Greenhouse Gas Source Attribution: Measurements Modeling and Uncertainty Quantification
Energy Technology Data Exchange (ETDEWEB)
Liu, Zhen [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Safta, Cosmin [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sargsyan, Khachik [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Najm, Habib N. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); van Bloemen Waanders, Bart Gustaaf [Sandia National Lab. (SNL-CA), Livermore, CA (United States); LaFranchi, Brian W. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Ivey, Mark D. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Schrader, Paul E. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Michelsen, Hope A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Bambha, Ray P. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)
2014-09-01
In this project we have developed atmospheric measurement capabilities and a suite of atmospheric modeling and analysis tools that are well suited for verifying emissions of green- house gases (GHGs) on an urban-through-regional scale. We have for the first time applied the Community Multiscale Air Quality (CMAQ) model to simulate atmospheric CO_{2} . This will allow for the examination of regional-scale transport and distribution of CO_{2} along with air pollutants traditionally studied using CMAQ at relatively high spatial and temporal resolution with the goal of leveraging emissions verification efforts for both air quality and climate. We have developed a bias-enhanced Bayesian inference approach that can remedy the well-known problem of transport model errors in atmospheric CO_{2} inversions. We have tested the approach using data and model outputs from the TransCom3 global CO_{2} inversion comparison project. We have also performed two prototyping studies on inversion approaches in the generalized convection-diffusion context. One of these studies employed Polynomial Chaos Expansion to accelerate the evaluation of a regional transport model and enable efficient Markov Chain Monte Carlo sampling of the posterior for Bayesian inference. The other approach uses de- terministic inversion of a convection-diffusion-reaction system in the presence of uncertainty. These approaches should, in principle, be applicable to realistic atmospheric problems with moderate adaptation. We outline a regional greenhouse gas source inference system that integrates (1) two ap- proaches of atmospheric dispersion simulation and (2) a class of Bayesian inference and un- certainty quantification algorithms. We use two different and complementary approaches to simulate atmospheric dispersion. Specifically, we use a Eulerian chemical transport model CMAQ and a Lagrangian Particle Dispersion Model - FLEXPART-WRF. These two models share the same WRF
Koch, Michael
Measurement uncertainty is one of the key issues in quality assurance. It became increasingly important for analytical chemistry laboratories with the accreditation to ISO/IEC 17025. The uncertainty of a measurement is the most important criterion for the decision whether a measurement result is fit for purpose. It also delivers help for the decision whether a specification limit is exceeded or not. Estimation of measurement uncertainty often is not trivial. Several strategies have been developed for this purpose that will shortly be described in this chapter. In addition the different possibilities to take into account the uncertainty in compliance assessment are explained.
The attribute measurement technique
International Nuclear Information System (INIS)
MacArthur, Duncan W.; Langner, Diana; Smith, Morag; Thron, Jonathan; Razinkov, Sergey; Livke, Alexander
2010-01-01
Any verification measurement performed on potentially classified nuclear material must satisfy two seemingly contradictory constraints. First and foremost, no classified information can be released. At the same time, the monitoring party must have confidence in the veracity of the measurement. An information barrier (IB) is included in the measurement system to protect the potentially classified information while allowing sufficient information transfer to occur for the monitoring party to gain confidence that the material being measured is consistent with the host's declarations, concerning that material. The attribute measurement technique incorporates an IB and addresses both concerns by measuring several attributes of the nuclear material and displaying unclassified results through green (indicating that the material does possess the specified attribute) and red (indicating that the material does not possess the specified attribute) lights. The attribute measurement technique has been implemented in the AVNG, an attribute measuring system described in other presentations at this conference. In this presentation, we will discuss four techniques used in the AVNG: (1) the 1B, (2) the attribute measurement technique, (3) the use of open and secure modes to increase confidence in the displayed results, and (4) the joint design as a method for addressing both host and monitor needs.
International Nuclear Information System (INIS)
Landsberg, P.T.
1990-01-01
This paper explores how the quantum mechanics uncertainty relation can be considered to result from measurements. A distinction is drawn between the uncertainties obtained by scrutinising experiments and the standard deviation type of uncertainty definition used in quantum formalism. (UK)
Measurement uncertainty and probability
Willink, Robin
2013-01-01
A measurement result is incomplete without a statement of its 'uncertainty' or 'margin of error'. But what does this statement actually tell us? By examining the practical meaning of probability, this book discusses what is meant by a '95 percent interval of measurement uncertainty', and how such an interval can be calculated. The book argues that the concept of an unknown 'target value' is essential if probability is to be used as a tool for evaluating measurement uncertainty. It uses statistical concepts, such as a conditional confidence interval, to present 'extended' classical methods for evaluating measurement uncertainty. The use of the Monte Carlo principle for the simulation of experiments is described. Useful for researchers and graduate students, the book also discusses other philosophies relating to the evaluation of measurement uncertainty. It employs clear notation and language to avoid the confusion that exists in this controversial field of science.
The uncertainties in estimating measurement uncertainties
International Nuclear Information System (INIS)
Clark, J.P.; Shull, A.H.
1994-01-01
All measurements include some error. Whether measurements are used for accountability, environmental programs or process support, they are of little value unless accompanied by an estimate of the measurements uncertainty. This fact is often overlooked by the individuals who need measurements to make decisions. This paper will discuss the concepts of measurement, measurements errors (accuracy or bias and precision or random error), physical and error models, measurement control programs, examples of measurement uncertainty, and uncertainty as related to measurement quality. Measurements are comparisons of unknowns to knowns, estimates of some true value plus uncertainty; and are no better than the standards to which they are compared. Direct comparisons of unknowns that match the composition of known standards will normally have small uncertainties. In the real world, measurements usually involve indirect comparisons of significantly different materials (e.g., measuring a physical property of a chemical element in a sample having a matrix that is significantly different from calibration standards matrix). Consequently, there are many sources of error involved in measurement processes that can affect the quality of a measurement and its associated uncertainty. How the uncertainty estimates are determined and what they mean is as important as the measurement. The process of calculating the uncertainty of a measurement itself has uncertainties that must be handled correctly. Examples of chemistry laboratory measurement will be reviewed in this report and recommendations made for improving measurement uncertainties
Attribution Theory and Judgment under Uncertainty
1975-06-13
that every- cuy learning experiences are typically not structured to develop cognitive control. Much of the problem appears to be related to...people do and should explain past events may be found in the ruminations of historians over the state and nature of their craft (e.g.. Beard, 1935...8217 P- N- Psychology of Reasoning: Structure and Content . London: Bacsford, 19727 gcruccure - Attribution Theory 51 Wyer, R. S. CoRnitive
Scientific Uncertainties in Climate Change Detection and Attribution Studies
Santer, B. D.
2017-12-01
It has been claimed that the treatment and discussion of key uncertainties in climate science is "confined to hushed sidebar conversations at scientific conferences". This claim is demonstrably incorrect. Climate change detection and attribution studies routinely consider key uncertainties in observational climate data, as well as uncertainties in model-based estimates of natural variability and the "fingerprints" in response to different external forcings. The goal is to determine whether such uncertainties preclude robust identification of a human-caused climate change fingerprint. It is also routine to investigate the impact of applying different fingerprint identification strategies, and to assess how detection and attribution results are impacted by differences in the ability of current models to capture important aspects of present-day climate. The exploration of the uncertainties mentioned above will be illustrated using examples from detection and attribution studies with atmospheric temperature and moisture.
Traceability and Measurement Uncertainty
DEFF Research Database (Denmark)
Tosello, Guido; De Chiffre, Leonardo
2004-01-01
. The project partnership aims (composed by 7 partners in 5 countries, thus covering a real European spread in high tech production technology) to develop and implement an advanced e-learning system that integrates contributions from quite different disciplines into a user-centred approach that strictly....... Machine tool testing 9. The role of manufacturing metrology for QM 10. Inspection planning 11. Quality management of measurements incl. Documentation 12. Advanced manufacturing measurement technology The present report (which represents the section 2 - Traceability and Measurement Uncertainty – of the e-learning......This report is made as a part of the project ‘Metro-E-Learn: European e-Learning in Manufacturing Metrology’, an EU project under the program SOCRATES MINERVA (ODL and ICT in Education), Contract No: 101434-CP-1-2002-1-DE-MINERVA, coordinated by Friedrich-Alexander-University Erlangen...
The Uncertainty of Measurement Results
Energy Technology Data Exchange (ETDEWEB)
Ambrus, A. [Hungarian Food Safety Office, Budapest (Hungary)
2009-07-15
Factors affecting the uncertainty of measurement are explained, basic statistical formulae given, and the theoretical concept explained in the context of pesticide formulation analysis. Practical guidance is provided on how to determine individual uncertainty components within an analytical procedure. An extended and comprehensive table containing the relevant mathematical/statistical expressions elucidates the relevant underlying principles. Appendix I provides a practical elaborated example on measurement uncertainty estimation, above all utilizing experimental repeatability and reproducibility laboratory data. (author)
Parameter uncertainty in simulations of extreme precipitation and attribution studies.
Timmermans, B.; Collins, W. D.; O'Brien, T. A.; Risser, M. D.
2017-12-01
The attribution of extreme weather events, such as heavy rainfall, to anthropogenic influence involves the analysis of their probability in simulations of climate. The climate models used however, such as the Community Atmosphere Model (CAM), employ approximate physics that gives rise to "parameter uncertainty"—uncertainty about the most accurate or optimal values of numerical parameters within the model. In particular, approximate parameterisations for convective processes are well known to be influential in the simulation of precipitation extremes. Towards examining the impact of this source of uncertainty on attribution studies, we investigate the importance of components—through their associated tuning parameters—of parameterisations relating to deep and shallow convection, and cloud and aerosol microphysics in CAM. We hypothesise that as numerical resolution is increased the change in proportion of variance induced by perturbed parameters associated with the respective components is consistent with the decreasing applicability of the underlying hydrostatic assumptions. For example, that the relative influence of deep convection should diminish as resolution approaches that where convection can be resolved numerically ( 10 km). We quantify the relationship between the relative proportion of variance induced and numerical resolution by conducting computer experiments that examine precipitation extremes over the contiguous U.S. In order to mitigate the enormous computational burden of running ensembles of long climate simulations, we use variable-resolution CAM and employ both extreme value theory and surrogate modelling techniques ("emulators"). We discuss the implications of the relationship between parameterised convective processes and resolution both in the context of attribution studies and progression towards models that fully resolve convection.
A new uncertainty importance measure
International Nuclear Information System (INIS)
Borgonovo, E.
2007-01-01
Uncertainty in parameters is present in many risk assessment problems and leads to uncertainty in model predictions. In this work, we introduce a global sensitivity indicator which looks at the influence of input uncertainty on the entire output distribution without reference to a specific moment of the output (moment independence) and which can be defined also in the presence of correlations among the parameters. We discuss its mathematical properties and highlight the differences between the present indicator, variance-based uncertainty importance measures and a moment independent sensitivity indicator previously introduced in the literature. Numerical results are discussed with application to the probabilistic risk assessment model on which Iman [A matrix-based approach to uncertainty and sensitivity analysis for fault trees. Risk Anal 1987;7(1):22-33] first introduced uncertainty importance measures
Measurement uncertainty: Friend or foe?
Infusino, Ilenia; Panteghini, Mauro
2018-02-02
The definition and enforcement of a reference measurement system, based on the implementation of metrological traceability of patients' results to higher order reference methods and materials, together with a clinically acceptable level of measurement uncertainty, are fundamental requirements to produce accurate and equivalent laboratory results. The uncertainty associated with each step of the traceability chain should be governed to obtain a final combined uncertainty on clinical samples fulfilling the requested performance specifications. It is important that end-users (i.e., clinical laboratory) may know and verify how in vitro diagnostics (IVD) manufacturers have implemented the traceability of their calibrators and estimated the corresponding uncertainty. However, full information about traceability and combined uncertainty of calibrators is currently very difficult to obtain. Laboratory professionals should investigate the need to reduce the uncertainty of the higher order metrological references and/or to increase the precision of commercial measuring systems. Accordingly, the measurement uncertainty should not be considered a parameter to be calculated by clinical laboratories just to fulfil the accreditation standards, but it must become a key quality indicator to describe both the performance of an IVD measuring system and the laboratory itself. Copyright © 2018 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
Propagation of dynamic measurement uncertainty
International Nuclear Information System (INIS)
Hessling, J P
2011-01-01
The time-dependent measurement uncertainty has been evaluated in a number of recent publications, starting from a known uncertain dynamic model. This could be defined as the 'downward' propagation of uncertainty from the model to the targeted measurement. The propagation of uncertainty 'upward' from the calibration experiment to a dynamic model traditionally belongs to system identification. The use of different representations (time, frequency, etc) is ubiquitous in dynamic measurement analyses. An expression of uncertainty in dynamic measurements is formulated for the first time in this paper independent of representation, joining upward as well as downward propagation. For applications in metrology, the high quality of the characterization may be prohibitive for any reasonably large and robust model to pass the whiteness test. This test is therefore relaxed by not directly requiring small systematic model errors in comparison to the randomness of the characterization. Instead, the systematic error of the dynamic model is propagated to the uncertainty of the measurand, analogously but differently to how stochastic contributions are propagated. The pass criterion of the model is thereby transferred from the identification to acceptance of the total accumulated uncertainty of the measurand. This increases the relevance of the test of the model as it relates to its final use rather than the quality of the calibration. The propagation of uncertainty hence includes the propagation of systematic model errors. For illustration, the 'upward' propagation of uncertainty is applied to determine if an appliance box is damaged in an earthquake experiment. In this case, relaxation of the whiteness test was required to reach a conclusive result
Reward uncertainty enhances incentive salience attribution as sign-tracking
Anselme, Patrick; Robinson, Mike J. F.; Berridge, Kent C.
2014-01-01
Conditioned stimuli (CSs) come to act as motivational magnets following repeated association with unconditioned stimuli (UCSs) such as sucrose rewards. By traditional views, the more reliably predictive a Pavlovian CS-UCS association, the more the CS becomes attractive. However, in some cases, less predictability might equal more motivation. Here we examined the effect of introducing uncertainty in CS-UCS association on CS strength as an attractive motivation magnet. In the present study, Experiment 1 assessed the effects of Pavlovian predictability versus uncertainty about reward probability and/or reward magnitude on the acquisition and expression of sign-tracking (ST) and goal-tracking (GT) responses in an autoshaping procedure. Results suggested that uncertainty produced strongest incentive salience expressed as sign-tracking. Experiment 2 examined whether a within-individual temporal shift from certainty to uncertainty conditions could produce a stronger CS motivational magnet when uncertainty began, and found that sign-tracking still increased after the shift. Overall, our results support earlier reports that ST responses become more pronounced in the presence of uncertainty regarding CS-UCS associations, especially when uncertainty combines both probability and magnitude. These results suggest that Pavlovian uncertainty, although diluting predictability, is still able to enhance the incentive motivational power of particular CSs. PMID:23078951
Automated cleaning and uncertainty attribution of archival bathymetry based on a priori knowledge
Ladner, Rodney Wade; Elmore, Paul; Perkins, A. Louise; Bourgeois, Brian; Avera, Will
2017-09-01
Hydrographic offices hold large valuable historic bathymetric data sets, many of which were collected using older generation survey systems that contain little or no metadata and/or uncertainty estimates. These bathymetric data sets generally contain large outlier (errant) data points to clean, yet standard practice does not include rigorous automated procedures for systematic cleaning of these historical data sets and their subsequent conversion into reusable data formats. In this paper, we propose an automated method for this task. We utilize statistically diverse threshold tests, including a robust least trimmed squared method, to clean the data. We use LOESS weighted regression residuals together with a Student-t distribution to attribute uncertainty for each retained sounding; the resulting uncertainty values compare favorably with native estimates of uncertainty from co-located data sets which we use to estimate a point-wise goodness-of-fit measure. Storing a cleansed validated data set augmented with uncertainty in a re-usable format provides the details of this analysis for subsequent users. Our test results indicate that the method significantly improves the quality of the data set while concurrently providing confidence interval estimates and point-wise goodness-of-fit estimates as referenced to current hydrographic practices.
Measure of uncertainty in regional grade variability
Tutmez, B.; Kaymak, U.; Melin, P.; Castillo, O.; Gomez Ramirez, E.; Kacprzyk, J.; Pedrycz, W.
2007-01-01
Because the geological events are neither homogeneous nor isotropic, the geological investigations are characterized by particularly high uncertainties. This paper presents a hybrid methodology for measuring of uncertainty in regional grade variability. In order to evaluate the fuzziness in grade
Incentive salience attribution under reward uncertainty: A Pavlovian model.
Anselme, Patrick
2015-02-01
There is a vast literature on the behavioural effects of partial reinforcement in Pavlovian conditioning. Compared with animals receiving continuous reinforcement, partially rewarded animals typically show (a) a slower development of the conditioned response (CR) early in training and (b) a higher asymptotic level of the CR later in training. This phenomenon is known as the partial reinforcement acquisition effect (PRAE). Learning models of Pavlovian conditioning fail to account for it. In accordance with the incentive salience hypothesis, it is here argued that incentive motivation (or 'wanting') plays a more direct role in controlling behaviour than does learning, and reward uncertainty is shown to have an excitatory effect on incentive motivation. The psychological origin of that effect is discussed and a computational model integrating this new interpretation is developed. Many features of CRs under partial reinforcement emerge from this model. Copyright © 2014 Elsevier B.V. All rights reserved.
RUMINATIONS ON NDA MEASUREMENT UNCERTAINTY COMPARED TO DA UNCERTAINTY
Energy Technology Data Exchange (ETDEWEB)
Salaymeh, S.; Ashley, W.; Jeffcoat, R.
2010-06-17
It is difficult to overestimate the importance that physical measurements performed with nondestructive assay instruments play throughout the nuclear fuel cycle. They underpin decision making in many areas and support: criticality safety, radiation protection, process control, safeguards, facility compliance, and waste measurements. No physical measurement is complete or indeed meaningful, without a defensible and appropriate accompanying statement of uncertainties and how they combine to define the confidence in the results. The uncertainty budget should also be broken down in sufficient detail suitable for subsequent uses to which the nondestructive assay (NDA) results will be applied. Creating an uncertainty budget and estimating the total measurement uncertainty can often be an involved process, especially for non routine situations. This is because data interpretation often involves complex algorithms and logic combined in a highly intertwined way. The methods often call on a multitude of input data subject to human oversight. These characteristics can be confusing and pose a barrier to developing and understanding between experts and data consumers. ASTM subcommittee C26-10 recognized this problem in the context of how to summarize and express precision and bias performance across the range of standards and guides it maintains. In order to create a unified approach consistent with modern practice and embracing the continuous improvement philosophy a consensus arose to prepare a procedure covering the estimation and reporting of uncertainties in non destructive assay of nuclear materials. This paper outlines the needs analysis, objectives and on-going development efforts. In addition to emphasizing some of the unique challenges and opportunities facing the NDA community we hope this article will encourage dialog and sharing of best practice and furthermore motivate developers to revisit the treatment of measurement uncertainty.
Ruminations On NDA Measurement Uncertainty Compared TO DA Uncertainty
International Nuclear Information System (INIS)
Salaymeh, S.; Ashley, W.; Jeffcoat, R.
2010-01-01
It is difficult to overestimate the importance that physical measurements performed with nondestructive assay instruments play throughout the nuclear fuel cycle. They underpin decision making in many areas and support: criticality safety, radiation protection, process control, safeguards, facility compliance, and waste measurements. No physical measurement is complete or indeed meaningful, without a defensible and appropriate accompanying statement of uncertainties and how they combine to define the confidence in the results. The uncertainty budget should also be broken down in sufficient detail suitable for subsequent uses to which the nondestructive assay (NDA) results will be applied. Creating an uncertainty budget and estimating the total measurement uncertainty can often be an involved process, especially for non routine situations. This is because data interpretation often involves complex algorithms and logic combined in a highly intertwined way. The methods often call on a multitude of input data subject to human oversight. These characteristics can be confusing and pose a barrier to developing and understanding between experts and data consumers. ASTM subcommittee C26-10 recognized this problem in the context of how to summarize and express precision and bias performance across the range of standards and guides it maintains. In order to create a unified approach consistent with modern practice and embracing the continuous improvement philosophy a consensus arose to prepare a procedure covering the estimation and reporting of uncertainties in non destructive assay of nuclear materials. This paper outlines the needs analysis, objectives and on-going development efforts. In addition to emphasizing some of the unique challenges and opportunities facing the NDA community we hope this article will encourage dialog and sharing of best practice and furthermore motivate developers to revisit the treatment of measurement uncertainty.
Gomez, Jose Alfonso; Owens, Phillip N.; Koiter, Alex J.; Lobb, David
2016-04-01
One of the major sources of uncertainty in attributing sediment sources in fingerprinting studies is the uncertainty in determining the concentrations of the elements used in the mixing model due to the variability of the concentrations of these elements in the source materials (e.g., Kraushaar et al., 2015). The uncertainty in determining the "true" concentration of a given element in each one of the source areas depends on several factors, among them the spatial variability of that element, the sampling procedure and sampling density. Researchers have limited control over these factors, and usually sampling density tends to be sparse, limited by time and the resources available. Monte Carlo analysis has been used regularly in fingerprinting studies to explore the probable solutions within the measured variability of the elements in the source areas, providing an appraisal of the probability of the different solutions (e.g., Collins et al., 2012). This problem can be considered analogous to the propagation of uncertainty in hydrologic models due to uncertainty in the determination of the values of the model parameters, and there are many examples of Monte Carlo analysis of this uncertainty (e.g., Freeze, 1980; Gómez et al., 2001). Some of these model analyses rely on the simulation of "virtual" situations that were calibrated from parameter values found in the literature, with the purpose of providing insight about the response of the model to different configurations of input parameters. This approach - evaluating the answer for a "virtual" problem whose solution could be known in advance - might be useful in evaluating the propagation of uncertainty in mixing models in sediment fingerprinting studies. In this communication, we present the preliminary results of an on-going study evaluating the effect of variability of element concentrations in source materials, sampling density, and the number of elements included in the mixing models. For this study a virtual
Measuring uncertainty within the theory of evidence
Salicone, Simona
2018-01-01
This monograph considers the evaluation and expression of measurement uncertainty within the mathematical framework of the Theory of Evidence. With a new perspective on the metrology science, the text paves the way for innovative applications in a wide range of areas. Building on Simona Salicone’s Measurement Uncertainty: An Approach via the Mathematical Theory of Evidence, the material covers further developments of the Random Fuzzy Variable (RFV) approach to uncertainty and provides a more robust mathematical and metrological background to the combination of measurement results that leads to a more effective RFV combination method. While the first part of the book introduces measurement uncertainty, the Theory of Evidence, and fuzzy sets, the following parts bring together these concepts and derive an effective methodology for the evaluation and expression of measurement uncertainty. A supplementary downloadable program allows the readers to interact with the proposed approach by generating and combining ...
Measurement Errors and Uncertainties Theory and Practice
Rabinovich, Semyon G
2006-01-01
Measurement Errors and Uncertainties addresses the most important problems that physicists and engineers encounter when estimating errors and uncertainty. Building from the fundamentals of measurement theory, the author develops the theory of accuracy of measurements and offers a wealth of practical recommendations and examples of applications. This new edition covers a wide range of subjects, including: - Basic concepts of metrology - Measuring instruments characterization, standardization and calibration -Estimation of errors and uncertainty of single and multiple measurements - Modern probability-based methods of estimating measurement uncertainty With this new edition, the author completes the development of the new theory of indirect measurements. This theory provides more accurate and efficient methods for processing indirect measurement data. It eliminates the need to calculate the correlation coefficient - a stumbling block in measurement data processing - and offers for the first time a way to obtain...
Optimal entropic uncertainty relation for successive measurements ...
Indian Academy of Sciences (India)
measurements in quantum information theory. M D SRINIVAS ... derived by Robertson in 1929 [2] from the first principles of quantum theory, does not ... systems and may hence be referred to as 'uncertainty relations for distinct measurements'.
Uncertainty estimation of ultrasonic thickness measurement
International Nuclear Information System (INIS)
Yassir Yassen, Abdul Razak Daud; Mohammad Pauzi Ismail; Abdul Aziz Jemain
2009-01-01
The most important factor that should be taken into consideration when selecting ultrasonic thickness measurement technique is its reliability. Only when the uncertainty of a measurement results is known, it may be judged if the result is adequate for intended purpose. The objective of this study is to model the ultrasonic thickness measurement function, to identify the most contributing input uncertainty components, and to estimate the uncertainty of the ultrasonic thickness measurement results. We assumed that there are five error sources significantly contribute to the final error, these sources are calibration velocity, transit time, zero offset, measurement repeatability and resolution, by applying the propagation of uncertainty law to the model function, a combined uncertainty of the ultrasonic thickness measurement was obtained. In this study the modeling function of ultrasonic thickness measurement was derived. By using this model the estimation of the uncertainty of the final output result was found to be reliable. It was also found that the most contributing input uncertainty components are calibration velocity, transit time linearity and zero offset. (author)
Shoaib, Syed Abu; Marshall, Lucy; Sharma, Ashish
2018-06-01
Every model to characterise a real world process is affected by uncertainty. Selecting a suitable model is a vital aspect of engineering planning and design. Observation or input errors make the prediction of modelled responses more uncertain. By way of a recently developed attribution metric, this study is aimed at developing a method for analysing variability in model inputs together with model structure variability to quantify their relative contributions in typical hydrological modelling applications. The Quantile Flow Deviation (QFD) metric is used to assess these alternate sources of uncertainty. The Australian Water Availability Project (AWAP) precipitation data for four different Australian catchments is used to analyse the impact of spatial rainfall variability on simulated streamflow variability via the QFD. The QFD metric attributes the variability in flow ensembles to uncertainty associated with the selection of a model structure and input time series. For the case study catchments, the relative contribution of input uncertainty due to rainfall is higher than that due to potential evapotranspiration, and overall input uncertainty is significant compared to model structure and parameter uncertainty. Overall, this study investigates the propagation of input uncertainty in a daily streamflow modelling scenario and demonstrates how input errors manifest across different streamflow magnitudes.
Measurement uncertainty analysis techniques applied to PV performance measurements
International Nuclear Information System (INIS)
Wells, C.
1992-10-01
The purpose of this presentation is to provide a brief introduction to measurement uncertainty analysis, outline how it is done, and illustrate uncertainty analysis with examples drawn from the PV field, with particular emphasis toward its use in PV performance measurements. The uncertainty information we know and state concerning a PV performance measurement or a module test result determines, to a significant extent, the value and quality of that result. What is measurement uncertainty analysis? It is an outgrowth of what has commonly been called error analysis. But uncertainty analysis, a more recent development, gives greater insight into measurement processes and tests, experiments, or calibration results. Uncertainty analysis gives us an estimate of the I interval about a measured value or an experiment's final result within which we believe the true value of that quantity will lie. Why should we take the time to perform an uncertainty analysis? A rigorous measurement uncertainty analysis: Increases the credibility and value of research results; allows comparisons of results from different labs; helps improve experiment design and identifies where changes are needed to achieve stated objectives (through use of the pre-test analysis); plays a significant role in validating measurements and experimental results, and in demonstrating (through the post-test analysis) that valid data have been acquired; reduces the risk of making erroneous decisions; demonstrates quality assurance and quality control measures have been accomplished; define Valid Data as data having known and documented paths of: Origin, including theory; measurements; traceability to measurement standards; computations; uncertainty analysis of results
Not Normal: the uncertainties of scientific measurements
Bailey, David C.
2017-01-01
Judging the significance and reproducibility of quantitative research requires a good understanding of relevant uncertainties, but it is often unclear how well these have been evaluated and what they imply. Reported scientific uncertainties were studied by analysing 41 000 measurements of 3200 quantities from medicine, nuclear and particle physics, and interlaboratory comparisons ranging from chemistry to toxicology. Outliers are common, with 5σ disagreements up to five orders of magnitude more frequent than naively expected. Uncertainty-normalized differences between multiple measurements of the same quantity are consistent with heavy-tailed Student's t-distributions that are often almost Cauchy, far from a Gaussian Normal bell curve. Medical research uncertainties are generally as well evaluated as those in physics, but physics uncertainty improves more rapidly, making feasible simple significance criteria such as the 5σ discovery convention in particle physics. Contributions to measurement uncertainty from mistakes and unknown problems are not completely unpredictable. Such errors appear to have power-law distributions consistent with how designed complex systems fail, and how unknown systematic errors are constrained by researchers. This better understanding may help improve analysis and meta-analysis of data, and help scientists and the public have more realistic expectations of what scientific results imply.
Attributes and uncertainty of dissolved zinc data from a mined catchment
Caruso, Brian S.
1999-02-01
This study evaluated the attributes and uncertainty of non-point source pollution data derived from synoptic surveys in a catchment affected by inactive metal mines in order to help to identify and select appropriate methods for data analysis/reporting and information use. Dissolved zinc data from the Upper Animas River Basin, Colorado, USA, were the focus of the study. Zinc was evaluated because concentrations were highest relative to national water quality criteria for brown trout, and zinc had the greatest frequency of criteria exceedances compared with other metals. Data attributes evaluated included measurement and model error, sample size, non-normality, seasonality and uncertainty. The average measurement errors for discharges, concentrations and loadings were 0·15, 0·1 and 0·18, respectively. The 90 and 95% coefficients of confidence intervals for mean concentrations based on a sample size of four were 0·48 and 0·65, respectively, and ranged between 0·15 and 0·23 for sample sizes greater than 40. Aggregation of data from multiple stations decreased the confidence intervals significantly, but additional aggregation of all data increased them as a result of increasing spatial variability. Unit area loading data were approximately log-normal. Concentration data were right-skewed but not log-normal. Differences in median concentrations were appreciable between snowmelt and both storm flow and baseflow, but not between storm flow and baseflow. Differences in unit area loadings between all flow events were large. It was determined that the average concentration and unit area loading values should be estimated for each flow event because of significant seasonality. Time weighted values generally should be computed if annual information is required. The confidence in average concentrations and unit area loadings is dependent on the computation method used. Both concentrations and loadings can be significantly underestimated on an annual basis when using data
Conclusions on measurement uncertainty in microbiology.
Forster, Lynne I
2009-01-01
Since its first issue in 1999, testing laboratories wishing to comply with all the requirements of ISO/IEC 17025 have been collecting data for estimating uncertainty of measurement for quantitative determinations. In the microbiological field of testing, some debate has arisen as to whether uncertainty needs to be estimated for each method performed in the laboratory for each type of sample matrix tested. Queries also arise concerning the estimation of uncertainty when plate/membrane filter colony counts are below recommended method counting range limits. A selection of water samples (with low to high contamination) was tested in replicate with the associated uncertainty of measurement being estimated from the analytical results obtained. The analyses performed on the water samples included total coliforms, fecal coliforms, fecal streptococci by membrane filtration, and heterotrophic plate counts by the pour plate technique. For those samples where plate/membrane filter colony counts were > or =20, uncertainty estimates at a 95% confidence level were very similar for the methods, being estimated as 0.13, 0.14, 0.14, and 0.12, respectively. For those samples where plate/membrane filter colony counts were <20, estimated uncertainty values for each sample showed close agreement with published confidence limits established using a Poisson distribution approach.
Measuring the uncertainty of tapping torque
DEFF Research Database (Denmark)
Belluco, Walter; De Chiffre, Leonardo
An uncertainty budget is carried out for torque measurements performed at the Institut for Procesteknik for the evaluation of cutting fluids. Thirty test blanks were machined with one tool and one fluid, torque diagrams were recorded and the repeatability of single torque measurements was estimat...
Information measures and uncertainty of particular symbols
Czech Academy of Sciences Publication Activity Database
Mareš, Milan
2011-01-01
Roč. 47, č. 1 (2011), s. 144-163 ISSN 0023-5954 R&D Projects: GA MŠk(CZ) 1M0572; GA ČR GA402/08/0618 Institutional research plan: CEZ:AV0Z10750506 Keywords : Information source * Information measure * Uncertainty modelling Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.454, year: 2011 http://library.utia.cas.cz/separaty/2011/E/mares-information measures and uncertainty of particular symbols.pdf
Managing Measurement Uncertainty in Building Acoustics
Directory of Open Access Journals (Sweden)
Chiara Scrosati
2015-12-01
Full Text Available In general, uncertainties should preferably be determined following the principles laid down in ISO/IEC Guide 98-3, the Guide to the expression of uncertainty in measurement (GUM:1995. According to current knowledge, it seems impossible to formulate these models for the different quantities in building acoustics. Therefore, the concepts of repeatability and reproducibility are necessary to determine the uncertainty of building acoustics measurements. This study shows the uncertainty of field measurements of a lightweight wall, a heavyweight floor, a façade with a single glazing window and a façade with double glazing window that were analyzed by a Round Robin Test (RRT, conducted in a full-scale experimental building at ITC-CNR (Construction Technologies Institute of the National Research Council of Italy. The single number quantities and their uncertainties were evaluated in both narrow and enlarged range and it was shown that including or excluding the low frequencies leads to very significant differences, except in the case of the sound insulation of façades with single glazing window. The results obtained in these RRTs were compared with other results from literature, which confirm the increase of the uncertainty of single number quantities due to the low frequencies extension. Having stated the measurement uncertainty for a single measurement, in building acoustics, it is also very important to deal with sampling for the purposes of classification of buildings or building units. Therefore, this study also shows an application of the sampling included in the Italian Standard on the acoustic classification of building units on a serial type building consisting of 47 building units. It was found that the greatest variability is observed in the façade and it depends on both the great variability of window’s typologies and on workmanship. Finally, it is suggested how to manage the uncertainty in building acoustics, both for one single
Assessing student understanding of measurement and uncertainty
Jirungnimitsakul, S.; Wattanakasiwich, P.
2017-09-01
The objectives of this study were to develop and assess student understanding of measurement and uncertainty. A test has been adapted and translated from the Laboratory Data Analysis Instrument (LDAI) test, consists of 25 questions focused on three topics including measures of central tendency, experimental errors and uncertainties, and fitting regression lines. The test was evaluated its content validity by three physics experts in teaching physics laboratory. In the pilot study, Thai LDAI was administered to 93 freshmen enrolled in a fundamental physics laboratory course. The final draft of the test was administered to three groups—45 freshmen taking fundamental physics laboratory, 16 sophomores taking intermediated physics laboratory and 21 juniors taking advanced physics laboratory at Chiang Mai University. As results, we found that the freshmen had difficulties in experimental errors and uncertainties. Most students had problems with fitting regression lines. These results will be used to improve teaching and learning physics laboratory for physics students in the department.
An approach to multi-attribute utility analysis under parametric uncertainty
International Nuclear Information System (INIS)
Kelly, M.; Thorne, M.C.
2001-01-01
The techniques of cost-benefit analysis and multi-attribute analysis provide a useful basis for informing decisions in situations where a number of potentially conflicting opinions or interests need to be considered, and where there are a number of possible decisions that could be adopted. When the input data to such decision-making processes are uniquely specified, cost-benefit analysis and multi-attribute utility analysis provide unambiguous guidance on the preferred decision option. However, when the data are not uniquely specified, application and interpretation of these techniques is more complex. Herein, an approach to multi-attribute utility analysis (and hence, as a special case, cost-benefit analysis) when input data are subject to parametric uncertainty is presented. The approach is based on the use of a Monte Carlo technique, and has recently been applied to options for the remediation of former uranium mining liabilities in a number of Central and Eastern European States
Uncertainty Measures of Regional Flood Frequency Estimators
DEFF Research Database (Denmark)
Rosbjerg, Dan; Madsen, Henrik
1995-01-01
Regional flood frequency models have different assumptions regarding homogeneity and inter-site independence. Thus, uncertainty measures of T-year event estimators are not directly comparable. However, having chosen a particular method, the reliability of the estimate should always be stated, e...
Uncertainty estimation of shape and roughness measurement
Morel, M.A.A.
2006-01-01
One of the most common techniques to measure a surface or form is mechanical probing. Although used since the early 30s of the 20th century, a method to calculate a task specific uncertainty budget was not yet devised. Guidelines and statistical estimates are common in certain cases but an
Uncertainties for pressure-time efficiency measurements
Ramdal, Jørgen; Jonsson, Pontus; Dahlhaug, Ole Gunnar; Nielsen, Torbjørn; Cervantes, Michel
2010-01-01
In connection with the pressure-time project at the Norwegian University of Science and Technology and Luleå University of Technology, a number of tests with the pressure-time method have been performed at the Waterpower Laboratory in Trondheim, Norway. The aim is to lower the uncertainty and improve usability of the method. Also a field test at the Anundsjoe power plant in Sweden has been performed. The pressure-time measurement is affected by random uncertainty. To minimize the effect of t...
Measurement uncertainty analysis techniques applied to PV performance measurements
Energy Technology Data Exchange (ETDEWEB)
Wells, C.
1992-10-01
The purpose of this presentation is to provide a brief introduction to measurement uncertainty analysis, outline how it is done, and illustrate uncertainty analysis with examples drawn from the PV field, with particular emphasis toward its use in PV performance measurements. The uncertainty information we know and state concerning a PV performance measurement or a module test result determines, to a significant extent, the value and quality of that result. What is measurement uncertainty analysis It is an outgrowth of what has commonly been called error analysis. But uncertainty analysis, a more recent development, gives greater insight into measurement processes and tests, experiments, or calibration results. Uncertainty analysis gives us an estimate of the I interval about a measured value or an experiment's final result within which we believe the true value of that quantity will lie. Why should we take the time to perform an uncertainty analysis A rigorous measurement uncertainty analysis: Increases the credibility and value of research results; allows comparisons of results from different labs; helps improve experiment design and identifies where changes are needed to achieve stated objectives (through use of the pre-test analysis); plays a significant role in validating measurements and experimental results, and in demonstrating (through the post-test analysis) that valid data have been acquired; reduces the risk of making erroneous decisions; demonstrates quality assurance and quality control measures have been accomplished; define Valid Data as data having known and documented paths of: Origin, including theory; measurements; traceability to measurement standards; computations; uncertainty analysis of results.
Measurement uncertainty analysis techniques applied to PV performance measurements
Energy Technology Data Exchange (ETDEWEB)
Wells, C
1992-10-01
The purpose of this presentation is to provide a brief introduction to measurement uncertainty analysis, outline how it is done, and illustrate uncertainty analysis with examples drawn from the PV field, with particular emphasis toward its use in PV performance measurements. The uncertainty information we know and state concerning a PV performance measurement or a module test result determines, to a significant extent, the value and quality of that result. What is measurement uncertainty analysis? It is an outgrowth of what has commonly been called error analysis. But uncertainty analysis, a more recent development, gives greater insight into measurement processes and tests, experiments, or calibration results. Uncertainty analysis gives us an estimate of the I interval about a measured value or an experiment`s final result within which we believe the true value of that quantity will lie. Why should we take the time to perform an uncertainty analysis? A rigorous measurement uncertainty analysis: Increases the credibility and value of research results; allows comparisons of results from different labs; helps improve experiment design and identifies where changes are needed to achieve stated objectives (through use of the pre-test analysis); plays a significant role in validating measurements and experimental results, and in demonstrating (through the post-test analysis) that valid data have been acquired; reduces the risk of making erroneous decisions; demonstrates quality assurance and quality control measures have been accomplished; define Valid Data as data having known and documented paths of: Origin, including theory; measurements; traceability to measurement standards; computations; uncertainty analysis of results.
Radon measurements: the sources of uncertainties
International Nuclear Information System (INIS)
Zhukovsky, Michael; Onischenko, Alexandra; Bastrikov, Vladislav
2008-01-01
Full text: Radon measurements are quite complicated process and the correct estimation of uncertainties is very important. The sources of uncertainties for grab sampling, short term measurements (charcoal canisters), long term measurements (track detectors) and retrospective measurements (surface traps) are analyzed. The main sources of uncertainties for grab sampling measurements are: systematic bias of reference equipment; random Poisson and non-Poisson errors during calibration; random Poisson and non-Poisson errors during measurements. These sources are also common both for short term measurements (charcoal canisters) and long term measurements (track detectors). Usually during the calibration the high radon concentrations are used (1-5 kBq/m 3 ) and the Poisson random error rarely exceed some percents. Nevertheless the dispersion of measured values even during the calibration usually exceeds the Poisson dispersion expected on the basis of counting statistic. The origins of such non-Poisson random errors during calibration are different for different kinds of instrumental measurements. At present not all sources of non-Poisson random errors are trustworthy identified. The initial calibration accuracy of working devices rarely exceeds the value 20%. The real radon concentrations usually are in the range from some tens to some hundreds Becquerel per cubic meter and for low radon levels Poisson random error can reach up to 20%. The random non-Poisson errors and residual systematic biases are depends on the kind of measurement technique and the environmental conditions during radon measurements. For charcoal canisters there are additional sources of the measurement errors due to influence of air humidity and the variations of radon concentration during the canister exposure. The accuracy of long term measurements by track detectors will depend on the quality of chemical etching after exposure and the influence of season radon variations. The main sources of
Quantifying uncertainty in nuclear analytical measurements
International Nuclear Information System (INIS)
2004-07-01
The lack of international consensus on the expression of uncertainty in measurements was recognised by the late 1970s and led, after the issuance of a series of rather generic recommendations, to the publication of a general publication, known as GUM, the Guide to the Expression of Uncertainty in Measurement. This publication, issued in 1993, was based on co-operation over several years by the Bureau International des Poids et Mesures, the International Electrotechnical Commission, the International Federation of Clinical Chemistry, the International Organization for Standardization (ISO), the International Union of Pure and Applied Chemistry, the International Union of Pure and Applied Physics and the Organisation internationale de metrologie legale. The purpose was to promote full information on how uncertainty statements are arrived at and to provide a basis for harmonized reporting and the international comparison of measurement results. The need to provide more specific guidance to different measurement disciplines was soon recognized and the field of analytical chemistry was addressed by EURACHEM in 1995 in the first edition of a guidance report on Quantifying Uncertainty in Analytical Measurements, produced by a group of experts from the field. That publication translated the general concepts of the GUM into specific applications for analytical laboratories and illustrated the principles with a series of selected examples as a didactic tool. Based on feedback from the actual practice, the EURACHEM publication was extensively reviewed in 1997-1999 under the auspices of the Co-operation on International Traceability in Analytical Chemistry (CITAC), and a second edition was published in 2000. Still, except for a single example on the measurement of radioactivity in GUM, the field of nuclear and radiochemical measurements was not covered. The explicit requirement of ISO standard 17025:1999, General Requirements for the Competence of Testing and Calibration
The action uncertainty principle for continuous measurements
Mensky, Michael B.
1996-02-01
The action uncertainty principle (AUP) for the specification of the most probable readouts of continuous quantum measurements is proved, formulated in different forms and analyzed (for nonlinear as well as linear systems). Continuous monitoring of an observable A(p,q,t) with resolution Δa( t) is considered. The influence of the measurement process on the evolution of the measured system (quantum measurement noise) is presented by an additional term δ F(t)A(p,q,t) in the Hamiltonian where the function δ F (generalized fictitious force) is restricted by the AUP ∫|δ F(t)| Δa( t) d t ≲ and arbitrary otherwise. Quantum-nondemolition (QND) measurements are analyzed with the help of the AUP. A simple uncertainty relation for continuous quantum measurements is derived. It states that the area of a certain band in the phase space should be of the order of. The width of the band depends on the measurement resolution while its length is determined by the deviation of the system, due to the measurement, from classical behavior.
The action uncertainty principle for continuous measurements
International Nuclear Information System (INIS)
Mensky, M.B.
1996-01-01
The action uncertainty principle (AUP) for the specification of the most probable readouts of continuous quantum measurements is proved, formulated in different forms and analyzed (for nonlinear as well as linear systems). Continuous monitoring of an observable A(p,q,t) with resolution Δa(t) is considered. The influence of the measurement process on the evolution of the measured system (quantum measurement noise) is presented by an additional term δF(t) A(p,q,t) in the Hamiltonian where the function δF (generalized fictitious force) is restricted by the AUP ∫ vertical stroke δF(t) vertical stroke Δa(t)d t< or∼ℎ and arbitrary otherwise. Quantum-nondemolition (QND) measurements are analyzed with the help of the AUP. A simple uncertainty relation for continuous quantum measurements is derived. It states that the area of a certain band in the phase space should be of the order of ℎ. The width of the band depends on the measurement resolution while its length is determined by the deviation of the system, due to the measurement, from classical behavior. (orig.)
Approximate Bayesian evaluations of measurement uncertainty
Possolo, Antonio; Bodnar, Olha
2018-04-01
The Guide to the Expression of Uncertainty in Measurement (GUM) includes formulas that produce an estimate of a scalar output quantity that is a function of several input quantities, and an approximate evaluation of the associated standard uncertainty. This contribution presents approximate, Bayesian counterparts of those formulas for the case where the output quantity is a parameter of the joint probability distribution of the input quantities, also taking into account any information about the value of the output quantity available prior to measurement expressed in the form of a probability distribution on the set of possible values for the measurand. The approximate Bayesian estimates and uncertainty evaluations that we present have a long history and illustrious pedigree, and provide sufficiently accurate approximations in many applications, yet are very easy to implement in practice. Differently from exact Bayesian estimates, which involve either (analytical or numerical) integrations, or Markov Chain Monte Carlo sampling, the approximations that we describe involve only numerical optimization and simple algebra. Therefore, they make Bayesian methods widely accessible to metrologists. We illustrate the application of the proposed techniques in several instances of measurement: isotopic ratio of silver in a commercial silver nitrate; odds of cryptosporidiosis in AIDS patients; height of a manometer column; mass fraction of chromium in a reference material; and potential-difference in a Zener voltage standard.
Determination of Formula for Vickers Hardness Measurements Uncertainty
International Nuclear Information System (INIS)
Purba, Asli
2007-01-01
The purpose of formula determination is to obtain the formula of Vickers hardness measurements uncertainty. The approach to determine the formula: influenced parameters identification, creating a cause and effect diagram, determination of sensitivity, determination of standard uncertainty and determination of formula for Vickers hardness measurements uncertainty. The results is a formula for determination of Vickers hardness measurements uncertainty. (author)
Uncertainty in relative energy resolution measurements
International Nuclear Information System (INIS)
Volkovitsky, P.; Yen, J.; Cumberland, L.
2007-01-01
We suggest a new method for the determination of the detector relative energy resolution and its uncertainty based on spline approximation of experimental spectra and a statistical bootstrapping procedure. The proposed method is applied to the spectra obtained with NaI(Tl) scintillating detectors and 137 Cs sources. The spectrum histogram with background subtracted channel-by-channel is modeled by cubic spline approximation. The relative energy resolution (which is also known as pulse height resolution and energy resolution), defined as the full-width at half-maximum (FWHM) divided by the value of peak centroid, is calculated using the intercepts of the spline curve with the line of the half peak height. The value of the peak height is determined as the point where the value of the derivative goes to zero. The residuals, which are normalized over the square root of counts in a given bin (y-coordinate), obey the standard Gaussian distribution. The values of these residuals are randomly re-assigned to a different set of y-coordinates where a new 'pseudo-experimental' data set is obtained after 'de-normalization' of the old values. For this new data set a new spline approximation is found and the whole procedure is repeated several hundred times, until the standard deviation of relative energy resolution becomes stabilized. The standard deviation of relative energy resolutions calculated for each 'pseudo-experimental' data set (bootstrap uncertainty) is considered to be an estimate for relative energy resolution uncertainty. It is also shown that the relative bootstrap uncertainty is proportional to, and generally only two to three times bigger than, 1/√(N tot ), which is the relative statistical count uncertainty (N tot is the total number of counts under the peak). The newly suggested method is also applicable to other radiation and particle detectors, not only for relative energy resolution, but also for any of the other parameters in a measured spectrum, like
Sévellec, Florian; Dijkstra, Henk A.; Drijfhout, Sybren S.; Germe, Agathe
2017-11-01
In this study, the relation between two approaches to assess the ocean predictability on interannual to decadal time scales is investigated. The first pragmatic approach consists of sampling the initial condition uncertainty and assess the predictability through the divergence of this ensemble in time. The second approach is provided by a theoretical framework to determine error growth by estimating optimal linear growing modes. In this paper, it is shown that under the assumption of linearized dynamics and normal distributions of the uncertainty, the exact quantitative spread of ensemble can be determined from the theoretical framework. This spread is at least an order of magnitude less expensive to compute than the approximate solution given by the pragmatic approach. This result is applied to a state-of-the-art Ocean General Circulation Model to assess the predictability in the North Atlantic of four typical oceanic metrics: the strength of the Atlantic Meridional Overturning Circulation (AMOC), the intensity of its heat transport, the two-dimensional spatially-averaged Sea Surface Temperature (SST) over the North Atlantic, and the three-dimensional spatially-averaged temperature in the North Atlantic. For all tested metrics, except for SST, ˜ 75% of the total uncertainty on interannual time scales can be attributed to oceanic initial condition uncertainty rather than atmospheric stochastic forcing. The theoretical method also provide the sensitivity pattern to the initial condition uncertainty, allowing for targeted measurements to improve the skill of the prediction. It is suggested that a relatively small fleet of several autonomous underwater vehicles can reduce the uncertainty in AMOC strength prediction by 70% for 1-5 years lead times.
Measurement uncertainty in broadband radiofrequency radiation level measurements
Directory of Open Access Journals (Sweden)
Vulević Branislav D.
2014-01-01
Full Text Available For the evaluation of measurement uncertainty in the measurement of broadband radio frequency radiation, in this paper we propose a new approach based on the experience of the authors of the paper with measurements of radiofrequency electric field levels conducted in residential areas of Belgrade and over 35 municipalities in Serbia. The main objective of the paper is to present practical solutions in the evaluation of broadband measurement uncertainty for the in-situ RF radiation levels. [Projekat Ministarstva nauke Republike Srbije, br. III43009
Uncertainty analysis technique for OMEGA Dante measurements
International Nuclear Information System (INIS)
May, M. J.; Widmann, K.; Sorce, C.; Park, H.-S.; Schneider, M.
2010-01-01
The Dante is an 18 channel x-ray filtered diode array which records the spectrally and temporally resolved radiation flux from various targets (e.g., hohlraums, etc.) at x-ray energies between 50 eV and 10 keV. It is a main diagnostic installed on the OMEGA laser facility at the Laboratory for Laser Energetics, University of Rochester. The absolute flux is determined from the photometric calibration of the x-ray diodes, filters and mirrors, and an unfold algorithm. Understanding the errors on this absolute measurement is critical for understanding hohlraum energetic physics. We present a new method for quantifying the uncertainties on the determined flux using a Monte Carlo parameter variation technique. This technique combines the uncertainties in both the unfold algorithm and the error from the absolute calibration of each channel into a one sigma Gaussian error function. One thousand test voltage sets are created using these error functions and processed by the unfold algorithm to produce individual spectra and fluxes. Statistical methods are applied to the resultant set of fluxes to estimate error bars on the measurements.
Uncertainty Analysis Technique for OMEGA Dante Measurements
International Nuclear Information System (INIS)
May, M.J.; Widmann, K.; Sorce, C.; Park, H.; Schneider, M.
2010-01-01
The Dante is an 18 channel X-ray filtered diode array which records the spectrally and temporally resolved radiation flux from various targets (e.g. hohlraums, etc.) at X-ray energies between 50 eV to 10 keV. It is a main diagnostics installed on the OMEGA laser facility at the Laboratory for Laser Energetics, University of Rochester. The absolute flux is determined from the photometric calibration of the X-ray diodes, filters and mirrors and an unfold algorithm. Understanding the errors on this absolute measurement is critical for understanding hohlraum energetic physics. We present a new method for quantifying the uncertainties on the determined flux using a Monte-Carlo parameter variation technique. This technique combines the uncertainties in both the unfold algorithm and the error from the absolute calibration of each channel into a one sigma Gaussian error function. One thousand test voltage sets are created using these error functions and processed by the unfold algorithm to produce individual spectra and fluxes. Statistical methods are applied to the resultant set of fluxes to estimate error bars on the measurements.
Uncertainty In Measuring Noise Parameters Of a Communication Receiver
International Nuclear Information System (INIS)
Korcz, Karol; Palczynska, Beata; Spiralski, Ludwik
2005-01-01
The paper presents the method of assessing uncertainty in measuring the usable sensitivity Es of communication receiver. The influence of partial uncertainties of measuring the noise factor F and the energy pass band of the receiver Δf on the combined standard uncertainty level is analyzed. The method to assess the uncertainty in measuring the noise factor on the basis of the systematic component of uncertainty, assuming that the main source of measurement uncertainty is the hardware of the measuring system, is proposed. The assessment of uncertainty in measuring the pass band of the receiver is determined with the assumption that input quantities of the measurement equation are not correlated. They are successive, discrete values of the spectral power density of the noise on the output of receiver. The results of the analyses of particular uncertainties components of measuring the sensitivity, which were carried out for a typical communication receiver, are presented
Waste receiving and processing drum weight measurement uncertainty review findings
International Nuclear Information System (INIS)
LANE, M.P.
1999-01-01
The purpose of reviewing the weight scale operation at the WRAP facility was to determine the uncertainty associated with weight measurements. Weight measurement uncertainty is needed to support WRAP Nondestructive Examination (NDE) and Non-destructive Assay (NDA) analysis
Uncertainties in pipeline water percentage measurement
Energy Technology Data Exchange (ETDEWEB)
Scott, Bentley N.
2005-07-01
Measurement of the quantity, density, average temperature and water percentage in petroleum pipelines has been an issue of prime importance. The methods of measurement have been investigated and have seen continued improvement over the years. Questions are being asked as to the reliability of the measurement of water in the oil through sampling systems originally designed and tested for a narrow range of densities. Today most facilities sampling systems handle vastly increased ranges of density and types of crude oils. Issues of pipeline integrity, product loss and production balances are placing further demands on the issues of accurate measurement. Water percentage is one area that has not received the attention necessary to understand the many factors involved in making a reliable measurement. A previous paper1 discussed the issues of uncertainty of the measurement from a statistical perspective. This paper will outline many of the issues of where the errors lie in the manual and automatic methods in use today. A routine to use the data collected by the analyzers in the on line system for validation of the measurements will be described. (author) (tk)
Inconclusive quantum measurements and decisions under uncertainty
Yukalov, Vyacheslav; Sornette, Didier
2016-04-01
We give a mathematical definition for the notion of inconclusive quantum measurements. In physics, such measurements occur at intermediate stages of a complex measurement procedure, with the final measurement result being operationally testable. Since the mathematical structure of Quantum Decision Theory has been developed in analogy with the theory of quantum measurements, the inconclusive quantum measurements correspond, in Quantum Decision Theory, to intermediate stages of decision making in the process of taking decisions under uncertainty. The general form of the quantum probability for a composite event is the sum of a utility factor, describing a rational evaluation of the considered prospect, and of an attraction factor, characterizing irrational, subconscious attitudes of the decision maker. Despite the involved irrationality, the probability of prospects can be evaluated. This is equivalent to the possibility of calculating quantum probabilities without specifying hidden variables. We formulate a general way of evaluation, based on the use of non-informative priors. As an example, we suggest the explanation of the decoy effect. Our quantitative predictions are in very good agreement with experimental data.
Inconclusive quantum measurements and decisions under uncertainty
Directory of Open Access Journals (Sweden)
Vyacheslav I. Yukalov
2016-04-01
Full Text Available We give a mathematical definition for the notion of inconclusive quantum measurements.In physics, such measurements occur at intermediate stages of a complex measurement procedure, with the final measurement result being operationally testable. Since the mathematical structure of Quantum Decision Theory has been developed in analogy withthe theory of quantum measurements, the inconclusive quantum measurements correspond,in Quantum Decision Theory, to intermediate stages of decision making in the process of taking decisions under uncertainty. The general form of the quantum probability for a composite event is the sum of a utility factor, describing a rational evaluationof the considered prospect, and of an attraction factor, characterizing irrational,subconscious attitudes of the decision maker. Despite the involved irrationality, the probability of prospects can be evaluated. This is equivalent to the possibility of calculating quantum probabilities without specifying hidden variables. We formulate a general way of evaluation, based on the use of non-informative priors. As an example,we suggest the explanation of the decoy effect. Our quantitative predictions are in very good agreement with experimental data.
The state of the art of the impact of sampling uncertainty on measurement uncertainty
Leite, V. J.; Oliveira, E. C.
2018-03-01
The measurement uncertainty is a parameter that marks the reliability and can be divided into two large groups: sampling and analytical variations. Analytical uncertainty is a controlled process, performed in the laboratory. The same does not occur with the sampling uncertainty, which, because it faces several obstacles and there is no clarity on how to perform the procedures, has been neglected, although it is admittedly indispensable to the measurement process. This paper aims at describing the state of the art of sampling uncertainty and at assessing its relevance to measurement uncertainty.
A Unified Approach for Reporting ARM Measurement Uncertainties Technical Report
Energy Technology Data Exchange (ETDEWEB)
Campos, E [Argonne National Lab. (ANL), Argonne, IL (United States); Sisterson, Douglas [Argonne National Lab. (ANL), Argonne, IL (United States)
2016-12-01
The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility is observationally based, and quantifying the uncertainty of its measurements is critically important. With over 300 widely differing instruments providing over 2,500 datastreams, concise expression of measurement uncertainty is quite challenging. The ARM Facility currently provides data and supporting metadata (information about the data or data quality) to its users through a number of sources. Because the continued success of the ARM Facility depends on the known quality of its measurements, the Facility relies on instrument mentors and the ARM Data Quality Office (DQO) to ensure, assess, and report measurement quality. Therefore, an easily accessible, well-articulated estimate of ARM measurement uncertainty is needed. Note that some of the instrument observations require mathematical algorithms (retrievals) to convert a measured engineering variable into a useful geophysical measurement. While those types of retrieval measurements are identified, this study does not address particular methods for retrieval uncertainty. As well, the ARM Facility also provides engineered data products, or value-added products (VAPs), based on multiple instrument measurements. This study does not include uncertainty estimates for those data products. We propose here that a total measurement uncertainty should be calculated as a function of the instrument uncertainty (calibration factors), the field uncertainty (environmental factors), and the retrieval uncertainty (algorithm factors). The study will not expand on methods for computing these uncertainties. Instead, it will focus on the practical identification, characterization, and inventory of the measurement uncertainties already available in the ARM community through the ARM instrument mentors and their ARM instrument handbooks. As a result, this study will address the first steps towards reporting ARM measurement uncertainty
Measurement uncertainties in science and technology
Grabe, Michael
2014-01-01
This book recasts the classical Gaussian error calculus from scratch, the inducements concerning both random and unknown systematic errors. The idea of this book is to create a formalism being fit to localize the true values of physical quantities considered – true with respect to the set of predefined physical units. Remarkably enough, the prevailingly practiced forms of error calculus do not feature this property which however proves in every respect, to be physically indispensable. The amended formalism, termed Generalized Gaussian Error Calculus by the author, treats unknown systematic errors as biases and brings random errors to bear via enhanced confidence intervals as laid down by students. The significantly extended second edition thoroughly restructures and systematizes the text as a whole and illustrates the formalism by numerous numerical examples. They demonstrate the basic principles of how to understand uncertainties to localize the true values of measured values - a perspective decisive in vi...
Measurement Uncertainty for Finite Quantum Observables
Directory of Open Access Journals (Sweden)
René Schwonnek
2016-06-01
Full Text Available Measurement uncertainty relations are lower bounds on the errors of any approximate joint measurement of two or more quantum observables. The aim of this paper is to provide methods to compute optimal bounds of this type. The basic method is semidefinite programming, which we apply to arbitrary finite collections of projective observables on a finite dimensional Hilbert space. The quantification of errors is based on an arbitrary cost function, which assigns a penalty to getting result x rather than y, for any pair ( x , y . This induces a notion of optimal transport cost for a pair of probability distributions, and we include an Appendix with a short summary of optimal transport theory as needed in our context. There are then different ways to form an overall figure of merit from the comparison of distributions. We consider three, which are related to different physical testing scenarios. The most thorough test compares the transport distances between the marginals of a joint measurement and the reference observables for every input state. Less demanding is a test just on the states for which a “true value” is known in the sense that the reference observable yields a definite outcome. Finally, we can measure a deviation as a single expectation value by comparing the two observables on the two parts of a maximally-entangled state. All three error quantities have the property that they vanish if and only if the tested observable is equal to the reference. The theory is illustrated with some characteristic examples.
The Validity of Attribute-Importance Measurement: A Review
Ittersum, van K.; Pennings, J.M.E.; Wansink, B.; Trijp, van J.C.M.
2007-01-01
A critical review of the literature demonstrates a lack of validity among the ten most common methods for measuring the importance of attributes in behavioral sciences. The authors argue that one of the key determinants of this lack of validity is the multi-dimensionality of attribute importance.
Online Game Addiction among Chinese College Students Measurement and Attribution.
Zhou, Yuqiong; Li, Zhitian
2009-01-01
This study made an initial attempt to measure and attribute online game addiction among Chinese college students. We generated three factors of online game addiction: Control Disorder, Conflict, and Injury, as well as proposed a comprehensive model that attributed online game addiction to three groups of driving forces: environmental influences (most significant), characteristics of online games, and personal reasons.
Treatment and reporting of uncertainties for environmental radiation measurements
International Nuclear Information System (INIS)
Colle, R.
1980-01-01
Recommendations for a practical and uniform method for treating and reporting uncertainties in environmental radiation measurements data are presented. The method requires that each reported measurement result include the value, a total propagated random uncertainty expressed as the standard deviation, and a combined overall uncertainty. The uncertainty assessment should be based on as nearly a complete assessment as possible and should include every conceivable or likely source of inaccuracy in the result. Guidelines are given for estimating random and systematic uncertainty components, and for propagating and combining them to form an overall uncertainty
International Nuclear Information System (INIS)
Gallucci, Raymond H.V.
2016-01-01
Highlights: • Uncertainties for values/benefits. • Upper bound four times higher than mean. • Distributional histograms. - Abstract: NUREG/BR-0184, Regulatory Analysis Technical Evaluation (RATE) Handbook, was produced in 1997 as an update to the original NUREG/CR-3568, A Handbook for Value-Impact Assessment (1983). Both documents, especially the later RATE Handbook, have been used extensively by the USNRC and its contractors not only for regulatory analyses to support backfit considerations but also for similar applications, such as Severe Accident Management Alternative (SAMA) analyses as part of license renewals. While both provided high-level guidance on the performance of uncertainty analyses for the various value/benefit attributes, detailed quantification was not of prime interest at the times of the Handbooks’ development, defaulting only to best estimates with low and high bounds on these attributes. As the USNRC examines the possibility of updating the RATE Handbook, renewed interest in a more quantitative approach to uncertainty analyses for the attributes has surfaced. As the result of an effort to enhance the RATE Handbook to permit at least default uncertainty analyses for the value/benefit attributes, it has proven feasible to assign default uncertainties in terms of 95th %ile upper bounds (and absolute lower bounds) on the five dominant value/benefit attributes, and their sum, when performing a regulatory analysis via the RATE Handbook. Appropriate default lower bounds of zero (no value/benefit) and an upper bound (95th %ile) that is four times higher than the mean (for individual value/benefit attributes) or three times higher (for their summation) can be recommended. Distributions in the form of histograms on the summed value/benefit attributes are also provided which could be combined, after appropriate scaling and most likely via simulation, with their counterpart(s) from the impact/cost analysis to yield a final distribution on the net
Real-time hostile attribution measurement and aggression in children.
Yaros, Anna; Lochman, John E; Rosenbaum, Jill; Jimenez-Camargo, Luis Alberto
2014-01-01
Hostile attributions are an important predictor of aggression in children, but few studies have measured hostile attributions as they occur in real-time. The current study uses an interactive video racing game to measure hostile attributions while children played against a presumed peer. A sample of 75 children, ages 10-13, used nonverbal and verbal procedures to respond to ambiguous provocation by their opponent. Hostile attributions were significantly positively related to parent-rated reactive aggression, when controlling for proactive aggression. Hostile attributions using a nonverbal response procedure were negatively related to proactive aggression, when controlling for reactive aggression. Results suggest hostile attributions in real-time occur quickly and simultaneously with social interaction, which differs from the deliberative, controlled appraisals measured with vignette-based instruments. The relation between real-time hostile attributions and reactive aggression could be accounted for by the impulsive response style that is characteristic of reactive aggression, whereas children exhibiting proactive aggression may be more deliberate and intentional in their responding, resulting in a negative relation with real-time hostile attributions. These findings can be used both to identify children at risk for aggression and to enhance preventive interventions. © 2014 Wiley Periodicals, Inc.
Regional uncertainty of GOSAT XCO2 retrievals in China: quantification and attribution
Directory of Open Access Journals (Sweden)
N. Bie
2018-03-01
Full Text Available The regional uncertainty of the column-averaged dry air mole fraction of CO2 (XCO2 retrieved using different algorithms from the Greenhouse gases Observing SATellite (GOSAT and its attribution are still not well understood. This paper investigates the regional performance of XCO2 within a latitude band of 37–42° N segmented into 8 cells in a grid of 5° from west to east (80–120° E in China, where typical land surface types and geographic conditions exist. The former includes desert, grassland and built-up areas mixed with cropland; and the latter includes anthropogenic emissions that change from small to large from west to east, including those from the megacity of Beijing. For these specific cells, we evaluate the regional uncertainty of GOSAT XCO2 retrievals by quantifying and attributing the consistency of XCO2 retrievals from four algorithms (ACOS, NIES, OCFP and SRFP by intercomparison. These retrievals are then specifically compared with simulated XCO2 from the high-resolution nested model in East Asia of the Goddard Earth Observing System 3-D chemical transport model (GEOS-Chem. We also introduce the anthropogenic CO2 emissions data generated from the investigation of surface emitting point sources that was conducted by the Ministry of Environmental Protection of China to GEOS-Chem simulations of XCO2 over the Chinese mainland. The results indicate that (1 regionally, the four algorithms demonstrate smaller absolute biases of 0.7–1.1 ppm in eastern cells, which are covered by built-up areas mixed with cropland with intensive anthropogenic emissions, than those in the western desert cells (1.0–1.6 ppm with a high-brightness surface from the pairwise comparison results of XCO2 retrievals. (2 Compared with XCO2 simulated by GEOS-Chem (GEOS-XCO2, the XCO2 values from ACOS and SRFP have better agreement, while values from OCFP are the least consistent with GEOS-XCO2. (3 Viewing attributions of XCO2 in the spatio
Regional uncertainty of GOSAT XCO2 retrievals in China: quantification and attribution
Bie, Nian; Lei, Liping; Zeng, ZhaoCheng; Cai, Bofeng; Yang, Shaoyuan; He, Zhonghua; Wu, Changjiang; Nassar, Ray
2018-03-01
The regional uncertainty of the column-averaged dry air mole fraction of CO2 (XCO2) retrieved using different algorithms from the Greenhouse gases Observing SATellite (GOSAT) and its attribution are still not well understood. This paper investigates the regional performance of XCO2 within a latitude band of 37-42° N segmented into 8 cells in a grid of 5° from west to east (80-120° E) in China, where typical land surface types and geographic conditions exist. The former includes desert, grassland and built-up areas mixed with cropland; and the latter includes anthropogenic emissions that change from small to large from west to east, including those from the megacity of Beijing. For these specific cells, we evaluate the regional uncertainty of GOSAT XCO2 retrievals by quantifying and attributing the consistency of XCO2 retrievals from four algorithms (ACOS, NIES, OCFP and SRFP) by intercomparison. These retrievals are then specifically compared with simulated XCO2 from the high-resolution nested model in East Asia of the Goddard Earth Observing System 3-D chemical transport model (GEOS-Chem). We also introduce the anthropogenic CO2 emissions data generated from the investigation of surface emitting point sources that was conducted by the Ministry of Environmental Protection of China to GEOS-Chem simulations of XCO2 over the Chinese mainland. The results indicate that (1) regionally, the four algorithms demonstrate smaller absolute biases of 0.7-1.1 ppm in eastern cells, which are covered by built-up areas mixed with cropland with intensive anthropogenic emissions, than those in the western desert cells (1.0-1.6 ppm) with a high-brightness surface from the pairwise comparison results of XCO2 retrievals. (2) Compared with XCO2 simulated by GEOS-Chem (GEOS-XCO2), the XCO2 values from ACOS and SRFP have better agreement, while values from OCFP are the least consistent with GEOS-XCO2. (3) Viewing attributions of XCO2 in the spatio-temporal pattern, ACOS and SRFP
Evaluation of Sources of Uncertainties in Solar Resource Measurement
Energy Technology Data Exchange (ETDEWEB)
Habte, Aron M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sengupta, Manajit [National Renewable Energy Laboratory (NREL), Golden, CO (United States)
2017-09-25
This poster presents a high-level overview of sources of uncertainties in solar resource measurement, demonstrating the impact of various sources of uncertainties -- such as cosine response, thermal offset, spectral response, and others -- on the accuracy of data from several radiometers. The study provides insight on how to reduce the impact of some of the sources of uncertainties.
Using a Meniscus to Teach Uncertainty in Measurement
Backman, Philip
2008-01-01
I have found that students easily understand that a measurement cannot be exact, but they often seem to lack an understanding of why it is important to know "something" about the magnitude of the uncertainty. This tends to promote an attitude that almost any uncertainty value will do. Such indifference may exist because once an uncertainty is…
International Nuclear Information System (INIS)
Kosterev, V.V.; Bolyatko, V.V.; Khajretdinov, S.I.; Averkin, A.N.
2014-01-01
The problem of surplus weapons-usable plutonium disposition is formalized as a multi-attribute problem of a choice of alternatives from a set of possible alternatives under fuzzy conditions. Evaluation and ordering of alternatives for the surplus weapons-usable plutonium disposition and sensitivity analysis are carried out at uncertainty [ru
Meija, Juris; Chartrand, Michelle M G
2018-01-01
Isotope delta measurements are normalized against international reference standards. Although multi-point normalization is becoming a standard practice, the existing uncertainty evaluation practices are either undocumented or are incomplete. For multi-point normalization, we present errors-in-variables regression models for explicit accounting of the measurement uncertainty of the international standards along with the uncertainty that is attributed to their assigned values. This manuscript presents framework to account for the uncertainty that arises due to a small number of replicate measurements and discusses multi-laboratory data reduction while accounting for inevitable correlations between the laboratories due to the use of identical reference materials for calibration. Both frequentist and Bayesian methods of uncertainty analysis are discussed.
Praba Drijarkara, Agustinus; Gergiso Gebrie, Tadesse; Lee, Jae Yong; Kang, Chu-Shik
2018-06-01
Evaluation of uncertainty of thickness and gravity-compensated warp of a silicon wafer measured by a spectrally resolved interferometer is presented. The evaluation is performed in a rigorous manner, by analysing the propagation of uncertainty from the input quantities through all the steps of measurement functions, in accordance with the ISO Guide to the Expression of Uncertainty in Measurement. In the evaluation, correlation between input quantities as well as uncertainty attributed to thermal effect, which were not included in earlier publications, are taken into account. The temperature dependence of the group refractive index of silicon was found to be nonlinear and varies widely within a wafer and also between different wafers. The uncertainty evaluation described here can be applied to other spectral interferometry applications based on similar principles.
Projected uranium measurement uncertainties for the Gas Centrifuge Enrichment Plant
International Nuclear Information System (INIS)
Younkin, J.M.
1979-02-01
An analysis was made of the uncertainties associated with the measurements of the declared uranium streams in the Portsmouth Gas Centrifuge Enrichment Plant (GCEP). The total uncertainty for the GCEP is projected to be from 54 to 108 kg 235 U/year out of a measured total of 200,000 kg 235 U/year. The systematic component of uncertainty of the UF 6 streams is the largest and the dominant contributor to the total uncertainty. A possible scheme for reducing the total uncertainty is given
Treatment of measurement uncertainties at the power burst facility
International Nuclear Information System (INIS)
Meyer, L.C.
1980-01-01
The treatment of measurement uncertainty at the Power Burst Facility provides a means of improving data integrity as well as meeting standard practice reporting requirements. This is accomplished by performing the uncertainty analysis in two parts, test independent uncertainty analysis and test dependent uncertainty analysis. The test independent uncertainty analysis is performed on instrumentation used repeatedly from one test to the next, and does not have to be repeated for each test except for improved or new types of instruments. A test dependent uncertainty analysis is performed on each test based on the test independent uncertainties modified as required by test specifications, experiment fixture design, and historical performance of instruments on similar tests. The methodology for performing uncertainty analysis based on the National Bureau of Standards method is reviewed with examples applied to nuclear instrumentation
International Nuclear Information System (INIS)
Silva, T.A. da
1988-01-01
The comparison between the uncertainty method recommended by International Atomic Energy Agency (IAEA) and the and the International Weight and Measure Commitee (CIPM) are showed, for the calibration of clinical dosimeters in the secondary standard Dosimetry Laboratory (SSDL). (C.G.C.) [pt
Uncertainty quantification in nanomechanical measurements using the atomic force microscope
Ryan Wagner; Robert Moon; Jon Pratt; Gordon Shaw; Arvind Raman
2011-01-01
Quantifying uncertainty in measured properties of nanomaterials is a prerequisite for the manufacture of reliable nanoengineered materials and products. Yet, rigorous uncertainty quantification (UQ) is rarely applied for material property measurements with the atomic force microscope (AFM), a widely used instrument that can measure properties at nanometer scale...
GRAPH THEORY APPROACH TO QUANTIFY UNCERTAINTY OF PERFORMANCE MEASURES
Directory of Open Access Journals (Sweden)
Sérgio D. Sousa
2015-03-01
Full Text Available In this work, the performance measurement process is studied to quantify the uncertainty induced in the resulting performance measure (PM. To that end, the causes of uncertainty are identified, analysing the activities undertaken in the three following stages of the performance measurement process: design and implementation, data collection and record, and determination and analysis. A quantitative methodology based on graph theory and on the sources of uncertainty of the performance measurement process is used to calculate an uncertainty index to evaluate the level of uncertainty of a given PM or (key performance indicator. An application example is presented. The quantification of PM uncertainty could contribute to better represent the risk associated with a given decision and also to improve the PM to increase its precision and reliability.
Attribute measurement systems prototypes and equipment in the United States
International Nuclear Information System (INIS)
Langner, D.C.; Landry, R.P.; Hsue, S.-T.; MacArthur, D.W.; Mayo, D.R.; Smith, M.K.; Nicholas, N.J.; Whiteson, R.
2001-01-01
Since the fall of 1997, the United States has been developing prototypical attribute verification technology for potential use by the International Atomic Energy Agency (IAEA) under the Trilateral Initiative. The first attribute measurement equipment demonstration took place in December 1997 at the Lawrence Livermore National Laboratory. This demonstration led to a series of joint Russian Federatioin/US/IAEA technical discussions that focused on attribute measurement technology that could be applied to plutonium bearing items having classified characteristics. A first prototype attribute verification system with an information barrier was demonstrated at a Trilateral Technical Workshop in June 1999 at Los Alamos. This prototype nourished further fruitful discussions between the three parties that has in turn led to the documents discussed in a previous paper. Prototype development has continued in the US, under other initiatives, using an integrated approach that includes the Trilatleral Initiative. Specifically for the Trilateral Initiative, US development has turned to some peripheral equipment that would support verifications by the IAEA. This equipment includes an authentication tool for measurement systems with information barriers and in situ probes that would facilitate inspections by reducing the need to move material out of storage locations for reverification. In this paper, we will first summarize the development of attribute verification measurement system technology in the US and then report on the status of the development of other equipment to support the Trilateral Initiative.
Measurement uncertainty of liquid chromatographic analyses visualized by Ishikawa diagrams.
Meyer, Veronika R
2003-09-01
Ishikawa, or cause-and-effect diagrams, help to visualize the parameters that influence a chromatographic analysis. Therefore, they facilitate the set up of the uncertainty budget of the analysis, which can then be expressed in mathematical form. If the uncertainty is calculated as the Gaussian sum of all uncertainty parameters, it is necessary to quantitate them all, a task that is usually not practical. The other possible approach is to use the intermediate precision as a base for the uncertainty calculation. In this case, it is at least necessary to consider the uncertainty of the purity of the reference material in addition to the precision data. The Ishikawa diagram is then very simple, and so is the uncertainty calculation. This advantage is given by the loss of information about the parameters that influence the measurement uncertainty.
Validity of WTP measures under preference uncertainty
Kniebes, Carola; Rehdanz, Katrin; Schmidt, Ulrich
2014-01-01
This paper establishes a new method for eliciting Willingness to Pay (WTP) in contingent valuation (CV) studies with an open-ended elicitation format: the Range-WTP method. In contrast to the traditional approach for eliciting Point-WTP, Range-WTP explicitly allows for preference uncertainty in responses. Using data from two novel large-scale surveys on the perception of solar radiation management (SRM), a little-known technique for counteracting climate change, we compare the performance of ...
Assessing Precision in Conventional Field Measurements of Individual Tree Attributes
Directory of Open Access Journals (Sweden)
Ville Luoma
2017-02-01
Full Text Available Forest resource information has a hierarchical structure: individual tree attributes are summed at the plot level and then in turn, plot-level estimates are used to derive stand or large-area estimates of forest resources. Due to this hierarchy, it is imperative that individual tree attributes are measured with accuracy and precision. With the widespread use of different measurement tools, it is also important to understand the expected degree of precision associated with these measurements. The most prevalent tree attributes measured in the field are tree species, stem diameter-at-breast-height (dbh, and tree height. For dbh and height, the most commonly used measuring devices are calipers and clinometers, respectively. The aim of our study was to characterize the precision of individual tree dbh and height measurements in boreal forest conditions when using calipers and clinometers. The data consisted of 319 sample trees at a study area in Evo, southern Finland. The sample trees were measured independently by four trained mensurationists. The standard deviation in tree dbh and height measurements was 0.3 cm (1.5% and 0.5 m (2.9%, respectively. Precision was also assessed by tree species and tree size classes; however, there were no statistically significant differences between the mensurationists for dbh or height measurements. Our study offers insights into the expected precision of tree dbh and height as measured with the most commonly used devices. These results are important when using sample plot data in forest inventory applications, especially now, at a time when new tree attribute measurement techniques based on remote sensing are being developed and compared to the conventional caliper and clinometer measurements.
Uncertainty budget for optical coordinate measurements of circle diameter
DEFF Research Database (Denmark)
Morace, Renate Erica; Hansen, Hans Nørgaard; De Chiffre, Leonardo
2004-01-01
An uncertainty analysis for circle diameter measurements using a coordinate measuring machine (CMM) equipped with an optical probe is presented in this paper. A mathematical model for data evaluation and uncertainty assessment was formulated in accordance with Guide to the Expression of Uncertain...
Uncertainty quantification in nanomechanical measurements using the atomic force microscope
International Nuclear Information System (INIS)
Wagner, Ryan; Raman, Arvind; Moon, Robert; Pratt, Jon; Shaw, Gordon
2011-01-01
Quantifying uncertainty in measured properties of nanomaterials is a prerequisite for the manufacture of reliable nanoengineered materials and products. Yet, rigorous uncertainty quantification (UQ) is rarely applied for material property measurements with the atomic force microscope (AFM), a widely used instrument that can measure properties at nanometer scale resolution of both inorganic and biological surfaces and nanomaterials. We present a framework to ascribe uncertainty to local nanomechanical properties of any nanoparticle or surface measured with the AFM by taking into account the main uncertainty sources inherent in such measurements. We demonstrate the framework by quantifying uncertainty in AFM-based measurements of the transverse elastic modulus of cellulose nanocrystals (CNCs), an abundant, plant-derived nanomaterial whose mechanical properties are comparable to Kevlar fibers. For a single, isolated CNC the transverse elastic modulus was found to have a mean of 8.1 GPa and a 95% confidence interval of 2.7–20 GPa. A key result is that multiple replicates of force–distance curves do not sample the important sources of uncertainty, which are systematic in nature. The dominant source of uncertainty is the nondimensional photodiode sensitivity calibration rather than the cantilever stiffness or Z-piezo calibrations. The results underscore the great need for, and open a path towards, quantifying and minimizing uncertainty in AFM-based material property measurements of nanoparticles, nanostructured surfaces, thin films, polymers and biomaterials.
Evaluating measurement uncertainty in fluid phase equilibrium calculations
van der Veen, Adriaan M. H.
2018-04-01
The evaluation of measurement uncertainty in accordance with the ‘Guide to the expression of uncertainty in measurement’ (GUM) has not yet become widespread in physical chemistry. With only the law of the propagation of uncertainty from the GUM, many of these uncertainty evaluations would be cumbersome, as models are often non-linear and require iterative calculations. The methods from GUM supplements 1 and 2 enable the propagation of uncertainties under most circumstances. Experimental data in physical chemistry are used, for example, to derive reference property data and support trade—all applications where measurement uncertainty plays an important role. This paper aims to outline how the methods for evaluating and propagating uncertainty can be applied to some specific cases with a wide impact: deriving reference data from vapour pressure data, a flash calculation, and the use of an equation-of-state to predict the properties of both phases in a vapour-liquid equilibrium. The three uncertainty evaluations demonstrate that the methods of GUM and its supplements are a versatile toolbox that enable us to evaluate the measurement uncertainty of physical chemical measurements, including the derivation of reference data, such as the equilibrium thermodynamical properties of fluids.
Strain gauge measurement uncertainties on hydraulic turbine runner blade
International Nuclear Information System (INIS)
Arpin-Pont, J; Gagnon, M; Tahan, S A; Coutu, A; Thibault, D
2012-01-01
Strains experimentally measured with strain gauges can differ from those evaluated using the Finite Element (FE) method. This difference is due mainly to the assumptions and uncertainties inherent to each method. To circumvent this difficulty, we developed a numerical method based on Monte Carlo simulations to evaluate measurement uncertainties produced by the behaviour of a unidirectional welded gauge, its position uncertainty and its integration effect. This numerical method uses the displacement fields of the studied part evaluated by an FE analysis. The paper presents a study case using in situ data measured on a hydraulic turbine runner. The FE analysis of the turbine runner blade was computed, and our numerical method used to evaluate uncertainties on strains measured at five locations with welded strain gauges. Then, measured strains and their uncertainty ranges are compared to the estimated strains. The uncertainty ranges obtained extended from 74 με to 165 με. Furthermore, the biases observed between the median of the uncertainty ranges and the FE strains varied from −36 to 36 με. Note that strain gauge measurement uncertainties depend mainly on displacement fields and gauge geometry.
Estimating the measurement uncertainty in forensic blood alcohol analysis.
Gullberg, Rod G
2012-04-01
For many reasons, forensic toxicologists are being asked to determine and report their measurement uncertainty in blood alcohol analysis. While understood conceptually, the elements and computations involved in determining measurement uncertainty are generally foreign to most forensic toxicologists. Several established and well-documented methods are available to determine and report the uncertainty in blood alcohol measurement. A straightforward bottom-up approach is presented that includes: (1) specifying the measurand, (2) identifying the major components of uncertainty, (3) quantifying the components, (4) statistically combining the components and (5) reporting the results. A hypothetical example is presented that employs reasonable estimates for forensic blood alcohol analysis assuming headspace gas chromatography. These computations are easily employed in spreadsheet programs as well. Determining and reporting measurement uncertainty is an important element in establishing fitness-for-purpose. Indeed, the demand for such computations and information from the forensic toxicologist will continue to increase.
Evaluation of an attributive measurement system in the automotive industry
Simion, C.
2016-08-01
Measurement System Analysis (MSA) is a critical component for any quality improvement process. MSA is defined as an experimental and mathematical method of determining how much the variation within the measurement process contributes to overall process variability and it falls into two categories: attribute and variable. Most problematic measurement system issues come from measuring attribute data, which are usually the result of human judgment (visual inspection). Because attributive measurement systems are often used in some manufacturing processes, their assessment is important to obtain the confidence in the inspection process, to see where are the problems in order to eliminate them and to guide the process improvement. It was the aim of this paper to address such a issue presenting a case study made in a local company from the Sibiu region supplying products for the automotive industry, specifically the bag (a technical textile component, i.e. the fabric) for the airbag module. Because defects are inherent in every manufacturing process and in the field of airbag systems a minor defect can influence their performance and lives depend on the safety feature, there is a stringent visual inspection required on the defects of the bag material. The purpose of this attribute MSA was: to determine if all inspectors use the same criteria to determine “pass” from “fail” product (i.e. the fabric); to assess company inspection standards against customer's requirements; to determine how well inspectors are conforming to themselves; to identify how inspectors are conforming to a “known master,” which includes: how often operators ship defective product, how often operators dispose of acceptable product; to discover areas where training is required, procedures must be developed and standards are not available. The results were analyzed using MINITAB software with its module called Attribute Agreement Analysis. The conclusion was that the inspection process must
Assessment of dose measurement uncertainty using RisoScan
International Nuclear Information System (INIS)
Helt-Hansen, Jakob; Miller, Arne
2006-01-01
The dose measurement uncertainty of the dosimeter system RisoScan, office scanner and Riso B3 dosimeters has been assessed by comparison with spectrophotometer measurements of the same dosimeters. The reproducibility and the combined uncertainty were found to be approximately 2% and 4%, respectively, at one standard deviation. The subroutine in RisoScan for electron energy measurement is shown to give results that are equivalent to the measurements with a scanning spectrophotometer
Assessment of dose measurement uncertainty using RisøScan
DEFF Research Database (Denmark)
Helt-Hansen, J.; Miller, A.
2006-01-01
The dose measurement uncertainty of the dosimeter system RisoScan, office scanner and Riso B3 dosimeters has been assessed by comparison with spectrophotometer measurements of the same dosimeters. The reproducibility and the combined uncertainty were found to be approximately 2% and 4%, respectiv......%, respectively, at one standard deviation. The subroutine in RisoScan for electron energy measurement is shown to give results that are equivalent to the measurements with a scanning spectrophotometer. (c) 2006 Elsevier Ltd. All rights reserved....
Calibration and Measurement Uncertainty Estimation of Radiometric Data: Preprint
Energy Technology Data Exchange (ETDEWEB)
Habte, A.; Sengupta, M.; Reda, I.; Andreas, A.; Konings, J.
2014-11-01
Evaluating the performance of photovoltaic cells, modules, and arrays that form large solar deployments relies on accurate measurements of the available solar resource. Therefore, determining the accuracy of these solar radiation measurements provides a better understanding of investment risks. This paper provides guidelines and recommended procedures for estimating the uncertainty in calibrations and measurements by radiometers using methods that follow the International Bureau of Weights and Measures Guide to the Expression of Uncertainty (GUM). Standardized analysis based on these procedures ensures that the uncertainty quoted is well documented.
Frenkel, Robert B; Farrance, Ian
2018-01-01
The "Guide to the Expression of Uncertainty in Measurement" (GUM) is the foundational document of metrology. Its recommendations apply to all areas of metrology including metrology associated with the biomedical sciences. When the output of a measurement process depends on the measurement of several inputs through a measurement equation or functional relationship, the propagation of uncertainties in the inputs to the uncertainty in the output demands a level of understanding of the differential calculus. This review is intended as an elementary guide to the differential calculus and its application to uncertainty in measurement. The review is in two parts. In Part I, Section 3, we consider the case of a single input and introduce the concepts of error and uncertainty. Next we discuss, in the following sections in Part I, such notions as derivatives and differentials, and the sensitivity of an output to errors in the input. The derivatives of functions are obtained using very elementary mathematics. The overall purpose of this review, here in Part I and subsequently in Part II, is to present the differential calculus for those in the medical sciences who wish to gain a quick but accurate understanding of the propagation of uncertainties. © 2018 Elsevier Inc. All rights reserved.
Propagation of nuclear data uncertainties for fusion power measurements
Directory of Open Access Journals (Sweden)
Sjöstrand Henrik
2017-01-01
Full Text Available Neutron measurements using neutron activation systems are an essential part of the diagnostic system at large fusion machines such as JET and ITER. Nuclear data is used to infer the neutron yield. Consequently, high-quality nuclear data is essential for the proper determination of the neutron yield and fusion power. However, uncertainties due to nuclear data are not fully taken into account in uncertainty analysis for neutron yield calibrations using activation foils. This paper investigates the neutron yield uncertainty due to nuclear data using the so-called Total Monte Carlo Method. The work is performed using a detailed MCNP model of the JET fusion machine; the uncertainties due to the cross-sections and angular distributions in JET structural materials, as well as the activation cross-sections in the activation foils, are analysed. It is found that a significant contribution to the neutron yield uncertainty can come from uncertainties in the nuclear data.
Uncertainty analysis of thermal quantities measurement in a centrifugal compressor
Hurda, Lukáš; Matas, Richard
2017-09-01
Compressor performance characteristics evaluation process based on the measurement of pressure, temperature and other quantities is examined to find uncertainties for directly measured and derived quantities. CFD is used as a tool to quantify the influences of different sources of uncertainty of measurements for single- and multi-thermocouple total temperature probes. The heat conduction through the body of the thermocouple probe and the heat-up of the air in the intake piping are the main phenomena of interest.
Quantifying statistical uncertainty in the attribution of human influence on severe weather
Paciorek, CJ; Stone, DA; Wehner, MF
2018-01-01
© 2018 The Authors Event attribution in the context of climate change seeks to understand the role of anthropogenic greenhouse gas emissions on extreme weather events, either specific events or classes of events. A common approach to event attribution uses climate model output under factual (real-world) and counterfactual (world that might have been without anthropogenic greenhouse gas emissions) scenarios to estimate the probabilities of the event of interest under the two scenarios. Event a...
Metrology and process control: dealing with measurement uncertainty
Potzick, James
2010-03-01
Metrology is often used in designing and controlling manufacturing processes. A product sample is processed, some relevant property is measured, and the process adjusted to bring the next processed sample closer to its specification. This feedback loop can be remarkably effective for the complex processes used in semiconductor manufacturing, but there is some risk involved because measurements have uncertainty and product specifications have tolerances. There is finite risk that good product will fail testing or that faulty product will pass. Standard methods for quantifying measurement uncertainty have been presented, but the question arises: how much measurement uncertainty is tolerable in a specific case? Or, How does measurement uncertainty relate to manufacturing risk? This paper looks at some of the components inside this process control feedback loop and describes methods to answer these questions.
Uncertainty relation and simultaneous measurements in quantum theory
International Nuclear Information System (INIS)
Busch, P.
1982-01-01
In this thesis the question for the interpretation of the uncertainty relation is picked up, and a program for the justification of its individualistic interpretation is formulated. By means of quantum mechanical models for the position and momentum measurement a justification of the interpretaton has been tried by reconstruction of the origin of the uncertainties from the conditions of the measuring devices and the determination of the relation of the measured results to the object. By means of a model of the common measurement it could be shown how the uncertainty relation results from the not eliminable mutual disturbance of the devices and the uncertainty relation for the measuring system. So finally the commutation relation is conclusive. For the illustration the split experiment is discussed, first according to Heisenberg with fixed split, then for the quantum mechanical, movable split (Bohr-Einstein). (orig./HSI) [de
Use of Commericially Available Software in an Attribute Measurement System
International Nuclear Information System (INIS)
MacArthur, Duncan W.; Bracken, David S.; Carrillo, Louis A.; Elmont, Timothy H.; Frame, Katherine C.; Hirsch, Karen L.
2005-01-01
A major issue in international safeguards of nuclear materials is the ability to verify that processes and materials in nuclear facilities are consistent with declaration without revealing sensitive information. An attribute measurement system (AMS) is a non-destructive assay (NDA) system that utilizes an information barrier to protect potentially sensitive information about the measurement item. A key component is the software utilized for operator interface, data collection, analysis, and attribute determination, as well as the operating system under which they are implemented. Historically, custom software has been used almost exclusively in transparency applications, and it is unavoidable that some amount of custom software is needed. The focus of this paper is to explore the extent to which commercially available software may be used and the relative merits.
Stakeholder-driven multi-attribute analysis for energy project selection under uncertainty
International Nuclear Information System (INIS)
Read, Laura; Madani, Kaveh; Mokhtari, Soroush; Hanks, Catherine
2017-01-01
In practice, selecting an energy project for development requires balancing criteria and competing stakeholder priorities to identify the best alternative. Energy source selection can be modeled as multi-criteria decision-maker problems to provide quantitative support to reconcile technical, economic, environmental, social, and political factors with respect to the stakeholders' interests. Decision making among these complex interactions should also account for the uncertainty present in the input data. In response, this work develops a stochastic decision analysis framework to evaluate alternatives by involving stakeholders to identify both quantitative and qualitative selection criteria and performance metrics which carry uncertainties. The developed framework is illustrated using a case study from Fairbanks, Alaska, where decision makers and residents must decide on a new source of energy for heating and electricity. We approach this problem in a five step methodology: (1) engaging experts (role players) to develop criteria of project performance; (2) collecting a range of quantitative and qualitative input information to determine the performance of each proposed solution according to the selected criteria; (3) performing a Monte-Carlo analysis to capture uncertainties given in the inputs; (4) applying multi-criteria decision-making, social choice (voting), and fallback bargaining methods to account for three different levels of cooperation among the stakeholders; and (5) computing an aggregate performance index (API) score for each alternative based on its performance across criteria and cooperation levels. API scores communicate relative performance between alternatives. In this way, our methodology maps uncertainty from the input data to reflect risk in the decision and incorporates varying degrees of cooperation into the analysis to identify an optimal and practical alternative. - Highlights: • We develop an applicable stakeholder-driven framework for
Directory of Open Access Journals (Sweden)
Vicari Kristin J
2012-04-01
Full Text Available Abstract Background Cost-effective production of lignocellulosic biofuels remains a major financial and technical challenge at the industrial scale. A critical tool in biofuels process development is the techno-economic (TE model, which calculates biofuel production costs using a process model and an economic model. The process model solves mass and energy balances for each unit, and the economic model estimates capital and operating costs from the process model based on economic assumptions. The process model inputs include experimental data on the feedstock composition and intermediate product yields for each unit. These experimental yield data are calculated from primary measurements. Uncertainty in these primary measurements is propagated to the calculated yields, to the process model, and ultimately to the economic model. Thus, outputs of the TE model have a minimum uncertainty associated with the uncertainty in the primary measurements. Results We calculate the uncertainty in the Minimum Ethanol Selling Price (MESP estimate for lignocellulosic ethanol production via a biochemical conversion process: dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis and co-fermentation of the resulting sugars to ethanol. We perform a sensitivity analysis on the TE model and identify the feedstock composition and conversion yields from three unit operations (xylose from pretreatment, glucose from enzymatic hydrolysis, and ethanol from fermentation as the most important variables. The uncertainty in the pretreatment xylose yield arises from multiple measurements, whereas the glucose and ethanol yields from enzymatic hydrolysis and fermentation, respectively, are dominated by a single measurement: the fraction of insoluble solids (fIS in the biomass slurries. Conclusions We calculate a $0.15/gal uncertainty in MESP from the TE model due to uncertainties in primary measurements. This result sets a lower bound on the error bars of
Vector network analyzer (VNA) measurements and uncertainty assessment
Shoaib, Nosherwan
2017-01-01
This book describes vector network analyzer measurements and uncertainty assessments, particularly in waveguide test-set environments, in order to establish their compatibility to the International System of Units (SI) for accurate and reliable characterization of communication networks. It proposes a fully analytical approach to measurement uncertainty evaluation, while also highlighting the interaction and the linear propagation of different uncertainty sources to compute the final uncertainties associated with the measurements. The book subsequently discusses the dimensional characterization of waveguide standards and the quality of the vector network analyzer (VNA) calibration techniques. The book concludes with an in-depth description of the novel verification artefacts used to assess the performance of the VNAs. It offers a comprehensive reference guide for beginners to experts, in both academia and industry, whose work involves the field of network analysis, instrumentation and measurements.
Triangular and Trapezoidal Fuzzy State Estimation with Uncertainty on Measurements
Directory of Open Access Journals (Sweden)
Mohammad Sadeghi Sarcheshmah
2012-01-01
Full Text Available In this paper, a new method for uncertainty analysis in fuzzy state estimation is proposed. The uncertainty is expressed in measurements. Uncertainties in measurements are modelled with different fuzzy membership functions (triangular and trapezoidal. To find the fuzzy distribution of any state variable, the problem is formulated as a constrained linear programming (LP optimization. The viability of the proposed method would be verified with the ones obtained from the weighted least squares (WLS and the fuzzy state estimation (FSE in the 6-bus system and in the IEEE-14 and 30 bus system.
Directory of Open Access Journals (Sweden)
Miroslav Badida
2008-06-01
Full Text Available Identification of the noise measuring uncertainties by declared measured values is unconditionally necessary and required by legislative. Uncertainty of the measurements expresses all errors that accrue during the measuring. B y indication of uncertainties the measure documents that the objective value is with certain probability found in the interval that is bounded by the measurement uncertainty. The paper deals with the methodology of the uncertainty calculation by noise measurements in living and working environments. metal processing industry and building materials industry.
Evaluation of the uncertainty of environmental measurements of radioactivity
International Nuclear Information System (INIS)
Heydorn, K.
2003-01-01
Full text: The almost universal acceptance of the concept of uncertainty has led to its introduction into the ISO 17025 standard for general requirements to testing and calibration laboratories. This means that not only scientists, but also legislators, politicians, the general population - and perhaps even the press - expect to see all future results associated with an expression of their uncertainty. Results obtained by measurement of radioactivity have routinely been associated with an expression of their uncertainty, based on the so-called counting statistics. This is calculated together with the actual result on the assumption that the number of counts observed has a Poisson distribution with equal mean and variance. Most of the nuclear scientific community has therefore assumed that it already complied with the latest ISO 17025 requirements. Counting statistics, however, express only the variability observed among repeated measurements of the same sample under the same counting conditions, which is equivalent to the term repeatability used in quantitative analysis. Many other sources of uncertainty need to be taken into account before a statement of the uncertainty of the actual result can be made. As the first link in the traceability chain calibration is always an important uncertainty component in any kind of measurement. For radioactivity measurements in particular we find that counting geometry assumes the greatest importance, because it is often not possible to measure a standard and a control sample under exactly the same conditions. In the case of large samples we have additional uncertainty components associated with sample heterogeneity and its influence on self-absorption and counting efficiency. In low-level environmental measurements we have an additional risk of sample contamination, but the most important contribution to uncertainty is usually the representativity of the sample being analysed. For uniform materials this can be expressed by the
Water level measurement uncertainty during BWR instability
International Nuclear Information System (INIS)
Torok, R.C.; Derbidge, T.C.; Healzer, J.M.
1994-01-01
This paper addresses the performance of the water-level measurement system in a boiling water reactor (BWR) during severe instability oscillations which, under some circumstances, can occur during an anticipated transient without SCRAM (ATWS). Test data from a prototypical mock-up of the water-level measurement system was used to refine and calibrate a water-level measurement system model. The model was then used to predict level measurement system response, using as boundary conditions vessel pressures calculated by ppercase RETRAN for an ATWS/instability event.The results of the study indicate that rapid pressure changes in the reactor pressure vessel which cause oscillations in downcomer water level, coupled with differences in instrument line lengths, can produce errors in the sensed water level. Using nominal parameters for the measurement system components, a severe instability transient which produced a 0.2 m peak-to-minimum water-level oscillation in the vessel downcomer was predicted to produce pressure difference equivalent to a 0.7 m level oscillation at the input to the differential pressure transmitter, 0.5 m oscillation at the output of the transmitter, and an oscillation of 0.3 m on the water-level indicator in the control room. The level measurement system error, caused by downcomer water-level oscillations and instrument line length differential, is mitigated by damping both in the differential pressure transmitter used to infer level and in the control room display instrument. ((orig.))
Evaluation of uncertainty and detection limits in radioactivity measurements
Energy Technology Data Exchange (ETDEWEB)
Herranz, M. [Universidad del Pais Vasco/Euskal Herriko Unibertsitatea, Escuela Tecnica Superior de Ingenieria de Bilbao, Alda. Urquijo, s/n, 48013 Bilbao (Spain); Idoeta, R. [Universidad del Pais Vasco/Euskal Herriko Unibertsitatea, Escuela Tecnica Superior de Ingenieria de Bilbao, Alda. Urquijo, s/n, 48013 Bilbao (Spain)], E-mail: raquel.idoeta@ehu.es; Legarda, F. [Universidad del Pais Vasco/Euskal Herriko Unibertsitatea, Escuela Tecnica Superior de Ingenieria de Bilbao, Alda. Urquijo, s/n, 48013 Bilbao (Spain)
2008-10-01
The uncertainty associated with the assessment of the radioactive content of any sample depends on the net counting rate registered during the measuring process and on the different weighting factors needed to transform this counting rate into activity, activity per unit mass or activity concentration. This work analyses the standard uncertainties in these weighting factors as well as their contribution to the uncertainty in the activity reported for three typical determinations for environmental radioactivity measurements in the laboratory. It also studies the corresponding characteristic limits and their dependence on the standard uncertainty related to those weighting factors, offering an analysis of the effectiveness of the simplified characteristic limits as evaluated by various measuring software and laboratories.
Evaluation of uncertainty and detection limits in radioactivity measurements
International Nuclear Information System (INIS)
Herranz, M.; Idoeta, R.; Legarda, F.
2008-01-01
The uncertainty associated with the assessment of the radioactive content of any sample depends on the net counting rate registered during the measuring process and on the different weighting factors needed to transform this counting rate into activity, activity per unit mass or activity concentration. This work analyses the standard uncertainties in these weighting factors as well as their contribution to the uncertainty in the activity reported for three typical determinations for environmental radioactivity measurements in the laboratory. It also studies the corresponding characteristic limits and their dependence on the standard uncertainty related to those weighting factors, offering an analysis of the effectiveness of the simplified characteristic limits as evaluated by various measuring software and laboratories
Attributes measurements by calorimetry in 15 to 30 minutes
International Nuclear Information System (INIS)
Fiarman, S.; Perry, R.B.
1987-01-01
An analysis of the early portion of the power-history data collected with both of the IAEA's air-cooled bulk calorimeters has demonstrated that such calorimeters can measure the power from preheated containers of plutonium oxide with an accuracy of 2 to 5% in 15 to 30 minutes. Material accountancy at plutonium facilities has a need for such a capability for measurement of Pu scrap. Also, the International Atomic Energy Agency (IAEA) could use just two calorimeters and a gamma-ray assay system for reliable variables and attributes measurements of plutonium mass during a two-day physical-inventory verification (PIV) at a mixed-oxide (MOX) fuel-fabrication facility. The assay results would be free of the concerns about sample moisture, impurities, and geometry that previously have limited the accuracy of assays based on neutron measurements
A Unified Approach for Reporting ARM Measurement Uncertainties Technical Report
Energy Technology Data Exchange (ETDEWEB)
Campos, E [Argonne National Laboratory; Sisterson, DL [Argonne National Laboratory
2015-10-01
The Atmospheric Radiation Measurement (ARM) Climate Research Facility is observationally based, and quantifying the uncertainty of its measurements is critically important. With over 300 widely differing instruments providing over 2,500 datastreams, concise expression of measurement uncertainty is quite challenging. The ARM Facility currently provides data and supporting metadata (information about the data or data quality) to its users through a number of sources. Because the continued success of the ARM Facility depends on the known quality of its measurements, the Facility relies on instrument mentors and the ARM Data Quality Office (DQO) to ensure, assess, and report measurement quality. Therefore, an easily-accessible, well-articulated estimate of ARM measurement uncertainty is needed.
Instrumental measurement of beer taste attributes using an electronic tongue
International Nuclear Information System (INIS)
Rudnitskaya, Alisa; Polshin, Evgeny; Kirsanov, Dmitry; Lammertyn, Jeroen; Nicolai, Bart; Saison, Daan; Delvaux, Freddy R.; Delvaux, Filip; Legin, Andrey
2009-01-01
The present study deals with the evaluation of the electronic tongue multisensor system as an analytical tool for the rapid assessment of taste and flavour of beer. Fifty samples of Belgian and Dutch beers of different types (lager beers, ales, wheat beers, etc.), which were characterized with respect to the sensory properties, were measured using the electronic tongue (ET) based on potentiometric chemical sensors developed in Laboratory of Chemical Sensors of St. Petersburg University. The analysis of the sensory data and the calculation of the compromise average scores was made using STATIS. The beer samples were discriminated using both sensory panel and ET data based on PCA, and both data sets were compared using Canonical Correlation Analysis. The ET data were related to the sensory beer attributes using Partial Least Square regression for each attribute separately. Validation was done based on a test set comprising one-third of all samples. The ET was capable of predicting with good precision 20 sensory attributes of beer including such as bitter, sweet, sour, fruity, caramel, artificial, burnt, intensity and body.
Instrumental measurement of beer taste attributes using an electronic tongue.
Rudnitskaya, Alisa; Polshin, Evgeny; Kirsanov, Dmitry; Lammertyn, Jeroen; Nicolai, Bart; Saison, Daan; Delvaux, Freddy R; Delvaux, Filip; Legin, Andrey
2009-07-30
The present study deals with the evaluation of the electronic tongue multisensor system as an analytical tool for the rapid assessment of taste and flavour of beer. Fifty samples of Belgian and Dutch beers of different types (lager beers, ales, wheat beers, etc.), which were characterized with respect to the sensory properties, were measured using the electronic tongue (ET) based on potentiometric chemical sensors developed in Laboratory of Chemical Sensors of St. Petersburg University. The analysis of the sensory data and the calculation of the compromise average scores was made using STATIS. The beer samples were discriminated using both sensory panel and ET data based on PCA, and both data sets were compared using Canonical Correlation Analysis. The ET data were related to the sensory beer attributes using Partial Least Square regression for each attribute separately. Validation was done based on a test set comprising one-third of all samples. The ET was capable of predicting with good precision 20 sensory attributes of beer including such as bitter, sweet, sour, fruity, caramel, artificial, burnt, intensity and body.
Instrumental measurement of beer taste attributes using an electronic tongue
Energy Technology Data Exchange (ETDEWEB)
Rudnitskaya, Alisa, E-mail: alisa.rudnitskaya@gmail.com [Chemistry Department, University of Aveiro, Aveiro (Portugal); Laboratory of Chemical Sensors, Chemistry Department, St. Petersburg University, St. Petersburg (Russian Federation); Polshin, Evgeny [Laboratory of Chemical Sensors, Chemistry Department, St. Petersburg University, St. Petersburg (Russian Federation); BIOSYST/MeBioS, Catholic University of Leuven, W. De Croylaan 42, B-3001 Leuven (Belgium); Kirsanov, Dmitry [Laboratory of Chemical Sensors, Chemistry Department, St. Petersburg University, St. Petersburg (Russian Federation); Lammertyn, Jeroen; Nicolai, Bart [BIOSYST/MeBioS, Catholic University of Leuven, W. De Croylaan 42, B-3001 Leuven (Belgium); Saison, Daan; Delvaux, Freddy R.; Delvaux, Filip [Centre for Malting and Brewing Sciences, Katholieke Universiteit Leuven, Heverelee (Belgium); Legin, Andrey [Laboratory of Chemical Sensors, Chemistry Department, St. Petersburg University, St. Petersburg (Russian Federation)
2009-07-30
The present study deals with the evaluation of the electronic tongue multisensor system as an analytical tool for the rapid assessment of taste and flavour of beer. Fifty samples of Belgian and Dutch beers of different types (lager beers, ales, wheat beers, etc.), which were characterized with respect to the sensory properties, were measured using the electronic tongue (ET) based on potentiometric chemical sensors developed in Laboratory of Chemical Sensors of St. Petersburg University. The analysis of the sensory data and the calculation of the compromise average scores was made using STATIS. The beer samples were discriminated using both sensory panel and ET data based on PCA, and both data sets were compared using Canonical Correlation Analysis. The ET data were related to the sensory beer attributes using Partial Least Square regression for each attribute separately. Validation was done based on a test set comprising one-third of all samples. The ET was capable of predicting with good precision 20 sensory attributes of beer including such as bitter, sweet, sour, fruity, caramel, artificial, burnt, intensity and body.
Uncertainty of spatial straightness in 3D measurement
International Nuclear Information System (INIS)
Wang Jinxing; Jiang Xiangqian; Ma Limin; Xu Zhengao; Li Zhu
2005-01-01
The least-square method is commonly employed to verify the spatial straightness in actual three-dimensional measurement process, but the uncertainty of the verification result is usually not given by the coordinate measuring machines. According to the basic principle of spatial straightness least-square verification and the uncertainty propagation formula given by ISO/TS 14253-2, a calculation method for the uncertainty of spatial straightness least-square verification is proposed in this paper. By this method, the coefficients of the line equation are regarded as a statistical vector, so that the line equation, the result of the spatial straightness verification and the uncertainty of the result can be obtained after the expected value and covariance matrix of the vector are determined. The method not only assures the integrity of the verification result, but also accords with the requirement of the new generation of GPS standards, which can improve the veracity of verification
Expanded and combined uncertainty in measurements by GM counters
International Nuclear Information System (INIS)
Stankovic, K.; Arandjic, D.; Lazarevic, Dj.; Osmokrovic, P.
2007-01-01
This paper deals with possible ways of obtaining expanded and combined uncertainty in measurements for four types of GM counters with a same counter's tube, in cases when the contributors of these uncertainties are cosmic background radiation and induced overvoltage phenomena. Nowadays, as a consequence of electromagnetic radiation, the latter phenomenon is especially marked in urban environments. Based on experimental results obtained, it has been established that the uncertainties of an influenced random variable 'number of pulses from background radiation' and 'number of pulses induced by overvoltage' depend on the technological solution of the counter's reading system and contribute in different ways to the expanded and combined uncertainty in measurements of the applied types of GM counters. (author)
Dimensional measurements with submicrometer uncertainty in production environment
DEFF Research Database (Denmark)
De Chiffre, L.; Gudnason, M. M.; Madruga, D.
2015-01-01
The work concerns a laboratory investigation of a method to achieve dimensional measurements with submicrometer uncertainty under conditions that are typical of a production environment. The method involves the concurrent determination of dimensions and material properties from measurements carried...... gauge blocks along with their uncertainties were estimated directly from the measurements. The length of the two workpieces at the reference temperature of 20 °C was extrapolated from the measurements and compared to certificate values. The investigations have documented that the developed approach...
Evaluation of measuring results, statement of uncertainty in dosimeter calibrations
International Nuclear Information System (INIS)
Reich, H.
1978-05-01
The method described starts from the requirement that the quantitative statement of a measuring result in dosimetry should contain at least three figures: 1) the measured value or the best estimate of the quantity to be measured, 2) the uncertainty of this value given by a figure, which indicates a certain range around the measured value, and which is strongly linked with 3) a figure for the confidence level of this range, i.e. the probability that the (unknown) correct value is embraced by the given uncertainty range. How the figures 2) and 3) can be obtained and how they should be quoted in calibration certificates is the subject of these lectures. In addition, the means by which the method may be extended on determining the uncertainty of a measurement performed under conditions which deviate from the calibration conditt ions is briefly described. (orig.) [de
Quantifying the measurement uncertainty of results from environmental analytical methods.
Moser, J; Wegscheider, W; Sperka-Gottlieb, C
2001-07-01
The Eurachem-CITAC Guide Quantifying Uncertainty in Analytical Measurement was put into practice in a public laboratory devoted to environmental analytical measurements. In doing so due regard was given to the provisions of ISO 17025 and an attempt was made to base the entire estimation of measurement uncertainty on available data from the literature or from previously performed validation studies. Most environmental analytical procedures laid down in national or international standards are the result of cooperative efforts and put into effect as part of a compromise between all parties involved, public and private, that also encompasses environmental standards and statutory limits. Central to many procedures is the focus on the measurement of environmental effects rather than on individual chemical species. In this situation it is particularly important to understand the measurement process well enough to produce a realistic uncertainty statement. Environmental analytical methods will be examined as far as necessary, but reference will also be made to analytical methods in general and to physical measurement methods where appropriate. This paper describes ways and means of quantifying uncertainty for frequently practised methods of environmental analysis. It will be shown that operationally defined measurands are no obstacle to the estimation process as described in the Eurachem/CITAC Guide if it is accepted that the dominating component of uncertainty comes from the actual practice of the method as a reproducibility standard deviation.
Measurement uncertainty budget of an interferometric flow velocity sensor
Bermuske, Mike; Büttner, Lars; Czarske, Jürgen
2017-06-01
Flow rate measurements are a common topic for process monitoring in chemical engineering and food industry. To achieve the requested low uncertainties of 0:1% for flow rate measurements, a precise measurement of the shear layers of such flows is necessary. The Laser Doppler Velocimeter (LDV) is an established method for measuring local flow velocities. For exact estimation of the flow rate, the flow profile in the shear layer is of importance. For standard LDV the axial resolution and therefore the number of measurement points in the shear layer is defined by the length of the measurement volume. A decrease of this length is accompanied by a larger fringe distance variation along the measurement axis which results in a rise of the measurement uncertainty for the flow velocity (uncertainty relation between spatial resolution and velocity uncertainty). As a unique advantage, the laser Doppler profile sensor (LDV-PS) overcomes this problem by using two fan-like fringe systems to obtain the position of the measured particles along the measurement axis and therefore achieve a high spatial resolution while it still offers a low velocity uncertainty. With this technique, the flow rate can be estimated with one order of magnitude lower uncertainty, down to 0:05% statistical uncertainty.1 And flow profiles especially in film flows can be measured more accurately. The problem for this technique is, in contrast to laboratory setups where the system is quite stable, that for industrial applications the sensor needs a reliable and robust traceability to the SI units, meter and second. Small deviations in the calibration can, because of the highly position depending calibration function, cause large systematic errors in the measurement result. Therefore, a simple, stable and accurate tool is needed, that can easily be used in industrial surroundings to check or recalibrate the sensor. In this work, different calibration methods are presented and their influences to the
Guide to the expression of uncertainty in measurements
Energy Technology Data Exchange (ETDEWEB)
Mathew, Kattathu Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-10-19
The enabling objectives of this presentation are to: Provide a working knowledge of the ISO GUM method to estimation of uncertainties in safeguards measurements; Introduce GUM terminology; Provide brief historical background of the GUM methodology; Introduce GUM Workbench software; Isotope ratio measurements by MS will be discussed in the next session.
Uncertainty Quantification for Monitoring of Civil Structures from Vibration Measurements
Döhler, Michael; Mevel, Laurent
2014-05-01
Health Monitoring of civil structures can be performed by detecting changes in the modal parameters of a structure, or more directly in the measured vibration signals. For a continuous monitoring the excitation of a structure is usually ambient, thus unknown and assumed to be noise. Hence, all estimates from the vibration measurements are realizations of random variables with inherent uncertainty due to (unknown) process and measurement noise and finite data length. In this talk, a strategy for quantifying the uncertainties of modal parameter estimates from a subspace-based system identification approach is presented and the importance of uncertainty quantification in monitoring approaches is shown. Furthermore, a damage detection method is presented, which is based on the direct comparison of the measured vibration signals without estimating modal parameters, while taking the statistical uncertainty in the signals correctly into account. The usefulness of both strategies is illustrated on data from a progressive damage action on a prestressed concrete bridge. References E. Carden and P. Fanning. Vibration based condition monitoring: a review. Structural Health Monitoring, 3(4):355-377, 2004. M. Döhler and L. Mevel. Efficient multi-order uncertainty computation for stochastic subspace identification. Mechanical Systems and Signal Processing, 38(2):346-366, 2013. M. Döhler, L. Mevel, and F. Hille. Subspace-based damage detection under changes in the ambient excitation statistics. Mechanical Systems and Signal Processing, 45(1):207-224, 2014.
Immersive Data Comprehension: Visualizing Uncertainty in Measurable Models
Directory of Open Access Journals (Sweden)
Pere eBrunet
2015-09-01
Full Text Available Recent advances in 3D scanning technologies have opened new possibilities in a broad range of applications includingcultural heritage, medicine, civil engineering and urban planning. Virtual Reality systems can provide new tools toprofessionals that want to understand acquired 3D models. In this paper, we review the concept of data comprehension with an emphasis on visualization and inspection tools on immersive setups. We claim that in most application fields, data comprehension requires model measurements which in turn should be based on the explicit visualization of uncertainty. As 3D digital representations are not faithful, information on their fidelity at local level should be included in the model itself as uncertainty bounds. We propose the concept of Measurable 3D Models as digital models that explicitly encode local uncertainty bounds related to their quality. We claim that professionals and experts can strongly benefit from immersive interaction through new specific, fidelity-aware measurement tools which can facilitate 3D data comprehension. Since noise and processing errors are ubiquitous in acquired datasets, we discuss the estimation, representation and visualization of data uncertainty. We show that, based on typical user requirements in Cultural Heritage and other domains, application-oriented measuring tools in 3D models must consider uncertainty and local error bounds. We also discuss the requirements of immersive interaction tools for the comprehension of huge 3D and nD datasets acquired from real objects.
Estimate of the uncertainty in measurement for the determination of mercury in seafood by TDA AAS.
Torres, Daiane Placido; Olivares, Igor R B; Queiroz, Helena Müller
2015-01-01
An approach for the estimate of the uncertainty in measurement considering the individual sources related to the different steps of the method under evaluation as well as the uncertainties estimated from the validation data for the determination of mercury in seafood by using thermal decomposition/amalgamation atomic absorption spectrometry (TDA AAS) is proposed. The considered method has been fully optimized and validated in an official laboratory of the Ministry of Agriculture, Livestock and Food Supply of Brazil, in order to comply with national and international food regulations and quality assurance. The referred method has been accredited under the ISO/IEC 17025 norm since 2010. The approach of the present work in order to reach the aim of estimating of the uncertainty in measurement was based on six sources of uncertainty for mercury determination in seafood by TDA AAS, following the validation process, which were: Linear least square regression, Repeatability, Intermediate precision, Correction factor of the analytical curve, Sample mass, and Standard reference solution. Those that most influenced the uncertainty in measurement were sample weight, repeatability, intermediate precision and calibration curve. The obtained result for the estimate of uncertainty in measurement in the present work reached a value of 13.39%, which complies with the European Regulation EC 836/2011. This figure represents a very realistic estimate of the routine conditions, since it fairly encompasses the dispersion obtained from the value attributed to the sample and the value measured by the laboratory analysts. From this outcome, it is possible to infer that the validation data (based on calibration curve, recovery and precision), together with the variation on sample mass, can offer a proper estimate of uncertainty in measurement.
On the relationship between micro and macro correlations in nuclear measurement uncertainties
International Nuclear Information System (INIS)
Smith, D.L.
1987-01-01
Consideration is given to the propagation of micro correlations between the component experimental errors (corresponding to diverse attributes of the measurement process) through to the macro correlations between the total errors in the final derived experimental values. Whenever certain micro correlations cannot be precisely specified, the macro correlations must also be uncertain. However, on the basis of fundamental principles from mathematical statistics, it is shown that these uncertainties in the macro correlations can be substantially smaller than the individual uncertainties for specific micro correlations, provided that the number of distinct attributes contributing to the total experimental error is reasonably large. Furthermore, the resulting macro correlations are shown to be approximately normally distributed regardless of teh distributions assumed for the micro correlations. Examples are provided to demonstrate these concepts and to illustrate their relevance to experimental nuclear research. (orig.)
DEFF Research Database (Denmark)
Morace, Renata Erica; Hansen, Hans Nørgaard; De Chiffre, Leonardo
2005-01-01
This paper deals with the uncertainty estimation of measurements performed on optical coordinate measuring machines (CMMs). Two different methods were used to assess the uncertainty of circle diameter measurements using an optical CMM: the sensitivity analysis developing an uncertainty budget...
Measurement, simulation and uncertainty assessment of implant heating during MRI
International Nuclear Information System (INIS)
Neufeld, E; Kuehn, S; Kuster, N; Szekely, G
2009-01-01
The heating of tissues around implants during MRI can pose severe health risks, and careful evaluation is required for leads to be labeled as MR conditionally safe. A recent interlaboratory comparison study has shown that different groups can produce widely varying results (sometimes with more than a factor of 5 difference) when performing measurements according to current guidelines. To determine the related difficulties and to derive optimized procedures, two different generic lead structures have been investigated in this study by using state-of-the-art temperature and dosimetric probes, as well as simulations for which detailed uncertainty budgets have been determined. The agreement between simulations and measurements is well within the combined uncertainty. The study revealed that the uncertainty can be kept below 17% if appropriate instrumentation and procedures are applied. Optimized experimental assessment techniques can be derived from the findings presented herein.
Measurement, simulation and uncertainty assessment of implant heating during MRI
Energy Technology Data Exchange (ETDEWEB)
Neufeld, E; Kuehn, S; Kuster, N [Foundation for Research on Information Technologies in Society (IT' IS), Zeughausstr. 43, 8004 Zurich (Switzerland); Szekely, G [Computer Vision Laboratory, Swiss Federal Institute of Technology (ETHZ), Sternwartstr 7, ETH Zentrum, 8092 Zurich (Switzerland)], E-mail: neufeld@itis.ethz.ch
2009-07-07
The heating of tissues around implants during MRI can pose severe health risks, and careful evaluation is required for leads to be labeled as MR conditionally safe. A recent interlaboratory comparison study has shown that different groups can produce widely varying results (sometimes with more than a factor of 5 difference) when performing measurements according to current guidelines. To determine the related difficulties and to derive optimized procedures, two different generic lead structures have been investigated in this study by using state-of-the-art temperature and dosimetric probes, as well as simulations for which detailed uncertainty budgets have been determined. The agreement between simulations and measurements is well within the combined uncertainty. The study revealed that the uncertainty can be kept below 17% if appropriate instrumentation and procedures are applied. Optimized experimental assessment techniques can be derived from the findings presented herein.
Continuous quantum measurements and the action uncertainty principle
Mensky, Michael B.
1992-09-01
The path-integral approach to quantum theory of continuous measurements has been developed in preceding works of the author. According to this approach the measurement amplitude determining probabilities of different outputs of the measurement can be evaluated in the form of a restricted path integral (a path integral “in finite limits”). With the help of the measurement amplitude, maximum deviation of measurement outputs from the classical one can be easily determined. The aim of the present paper is to express this variance in a simpler and transparent form of a specific uncertainty principle (called the action uncertainty principle, AUP). The most simple (but weak) form of AUP is δ S≳ℏ, where S is the action functional. It can be applied for simple derivation of the Bohr-Rosenfeld inequality for measurability of gravitational field. A stronger (and having wider application) form of AUP (for ideal measurements performed in the quantum regime) is |∫{/' t″ }(δ S[ q]/δ q( t))Δ q( t) dt|≃ℏ, where the paths [ q] and [Δ q] stand correspondingly for the measurement output and for the measurement error. It can also be presented in symbolic form as Δ(Equation) Δ(Path) ≃ ℏ. This means that deviation of the observed (measured) motion from that obeying the classical equation of motion is reciprocally proportional to the uncertainty in a path (the latter uncertainty resulting from the measurement error). The consequence of AUP is that improving the measurement precision beyond the threshold of the quantum regime leads to decreasing information resulting from the measurement.
Evaluating the uncertainty of input quantities in measurement models
Possolo, Antonio; Elster, Clemens
2014-06-01
The Guide to the Expression of Uncertainty in Measurement (GUM) gives guidance about how values and uncertainties should be assigned to the input quantities that appear in measurement models. This contribution offers a concrete proposal for how that guidance may be updated in light of the advances in the evaluation and expression of measurement uncertainty that were made in the course of the twenty years that have elapsed since the publication of the GUM, and also considering situations that the GUM does not yet contemplate. Our motivation is the ongoing conversation about a new edition of the GUM. While generally we favour a Bayesian approach to uncertainty evaluation, we also recognize the value that other approaches may bring to the problems considered here, and focus on methods for uncertainty evaluation and propagation that are widely applicable, including to cases that the GUM has not yet addressed. In addition to Bayesian methods, we discuss maximum-likelihood estimation, robust statistical methods, and measurement models where values of nominal properties play the same role that input quantities play in traditional models. We illustrate these general-purpose techniques in concrete examples, employing data sets that are realistic but that also are of conveniently small sizes. The supplementary material available online lists the R computer code that we have used to produce these examples (stacks.iop.org/Met/51/3/339/mmedia). Although we strive to stay close to clause 4 of the GUM, which addresses the evaluation of uncertainty for input quantities, we depart from it as we review the classes of measurement models that we believe are generally useful in contemporary measurement science. We also considerably expand and update the treatment that the GUM gives to Type B evaluations of uncertainty: reviewing the state-of-the-art, disciplined approach to the elicitation of expert knowledge, and its encapsulation in probability distributions that are usable in
Cui, Jinshu; Rosoff, Heather; John, Richard S
2018-05-01
Many studies have investigated public reactions to nuclear accidents. However, few studies focused on more common events when a serious accident could have happened but did not. This study evaluated public response (emotional, cognitive, and behavioral) over three phases of a near-miss nuclear accident. Simulating a loss-of-coolant accident (LOCA) scenario, we manipulated (1) attribution for the initial cause of the incident (software failure vs. cyber terrorist attack vs. earthquake), (2) attribution for halting the incident (fail-safe system design vs. an intervention by an individual expert vs. a chance coincidence), and (3) level of uncertainty (certain vs. uncertain) about risk of a future radiation leak after the LOCA is halted. A total of 773 respondents were sampled using a 3 × 3 × 2 between-subjects design. Results from both MANCOVA and structural equation modeling (SEM) indicate that respondents experienced more negative affect, perceived more risk, and expressed more avoidance behavioral intention when the near-miss event was initiated by an external attributed source (e.g., earthquake) compared to an internally attributed source (e.g., software failure). Similarly, respondents also indicated greater negative affect, perceived risk, and avoidance behavioral intentions when the future impact of the near-miss incident on people and the environment remained uncertain. Results from SEM analyses also suggested that negative affect predicted risk perception, and both predicted avoidance behavior. Affect, risk perception, and avoidance behavior demonstrated high stability (i.e., reliability) from one phase to the next. © 2017 Society for Risk Analysis.
Maximum respiratory pressure measuring system : calibration and evaluation of uncertainty
Ferreira, J.L.; Pereira, N.C.; Oliveira Júnior, M.; Vasconcelos, F.H.; Parreira, V.F.; Tierra-Criollo, C.J.
2010-01-01
The objective of this paper is to present a methodology for the evaluation of uncertainties in the measurements results obtained during the calibration of a digital manovacuometer prototype (DM) with a load cell sensor pressure device incorporated. Calibration curves were obtained for both pressure
Upper bounds on quantum uncertainty products and complexity measures
Energy Technology Data Exchange (ETDEWEB)
Guerrero, Angel; Sanchez-Moreno, Pablo; Dehesa, Jesus S. [Department of Atomic, Molecular and Nuclear Physics, University of Granada, Granada (Spain); Department of Applied Mathematics, University of Granada, Granada (Spain) and Institute Carlos I for Computational and Theoretical Physics, University of Granada, Granada (Spain); Department of Atomic, Molecular and Nuclear Physics, University of Granada, Granada (Spain); Institute Carlos I for Computational and Theoretical Physics, University of Granada, Granada (Spain)
2011-10-15
The position-momentum Shannon and Renyi uncertainty products of general quantum systems are shown to be bounded not only from below (through the known uncertainty relations), but also from above in terms of the Heisenberg-Kennard product . Moreover, the Cramer-Rao, Fisher-Shannon, and Lopez-Ruiz, Mancini, and Calbet shape measures of complexity (whose lower bounds have been recently found) are also bounded from above. The improvement of these bounds for systems subject to spherically symmetric potentials is also explicitly given. Finally, applications to hydrogenic and oscillator-like systems are done.
BOOK REVIEW: Evaluating the Measurement Uncertainty: Fundamentals and practical guidance
Lira, Ignacio
2003-08-01
Evaluating the Measurement Uncertainty is a book written for anyone who makes and reports measurements. It attempts to fill the gaps in the ISO Guide to the Expression of Uncertainty in Measurement, or the GUM, and does a pretty thorough job. The GUM was written with the intent of being applicable by all metrologists, from the shop floor to the National Metrology Institute laboratory; however, the GUM has often been criticized for its lack of user-friendliness because it is primarily filled with statements, but with little explanation. Evaluating the Measurement Uncertainty gives lots of explanations. It is well written and makes use of many good figures and numerical examples. Also important, this book is written by a metrologist from a National Metrology Institute, and therefore up-to-date ISO rules, style conventions and definitions are correctly used and supported throughout. The author sticks very closely to the GUM in topical theme and with frequent reference, so readers who have not read GUM cover-to-cover may feel as if they are missing something. The first chapter consists of a reprinted lecture by T J Quinn, Director of the Bureau International des Poids et Mesures (BIPM), on the role of metrology in today's world. It is an interesting and informative essay that clearly outlines the importance of metrology in our modern society, and why accurate measurement capability, and by definition uncertainty evaluation, should be so important. Particularly interesting is the section on the need for accuracy rather than simply reproducibility. Evaluating the Measurement Uncertainty then begins at the beginning, with basic concepts and definitions. The third chapter carefully introduces the concept of standard uncertainty and includes many derivations and discussion of probability density functions. The author also touches on Monte Carlo methods, calibration correction quantities, acceptance intervals or guardbanding, and many other interesting cases. The book goes
Alignment measurements uncertainties for large assemblies using probabilistic analysis techniques
AUTHOR|(CDS)2090816; Almond, Heather
Big science and ambitious industrial projects continually push forward with technical requirements beyond the grasp of conventional engineering techniques. Example of those are ultra-high precision requirements in the field of celestial telescopes, particle accelerators and aerospace industry. Such extreme requirements are limited largely by the capability of the metrology used, namely, it’s uncertainty in relation to the alignment tolerance required. The current work was initiated as part of Maria Curie European research project held at CERN, Geneva aiming to answer those challenges as related to future accelerators requiring alignment of 2 m large assemblies to tolerances in the 10 µm range. The thesis has found several gaps in current knowledge limiting such capability. Among those was the lack of application of state of the art uncertainty propagation methods in alignment measurements metrology. Another major limiting factor found was the lack of uncertainty statements in the thermal errors compensatio...
International Nuclear Information System (INIS)
Lassahn, G.D.; Taylor, D.J.N.
1982-08-01
Analyses of uncertainty components inherent in pulsed-neutron-activation (PNA) measurements in general and the Loss-of-Fluid-Test (LOFT) system in particular are given. Due to the LOFT system's unique conditions, previously-used techniques were modified to make the volocity measurement. These methods render a useful, cost-effective measurement with an estimated uncertainty of 11% of reading
Assessing measurement uncertainty in meteorology in urban environments
International Nuclear Information System (INIS)
Curci, S; Lavecchia, C; Frustaci, G; Pilati, S; Paganelli, C; Paolini, R
2017-01-01
Measurement uncertainty in meteorology has been addressed in a number of recent projects. In urban environments, uncertainty is also affected by local effects which are more difficult to deal with than for synoptic stations. In Italy, beginning in 2010, an urban meteorological network (Climate Network ® ) was designed, set up and managed at national level according to high metrological standards and homogeneity criteria to support energy applications. The availability of such a high-quality operative automatic weather station network represents an opportunity to investigate the effects of station siting and sensor exposure and to estimate the related measurement uncertainty. An extended metadata set was established for the stations in Milan, including siting and exposure details. Statistical analysis on an almost 3-year-long operational period assessed network homogeneity, quality and reliability. Deviations from reference mean values were then evaluated in selected low-gradient local weather situations in order to investigate siting and exposure effects. In this paper the methodology is depicted and preliminary results of its application to air temperature discussed; this allowed the setting of an upper limit of 1 °C for the added measurement uncertainty at the top of the urban canopy layer. (paper)
Assessing measurement uncertainty in meteorology in urban environments
Curci, S.; Lavecchia, C.; Frustaci, G.; Paolini, R.; Pilati, S.; Paganelli, C.
2017-10-01
Measurement uncertainty in meteorology has been addressed in a number of recent projects. In urban environments, uncertainty is also affected by local effects which are more difficult to deal with than for synoptic stations. In Italy, beginning in 2010, an urban meteorological network (Climate Network®) was designed, set up and managed at national level according to high metrological standards and homogeneity criteria to support energy applications. The availability of such a high-quality operative automatic weather station network represents an opportunity to investigate the effects of station siting and sensor exposure and to estimate the related measurement uncertainty. An extended metadata set was established for the stations in Milan, including siting and exposure details. Statistical analysis on an almost 3-year-long operational period assessed network homogeneity, quality and reliability. Deviations from reference mean values were then evaluated in selected low-gradient local weather situations in order to investigate siting and exposure effects. In this paper the methodology is depicted and preliminary results of its application to air temperature discussed; this allowed the setting of an upper limit of 1 °C for the added measurement uncertainty at the top of the urban canopy layer.
Chemical kinetic model uncertainty minimization through laminar flame speed measurements
Park, Okjoo; Veloo, Peter S.; Sheen, David A.; Tao, Yujie; Egolfopoulos, Fokion N.; Wang, Hai
2016-01-01
Laminar flame speed measurements were carried for mixture of air with eight C3-4 hydrocarbons (propene, propane, 1,3-butadiene, 1-butene, 2-butene, iso-butene, n-butane, and iso-butane) at the room temperature and ambient pressure. Along with C1-2 hydrocarbon data reported in a recent study, the entire dataset was used to demonstrate how laminar flame speed data can be utilized to explore and minimize the uncertainties in a reaction model for foundation fuels. The USC Mech II kinetic model was chosen as a case study. The method of uncertainty minimization using polynomial chaos expansions (MUM-PCE) (D.A. Sheen and H. Wang, Combust. Flame 2011, 158, 2358–2374) was employed to constrain the model uncertainty for laminar flame speed predictions. Results demonstrate that a reaction model constrained only by the laminar flame speed values of methane/air flames notably reduces the uncertainty in the predictions of the laminar flame speeds of C3 and C4 alkanes, because the key chemical pathways of all of these flames are similar to each other. The uncertainty in model predictions for flames of unsaturated C3-4 hydrocarbons remain significant without considering fuel specific laminar flames speeds in the constraining target data set, because the secondary rate controlling reaction steps are different from those in the saturated alkanes. It is shown that the constraints provided by the laminar flame speeds of the foundation fuels could reduce notably the uncertainties in the predictions of laminar flame speeds of C4 alcohol/air mixtures. Furthermore, it is demonstrated that an accurate prediction of the laminar flame speed of a particular C4 alcohol/air mixture is better achieved through measurements for key molecular intermediates formed during the pyrolysis and oxidation of the parent fuel. PMID:27890938
Evaluation of uncertainty in the measurement of environmental electromagnetic fields
International Nuclear Information System (INIS)
Vulevic, B.; Osmokrovic, P.
2010-01-01
With regard to Non-ionising radiation protection, the relationship between human exposure to electromagnetic fields and health is controversial. Electromagnetic fields have become omnipresent in the daily environment. This paper assesses the problem of how to compare a measurement result with a limit fixed by the standard for human exposure to electric, magnetic and electromagnetic fields (0 Hz-300 GHz). The purpose of the paper is an appropriate representation of the basic information about evaluation of measurement uncertainty. (authors)
Detailed modeling of the statistical uncertainty of Thomson scattering measurements
International Nuclear Information System (INIS)
Morton, L A; Parke, E; Hartog, D J Den
2013-01-01
The uncertainty of electron density and temperature fluctuation measurements is determined by statistical uncertainty introduced by multiple noise sources. In order to quantify these uncertainties precisely, a simple but comprehensive model was made of the noise sources in the MST Thomson scattering system and of the resulting variance in the integrated scattered signals. The model agrees well with experimental and simulated results. The signal uncertainties are then used by our existing Bayesian analysis routine to find the most likely electron temperature and density, with confidence intervals. In the model, photonic noise from scattered light and plasma background light is multiplied by the noise enhancement factor (F) of the avalanche photodiode (APD). Electronic noise from the amplifier and digitizer is added. The amplifier response function shapes the signal and induces correlation in the noise. The data analysis routine fits a characteristic pulse to the digitized signals from the amplifier, giving the integrated scattered signals. A finite digitization rate loses information and can cause numerical integration error. We find a formula for the variance of the scattered signals in terms of the background and pulse amplitudes, and three calibration constants. The constants are measured easily under operating conditions, resulting in accurate estimation of the scattered signals' uncertainty. We measure F ≈ 3 for our APDs, in agreement with other measurements for similar APDs. This value is wavelength-independent, simplifying analysis. The correlated noise we observe is reproduced well using a Gaussian response function. Numerical integration error can be made negligible by using an interpolated characteristic pulse, allowing digitization rates as low as the detector bandwidth. The effect of background noise is also determined
Universal uncertainty principle in the measurement operator formalism
International Nuclear Information System (INIS)
Ozawa, Masanao
2005-01-01
Heisenberg's uncertainty principle has been understood to set a limitation on measurements; however, the long-standing mathematical formulation established by Heisenberg, Kennard, and Robertson does not allow such an interpretation. Recently, a new relation was found to give a universally valid relation between noise and disturbance in general quantum measurements, and it has become clear that the new relation plays a role of the first principle to derive various quantum limits on measurement and information processing in a unified treatment. This paper examines the above development on the noise-disturbance uncertainty principle in the model-independent approach based on the measurement operator formalism, which is widely accepted to describe a class of generalized measurements in the field of quantum information. We obtain explicit formulae for the noise and disturbance of measurements given by measurement operators, and show that projective measurements do not satisfy the Heisenberg-type noise-disturbance relation that is typical in the gamma-ray microscope thought experiments. We also show that the disturbance on a Pauli operator of a projective measurement of another Pauli operator constantly equals √2, and examine how this measurement violates the Heisenberg-type relation but satisfies the new noise-disturbance relation
Uncertainty analysis of NDA waste measurements using computer simulations
International Nuclear Information System (INIS)
Blackwood, L.G.; Harker, Y.D.; Yoon, W.Y.; Meachum, T.R.
2000-01-01
Uncertainty assessments for nondestructive radioassay (NDA) systems for nuclear waste are complicated by factors extraneous to the measurement systems themselves. Most notably, characteristics of the waste matrix (e.g., homogeneity) and radioactive source material (e.g., particle size distribution) can have great effects on measured mass values. Under these circumstances, characterizing the waste population is as important as understanding the measurement system in obtaining realistic uncertainty values. When extraneous waste characteristics affect measurement results, the uncertainty results are waste-type specific. The goal becomes to assess the expected bias and precision for the measurement of a randomly selected item from the waste population of interest. Standard propagation-of-errors methods for uncertainty analysis can be very difficult to implement in the presence of significant extraneous effects on the measurement system. An alternative approach that naturally includes the extraneous effects is as follows: (1) Draw a random sample of items from the population of interest; (2) Measure the items using the NDA system of interest; (3) Establish the true quantity being measured using a gold standard technique; and (4) Estimate bias by deriving a statistical regression model comparing the measurements on the system of interest to the gold standard values; similar regression techniques for modeling the standard deviation of the difference values gives the estimated precision. Actual implementation of this method is often impractical. For example, a true gold standard confirmation measurement may not exist. A more tractable implementation is obtained by developing numerical models for both the waste material and the measurement system. A random sample of simulated waste containers generated by the waste population model serves as input to the measurement system model. This approach has been developed and successfully applied to assessing the quantity of
Indian Academy of Sciences (India)
To reflect this uncertainty in the climate scenarios, the use of AOGCMs that explicitly simulate the carbon cycle and chemistry of all the substances are needed. The Hadley Centre has developed a version of the climate model that allows the effect of climate change on the carbon cycle and its feedback into climate, to be ...
Measurement uncertainty. A practical guide for Secondary Standards Dosimetry Laboratories
International Nuclear Information System (INIS)
2008-05-01
The need for international traceability for radiation dose measurements has been understood since the early nineteen-sixties. The benefits of high dosimetric accuracy were recognized, particularly in radiotherapy, where the outcome of treatments is dependent on the radiation dose delivered to patients. When considering radiation protection dosimetry, the uncertainty may be greater than for therapy, but proper traceability of the measurements is no less important. To ensure harmonization and consistency in radiation measurements, the International Atomic Energy Agency (IAEA) and the World Health Organization (WHO) created a Network of Secondary Standards Dosimetry Laboratories (SSDLs) in 1976. An SSDL is a laboratory that has been designated by the competent national authorities to undertake the duty of providing the necessary link in the traceability chain of radiation dosimetry to the international measurement system (SI, for Systeme International) for radiation metrology users. The role of the SSDLs is crucial in providing traceable calibrations; they disseminate calibrations at specific radiation qualities appropriate for the use of radiation measuring instruments. Historically, although the first SSDLs were established mainly to provide radiotherapy level calibrations, the scope of their work has expanded over the years. Today, many SSDLs provide traceability for radiation protection measurements and diagnostic radiology in addition to radiotherapy. Some SSDLs, with the appropriate facilities and expertise, also conduct quality audits of the clinical use of the calibrated dosimeters - for example, by providing postal dosimeters for dose comparisons for medical institutions or on-site dosimetry audits with an ion chamber and other appropriate equipment. The requirements for traceable and reliable calibrations are becoming more important. For example, for international trade where radiation products are manufactured within strict quality control systems, it is
Measurement of nuclear activity with Ge detectors and its uncertainty
International Nuclear Information System (INIS)
Cortes P, C.A.
1999-01-01
The objective of this work is to analyse the influence magnitudes which affect the activity measurement of gamma transmitter isolated radioactive sources. They prepared by means of the gravimetric method, as well as, determining the uncertainty of such measurement when this is carried out with a gamma spectrometer system with a germanium detector. This work is developed in five chapters: In the first one, named Basic principles it is made a brief description about the meaning of the word Measurement and its implications and the necessaries concepts are presented which are used in this work. In the second chapter it is exposed the gravimetric method used for the manufacture of the gamma transmitter isolated radioactive sources, it is tackled the problem to determine the main influence magnitudes which affect in the measurement of their activity and the respective correction factors and their uncertainties are deduced. The third chapter describes the gamma spectrometry system which is used in this work for the measurement of the activity of isolated sources and also its performance and experimental arrangement that it is used. In the fourth chapter are applied the three previous items with the object of determining the uncertainty which would be obtained in the measurement of an isolated radioactive source elaborated with the gravimetric method in the experimental conditions less favourable predicted above the obtained results from the chapter two. The conclusions are presented in the fifth chapter and they are applied to establish the optimum conditions for the measurement of the activity of a gamma transmitter isolated radioactive source with a spectrometer with germanium detector. (Author)
Using measurement uncertainty in decision-making and conformity assessment
Pendrill, L. R.
2014-08-01
Measurements often provide an objective basis for making decisions, perhaps when assessing whether a product conforms to requirements or whether one set of measurements differs significantly from another. There is increasing appreciation of the need to account for the role of measurement uncertainty when making decisions, so that a ‘fit-for-purpose’ level of measurement effort can be set prior to performing a given task. Better mutual understanding between the metrologist and those ordering such tasks about the significance and limitations of the measurements when making decisions of conformance will be especially useful. Decisions of conformity are, however, currently made in many important application areas, such as when addressing the grand challenges (energy, health, etc), without a clear and harmonized basis for sharing the risks that arise from measurement uncertainty between the consumer, supplier and third parties. In reviewing, in this paper, the state of the art of the use of uncertainty evaluation in conformity assessment and decision-making, two aspects in particular—the handling of qualitative observations and of impact—are considered key to bringing more order to the present diverse rules of thumb of more or less arbitrary limits on measurement uncertainty and percentage risk in the field. (i) Decisions of conformity can be made on a more or less quantitative basis—referred in statistical acceptance sampling as by ‘variable’ or by ‘attribute’ (i.e. go/no-go decisions)—depending on the resources available or indeed whether a full quantitative judgment is needed or not. There is, therefore, an intimate relation between decision-making, relating objects to each other in terms of comparative or merely qualitative concepts, and nominal and ordinal properties. (ii) Adding measures of impact, such as the costs of incorrect decisions, can give more objective and more readily appreciated bases for decisions for all parties concerned. Such
Huang, Hening
2018-01-01
This paper is the second (Part II) in a series of two papers (Part I and Part II). Part I has quantitatively discussed the fundamental limitations of the t-interval method for uncertainty estimation with a small number of measurements. This paper (Part II) reveals that the t-interval is an ‘exact’ answer to a wrong question; it is actually misused in uncertainty estimation. This paper proposes a redefinition of uncertainty, based on the classical theory of errors and the theory of point estimation, and a modification of the conventional approach to estimating measurement uncertainty. It also presents an asymptotic procedure for estimating the z-interval. The proposed modification is to replace the t-based uncertainty with an uncertainty estimator (mean- or median-unbiased). The uncertainty estimator method is an approximate answer to the right question to uncertainty estimation. The modified approach provides realistic estimates of uncertainty, regardless of whether the population standard deviation is known or unknown, or if the sample size is small or large. As an application example of the modified approach, this paper presents a resolution to the Du-Yang paradox (i.e. Paradox 2), one of the three paradoxes caused by the misuse of the t-interval in uncertainty estimation.
Measurement uncertainties in regression analysis with scarcity of data
International Nuclear Information System (INIS)
Sousa, J A; Ribeiro, A S; Cox, M G; Harris, P M; Sousa, J F V
2010-01-01
The evaluation of measurement uncertainty, in certain fields of science, faces the problem of scarcity of data. This is certainly the case in the testing of geological soils in civil engineering, where tests can take several days or weeks and where the same sample is not available for further testing, being destroyed during the experiment. In this particular study attention will be paid to triaxial compression tests used to typify particular soils. The purpose of the testing is to determine two parameters that characterize the soil, namely, cohesion and friction angle. These parameters are defined in terms of the intercept and slope of a straight line fitted to a small number of points (usually three) derived from experimental data. The use of ordinary least squares to obtain uncertainties associated with estimates of the two parameters would be unreliable if there were only three points (and no replicates) and hence only one degrees of freedom.
Object-oriented software for evaluating measurement uncertainty
Hall, B. D.
2013-05-01
An earlier publication (Hall 2006 Metrologia 43 L56-61) introduced the notion of an uncertain number that can be used in data processing to represent quantity estimates with associated uncertainty. The approach can be automated, allowing data processing algorithms to be decomposed into convenient steps, so that complicated measurement procedures can be handled. This paper illustrates the uncertain-number approach using several simple measurement scenarios and two different software tools. One is an extension library for Microsoft Excel®. The other is a special-purpose calculator using the Python programming language.
Object-oriented software for evaluating measurement uncertainty
International Nuclear Information System (INIS)
Hall, B D
2013-01-01
An earlier publication (Hall 2006 Metrologia 43 L56–61) introduced the notion of an uncertain number that can be used in data processing to represent quantity estimates with associated uncertainty. The approach can be automated, allowing data processing algorithms to be decomposed into convenient steps, so that complicated measurement procedures can be handled. This paper illustrates the uncertain-number approach using several simple measurement scenarios and two different software tools. One is an extension library for Microsoft Excel®. The other is a special-purpose calculator using the Python programming language. (paper)
Traceability and measurement uncertainty in sample preparation (W5)
International Nuclear Information System (INIS)
Wegscheider, W.; Walner, U.; Moser, J.
2002-01-01
Full text: Very few chemical measurements are being made directly on the object of interest and sample preparation is thus the rule rather than the exception in daily practice. Unfortunately the operations undertaken in the course of sample preparation are prone to rendering a sample useless for the purpose of interpreting a measurement performed on it, as it might not represent the original and relevant status any longer. Sample preparation along with sampling itself constitutes therefore a procedure that leads to a loss of representation of the original specimen or population. On the other hand it is also not sufficient to confine aspects of traceability and measurement uncertainty to the ultimate measurement, as the key purpose of measuring is to supply adequate data for some kind of decision, be it in production, in health, in the environment, or indeed in any other circumstance. These considerations have led to severe confusion in the community as to what traceability really means in chemistry. CITAC and EURACHEM have only recently issued a preliminary document that clarifies these issues and gives a firm handle on the future development of quality assurance in analytical chemistry. In this talk it will be attempted to outline the general ideas and procedures that lead to traceability of analytical chemical results accompanied by valid statements of their uncertainty. It will be argued that the central element in achieving these goals is a well-designed validation study that frequently goes beyond those requirements currently laid out in official documents. (author)
International Nuclear Information System (INIS)
Romdhani, Fekria; Hennebelle, François; Ge, Min; Juillion, Patrick; Fontaine, Jean François; Coquet, Richard
2014-01-01
Articulated Arm Coordinate Measuring Machines (AACMMs) have gradually evolved and are increasingly used in mechanical industry. At present, measurement uncertainties relating to the use of these devices are not yet well quantified. The work carried out consists of determining the measurement uncertainties of a mechanical part by an AACMM. The studies aiming to develop a model of measurement uncertainty are based on the Monte Carlo method developed in Supplement 1 of the Guide to Expression of Uncertainty in Measurement [1] but also identifying and characterizing the main sources of uncertainty. A multi-level Monte Carlo approach principle has been developed which allows for characterizing the possible evolution of the AACMM during the measurement and quantifying in a second level the uncertainty on the considered measurand. The first Monte Carlo level is the most complex and is thus divided into three sub-levels, namely characterization on the positioning error of a point, estimation of calibration errors and evaluation of fluctuations of the ‘localization point’. The global method is thus presented and results of the first sub-level are particularly developed. The main sources of uncertainty, including AACMM deformations, are exposed. (paper)
Eye tracking measures of uncertainty during perceptual decision making.
Brunyé, Tad T; Gardony, Aaron L
2017-10-01
Perceptual decision making involves gathering and interpreting sensory information to effectively categorize the world and inform behavior. For instance, a radiologist distinguishing the presence versus absence of a tumor, or a luggage screener categorizing objects as threatening or non-threatening. In many cases, sensory information is not sufficient to reliably disambiguate the nature of a stimulus, and resulting decisions are done under conditions of uncertainty. The present study asked whether several oculomotor metrics might prove sensitive to transient states of uncertainty during perceptual decision making. Participants viewed images with varying visual clarity and were asked to categorize them as faces or houses, and rate the certainty of their decisions, while we used eye tracking to monitor fixations, saccades, blinks, and pupil diameter. Results demonstrated that decision certainty influenced several oculomotor variables, including fixation frequency and duration, the frequency, peak velocity, and amplitude of saccades, and phasic pupil diameter. Whereas most measures tended to change linearly along with decision certainty, pupil diameter revealed more nuanced and dynamic information about the time course of perceptual decision making. Together, results demonstrate robust alterations in eye movement behavior as a function of decision certainty and attention demands, and suggest that monitoring oculomotor variables during applied task performance may prove valuable for identifying and remediating transient states of uncertainty. Published by Elsevier B.V.
Measurement Uncertainty Relations for Discrete Observables: Relative Entropy Formulation
Barchielli, Alberto; Gregoratti, Matteo; Toigo, Alessandro
2018-02-01
We introduce a new information-theoretic formulation of quantum measurement uncertainty relations, based on the notion of relative entropy between measurement probabilities. In the case of a finite-dimensional system and for any approximate joint measurement of two target discrete observables, we define the entropic divergence as the maximal total loss of information occurring in the approximation at hand. For fixed target observables, we study the joint measurements minimizing the entropic divergence, and we prove the general properties of its minimum value. Such a minimum is our uncertainty lower bound: the total information lost by replacing the target observables with their optimal approximations, evaluated at the worst possible state. The bound turns out to be also an entropic incompatibility degree, that is, a good information-theoretic measure of incompatibility: indeed, it vanishes if and only if the target observables are compatible, it is state-independent, and it enjoys all the invariance properties which are desirable for such a measure. In this context, we point out the difference between general approximate joint measurements and sequential approximate joint measurements; to do this, we introduce a separate index for the tradeoff between the error of the first measurement and the disturbance of the second one. By exploiting the symmetry properties of the target observables, exact values, lower bounds and optimal approximations are evaluated in two different concrete examples: (1) a couple of spin-1/2 components (not necessarily orthogonal); (2) two Fourier conjugate mutually unbiased bases in prime power dimension. Finally, the entropic incompatibility degree straightforwardly generalizes to the case of many observables, still maintaining all its relevant properties; we explicitly compute it for three orthogonal spin-1/2 components.
Measures of uncertainty, importance and sensitivity of the SEDA code
International Nuclear Information System (INIS)
Baron, J.; Caruso, A.; Vinate, H.
1996-01-01
The purpose of this work is the estimation of the uncertainty on the results of the SEDA code (Sistema de Evaluacion de Dosis en Accidentes) in accordance with the input data and its parameters. The SEDA code has been developed by the Comision Nacional de Energia Atomica for the estimation of doses during emergencies in the vicinity of Atucha and Embalse, nuclear power plants. The user should feed the code with meteorological data, source terms and accident data (timing involved, release height, thermal content of the release, etc.) It is designed to be used during the emergency, and to bring fast results that enable to make decisions. The uncertainty in the results of the SEDA code is quantified in the present paper. This uncertainty is associated both with the data the user inputs to the code, and with the uncertain parameters of the code own models. The used method consisted in the statistical characterization of the parameters and variables, assigning them adequate probability distributions. These distributions have been sampled with the Latin Hypercube Sampling method, which is a stratified multi-variable Monte-Carlo technique. The code has been performed for each of the samples and finally, a result sample has been obtained. These results have been characterized from the statistical point of view (obtaining their mean, most probable value, distribution shape, etc.) for several distances from the source. Finally, the Partial Correlation Coefficients and Standard Regression Coefficients techniques have been used to obtain the relative importance of each input variable, and the Sensitivity of the code to its variations. The measures of Importance and Sensitivity have been obtained for several distances from the source and various cases of atmospheric stability, making comparisons possible. This paper allowed to confide in the results of the code, and the association of their uncertainty to them, as a way to know the limits in which the results can vary in a real
International Nuclear Information System (INIS)
Küng, Alain; Meli, Felix; Nicolet, Anaïs; Thalmann, Rudolf
2014-01-01
Tactile ultra-precise coordinate measuring machines (CMMs) are very attractive for accurately measuring optical components with high slopes, such as aspheres. The METAS µ-CMM, which exhibits a single point measurement repeatability of a few nanometres, is routinely used for measurement services of microparts, including optical lenses. However, estimating the measurement uncertainty is very demanding. Because of the many combined influencing factors, an analytic determination of the uncertainty of parameters that are obtained by numerical fitting of the measured surface points is almost impossible. The application of numerical simulation (Monte Carlo methods) using a parametric fitting algorithm coupled with a virtual CMM based on a realistic model of the machine errors offers an ideal solution to this complex problem: to each measurement data point, a simulated measurement variation calculated from the numerical model of the METAS µ-CMM is added. Repeated several hundred times, these virtual measurements deliver the statistical data for calculating the probability density function, and thus the measurement uncertainty for each parameter. Additionally, the eventual cross-correlation between parameters can be analyzed. This method can be applied for the calibration and uncertainty estimation of any parameter of the equation representing a geometric element. In this article, we present the numerical simulation model of the METAS µ-CMM and the application of a Monte Carlo method for the uncertainty estimation of measured asphere parameters. (paper)
Joint measurements of spin, operational locality and uncertainty
International Nuclear Information System (INIS)
Andersson, E.; Barnett, S.M.; Aspect, A.
2005-01-01
Full text: Joint measurements of non-commuting observables are possible within quantum mechanics, if one accepts an increase in the variances of the jointly measured observables. In this contribution, we discuss joint measurements of spin 1/2 along any two directions. Starting from an operational locality principle, we show how to obtain the known bound on how sharp the joint measurement can be. Operational locality here means, that no operation performed at a quantum system at one location can instantaneously affect a system at another location. The measurement bound is general and is here obtained without reference to any quantum measurement formalism. We find that the bound is formally identical to a Bell inequality of the CHSH type, and we also give a direct interpretation of the measurement bound in terms of an uncertainty relation. A simple way to realise the joint measurement for the case of photon polarization is presented. Further to their fundamental interest, quantum joint measurements of non-commuting observables can be related to state estimation. They are also of interest in quantum information, e.g. as strategies for eavesdropping in quantum cryptography. (author)
Quantification of tomographic PIV uncertainty using controlled experimental measurements.
Liu, Ning; Wu, Yue; Ma, Lin
2018-01-20
The goal of this work was to experimentally quantify the uncertainty of three-dimensional (3D) and three-component (3C) velocity measurements using tomographic particle image velocimetry (tomo-PIV). Controlled measurements were designed using tracer particles embedded in a solid sample, and tomo-PIV measurements were performed on the sample while it was moved both translationally and rotationally to simulate various known displacement fields, so the 3D3C displacements measured by tomo-PIV can be directly compared to the known displacements created by the sample. The results illustrated that (1) the tomo-PIV technique was able to reconstruct the 3D3C velocity with an averaged error of 0.8-1.4 voxels in terms of magnitude and 1.7°-1.9° in terms of orientation for the velocity fields tested; (2) view registration (VR) plays a significant role in tomo-PIV, and by reducing VR error from 0.6° to 0.1°, the 3D3C measurement accuracy can be improved by at least 2.5 times in terms of both magnitude and orientation; and (3) the use of additional cameras in tomo-PIV can extend the 3D3C velocity measurement to a larger volume, while maintaining acceptable accuracy. These results obtained from controlled tests are expected to aid the error analysis and the design of tomo-PIV measurements.
Interlaboratory analytical performance studies; a way to estimate measurement uncertainty
Directory of Open Access Journals (Sweden)
El¿bieta £ysiak-Pastuszak
2004-09-01
Full Text Available Comparability of data collected within collaborative programmes became the key challenge of analytical chemistry in the 1990s, including monitoring of the marine environment. To obtain relevant and reliable data, the analytical process has to proceed under a well-established Quality Assurance (QA system with external analytical proficiency tests as an inherent component. A programme called Quality Assurance in Marine Monitoring in Europe (QUASIMEME was established in 1993 and evolved over the years as the major provider of QA proficiency tests for nutrients, trace metals and chlorinated organic compounds in marine environment studies. The article presents an evaluation of results obtained in QUASIMEME Laboratory Performance Studies by the monitoring laboratory of the Institute of Meteorology and Water Management (Gdynia, Poland in exercises on nutrient determination in seawater. The measurement uncertainty estimated from routine internal quality control measurements and from results of analytical performance exercises is also presented in the paper.
How to: understanding SWAT model uncertainty relative to measured results
Watershed models are being relied upon to contribute to most policy-making decisions of watershed management, and the demand for an accurate accounting of complete model uncertainty is rising. Generalized likelihood uncertainty estimation (GLUE) is a widely used method for quantifying uncertainty i...
Impact of AMS-02 Measurements on Reducing GCR Model Uncertainties
Slaba, T. C.; O'Neill, P. M.; Golge, S.; Norbury, J. W.
2015-01-01
For vehicle design, shield optimization, mission planning, and astronaut risk assessment, the exposure from galactic cosmic rays (GCR) poses a significant and complex problem both in low Earth orbit and in deep space. To address this problem, various computational tools have been developed to quantify the exposure and risk in a wide range of scenarios. Generally, the tool used to describe the ambient GCR environment provides the input into subsequent computational tools and is therefore a critical component of end-to-end procedures. Over the past few years, several researchers have independently and very carefully compared some of the widely used GCR models to more rigorously characterize model differences and quantify uncertainties. All of the GCR models studied rely heavily on calibrating to available near-Earth measurements of GCR particle energy spectra, typically over restricted energy regions and short time periods. In this work, we first review recent sensitivity studies quantifying the ions and energies in the ambient GCR environment of greatest importance to exposure quantities behind shielding. Currently available measurements used to calibrate and validate GCR models are also summarized within this context. It is shown that the AMS-II measurements will fill a critically important gap in the measurement database. The emergence of AMS-II measurements also provides a unique opportunity to validate existing models against measurements that were not used to calibrate free parameters in the empirical descriptions. Discussion is given regarding rigorous approaches to implement the independent validation efforts, followed by recalibration of empirical parameters.
Uncertainty budgets for liquid waveguide CDOM absorption measurements.
Lefering, Ina; Röttgers, Rüdiger; Utschig, Christian; McKee, David
2017-08-01
Long path length liquid waveguide capillary cell (LWCC) systems using simple spectrometers to determine the spectral absorption by colored dissolved organic matter (CDOM) have previously been shown to have better measurement sensitivity compared to high-end spectrophotometers using 10 cm cuvettes. Information on the magnitude of measurement uncertainties for LWCC systems, however, has remained scarce. Cross-comparison of three different LWCC systems with three different path lengths (50, 100, and 250 cm) and two different cladding materials enabled quantification of measurement precision and accuracy, revealing strong wavelength dependency in both parameters. Stable pumping of the sample through the capillary cell was found to improve measurement precision over measurements made with the sample kept stationary. Results from the 50 and 100 cm LWCC systems, with higher refractive index cladding, showed systematic artifacts including small but unphysical negative offsets and high-frequency spectral perturbations due to limited performance of the salinity correction. In comparison, the newer 250 cm LWCC with lower refractive index cladding returned small positive offsets that may be physically correct. After null correction of measurements at 700 nm, overall agreement of CDOM absorption data at 440 nm was found to be within 5% root mean square percentage error.
Reducing Uncertainty: Implementation of Heisenberg Principle to Measure Company Performance
Directory of Open Access Journals (Sweden)
Anna Svirina
2015-08-01
Full Text Available The paper addresses the problem of uncertainty reduction in estimation of future company performance, which is a result of wide range of enterprise's intangible assets probable efficiency. To reduce this problem, the paper suggests to use quantum economy principles, i.e. implementation of Heisenberg principle to measure efficiency and potential of intangible assets of the company. It is proposed that for intangibles it is not possible to estimate both potential and efficiency at a certain time point. To provide a proof for these thesis, the data on resources potential and efficiency from mid-Russian companies was evaluated within deterministic approach, which did not allow to evaluate probability of achieving certain resource efficiency, and quantum approach, which allowed to estimate the central point around which the probable efficiency of resources in concentrated. Visualization of these approaches was performed by means of LabView software. It was proven that for tangible assets performance estimation a deterministic approach should be used; while for intangible assets the quantum approach allows better quality of future performance prediction. On the basis of these findings we proposed the holistic approach towards estimation of company resource efficiency in order to reduce uncertainty in modeling company performance.
Practical Use of the Braking Attributes Measurements Results
Directory of Open Access Journals (Sweden)
Ondruš Ján
2017-01-01
Full Text Available This contribution deals with issues of braking the passenger car. The measurement of braking deceleration of the vehicle Kia Cee´d 1,6 16 V was carried out by an optical device Correvit system. The measurement was carried out on the airport of the village of Rosina located close to Zilina. 10 drivers of different age, praxis, and kilometers driven participated in the measurement. The measured process was the vehicle full braking with the service brake of the initial speed of approximately 50 km.h-1. Each of the drivers had 10 attempts. In the closure of this contribution the results of the performed measurements, their evaluation and comparison are presented. Practical result from the contribution is mainly the measurement set of braking deceleration of the respective vehicle during intensive braking.
The estimation of uncertainty of radioactivity measurement on gamma counters in radiopharmacy
International Nuclear Information System (INIS)
Jovanovic, M.S.; Orlic, M.; Vranjes, S.; Stamenkovic, Lj. . E-mail address of corresponding author: nikijov@vin.bg.ac.yu; Jovanovic, M.S.)
2005-01-01
In this paper the estimation of uncertainty of measurement of radioactivity on gamma counter in Laboratory for radioisotopes is presented. The uncertainty components, which are important for these measurements, are identified and taken into account while estimating the uncertainty of measurement.(author)
Sources and performance criteria of uncertainty of reference measurement procedures.
Mosca, Andrea; Paleari, Renata
2018-05-29
This article wants to focus on the today available Reference Measurement Procedures (RMPs) for the determination of various analytes in Laboratory Medicine and the possible tools to evaluate their performance in the laboratories who are currently using them. A brief review on the RMPs has been performed by investigating the Joint Committee for Traceability in Laboratory Medicine (JCTLM) database. In order to evaluate their performances, we have checked the organization of three international ring trials, i.e. those regularly performed by the IFCC External Quality assessment scheme for Reference Laboratories in Laboratory Medicine (RELA), by the Center for Disease Control and Prevention (CDC) cholesterol network and by the IFCC Network for HbA 1c . Several RMPs are available through the JCTLM database, but the best way to collect information about the RMPs and their uncertainties is to look at the reference measurement service providers (RMS). This part of the database and the background on how to listed in the database is very helpful for the assessment of expanded uncertainty (MU) and performance in general of RMPs. Worldwide, 17 RMS are listed in the database, and for most of the measurands more than one RMS is able to run the relative RMPs, with similar expanded uncertainties. As an example, for a-amylase, 4 SP offer their services with MU between 1.6 and 3.3%. In other cases (such as total cholesterol, the U may span over a broader range, i.e. from 0.02 to 3.6%). With regard to the performance evaluation, the approach is often heterogenous, and it is difficult to compare the performance of laboratories running the same RMP for the same measurand if involved in more than one EQAS. The reference measurement services have been created to help laboratory professionals and manufacturers to implement the correct metrological traceability, and the JCTLM database is the only correct way to retrieve all the necessary important information to this end. Copyright © 2018
Influence of tube volume on measurement uncertainty of GM counters
Directory of Open Access Journals (Sweden)
Stanković Koviljka Đ.
2010-01-01
Full Text Available GM counters are often used in radiation detection since they generate a strong signal which can be easily detected. The working principal of a GM counter is based on the interaction of ionizing radiation with the atoms and molecules of the gas present in the counter's tube. Free electrons created as a result of this interaction become initial electrons, i. e. start an avalanche process which is detected as a pulse of current. This current pulse is independent of the energy imparted on the gas, that being the main difference between a GM counter and the majority of other radiation detectors. In literature, the dependence on the incidence of radiation energy, tube's orientation and characteristics of the reading system are quoted as the main sources of measurement uncertainty of GM counters. The aim of this paper is to determine the dependence of measurement uncertainty of a GM counter on the volume of its counter's tube. The dependence of the pulse current on the size of the counter's tube has, therefore, been considered here, both in radial and parallel geometry. The initiation and expansion of the current pulse have been examined by means of elementary processes of electrical discharge such as the Markov processes, while the changes in the counter's tube volume were put to test by the space - time enlargement law. The random variable known as the 'current pulse in the counter's tube' (i. e. electrical breakdown of the electrode configuration has also been taken into account and an appropriate theoretical distribution statistically determined. Thus obtained theoretical results were then compared to corresponding experimental results established in controlled laboratory conditions.
Energy Technology Data Exchange (ETDEWEB)
Stankunas, Gediminas, E-mail: gediminas.stankunas@lei.lt [Lithuanian Energy Institute, Laboratory of Nuclear Installation Safety, Breslaujos str. 3, LT-44403 Kaunas (Lithuania); EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Batistoni, Paola [ENEA, Via E. Fermi, 45, 00044 Frascati, Rome (Italy); EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Sjöstrand, Henrik; Conroy, Sean [Department of Physics and Astronomy, Uppsala University, PO Box 516, SE-75120 Uppsala (Sweden); EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom)
2015-07-11
The neutron activation technique is routinely used in fusion experiments to measure the neutron yields. This paper investigates the uncertainty on these measurements as due to the uncertainties on dosimetry and activation reactions. For this purpose, activation cross-sections were taken from the International Reactor Dosimetry and Fusion File (IRDFF-v1.05) in 640 groups ENDF-6 format for several reactions of interest for both 2.5 and 14 MeV neutrons. Activation coefficients (reaction rates) have been calculated using the neutron flux spectra at JET vacuum vessel, both for DD and DT plasmas, calculated by MCNP in the required 640-energy group format. The related uncertainties for the JET neutron spectra are evaluated as well using the covariance data available in the library. These uncertainties are in general small, but not negligible when high accuracy is required in the determination of the fusion neutron yields.
Farrance, Ian; Frenkel, Robert
2014-01-01
The Guide to the Expression of Uncertainty in Measurement (usually referred to as the GUM) provides the basic framework for evaluating uncertainty in measurement. The GUM however does not always provide clearly identifiable procedures suitable for medical laboratory applications, particularly when internal quality control (IQC) is used to derive most of the uncertainty estimates. The GUM modelling approach requires advanced mathematical skills for many of its procedures, but Monte Carlo simulation (MCS) can be used as an alternative for many medical laboratory applications. In particular, calculations for determining how uncertainties in the input quantities to a functional relationship propagate through to the output can be accomplished using a readily available spreadsheet such as Microsoft Excel. The MCS procedure uses algorithmically generated pseudo-random numbers which are then forced to follow a prescribed probability distribution. When IQC data provide the uncertainty estimates the normal (Gaussian) distribution is generally considered appropriate, but MCS is by no means restricted to this particular case. With input variations simulated by random numbers, the functional relationship then provides the corresponding variations in the output in a manner which also provides its probability distribution. The MCS procedure thus provides output uncertainty estimates without the need for the differential equations associated with GUM modelling. The aim of this article is to demonstrate the ease with which Microsoft Excel (or a similar spreadsheet) can be used to provide an uncertainty estimate for measurands derived through a functional relationship. In addition, we also consider the relatively common situation where an empirically derived formula includes one or more ‘constants’, each of which has an empirically derived numerical value. Such empirically derived ‘constants’ must also have associated uncertainties which propagate through the functional
Farrance, Ian; Frenkel, Robert
2014-02-01
The Guide to the Expression of Uncertainty in Measurement (usually referred to as the GUM) provides the basic framework for evaluating uncertainty in measurement. The GUM however does not always provide clearly identifiable procedures suitable for medical laboratory applications, particularly when internal quality control (IQC) is used to derive most of the uncertainty estimates. The GUM modelling approach requires advanced mathematical skills for many of its procedures, but Monte Carlo simulation (MCS) can be used as an alternative for many medical laboratory applications. In particular, calculations for determining how uncertainties in the input quantities to a functional relationship propagate through to the output can be accomplished using a readily available spreadsheet such as Microsoft Excel. The MCS procedure uses algorithmically generated pseudo-random numbers which are then forced to follow a prescribed probability distribution. When IQC data provide the uncertainty estimates the normal (Gaussian) distribution is generally considered appropriate, but MCS is by no means restricted to this particular case. With input variations simulated by random numbers, the functional relationship then provides the corresponding variations in the output in a manner which also provides its probability distribution. The MCS procedure thus provides output uncertainty estimates without the need for the differential equations associated with GUM modelling. The aim of this article is to demonstrate the ease with which Microsoft Excel (or a similar spreadsheet) can be used to provide an uncertainty estimate for measurands derived through a functional relationship. In addition, we also consider the relatively common situation where an empirically derived formula includes one or more 'constants', each of which has an empirically derived numerical value. Such empirically derived 'constants' must also have associated uncertainties which propagate through the functional relationship
Capital and time: uncertainty and qualitative measures of inequality.
Bear, Laura
2014-12-01
This review compares Piketty and Marx's approaches to capital and time in order to argue for the importance of qualitative measures of inequality. These latter measures emphasize varying experiences across classes and through history of uncertainty and insecurity. They explore how the social rhythms of capital profoundly affect the ability to plan a life-course. Quantitative measures such as those used by Piketty that focus on the amount of capital that accrues through time cannot capture such important phenomenon. This is especially because their calculations rest on absolute amounts of capital recorded in formal state statistics. Their limits are particularly revealed if we consider issues of: informal labour, social reproduction, and changing institutional forms of public debt. If we are to build the inter-disciplinary rapprochement between social science and economics that Piketty calls for it must be through asserting the value of qualitative measures of insecurity and its effects on decision making. These are important to track both at the macro-level of institutions and at the micro-level scale of human lives. It is, therefore, through emphasizing the existing strengths of both anthropology and history that we can meet Piketty's important challenge to make our scholarship relevant to current political and social debates. © London School of Economics and Political Science 2014.
Directory of Open Access Journals (Sweden)
B. Hassler
2014-05-01
Full Text Available Peak stratospheric chlorofluorocarbon (CFC and other ozone depleting substance (ODS concentrations were reached in the mid- to late 1990s. Detection and attribution of the expected recovery of the stratospheric ozone layer in an atmosphere with reduced ODSs as well as efforts to understand the evolution of stratospheric ozone in the presence of increasing greenhouse gases are key current research topics. These require a critical examination of the ozone changes with an accurate knowledge of the spatial (geographical and vertical and temporal ozone response. For such an examination, it is vital that the quality of the measurements used be as high as possible and measurement uncertainties well quantified. In preparation for the 2014 United Nations Environment Programme (UNEP/World Meteorological Organization (WMO Scientific Assessment of Ozone Depletion, the SPARC/IO3C/IGACO-O3/NDACC (SI2N Initiative was designed to study and document changes in the global ozone profile distribution. This requires assessing long-term ozone profile data sets in regards to measurement stability and uncertainty characteristics. The ultimate goal is to establish suitability for estimating long-term ozone trends to contribute to ozone recovery studies. Some of the data sets have been improved as part of this initiative with updated versions now available. This summary presents an overview of stratospheric ozone profile measurement data sets (ground and satellite based available for ozone recovery studies. Here we document measurement techniques, spatial and temporal coverage, vertical resolution, native units and measurement uncertainties. In addition, the latest data versions are briefly described (including data version updates as well as detailing multiple retrievals when available for a given satellite instrument. Archive location information for each data set is also given.
Directory of Open Access Journals (Sweden)
Vulević Branislav
2016-01-01
Full Text Available Determining high frequency electromagnetic field levels in urban areas represents a very complex task, having in mind the exponential growth of the number of sources embodied in public cellular telephony systems in the past twenty years. The main goal of this paper is a representation of a practical solution in the evaluation of measurement uncertainty for in-situ measurements in the case of spatial averaging. An example of the estimation of the uncertainty for electric field strength broadband measurements in the frequency range from 3 MHz to 18 GHz is presented.
Measurement Uncertainty of Liquid Chromatographic Analyses Visualized by Ishikawa Diagrams
Meyer, Veronika R.
2017-01-01
Ishikawa, or cause-and-effect diagrams, help to visualize the parameters that influence a chromatographic analysis. Therefore, they facilitate the set up of the uncertainty budget of the analysis, which can then be expressed in mathematical form. If the uncertainty is calculated as the Gaussian sum of all uncertainty parameters, it is necessary to quantitate them all, a task that is usually not practical. The other possible approach is to use the intermediate precision as a base for the uncer...
What information on measurement uncertainty should be communicated to clinicians, and how?
Plebani, Mario; Sciacovelli, Laura; Bernardi, Daniela; Aita, Ada; Antonelli, Giorgia; Padoan, Andrea
2018-02-02
The communication of laboratory results to physicians and the quality of reports represent fundamental requirements of the post-analytical phase in order to assure the right interpretation and utilization of laboratory information. Accordingly, the International Standard for clinical laboratories accreditation (ISO 15189) requires that "laboratory reports shall include the information necessary for the interpretation of the examination results". Measurement uncertainty (MU) is an inherent property of any quantitative measurement result which express the lack of knowledge of the true value and quantify the uncertainty of a result, incorporating the factors known to influence it. Even if the MU is not included in the report attributes of ISO 15189 and cannot be considered a post-analytical requirement, it is suggested as an information which should facilitate an appropriate interpretation of quantitative results (quantity values). Therefore, MU has two intended uses: for laboratory professionals, it gives information about the quality of measurements, providing evidence of the compliance with analytical performance characteristics; for physicians (and patients) it may help in interpretation of measurement results, especially when values are compared with reference intervals or clinical decision limits, providing objective information. Here we describe the way that MU should be added to laboratory reports in order to facilitate the interpretation of laboratory results and connecting efforts performed within laboratory to provide more accurate and reliable results with a more objective tool for their interpretation by physicians. Copyright © 2018 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
Including uncertainty in hazard analysis through fuzzy measures
International Nuclear Information System (INIS)
Bott, T.F.; Eisenhawer, S.W.
1997-12-01
This paper presents a method for capturing the uncertainty expressed by an Hazard Analysis (HA) expert team when estimating the frequencies and consequences of accident sequences and provides a sound mathematical framework for propagating this uncertainty to the risk estimates for these accident sequences. The uncertainty is readily expressed as distributions that can visually aid the analyst in determining the extent and source of risk uncertainty in HA accident sequences. The results also can be expressed as single statistics of the distribution in a manner analogous to expressing a probabilistic distribution as a point-value statistic such as a mean or median. The study discussed here used data collected during the elicitation portion of an HA on a high-level waste transfer process to demonstrate the techniques for capturing uncertainty. These data came from observations of the uncertainty that HA team members expressed in assigning frequencies and consequences to accident sequences during an actual HA. This uncertainty was captured and manipulated using ideas from possibility theory. The result of this study is a practical method for displaying and assessing the uncertainty in the HA team estimates of the frequency and consequences for accident sequences. This uncertainty provides potentially valuable information about accident sequences that typically is lost in the HA process
International Nuclear Information System (INIS)
Arpaia, Pasquale; De Vito, Luca; Kazazi, Mario
2016-01-01
In the uncertainty assessment of magnetic flux measurements in axially symmetric magnets by the translating coil method, the Guide to the Uncertainty in Measurement and its supplement cannot be applied: the voltage variation at the coil terminals, which is the actual measured quantity, affects the flux estimate and its uncertainty. In this paper, a particle filter, implementing a sequential Monte-Carlo method based on Bayesian inference, is applied. At this aim, the main uncertainty sources are analyzed and a model of the measurement process is defined. The results of the experimental validation point out the transport system and the acquisition system as the main contributions to the uncertainty budget. (authors)
Calibration of Heat Stress Monitor and its Measurement Uncertainty
Ekici, Can
2017-07-01
Wet-bulb globe temperature (WBGT) equation is a heat stress index that gives information for the workers in the industrial areas. WBGT equation is described in ISO Standard 7243 (ISO 7243 in Hot environments—estimation of the heat stress on working man, based on the WBGT index, ISO, Geneva, 1982). WBGT is the result of the combined quantitative effects of the natural wet-bulb temperature, dry-bulb temperature, and air temperature. WBGT is a calculated parameter. WBGT uses input estimates, and heat stress monitor measures these quantities. In this study, the calibration method of a heat stress monitor is described, and the model function for measurement uncertainty is given. Sensitivity coefficients were derived according to GUM. Two-pressure humidity generators were used to generate a controlled environment. Heat stress monitor was calibrated inside of the generator. Two-pressure humidity generator, which is located in Turkish Standard Institution, was used as the reference device. This device is traceable to national standards. Two-pressure humidity generator includes reference temperature Pt-100 sensors. The reference sensor was sheltered with a wet wick for the calibration of natural wet-bulb thermometer. The reference sensor was centred into a black globe that has got 150 mm diameter for the calibration of the black globe thermometer.
A Unified Approach for Reporting ARM Measurement Uncertainties Technical Report: Updated in 2016
Energy Technology Data Exchange (ETDEWEB)
Sisterson, Douglas [Argonne National Lab. (ANL), Argonne, IL (United States)
2017-01-15
The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility is observationally based, and quantifying the uncertainty of its measurements is critically important. With over 300 widely differing instruments providing over 2,500 datastreams, concise expression of measurement uncertainty is quite challenging. ARM currently provides data and supporting metadata (information about the data or data quality) to its users through several sources. Because the continued success of the ARM Facility depends on the known quality of its measurements, ARM relies on Instrument Mentors and the ARM Data Quality Office to ensure, assess, and report measurement quality. Therefore, an easily accessible, well-articulated estimate of ARM measurement uncertainty is needed. This report is a continuation of the work presented by Campos and Sisterson (2015) and provides additional uncertainty information from instruments not available in their report. As before, a total measurement uncertainty has been calculated as a function of the instrument uncertainty (calibration factors), the field uncertainty (environmental factors), and the retrieval uncertainty (algorithm factors). This study will not expand on methods for computing these uncertainties. As before, it will focus on the practical identification, characterization, and inventory of the measurement uncertainties already available to the ARM community through the ARM Instrument Mentors and their ARM instrument handbooks. This study continues the first steps towards reporting ARM measurement uncertainty as: (1) identifying how the uncertainty of individual ARM measurements is currently expressed, (2) identifying a consistent approach to measurement uncertainty, and then (3) reclassifying ARM instrument measurement uncertainties in a common framework.
Reconsideration of the Uncertainty Relations and Quantum Measurements
Directory of Open Access Journals (Sweden)
Dumitru S.
2008-04-01
Full Text Available Discussions on uncertainty relations (UR and quantum measurements (QMS persisted until nowadays in publications about quantum mechanics (QM. They originate mainly from the conventional interpretation of UR (CIUR. In the most of the QM literarure, it is underestimated the fact that, over the years, a lot of deficiencies regarding CIUR were signaled. As a rule the alluded deficiencies were remarked disparately and discussed as punctual and non-essential questions. Here we approach an investigation of the mentioned deficiencies collected in a conclusive ensemble. Subsequently we expose a reconsideration of the major problems referring to UR and QMS. We reveal that all the basic presumption of CIUR are troubled by insurmountable deficiencies which require the indubitable failure of CIUR and its necessary abandonment. Therefore the UR must be deprived of their statute of crucialpieces for physics. So, the aboriginal versions of UR appear as being in postures of either (i thought-experimental fictions or (ii simple QM formulae and, any other versions of them, have no connection with the QMS. Then the QMS must be viewed as an additional subject comparatively with the usual questions of QM. For a theoretical description of QMS we propose an information-transmission model, in which the quantum observables are considered as random variables. Our approach directs to natural solutions and simplifications for many problems regarding UR and QMS.
Reconsideration of the Uncertainty Relations and Quantum Measurements
Directory of Open Access Journals (Sweden)
Dumitru S.
2008-04-01
Full Text Available Discussions on uncertainty relations (UR and quantum measurements (QMS persisted until nowadays in publications about quantum mechanics (QM. They originate mainly from the conventional interpretation of UR (CIUR. In the most of the QM literarure, it is underestimated the fact that, over the years, a lot of deficiencies regarding CIUR were signaled. As a rule the alluded deficiencies were remarked disparately and dis- cussed as punctual and non-essential questions. Here we approach an investigation of the mentioned deficiencies collected in a conclusive ensemble. Subsequently we expose a reconsideration of the major problems referring to UR and QMS. We reveal that all the basic presumption of CIUR are troubled by insurmountable deficiencies which require the indubitable failure of CIUR and its necessary abandonment. Therefore the UR must be deprived of their statute of crucial pieces for physics. So, the aboriginal versions of UR appear as being in postures of either (i thought-experimental fictions or (ii sim- ple QM formulae and, any other versions of them, have no connection with the QMS. Then the QMS must be viewed as an additional subject comparatively with the usual questions of QM. For a theoretical description of QMS we propose an information- transmission model, in which the quantum observables are considered as random vari- ables. Our approach directs to natural solutions and simplifications for many problems regarding UR and QMS.
Definition of free form object for low uncertainty measurements on cooridnate measuring machines
DEFF Research Database (Denmark)
Savio, Enrico; De Chiffre, Leonardo
This report is made as a part of the project Easytrac, an EU project under the programme: Competitive and Sustainable Growth: Contract No: G6RD-CT-2000-00188, coordinated by UNIMETRIK S.A. (Spain). The project is concerned with low uncertainty calibrations on coordinate measuring machines. The Ce...
Range and number-of-levels effects in derived and stated measures of attribute importance
Verlegh, PWJ; Schifferstein, HNJ; Wittink, DR
We study how the range of variation and the number of ttribute levels affect five measures of attribute importance: full profile conjoint estimates, ranges in attribute level attractiveness ratings. regression coefficients. graded paired comparisons. and self-reported ratings, We find that all
Directory of Open Access Journals (Sweden)
O'Connor Daniel P
2011-07-01
Full Text Available Background Physical activity (PA adoption is essential for obesity prevention and control, yet ethnic minority women report lower levels of PA and are at higher risk for obesity and its comorbidities compared to Caucasians. Epidemiological studies and ecologic models of health behavior suggest that built environmental factors are associated with health behaviors like PA, but few studies have examined the association between built environment attribute concordance and PA, and no known studies have examined attribute concordance and PA adoption. Purpose The purpose of this study was to associate the degree of concordance between directly and indirectly measured built environment attributes with changes in PA over time among African American and Hispanic Latina women participating in a PA intervention. Method Women (N = 410 completed measures of PA at Time 1 (T1 and Time 2 (T2; environmental data collected at T1 were used to compute concordance between directly and indirectly measured built environment attributes. The association between changes in PA and the degree of concordance between each directly and indirectly measured environmental attribute was assessed using repeated measures analyses. Results There were no significant associations between built environment attribute concordance values and change in self-reported or objectively measured PA. Self-reported PA significantly increased over time (F(1,184 = 7.82, p = .006, but this increase did not vary by ethnicity or any built environment attribute concordance variable. Conclusions Built environment attribute concordance may not be associated with PA changes over time among minority women. In an effort to promote PA, investigators should clarify specific built environment attributes that are important for PA adoption and whether accurate perceptions of these attributes are necessary, particularly among the vulnerable population of minority women.
Energy Technology Data Exchange (ETDEWEB)
Jones, D.W.
2002-05-16
In previous reports, we have identified two potentially important issues, solutions to which would increase the attractiveness of DOE-developed technologies in commercial buildings energy systems. One issue concerns the fact that in addition to saving energy, many new technologies offer non-energy benefits that contribute to building productivity (firm profitability). The second issue is that new technologies are typically unproven in the eyes of decision makers and must bear risk premiums that offset cost advantages resulting from laboratory calculations. Even though a compelling case can be made for the importance of these issues, for building decision makers to incorporate them in business decisions and for DOE to use them in R&D program planning there must be robust empirical evidence of their existence and size. This paper investigates how such measurements could be made and offers recommendations as to preferred options. There is currently little systematic information on either of these concepts in the literature. Of the two there is somewhat more information on non-energy benefits, but little as regards office buildings. Office building productivity impacts can be observed casually, but must be estimated statistically, because buildings have many interacting attributes and observations based on direct behavior can easily confuse the process of attribution. For example, absenteeism can be easily observed. However, absenteeism may be down because a more healthy space conditioning system was put into place, because the weather was milder, or because firm policy regarding sick days had changed. There is also a general dearth of appropriate information for purposes of estimation. To overcome these difficulties, we propose developing a new data base and applying the technique of hedonic price analysis. This technique has been used extensively in the analysis of residential dwellings. There is also a literature on its application to commercial and industrial
Deriving proper measurement uncertainty from Internal Quality Control data: An impossible mission?
Ceriotti, Ferruccio
2018-03-30
Measurement uncertainty (MU) is a "non-negative parameter characterizing the dispersion of the quantity values being attributed to a measurand, based on the information used". In the clinical laboratory the most convenient way to calculate MU is the "top down" approach based on the use of Internal Quality Control data. As indicated in the definition, MU depends on the information used for its calculation and so different estimates of MU can be obtained. The most problematic aspect is how to deal with bias. In fact bias is difficult to detect and quantify and it should be corrected including only the uncertainty derived from this correction. Several approaches to calculate MU starting from Internal Quality Control data are presented. The minimum requirement is to use only the intermediate precision data, provided to include 6 months of results obtained with a commutable quality control material at a concentration close to the clinical decision limit. This approach is the minimal requirement and it is convenient for all those measurands that are especially used for monitoring or where a reference measurement system does not exist and so a reference for calculating the bias is lacking. Other formulas including the uncertainty of the value of the calibrator, including the bias from a commutable certified reference material or from a material specifically prepared for trueness verification, including the bias derived from External Quality Assessment schemes or from historical mean of the laboratory are presented and commented. MU is an important parameter, but a single, agreed upon way to calculate it in a clinical laboratory is not yet available. Copyright © 2018 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
Fazzari, D M
2001-01-01
This report presents the results of an evaluation of the Total Measurement Uncertainty (TMU) for the Canberra manufactured Segmented Gamma Scanner Assay System (SGSAS) as employed at the Hanford Plutonium Finishing Plant (PFP). In this document, TMU embodies the combined uncertainties due to all of the individual random and systematic sources of measurement uncertainty. It includes uncertainties arising from corrections and factors applied to the analysis of transuranic waste to compensate for inhomogeneities and interferences from the waste matrix and radioactive components. These include uncertainty components for any assumptions contained in the calibration of the system or computation of the data. Uncertainties are propagated at 1 sigma. The final total measurement uncertainty value is reported at the 95% confidence level. The SGSAS is a gamma assay system that is used to assay plutonium and uranium waste. The SGSAS system can be used in a stand-alone mode to perform the NDA characterization of a containe...
The uncertainty in physical measurements an introduction to data analysis in the physics laboratory
Fornasini, Paolo
2008-01-01
All measurements of physical quantities are affected by uncertainty. Understanding the origin of uncertainty, evaluating its extent and suitably taking it into account in data analysis is essential for assessing the degree of accuracy of phenomenological relationships and physical laws in both scientific research and technological applications. The Uncertainty in Physical Measurements: An Introduction to Data Analysis in the Physics Laboratory presents an introduction to uncertainty and to some of the most common procedures of data analysis. This book will serve the reader well by filling the gap between tutorial textbooks and highly specialized monographs. The book is divided into three parts. The first part is a phenomenological introduction to measurement and uncertainty: properties of instruments, different causes and corresponding expressions of uncertainty, histograms and distributions, and unified expression of uncertainty. The second part contains an introduction to probability theory, random variable...
Stare, E.; Beges, G.; Drnovsek, J.
2006-07-01
This paper presents the results of research into the measurement of the resistance of solid isolating materials to tracking. Two types of tracking were investigated: the proof tracking index (PTI) and the comparative tracking index (CTI). Evaluation of the measurement uncertainty in a case study was performed using a test method in accordance with the IEC 60112 standard. In the scope of the tests performed here, this particular test method was used to ensure the safety of electrical appliances. According to the EN ISO/IEC 17025 standard (EN ISO/IEC 17025), in the process of conformity assessment, the evaluation of the measurement uncertainty of the test method should be carried out. In the present article, possible influential parameters that are in accordance with the third and fourth editions of the standard IEC 60112 are discussed. The differences, ambiguities or lack of guidance referring to both editions of the standard are described in the article 'Ambiguities in technical standards—case study IEC 60112—measuring the resistance of solid isolating materials to tracking' (submitted for publication). Several hundred measurements were taken in the present experiments in order to form the basis for the results and conclusions presented. A specific problem of the test (according to the IEC 60112 standard) is the great variety of influential physical parameters (mechanical, electrical, chemical, etc) that can affect the results. At the end of the present article therefore, there is a histogram containing information on the contributions to the measurement uncertainty.
Uncertainty in eddy covariance measurements and its application to physiological models
D.Y. Hollinger; A.D. Richardson; A.D. Richardson
2005-01-01
Flux data are noisy, and this uncertainty is largely due to random measurement error. Knowledge of uncertainty is essential for the statistical evaluation of modeled andmeasured fluxes, for comparison of parameters derived by fitting models to measured fluxes and in formal data-assimilation efforts. We used the difference between simultaneous measurements from two...
Uncertainty assessing of measure result of tungsten in U3O8 by ICP-AES
International Nuclear Information System (INIS)
Du Guirong; Nie Jie; Tang Lilei
2011-01-01
According as the determining method and the assessing criterion,the uncertainty assessing of measure result of tungsten in U 3 O 8 by ICP-AES is researched. With the assessment of each component in detail, the result shows that u rel (sc)> u rel (c)> u rel (F)> u rel (m) by uncertainty contribution. Other uncertainty is random, calculated by repetition. u rel (sc) is contributed to uncertainty mainly. So the general uncertainty is reduced with strict operation to reduce u rel (sc). (authors)
Assessment of Measurement Uncertainty Values of the Scandium Determination in Marine Sediment
International Nuclear Information System (INIS)
Rina-Mulyaningsih, Th.
2005-01-01
The result value of testing is meaningless if it isn't completed with uncertainty value. So that with the analysis result Sc in the marine sediment sample. It was assessed the uncertainty measurement of Sc analysis in marine sediment. The experiment was done in AAN Serpong laboratory. The result of calculation uncertainty on Sc analysis showed that the uncertainty components come from: preparation of sample and standard/comparator, purity of standard, counting statistics (sample and standard), repeatability, nuclear data and decay correction. The assessment on uncertainty must be done for the analysis of others elements, because each elements has difference nuclear and physical properties. (author)
Principles and applications of measurement and uncertainty analysis in research and calibration
Energy Technology Data Exchange (ETDEWEB)
Wells, C.V.
1992-11-01
Interest in Measurement Uncertainty Analysis has grown in the past several years as it has spread to new fields of application, and research and development of uncertainty methodologies have continued. This paper discusses the subject from the perspectives of both research and calibration environments. It presents a history of the development and an overview of the principles of uncertainty analysis embodied in the United States National Standard, ANSI/ASME PTC 19.1-1985, Measurement Uncertainty. Examples are presented in which uncertainty analysis was utilized or is needed to gain further knowledge of a particular measurement process and to characterize final results. Measurement uncertainty analysis provides a quantitative estimate of the interval about a measured value or an experiment result within which the true value of that quantity is expected to lie. Years ago, Harry Ku of the United States National Bureau of Standards stated that ``The informational content of the statement of uncertainty determines, to a large extent, the worth of the calibrated value.`` Today, that statement is just as true about calibration or research results as it was in 1968. Why is that true? What kind of information should we include in a statement of uncertainty accompanying a calibrated value? How and where do we get the information to include in an uncertainty statement? How should we interpret and use measurement uncertainty information? This discussion will provide answers to these and other questions about uncertainty in research and in calibration. The methodology to be described has been developed by national and international groups over the past nearly thirty years, and individuals were publishing information even earlier. Yet the work is largely unknown in many science and engineering arenas. I will illustrate various aspects of uncertainty analysis with some examples drawn from the radiometry measurement and calibration discipline from research activities.
Principles and applications of measurement and uncertainty analysis in research and calibration
Energy Technology Data Exchange (ETDEWEB)
Wells, C.V.
1992-11-01
Interest in Measurement Uncertainty Analysis has grown in the past several years as it has spread to new fields of application, and research and development of uncertainty methodologies have continued. This paper discusses the subject from the perspectives of both research and calibration environments. It presents a history of the development and an overview of the principles of uncertainty analysis embodied in the United States National Standard, ANSI/ASME PTC 19.1-1985, Measurement Uncertainty. Examples are presented in which uncertainty analysis was utilized or is needed to gain further knowledge of a particular measurement process and to characterize final results. Measurement uncertainty analysis provides a quantitative estimate of the interval about a measured value or an experiment result within which the true value of that quantity is expected to lie. Years ago, Harry Ku of the United States National Bureau of Standards stated that The informational content of the statement of uncertainty determines, to a large extent, the worth of the calibrated value.'' Today, that statement is just as true about calibration or research results as it was in 1968. Why is that true What kind of information should we include in a statement of uncertainty accompanying a calibrated value How and where do we get the information to include in an uncertainty statement How should we interpret and use measurement uncertainty information This discussion will provide answers to these and other questions about uncertainty in research and in calibration. The methodology to be described has been developed by national and international groups over the past nearly thirty years, and individuals were publishing information even earlier. Yet the work is largely unknown in many science and engineering arenas. I will illustrate various aspects of uncertainty analysis with some examples drawn from the radiometry measurement and calibration discipline from research activities.
Lacey, Ronald E; Faulkner, William Brock
2015-07-01
This work applied a propagation of uncertainty method to typical total suspended particulate (TSP) sampling apparatus in order to estimate the overall measurement uncertainty. The objectives of this study were to estimate the uncertainty for three TSP samplers, develop an uncertainty budget, and determine the sensitivity of the total uncertainty to environmental parameters. The samplers evaluated were the TAMU High Volume TSP Sampler at a nominal volumetric flow rate of 1.42 m3 min(-1) (50 CFM), the TAMU Low Volume TSP Sampler at a nominal volumetric flow rate of 17 L min(-1) (0.6 CFM) and the EPA TSP Sampler at the nominal volumetric flow rates of 1.1 and 1.7 m3 min(-1) (39 and 60 CFM). Under nominal operating conditions the overall measurement uncertainty was found to vary from 6.1x10(-6) g m(-3) to 18.0x10(-6) g m(-3), which represented an uncertainty of 1.7% to 5.2% of the measurement. Analysis of the uncertainty budget determined that three of the instrument parameters contributed significantly to the overall uncertainty: the uncertainty in the pressure drop measurement across the orifice meter during both calibration and testing and the uncertainty of the airflow standard used during calibration of the orifice meter. Five environmental parameters occurring during field measurements were considered for their effect on overall uncertainty: ambient TSP concentration, volumetric airflow rate, ambient temperature, ambient pressure, and ambient relative humidity. Of these, only ambient TSP concentration and volumetric airflow rate were found to have a strong effect on the overall uncertainty. The technique described in this paper can be applied to other measurement systems and is especially useful where there are no methods available to generate these values empirically. This work addresses measurement uncertainty of TSP samplers used in ambient conditions. Estimation of uncertainty in gravimetric measurements is of particular interest, since as ambient particulate
A Quantitative Measure For Evaluating Project Uncertainty Under Variation And Risk Effects
Directory of Open Access Journals (Sweden)
A. Chenarani
2017-10-01
Full Text Available The effects of uncertainty on a project and the risk event as the consequence of uncertainty are analyzed. The uncertainty index is proposed as a quantitative measure for evaluating the uncertainty of a project. This is done by employing entropy as the indicator of system disorder and lack of information. By employing this index, the uncertainty of each activity and its increase due to risk effects as well as project uncertainty changes as a function of time can be assessed. The results are implemented and analyzed for a small turbojet engine development project as the case study. The results of this study can be useful for project managers and other stakeholders for selecting the most effective risk management and uncertainty controlling method.
Energy Technology Data Exchange (ETDEWEB)
Hanley, O. [Radiological Protection Institute of Ireland, 3 Clonskeagh Square, Clonskeagh Road, Dublin 14 (Ireland)], E-mail: ohanley@rpii.ie; Gutierrez-Villanueva, J.L. [Laboratorio LIBRA, Edificio I-D, Paseo Belen 3, 47011 Valladolid (Spain); Departamento de Fisica Teorica, Atomica y Optica, Facultad de Ciencias, Paseo Prado de la Magdalena, s/n. 47005 Valladolid (Spain)], E-mail: joselg@libra.uva.es; Currivan, L. [Radiological Protection Institute of Ireland, 3 Clonskeagh Square, Clonskeagh Road, Dublin 14 (Ireland)], E-mail: lcurrivan@rpii.ie; Pollard, D. [Radiological Protection Institute of Ireland, 3 Clonskeagh Square, Clonskeagh Road, Dublin 14 (Ireland)], E-mail: dpollard@rpii.ie
2008-10-15
The RPII radon (Rn) laboratory holds accreditation for the International Standard ISO/IEC 17025. A requirement of this standard is an estimate of the uncertainty of measurement. This work shows two approaches to estimate the uncertainty. The bottom-up approach involved identifying the components that were found to contribute to the uncertainty. Estimates were made for each of these components, which were combined to give a combined uncertainty of 13.5% at a Rn concentration of approximately 2500 Bq m{sup -3} at the 68% confidence level. By applying a coverage factor of k = 2, the expanded uncertainty is {+-}27% at the 95% confidence level. The top-down approach used information previously gathered from intercomparison exercises to estimate the uncertainty. This investigation found an expanded uncertainty of {+-}22% at approximately 95% confidence level. This is good agreement for such independent estimates.
Hanley, O; Gutiérrez-Villanueva, J L; Currivan, L; Pollard, D
2008-10-01
The RPII radon (Rn) laboratory holds accreditation for the International Standard ISO/IEC 17025. A requirement of this standard is an estimate of the uncertainty of measurement. This work shows two approaches to estimate the uncertainty. The bottom-up approach involved identifying the components that were found to contribute to the uncertainty. Estimates were made for each of these components, which were combined to give a combined uncertainty of 13.5% at a Rn concentration of approximately 2500 Bq m(-3) at the 68% confidence level. By applying a coverage factor of k=2, the expanded uncertainty is +/-27% at the 95% confidence level. The top-down approach used information previously gathered from intercomparison exercises to estimate the uncertainty. This investigation found an expanded uncertainty of +/-22% at approximately 95% confidence level. This is good agreement for such independent estimates.
Uncertainty in Citizen Science observations: from measurement to user perception
Lahoz, William; Schneider, Philipp; Castell, Nuria
2016-04-01
Citizen Science activities concern general public engagement in scientific research activities when citizens actively contribute to science either with their intellectual effort or surrounding knowledge or with their tools and resources. The advent of technologies such as the Internet and smartphones, and the growth in their usage, has significantly increased the potential benefits from Citizen Science activities. Citizen Science observations from low-cost sensors, smartphones and Citizen Observatories, provide a novel and recent development in platforms for observing the Earth System, with the opportunity to extend the range of observational platforms available to society to spatio-temporal scales (10-100s m; 1 hr or less) highly relevant to citizen needs. The potential value of Citizen Science is high, with applications in science, education, social aspects, and policy aspects, but this potential, particularly for citizens and policymakers, remains largely untapped. Key areas where Citizen Science data start to have demonstrable benefits include GEOSS Societal Benefit Areas such as Health and Weather. Citizen Science observations have many challenges, including simulation of smaller spatial scales, noisy data, combination with traditional observational methods (satellite and in situ data), and assessment, representation and visualization of uncertainty. Within these challenges, that of the assessment and representation of uncertainty and its communication to users is fundamental, as it provides qualitative and/or quantitative information that influences the belief users will have in environmental information. This presentation will discuss the challenges in assessment and representation of uncertainty in Citizen Science observations, its communication to users, including the use of visualization, and the perception of this uncertainty information by users of Citizen Science observations.
Tian, H.; Xu, R.; Yang, J.; Zhang, B.; Yao, Y.; Pan, S.; Cai, W. J.; Lohrenz, S. E.
2017-12-01
The northern Gulf of Mexico (GOM), as one of the largest hypoxic zone in the world, is near the outlet of the Mississippi-Atchafalaya River Basin (MARB) that contributed to the increased fluxes of agriculturally derived nitrogen (N) since the 1950s. This increase of N exports could be primarily attributed to anthropogenic N inputs into the MARB (e.g., N fertilizer application), climate (e.g., precipitation), and land use change. A long-term data of monthly/annual dissolved inorganic nitrogen (DIN) exports from the MARB to the GOM had been released by the United States Geological Survey (USGS) since the 1970s. However, on one hand, dissolved organic nitrogen (DON) also plays an active role in supplying N for phytoplankton and bacteria in aquatic ecosystems; on the other hand, monitoring data provided by the USGS could not attribute the contributions of various factors to this N increase in the northern GOM. Here, we used a coupled hydrological-biogeochemical model, the Dynamic Land Ecosystem Model, to examine changes in DIN (ammonium and nitrate) and DON exports from the MARB to the GOM during 1901 2014. Meanwhile, we investigated how climate variability, land use change, land management, and atmospheric chemistry affected the annual and seasonal patterns of N export in the study area.
Thibodeau, Michel A; Carleton, R Nicholas; McEvoy, Peter M; Zvolensky, Michael J; Brandt, Charles P; Boelen, Paul A; Mahoney, Alison E J; Deacon, Brett J; Asmundson, Gordon J G
Intolerance of uncertainty (IU) is a construct of growing prominence in literature on anxiety disorders and major depressive disorder. Existing measures of IU do not define the uncertainty that respondents perceive as distressing. To address this limitation, we developed eight scales measuring
Learning about Measurement Uncertainties in Secondary Education: A Model of the Subject Matter
Priemer, Burkhard; Hellwig, Julia
2018-01-01
Estimating measurement uncertainties is important for experimental scientific work. However, this is very often neglected in school curricula and teaching practice, even though experimental work is seen as a fundamental part of teaching science. In order to call attention to the relevance of measurement uncertainties, we developed a comprehensive…
International Nuclear Information System (INIS)
Cho, Soo Yong; Park, Chan Woo
2004-01-01
Uncertainties generated from the individual measured variables have an influence on the uncertainty of the experimental result through a data reduction equation. In this study, a performance test of a single stage axial type turbine is conducted, and total-to-total efficiencies are measured at the various off-design points in the low pressure and cold state. Based on an experimental apparatus, a data reduction equation for turbine efficiency is formulated and six measured variables are selected. Codes are written to calculate the efficiency, the uncertainty of the efficiency, and the sensitivity of the efficiency uncertainty by each of the measured quantities. The influence of each measured variable on the experimental result is figured out. Results show that the largest Uncertainty Magnification Factor (UMF) value is obtained by the inlet total pressure among the six measured variables, and its value is always greater than one. The UMF values of the inlet total temperature, the torque, and the RPM are always one. The Uncertainty Percentage Contribution (UPC) of the RPM shows the lowest influence on the uncertainty of the turbine efficiency, but the UPC of the torque has the largest influence to the result among the measured variables. These results are applied to find the correct direction for meeting an uncertainty requirement of the experimental result in the planning or development phase of experiment, and also to offer ideas for preparing a measurement system in the planning phase
Comparison between bottom-up and top-down approaches in the estimation of measurement uncertainty.
Lee, Jun Hyung; Choi, Jee-Hye; Youn, Jae Saeng; Cha, Young Joo; Song, Woonheung; Park, Ae Ja
2015-06-01
Measurement uncertainty is a metrological concept to quantify the variability of measurement results. There are two approaches to estimate measurement uncertainty. In this study, we sought to provide practical and detailed examples of the two approaches and compare the bottom-up and top-down approaches to estimating measurement uncertainty. We estimated measurement uncertainty of the concentration of glucose according to CLSI EP29-A guideline. Two different approaches were used. First, we performed a bottom-up approach. We identified the sources of uncertainty and made an uncertainty budget and assessed the measurement functions. We determined the uncertainties of each element and combined them. Second, we performed a top-down approach using internal quality control (IQC) data for 6 months. Then, we estimated and corrected systematic bias using certified reference material of glucose (NIST SRM 965b). The expanded uncertainties at the low glucose concentration (5.57 mmol/L) by the bottom-up approach and top-down approaches were ±0.18 mmol/L and ±0.17 mmol/L, respectively (all k=2). Those at the high glucose concentration (12.77 mmol/L) by the bottom-up and top-down approaches were ±0.34 mmol/L and ±0.36 mmol/L, respectively (all k=2). We presented practical and detailed examples for estimating measurement uncertainty by the two approaches. The uncertainties by the bottom-up approach were quite similar to those by the top-down approach. Thus, we demonstrated that the two approaches were approximately equivalent and interchangeable and concluded that clinical laboratories could determine measurement uncertainty by the simpler top-down approach.
Energy Technology Data Exchange (ETDEWEB)
Teixeira, G.J.; Sousa, C.H.S.; Peixoto, J.G.P., E-mail: gt@ird.gov.br [Instituto de Radioproteção e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)
2017-07-01
The air kerma measurement is important to verify the applied doses in radiodiagnostic. The literature determines some methods to measure the entrance surface air kerma or entrance surface dose but some of this methods may increase the measurement with the backscattering. Were done setups of measurements to do correlations between them. The expanded uncertainty exceeded 5% for measurements with backscattering, reaching 8.36%, while in situations where the backscattering was avoided, the uncertainty was 3.43%. (author)
Status of uncertainty assessment in k0-NAA measurement. Anything still missing?
International Nuclear Information System (INIS)
Borut Smodis; Tinkara Bucar
2014-01-01
Several approaches to quantifying measurement uncertainty in k 0 -based neutron activation analysis (k 0 -NAA) are reviewed, comprising the original approach, the spreadsheet approach, the dedicated computer program involving analytical calculations and the two k 0 -NAA programs available on the market. Two imperfectness in the dedicated programs are identified, their impact assessed and possible improvements presented for a concrete experimental situation. The status of uncertainty assessment in k 0 -NAA is discussed and steps for improvement are recommended. It is concluded that the present magnitude of measurement uncertainty should further be improved by making additional efforts in reducing uncertainties of the relevant nuclear constants used. (author)
International Nuclear Information System (INIS)
Drégelyi-Kiss, Ágota; Czifra, Árpád
2014-01-01
The calculation methods of the capability of measurement processes in the automotive industry differ from each other. There are three main calculation methods: MSA, VDA 5 and the international standard, ISO 22514–7. During this research our aim was to compare the capability calculation methods in a case study. Two types of automotive parts (ten pieces of each) are chosen to examine the behaviour of the manufacturing process and to measure the required characteristics of the measurement process being evaluated. The measurement uncertainty of the measuring process is calculated according to the VDA 5 and ISO 22514–7, and MSA guidelines. In this study the conformance of a measurement process in an automotive manufacturing process is determined, and the similarities and the differences between the methods used are shown. (paper)
Istiningrum, Reni Banowati; Saepuloh, Azis; Jannah, Wirdatul; Aji, Didit Waskito
2017-03-01
Yogyakarta is one of patchouli oil distillation center in Indonesia. The quality of patchouli oil greatly affect its market price. Therefore, testing quality of patchouli oil parameters is an important concern, one through determination of the measurement uncertainty. This study will determine the measurement uncertainty of ester number, acid number and content of patchouli alcohol through a bottom up approach. Source contributor to measurement uncertainty of ester number is a mass of the sample, a blank and sample titration volume, the molar mass of KOH, HCl normality, and replication. While the source contributor of the measurement uncertainty of acid number is the mass of the sample, the sample titration volume, the relative mass and normality of KOH, and repetition. Determination of patchouli alcohol by Gas Chromatography considers the sources of measurement uncertainty only from repeatability because reference materials are not available.
International Nuclear Information System (INIS)
Spain, D.; Currivan, L.; Fitzgerald, H.; Pollard, D.
2005-01-01
Full text: At the Dosimetry and Calibration Service of the Radiological Protection Institute of Ireland (RPII) approximately 70,000 thermoluminescent dosemeters (TLDs) are issued each year to monitor occupationally exposed workers in Ireland. In addition the service offers a calibration service for radiation survey meters, contamination monitors and electronic personal dosemeters. In order to meet the requirements of ISO/IEC 17025, it is necessary to quantify the uncertainty of measurement using well defined concepts and to maintain an up to date estimate. In this work it is shown how the measurement uncertainty in the Dosimetry and Calibration Service has been estimated. When estimating the uncertainty of measurement, all uncertainty components which are of importance in the given situation are taken into account. The combined uncertainty of the system is determined by considering a number of systematic and random errors. The analysis will include assumptions made and these have been documented and justified. Components of uncertainty were determined in accordance with such documents as IEC 61066, Guide to Expression of Uncertainty in Measurement, and the National Physical Laboratory Measurement Good Practice Guide No. 11, as appropriate. Results of intercomparisons are also presented, which adds confidence to the uncertainty estimate. Although a great deal of work is involved is estimating uncertainty in both laboratories it is felt that a reasonable estimate of measurement uncertainty has been achieved given the available information. Furthermore, in keeping with the laboratory's commitment to continuous improvement, it is necessary to evaluate periodically the measurement uncertainties associated with the relevant procedures and a programme for the future is outlined. (author)
Examples of measurement uncertainty evaluations in accordance with the revised GUM
Runje, B.; Horvatic, A.; Alar, V.; Medic, S.; Bosnjakovic, A.
2016-11-01
The paper presents examples of the evaluation of uncertainty components in accordance with the current and revised Guide to the expression of uncertainty in measurement (GUM). In accordance with the proposed revision of the GUM a Bayesian approach was conducted for both type A and type B evaluations.The law of propagation of uncertainty (LPU) and the law of propagation of distribution applied through the Monte Carlo method, (MCM) were used to evaluate associated standard uncertainties, expanded uncertainties and coverage intervals. Furthermore, the influence of the non-Gaussian dominant input quantity and asymmetric distribution of the output quantity y on the evaluation of measurement uncertainty was analyzed. In the case when the probabilistically coverage interval is not symmetric, the coverage interval for the probability P is estimated from the experimental probability density function using the Monte Carlo method. Key highlights of the proposed revision of the GUM were analyzed through a set of examples.
International Nuclear Information System (INIS)
Muelaner, J E; Wang, Z; Keogh, P S; Brownell, J; Fisher, D
2016-01-01
Understanding the uncertainty of dimensional measurements for large products such as aircraft, spacecraft and wind turbines is fundamental to improving efficiency in these products. Much work has been done to ascertain the uncertainty associated with the main types of instruments used, based on laser tracking and photogrammetry, and the propagation of this uncertainty through networked measurements. Unfortunately this is not sufficient to understand the combined uncertainty of industrial measurements, which include secondary tooling and datum structures used to locate the coordinate frame. This paper presents for the first time a complete evaluation of the uncertainty of large scale industrial measurement processes. Generic analysis and design rules are proven through uncertainty evaluation and optimization for the measurement of a large aero gas turbine engine. This shows how the instrument uncertainty can be considered to be negligible. Before optimization the dominant source of uncertainty was the tooling design, after optimization the dominant source was thermal expansion of the engine; meaning that no further improvement can be made without measurement in a temperature controlled environment. These results will have a significant impact on the ability of aircraft and wind turbines to improve efficiency and therefore reduce carbon emissions, as well as the improved reliability of these products. (paper)
LOFT liquid level transducer application techniques and measurement uncertainty
International Nuclear Information System (INIS)
Batt, D.L.; Biladeau, G.L.; Goodrich, L.D.; Nightingale, C.M.
1979-01-01
A conductivity sensitive liquid level transducer (LLT) has been designed and used successfully for determining whether steam or water is present in the Loss-of-Fluid Tests (LOFT) performed by EG and G Idaho, Inc., at the Idaho National Engineering Laboratory. The presence of steam or water is determined by establishing a discriminator level which is set manually. A computer program establishes the presence or absence of water for each data point taken. In addition to liquid level, the LLT is used for reactor vessel mass and volume calculations. The uncertainty in the liquid level is essentially the spacing of the LLT electrodes
Directory of Open Access Journals (Sweden)
Zakharov Igor
2017-12-01
Full Text Available The specific features of the measuring instruments verification based on the results of their calibration are considered. It is noted that, in contrast to the verification procedure used in the legal metrology, the verification procedure for calibrated measuring instruments has to take into account the uncertainty of measurements into account. In this regard, a large number of measuring instruments, considered as those that are in compliance after verification in the legal metrology, turns out to be not in compliance after calibration. In this case, it is necessary to evaluate the probability of compliance of indicating measuring instruments. The procedure of compliance probability determination on the basis of the Monte Carlo method is considered. An example of calibration of a Vernier caliper is given.
National Research Council Canada - National Science Library
Morris, Thomas
2004-01-01
... from the facility structure, hot exhaust gases, and the measurement equipment itself. The atmosphere and a protective ZnSe window that shields the camera from the hot engine exhaust also introduce measurement uncertainty due to attenuation...
Measurement uncertainties for vacuum standards at Korea Research Institute of Standards and Science
International Nuclear Information System (INIS)
Hong, S. S.; Shin, Y. H.; Chung, K. H.
2006-01-01
The Korea Research Institute of Standards and Science has three major vacuum systems: an ultrasonic interferometer manometer (UIM) (Sec. II, Figs. 1 and 2) for low vacuum, a static expansion system (SES) (Sec. III, Figs. 3 and 4) for medium vacuum, and an orifice-type dynamic expansion system (DES) (Sec. IV, Figs. 5 and 6) for high and ultrahigh vacuum. For each system explicit measurement model equations with multiple variables are, respectively, given. According to ISO standards, all these system variable errors were used to calculate the expanded uncertainty (U). For each system the expanded uncertainties (k=1, confidence level=95%) and relative expanded uncertainty (expanded uncertainty/generated pressure) are summarized in Table IV and are estimated to be as follows. For UIM, at 2.5-300 Pa generated pressure, the expanded uncertainty is -2 Pa and the relative expanded uncertainty is -2 ; at 1-100 kPa generated pressure, the expanded uncertainty is -5 . For SES, at 3-100 Pa generated pressure, the expanded uncertainty is -1 Pa and the relative expanded uncertainty is -3 . For DES, at 4.6x10 -3 -1.3x10 -2 Pa generated pressure, the expanded uncertainty is -4 Pa and the relative expanded uncertainty is -3 ; at 3.0x10 -6 -9.0x10 -4 Pa generated pressure, the expanded uncertainty is -6 Pa and the relative expanded uncertainty is -2 . Within uncertainty limits our bilateral and key comparisons [CCM.P-K4 (10 Pa-1 kPa)] are extensive and in good agreement with those of other nations (Fig. 8 and Table V)
Total error vs. measurement uncertainty: revolution or evolution?
Oosterhuis, Wytze P; Theodorsson, Elvar
2016-02-01
The first strategic EFLM conference "Defining analytical performance goals, 15 years after the Stockholm Conference" was held in the autumn of 2014 in Milan. It maintained the Stockholm 1999 hierarchy of performance goals but rearranged them and established five task and finish groups to work on topics related to analytical performance goals including one on the "total error" theory. Jim Westgard recently wrote a comprehensive overview of performance goals and of the total error theory critical of the results and intentions of the Milan 2014 conference. The "total error" theory originated by Jim Westgard and co-workers has a dominating influence on the theory and practice of clinical chemistry but is not accepted in other fields of metrology. The generally accepted uncertainty theory, however, suffers from complex mathematics and conceived impracticability in clinical chemistry. The pros and cons of the total error theory need to be debated, making way for methods that can incorporate all relevant causes of uncertainty when making medical diagnoses and monitoring treatment effects. This development should preferably proceed not as a revolution but as an evolution.
Impact of measurement uncertainty from experimental load distribution factors on bridge load rating
Gangone, Michael V.; Whelan, Matthew J.
2018-03-01
Load rating and testing of highway bridges is important in determining the capacity of the structure. Experimental load rating utilizes strain transducers placed at critical locations of the superstructure to measure normal strains. These strains are then used in computing diagnostic performance measures (neutral axis of bending, load distribution factor) and ultimately a load rating. However, it has been shown that experimentally obtained strain measurements contain uncertainties associated with the accuracy and precision of the sensor and sensing system. These uncertainties propagate through to the diagnostic indicators that in turn transmit into the load rating calculation. This paper will analyze the effect that measurement uncertainties have on the experimental load rating results of a 3 span multi-girder/stringer steel and concrete bridge. The focus of this paper will be limited to the uncertainty associated with the experimental distribution factor estimate. For the testing discussed, strain readings were gathered at the midspan of each span of both exterior girders and the center girder. Test vehicles of known weight were positioned at specified locations on each span to generate maximum strain response for each of the five girders. The strain uncertainties were used in conjunction with a propagation formula developed by the authors to determine the standard uncertainty in the distribution factor estimates. This distribution factor uncertainty is then introduced into the load rating computation to determine the possible range of the load rating. The results show the importance of understanding measurement uncertainty in experimental load testing.
Directory of Open Access Journals (Sweden)
Přečková Petra
2012-04-01
Full Text Available Abstract Background Narrative medical reports do not use standardized terminology and often bring insufficient information for statistical processing and medical decision making. Objectives of the paper are to propose a method for measuring diversity in medical reports written in any language, to compare diversities in narrative and structured medical reports and to map attributes and terms to selected classification systems. Methods A new method based on a general concept of f-diversity is proposed for measuring diversity of medical reports in any language. The method is based on categorized attributes recorded in narrative or structured medical reports and on international classification systems. Values of categories are expressed by terms. Using SNOMED CT and ICD 10 we are mapping attributes and terms to predefined codes. We use f-diversities of Gini-Simpson and Number of Categories types to compare diversities of narrative and structured medical reports. The comparison is based on attributes selected from the Minimal Data Model for Cardiology (MDMC. Results We compared diversities of 110 Czech narrative medical reports and 1119 Czech structured medical reports. Selected categorized attributes of MDMC had mostly different numbers of categories and used different terms in narrative and structured reports. We found more than 60% of MDMC attributes in SNOMED CT. We showed that attributes in narrative medical reports had greater diversity than the same attributes in structured medical reports. Further, we replaced each value of category (term used for attributes in narrative medical reports by the closest term and the category used in MDMC for structured medical reports. We found that relative Gini-Simpson diversities in structured medical reports were significantly smaller than those in narrative medical reports except the "Allergy" attribute. Conclusions Terminology in narrative medical reports is not standardized. Therefore it is nearly
International Nuclear Information System (INIS)
Sathyabama, N.
2014-01-01
It is now widely recognized that, when all of the known or suspected components of errors have been evaluated and corrected, there still remains an uncertainty, that is, a doubt about how well the result of the measurement represents the value of the quantity being measured. Evaluation of measurement data - Guide to the expression of Uncertainty in Measurement (GUM) is a guidance document, the purpose of which is to promote full information on how uncertainty statements are arrived at and to provide a basis for the international comparison of measurement results. In this paper, uncertainty estimations following GUM guidelines have been made for the measured values of online thoron concentrations using Lucas scintillation cell to prove that the correction for disequilibrium between 220 Rn and 216 Po is significant in online 220 Rn measurements
Covariance methodology applied to uncertainties in I-126 disintegration rate measurements
International Nuclear Information System (INIS)
Fonseca, K.A.; Koskinas, M.F.; Dias, M.S.
1996-01-01
The covariance methodology applied to uncertainties in 126 I disintegration rate measurements is described. Two different coincidence systems were used due to the complex decay scheme of this radionuclide. The parameters involved in the determination of the disintegration rate in each experimental system present correlated components. In this case, the conventional statistical methods to determine the uncertainties (law of propagation) result in wrong values for the final uncertainty. Therefore, use of the methodology of the covariance matrix is necessary. The data from both systems were combined taking into account all possible correlations between the partial uncertainties. (orig.)
Statistical Determination of Impact of Property Attributes for Weak Measurement Scales
Directory of Open Access Journals (Sweden)
Doszyń Mariusz
2017-12-01
Full Text Available Many of the property attributes are measured on weak scales (nominal and ordinal scale. For example, land allocation in the development plan is measured on a nominal scale and such categories as proximity, equipment, access to means of communication, location, and soil and water conditions, are measured on an ordinal scale. The use of statistical measures appropriate for interval or quotient scales is wrong in such cases. Therefore, the article presents statistical measures that allow specifying the impact of the attributes on real estate prices, which can be used for the weaker scales, mainly for the ordinal scale. In the empirical illustration the proposed measures will be calculated by using the actual database of transaction prices.
SU-G-BRB-14: Uncertainty of Radiochromic Film Based Relative Dose Measurements
Energy Technology Data Exchange (ETDEWEB)
Devic, S; Tomic, N; DeBlois, F; Seuntjens, J [McGill University, Montreal, QC (Canada); Lewis, D [RCF Consulting, LLC, Monroe, CT (United States); Aldelaijan, S [King Faisal Specialist Hospital & Research Center, Riyadh (Saudi Arabia)
2016-06-15
Purpose: Due to inherently non-linear dose response, measurement of relative dose distribution with radiochromic film requires measurement of absolute dose using a calibration curve following previously established reference dosimetry protocol. On the other hand, a functional form that converts the inherently non-linear dose response curve of the radiochromic film dosimetry system into linear one has been proposed recently [Devic et al, Med. Phys. 39 4850–4857 (2012)]. However, there is a question what would be the uncertainty of such measured relative dose. Methods: If the relative dose distribution is determined going through the reference dosimetry system (conversion of the response by using calibration curve into absolute dose) the total uncertainty of such determined relative dose will be calculated by summing in quadrature total uncertainties of doses measured at a given and at the reference point. On the other hand, if the relative dose is determined using linearization method, the new response variable is calculated as ζ=a(netOD)n/ln(netOD). In this case, the total uncertainty in relative dose will be calculated by summing in quadrature uncertainties for a new response function (σζ) for a given and the reference point. Results: Except at very low doses, where the measurement uncertainty dominates, the total relative dose uncertainty is less than 1% for the linear response method as compared to almost 2% uncertainty level for the reference dosimetry method. The result is not surprising having in mind that the total uncertainty of the reference dose method is dominated by the fitting uncertainty, which is mitigated in the case of linearization method. Conclusion: Linearization of the radiochromic film dose response provides a convenient and a more precise method for relative dose measurements as it does not require reference dosimetry and creation of calibration curve. However, the linearity of the newly introduced function must be verified. Dave Lewis
A decision-oriented measure of uncertainty importance for use in PSA
International Nuclear Information System (INIS)
Poern, Kurt
1997-01-01
For the interpretation of the results of probabilistic risk assessments it is important to have measures which identify the basic events that contribute most to the frequency of the top event but also to identify basic events that are the main contributors to the uncertainty in this frequency. Both types of measures, often called Importance Measure and Measure of Uncertainty Importance, respectively, have been the subject of interest for many researchers in the reliability field. The most frequent mode of uncertainty analysis in connection with probabilistic risk assessment has been to propagate the uncertainty of all model parameters up to an uncertainty distribution for the top event frequency. Various uncertainty importance measures have been proposed in order to point out the parameters that in some sense are the main contributors to the top event distribution. The new measure of uncertainty importance suggested here goes a step further in that it has been developed within a decision theory framework, thereby providing an indication of on what basic event it would be most valuable, from the decision-making point of view, to procure more information
Helium Mass Spectrometer Leak Detection: A Method to Quantify Total Measurement Uncertainty
Mather, Janice L.; Taylor, Shawn C.
2015-01-01
In applications where leak rates of components or systems are evaluated against a leak rate requirement, the uncertainty of the measured leak rate must be included in the reported result. However, in the helium mass spectrometer leak detection method, the sensitivity, or resolution, of the instrument is often the only component of the total measurement uncertainty noted when reporting results. To address this shortfall, a measurement uncertainty analysis method was developed that includes the leak detector unit's resolution, repeatability, hysteresis, and drift, along with the uncertainty associated with the calibration standard. In a step-wise process, the method identifies the bias and precision components of the calibration standard, the measurement correction factor (K-factor), and the leak detector unit. Together these individual contributions to error are combined and the total measurement uncertainty is determined using the root-sum-square method. It was found that the precision component contributes more to the total uncertainty than the bias component, but the bias component is not insignificant. For helium mass spectrometer leak rate tests where unit sensitivity alone is not enough, a thorough evaluation of the measurement uncertainty such as the one presented herein should be performed and reported along with the leak rate value.
Top down arsenic uncertainty measurement in water and sediments from Guarapiranga dam (Brazil)
Faustino, M. G.; Lange, C. N.; Monteiro, L. R.; Furusawa, H. A.; Marques, J. R.; Stellato, T. B.; Soares, S. M. V.; da Silva, T. B. S. C.; da Silva, D. B.; Cotrim, M. E. B.; Pires, M. A. F.
2018-03-01
Total arsenic measurements assessment regarding legal threshold demands more than average and standard deviation approach. In this way, analytical measurement uncertainty evaluation was conducted in order to comply with legal requirements and to allow the balance of arsenic in both water and sediment compartments. A top-down approach for measurement uncertainties was applied to evaluate arsenic concentrations in water and sediments from Guarapiranga dam (São Paulo, Brazil). Laboratory quality control and arsenic interlaboratory tests data were used in this approach to estimate the uncertainties associated with the methodology.
Rigo-Bonnin, Raül; Blanco-Font, Aurora; Canalias, Francesca
2018-05-08
Values of mass concentration of tacrolimus in whole blood are commonly used by the clinicians for monitoring the status of a transplant patient and for checking whether the administered dose of tacrolimus is effective. So, clinical laboratories must provide results as accurately as possible. Measurement uncertainty can allow ensuring reliability of these results. The aim of this study was to estimate measurement uncertainty of whole blood mass concentration tacrolimus values obtained by UHPLC-MS/MS using two top-down approaches: the single laboratory validation approach and the proficiency testing approach. For the single laboratory validation approach, we estimated the uncertainties associated to the intermediate imprecision (using long-term internal quality control data) and the bias (utilizing a certified reference material). Next, we combined them together with the uncertainties related to the calibrators-assigned values to obtain a combined uncertainty for, finally, to calculate the expanded uncertainty. For the proficiency testing approach, the uncertainty was estimated in a similar way that the single laboratory validation approach but considering data from internal and external quality control schemes to estimate the uncertainty related to the bias. The estimated expanded uncertainty for single laboratory validation, proficiency testing using internal and external quality control schemes were 11.8%, 13.2%, and 13.0%, respectively. After performing the two top-down approaches, we observed that their uncertainty results were quite similar. This fact would confirm that either two approaches could be used to estimate the measurement uncertainty of whole blood mass concentration tacrolimus values in clinical laboratories. Copyright © 2018 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
International Nuclear Information System (INIS)
Chun, Moon-Hyun; Han, Seok-Jung; Tak, Nam-IL
2000-01-01
A simple measure of uncertainty importance using the entire change of cumulative distribution functions (CDFs) has been developed for use in probability safety assessments (PSAs). The entire change of CDFs is quantified in terms of the metric distance between two CDFs. The metric distance measure developed in this study reflects the relative impact of distributional changes of inputs on the change of an output distribution, while most of the existing uncertainty importance measures reflect the magnitude of relative contribution of input uncertainties to the output uncertainty. The present measure has been evaluated analytically for various analytical distributions to examine its characteristics. To illustrate the applicability and strength of the present measure, two examples are provided. The first example is an application of the present measure to a typical problem of a system fault tree analysis and the second one is for a hypothetical non-linear model. Comparisons of the present result with those obtained by existing uncertainty importance measures show that the metric distance measure is a useful tool to express the measure of uncertainty importance in terms of the relative impact of distributional changes of inputs on the change of an output distribution
A new measure of uncertainty importance based on distributional sensitivity analysis for PSA
International Nuclear Information System (INIS)
Han, Seok Jung; Tak, Nam Il; Chun, Moon Hyun
1996-01-01
The main objective of the present study is to propose a new measure of uncertainty importance based on distributional sensitivity analysis. The new measure is developed to utilize a metric distance obtained from cumulative distribution functions (cdfs). The measure is evaluated for two cases: one is a cdf given by a known analytical distribution and the other given by an empirical distribution generated by a crude Monte Carlo simulation. To study its applicability, the present measure has been applied to two different cases. The results are compared with those of existing three methods. The present approach is a useful measure of uncertainty importance which is based on cdfs. This method is simple and easy to calculate uncertainty importance without any complex process. On the basis of the results obtained in the present work, the present method is recommended to be used as a tool for the analysis of uncertainty importance
Energy Technology Data Exchange (ETDEWEB)
Bruschewski, Martin; Schiffer, Heinz-Peter [Technische Universitaet Darmstadt, Institute of Gas Turbines and Aerospace Propulsion, Darmstadt (Germany); Freudenhammer, Daniel [Technische Universitaet Darmstadt, Institute of Fluid Mechanics and Aerodynamics, Center of Smart Interfaces, Darmstadt (Germany); Buchenberg, Waltraud B. [University Medical Center Freiburg, Medical Physics, Department of Radiology, Freiburg (Germany); Grundmann, Sven [University of Rostock, Institute of Fluid Mechanics, Rostock (Germany)
2016-05-15
Velocity measurements with magnetic resonance velocimetry offer outstanding possibilities for experimental fluid mechanics. The purpose of this study was to provide practical guidelines for the estimation of the measurement uncertainty in such experiments. Based on various test cases, it is shown that the uncertainty estimate can vary substantially depending on how the uncertainty is obtained. The conventional approach to estimate the uncertainty from the noise in the artifact-free background can lead to wrong results. A deviation of up to -75% is observed with the presented experiments. In addition, a similarly high deviation is demonstrated with the data from other studies. As a more accurate approach, the uncertainty is estimated directly from the image region with the flow sample. Two possible estimation methods are presented. (orig.)
Bruschewski, Martin; Freudenhammer, Daniel; Buchenberg, Waltraud B.; Schiffer, Heinz-Peter; Grundmann, Sven
2016-05-01
Velocity measurements with magnetic resonance velocimetry offer outstanding possibilities for experimental fluid mechanics. The purpose of this study was to provide practical guidelines for the estimation of the measurement uncertainty in such experiments. Based on various test cases, it is shown that the uncertainty estimate can vary substantially depending on how the uncertainty is obtained. The conventional approach to estimate the uncertainty from the noise in the artifact-free background can lead to wrong results. A deviation of up to -75 % is observed with the presented experiments. In addition, a similarly high deviation is demonstrated with the data from other studies. As a more accurate approach, the uncertainty is estimated directly from the image region with the flow sample. Two possible estimation methods are presented.
Utilization of Software Tools for Uncertainty Calculation in Measurement Science Education
International Nuclear Information System (INIS)
Zangl, Hubert; Zine-Zine, Mariam; Hoermaier, Klaus
2015-01-01
Despite its importance, uncertainty is often neglected by practitioners in the design of system even in safety critical applications. Thus, problems arising from uncertainty may only be identified late in the design process and thus lead to additional costs. Although there exists numerous tools to support uncertainty calculation, reasons for limited usage in early design phases may be low awareness of the existence of the tools and insufficient training in the practical application. We present a teaching philosophy that addresses uncertainty from the very beginning of teaching measurement science, in particular with respect to the utilization of software tools. The developed teaching material is based on the GUM method and makes use of uncertainty toolboxes in the simulation environment. Based on examples in measurement science education we discuss advantages and disadvantages of the proposed teaching philosophy and include feedback from students
Calibration and uncertainty in electromagnetic fields measuring methods
International Nuclear Information System (INIS)
Anglesio, L.; Crotti, G.; Borsero, M.; Vizio, G.
1999-01-01
Calibration and reliability in electromagnetic field measuring methods are assured by calibration of measuring instruments. In this work are illustrated systems for generation of electromagnetic fields at low and high frequency, calibration standard and accuracy [it
Haller, Simone P W; Raeder, Sophie M; Scerif, Gaia; Cohen Kadosh, Kathrin; Lau, Jennifer Y F
2016-03-01
We evaluated the utility of a novel, picture-based tool to measure how adolescents interpret and attribute cause to social exchanges and whether biases in these processes relate to social anxiety. Briefly presented ambiguous visual social scenes, each containing a photograph of the adolescent as the protagonist, were followed by three possible interpretations (positive, negative, neutral/unrelated) and two possible causal attributions (internal, external) to which participants responded. Ninety-five adolescents aged 14 to 17 recruited from mainstream schools, with varying levels of social anxiety rated the likelihood of positive, negative and unrelated interpretations before selecting the single interpretation they deemed as most likely. This was followed by a question prompting them to decide between an internal or external causal attribution for the interpreted event. Across scenarios, adolescents with higher levels of social anxiety rated negative interpretations as more likely and positive interpretations as less likely compared to lower socially anxious adolescents. Higher socially anxious adolescents were also more likely to select internal attributions to negative and less likely to select internal attributions for positive events than adolescents with lower levels of social anxiety. Adolescents with higher social anxiety display cognitive biases in interpretation and attribution. This tool is suitable for measuring cognitive biases of complex visual-social cues in youth populations with social anxiety and simulates the demands of daily social experiences more closely. As we did not measure depressive symptoms, we cannot be sure that biases linked to social anxiety are not due to concurrent low mood. Copyright © 2015. Published by Elsevier Ltd.
Peest, Christian; Schinke, Carsten; Brendel, Rolf; Schmidt, Jan; Bothe, Karsten
2017-01-01
Spectrophotometers are operated in numerous fields of science and industry for a variety of applications. In order to provide confidence for the measured data, analyzing the associated uncertainty is valuable. However, the uncertainty of the measurement results is often unknown or reduced to sample-related contributions. In this paper, we describe our approach for the systematic determination of the measurement uncertainty of the commercially available two-channel spectrophotometer Agilent Cary 5000 in accordance with the Guide to the expression of uncertainty in measurements. We focus on the instrumentation-related uncertainty contributions rather than the specific application and thus outline a general procedure which can be adapted for other instruments. Moreover, we discover a systematic signal deviation due to the inertia of the measurement amplifier and develop and apply a correction procedure. Thereby we increase the usable dynamic range of the instrument by more than one order of magnitude. We present methods for the quantification of the uncertainty contributions and combine them into an uncertainty budget for the device.
Working with Error and Uncertainty to Increase Measurement Validity
Amrein-Beardsley, Audrey; Barnett, Joshua H.
2012-01-01
Over the previous two decades, the era of accountability has amplified efforts to measure educational effectiveness more than Edward Thorndike, the father of educational measurement, likely would have imagined. Expressly, the measurement structure for evaluating educational effectiveness continues to rely increasingly on one sole…
Validity of Willingness to Pay Measures under Preference Uncertainty.
Braun, Carola; Rehdanz, Katrin; Schmidt, Ulrich
2016-01-01
Recent studies in the marketing literature developed a new method for eliciting willingness to pay (WTP) with an open-ended elicitation format: the Range-WTP method. In contrast to the traditional approach of eliciting WTP as a single value (Point-WTP), Range-WTP explicitly allows for preference uncertainty in responses. The aim of this paper is to apply Range-WTP to the domain of contingent valuation and to test for its theoretical validity and robustness in comparison to the Point-WTP. Using data from two novel large-scale surveys on the perception of solar radiation management (SRM), a little-known technique for counteracting climate change, we compare the performance of both methods in the field. In addition to the theoretical validity (i.e. the degree to which WTP values are consistent with theoretical expectations), we analyse the test-retest reliability and stability of our results over time. Our evidence suggests that the Range-WTP method clearly outperforms the Point-WTP method.
Validity of Willingness to Pay Measures under Preference Uncertainty.
Directory of Open Access Journals (Sweden)
Carola Braun
Full Text Available Recent studies in the marketing literature developed a new method for eliciting willingness to pay (WTP with an open-ended elicitation format: the Range-WTP method. In contrast to the traditional approach of eliciting WTP as a single value (Point-WTP, Range-WTP explicitly allows for preference uncertainty in responses. The aim of this paper is to apply Range-WTP to the domain of contingent valuation and to test for its theoretical validity and robustness in comparison to the Point-WTP. Using data from two novel large-scale surveys on the perception of solar radiation management (SRM, a little-known technique for counteracting climate change, we compare the performance of both methods in the field. In addition to the theoretical validity (i.e. the degree to which WTP values are consistent with theoretical expectations, we analyse the test-retest reliability and stability of our results over time. Our evidence suggests that the Range-WTP method clearly outperforms the Point-WTP method.
International Nuclear Information System (INIS)
Mehrad, Vahid; Xue, Deyi; Gu, Peihua
2013-01-01
Inspection of a manufactured freeform surface can be conducted by building its surface model and comparing this manufactured surface model with the ideal design surface model and its tolerance requirement. The manufactured freeform surface model is usually achieved by obtaining measurement points on the manufactured surface, transforming these measurement points from the measurement coordinate system to the design coordinate system through localization, and reconstructing the surface model using the localized measurement points. In this research, a method was developed to estimate the locations and their variances of any selected points on the reconstructed freeform surface considering different sources of uncertainties in measurement, localization and surface reconstruction processes. In this method, first locations and variances of the localized measurement points are calculated considering uncertainties of the measurement points and uncertainties introduced in the localization processes. Then locations and variances of points on the reconstructed freeform surface are obtained considering uncertainties of the localized measurement points and uncertainties introduced in the freeform surface reconstruction process. Two case studies were developed to demonstrate how these three different uncertainty sources influence the quality of the reconstructed freeform curve and freeform surface in inspection. (paper)
Quantifying measurement uncertainties in ADCP measurements in non-steady, inhomogeneous flow
Schäfer, Stefan
2017-04-01
The author presents a laboratory study of fixed-platform four-beam ADCP and three-beam ADV measurements in the tailrace of a micro hydro power setup with a 35kW Kaplan-turbine and 2.5m head. The datasets discussed quantify measurement uncertainties of the ADCP measurement technique coming from non-steady, inhomogeneous flow. For constant discharge of 1.5m3/s, two different flow scenarios were investigated: one being the regular tailrace flow downstream the draft tube and the second being a straightened, less inhomogeneous flow, which was generated by the use of a flow straightening device: A rack of diameter 40mm pipe sections was mounted right behind the draft tube. ADCP measurements (sampling rate 1.35Hz) were conducted in three distances behind the draft tube and compared bin-wise to measurements of three simultaneously measuring ADV probes (sampling rate 64Hz). The ADV probes were aligned horizontally and the ADV bins were placed in the centers of two facing ADCP bins and in the vertical under the ADCP probe of the corresponding depth. Rotating the ADV probes by 90° allowed for measurements of the other two facing ADCP bins. For reasons of mutual probe interaction, ADCP and ADV measurements were not conducted at the same time. The datasets were evaluated by using mean and fluctuation velocities. Turbulence parameters were calculated and compared as far as applicable. Uncertainties coming from non-steady flow were estimated with the normalized mean square error und evaluated by comparing long-term measurements of 60 minutes to shorter measurement intervals. Uncertainties coming from inhomogeneous flow were evaluated by comparison of ADCP with ADV data along the ADCP beams where ADCP data were effectively measured and in the vertical under the ADCP probe where velocities of the ADCP measurements were displayed. Errors coming from non-steady flow could be compensated through sufficiently long measurement intervals with high enough sampling rates depending on the
The grey relational approach for evaluating measurement uncertainty with poor information
International Nuclear Information System (INIS)
Luo, Zai; Wang, Yanqing; Zhou, Weihu; Wang, Zhongyu
2015-01-01
The Guide to the Expression of Uncertainty in Measurement (GUM) is the master document for measurement uncertainty evaluation. However, the GUM may encounter problems and does not work well when the measurement data have poor information. In most cases, poor information means a small data sample and an unknown probability distribution. In these cases, the evaluation of measurement uncertainty has become a bottleneck in practical measurement. To solve this problem, a novel method called the grey relational approach (GRA), different from the statistical theory, is proposed in this paper. The GRA does not require a large sample size or probability distribution information of the measurement data. Mathematically, the GRA can be divided into three parts. Firstly, according to grey relational analysis, the grey relational coefficients between the ideal and the practical measurement output series are obtained. Secondly, the weighted coefficients and the measurement expectation function will be acquired based on the grey relational coefficients. Finally, the measurement uncertainty is evaluated based on grey modeling. In order to validate the performance of this method, simulation experiments were performed and the evaluation results show that the GRA can keep the average error around 5%. Besides, the GRA was also compared with the grey method, the Bessel method, and the Monte Carlo method by a real stress measurement. Both the simulation experiments and real measurement show that the GRA is appropriate and effective to evaluate the measurement uncertainty with poor information. (paper)
International Nuclear Information System (INIS)
Elmont, T.H.; Langner, Diana C.; MacArthur, D.W.; Mayo, D.R.; Smith, M.K.; Modenov, A.
2005-01-01
This report describes the software development for the plutonium attribute verification system - AVNG. A brief synopsis of the technical solution for the measurement system is presented. The main tasks for the software development that is underway are formulated. The development tasks are shown in software structural flowcharts, measurement system state diagram and a description of the software. The current status of the AVNG software development is elucidated.
Uncertainty Estimation Improves Energy Measurement and Verification Procedures
Walter, Travis; Price, Phillip N.; Sohn, Michael D.
2014-01-01
Implementing energy conservation measures in buildings can reduce energy costs and environmental impacts, but such measures cost money to implement so intelligent investment strategies require the ability to quantify the energy savings by comparing actual energy used to how much energy would have been used in absence of the conservation measures (known as the baseline energy use). Methods exist for predicting baseline energy use, but a limitation of most statistical methods reported in the li...
Directory of Open Access Journals (Sweden)
Dieisson Pivoto
2016-04-01
Full Text Available ABSTRACT: The study aimed to i quantify the measurement uncertainty in the physical tests of rice and beans for a hypothetical defect, ii verify whether homogenization and sample reduction in the physical classification tests of rice and beans is effective to reduce the measurement uncertainty of the process and iii determine whether the increase in size of beans sample increases accuracy and reduces measurement uncertainty in a significant way. Hypothetical defects in rice and beans with different damage levels were simulated according to the testing methodology determined by the Normative Ruling of each product. The homogenization and sample reduction in the physical classification of rice and beans are not effective, transferring to the final test result a high measurement uncertainty. The sample size indicated by the Normative Ruling did not allow an appropriate homogenization and should be increased.
Development of Uncertainty Quantification Method for MIR-PIV Measurement using BOS Technique
International Nuclear Information System (INIS)
Seong, Jee Hyun; Song, Min Seop; Kim, Eung Soo
2014-01-01
Matching Index of Refraction (MIR) is frequently used for obtaining high quality PIV measurement data. ven small distortion by unmatched refraction index of test section can result in uncertainty problems. In this context, it is desirable to construct new concept for checking errors of MIR and following uncertainty of PIV measurement. This paper proposes a couple of experimental concept and relative results. This study developed an MIR uncertainty quantification method for PIV measurement using SBOS technique. From the reference data of the BOS, the reliable SBOS experiment procedure was constructed. Then with the combination of SBOS technique with MIR-PIV technique, velocity vector and refraction displacement vector field was measured simultaneously. MIR errors are calculated through mathematical equation, in which PIV and SBOS data are put. These errors are also verified by another BOS experiment. Finally, with the applying of calculated MIR-PIV uncertainty, correct velocity vector field can be obtained regardless of MIR errors
Experimental Test of Entropic Noise-Disturbance Uncertainty Relations for Spin-1/2 Measurements.
Sulyok, Georg; Sponar, Stephan; Demirel, Bülent; Buscemi, Francesco; Hall, Michael J W; Ozawa, Masanao; Hasegawa, Yuji
2015-07-17
Information-theoretic definitions for noise and disturbance in quantum measurements were given in [Phys. Rev. Lett. 112, 050401 (2014)] and a state-independent noise-disturbance uncertainty relation was obtained. Here, we derive a tight noise-disturbance uncertainty relation for complementary qubit observables and carry out an experimental test. Successive projective measurements on the neutron's spin-1/2 system, together with a correction procedure which reduces the disturbance, are performed. Our experimental results saturate the tight noise-disturbance uncertainty relation for qubits when an optimal correction procedure is applied.
Practical estimation of the uncertainty of analytical measurement standards
Peters, R.J.B.; Elbers, I.J.W.; Klijnstra, M.D.; Stolker, A.A.M.
2011-01-01
Nowadays, a lot of time and resources are used to determine the quality of goods and services. As a consequence, the quality of measurements themselves, e.g., the metrological traceability of the measured quantity values is essential to allow a proper evaluation of the results with regard to
Doytchinov, I.; Tonnellier, X.; Shore, P.; Nicquevert, B.; Modena, M.; Mainaud Durand, H.
2018-05-01
Micrometric assembly and alignment requirements for future particle accelerators, and especially large assemblies, create the need for accurate uncertainty budgeting of alignment measurements. Measurements and uncertainties have to be accurately stated and traceable, to international standards, for metre-long sized assemblies, in the range of tens of µm. Indeed, these hundreds of assemblies will be produced and measured by several suppliers around the world, and will have to be integrated into a single machine. As part of the PACMAN project at CERN, we proposed and studied a practical application of probabilistic modelling of task-specific alignment uncertainty by applying a simulation by constraints calibration method. Using this method, we calibrated our measurement model using available data from ISO standardised tests (10360 series) for the metrology equipment. We combined this model with reference measurements and analysis of the measured data to quantify the actual specific uncertainty of each alignment measurement procedure. Our methodology was successfully validated against a calibrated and traceable 3D artefact as part of an international inter-laboratory study. The validated models were used to study the expected alignment uncertainty and important sensitivity factors in measuring the shortest and longest of the compact linear collider study assemblies, 0.54 m and 2.1 m respectively. In both cases, the laboratory alignment uncertainty was within the targeted uncertainty budget of 12 µm (68% confidence level). It was found that the remaining uncertainty budget for any additional alignment error compensations, such as the thermal drift error due to variation in machine operation heat load conditions, must be within 8.9 µm and 9.8 µm (68% confidence level) respectively.
PDF uncertainties in precision electroweak measurements, including the W mass, in ATLAS
Cooper-Sarkar, Amanda; The ATLAS collaboration
2015-01-01
Now that the Higgs mass is known all the parameters of the SM are known- but with what accuracy? Precision EW measurements test the self-consistency of the SM- and thus can give hints of BSM physics. Precision measurements of $sin^2\\theta _W$ and the W mass are limited by PDF uncertainties This contribution discusses these uncertainties and what can be done to improve them.
2016-03-01
CYCLONE TRACK FORECAST ERROR DISTRIBUTIONS WITH MEASUREMENTS OF FORECAST UNCERTAINTY by Nicholas M. Chisler March 2016 Thesis Advisor...March 2016 3. REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE RELATING TROPICAL CYCLONE TRACK FORECAST ERROR DISTRIBUTIONS...WITH MEASUREMENTS OF FORECAST UNCERTAINTY 5. FUNDING NUMBERS 6. AUTHOR(S) Nicholas M. Chisler 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES
A systematic approach to the modelling of measurements for uncertainty evaluation
International Nuclear Information System (INIS)
Sommer, K D; Weckenmann, A; Siebert, B R L
2005-01-01
The evaluation of measurement uncertainty is based on both, the knowledge about the measuring process and the quantities which influence the measurement result. The knowledge about the measuring process is represented by the model equation which expresses the interrelation between the measurand and the input quantities. Therefore, the modelling of the measurement is a key element of modern uncertainty evaluation. A modelling concept has been developed that is based on the idea of the measuring chain. It gets on with only a few generic model structures. From this concept, a practical stepwise procedure has been derived
International Nuclear Information System (INIS)
Andres, T.H.
2002-05-01
This guide applies to the estimation of uncertainty in quantities calculated by scientific, analysis and design computer programs that fall within the scope of AECL's software quality assurance (SQA) manual. The guide weaves together rational approaches from the SQA manual and three other diverse sources: (a) the CSAU (Code Scaling, Applicability, and Uncertainty) evaluation methodology; (b) the ISO Guide,for the Expression of Uncertainty in Measurement; and (c) the SVA (Systems Variability Analysis) method of risk analysis. This report describes the manner by which random and systematic uncertainties in calculated quantities can be estimated and expressed. Random uncertainty in model output can be attributed to uncertainties of inputs. The propagation of these uncertainties through a computer model can be represented in a variety of ways, including exact calculations, series approximations and Monte Carlo methods. Systematic uncertainties emerge from the development of the computer model itself, through simplifications and conservatisms, for example. These must be estimated and combined with random uncertainties to determine the combined uncertainty in a model output. This report also addresses the method by which uncertainties should be employed in code validation, in order to determine whether experiments and simulations agree, and whether or not a code satisfies the required tolerance for its application. (author)
Energy Technology Data Exchange (ETDEWEB)
Andres, T.H
2002-05-01
This guide applies to the estimation of uncertainty in quantities calculated by scientific, analysis and design computer programs that fall within the scope of AECL's software quality assurance (SQA) manual. The guide weaves together rational approaches from the SQA manual and three other diverse sources: (a) the CSAU (Code Scaling, Applicability, and Uncertainty) evaluation methodology; (b) the ISO Guide,for the Expression of Uncertainty in Measurement; and (c) the SVA (Systems Variability Analysis) method of risk analysis. This report describes the manner by which random and systematic uncertainties in calculated quantities can be estimated and expressed. Random uncertainty in model output can be attributed to uncertainties of inputs. The propagation of these uncertainties through a computer model can be represented in a variety of ways, including exact calculations, series approximations and Monte Carlo methods. Systematic uncertainties emerge from the development of the computer model itself, through simplifications and conservatisms, for example. These must be estimated and combined with random uncertainties to determine the combined uncertainty in a model output. This report also addresses the method by which uncertainties should be employed in code validation, in order to determine whether experiments and simulations agree, and whether or not a code satisfies the required tolerance for its application. (author)
Impact of Pitot tube calibration on the uncertainty of water flow rate measurement
de Oliveira Buscarini, Icaro; Costa Barsaglini, Andre; Saiz Jabardo, Paulo Jose; Massami Taira, Nilson; Nader, Gilder
2015-10-01
Water utility companies often use Cole type Pitot tubes to map velocity profiles and thus measure flow rate. Frequent monitoring and measurement of flow rate is an important step in identifying leaks and other types of losses. In Brazil losses as high as 42% are common and in some places even higher values are found. When using Cole type Pitot tubes to measure the flow rate, the uncertainty of the calibration coefficient (Cd) is a major component of the overall flow rate measurement uncertainty. A common practice is to employ the usual value Cd = 0.869, in use since Cole proposed his Pitot tube in 1896. Analysis of 414 calibrations of Cole type Pitot tubes show that Cd varies considerably and values as high 0.020 for the expanded uncertainty are common. Combined with other uncertainty sources, the overall velocity measurement uncertainty is 0.02, increasing flowrate measurement uncertainty by 1.5% which, for the Sao Paulo metropolitan area (Brazil) corresponds to 3.5 × 107 m3/year.
International Nuclear Information System (INIS)
Xue, Zhenyu; Charonko, John J; Vlachos, Pavlos P
2014-01-01
In particle image velocimetry (PIV) the measurement signal is contained in the recorded intensity of the particle image pattern superimposed on a variety of noise sources. The signal-to-noise-ratio (SNR) strength governs the resulting PIV cross correlation and ultimately the accuracy and uncertainty of the resulting PIV measurement. Hence we posit that correlation SNR metrics calculated from the correlation plane can be used to quantify the quality of the correlation and the resulting uncertainty of an individual measurement. In this paper we extend the original work by Charonko and Vlachos and present a framework for evaluating the correlation SNR using a set of different metrics, which in turn are used to develop models for uncertainty estimation. Several corrections have been applied in this work. The SNR metrics and corresponding models presented herein are expanded to be applicable to both standard and filtered correlations by applying a subtraction of the minimum correlation value to remove the effect of the background image noise. In addition, the notion of a ‘valid’ measurement is redefined with respect to the correlation peak width in order to be consistent with uncertainty quantification principles and distinct from an ‘outlier’ measurement. Finally the type and significance of the error distribution function is investigated. These advancements lead to more robust and reliable uncertainty estimation models compared with the original work by Charonko and Vlachos. The models are tested against both synthetic benchmark data as well as experimental measurements. In this work, U 68.5 uncertainties are estimated at the 68.5% confidence level while U 95 uncertainties are estimated at 95% confidence level. For all cases the resulting calculated coverage factors approximate the expected theoretical confidence intervals, thus demonstrating the applicability of these new models for estimation of uncertainty for individual PIV measurements. (paper)
Application of a new importance measure for parametric uncertainty in PSA
International Nuclear Information System (INIS)
Poern, K.
1997-04-01
The traditional approach to uncertainty analysis in PSA, with propagation of basic event uncertainties through the PSA model, generates as an end product the uncertainty distribution of the top event frequency. This distribution, however, is not of much value for the decision maker. Most decisions are made under uncertainty. What the decision maker needs, to enhance the decision-making quality, is an adequate uncertainty importance measure that provides the decision maker with an indication of on what basic parameters it would be most valuable - as to the quality of the decision making in the specific situation - to procure more information. This paper will describe an application of a new measure of uncertainty importance that has been developed in the ongoing joint Nordic project NKS/RAK-1:3. The measure is called ''decision oriented'' because it is defined within a decision theoretic framework. It is defined as the expected value of a certain additional information about each basic parameter, and utilizes both the system structure and the complete uncertainty distributions of the basic parameters. The measure provides the analyst and the decision maker with a diagnostic information pointing to parameters on which more information would be most valuable to procure in order to enhance the decision-making quality. This uncertainty importance measure must not be confused with the more well-known, traditional importance measures of various kinds that are used to depict the contributions of each basic event or parameter (represented by point values) to the top event frequency. In this study the new measure is practically demonstrated through a real application on the top event: Water overflow through steam generator safety valves caused by steam generator tube rupture. This application object is one of the event sequences that the fore mentioned Nordic project has analysed with an integrated approach. The project has been funded by the Swedish Nuclear Power
Xue, Zhenyu; Charonko, John J.; Vlachos, Pavlos P.
2014-11-01
In particle image velocimetry (PIV) the measurement signal is contained in the recorded intensity of the particle image pattern superimposed on a variety of noise sources. The signal-to-noise-ratio (SNR) strength governs the resulting PIV cross correlation and ultimately the accuracy and uncertainty of the resulting PIV measurement. Hence we posit that correlation SNR metrics calculated from the correlation plane can be used to quantify the quality of the correlation and the resulting uncertainty of an individual measurement. In this paper we extend the original work by Charonko and Vlachos and present a framework for evaluating the correlation SNR using a set of different metrics, which in turn are used to develop models for uncertainty estimation. Several corrections have been applied in this work. The SNR metrics and corresponding models presented herein are expanded to be applicable to both standard and filtered correlations by applying a subtraction of the minimum correlation value to remove the effect of the background image noise. In addition, the notion of a ‘valid’ measurement is redefined with respect to the correlation peak width in order to be consistent with uncertainty quantification principles and distinct from an ‘outlier’ measurement. Finally the type and significance of the error distribution function is investigated. These advancements lead to more robust and reliable uncertainty estimation models compared with the original work by Charonko and Vlachos. The models are tested against both synthetic benchmark data as well as experimental measurements. In this work, {{U}68.5} uncertainties are estimated at the 68.5% confidence level while {{U}95} uncertainties are estimated at 95% confidence level. For all cases the resulting calculated coverage factors approximate the expected theoretical confidence intervals, thus demonstrating the applicability of these new models for estimation of uncertainty for individual PIV measurements.
Directory of Open Access Journals (Sweden)
Daniel Cancelli Romero
2017-10-01
Full Text Available ABSTRACT Analytical results are widely used to assess batch-by-batch conformity, pharmaceutical equivalence, as well as in the development of drug products. Despite this, few papers describing the measurement uncertainty estimation associated with these results were found in the literature. Here, we described a simple procedure used for estimating measurement uncertainty associated with the dissolution test of acetaminophen tablets. A fractionate factorial design was used to define a mathematical model that explains the amount of acetaminophen dissolved (% as a function of time of dissolution (from 20 to 40 minutes, volume of dissolution media (from 800 to 1000 mL, pH of dissolution media (from 2.0 to 6.8, and rotation speed (from 40 to 60 rpm. Using Monte Carlo simulations, we estimated measurement uncertainty for dissolution test of acetaminophen tablets (95.2 ± 1.0%, with a 95% confidence level. Rotation speed was the most important source of uncertainty, contributing about 96.2% of overall uncertainty. Finally, it is important to note that the uncertainty calculated in this paper reflects the expected uncertainty to the dissolution test, and does not consider variations in the content of acetaminophen.
Hampel, B.; Liu, B.; Nording, F.; Ostermann, J.; Struszewski, P.; Langfahl-Klabes, J.; Bieler, M.; Bosse, H.; Güttler, B.; Lemmens, P.; Schilling, M.; Tutsch, R.
2018-03-01
In many cases, the determination of the measurement uncertainty of complex nanosystems provides unexpected challenges. This is in particular true for complex systems with many degrees of freedom, i.e. nanosystems with multiparametric dependencies and multivariate output quantities. The aim of this paper is to address specific questions arising during the uncertainty calculation of such systems. This includes the division of the measurement system into subsystems and the distinction between systematic and statistical influences. We demonstrate that, even if the physical systems under investigation are very different, the corresponding uncertainty calculation can always be realized in a similar manner. This is exemplarily shown in detail for two experiments, namely magnetic nanosensors and ultrafast electro-optical sampling of complex time-domain signals. For these examples the approach for uncertainty calculation following the guide to the expression of uncertainty in measurement (GUM) is explained, in which correlations between multivariate output quantities are captured. To illustate the versatility of the proposed approach, its application to other experiments, namely nanometrological instruments for terahertz microscopy, dimensional scanning probe microscopy, and measurement of concentration of molecules using surface enhanced Raman scattering, is shortly discussed in the appendix. We believe that the proposed approach provides a simple but comprehensive orientation for uncertainty calculation in the discussed measurement scenarios and can also be applied to similar or related situations.
Measurement error models with uncertainty about the error variance
Oberski, D.L.; Satorra, A.
2013-01-01
It is well known that measurement error in observable variables induces bias in estimates in standard regression analysis and that structural equation models are a typical solution to this problem. Often, multiple indicator equations are subsumed as part of the structural equation model, allowing
Total uncertainty of low velocity thermal anemometers for measurement of indoor air movements
DEFF Research Database (Denmark)
Jørgensen, F.; Popiolek, Z.; Melikov, Arsen Krikor
2004-01-01
For a specific thermal anemometer with omnidirectional velocity sensor the expanded total uncertainty in measured mean velocity Û(Vmean) and the expanded total uncertainty in measured turbulence intensity Û(Tu) due to different error sources are estimated. The values are based on a previously...... developed mathematical model of the anemometer in combination with a large database of representative room flows measured with a 3-D Laser Doppler anemometer (LDA). A direct comparison between measurements with a thermal anemometer and a 3-D LDA in flows of varying velocity and turbulence intensity shows...... good agreement not only between the two instruments but also between the thermal anemometer and its mathematical model. The differences in the measurements performed with the two instruments are all well within the measurement uncertainty of both anemometers....
Nottrott, A.; Hoffnagle, J.; Farinas, A.; Rella, C.
2014-12-01
Carbon monoxide (CO) is an urban pollutant generated by internal combustion engines which contributes to the formation of ground level ozone (smog). CO is also an excellent tracer for emissions from mobile combustion sources. In this work we present an optimized spectroscopic sampling scheme that enables enhanced precision CO measurements. The scheme was implemented on the Picarro G2401 Cavity Ring-Down Spectroscopy (CRDS) analyzer which measures CO2, CO, CH4 and H2O at 0.2 Hz. The optimized scheme improved the raw precision of CO measurements by 40% from 5 ppb to 3 ppb. Correlations of measured CO2, CO, CH4 and H2O from an urban tower were partitioned by wind direction and combined with a concentration footprint model for source attribution. The application of a concentration footprint for source attribution has several advantages. The upwind extent of the concentration footprint for a given sensor is much larger than the flux footprint. Measurements of mean concentration at the sensor location can be used to estimate source strength from a concentration footprint, while measurements of the vertical concentration flux are necessary to determine source strength from the flux footprint. Direct measurement of vertical concentration flux requires high frequency temporal sampling and increases the cost and complexity of the measurement system.
International Nuclear Information System (INIS)
Budnikov, D.; Bulatov, M.; Jarikhine, I.; Lebedev, B.; Livke, A.; Modenov, A.; Morkin, A.; Razinkov, S.; Tsaregorodtsev, D.; Vlokh, A.; Yakovleva, S.; Elmont, T.H.; Langner, D.C.; MacArthur, D.W.; Mayo, D.R.; Smith, M.K.; Luke, S.J.
2005-01-01
An attribute verification system (AVNG) with information barriers for mass and isotopics measurements has been designed and its fabrication is nearly completed. The AVNG is being built by scientists at the Russian Federal Nuclear Center-VNIIEF, with support of Los Alamos National Laboratory (LANL) and Lawrence Livermore National Laboratory (LLNL). Such a system could be used to verify the presence of several unclassified attributes of classified material with no classified information release. The system is comprised of a neutron multiplicity counter and gamma-spectrometry system based on a high purity germanium gamma detector (nominal relative efficiency @ 1332 keV 50%) and digital gamma-ray spectrometer DSPEC PLUS . The neutron multiplicity counter is a three ring counter with 164 3 He tubes. The system was designed to measure prototype containers 491 mm in diameter and 503 mm high. This paper provides a brief history of the project and documents the progress of this effort with drawings and photographs.
The use of measurement uncertainty in nuclear materials accuracy and verification
International Nuclear Information System (INIS)
Alique, O.; Vaccaro, S.; Svedkauskaite, J.
2015-01-01
EURATOM nuclear safeguards are based on the nuclear operators’ accounting for and declaring of the amounts of nuclear materials in their possession, as well as on the European Commission verifying the correctness and completeness of such declarations by means of conformity assessment practices. Both the accountancy and the verification processes comprise the measurements of amounts and characteristics of nuclear materials. The uncertainties associated to these measurements play an important role in the reliability of the results of nuclear material accountancy and verification. The document “JCGM 100:2008 Evaluation of measurement data – Guide to the expression of uncertainty in measurement” - issued jointly by the International Bureau of Weights and Measures (BIPM) and international organisations for metrology, standardisation and accreditation in chemistry, physics and electro technology - describes a universal, internally consistent, transparent and applicable method for the evaluation and expression of uncertainty in measurements. This paper discusses different processes of nuclear materials accountancy and verification where measurement uncertainty plays a significant role. It also suggests the way measurement uncertainty could be used to enhance the reliability of the results of the nuclear materials accountancy and verification processes.
Estimation of uncertainty of measurements of 3D mechanisms after kinematic calibration
International Nuclear Information System (INIS)
Takamasu, K; Sato, O; Shimojima, K; Takahashi, S; Furutani, R
2005-01-01
Calibration methods for 3D mechanisms are necessary to use the mechanisms as coordinate measuring machines. The calibration method of coordinate measuring machine using artifacts, the artifact calibration method, is proposed in taking account of traceability of the mechanism. There are kinematic parameters and form-deviation parameters in geometric parameters for describing the forward kinematic of the mechanism. In this article, the estimation methods of uncertainties using the calibrated coordinate measuring machine after the calibration are formulated. Firstly, the calculation method which takes out the values of kinematic parameters using least squares method is formulated. Secondly, the estimation value of uncertainty of the measuring machine is calculated using the error propagation method
DEFF Research Database (Denmark)
Hiller, Jochen; Genta, Gianfranco; Barbato, Giulio
2014-01-01
measurement processes, e.g., with tactile systems, also due to factors related to systematic errors, mainly caused by specific CT image characteristics. In this paper we propose a simulation-based framework for measurement uncertainty evaluation in dimensional CT using the bootstrap method. In a case study...... the problem concerning measurement uncertainties was addressed with bootstrap and successfully applied to ball-bar CT measurements. Results obtained enabled extension to more complex shapes such as actual industrial components as we show by tests on a hollow cylinder workpiece....
Arpaia, P; Lucariello, G; Spiezia, G
2007-01-01
At European Centre of Nuclear Research (CERN), within the new Large Hadron Collider (LHC) project, measurements of magnetic flux with uncertainty of 10 ppm at a few of decades of Hz for several minutes are required. With this aim, a new Fast Digital Integrator (FDI) has been developed in cooperation with University of Sannio, Italy [1]. This paper deals with the final design tuning for achieving target uncertainty by means of experimental statistical parameter design.
International Nuclear Information System (INIS)
Jiang Haiying; Cheng Ruoyu; Meng Xiujun
2014-01-01
Based on the building of mathematical model, this paper analyzed the origin of component of indeterminacy of which the measurement result for uranium in uranium hexafluoride hydrolysate by potentiometric titration, also each uncertainty was calculated and the expanded uncertainty was given. By evaluation the result of the uranium concentration is that: (158.88 + 1.22) mgU/mL, K = 2, P = 95%. (authors)
A real-time assessment of measurement uncertainty in the experimental characterization of sprays
International Nuclear Information System (INIS)
Panão, M R O; Moreira, A L N
2008-01-01
This work addresses the estimation of the measurement uncertainty of discrete probability distributions used in the characterization of sprays. A real-time assessment of this measurement uncertainty is further investigated, particularly concerning the informative quality of the measured distribution and the influence of acquiring additional information on the knowledge retrieved from statistical analysis. The informative quality is associated with the entropy concept as understood in information theory (Shannon entropy), normalized by the entropy of the most informative experiment. A new empirical correlation is derived between the error accuracy of a discrete cumulative probability distribution and the normalized Shannon entropy. The results include case studies using: (i) spray impingement measurements to study the applicability of the real-time assessment of measurement uncertainty, and (ii) the simulation of discrete probability distributions of unknown shape or function to test the applicability of the new correlation
Coherent Uncertainty Analysis of Aerosol Measurements from Multiple Satellite Sensors
Petrenko, M.; Ichoku, C.
2013-01-01
Aerosol retrievals from multiple spaceborne sensors, including MODIS (on Terra and Aqua), MISR, OMI, POLDER, CALIOP, and SeaWiFS altogether, a total of 11 different aerosol products were comparatively analyzed using data collocated with ground-based aerosol observations from the Aerosol Robotic Network (AERONET) stations within the Multi-sensor Aerosol Products Sampling System (MAPSS, http://giovanni.gsfc.nasa.gov/mapss/ and http://giovanni.gsfc.nasa.gov/aerostat/). The analysis was performed by comparing quality-screened satellite aerosol optical depth or thickness (AOD or AOT) retrievals during 2006-2010 to available collocated AERONET measurements globally, regionally, and seasonally, and deriving a number of statistical measures of accuracy. We used a robust statistical approach to detect and remove possible outliers in the collocated data that can bias the results of the analysis. Overall, the proportion of outliers in each of the quality-screened AOD products was within 12%. Squared correlation coefficient (R2) values of the satellite AOD retrievals relative to AERONET exceeded 0.6, with R2 for most of the products exceeding 0.7 over land and 0.8 over ocean. Root mean square error (RMSE) values for most of the AOD products were within 0.15 over land and 0.09 over ocean. We have been able to generate global maps showing regions where the different products present advantages over the others, as well as the relative performance of each product over different landcover types. It was observed that while MODIS, MISR, and SeaWiFS provide accurate retrievals over most of the landcover types, multi-angle capabilities make MISR the only sensor to retrieve reliable AOD over barren and snow / ice surfaces. Likewise, active sensing enables CALIOP to retrieve aerosol properties over bright-surface shrublands more accurately than the other sensors, while POLDER, which is the only one of the sensors capable of measuring polarized aerosols, outperforms other sensors in
International Nuclear Information System (INIS)
Strom, Daniel J.; Joyce, Kevin E.; Maclellan, Jay A.; Watson, David J.; Lynch, Timothy P.; Antonio, Cheryl L.; Birchall, Alan; Anderson, Kevin K.; Zharov, Peter
2012-01-01
In making low-level radioactivity measurements of populations, it is commonly observed that a substantial portion of net results are negative. Furthermore, the observed variance of the measurement results arises from a combination of measurement uncertainty and population variability. This paper presents a method for disaggregating measurement uncertainty from population variability to produce a probability density function (PDF) of possibly true results. To do this, simple, justifiable, and reasonable assumptions are made about the relationship of the measurements to the measurands (the 'true values'). The measurements are assumed to be unbiased, that is, that their average value is the average of the measurands. Using traditional estimates of each measurement's uncertainty to disaggregate population variability from measurement uncertainty, a PDF of measurands for the population is produced. Then, using Bayes's theorem, the same assumptions, and all the data from the population of individuals, a prior PDF is computed for each individual's measurand. These PDFs are non-negative, and their average is equal to the average of the measurement results for the population. The uncertainty in these Bayesian posterior PDFs is all Berkson with no remaining classical component. The methods are applied to baseline bioassay data from the Hanford site. The data include 90Sr urinalysis measurements on 128 people, 137Cs in vivo measurements on 5,337 people, and 239Pu urinalysis measurements on 3,270 people. The method produces excellent results for the 90Sr and 137Cs measurements, since there are nonzero concentrations of these global fallout radionuclides in people who have not been occupationally exposed. The method does not work for the 239Pu measurements in non-occupationally exposed people because the population average is essentially zero.
International Nuclear Information System (INIS)
MacArthur, D.W.; Langner, D.C.; Whiteson, R.; Wolford, J.K.
2001-01-01
Although the detection techniques used for measuring classified materials are very similar to those used in unclassified measurements, the surrounding packaging is generally very different. If iZ classified item is to be measured, an information barrier is required to protect any classified data acquired. This information barrier must protect the classified information while giving the inspector confidence that the unclassified outputs accurately reflect the classified inputs, Both information barrier and authentication considerations must be considered during all phases of system design and fabrication. One example of such a measurement system is the attribute measurement system (termed the AVNG) designed for the: Trilateral Initiative. We will discuss the integration of information barrier components into this system as well as the effects of an information barrier (including authentication) concerns on the implementation of the detector systems.
High Speed Railway Environment Safety Evaluation Based on Measurement Attribute Recognition Model
Directory of Open Access Journals (Sweden)
Qizhou Hu
2014-01-01
Full Text Available In order to rationally evaluate the high speed railway operation safety level, the environmental safety evaluation index system of high speed railway should be well established by means of analyzing the impact mechanism of severe weather such as raining, thundering, lightning, earthquake, winding, and snowing. In addition to that, the attribute recognition will be identified to determine the similarity between samples and their corresponding attribute classes on the multidimensional space, which is on the basis of the Mahalanobis distance measurement function in terms of Mahalanobis distance with the characteristics of noncorrelation and nondimensionless influence. On top of the assumption, the high speed railway of China environment safety situation will be well elaborated by the suggested methods. The results from the detailed analysis show that the evaluation is basically matched up with the actual situation and could lay a scientific foundation for the high speed railway operation safety.
International Nuclear Information System (INIS)
Duta, S.; Robouch, P.; Barbu, L.; Taylor, P.
2007-01-01
The determination of trace elements concentration in water by electrothermal atomic absorption spectrometry (ETAAS) is a common and well established technique in many chemical testing laboratories. However, the evaluation of measurement uncertainty results is not systematically implemented. The paper presents an easy step-by-step example leading to the evaluation of the combined standard uncertainty of copper determination in water using ETAAS. The major contributors to the overall measurement uncertainty are identified due to amount of copper in water sample that mainly depends on the absorbance measurements, due to certified reference material and due to auto-sampler volume measurements. The practical aspects how the traceability of copper concentration in water can be established and demonstrated are also pointed out
Energy Technology Data Exchange (ETDEWEB)
Duta, S. [Institute for Reference Materials and Measurements, Joint Research Centre, European Commission, Retieseweg 111, B-2440 Geel (Belgium); National Institute of Metrology, 042122 Vitan Barzesti 11, sector 4 Bucharest (Romania)], E-mail: steluta.duta@inm.ro; Robouch, P. [Institute for Reference Materials and Measurements, Joint Research Centre, European Commission, Retieseweg 111, B-2440 Geel (Belgium)], E-mail: Piotr.Robouch@ec.europa.eu; Barbu, L. [Coca-Cola Entreprise, Analytical Department, Bucharest (Romania); Taylor, P. [Institute for Reference Materials and Measurements, Joint Research Centre, European Commission, Retieseweg 111, B-2440 Geel (Belgium)], E-mail: Philip.Taylor@ec.europa.eu
2007-04-15
The determination of trace elements concentration in water by electrothermal atomic absorption spectrometry (ETAAS) is a common and well established technique in many chemical testing laboratories. However, the evaluation of measurement uncertainty results is not systematically implemented. The paper presents an easy step-by-step example leading to the evaluation of the combined standard uncertainty of copper determination in water using ETAAS. The major contributors to the overall measurement uncertainty are identified due to amount of copper in water sample that mainly depends on the absorbance measurements, due to certified reference material and due to auto-sampler volume measurements. The practical aspects how the traceability of copper concentration in water can be established and demonstrated are also pointed out.
Uncertainty of slip measurements in a cutting system of converting machinery for diapers production
Directory of Open Access Journals (Sweden)
D’Aponte F.
2015-01-01
Full Text Available In this paper slip measurements are described between the peripheral surfaces of knife and a not driven anvil cylinders in a high velocity, high quality cutting unit of a diaper production line. Laboratory tests have been carried out on a test bench with real scale components for possible on line application of the method. With reference to both starting and steady state conditions correlations with the process parameters have been found, achieving a very satisfactory reduction of the slip between the knife cylinder and the not driven anvil one. Accuracy evaluation of measurements allowed us to validate the obtained information and to evaluate the detection threshold of the measurement method in the present configuration The analysis of specific uncertainty contributions to the whole uncertainty could be also used, to further reduce the requested uncertainty of the measurement method.
Uncertainty assessment in gamma spectrometric measurements of plutonium isotope ratios and age
Energy Technology Data Exchange (ETDEWEB)
Ramebaeck, H., E-mail: henrik.ramebeck@foi.se [Swedish Defence Research Agency, FOI, Division of CBRN Defence and Security, SE-901 82 Umea (Sweden); Chalmers University of Technology, Department of Chemical and Biological Engineering, Nuclear Chemistry, SE-412 96 Goeteborg (Sweden); Nygren, U.; Tovedal, A. [Swedish Defence Research Agency, FOI, Division of CBRN Defence and Security, SE-901 82 Umea (Sweden); Ekberg, C.; Skarnemark, G. [Chalmers University of Technology, Department of Chemical and Biological Engineering, Nuclear Chemistry, SE-412 96 Goeteborg (Sweden)
2012-09-15
A method for the assessment of the combined uncertainty in gamma spectrometric measurements of plutonium composition and age was evaluated. Two materials were measured. Isotope dilution inductively coupled plasma sector field mass spectrometry (ID-ICP-SFMS) was used as a reference method for comparing the results obtained with the gamma spectrometric method for one of the materials. For this material (weapons grade plutonium) the measurement results were in agreement between the two methods for all measurands. Moreover, the combined uncertainty in all isotope ratios considered in this material (R{sub Pu238/Pu239}, R{sub Pu240/Pu239}, R{sub Pu241/Pu239}, and R{sub Am241/Pu241} for age determination) were limited by counting statistics. However, the combined uncertainty for the other material (fuel grade plutonium) were limited by the response fit, which shows that the uncertainty in the response function is important to include in the combined measurement uncertainty of gamma spectrometric measurements of plutonium.
Invited Article: Concepts and tools for the evaluation of measurement uncertainty
Possolo, Antonio; Iyer, Hari K.
2017-01-01
Measurements involve comparisons of measured values with reference values traceable to measurement standards and are made to support decision-making. While the conventional definition of measurement focuses on quantitative properties (including ordinal properties), we adopt a broader view and entertain the possibility of regarding qualitative properties also as legitimate targets for measurement. A measurement result comprises the following: (i) a value that has been assigned to a property based on information derived from an experiment or computation, possibly also including information derived from other sources, and (ii) a characterization of the margin of doubt that remains about the true value of the property after taking that information into account. Measurement uncertainty is this margin of doubt, and it can be characterized by a probability distribution on the set of possible values of the property of interest. Mathematical or statistical models enable the quantification of measurement uncertainty and underlie the varied collection of methods available for uncertainty evaluation. Some of these methods have been in use for over a century (for example, as introduced by Gauss for the combination of mutually inconsistent observations or for the propagation of "errors"), while others are of fairly recent vintage (for example, Monte Carlo methods including those that involve Markov Chain Monte Carlo sampling). This contribution reviews the concepts, models, methods, and computations that are commonly used for the evaluation of measurement uncertainty, and illustrates their application in realistic examples drawn from multiple areas of science and technology, aiming to serve as a general, widely accessible reference.
Two-point method uncertainty during control and measurement of cylindrical element diameters
Glukhov, V. I.; Shalay, V. V.; Radev, H.
2018-04-01
The topic of the article is devoted to the urgent problem of the reliability of technical products geometric specifications measurements. The purpose of the article is to improve the quality of parts linear sizes control by the two-point measurement method. The article task is to investigate methodical extended uncertainties in measuring cylindrical element linear sizes. The investigation method is a geometric modeling of the element surfaces shape and location deviations in a rectangular coordinate system. The studies were carried out for elements of various service use, taking into account their informativeness, corresponding to the kinematic pairs classes in theoretical mechanics and the number of constrained degrees of freedom in the datum element function. Cylindrical elements with informativity of 4, 2, 1 and θ (zero) were investigated. The uncertainties estimation of in two-point measurements was made by comparing the results of of linear dimensions measurements with the functional diameters maximum and minimum of the element material. Methodical uncertainty is formed when cylindrical elements with maximum informativeness have shape deviations of the cut and the curvature types. Methodical uncertainty is formed by measuring the element average size for all types of shape deviations. The two-point measurement method cannot take into account the location deviations of a dimensional element, so its use for elements with informativeness less than the maximum creates unacceptable methodical uncertainties in measurements of the maximum, minimum and medium linear dimensions. Similar methodical uncertainties also exist in the arbitration control of the linear dimensions of the cylindrical elements by limiting two-point gauges.
A new computational method of a moment-independent uncertainty importance measure
International Nuclear Information System (INIS)
Liu Qiao; Homma, Toshimitsu
2009-01-01
For a risk assessment model, the uncertainty in input parameters is propagated through the model and leads to the uncertainty in the model output. The study of how the uncertainty in the output of a model can be apportioned to the uncertainty in the model inputs is the job of sensitivity analysis. Saltelli [Sensitivity analysis for importance assessment. Risk Analysis 2002;22(3):579-90] pointed out that a good sensitivity indicator should be global, quantitative and model free. Borgonovo [A new uncertainty importance measure. Reliability Engineering and System Safety 2007;92(6):771-84] further extended these three requirements by adding the fourth feature, moment-independence, and proposed a new sensitivity measure, δ i . It evaluates the influence of the input uncertainty on the entire output distribution without reference to any specific moment of the model output. In this paper, a new computational method of δ i is proposed. It is conceptually simple and easier to implement. The feasibility of this new method is proved by applying it to two examples.
A Monte-Carlo investigation of the uncertainty of acoustic decay measurements
DEFF Research Database (Denmark)
Cabo, David Pérez; Seoane, Manuel A. Sobreira; Jacobsen, Finn
2012-01-01
Measurement of acoustic decays can be problematic at low frequencies: short decays cannot be evaluated accurately. Several effects influencing the evaluation will be reviewed in this paper. As new contribution, the measurement uncertainty due to one-third octave band pass filters will be analysed...
International Nuclear Information System (INIS)
WILLS, C.E.
1999-01-01
This report examines the contributing factors to NDA measurement uncertainty at WRAP. The significance of each factor on the TMU is analyzed, and a final method is given for determining the TMU for NDA measurements at WRAP. As more data becomes available, and WRAP gains in operational experience, this report will be reviewed semi-annually and updated as necessary
A super-resolution approach for uncertainty estimation of PIV measurements
Sciacchitano, A.; Wieneke, B.; Scarano, F.
2012-01-01
A super-resolution approach is proposed for the a posteriori uncertainty estimation of PIV measurements. The measured velocity field is employed to determine the displacement of individual particle images. A disparity set is built from the residual distance between paired particle images of
Quantifying measurement uncertainty and spatial variability in the context of model evaluation
Choukulkar, A.; Brewer, A.; Pichugina, Y. L.; Bonin, T.; Banta, R. M.; Sandberg, S.; Weickmann, A. M.; Djalalova, I.; McCaffrey, K.; Bianco, L.; Wilczak, J. M.; Newman, J. F.; Draxl, C.; Lundquist, J. K.; Wharton, S.; Olson, J.; Kenyon, J.; Marquis, M.
2017-12-01
In an effort to improve wind forecasts for the wind energy sector, the Department of Energy and the NOAA funded the second Wind Forecast Improvement Project (WFIP2). As part of the WFIP2 field campaign, a large suite of in-situ and remote sensing instrumentation was deployed to the Columbia River Gorge in Oregon and Washington from October 2015 - March 2017. The array of instrumentation deployed included 915-MHz wind profiling radars, sodars, wind- profiling lidars, and scanning lidars. The role of these instruments was to provide wind measurements at high spatial and temporal resolution for model evaluation and improvement of model physics. To properly determine model errors, the uncertainties in instrument-model comparisons need to be quantified accurately. These uncertainties arise from several factors such as measurement uncertainty, spatial variability, and interpolation of model output to instrument locations, to name a few. In this presentation, we will introduce a formalism to quantify measurement uncertainty and spatial variability. The accuracy of this formalism will be tested using existing datasets such as the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) campaign. Finally, the uncertainties in wind measurement and the spatial variability estimates from the WFIP2 field campaign will be discussed to understand the challenges involved in model evaluation.
Estimation of Uncertainty in Aerosol Concentration Measured by Aerosol Sampling System
Energy Technology Data Exchange (ETDEWEB)
Lee, Jong Chan; Song, Yong Jae; Jung, Woo Young; Lee, Hyun Chul; Kim, Gyu Tae; Lee, Doo Yong [FNC Technology Co., Yongin (Korea, Republic of)
2016-10-15
FNC Technology Co., Ltd has been developed test facilities for the aerosol generation, mixing, sampling and measurement under high pressure and high temperature conditions. The aerosol generation system is connected to the aerosol mixing system which injects SiO{sub 2}/ethanol mixture. In the sampling system, glass fiber membrane filter has been used to measure average mass concentration. Based on the experimental results using main carrier gas of steam and air mixture, the uncertainty estimation of the sampled aerosol concentration was performed by applying Gaussian error propagation law. FNC Technology Co., Ltd. has been developed the experimental facilities for the aerosol measurement under high pressure and high temperature. The purpose of the tests is to develop commercial test module for aerosol generation, mixing and sampling system applicable to environmental industry and safety related system in nuclear power plant. For the uncertainty calculation of aerosol concentration, the value of the sampled aerosol concentration is not measured directly, but must be calculated from other quantities. The uncertainty of the sampled aerosol concentration is a function of flow rates of air and steam, sampled mass, sampling time, condensed steam mass and its absolute errors. These variables propagate to the combination of variables in the function. Using operating parameters and its single errors from the aerosol test cases performed at FNC, the uncertainty of aerosol concentration evaluated by Gaussian error propagation law is less than 1%. The results of uncertainty estimation in the aerosol sampling system will be utilized for the system performance data.
Directory of Open Access Journals (Sweden)
Adamczak Stanisław
2014-08-01
Full Text Available The aim of this study was to estimate the measurement uncertainty for a material produced by additive manufacturing. The material investigated was FullCure 720 photocured resin, which was applied to fabricate tensile specimens with a Connex 350 3D printer based on PolyJet technology. The tensile strength of the specimens established through static tensile testing was used to determine the measurement uncertainty. There is a need for extensive research into the performance of model materials obtained via 3D printing as they have not been studied sufficiently like metal alloys or plastics, the most common structural materials. In this analysis, the measurement uncertainty was estimated using a larger number of samples than usual, i.e., thirty instead of typical ten. The results can be very useful to engineers who design models and finished products using this material. The investigations also show how wide the scatter of results is.
Gao, Jian; Guildenbecher, Daniel R; Reu, Phillip L; Chen, Jun
2013-11-04
In the detection of particles using digital in-line holography, measurement accuracy is substantially influenced by the hologram processing method. In particular, a number of methods have been proposed to determine the out-of-plane particle depth (z location). However, due to the lack of consistent uncertainty characterization, it has been unclear which method is best suited to a given measurement problem. In this work, depth determination accuracies of seven particle detection methods, including a recently proposed hybrid method, are systematically investigated in terms of relative depth measurement errors and uncertainties. Both synthetic and experimental holograms of particle fields are considered at conditions relevant to particle sizing and tracking. While all methods display a range of particle conditions where they are most accurate, in general the hybrid method is shown to be the most robust with depth uncertainty less than twice the particle diameter over a wide range of particle field conditions.
International Nuclear Information System (INIS)
Langner, D.G.; Hsue, S.-T.; Macarthur, D.W.
2001-01-01
Full text: A team of technical experts from the Russian Federation, the International Atomic Energy Agency (IAEA) and the United States have been working for almost five years on the development of a tool kit of instruments that could be used to verify plutonium-bearing items that have classified characteristics in nuclear weapons states. This suite of instruments is similar in many ways to standard safeguards equipment and includes high-resolution gamma-ray spectrometers, neutron multiplicity counters, gross neutron counters and gross gamma-ray detectors. In safeguards applications, this equipment is known to be robust, and authentication methods are well understood. This equipment is very intrusive, however, and a traditional safeguards application of such equipment for verification of materials with classified characteristics would reveal classified information to the inspector, Several enabling technologies have been or are being developed to facilitate the use of these trusted, but intrusive technologies. In this paper, these technologies will be described. One of the new technologies is called an Attribute Verification System with an Information Barrier Utilizing Neutron Multiplicity Counting and High-Resolution Gamma-Ray Spectrometry' or AVNG. The radiation measurement equipment, comprising a neutron multiplicity counter and high-resolution gamma-ray spectrometer, is standard safeguards-type equipment with information security features added. The information barrier is a combination of technical and procedural methods that protect classified information while allowing the inspector to have confidence that the measurement equipment is providing authentic results. The approach is to reduce the radiation data collected by the measurement equipment to a simple 'yes/no' result regarding attributes of the plutonium-bearing item. The 'yes/no' result is unclassified by design so that it can be shared with an inspector. The attributes that the Trilateral Initiative
Evaluation of the combined measurement uncertainty in isotope dilution by MC-ICP-MS
International Nuclear Information System (INIS)
Fortunato, G.; Wunderli, S.
2003-01-01
The combination of metrological weighing, the measurement of isotope amount ratios by a multicollector inductively coupled plasma mass spectrometer (MC-ICP-MS) and the use of high-purity reference materials are the cornerstones to achieve improved results for the amount content of lead in wine by the reversed isotope dilution technique. Isotope dilution mass spectrometry (IDMS) and reversed IDMS have the potential to be a so-called primary method, with which close comparability and well-stated combined measurement uncertainties can be obtained. This work describes the detailed uncertainty budget determination using the ISO-GUM approach. The traces of lead in wine were separated from the matrix by ion exchange chromatography after HNO 3 /H 2 O 2 microwave digestion. The thallium isotope amount ratio (n( 205 Tl)/n( 203 Tl)) was used to correct for mass discrimination using an exponential model approach. The corrected lead isotope amount ratio n( 206 Pb)/n( 208 Pb) for the isotopic standard SRM 981 measured in our laboratory was compared with ratio values considered to be the least uncertain. The result has been compared in a so-called pilot study ''lead in wine'' organised by the CCQM (Comite Consultatif pour la Quantite de Matiere, BIPM, Paris; the highest measurement authority for analytical chemical measurements). The result for the lead amount content k(Pb) and the corresponding expanded uncertainty U given by our laboratory was:k(Pb)=1.329 x 10-10mol g-1 (amount content of lead in wine)U[k(Pb)]=1.0 x 10-12mol g-1 (expanded uncertainty U=k x uc, k=2) The uncertainty of the main influence parameter of the combined measurement uncertainty was determined to be the isotope amount ratio R 206,B of the blend between the enriched spike and the sample. (orig.)
Bertrand-Krajewski, J L; Bardin, J P; Mourad, M; Béranger, Y
2003-01-01
Assessing the functioning and the performance of urban drainage systems on both rainfall event and yearly time scales is usually based on online measurements of flow rates and on samples of influent effluent for some rainfall events per year. In order to draw pertinent scientific and operational conclusions from the measurement results, it is absolutely necessary to use appropriate methods and techniques in order to i) calibrate sensors and analytical methods, ii) validate raw data, iii) evaluate measurement uncertainties, iv) evaluate the number of rainfall events to sample per year in order to determine performance indicator with a given uncertainty. Based an previous work, the paper gives a synthetic review of required and techniques, and illustrates their application to storage and settling tanks. Experiments show that, controlled and careful experimental conditions, relative uncertainties are about 20% for flow rates in sewer pipes, 6-10% for volumes, 25-35% for TSS concentrations and loads, and 18-276% for TSS removal rates. In order to evaluate the annual pollutant interception efficiency of storage and settling tanks with a given uncertainty, efforts should first be devoted to decrease the sampling uncertainty by increasing the number of sampled events.
Comparison of ISO-GUM and Monte Carlo Method for Evaluation of Measurement Uncertainty
Energy Technology Data Exchange (ETDEWEB)
Ha, Young-Cheol; Her, Jae-Young; Lee, Seung-Jun; Lee, Kang-Jin [Korea Gas Corporation, Daegu (Korea, Republic of)
2014-07-15
To supplement the ISO-GUM method for the evaluation of measurement uncertainty, a simulation program using the Monte Carlo method (MCM) was developed, and the MCM and GUM methods were compared. The results are as follows: (1) Even under a non-normal probability distribution of the measurement, MCM provides an accurate coverage interval; (2) Even if a probability distribution that emerged from combining a few non-normal distributions looks as normal, there are cases in which the actual distribution is not normal and the non-normality can be determined by the probability distribution of the combined variance; and (3) If type-A standard uncertainties are involved in the evaluation of measurement uncertainty, GUM generally offers an under-valued coverage interval. However, this problem can be solved by the Bayesian evaluation of type-A standard uncertainty. In this case, the effective degree of freedom for the combined variance is not required in the evaluation of expanded uncertainty, and the appropriate coverage factor for 95% level of confidence was determined to be 1.96.
The uncertainty of measurements. Research on air pollution; Meten is ook onzeker. Lucht in onderzoek
Energy Technology Data Exchange (ETDEWEB)
Van den Elshout, S. [DCMR Milieudienst Rijnmond, Rotterdam (Netherlands); Woudenberg, F. [Cluster Leefomgeving, Afdeling Milieu en Gezondheid, GGD Amsterdam, Amsterdam (Netherlands)
2011-08-15
Measurements are sometimes suggested as alternative to uncertain forecasts in Legal decision making. However, measurements also have entail uncertainties. This article offers several considerations on how to deal with uncertainties in the Legal establishment of air quality. But next to the theoretical considerations, what applies in reality is always: less air pollution is better. [Dutch] Metingen worden soms voorgesteld als alternatief voor onzekere voorspellingen bij juridische besluitvorming. Metingen kennen echter ook onzekerheden. In dit artikel enkele overwegingen over hoe om te gaan met onzekerheden bij de juridische bepaling van de luchtkwaliteit. Naast de theoretische overwegingen geldt in de praktijk echter altijd: minder luchtvervuiling is beter.
Calculation of the detection limit in radiation measurements with systematic uncertainties
International Nuclear Information System (INIS)
Kirkpatrick, J.M.; Russ, W.; Venkataraman, R.; Young, B.M.
2015-01-01
The detection limit (L D ) or Minimum Detectable Activity (MDA) is an a priori evaluation of assay sensitivity intended to quantify the suitability of an instrument or measurement arrangement for the needs of a given application. Traditional approaches as pioneered by Currie rely on Gaussian approximations to yield simple, closed-form solutions, and neglect the effects of systematic uncertainties in the instrument calibration. These approximations are applicable over a wide range of applications, but are of limited use in low-count applications, when high confidence values are required, or when systematic uncertainties are significant. One proposed modification to the Currie formulation attempts account for systematic uncertainties within a Gaussian framework. We have previously shown that this approach results in an approximation formula that works best only for small values of the relative systematic uncertainty, for which the modification of Currie's method is the least necessary, and that it significantly overestimates the detection limit or gives infinite or otherwise non-physical results for larger systematic uncertainties where such a correction would be the most useful. We have developed an alternative approach for calculating detection limits based on realistic statistical modeling of the counting distributions which accurately represents statistical and systematic uncertainties. Instead of a closed form solution, numerical and iterative methods are used to evaluate the result. Accurate detection limits can be obtained by this method for the general case
NIS method for uncertainty estimation of airborne sound insulation measurement in field
Directory of Open Access Journals (Sweden)
El-Basheer Tarek M.
2017-01-01
Full Text Available In structures, airborne sound insulation is utilized to characterize the acoustic nature of barriers between rooms. However, the assessment of sound insulation index is once in a while troublesome or indeed, even questionable, both in field and laboratory measurements, notwithstanding the way that there are some unified measurement methodology indicated in the ISO 140 series standards. There are issues with the reproducibility and repeatability of the measurement results. A few troubles might be brought on by non-diffuse acoustic fields, non-uniform reverberation time, or blunders of the reverberation time measurements. Some minor issues are additionally postured by flanking transmission. In this paper, investigation of the uncertainties of the above specified measurement parts and their impact on the consolidated uncertainty in 1/3-octave frequency band. The total measurement uncertainty model contributes several different partial uncertainties, which are evaluated by the method of type A or type B. Also, the determination of the sound reduction index decided by ISO 140-4 has been performed.
Towards minimizing measurement uncertainty in total petroleum hydrocarbon determination by GC-FID
Energy Technology Data Exchange (ETDEWEB)
Saari, E.
2009-07-01
Despite tightened environmental legislation, spillages of petroleum products remain a serious problem worldwide. The environmental impacts of these spillages are always severe and reliable methods for the identification and quantitative determination of petroleum hydrocarbons in environmental samples are therefore needed. Great improvements in the definition and analysis of total petroleum hydrocarbons (TPH) were finally introduced by international organizations for standardization in 2004. This brought some coherence to the determination and, nowadays, most laboratories seem to employ ISO/DIS 16703:2004, ISO 9377-2:2000 and CEN prEN 14039:2004:E draft international standards for analysing TPH in soil. The implementation of these methods, however, usually fails because the reliability of petroleum hydrocarbon determination has proved to be poor.This thesis describes the assessment of measurement uncertainty for TPH determination in soil. Chemometric methods were used to both estimate the main uncertainty sources and identify the most significant factors affecting these uncertainty sources. The method used for the determinations was based on gas chromatography utilizing flame ionization detection (GC-FID).Chemometric methodology applied in estimating measurement uncertainty for TPH determination showed that the measurement uncertainty is in actual fact dominated by the analytical uncertainty. Within the specific concentration range studied, the analytical uncertainty accounted for as much as 68-80% of the measurement uncertainty. The robustness of the analytical method used for petroleum hydrocarbon determination was then studied in more detail. A two-level Plackett-Burman design and a D-optimal design were utilized to assess the main analytical uncertainty sources of the sample treatment and GC determination procedures. It was also found that the matrix-induced systematic error may also significantly reduce the reliability of petroleum hydrocarbon determination
Research on uncertainty evaluation measure and method of voltage sag severity
Liu, X. N.; Wei, J.; Ye, S. Y.; Chen, B.; Long, C.
2018-01-01
Voltage sag is an inevitable serious problem of power quality in power system. This paper focuses on a general summarization and reviews on the concepts, indices and evaluation methods about voltage sag severity. Considering the complexity and uncertainty of influencing factors, damage degree, the characteristics and requirements of voltage sag severity in the power source-network-load sides, the measure concepts and their existing conditions, evaluation indices and methods of voltage sag severity have been analyzed. Current evaluation techniques, such as stochastic theory, fuzzy logic, as well as their fusion, are reviewed in detail. An index system about voltage sag severity is provided for comprehensive study. The main aim of this paper is to propose thought and method of severity research based on advanced uncertainty theory and uncertainty measure. This study may be considered as a valuable guide for researchers who are interested in the domain of voltage sag severity.
International Nuclear Information System (INIS)
Gascon, C.; Anton, M.P.
1997-01-01
Environmental radioactivity measurements are mainly affected by counting uncertainties. In this report the uncertainties associated to certain functions related to activity concentration calculations are determined. Some practical exercise are presented to calculate the uncertainties associated to: a) Chemical recovery of a radiochemical separation when employing tracers (i.e. Pu and Am purification from a sediment sample). b) Indirect determination of a mother radionuclide through one of its daughters (i. e. ''210 Pb quantification following its daughter ''210 Po building-up activity). c) Time span from last separation date of one of the components of a disintegration chain (i.e. Am last purification date from a nuclear weapons following ''241 Am and ''241 Pu measurements). Calculations concerning example b) and c) are based on Baterman equations, regulating radioactive equilibria. Although the exercises here presented are performed with certain radionuclides, they could be applied as generic procedures for other alpha-emitting radioelements
Passive active neutron radioassay measurement uncertainty for combustible and glass waste matrices
International Nuclear Information System (INIS)
Blackwood, L.G.; Harker, Y.D.; Meachum, T.R.; Yoon, Woo Y.
1997-01-01
Using a modified statistical sampling and verification approach, total uncertainty of INEL's Passive Active Neutron (PAN) radioassay system was evaluated for combustible and glass content codes. Waste structure and content of 100 randomly selected drums in each the waste categories were computer modeled based on review of real-time radiography video tapes. Specific quantities of Pu were added to the drum models according to an experimental design. These drum models were then submitted to the Monte Carlo Neutron Photon code processing and subsequent calculations to produce simulated PAN system measurements. The reported Pu masses from the simulation runs were compared with the corresponding input masses. Analysis of the measurement errors produced uncertainty estimates. This paper presents results of the uncertainty calculations and compares them to previous reported results obtained for graphite waste
International Nuclear Information System (INIS)
Campanelli, Mark; Kacker, Raghu; Kessel, Rüdiger
2013-01-01
A novel variance-based measure for global sensitivity analysis, termed a variance gradient (VG), is presented for constructing uncertainty budgets under the Guide to the Expression of Uncertainty in Measurement (GUM) framework for nonlinear measurement functions with independent inputs. The motivation behind VGs is the desire of metrologists to understand which inputs' variance reductions would most effectively reduce the variance of the measurand. VGs are particularly useful when the application of the first supplement to the GUM is indicated because of the inadequacy of measurement function linearization. However, VGs reduce to a commonly understood variance decomposition in the case of a linear(ized) measurement function with independent inputs for which the original GUM readily applies. The usefulness of VGs is illustrated by application to an example from the first supplement to the GUM, as well as to the benchmark Ishigami function. A comparison of VGs to other available sensitivity measures is made. (paper)
Energy Technology Data Exchange (ETDEWEB)
Broquet, G.; Chevallier, F.; Breon, F.M.; Yver, C.; Ciais, P.; Ramonet, M.; Schmidt, M. [Laboratoire des Sciences du Climat et de l' Environnement, CEA-CNRS-UVSQ, UMR8212, IPSL, Gif-sur-Yvette (France); Alemanno, M. [Servizio Meteorologico dell' Aeronautica Militare Italiana, Centro Aeronautica Militare di Montagna, Monte Cimone/Sestola (Italy); Apadula, F. [Research on Energy Systems, RSE, Environment and Sustainable Development Department, Milano (Italy); Hammer, S. [Universitaet Heidelberg, Institut fuer Umweltphysik, Heidelberg (Germany); Haszpra, L. [Hungarian Meteorological Service, Budapest (Hungary); Meinhardt, F. [Federal Environmental Agency, Kirchzarten (Germany); Necki, J. [AGH University of Science and Technology, Krakow (Poland); Piacentino, S. [ENEA, Laboratory for Earth Observations and Analyses, Palermo (Italy); Thompson, R.L. [Max Planck Institute for Biogeochemistry, Jena (Germany); Vermeulen, A.T. [Energy research Centre of the Netherlands ECN, EEE-EA, Petten (Netherlands)
2013-07-01
The Bayesian framework of CO2 flux inversions permits estimates of the retrieved flux uncertainties. Here, the reliability of these theoretical estimates is studied through a comparison against the misfits between the inverted fluxes and independent measurements of the CO2 Net Ecosystem Exchange (NEE) made by the eddy covariance technique at local (few hectares) scale. Regional inversions at 0.5{sup 0} resolution are applied for the western European domain where {approx}50 eddy covariance sites are operated. These inversions are conducted for the period 2002-2007. They use a mesoscale atmospheric transport model, a prior estimate of the NEE from a terrestrial ecosystem model and rely on the variational assimilation of in situ continuous measurements of CO2 atmospheric mole fractions. Averaged over monthly periods and over the whole domain, the misfits are in good agreement with the theoretical uncertainties for prior and inverted NEE, and pass the chi-square test for the variance at the 30% and 5% significance levels respectively, despite the scale mismatch and the independence between the prior (respectively inverted) NEE and the flux measurements. The theoretical uncertainty reduction for the monthly NEE at the measurement sites is 53% while the inversion decreases the standard deviation of the misfits by 38 %. These results build confidence in the NEE estimates at the European/monthly scales and in their theoretical uncertainty from the regional inverse modelling system. However, the uncertainties at the monthly (respectively annual) scale remain larger than the amplitude of the inter-annual variability of monthly (respectively annual) fluxes, so that this study does not engender confidence in the inter-annual variations. The uncertainties at the monthly scale are significantly smaller than the seasonal variations. The seasonal cycle of the inverted fluxes is thus reliable. In particular, the CO2 sink period over the European continent likely ends later than
International Nuclear Information System (INIS)
Blackwood, L.G.; Harker, Y.D.; Meachum, T.R.
1997-12-01
The Idaho National Engineering and Environmental Laboratory is being used as a temporary storage facility for transuranic waste generated by the US Nuclear Weapons program at the Rocky Flats Plant (RFP) in Golden, Colorado. Currently, there is a large effort in progress to prepare to ship this waste to the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. In order to meet the TRU Waste Characterization Quality Assurance Program Plan nondestructive assay compliance requirements and quality assurance objectives, it is necessary to determine the total uncertainty of the radioassay results produced by the Stored Waste Examination Pilot Plant (SWEPP) Passive Active Neutron (PAN) radioassay system. This paper is one of a series of reports quantifying the results of the uncertainty analysis of the PAN system measurements for specific waste types and measurement modes. In particular this report covers active mode measurements of weapons grade plutonium-contaminated aqueous sludge waste contained in 208 liter drums (item description codes 1, 2, 7, 800, 803, and 807). Results of the uncertainty analysis for PAN active mode measurements of aqueous sludge indicate that a bias correction multiplier of 1.55 should be applied to the PAN aqueous sludge measurements. With the bias correction, the uncertainty bounds on the expected bias are 0 ± 27%. These bounds meet the Quality Assurance Program Plan requirements for radioassay systems
Investment in flood protection measures under climate change uncertainty. An investment decision
Energy Technology Data Exchange (ETDEWEB)
Bruin, Karianne de
2012-11-01
Recent river flooding in Europe has triggered debates among scientists and policymakers on future projections of flood frequency and the need for adaptive investments, such as flood protection measures. Because there exists uncertainty about the impact of climate change of flood risk, such investments require a careful analysis of expected benefits and costs. The objective of this paper is to show how climate change uncertainty affects the decision to invest in flood protection measures. We develop a model that simulates optimal decision making in flood protection, it incorporates flexible timing of investment decisions and scientific uncertainty on the extent of climate change impacts. This model allows decision-makers to cope with the uncertain impacts of climate change on the frequency and damage of river flood events and minimises the risk of under- or over-investment. One of the innovative elements is that we explicitly distinguish between structural and non-structural flood protection measures. Our results show that the optimal investment decision today depends strongly on the cost structure of the adaptation measures and the discount rate, especially the ratio of fixed and weighted annual costs of the measures. A higher level of annual flood damage and later resolution of uncertainty in time increases the optimal investment. Furthermore, the optimal investment decision today is influenced by the possibility of the decision-maker to adjust his decision at a future moment in time.(auth)
Uncertainty in the use of MAMA software to measure particle morphological parameters from SEM images
Energy Technology Data Exchange (ETDEWEB)
Schwartz, Daniel S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tandon, Lav [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-06-05
The MAMA software package developed at LANL is designed to make morphological measurements on a wide variety of digital images of objects. At LANL, we have focused on using MAMA to measure scanning electron microscope (SEM) images of particles, as this is a critical part of our forensic analysis of interdicted radiologic materials. In order to successfully use MAMA to make such measurements, we must understand the level of uncertainty involved in the process, so that we can rigorously support our quantitative conclusions.
Account for uncertainties of control measurements in the assessment of design margin factors
International Nuclear Information System (INIS)
Dementiev, V. G.; Sidorenko, V. D.; Shishkov, L. K.
2011-01-01
The paper discusses the feasibility of accounting for uncertainties of control measurements in estimation of design margin factors. The feasibility is also taken into consideration proceeding from the fact how much the processed measured data were corrected by a priori calculated data of measurable parameters. The possibility and feasibility of such data correction is demonstrated by the authors with the help of Bayes theorem famous in mathematical statistics. (Authors)
International Nuclear Information System (INIS)
Burr, T.; Croft, S.; Krieger, T.; Martin, K.; Norman, C.; Walsh, S.
2016-01-01
One example of top-down uncertainty quantification (UQ) involves comparing two or more measurements on each of multiple items. One example of bottom-up UQ expresses a measurement result as a function of one or more input variables that have associated errors, such as a measured count rate, which individually (or collectively) can be evaluated for impact on the uncertainty in the resulting measured value. In practice, it is often found that top-down UQ exhibits larger error variances than bottom-up UQ, because some error sources are present in the fielded assay methods used in top-down UQ that are not present (or not recognized) in the assay studies used in bottom-up UQ. One would like better consistency between the two approaches in order to claim understanding of the measurement process. The purpose of this paper is to refine bottom-up uncertainty estimation by using calibration information so that if there are no unknown error sources, the refined bottom-up uncertainty estimate will agree with the top-down uncertainty estimate to within a specified tolerance. Then, in practice, if the top-down uncertainty estimate is larger than the refined bottom-up uncertainty estimate by more than the specified tolerance, there must be omitted sources of error beyond those predicted from calibration uncertainty. The paper develops a refined bottom-up uncertainty approach for four cases of simple linear calibration: (1) inverse regression with negligible error in predictors, (2) inverse regression with non-negligible error in predictors, (3) classical regression followed by inversion with negligible error in predictors, and (4) classical regression followed by inversion with non-negligible errors in predictors. Our illustrations are of general interest, but are drawn from our experience with nuclear material assay by non-destructive assay. The main example we use is gamma spectroscopy that applies the enrichment meter principle. Previous papers that ignore error in predictors
Multi-attribute integrated measurement of node importance in complex networks.
Wang, Shibo; Zhao, Jinlou
2015-11-01
The measure of node importance in complex networks is very important to the research of networks stability and robustness; it also can ensure the security of the whole network. Most researchers have used a single indicator to measure the networks node importance, so that the obtained measurement results only reflect certain aspects of the networks with a loss of information. Meanwhile, because of the difference of networks topology, the nodes' importance should be described by combining the character of the networks topology. Most of the existing evaluation algorithms cannot completely reflect the circumstances of complex networks, so this paper takes into account the degree of centrality, the relative closeness centrality, clustering coefficient, and topology potential and raises an integrated measuring method to measure the nodes' importance. This method can reflect nodes' internal and outside attributes and eliminate the influence of network structure on the node importance. The experiments of karate network and dolphin network show that networks topology structure integrated measure has smaller range of metrical result than a single indicator and more universal. Experiments show that attacking the North American power grid and the Internet network with the method has a faster convergence speed than other methods.
A generalized measurement model to quantify health: the multi-attribute preference response model.
Krabbe, Paul F M
2013-01-01
After 40 years of deriving metric values for health status or health-related quality of life, the effective quantification of subjective health outcomes is still a challenge. Here, two of the best measurement tools, the discrete choice and the Rasch model, are combined to create a new model for deriving health values. First, existing techniques to value health states are briefly discussed followed by a reflection on the recent revival of interest in patients' experience with regard to their possible role in health measurement. Subsequently, three basic principles for valid health measurement are reviewed, namely unidimensionality, interval level, and invariance. In the main section, the basic operation of measurement is then discussed in the framework of probabilistic discrete choice analysis (random utility model) and the psychometric Rasch model. It is then shown how combining the main features of these two models yields an integrated measurement model, called the multi-attribute preference response (MAPR) model, which is introduced here. This new model transforms subjective individual rank data into a metric scale using responses from patients who have experienced certain health states. Its measurement mechanism largely prevents biases such as adaptation and coping. Several extensions of the MAPR model are presented. The MAPR model can be applied to a wide range of research problems. If extended with the self-selection of relevant health domains for the individual patient, this model will be more valid than existing valuation techniques.
Tracy, Allison J.; Erkut, Sumru; Porche, Michelle V.; Kim, Jo; Charmaraman, Linda; Grossman, Jennifer M.; Ceder, Ineke; Garcia, Heidie Vazquez
2010-01-01
In this article, we operationalize identification of mixed racial and ethnic ancestry among adolescents as a latent variable to (a) account for measurement uncertainty, and (b) compare alternative wording formats for racial and ethnic self-categorization in surveys. Two latent variable models were fit to multiple mixed-ancestry indicator data from…
Measuring Cross-Section and Estimating Uncertainties with the fissionTPC
Energy Technology Data Exchange (ETDEWEB)
Bowden, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Manning, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sangiorgio, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Seilhan, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2015-01-30
The purpose of this document is to outline the prescription for measuring fission cross-sections with the NIFFTE fissionTPC and estimating the associated uncertainties. As such it will serve as a work planning guide for NIFFTE collaboration members and facilitate clear communication of the procedures used to the broader community.
Effect of the sample matrix on measurement uncertainty in X-ray fluorescence analysis
International Nuclear Information System (INIS)
Morgenstern, P.; Brueggemann, L.; Wennrich, R.
2005-01-01
The estimation of measurement uncertainty, with reference to univariate calibration functions, is discussed in detail in the Eurachem Guide 'Quantifying Uncertainty in Analytical Measurement'. The adoption of these recommendations to quantitative X-ray fluorescence analysis (XRF) involves basic problems which are above all due to the strong influence of the sample matrix on the analytical response. In XRF-analysis, the proposed recommendations are consequently applicable only to the matrix corrected response. The application is also restricted with regard to both the matrices and analyte concentrations. In this context the present studies are aimed at the problems to predict measurement uncertainty also with reference to more variable sample compositions. The corresponding investigations are focused on the use of the intensity of the Compton scattered tube line as an internal standard to assess the effect of the individual sample matrix on the analytical response relatively to a reference matrix. Based on this concept the estimation of the measurement uncertainty of an analyte presented in an unknown specimen can be predicted in consideration of the data obtained under defined matrix conditions
International Nuclear Information System (INIS)
Manzoli, J.E.; Potiens, M.P.A.
2000-01-01
The Calibration Laboratory of Sao Paulo calibrates more than one thousand gamma ray survey meters a year; beside other kinds of radiotherapy, radiodiagnostic and radiation protection instruments. It has a standard (600 cm 3 ) cylinder ionization chamber (Nuclear Enterprises Ltd. model 2511/3) traceable to the Brazilian Secondary Standard Dosimetry Laboratory (SSDL) whose instruments are traceable to the BIPM. Annually the beam dosimetry is performed using this chamber and the results are used as the true values for calibration purposes. The uncertainties present in every direct or indirect measurement during the calibration procedure must be evaluated for purposes of laboratory quality control. All calculation steps in the propagation of errors are presented in this work staging from the ionization chamber charge measured with the standard instrument. Such a propagation was made in space and time, considering even the environmental quantities uncertainties. The propagation was necessary in space, because the ionization chamber measurements were performed at only one space position. The time propagation was essential due to the fact that the activity is a peculiar physical quantity which changes with time according to precise relations for a specific radionuclide. The clear indication of every measurement uncertainty is always important to quantify the quality of this measurement. Nowadays the achievement of calibration laboratory quality systems requires the expression of all uncertainties and the procedure used to evaluate it. An example of this procedure in the case of the calibration of a typical portable radiation survey meter is presented. The direct exposure rate instrument measurement was compared with the true value given by the standard instrument properly propagated and all quantities used have their uncertainties shown. (author)
Directory of Open Access Journals (Sweden)
Morrell Jane
2009-05-01
Full Text Available Abstract Background Multi-attribute utility measures are preference-based health-related quality of life measures that have been developed to inform economic evaluations of health care interventions. The objective of this study was to compare the empirical validity of two multi-attribute utility measures (EQ-5D and SF-6D based on hypothetical preferences in a large maternity population in England. Methods Women who participated in a randomised controlled trial of additional postnatal support provided by trained community support workers represented the study population for this investigation. The women were asked to complete the EQ-5D descriptive system (which defines health-related quality of life in terms of five dimensions: mobility, self care, usual activities, pain/discomfort and anxiety/depression and the SF-36 (which defines health-related quality of life, using 36 items, across eight dimensions: physical functioning, role limitations (physical, social functioning, bodily pain, general health, mental health, vitality and role limitations (emotional at six months postpartum. Their responses were converted into utility scores using the York A1 tariff set and the SF-6D utility algorithm, respectively. One-way analysis of variance was used to test the hypothetically-constructed preference rule that each set of utility scores differs significantly by self-reported health status (categorised as excellent, very good, good, fair or poor. The degree to which EQ-5D and SF-6D utility scores reflected alternative dichotomous configurations of self-reported health status and the Edinburgh Postnatal Depression Scale score was tested using the relative efficiency statistic and receiver operating characteristic (ROC curves. Results The mean utility score for the EQ-5D was 0.861 (95% CI: 0.844, 0.877, whilst the mean utility score for the SF-6D was 0.809 (95% CI: 0.796, 0.822, representing a mean difference in utility score of 0.052 (95% CI: 0.040, 0
International Nuclear Information System (INIS)
Gasco Leonarte, C; Anton Mateos, M. P.
1995-01-01
This report summarizes the procedure used to calculate the uncertainties associated to environmental radioactivity measurements, focusing on those obtained by radiochemical separation in which tracers have been added. Uncertainties linked to activity concentration calculations, isotopic rat iso, inventories, sequential leaching data, chronology dating by using C.R.S. model and duplicate analysis are described in detail. The objective of this article is to serve as a guide to people not familiarized with this kind of calculations, showing clear practical examples. The input of the formulas and all the data needed to achieve these calculations into the Lotus 1, 2, 3 WTN is outlined as well. (Author) 13 refs
International Nuclear Information System (INIS)
Gasco Leonarte, C.; Anton Mateos, M.P.
1995-12-01
This report summarizes the procedure used to calculate the uncertainties associated to environmental radioactivity measurements. focusing on those obtained by radiochemical separation in which tracers have been added. Uncertainties linked to activity concentration calculations, isotopic ratio, inventories, sequential leaching data, chronology dating by using C.R.S model and duplicate analysis are described in detail. The objective of this article is to serve as a guide to people not familiarized with this kind of calculations, showing clear practical examples. The input of the formulas and all the data needed to achieve these calculations into the Lotus 1,2,3, WIN is outlined as well. (Author)
Directory of Open Access Journals (Sweden)
Lei Chen
2018-01-01
Full Text Available Conflict management in Dempster-Shafer theory (D-S theory is a hot topic in information fusion. In this paper, a novel weighted evidence combination rule based on evidence distance and uncertainty measure is proposed. The proposed approach consists of two steps. First, the weight is determined based on the evidence distance. Then, the weight value obtained in first step is modified by taking advantage of uncertainty. Our proposed method can efficiently handle high conflicting evidences with better performance of convergence. A numerical example and an application based on sensor fusion in fault diagnosis are given to demonstrate the efficiency of our proposed method.
Measurement Uncertainty of Dew-Point Temperature in a Two-Pressure Humidity Generator
Martins, L. Lages; Ribeiro, A. Silva; Alves e Sousa, J.; Forbes, Alistair B.
2012-09-01
This article describes the measurement uncertainty evaluation of the dew-point temperature when using a two-pressure humidity generator as a reference standard. The estimation of the dew-point temperature involves the solution of a non-linear equation for which iterative solution techniques, such as the Newton-Raphson method, are required. Previous studies have already been carried out using the GUM method and the Monte Carlo method but have not discussed the impact of the approximate numerical method used to provide the temperature estimation. One of the aims of this article is to take this approximation into account. Following the guidelines presented in the GUM Supplement 1, two alternative approaches can be developed: the forward measurement uncertainty propagation by the Monte Carlo method when using the Newton-Raphson numerical procedure; and the inverse measurement uncertainty propagation by Bayesian inference, based on prior available information regarding the usual dispersion of values obtained by the calibration process. The measurement uncertainties obtained using these two methods can be compared with previous results. Other relevant issues concerning this research are the broad application to measurements that require hygrometric conditions obtained from two-pressure humidity generators and, also, the ability to provide a solution that can be applied to similar iterative models. The research also studied the factors influencing both the use of the Monte Carlo method (such as the seed value and the convergence parameter) and the inverse uncertainty propagation using Bayesian inference (such as the pre-assigned tolerance, prior estimate, and standard deviation) in terms of their accuracy and adequacy.
Directory of Open Access Journals (Sweden)
K. J. Franz
2011-11-01
Full Text Available The hydrologic community is generally moving towards the use of probabilistic estimates of streamflow, primarily through the implementation of Ensemble Streamflow Prediction (ESP systems, ensemble data assimilation methods, or multi-modeling platforms. However, evaluation of probabilistic outputs has not necessarily kept pace with ensemble generation. Much of the modeling community is still performing model evaluation using standard deterministic measures, such as error, correlation, or bias, typically applied to the ensemble mean or median. Probabilistic forecast verification methods have been well developed, particularly in the atmospheric sciences, yet few have been adopted for evaluating uncertainty estimates in hydrologic model simulations. In the current paper, we overview existing probabilistic forecast verification methods and apply the methods to evaluate and compare model ensembles produced from two different parameter uncertainty estimation methods: the Generalized Uncertainty Likelihood Estimator (GLUE, and the Shuffle Complex Evolution Metropolis (SCEM. Model ensembles are generated for the National Weather Service SACramento Soil Moisture Accounting (SAC-SMA model for 12 forecast basins located in the Southeastern United States. We evaluate the model ensembles using relevant metrics in the following categories: distribution, correlation, accuracy, conditional statistics, and categorical statistics. We show that the presented probabilistic metrics are easily adapted to model simulation ensembles and provide a robust analysis of model performance associated with parameter uncertainty. Application of these methods requires no information in addition to what is already available as part of traditional model validation methodology and considers the entire ensemble or uncertainty range in the approach.
LOWERING UNCERTAINTY IN CRUDE OIL MEASUREMENT BY SELECTING OPTIMIZED ENVELOPE COLOR OF A PIPELINE
Directory of Open Access Journals (Sweden)
Morteza Saadat
2011-01-01
Full Text Available Lowering uncertainty in crude oil volume measurement has been widely considered as one of main purposes in an oil export terminal. It is found that crude oil temperature at metering station has big effects on measured volume and may cause big uncertainty at the metering point. As crude oil flows through an aboveground pipeline, pick up the solar radiation and heat up. This causes the oil temperature at the metering point to rise and higher uncertainty to be created. The amount of temperature rise is depended on exterior surface paint color. In the Kharg Island, there is about 3 km distance between the oil storage tanks and the metering point. The oil flows through the pipeline due to gravity effects as storage tanks are located 60m higher than the metering point. In this study, an analytical model has been conducted for predicting oil temperature at the pipeline exit (the metering point based on climate and geographical conditions of the Kharg Island. The temperature at the metering point has been calculated and the effects of envelope color have been investigated. Further, the uncertainty in the measurement system due to temperature rise has been studied.
Invited Review Article: Measurement uncertainty of linear phase-stepping algorithms
Energy Technology Data Exchange (ETDEWEB)
Hack, Erwin [EMPA, Laboratory Electronics/Metrology/Reliability, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland); Burke, Jan [Australian Centre for Precision Optics, CSIRO (Commonwealth Scientific and Industrial Research Organisation) Materials Science and Engineering, P.O. Box 218, Lindfield, NSW 2070 (Australia)
2011-06-15
Phase retrieval techniques are widely used in optics, imaging and electronics. Originating in signal theory, they were introduced to interferometry around 1970. Over the years, many robust phase-stepping techniques have been developed that minimize specific experimental influence quantities such as phase step errors or higher harmonic components of the signal. However, optimizing a technique for a specific influence quantity can compromise its performance with regard to others. We present a consistent quantitative analysis of phase measurement uncertainty for the generalized linear phase stepping algorithm with nominally equal phase stepping angles thereby reviewing and generalizing several results that have been reported in literature. All influence quantities are treated on equal footing, and correlations between them are described in a consistent way. For the special case of classical N-bucket algorithms, we present analytical formulae that describe the combined variance as a function of the phase angle values. For the general Arctan algorithms, we derive expressions for the measurement uncertainty averaged over the full 2{pi}-range of phase angles. We also give an upper bound for the measurement uncertainty which can be expressed as being proportional to an algorithm specific factor. Tabular compilations help the reader to quickly assess the uncertainties that are involved with his or her technique.
Energy Technology Data Exchange (ETDEWEB)
Puustinen, H.; Aunela-Tapola, L.; Tolvanen, M.; Vahlman, T. [VTT Chemical Technology, Espoo (Finland). Environmental Technology; Kovanen, K. [VTT Building Technology, Espoo (Finland). Building Physics, Building Services and Fire Technology
1999-09-01
This report presents a procedure to determine the uncertainty of an automated emission measuring system (AMS) by comparing the results with a second method (REF). The procedure determines the uncertainty of AMS by comparing the final concentration and emission results of AMS and REF. In this way, the data processing of the plant is included in the result evaluation. This procedure assumes that the uncertainty of REF is known and determined in due form. The uncertainty determination has been divided into two cases; varying and nearly constant concentration. The suggested procedure calculates the uncertainty of AMS at the 95 % confidence level by a tabulated t-value. A minimum of three data pairs is required. However, a higher amount of data pairs is desirable, since a low amount of data pairs results in a higher uncertainty of AMS. The uncertainty of AMS is valid only within the range of concentrations at which the tests were carried out. Statistical data processing shows that the uncertainty of the reference method has a significant effect on the uncertainty of AMS, which always becomes larger than the uncertainty of REF. This should be taken into account when testing whether AMS fulfils the given uncertainty limits. Practical details, concerning parallel measurements at the plant, and the costs of the measurement campaign, have been taken into account when suggesting alternative ways for implementing the comparative measurements. (orig.) 6 refs.
Tolerance analysis in manufacturing using process capability ratio with measurement uncertainty
DEFF Research Database (Denmark)
Mahshid, Rasoul; Mansourvar, Zahra; Hansen, Hans Nørgaard
2017-01-01
. In this paper, a new statistical analysis was applied to manufactured products to assess achieved tolerances when the process is known while using capability ratio and expanded uncertainty. The analysis has benefits for process planning, determining actual precision limits, process optimization, troubleshoot......Tolerance analysis provides valuable information regarding performance of manufacturing process. It allows determining the maximum possible variation of a quality feature in production. Previous researches have focused on application of tolerance analysis to the design of mechanical assemblies...... malfunctioning existing part. The capability measure is based on a number of measurements performed on part’s quality variable. Since the ratio relies on measurements, elimination of any possible error has notable negative impact on results. Therefore, measurement uncertainty was used in combination with process...
Uncertainties of size measurements in electron microscopy characterization of nanomaterials in foods
DEFF Research Database (Denmark)
Dudkiewicz, Agnieszka; Boxall, Alistair B. A.; Chaudhry, Qasim
2015-01-01
Electron microscopy is a recognized standard tool for nanomaterial characterization, and recommended by the European Food Safety Authority for the size measurement of nanomaterials in food. Despite this, little data have been published assessing the reliability of the method, especially for size...... measurement of nanomaterials characterized by a broad size distribution and/or added to food matrices. This study is a thorough investigation of the measurement uncertainty when applying electron microscopy for size measurement of engineered nanomaterials in foods. Our results show that the number of measured...
Directory of Open Access Journals (Sweden)
Vulević Branislav D.
2011-01-01
Full Text Available This paper is a summary of broadband measurement values of radiofrequency radiation around GSM base stations in the vicinity of residential areas in Belgrade and 12 other cities in Serbia. It will be useful for determining non-ionizing radiation exposure levels of the general public in the future. The purpose of this paper is also an appropriate representation of basic information on the evaluation of measurement uncertainty.
Tarrab, Leticia; Garcia, Carlos M.; Cantero, Mariano I.; Oberg, Kevin
2012-01-01
This work presents a systematic analysis quantifying the role of the presence of turbulence fluctuations on uncertainties (random errors) of acoustic Doppler current profiler (ADCP) discharge measurements from moving platforms. Data sets of three-dimensional flow velocities with high temporal and spatial resolution were generated from direct numerical simulation (DNS) of turbulent open channel flow. Dimensionless functions relating parameters quantifying the uncertainty in discharge measurements due to flow turbulence (relative variance and relative maximum random error) to sampling configuration were developed from the DNS simulations and then validated with field-scale discharge measurements. The validated functions were used to evaluate the role of the presence of flow turbulence fluctuations on uncertainties in ADCP discharge measurements. The results of this work indicate that random errors due to the flow turbulence are significant when: (a) a low number of transects is used for a discharge measurement, and (b) measurements are made in shallow rivers using high boat velocity (short time for the boat to cross a flow turbulence structure).
Measurability of quantum fields and the energy-time uncertainty relation
International Nuclear Information System (INIS)
Mensky, Mikhail B
2011-01-01
Quantum restrictions on the measurability of an electromagnetic field strength and their relevance to the energy-time uncertainty relation are considered. The minimum errors in measuring electromagnetic field strengths, as they were estimated by the author (1988) in the framework of the phenomenological method of restricted path integral (RPI), are compared with the analogous estimates found by Landau and Peierls (1931) and by Bohr and Rosenfeld (1933) with the help of certain measurement setups. RPI-based restrictions, including those of Landau and Peierls as a special case, hold for any measuring schemes meeting the strict definition of measurement. Their fundamental nature is confirmed by the fact that their associated field detectability condition has the form of the energy-time uncertainty relation. The weaker restrictions suggested by Bohr and Rosenfeld rely on an extended definition of measurement. The energy-time uncertainty relation, which is the condition for the electromagnetic field to be detectable, is applied to the analysis of how the near-field scanning microscope works. (methodological notes)
Uncertainty modelling of real-time observation of a moving object: photogrammetric measurements
Ulrich, Thomas
2015-04-01
Photogrametric systems are widely used in the field of industrial metrology to measure kinematic tasks such as tracking robot movements. In order to assess spatiotemporal deviations of a kinematic movement, it is crucial to have a reliable uncertainty of the kinematic measurements. Common methods to evaluate the uncertainty in kinematic measurements include approximations specified by the manufactures, various analytical adjustment methods and Kalman filters. Here a hybrid system estimator in conjunction with a kinematic measurement model is applied. This method can be applied to processes which include various types of kinematic behaviour, constant velocity, variable acceleration or variable turn rates. Additionally, it has been shown that the approach is in accordance with GUM (Guide to the Expression of Uncertainty in Measurement). The approach is compared to the Kalman filter using simulated data to achieve an overall error calculation. Furthermore, the new approach is used for the analysis of a rotating system as this system has both a constant and a variable turn rate. As the new approach reduces overshoots it is more appropriate for analysing kinematic processes than the Kalman filter. In comparison with the manufacturer’s approximations, the new approach takes account of kinematic behaviour, with an improved description of the real measurement process. Therefore, this approach is well-suited to the analysis of kinematic processes with unknown changes in kinematic behaviour.
International Nuclear Information System (INIS)
Parvin, Dan; Clarke, Sean
2015-01-01
Particle Swarm Imaging (PSIM) overcomes some of the challenges associated with the accurate declaration of measurement uncertainties of radionuclide inventories within waste items when the distribution of activity is unknown. Implementation requires minimal equipment, making use of gamma‑ray measurements taken from different locations around the waste item, using only a single electrically cooled HRGS gamma‑ray detector for objects up to a UK ISO freight container in size. The PSIM technique is a computational method that iteratively ‘homes‑in’ on the true location of activity concentrations in waste items. PSIM differs from conventional assay techniques by allowing only viable solutions - that is those that could actually give rise to the measured data - to be considered. Thus PSIM avoids the drawback of conventional analyses, namely, the adoption of unrealistic assumptions about the activity distribution that inevitably leads to the declaration of pessimistic (and in some cases optimistic) activity estimates and uncertainties. PSIM applies an optimisation technique based upon ‘particle swarming’ methods to determine a set of candidate solutions within a ‘search space’ defined by the interior volume of a waste item. The positions and activities of the swarm are used in conjunction with a mathematical model to simulate the measurement response for the current swarm location. The swarm is iteratively updated (with modified positions and activities) until a match with sufficient quality is obtained between the simulated and actual measurement data. This process is repeated to build up a distribution of candidate solutions, which is subsequently analysed to calculate a measurement result and uncertainty along with a visual image of the activity distribution. The application of ‘swarming’ computational methods to non‑destructive assay (NDA) measurements is considered novel and this paper is intended to introduce the PSIM concept and provide
Uncertainty Quantification and Comparison of Weld Residual Stress Measurements and Predictions.
Energy Technology Data Exchange (ETDEWEB)
Lewis, John R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brooks, Dusty Marie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2016-10-01
In pressurized water reactors, the prevention, detection, and repair of cracks within dissimilar metal welds is essential to ensure proper plant functionality and safety. Weld residual stresses, which are difficult to model and cannot be directly measured, contribute to the formation and growth of cracks due to primary water stress corrosion cracking. Additionally, the uncertainty in weld residual stress measurements and modeling predictions is not well understood, further complicating the prediction of crack evolution. The purpose of this document is to develop methodology to quantify the uncertainty associated with weld residual stress that can be applied to modeling predictions and experimental measurements. Ultimately, the results can be used to assess the current state of uncertainty and to build confidence in both modeling and experimental procedures. The methodology consists of statistically modeling the variation in the weld residual stress profiles using functional data analysis techniques. Uncertainty is quantified using statistical bounds (e.g. confidence and tolerance bounds) constructed with a semi-parametric bootstrap procedure. Such bounds describe the range in which quantities of interest, such as means, are expected to lie as evidenced by the data. The methodology is extended to provide direct comparisons between experimental measurements and modeling predictions by constructing statistical confidence bounds for the average difference between the two quantities. The statistical bounds on the average difference can be used to assess the level of agreement between measurements and predictions. The methodology is applied to experimental measurements of residual stress obtained using two strain relief measurement methods and predictions from seven finite element models developed by different organizations during a round robin study.
International Nuclear Information System (INIS)
Berkhoff, A P
2012-01-01
Model errors in adaptive controllers for the reduction of broadband noise and vibrations may lead to unstable systems or increased error signals. Previous research on active structures with small damping has shown that the addition of a low-authority controller which increases damping in the system may lead to improved performance of an adaptive, high-authority controller. Other researchers have suggested the use of frequency dependent regularization based on measured uncertainties. In this paper an alternative method is presented that avoids the disadvantages of these methods, namely the additional complex hardware and the need to obtain detailed information on the uncertainties. An analysis is made of an adaptive feedforward controller in which a difference exists between the secondary path and the model as used in the controller. The real parts of the eigenvalues that determine the stability of the system are expressed in terms of the amount of uncertainty and the singular values of the secondary path. Modifications of the feedforward control scheme are suggested that aim to improve performance without requiring detailed uncertainty measurements. (paper)
Evaluation of uncertainty in the measurement of sense of natural language constructions
Directory of Open Access Journals (Sweden)
Bisikalo Oleg V.
2017-01-01
Full Text Available The task of evaluating uncertainty in the measurement of sense in natural language constructions (NLCs was researched through formalization of the notions of the language image, formalization of artificial cognitive systems (ACSs and the formalization of units of meaning. The method for measuring the sense of natural language constructions incorporated fuzzy relations of meaning, which ensures that information about the links between lemmas of the text is taken into account, permitting the evaluation of two types of measurement uncertainty of sense characteristics. Using developed applications programs, experiments were conducted to investigate the proposed method to tackle the identification of informative characteristics of text. The experiments resulted in dependencies of parameters being obtained in order to utilise the Pareto distribution law to define relations between lemmas, analysis of which permits the identification of exponents of an average number of connections of the language image as the most informative characteristics of text.
Measurement uncertainty recapture (MUR) power uprates operation at Kuosheng Nuclear Power Station
International Nuclear Information System (INIS)
Chang Chinjang; Wang Tunglu; Lin Chihpao
2009-01-01
Measurement Uncertainty Recapture PowerUprates (MUR PU) are achieved through the use of state-of-the-art feedwater flow measurement devices, i.e., ultrasonic flow meters (UFMs), that reduce the degree of uncertainty associated with feedwater flow measurement and in turn provide for a more accurate calculation of thermal power. The Institute of Nuclear Energy Research (INER) teamed with Sargent and Lundy, LLC (S and L), Pacific Engineers and Constructors, Ltd (PECL), and AREVA to develop a program and plan for the Kuosheng Nuclear Power Station (KNPS) MUR PU Engineering Service Project and for the assistance to Kuosheng MUR PU operation. After regulator's approval of the licensing requests, KSNPS conducted the power ascension test and switchover to the new rated thermal power for Unit 2 and Unit 1 on 7/7/2007 and 11/30/2007, respectively. From then on, KNPS became the first nuclear power plant implementing MUR PU operation in Taiwan and in Asia. (author)
Optimized Clustering Estimators for BAO Measurements Accounting for Significant Redshift Uncertainty
Energy Technology Data Exchange (ETDEWEB)
Ross, Ashley J. [Portsmouth U., ICG; Banik, Nilanjan [Fermilab; Avila, Santiago [Madrid, IFT; Percival, Will J. [Portsmouth U., ICG; Dodelson, Scott [Fermilab; Garcia-Bellido, Juan [Madrid, IFT; Crocce, Martin [ICE, Bellaterra; Elvin-Poole, Jack [Jodrell Bank; Giannantonio, Tommaso [Cambridge U., KICC; Manera, Marc [Cambridge U., DAMTP; Sevilla-Noarbe, Ignacio [Madrid, CIEMAT
2017-05-15
We determine an optimized clustering statistic to be used for galaxy samples with significant redshift uncertainty, such as those that rely on photometric redshifts. To do so, we study the BAO information content as a function of the orientation of galaxy clustering modes with respect to their angle to the line-of-sight (LOS). The clustering along the LOS, as observed in a redshift-space with significant redshift uncertainty, has contributions from clustering modes with a range of orientations with respect to the true LOS. For redshift uncertainty $\\sigma_z \\geq 0.02(1+z)$ we find that while the BAO information is confined to transverse clustering modes in the true space, it is spread nearly evenly in the observed space. Thus, measuring clustering in terms of the projected separation (regardless of the LOS) is an efficient and nearly lossless compression of the signal for $\\sigma_z \\geq 0.02(1+z)$. For reduced redshift uncertainty, a more careful consideration is required. We then use more than 1700 realizations of galaxy simulations mimicking the Dark Energy Survey Year 1 sample to validate our analytic results and optimized analysis procedure. We find that using the correlation function binned in projected separation, we can achieve uncertainties that are within 10 per cent of of those predicted by Fisher matrix forecasts. We predict that DES Y1 should achieve a 5 per cent distance measurement using our optimized methods. We expect the results presented here to be important for any future BAO measurements made using photometric redshift data.
McDonnell, J D; Schunck, N; Higdon, D; Sarich, J; Wild, S M; Nazarewicz, W
2015-03-27
Statistical tools of uncertainty quantification can be used to assess the information content of measured observables with respect to present-day theoretical models, to estimate model errors and thereby improve predictive capability, to extrapolate beyond the regions reached by experiment, and to provide meaningful input to applications and planned measurements. To showcase new opportunities offered by such tools, we make a rigorous analysis of theoretical statistical uncertainties in nuclear density functional theory using Bayesian inference methods. By considering the recent mass measurements from the Canadian Penning Trap at Argonne National Laboratory, we demonstrate how the Bayesian analysis and a direct least-squares optimization, combined with high-performance computing, can be used to assess the information content of the new data with respect to a model based on the Skyrme energy density functional approach. Employing the posterior probability distribution computed with a Gaussian process emulator, we apply the Bayesian framework to propagate theoretical statistical uncertainties in predictions of nuclear masses, two-neutron dripline, and fission barriers. Overall, we find that the new mass measurements do not impose a constraint that is strong enough to lead to significant changes in the model parameters. The example discussed in this study sets the stage for quantifying and maximizing the impact of new measurements with respect to current modeling and guiding future experimental efforts, thus enhancing the experiment-theory cycle in the scientific method.
Energy Technology Data Exchange (ETDEWEB)
McDonnell, J. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Schunck, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Higdon, D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sarich, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Wild, S. M. [Argonne National Lab. (ANL), Argonne, IL (United States); Nazarewicz, W. [Michigan State Univ., East Lansing, MI (United States); Oak Ridge National Lab., Oak Ridge, TN (United States); Univ. of Warsaw, Warsaw (Poland)
2015-03-24
Statistical tools of uncertainty quantification can be used to assess the information content of measured observables with respect to present-day theoretical models, to estimate model errors and thereby improve predictive capability, to extrapolate beyond the regions reached by experiment, and to provide meaningful input to applications and planned measurements. To showcase new opportunities offered by such tools, we make a rigorous analysis of theoretical statistical uncertainties in nuclear density functional theory using Bayesian inference methods. By considering the recent mass measurements from the Canadian Penning Trap at Argonne National Laboratory, we demonstrate how the Bayesian analysis and a direct least-squares optimization, combined with high-performance computing, can be used to assess the information content of the new data with respect to a model based on the Skyrme energy density functional approach. Employing the posterior probability distribution computed with a Gaussian process emulator, we apply the Bayesian framework to propagate theoretical statistical uncertainties in predictions of nuclear masses, two-neutron dripline, and fission barriers. Overall, we find that the new mass measurements do not impose a constraint that is strong enough to lead to significant changes in the model parameters. As a result, the example discussed in this study sets the stage for quantifying and maximizing the impact of new measurements with respect to current modeling and guiding future experimental efforts, thus enhancing the experiment-theory cycle in the scientific method.
International Nuclear Information System (INIS)
Charonko, John J; Vlachos, Pavlos P
2013-01-01
Numerous studies have established firmly that particle image velocimetry (PIV) is a robust method for non-invasive, quantitative measurements of fluid velocity, and that when carefully conducted, typical measurements can accurately detect displacements in digital images with a resolution well below a single pixel (in some cases well below a hundredth of a pixel). However, to date, these estimates have only been able to provide guidance on the expected error for an average measurement under specific image quality and flow conditions. This paper demonstrates a new method for estimating the uncertainty bounds to within a given confidence interval for a specific, individual measurement. Here, cross-correlation peak ratio, the ratio of primary to secondary peak height, is shown to correlate strongly with the range of observed error values for a given measurement, regardless of flow condition or image quality. This relationship is significantly stronger for phase-only generalized cross-correlation PIV processing, while the standard correlation approach showed weaker performance. Using an analytical model of the relationship derived from synthetic data sets, the uncertainty bounds at a 95% confidence interval are then computed for several artificial and experimental flow fields, and the resulting errors are shown to match closely to the predicted uncertainties. While this method stops short of being able to predict the true error for a given measurement, knowledge of the uncertainty level for a PIV experiment should provide great benefits when applying the results of PIV analysis to engineering design studies and computational fluid dynamics validation efforts. Moreover, this approach is exceptionally simple to implement and requires negligible additional computational cost. (paper)
Portable gamma-ray holdup and attributes measurements of high- and variable-burnup plutonium
International Nuclear Information System (INIS)
Wenz, T.R.; Russo, P.A.; Miller, M.C.; Menlove, H.O.; Takahashi, S.; Yamamoto, Y.; Aoki, I.
1991-01-01
High burnup-plutonium holdup has been assayed quantitatively by low resolution gamma-ray spectrometry. The assay was calibrated with four plutonium standards representing a range of fuel burnup and 241 Am content. Selection of a calibration standard based on its qualitative spectral similarity to gamma-ray spectra of the process material is partially responsible for the success of these holdup measurements. The spectral analysis method is based on the determination of net counts in a single spectral region of interest (ROI). However, the low-resolution gamma-ray assay signal for the high-burnup plutonium includes unknown amounts of contamination from 241 Am. For most needs, the range of calibration standards required for this selection procedure is not available. A new low-resolution gamma-ray spectral analysis procedure for assay of 239 Pu has been developed. The procedure uses the calculated isotope activity ratios and the measured net counts in three spectral ROIs to evaluate and remove the 241 Am contamination from the 239 Pu assay signal on a spectrum-by-spectrum basis. The calibration for the new procedure requires only a single plutonium standard. The procedure also provides a measure of the burnup and age attributes of holdup deposits. The new procedure has been demonstrated using portable gamma-ray spectroscopy equipment for a wide range of plutonium standards and has also been applied to the assay of 239 Pu holdup in a mixed oxide fuel fabrication facility. 10 refs., 5 figs., 3 tabs
DEFF Research Database (Denmark)
Tosello, Guido; Hansen, Hans Nørgaard; Gasparin, Stefania
2010-01-01
Process capability of micro injection moulding was investigated in this paper by calculating the Cp and Cpk statistics. Uncertainty of both optical and tactile measuring systems employed in the quality control of micro injection moulded products was assessed and compared with the specified...... tolerances. Limits in terms of manufacturing process capability as well as of suitability of such measuring systems when employed for micro production inspection were quantitatively determined....
DEFF Research Database (Denmark)
Tosello, Guido; De Chiffre, Leonardo
This document is used in connection with one exercise 30 minutes duration as a part of the course VISION ONLINE – One week course on Precision & Nanometrology. The exercise concerns establishment of traceability of precision measurements on coordinate measuring machines. This document contains...... a short description of each step in the exercise, the uncertainty budget as described in the ISO/TS 15530 part 3 and tables from the excel spreadsheets....
Energy Technology Data Exchange (ETDEWEB)
Sales, Emer; Pinto, Fernando Sandi; Sousa Junior, Samuel Facanha; Freitas, Dayslon Luiz Gaudaret; Andrade, Lucio das Chagas de, E-mail: fernandopintofis@gmail.com [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil)
2016-07-01
The calculation of uncertainty is a mathematical tool widely used in the analysis of experimental data, ensuring that the values obtained by measuring equipment are the most accurate and close to the possible real. This paper presents a theoretical review of uncertainty, and with application of objective determination of uncertainty for repeatability and reproducibility of processes measuring for determining dose of a radioactive source, in practice ionization chamber, held at the Professional Master of Medical Physics State University of Rio de Janeiro. (author)
Energy Technology Data Exchange (ETDEWEB)
Vinai, P
2007-10-15
For the development, design and licensing of a nuclear power plant (NPP), a sound safety analysis is necessary to study the diverse physical phenomena involved in the system behaviour under operational and transient conditions. Such studies are based on detailed computer simulations. With the progresses achieved in computer technology and the greater availability of experimental and plant data, the use of best estimate codes for safety evaluations has gained increasing acceptance. The application of best estimate safety analysis has raised new problems that need to be addressed: it has become more crucial to assess as to how reliable code predictions are, especially when they need to be compared against safety limits that must not be crossed. It becomes necessary to identify and quantify the various possible sources of uncertainty that affect the reliability of the results. Currently, such uncertainty evaluations are generally based on experts' opinion. In the present research, a novel methodology based on a non-parametric statistical approach has been developed for objective quantification of best-estimate code uncertainties related to the physical models used in the code. The basis is an evaluation of the accuracy of a given physical model achieved by comparing its predictions with experimental data from an appropriate set of separate-effect tests. The differences between measurements and predictions can be considered stochastically distributed, and thus a statistical approach can be employed. The first step was the development of a procedure for investigating the dependence of a given physical model's accuracy on the experimental conditions. Each separate-effect test effectively provides a random sample of discrepancies between measurements and predictions, corresponding to a location in the state space defined by a certain number of independent system variables. As a consequence, the samples of 'errors', achieved from analysis of the entire
International Nuclear Information System (INIS)
Vinai, P.
2007-10-01
For the development, design and licensing of a nuclear power plant (NPP), a sound safety analysis is necessary to study the diverse physical phenomena involved in the system behaviour under operational and transient conditions. Such studies are based on detailed computer simulations. With the progresses achieved in computer technology and the greater availability of experimental and plant data, the use of best estimate codes for safety evaluations has gained increasing acceptance. The application of best estimate safety analysis has raised new problems that need to be addressed: it has become more crucial to assess as to how reliable code predictions are, especially when they need to be compared against safety limits that must not be crossed. It becomes necessary to identify and quantify the various possible sources of uncertainty that affect the reliability of the results. Currently, such uncertainty evaluations are generally based on experts' opinion. In the present research, a novel methodology based on a non-parametric statistical approach has been developed for objective quantification of best-estimate code uncertainties related to the physical models used in the code. The basis is an evaluation of the accuracy of a given physical model achieved by comparing its predictions with experimental data from an appropriate set of separate-effect tests. The differences between measurements and predictions can be considered stochastically distributed, and thus a statistical approach can be employed. The first step was the development of a procedure for investigating the dependence of a given physical model's accuracy on the experimental conditions. Each separate-effect test effectively provides a random sample of discrepancies between measurements and predictions, corresponding to a location in the state space defined by a certain number of independent system variables. As a consequence, the samples of 'errors', achieved from analysis of the entire database, are
SWEPP PAN assay system uncertainty analysis: Passive mode measurements of graphite waste
International Nuclear Information System (INIS)
Blackwood, L.G.; Harker, Y.D.; Meachum, T.R.; Yoon, Woo Y.
1997-07-01
The Idaho National Engineering and Environmental Laboratory is being used as a temporary storage facility for transuranic waste generated by the U.S. Nuclear Weapons program at the Rocky Flats Plant (RFP) in Golden, Colorado. Currently, there is a large effort in progress to prepare to ship this waste to the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. In order to meet the TRU Waste Characterization Quality Assurance Program Plan nondestructive assay compliance requirements and quality assurance objectives, it is necessary to determine the total uncertainty of the radioassay results produced by the Stored Waste Examination Pilot Plant (SWEPP) Passive Active Neutron (PAN) radioassay system. To this end a modified statistical sampling and verification approach has been developed to determine the total uncertainty of a PAN measurement. In this approach the total performance of the PAN nondestructive assay system is simulated using computer models of the assay system and the resultant output is compared with the known input to assess the total uncertainty. This paper is one of a series of reports quantifying the results of the uncertainty analysis of the PAN system measurements for specific waste types and measurement modes. In particular this report covers passive mode measurements of weapons grade plutonium-contaminated graphite molds contained in 208 liter drums (waste code 300). The validity of the simulation approach is verified by comparing simulated output against results from measurements using known plutonium sources and a surrogate graphite waste form drum. For actual graphite waste form conditions, a set of 50 cases covering a statistical sampling of the conditions exhibited in graphite wastes was compiled using a Latin hypercube statistical sampling approach
International Nuclear Information System (INIS)
Van Berkel, M; Hogeweij, G M D; Van den Brand, H; De Baar, M R; Zwart, H J; Vandersteen, G
2014-01-01
In this paper, the estimation of the thermal diffusivity from perturbative experiments in fusion plasmas is discussed. The measurements used to estimate the thermal diffusivity suffer from stochastic noise. Accurate estimation of the thermal diffusivity should take this into account. It will be shown that formulas found in the literature often result in a thermal diffusivity that has a bias (a difference between the estimated value and the actual value that remains even if more measurements are added) or have an unnecessarily large uncertainty. This will be shown by modeling a plasma using only diffusion as heat transport mechanism and measurement noise based on ASDEX Upgrade measurements. The Fourier coefficients of a temperature perturbation will exhibit noise from the circular complex normal distribution (CCND). Based on Fourier coefficients distributed according to a CCND, it is shown that the resulting probability density function of the thermal diffusivity is an inverse non-central chi-squared distribution. The thermal diffusivity that is found by sampling this distribution will always be biased, and averaging of multiple estimated diffusivities will not necessarily improve the estimation. Confidence bounds are constructed to illustrate the uncertainty in the diffusivity using several formulas that are equivalent in the noiseless case. Finally, a different method of averaging, that reduces the uncertainty significantly, is suggested. The methodology is also extended to the case where damping is included, and it is explained how to include the cylindrical geometry. (paper)
An analysis of combined standard uncertainty for radiochemical measurements of environmental samples
International Nuclear Information System (INIS)
Berne, A.
1996-01-01
It is anticipated that future data acquisitions intended for use in radiological risk assessments will require the incorporation of uncertainty analysis. Often, only one aliquot of the sample is taken and a single determination is made. Under these circumstances, the total uncertainty is calculated using the open-quotes propagation of errorsclose quotes approach. However, there is no agreement in the radioanalytical community as to the exact equations to use. The Quality Assurance/Metrology Division of the Environmental Measurements Laboratory has developed a systematic process to compute uncertainties in constituent components of the analytical procedure, as well as the combined standard uncertainty (CSU). The equations for computation are presented here, with examples of their use. They have also been incorporated into a code for use in the spreadsheet application, QuattroPro trademark. Using the spreadsheet with appropriate inputs permits an analysis of the variations in the CSU as a function of several different variables. The relative importance of the open-quotes counting uncertaintyclose quotes can also be ascertained
King, B
2001-11-01
The new laboratory accreditation standard, ISO/IEC 17025, reflects current thinking on good measurement practice by requiring more explicit and more demanding attention to a number of activities. These include client interactions, method validation, traceability, and measurement uncertainty. Since the publication of the standard in 1999 there has been extensive debate about its interpretation. It is the author's view that if good quality practices are already in place and if the new requirements are introduced in a manner that is fit for purpose, the additional work required to comply with the new requirements can be expected to be modest. The paper argues that the rigour required in addressing the issues should be driven by customer requirements and the factors that need to be considered in this regard are discussed. The issues addressed include the benefits, interim arrangements, specifying the analytical requirement, establishing traceability, evaluating the uncertainty and reporting the information.
International Nuclear Information System (INIS)
Larson, N.M.
1984-02-01
This report describes a computer code (ALEX) developed to assist in AnaLysis of EXperimental data at the Oak Ridge Electron Linear Accelerator (ORELA). Reduction of data from raw numbers (counts per channel) to physically meaningful quantities (such as cross sections) is in itself a complicated procedure; propagation of experimental uncertainties through that reduction procedure has in the past been viewed as even more difficult - if not impossible. The purpose of the code ALEX is to correctly propagate all experimental uncertainties through the entire reduction procedure, yielding the complete covariance matrix for the reduced data, while requiring little additional input from the eperimentalist beyond that which is required for the data reduction itself. This report describes ALEX in detail, with special attention given to the case of transmission measurements (the code itself is applicable, with few changes, to any type of data). Application to the natural iron measurements of D.C. Larson et al. is described in some detail
International Nuclear Information System (INIS)
Keele, B.D.
2005-01-01
A collimated portable gamma-ray detector will be used to quantify the plutonium content of items that can be approximated as a point, line, or area geometry with respect to the detector. These items can include ducts, piping, glove boxes, isolated equipment inside of gloveboxes, and HEPA filters. The Generalized Geometry Holdup (GGH) model is used for the reduction of counting data. This document specifies the calculations to reduce counting data into contained plutonium and the associated total measurement uncertainty.
International Nuclear Information System (INIS)
Pomerantz, Marcelo E.; Coutsiers, Eduardo E.; Moreno, Carlos A.
1999-01-01
In this work, the systematic errors in temperature measurements in inlet and outlet headers of HTPS coolant channels of Embalse nuclear power plant are evaluated. These uncertainties are necessary for a later evaluation of the channel power maps transferred to the coolant. The power maps calculated in this way are used to compare power distributions using neutronic codes. Therefore, a methodology to correct systematic errors of temperature in outlet feeders and inlet headers is developed in this work. (author)
Uncertainty of angular displacement measurement with a MEMS gyroscope integrated in a smartphone
International Nuclear Information System (INIS)
De Campos Porath, Maurício; Dolci, Ricardo
2015-01-01
Low-cost inertial sensors have recently gained popularity and are now widely used in electronic devices such as smartphones and tablets. In this paper we present the results of a set of experiments aiming to assess the angular displacement measurement errors of a gyroscope integrated in a smartphone of a recent model. The goal is to verify whether these sensors could substitute dedicated electronic inclinometers for the measurement of angular displacement. We estimated a maximum error of 0.3° (sum of expanded uncertainty and maximum absolute bias) for the roll and pitch axes, for a measurement time without referencing up to 1 h. (paper)
Storage flux uncertainty impact on eddy covariance net ecosystem exchange measurements
Nicolini, Giacomo; Aubinet, Marc; Feigenwinter, Christian; Heinesch, Bernard; Lindroth, Anders; Mamadou, Ossénatou; Moderow, Uta; Mölder, Meelis; Montagnani, Leonardo; Rebmann, Corinna; Papale, Dario
2017-04-01
Complying with several assumption and simplifications, most of the carbon budget studies based on eddy covariance (EC) measurements, quantify the net ecosystem exchange (NEE) by summing the flux obtained by EC (Fc) and the storage flux (Sc). Sc is the rate of change of CO2, within the so called control volume below the EC measurement level, given by the difference in the instantaneous profiles of concentration at the beginning and end of the EC averaging period, divided by the averaging period. While cumulating over time led to a nullification of Sc, it can be significant at short time periods. The approaches used to estimate Sc fluxes largely vary, from measurements based only on a single sampling point (usually located at the EC measurement height) to measurements based on several sampling profiles distributed within the control volume. Furthermore, the number of sampling points within each profile vary, according to their height and the ecosystem typology. It follows that measurement accuracy increases with the sampling intensity within the control volume. In this work we use the experimental dataset collected during the ADVEX campaign in which Sc flux has been measured in three similar forest sites by the use of 5 sampling profiles (towers). Our main objective is to quantify the impact of Sc measurement uncertainty on NEE estimates. Results show that different methods may produce substantially different Sc flux estimates, with problematic consequences in case high frequency (half-hourly) data are needed for the analysis. However, the uncertainty on long-term estimates may be tolerate.
Apostol, Izydor; Kelner, Drew; Jiang, Xinzhao Grace; Huang, Gang; Wypych, Jette; Zhang, Xin; Gastwirt, Jessica; Chen, Kenneth; Fodor, Szilan; Hapuarachchi, Suminda; Meriage, Dave; Ye, Frank; Poppe, Leszek; Szpankowski, Wojciech
2012-12-01
To predict precision and other performance characteristics of chromatographic purity methods, which represent the most widely used form of analysis in the biopharmaceutical industry. We have conducted a comprehensive survey of purity methods, and show that all performance characteristics fall within narrow measurement ranges. This observation was used to develop a model called Uncertainty Based on Current Information (UBCI), which expresses these performance characteristics as a function of the signal and noise levels, hardware specifications, and software settings. We applied the UCBI model to assess the uncertainty of purity measurements, and compared the results to those from conventional qualification. We demonstrated that the UBCI model is suitable to dynamically assess method performance characteristics, based on information extracted from individual chromatograms. The model provides an opportunity for streamlining qualification and validation studies by implementing a "live validation" of test results utilizing UBCI as a concurrent assessment of measurement uncertainty. Therefore, UBCI can potentially mitigate the challenges associated with laborious conventional method validation and facilitates the introduction of more advanced analytical technologies during the method lifecycle.
Framework for the assessment of PEMS (Portable Emissions Measurement Systems) uncertainty.
Giechaskiel, Barouch; Clairotte, Michael; Valverde-Morales, Victor; Bonnel, Pierre; Kregar, Zlatko; Franco, Vicente; Dilara, Panagiota
2018-06-13
European regulation 2016/427 (the first package of the so-called Real-Driving Emissions (RDE) regulation) introduced on-road testing with Portable Emissions Measurement Systems (PEMS) to complement the chassis dynamometer laboratory (Type I) test for the type approval of light-duty vehicles in the European Union since September 2017. The Not-To-Exceed (NTE) limit for a pollutant is the Type I test limit multiplied by a conformity factor that includes a margin for the additional measurement uncertainty of PEMS relative to standard laboratory equipment. The variability of measured results related to RDE trip design, vehicle operating conditions, and data evaluation remain outside of the uncertainty margin. The margins have to be reviewed annually (recital 10 of regulation 2016/646). This paper lays out the framework used for the first review of the NO x margin, which is also applicable to future margin reviews. Based on experimental data received from the stakeholders of the RDE technical working group in 2017, two NO x margin scenarios of 0.24-0.43 were calculated, accounting for different assumptions of possible zero drift behaviour of the PEMS during the tests. The reduced uncertainty margin compared to the one foreseen for 2020 (0.5) reflects the technical improvement of PEMS over the past few years. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Directory of Open Access Journals (Sweden)
Surapati Pramanik
2018-03-01
Full Text Available In this paper, the sine, cosine and cotangent similarity measures of interval rough neutrosophic sets is proposed. Some properties of the proposed measures are discussed. We have proposed multi attribute decision making approaches based on proposed similarity measures. To demonstrate the applicability, a numerical example is solved.
Developing a Questionnaire to Measure Perceived Attributes of eHealth Innovations
Atkinson, Nancy L.
2007-01-01
Objectives: To design a valid and reliable questionnaire to assess perceived attributes of technology-based health education innovations. Methods: College students in 12 personal health courses reviewed a prototype eHealth intervention using a 30-item instrument based upon diffusion theory's perceived attributes of an innovation. Results:…
DEFF Research Database (Denmark)
Rikhardsson, Pall; Sigurjonsson, Throstur Olaf; Arnardottir, Audur Arna
and the perceived performance of the company. The sample was the 300 largest companies in Iceland and the response rate was 27%. Compared to other studies the majority of the respondents use a surprisingly high number of different measures – both financial and non-financial. This made testing of the three......The use of performance measures and performance measurement frameworks has increased significantly in recent years. The type and variety of performance measures in use has been researched in various countries and linked to different variables such as the external environment, performance...... measurement frameworks, and management characteristics. This paper reports the results of a study carried out at year end 2013 of the use of performance measures by Icelandic companies and the links to perceived environmental uncertainty, management satisfaction with the performance measurement system...
Calibration Uncertainties in the Droplet Measurement Technologies Cloud Condensation Nuclei Counter
Hibert, Kurt James
Cloud condensation nuclei (CCN) serve as the nucleation sites for the condensation of water vapor in Earth's atmosphere and are important for their effect on climate and weather. The influence of CCN on cloud radiative properties (aerosol indirect effect) is the most uncertain of quantified radiative forcing changes that have occurred since pre-industrial times. CCN influence the weather because intrinsic and extrinsic aerosol properties affect cloud formation and precipitation development. To quantify these effects, it is necessary to accurately measure CCN, which requires accurate calibrations using a consistent methodology. Furthermore, the calibration uncertainties are required to compare measurements from different field projects. CCN uncertainties also aid the integration of CCN measurements with atmospheric models. The commercially available Droplet Measurement Technologies (DMT) CCN Counter is used by many research groups, so it is important to quantify its calibration uncertainty. Uncertainties in the calibration of the DMT CCN counter exist in the flow rate and supersaturation values. The concentration depends on the accuracy of the flow rate calibration, which does not have a large (4.3 %) uncertainty. The supersaturation depends on chamber pressure, temperature, and flow rate. The supersaturation calibration is a complex process since the chamber's supersaturation must be inferred from a temperature difference measurement. Additionally, calibration errors can result from the Kohler theory assumptions, fitting methods utilized, the influence of multiply-charged particles, and calibration points used. In order to determine the calibration uncertainties and the pressure dependence of the supersaturation calibration, three calibrations are done at each pressure level: 700, 840, and 980 hPa. Typically 700 hPa is the pressure used for aircraft measurements in the boundary layer, 840 hPa is the calibration pressure at DMT in Boulder, CO, and 980 hPa is the
Magnusson, Bertil; Ossowicki, Haakan; Rienitz, Olaf; Theodorsson, Elvar
2012-05-01
Healthcare laboratories are increasingly joining into larger laboratory organizations encompassing several physical laboratories. This caters for important new opportunities for re-defining the concept of a 'laboratory' to encompass all laboratories and measurement methods measuring the same measurand for a population of patients. In order to make measurement results, comparable bias should be minimized or eliminated and measurement uncertainty properly evaluated for all methods used for a particular patient population. The measurement as well as diagnostic uncertainty can be evaluated from internal and external quality control results using GUM principles. In this paper the uncertainty evaluations are described in detail using only two main components, within-laboratory reproducibility and uncertainty of the bias component according to a Nordtest guideline. The evaluation is exemplified for the determination of creatinine in serum for a conglomerate of laboratories both expressed in absolute units (μmol/L) and relative (%). An expanded measurement uncertainty of 12 μmol/L associated with concentrations of creatinine below 120 μmol/L and of 10% associated with concentrations above 120 μmol/L was estimated. The diagnostic uncertainty encompasses both measurement uncertainty and biological variation, and can be estimated for a single value and for a difference. This diagnostic uncertainty for the difference for two samples from the same patient was determined to be 14 μmol/L associated with concentrations of creatinine below 100 μmol/L and 14 % associated with concentrations above 100 μmol/L.
Uncertainty, joint uncertainty, and the quantum uncertainty principle
International Nuclear Information System (INIS)
Narasimhachar, Varun; Poostindouz, Alireza; Gour, Gilad
2016-01-01
Historically, the element of uncertainty in quantum mechanics has been expressed through mathematical identities called uncertainty relations, a great many of which continue to be discovered. These relations use diverse measures to quantify uncertainty (and joint uncertainty). In this paper we use operational information-theoretic principles to identify the common essence of all such measures, thereby defining measure-independent notions of uncertainty and joint uncertainty. We find that most existing entropic uncertainty relations use measures of joint uncertainty that yield themselves to a small class of operational interpretations. Our notion relaxes this restriction, revealing previously unexplored joint uncertainty measures. To illustrate the utility of our formalism, we derive an uncertainty relation based on one such new measure. We also use our formalism to gain insight into the conditions under which measure-independent uncertainty relations can be found. (paper)
International Nuclear Information System (INIS)
Sakurai, Hiromu; Ehara, Kensei
2011-01-01
We evaluated uncertainties in current measurement by the electrometer at the current level on the order of femtoamperes. The electrometer was the one used in the Faraday-cup aerosol electrometer of the Japanese national standard for number concentration of aerosol nanoparticles in which the accuracy of the absolute current is not required, but the net current which is obtained as the difference in currents under two different conditions must be measured accurately. The evaluation was done experimentally at the current level of 20 fA, which was much smaller than the intervals between the electrometer's calibration points at +1, +0.5, −0.5 and −1 pA. The slope of the response curve for the relationship between the 'true' and measured current, which is crucial in the above measurement, was evaluated locally at many different points within the ±1 pA range for deviation from the slope determined by a linear regression of the calibration data. The sum of the current induced by a flow of charged particles and a bias current from a current-source instrument was measured by the electrometer while the particle current was toggled on and off. The net particle current was obtained as the difference in the measured currents between the toggling, while at the same time the current was estimated from the particle concentration read by a condensation particle counter. The local slope was calculated as the ratio of the measured to estimated currents at each bias current setting. The standard deviation of the local slope values observed at varied bias currents was about 0.003, which was calculated by analysis of variance (ANOVA) for the treatment of the bias current. The combined standard uncertainty of the slope, which was calculated from the uncertainty of the slope by linear regression and the variability of the slope, was calculated to be about 0.004
International Nuclear Information System (INIS)
Allodji, Rodrigue S; Leuraud, Klervi; Laurier, Dominique; Bernhard, Sylvain; Henry, Stéphane; Bénichou, Jacques
2012-01-01
The reliability of exposure data directly affects the reliability of the risk estimates derived from epidemiological studies. Measurement uncertainty must be known and understood before it can be corrected. The literature on occupational exposure to radon ( 222 Rn) and its decay products reveals only a few epidemiological studies in which uncertainty has been accounted for explicitly. This work examined the sources, nature, distribution and magnitude of uncertainty of the exposure of French uranium miners to radon ( 222 Rn) and its decay products. We estimated the total size of uncertainty for this exposure with the root sum square (RSS) method, which may be an alternative when repeated measures are not available. As a result, we identified six main sources of uncertainty. The total size of the uncertainty decreased from about 47% in the period 1956–1974 to 10% after 1982, illustrating the improvement in the radiological monitoring system over time.
Martínez, Rocío; Rodriguez-Bailon, Rosa; Moya, Miguel; Vaes, Jeroen
2017-01-01
The present research examines the relationship between the infrahumanization approach and the two-dimensional model of humanness: an issue that has received very little empirical attention. In Study 1, we created three unknown groups (Humanized, Animalized, and Mechanized) granting/denying them Human Nature (HN) and Human Uniqueness (HU) traits. The attribution of primary/secondary emotions was measured. As expected, participants attributed more secondary emotions to the humanized compared to dehumanized groups. Importantly, both animalized and mechanized groups were attributed similar amounts of secondary emotions. In Study 2, the groups were described in terms of their capacity to express secondary emotions. We measured the attribution of HN/HU traits. Results showed that the infrahumanized group was denied both HU/HN traits. The results highlight the importance of considering the common aspects of both approaches in understanding processes of dehumanization.
Lindley, Dennis V
2013-01-01
Praise for the First Edition ""...a reference for everyone who is interested in knowing and handling uncertainty.""-Journal of Applied Statistics The critically acclaimed First Edition of Understanding Uncertainty provided a study of uncertainty addressed to scholars in all fields, showing that uncertainty could be measured by probability, and that probability obeyed three basic rules that enabled uncertainty to be handled sensibly in everyday life. These ideas were extended to embrace the scientific method and to show how decisions, containing an uncertain element, could be rationally made.
International Nuclear Information System (INIS)
Fu Tairan; Cheng Xiaofang; Yang Zangjian
2008-01-01
We present a theoretical analysis of two-color pyrometry applied to optical diagnostics. A two-color pyrometer built with a single CCD is advantageous due to the simple system design. We evaluate the possibility and degree of ill-conditionness on the basis of measurement uncertainties for different measurement approaches of this two-color system. We classify measurement approaches. The corresponding ill-conditionness criterion is established. The greater the criterion value is, the worse the ill-conditioned degree of solution is. So, the optimum choice of measurement approach for the two-color system is achieved through intercomparison of the criterion values. Numerical examples are also given to illustrate this point. The theoretical analysis not only provides an effective way of evaluating different measurement approaches, but also may help us to better understand the influences that determine the choices between wavelength/waveband measurements and calibration/noncalibration modes for temperature and soot distribution
Online updating and uncertainty quantification using nonstationary output-only measurement
Yuen, Ka-Veng; Kuok, Sin-Chi
2016-01-01
Extended Kalman filter (EKF) is widely adopted for state estimation and parametric identification of dynamical systems. In this algorithm, it is required to specify the covariance matrices of the process noise and measurement noise based on prior knowledge. However, improper assignment of these noise covariance matrices leads to unreliable estimation and misleading uncertainty estimation on the system state and model parameters. Furthermore, it may induce diverging estimation. To resolve these problems, we propose a Bayesian probabilistic algorithm for online estimation of the noise parameters which are used to characterize the noise covariance matrices. There are three major appealing features of the proposed approach. First, it resolves the divergence problem in the conventional usage of EKF due to improper choice of the noise covariance matrices. Second, the proposed approach ensures the reliability of the uncertainty quantification. Finally, since the noise parameters are allowed to be time-varying, nonstationary process noise and/or measurement noise are explicitly taken into account. Examples using stationary/nonstationary response of linear/nonlinear time-varying dynamical systems are presented to demonstrate the efficacy of the proposed approach. Furthermore, comparison with the conventional usage of EKF will be provided to reveal the necessity of the proposed approach for reliable model updating and uncertainty quantification.
Measurement uncertainty in single, double and triple isotope dilution mass spectrometry.
Vogl, Jochen
2012-02-15
Triple IDMS has been applied for the first time to the quantification of element concentrations. It has been compared with single and double IDMS obtained on the same sample set in order to evaluate the advantages and disadvantages of triple IDMS over single and double IDMS as an analytical reference procedure. The measurement results of single, double and triple IDMS are indistinguishable, considering rounding due to the individual measurement uncertainties. As expected, the relative expanded uncertainties (k = 2) achieved with double IDMS (0.08%) are dramatically smaller than those obtained with single IDMS (1.4%). Triple IDMS yields the smallest relative expanded uncertainties (k = 2, 0.077%) unfortunately at the expense of a much higher workload. Nevertheless triple IDMS has the huge advantage that the isotope ratio of the spike does not need to be determined. Elements with high memory effects, highly enriched spikes or highest metrological requirements may be typical applications for triple IDMS. Copyright © 2011 John Wiley & Sons, Ltd.
Uncertainty Quantification of Fork Detector Measurements from Spent Fuel Loading Campaigns
International Nuclear Information System (INIS)
Vaccaro, S.; De Baere, P.; Schwalbach, P.; Gauld, I.; Hu, J.
2015-01-01
With increasing activities at the end of the fuel cycle, the requirements for the verification of spent nuclear fuel for safeguards purposes are continuously growing. In the European Union we are experiencing a dramatic increase in the number of cask loadings for interim dry storage. This is caused by the progressive shut-down of reactors, related to facility ageing but also due to politically motivated phase-out of nuclear power. On the other hand there are advanced plans for the construction of encapsulation plants and geological repositories. The cask loading or the encapsulation process will provide the last occasion to verify the spent fuel assemblies. In this context, Euratom and the US DOE have carried out a critical review of the widely used Fork measurements method of irradiated assemblies. The Nuclear Safeguards directorates of the European Commission's Directorate General for Energy and Oak Ridge National Laboratory have collaborated to improve the Fork data evaluation process and simplify its use for inspection applications. Within the Commission's standard data evaluation package CRISP, we included a SCALE/ORIGEN-based irradiation and depletion simulation of the measured assembly and modelled the fork transfer function to calculate expected count rates based on operator's declarations. The complete acquisition and evaluation process has been automated to compare expected (calculated) with measured count rates. This approach allows a physics-based improvement of the data review and evaluation process. At the same time the new method provides the means for better measurement uncertainty quantification. The present paper will address the implications of the combined approach involving measured and simulated data to the quantification of measurement uncertainty and the consequences of these uncertainties in the possible use of the Fork detector as a partial defect detection method. (author)
DEFF Research Database (Denmark)
Quagliotti, Danilo; Tosello, Guido; Islam, Aminul
2015-01-01
Surface texture and step height measurements of electrochemically machined cavities have been compared among optical and tactile instruments. A procedure is introduced for correcting possible divergences among the instruments and, ultimately, for evaluating the measurement uncertainty according t...
Biogenic carbon in combustible waste: Waste composition, variability and measurement uncertainty
DEFF Research Database (Denmark)
Larsen, Anna Warberg; Fuglsang, Karsten; Pedersen, Niels H.
2013-01-01
described in the literature. This study addressed the variability of biogenic and fossil carbon in combustible waste received at a municipal solid waste incinerator. Two approaches were compared: (1) radiocarbon dating (14C analysis) of carbon dioxide sampled from the flue gas, and (2) mass and energy......, the measurement uncertainties related to the two approaches were determined. Two flue gas sampling campaigns at a full-scale waste incinerator were included: one during normal operation and one with controlled waste input. Estimation of carbon contents in the main waste types received was included. Both the 14C...... method and the balance method represented promising methods able to provide good quality data for the ratio between biogenic and fossil carbon in waste. The relative uncertainty in the individual experiments was 7–10% (95% confidence interval) for the 14C method and slightly lower for the balance method....
An Evaluation of Test and Physical Uncertainty of Measuring Vibration in Wooden Junctions
DEFF Research Database (Denmark)
Dickow, Kristoffer Ahrens; Kirkegaard, Poul Henning; Andersen, Lars Vabbersgaard
2012-01-01
In the present paper a study of test and material uncertainty in modal analysis of certain wooden junctions is presented. The main structure considered here is a T-junction made from a particleboard plate connected to a spruce beam of rectangular cross section. The size of the plate is 1.2 m by 0.......6 m. The T-junctions represent cut-outs of actual full size floor assemblies. The aim of the experiments is to investigate the underlying uncertainties of both the test method as well as variation in material and craftmanship. For this purpose, ten nominally identical junctions are tested and compared...... to each other in terms of modal parameters such as natural frequencies, modeshapes and damping. Considerations regarding the measurement procedure and test setup are discussed. The results indicate a large variation of the response at modes where the coupling of torsion in the beam to bending of the plate...
Robust framework for PET image reconstruction incorporating system and measurement uncertainties.
Directory of Open Access Journals (Sweden)
Huafeng Liu
Full Text Available In Positron Emission Tomography (PET, an optimal estimate of the radioactivity concentration is obtained from the measured emission data under certain criteria. So far, all the well-known statistical reconstruction algorithms require exactly known system probability matrix a priori, and the quality of such system model largely determines the quality of the reconstructed images. In this paper, we propose an algorithm for PET image reconstruction for the real world case where the PET system model is subject to uncertainties. The method counts PET reconstruction as a regularization problem and the image estimation is achieved by means of an uncertainty weighted least squares framework. The performance of our work is evaluated with the Shepp-Logan simulated and real phantom data, which demonstrates significant improvements in image quality over the least squares reconstruction efforts.
Directory of Open Access Journals (Sweden)
Dantas C.C.
2013-01-01
Full Text Available The solid flow in air-catalyst in circulating fluidized bed was simulated with CFD model to obtain axial and radial distribution. Therefore, project parameters were confirmed and steady state operation condition was improved. Solid holds up axial end radial profiles simulation and comparison with gamma transmission measurements are in a good agreement. The transmission signal from an 241Am radioactive source was evaluated in NaI(Tl detector coupled to multichannel analyzer. This non intrusive measuring set up is installed at riser of a cold pilot unit to determine parameters of FCC catalyst flow at several concentrations. Mass flow rate calculated by combining solid hold up and solid phase velocity measurements was compared with catalyst inlet measured at down-comer. Evaluation in each measured parameter shows that a relative combined uncertainty of 6% in a 95% interval was estimated. Uncertainty analysis took into account a significant correlation in scan riser transmission measurements. An Eulerian approach of CFD model incorporating the kinetic theory of granular flow was adopted to describe the gas–solid two-phase flows in a multizone circulating reactor. Instantaneous and local gas-particle velocity, void fraction and turbulent parameters were obtained and results are shown in 2 D and 3D graphics.
Dey, Soumyabrata; Rao, A Ravishankar; Shah, Mubarak
2014-01-01
Attention Deficit Hyperactive Disorder (ADHD) is getting a lot of attention recently for two reasons. First, it is one of the most commonly found childhood disorders and second, the root cause of the problem is still unknown. Functional Magnetic Resonance Imaging (fMRI) data has become a popular tool for the analysis of ADHD, which is the focus of our current research. In this paper we propose a novel framework for the automatic classification of the ADHD subjects using their resting state fMRI (rs-fMRI) data of the brain. We construct brain functional connectivity networks for all the subjects. The nodes of the network are constructed with clusters of highly active voxels and edges between any pair of nodes represent the correlations between their average fMRI time series. The activity level of the voxels are measured based on the average power of their corresponding fMRI time-series. For each node of the networks, a local descriptor comprising of a set of attributes of the node is computed. Next, the Multi-Dimensional Scaling (MDS) technique is used to project all the subjects from the unknown graph-space to a low dimensional space based on their inter-graph distance measures. Finally, the Support Vector Machine (SVM) classifier is used on the low dimensional projected space for automatic classification of the ADHD subjects. Exhaustive experimental validation of the proposed method is performed using the data set released for the ADHD-200 competition. Our method shows promise as we achieve impressive classification accuracies on the training (70.49%) and test data sets (73.55%). Our results reveal that the detection rates are higher when classification is performed separately on the male and female groups of subjects.
Directory of Open Access Journals (Sweden)
Soumyabrata eDey
2014-06-01
Full Text Available Attention Deficit Hyperactive Disorder (ADHD is getting a lot of attention recently for two reasons. First, it is one of the most commonly found childhood disorders and second, the root cause of the problem is still unknown. Functional Magnetic Resonance Imaging (fMRI data has become a popular tool for the analysis of ADHD, which is the focus of our current research. In this paper we propose a novel framework for the automatic classification of the ADHD subjects using their resting state fMRI (rs-fMRI data of the brain. We construct brain functional connectivity networks for all the subjects. The nodes of the network are constructed with clusters of highly active voxels and edges between any pair of nodes represent the correlations between their average fMRI time series. The activity level of the voxels are measured based on the average power of their corresponding fMRI time-series. For each node of the networks, a local descriptor comprising of a set of attributes of the node is computed. Next, the Multi-Dimensional Scaling (MDS technique is used to project all the subjects from the unknown graph-space to a low dimensional space based on their inter-graph distance measures. Finally, the Support Vector Machine (SVM classifier is used on the low dimensional projected space for automatic classification of the ADHD subjects. Exhaustive experimental validation of the proposed method is performed using the data set released for the ADHD-200 competition. Our method shows promise as we achieve impressive classification accuracies on the training (70.49% and test data sets (73.55%. Our results reveal that the detection rates are higher when classification is performed separately on the male and female groups of subjects.
Estimation of uncertainty in tracer gas measurement of air change rates.
Iizuka, Atsushi; Okuizumi, Yumiko; Yanagisawa, Yukio
2010-12-01
Simple and economical measurement of air change rates can be achieved with a passive-type tracer gas doser and sampler. However, this is made more complex by the fact many buildings are not a single fully mixed zone. This means many measurements are required to obtain information on ventilation conditions. In this study, we evaluated the uncertainty of tracer gas measurement of air change rate in n completely mixed zones. A single measurement with one tracer gas could be used to simply estimate the air change rate when n = 2. Accurate air change rates could not be obtained for n ≥ 2 due to a lack of information. However, the proposed method can be used to estimate an air change rate with an accuracy of air change rate can be avoided. The proposed estimation method will be useful in practical ventilation measurements.
Uncertainty propagation for the coulometric measurement of the plutonium concentration in MOX-PU4.
Energy Technology Data Exchange (ETDEWEB)
None, None
2017-11-07
This GUM WorkbenchTM propagation of uncertainty is for the coulometric measurement of the plutonium concentration in a Pu standard material (C126) supplied as individual aliquots that were prepared by mass. The C126 solution had been prepared and as aliquoted as standard material. Samples are aliquoted into glass vials and heated to dryness for distribution as dried nitrate. The individual plutonium aliquots were not separated chemically or otherwise purified prior to measurement by coulometry in the F/H Laboratory. Hydrogen peroxide was used for valence adjustment. The Pu assay measurement results were corrected for the interference from trace iron in the solution measured for assay. Aliquot mass measurements were corrected for air buoyancy. The relative atomic mass (atomic weight) of the plutonium from X126 certoficate was used. The isotopic composition was determined by thermal ionization mass spectrometry (TIMS) for comparison but not used in calculations.
International Nuclear Information System (INIS)
Nelson, R.A.
1987-01-01
More than 250 replicate measurements of outdoor Rn concentration integrated over quarterly periods were made to estimate the random component of the measurement uncertainty of Track Etch detectors (type F) under outdoor conditions. The measurements were performed around three U mill tailings piles to provide a range of environmental concentrations. The measurement uncertainty was typically greater than could be accounted for by Poisson counting statistics. Average coefficients of variation of the order of 20% for all measured concentrations were found. It is concluded that alpha track detectors can be successfully used to determine annual average outdoor Rn concentrations through the use of careful quality control procedures. These include rapid deployment and collection of detectors to minimize unintended Rn exposure, careful packaging and shipping to and from the manufacturer, use of direct sunlight shields for all detectors and careful and secure mounting of all detectors in as similar a manner as possible. The use of multiple (at least duplicate) detectors at each monitoring location and an exposure period of no less than one quarter are suggested
International Nuclear Information System (INIS)
Dayem, H.A.; Kern, E.A.; Markin, J.T.
1982-01-01
Optimization techniques are used to calculate measurement uncertainties for materials accountability instruments in a fast breeder reactor spent-fuel reprocessing plant. Optimal measurement uncertainties are calculated so that performance goals for detecting materials loss are achieved while minimizing the total instrument development cost. Improved materials accounting in the chemical separations process (111 kg Pu/day) to meet 8-kg plutonium abrupt (1 day) and 40-kg plutonium protracted (6 months) loss-detection goals requires: process tank volume and concentration measurements having precisions less than or equal to 1%; accountability and plutonium sample tank volume measurements having precisions less than or equal to 0.3%, short-term correlated errors less than or equal to 0.04%, and long-term correlated errors less than or equal to 0.04%; and accountability and plutonium sample tank concentration measurements having precisions less than or equal to 0.4%, short-term correlated errors less than or equal to 0.1%, and long-term correlated errors less than or equal to 0.05%
Kieseler, Jan
2017-11-01
A method is discussed that allows combining sets of differential or inclusive measurements. It is assumed that at least one measurement was obtained with simultaneously fitting a set of nuisance parameters, representing sources of systematic uncertainties. As a result of beneficial constraints from the data all such fitted parameters are correlated among each other. The best approach for a combination of these measurements would be the maximization of a combined likelihood, for which the full fit model of each measurement and the original data are required. However, only in rare cases this information is publicly available. In absence of this information most commonly used combination methods are not able to account for these correlations between uncertainties, which can lead to severe biases as shown in this article. The method discussed here provides a solution for this problem. It relies on the public result and its covariance or Hessian, only, and is validated against the combined-likelihood approach. A dedicated software package implementing this method is also presented. It provides a text-based user interface alongside a C++ interface. The latter also interfaces to ROOT classes for simple combination of binned measurements such as differential cross sections.
Energy Technology Data Exchange (ETDEWEB)
Kieseler, Jan [CERN, Geneva (Switzerland)
2017-11-15
A method is discussed that allows combining sets of differential or inclusive measurements. It is assumed that at least one measurement was obtained with simultaneously fitting a set of nuisance parameters, representing sources of systematic uncertainties. As a result of beneficial constraints from the data all such fitted parameters are correlated among each other. The best approach for a combination of these measurements would be the maximization of a combined likelihood, for which the full fit model of each measurement and the original data are required. However, only in rare cases this information is publicly available. In absence of this information most commonly used combination methods are not able to account for these correlations between uncertainties, which can lead to severe biases as shown in this article. The method discussed here provides a solution for this problem. It relies on the public result and its covariance or Hessian, only, and is validated against the combined-likelihood approach. A dedicated software package implementing this method is also presented. It provides a text-based user interface alongside a C++ interface. The latter also interfaces to ROOT classes for simple combination of binned measurements such as differential cross sections. (orig.)
International Nuclear Information System (INIS)
1978-01-01
Uncertainties with regard to many facets of repository site characterization have not yet been quantified. This report summarizes the state of knowledge of uncertainties in the measurement of porosity, hydraulic conductivity, and hydraulic gradient; uncertainties associated with various geophysical field techniques; and uncertainties associated with the effects of exploration and exploitation activities in bedded salt basins. The potential for seepage through a depository in bedded salt or shale is reviewed and, based upon the available data, generic values for the hydraulic conductivity and porosity of bedded salt and shale are proposed
Retrievals and uncertainty analysis of aerosol single scattering albedo from MFRSR measurements
International Nuclear Information System (INIS)
Yin, Bangsheng; Min, Qilong; Joseph, Everette
2015-01-01
Aerosol single scattering albedo (SSA) can be retrieved from the ratio of diffuse horizontal and direct normal fluxes measured from multifilter rotating shadowband radiometer (MFRSR). In this study, the measurement channels at 415 nm and 870 nm are selected for aerosol optical depth (AOD) and Angstrom coefficient retrievals, and the measurements at 415 nm are used for aerosol SSA retrievals with the constraint of retrieved Angstrom coefficient. We extensively assessed various issues impacting on the accuracy of SSA retrieval from measurements to input parameters and assumptions. For cloud-free days with mean aerosol loading of 0.13–0.60, our sensitivity study indicated that: (1) 1% calibration uncertainty can result in 0.8–3.7% changes in retrieved SSA; (2) without considering the cosine respond correction and/or forward scattering correction will result in underestimation of 1.1–3.3% and/or 0.73% in retrieved SSA; (3) an overestimation of 0.1 in asymmetry factor can result in an underestimation of 2.54–3.4% in retrieved SSA; (4) for small aerosol loading (e.g., 0.13), the uncertainty associated with the choice of Rayleigh optical depth value can result in non-negligible change in retrieved SSA (e.g., 0.015); (5) an uncertainty of 0.05 for surface albedo can result in changes of 1.49–5.4% in retrieved SSA. We applied the retrieval algorithm to the MFRSR measurements at the Atmospheric Radiation Measurements (ARM) Southern Great Plains (SGP) site. The retrieved results of AOD, Angstrom coefficient, and SSA are basically consistent with other independent measurements from co-located instruments at the site. - Highlights: • Aerosol SSA is derived from MFRSR measured diffuse to direct normal irradiance ratio. • We extensively assessed various issues impacting on the accuracy of SSA retrieval. • The issues are mainly from measurements and model input parameters and assumptions. • We applied the retrieval algorithm to the MFRSR measurements at ARM SGP
International Nuclear Information System (INIS)
Tanaka, Yohei; Momma, Akihiko; Kato, Ken; Negishi, Akira; Takano, Kiyonami; Nozaki, Ken; Kato, Tohru
2009-01-01
Uncertainty of electrical efficiency measurement was investigated for a 10 kW-class SOFC system using town gas. Uncertainty of heating value measured by the gas chromatography method on a mole base was estimated as ±0.12% at 95% level of confidence. Micro-gas chromatography with/without CH 4 quantification may be able to reduce uncertainty of measurement. Calibration and uncertainty estimation methods are proposed for flow-rate measurement of town gas with thermal mass-flow meters or controllers. By adequate calibrations for flowmeters, flow rate of town gas or natural gas at 35 standard litters per minute can be measured within relative uncertainty ±1.0% at 95 % level of confidence. Uncertainty of power measurement can be as low as ±0.14% when a precise wattmeter is used and calibrated properly. It is clarified that electrical efficiency for non-pressurized 10 kW-class SOFC systems can be measured within ±1.0% relative uncertainty at 95% level of confidence with the developed techniques when the SOFC systems are operated relatively stably
SU-F-BRE-14: Uncertainty Analysis for Dose Measurements Using OSLD NanoDots
Energy Technology Data Exchange (ETDEWEB)
Kry, S; Alvarez, P; Stingo, F; Followill, D [UT MD Anderson Cancer Center, Houston, TX (United States)
2014-06-15
Purpose: Optically stimulated luminescent dosimeters (OSLD) are an increasingly popular dosimeter for research and clinical applications. It is also used by the Radiological Physics Center for remote auditing of machine output. In this work we robustly calculated the reproducibility and uncertainty of the OSLD nanoDot. Methods: For the RPC dose calculation, raw readings are corrected for depletion, element sensitivity, fading, linearity, and energy. System calibration is determined for the experimental OSLD irradiated at different institutions by using OSLD irradiated by the RPC under reference conditions (i.e., standards): 1 Gy in a Cobalt beam. The intra-dot and inter-dot reproducibilities (coefficient of variation) were determined from the history of RPC readings of these standards. The standard deviation of the corrected OSLD signal was then calculated analytically using a recursive formalism that did not rely on the normality assumption of the underlying uncertainties, or on any type of mathematical approximation. This analytical uncertainty was compared to that empirically estimated from >45,000 RPC beam audits. Results: The intra-dot variability was found to be 0.59%, with only a small variation between readers. Inter-dot variability was found to be 0.85%. The uncertainty in each of the individual correction factors was empirically determined. When the raw counts from each OSLD were adjusted for the appropriate correction factors, the analytically determined coefficient of variation was 1.8% over a range of institutional irradiation conditions that are seen at the RPC. This is reasonably consistent with the empirical observations of the RPC, where the coefficient of variation of the measured beam outputs is 1.6% (photons) and 1.9% (electrons). Conclusion: OSLD nanoDots provide sufficiently good precision for a wide range of applications, including the RPC remote monitoring program for megavoltage beams. This work was supported by PHS grant CA10953 awarded by
Uncertainty estimation and multi sensor fusion for kinematic laser tracker measurements
Ulrich, Thomas
2013-08-01
Laser trackers are widely used to measure kinematic tasks such as tracking robot movements. Common methods to evaluate the uncertainty in the kinematic measurement include approximations specified by the manufacturers, various analytical adjustment methods and the Kalman filter. In this paper a new, real-time technique is proposed, which estimates the 4D-path (3D-position + time) uncertainty of an arbitrary path in space. Here a hybrid system estimator is applied in conjunction with the kinematic measurement model. This method can be applied to processes, which include various types of kinematic behaviour, constant velocity, variable acceleration or variable turn rates. The new approach is compared with the Kalman filter and a manufacturer's approximations. The comparison was made using data obtained by tracking an industrial robot's tool centre point with a Leica laser tracker AT901 and a Leica laser tracker LTD500. It shows that the new approach is more appropriate to analysing kinematic processes than the Kalman filter, as it reduces overshoots and decreases the estimated variance. In comparison with the manufacturer's approximations, the new approach takes account of kinematic behaviour with an improved description of the real measurement process and a reduction in estimated variance. This approach is therefore well suited to the analysis of kinematic processes with unknown changes in kinematic behaviour as well as the fusion among laser trackers.
Estimation of Uncertainty in Tracer Gas Measurement of Air Change Rates
Directory of Open Access Journals (Sweden)
Atsushi Iizuka
2010-12-01
Full Text Available Simple and economical measurement of air change rates can be achieved with a passive-type tracer gas doser and sampler. However, this is made more complex by the fact many buildings are not a single fully mixed zone. This means many measurements are required to obtain information on ventilation conditions. In this study, we evaluated the uncertainty of tracer gas measurement of air change rate in n completely mixed zones. A single measurement with one tracer gas could be used to simply estimate the air change rate when n = 2. Accurate air change rates could not be obtained for n ≥ 2 due to a lack of information. However, the proposed method can be used to estimate an air change rate with an accuracy of
International target values 2000 for measurement uncertainties in safeguarding nuclear materials
International Nuclear Information System (INIS)
Aigner, H.; Binner, R.; Kuhn, E.
2001-01-01
The IAEA has prepared a revised and updated version of International Target Values (ITVs) for uncertainty components in measurements of nuclear material. The ITVs represent uncertainties to be considered in judging the reliability of analytical techniques applied to industrial nuclear and fissile material subject to safeguards verification. The tabulated values represent estimates of the 'state of the practice' which ought to be achievable under routine conditions by adequately equipped, experienced laboratories. The ITVs 2000 are intended to be used by plant operators and safeguards organizations as a reference of the quality of measurements achievable in nuclear material accountancy, and for planning purposes. The IAEA prepared a draft of a technical report presenting the proposed ITVs 2000, and in April 2000 the chairmen or officers of the panels or organizations listed below were invited to co- author the report and to submit the draft to a discussion by their panels and organizations. Euratom Safeguards Inspectorate, ESAKDA Working Group on Destructive Analysis, ESARDA Working Group on Non Destructive Analysis, Institute of Nuclear Material Management, Japanese Expert Group on ITV-2000, ISO Working Group on Analyses in Spent Fuel Reprocessing, ISO Working Group on Analyses in Uranium Fuel Fabrication, ISO Working Group on Analyses in MOX Fuel Fabrication, Agencia Brasileno-Argentina de Contabilidad y Control de Materiales Nucleares (ABACC). Comments from the above groups were received and incorporated into the final version of the document, completed in April 2001. The ITVs 2000 represent target standard uncertainties, expressing the precision achievable under stipulated conditions. These conditions typically fall in one of the two following categories: 'repeatability conditions' normally encountered during the measurements done within one inspection period; or 'reproducibility conditions' involving additional sources of measurement variability such as
Source attribution of Arctic black carbon constrained by aircraft and surface measurements
Directory of Open Access Journals (Sweden)
J.-W. Xu
2017-10-01
Full Text Available Black carbon (BC contributes to Arctic warming, yet sources of Arctic BC and their geographic contributions remain uncertain. We interpret a series of recent airborne (NETCARE 2015; PAMARCMiP 2009 and 2011 campaigns and ground-based measurements (at Alert, Barrow and Ny-Ålesund from multiple methods (thermal, laser incandescence and light absorption with the GEOS-Chem global chemical transport model and its adjoint to attribute the sources of Arctic BC. This is the first comparison with a chemical transport model of refractory BC (rBC measurements at Alert. The springtime airborne measurements performed by the NETCARE campaign in 2015 and the PAMARCMiP campaigns in 2009 and 2011 offer BC vertical profiles extending to above 6 km across the Arctic and include profiles above Arctic ground monitoring stations. Our simulations with the addition of seasonally varying domestic heating and of gas flaring emissions are consistent with ground-based measurements of BC concentrations at Alert and Barrow in winter and spring (rRMSE < 13 % and with airborne measurements of the BC vertical profile across the Arctic (rRMSE = 17 % except for an underestimation in the middle troposphere (500–700 hPa.Sensitivity simulations suggest that anthropogenic emissions in eastern and southern Asia have the largest effect on the Arctic BC column burden both in spring (56 % and annually (37 %, with the largest contribution in the middle troposphere (400–700 hPa. Anthropogenic emissions from northern Asia contribute considerable BC (27 % in spring and 43 % annually to the lower troposphere (below 900 hPa. Biomass burning contributes 20 % to the Arctic BC column annually.At the Arctic surface, anthropogenic emissions from northern Asia (40–45 % and eastern and southern Asia (20–40 % are the largest BC contributors in winter and spring, followed by Europe (16–36 %. Biomass burning from North America is the most important
Evaluation of measurement uncertainty for purity of a monoterpenic acid by small-scale coulometry
Norte, L. C.; de Carvalho, E. M.; Tappin, M. R. R.; Borges, P. P.
2018-03-01
Purity of the perylic acid (HPe) which is a monoterpenic acid from natural product (NP) with anti-inflammatory and anticancer properties was analyzed by small-scale coulometry (SSC), due to the low availability of HPe on the pharmaceutic market and its high cost. This work aims to present the evaluation of the measurements uncertainty from the purity of HPe by using SSC. Coulometric mean of purity obtained from 5 replicates resulted in 94.23% ± 0.88% (k = 2.06, for an approximately 95% confidence level). These studies aim in the future to develop the production of certified reference materials from NPs.
Quantifying the Contribution of Post-Processing in Computed Tomography Measurement Uncertainty
DEFF Research Database (Denmark)
Stolfi, Alessandro; Thompson, Mary Kathryn; Carli, Lorenzo
2016-01-01
by calculating the standard deviation of 10 repeated measurement evaluations on the same data set. The evaluations were performed on an industrial assembly. Each evaluation includes several dimensional and geometrical measurands that were expected to have different responses to the various post......-processing settings. It was found that the definition of the datum system had the largest impact on the uncertainty with a standard deviation of a few microns. The surface determination and data fitting had smaller contributions with sub-micron repeatability....
DEFF Research Database (Denmark)
Kolarik, Jakub; Olesen, Bjarne W.
2015-01-01
European Standard EN 15 251 in its current version does not provide any guidance on how to handle uncertainty of long term measurements of indoor environmental parameters used for classification of buildings. The objective of the study was to analyse the uncertainty for field measurements...... measurements of operative temperature at two measuring points (south/south-west and north/northeast orientation). Results of the present study suggest that measurement uncertainty needs to be considered during assessment of thermal environment in existing buildings. When expanded standard uncertainty was taken...... into account in categorization of thermal environment according to EN 15251, the difference in prevalence of exceeded category limits were up to 17.3%, 8.3% and 2% of occupied hours for category I, II and III respectively....
DEFF Research Database (Denmark)
Hansen, Hans Nørgaard; Chiffre, Leonardo De
1999-01-01
This paper describes an industrial comparison of coordinate measuring machines (CMMs) carried out in the Scandinavian countries from October 1994 to May 1996. Fifty-nine industrial companies with a total of 62 CMMs participated in the project and measured a comparison package with five items chosen....... An important part of the intercomparison was to test the ability of the participants to determine measurement uncertainties. One of the uncertainties was based upon a "best guess" but nevertheless, many participants did not even report this uncertainty. Uncertainty budgeting was not used for measurements other...... than simple length. For each company, a comparison of their measurement ability with the reference laboratory and other Scandinavian companies was made possible. A network regarding CMMs was created in these Scandinavian countries. (C) 1999 Elsevier Science Inc. All rights reserved....
International Target Values 2010 for Measurement Uncertainties in Safeguarding Nuclear Materials
Energy Technology Data Exchange (ETDEWEB)
Zhao, M.; Penkin, M.; Norman, C.; Balsley, S. [IAEA, Vienna (Australia); others, and
2012-12-15
This issue of the International Target Values (ITVs) represents the sixth revision, following the first release of such tables issued in 1979 by the ESARDA/WGDA. The ITVs are uncertainties to be considered in judging the reliability of analytical techniques applied to industrial nuclear and fissile material, which are subject to safeguards verification. The tabulated values represent estimates of the 'state of the practice' which should be achievable under routine measurement conditions. The most recent standard conventions in representing uncertainty have been considered, while maintaining a format that allows comparison with the previous releases of the ITVs. The present report explains why target values are needed, how the concept evolved and how they relate to the operator's and inspector's measurement systems. The ITVs-2010 are intended to be used by plant operators and safeguards organizations, as a reference of the quality of measurements achievable in nuclear material accountancy, and for planning purposes. The report suggests that the use of ITVs can be beneficial for statistical inferences regarding the significance of operator-inspector differences whenever valid performance values are not available.
Attributes identification of nuclear material by non-destructive radiation measurement methods
International Nuclear Information System (INIS)
Gan Lin
2002-01-01
Full text: The nuclear materials should be controlled under the regulation of National Safeguard System. The non-destructive analysis method, which is simple and quick, provide a effective process in determining the nuclear materials, nuclear scraps and wastes. The method play a very important role in the fields of nuclear material control and physical protection against the illegal removal and smuggling of nuclear material. The application of non-destructive analysis in attributes identification of nuclear material is briefly described in this paper. The attributes determined by radioactive detection technique are useful tolls to identify the characterization of special nuclear material (isotopic composition, enrichment etc.). (author)
Wallace, Jack
2010-05-01
While forensic laboratories will soon be required to estimate uncertainties of measurement for those quantitations reported to the end users of the information, the procedures for estimating this have been little discussed in the forensic literature. This article illustrates how proficiency test results provide the basis for estimating uncertainties in three instances: (i) For breath alcohol analyzers the interlaboratory precision is taken as a direct measure of uncertainty. This approach applies when the number of proficiency tests is small. (ii) For blood alcohol, the uncertainty is calculated from the differences between the laboratory's proficiency testing results and the mean quantitations determined by the participants; this approach applies when the laboratory has participated in a large number of tests. (iii) For toxicology, either of these approaches is useful for estimating comparability between laboratories, but not for estimating absolute accuracy. It is seen that data from proficiency tests enable estimates of uncertainty that are empirical, simple, thorough, and applicable to a wide range of concentrations.
Munoz-Jaramillo, Andres
2017-08-01
Data products in heliospheric physics are very often provided without clear estimates of uncertainty. From helioseismology in the solar interior, all the way to in situ solar wind measurements beyond 1AU, uncertainty estimates are typically hard for users to find (buried inside long documents that are separate from the data products), or simply non-existent.There are two main reasons why uncertainty measurements are hard to find:1. Understanding instrumental systematic errors is given a much higher priority inside instrumental teams.2. The desire to perfectly understand all sources of uncertainty postpones indefinitely the actual quantification of uncertainty in our measurements.Using the cross calibration of 200 years of sunspot area measurements as a case study, in this presentation we will discuss the negative impact that inadequate measurements of uncertainty have on users, through the appearance of toxic and unnecessary controversies, and data providers, through the creation of unrealistic expectations regarding the information that can be extracted from their data. We will discuss how empirical estimates of uncertainty represent a very good alternative to not providing any estimates at all, and finalize by discussing the bare essentials that should become our standard practice for future instruments and surveys.
Road safety performance measures and AADT uncertainty from short-term counts.
Milligan, Craig; Montufar, Jeannette; Regehr, Jonathan; Ghanney, Bartholomew
2016-12-01
The objective of this paper is to enable better risk analysis of road safety performance measures by creating the first knowledge base on uncertainty surrounding annual average daily traffic (AADT) estimates when the estimates are derived by expanding short-term counts with the individual permanent counter method. Many road safety performance measures and performance models use AADT as an input. While there is an awareness that the input suffers from uncertainty, the uncertainty is not well known or accounted for. The paper samples data from a set of 69 permanent automatic traffic recorders in Manitoba, Canada, to simulate almost 2 million short-term counts over a five year period. These short-term counts are expanded to AADT estimates by transferring temporal information from a directly linked nearby permanent count control station, and the resulting AADT values are compared to a known reference AADT to compute errors. The impacts of five factors on AADT error are considered: length of short-term count, number of short-term counts, use of weekday versus weekend counts, distance from a count to its expansion control station, and the AADT at the count site. The mean absolute transfer error for expanded AADT estimates is 6.7%, and this value varied by traffic pattern group from 5% to 10.5%. Reference percentiles of the error distribution show that almost all errors are between -20% and +30%. Error decreases substantially by using a 48-h count instead of a 24-h count, and only slightly by using two counts instead of one. Weekday counts are superior to weekend counts, especially if the count is only 24h. Mean absolute transfer error increases with distance to control station (elasticity 0.121, p=0.001), and increases with AADT (elasticity 0.857, proad safety performance measures that use AADT as inputs. Analytical frameworks for such analysis exist but are infrequently used in road safety because the evidence base on AADT uncertainty is not well developed. Copyright
Fragmentation uncertainties in hadronic observables for top-quark mass measurements
Directory of Open Access Journals (Sweden)
Gennaro Corcella
2018-04-01
Full Text Available We study the Monte Carlo uncertainties due to modeling of hadronization and showering in the extraction of the top-quark mass from observables that use exclusive hadronic final states in top decays, such as t→anything+J/ψ or t→anything+(B→charged tracks, where B is a B-hadron. To this end, we investigate the sensitivity of the top-quark mass, determined by means of a few observables already proposed in the literature as well as some new proposals, to the relevant parameters of event generators, such as HERWIG 6 and PYTHIA 8. We find that constraining those parameters at O(1%–10% is required to avoid a Monte Carlo uncertainty on mt greater than 500 MeV. For the sake of achieving the needed accuracy on such parameters, we examine the sensitivity of the top-quark mass measured from spectral features, such as peaks, endpoints and distributions of EB, mBℓ, and some mT2-like variables. We find that restricting oneself to regions sufficiently close to the endpoints enables one to substantially decrease the dependence on the Monte Carlo parameters, but at the price of inflating significantly the statistical uncertainties. To ameliorate this situation we study how well the data on top-quark production and decay at the LHC can be utilized to constrain the showering and hadronization variables. We find that a global exploration of several calibration observables, sensitive to the Monte Carlo parameters but very mildly to mt, can offer useful constraints on the parameters, as long as such quantities are measured with a 1% precision.
Fragmentation uncertainties in hadronic observables for top-quark mass measurements
Corcella, Gennaro; Franceschini, Roberto; Kim, Doojin
2018-04-01
We study the Monte Carlo uncertainties due to modeling of hadronization and showering in the extraction of the top-quark mass from observables that use exclusive hadronic final states in top decays, such as t →anything + J / ψ or t →anything + (B →charged tracks), where B is a B-hadron. To this end, we investigate the sensitivity of the top-quark mass, determined by means of a few observables already proposed in the literature as well as some new proposals, to the relevant parameters of event generators, such as HERWIG 6 and PYTHIA 8. We find that constraining those parameters at O (1%- 10%) is required to avoid a Monte Carlo uncertainty on mt greater than 500 MeV. For the sake of achieving the needed accuracy on such parameters, we examine the sensitivity of the top-quark mass measured from spectral features, such as peaks, endpoints and distributions of EB, mBℓ, and some mT2-like variables. We find that restricting oneself to regions sufficiently close to the endpoints enables one to substantially decrease the dependence on the Monte Carlo parameters, but at the price of inflating significantly the statistical uncertainties. To ameliorate this situation we study how well the data on top-quark production and decay at the LHC can be utilized to constrain the showering and hadronization variables. We find that a global exploration of several calibration observables, sensitive to the Monte Carlo parameters but very mildly to mt, can offer useful constraints on the parameters, as long as such quantities are measured with a 1% precision.
Influence of Spherical Radiation Pattern Measurement Uncertainty on Handset Performance Measures
DEFF Research Database (Denmark)
Nielsen, Jesper Ødum; Pedersen, Gert Frølund
2005-01-01
system that may introduce errors in standardized performance measurements. Radiation patterns of six handsets have been measured while they were mounted at various offsets from the reference position defined by the Cellular Telecommunications & Internet Association (CTIA) certification. The change...... in the performance measures are investigated for both the GSM-900 and the GSM-1800 band. Despite the deliberately large deviations from the reference position, the changes in TRP and TIS are generally within ±0.5 dB with a maximum of about 1.4 dB. For the MEG values the results depend on the orientation...
Kin Tekce, Buket; Tekce, Hikmet; Aktas, Gulali; Uyeturk, Ugur
2016-01-01
Uncertainty of measurement is the numeric expression of the errors associated with all measurements taken in clinical laboratories. Serum creatinine concentration is the most common diagnostic marker for acute kidney injury. The goal of this study was to determine the effect of the uncertainty of measurement of serum creatinine concentrations on the diagnosis of acute kidney injury. We calculated the uncertainty of measurement of serum creatinine according to the Nordtest Guide. Retrospectively, we identified 289 patients who were evaluated for acute kidney injury. Of the total patient pool, 233 were diagnosed with acute kidney injury using the AKIN classification scheme and then were compared using statistical analysis. We determined nine probabilities of the uncertainty of measurement of serum creatinine concentrations. There was a statistically significant difference in the number of patients diagnosed with acute kidney injury when uncertainty of measurement was taken into consideration (first probability compared to the fifth p = 0.023 and first probability compared to the ninth p = 0.012). We found that the uncertainty of measurement for serum creatinine concentrations was an important factor for correctly diagnosing acute kidney injury. In addition, based on the AKIN classification scheme, minimizing the total allowable error levels for serum creatinine concentrations is necessary for the accurate diagnosis of acute kidney injury by clinicians.
Directory of Open Access Journals (Sweden)
Fezzani Amor
2017-01-01
Full Text Available The performance of photovoltaic (PV module is affected by outdoor conditions. Outdoor testing consists installing a module, and collecting electrical performance data and climatic data over a certain period of time. It can also include the study of long-term performance under real work conditions. Tests are operated in URAER located in desert region of Ghardaïa (Algeria characterized by high irradiation and temperature levels. The degradation of PV module with temperature and time exposure to sunlight contributes significantly to the final output from the module, as the output reduces each year. This paper presents a comparative study of different methods to evaluate the degradation of PV module after a long term exposure of more than 12 years in desert region and calculates uncertainties in measuring. Firstly, this evaluation uses three methods: Visual inspection, data given by Solmetric PVA-600 Analyzer translated at Standard Test Condition (STC and based on the investigation results of the translation equations as ICE 60891. Secondly, the degradation rates calculated for all methods. Finally, a comparison between a degradation rates given by Solmetric PVA-600 analyzer, calculated by simulation model and calculated by two methods (ICE 60891 procedures 1, 2. We achieved a detailed uncertainty study in order to improve the procedure and measurement instrument.
Directory of Open Access Journals (Sweden)
S. M. Aithal
2018-01-01
Full Text Available Initial conditions of the working fluid (air-fuel mixture within an engine cylinder, namely, mixture composition and temperature, greatly affect the combustion characteristics and emissions of an engine. In particular, the percentage of residual gas fraction (RGF in the engine cylinder can significantly alter the temperature and composition of the working fluid as compared with the air-fuel mixture inducted into the engine, thus affecting engine-out emissions. Accurate measurement of the RGF is cumbersome and expensive, thus making it hard to accurately characterize the initial mixture composition and temperature in any given engine cycle. This uncertainty can lead to challenges in accurately interpreting experimental emissions data and in implementing real-time control strategies. Quantifying the effects of the RGF can have important implications for the diagnostics and control of internal combustion engines. This paper reports on the use of a well-validated, two-zone quasi-dimensional model to compute the engine-out NO and CO emission in a gasoline engine. The effect of varying the RGF on the emissions under lean, near-stoichiometric, and rich engine conditions was investigated. Numerical results show that small uncertainties (~2–4% in the measured/computed values of the RGF can significantly affect the engine-out NO/CO emissions.
International Nuclear Information System (INIS)
Barrado, A. I.; Garcia, S.; Perez, R. M.
2013-01-01
This paper presents an evaluation of uncertainty associated to analytical measurement of eighteen polycyclic aromatic compounds (PACs) in ambient air by liquid chromatography with fluorescence detection (HPLC/FD). The study was focused on analyses of PM 1 0, PM 2 .5 and gas phase fractions. Main analytical uncertainty was estimated for eleven polycyclic aromatic hydrocarbons (PAHs), four nitro polycyclic aromatic hydrocarbons (nitro-PAHs) and two hydroxy polycyclic aromatic hydrocarbons (OH-PAHs) based on the analytical determination, reference material analysis and extraction step. Main contributions reached 15-30% and came from extraction process of real ambient samples, being those for nitro- PAHs the highest (20-30%). Range and mean concentration of PAC mass concentrations measured in gas phase and PM 1 0/PM 2 .5 particle fractions during a full year are also presented. Concentrations of OH-PAHs were about 2-4 orders of magnitude lower than their parent PAHs and comparable to those sparsely reported in literature. (Author)
Directory of Open Access Journals (Sweden)
Vesna Režić Dereani
2010-09-01
Full Text Available The aim of this research is to describe quality control procedures, procedures for validation and measurement uncertainty (MU determination as an important element of quality assurance in food microbiology laboratory for qualitative and quantitative type of analysis. Accreditation is conducted according to the standard ISO 17025:2007. General requirements for the competence of testing and calibration laboratories, which guarantees the compliance with standard operating procedures and the technical competence of the staff involved in the tests, recently are widely introduced in food microbiology laboratories in Croatia. In addition to quality manual introduction, and a lot of general documents, some of the most demanding procedures in routine microbiology laboratories are measurement uncertainty (MU procedures and validation experiment design establishment. Those procedures are not standardized yet even at international level, and they require practical microbiological knowledge, altogether with statistical competence. Differences between validation experiments design for quantitative and qualitative food microbiology analysis are discussed in this research, and practical solutions are shortly described. MU for quantitative determinations is more demanding issue than qualitative MU calculation. MU calculations are based on external proficiency testing data and internal validation data. In this paper, practical schematic descriptions for both procedures are shown.
Skataric, Maja; Bose, Sandip; Zeroug, Smaine; Tilke, Peter
2017-02-01
It is not uncommon in the field of non-destructive evaluation that multiple measurements encompassing a variety of modalities are available for analysis and interpretation for determining the underlying states of nature of the materials or parts being tested. Despite and sometimes due to the richness of data, significant challenges arise in the interpretation manifested as ambiguities and inconsistencies due to various uncertain factors in the physical properties (inputs), environment, measurement device properties, human errors, and the measurement data (outputs). Most of these uncertainties cannot be described by any rigorous mathematical means, and modeling of all possibilities is usually infeasible for many real time applications. In this work, we will discuss an approach based on Hierarchical Bayesian Graphical Models (HBGM) for the improved interpretation of complex (multi-dimensional) problems with parametric uncertainties that lack usable physical models. In this setting, the input space of the physical properties is specified through prior distributions based on domain knowledge and expertise, which are represented as Gaussian mixtures to model the various possible scenarios of interest for non-destructive testing applications. Forward models are then used offline to generate the expected distribution of the proposed measurements which are used to train a hierarchical Bayesian network. In Bayesian analysis, all model parameters are treated as random variables, and inference of the parameters is made on the basis of posterior distribution given the observed data. Learned parameters of the posterior distribution obtained after the training can therefore be used to build an efficient classifier for differentiating new observed data in real time on the basis of pre-trained models. We will illustrate the implementation of the HBGM approach to ultrasonic measurements used for cement evaluation of cased wells in the oil industry.
Force Measurement Services at Kebs: AN Overview of Equipment, Procedures and Uncertainty
Bangi, J. O.; Maranga, S. M.; Nganga, S. P.; Mutuli, S. M.
This paper describes the facilities, instrumentation and procedures currently used in the force laboratory at the Kenya Bureau of Standards (KEBS) for force measurement services. The laboratory uses the Force Calibration Machine (FCM) to calibrate force-measuring instruments. The FCM derives its traceability via comparisons using reference transfer force transducers calibrated by the Force Standard Machines (FSM) of a National Metrology Institute (NMI). The force laboratory is accredited to ISO/IEC 17025 by the Germany Accreditation Body (DAkkS). The accredited measurement scope of the laboratory is 1 MN to calibrate force transducers in both compression and tension modes. ISO 376 procedures are used while calibrating force transducers. The KEBS reference transfer standards have capacities of 10, 50, 300 and 1000 kN to cover the full range of the FCM. The uncertainty in the forces measured by the FCM were reviewed and determined in accordance to the new EURAMET calibration guide. The relative expanded uncertainty of force W realized by FCM was evaluated in a range from 10 kN-1 MN, and was found to be 5.0 × 10-4 with the coverage factor k being equal to 2. The overall normalized error (En) of the comparison results was also found to be less than 1. The accredited Calibration and Measurement Capability (CMC) of the KEBS force laboratory was based on the results of those intercomparisons. The FCM enables KEBS to provide traceability for the calibration of class ‘1’ force instruments as per the ISO 376.
Zheng, N.
2017-12-01
Sensible heat flux (H) is one of the driving factors of surface turbulent motion and energy exchange. Therefore, it is particularly important to measure sensible heat flux accurately at the regional scale. However, due to the heterogeneity of the underlying surface, hydrothermal regime, and different weather conditions, it is difficult to estimate the represented flux at the kilometer scale. The scintillometer have been developed into an effective and universal equipment for deriving heat flux at the regional-scale which based on the turbulence effect of light in the atmosphere since the 1980s. The parameter directly obtained by the scintillometer is the structure parameter of the refractive index of air based on the changes of light intensity fluctuation. Combine with parameters such as temperature structure parameter, zero-plane displacement, surface roughness, wind velocity, air temperature and the other meteorological data heat fluxes can be derived. These additional parameters increase the uncertainties of flux because the difference between the actual feature of turbulent motion and the applicable conditions of turbulence theory. Most previous studies often focused on the constant flux layers that are above the rough sub-layers and homogeneous flat surfaces underlying surfaces with suitable weather conditions. Therefore, the criteria and modified forms of key parameters are invariable. In this study, we conduct investment over the hilly area of northern China with different plants, such as cork oak, cedar-black and locust. On the basis of key research on the threshold and modified forms of saturation with different turbulence intensity, modified forms of Bowen ratio with different drying-and-wetting conditions, universal function for the temperature structure parameter under different atmospheric stability, the dominant sources of uncertainty will be determined. The above study is significant to reveal influence mechanism of uncertainty and explore influence
Lee, Donghun; Byon, Kevin K.; Schoenstedt, Linda; Johns, Gary; Bussell, Leigh Ann; Choi, Hwansuk
2012-01-01
Various consumer values and perceived product attributes trigger consumptive behaviors of athletic team merchandise (Lee, Trail, Kwon, & Anderson, 2011). Likewise, using a principal component analysis technique on a student sample, a measurement scale was proposed that consisted of nine factors affecting the purchase of athletic team…
SU-F-T-301: Planar Dose Pass Rate Inflation Due to the MapCHECK Measurement Uncertainty Function
International Nuclear Information System (INIS)
Bailey, D; Spaans, J; Kumaraswamy, L; Podgorsak, M
2016-01-01
Purpose: To quantify the effect of the Measurement Uncertainty function on planar dosimetry pass rates, as analyzed with Sun Nuclear Corporation analytic software (“MapCHECK” or “SNC Patient”). This optional function is toggled on by default upon software installation, and automatically increases the user-defined dose percent difference (%Diff) tolerance for each planar dose comparison. Methods: Dose planes from 109 IMRT fields and 40 VMAT arcs were measured with the MapCHECK 2 diode array, and compared to calculated planes from a commercial treatment planning system. Pass rates were calculated within the SNC analytic software using varying calculation parameters, including Measurement Uncertainty on and off. By varying the %Diff criterion for each dose comparison performed with Measurement Uncertainty turned off, an effective %Diff criterion was defined for each field/arc corresponding to the pass rate achieved with MapCHECK Uncertainty turned on. Results: For 3%/3mm analysis, the Measurement Uncertainty function increases the user-defined %Diff by 0.8–1.1% average, depending on plan type and calculation technique, for an average pass rate increase of 1.0–3.5% (maximum +8.7%). For 2%, 2 mm analysis, the Measurement Uncertainty function increases the user-defined %Diff by 0.7–1.2% average, for an average pass rate increase of 3.5–8.1% (maximum +14.2%). The largest increases in pass rate are generally seen with poorly-matched planar dose comparisons; the MapCHECK Uncertainty effect is markedly smaller as pass rates approach 100%. Conclusion: The Measurement Uncertainty function may substantially inflate planar dose comparison pass rates for typical IMRT and VMAT planes. The types of uncertainties incorporated into the function (and their associated quantitative estimates) as described in the software user’s manual may not accurately estimate realistic measurement uncertainty for the user’s measurement conditions. Pass rates listed in published
SU-F-T-301: Planar Dose Pass Rate Inflation Due to the MapCHECK Measurement Uncertainty Function
Energy Technology Data Exchange (ETDEWEB)
Bailey, D [Northside Hospital Cancer Institute, Atlanta, GA (United States); Spaans, J; Kumaraswamy, L; Podgorsak, M [Roswell Park Cancer Institute, Buffalo, NY (United States)
2016-06-15
Purpose: To quantify the effect of the Measurement Uncertainty function on planar dosimetry pass rates, as analyzed with Sun Nuclear Corporation analytic software (“MapCHECK” or “SNC Patient”). This optional function is toggled on by default upon software installation, and automatically increases the user-defined dose percent difference (%Diff) tolerance for each planar dose comparison. Methods: Dose planes from 109 IMRT fields and 40 VMAT arcs were measured with the MapCHECK 2 diode array, and compared to calculated planes from a commercial treatment planning system. Pass rates were calculated within the SNC analytic software using varying calculation parameters, including Measurement Uncertainty on and off. By varying the %Diff criterion for each dose comparison performed with Measurement Uncertainty turned off, an effective %Diff criterion was defined for each field/arc corresponding to the pass rate achieved with MapCHECK Uncertainty turned on. Results: For 3%/3mm analysis, the Measurement Uncertainty function increases the user-defined %Diff by 0.8–1.1% average, depending on plan type and calculation technique, for an average pass rate increase of 1.0–3.5% (maximum +8.7%). For 2%, 2 mm analysis, the Measurement Uncertainty function increases the user-defined %Diff by 0.7–1.2% average, for an average pass rate increase of 3.5–8.1% (maximum +14.2%). The largest increases in pass rate are generally seen with poorly-matched planar dose comparisons; the MapCHECK Uncertainty effect is markedly smaller as pass rates approach 100%. Conclusion: The Measurement Uncertainty function may substantially inflate planar dose comparison pass rates for typical IMRT and VMAT planes. The types of uncertainties incorporated into the function (and their associated quantitative estimates) as described in the software user’s manual may not accurately estimate realistic measurement uncertainty for the user’s measurement conditions. Pass rates listed in published
The small sample uncertainty aspect in relation to bullwhip effect measurement
DEFF Research Database (Denmark)
Nielsen, Erland Hejn
2009-01-01
The bullwhip effect as a concept has been known for almost half a century starting with the Forrester effect. The bullwhip effect is observed in many supply chains, and it is generally accepted as a potential malice. Despite of this fact, the bullwhip effect still seems to be first and foremost...... a conceptual phenomenon. This paper intends primarily to investigate why this might be so and thereby investigate the various aspects, possibilities and obstacles that must be taken into account, when considering the potential practical use and measure of the bullwhip effect in order to actually get the supply...... chain under control. This paper will put special emphasis on the unavoidable small-sample uncertainty aspects relating to the measurement or estimation of the bullwhip effect. ...
International Nuclear Information System (INIS)
Riquelme, Rodrigo; Lira, Ignacio; Perez-Lopez, Carlos; Rayas, Juan A; RodrIguez-Vera, Ramon
2007-01-01
Two methods to measure the diffusion coefficient of a species in a liquid by optical interferometry were compared. The methods were tested on a 1.75 M NaCl aqueous solution diffusing into water at 26 deg. C. Results were D = 1.587 x 10 -9 m 2 s -1 with the first method and D = 1.602 x 10 -9 m 2 s -1 with the second method. Monte Carlo simulation was used to assess the possible dispersion of these results. The standard uncertainties were found to be of the order of 0.05 x 10 -9 m 2 s -1 with both methods. We found that the value of the diffusion coefficient obtained by either method is very sensitive to the magnification of the optical system, and that if diffusion is slow the measurement of time does not need to be very accurate
Energy Technology Data Exchange (ETDEWEB)
Minteer, D.J.
1995-01-23
The purpose of this analysis is to estimate the uncertainty in the measured quantity of water which typically leaves Tank 241-C-106 via the ventilation system each month. Such measurements are essential for heat removal estimation and tank liquid level verification purposes. The uncertainty associated with the current, infrequent, manual method of measurement (involves various psychrometric and pressure measurements) is suspected to be unreasonably high. Thus, the possible reduction of this uncertainty using a continuous, automated method of measurement will also be estimated. There are three major conclusions as a result of this analysis: (1) the uncertainties associated with the current (infrequent, manual) method of measuring the water which typically leaves Tank 241-C-106 per month via the ventilation system are indeed quite high (80% to 120%); (2) given the current psychrometric and pressure measurement methods and any tank which loses considerable moisture through active ventilation, such as Tank 241-C-106, significant quantities of liquid can actually leak from the tank before a leak can be positively identified via liquid level measurement; (3) using improved (continuous, automated) methods of taking the psychrometric and pressure measurements, the uncertainty in the measured quantity of water leaving Tank 241-C-106 via the ventilation system can be reduced by approximately an order of magnitude.
International Nuclear Information System (INIS)
Minteer, D.J.
1995-01-01
The purpose of this analysis is to estimate the uncertainty in the measured quantity of water which typically leaves Tank 241-C-106 via the ventilation system each month. Such measurements are essential for heat removal estimation and tank liquid level verification purposes. The uncertainty associated with the current, infrequent, manual method of measurement (involves various psychrometric and pressure measurements) is suspected to be unreasonably high. Thus, the possible reduction of this uncertainty using a continuous, automated method of measurement will also be estimated. There are three major conclusions as a result of this analysis: (1) the uncertainties associated with the current (infrequent, manual) method of measuring the water which typically leaves Tank 241-C-106 per month via the ventilation system are indeed quite high (80% to 120%); (2) given the current psychrometric and pressure measurement methods and any tank which loses considerable moisture through active ventilation, such as Tank 241-C-106, significant quantities of liquid can actually leak from the tank before a leak can be positively identified via liquid level measurement; (3) using improved (continuous, automated) methods of taking the psychrometric and pressure measurements, the uncertainty in the measured quantity of water leaving Tank 241-C-106 via the ventilation system can be reduced by approximately an order of magnitude
Mcgillen, Max R.; Fleming, Eric L.; Jackman, Charles H.; Burkholder, James B.
2014-01-01
CFCl3 (CFC-11) is both an atmospheric ozone-depleting and potent greenhouse gas that is removed primarily via stratospheric UV photolysis. Uncertainty in the temperature dependence of its UV absorption spectrum is a significant contributing factor to the overall uncertainty in its global lifetime and, thus, model calculations of stratospheric ozone recovery and climate change. In this work, the CFC-11 UV absorption spectrum was measured over a range of wavelength (184.95 - 230 nm) and temperature (216 - 296 K). We report a spectrum temperature dependence that is less than currently recommended for use in atmospheric models. The impact on its atmospheric lifetime was quantified using a 2-D model and the spectrum parameterization developed in this work. The obtained global annually averaged lifetime was 58.1 +- 0.7 years (2 sigma uncertainty due solely to the spectrum uncertainty). The lifetime is slightly reduced and the uncertainty significantly reduced from that obtained using current spectrum recommendations
Changes in Handset Performance Measures due to Spherical Radiation Pattern Measurement Uncertainty
DEFF Research Database (Denmark)
Nielsen, Jesper Ødum; Pedersen, Gert Frølund
An important characteristic of a mobile handset is its ability to receive and transmit power. One way to characterize the performance of a handset in this respect is to use measurements of the spherical radiation pattern from which the total radiated power (TRP), total isotropic sensitivity (TIS)...... with respect to the environment. Standard deviations up to about 0.5dB and a maximum deviation of about 1.6dB were found....... in the performance measures are investigated for both the GSM-900 and the GSM-1800 band. Despite the deliberately large deviations from the reference position, the changes in TRP and TIS are generally within ±0.5dB with a maximum of about 1.4dB. For the MEG values the results depend on the orientation of the handset...... system that may introduce errors in standardized performance measurements. Radiation patterns of six handsets have been measured while they were mounted at various offsets from the reference position defined by the Cellular Telecommunications & Internet Association (CTIA) certification. The change...
Directory of Open Access Journals (Sweden)
Ahuja Tarushee
2011-04-01
Full Text Available Abstract Arsenic is the toxic element, which creates several problems in human being specially when inhaled through air. So the accurate and precise measurement of arsenic in suspended particulate matter (SPM is of prime importance as it gives information about the level of toxicity in the environment, and preventive measures could be taken in the effective areas. Quality assurance is equally important in the measurement of arsenic in SPM samples before making any decision. The quality and reliability of the data of such volatile elements depends upon the measurement of uncertainty of each step involved from sampling to analysis. The analytical results quantifying uncertainty gives a measure of the confidence level of the concerned laboratory. So the main objective of this study was to determine arsenic content in SPM samples with uncertainty budget and to find out various potential sources of uncertainty, which affects the results. Keeping these facts, we have selected seven diverse sites of Delhi (National Capital of India for quantification of arsenic content in SPM samples with uncertainty budget following sampling by HVS to analysis by Atomic Absorption Spectrometer-Hydride Generator (AAS-HG. In the measurement of arsenic in SPM samples so many steps are involved from sampling to final result and we have considered various potential sources of uncertainties. The calculation of uncertainty is based on ISO/IEC17025: 2005 document and EURACHEM guideline. It has been found that the final results mostly depend on the uncertainty in measurement mainly due to repeatability, final volume prepared for analysis, weighing balance and sampling by HVS. After the analysis of data of seven diverse sites of Delhi, it has been concluded that during the period from 31st Jan. 2008 to 7th Feb. 2008 the arsenic concentration varies from 1.44 ± 0.25 to 5.58 ± 0.55 ng/m3 with 95% confidence level (k = 2.
International Nuclear Information System (INIS)
Dias, Fabio C.; Almeida, Silvio G. de; Renha Junior, Geraldo
2011-01-01
The International Target Values (ITVs) are reasonable uncertainty estimates that can be used in judging the reliability of measurement techniques applied to industrial nuclear and fissile materials subject to accountancy and/or safeguards verification. In the absence of relevant experimental estimates, ITVs can also be used to select measurement techniques and calculate sample population during the planning phase of verification activities. It is important to note that ITVs represent estimates of the 'state-of-the-practice', which should be achievable under routine measurement conditions affecting both facility operators and safeguards inspectors, not only in the field, but also in laboratory. Tabulated values cover measurement methods used for the determination of volume or mass of the nuclear material, for its elemental and isotopic assays, and for its sampling. The 2010 edition represents the sixth revision of the International Target Values (ITVs), issued by the International Atomic Energy Agency (IAEA) as a Safeguards Technical Report (STR-368). The first version was released as 'Target Values' in 1979 by the Working Group on Techniques and Standards for Destructive Analysis (WGDA) of the European Safeguards Research and Development Association (ESARDA) and focused on destructive analytical methods. In the latest 2010 revision, international standards in estimating and expressing uncertainties have been considered while maintaining a format that allows comparison with the previous editions of the ITVs. Those standards have been usually applied in QC/QA programmes, as well as qualification of methods, techniques and instruments. Representatives of the Brazilian Nuclear Energy Commission (CNEN) and the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC) participated in previous Consultants Group Meetings since the one convened to establish the first list of ITVs released in 1993 and in subsequent revisions, including the latest one
Kim, Hea-Jung
2014-01-01
This paper considers a hierarchical screened Gaussian model (HSGM) for Bayesian inference of normal models when an interval constraint in the mean parameter space needs to be incorporated in the modeling but when such a restriction is uncertain. An objective measure of the uncertainty, regarding the interval constraint, accounted for by using the HSGM is proposed for the Bayesian inference. For this purpose, we drive a maximum entropy prior of the normal mean, eliciting the uncertainty regarding the interval constraint, and then obtain the uncertainty measure by considering the relationship between the maximum entropy prior and the marginal prior of the normal mean in HSGM. Bayesian estimation procedure of HSGM is developed and two numerical illustrations pertaining to the properties of the uncertainty measure are provided.
Directory of Open Access Journals (Sweden)
Hea-Jung Kim
2014-01-01
Full Text Available This paper considers a hierarchical screened Gaussian model (HSGM for Bayesian inference of normal models when an interval constraint in the mean parameter space needs to be incorporated in the modeling but when such a restriction is uncertain. An objective measure of the uncertainty, regarding the interval constraint, accounted for by using the HSGM is proposed for the Bayesian inference. For this purpose, we drive a maximum entropy prior of the normal mean, eliciting the uncertainty regarding the interval constraint, and then obtain the uncertainty measure by considering the relationship between the maximum entropy prior and the marginal prior of the normal mean in HSGM. Bayesian estimation procedure of HSGM is developed and two numerical illustrations pertaining to the properties of the uncertainty measure are provided.
Uncertainty in CH4 and N2O emission estimates from a managed fen meadow using EC measurements
International Nuclear Information System (INIS)
Kroon, P.S.; Hensen, A.; Van 't Veen, W.H.; Vermeulen, A.T.; Jonker, H.
2009-02-01
The overall uncertainty in annual flux estimates derived from chamber measurements may be as high as 50% due to the temporal and spatial variability in the fluxes. As even a large number of chamber plots still cover typically less than 1% of the total field area, the field-scale integrated emission necessarily remains a matter of speculation. High frequency micrometeorological methods are a good option for obtaining integrated estimates on a hectare scale with a continuous coverage in time. Instrumentation is now becoming available that meets the requirements for CH4 and N2O eddy covariance (EC) measurements. A system consisting of a quantum cascade laser (QCL) spectrometer and a sonic anemometer has recently been proven to be suitable for performing EC measurements. This study analyses the EC flux measurements of CH4 and N2O and its corrections, like calibration, Webb-correction, and corrections for high and low frequency losses, and assesses the magnitude of the uncertainties associated with the precision of the measurement instruments, measurement set-up and the methodology. The uncertainty of one single EC flux measurement, a daily, monthly and 3-monthly average EC flux is estimated. In addition, the cumulative emission of C-CH4 and N-N2O and their uncertainties are determined over several fertilizing events at a dairy farm site in the Netherlands. These fertilizing events are selected from the continuously EC flux measurements from August 2006 to September 2008. The EC flux uncertainties are compared by the overall uncertainty in annual flux estimates derived from chamber measurements. It will be shown that EC flux measurements can decrease the overall uncertainty in annual flux estimates
Uncertainty in CH4 and N2O emission estimates from a managed fen meadow using EC measurements
Energy Technology Data Exchange (ETDEWEB)
Kroon, P.S.; Hensen, A.; Van ' t Veen, W.H.; Vermeulen, A.T. [ECN Biomass, Coal and Environment, Petten (Netherlands); Jonker, H. [Delft University of Technology, Delft (Netherlands)
2009-02-15
The overall uncertainty in annual flux estimates derived from chamber measurements may be as high as 50% due to the temporal and spatial variability in the fluxes. As even a large number of chamber plots still cover typically less than 1% of the total field area, the field-scale integrated emission necessarily remains a matter of speculation. High frequency micrometeorological methods are a good option for obtaining integrated estimates on a hectare scale with a continuous coverage in time. Instrumentation is now becoming available that meets the requirements for CH4 and N2O eddy covariance (EC) measurements. A system consisting of a quantum cascade laser (QCL) spectrometer and a sonic anemometer has recently been proven to be suitable for performing EC measurements. This study analyses the EC flux measurements of CH4 and N2O and its corrections, like calibration, Webb-correction, and corrections for high and low frequency losses, and assesses the magnitude of the uncertainties associated with the precision of the measurement instruments, measurement set-up and the methodology. The uncertainty of one single EC flux measurement, a daily, monthly and 3-monthly average EC flux is estimated. In addition, the cumulative emission of C-CH4 and N-N2O and their uncertainties are determined over several fertilizing events at a dairy farm site in the Netherlands. These fertilizing events are selected from the continuously EC flux measurements from August 2006 to September 2008. The EC flux uncertainties are compared by the overall uncertainty in annual flux estimates derived from chamber measurements. It will be shown that EC flux measurements can decrease the overall uncertainty in annual flux estimates.
International Nuclear Information System (INIS)
Yu Watanabe; Masahito Ueda
2012-01-01
Full text: When we try to obtain information about a quantum system, we need to perform measurement on the system. The measurement process causes unavoidable state change. Heisenberg discussed a thought experiment of the position measurement of a particle by using a gamma-ray microscope, and found a trade-off relation between the error of the measured position and the disturbance in the momentum caused by the measurement process. The trade-off relation epitomizes the complementarity in quantum measurements: we cannot perform a measurement of an observable without causing disturbance in its canonically conjugate observable. However, at the time Heisenberg found the complementarity, quantum measurement theory was not established yet, and Kennard and Robertson's inequality erroneously interpreted as a mathematical formulation of the complementarity. Kennard and Robertson's inequality actually implies the indeterminacy of the quantum state: non-commuting observables cannot have definite values simultaneously. However, Kennard and Robertson's inequality reflects the inherent nature of a quantum state alone, and does not concern any trade-off relation between the error and disturbance in the measurement process. In this talk, we report a resolution to the complementarity in quantum measurements. First, we find that it is necessary to involve the estimation process from the outcome of the measurement for quantifying the error and disturbance in the quantum measurement. We clarify the implicitly involved estimation process in Heisenberg's gamma-ray microscope and other measurement schemes, and formulate the error and disturbance for an arbitrary quantum measurement by using quantum estimation theory. The error and disturbance are defined in terms of the Fisher information, which gives the upper bound of the accuracy of the estimation. Second, we obtain uncertainty relations between the measurement errors of two observables [1], and between the error and disturbance in the
Directory of Open Access Journals (Sweden)
J. K. Spiegel
2012-09-01
Full Text Available Droplet size spectra measurements are crucial to obtain a quantitative microphysical description of clouds and fog. However, cloud droplet size measurements are subject to various uncertainties. This work focuses on the error analysis of two key measurement uncertainties arising during cloud droplet size measurements with a conventional droplet size spectrometer (FM-100: first, we addressed the precision with which droplets can be sized with the FM-100 on the basis of the Mie theory. We deduced error assumptions and proposed a new method on how to correct measured size distributions for these errors by redistributing the measured droplet size distribution using a stochastic approach. Second, based on a literature study, we summarized corrections for particle losses during sampling with the FM-100. We applied both corrections to cloud droplet size spectra measured at the high alpine site Jungfraujoch for a temperature range from 0 °C to 11 °C. We showed that Mie scattering led to spikes in the droplet size distributions using the default sizing procedure, while the new stochastic approach reproduced the ambient size distribution adequately. A detailed analysis of the FM-100 sampling efficiency revealed that particle losses were typically below 10% for droplet diameters up to 10 μm. For larger droplets, particle losses can increase up to 90% for the largest droplets of 50 μm at ambient wind speeds below 4.4 m s^{−1} and even to >90% for larger angles between the instrument orientation and the wind vector (sampling angle at higher wind speeds. Comparisons of the FM-100 to other reference instruments revealed that the total liquid water content (LWC measured by the FM-100 was more sensitive to particle losses than to re-sizing based on Mie scattering, while the total number concentration was only marginally influenced by particle losses. Consequently, for further LWC measurements with the FM-100 we strongly recommend to consider (1 the
Analysis of Uncertainty in a Middle-Cost Device for 3D Measurements in BIM Perspective
Directory of Open Access Journals (Sweden)
Alonso Sánchez
2016-09-01
Full Text Available Medium-cost devices equipped with sensors are being developed to get 3D measurements. Some allow for generating geometric models and point clouds. Nevertheless, the accuracy of these measurements should be evaluated, taking into account the requirements of the Building Information Model (BIM. This paper analyzes the uncertainty in outdoor/indoor three-dimensional coordinate measures and point clouds (using Spherical Accuracy Standard (SAS methods for Eyes Map, a medium-cost tablet manufactured by e-Capture Research & Development Company, Mérida, Spain. To achieve it, in outdoor tests, by means of this device, the coordinates of targets were measured from 1 to 6 m and cloud points were obtained. Subsequently, these were compared to the coordinates of the same targets measured by a Total Station. The Euclidean average distance error was 0.005–0.027 m for measurements by Photogrammetry and 0.013–0.021 m for the point clouds. All of them satisfy the tolerance for point cloud acquisition (0.051 m according to the BIM Guide for 3D Imaging (General Services Administration; similar results are obtained in the indoor tests, with values of 0.022 m. In this paper, we establish the optimal distances for the observations in both, Photogrammetry and 3D Photomodeling modes (outdoor and point out some working conditions to avoid in indoor environments. Finally, the authors discuss some recommendations for improving the performance and working methods of the device.
Importance measures in nuclear PSA: how to control their uncertainty and develop new applications
International Nuclear Information System (INIS)
Duflot, N.
2007-01-01
This PhD thesis deals with the importance measures based on nuclear probabilistic safety analyses (PSA). With these indicators, the importance towards risk of the events considered in the PSA models can be measured. The first part of this thesis sets out the framework in which they are currently used. The information extracted from importance measures evaluation is used in industrial decision-making processes that may impact the safety of nuclear plants. In the second part of the thesis, we thus try to meet the requirements of reliability and simplicity with an approach minimising the uncertainties due to modelling. We also lay out a new truncation process of the set of the minimal cut set (MCS) corresponding to the baseline case which allows a quick, automatic and precise calculation of the importance measures. As PSA are increasingly used in risk-informed decision-making approaches, we have examined the extension of importance measures to groups of basic events. The third part of the thesis therefore presents the definition of the importance of events such as the failure of a system or the loss of a function, as well as their potential applications. PSA being considered to be a useful tool to design new nuclear power plants, the fourth part of the thesis sketches out a design process based both on classical importance measures and on new ones. (author)
arXiv Fragmentation Uncertainties in Hadronic Observables for Top-quark Mass Measurements
Corcella, Gennaro; Kim, Doojin
We study the Monte Carlo uncertainties due to modeling of hadronization and showering in the extraction of the top-quark mass from observables that use exclusive hadronic final states in top decays, such as t→anything+J/ψ or t→anything+(B→charged tracks) , where B is a B -hadron. To this end, we investigate the sensitivity of the top-quark mass, determined by means of a few observables already proposed in the literature as well as some new proposals, to the relevant parameters of event generators, such as HERWIG 6 and PYTHIA 8. We find that constraining those parameters at O(1%–10%) is required to avoid a Monte Carlo uncertainty on mt greater than 500 MeV. For the sake of achieving the needed accuracy on such parameters, we examine the sensitivity of the top-quark mass measured from spectral features, such as peaks, endpoints and distributions of EB , mBℓ , and some mT2 -like variables. We find that restricting oneself to regions sufficiently close to the endpoints enables one to substantially decr...
Biogenic carbon in combustible waste: waste composition, variability and measurement uncertainty.
Larsen, Anna W; Fuglsang, Karsten; Pedersen, Niels H; Fellner, Johann; Rechberger, Helmut; Astrup, Thomas
2013-10-01
Obtaining accurate data for the contents of biogenic and fossil carbon in thermally-treated waste is essential for determination of the environmental profile of waste technologies. Relations between the variability of waste chemistry and the biogenic and fossil carbon emissions are not well described in the literature. This study addressed the variability of biogenic and fossil carbon in combustible waste received at a municipal solid waste incinerator. Two approaches were compared: (1) radiocarbon dating ((14)C analysis) of carbon dioxide sampled from the flue gas, and (2) mass and energy balance calculations using the balance method. The ability of the two approaches to accurately describe short-term day-to-day variations in carbon emissions, and to which extent these short-term variations could be explained by controlled changes in waste input composition, was evaluated. Finally, the measurement uncertainties related to the two approaches were determined. Two flue gas sampling campaigns at a full-scale waste incinerator were included: one during normal operation and one with controlled waste input. Estimation of carbon contents in the main waste types received was included. Both the (14)C method and the balance method represented promising methods able to provide good quality data for the ratio between biogenic and fossil carbon in waste. The relative uncertainty in the individual experiments was 7-10% (95% confidence interval) for the (14)C method and slightly lower for the balance method.
Kawabata, E.; Main, I. G.; Naylor, M.; Chandler, R. E.
2016-12-01
In moderate to low seismicity areas such as the UK, earthquakes represent a small but not negligible risk to sensitive structures such as nuclear power plants. As a part of the safety case in the planning and regulation of such structures, seismic activity must first be monitored and quantified to form a catalogue of past events. In a low or moderate seismicity zone, most of our knowledge of the most significant events comes from macroseismic intensity measures from the pre-instrumental period (before 1900). These historical records must then be combined and calibrated with modern analogue and digitally-recorded instrumental data on a common source magnitude scale, the most useful of which is the moment magnitude. The result is a unified catalogue that can be used for probabilistic seismic hazard analysis. An isoseismal map involves a set of contours that enclose the areas at which the event was felt at particular intensity values or higher, called felt areas. It has been common practice to draw these contours by hand with varying degrees of subjectivity. Here, we demonstrate a Bayesian method for constructing such maps objectively from macroseismic intensity measures and their observed locations. It involves using mathematical expressions to represent concentric ellipses and estimating their optimal parameters and uncertainties in a Bayesian framework. Inferred fault orientations in the UK are predominantly vertical, so the elliptical assumption is reasonable at least to first order or as a null hypothesis. Relevant physical constraints are used as priors where available. The resulting posterior distributions are used to calculate felt area at a given intensity, as well as a probability density function for the inferred epicentre. We then describe another Bayesian approach for deriving moment magnitude from felt areas based on their relationship and known constraints such as the frequency-magnitude distribution. The use of Bayesian inference allows us to quantify
Uncertainties in assessing tillage erosion - How appropriate are our measuring techniques?
Fiener, P.; Wilken, F.; Aldana-Jague, E.; Deumlich, D.; Gómez, J. A.; Guzmán, G.; Hardy, R. A.; Quinton, J. N.; Sommer, M.; Van Oost, K.; Wexler, R.
2018-03-01
Tillage erosion on arable land is a very important process leading to a net downslope movement of soil and soil constitutes. Tillage erosion rates are commonly in the same order of magnitude as water erosion rates and can be even higher, especially under highly mechanized agricultural soil management. Despite its prevalence and magnitude, tillage erosion is still understudied compared to water erosion. The goal of this study was to bring together experts using different techniques to determine tillage erosion and use the different results to discuss and quantify uncertainties associated with tillage erosion measurements. The study was performed in northeastern Germany on a 10 m by 50 m plot with a mean slope of 8%. Tillage erosion was determined after two sequences of seven tillage operations. Two different micro-tracers (magnetic iron oxide mixed with soil and fluorescent sand) and one macro-tracer (passive radio-frequency identification transponders (RFIDs), size: 4 × 22 mm) were used to directly determine soil fluxes. Moreover, tillage induced changes in topography were measured for the entire plot with two different terrestrial laser scanners and an unmanned aerial system for structure from motion topography analysis. Based on these elevation differences, corresponding soil fluxes were calculated. The mean translocation distance of all techniques was 0.57 m per tillage pass, with a relatively wide range of mean soil translocation distances ranging from 0.39 to 0.72 m per pass. A benchmark technique could not be identified as all used techniques have individual error sources, which could not be quantified. However, the translocation distances of the macro-tracers used were consistently smaller than the translocation distances of the micro-tracers (mean difference = - 26 ± 12%), which questions the widely used assumption of non-selective soil transport via tillage operations. This study points out that tillage erosion measurements, carried out under almost
Thermal hydraulic aspects of uncertainty in power measurement of nuclear reactors
International Nuclear Information System (INIS)
Gupta, S.K.; Kumar, Rajesh; Gaikwad, A.J.; Majumdar, P.; Agrawal, R.A.
2004-01-01
Power measurement in Nuclear Reactors is carried out through in-core and ex-core neutron monitors which are continuously calibrated against thermal power. In Indian Pressurized Heavy Water Reactors (220 MWe) the temperature difference across steam generator hot and cold legs is taken to be a measure of thermal power as the flow through the primary heat transport system is assumed to be constant through out is operation. Gross flow is not measured directly. However, the flow depends on the characteristics of the primary heat transport pumps, which are centrifugal type and are affected by the grid frequency. The paper quantifies the percentage increase in the reactor power for the sustained allowable frequency. The paper quantifies the percentage increase in the reactor power for the sustained allowable high grid frequency. This uncertainty is in addition to instrument inaccuracy and should be accounted for in safety analysis. In some reactors thermal power is calculated from stem flow rate and pressure, here the location of steam flow measurement is important to avoid leakage related error in thermal power. Neutron absorption cross section in the power measurement instruments and the power production in the fuel varies with neutron energy levels, these aspects are also discussed in the paper. (author)
Aad, Georges; Abdallah, Jalal; Abdelalim, Ahmed Ali; Abdesselam, Abdelouahab; Abdinov, Ovsat; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Acerbi, Emilio; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Addy, Tetteh; Adelman, Jahred; Aderholz, Michael; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Akiyama, Kunihiro; Alam, Mohammad; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Aliyev, Magsud; Allbrooke, Benedict; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amaral, Pedro; Amelung, Christoph; Ammosov, Vladimir; Amorim, Antonio; Amorós, Gabriel; Amram, Nir; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Andrieux, Marie-Laure; Anduaga, Xabier; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Arfaoui, Samir; Arguin, Jean-Francois; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Asfandiyarov, Ruslan; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Astvatsatourov, Anatoli; Aubert, Bernard; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Avramidou, Rachel Maria; Axen, David; Ay, Cano; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Mark; Baker, Sarah; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barashkou, Andrei; Barbaro Galtieri, Angela; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Valeria; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beale, Steven; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Sebastian; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellina, Francesco; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Ben Ami, Sagi; Benary, Odette; Benchekroun, Driss; Benchouk, Chafik; Bendel, Markus; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertella, Claudia; Bertin, Antonio; Bertinelli, Francesco; Bertolucci, Federico; Besana, Maria Ilaria; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bitenc, Urban; Black, Kevin; Blair, Robert; Blanchard, Jean-Baptiste; Blanchot, Georges; Blazek, Tomas; Blocker, Craig; Blocki, Jacek; Blondel, Alain; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boelaert, Nele; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Bolnet, Nayanka Myriam; Bona, Marcella; Bondarenko, Valery; Bondioli, Mario; Boonekamp, Maarten; Booth, Chris; Bordoni, Stefania; Borer, Claudia; Borisov, Anatoly; Borissov, Guennadi; Borjanovic, Iris; Borri, Marcello; Borroni, Sara; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Botterill, David; Bouchami, Jihene; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozhko, Nikolay; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Braem, André; Branchini, Paolo; Brandenburg, George; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brelier, Bertrand; Bremer, Johan; Brenner, Richard; Bressler, Shikma; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brodbeck, Timothy; Brodet, Eyal; Broggi, Francesco; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, William; Brown, Gareth; Brown, Heather; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchanan, James; Buchanan, Norman; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Budick, Burton; Büscher, Volker; Bugge, Lars; Bulekov, Oleg; Bunse, Moritz; Buran, Torleiv; Burckhart, Helfried; Burdin, Sergey; Burgard, Carsten Daniel; Burgess, Thomas; Burke, Stephen; Busato, Emmanuel; Bussey, Peter; Buszello, Claus-Peter; Butin, François; Butler, Bart; Butler, John; Buttar, Craig; Butterworth, Jonathan; Buttinger, William; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Caloi, Rita; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarri, Paolo; Cambiaghi, Mario; Cameron, David; Caminada, Lea Michaela; Campana, Simone; Campanelli, Mario; Canale, Vincenzo; Canelli, Florencia; Canepa, Anadi; Cantero, Josu; Capasso, Luciano; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capriotti, Daniele; Capua, Marcella; Caputo, Regina; Caramarcu, Costin; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Bryan; Caron, Sascha; Carrillo Montoya, German D; Carter, Antony; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Cascella, Michele; Caso, Carlo; Castaneda Hernandez, Alfredo Martin; Castaneda-Miranda, Elizabeth; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Cataldi, Gabriella; Cataneo, Fernando; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cauz, Diego; Cavalleri, Pietro; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cetin, Serkant Ali; Cevenini, Francesco; Chafaq, Aziz; Chakraborty, Dhiman; Chan, Kevin; Chapleau, Bertrand; Chapman, John Derek; Chapman, John Wehrley; Chareyre, Eve; Charlton, Dave; Chavda, Vikash; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Shenjian; Chen, Tingyang; Chen, Xin; Cheng, Shaochen; Cheplakov, Alexander; Chepurnov, Vladimir; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Cheung, Sing-Leung; Chevalier, Laurent; Chiefari, Giovanni; Chikovani, Leila; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chisholm, Andrew; Chizhov, Mihail; Choudalakis, Georgios; Chouridou, Sofia; Christidi, Illectra-Athanasia; Christov, Asen; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Ciapetti, Guido; Ciba, Krzysztof; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciobotaru, Matei Dan; Ciocca, Claudia; Ciocio, Alessandra; Cirilli, Manuela; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Cleland, Bill; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Clifft, Roger; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coe, Paul; Cogan, Joshua Godfrey; Coggeshall, James; Cogneras, Eric; Colas, Jacques; Colijn, Auke-Pieter; Collard, Caroline; Collins, Neil; Collins-Tooth, Christopher; Collot, Johann; Colon, German; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Consonni, Michele; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conventi, Francesco; Cook, James; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Costin, Tudor; Côté, David; Coura Torres, Rodrigo; Courneyea, Lorraine; Cowan, Glen; Cowden, Christopher; Cox, Brian; Cranmer, Kyle; Crescioli, Francesco; Cristinziani, Markus; Crosetti, Giovanni; Crupi, Roberto; Crépé-Renaudin, Sabine; Cuciuc, Constantin-Mihai; Cuenca Almenar, Cristóbal; Cuhadar Donszelmann, Tulay; Curatolo, Maria; Curtis, Chris; Cuthbert, Cameron; Cwetanski, Peter; Czirr, Hendrik; Czodrowski, Patrick; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; D'Orazio, Alessia; Da Silva, Paulo Vitor; Da Via, Cinzia; Dabrowski, Wladyslaw; Dai, Tiesheng; Dallapiccola, Carlo; Dam, Mogens; Dameri, Mauro; Damiani, Daniel; Danielsson, Hans Olof; Dannheim, Dominik; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Davey, Will; Davidek, Tomas; Davidson, Nadia; Davidson, Ruth; Davies, Eleanor; Davies, Merlin; Davison, Adam; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Dawson, John; Daya, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Castro Faria Salgado, Pedro; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; De La Taille, Christophe; De la Torre, Hector; De Lotto, Barbara; de Mora, Lee; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dean, Simon; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Degenhardt, James; Dehchar, Mohamed; Del Papa, Carlo; Del Peso, Jose; Del Prete, Tarcisio; Delemontex, Thomas; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delruelle, Nicolas; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demirkoz, Bilge; Deng, Jianrong; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Devetak, Erik; Deviveiros, Pier-Olivier; Dewhurst, Alastair; DeWilde, Burton; Dhaliwal, Saminder; Dhullipudi, Ramasudhakar; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Luise, Silvestro; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Diaz, Marco Aurelio; Diblen, Faruk; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dindar Yagci, Kamile; Dingfelder, Jochen; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Barros do Vale, Maria Aline; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobbs, Matt; Dobinson, Robert; Dobos, Daniel; Dobson, Ellie; Dobson, Marc; Dodd, Jeremy; Doglioni, Caterina; Doherty, Tom; Doi, Yoshikuni; Dolejsi, Jiri; Dolenc, Irena; Dolezal, Zdenek; Dolgoshein, Boris; Dohmae, Takeshi; Donadelli, Marisilvia; Donega, Mauro; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dos Anjos, Andre; Dosil, Mireia; Dotti, Andrea; Dova, Maria-Teresa; Dowell, John; Doxiadis, Alexander; Doyle, Tony; Drasal, Zbynek; Drees, Jürgen; Dressnandt, Nandor; Drevermann, Hans; Driouichi, Chafik; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Duchovni, Ehud; Duckeck, Guenter; Dudarev, Alexey; Dudziak, Fanny; Dührssen, Michael; Duerdoth, Ian; Duflot, Laurent; Dufour, Marc-Andre; Dunford, Monica; Duran Yildiz, Hatice; Duxfield, Robert; Dwuznik, Michal; Dydak, Friedrich; Düren, Michael; Ebenstein, William; Ebke, Johannes; Eckweiler, Sebastian; Edmonds, Keith; Edwards, Clive; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Ehrich, Thies; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Eisenhandler, Eric; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Katherine; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Engelmann, Roderich; Engl, Albert; Epp, Brigitte; Eppig, Andrew; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Escobar, Carlos; Espinal Curull, Xavier; Esposito, Bellisario; Etienne, Francois; Etienvre, Anne-Isabelle; Etzion, Erez; Evangelakou, Despoina; Evans, Hal; Fabbri, Laura; Fabre, Caroline; Fakhrutdinov, Rinat; Falciano, Speranza; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farley, Jason; Farooque, Trisha; Farrington, Sinead; Farthouat, Philippe; Fassnacht, Patrick; Fassouliotis, Dimitrios; Fatholahzadeh, Baharak; Favareto, Andrea; Fayard, Louis; Fazio, Salvatore; Febbraro, Renato; Federic, Pavol; Fedin, Oleg; Fedorko, Woiciech; Fehling-Kaschek, Mirjam; Feligioni, Lorenzo; Fellmann, Denis; Feng, Cunfeng; Feng, Eric; Fenyuk, Alexander; Ferencei, Jozef; Ferland, Jonathan; Fernando, Waruna; Ferrag, Samir; Ferrando, James; Ferrara, Valentina; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrer, Maria Lorenza; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filippas, Anastasios; Filthaut, Frank; Fincke-Keeler, Margret; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Gordon; Fischer, Peter; Fisher, Matthew; Flechl, Martin; Fleck, Ivor; Fleckner, Johanna; Fleischmann, Philipp; Fleischmann, Sebastian; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Fokitis, Manolis; Fonseca Martin, Teresa; Forbush, David Alan; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Foster, Joe; Fournier, Daniel; Foussat, Arnaud; Fowler, Andrew; Fowler, Ken; Fox, Harald; Francavilla, Paolo; Franchino, Silvia; Francis, David; Frank, Tal; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; Fratina, Sasa; French, Sky; Friedrich, Felix; Froeschl, Robert; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gadfort, Thomas; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Gan, KK; Gao, Yongsheng; Gapienko, Vladimir; Gaponenko, Andrei; Garberson, Ford; Garcia-Sciveres, Maurice; García, Carmen; García Navarro, José Enrique; Gardner, Robert; Garelli, Nicoletta; Garitaonandia, Hegoi; Garonne, Vincent; Garvey, John; Gatti, Claudio; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gayde, Jean-Christophe; Gazis, Evangelos; Ge, Peng; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerlach, Peter; Gershon, Avi; Geweniger, Christoph; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giakoumopoulou, Victoria; Giangiobbe, Vincent; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Adam; Gibson, Stephen; Gilbert, Laura; Gilewsky, Valentin; Gillberg, Dag; Gillman, Tony; Gingrich, Douglas; Ginzburg, Jonatan; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giovannini, Paola; Giraud, Pierre-Francois; Giugni, Danilo; Giunta, Michele; Giusti, Paolo; Gjelsten, Børge Kile; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glazov, Alexandre; Glitza, Karl-Walter; Glonti, George; Goddard, Jack Robert; Godfrey, Jennifer; Godlewski, Jan; Goebel, Martin; Göpfert, Thomas; Goeringer, Christian; Gössling, Claus; Göttfert, Tobias; Goldfarb, Steven; Golling, Tobias; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; Gonidec, Allain; Gonzalez, Saul; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goodson, Jeremiah Jet; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorfine, Grant; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Gorokhov, Serguei; Goryachev, Vladimir; Gosdzik, Bjoern; Gosselink, Martijn; Gostkin, Mikhail Ivanovitch; Gough Eschrich, Ivo; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Grancagnolo, Francesco; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Grau, Nathan; Gray, Heather; Gray, Julia Ann; Graziani, Enrico; Grebenyuk, Oleg; Greenshaw, Timothy; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grigalashvili, Nugzar; Grillo, Alexander; Grinstein, Sebastian; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Groh, Manfred; Gross, Eilam; Grosse-Knetter, Joern; Groth-Jensen, Jacob; Grybel, Kai; Guarino, Victor; Guest, Daniel; Guicheney, Christophe; Guida, Angelo; Guindon, Stefan; Guler, Hulya; Gunther, Jaroslav; Guo, Bin; Guo, Jun; Gupta, Ambreesh; Gusakov, Yury; Gushchin, Vladimir; Gutierrez, Phillip; Guttman, Nir; Gutzwiller, Olivier; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haas, Stefan; Haber, Carl; Hackenburg, Robert; Hadavand, Haleh Khani; Hadley, David; Haefner, Petra; Hahn, Ferdinand; Haider, Stefan; Hajduk, Zbigniew; Hakobyan, Hrachya; Hall, David; Haller, Johannes; Hamacher, Klaus; Hamal, Petr; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Han, Hongguang; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Handel, Carsten; Hanke, Paul; Hansen, John Renner; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hansson, Per; Hara, Kazuhiko; Hare, Gabriel; Harenberg, Torsten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Harrison, Karl; Hartert, Jochen; Hartjes, Fred; Haruyama, Tomiyoshi; Harvey, Alex; Hasegawa, Satoshi; Hasegawa, Yoji; Hassani, Samira; Hatch, Mark; Hauff, Dieter; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawes, Brian; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hawkins, Donovan; Hayakawa, Takashi; Hayashi, Takayasu; Hayden, Daniel; Hayward, Helen; Haywood, Stephen; Hazen, Eric; He, Mao; Head, Simon; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heinemann, Beate; Heisterkamp, Simon; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, Robert; Henke, Michael; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Henry-Couannier, Frédéric; Hensel, Carsten; Henß, Tobias; Medina Hernandez, Carlos; Hernández Jiménez, Yesenia; Herrberg, Ruth; Hershenhorn, Alon David; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Higón-Rodriguez, Emilio; Hill, Daniel; Hill, John; Hill, Norman; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirsch, Florian; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hohlfeld, Marc; Holder, Martin; Holmgren, Sven-Olof; Holy, Tomas; Holzbauer, Jenny; Homma, Yasuhiro; Hong, Tae Min; Hooft van Huysduynen, Loek; Horazdovsky, Tomas; Horn, Claus; Horner, Stephan; Hostachy, Jean-Yves; Hou, Suen; Houlden, Michael; Hoummada, Abdeslam; Howarth, James; Howell, David; Hristova, Ivana; Hrivnac, Julius; Hruska, Ivan; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Huang, Guang Shun; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huettmann, Antje; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Hughes-Jones, Richard; Huhtinen, Mika; Hurst, Peter; Hurwitz, Martina; Husemann, Ulrich; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibbotson, Michael; Ibragimov, Iskander; Ichimiya, Ryo; Iconomidou-Fayard, Lydia; Idarraga, John; Iengo, Paolo; Igonkina, Olga; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Yuri; Iliadis, Dimitrios; Ilic, Nikolina; Imori, Masatoshi; Ince, Tayfun; Inigo-Golfin, Joaquin; Ioannou, Pavlos; Iodice, Mauro; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishikawa, Akimasa; Ishino, Masaya; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakubek, Jan; Jana, Dilip; Jankowski, Ernest; Jansen, Eric; Jansen, Hendrik; Jantsch, Andreas; Janus, Michel; Jarlskog, Göran; Jeanty, Laura; Jelen, Kazimierz; Jen-La Plante, Imai; Jenni, Peter; Jeremie, Andrea; Jež, Pavel; Jézéquel, Stéphane; Jha, Manoj Kumar; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Ge; Jin, Shan; Jinnouchi, Osamu; Joergensen, Morten Dam; Joffe, David; Johansen, Lars; Johansen, Marianne; Johansson, Erik; Johansson, Per; Johnert, Sebastian; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tegid; Jones, Tim; Jonsson, Ove; Joram, Christian; Jorge, Pedro; Joseph, John; Jovicevic, Jelena; Jovin, Tatjana; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Juranek, Vojtech; Jussel, Patrick; Juste Rozas, Aurelio; Kabachenko, Vasily; Kabana, Sonja; Kaci, Mohammed; Kaczmarska, Anna; Kadlecik, Peter; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kaiser, Steffen; Kajomovitz, Enrique; Kalinin, Sergey; Kalinovskaya, Lidia; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kaplon, Jan; Kar, Deepak; Karagoz, Muge; Karnevskiy, Mikhail; Karr, Kristo; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kasmi, Azzedine; Kass, Richard; Kastanas, Alex; Kataoka, Mayuko; Kataoka, Yousuke; Katsoufis, Elias; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kayl, Manuel; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Kehoe, Robert; Keil, Markus; Kekelidze, George; Kennedy, John; Kenney, Christopher John; Kenyon, Mike; Kepka, Oldrich; Kerschen, Nicolas; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Khakzad, Mohsen; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharchenko, Dmitri; Khodinov, Alexander; Kholodenko, Anatoli; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Nikolai; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hyeon Jin; Kim, Min Suk; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; Kirk, Julie; Kirsch, Lawrence; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kittelmann, Thomas; Kiver, Andrey; Kladiva, Eduard; Klaiber-Lodewigs, Jonas; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klemetti, Miika; Klier, Amit; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klinkby, Esben; Klioutchnikova, Tatiana; Klok, Peter; Klous, Sander; Kluge, Eike-Erik; Kluge, Thomas; Kluit, Peter; Kluth, Stefan; Knecht, Neil; Kneringer, Emmerich; Knobloch, Juergen; Knoops, Edith; Knue, Andrea; Ko, Byeong Rok; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Köneke, Karsten; König, Adriaan; Koenig, Sebastian; Köpke, Lutz; Koetsveld, Folkert; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohn, Fabian; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kokott, Thomas; Kolachev, Guennady; Kolanoski, Hermann; Kolesnikov, Vladimir; Koletsou, Iro; Koll, James; Kollefrath, Michael; Kolya, Scott; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kono, Takanori; Kononov, Anatoly; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kootz, Andreas; Koperny, Stefan; Korcyl, Krzysztof; Kordas, Kostantinos; Koreshev, Victor; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotamäki, Miikka Juhani; Kotov, Sergey; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, James; Kraus, Jana; Kreisel, Arik; Krejci, Frantisek; Kretzschmar, Jan; Krieger, Nina; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kruth, Andre; Kubota, Takashi; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuhl, Thorsten; Kuhn, Dietmar; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kummer, Christian; Kuna, Marine; Kundu, Nikhil; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurata, Masakazu; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwee, Regina; La Rosa, Alessandro; La Rotonda, Laura; Labarga, Luis; Labbe, Julien; Lablak, Said; Lacasta, Carlos; Lacava, Francesco; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laisne, Emmanuel; Lamanna, Massimo; Lampen, Caleb; Lampl, Walter; Lancon, Eric; Landgraf, Ulrich; Landon, Murrough; Lane, Jenna; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Larionov, Anatoly; Larner, Aimee; Lasseur, Christian; Lassnig, Mario; Laurelli, Paolo; Lavorini, Vincenzo; Lavrijsen, Wim; Laycock, Paul; Lazarev, Alexandre; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Maner, Christophe; Le Menedeu, Eve; Lebel, Céline; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Michel; Legendre, Marie; Leger, Annie; LeGeyt, Benjamin; Legger, Federica; Leggett, Charles; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Leltchouk, Mikhail; Lemmer, Boris; Lendermann, Victor; Leney, Katharine; Lenz, Tatiana; Lenzen, Georg; Lenzi, Bruno; Leonhardt, Kathrin; Leontsinis, Stefanos; Leroy, Claude; Lessard, Jean-Raphael; Lesser, Jonas; Lester, Christopher; Leung Fook Cheong, Annabelle; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levitski, Mikhail; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bo; Li, Haifeng; Li, Shu; Li, Xuefei; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lichtnecker, Markus; Lie, Ki; Liebig, Wolfgang; Lifshitz, Ronen; Lilley, Joseph; Limbach, Christian; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linde, Frank; Linnemann, James; Lipeles, Elliot; Lipinsky, Lukas; Lipniacka, Anna; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Chuanlei; Liu, Dong; Liu, Hao; Liu, Jianbei; Liu, Minghui; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loddenkoetter, Thomas; Loebinger, Fred; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Loken, James; Lombardo, Vincenzo Paolo; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Lo Sterzo, Francesco; Losty, Michael; Lou, Xinchou; Lounis, Abdenour; Loureiro, Karina; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Ludwig, Andreas; Ludwig, Dörthe; Ludwig, Inga; Ludwig, Jens; Luehring, Frederick; Luijckx, Guy; Lumb, Debra; Luminari, Lamberto; Lund, Esben; Lund-Jensen, Bengt; Lundberg, Björn; Lundberg, Johan; Lundquist, Johan; Lungwitz, Matthias; Lutz, Gerhard; Lynn, David; Lys, Jeremy; Lytken, Else; Ma, Hong; Ma, Lian Liang; Macana Goia, Jorge Andres; Maccarrone, Giovanni; Macchiolo, Anna; Maček, Boštjan; Machado Miguens, Joana; Mackeprang, Rasmus; Madaras, Ronald; Mader, Wolfgang; Maenner, Reinhard; Maeno, Tadashi; Mättig, Peter; Mättig, Stefan; Magnoni, Luca; Magradze, Erekle; Mahalalel, Yair; Mahboubi, Kambiz; Mahout, Gilles; Maiani, Camilla; Maidantchik, Carmen; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Malecki, Piotr; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mameghani, Raphael; Mamuzic, Judita; Manabe, Atsushi; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Mangeard, Pierre-Simon; Manhaes de Andrade Filho, Luciano; Manjavidze, Ioseb; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Manz, Andreas; Mapelli, Alessandro; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchese, Fabrizio; Marchiori, Giovanni; Marcisovsky, Michal; Marin, Alexandru; Marino, Christopher; Marroquim, Fernando; Marshall, Robin; Marshall, Zach; Martens, Kalen; Marti-Garcia, Salvador; Martin, Andrew; Martin, Brian; Martin, Brian Thomas; Martin, Franck Francois; Martin, Jean-Pierre; Martin, Philippe; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martin-Haugh, Stewart; Martinez, Mario; Martinez Outschoorn, Verena; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massaro, Graziano; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mathes, Markus; Matricon, Pierre; Matsumoto, Hiroshi; Matsunaga, Hiroyuki; Matsushita, Takashi; Mattravers, Carly; Maugain, Jean-Marie; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; May, Edward; Mayne, Anna; Mazini, Rachid; Mazur, Michael; Mazzanti, Marcello; Mazzoni, Enrico; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; McGlone, Helen; Mchedlidze, Gvantsa; McLaren, Robert Andrew; Mclaughlan, Tom; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Mechtel, Markus; Medinnis, Mike; Meera-Lebbai, Razzak; Meguro, Tatsuma; Mehdiyev, Rashid; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Mendoza Navas, Luis; Meng, Zhaoxia; Mengarelli, Alberto; Menke, Sven; Menot, Claude; Meoni, Evelin; Mercurio, Kevin Michael; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Merritt, Hayes; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer, Joerg; Meyer, Thomas Christian; Meyer, W Thomas; Miao, Jiayuan; Michal, Sebastien; Micu, Liliana; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Miller, David; Miller, Robert; Mills, Bill; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Miñano Moya, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Miralles Verge, Lluis; Misiejuk, Andrzej; Mitrevski, Jovan; Mitrofanov, Gennady; Mitsou, Vasiliki A; Mitsui, Shingo; Miyagawa, Paul; Miyazaki, Kazuki; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mockett, Paul; Moed, Shulamit; Moeller, Victoria; Mönig, Klaus; Möser, Nicolas; Mohapatra, Soumya; Mohr, Wolfgang; Mohrdieck-Möck, Susanne; Moisseev, Artemy; Moles-Valls, Regina; Molina-Perez, Jorge; Monk, James; Monnier, Emmanuel; Montesano, Simone; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Moorhead, Gareth; Mora Herrera, Clemencia; Moraes, Arthur; Morange, Nicolas; Morel, Julien; Morello, Gianfranco; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Morin, Jerome; Morley, Anthony Keith; Mornacchi, Giuseppe; Morozov, Sergey; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Mudrinic, Mihajlo; Mueller, Felix; Mueller, James; Mueller, Klemens; Müller, Thomas; Mueller, Timo; Muenstermann, Daniel; Muir, Alex; Munwes, Yonathan; Murray, Bill; Mussche, Ido; Musto, Elisa; Myagkov, Alexey; Nadal, Jordi; Nagai, Koichi; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Nanava, Gizo; Napier, Austin; Narayan, Rohin; Nash, Michael; Nation, Nigel; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Neal, Homer; Nebot, Eduardo; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negri, Guido; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Silke; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neusiedl, Andrea; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen Thi Hong, Van; Nickerson, Richard; Nicolaidou, Rosy; Nicolas, Ludovic; Nicquevert, Bertrand; Niedercorn, Francois; Nielsen, Jason; Niinikoski, Tapio; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolaev, Kirill; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsen, Henrik; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nishiyama, Tomonori; Nisius, Richard; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Nordberg, Markus; Nordkvist, Bjoern; Norton, Peter; Novakova, Jana; Nozaki, Mitsuaki; Nozka, Libor; Nugent, Ian Michael; Nuncio-Quiroz, Adriana-Elizabeth; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; O'Brien, Brendan Joseph; O'Neale, Steve; O'Neil, Dugan; O'Shea, Val; Oakes, Louise Beth; Oakham, Gerald; Oberlack, Horst; Ocariz, Jose; Ochi, Atsuhiko; Oda, Susumu; Odaka, Shigeru; Odier, Jerome; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohshima, Takayoshi; Ohshita, Hidetoshi; Ohsugi, Takashi; Okada, Shogo; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olcese, Marco; Olchevski, Alexander; Olivares Pino, Sebastian Andres; Oliveira, Miguel Alfonso; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olivito, Dominick; Olszewski, Andrzej; Olszowska, Jolanta; Omachi, Chihiro; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlov, Iliya; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Osuna, Carlos; Otero y Garzon, Gustavo; Ottersbach, John; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Simon; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagan Griso, Simone; Paganis, Efstathios; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Paleari, Chiara; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panes, Boris; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Panuskova, Monika; Paolone, Vittorio; Papadelis, Aras; Papadopoulou, Theodora; Paramonov, Alexander; Park, Woochun; Parker, Andy; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pecsy, Martin; Pedraza Morales, Maria Isabel; Peleganchuk, Sergey; Peng, Haiping; Pengo, Ruggero; Penning, Bjoern; Penson, Alexander; Penwell, John; Perantoni, Marcelo; Perez, Kerstin; Perez Cavalcanti, Tiago; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Perrodo, Pascal; Persembe, Seda; Perus, Antoine; Peshekhonov, Vladimir; Peters, Krisztian; Petersen, Brian; Petersen, Jorgen; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petschull, Dennis; Petteni, Michele; Pezoa, Raquel; Phan, Anna; Phillips, Peter William; Piacquadio, Giacinto; Piccaro, Elisa; Piccinini, Maurizio; Piec, Sebastian Marcin; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Ping, Jialun; Pinto, Belmiro; Pirotte, Olivier; Pizio, Caterina; Placakyte, Ringaile; Plamondon, Mathieu; Pleier, Marc-Andre; Pleskach, Anatoly; Poblaguev, Andrei; Poddar, Sahill; Podlyski, Fabrice; Poggioli, Luc; Poghosyan, Tatevik; Pohl, Martin; Polci, Francesco; Polesello, Giacomo; Policicchio, Antonio; Polini, Alessandro; Poll, James; Polychronakos, Venetios; Pomarede, Daniel Marc; Pomeroy, Daniel; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Posch, Christoph; Pospelov, Guennady; Pospisil, Stanislav; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Prabhu, Robindra; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Pretzl, Klaus Peter; Pribyl, Lukas; Price, Darren; Price, Joe; Price, Lawrence; Price, Michael John; Prieur, Damien; Primavera, Margherita; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Prudent, Xavier; Przybycien, Mariusz; Przysiezniak, Helenka; Psoroulas, Serena; Ptacek, Elizabeth; Pueschel, Elisa; Purdham, John; Purohit, Milind; Puzo, Patrick; Pylypchenko, Yuriy; Qian, Jianming; Qian, Zuxuan; Qin, Zhonghua; Quadt, Arnulf; Quarrie, David; Quayle, William; Quinonez, Fernando; Raas, Marcel; Radescu, Voica; Radics, Balint; Radloff, Peter; Rador, Tonguc; Ragusa, Francesco; Rahal, Ghita; Rahimi, Amir; Rahm, David; Rajagopalan, Srinivasan; Rammensee, Michael; Rammes, Marcus; Randle-Conde, Aidan Sean; Randrianarivony, Koloina; Ratoff, Peter; Rauscher, Felix; Rave, Tobias Christian; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Reichold, Armin; Reinherz-Aronis, Erez; Reinsch, Andreas; Reisinger, Ingo; Rembser, Christoph; Ren, Zhongliang; Renaud, Adrien; Renkel, Peter; Rescigno, Marco; Resconi, Silvia; Resende, Bernardo; Reznicek, Pavel; Rezvani, Reyhaneh; Richards, Alexander; Richter, Robert; Richter-Was, Elzbieta; Ridel, Melissa; Rijpstra, Manouk; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Rios, Ryan Randy; Riu, Imma; Rivoltella, Giancesare; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robinson, Mary; Robson, Aidan; Rocha de Lima, Jose Guilherme; Roda, Chiara; Roda Dos Santos, Denis; Rodriguez, Diego; Roe, Adam; Roe, Shaun; Røhne, Ole; Rojo, Victoria; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romanov, Victor; Romeo, Gaston; Romero Adam, Elena; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Anthony; Rose, Matthew; Rosenbaum, Gabriel; Rosenberg, Eli; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rosselet, Laurent; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexander; Rozen, Yoram; Ruan, Xifeng; Rubinskiy, Igor; Ruckert, Benjamin; Ruckstuhl, Nicole; Rud, Viacheslav; Rudolph, Christian; Rudolph, Gerald; Rühr, Frederik; Ruggieri, Federico; Ruiz-Martinez, Aranzazu; Rumiantsev, Viktor; Rumyantsev, Leonid; Runge, Kay; Rurikova, Zuzana; Rusakovich, Nikolai; Rust, Dave; Rutherfoord, John; Ruwiedel, Christoph; Ruzicka, Pavel; Ryabov, Yury; Ryadovikov, Vasily; Ryan, Patrick; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Rzaeva, Sevda; Saavedra, Aldo; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Samset, Björn Hallvard; Sanchez, Arturo; Sanchez Martinez, Victoria; Sandaker, Heidi; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sandvoss, Stephan; Sankey, Dave; Sansoni, Andrea; Santamarina Rios, Cibran; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Saraiva, João; Sarangi, Tapas; Sarkisyan-Grinbaum, Edward; Sarri, Francesca; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Takashi; Sasao, Noboru; Satsounkevitch, Igor; Sauvage, Gilles; Sauvan, Emmanuel; Sauvan, Jean-Baptiste; Savard, Pierre; Savinov, Vladimir; Savu, Dan Octavian; Sawyer, Lee; Saxon, David; Says, Louis-Pierre; Sbarra, Carla; Sbrizzi, Antonio; Scallon, Olivia; Scannicchio, Diana; Scarcella, Mark; Schaarschmidt, Jana; Schacht, Peter; Schäfer, Uli; Schaepe, Steffen; Schaetzel, Sebastian; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R. Dean; Schamov, Andrey; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schioppa, Marco; Schlenker, Stefan; Schlereth, James; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitz, Martin; Schöning, André; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schram, Malachi; Schroeder, Christian; Schroer, Nicolai; Schuh, Silvia; Schuler, Georges; Schultens, Martin Johannes; Schultes, Joachim; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Jan; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwemling, Philippe; Schwienhorst, Reinhard; Schwierz, Rainer; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Scott, Bill; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Segura, Ester; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellden, Bjoern; Sellers, Graham; Seman, Michal; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Seuster, Rolf; Severini, Horst; Sevior, Martin; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaver, Leif; Shaw, Kate; Sherman, Daniel; Sherwood, Peter; Shibata, Akira; Shichi, Hideharu; Shimizu, Shima; Shimojima, Makoto; Shin, Taeksu; Shiyakova, Maria; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Sicho, Petr; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silbert, Ohad; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simmons, Brinick; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinnari, Louise Anastasia; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Skvorodnev, Nikolai; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Sloper, John erik; Smakhtin, Vladimir; Smart, Ben; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Ben Campbell; Smith, Douglas; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snow, Steve; Snow, Joel; Snuverink, Jochem; Snyder, Scott; Soares, Mara; Sobie, Randall; Sodomka, Jaromir; Soffer, Abner; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Soni, Nitesh; Sopko, Vit; Sopko, Bruno; Sosebee, Mark; Soualah, Rachik; Soukharev, Andrey; Spagnolo, Stefania; Spanò, Francesco; Spighi, Roberto; Spigo, Giancarlo; Spila, Federico; Spiwoks, Ralf; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staude, Arnold; Stavina, Pavel; Stavropoulos, Georgios; Steele, Genevieve; Steinbach, Peter; Steinberg, Peter; Stekl, Ivan; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stevenson, Kyle; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoerig, Kathrin; Stoicea, Gabriel; Stonjek, Stefan; Strachota, Pavel; Stradling, Alden; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strang, Michael; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Strong, John; Stroynowski, Ryszard; Strube, Jan; Stugu, Bjarne; Stumer, Iuliu; Stupak, John; Sturm, Philipp; Styles, Nicholas Adam; Soh, Dart-yin; Su, Dong; Subramania, Halasya Siva; Succurro, Antonella; Sugaya, Yorihito; Sugimoto, Takuya; Suhr, Chad; Suita, Koichi; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Sushkov, Serge; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Suzuki, Yuta; Svatos, Michal; Sviridov, Yuri; Swedish, Stephen; Sykora, Ivan; Sykora, Tomas; Szeless, Balazs; Sánchez, Javier; Ta, Duc; Tackmann, Kerstin; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tamsett, Matthew; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanaka, Yoshito; Tanasijczuk, Andres Jorge; Tani, Kazutoshi; Tannoury, Nancy; Tappern, Geoffrey; Tapprogge, Stefan; Tardif, Dominique; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tassi, Enrico; Tatarkhanov, Mous; Tayalati, Yahya; Taylor, Christopher; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teinturier, Marthe; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Terada, Susumu; Terashi, Koji; Terron, Juan; Testa, Marianna; Teuscher, Richard; Thadome, Jocelyn; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thioye, Moustapha; Thoma, Sascha; Thomas, Juergen; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tic, Tomáš; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tipton, Paul; Tique Aires Viegas, Florbela De Jes; Tisserant, Sylvain; Tobias, Jürgen; Toczek, Barbara; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokunaga, Kaoru; Tokushuku, Katsuo; Tollefson, Kirsten; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tong, Guoliang; Tonoyan, Arshak; Topfel, Cyril; Topilin, Nikolai; Torchiani, Ingo; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alesandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Trinh, Thi Nguyet; Tripiana, Martin; Trischuk, William; Trivedi, Arjun; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiakiris, Menelaos; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsung, Jieh-Wen; Tsuno, Soshi; Tsybychev, Dmitri; Tua, Alan; Tudorache, Alexandra; Tudorache, Valentina; Tuggle, Joseph; Turala, Michal; Turecek, Daniel; Turk Cakir, Ilkay; Turlay, Emmanuel; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Tzanakos, George; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ugland, Maren; Uhlenbrock, Mathias; Uhrmacher, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Underwood, David; Undrus, Alexander; Unel, Gokhan; Unno, Yoshinobu; Urbaniec, Dustin; Usai, Giulio; Uslenghi, Massimiliano; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Vahsen, Sven; Valenta, Jan; Valente, Paolo; Valentinetti, Sara; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; van der Graaf, Harry; van der Kraaij, Erik; Van Der Leeuw, Robin; van der Poel, Egge; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; van Kesteren, Zdenko; van Vulpen, Ivo; Vanadia, Marco; Vandelli, Wainer; Vandoni, Giovanna; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Varela Rodriguez, Fernando; Vari, Riccardo; Varnes, Erich; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vassilakopoulos, Vassilios; Vazeille, Francois; Vegni, Guido; Veillet, Jean-Jacques; Vellidis, Constantine; Veloso, Filipe; Veness, Raymond; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinek, Elisabeth; Vinogradov, Vladimir; Virchaux, Marc; Virzi, Joseph; Vitells, Ofer; Viti, Michele; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vlasov, Nikolai; Vogel, Adrian; Vokac, Petr; Volpi, Guido; Volpi, Matteo; Volpini, Giovanni; von der Schmitt, Hans; von Loeben, Joerg; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobiev, Alexander; Vorwerk, Volker; Vos, Marcel; Voss, Rudiger; Voss, Thorsten Tobias; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Wagner, Wolfgang; Wagner, Peter; Wahlen, Helmut; Wakabayashi, Jun; Walbersloh, Jorg; Walch, Shannon; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Wang, Chiho; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Joshua C; Wang, Rui; Wang, Song-Ming; Warburton, Andreas; Ward, Patricia; Warsinsky, Markus; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Anthony; Waugh, Ben; Weber, Marc; Weber, Michele; Weber, Pavel; Weidberg, Anthony; Weigell, Philipp; Weingarten, Jens; Weiser, Christian; Wellenstein, Hermann; Wells, Phillippa; Wen, Mei; Wenaus, Torre; Wendland, Dennis; Wendler, Shanti; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Werth, Michael; Wessels, Martin; Weydert, Carole; Whalen, Kathleen; Wheeler-Ellis, Sarah Jane; Whitaker, Scott; White, Andrew; White, Martin; Whitehead, Samuel Robert; Whiteson, Daniel; Whittington, Denver; Wicek, Francois; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilhelm, Ivan; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Eric; Williams, Hugh; Willis, William; Willocq, Stephane; Wilson, John; Wilson, Michael Galante; Wilson, Alan; Wingerter-Seez, Isabelle; Winkelmann, Stefan; Winklmeier, Frank; Wittgen, Matthias; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wong, Wei-Cheng; Wooden, Gemma; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wraight, Kenneth; Wright, Catherine; Wright, Michael; Wrona, Bozydar; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wunstorf, Renate; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xie, Song; Xie, Yigang; Xu, Chao; Xu, Da; Xu, Guofa; Yabsley, Bruce; Yacoob, Sahal; Yamada, Miho; Yamaguchi, Hiroshi; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamaoka, Jared; Yamazaki, Takayuki; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Un-Ki; Yang, Yi; Yang, Yi; Yang, Zhaoyu; Yanush, Serguei; Yao, Yushu; Yasu, Yoshiji; Ybeles Smit, Gabriel Valentijn; Ye, Jingbo; Ye, Shuwei; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Riktura; Young, Charles; Youssef, Saul; Yu, Dantong; Yu, Jaehoon; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Zabinski, Bartlomiej; Zaets, Vassilli; Zaidan, Remi; Zaitsev, Alexander; Zajacova, Zuzana; Zanello, Lucia; Zarzhitsky, Pavel; Zaytsev, Alexander; Zeitnitz, Christian; Zeller, Michael; Zeman, Martin; Zemla, Andrzej; Zendler, Carolin; Zenin, Oleg; Ženiš, Tibor; Zenonos, Zenonas; Zenz, Seth; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhan, Zhichao; Zhang, Dongliang; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Long; Zhao, Tianchi; Zhao, Zhengguo; Zhemchugov, Alexey; Zheng, Shuchen; Zhong, Jiahang; Zhou, Bing; Zhou, Ning; Zhou, Yue; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhuravlov, Vadym; Zieminska, Daria; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Ziolkowski, Michael; Zitoun, Robert; Živković, Lidija; Zmouchko, Viatcheslav; Zobernig, Georg; Zoccoli, Antonio; Zolnierowski, Yves; Zsenei, Andras; zur Nedden, Martin; Zutshi, Vishnu; Zwalinski, Lukasz
2013-03-02
The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of $\\sqrt{s}$ = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3% for the final calorimeter jet energy scale.
Uncertainty analysis using Monte Carlo method in the measurement of phase by ESPI
International Nuclear Information System (INIS)
Anguiano Morales, Marcelino; Martinez, Amalia; Rayas, J. A.; Cordero, Raul R.
2008-01-01
A method for simultaneously measuring whole field in-plane displacements by using optical fiber and based on the dual-beam illumination principle electronic speckle pattern interferometry (ESPI) is presented in this paper. A set of single mode optical fibers and beamsplitter are employed to split the laser beam into four beams of equal intensity.One pair of fibers is utilized to illuminate the sample in the horizontal plane so it is sensitive only to horizontal in-plane displacement. Another pair of optical fibers is set to be sensitive only to vertical in-plane displacement. Each pair of optical fibers differs in longitude to avoid unwanted interference. By means of a Fourier-transform method of fringe-pattern analysis (Takeda method), we can obtain the quantitative data of whole field displacements. We found the uncertainty associated with the phases by mean of Monte Carlo-based technique
Evaluation of the uncertainty associated with sample holders in NAA measurements in LAN/IPEN
Energy Technology Data Exchange (ETDEWEB)
Zahn, Guilherme S.; Ticianelli, Regina B.; Saiki, Mitiko; Genezini, Frederico A., E-mail: ticianelli@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)
2017-07-01
In IPEN's Neutron Activation Laboratory (LAN/IPEN), thin stainless steel sample holders are used for gamma spectrometry in NAA measurements. This material is very practical, but its chemical composition may be troublesome, as it presents large amounts of elements with intermediate atomic number, with attenuation factors for low-energy gamma-rays that must not be neglected. In this study, count rates obtained using different sample holders were compared. To accomplish that, an Am-241 source, with 59-keV gamma emission, was used so that low-energy gamma attenuation differences can be determined. Moreover, in order to study the energy dependence of these differences, a Ho-166m source was also used. From these results, it was possible to analyze the experimental error associated to the variations between sample holders, with the aim of introducing an addictive term to the uncertainty analysis of comparative Neutron Activation Analysis results. (author)
International Nuclear Information System (INIS)
Chernyavs'ka, Liliya; Gulli, Francesco
2010-01-01
In this paper, we attempt to measure the environmental benefits of hydrogen deployment in the transportation sector. We compare the hydrogen pathways to the conventional transportation fuel cycles in terms of external costs, estimated using the results of the most accurate methodologies available in this field. The central values of performed analysis bring us ambiguous results. The external cost of the best conventional solution ('oil to diesel hybrid internal-combustion engine') in some cases is just higher and in others just lower than that of the best fossil fuel to hydrogen solution ('natural gas to hydrogen fuel cell'). Nevertheless, by accounting for the uncertainty about external costs, we are able to remove this ambiguity highlighting that the hydrogen pathway provides significant environmental benefits ,especially in densely populated areas, assuming 100% city driving.
Uncertainty calculations for the measurement of in vivo bone lead by x-ray fluorescence
International Nuclear Information System (INIS)
O'Meara, J M; Fleming, D E B
2009-01-01
In order to quantify the bone lead concentration from an in vivo x-ray fluorescence measurement, typically two estimates of the lead concentration are determined by comparing the normalized x-ray peak amplitudes from the Kα 1 and Kβ 1 features to those of the calibration phantoms. In each case, the normalization consists of taking the ratio of the x-ray peak amplitude to the amplitude of the coherently scattered photon peak in the spectrum. These two Pb concentration estimates are then used to determine the weighted mean lead concentration of that sample. In calculating the uncertainties of these measurements, it is important to include any covariance terms where appropriate. When determining the uncertainty of the lead concentrations from each x-ray peak, the standard approach does not include covariance between the x-ray peaks and the coherently scattered feature. These spectral features originate from two distinct physical processes, and therefore no covariance between these features can exist. Through experimental and simulated data, we confirm that there is no observed covariance between the detected Pb x-ray peaks and the coherently scattered photon signal, as expected. This is in direct contrast to recent work published by Brito (2006 Phys. Med. Biol. 51 6125-39). There is, however, covariance introduced in the calculation of the weighted mean lead concentration due to the common coherent normalization. This must be accounted for in calculating the uncertainty of the weighted mean lead concentration, as is currently the case. We propose here an alternative approach to calculating the weighted mean lead concentration in such a way as to eliminate the covariance introduced by the common coherent normalization. It should be emphasized that this alternative approach will only apply in situations in which the calibration line intercept is not included in the calculation of the Pb concentration from the spectral data: when the source of the intercept is well
Uncertainty Analysis for Oil-Film Interferometry Skin-Friction Measurement Techniques
Naughton, Jonathan W.; Brown, James L.; Merriam, Marshal (Technical Monitor)
1996-01-01
Over the past 20 years, the use of oil-film interferometry to measure the skin friction coefficient (C(sub f) = tau/q where tau is the surface shear stress and q is the dynamic pressure) has increased. Different forms of this oil-film technique with various levels of accuracy and ease of use have been successfully applied in a wide range of flows. The method's popularity is growing due to its relative ease of implementation and minimal intrusiveness as well as an increased demand for C(sub f) measurements. Nonetheless, the accuracy of these methods has not been rigorously addressed to date. Most researchers have simply shown that the skin-friction measurements made using these techniques compare favorably with other measurements and theory, most of which are only accurate to within 5-20%. The use of skin-friction data in the design of commercial aircraft, whose drag at cruise is 50% skin-friction drag, and in the validation of computational fluid dynamics programs warrants better uncertainty estimates. Additional information is contained in the original extended abstract.
Salkeld, Glenn P; Solomon, Michael J; Short, Leonie; Ward, Jeanette
2003-03-01
The aim of the present study was to rate the importance of attributes of screening for bowel cancer. Randomly selected households in central Sydney were contacted to identify men and women aged 50-70 years who were then asked to complete a self-administered questionnaire about bowel cancer screening and related issues. Seven hundred and ninety-one residents (362 men and 429 women) returned questionnaires. Respondents were asked to rate the extent to which each of 34 attributes would encourage them to participate in bowel cancer screening. The three most highly rated attributes were: if the test was recommended by their general practitioner (GP; 94% either 'strongly agreed' or 'agreed'); if the test identified early cancers (92%); and if the test would avert a premature death due to bowel cancer (90%). Having a friend or relative with bowel cancer (61%), advertising (41%) or famous people promoting the program (62%) were less influential. Respondents who were unemployed or on a pension were less likely to participate in screening than those who were employed if there was an 'out of pocket' charge of 15.00 Australian dollars (chi 2 = 7.56, 2df, P = 0.006). Respondents with higher levels of education were significantly more concerned than respondents with lower levels of education about test accuracy (chi 2 = 15.76, 2df, P < 0.001), its availability from their local chemist (chi 2 = 16.96, 2df, P < 0.001), being able to return the test kit by post (chi 2 = 21.9, 2df, P < 0.001) or deposit it with their local chemist (chi 2 = 10.0, 2df, P < 0.01). They were also less likely to be influenced by a famous person promoting bowel cancer screening (chi 2 = 18.87, 2df, P < 0.001). Our results endorse the role of the GP in bowel cancer screening. However, the study also has demonstrated that test accuracy, the convenience of the screening service and notification of test results are valued differently by subgroups in the community, according to their level of education.
Directory of Open Access Journals (Sweden)
Jalid Abdelilah
2016-01-01
Full Text Available In engineering industry, control of manufactured parts is usually done on a coordinate measuring machine (CMM, a sensor mounted at the end of the machine probes a set of points on the surface to be inspected. Data processing is performed subsequently using software, and the result of this measurement process either validates or not the conformity of the part. Measurement uncertainty is a crucial parameter for making the right decisions, and not taking into account this parameter can, therefore, sometimes lead to aberrant decisions. The determination of the uncertainty measurement on CMM is a complex task for the variety of influencing factors. Through this study, we aim to check if the uncertainty propagation model developed according to the guide to the expression of uncertainty in measurement (GUM approach is valid, we present here a comparison of the GUM and Monte Carlo methods. This comparison is made to estimate a flatness deviation of a surface belonging to an industrial part and the uncertainty associated to the measurement result.
Raben, Jaime S; Hariharan, Prasanna; Robinson, Ronald; Malinauskas, Richard; Vlachos, Pavlos P
2016-03-01
We present advanced particle image velocimetry (PIV) processing, post-processing, and uncertainty estimation techniques to support the validation of computational fluid dynamics analyses of medical devices. This work is an extension of a previous FDA-sponsored multi-laboratory study, which used a medical device mimicking geometry referred to as the FDA benchmark nozzle model. Experimental measurements were performed using time-resolved PIV at five overlapping regions of the model for Reynolds numbers in the nozzle throat of 500, 2000, 5000, and 8000. Images included a twofold increase in spatial resolution in comparison to the previous study. Data was processed using ensemble correlation, dynamic range enhancement, and phase correlations to increase signal-to-noise ratios and measurement accuracy, and to resolve flow regions with large velocity ranges and gradients, which is typical of many blood-contacting medical devices. Parameters relevant to device safety, including shear stress at the wall and in bulk flow, were computed using radial basis functions. In addition, in-field spatially resolved pressure distributions, Reynolds stresses, and energy dissipation rates were computed from PIV measurements. Velocity measurement uncertainty was estimated directly from the PIV correlation plane, and uncertainty analysis for wall shear stress at each measurement location was performed using a Monte Carlo model. Local velocity uncertainty varied greatly and depended largely on local conditions such as particle seeding, velocity gradients, and particle displacements. Uncertainty in low velocity regions in the sudden expansion section of the nozzle was greatly reduced by over an order of magnitude when dynamic range enhancement was applied. Wall shear stress uncertainty was dominated by uncertainty contributions from velocity estimations, which were shown to account for 90-99% of the total uncertainty. This study provides advancements in the PIV processing methodologies over
International Nuclear Information System (INIS)
Fujimoto, Ikumatsu; Nishimura, Kunitoshi; Takatuji, Toshiyuki; Pyun, Young-Sik
2011-01-01
An autonomous method for calibrating the zero difference for the three-point method of surface straightness measurement is presented and discussed with respect to the relationship between the measurement uncertainty and the size of the disk gauge used for calibration. In this method, the disk gauge is used in two steps. In the first step, the disk gauge rotates a few revolutions and moves parallel to three displacement sensors built into a holder. In the second step, the geometrical parameters between the sensors and the disk gauge are acquired, and the zero differences are computed by our recently proposed algorithm. Finally, the uncertainty of the zero differences is analyzed and simulated numerically, and the relationship between the disk gauge radius and the measurement uncertainty is calculated. The use of a disk gauge of larger radius results in smaller uncertainty of straightness measurement
The measurement and inclusion of a stochastic ore-grade uncertainty in mine valuations using PDEs
Evatt, G. W.; Johnson, P. V.; Duck, P. W.; Howell, S. D.
2010-01-01
Mining companies world-wide are faced with the problem of how to accurately value and plan extraction projects subject to uncertainty in both future price and ore grade. Whilst the methodology of modelling price uncertainty is reasonably well understood, modelling ore-grade uncertainty is a much harder problem to formulate, and when attempts have been made the solutions have taken unfeasibly long times to compute. This paper provides a new partial differential equations approach to the proble...
Measuring the Uncertainty of Probabilistic Maps Representing Human Motion for Indoor Navigation
Directory of Open Access Journals (Sweden)
Susanna Kaiser
2016-01-01
Full Text Available Indoor navigation and mapping have recently become an important field of interest for researchers because global navigation satellite systems (GNSS are very often unavailable inside buildings. FootSLAM, a SLAM (Simultaneous Localization and Mapping algorithm for pedestrians based on step measurements, addresses the indoor mapping and positioning problem and can provide accurate positioning in many structured indoor environments. In this paper, we investigate how to compare FootSLAM maps via two entropy metrics. Since collaborative FootSLAM requires the alignment and combination of several individual FootSLAM maps, we also investigate measures that help to align maps that partially overlap. We distinguish between the map entropy conditioned on the sequence of pedestrian’s poses, which is a measure of the uncertainty of the estimated map, and the entropy rate of the pedestrian’s steps conditioned on the history of poses and conditioned on the estimated map. Because FootSLAM maps are built on a hexagon grid, the entropy and relative entropy metrics are derived for the special case of hexagonal transition maps. The entropy gives us a new insight on the performance of FootSLAM’s map estimation process.
Entropic Measure of Epistemic Uncertainties in Multibody System Models by Axiomatic Design
Directory of Open Access Journals (Sweden)
Francesco Villecco
2017-06-01
Full Text Available In this paper, the use of the MaxInf Principle in real optimization problems is investigated for engineering applications, where the current design solution is actually an engineering approximation. In industrial manufacturing, multibody system simulations can be used to develop new machines and mechanisms by using virtual prototyping, where an axiomatic design can be employed to analyze the independence of elements and the complexity of connections forming a general mechanical system. In the classic theories of Fisher and Wiener-Shannon, the idea of information is a measure of only probabilistic and repetitive events. However, this idea is broader than the probability alone field. Thus, the Wiener-Shannon’s axioms can be extended to non-probabilistic events and it is possible to introduce a theory of information for non-repetitive events as a measure of the reliability of data for complex mechanical systems. To this end, one can devise engineering solutions consistent with the values of the design constraints analyzing the complexity of the relation matrix and using the idea of information in the metric space. The final solution gives the entropic measure of epistemic uncertainties which can be used in multibody system models, analyzed with an axiomatic design.
Energy Technology Data Exchange (ETDEWEB)
Dias, Fabio C., E-mail: fabio@ird.gov.b [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil); Almeida, Silvio G. de; Renha Junior, Geraldo, E-mail: silvio@abacc.org.b, E-mail: grenha@abacc.org.b [Agencia Brasileiro-Argentina de Contabilidade e Controle de Materiais Nucleares (ABACC), Rio de Janeiro, RJ (Brazil)
2011-07-01
The International Target Values (ITVs) are reasonable uncertainty estimates that can be used in judging the reliability of measurement techniques applied to industrial nuclear and fissile materials subject to accountancy and/or safeguards verification. In the absence of relevant experimental estimates, ITVs can also be used to select measurement techniques and calculate sample population during the planning phase of verification activities. It is important to note that ITVs represent estimates of the 'state-of-the-practice', which should be achievable under routine measurement conditions affecting both facility operators and safeguards inspectors, not only in the field, but also in laboratory. Tabulated values cover measurement methods used for the determination of volume or mass of the nuclear material, for its elemental and isotopic assays, and for its sampling. The 2010 edition represents the sixth revision of the International Target Values (ITVs), issued by the International Atomic Energy Agency (IAEA) as a Safeguards Technical Report (STR-368). The first version was released as 'Target Values' in 1979 by the Working Group on Techniques and Standards for Destructive Analysis (WGDA) of the European Safeguards Research and Development Association (ESARDA) and focused on destructive analytical methods. In the latest 2010 revision, international standards in estimating and expressing uncertainties have been considered while maintaining a format that allows comparison with the previous editions of the ITVs. Those standards have been usually applied in QC/QA programmes, as well as qualification of methods, techniques and instruments. Representatives of the Brazilian Nuclear Energy Commission (CNEN) and the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC) participated in previous Consultants Group Meetings since the one convened to establish the first list of ITVs released in 1993 and in subsequent revisions
International Nuclear Information System (INIS)
Towers, S.
2013-01-01
Many experiments designed to precisely determine the half-life of a radionuclide employ a long lived reference source to help determine the impact on the data of any systematic variation in the detector and associated electronics. The half-life of the radionuclide of interest is determined from the ratio of its decay rate data to the decay rate data from the reference source. This correction procedure assumes that any underlying systematic affects the data and reference measurements in exactly the same way. In this paper we show that when some systematic effects affect the two differently, the ratio procedure can leave artifacts in the corrected data that can compromise an unbiased and precise assessment of the radionuclide half-life. We describe two methods that can help overcome this problem. We also describe several statistical tests that help determine which effects may underlie systematic variations in the data. We discuss an illustrative example based on previously published 32 Si and 36 Cl data recorded by an experiment at Brookhaven National Laboratory. We correct the data for systematic variation related to climate variation and estimate the 32 Si half-life to be T 1/2 =171.8±1.8. The reduction in uncertainty in the 32 Si half-life, relative to the previous estimate based upon this data, is equivalent to that which would be achieved through increasing the size of the data set by almost 3.5 times. - Author-Highlights: • Isotope decay data and reference source data can have differing systematics. • Differing systematics can inflate uncertainty of isotope half-life estimate. • We describe two methods to overcome this problem. • We describe statistical tests to determine which variables cause systematics. • We analyze Brookhaven 32Si/36Cl decay data as an illustrative example
Energy Technology Data Exchange (ETDEWEB)
Herranz, M., E-mail: m.herranz@ehu.es [Department of Nuclear Engineering and Fluid Mechanics, University of the Basque Country (UPV/EHU), Alameda de Urquijo s/n 48013 Bilbao (Spain); Idoeta, R.; Legarda, F. [Department of Nuclear Engineering and Fluid Mechanics, University of the Basque Country (UPV/EHU), Alameda de Urquijo s/n 48013 Bilbao (Spain)
2011-08-15
The determination process of the {sup 90}Sr and {sup 89}Sr contents in a sample, although it involves their radiochemical isolation, results always in a complex measurement process due to the interferences among their respective beta emissions and also among those of the daughter of {sup 90}Sr, {sup 90}Y, a beta emitter as well. In this paper, the process consisting in a double measurement method after the Sr radiochemical isolation is analyzed, developing the formulae to obtain activity concentrations, uncertainties and detection limits. A study of the trend of uncertainties and detection limits as function of the time in which the first measurement since the isolation is done, the delay between the two measurements and the activity concentration of each strontium isotope in the sample is carried out as well. Results show that with a very precise determination of the times involved in the whole process (isolation, measurement and duration of measurements) this method permits a reliable assessment of both strontium radioisotopes. The quicker the first measurement since the isolation is done and the longer the delay between measurements is chosen, the lower are the detection limits and the uncertainties of the activities obtained. - Highlights: > The double measurement method for {sup 90}Sr and {sup 89}Sr determination is analysed. > Uncertainties and detection limits are determined and their dependences studied. > Proposals for the optimization of the method are given.
Hudoklin, D.; Šetina, J.; Drnovšek, J.
2012-09-01
The measurement of the water-vapor permeation rate (WVPR) through materials is very important in many industrial applications such as the development of new fabrics and construction materials, in the semiconductor industry, packaging, vacuum techniques, etc. The demand for this kind of measurement grows considerably and thus many different methods for measuring the WVPR are developed and standardized within numerous national and international standards. However, comparison of existing methods shows a low level of mutual agreement. The objective of this paper is to demonstrate the necessary uncertainty evaluation for WVPR measurements, so as to provide a basis for development of a corresponding reference measurement standard. This paper presents a specially developed measurement setup, which employs a precision dew-point sensor for WVPR measurements on specimens of different shapes. The paper also presents a physical model, which tries to account for both dynamic and quasi-static methods, the common types of WVPR measurements referred to in standards and scientific publications. An uncertainty evaluation carried out according to the ISO/IEC guide to the expression of uncertainty in measurement (GUM) shows the relative expanded ( k = 2) uncertainty to be 3.0 % for WVPR of 6.71 mg . h-1 (corresponding to permeance of 30.4 mg . m-2. day-1 . hPa-1).
Seggelen, van J.K.
2007-01-01
To measure dimensions and shape of complex three dimensional products (e.g. engines, mouldings, etc) with low uncertainty, Coordinate Measuring Machines (CMMs) are adequate instruments due to their universal applicability, easy measurement set-up and measuring flexibility. Motion software is
Directory of Open Access Journals (Sweden)
Harry Budiman
2010-06-01
Full Text Available The evaluation of uncertainty measurement in the determination of Fe content in powdered tonic food drink using graphite furnace atomic absorption spectrometry was carried out. The specification of measurand, source of uncertainty, standard uncertainty, combined uncertainty and expanded uncertainty from this measurement were evaluated and accounted. The measurement result showed that the Fe content in powdered tonic food drink sample was 569.32 µg/5g, with the expanded uncertainty measurement ± 178.20 µg/5g (coverage factor, k = 2, at confidende level 95%. The calibration curve gave the major contribution to the uncertainty of the final results. Keywords: uncertainty, powdered tonic food drink, iron (Fe, graphite furnace AAS
Goetz, Katja; Hasse, Philipp; Szecsenyi, Joachim; Campbell, Stephen M
2016-04-01
The consideration of organisational aspects, such as shared goals and clear communication, within the health care team is important to ensure good quality care. In primary health care, the instrument Survey of Organizational Attributes for Primary Care (SOAPC) is available to measure organisational attributes of care. However, there is no instrument available for dental care. The aim of the present study was to investigate psychometric properties and test-retest reliability of the version of SOAPC adapted for dental care, namely the Survey of Organizational Attributes in Dental Care (SOADC). The SOADC consists of 21 items in the following four subscales: communication; decision making; stress/chaos; and history of change. Convergent construct validity was measured using the job satisfaction scale. A total of 287 dental-care practices were asked to participate in the validation study. Psychometric properties and test-retest reliability were observed. A total of 43 dental-care practices responded to the survey. At baseline, 178 dental-care staff completed the questionnaire, and 4 weeks later 138 did so. Internal consistency, measured by Cronbach's alpha, was 0.718 or higher in the subscales. The test-retest reliability for each subscale and the overall SOADC score demonstrated good correlations over the 4-week test-retest interval, except for 'history of change'. A strong correlation with the aggregated job-satisfaction scale showed high convergent construct validity of SOADC. The consideration of organisational aspects from the perspective of dental-care teams is important for providing good quality of care. The SOADC is a reliable instrument with good psychometric properties and is suitable for the evaluation of organisational attributes in dental-care practices