600 AU, for IRAS 22198+6336 and AFGL 5142, respectively, and most likely is tracing protostellar disks rather than flattened envelopes or toroids as is usually found. This is especially clear for the case of IRAS 22198+6336, where we detect a velocity gradient for all the mapped molecules perpendicular to the most chemically rich outflow of the region, yielding a dynamic mass {approx}> 4 M{sub Sun }. As for AFGL 5142, the hot core emission is resolved into two elongated cores separated {approx}1800 AU. A detailed comparison of the complex molecule peaks to the new CO (2-1) data and H{sub 2}O maser data from the literature suggests also that for AFGL 5142 the complex molecules are mainly associated with disks, except for a faint and extended molecular emission found to the west, which is possibly produced in the interface between one of the outflows and the dense surrounding gas.

  6. Tau mRNA 3'UTR-to-CDS ratio is increased in Alzheimer disease.

    Science.gov (United States)

    García-Escudero, Vega; Gargini, Ricardo; Martín-Maestro, Patricia; García, Esther; García-Escudero, Ramón; Avila, Jesús

    2017-08-10

    Neurons frequently show an imbalance in expression of the 3' untranslated region (3'UTR) relative to the coding DNA sequence (CDS) region of mature messenger RNAs (mRNA). The ratio varies among different cells or parts of the brain. The Map2 protein levels per cell depend on the 3'UTR-to-CDS ratio rather than the total mRNA amount, which suggests powerful regulation of protein expression by 3'UTR sequences. Here we found that MAPT (the microtubule-associated protein tau gene) 3'UTR levels are particularly high with respect to other genes; indeed, the 3'UTR-to-CDS ratio of MAPT is balanced in healthy brain in mouse and human. The tau protein accumulates in Alzheimer diseased brain. We nonetheless observed that the levels of RNA encoding MAPT/tau were diminished in these patients' brains. To explain this apparently contradictory result, we studied MAPT mRNA stoichiometry in coding and non-coding regions, and found that the 3'UTR-to-CDS ratio was higher in the hippocampus of Alzheimer disease patients, with higher tau protein but lower total mRNA levels. Our data indicate that changes in the 3'UTR-to-CDS ratio have a regulatory role in the disease. Future research should thus consider not only mRNA levels, but also the ratios between coding and non-coding regions. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. NSun2-Mediated Cytosine-5 Methylation of Vault Noncoding RNA Determines Its Processing into Regulatory Small RNAs

    Directory of Open Access Journals (Sweden)

    Shobbir Hussain

    2013-07-01

    Full Text Available Autosomal-recessive loss of the NSUN2 gene has been identified as a causative link to intellectual disability disorders in humans. NSun2 is an RNA methyltransferase modifying cytosine-5 in transfer RNAs (tRNAs, yet the identification of cytosine methylation in other RNA species has been hampered by the lack of sensitive and reliable molecular techniques. Here, we describe miCLIP as an additional approach for identifying RNA methylation sites in transcriptomes. miCLIP is a customized version of the individual-nucleotide-resolution crosslinking and immunoprecipitation (iCLIP method. We confirm site-specific methylation in tRNAs and additional messenger and noncoding RNAs (ncRNAs. Among these, vault ncRNAs contained six NSun2-methylated cytosines, three of which were confirmed by RNA bisulfite sequencing. Using patient cells lacking the NSun2 protein, we further show that loss of cytosine-5 methylation in vault RNAs causes aberrant processing into Argonaute-associated small RNA fragments that can function as microRNAs. Thus, impaired processing of vault ncRNA may contribute to the etiology of NSun2-deficiency human disorders.

  8. Tissue-specific splicing pattern of fibronectin messenger RNA precursor during development and aging in rat

    OpenAIRE

    1991-01-01

    Fibronectin isoforms are generated by the alternative splicing of a primary transcript derived from a single gene. In rat at least three regions of the molecule are involved: EIIIA, EIIIB, and V. This study investigated the splicing patterns of these regions during development and aging, by means of ribonuclease protection analysis. Between fetal and adult rat, the extent of inclusion of the EIIIA and/or EIIIB region in fibronectin mRNA varied according to the type of tissue analyzed; but the...

  9. Domain-specific phosphomimetic mutation allows dissection of different protein kinase C (PKC) isotype-triggered activities of the RNA binding protein HuR.

    Science.gov (United States)

    Schulz, Sebastian; Doller, Anke; Pendini, Nicole R; Wilce, Jacqueline A; Pfeilschifter, Josef; Eberhardt, Wolfgang

    2013-12-01

    The ubiquitous mRNA binding protein human antigen R (HuR) participates in the post-transcriptional regulation of many AU-rich element (ARE)-bearing mRNAs. Previously, by using in vitro kinase assay, we have identified serines (Ser) 158, 221 and 318 as targets of protein kinase C (PKC)-triggered phosphorylation. In this study, we tested whether GFP- or GST-tagged HuR constructs bearing a phosphomimetic Ser (S)-to-Asp (D) substitution at the different PKC target sites, would affect different HuR functions including HuR nucleo-cytoplasmic redistribution and binding to different types of ARE-containing mRNAs. The phosphomimetic GFP-tagged HuR protein bearing a phosphomimetic substitution in the hinge region of HuR (HuR-S221D) showed an increased cytoplasmic abundance when compared to wild-type HuR. Conversely, data from in vitro kinase assay and electrophoretic mobility shift assay (EMSA), implicates that phosphorylation at Ser 221 is not relevant for mRNA binding of HuR. Quantification of in vitro binding affinities of GST-tagged wild-type HuR and corresponding HuR proteins bearing a phosphomimetic substitution in either RRM2 (HuR-S158D) or in RRM3 (HuR-S318D) by microscale thermophoresis (MST) indicates a specific binding of wild-type HuR to type I, II or type III-ARE-oligonucleotides in the high nanomolar range. Interestingly, phosphomimetic mutation at position 158 or 318 had a negative influence on HuR binding to type I- and type II-ARE-mRNAs whereas it significantly enhanced HuR affinity to a type III-ARE substrate. Our data suggest that differential phosphorylation of HuR by PKCs at different HuR domains coordinates subcellular HuR distribution and leads to a preferential binding to U-rich bearing target mRNA. © 2013.

  10. Regulation of gene expression in neuronal tissue by RNA interference and editing

    DEFF Research Database (Denmark)

    Venø, Morten Trillingsgaard

    No tissue in the mammalian organism is more complex than the brain. This complexity is in part the result of precise timing and interplay of a large number mechanisms modulating gene expression post-transcriptionally. Fine-tuning mechanisms such as A-to-I editing of RNA transcripts and regulation...... mediated by microRNAs are crucial for the correct function of the mammalian brain. We are addressing A-to-I editing and regulation by microRNAs with spatio-temporal resolution in the embryonic porcine brain by Solexa sequencing of microRNAs and 454 sequencing of edited neuronal messenger RNAs, resulting...... in detailed data of both of these fine-tuning mechanisms in the embryonic development of the pig. Editing levels of transcripts examined are generally seen to increase through development, in agreement with editing of specific microRNA also examined in the Solexa sequencing study. Three studies examining...

  11. Femtosecond Laser-Induced Formation of Gold-Rich Nanoalloys from the Aqueous Mixture of Gold-Silver Ions

    Directory of Open Access Journals (Sweden)

    Yuliati Herbani

    2010-01-01

    Full Text Available The synthesis of gold-silver (AuAg nanoalloys of various compositions has been performed by direct irradiation of highly intense femtosecond laser pulse in the presence of polyvinylpyrrolidone (PVP. The mixture of Au and Ag ions of low concentration was simply introduced into a glass vial and subjected to femtosecond laser pulses for several minutes. The AuAg nanoalloys of 2-3 nm with reasonably narrow size distribution were formed, and the position of the surface plasmon resonance (SPR increased monotonically with an increase in the gold molar fraction in the ion solutions. The high resolution transmission electron microscope (HRTEM images exhibited the absence of core-shell structures, and the energy dispersive X-ray spectroscopy (EDX analysis confirmed that the particles were Au-rich alloys even for the samples with large fraction of Ag+ ions fed in the solution mixture. The formation mechanism of the alloy nanoparticles in the high intensity optical field was also discussed.

  12. Di-hadron correlations with identified leading hadrons in 200 GeV Au+Au and d+Au collisions at STAR

    Directory of Open Access Journals (Sweden)

    L. Adamczyk

    2015-12-01

    Full Text Available The STAR Collaboration presents for the first time two-dimensional di-hadron correlations with identified leading hadrons in 200 GeV central Au+Au and minimum-bias d+Au collisions to explore hadronization mechanisms in the quark gluon plasma. The enhancement of the jet-like yield for leading pions in Au+Au data with respect to the d+Au reference and the absence of such an enhancement for leading non-pions (protons and kaons are discussed within the context of a quark recombination scenario. The correlated yield at large angles, specifically in the ridge region, is found to be significantly higher for leading non-pions than pions. The consistencies of the constituent quark scaling, azimuthal harmonic model and a mini-jet modification model description of the data are tested, providing further constraints on hadronization.

  13. Di-hadron correlations with identified leading hadrons in 200 GeV Au + Au and d + Au collisions at STAR

    Energy Technology Data Exchange (ETDEWEB)

    Adamczyk, L; Adkins, JK; Agakishiev, G; Aggarwal, MM; Ahammed, Z; Alekseev, I; Aparin, A; Arkhipkin, D; Aschenauer, EC; Averichev, GS; Bai, X; Bairathi, V; Banerjee, A; Bellwied, R; Bhasin, A; Bhati, AK; Bhattarai, P; Bielcik, J; Bielcikova, J; Bland, LC; Bordyuzhin, IG; Bouchet, J; Brandenburg, D; Brandin, AV; Bunzarov, I; Butterworth, J; Caines, H; Calderón de la Barca Sánchez, M; Campbell, JM; Cebra, D; Cervantes, MC; Chakaberia, I; Chaloupka, P; Chang, Z; Chattopadhyay, S; Chen, X; Chen, JH; Cheng, J; Cherney, M; Christie, W; Contin, G; Crawford, HJ; Das, S; De Silva, LC; Debbe, RR; Dedovich, TG; Deng, J; Derevschikov, AA; di Ruzza, B; Didenko, L; Dilks, C; Dong, X; Drachenberg, JL; Draper, JE; Du, CM; Dunkelberger, LE; Dunlop, JC; Efimov, LG; Engelage, J; Eppley, G; Esha, R; Evdokimov, O; Eyser, O; Fatemi, R; Fazio, S; Federic, P; Fedorisin, J; Feng, Z; Filip, P; Fisyak, Y; Flores, CE; Fulek, L; Gagliardi, CA; Garand, D; Geurts, F; Gibson, A; Girard, M; Greiner, L; Grosnick, D; Gunarathne, DS; Guo, Y; Gupta, S; Gupta, A; Guryn, W; Hamad, A; Hamed, A; Haque, R; Harris, JW; He, L; Heppelmann, S; Heppelmann, S; Hirsch, A; Hoffmann, GW; Hofman, DJ; Horvat, S; Huang, T; Huang, B; Huang, HZ; Huang, X; Huck, P

    2015-10-23

    The STAR Collaboration presents for the first time two-dimensional di-hadron correlations with identified leading hadrons in 200 GeV central Au + Au and minimum-bias d + Au collisions to explore hadronization mechanisms in the quark gluon plasma. The enhancement of the jet-like yield for leading pions in Au + Au data with respect to the d + Au reference and the absence of such an enhancement for leading non-pions (protons and kaons) are discussed within the context of a quark recombination scenario. The correlated yield at large angles, specifically in the ridge region, is found to be significantly higher for leading non-pions than pions. The consistencies of the constituent quark scaling, azimuthal harmonic model and a mini-jet modification model description of the data are tested, providing further constraints on hadronization.

  14. Hypocholesterolemic Effects of the Cauliflower Culinary-Medicinal Mushroom, Sparassis crispa (Higher Basidiomycetes), in Diet-Induced Hypercholesterolemic Rats.

    Science.gov (United States)

    Hong, Ki Bae; Hong, Sung-Yong; Joung, Eun Young; Kim, Byung Hee; Bae, Song-Hwan; Park, Yooheon; Suh, Hyung Joo

    2015-01-01

    The cauliflower culinary-medicinal mushroom, Sparassis crispa, possesses various biological activities that have been widely reported to have therapeutic applications. We examined the effects of S. crispa on serum cholesterol, hepatic enzymes related to cholesterol metabolism, and fecal sterol excretion in rats fed a cholesterol-rich diet for 4 weeks. Male Sprague-Dawley rats (8 weeks old) were randomly divided into 5 groups (n = 6 mice per group): normal diet (normal control [NC]), cholesterol-rich diet (cholesterol control [CC]), cholesterol-rich diet plus S. crispa fruiting body (SC), cholesterol-rich diet plus S. crispa extract (SCE), and cholesterol-rich diet plus S. crispa residue (SCR). SCE supplementation significantly enhanced hepatic cholesterol catabolism through the upregulation of cholesterol 7α-hydroxylase (CYP7A1) messenger RNA (mRNA) expression (2.55-fold compared with that in the NC group; P < 0.05) and the downregulation of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase mRNA expression (0.57-fold compared with that in the NC group; P < 0.05). Additionally, the SCE diet resulted in the highest fecal excretion of cholesterol and bile acid in hypercholesterolemic rats. In conclusion, mRNA expression of CYP7A1 and HMG-CoA reductase were significantly modulated by the absorption of SCE samples. Also, SCE samples had a significant effect on fecal bile acid and cholesterol excretion. These results suggest that SCE samples can induce hypocholesterolic effects through cholesterol metabolism and the reduction of circulating cholesterol levels.

  15. Cigarette smoking decreases global microRNA expression in human alveolar macrophages.

    Directory of Open Access Journals (Sweden)

    Joel W Graff

    Full Text Available Human alveolar macrophages are critical components of the innate immune system. Cigarette smoking-induced changes in alveolar macrophage gene expression are linked to reduced resistance to pulmonary infections and to the development of emphysema/COPD. We hypothesized that microRNAs (miRNAs could control, in part, the unique messenger RNA (mRNA expression profiles found in alveolar macrophages of cigarette smokers. Activation of macrophages with different stimuli in vitro leads to a diverse range of M1 (inflammatory and M2 (anti-inflammatory polarized phenotypes that are thought to mimic activated macrophages in distinct tissue environments. Microarray mRNA data indicated that smoking promoted an "inverse" M1 mRNA expression program, defined by decreased expression of M1-induced transcripts and increased expression of M1-repressed transcripts with few changes in M2-regulated transcripts. RT-PCR arrays identified altered expression of many miRNAs in alveolar macrophages of smokers and a decrease in global miRNA abundance. Stratification of human subjects suggested that the magnitude of the global decrease in miRNA abundance was associated with smoking history. We found that many of the miRNAs with reduced expression in alveolar macrophages of smokers were predicted to target mRNAs upregulated in alveolar macrophages of smokers. For example, miR-452 is predicted to target the transcript encoding MMP12, an important effector of smoking-related diseases. Experimental antagonism of miR-452 in differentiated monocytic cells resulted in increased expression of MMP12. The comprehensive mRNA and miRNA expression profiles described here provide insight into gene expression regulation that may underlie the adverse effects cigarette smoking has on alveolar macrophages.

  16. Secondary structure of 5S RNA: NMR experiments on RNA molecules partially labeled with Nitrogen-15

    International Nuclear Information System (INIS)

    Gewirth, D.T.; Abo, S.R.; Leontis, N.B.; Moore, P.B.

    1987-01-01

    A method has been found for reassembling fragment 1 of Escherichia coli 5S RNA from mixtures containing strand III (bases 69-87) and the complex consisting of strand II (bases 89-120) and strand IV (bases 1-11). The reassembled molecule is identical with unreconstituted fragment 1. With this technique, fragment 1 molecules have been constructed 15 N-labeled either in strand III or in the strand II-strand IV complex. Spectroscopic data obtained with these partially labeled molecules show that the terminal helix of 5S RNA includes the GU and GC base pairs at positions 9 and 10 which the standard model for 5S secondary structure predicts but that these base pairs are unstable both in the fragment and in native 5S RNA. The data also assign three resonances to the helix V region of the molecule (bases 70-77 and 99-106). None of these resonances has a normal chemical shift even though two of them correspond to AU or GU base pairs in the standard model. The implications of these findings for the authors understanding of the structure of 5S RNA and its complex with ribosomal protein L25 are discussed

  17. Strong transcription blockage mediated by R-loop formation within a G-rich homopurine-homopyrimidine sequence localized in the vicinity of the promoter.

    Science.gov (United States)

    Belotserkovskii, Boris P; Soo Shin, Jane Hae; Hanawalt, Philip C

    2017-06-20

    Guanine-rich (G-rich) homopurine-homopyrimidine nucleotide sequences can block transcription with an efficiency that depends upon their orientation, composition and length, as well as the presence of negative supercoiling or breaks in the non-template DNA strand. We report that a G-rich sequence in the non-template strand reduces the yield of T7 RNA polymerase transcription by more than an order of magnitude when positioned close (9 bp) to the promoter, in comparison to that for a distal (∼250 bp) location of the same sequence. This transcription blockage is much less pronounced for a C-rich sequence, and is not significant for an A-rich sequence. Remarkably, the blockage is not pronounced if transcription is performed in the presence of RNase H, which specifically digests the RNA strands within RNA-DNA hybrids. The blockage also becomes less pronounced upon reduced RNA polymerase concentration. Based upon these observations and those from control experiments, we conclude that the blockage is primarily due to the formation of stable RNA-DNA hybrids (R-loops), which inhibit successive rounds of transcription. Our results could be relevant to transcription dynamics in vivo (e.g. transcription 'bursting') and may also have practical implications for the design of expression vectors. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. A partial phase diagram of Pt-rich Pt-Mn alloys

    CERN Document Server

    Sembiring, T; Ohshima, K I; Ota, K; Shishido, T

    2002-01-01

    We have performed the X-ray and electron diffraction studies to reconstruct a partial phase diagram of Pt-rich Pt-Mn alloys in the composition range of 10 to 35 at.% Mn. Electrical resistivity measurement was also used for determining the order-disorder transition temperature in Pt-14.2 at.% Mn alloy. The phase boundary between Cu sub 3 Au type and ABC sub 6 type ordered structures is established, in which the latter has been found recently by the present [J.Phys. Soc. Jpn. 71 (2002) 681]. In the ABC sub 6 type ordered phase, superlattice reflections both at 1/2 1/2 1/2 and its equivalent position (L-point) and at 100, 110 and their equivalent positions (X-point) appear in the composition range from 12.5 to 14.4 at.% Mn below 682degC. In the Cu sub 3 Au type ordered phase, diffuse maxima at L-point appear in the composition range from 15.9 to 19.7 at.% Mn in addition to the superlattice reflections at X-point. The Cu sub 3 Au type ordered structure is found to be stable in the composition range from 19.7 to 3...

  19. MESSENGER E/V/H GRNS 2 GAMMA RAY SPECTROMETER RAW DATA V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — Abstract ======== This data set consists of the MESSENGER GRS uncalibrated observations, also known as EDRs. The GRS experiment is a gamma ray spectrometer designed...

  20. RINGED SUBSTRUCTURE AND A GAP AT 1 au IN THE NEAREST PROTOPLANETARY DISK

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, Sean M.; Wilner, David J.; Bai, Xue-Ning; Öberg, Karin I.; Ricci, Luca [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Zhu, Zhaohuan [Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Peyton Hall, Princeton, NJ 08544 (United States); Birnstiel, Tilman [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Carpenter, John M. [Joint ALMA Observatory (JAO), Alonso de Cordova 3107, Vitacura-Santiago de Chile (Chile); Pérez, Laura M. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Hughes, A. Meredith [Department of Astronomy, Wesleyan University, Van Vleck Observatory, 96 Foss Hill Drive, Middletown, CT 06457 (United States); Isella, Andrea, E-mail: sandrews@cfa.harvard.edu [Department of Physics and Astronomy, Rice University, 6100 Main Street, Houston, TX 77005 (United States)

    2016-04-01

    We present long baseline Atacama Large Millimeter/submillimeter Array (ALMA) observations of the 870 μm continuum emission from the nearest gas-rich protoplanetary disk, around TW Hya, that trace millimeter-sized particles down to spatial scales as small as 1 au (20 mas). These data reveal a series of concentric ring-shaped substructures in the form of bright zones and narrow dark annuli (1–6 au) with modest contrasts (5%–30%). We associate these features with concentrations of solids that have had their inward radial drift slowed or stopped, presumably at local gas pressure maxima. No significant non-axisymmetric structures are detected. Some of the observed features occur near temperatures that may be associated with the condensation fronts of major volatile species, but the relatively small brightness contrasts may also be a consequence of magnetized disk evolution (the so-called zonal flows). Other features, particularly a narrow dark annulus located only 1 au from the star, could indicate interactions between the disk and young planets. These data signal that ordered substructures on ∼au scales can be common, fundamental factors in disk evolution and that high-resolution microwave imaging can help characterize them during the epoch of planet formation.