WorldWideScience

Sample records for attractor network models

  1. Approximating Attractors of Boolean Networks by Iterative CTL Model Checking.

    Science.gov (United States)

    Klarner, Hannes; Siebert, Heike

    2015-01-01

    This paper introduces the notion of approximating asynchronous attractors of Boolean networks by minimal trap spaces. We define three criteria for determining the quality of an approximation: "faithfulness" which requires that the oscillating variables of all attractors in a trap space correspond to their dimensions, "univocality" which requires that there is a unique attractor in each trap space, and "completeness" which requires that there are no attractors outside of a given set of trap spaces. Each is a reachability property for which we give equivalent model checking queries. Whereas faithfulness and univocality can be decided by model checking the corresponding subnetworks, the naive query for completeness must be evaluated on the full state space. Our main result is an alternative approach which is based on the iterative refinement of an initially poor approximation. The algorithm detects so-called autonomous sets in the interaction graph, variables that contain all their regulators, and considers their intersection and extension in order to perform model checking on the smallest possible state spaces. A benchmark, in which we apply the algorithm to 18 published Boolean networks, is given. In each case, the minimal trap spaces are faithful, univocal, and complete, which suggests that they are in general good approximations for the asymptotics of Boolean networks.

  2. An efficient algorithm for computing fixed length attractors based on bounded model checking in synchronous Boolean networks with biochemical applications.

    Science.gov (United States)

    Li, X Y; Yang, G W; Zheng, D S; Guo, W S; Hung, W N N

    2015-01-01

    Genetic regulatory networks are the key to understanding biochemical systems. One condition of the genetic regulatory network under different living environments can be modeled as a synchronous Boolean network. The attractors of these Boolean networks will help biologists to identify determinant and stable factors. Existing methods identify attractors based on a random initial state or the entire state simultaneously. They cannot identify the fixed length attractors directly. The complexity of including time increases exponentially with respect to the attractor number and length of attractors. This study used the bounded model checking to quickly locate fixed length attractors. Based on the SAT solver, we propose a new algorithm for efficiently computing the fixed length attractors, which is more suitable for large Boolean networks and numerous attractors' networks. After comparison using the tool BooleNet, empirical experiments involving biochemical systems demonstrated the feasibility and efficiency of our approach.

  3. Attractor for a Reaction-Diffusion System Modeling Cancer Network

    Directory of Open Access Journals (Sweden)

    Xueyong Chen

    2014-01-01

    Full Text Available A reaction-diffusion cancer network regulated by microRNA is considered in this paper. We study the asymptotic behavior of solution and show the existence of global uniformly bounded solution to the system in a bounded domain Ω⊂Rn. Some estimates and asymptotic compactness of the solutions are proved. As a result, we establish the existence of the global attractor in L2(Ω×L2(Ω and prove that the solution converges to stable steady states. These results can help to understand the dynamical character of cancer network and propose a new insight to study the mechanism of cancer. In the end, the numerical simulation shows that the analytical results agree with numerical simulation.

  4. Attractor dynamics in local neuronal networks

    Directory of Open Access Journals (Sweden)

    Jean-Philippe eThivierge

    2014-03-01

    Full Text Available Patterns of synaptic connectivity in various regions of the brain are characterized by the presence of synaptic motifs, defined as unidirectional and bidirectional synaptic contacts that follow a particular configuration and link together small groups of neurons. Recent computational work proposes that a relay network (two populations communicating via a third, relay population of neurons can generate precise patterns of neural synchronization. Here, we employ two distinct models of neuronal dynamics and show that simulated neural circuits designed in this way are caught in a global attractor of activity that prevents neurons from modulating their response on the basis of incoming stimuli. To circumvent the emergence of a fixed global attractor, we propose a mechanism of selective gain inhibition that promotes flexible responses to external stimuli. We suggest that local neuronal circuits may employ this mechanism to generate precise patterns of neural synchronization whose transient nature delimits the occurrence of a brief stimulus.

  5. Crosstalk and transitions between multiple spatial maps in an attractor neural network model of the hippocampus: Phase diagram

    Science.gov (United States)

    Monasson, R.; Rosay, S.

    2013-06-01

    We study the stable phases of an attractor neural network model, with binary units, for hippocampal place cells encoding one-dimensional (1D) or 2D spatial maps or environments. Different maps correspond to random allocations (permutations) of the place fields. Based on replica calculations we show that, below critical levels for the noise in the neural response and for the number of environments, the network activity is spatially localized in one environment. For high noise and loads the network activity extends over space, either uniformly or with spatial heterogeneities due to the crosstalk between the maps, and memory of environments is lost. Remarkably the spatially localized regime is very robust against the neural noise until it reaches its critical level. Numerical simulations are in excellent quantitative agreement with our theoretical predictions.

  6. An efficient approach of attractor calculation for large-scale Boolean gene regulatory networks.

    Science.gov (United States)

    He, Qinbin; Xia, Zhile; Lin, Bin

    2016-11-01

    Boolean network models provide an efficient way for studying gene regulatory networks. The main dynamics of a Boolean network is determined by its attractors. Attractor calculation plays a key role for analyzing Boolean gene regulatory networks. An approach of attractor calculation was proposed in this study, which improved the predecessor-based approach. Furthermore, the proposed approach combined with the identification of constant nodes and simplified Boolean networks to accelerate attractor calculation. The proposed algorithm is effective to calculate all attractors for large-scale Boolean gene regulatory networks. If the average degree of the network is not too large, the algorithm can get all attractors of a Boolean network with dozens or even hundreds of nodes.

  7. Continuous attractors of Lotka-Volterra recurrent neural networks with infinite neurons.

    Science.gov (United States)

    Yu, Jiali; Yi, Zhang; Zhou, Jiliu

    2010-10-01

    Continuous attractors of Lotka-Volterra recurrent neural networks (LV RNNs) with infinite neurons are studied in this brief. A continuous attractor is a collection of connected equilibria, and it has been recognized as a suitable model for describing the encoding of continuous stimuli in neural networks. The existence of the continuous attractors depends on many factors such as the connectivity and the external inputs of the network. A continuous attractor can be stable or unstable. It is shown in this brief that a LV RNN can possess multiple continuous attractors if the synaptic connections and the external inputs are Gussian-like in shape. Moreover, both stable and unstable continuous attractors can coexist in a network. Explicit expressions of the continuous attractors are calculated. Simulations are employed to illustrate the theory.

  8. Terminal attractors for addressable memory in neural networks

    Science.gov (United States)

    Zak, Michail

    1988-01-01

    A new type of attractors - terminal attractors - for an addressable memory in neural networks operating in continuous time is introduced. These attractors represent singular solutions of the dynamical system. They intersect (or envelope) the families of regular solutions while each regular solution approaches the terminal attractor in a finite time period. It is shown that terminal attractors can be incorporated into neural networks such that any desired set of these attractors with prescribed basins is provided by an appropriate selection of the weight matrix.

  9. Cortical attractor network dynamics with diluted connectivity.

    Science.gov (United States)

    Rolls, Edmund T; Webb, Tristan J

    2012-01-24

    The connectivity of the cerebral cortex is diluted, with the probability of excitatory connections between even nearby pyramidal cells rarely more than 0.1, and in the hippocampus 0.04. To investigate the extent to which this diluted connectivity affects the dynamics of attractor networks in the cerebral cortex, we simulated an integrate-and-fire attractor network taking decisions between competing inputs with diluted connectivity of 0.25 or 0.1, and with the same number of synaptic connections per neuron for the recurrent collateral synapses within an attractor population as for full connectivity. The results indicated that there was less spiking-related noise with the diluted connectivity in that the stability of the network when in the spontaneous state of firing increased, and the accuracy of the correct decisions increased. The decision times were a little slower with diluted than with complete connectivity. Given that the capacity of the network is set by the number of recurrent collateral synaptic connections per neuron, on which there is a biological limit, the findings indicate that the stability of cortical networks, and the accuracy of their correct decisions or memory recall operations, can be increased by utilizing diluted connectivity and correspondingly increasing the number of neurons in the network, with little impact on the speed of processing of the cortex. Thus diluted connectivity can decrease cortical spiking-related noise. In addition, we show that the Fano factor for the trial-to-trial variability of the neuronal firing decreases from the spontaneous firing state value when the attractor network makes a decision. This article is part of a Special Issue entitled "Neural Coding". PMID:21875702

  10. ILP/SMT-Based Method for Design of Boolean Networks Based on Singleton Attractors.

    Science.gov (United States)

    Kobayashi, Koichi; Hiraishi, Kunihiko

    2014-01-01

    Attractors in gene regulatory networks represent cell types or states of cells. In system biology and synthetic biology, it is important to generate gene regulatory networks with desired attractors. In this paper, we focus on a singleton attractor, which is also called a fixed point. Using a Boolean network (BN) model, we consider the problem of finding Boolean functions such that the system has desired singleton attractors and has no undesired singleton attractors. To solve this problem, we propose a matrix-based representation of BNs. Using this representation, the problem of finding Boolean functions can be rewritten as an Integer Linear Programming (ILP) problem and a Satisfiability Modulo Theories (SMT) problem. Furthermore, the effectiveness of the proposed method is shown by a numerical example on a WNT5A network, which is related to melanoma. The proposed method provides us a basic method for design of gene regulatory networks.

  11. Reconstruction of the El Nino attractor with neural networks

    International Nuclear Information System (INIS)

    Based on a combined data set of sea surface temperature, zonal surface wind stress and upper ocean heat content the dynamics of the El Nino phenomenon is investigated. In a reduced phase space spanned by the first four EOFs two different stochastic models are estimated from the data. A nonlinear model represented by a simulated neural network is compared with a linear model obtained with the Principal Oscillation Pattern (POP) analysis. While the linear model is limited to damped oscillations onto a fix point attractor, the nonlinear model recovers a limit cycle attractor. This indicates that the real system is located above the bifurcation point in parameter space supporting self-sustained oscillations. The results are discussed with respect to consistency with current theory. (orig.)

  12. Reactivation in working memory: an attractor network model of free recall.

    Directory of Open Access Journals (Sweden)

    Anders Lansner

    Full Text Available The dynamic nature of human working memory, the general-purpose system for processing continuous input, while keeping no longer externally available information active in the background, is well captured in immediate free recall of supraspan word-lists. Free recall tasks produce several benchmark memory phenomena, like the U-shaped serial position curve, reflecting enhanced memory for early and late list items. To account for empirical data, including primacy and recency as well as contiguity effects, we propose here a neurobiologically based neural network model that unifies short- and long-term forms of memory and challenges both the standard view of working memory as persistent activity and dual-store accounts of free recall. Rapidly expressed and volatile synaptic plasticity, modulated intrinsic excitability, and spike-frequency adaptation are suggested as key cellular mechanisms underlying working memory encoding, reactivation and recall. Recent findings on the synaptic and molecular mechanisms behind early LTP and on spiking activity during delayed-match-to-sample tasks support this view.

  13. Strong Attractors in Stochastic Adaptive Networks: Emergence and Characterization

    CERN Document Server

    Santos, Augusto Almeida; Krishnan, Ramayya; Moura, José M F

    2016-01-01

    We propose a family of models to study the evolution of ties in a network of interacting agents by reinforcement and penalization of their connections according to certain local laws of interaction. The family of stochastic dynamical systems, on the edges of a graph, exhibits \\emph{good} convergence properties, in particular, we prove a strong-stability result: a subset of binary matrices or graphs -- characterized by certain compatibility properties -- is a global almost sure attractor of the family of stochastic dynamical systems. To illustrate finer properties of the corresponding strong attractor, we present some simulation results that capture, e.g., the conspicuous phenomenon of emergence and downfall of leaders in social networks.

  14. An in silico target identification using Boolean network attractors: Avoiding pathological phenotypes.

    Science.gov (United States)

    Poret, Arnaud; Boissel, Jean-Pierre

    2014-12-01

    Target identification aims at identifying biomolecules whose function should be therapeutically altered to cure the considered pathology. An algorithm for in silico target identification using Boolean network attractors is proposed. It assumes that attractors correspond to phenotypes produced by the modeled biological network. It identifies target combinations which allow disturbed networks to avoid attractors associated with pathological phenotypes. The algorithm is tested on a Boolean model of the mammalian cell cycle and its applications are illustrated on a Boolean model of Fanconi anemia. Results show that the algorithm returns target combinations able to remove attractors associated with pathological phenotypes and then succeeds in performing the proposed in silico target identification. However, as with any in silico evidence, there is a bridge to cross between theory and practice. Nevertheless, it is expected that the algorithm is of interest for target identification.

  15. Spike frequency adaptation is a possible mechanism for control of attractor preference in auto-associative neural networks

    Science.gov (United States)

    Roach, James; Sander, Leonard; Zochowski, Michal

    Auto-associative memory is the ability to retrieve a pattern from a small fraction of the pattern and is an important function of neural networks. Within this context, memories that are stored within the synaptic strengths of networks act as dynamical attractors for network firing patterns. In networks with many encoded memories, some attractors will be stronger than others. This presents the problem of how networks switch between attractors depending on the situation. We suggest that regulation of neuronal spike-frequency adaptation (SFA) provides a universal mechanism for network-wide attractor selectivity. Here we demonstrate in a Hopfield type attractor network that neurons minimal SFA will reliably activate in the pattern corresponding to a local attractor and that a moderate increase in SFA leads to the network to converge to the strongest attractor state. Furthermore, we show that on long time scales SFA allows for temporal sequences of activation to emerge. Finally, using a model of cholinergic modulation within the cortex we argue that dynamic regulation of attractor preference by SFA could be critical for the role of acetylcholine in attention or for arousal states in general. This work was supported by: NSF Graduate Research Fellowship Program under Grant No. DGE 1256260 (JPR), NSF CMMI 1029388 (MRZ) and NSF PoLS 1058034 (MRZ & LMS).

  16. Spreading Activation in an Attractor Network with Latching Dynamics: Automatic Semantic Priming Revisited

    Science.gov (United States)

    Lerner, Itamar; Bentin, Shlomo; Shriki, Oren

    2012-01-01

    Localist models of spreading activation (SA) and models assuming distributed representations offer very different takes on semantic priming, a widely investigated paradigm in word recognition and semantic memory research. In this study, we implemented SA in an attractor neural network model with distributed representations and created a unified…

  17. Analytical estimates of efficiency of attractor neural networks with inborn connections

    Directory of Open Access Journals (Sweden)

    Solovyeva Ksenia

    2016-01-01

    Full Text Available The analysis is restricted to the features of neural networks endowed to the latter by the inborn (not learned connections. We study attractor neural networks in which for almost all operation time the activity resides in close vicinity of a relatively small number of attractor states. The number of the latter, M, is proportional to the number of neurons in the neural network, N, while the total number of the states in it is 2N. The unified procedure of growth/fabrication of neural networks with sets of all attractor states with dimensionality d=0 and d=1, based on model molecular markers, is studied in detail. The specificity of the networks (d=0 or d=1 depends on topology (i.e., the set of distances between elements which can be provided to the set of molecular markers by their physical nature. The neural networks parameters estimates and trade-offs for them in attractor neural networks are calculated analytically. The proposed mechanisms reveal simple and efficient ways of implementation in artificial as well as in natural neural networks of multiplexity, i.e. of using activity of single neurons in representation of multiple values of the variables, which are operated by the neural systems. It is discussed how the neuronal multiplexity provides efficient and reliable ways of performing functional operations in the neural systems.

  18. A parallel attractor-finding algorithm based on Boolean satisfiability for genetic regulatory networks.

    Science.gov (United States)

    Guo, Wensheng; Yang, Guowu; Wu, Wei; He, Lei; Sun, Mingyu

    2014-01-01

    In biological systems, the dynamic analysis method has gained increasing attention in the past decade. The Boolean network is the most common model of a genetic regulatory network. The interactions of activation and inhibition in the genetic regulatory network are modeled as a set of functions of the Boolean network, while the state transitions in the Boolean network reflect the dynamic property of a genetic regulatory network. A difficult problem for state transition analysis is the finding of attractors. In this paper, we modeled the genetic regulatory network as a Boolean network and proposed a solving algorithm to tackle the attractor finding problem. In the proposed algorithm, we partitioned the Boolean network into several blocks consisting of the strongly connected components according to their gradients, and defined the connection between blocks as decision node. Based on the solutions calculated on the decision nodes and using a satisfiability solving algorithm, we identified the attractors in the state transition graph of each block. The proposed algorithm is benchmarked on a variety of genetic regulatory networks. Compared with existing algorithms, it achieved similar performance on small test cases, and outperformed it on larger and more complex ones, which happens to be the trend of the modern genetic regulatory network. Furthermore, while the existing satisfiability-based algorithms cannot be parallelized due to their inherent algorithm design, the proposed algorithm exhibits a good scalability on parallel computing architectures.

  19. A parallel attractor-finding algorithm based on Boolean satisfiability for genetic regulatory networks.

    Directory of Open Access Journals (Sweden)

    Wensheng Guo

    Full Text Available In biological systems, the dynamic analysis method has gained increasing attention in the past decade. The Boolean network is the most common model of a genetic regulatory network. The interactions of activation and inhibition in the genetic regulatory network are modeled as a set of functions of the Boolean network, while the state transitions in the Boolean network reflect the dynamic property of a genetic regulatory network. A difficult problem for state transition analysis is the finding of attractors. In this paper, we modeled the genetic regulatory network as a Boolean network and proposed a solving algorithm to tackle the attractor finding problem. In the proposed algorithm, we partitioned the Boolean network into several blocks consisting of the strongly connected components according to their gradients, and defined the connection between blocks as decision node. Based on the solutions calculated on the decision nodes and using a satisfiability solving algorithm, we identified the attractors in the state transition graph of each block. The proposed algorithm is benchmarked on a variety of genetic regulatory networks. Compared with existing algorithms, it achieved similar performance on small test cases, and outperformed it on larger and more complex ones, which happens to be the trend of the modern genetic regulatory network. Furthermore, while the existing satisfiability-based algorithms cannot be parallelized due to their inherent algorithm design, the proposed algorithm exhibits a good scalability on parallel computing architectures.

  20. Pattern Selection in Network of Coupled Multi-Scroll Attractors.

    Science.gov (United States)

    Li, Fan; Ma, Jun

    2016-01-01

    Multi-scroll chaotic attractor makes the oscillator become more complex in dynamic behaviors. The collective behaviors of coupled oscillators with multi-scroll attractors are investigated in the regular network in two-dimensional array, which the local kinetics is described by an improved Chua circuit. A feasible scheme of negative feedback with diversity is imposed on the network to stabilize the spatial patterns. Firstly, the Chua circuit is improved by replacing the nonlinear term with Sine function to generate infinite aquariums so that multi-scroll chaotic attractors could be generated under appropriate parameters, which could be detected by calculating the Lyapunov exponent in the parameter region. Furthermore, negative feedback with different gains (D1, D2) is imposed on the local square center area A2 and outer area A1 of the network, it is found that spiral wave, target wave could be developed in the network under appropriate feedback gain with diversity and size of controlled area. Particularly, homogeneous state could be reached after synchronization by selecting appropriate feedback gain and controlled size in the network. Finally, the distribution for statistical factors of synchronization is calculated in the two-parameter space to understand the transition of pattern region. It is found that developed spiral waves, target waves often are associated with smaller factor of synchronization. These results show that emergence of sustained spiral wave and continuous target wave could be effective for further suppression of spatiotemporal chaos in network by generating stable pacemaker completely.

  1. Pattern Selection in Network of Coupled Multi-Scroll Attractors

    Science.gov (United States)

    Li, Fan

    2016-01-01

    Multi-scroll chaotic attractor makes the oscillator become more complex in dynamic behaviors. The collective behaviors of coupled oscillators with multi-scroll attractors are investigated in the regular network in two-dimensional array, which the local kinetics is described by an improved Chua circuit. A feasible scheme of negative feedback with diversity is imposed on the network to stabilize the spatial patterns. Firstly, the Chua circuit is improved by replacing the nonlinear term with Sine function to generate infinite aquariums so that multi-scroll chaotic attractors could be generated under appropriate parameters, which could be detected by calculating the Lyapunov exponent in the parameter region. Furthermore, negative feedback with different gains (D1, D2) is imposed on the local square center area A2 and outer area A1 of the network, it is found that spiral wave, target wave could be developed in the network under appropriate feedback gain with diversity and size of controlled area. Particularly, homogeneous state could be reached after synchronization by selecting appropriate feedback gain and controlled size in the network. Finally, the distribution for statistical factors of synchronization is calculated in the two-parameter space to understand the transition of pattern region. It is found that developed spiral waves, target waves often are associated with smaller factor of synchronization. These results show that emergence of sustained spiral wave and continuous target wave could be effective for further suppression of spatiotemporal chaos in network by generating stable pacemaker completely. PMID:27119986

  2. A SAT-based algorithm for finding attractors in synchronous Boolean networks.

    Science.gov (United States)

    Dubrova, Elena; Teslenko, Maxim

    2011-01-01

    This paper addresses the problem of finding attractors in synchronous Boolean networks. The existing Boolean decision diagram-based algorithms have limited capacity due to the excessive memory requirements of decision diagrams. The simulation-based algorithms can be applied to larger networks, however, they are incomplete. We present an algorithm, which uses a SAT-based bounded model checking to find all attractors in a Boolean network. The efficiency of the presented algorithm is evaluated by analyzing seven networks models of real biological processes, as well as 150,000 randomly generated Boolean networks of sizes between 100 and 7,000. The results show that our approach has a potential to handle an order of magnitude larger models than currently possible. PMID:21778527

  3. Detecting a Singleton Attractor in a Boolean Network Utilizing SAT Algorithms

    Science.gov (United States)

    Tamura, Takeyuki; Akutsu, Tatsuya

    The Boolean network (BN) is a mathematical model of genetic networks. It is known that detecting a singleton attractor, which is also called a fixed point, is NP-hard even for AND/OR BNs (i.e., BNs consisting of AND/OR nodes), where singleton attractors correspond to steady states. Though a naive algorithm can detect a singleton attractor for an AND/OR BN in O(n 2n) time, no O((2-ε)n) (ε > 0) time algorithm was known even for an AND/OR BN with non-restricted indegree, where n is the number of nodes in a BN. In this paper, we present an O(1.787n) time algorithm for detecting a singleton attractor of a given AND/OR BN, along with related results. We also show that detection of a singleton attractor in a BN with maximum indegree two is NP-hard and can be polynomially reduced to a satisfiability problem.

  4. From Cellular Attractor Selection to Adaptive Signal Control for Traffic Networks

    Science.gov (United States)

    Tian, Daxin; Zhou, Jianshan; Sheng, Zhengguo; Wang, Yunpeng; Ma, Jianming

    2016-03-01

    The management of varying traffic flows essentially depends on signal controls at intersections. However, design an optimal control that considers the dynamic nature of a traffic network and coordinates all intersections simultaneously in a centralized manner is computationally challenging. Inspired by the stable gene expressions of Escherichia coli in response to environmental changes, we explore the robustness and adaptability performance of signalized intersections by incorporating a biological mechanism in their control policies, specifically, the evolution of each intersection is induced by the dynamics governing an adaptive attractor selection in cells. We employ a mathematical model to capture such biological attractor selection and derive a generic, adaptive and distributed control algorithm which is capable of dynamically adapting signal operations for the entire dynamical traffic network. We show that the proposed scheme based on attractor selection can not only promote the balance of traffic loads on each link of the network but also allows the global network to accommodate dynamical traffic demands. Our work demonstrates the potential of bio-inspired intelligence emerging from cells and provides a deep understanding of adaptive attractor selection-based control formation that is useful to support the designs of adaptive optimization and control in other domains.

  5. An attractor-based complexity measurement for Boolean recurrent neural networks.

    Directory of Open Access Journals (Sweden)

    Jérémie Cabessa

    Full Text Available We provide a novel refined attractor-based complexity measurement for Boolean recurrent neural networks that represents an assessment of their computational power in terms of the significance of their attractor dynamics. This complexity measurement is achieved by first proving a computational equivalence between Boolean recurrent neural networks and some specific class of ω-automata, and then translating the most refined classification of ω-automata to the Boolean neural network context. As a result, a hierarchical classification of Boolean neural networks based on their attractive dynamics is obtained, thus providing a novel refined attractor-based complexity measurement for Boolean recurrent neural networks. These results provide new theoretical insights to the computational and dynamical capabilities of neural networks according to their attractive potentialities. An application of our findings is illustrated by the analysis of the dynamics of a simplified model of the basal ganglia-thalamocortical network simulated by a Boolean recurrent neural network. This example shows the significance of measuring network complexity, and how our results bear new founding elements for the understanding of the complexity of real brain circuits.

  6. An attractor-based complexity measurement for Boolean recurrent neural networks.

    Science.gov (United States)

    Cabessa, Jérémie; Villa, Alessandro E P

    2014-01-01

    We provide a novel refined attractor-based complexity measurement for Boolean recurrent neural networks that represents an assessment of their computational power in terms of the significance of their attractor dynamics. This complexity measurement is achieved by first proving a computational equivalence between Boolean recurrent neural networks and some specific class of ω-automata, and then translating the most refined classification of ω-automata to the Boolean neural network context. As a result, a hierarchical classification of Boolean neural networks based on their attractive dynamics is obtained, thus providing a novel refined attractor-based complexity measurement for Boolean recurrent neural networks. These results provide new theoretical insights to the computational and dynamical capabilities of neural networks according to their attractive potentialities. An application of our findings is illustrated by the analysis of the dynamics of a simplified model of the basal ganglia-thalamocortical network simulated by a Boolean recurrent neural network. This example shows the significance of measuring network complexity, and how our results bear new founding elements for the understanding of the complexity of real brain circuits.

  7. Sensory feedback in a bump attractor model of path integration.

    Science.gov (United States)

    Poll, Daniel B; Nguyen, Khanh; Kilpatrick, Zachary P

    2016-04-01

    Mammalian spatial navigation systems utilize several different sensory information channels. This information is converted into a neural code that represents the animal's current position in space by engaging place cell, grid cell, and head direction cell networks. In particular, sensory landmark (allothetic) cues can be utilized in concert with an animal's knowledge of its own velocity (idiothetic) cues to generate a more accurate representation of position than path integration provides on its own (Battaglia et al. The Journal of Neuroscience 24(19):4541-4550 (2004)). We develop a computational model that merges path integration with feedback from external sensory cues that provide a reliable representation of spatial position along an annular track. Starting with a continuous bump attractor model, we explore the impact of synaptic spatial asymmetry and heterogeneity, which disrupt the position code of the path integration process. We use asymptotic analysis to reduce the bump attractor model to a single scalar equation whose potential represents the impact of asymmetry and heterogeneity. Such imperfections cause errors to build up when the network performs path integration, but these errors can be corrected by an external control signal representing the effects of sensory cues. We demonstrate that there is an optimal strength and decay rate of the control signal when cues appear either periodically or randomly. A similar analysis is performed when errors in path integration arise from dynamic noise fluctuations. Again, there is an optimal strength and decay of discrete control that minimizes the path integration error. PMID:26754972

  8. Sensory feedback in a bump attractor model of path integration.

    Science.gov (United States)

    Poll, Daniel B; Nguyen, Khanh; Kilpatrick, Zachary P

    2016-04-01

    Mammalian spatial navigation systems utilize several different sensory information channels. This information is converted into a neural code that represents the animal's current position in space by engaging place cell, grid cell, and head direction cell networks. In particular, sensory landmark (allothetic) cues can be utilized in concert with an animal's knowledge of its own velocity (idiothetic) cues to generate a more accurate representation of position than path integration provides on its own (Battaglia et al. The Journal of Neuroscience 24(19):4541-4550 (2004)). We develop a computational model that merges path integration with feedback from external sensory cues that provide a reliable representation of spatial position along an annular track. Starting with a continuous bump attractor model, we explore the impact of synaptic spatial asymmetry and heterogeneity, which disrupt the position code of the path integration process. We use asymptotic analysis to reduce the bump attractor model to a single scalar equation whose potential represents the impact of asymmetry and heterogeneity. Such imperfections cause errors to build up when the network performs path integration, but these errors can be corrected by an external control signal representing the effects of sensory cues. We demonstrate that there is an optimal strength and decay rate of the control signal when cues appear either periodically or randomly. A similar analysis is performed when errors in path integration arise from dynamic noise fluctuations. Again, there is an optimal strength and decay of discrete control that minimizes the path integration error.

  9. Detecting small attractors of large Boolean networks by function-reduction-based strategy.

    Science.gov (United States)

    Zheng, Qiben; Shen, Liangzhong; Shang, Xuequn; Liu, Wenbin

    2016-04-01

    Boolean networks (BNs) are widely used to model gene regulatory networks and to design therapeutic intervention strategies to affect the long-term behaviour of systems. A central aim of Boolean-network analysis is to find attractors that correspond to various cellular states, such as cell types or the stage of cell differentiation. This problem is NP-hard and various algorithms have been used to tackle it with considerable success. The idea is that a singleton attractor corresponds to n consistent subsequences in the truth table. To find these subsequences, the authors gradually reduce the entire truth table of Boolean functions by extending a partial gene activity profile (GAP). Not only does this process delete inconsistent subsequences in truth tables, it also directly determines values for some nodes not extended, which means it can abandon the partial GAPs that cannot lead to an attractor as early as possible. The results of simulation show that the proposed algorithm can detect small attractors with length p = 4 in BNs of up to 200 nodes with average indegree K = 2.

  10. Hyperbolic Plykin attractor can exist in neuron models

    DEFF Research Database (Denmark)

    Belykh, V.; Belykh, I.; Mosekilde, Erik

    2005-01-01

    Strange hyperbolic attractors are hard to find in real physical systems. This paper provides the first example of a realistic system, a canonical three-dimensional (3D) model of bursting neurons, that is likely to have a strange hyperbolic attractor. Using a geometrical approach to the study...... of the neuron model, we derive a flow-defined Poincare map giving ail accurate account of the system's dynamics. In a parameter region where the neuron system undergoes bifurcations causing transitions between tonic spiking and bursting, this two-dimensional map becomes a map of a disk with several periodic...... holes. A particular case is the map of a disk with three holes, matching the Plykin example of a planar hyperbolic attractor. The corresponding attractor of the 3D neuron model appears to be hyperbolic (this property is not verified in the present paper) and arises as a result of a two-loop (secondary...

  11. A cortical attractor network with Martinotti cells driven by facilitating synapses.

    Directory of Open Access Journals (Sweden)

    Pradeep Krishnamurthy

    Full Text Available The population of pyramidal cells significantly outnumbers the inhibitory interneurons in the neocortex, while at the same time the diversity of interneuron types is much more pronounced. One acknowledged key role of inhibition is to control the rate and patterning of pyramidal cell firing via negative feedback, but most likely the diversity of inhibitory pathways is matched by a corresponding diversity of functional roles. An important distinguishing feature of cortical interneurons is the variability of the short-term plasticity properties of synapses received from pyramidal cells. The Martinotti cell type has recently come under scrutiny due to the distinctly facilitating nature of the synapses they receive from pyramidal cells. This distinguishes these neurons from basket cells and other inhibitory interneurons typically targeted by depressing synapses. A key aspect of the work reported here has been to pinpoint the role of this variability. We first set out to reproduce quantitatively based on in vitro data the di-synaptic inhibitory microcircuit connecting two pyramidal cells via one or a few Martinotti cells. In a second step, we embedded this microcircuit in a previously developed attractor memory network model of neocortical layers 2/3. This model network demonstrated that basket cells with their characteristic depressing synapses are the first to discharge when the network enters an attractor state and that Martinotti cells respond with a delay, thereby shifting the excitation-inhibition balance and acting to terminate the attractor state. A parameter sensitivity analysis suggested that Martinotti cells might, in fact, play a dominant role in setting the attractor dwell time and thus cortical speed of processing, with cellular adaptation and synaptic depression having a less prominent role than previously thought.

  12. A Model Combining Oscillations and Attractor Dynamics for Generation of Grid Cell Firing

    OpenAIRE

    Michael E Hasselmo; Brandon, Mark P.

    2012-01-01

    Different models have been able to account for different features of the data on grid cell firing properties, including the relationship of grid cells to cellular properties and network oscillations. This paper describes a model that combines elements of two major classes of models of grid cells: models using interference of oscillations and models using attractor dynamics. This model includes a population of units with oscillatory input representing input from the medial septum. These units ...

  13. Dynamical movement primitives: learning attractor models for motor behaviors.

    Science.gov (United States)

    Ijspeert, Auke Jan; Nakanishi, Jun; Hoffmann, Heiko; Pastor, Peter; Schaal, Stefan

    2013-02-01

    Nonlinear dynamical systems have been used in many disciplines to model complex behaviors, including biological motor control, robotics, perception, economics, traffic prediction, and neuroscience. While often the unexpected emergent behavior of nonlinear systems is the focus of investigations, it is of equal importance to create goal-directed behavior (e.g., stable locomotion from a system of coupled oscillators under perceptual guidance). Modeling goal-directed behavior with nonlinear systems is, however, rather difficult due to the parameter sensitivity of these systems, their complex phase transitions in response to subtle parameter changes, and the difficulty of analyzing and predicting their long-term behavior; intuition and time-consuming parameter tuning play a major role. This letter presents and reviews dynamical movement primitives, a line of research for modeling attractor behaviors of autonomous nonlinear dynamical systems with the help of statistical learning techniques. The essence of our approach is to start with a simple dynamical system, such as a set of linear differential equations, and transform those into a weakly nonlinear system with prescribed attractor dynamics by means of a learnable autonomous forcing term. Both point attractors and limit cycle attractors of almost arbitrary complexity can be generated. We explain the design principle of our approach and evaluate its properties in several example applications in motor control and robotics.

  14. Coexisting chaotic attractors in a single neuron model with adapting feedback synapse

    Energy Technology Data Exchange (ETDEWEB)

    Li Chunguang [Institute of Electronic Systems, School of Electronic Engineering, University of Electronic Science and Technology of China, Chengdu 610054 (China)]. E-mail: cgli@uestc.edu.cn; Chen Guanrong [Department of Electronic Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong (China)]. E-mail: gchen@ee.cityu.edu.hk

    2005-03-01

    In this paper, we consider the nonlinear dynamical behavior of a single neuron model with adapting feedback synapse, and show that chaotic behaviors exist in this model. In some parameter domain, we observe two coexisting chaotic attractors, switching from the coexisting chaotic attractors to a connected chaotic attractor, and then switching back to the two coexisting chaotic attractors. We confirm the chaoticity by simulations with phase plots, waveform plots, and power spectra.

  15. A source-attractor approach to network detection of radiation sources

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qishi [University of Memphis; Barry, M. L.. [New Jersey Institute of Technology; Grieme, M. [New Jersey Institute of Technology; Sen, Satyabrata [ORNL; Rao, Nageswara S [ORNL; Brooks, Richard R [Clemson University

    2016-01-01

    Radiation source detection using a network of detectors is an active field of research for homeland security and defense applications. We propose Source-attractor Radiation Detection (SRD) method to aggregate measurements from a network of detectors for radiation source detection. SRD method models a potential radiation source as a magnet -like attractor that pulls in pre-computed virtual points from the detector locations. A detection decision is made if a sufficient level of attraction, quantified by the increase in the clustering of the shifted virtual points, is observed. Compared with traditional methods, SRD has the following advantages: i) it does not require an accurate estimate of the source location from limited and noise-corrupted sensor readings, unlike the localizationbased methods, and ii) its virtual point shifting and clustering calculation involve simple arithmetic operations based on the number of detectors, avoiding the high computational complexity of grid-based likelihood estimation methods. We evaluate its detection performance using canonical datasets from Domestic Nuclear Detection Office s (DNDO) Intelligence Radiation Sensors Systems (IRSS) tests. SRD achieves both lower false alarm rate and false negative rate compared to three existing algorithms for network source detection.

  16. Unstable periodic orbits and attractor of the barotropic ocean model

    Directory of Open Access Journals (Sweden)

    E. Kazantsev

    1998-01-01

    Full Text Available A numerical method for detection of unstable periodic orbits on attractors of nonlinear models is proposed.  The method requires similar techniques to data assimilation.  This fact facilitates its implementation for geophysical models.  This method was used to find numerically several low-period orbits for the barotropic ocean model in a square.  Some numerical particularities of application of this method are discussed. Knowledge of periodic orbits of the model helps to explain some of these features like bimodality of probability density functions (PDF of principal parameters.  These PDFs have been reconstructed as weighted averages of periodic orbits with weights proportional to the period of the orbit and inversely proportional to the sum of positive Lyapunov exponents. The fraction of time spent in the vicinity of each periodic orbit has been compared with its instability characteristics. The relationship between these values shows the 93% correlation.  The attractor dimension of the model has also been approximated as a weighted average of local attractor dimensions in vicinities of periodic orbits.

  17. Structured patterns retrieval using a metric attractor network: Application to fingerprint recognition

    Science.gov (United States)

    Doria, Felipe; Erichsen, Rubem; González, Mario; Rodríguez, Francisco B.; Sánchez, Ángel; Dominguez, David

    2016-09-01

    The ability of a metric attractor neural networks (MANN) to learn structured patterns is analyzed. In particular we consider collections of fingerprints, which present some local features, rather than being modeled by random patterns. The network retrieval proved to be robust to varying the pattern activity, the threshold strategy, the topological arrangement of the connections, and for several types of noisy configuration. We found that the lower the fingerprint patterns activity is, the higher the load ratio and retrieval quality are. A simplified theoretical framework, for the unbiased case, is developed as a function of five parameters: the load ratio, the finiteness connectivity, the density degree of the network, randomness ratio, and the spatial pattern correlation. Linked to the latter appears a new neural dynamics variable: the spatial neural correlation. The theory agrees quite well with the experimental results.

  18. Unraveling chaotic attractors by complex networks and measurements of stock market complexity.

    Science.gov (United States)

    Cao, Hongduo; Li, Ying

    2014-03-01

    We present a novel method for measuring the complexity of a time series by unraveling a chaotic attractor modeled on complex networks. The complexity index R, which can potentially be exploited for prediction, has a similar meaning to the Kolmogorov complexity (calculated from the Lempel-Ziv complexity), and is an appropriate measure of a series' complexity. The proposed method is used to research the complexity of the world's major capital markets. None of these markets are completely random, and they have different degrees of complexity, both over the entire length of their time series and at a level of detail. However, developing markets differ significantly from mature markets. Specifically, the complexity of mature stock markets is stronger and more stable over time, whereas developing markets exhibit relatively low and unstable complexity over certain time periods, implying a stronger long-term price memory process.

  19. Unraveling chaotic attractors by complex networks and measurements of stock market complexity

    International Nuclear Information System (INIS)

    We present a novel method for measuring the complexity of a time series by unraveling a chaotic attractor modeled on complex networks. The complexity index R, which can potentially be exploited for prediction, has a similar meaning to the Kolmogorov complexity (calculated from the Lempel–Ziv complexity), and is an appropriate measure of a series' complexity. The proposed method is used to research the complexity of the world's major capital markets. None of these markets are completely random, and they have different degrees of complexity, both over the entire length of their time series and at a level of detail. However, developing markets differ significantly from mature markets. Specifically, the complexity of mature stock markets is stronger and more stable over time, whereas developing markets exhibit relatively low and unstable complexity over certain time periods, implying a stronger long-term price memory process

  20. Periodic solution and chaotic strange attractor for shunting inhibitory cellular neural networks with impulses

    International Nuclear Information System (INIS)

    By using the continuation theorem of coincidence degree theory and constructing suitable Lyapunov functions, we study the existence, uniqueness, and global exponential stability of periodic solution for shunting inhibitory cellular neural networks with impulses, dxij/dt=-aijxij-ΣCkl(set-membershipsign)Nr(i,j)Cijklfij[xkl(t)]xij+Lij(t), t>0,t≠tk; Δxij(tk)=xij(tk+)-xij(tk-)=Ik[xij(tk)], k=1,2,... . Furthermore, the numerical simulation shows that our system can occur in many forms of complexities, including periodic oscillation and chaotic strange attractor. To the best of our knowledge, these results have been obtained for the first time. Some researchers have introduced impulses into their models, but analogous results have never been found.

  1. Effective visual working memory capacity: an emergent effect from the neural dynamics in an attractor network.

    Directory of Open Access Journals (Sweden)

    Laura Dempere-Marco

    Full Text Available The study of working memory capacity is of outmost importance in cognitive psychology as working memory is at the basis of general cognitive function. Although the working memory capacity limit has been thoroughly studied, its origin still remains a matter of strong debate. Only recently has the role of visual saliency in modulating working memory storage capacity been assessed experimentally and proved to provide valuable insights into working memory function. In the computational arena, attractor networks have successfully accounted for psychophysical and neurophysiological data in numerous working memory tasks given their ability to produce a sustained elevated firing rate during a delay period. Here we investigate the mechanisms underlying working memory capacity by means of a biophysically-realistic attractor network with spiking neurons while accounting for two recent experimental observations: 1 the presence of a visually salient item reduces the number of items that can be held in working memory, and 2 visually salient items are commonly kept in memory at the cost of not keeping as many non-salient items. Our model suggests that working memory capacity is determined by two fundamental processes: encoding of visual items into working memory and maintenance of the encoded items upon their removal from the visual display. While maintenance critically depends on the constraints that lateral inhibition imposes to the mnemonic activity, encoding is limited by the ability of the stimulated neural assemblies to reach a sufficiently high level of excitation, a process governed by the dynamics of competition and cooperation among neuronal pools. Encoding is therefore contingent upon the visual working memory task and has led us to introduce the concept of effective working memory capacity (eWMC in contrast to the maximal upper capacity limit only reached under ideal conditions.

  2. Lorenz-like attractors in a nonholonomic model of a rattleback

    Science.gov (United States)

    Gonchenko, A. S.; Gonchenko, S. V.

    2015-09-01

    We study chaotic dynamics in a nonholonomic model of a rattleback stone. We show that, for certain values of parameters that characterise geometrical and physical properties of the stone, a strange Lorenz-like attractor is observed in the model. We also study bifurcation scenarios for the appearance and break-down of this attractor.

  3. Stimulus number, duration and intensity encoding in randomly connected attractor networks with synaptic depression

    Directory of Open Access Journals (Sweden)

    Paul eMiller

    2013-05-01

    Full Text Available Randomly connected recurrent networks of excitatory groups of neurons can possess a multitude of attractor states. When the internal excitatory synapses of these networks are depressing, the attractor states can be destabilized with increasing input. This leads to an itinerancy, where with either repeated transient stimuli, or increasing duration of a single stimulus, the network activity advances through sequences of attractor states. We find that the resulting network state, which persists beyond stimulus offset, can encode the number of stimuli presented via a distributed representation of neural activity with non-monotonic tuning curves for most neurons. Increased duration of a single stimulus is encoded via different distributed representations, so unlike an integrator, the network distinguishes separate successive presentations of a short stimulus from a single presentation of a longer stimulus with equal total duration. Moreover, different amplitudes of stimulus cause new, distinct activity patterns, such that changes in stimulus number, duration and amplitude can be distinguished from each other. These properties of the network depend on dynamic depressing synapses, as they disappear if synapses are static. Thus short-term synaptic depression allows a network to store separately the different dynamic properties of a spatially constant stimulus.

  4. Random Boolean Networks and Attractors of their Intersecting Circuits

    OpenAIRE

    Demongeot, Jacques; Elena, Adrien; Noual, Mathilde; Sené, Sylvain

    2011-01-01

    International audience The multi-scale strategy in studying biological regulatory networks analysis is based on two level of analysis. The first level is structural and consists in examining the architecture of the interaction graph underlying the network and the second level is functional and analyse the regulatory properties of the network. We apply this dual approach to the "immunetworks" involved in the control of the immune system. As a result, we show that the small number of attract...

  5. Navigating cancer network attractors for tumor-specific therapy

    DEFF Research Database (Denmark)

    Creixell, Pau; Schoof, Erwin; Erler, Janine Terra;

    2012-01-01

    these malignant states by accumulating different molecular alterations, uncovering these mechanisms represents a grand challenge in cancer biology. Addressing this challenge will require new systems-based strategies that capture the intrinsic properties of cancer signaling networks and provide deeper...... understanding of the processes by which genetic lesions perturb these networks and lead to disease phenotypes. Network biology will help circumvent fundamental obstacles in cancer treatment, such as drug resistance and metastasis, empowering personalized and tumor-specific cancer therapies....

  6. Bistable Chimera Attractors on a Triangular Network of Oscillator Populations

    DEFF Research Database (Denmark)

    Martens, Erik Andreas

    2010-01-01

    We study a triangular network of three populations of coupled phase oscillators with identical frequencies. The populations interact nonlocally, in the sense that all oscillators are coupled to one another, but more weakly to those in neighboring populations than to those in their own population....... This triangular network is the simplest discretization of a continuous ring of oscillators. Yet it displays an unexpectedly different behavior: in contrast to the lone stable chimera observed in continuous rings of oscillators, we find that this system exhibits two coexisting stable chimeras. Both chimeras are...

  7. Global attractor and asymptotic dynamics in the Kuramoto model for coupled noisy phase oscillators

    International Nuclear Information System (INIS)

    We study the dynamics of the large N limit of the Kuramoto model of coupled phase oscillators, subject to white noise. We introduce the notion of shadow inertial manifold and we prove their existence for this model, supporting the fact that the long-term dynamics of this model is finite dimensional. Following this, we prove that the global attractor of this model takes one of two forms. When coupling strength is below a critical value, the global attractor is a single equilibrium point corresponding to an incoherent state. Otherwise, when coupling strength is beyond this critical value, the global attractor is a two-dimensional disc composed of radial trajectories connecting a saddle-point equilibrium (the incoherent state) to an invariant closed curve of locally stable equilibria (partially synchronized state). Our analysis hinges, on the one hand, upon sharp existence and uniqueness results and their consequence for the existence of a global attractor, and, on the other hand, on the study of the dynamics in the vicinity of the incoherent and coherent (or synchronized) equilibria. We prove in particular nonlinear stability of each synchronized equilibrium, and normal hyperbolicity of the set of such equilibria. We explore mathematically and numerically several properties of the global attractor, in particular we discuss the limit of this attractor as noise intensity decreases to zero

  8. Attractors, statistics and fluctuations of the dynamics of the Schelling's model for social segregation

    Science.gov (United States)

    Cortez, Vasco; Medina, Pablo; Goles, Eric; Zarama, Roberto; Rica, Sergio

    2015-01-01

    Statistical properties, fluctuations and probabilistic arguments are shown to explain the robust dynamics of the Schelling's social segregation model. With the aid of probability density functions we characterize the attractors for multiple external parameters and conditions. We discuss the role of the initial states and we show that, indeed, the system evolves towards well defined attractors. Finally, we provide probabilistic arguments to explain quantitatively the observed behavior.

  9. Chaotic inflation limits for non-minimal models with a Starobinsky attractor

    International Nuclear Information System (INIS)

    We investigate inflationary attractor points by analysing non-minimally coupled single field inflation models in two opposite limits; the 'flat' limit in which the first derivative of the conformal factor is small and the 'steep' limit, in which the first derivative of the conformal factor is large. We consider a subset of models that yield Starobinsky inflation in the steep conformal factor, strong coupling, limit and demonstrate that they result in φ2n-chaotic inflation in the opposite flat, weak coupling, limit. The suppression of higher order powers of the inflaton field in the potential is shown to be related to the flatness condition on the conformal factor. We stress that the chaotic attractor behaviour in the weak coupling limit is of a different, less universal, character than the Starobinsky attractor. Agreement with the COBE normalisation cannot be obtained in both attractor limits at the same time and in the chaotic attractor limit the scale of inflation depends on the details of the conformal factor, contrary to the strong coupling Starobinsky attractor

  10. Local community detection as pattern restoration by attractor dynamics of recurrent neural networks.

    Science.gov (United States)

    Okamoto, Hiroshi

    2016-08-01

    Densely connected parts in networks are referred to as "communities". Community structure is a hallmark of a variety of real-world networks. Individual communities in networks form functional modules of complex systems described by networks. Therefore, finding communities in networks is essential to approaching and understanding complex systems described by networks. In fact, network science has made a great deal of effort to develop effective and efficient methods for detecting communities in networks. Here we put forward a type of community detection, which has been little examined so far but will be practically useful. Suppose that we are given a set of source nodes that includes some (but not all) of "true" members of a particular community; suppose also that the set includes some nodes that are not the members of this community (i.e., "false" members of the community). We propose to detect the community from this "imperfect" and "inaccurate" set of source nodes using attractor dynamics of recurrent neural networks. Community detection by the proposed method can be viewed as restoration of the original pattern from a deteriorated pattern, which is analogous to cue-triggered recall of short-term memory in the brain. We demonstrate the effectiveness of the proposed method using synthetic networks and real social networks for which correct communities are known.

  11. Study of the attractor structure of an agent-based sociological model

    International Nuclear Information System (INIS)

    The Sznajd model is a sociophysics model that is based in the Potts model, and used for describing opinion propagation in a society. It employs an agent-based approach and interaction rules favouring pairs of agreeing agents. It has been successfully employed in modeling some properties and scale features of both proportional and majority elections (see for instance the works of A. T. Bernardes and R. N. Costa Filho), but its stationary states are always consensus states. In order to explain more complicated behaviours, we have modified the bounded confidence idea (introduced before in other opinion models, like the Deffuant model), with the introduction of prejudices and biases (we called this modification confidence rules), and have adapted it to the discrete Sznajd model. This generalized Sznajd model is able to reproduce almost all of the previous versions of the Sznajd model, by using appropriate choices of parameters. We solved the attractor structure of the resulting model in a mean-field approach and made Monte Carlo simulations in a Barabasi-Albert network. These simulations show great similarities with the mean-field, for the tested cases of 3 and 4 opinions. The dynamical systems approach that we devised allows for a deeper understanding of the potential of the Sznajd model as an opinion propagation model and can be easily extended to other models, like the voter model. Our modification of the bounded confidence rule can also be readily applied to other opinion propagation models.

  12. Predicting pancreas cell fate decisions and reprogramming with a hierarchical multi-attractor model.

    Directory of Open Access Journals (Sweden)

    Joseph Xu Zhou

    Full Text Available Cell fate reprogramming, such as the generation of insulin-producing β cells from other pancreas cells, can be achieved by external modulation of key transcription factors. However, the known gene regulatory interactions that form a complex network with multiple feedback loops make it increasingly difficult to design the cell reprogramming scheme because the linear regulatory pathways as schemes of causal influences upon cell lineages are inadequate for predicting the effect of transcriptional perturbation. However, sufficient information on regulatory networks is usually not available for detailed formal models. Here we demonstrate that by using the qualitatively described regulatory interactions as the basis for a coarse-grained dynamical ODE (ordinary differential equation based model, it is possible to recapitulate the observed attractors of the exocrine and β, δ, α endocrine cells and to predict which gene perturbation can result in desired lineage reprogramming. Our model indicates that the constraints imposed by the incompletely elucidated regulatory network architecture suffice to build a predictive model for making informed decisions in choosing the set of transcription factors that need to be modulated for fate reprogramming.

  13. A model combining oscillations and attractor dynamics for generation of grid cell firing

    Directory of Open Access Journals (Sweden)

    Michael E Hasselmo

    2012-05-01

    Full Text Available Different models have been able to account for different features of the data on grid cell firing properties, including the relationship of grid cells to cellular properties and network oscillations. This paper describes a model that combines elements of two major classes of models of grid cells: models using interference of oscillations and models using attractor dynamics. This model includes a population of units with oscillatory input representing input from the medial septum. These units are termed heading angle cells because their connectivity depends upon heading angle in the environment as well as the spatial phase coded by the cell. These cells project to a population of grid cells. The sum of the heading angle input results in standing waves of circularly symmetric input to the grid cell population. Feedback from the grid cell population increases the activity of subsets of the heading angle cells, resulting in the network settling into activity patterns that resemble the patterns of firing fields in a population of grid cells. The properties of heading angle cells firing as conjunctive grid-by-head-direction cells can shift the grid cell firing according to movement velocity. The pattern of interaction of oscillations requires use of separate populations that fire on alternate cycles of the net theta rhythmic input to grid cells, similar to recent neurophysiological data on theta cycle skipping in medial entorhinal cortex.

  14. Chaotic inflation limits for non-minimal models with a Starobinsky attractor

    CERN Document Server

    Mosk, Benjamin

    2014-01-01

    We investigate inflationary attractor points by analyzing non-minimally coupled single field inflation models in two opposite limits; the `flat' limit in which the first derivative of the conformal factor is small and the `steep' limit, in which the first derivative of the conformal factor is large. We consider a subset of models that yield Starobinsky inflation in the steep conformal factor, strong coupling, limit and demonstrate that they result in chaotic inflation in the opposite flat, weak coupling, limit. The suppression of higher order powers of the inflaton field in the potential is shown to be related to the flatness condition on the conformal factor. We stress that the chaotic attractor behaviour in the weak coupling limit is of a different, less universal, character than the Starobinsky attractor. Agreement with the COBE normalisation cannot be obtained in both attractor limits at the same time and in the chaotic attractor limit the scale of inflation depends on the details of the conformal factor,...

  15. Modeling the Epigenetic Attractors Landscape: Towards a Post-Genomic Mechanistic Understanding of Development

    Directory of Open Access Journals (Sweden)

    Jose eDavila-Velderrain

    2015-04-01

    Full Text Available Robust temporal and spatial patterns of cell types emerge in the course of normal development in multicellular organisms. The onset of degenerative diseases may result from altered cell fate decisions that give rise to pathological phenotypes. Complex networks of genetic and non-genetic components underlie such normal and altered morphogenetic patterns. Here we focus on the networks of regulatory interactions involved in cell-fate decisions. Such networks modeled as dynamical non-linear systems attain particular stable configurations on gene activity that have been interpreted as cell-fate states. The network structure also restricts the most probable transition patterns among such states. The so-called Epigenetic Landscape (EL, originally proposed by C.H. Waddington, was an early attempt to conceptually explain the emergence of developmental choices as the result of intrinsic constraints (regulatory interactions shaped during evolution. Thanks to the wealth of molecular genetic and genomic studies, we are now able to postulate gene regulatory networks (GRN grounded on experimental data, and to derive EL models for specific cases. This, in turn, has motivated several mathematical and computational modeling approaches inspired by the EL concept, that may be useful tools to understand and predict cell-fate decisions and emerging patterns. In order to distinguish between the classical metaphorical EL proposal of Waddington, we refer to the Epigenetic Attractors Landscape (EAL, a proposal that is formally framed in the context of GRNs and dynamical systems theory. In this review we discuss recent EAL modeling strategies, their conceptual basis and their application in studying the emergence of both normal and pathological developmental processes. In addition, we discuss how model predictions can shed light into rational strategies for cell fate regulation, and we point to challenges ahead.

  16. A quantitative measure, mechanism and attractor for self-organization in networked complex systems

    CERN Document Server

    Georgiev, Georgi Yordanov

    2012-01-01

    Quantity of organization in complex networks here is measured as the inverse of the average sum of physical actions of all elements per unit motion multiplied by the Planck's constant. The meaning of quantity of organization is the inverse of the number of quanta of action per one unit motion of an element. This definition can be applied to the organization of any complex system. Systems self-organize to decrease the average action per element per unit motion. This lowest action state is the attractor for the continuous self-organization and evolution of a dynamical complex system. Constraints increase this average action and constraint minimization by the elements is a basic mechanism for action minimization. Increase of quantity of elements in a network, leads to faster constraint minimization through grouping, decrease of average action per element and motion and therefore accelerated rate of self-organization. Progressive development, as self-organization, is a process of minimization of action.

  17. Deformation of attractor landscape via cholinergic presynaptic modulations: a computational study using a phase neuron model.

    Directory of Open Access Journals (Sweden)

    Takashi Kanamaru

    Full Text Available Corticopetal acetylcholine (ACh is released transiently from the nucleus basalis of Meynert (NBM into the cortical layers and is associated with top-down attention. Recent experimental data suggest that this release of ACh disinhibits layer 2/3 pyramidal neurons (PYRs via muscarinic presynaptic effects on inhibitory synapses. Together with other possible presynaptic cholinergic effects on excitatory synapses, this may result in dynamic and temporal modifications of synapses associated with top-down attention. However, the system-level consequences and cognitive relevance of such disinhibitions are poorly understood. Herein, we propose a theoretical possibility that such transient modifications of connectivity associated with ACh release, in addition to top-down glutamatergic input, may provide a neural mechanism for the temporal reactivation of attractors as neural correlates of memories. With baseline levels of ACh, the brain returns to quasi-attractor states, exhibiting transitive dynamics between several intrinsic internal states. This suggests that top-down attention may cause the attention-induced deformations between two types of attractor landscapes: the quasi-attractor landscape (Q-landscape, present under low-ACh, non-attentional conditions and the attractor landscape (A-landscape, present under high-ACh, top-down attentional conditions. We present a conceptual computational model based on experimental knowledge of the structure of PYRs and interneurons (INs in cortical layers 1 and 2/3 and discuss the possible physiological implications of our results.

  18. Determining a singleton attractor of a boolean network with nested canalyzing functions.

    Science.gov (United States)

    Akutsu, Tatsuya; Melkman, Avraham A; Tamura, Takeyuki; Yamamoto, Masaki

    2011-10-01

    In this article, we study the problem of finding a singleton attractor for several biologically important subclasses of Boolean networks (BNs). The problem of finding a singleton attractor in a BN is known to be NP-hard in general. For BNs consisting of n nested canalyzing functions, we present an O(1.799(n)) time algorithm. The core part of this development is an O(min(2(k/2) · 2(m/2), 2(k)) · poly(k, m)) time algorithm for the satisfiability problem for m nested canalyzing functions over k variables. For BNs consisting of chain functions, a subclass of nested canalyzing functions, we present an O(1.619(n)) time algorithm and show that the problem remains NP-hard, even though the satisfiability problem for m chain functions over k variables is solvable in polynomial time. Finally, we present an o(2(n)) time algorithm for bounded degree BNs consisting of canalyzing functions.

  19. Attractors for a Three-Dimensional Thermo-Mechanical Model of Shape Memory Alloys

    Institute of Scientific and Technical Information of China (English)

    Pierluigi COLLI; Michel FR(E)MOND; Elisabetta ROCCA; Ken SHIRAKAWA

    2006-01-01

    In this note, we consider a Frémond model of shape memory alloys. Let us imagine a piece of a shape memory alloy which is fixed on one part of its boundary, and assume that forcing terms, e.g., heat sources and external stress on the remaining part of its boundary, converge to some time-independent functions, in appropriate senses, as time goes to infinity. Under the above assumption, we shall discuss the asymptotic stability for the dynamical system from the viewpoint of the global attractor. More precisely,we generalize the paper [12] dealing with the one-dimensional case. First, we show the existence of the global attractor for the limiting autonomous dynamical system; then we characterize the asymptotic stability for the non-autonomous case by the limiting global attractor.

  20. Midpoint attractors and species richness: Modelling the interaction between environmental drivers and geometric constraints.

    Science.gov (United States)

    Colwell, Robert K; Gotelli, Nicholas J; Ashton, Louise A; Beck, Jan; Brehm, Gunnar; Fayle, Tom M; Fiedler, Konrad; Forister, Matthew L; Kessler, Michael; Kitching, Roger L; Klimes, Petr; Kluge, Jürgen; Longino, John T; Maunsell, Sarah C; McCain, Christy M; Moses, Jimmy; Noben, Sarah; Sam, Katerina; Sam, Legi; Shapiro, Arthur M; Wang, Xiangping; Novotny, Vojtech

    2016-09-01

    We introduce a novel framework for conceptualising, quantifying and unifying discordant patterns of species richness along geographical gradients. While not itself explicitly mechanistic, this approach offers a path towards understanding mechanisms. In this study, we focused on the diverse patterns of species richness on mountainsides. We conjectured that elevational range midpoints of species may be drawn towards a single midpoint attractor - a unimodal gradient of environmental favourability. The midpoint attractor interacts with geometric constraints imposed by sea level and the mountaintop to produce taxon-specific patterns of species richness. We developed a Bayesian simulation model to estimate the location and strength of the midpoint attractor from species occurrence data sampled along mountainsides. We also constructed midpoint predictor models to test whether environmental variables could directly account for the observed patterns of species range midpoints. We challenged these models with 16 elevational data sets, comprising 4500 species of insects, vertebrates and plants. The midpoint predictor models generally failed to predict the pattern of species midpoints. In contrast, the midpoint attractor model closely reproduced empirical spatial patterns of species richness and range midpoints. Gradients of environmental favourability, subject to geometric constraints, may parsimoniously account for elevational and other patterns of species richness. PMID:27358193

  1. A Cayley Tree Immune Network Model with Antibody Dynamics

    CERN Document Server

    Anderson, R W; Perelson, A S; Anderson, Russell W.; Neumann, Avidan U.; Perelson, Alan S.

    1993-01-01

    Abstract: A Cayley tree model of idiotypic networks that includes both B cell and antibody dynamics is formulated and analyzed. As in models with B cells only, localized states exist in the network with limited numbers of activated clones surrounded by virgin or near-virgin clones. The existence and stability of these localized network states are explored as a function of model parameters. As in previous models that have included antibody, the stability of immune and tolerant localized states are shown to depend on the ratio of antibody to B cell lifetimes as well as the rate of antibody complex removal. As model parameters are varied, localized steady-states can break down via two routes: dynamically, into chaotic attractors, or structurally into percolation attractors. For a given set of parameters, percolation and chaotic attractors can coexist with localized attractors, and thus there do not exist clear cut boundaries in parameter space that separate regions of localized attractors from regions of percola...

  2. Hebbian Plasticity Realigns Grid Cell Activity with External Sensory Cues in Continuous Attractor Models.

    Science.gov (United States)

    Mulas, Marcello; Waniek, Nicolai; Conradt, Jörg

    2016-01-01

    After the discovery of grid cells, which are an essential component to understand how the mammalian brain encodes spatial information, three main classes of computational models were proposed in order to explain their working principles. Amongst them, the one based on continuous attractor networks (CAN), is promising in terms of biological plausibility and suitable for robotic applications. However, in its current formulation, it is unable to reproduce important electrophysiological findings and cannot be used to perform path integration for long periods of time. In fact, in absence of an appropriate resetting mechanism, the accumulation of errors over time due to the noise intrinsic in velocity estimation and neural computation prevents CAN models to reproduce stable spatial grid patterns. In this paper, we propose an extension of the CAN model using Hebbian plasticity to anchor grid cell activity to environmental landmarks. To validate our approach we used as input to the neural simulations both artificial data and real data recorded from a robotic setup. The additional neural mechanism can not only anchor grid patterns to external sensory cues but also recall grid patterns generated in previously explored environments. These results might be instrumental for next generation bio-inspired robotic navigation algorithms that take advantage of neural computation in order to cope with complex and dynamic environments. PMID:26924979

  3. Vestibular and Attractor Network Basis of the Head Direction Cell Signal in Subcortical Circuits

    Directory of Open Access Journals (Sweden)

    Benjamin J Clark

    2012-03-01

    Full Text Available Accurate navigation depends on a network of neural systems that encode the moment-to-moment changes in an animal’s directional orientation and location in space. Within this navigation system are head direction (HD cells, which fire persistently when an animal’s head is pointed in a particular direction (Sharp et al., 2001a; Taube, 2007. HD cells are widely thought to underlie an animal’s sense of spatial orientation, and research over the last 25+ years has revealed that this robust spatial signal is widely distributed across subcortical and cortical limbic areas. Much of this work has been directed at understanding the functional organization of the HD cell circuitry, and precisely how this signal is generated from sensory and motor systems. The purpose of the present review is to summarize some of the recent studies arguing that the HD cell circuit is largely processed in a hierarchical fashion, following a pathway involving the dorsal tegmental nuclei → lateral mammillary nuclei → anterior thalamus → parahippocampal and retrosplenial cortical regions. We also review recent work identifying bursting cellular activity in the HD cell circuit after lesions of the vestibular system, and relate these observations to the long held view that attractor network mechanisms underlie HD signal generation. Finally, we summarize the work to date suggesting that this network architecture may reside within the tegmento-mammillary circuit.

  4. Noise in attractor networks in the brain produced by graded firing rate representations.

    Directory of Open Access Journals (Sweden)

    Tristan J Webb

    Full Text Available Representations in the cortex are often distributed with graded firing rates in the neuronal populations. The firing rate probability distribution of each neuron to a set of stimuli is often exponential or gamma. In processes in the brain, such as decision-making, that are influenced by the noise produced by the close to random spike timings of each neuron for a given mean rate, the noise with this graded type of representation may be larger than with the binary firing rate distribution that is usually investigated. In integrate-and-fire simulations of an attractor decision-making network, we show that the noise is indeed greater for a given sparseness of the representation for graded, exponential, than for binary firing rate distributions. The greater noise was measured by faster escaping times from the spontaneous firing rate state when the decision cues are applied, and this corresponds to faster decision or reaction times. The greater noise was also evident as less stability of the spontaneous firing state before the decision cues are applied. The implication is that spiking-related noise will continue to be a factor that influences processes such as decision-making, signal detection, short-term memory, and memory recall even with the quite large networks found in the cerebral cortex. In these networks there are several thousand recurrent collateral synapses onto each neuron. The greater noise with graded firing rate distributions has the advantage that it can increase the speed of operation of cortical circuitry.

  5. A Mathematical Model of Chaotic Attractor in Tumor Growth and Decay

    OpenAIRE

    Ivancevic, Tijana T.; Bottema, Murk J.; Jain, Lakhmi C.

    2008-01-01

    We propose a strange-attractor model of tumor growth and metastasis. It is a 4-dimensional spatio-temporal cancer model with strong nonlinear couplings. Even the same type of tumor is different in every patient both in size and appearance, as well as in temporal behavior. This is clearly a characteristic of dynamical systems sensitive to initial conditions. The new chaotic model of tumor growth and decay is biologically motivated. It has been developed as a live Mathematica demonstration, see...

  6. Compact attractors for time-periodic age-structured population models

    Directory of Open Access Journals (Sweden)

    Pierre Magal

    2001-10-01

    Full Text Available In this paper we investigate the existence of compact attractors for time-periodic age-structured models. So doing we investigate the eventual compactness of a class of abstract non-autonomous semiflow (non necessarily periodic. We apply this result to non-autonomous age-structured models. In the time periodic case, we obtain the existence of a periodic family of compact subsets that is invariant by the semiflow, and attract the solutions of the system.

  7. Continuous or discrete attractors in neural circuits? A self-organized switch at maximal entropy

    CERN Document Server

    Bernacchia, Alberto

    2007-01-01

    A recent experiment suggests that neural circuits may alternatively implement continuous or discrete attractors, depending on the training set up. In recurrent neural network models, continuous and discrete attractors are separately modeled by distinct forms of synaptic prescriptions (learning rules). Here, we report a solvable network model, endowed with Hebbian synaptic plasticity, which is able to learn either discrete or continuous attractors, depending on the frequency of presentation of stimuli and on the structure of sensory coding. A continuous attractor is learned when experience matches sensory coding, i.e. when the distribution of experienced stimuli matches the distribution of preferred stimuli of neurons. In that case, there is no processing of sensory information and neural activity displays maximal entropy. If experience goes beyond sensory coding, processing is initiated and the continuous attractor is destabilized into a set of discrete attractors.

  8. Hypercrater Bifurcations, Attractor Coexistence, and Unfolding in a 5D Model of Economic Dynamics

    Directory of Open Access Journals (Sweden)

    Toichiro Asada

    2011-01-01

    Full Text Available Complex dynamical features are explored in a discrete interregional macrodynamic model proposed by Asada et al., using numerical methods. The model is five-dimensional with four parameters. The results demonstrate patterns of dynamical behaviour, such as bifurcation processes and coexistence of attractors, generated by high-dimensional discrete systems. In three cases of two-dimensional parameter subspaces the stability of equilibrium region is determined and its boundaries, the flip and Neimark-Hopf bifurcation curves, are identified by means of necessary coefficient criteria. In the first case closed invariant curves (CICs are found to occur through 5D-crater-type bifurcations, and for certain ranges of parameter values a stable equilibrium coexists with an unstable CIC associated with the subcritical bifurcation, as well as with an outer stable CIC. A remarkable feature of the second case is the coexistence of two attracting CICs outside the stability region. In both these cases the related hysteresis effects are illustrated by numerical simulations. In the third case a remarkable feature is the apparent unfolding of an attracting CIC before it evolves to a chaotic attractor. Examples of CICs and chaotic attractors are given in subspaces of phase space.

  9. Bayesian Attractor Learning

    Science.gov (United States)

    Wiegerinck, Wim; Schoenaker, Christiaan; Duane, Gregory

    2016-04-01

    Recently, methods for model fusion by dynamically combining model components in an interactive ensemble have been proposed. In these proposals, fusion parameters have to be learned from data. One can view these systems as parametrized dynamical systems. We address the question of learnability of dynamical systems with respect to both short term (vector field) and long term (attractor) behavior. In particular we are interested in learning in the imperfect model class setting, in which the ground truth has a higher complexity than the models, e.g. due to unresolved scales. We take a Bayesian point of view and we define a joint log-likelihood that consists of two terms, one is the vector field error and the other is the attractor error, for which we take the L1 distance between the stationary distributions of the model and the assumed ground truth. In the context of linear models (like so-called weighted supermodels), and assuming a Gaussian error model in the vector fields, vector field learning leads to a tractable Gaussian solution. This solution can then be used as a prior for the next step, Bayesian attractor learning, in which the attractor error is used as a log-likelihood term. Bayesian attractor learning is implemented by elliptical slice sampling, a sampling method for systems with a Gaussian prior and a non Gaussian likelihood. Simulations with a partially observed driven Lorenz 63 system illustrate the approach.

  10. Multiple hydrological attractors under stochastic daily forcing: 2. Can multiple attractors emerge?

    Science.gov (United States)

    Peterson, T. J.; Western, A. W.; Argent, R. M.

    2014-04-01

    The companion paper showed that multiple steady state groundwater levels can exist within a hill-slope Boussinesq-vegetation model under daily stochastic forcing. Using a numerical limit-cycle continuation algorithm, the steady states (henceforth attractors) and the threshold between them (henceforth repellor) were quantified at a range of saturated lateral conductivity values, ksmax. This paper investigates if stochastic daily forcing can switch the catchment between both of the attractors. That is, an attractor may exist under average forcing conditions but can stochastic forcing switch the catchment into and out of each of the attractor basins?; i.e., making the attractor emerge. This was undertaken using the model of the companion paper and by completing daily time-integration simulations at six values of the saturated lateral hydraulic conductivity, ksmax; three having two attractors and three having only a deep water table attractor. By graphically analyzing the simulations, and comparing against simulations from a model modified to have only one attractor, multiple attractors were found to emerge under stochastic daily forcing. However, the emergence of attractors was significantly more subtle and complex than that suggested by the companion paper. That is, an attractor may exist but never emerge; both attractors may exist and both may emerge but identifying the switching between attractors was often ambiguous; and only one attractor may exist and but a second temporary attractor may exist and emerge during periods of high precipitation. This subtle and complex emergence of attractors was explained using continuation analysis of the climate forcing rate, and not a model parameter such as ksmax. It showed that the temporary attractor existed over a large range of ksmax values and this suggests that more catchments may have multiple attractors than suggested by the companion paper. By combining this continuation analysis with the time-integration simulations

  11. Cosmological Attractors and Anisotropies in Two Measure Theories, Effective EYMH systems, and Off--Diagonal Inflation Models

    CERN Document Server

    Rajpoot, Subhash

    2016-01-01

    Applying the anholonomic frame deformation method, we construct various classes of cosmological solutions for effective Einstein -- Yang-Mills -- Higgs, and two measure theories. The types of models considered are Freedman-Lema\\^{i}tre-Robertson-Walker, Bianchi, Kasner and models with attractor configurations. The various regimes pertaining to plateau--type inflation, quadratic inflation, Starobinsky type and Higgs type inflation are presented.

  12. Structure of Kaehler potential for D-term inflationary attractor models

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, Kazunori [Tokyo Univ. (Japan). Dept. of Physics; Tokyo Univ., Chiba (Japan). Kavli IPMU (WPI), UTIAS; Saikawa, Ken' ichi [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Tokyo Institute of Technology (Japan). Dept. of Physics; Terada, Takahiro [Tokyo Univ. (Japan). Dept. of Physics; Asia Pacific Center for Theoretical Physics (APCTP), Pohang (Korea, Republic of); Yamaguchi, Masahide [Tokyo Institute of Technology (Japan). Dept. of Physics

    2016-05-15

    Minimal chaotic models of D-term inflation predicts too large primordial tensor perturbations. Although it can be made consistent with observations utilizing higher order terms in the Kaehler potential, expansion is not controlled in the absence of symmetries. We comprehensively study the conditions of Kaehler potential for D-term plateau-type potentials and discuss its symmetry. They include the α-attractor model with a massive vector supermultiplet and its generalization leading to pole inflation of arbitrary order. We extend the models so that it can describe Coulomb phase, gauge anomaly is cancelled, and fields other than inflaton are stabilized during inflation. We also point out a generic issue for large-field D-term inflation that the masses of the non-inflaton fields tend to exceed the Planck scale.

  13. Unity of cosmological inflation attractors.

    Science.gov (United States)

    Galante, Mario; Kallosh, Renata; Linde, Andrei; Roest, Diederik

    2015-04-10

    Recently, several broad classes of inflationary models have been discovered whose cosmological predictions, in excellent agreement with Planck, are stable with respect to significant modifications of the inflaton potential. Some classes of models are based on a nonminimal coupling to gravity. These models, which we call ξ attractors, describe universal cosmological attractors (including Higgs inflation) and induced inflation models. Another class describes conformal attractors (including Starobinsky inflation and T models) and their generalization to α attractors. The aim of this Letter is to elucidate the common denominator of these attractors: their robust predictions stem from a joint pole of order 2 in the kinetic term of the inflaton field in the Einstein frame formulation prior to switching to the canonical variables. Model-dependent differences only arise at subleading level in the kinetic term. As a final step towards the unification of the different attractors, we introduce a special class of ξ attractors which is fully equivalent to α attractors with the identification α=1+(1/6ξ). While r is generically predicted to be of the order 1/N^{2}, there is no theoretical lower bound on r in this class of models.

  14. Power Spectrum of Inflationary Attractors

    NARCIS (Netherlands)

    Broy, Benedict J.; Roest, Diederik; Westphal, Alexander

    2015-01-01

    Inflationary attractors predict the spectral index and tensor-to-scalar ratio to take specific values that are consistent with Planck. An example is the universal attractor for models with a generalised non-minimal coupling, leading to Starobinsky inflation. In this paper we demonstrate that it also

  15. The Global Attractor of a Non-Local PDE Model with Delay for Population Dynamics in Rn

    Institute of Scientific and Technical Information of China (English)

    Zhi Xiang LI

    2011-01-01

    In this paper, we consider a non-local PDE model with delay for population dynamics in R. First, we prove the existence and uniqueness of weak solutions under some suitable decayed assumptions on non-local term at infinity. Then, we obtain the global attractor by proving ω-limit compactness property of the solution operator semigroup.

  16. Synthetic Modeling of Autonomous Learning with a Chaotic Neural Network

    Science.gov (United States)

    Funabashi, Masatoshi

    We investigate the possible role of intermittent chaotic dynamics called chaotic itinerancy, in interaction with nonsupervised learnings that reinforce and weaken the neural connection depending on the dynamics itself. We first performed hierarchical stability analysis of the Chaotic Neural Network model (CNN) according to the structure of invariant subspaces. Irregular transition between two attractor ruins with positive maximum Lyapunov exponent was triggered by the blowout bifurcation of the attractor spaces, and was associated with riddled basins structure. We secondly modeled two autonomous learnings, Hebbian learning and spike-timing-dependent plasticity (STDP) rule, and simulated the effect on the chaotic itinerancy state of CNN. Hebbian learning increased the residence time on attractor ruins, and produced novel attractors in the minimum higher-dimensional subspace. It also augmented the neuronal synchrony and established the uniform modularity in chaotic itinerancy. STDP rule reduced the residence time on attractor ruins, and brought a wide range of periodicity in emerged attractors, possibly including strange attractors. Both learning rules selectively destroyed and preserved the specific invariant subspaces, depending on the neuron synchrony of the subspace where the orbits are situated. Computational rationale of the autonomous learning is discussed in connectionist perspective.

  17. Regime shifts under forcing of non-stationary attractors: Conceptual model and case studies in hydrologic systems

    Science.gov (United States)

    Park, Jeryang; Rao, P. Suresh C.

    2014-11-01

    We present here a conceptual model and analysis of complex systems using hypothetical cases of regime shifts resulting from temporal non-stationarity in attractor strengths, and then present selected published cases to illustrate such regime shifts in hydrologic systems (shallow aquatic ecosystems; water table shifts; soil salinization). Complex systems are dynamic and can exist in two or more stable states (or regimes). Temporal variations in state variables occur in response to fluctuations in external forcing, which are modulated by interactions among internal processes. Combined effects of external forcing and non-stationary strengths of alternative attractors can lead to shifts from original to alternate regimes. In systems with bi-stable states, when the strengths of two competing attractors are constant in time, or are non-stationary but change in a linear fashion, regime shifts are found to be temporally stationary and only controlled by the characteristics of the external forcing. However, when attractor strengths change in time non-linearly or vary stochastically, regime shifts in complex systems are characterized by non-stationary probability density functions (pdfs). We briefly discuss implications and challenges to prediction and management of hydrologic complex systems.

  18. Inverse Symmetric Inflationary Attractors

    CERN Document Server

    Odintsov, S D

    2016-01-01

    We present a class of inflationary potentials which are invariant under a special symmetry, which depends on the parameters of the models. As we show, in certain limiting cases, the inverse symmetric potentials are qualitatively similar to the $\\alpha$-attractors models, since the resulting observational indices are identical. However, there are some quantitative differences which we discuss in some detail. As we show, some inverse symmetric models always yield results compatible with observations, but this strongly depends on the asymptotic form of the potential at large $e$-folding numbers. In fact when the limiting functional form is identical to the one corresponding to the $\\alpha$-attractors models, the compatibility with the observations is guaranteed. Also we find the relation of the inverse symmetric models with the Starobinsky model and we highlight the differences. In addition, an alternative inverse symmetric model is studied and as we show, not all the inverse symmetric models are viable. Moreove...

  19. Analysis and control of complex dynamical systems robust bifurcation, dynamic attractors, and network complexity

    CERN Document Server

    Imura, Jun-ichi; Ueta, Tetsushi

    2015-01-01

    This book is the first to report on theoretical breakthroughs on control of complex dynamical systems developed by collaborative researchers in the two fields of dynamical systems theory and control theory. As well, its basic point of view is of three kinds of complexity: bifurcation phenomena subject to model uncertainty, complex behavior including periodic/quasi-periodic orbits as well as chaotic orbits, and network complexity emerging from dynamical interactions between subsystems. Analysis and Control of Complex Dynamical Systems offers a valuable resource for mathematicians, physicists, and biophysicists, as well as for researchers in nonlinear science and control engineering, allowing them to develop a better fundamental understanding of the analysis and control synthesis of such complex systems.

  20. Bifurcations and strange nonchaotic attractors in a phase oscillator model of glacial-interglacial cycles

    CERN Document Server

    Mitsui, Takahito; Aihara, Kazuyuki

    2015-01-01

    Glacial-interglacial cycles are large variations in continental ice mass and greenhouse gases, which have dominated climate variability over the Quaternary. The dominant periodicity of the cycles is $\\sim $40 kyr before the so-called middle Pleistocene transition between $\\sim$1.2 and $\\sim$0.7 Myr ago, and it is $\\sim $100 kyr after the transition. In this paper, the dynamics of glacial-interglacial cycles are investigated using a phase oscillator model forced by the time-varying incoming solar radiation (insolation). We analyze the bifurcations of the system and show that strange nonchaotic attractors appear through nonsmooth saddle-node bifurcations of tori. The bifurcation analysis indicates that mode-locking is likely to occur for the 41 kyr glacial cycles but not likely for the 100 kyr glacial cycles. The sequence of mode-locked 41 kyr cycles is robust to small parameter changes. However, the sequence of 100 kyr glacial cycles can be sensitive to parameter changes when the system has a strange nonchaoti...

  1. Hot Attractors

    CERN Document Server

    Goldstein, Kevin; Nampuri, Suresh

    2014-01-01

    The product of the areas of the event horizon and the Cauchy horizon of a non-extremal black hole equals the square of the area of the horizon of the black hole obtained from taking the smooth extremal limit. We establish this result for a large class of black holes using the second order equations of motion, black hole thermodynamics, and the attractor mechanism for extremal black holes. This happens even though the area of each horizon generically depends on the moduli, which are asymptotic values of scalar fields. The conformal field theory dual to the BTZ black hole facilitates a microscopic interpretation of the result. In addition, we demonstrate that certain quantities which vanish in the extremal case are zero when integrated over the region between the two horizons. We corroborate these conclusions through an analysis of known solutions.

  2. Oscillatory neurocomputing with ring attractors: a network architecture for mapping locations in space onto patterns of neural synchrony.

    Science.gov (United States)

    Blair, Hugh T; Wu, Allan; Cong, Jason

    2014-02-01

    Theories of neural coding seek to explain how states of the world are mapped onto states of the brain. Here, we compare how an animal's location in space can be encoded by two different kinds of brain states: population vectors stored by patterns of neural firing rates, versus synchronization vectors stored by patterns of synchrony among neural oscillators. It has previously been shown that a population code stored by spatially tuned 'grid cells' can exhibit desirable properties such as high storage capacity and strong fault tolerance; here it is shown that similar properties are attainable with a synchronization code stored by rhythmically bursting 'theta cells' that lack spatial tuning. Simulations of a ring attractor network composed from theta cells suggest how a synchronization code might be implemented using fewer neurons and synapses than a population code with similar storage capacity. It is conjectured that reciprocal connections between grid and theta cells might control phase noise to correct two kinds of errors that can arise in the code: path integration and teleportation errors. Based upon these analyses, it is proposed that a primary function of spatially tuned neurons might be to couple the phases of neural oscillators in a manner that allows them to encode spatial locations as patterns of neural synchrony. PMID:24366137

  3. Oscillatory neurocomputing with ring attractors: a network architecture for mapping locations in space onto patterns of neural synchrony.

    Science.gov (United States)

    Blair, Hugh T; Wu, Allan; Cong, Jason

    2014-02-01

    Theories of neural coding seek to explain how states of the world are mapped onto states of the brain. Here, we compare how an animal's location in space can be encoded by two different kinds of brain states: population vectors stored by patterns of neural firing rates, versus synchronization vectors stored by patterns of synchrony among neural oscillators. It has previously been shown that a population code stored by spatially tuned 'grid cells' can exhibit desirable properties such as high storage capacity and strong fault tolerance; here it is shown that similar properties are attainable with a synchronization code stored by rhythmically bursting 'theta cells' that lack spatial tuning. Simulations of a ring attractor network composed from theta cells suggest how a synchronization code might be implemented using fewer neurons and synapses than a population code with similar storage capacity. It is conjectured that reciprocal connections between grid and theta cells might control phase noise to correct two kinds of errors that can arise in the code: path integration and teleportation errors. Based upon these analyses, it is proposed that a primary function of spatially tuned neurons might be to couple the phases of neural oscillators in a manner that allows them to encode spatial locations as patterns of neural synchrony.

  4. Rotating attractors

    International Nuclear Information System (INIS)

    We prove that, in a general higher derivative theory of gravity coupled to abelian gauge fields and neutral scalar fields, the entropy and the near horizon background of a rotating extremal black hole is obtained by extremizing an entropy function which depends only on the parameters labeling the near horizon background and the electric and magnetic charges and angular momentum carried by the black hole. If the entropy function has a unique extremum then this extremum must be independent of the asymptotic values of the moduli scalar fields and the solution exhibits attractor behaviour. If the entropy function has flat directions then the near horizon background is not uniquely determined by the extremization equations and could depend on the asymptotic data on the moduli fields, but the value of the entropy is still independent of this asymptotic data. We illustrate these results in the context of two derivative theories of gravity in several examples. These include Kerr black hole, Kerr-Newman black hole, black holes in Kaluza-Klein theory, and black holes in toroidally compactified heterotic string theory

  5. On the Separability of Attractors in Grandmother Dynamic Systems with Structured Connectivity

    CERN Document Server

    Costa, L F

    2007-01-01

    The combination of complex networks and dynamic systems research is poised to yield some of the most interesting theoretic and applied scientific results along the forthcoming decades. The present work addresses a particularly important related aspect, namely the quantification of how well separated can the attractors be in dynamic systems underlined by four types of complex networks (Erd\\H{o}s-R\\'enyi, Barab\\'asi-Albert, Watts-Strogatz and as well as a geographic model). Attention is focused on grandmother dynamic systems, where each state variable (associated to each node) is used to represent a specific prototype pattern (attractor). By assuming that the attractors spread their influence among its neighboring nodes through a diffusive process, it is possible to overlook the specific details of specific dynamics and focus attention on the separability among such attractors. This property is defined in terms of two separation indices (one individual to each prototype and the other considering also the immedi...

  6. Dark Energy from $\\alpha$-Attractors

    CERN Document Server

    Linder, Eric V

    2015-01-01

    A class of inflation theories called $\\alpha$-attractors has been investigated recently with interesting properties interpolating between quadratic potentials, the Starobinsky model, and an attractor limit. Here we examine their use for late time cosmic acceleration. We generalize the class and demonstrate how it can interpolate between thawing and freezing dark energy, and reduce the fine tuning of initial conditions, allowing $w\\approx-1$ for a prolonged period or as a de Sitter attractor.

  7. Non-minimal coupling and inflationary attractors

    CERN Document Server

    Yi, Zhu

    2016-01-01

    We show explicitly how the T-model, E-model and Hilltop inflations are obtained from the general scalar-tensor theory of gravity with arbitrary conformal factors in the strong coupling limit. We argue that $\\xi$ attractors can give any observables $n_s$ and $r$ by this method. The existence of attractors imposes a challenge to distinguish different models.

  8. A dynamical model for hierarchy and modular organization: The trajectories en route to the attractor at the transition to chaos

    Science.gov (United States)

    Robledo, Alberto

    2012-11-01

    We show that the full features of the dynamics towards the Feigenbaum attractor, present in all low-dimensional maps with a unimodal leading component, form a hierarchical construction with modular organization that leads to a clear-cut emergent property. This well-known nonlinear model system combines a simple and precise definition, an intricate nested hierarchical dynamical structure, and emergence of a power-law dynamical property absent in the exponential-law that governs the dynamics within the modules. This classic nonlinear system is put forward as a working example for complex collective behavior.

  9. FREQUENCY CATASTROPHE AND CO-EXISTING ATTRACTORS IN A CELL Ca2+ NONLINEAR OSCILLATION MODEL WITH TIME DELAY*

    Institute of Scientific and Technical Information of China (English)

    应阳君; 黄祖洽

    2001-01-01

    Frequency catastrophe is found in a cell Ca2+ nonlinear oscillation model with time delay. The relation of the frequency transition to the time delay is studied by numerical simulations and theoretical analysis. There is a range of parameters in which two kinds of attractors with great frequency differences co-exist in the system. Along with parameter changes, a critical phenomenon occurs and the oscillation frequency changes greatly. This mechanism helps us to deepen the understanding of the complex dynamics of delay systems, and might be of some meaning in cell signalling.

  10. Modeling and controlling the two-phase dynamics of the p53 network: a Boolean network approach

    Science.gov (United States)

    Lin, Guo-Qiang; Ao, Bin; Chen, Jia-Wei; Wang, Wen-Xu; Di, Zeng-Ru

    2014-12-01

    Although much empirical evidence has demonstrated that p53 plays a key role in tumor suppression, the dynamics and function of the regulatory network centered on p53 have not yet been fully understood. Here, we develop a Boolean network model to reproduce the two-phase dynamics of the p53 network in response to DNA damage. In particular, we map the fates of cells into two types of Boolean attractors, and we find that the apoptosis attractor does not exist for minor DNA damage, reflecting that the cell is reparable. As the amount of DNA damage increases, the basin of the repair attractor shrinks, accompanied by the rising of the apoptosis attractor and the expansion of its basin, indicating that the cell becomes more irreparable with more DNA damage. For severe DNA damage, the repair attractor vanishes, and the apoptosis attractor dominates the state space, accounting for the exclusive fate of death. Based on the Boolean network model, we explore the significance of links, in terms of the sensitivity of the two-phase dynamics, to perturbing the weights of links and removing them. We find that the links are either critical or ordinary, rather than redundant. This implies that the p53 network is irreducible, but tolerant of small mutations at some ordinary links, and this can be interpreted with evolutionary theory. We further devised practical control schemes for steering the system into the apoptosis attractor in the presence of DNA damage by pinning the state of a single node or perturbing the weight of a single link. Our approach offers insights into understanding and controlling the p53 network, which is of paramount importance for medical treatment and genetic engineering.

  11. Cosmological attractors in massive gravity

    CERN Document Server

    Dubovsky, S; Tkachev, I I

    2005-01-01

    We study Lorentz-violating models of massive gravity which preserve rotations and are invariant under time-dependent shifts of the spatial coordinates. In the linear approximation the Newtonian potential in these models has an extra ``confining'' term proportional to the distance from the source. We argue that during cosmological expansion the Universe may be driven to an attractor point with larger symmetry which includes particular simultaneous dilatations of time and space coordinates. The confining term in the potential vanishes as one approaches the attractor. In the vicinity of the attractor the extra contribution is present in the Friedmann equation which, in a certain range of parameters, gives rise to the cosmic acceleration.

  12. The Lorentz Attractor and Other Attractors in the Economic System of a Firm

    International Nuclear Information System (INIS)

    A nonlinear model of the economic system of ''a firm'' is offered. It is shown that this model has several chaotic attractors, including the Lorentz attractor and a new attractor that, in our opinion, has not yet been described in the scientific literature. The chaotic nature of the attractors that were found was confirmed by computing the Lyapunov indicators. The functioning of our economic model is demonstrated with examples of firm behaviour that change the control parameters; these are well known in practice. In particular, it is shown that changes in the specific control parameters may change the system and avoid bankruptcy for the firm

  13. A signature of attractor dynamics in the CA3 region of the hippocampus.

    Directory of Open Access Journals (Sweden)

    César Rennó-Costa

    2014-05-01

    Full Text Available The notion of attractor networks is the leading hypothesis for how associative memories are stored and recalled. A defining anatomical feature of such networks is excitatory recurrent connections. These "attract" the firing pattern of the network to a stored pattern, even when the external input is incomplete (pattern completion. The CA3 region of the hippocampus has been postulated to be such an attractor network; however, the experimental evidence has been ambiguous, leading to the suggestion that CA3 is not an attractor network. In order to resolve this controversy and to better understand how CA3 functions, we simulated CA3 and its input structures. In our simulation, we could reproduce critical experimental results and establish the criteria for identifying attractor properties. Notably, under conditions in which there is continuous input, the output should be "attracted" to a stored pattern. However, contrary to previous expectations, as a pattern is gradually "morphed" from one stored pattern to another, a sharp transition between output patterns is not expected. The observed firing patterns of CA3 meet these criteria and can be quantitatively accounted for by our model. Notably, as morphing proceeds, the activity pattern in the dentate gyrus changes; in contrast, the activity pattern in the downstream CA3 network is attracted to a stored pattern and thus undergoes little change. We furthermore show that other aspects of the observed firing patterns can be explained by learning that occurs during behavioral testing. The CA3 thus displays both the learning and recall signatures of an attractor network. These observations, taken together with existing anatomical and behavioral evidence, make the strong case that CA3 constructs associative memories based on attractor dynamics.

  14. Multiple hydrological attractors under stochastic daily forcing: 1. Can multiple attractors exist?

    Science.gov (United States)

    Peterson, T. J.; Western, A. W.

    2014-04-01

    Including positive feedbacks in hydrological models has recently been shown to result in complex behavior with multiple steady states. When a large disturbance, say a major drought, is simulated within such models the hydrology changes. Once the disturbance ends the hydrology does not return to that prior to the disturbance, but rather, persists within an alternate state. These multiple steady states (henceforth attractors) exist for a single model parameterization and cause the system to have a finite resilience to such transient disturbances. A limitation of past hydrological resilience studies is that multiple attractors have been identified using mean annual or mean monthly forcing. Considering that most hydrological fluxes are subject to significant forcing stochasticity and do not operate at such large timescales, it remains an open question whether multiple hydrological attractors can exist when a catchment is subject to stochastic daily forcing. This question is the focus of this paper and it needs to be addressed prior to searching for multiple hydrological attractors in the field. To investigate this, a previously developed semidistributed hillslope ecohydrological model was adopted which exhibited multiple steady states under average monthly climate forcing. In this paper, the ecohydrological model was used to explore if feedbacks between the vegetation and a saline water table result in two attractors existing under daily stochastic forcing. The attractors and the threshold between them (henceforth repellor) were quantified using a new limit cycle continuation technique that upscaled climate forcing from daily to monthly (model and limit cycle code is freely available). The method was used to determine the values of saturated lateral hydraulic conductivity at which multiple attractors exist. These estimates were then assessed against time-integration estimates, which they agreed with. Overall, multiple attractors were found to exist under stochastic

  15. The 3-Attractor Water Model: Monte-Carlo Simulations with a New, Effective 2-Body Potential (BMW

    Directory of Open Access Journals (Sweden)

    Francis Muguet

    2003-02-01

    Full Text Available According to the precepts of the 3-attractor (3-A water model, effective 2-body water potentials should feature as local minima the bifurcated and inverted water dimers in addition to the well-known linear water dimer global minimum. In order to test the 3-A model, a new pair wise effective intermolecular rigid water potential has been designed. The new potential is part of new class of potentials called BMW (Bushuev-Muguet-Water which is built by modifying existing empirical potentials. This version (BMW v. 0.1 has been designed by modifying the SPC/E empirical water potential. It is a preliminary version well suited for exploratory Monte-Carlo simulations. The shape of the potential energy surface (PES around each local minima has been approximated with the help of Gaussian functions. Classical Monte Carlo simulations have been carried out for liquid water in the NPT ensemble for a very wide range of state parameters up to the supercritical water regime. Thermodynamic properties are reported. The radial distributions functions (RDFs have been computed and are compared with the RDFs obtained from Neutron Scattering experimental data. Our preliminary Monte-Carlo simulations show that the seemingly unconventional hypotheses of the 3-A model are most plausible. The simulation has also uncovered a totally new role for 2-fold H-bonds.

  16. Time Series Prediction Based on Chaotic Attractor

    Institute of Scientific and Technical Information of China (English)

    LIKe-Ping; CHENTian-Lun; GAOZi-You

    2003-01-01

    A new prediction technique is proposed for chaotic time series. The usefulness of the technique is that it can kick off some false neighbor points which are not suitable for the local estimation of the dynamics systems. A time-delayed embedding is used to reconstruct the underlying attractor, and the prediction model is based on the time evolution of the topological neighboring in the phase space. We use a feedforward neural network to approximate the local dominant Lyapunov exponent, and choose the spatial neighbors by the Lyapunov exponent. The model is tested for the Mackey-Glass equation and the convection amplitude of lorenz systems. The results indicate that this prediction technique can improve the prediction of chaotic time series.

  17. Recurrences of strange attractors

    Indian Academy of Sciences (India)

    E J Ngamga; A Nandi; R Ramaswamy; M C Romano; M Thiel; J Kurths

    2008-06-01

    The transitions from or to strange nonchaotic attractors are investigated by recurrence plot-based methods. The techniques used here take into account the recurrence times and the fact that trajectories on strange nonchaotic attractors (SNAs) synchronize. The performance of these techniques is shown for the Heagy-Hammel transition to SNAs and for the fractalization transition to SNAs for which other usual nonlinear analysis tools are not successful.

  18. Dynamics inside the cancer cell attractor reveal cell heterogeneity, limits of stability, and escape.

    Science.gov (United States)

    Li, Qin; Wennborg, Anders; Aurell, Erik; Dekel, Erez; Zou, Jie-Zhi; Xu, Yuting; Huang, Sui; Ernberg, Ingemar

    2016-03-01

    The observed intercellular heterogeneity within a clonal cell population can be mapped as dynamical states clustered around an attractor point in gene expression space, owing to a balance between homeostatic forces and stochastic fluctuations. These dynamics have led to the cancer cell attractor conceptual model, with implications for both carcinogenesis and new therapeutic concepts. Immortalized and malignant EBV-carrying B-cell lines were used to explore this model and characterize the detailed structure of cell attractors. Any subpopulation selected from a population of cells repopulated the whole original basin of attraction within days to weeks. Cells at the basin edges were unstable and prone to apoptosis. Cells continuously changed states within their own attractor, thus driving the repopulation, as shown by fluorescent dye tracing. Perturbations of key regulatory genes induced a jump to a nearby attractor. Using the Fokker-Planck equation, this cell population behavior could be described as two virtual, opposing influences on the cells: one attracting toward the center and the other promoting diffusion in state space (noise). Transcriptome analysis suggests that these forces result from high-dimensional dynamics of the gene regulatory network. We propose that they can be generalized to all cancer cell populations and represent intrinsic behaviors of tumors, offering a previously unidentified characteristic for studying cancer. PMID:26929366

  19. Collaborative networks: Reference modeling

    NARCIS (Netherlands)

    L.M. Camarinha-Matos; H. Afsarmanesh

    2008-01-01

    Collaborative Networks: Reference Modeling works to establish a theoretical foundation for Collaborative Networks. Particular emphasis is put on modeling multiple facets of collaborative networks and establishing a comprehensive modeling framework that captures and structures diverse perspectives of

  20. Charge density study with the Maximum Entropy Method on model data of silicon. A search for non-nuclear attractors

    NARCIS (Netherlands)

    Vries, de R.Y.; Briels, W.J.; Feil, D.; Velde, te G.; Baerends, E.J.

    1996-01-01

    1990 Sakata and Sato applied the maximum entropy method (MEM) to a set of structure factors measured earlier by Saka and Kato with the Pendellösung method. They found the presence of non-nuclear attractors, i.e., maxima in the density between two bonded atoms. We applied the MEM to a limited set of

  1. Hydration Simulations of a Carbon Nanotube, Immersed in Water, according to the 3-Attractor Water Model

    Directory of Open Access Journals (Sweden)

    Francis F. Muguet

    2005-04-01

    Full Text Available MC simulations of a set of zigzag ((9,0-(14,0 and armchair ((6,6-(10,10carbon nanotubes immersed in water have been carried out in an NpT-ensemble (512 watermolecules, p=1 bar, T=298 K. Intermolecular interactions were described by BMWpotential according to which, besides the well-known linear water dimer bifurcated andinverted water dimers are metastable. In all cases, it was found that there are large periodicfluctuations of water occupancy inside the nanotubes. Decrease in the size of the nanotubediameter leads to a significant destruction of the H-bond network, and to a bifucarted dimerpopulation increase. Inverted dimer concentration relationship with the nanotube diameter ismore complicated. Population maximum for inverted dimers occurs for diameters of 10-11 å. Water features different intermolecular structures not only inside carbon nanotubesbut also in the outer first hydration shells. The amount of bifurcated and inverted dimers issignificantly more important in the first hydration shell than in bulk water.

  2. Hidden attractors in dynamical systems

    Science.gov (United States)

    Dudkowski, Dawid; Jafari, Sajad; Kapitaniak, Tomasz; Kuznetsov, Nikolay V.; Leonov, Gennady A.; Prasad, Awadhesh

    2016-06-01

    Complex dynamical systems, ranging from the climate, ecosystems to financial markets and engineering applications typically have many coexisting attractors. This property of the system is called multistability. The final state, i.e., the attractor on which the multistable system evolves strongly depends on the initial conditions. Additionally, such systems are very sensitive towards noise and system parameters so a sudden shift to a contrasting regime may occur. To understand the dynamics of these systems one has to identify all possible attractors and their basins of attraction. Recently, it has been shown that multistability is connected with the occurrence of unpredictable attractors which have been called hidden attractors. The basins of attraction of the hidden attractors do not touch unstable fixed points (if exists) and are located far away from such points. Numerical localization of the hidden attractors is not straightforward since there are no transient processes leading to them from the neighborhoods of unstable fixed points and one has to use the special analytical-numerical procedures. From the viewpoint of applications, the identification of hidden attractors is the major issue. The knowledge about the emergence and properties of hidden attractors can increase the likelihood that the system will remain on the most desirable attractor and reduce the risk of the sudden jump to undesired behavior. We review the most representative examples of hidden attractors, discuss their theoretical properties and experimental observations. We also describe numerical methods which allow identification of the hidden attractors.

  3. Recurrent motifs as resonant attractor states in the narrative field: a testable model of archetype.

    Science.gov (United States)

    Goodwyn, Erik

    2013-06-01

    At the most basic level, archetypes represented Jung's attempt to explain the phenomenon of recurrent myths and folktale motifs (Jung 1956, 1959, para. 99). But the archetype remains controversial as an explanation of recurrent motifs, as the existence of recurrent motifs does not prove that archetypes exist. Thus, the challenge for contemporary archetype theory is not merely to demonstrate that recurrent motifs exist, since that is not disputed, but to demonstrate that archetypes exist and cause recurrent motifs. The present paper proposes a new model which is unlike others in that it postulates how the archetype creates resonant motifs. This model necessarily clarifies and adapts some of Jung's seminal ideas on archetype in order to provide a working framework grounded in contemporary practice and methodologies. For the first time, a model of archetype is proposed that can be validated on empirical, rather than theoretical grounds. This is achieved by linking the archetype to the hard data of recurrent motifs rather than academic trends in other fields.

  4. Recurrent motifs as resonant attractor states in the narrative field: a testable model of archetype.

    Science.gov (United States)

    Goodwyn, Erik

    2013-06-01

    At the most basic level, archetypes represented Jung's attempt to explain the phenomenon of recurrent myths and folktale motifs (Jung 1956, 1959, para. 99). But the archetype remains controversial as an explanation of recurrent motifs, as the existence of recurrent motifs does not prove that archetypes exist. Thus, the challenge for contemporary archetype theory is not merely to demonstrate that recurrent motifs exist, since that is not disputed, but to demonstrate that archetypes exist and cause recurrent motifs. The present paper proposes a new model which is unlike others in that it postulates how the archetype creates resonant motifs. This model necessarily clarifies and adapts some of Jung's seminal ideas on archetype in order to provide a working framework grounded in contemporary practice and methodologies. For the first time, a model of archetype is proposed that can be validated on empirical, rather than theoretical grounds. This is achieved by linking the archetype to the hard data of recurrent motifs rather than academic trends in other fields. PMID:23750942

  5. Symmetron and de Sitter attractor in a teleparallel model of cosmology

    CERN Document Server

    Sadjadi, H Mohseni

    2016-01-01

    In the teleparallel framework of cosmology, a quintessence with non-minimal couplings to the scalar torsion and a boundary term is considered. A conformal coupling to matter density is also taken into account. It is shown that the model can describe onset of cosmic acceleration after an epoch of matter dominated era, where dark energy is negligible, via $Z_2$ symmetry breaking. While the conformal coupling holds the Universe in a vacuum with zero dark energy density in the early epoch, the non-minimal couplings lead the Universe to a stable state with de Sitter expansion at late time.

  6. Fermions, wigs, and attractors

    Energy Technology Data Exchange (ETDEWEB)

    Gentile, L.G.C., E-mail: lgentile@pd.infn.it [DISIT, Università del Piemonte Orientale, via T. Michel, 11, Alessandria 15120 (Italy); Dipartimento di Fisica “Galileo Galilei”, Università di Padova, via Marzolo 8, 35131 Padova (Italy); INFN, Sezione di Padova, via Marzolo 8, 35131 Padova (Italy); Grassi, P.A., E-mail: pgrassi@mfn.unipmn.it [DISIT, Università del Piemonte Orientale, via T. Michel, 11, Alessandria 15120 (Italy); INFN, Gruppo Collegato di Alessandria, Sezione di Torino (Italy); Marrani, A., E-mail: alessio.marrani@fys.kuleuven.be [ITF KU Leuven, Celestijnenlaan 200D, 3001 Leuven (Belgium); Mezzalira, A., E-mail: andrea.mezzalira@ulb.ac.be [Physique Théorique et Mathématique Université Libre de Bruxelles, C.P. 231, 1050 Bruxelles (Belgium)

    2014-05-01

    We compute the modifications to the attractor mechanism due to fermionic corrections. In N=2,D=4 supergravity, at the fourth order, we find terms giving rise to new contributions to the horizon values of the scalar fields of the vector multiplets.

  7. Attractors in Black

    CERN Document Server

    Bellucci, S; Marrani, A

    2008-01-01

    We review recent results in the study of attractor horizon geometries (with non-vanishing Bekenstein-Hawking entropy) of dyonic extremal d=4 black holes in supergravity. We focus on N=2, d=4 ungauged supergravity coupled to a number n_{V} of Abelian vector multiplets, outlining the fundamentals of the special Kaehler geometry of the vector multiplets' scalar manifold (of complex dimension n_{V}), and studying the 1/2-BPS attractors, as well as the non-BPS (non-supersymmetric) ones with non-vanishing central charge. For symmetric special Kaehler geometries, we present the complete classification of the orbits in the symplectic representation of the classical U-duality group (spanned by the black hole charge configuration supporting the attractors), as well as of the moduli spaces of non-BPS attractors (spanned by the scalars which are not stabilized at the black hole event horizon). Finally, we report on an analogous classification for N>2-extended, d=4 ungauged supergravities, in which also the 1/N-BPS attrac...

  8. Single-field $\\alpha$-attractors

    CERN Document Server

    Linde, Andrei

    2015-01-01

    I describe a simple class of $\\alpha$-attractors, generalizing the single-field GL model of inflation in supergravity. The new class of models is defined for $0<\\alpha \\lesssim 1$, providing a good match to the present cosmological data. I also present a generalized version of these models which can describe not only inflation but also dark energy and supersymmetry breaking.

  9. Single-field α-attractors

    Energy Technology Data Exchange (ETDEWEB)

    Linde, Andrei [Department of Physics and SITP, Stanford University,Stanford, California 94305 (United States)

    2015-05-05

    I describe a simple class of α-attractors, generalizing the single-field GL model of inflation in supergravity. The new class of models is defined for 0<α≲1, providing a good match to the present cosmological data. I also present a generalized version of these models which can describe not only inflation but also dark energy and supersymmetry breaking.

  10. An integrated network model of psychotic symptoms.

    Science.gov (United States)

    Looijestijn, Jasper; Blom, Jan Dirk; Aleman, André; Hoek, Hans W; Goekoop, Rutger

    2015-12-01

    The full body of research on the nature of psychosis and its determinants indicates that a considerable number of factors are relevant to the development of hallucinations, delusions, and other positive symptoms, ranging from neurodevelopmental parameters and altered connectivity of brain regions to impaired cognitive functioning and social factors. We aimed to integrate these factors in a single mathematical model based on network theory. At the microscopic level this model explains positive symptoms of psychosis in terms of experiential equivalents of robust, high-frequency attractor states of neural networks. At the mesoscopic level it explains them in relation to global brain states, and at the macroscopic level in relation to social-network structures and dynamics. Due to the scale-free nature of biological networks, all three levels are governed by the same general laws, thereby allowing for an integrated model of biological, psychological, and social phenomena involved in the mediation of positive symptoms of psychosis. This integrated network model of psychotic symptoms (INMOPS) is described together with various possibilities for application in clinical practice. PMID:26432501

  11. An integrated network model of psychotic symptoms.

    Science.gov (United States)

    Looijestijn, Jasper; Blom, Jan Dirk; Aleman, André; Hoek, Hans W; Goekoop, Rutger

    2015-12-01

    The full body of research on the nature of psychosis and its determinants indicates that a considerable number of factors are relevant to the development of hallucinations, delusions, and other positive symptoms, ranging from neurodevelopmental parameters and altered connectivity of brain regions to impaired cognitive functioning and social factors. We aimed to integrate these factors in a single mathematical model based on network theory. At the microscopic level this model explains positive symptoms of psychosis in terms of experiential equivalents of robust, high-frequency attractor states of neural networks. At the mesoscopic level it explains them in relation to global brain states, and at the macroscopic level in relation to social-network structures and dynamics. Due to the scale-free nature of biological networks, all three levels are governed by the same general laws, thereby allowing for an integrated model of biological, psychological, and social phenomena involved in the mediation of positive symptoms of psychosis. This integrated network model of psychotic symptoms (INMOPS) is described together with various possibilities for application in clinical practice.

  12. Strange attractor simulated on a quantum computer

    CERN Document Server

    Terraneo, M; Shepelyansky, D L

    2003-01-01

    Starting from the work of Lorenz, it has been realized that the dynamics of many various dissipative systems converges to so-called strange attractors. These objects are characterized by fractal dimensions and chaotic unstable dynamics of individual trajectories. They appear in nature in very different contexts, including applications to turbulence and weather forecast, molecular dynamics, chaotic chemical reactions, multimode solid state lasers and complex dynamics in ecological systems and physiology. The efficient numerical simulation of such dissipative systems can therefore lead to many important practical applications. Here we study a simple deterministic model where dynamics converges to a strange attractor, and show that it can be efficiently simulated on a quantum computer. Even if the dynamics on the attractor is unstable, dissipative and irreversible, a realistic quantum computer can simulate it in a reversible way, and, already with 70 qubits, will provide access to new informations unaccessible f...

  13. Relative stability of network states in Boolean network models of gene regulation in development.

    Science.gov (United States)

    Zhou, Joseph Xu; Samal, Areejit; d'Hérouël, Aymeric Fouquier; Price, Nathan D; Huang, Sui

    2016-01-01

    Progress in cell type reprogramming has revived the interest in Waddington's concept of the epigenetic landscape. Recently researchers developed the quasi-potential theory to represent the Waddington's landscape. The Quasi-potential U(x), derived from interactions in the gene regulatory network (GRN) of a cell, quantifies the relative stability of network states, which determine the effort required for state transitions in a multi-stable dynamical system. However, quasi-potential landscapes, originally developed for continuous systems, are not suitable for discrete-valued networks which are important tools to study complex systems. In this paper, we provide a framework to quantify the landscape for discrete Boolean networks (BNs). We apply our framework to study pancreas cell differentiation where an ensemble of BN models is considered based on the structure of a minimal GRN for pancreas development. We impose biologically motivated structural constraints (corresponding to specific type of Boolean functions) and dynamical constraints (corresponding to stable attractor states) to limit the space of BN models for pancreas development. In addition, we enforce a novel functional constraint corresponding to the relative ordering of attractor states in BN models to restrict the space of BN models to the biological relevant class. We find that BNs with canalyzing/sign-compatible Boolean functions best capture the dynamics of pancreas cell differentiation. This framework can also determine the genes' influence on cell state transitions, and thus can facilitate the rational design of cell reprogramming protocols.

  14. Is attentional blink a byproduct of neocortical attractors?

    Directory of Open Access Journals (Sweden)

    David N Silverstein

    2011-05-01

    Full Text Available This study proposes a computational model for attentional blink or blink of the mind, a phenomenon where a human subject misses perception of a later expected visual pattern as two expected visual patterns are presented less than 500 ms apart. A neocortical patch modeled as an attractor network is stimulated with a sequence of 14 patterns 100 ms apart, two of which are expected targets. Patterns that become active attractors are considered recognized. A neocortical patch is represented as a square matrix of hypercolumns, each containing a set of minicolumns with synaptic connections within and across both minicolumns and hypercolumns. Each minicolumn consists of locally connected layer 2/3 pyramidal cells with interacting basket cells and layer 4 pyramidal cells for input stimulation. All neurons are implemented using the Hodgkin-Huxley multi-compartmental cell formalism and include calcium dynamics, and they interact via saturating and depressing AMPA / NMDA and GABAA synapses. Stored patterns are encoded with global connectivity of minicolumns across hypercolumns and active patterns compete as the result of lateral inhibition in the network. Stored patterns were stimulated over time intervals to create attractor interference measurable with synthetic spike traces. This setup corresponds with item presentations in human visual attentional blink studies. Stored target patterns were depolarized while distractor patterns where hyperpolarized to represent expectation of items in working memory. Additionally, studies on the inhibitory effect of benzodiazopines on attentional blink in human subjects were compared with neocortical simulations where the GABAA receptor conductance and decay time were increased. Simulations showed increases in the attentional blink duration, agreeing with observations in human studies.

  15. Dimension of chaotic attractors

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J.D.; Ott, E.; Yorke, J.A.

    1982-09-01

    Dimension is perhaps the most basic property of an attractor. In this paper we discuss a variety of different definitions of dimension, compute their values for a typical example, and review previous work on the dimension of chaotic attractors. The relevant definitions of dimension are of two general types, those that depend only on metric properties, and those that depend on probabilistic properties (that is, they depend on the frequency with which a typical trajectory visits different regions of the attractor). Both our example and the previous work that we review support the conclusion that all of the probabilistic dimensions take on the same value, which we call the dimension of the natural measure, and all of the metric dimensions take on a common value, which we call the fractal dimension. Furthermore, the dimension of the natural measure is typically equal to the Lyapunov dimension, which is defined in terms of Lyapunov numbers, and thus is usually far easier to calculate than any other definition. Because it is computable and more physically relevant, we feel that the dimension of the natural measure is more important than the fractal dimension.

  16. Cosmological Attractors from $α$-Scale Supergravity

    NARCIS (Netherlands)

    Roest, Diederik; Scalisi, Marco

    2015-01-01

    The Planck value of the spectral index can be interpreted as $n_s = 1 - 2/N$ in terms of the number of e-foldings $N$. An appealing explanation for this phenomenological observation is provided by $\\alpha$-attractors: the inflationary predictions of these supergravity models are fully determined by

  17. Cosmological attractors from alpha-scale supergravity

    NARCIS (Netherlands)

    Roest, Diederik; Scalisi, Marco

    2015-01-01

    The Planck value of the spectral index can be interpreted as n(s) = 1 - 2/N in terms of the number of e-foldings N. An appealing explanation for this phenomenological observation is provided by alpha-attractors: the inflationary predictions of these supergravity models are fully determined by the cu

  18. ATTRACTORS FOR THE BRUSSELATOR IN RN

    Institute of Scientific and Technical Information of China (English)

    Han Yongqian; Guo Boling

    2007-01-01

    We consider the reaction-diffusion system, a model of a certain chemical morphogenetic process and named Brusselator. For the Cauchy problem of this system with nondecaying initial data, the existence and uniqueness of the global solution is established. Moreover, it is proved that this system possesses a global attractor A in the corresponding phase space.

  19. Coexistence of exponentially many chaotic spin-glass attractors.

    Science.gov (United States)

    Peleg, Y; Zigzag, M; Kinzel, W; Kanter, I

    2011-12-01

    A chaotic network of size N with delayed interactions which resembles a pseudoinverse associative memory neural network is investigated. For a load α = P/N chaotic network functions as an associative memory of 2P attractors with macroscopic basin of attractions which decrease with α. At finite α, a chaotic spin-glass phase exists, where the number of distinct chaotic attractors scales exponentially with N. Each attractor is characterized by a coexistence of chaotic behavior and freezing of each one of the N chaotic units or freezing with respect to the P patterns. Results are supported by large scale simulations of networks composed of Bernoulli map units and Mackey-Glass time delay differential equations.

  20. Logical Modeling and Dynamical Analysis of Cellular Networks.

    Science.gov (United States)

    Abou-Jaoudé, Wassim; Traynard, Pauline; Monteiro, Pedro T; Saez-Rodriguez, Julio; Helikar, Tomáš; Thieffry, Denis; Chaouiya, Claudine

    2016-01-01

    The logical (or logic) formalism is increasingly used to model regulatory and signaling networks. Complementing these applications, several groups contributed various methods and tools to support the definition and analysis of logical models. After an introduction to the logical modeling framework and to several of its variants, we review here a number of recent methodological advances to ease the analysis of large and intricate networks. In particular, we survey approaches to determine model attractors and their reachability properties, to assess the dynamical impact of variations of external signals, and to consistently reduce large models. To illustrate these developments, we further consider several published logical models for two important biological processes, namely the differentiation of T helper cells and the control of mammalian cell cycle.

  1. STU attractors from vanishing concurrence

    CERN Document Server

    Lévay, Péter

    2010-01-01

    Concurrence is an entanglement measure characterizing the {\\it mixed} state bipartite correlations inside of a pure state of an $n$-qubit system. We show that after organizing the charges and the moduli in the STU model of $N=2$, $d=4$ supergravity to a three-qubit state, for static extremal spherically symmetric BPS black hole solutions the vanishing condition for all of the bipartite concurrences on the horizon is equivalent to the attractor equations. As a result of this the macroscopic black hole entropy given by the three-tangle can be reinterpreted as a linear entropy characterizing the {\\it pure} state entanglement for an arbitrary bipartite split. Both for the BPS and non-BPS cases explicit expressions for the concurrences are obtained, with their vanishing on the horizon is demonstrated.

  2. Optimal region of latching activity in an adaptive Potts model for networks of neurons

    International Nuclear Information System (INIS)

    In statistical mechanics, the Potts model is a model for interacting spins with more than two discrete states. Neural networks which exhibit features of learning and associative memory can also be modeled by a system of Potts spins. A spontaneous behavior of hopping from one discrete attractor state to another (referred to as latching) has been proposed to be associated with higher cognitive functions. Here we propose a model in which both the stochastic dynamics of Potts models and an adaptive potential function are present. A latching dynamics is observed in a limited region of the noise(temperature)–adaptation parameter space. We hence suggest noise as a fundamental factor in such alternations alongside adaptation. From a dynamical systems point of view, the noise–adaptation alternations may be the underlying mechanism for multi-stability in attractor-based models. An optimality criterion for realistic models is finally inferred

  3. A balanced memory network.

    Directory of Open Access Journals (Sweden)

    Yasser Roudi

    2007-09-01

    Full Text Available A fundamental problem in neuroscience is understanding how working memory--the ability to store information at intermediate timescales, like tens of seconds--is implemented in realistic neuronal networks. The most likely candidate mechanism is the attractor network, and a great deal of effort has gone toward investigating it theoretically. Yet, despite almost a quarter century of intense work, attractor networks are not fully understood. In particular, there are still two unanswered questions. First, how is it that attractor networks exhibit irregular firing, as is observed experimentally during working memory tasks? And second, how many memories can be stored under biologically realistic conditions? Here we answer both questions by studying an attractor neural network in which inhibition and excitation balance each other. Using mean-field analysis, we derive a three-variable description of attractor networks. From this description it follows that irregular firing can exist only if the number of neurons involved in a memory is large. The same mean-field analysis also shows that the number of memories that can be stored in a network scales with the number of excitatory connections, a result that has been suggested for simple models but never shown for realistic ones. Both of these predictions are verified using simulations with large networks of spiking neurons.

  4. Modeling worldwide highway networks

    Science.gov (United States)

    Villas Boas, Paulino R.; Rodrigues, Francisco A.; da F. Costa, Luciano

    2009-12-01

    This Letter addresses the problem of modeling the highway systems of different countries by using complex networks formalism. More specifically, we compare two traditional geographical models with a modified geometrical network model where paths, rather than edges, are incorporated at each step between the origin and the destination vertices. Optimal configurations of parameters are obtained for each model and used for the comparison. The highway networks of Australia, Brazil, India, and Romania are considered and shown to be properly modeled by the modified geographical model.

  5. Brain Network Modelling

    DEFF Research Database (Denmark)

    Andersen, Kasper Winther

    Three main topics are presented in this thesis. The first and largest topic concerns network modelling of functional Magnetic Resonance Imaging (fMRI) and Diffusion Weighted Imaging (DWI). In particular nonparametric Bayesian methods are used to model brain networks derived from resting state f...... for their ability to reproduce node clustering and predict unseen data. Comparing the models on whole brain networks, BCD and IRM showed better reproducibility and predictability than IDM, suggesting that resting state networks exhibit community structure. This also points to the importance of using models, which...... allow for complex interactions between all pairs of clusters. In addition, it is demonstrated how the IRM can be used for segmenting brain structures into functionally coherent clusters. A new nonparametric Bayesian network model is presented. The model builds upon the IRM and can be used to infer...

  6. Gravitational waves in $\\alpha-$attractors

    CERN Document Server

    Kumar, K Sravan; Moniz, Paulo Vargas; Das, Suratna

    2015-01-01

    We study inflation in the $\\alpha-$attractor model under a non-slow-roll dynamics with an ansatz proposed by Gong \\& Sasaki \\cite{Gong:2015ypa} of assuming $N=N\\left(\\phi\\right)$. Under this approach, we construct a class of local shapes of inflaton potential that are different from the T-models. We find this type of inflationary scenario predicts an attractor at $n_{s}\\sim0.967$ and $r\\sim0.00055$. In our approach, the non-slow-roll inflaton dynamics are related to the $\\alpha-$parameter which is the curvature of K\\"ahler geometry in the SUGRA embedding of this model.

  7. Modeling Epidemic Network Failures

    DEFF Research Database (Denmark)

    Ruepp, Sarah Renée; Fagertun, Anna Manolova

    2013-01-01

    This paper presents the implementation of a failure propagation model for transport networks when multiple failures occur resulting in an epidemic. We model the Susceptible Infected Disabled (SID) epidemic model and validate it by comparing it to analytical solutions. Furthermore, we evaluate...... the SID model’s behavior and impact on the network performance, as well as the severity of the infection spreading. The simulations are carried out in OPNET Modeler. The model provides an important input to epidemic connection recovery mechanisms, and can due to its flexibility and versatility be used...... to evaluate multiple epidemic scenarios in various network types....

  8. Artificial neural network modelling

    CERN Document Server

    Samarasinghe, Sandhya

    2016-01-01

    This book covers theoretical aspects as well as recent innovative applications of Artificial Neural networks (ANNs) in natural, environmental, biological, social, industrial and automated systems. It presents recent results of ANNs in modelling small, large and complex systems under three categories, namely, 1) Networks, Structure Optimisation, Robustness and Stochasticity 2) Advances in Modelling Biological and Environmental Systems and 3) Advances in Modelling Social and Economic Systems. The book aims at serving undergraduates, postgraduates and researchers in ANN computational modelling. .

  9. Sneutrino Inflation with $\\alpha$-attractors

    CERN Document Server

    Kallosh, Renata; Roest, Diederik; Wrase, Timm

    2016-01-01

    Sneutrino inflation employs the fermionic partners of the inflaton and stabilizer field as right-handed neutrinos to realize the seesaw mechanism for light neutrino masses. A crucial ingredient in existing constructions for sneutrino (multi-)natural inflation is an unbroken discrete shift symmetry. We demonstrate that a similar construction applies to $\\alpha$-attractor models. In this case the hyperbolic geometry protects the neutrino Yukawa couplings to the inflaton field, and the masses of leptons and Higgs fields, from blowing up when the inflaton is super-Planckian. We find that the predictions for $n_s$ and $r$ for $\\alpha$-attractor cosmological models, compatible with the current cosmological data, are preserved in the presence of the neutrino sector.

  10. Controlling Strange Attractor in Dynamics

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A nonlinear system which exhibits a strange attractor is considered, with the goal of illustrating how to control the chaotic dynamical system and to obtain a desired attracting periodic orbit by the OGY control algorithm.

  11. Inflationary Attractor from Tachyonic Matter

    CERN Document Server

    Guo, Z K; Cai, R G; Zhang, Y Z; Guo, Zong-Kuan; Piao, Yun-Song; Cai, Rong-Gen; Zhang, Yuan-Zhong

    2003-01-01

    We study the complete evolution of a flat and homogeneous universe dominated by tachyonic matter. We demonstrate the attractor behaviour of the tachyonic inflation using the Hamilton-Jacobi formalism. We else obtain analytical approximations to the trajectories of the tachyon field in different regions. The numerical calculation shows that an initial non-vanishing momentum does not prevent the onset of inflation. The slow-rolling solution is an attractor.

  12. Inflationary attractor from tachyonic matter

    Science.gov (United States)

    Guo, Zong-Kuan; Piao, Yun-Song; Cai, Rong-Gen; Zhang, Yuan-Zhong

    2003-08-01

    We study the complete evolution of a flat and homogeneous universe dominated by tachyonic matter. We demonstrate the attractor behavior of tachyonic inflation using the Hamilton-Jacobi formalism. We also obtain analytical approximations for the trajectories of the tachyon field in different regions. The numerical calculation shows that an initial nonvanishing momentum does not prevent the onset of inflation. The slow-rolling solution is an attractor.

  13. Chaotic Simulated Annealing by A Neural Network Model with Transient Chaos

    CERN Document Server

    Chen, L; Chen, Luonan; Aihara, Kazuyuki

    1997-01-01

    We propose a neural network model with transient chaos, or a transiently chaotic neural network (TCNN) as an approximation method for combinatorial optimization problem, by introducing transiently chaotic dynamics into neural networks. Unlike conventional neural networks only with point attractors, the proposed neural network has richer and more flexible dynamics, so that it can be expected to have higher ability of searching for globally optimal or near-optimal solutions. A significant property of this model is that the chaotic neurodynamics is temporarily generated for searching and self-organizing, and eventually vanishes with autonomous decreasing of a bifurcation parameter corresponding to the "temperature" in usual annealing process. Therefore, the neural network gradually approaches, through the transient chaos, to dynamical structure similar to such conventional models as the Hopfield neural network which converges to a stable equilibrium point. Since the optimization process of the transiently chaoti...

  14. Inflation, Universality and Attractors

    CERN Document Server

    Scalisi, Marco

    2016-01-01

    In this PhD thesis, we investigate generic features of inflation which are strictly related to fundamental aspects of UV-physics scenarios, such as string theory or supergravity. After a short introduction to standard and inflationary cosmology, we present our research findings. On the one hand, we show that focusing on universality properties of inflation can yield surprisingly stringent bounds on its dynamics. This approach allows us to identify the regime where the inflationary field range is uniquely determined by both the tensor-to-scalar ratio and the spectral index. Then, we derive a novel field-range bound, which is two orders of magnitude stronger than the original one derived by Lyth. On the other hand, we discuss the embedding of inflation in supergravity and prove that non-trivial hyperbolic K\\"ahler geometries induce an attractor for the inflationary observables: the spectral tilt tends automatically to the center of the Planck dome whereas the amount of primordial gravitational waves is directly...

  15. Noise-induced attractor annihilation in the delayed feedback logistic map

    Energy Technology Data Exchange (ETDEWEB)

    Pisarchik, A.N., E-mail: apisarch@cio.mx [Centro de Investigaciones en Optica, Loma del Bosque 115, Leon, Guanajuato (Mexico); Centre for Biomedical Technology, Technical University of Madrid, Campus Montegancedo, 28223 Pozuelo de Alarcon, Madrid (Spain); Martínez-Zérega, B.E. [Centro Universitario de los Lagos, Universidad de Guadalajara, Enrique Diaz de Leon 1144, Paseos de la Montaña, Lagos de Moreno, Jalisco 47460 (Mexico)

    2013-12-06

    We study dynamics of the bistable logistic map with delayed feedback, under the influence of white Gaussian noise and periodic modulation applied to the variable. This system may serve as a model to describe population dynamics under finite resources in noisy environment with seasonal fluctuations. While a very small amount of noise has no effect on the global structure of the coexisting attractors in phase space, an intermediate noise totally eliminates one of the attractors. Slow periodic modulation enhances the attractor annihilation.

  16. Boolean network model predicts cell cycle sequence of fission yeast.

    Directory of Open Access Journals (Sweden)

    Maria I Davidich

    Full Text Available A Boolean network model of the cell-cycle regulatory network of fission yeast (Schizosaccharomyces Pombe is constructed solely on the basis of the known biochemical interaction topology. Simulating the model in the computer faithfully reproduces the known activity sequence of regulatory proteins along the cell cycle of the living cell. Contrary to existing differential equation models, no parameters enter the model except the structure of the regulatory circuitry. The dynamical properties of the model indicate that the biological dynamical sequence is robustly implemented in the regulatory network, with the biological stationary state G1 corresponding to the dominant attractor in state space, and with the biological regulatory sequence being a strongly attractive trajectory. Comparing the fission yeast cell-cycle model to a similar model of the corresponding network in S. cerevisiae, a remarkable difference in circuitry, as well as dynamics is observed. While the latter operates in a strongly damped mode, driven by external excitation, the S. pombe network represents an auto-excited system with external damping.

  17. A Bio-Inspired QoS-Oriented Handover Model in Heterogeneous Wireless Networks

    Directory of Open Access Journals (Sweden)

    Daxin Tian

    2014-01-01

    Full Text Available We propose a bio-inspired model for making handover decision in heterogeneous wireless networks. It is based on an extended attractor selection model, which is biologically inspired by the self-adaptability and robustness of cellular response to the changes in dynamic environments. The goal of the proposed model is to guarantee multiple terminals’ satisfaction by meeting the QoS requirements of those terminals’ applications, and this model also attempts to ensure the fairness of network resources allocation, in the meanwhile, to enable the QoS-oriented handover decision adaptive to dynamic wireless environments. Some numerical simulations are preformed to validate our proposed bio-inspired model in terms of adaptive attractor selection in different noisy environments. And the results of some other simulations prove that the proposed handover scheme can adapt terminals’ network selection to the varying wireless environment and benefits the QoS of multiple terminal applications simultaneously and automatically. Furthermore, the comparative analysis also shows that the bio-inspired model outperforms the utility function based handover decision scheme in terms of ensuring a better QoS satisfaction and a better fairness of network resources allocation in dynamic heterogeneous wireless networks.

  18. Moduli Backreaction on Inflationary Attractors

    CERN Document Server

    Roest, Diederik; Werkman, Pelle

    2016-01-01

    We investigate the interplay between moduli dynamics and inflation, focusing on the KKLT-scenario and cosmological $\\alpha$-attractors. General couplings between these sectors can induce a significant backreaction and potentially destroy the inflationary regime; however, we demonstrate that this generically does not happen for $\\alpha$-attractors. Depending on the details of the superpotential, the volume modulus can either be stable during the entire inflationary trajectory, or become tachyonic at some point and act as a waterfall field, resulting in a sudden end of inflation. In the latter case there is a universal supersymmetric minimum where the scalars end up, preventing the decompactification scenario. The observational predictions conform to the universal value of attractors, fully compatible with the Planck data, with possibly a capped number of e-folds due to the interplay with moduli.

  19. A Network-of-Networks Model for Electrical Infrastructure Networks

    CERN Document Server

    Halappanavar, Mahantesh; Hogan, Emilie; Duncan, Daniel; Zhenyu,; Huang,; Hines, Paul D H

    2015-01-01

    Modeling power transmission networks is an important area of research with applications such as vulnerability analysis, study of cascading failures, and location of measurement devices. Graph-theoretic approaches have been widely used to solve these problems, but are subject to several limitations. One of the limitations is the ability to model a heterogeneous system in a consistent manner using the standard graph-theoretic formulation. In this paper, we propose a {\\em network-of-networks} approach for modeling power transmission networks in order to explicitly incorporate heterogeneity in the model. This model distinguishes between different components of the network that operate at different voltage ratings, and also captures the intra and inter-network connectivity patterns. By building the graph in this fashion we present a novel, and fundamentally different, perspective of power transmission networks. Consequently, this novel approach will have a significant impact on the graph-theoretic modeling of powe...

  20. Intermittent control of coexisting attractors.

    Science.gov (United States)

    Liu, Yang; Wiercigroch, Marian; Ing, James; Pavlovskaia, Ekaterina

    2013-06-28

    This paper proposes a new control method applicable for a class of non-autonomous dynamical systems that naturally exhibit coexisting attractors. The central idea is based on knowledge of a system's basins of attraction, with control actions being applied intermittently in the time domain when the actual trajectory satisfies a proximity constraint with regards to the desired trajectory. This intermittent control uses an impulsive force to perturb one of the system attractors in order to switch the system response onto another attractor. This is carried out by bringing the perturbed state into the desired basin of attraction. The method has been applied to control both smooth and non-smooth systems, with the Duffing and impact oscillators used as examples. The strength of the intermittent control force is also considered, and a constrained intermittent control law is introduced to investigate the effect of limited control force on the efficiency of the controller. It is shown that increasing the duration of the control action and/or the number of control actuations allows one to successfully switch between the stable attractors using a lower control force. Numerical and experimental results are presented to demonstrate the effectiveness of the proposed method. PMID:23690639

  1. Hyperbolic geometry of cosmological attractors

    NARCIS (Netherlands)

    Carrasco, John Joseph M.; Kallosh, Renata; Linde, Andrei; Roest, Diederik

    2015-01-01

    Cosmological alpha attractors give a natural explanation for the spectral index n(s) of inflation as measured by Planck while predicting a range for the tensor-to-scalar ratio r, consistent with all observations, to be measured more precisely in future B-mode experiments. We highlight the crucial ro

  2. Inverse fracture network modelling

    International Nuclear Information System (INIS)

    The basic problem in analyzing flow and transport in fractured rock is that the flow may be largely governed by a poorly connected network of fractures. Flow in such a system cannot be modeled with traditional modelling techniques. Fracture network models also have a limitation, in that they are based on geological data on fracture geometry even though it is known that only a small portion of fractures observed is hydraulically active. This paper discusses a new technique developed for treating the problem as well as presents a modelling example carried out to apply it. The approach is developed in Lawrence Berkeley Laboratory and it treats the fracture zone as an 'equivalent discontinuum'. The discontinuous nature of the problem is represented through flow on a partially filled lattice. An equivalent discontinuum model is constructed by adding and removing conductive elements through a statistical inverse technique called 'simulated annealing'. The fracture network model is 'annealed' until the modified systems behaves like the observed. The further development of the approach continues at LBL and in a joint LBL/VTT collaboration project the possibilities to apply the technique in Finnish conditions are investigated

  3. Dynamical chaos and uniformly hyperbolic attractors: from mathematics to physics

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, Sergei P [Saratov Branch, Kotel' nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Saratov (Russian Federation)

    2011-02-28

    Research is reviewed on the identification and construction of physical systems with chaotic dynamics due to uniformly hyperbolic attractors (such as the Plykin attraction or the Smale-Williams solenoid). Basic concepts of the mathematics involved and approaches proposed in the literature for constructing systems with hyperbolic attractors are discussed. Topics covered include periodic pulse-driven models; dynamics models consisting of periodically repeated stages, each described by its own differential equations; the construction of systems of alternately excited coupled oscillators; the use of parametrically excited oscillations; and the introduction of delayed feedback. Some maps, differential equations, and simple mechanical and electronic systems exhibiting chaotic dynamics due to the presence of uniformly hyperbolic attractors are presented as examples. (reviews of topical problems)

  4. Energy cascade in internal wave attractors

    CERN Document Server

    Brouzet, Christophe; Joubaud, Sylvain; Sibgatullin, Ilias; Dauxois, Thierry

    2016-01-01

    One of the pivotal questions in the dynamics of the oceans is related to the cascade of mechanical energy in the abyss and its contribution to mixing. Here, we propose internal wave attractors in the large amplitude regime as a unique self-consistent experimental and numerical setup that models a cascade of triadic interactions transferring energy from large-scale monochro-matic input to multi-scale internal wave motion. We also provide signatures of a discrete wave turbulence framework for internal waves. Finally, we show how beyond this regime, we have a clear transition to a regime of small-scale high-vorticity events which induce mixing. Introduction.

  5. Attractor Solutions in Lorentz Violating Scalar-Vector-Tensor Theory

    CERN Document Server

    Arianto, Freddy P; Triyanta,; Gunara, Bobby E

    2008-01-01

    We investigate properties of attractors for scalar field in the Lorentz violating scalar-vector-tensor theory of gravity. In this framework, both the effective coupling and potential functions determine the stabilities of the fixed points. In the model, we consider the constants of slope of the effective coupling and potential functions which lead to the quadratic effective coupling vector with the (inverse) power-law potential. For the case of purely scalar field, there are only two stable attractor solutions in the inflationary scenario. In the presence of a barotropic fluid, the fluid dominated solution is absent. We find two scaling solutions: the kinetic scaling solution and the scalar field scaling solutions. We show the stable attractors in regions of ($\\gamma$, $\\xi$) parameter space and in phase plane plot for different qualitative evolutions. From the standard nucleosynthesis, we derive the constraints for the value of the coupling parameter.

  6. Generation and control of multi-scroll chaotic attractors in fractional order systems

    International Nuclear Information System (INIS)

    The objective of this paper is twofold: on one hand we demonstrate the generation of multi-scroll attractors in fractional order chaotic systems. Then, we design state feedback controllers to eliminate chaos from the system trajectories. It is demonstrated that modifying the underlying nonlinearity of the fractional chaotic system results in the birth of multiple chaotic attractors, thus forming the so called multi-scroll attractors. The presence of chaotic behavior is evidenced by a positive largest Lyapunov exponent computed for the output time series. We investigate generation and control of multi-scroll attractors in two different models, both of which are fractional order and chaotic: an electronic oscillator, and a mechanical 'jerk' model. The current findings extend previously reported results on generation of n-scroll attractors from the domain of integer order to the domain of fractional order chaotic systems, and addresses the issue of controlling such chaotic behaviors. Our investigations are validated through numerical simulations

  7. Temporal attractors for speech onsets

    Science.gov (United States)

    Port, Robert; Oglesbee, Eric

    2003-10-01

    When subjects say a single syllable like da in time with a metronome, what is the easiest relationship? Superimposed on the metronome pulse, of course. The second easiest way is probably to locate the syllable halfway between pulses. We tested these hypotheses by having subjects repeat da at both phase angles at a range of metronome rates. The vowel onset (or P-center) was automatically obtained for each token. In-phase targets were produced close to the metronome onset for rates as fast as 3 per second. Antiphase targets were accurate at slow rates (~2/s) but tended to slip to inphase timing with faster metronomes. These results resemble the findings of Haken et al. [Biol. Cybern. 51, 347-356 (1985)] for oscillatory finger motions. Results suggest a strong attractor for speech onsets at zero phase and a weaker attractor at phase 0.5 that may disappear as rate is increased.

  8. More on N=8 Attractors

    CERN Document Server

    Ceresole, A; Gnecchi, A; Marrani, A

    2009-01-01

    We examine few simple extremal black hole configurations of N=8, d=4 supergravity. We first elucidate the relation between the BPS Reissner-Nordstrom black hole and the non-BPS Kaluza-Klein dyonic black hole. Their classical entropy, given by the Bekenstein-Hawking formula, can be reproduced via the attractor mechanism by suitable choices of symplectic frame. Then, we display the embedding of the axion-dilaton black hole into N=8 supergravity.

  9. Coevolutionary modeling in network formation

    KAUST Repository

    Al-Shyoukh, Ibrahim

    2014-12-03

    Network coevolution, the process of network topology evolution in feedback with dynamical processes over the network nodes, is a common feature of many engineered and natural networks. In such settings, the change in network topology occurs at a comparable time scale to nodal dynamics. Coevolutionary modeling offers the possibility to better understand how and why network structures emerge. For example, social networks can exhibit a variety of structures, ranging from almost uniform to scale-free degree distributions. While current models of network formation can reproduce these structures, coevolutionary modeling can offer a better understanding of the underlying dynamics. This paper presents an overview of recent work on coevolutionary models of network formation, with an emphasis on the following three settings: (i) dynamic flow of benefits and costs, (ii) transient link establishment costs, and (iii) latent preferential attachment.

  10. Oscillatory Attractors: A New Cosmological Phase

    CERN Document Server

    Bains, Jasdeep S; Wilczek, Frank

    2015-01-01

    In expanding FRW spacetimes, it is usually the case that homogeneous scalar fields redshift and their amplitudes approach limiting values: Hubble friction usually ensures that the field relaxes to its minimum energy configuration, which is usually a static configuration. Here we discover a class of relativistic scalar field models in which the attractor behavior is the field oscillating indefinitely, with finite amplitude, in an expanding FRW spacetime, despite the presence of Hubble friction. This is an example of spontaneous breaking of time translation symmetry. We find that the effective equation of state of the field has average value $\\langle w\\rangle=-1$, implying that the field itself could drive an inflationary or dark energy dominated phase. This behavior is reminiscent of ghost condensate models, but in the new models, unlike in the ghost condensate models, the energy-momentum tensor is time dependent, so that these new models embody a more definitive breaking of time translation symmetry. We explo...

  11. Modelling Citation Networks

    CERN Document Server

    Goldberg, S R; Evans, T S

    2014-01-01

    The distribution of the number of academic publications as a function of citation count for a given year is remarkably similar from year to year. We measure this similarity as a width of the distribution and find it to be approximately constant from year to year. We show that simple citation models fail to capture this behaviour. We then provide a simple three parameter citation network model using a mixture of local and global search processes which can reproduce the correct distribution over time. We use the citation network of papers from the hep-th section of arXiv to test our model. For this data, around 20% of citations use global information to reference recently published papers, while the remaining 80% are found using local searches. We note that this is consistent with other studies though our motivation is very different from previous work. Finally, we also find that the fluctuations in the size of an academic publication's bibliography is important for the model. This is not addressed in most mode...

  12. A Network Synthesis Model for Generating Protein Interaction Network Families

    OpenAIRE

    Sayed Mohammad Ebrahim Sahraeian; Byung-Jun Yoon

    2012-01-01

    In this work, we introduce a novel network synthesis model that can generate families of evolutionarily related synthetic protein-protein interaction (PPI) networks. Given an ancestral network, the proposed model generates the network family according to a hypothetical phylogenetic tree, where the descendant networks are obtained through duplication and divergence of their ancestors, followed by network growth using network evolution models. We demonstrate that this network synthesis model ca...

  13. Non-slow-roll dynamics in $\\alpha-$attractors

    CERN Document Server

    Kumar, K Sravan; Moniz, Paulo Vargas; Das, Suratna

    2015-01-01

    In this paper we consider the $\\alpha-$attractor model and study inflation under a generalization of slow-roll dynamics. We follow the recently proposed Gong \\& Sasaki approach \\cite{Gong:2015ypa} of assuming $N=N\\left(\\phi\\right)$. We relax the requirement of inflaton potential flatness and consider a sufficiently steep one to support 60-efoldings. We find that this type of inflationary scenario predicts an attractor at $n_{s}\\approx0.967$ and $r\\approx5.5\\times10^{-4}$ which are very close to the predictions of the first chaotic inflationary model in supergravity (Goncharov-Linde model) \\cite{Goncharov:1983mw}. We show that even with non-slow-roll dynamics, the $\\alpha-$attractor model is compatible with any value of $r<0.1$. In addition, we emphasize that in this particular inflationary scenario, the standard consistency relation $\\left(r\\simeq-8n_{t}\\right)$ is significantly violated and we find an attractor for tensor tilt at $n_{t}\\approx-0.034$ as $r\\rightarrow0$. Any prominent detection of the ...

  14. Global attractors for damped abstract nonlinear hyperbolic systems

    Science.gov (United States)

    Pinter, Gabriella Agnes

    1997-12-01

    This dissertation is concerned with the long time dynamics of a class of damped abstract hyperbolic systems that arise in the study of certain smart material structures, namely elastomers. The term smart material refers to a material capable of both sensing and responding actively to outside excitation. These properties make smart materials a prime canditate for actuation and sensing in next generation control systems. However, modeling and numerically simulating their behavior poses several difficulties. In this work we consider a model for elastomers developed by H. T. Banks, N. J. Lybeck, B. C. Munoz, L. C. Yanyo, formulate this model as an abstract evolution system, and study the long time behavior of its solutions. We remark that the question of existence and uniqueness of solutions for this class of systems is a challenging problem and was only recently solved by H. T. Banks, D. S. Gilliam and V. I. Shubov. Concerning the long time dynamics of the problem, we first prove that the system generates a weak dynamical system, and possesses a weak global attractor. Our main result is the existence of a "strong" dynamical system which has a compact global attractor. With the help of a Lyapunov function we are able to characterize the structure of this attractor. We also give a theorem that guarantees the stability of the global attractor with respect to varying parameters in the system. Our last result concerns the uniform differentiability of the dynamical system.

  15. A neighbourhood evolving network model

    International Nuclear Information System (INIS)

    Many social, technological, biological and economical systems are best described by evolved network models. In this short Letter, we propose and study a new evolving network model. The model is based on the new concept of neighbourhood connectivity, which exists in many physical complex networks. The statistical properties and dynamics of the proposed model is analytically studied and compared with those of Barabasi-Albert scale-free model. Numerical simulations indicate that this network model yields a transition between power-law and exponential scaling, while the Barabasi-Albert scale-free model is only one of its special (limiting) cases. Particularly, this model can be used to enhance the evolving mechanism of complex networks in the real world, such as some social networks development

  16. Noise Stabilized Random Attractor

    OpenAIRE

    Finn, J.M.; Tracy, E. R.; Cooke, W. E.; Richardson, A. S.

    2005-01-01

    A two dimensional flow model is introduced with deterministic behavior consisting of bursts which become successively larger, with longer interburst time intervals between them. The system is symmetric in one variable x and there are bursts on either side of x = 0, separated by the presence of an invariant manifold at x = 0. In the presence of arbitrarily small additive noise in the x direction, the successive bursts have bounded amplitudes and interburst intervals. This system with noise is ...

  17. Symmetric sequence processing in a recurrent neural network model with a synchronous dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Metz, F L; Theumann, W K [Instituto de Fisica, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, 91501-970 Porto Alegre (Brazil)], E-mail: fernando@itf.fys.kuleuven.be, E-mail: theumann@if.ufrgs.br

    2009-09-25

    The synchronous dynamics and the stationary states of a recurrent attractor neural network model with competing synapses between symmetric sequence processing and Hebbian pattern reconstruction are studied in this work allowing for the presence of a self-interaction for each unit. Phase diagrams of stationary states are obtained exhibiting phases of retrieval, symmetric and period-two cyclic states as well as correlated and frozen-in states, in the absence of noise. The frozen-in states are destabilized by synaptic noise and well-separated regions of correlated and cyclic states are obtained. Excitatory or inhibitory self-interactions yield enlarged phases of fixed-point or cyclic behaviour.

  18. Mining and modeling character networks

    CERN Document Server

    Bonato, Anthony; Elenberg, Ethan R; Gleich, David F; Hou, Yangyang

    2016-01-01

    We investigate social networks of characters found in cultural works such as novels and films. These character networks exhibit many of the properties of complex networks such as skewed degree distribution and community structure, but may be of relatively small order with a high multiplicity of edges. Building on recent work of beveridge, we consider graph extraction, visualization, and network statistics for three novels: Twilight by Stephanie Meyer, Steven King's The Stand, and J.K. Rowling's Harry Potter and the Goblet of Fire. Coupling with 800 character networks from films found in the http://moviegalaxies.com/ database, we compare the data sets to simulations from various stochastic complex networks models including random graphs with given expected degrees (also known as the Chung-Lu model), the configuration model, and the preferential attachment model. Using machine learning techniques based on motif (or small subgraph) counts, we determine that the Chung-Lu model best fits character networks and we ...

  19. Dynamical modeling of the cholesterol regulatory pathway with Boolean networks

    OpenAIRE

    Corcos Laurent; Kervizic Gwenael

    2008-01-01

    Abstract Background Qualitative dynamics of small gene regulatory networks have been studied in quite some details both with synchronous and asynchronous analysis. However, both methods have their drawbacks: synchronous analysis leads to spurious attractors and asynchronous analysis lacks computational efficiency, which is a problem to simulate large networks. We addressed this question through the analysis of a major biosynthesis pathway. Indeed the cholesterol synthesis pathway plays a pivo...

  20. Patterns of patterns of synchronization: Noise induced attractor switching in rings of coupled nonlinear oscillators

    Science.gov (United States)

    Emenheiser, Jeffrey; Chapman, Airlie; Pósfai, Márton; Crutchfield, James P.; Mesbahi, Mehran; D'Souza, Raissa M.

    2016-09-01

    Following the long-lived qualitative-dynamics tradition of explaining behavior in complex systems via the architecture of their attractors and basins, we investigate the patterns of switching between distinct trajectories in a network of synchronized oscillators. Our system, consisting of nonlinear amplitude-phase oscillators arranged in a ring topology with reactive nearest-neighbor coupling, is simple and connects directly to experimental realizations. We seek to understand how the multiple stable synchronized states connect to each other in state space by applying Gaussian white noise to each of the oscillators' phases. To do this, we first analytically identify a set of locally stable limit cycles at any given coupling strength. For each of these attracting states, we analyze the effect of weak noise via the covariance matrix of deviations around those attractors. We then explore the noise-induced attractor switching behavior via numerical investigations. For a ring of three oscillators, we find that an attractor-switching event is always accompanied by the crossing of two adjacent oscillators' phases. For larger numbers of oscillators, we find that the distribution of times required to stochastically leave a given state falls off exponentially, and we build an attractor switching network out of the destination states as a coarse-grained description of the high-dimensional attractor-basin architecture.

  1. Modeling Dynamics of Information Networks

    OpenAIRE

    Rosvall, Martin; Sneppen, Kim

    2003-01-01

    We propose an information-based model for network dynamics in which imperfect information leads to networks where the different vertices have widely different number of edges to other vertices, and where the topology has hierarchical features. The possibility to observe scale free networks is linked to a minimally connected system where hubs remain dynamic.

  2. Strange attractor simulated on a quantum computer

    OpenAIRE

    M. Terraneo; Georgeot, B.; D.L. Shepelyansky

    2002-01-01

    We show that dissipative classical dynamics converging to a strange attractor can be simulated on a quantum computer. Such quantum computations allow to investigate efficiently the small scale structure of strange attractors, yielding new information inaccessible to classical computers. This opens new possibilities for quantum simulations of various dissipative processes in nature.

  3. Inflation as AN Attractor in Scalar Cosmology

    Science.gov (United States)

    Kim, Hyeong-Chan

    2013-06-01

    We study an inflation mechanism based on attractor properties in cosmological evolutions of a spatially flat Friedmann-Robertson-Walker spacetime based on the Einstein-scalar field theory. We find a new way to get the Hamilton-Jacobi equation solving the field equations. The equation relates a solution "generating function" with the scalar potential. We analyze its stability and find a later time attractor which describes a Universe approaching to an eternal-de Sitter inflation driven by the potential energy, V0>0. The attractor exists when the potential is regular and does not have a linear and quadratic terms of the field. When the potential has a mass term, the attractor exists if the scalar field is in a symmetric phase and is weakly coupled, λ<9V0/16. We also find that the attractor property is intact under small modifications of the potential. If the scalar field has a positive mass-squared or is strongly coupled, there exists a quasi-attractor. However, the quasi-attractor property disappears if the potential is modified. On the whole, the appearance of the eternal inflation is not rare in scalar cosmology in the presence of an attractor.

  4. Black Hole Attractors in Extended Supergravity

    CERN Document Server

    Ferrara, Sergio

    2007-01-01

    We review some aspects of the attractor mechanism for extremal black holes of (not necessarily supersymmetric) theories coupling Einstein gravity to scalars and Maxwell vector fields. Thence, we consider N=2 and N=8, d=4 supergravities, reporting some recent advances on the moduli spaces associated to BPS and non-BPS attractor solutions supported by charge orbits with non-compact stabilizers.

  5. Wild attractors and thermodynamic formalism

    CERN Document Server

    Bruin, Henk

    2012-01-01

    Fibonacci unimodal maps can have a wild Cantor attractor, and hence be Lebesgue dissipative, depending on the order of the critical point. We present a one-parameter family $f_\\lambda$ of countably piecewise linear unimodal Fibonacci maps in order to study the thermodynamic formalism of dynamics where dissipativity of Lebesgue (and conformal) measure is responsible for phase transitions. We show that for the potential $\\phi_t = -t\\log|f'_\\lambda|$, there is a unique phase transition at some $t_1 \\le 1$, and the pressure $P(\\phi_t)$ is analytic (with unique equilibrium state) elsewhere. The pressure is majorised by a non-analytic $C^\\infty$ curve (with all derivatives equal to 0 at $t_1 < 1$) at the emergence of a wild attractor, whereas the phase transition at $t_1 = 1$ can be of any finite order for those $\\lambda$ for which $f_\\lambda$ is Lebesgue conservative. We also obtain results on the existence of conformal measures and equilibrium states, as well as the hyperbolic dimension and the dimension of th...

  6. The past attractor in inhomogeneous cosmology

    CERN Document Server

    Uggla, C; Wainwright, J; Ellis, G F R; Uggla, Claes; Elst, Henk van; Wainwright, John; Ellis, George F R

    2003-01-01

    We present a general framework for analyzing spatially inhomogeneous cosmological dynamics. It employs Hubble-normalized scale-invariant variables which are defined within the orthonormal frame formalism, and leads to the formulation of Einstein's field equations with a perfect fluid matter source as an autonomous system of evolution equations and constraints. This framework incorporates spatially homogeneous dynamics in a natural way as a special case, thereby placing earlier work on spatially homogeneous cosmology in a broader context, and allows us to draw on experience gained in that field using dynamical systems methods. One of our goals is to provide a precise formulation of the approach to the spacelike initial singularity in cosmological models, described heuristically by Belinski\\v{\\i}, Khalatnikov and Lifshitz. Specifically, we construct an invariant set which we conjecture forms the local past attractor for the evolution equations. We anticipate that this new formulation will provide the basis for ...

  7. Strange Attractor in Immunology of Tumor Growth

    CERN Document Server

    Voitikova, M

    1997-01-01

    The time delayed cytotoxic T-lymphocyte response on the tumor growth has been developed on the basis of discrete approximation (2-dimensional map). The growth kinetic has been described by logistic law with growth rate being the bifurcation parameter. Increase in the growth rate results in instability of the tumor state and causes period-doubling bifurcations in the immune+tumor system. For larger values of tumor growth rate a strange attractor has been observed. The model proposed is able to describe the metastable-state production when time series data of the immune state and the number of tumor cells are irregular and unpredictable. This metastatic disease may be caused not by exterior (medical) factors, but interior density dependent ones.

  8. Neural network mechanisms underlying stimulus driven variability reduction.

    Science.gov (United States)

    Deco, Gustavo; Hugues, Etienne

    2012-01-01

    It is well established that the variability of the neural activity across trials, as measured by the Fano factor, is elevated. This fact poses limits on information encoding by the neural activity. However, a series of recent neurophysiological experiments have changed this traditional view. Single cell recordings across a variety of species, brain areas, brain states and stimulus conditions demonstrate a remarkable reduction of the neural variability when an external stimulation is applied and when attention is allocated towards a stimulus within a neuron's receptive field, suggesting an enhancement of information encoding. Using an heterogeneously connected neural network model whose dynamics exhibits multiple attractors, we demonstrate here how this variability reduction can arise from a network effect. In the spontaneous state, we show that the high degree of neural variability is mainly due to fluctuation-driven excursions from attractor to attractor. This occurs when, in the parameter space, the network working point is around the bifurcation allowing multistable attractors. The application of an external excitatory drive by stimulation or attention stabilizes one specific attractor, eliminating in this way the transitions between the different attractors and resulting in a net decrease in neural variability over trials. Importantly, non-responsive neurons also exhibit a reduction of variability. Finally, this reduced variability is found to arise from an increased regularity of the neural spike trains. In conclusion, these results suggest that the variability reduction under stimulation and attention is a property of neural circuits. PMID:22479168

  9. Neural network mechanisms underlying stimulus driven variability reduction.

    Directory of Open Access Journals (Sweden)

    Gustavo Deco

    Full Text Available It is well established that the variability of the neural activity across trials, as measured by the Fano factor, is elevated. This fact poses limits on information encoding by the neural activity. However, a series of recent neurophysiological experiments have changed this traditional view. Single cell recordings across a variety of species, brain areas, brain states and stimulus conditions demonstrate a remarkable reduction of the neural variability when an external stimulation is applied and when attention is allocated towards a stimulus within a neuron's receptive field, suggesting an enhancement of information encoding. Using an heterogeneously connected neural network model whose dynamics exhibits multiple attractors, we demonstrate here how this variability reduction can arise from a network effect. In the spontaneous state, we show that the high degree of neural variability is mainly due to fluctuation-driven excursions from attractor to attractor. This occurs when, in the parameter space, the network working point is around the bifurcation allowing multistable attractors. The application of an external excitatory drive by stimulation or attention stabilizes one specific attractor, eliminating in this way the transitions between the different attractors and resulting in a net decrease in neural variability over trials. Importantly, non-responsive neurons also exhibit a reduction of variability. Finally, this reduced variability is found to arise from an increased regularity of the neural spike trains. In conclusion, these results suggest that the variability reduction under stimulation and attention is a property of neural circuits.

  10. Complex Networks in Psychological Models

    Science.gov (United States)

    Wedemann, R. S.; Carvalho, L. S. A. V. D.; Donangelo, R.

    We develop schematic, self-organizing, neural-network models to describe mechanisms associated with mental processes, by a neurocomputational substrate. These models are examples of real world complex networks with interesting general topological structures. Considering dopaminergic signal-to-noise neuronal modulation in the central nervous system, we propose neural network models to explain development of cortical map structure and dynamics of memory access, and unify different mental processes into a single neurocomputational substrate. Based on our neural network models, neurotic behavior may be understood as an associative memory process in the brain, and the linguistic, symbolic associative process involved in psychoanalytic working-through can be mapped onto a corresponding process of reconfiguration of the neural network. The models are illustrated through computer simulations, where we varied dopaminergic modulation and observed the self-organizing emergent patterns at the resulting semantic map, interpreting them as different manifestations of mental functioning, from psychotic through to normal and neurotic behavior, and creativity.

  11. Internet Network Resource Information Model

    Institute of Scientific and Technical Information of China (English)

    陈传峰; 李增智; 唐亚哲; 刘康平

    2002-01-01

    The foundation of any network management systens is a database that con-tains information about the network resources relevant to the management tasks. A networkinformation model is an abstraction of network resources, including both managed resources andmanaging resources. In the SNMP-based management framework, management information isdefined almost exclusively from a "device" viewpoint, namely, managing a network is equiva-lent to managing a collection of individual nodes. Aiming at making use of recent advances indistributed computing and in object-oriented analysis and design, the Internet management ar-chitecture can also be based on the Open Distributed Processing Reference Model (RM-ODP).The purpose of this article is to provide an Internet Network Resource Information Model.First, a layered management information architecture will be discussed. Then the Internetnetwork resource information model is presented. The information model is specified usingObject-Z.

  12. Developing Personal Network Business Models

    DEFF Research Database (Denmark)

    Saugstrup, Dan; Henten, Anders

    2006-01-01

    The aim of the paper is to examine the issue of business modeling in relation to personal networks, PNs. The paper builds on research performed on business models in the EU 1ST MAGNET1 project (My personal Adaptive Global NET). The paper presents the Personal Network concept and briefly reports...... on the 'state of the art' in the field of business modeling. Furthermore, the paper suggests three generic business models for PNs: a service oriented model, a self-organized model, and a combination model. Finally, examples of relevant services and applications in relation to three different cases...... are presented and analyzed in light of business modeling of PN....

  13. Strange attractors in rattleback dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Borisov, Aleksei V; Mamaev, Ivan S [Institute of Computer Science, Izhevsk (Russian Federation)

    2003-04-30

    This review is dedicated to the dynamics of the rattleback, a phenomenon with curious physical properties that is studied in nonholonomic mechanics. All known analytical results are collected here, and some results of our numerical simulation are presented. In particular, three-dimensional Poincare maps associated with dynamical systems are systematically investigated for the first time. It is shown that the loss of stability of periodic and quasiperiodic solutions, which gives rise to strange attractors, is typical of the three-dimensional maps related to rattleback dynamics. This explains some newly discovered properties of the rattleback related to the transition from regular to chaotic solutions at certain values of the physical parameters. (methodological notes)

  14. Supersymmetry, attractors and cosmic censorship

    CERN Document Server

    Bellorin, J; Ortín, T; Bellorin, Jorge; Meessen, Patrick; Ortin, Tomas

    2006-01-01

    We show that requiring unbroken supersymmetry everywhere in black-hole-type solutions of N=2,d=4 supergravity coupled to vector supermultiplets ensures in most cases absence of naked singularities. We formulate three specific conditions which we argue are equivalent to the requirement of global supersymmetry. These three conditions can be related to absence of sources of NUT charge, angular momentum, scalar hair and negative energy, although the solutions can still have globally defined angular momentum and non-trivial scalar fields, as we show in an explicit example. Furthermore, only the solutions satisfying these requirements seem to have a microscopic interpretation in String Theory since only they have supersymmetric sources. These conditions exclude, for instance, singular solutions such as the Kerr-Newman with M=|q|, which fails to be everywhere supersymmetric. We also present a re-derivation of several results concerning attractors in N=2,d=4 theories based in the explicit knowledge of the most genera...

  15. Decaying turbulence and developing chaotic attractors

    CERN Document Server

    Bershadskii, A

    2016-01-01

    Competition between two main attractors of the distributed chaos, one associated with translational symmetry (homogeneity) and another associated with rotational symmetry (isotropy), has been studied in freely decaying turbulence. It is shown that, unlike the case of statistically stationary homogeneous isotropic turbulence, the attractor associated with rotational symmetry (and controlled by Loitsyanskii integral) can dominate turbulent local dynamics in an intermediate stage of the decay, because the attractor associated with translational symmetry (and controlled by Birkhoff-Saffman integral) is still not developed enough. The DNS data have been used in order to support this conclusion.

  16. Telecommunications network modelling, planning and design

    CERN Document Server

    Evans, Sharon

    2003-01-01

    Telecommunication Network Modelling, Planning and Design addresses sophisticated modelling techniques from the perspective of the communications industry and covers some of the major issues facing telecommunications network engineers and managers today. Topics covered include network planning for transmission systems, modelling of SDH transport network structures and telecommunications network design and performance modelling, as well as network costs and ROI modelling and QoS in 3G networks.

  17. Chaotic Attractor Crisis and Climate Sensitivity: a Transfer Operator Approach

    Science.gov (United States)

    Tantet, A.; Lucarini, V.; Lunkeit, F.; Dijkstra, H. A.

    2015-12-01

    The rough response to a smooth parameter change of some non-chaotic climate models, such as the warm to snowball-Earth transition in energy balance models due to the ice-albedo feedback, can be studied in the framework of bifurcation theory, in particular by analysing the Lyapunov spectrum of fixed points or periodic orbits. However, bifurcation theory is of little help to study the destruction of a chaotic attractor which can occur in high-dimensional General Circulation Models (GCM). Yet, one would expect critical slowing down to occur before the crisis, since, as the system becomes susceptible to the physical instability mechanism responsible for the crisis, it turns out to be less and less resilient to exogenous perturbations and to spontaneous fluctuations due to other types of instabilities on the attractor. The statistical physics framework, extended to nonequilibrium systems, is particularly well suited for the study of global properties of chaotic and stochastic systems. In particular, the semigroup of transfer operators governs the evolution of distributions in phase space and its spectrum characterises both the relaxation rate of distributions to a statistical steady-state and the stability of this steady-state to perturbations. If critical slowing down indeed occurs in the approach to an attractor crisis, the gap in the spectrum of the semigroup of transfer operators is expected to shrink. We show that the chaotic attractor crisis due to the ice-albedo feedback and resulting in a transition from a warm to a snowball-Earth in the Planet Simulator (PlaSim), a GCM of intermediate complexity, is associated with critical slowing down, as observed by the slower decay of correlations before the crisis (cf. left panel). In addition, we demonstrate that this critical slowing down can be traced back to the shrinkage of the gap between the leading eigenvalues of coarse-grained approximations of the transfer operators and that these eigenvalues capture the

  18. Global Attractors for a Nonclassical Diffusion Equation

    Institute of Scientific and Technical Information of China (English)

    Chun You SUN; Su Yun WANG; Cheng Kui ZHONG

    2007-01-01

    We prove the existence of global attractors in H10 (Ω) for a nonclassical diffusion equation.Two types of nonlinearity f are considered: one is the critical exponent, and the other is the polynomial growth of arbitrary order.

  19. A plethora of strange nonchaotic attractors

    Indian Academy of Sciences (India)

    Surendra Singh Negi; Ramakrishna Ramaswamy

    2001-01-01

    We show that it is possible to devise a large class of skew-product dynamical systems which have strange nonchaotic attractors (SNAs): the dynamics is asymptotically on fractal attractors and the largest Lyapunov exponent is non-positive. Furthermore, we show that quasiperiodic forcing, which has been a hallmark of essentially all hitherto known examples of such dynamics is not necessary for the creation of SNAs.

  20. Singular-hyperbolic attractors are chaotic

    OpenAIRE

    Araujo, Vitor; Pacifico, Maria Jose; Pujals, Enrique; Viana, Marcelo

    2005-01-01

    We prove that a singular-hyperbolic attractor of a 3-dimensional flow is chaotic, in two strong different senses. Firstly, the flow is expansive: if two points remain close for all times, possibly with time reparametrization, then their orbits coincide. Secondly, there exists a physical (or Sinai-Ruelle-Bowen) measure supported on the attractor whose ergodic basin covers a full Lebesgue (volume) measure subset of the topological basin of attraction. Moreover this measure has absolutely contin...

  1. Neural network modeling of emotion

    Science.gov (United States)

    Levine, Daniel S.

    2007-03-01

    This article reviews the history and development of computational neural network modeling of cognitive and behavioral processes that involve emotion. The exposition starts with models of classical conditioning dating from the early 1970s. Then it proceeds toward models of interactions between emotion and attention. Then models of emotional influences on decision making are reviewed, including some speculative (not and not yet simulated) models of the evolution of decision rules. Through the late 1980s, the neural networks developed to model emotional processes were mainly embodiments of significant functional principles motivated by psychological data. In the last two decades, network models of these processes have become much more detailed in their incorporation of known physiological properties of specific brain regions, while preserving many of the psychological principles from the earlier models. Most network models of emotional processes so far have dealt with positive and negative emotion in general, rather than specific emotions such as fear, joy, sadness, and anger. But a later section of this article reviews a few models relevant to specific emotions: one family of models of auditory fear conditioning in rats, and one model of induced pleasure enhancing creativity in humans. Then models of emotional disorders are reviewed. The article concludes with philosophical statements about the essential contributions of emotion to intelligent behavior and the importance of quantitative theories and models to the interdisciplinary enterprise of understanding the interactions of emotion, cognition, and behavior.

  2. Maximal switchability of centralized networks

    Science.gov (United States)

    Vakulenko, Sergei; Morozov, Ivan; Radulescu, Ovidiu

    2016-08-01

    We consider continuous time Hopfield-like recurrent networks as dynamical models for gene regulation and neural networks. We are interested in networks that contain n high-degree nodes preferably connected to a large number of N s weakly connected satellites, a property that we call n/N s -centrality. If the hub dynamics is slow, we obtain that the large time network dynamics is completely defined by the hub dynamics. Moreover, such networks are maximally flexible and switchable, in the sense that they can switch from a globally attractive rest state to any structurally stable dynamics when the response time of a special controller hub is changed. In particular, we show that a decrease of the controller hub response time can lead to a sharp variation in the network attractor structure: we can obtain a set of new local attractors, whose number can increase exponentially with N, the total number of nodes of the nework. These new attractors can be periodic or even chaotic. We provide an algorithm, which allows us to design networks with the desired switching properties, or to learn them from time series, by adjusting the interactions between hubs and satellites. Such switchable networks could be used as models for context dependent adaptation in functional genetics or as models for cognitive functions in neuroscience.

  3. Effective field theory of non-attractor inflation

    Energy Technology Data Exchange (ETDEWEB)

    Akhshik, Mohammad [Department of Physics, Sharif University of Technology,Tehran (Iran, Islamic Republic of); School of Astronomy, Institute for Research in Fundamental Sciences (IPM),P. O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Firouzjahi, Hassan [School of Astronomy, Institute for Research in Fundamental Sciences (IPM),P. O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Jazayeri, Sadra [Department of Physics, Sharif University of Technology,Tehran (Iran, Islamic Republic of)

    2015-07-29

    We present the model-independent studies of non attractor inflation in the context of effective field theory (EFT) of inflation. Within the EFT approach two independent branches of non-attractor inflation solutions are discovered in which a near scale-invariant curvature perturbation power spectrum is generated from the interplay between the variation of sound speed and the second slow roll parameter η. The first branch captures and extends the previously studied models of non-attractor inflation in which the curvature perturbation is not frozen on super-horizon scales and the single field non-Gaussianity consistency condition is violated. We present the general expression for the amplitude of local-type non-Gaussianity in this branch. The second branch is new in which the curvature perturbation is frozen on super-horizon scales and the single field non-Gaussianity consistency condition does hold in the squeezed limit. Depending on the model parameters, the shape of bispectrum in this branch changes from an equilateral configuration to a folded configuration while the amplitude of non-Gaussianity is less than unity.

  4. A chaotic attractor in timing noise from the Vela pulsar?

    Science.gov (United States)

    Harding, Alice K.; Shinbrot, Troy; Cordes, James M.

    1990-01-01

    Fourteen years of timing residual data from the Vela pulsar have been analyzed in order to determine if a chaotic dynamical process is the origin of timing noise. Using the correlation sum technique, a dimension of about 1.5 is obtained. This low dimension indicates underlying structure in the phase residuals which may be evidence for a chaotic attractor. It is therefore possible that nonlinear dynamics intrinsic to the spin-down may be the cause of the timing noise in the Vela pulsar. However, it has been found that the stimulated random walks in frequency and frequency derivative often used to model pulsar timing noise also have low fractal dimension, using the same analysis technique. Recent work suggesting that random processes with steep power spectra can mimic strange attractors seems to be confirmed in the case of these random walks. It appears that the correlation sum estimator for dimension is unable to distinguish between chaotic and random processes.

  5. Global attractors and extinction dynamics of cyclically competing species

    Science.gov (United States)

    Rulands, Steffen; Zielinski, Alejandro; Frey, Erwin

    2013-05-01

    Transitions to absorbing states are of fundamental importance in nonequilibrium physics as well as ecology. In ecology, absorbing states correspond to the extinction of species. We here study the spatial population dynamics of three cyclically interacting species. The interaction scheme comprises both direct competition between species as in the cyclic Lotka-Volterra model, and separated selection and reproduction processes as in the May-Leonard model. We show that the dynamic processes leading to the transient maintenance of biodiversity are closely linked to attractors of the nonlinear dynamics for the overall species’ concentrations. The characteristics of these global attractors change qualitatively at certain threshold values of the mobility and depend on the relative strength of the different types of competition between species. They give information about the scaling of extinction times with the system size and thereby the stability of biodiversity. We define an effective free energy as the negative logarithm of the probability to find the system in a specific global state before reaching one of the absorbing states. The global attractors then correspond to minima of this effective energy landscape and determine the most probable values for the species’ global concentrations. As in equilibrium thermodynamics, qualitative changes in the effective free energy landscape indicate and characterize the underlying nonequilibrium phase transitions. We provide the complete phase diagrams for the population dynamics and give a comprehensive analysis of the spatio-temporal dynamics and routes to extinction in the respective phases.

  6. Supersymmetry, attractors and cosmic censorship

    Science.gov (United States)

    Bellorín, Jorge; Meessen, Patrick; Ortín, Tomás

    2007-01-01

    We show that requiring unbroken supersymmetry everywhere in black-hole-type solutions of N=2, d=4 supergravity coupled to vector supermultiplets ensures in most cases absence of naked singularities. We formulate three specific conditions which we argue are equivalent to the requirement of global supersymmetry. These three conditions can be related to the absence of sources for NUT charge, angular momentum, scalar hair and negative energy, although the solutions can still have globally defined angular momentum and non-trivial scalar fields, as we show in an explicit example. Furthermore, only the solutions satisfying these requirements seem to have a microscopic interpretation in string theory since only they have supersymmetric sources. These conditions exclude, for instance, singular solutions such as the Kerr-Newman with M=|q|, which fails to be everywhere supersymmetric. We also present a re-derivation of several results concerning attractors in N=2, d=4 theories based on the explicit knowledge of the most general solutions in the timelike class.

  7. Supersymmetry, attractors and cosmic censorship

    Energy Technology Data Exchange (ETDEWEB)

    Bellorin, Jorge [Instituto de Fisica Teorica UAM/CSIC, Facultad de Ciencias C-XVI, C.U. Cantoblanco, E-28049 Madrid (Spain)]. E-mail: jorge.bellorin@uam.es; Meessen, Patrick [Instituto de Fisica Teorica UAM/CSIC, Facultad de Ciencias C-XVI, C.U. Cantoblanco, E-28049 Madrid (Spain)]. E-mail: patrick.meessen@cern.ch; Ortin, Tomas [Instituto de Fisica Teorica UAM/CSIC, Facultad de Ciencias C-XVI, C.U. Cantoblanco, E-28049 Madrid (Spain)]. E-mail: tomas.ortin@cern.ch

    2007-01-29

    We show that requiring unbroken supersymmetry everywhere in black-hole-type solutions of N=2, d=4 supergravity coupled to vector supermultiplets ensures in most cases absence of naked singularities. We formulate three specific conditions which we argue are equivalent to the requirement of global supersymmetry. These three conditions can be related to the absence of sources for NUT charge, angular momentum, scalar hair and negative energy, although the solutions can still have globally defined angular momentum and non-trivial scalar fields, as we show in an explicit example. Furthermore, only the solutions satisfying these requirements seem to have a microscopic interpretation in string theory since only they have supersymmetric sources. These conditions exclude, for instance, singular solutions such as the Kerr-Newman with M=|q|, which fails to be everywhere supersymmetric. We also present a re-derivation of several results concerning attractors in N=2, d=4 theories based on the explicit knowledge of the most general solutions in the timelike class.

  8. Simplified models of biological networks.

    Science.gov (United States)

    Sneppen, Kim; Krishna, Sandeep; Semsey, Szabolcs

    2010-01-01

    The function of living cells is controlled by complex regulatory networks that are built of a wide diversity of interacting molecular components. The sheer size and intricacy of molecular networks of even the simplest organisms are obstacles toward understanding network functionality. This review discusses the achievements and promise of a bottom-up approach that uses well-characterized subnetworks as model systems for understanding larger networks. It highlights the interplay between the structure, logic, and function of various types of small regulatory circuits. The bottom-up approach advocates understanding regulatory networks as a collection of entangled motifs. We therefore emphasize the potential of negative and positive feedback, as well as their combinations, to generate robust homeostasis, epigenetics, and oscillations. PMID:20192769

  9. Advances in theoretical models of network science

    Institute of Scientific and Technical Information of China (English)

    FANG Jin-qing; BI Qiao; LI Yong

    2007-01-01

    In this review article, we will summarize the main advances in network science investigated by the CIAE Group of Complex Network in this field. Several theoretical models of network science were proposed and their topological and dynamical properties are reviewed and compared with the other models. Our models mainly include a harmonious unifying hybrid preferential model, a large unifying hybrid network model, a quantum interference network, a hexagonal nanowire network, and a small-world network with the same degree. The models above reveal some new phenomena and findings, which are useful for deeply understanding and investigating complex networks and their applications.

  10. Strange Attractors Characterizing the Osmotic Instability

    CERN Document Server

    Tzenov, Stephan I

    2014-01-01

    In the present paper a simple dynamical model for computing the osmotically driven fluid flow in a variety of complex, non equilibrium situations is derived from first principles. Using the Oberbeck-Boussinesq approximation, the basic equations describing the process of forward osmosis have been obtained. It has been shown that these equations are very similar to the ones used to model the free Rayleigh-Benard convection. The difference is that while in the case of thermal convection the volume expansion is driven by the coefficient of thermal expansion, the key role for the osmotic instability is played by the coefficient of isothermal compressibility. In addition, it has been shown that the osmotic process represents a propagation of standing waves with time-dependent amplitudes and phase velocity, which equals the current velocity of the solvent passing through the semi-permeable membrane. The evolution of the amplitudes of the osmotic waves is exactly following the dynamics of a strange attractor of Loren...

  11. Current approaches to gene regulatory network modelling

    Directory of Open Access Journals (Sweden)

    Brazma Alvis

    2007-09-01

    Full Text Available Abstract Many different approaches have been developed to model and simulate gene regulatory networks. We proposed the following categories for gene regulatory network models: network parts lists, network topology models, network control logic models, and dynamic models. Here we will describe some examples for each of these categories. We will study the topology of gene regulatory networks in yeast in more detail, comparing a direct network derived from transcription factor binding data and an indirect network derived from genome-wide expression data in mutants. Regarding the network dynamics we briefly describe discrete and continuous approaches to network modelling, then describe a hybrid model called Finite State Linear Model and demonstrate that some simple network dynamics can be simulated in this model.

  12. Emerging dynamics in neuronal networks of diffusively coupled hard oscillators.

    Science.gov (United States)

    Ponta, L; Lanza, V; Bonnin, M; Corinto, F

    2011-06-01

    Oscillatory networks are a special class of neural networks where each neuron exhibits time periodic behavior. They represent bio-inspired architectures which can be exploited to model biological processes such as the binding problem and selective attention. In this paper we investigate the dynamics of networks whose neurons are hard oscillators, namely they exhibit the coexistence of different stable attractors. We consider a constant external stimulus applied to each neuron, which influences the neuron's own natural frequency. We show that, due to the interaction between different kinds of attractors, as well as between attractors and repellors, new interesting dynamics arises, in the form of synchronous oscillations of various amplitudes. We also show that neurons subject to different stimuli are able to synchronize if their couplings are strong enough.

  13. A Multilayer Model of Computer Networks

    OpenAIRE

    Shchurov, Andrey A.

    2015-01-01

    The fundamental concept of applying the system methodology to network analysis declares that network architecture should take into account services and applications which this network provides and supports. This work introduces a formal model of computer networks on the basis of the hierarchical multilayer networks. In turn, individual layers are represented as multiplex networks. The concept of layered networks provides conditions of top-down consistency of the model. Next, we determined the...

  14. Target-Centric Network Modeling

    DEFF Research Database (Denmark)

    Mitchell, Dr. William L.; Clark, Dr. Robert M.

    In Target-Centric Network Modeling: Case Studies in Analyzing Complex Intelligence Issues, authors Robert Clark and William Mitchell take an entirely new approach to teaching intelligence analysis. Unlike any other book on the market, it offers case study scenarios using actual intelligence...... reporting formats, along with a tested process that facilitates the production of a wide range of analytical products for civilian, military, and hybrid intelligence environments. Readers will learn how to perform the specific actions of problem definition modeling, target network modeling......, and collaborative sharing in the process of creating a high-quality, actionable intelligence product. The case studies reflect the complexity of twenty-first century intelligence issues by dealing with multi-layered target networks that cut across political, economic, social, technological, and military issues...

  15. Hydraulic Modeling: Pipe Network Analysis

    OpenAIRE

    Datwyler, Trevor T.

    2012-01-01

    Water modeling is becoming an increasingly important part of hydraulic engineering. One application of hydraulic modeling is pipe network analysis. Using programmed algorithms to repeatedly solve continuity and energy equations, computer software can greatly reduce the amount of time required to analyze a closed conduit system. Such hydraulic models can become a valuable tool for cities to maintain their water systems and plan for future growth. The Utah Division of Drinking Water regulations...

  16. Black Hole Attractors and Pure Spinors

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Jonathan P.; Maloney, Alexander; Tomasiello, Alessandro

    2006-02-21

    We construct black hole attractor solutions for a wide class of N = 2 compactifications. The analysis is carried out in ten dimensions and makes crucial use of pure spinor techniques. This formalism can accommodate non-Kaehler manifolds as well as compactifications with flux, in addition to the usual Calabi-Yau case. At the attractor point, the charges fix the moduli according to {Sigma}f{sub k} = Im(C{Phi}), where {Phi} is a pure spinor of odd (even) chirality in IIB (A). For IIB on a Calabi-Yau, {Phi} = {Omega} and the equation reduces to the usual one. Methods in generalized complex geometry can be used to study solutions to the attractor equation.

  17. GLOBAL ATTRACTOR FOR THE NONLINEAR STRAIN WAVES IN ELASTIC WAVEGUIDES

    Institute of Scientific and Technical Information of China (English)

    戴正德; 杜先云

    2001-01-01

    In this paper the authors consider the initial boundary value problems of the generalized nonlinear strain waves in elastic waveguides and prove the existence of global attractors and thefiniteness of the Hausdorff and the fractal dimensions of the attractors.

  18. Homogenization of attractors for a class of nonlinear parabolic equations

    Institute of Scientific and Technical Information of China (English)

    WANG Guo-lian; ZHANG Xing-you

    2004-01-01

    The relation between the global attractors Aε for a calss of quasilinear parabolic equations and the global attractor A0for the homogenized equation is discussed, and an explicit error estimate between Aε and A0 is given.

  19. Thermal Network Modelling Handbook

    Science.gov (United States)

    1972-01-01

    Thermal mathematical modelling is discussed in detail. A three-fold purpose was established: (1) to acquaint the new user with the terminology and concepts used in thermal mathematical modelling, (2) to present the more experienced and occasional user with quick formulas and methods for solving everyday problems, coupled with study cases which lend insight into the relationships that exist among the various solution techniques and parameters, and (3) to begin to catalog in an orderly fashion the common formulas which may be applied to automated conversational language techniques.

  20. Erice Lectures on Black Holes and Attractors

    CERN Document Server

    Ferrara, Sergio; Marrani, A

    2008-01-01

    These lectures give an elementary introduction to the subject of four dimensional black holes (BHs) in supergravity and the Attractor Mechanism in the extremal case. Some thermodynamical properties are discussed and some relevant formulae for the critical points of the BH effective potential are given. The case of Maxwell-Einstein-axion-dilaton (super)gravity is discussed in detail. Analogies among BH entropy and multipartite entanglement of qubits in quantum information theory, as well moduli spaces of extremal BH attractors, are also discussed.

  1. Random attractors for asymptotically upper semicompact multivalue random semiflows

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The present paper studied the dynamics of some multivalued random semiflow. The corresponding concept of random attractor for this case was introduced to study asymptotic behavior. The existence of random attractor of multivalued random semiflow was proved under the assumption of pullback asymptotically upper semicompact, and this random attractor is random compact and invariant. Furthermore, if the system has ergodicity, then this random attractor is the limit set of a deterministic bounded set.

  2. CNEM: Cluster Based Network Evolution Model

    Directory of Open Access Journals (Sweden)

    Sarwat Nizamani

    2015-01-01

    Full Text Available This paper presents a network evolution model, which is based on the clustering approach. The proposed approach depicts the network evolution, which demonstrates the network formation from individual nodes to fully evolved network. An agglomerative hierarchical clustering method is applied for the evolution of network. In the paper, we present three case studies which show the evolution of the networks from the scratch. These case studies include: terrorist network of 9/11 incidents, terrorist network of WMD (Weapons Mass Destruction plot against France and a network of tweets discussing a topic. The network of 9/11 is also used for evaluation, using other social network analysis methods which show that the clusters created using the proposed model of network evolution are of good quality, thus the proposed method can be used by law enforcement agencies in order to further investigate the criminal networks

  3. Dynamical modeling of the cholesterol regulatory pathway with Boolean networks

    Directory of Open Access Journals (Sweden)

    Corcos Laurent

    2008-11-01

    Full Text Available Abstract Background Qualitative dynamics of small gene regulatory networks have been studied in quite some details both with synchronous and asynchronous analysis. However, both methods have their drawbacks: synchronous analysis leads to spurious attractors and asynchronous analysis lacks computational efficiency, which is a problem to simulate large networks. We addressed this question through the analysis of a major biosynthesis pathway. Indeed the cholesterol synthesis pathway plays a pivotal role in dislypidemia and, ultimately, in cancer through intermediates such as mevalonate, farnesyl pyrophosphate and geranyl geranyl pyrophosphate, but no dynamic model of this pathway has been proposed until now. Results We set up a computational framework to dynamically analyze large biological networks. This framework associates a classical and computationally efficient synchronous Boolean analysis with a newly introduced method based on Markov chains, which identifies spurious cycles among the results of the synchronous simulation. Based on this method, we present here the results of the analysis of the cholesterol biosynthesis pathway and its physiological regulation by the Sterol Response Element Binding Proteins (SREBPs, as well as the modeling of the action of statins, inhibitor drugs, on this pathway. The in silico experiments show the blockade of the cholesterol endogenous synthesis by statins and its regulation by SREPBs, in full agreement with the known biochemical features of the pathway. Conclusion We believe that the method described here to identify spurious cycles opens new routes to compute large and biologically relevant models, thanks to the computational efficiency of synchronous simulation. Furthermore, to the best of our knowledge, we present here the first dynamic systems biology model of the human cholesterol pathway and several of its key regulatory control elements, hoping it would provide a good basis to perform in silico

  4. Noise-enhanced reconstruction of attractors

    CERN Document Server

    Castro, R G

    1997-01-01

    In principle, the state space of a chaotic attractor can be partially or wholly reconstructed from interspike intervals recorded from experiment. Under certain conditions, the quality of a partial reconstruction, as measured by the spike train prediction error, can be increased by adding noise to the spike creation process. This phenomenon for chaotic systems is an analogue of stochastic resonance.

  5. Attractor black holes and quantum distribution functions

    Energy Technology Data Exchange (ETDEWEB)

    Montanez, S. [Instituto de Fisica Teorica CSIC-UAM, Modulo C-XVI, Facultad de Ciencias, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Gomez, C. [Instituto de Fisica Teorica CSIC-UAM, Modulo C-XVI, Facultad de Ciencias, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Theory Group, Physics Department, CERN, 1211 Geneva 23 (Switzerland)

    2007-05-15

    Using the attractor mechanism and the wavefunction interpretation of the topological string partition function on a Calabi Yau threefold M we study the relation between the Bekenstein-Hawking-Wald entropy of BPS Calabi-Yau black holes and quantum distribution functions defined on H{sup 3}(M). We discuss the OSV conjecture in this context. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  6. Large Global Coupled Maps with Multiple Attractors

    CERN Document Server

    Carusela, M F; Romanelli, L

    1999-01-01

    A system of N unidimensional global coupled maps (GCM), which support multiattractors is studied. We analize the phase diagram and some special features of the transitions (volume ratios and characteristic exponents), by controlling the number of elements of the initial partition that are in each basin of attraction. It was found important difference with widely known coupled systems with a single attractor.

  7. The Hyperbolic Geometry of Cosmological Attractors

    NARCIS (Netherlands)

    Carrasco, John Joseph M.; Kallosh, Renata; Linde, Andrei; Roest, Diederik

    2015-01-01

    Cosmological alpha-attractors give a natural explanation for the spectral index n_s of inflation as measured by Planck while predicting a range for the tensor-to-scalar ratio r, consistent with all observations, to be measured more precisely in future detection of gravity waves. Their embedding into

  8. Semicontinuity of attractors for impulsive dynamical systems

    Science.gov (United States)

    Bonotto, E. M.; Bortolan, M. C.; Collegari, R.; Czaja, R.

    2016-10-01

    In this paper we introduce the concept of collective tube conditions which assures a suitable behaviour for a family of dynamical systems close to impulsive sets. Using the collective tube conditions, we develop the theory of upper and lower semicontinuity of global attractors for a family of impulsive dynamical systems.

  9. Recurrence quantification analysis in Liu's attractor

    International Nuclear Information System (INIS)

    Recurrence Quantification Analysis is used to detect transitions chaos to periodical states or chaos to chaos in a new dynamical system proposed by Liu et al. This system contains a control parameter in the second equation and was originally introduced to investigate the forming mechanism of the compound structure of the chaotic attractor which exists when the control parameter is zero

  10. Research on the model of home networking

    Science.gov (United States)

    Yun, Xiang; Feng, Xiancheng

    2007-11-01

    It is the research hotspot of current broadband network to combine voice service, data service and broadband audio-video service by IP protocol to transport various real time and mutual services to terminal users (home). Home Networking is a new kind of network and application technology which can provide various services. Home networking is called as Digital Home Network. It means that PC, home entertainment equipment, home appliances, Home wirings, security, illumination system were communicated with each other by some composing network technology, constitute a networking internal home, and connect with WAN by home gateway. It is a new network technology and application technology, and can provide many kinds of services inside home or between homes. Currently, home networking can be divided into three kinds: Information equipment, Home appliances, Communication equipment. Equipment inside home networking can exchange information with outer networking by home gateway, this information communication is bidirectional, user can get information and service which provided by public networking by using home networking internal equipment through home gateway connecting public network, meantime, also can get information and resource to control the internal equipment which provided by home networking internal equipment. Based on the general network model of home networking, there are four functional entities inside home networking: HA, HB, HC, and HD. (1) HA (Home Access) - home networking connects function entity; (2) HB (Home Bridge) Home networking bridge connects function entity; (3) HC (Home Client) - Home networking client function entity; (4) HD (Home Device) - decoder function entity. There are many physical ways to implement four function entities. Based on theses four functional entities, there are reference model of physical layer, reference model of link layer, reference model of IP layer and application reference model of high layer. In the future home network

  11. Metanetworks of artificially evolved regulatory networks

    CERN Document Server

    Danacı, Burçin

    2014-01-01

    We study metanetworks arising in genotype and phenotype spaces, in the context of a model population of Boolean graphs evolved under selection for short dynamical attractors. We define the adjacency matrix of a graph as its genotype, which gets mutated in the course of evolution, while its phenotype is its set of dynamical attractors. Metanetworks in the genotype and phenotype spaces are formed, respectively, by genetic proximity and by phenotypic similarity, the latter weighted by the sizes of the basins of attraction of the shared attractors. We find that populations of evolved networks form giant clusters in genotype space, have Poissonian degree distributions but exhibit hierarchically organized $k$-core decompositions, while random populations of Boolean graphs are typically so far removed from each other genetically that they cannot form a metanetwork. In phenotype space, the metanetworks of evolved populations are super robust both under the elimination of weak connections and random removal of nodes. ...

  12. Mathematical Modelling Plant Signalling Networks

    KAUST Repository

    Muraro, D.

    2013-01-01

    During the last two decades, molecular genetic studies and the completion of the sequencing of the Arabidopsis thaliana genome have increased knowledge of hormonal regulation in plants. These signal transduction pathways act in concert through gene regulatory and signalling networks whose main components have begun to be elucidated. Our understanding of the resulting cellular processes is hindered by the complex, and sometimes counter-intuitive, dynamics of the networks, which may be interconnected through feedback controls and cross-regulation. Mathematical modelling provides a valuable tool to investigate such dynamics and to perform in silico experiments that may not be easily carried out in a laboratory. In this article, we firstly review general methods for modelling gene and signalling networks and their application in plants. We then describe specific models of hormonal perception and cross-talk in plants. This mathematical analysis of sub-cellular molecular mechanisms paves the way for more comprehensive modelling studies of hormonal transport and signalling in a multi-scale setting. © EDP Sciences, 2013.

  13. Global Attractor for Damped Wave Equations with Nonlinear Memory

    Institute of Scientific and Technical Information of China (English)

    Yinghao HAN; Zhen'guo YU; Zhengguo JIN

    2012-01-01

    Let Ω (C) Rn be a bounded domain with a smooth boundary.We consider the longtime dynamics of a class of damped wave equations with a nonlinear memory term utt + αut - △u - ∫t0μ(t - s)|u(s)|βu(s)ds + g(u) =f.Based on a time-uniform priori estimate method,the existence of the compact global attractor is proved for this model in the phase space H10 (Ω) × L2 (Ω).

  14. Generalization performance of regularized neural network models

    DEFF Research Database (Denmark)

    Larsen, Jan; Hansen, Lars Kai

    1994-01-01

    Architecture optimization is a fundamental problem of neural network modeling. The optimal architecture is defined as the one which minimizes the generalization error. This paper addresses estimation of the generalization performance of regularized, complete neural network models. Regularization...

  15. Probabilistic logic modeling of network reliability for hybrid network architectures

    Energy Technology Data Exchange (ETDEWEB)

    Wyss, G.D.; Schriner, H.K.; Gaylor, T.R.

    1996-10-01

    Sandia National Laboratories has found that the reliability and failure modes of current-generation network technologies can be effectively modeled using fault tree-based probabilistic logic modeling (PLM) techniques. We have developed fault tree models that include various hierarchical networking technologies and classes of components interconnected in a wide variety of typical and atypical configurations. In this paper we discuss the types of results that can be obtained from PLMs and why these results are of great practical value to network designers and analysts. After providing some mathematical background, we describe the `plug-and-play` fault tree analysis methodology that we have developed for modeling connectivity and the provision of network services in several current- generation network architectures. Finally, we demonstrate the flexibility of the method by modeling the reliability of a hybrid example network that contains several interconnected ethernet, FDDI, and token ring segments. 11 refs., 3 figs., 1 tab.

  16. Free association transitions in models of cortical latching dynamics

    International Nuclear Information System (INIS)

    Potts networks, in certain conditions, hop spontaneously from one discrete attractor state to another, a process we have called latching dynamics. When continuing indefinitely, latching can serve as a model of infinite recursion, which is nontrivial if the matrix of transition probabilities presents a structure, i.e. a rudimentary grammar. We show here, with computer simulations, that latching transitions cluster in a number of distinct classes: effectively random transitions between weakly correlated attractors; structured, history-dependent transitions between attractors with intermediate correlations; and oscillations between pairs of closely overlapping attractors. Each type can be described by a reduced set of equations of motion, which, once numerically integrated, matches simulations results. We propose that the analysis of such equations may offer clues on how to embed meaningful grammatical structures into more realistic models of specific recursive processes

  17. An evolving network model with community structure

    International Nuclear Information System (INIS)

    Many social and biological networks consist of communities-groups of nodes within which connections are dense, but between which connections are sparser. Recently, there has been considerable interest in designing algorithms for detecting community structures in real-world complex networks. In this paper, we propose an evolving network model which exhibits community structure. The network model is based on the inner-community preferential attachment and inter-community preferential attachment mechanisms. The degree distributions of this network model are analysed based on a mean-field method. Theoretical results and numerical simulations indicate that this network model has community structure and scale-free properties

  18. Brand Marketing Model on Social Networks

    Directory of Open Access Journals (Sweden)

    Jolita Jezukevičiūtė

    2014-04-01

    Full Text Available The paper analyzes the brand and its marketing solutions onsocial networks. This analysis led to the creation of improvedbrand marketing model on social networks, which will contributeto the rapid and cheap organization brand recognition, increasecompetitive advantage and enhance consumer loyalty. Therefore,the brand and a variety of social networks are becoming a hotresearch area for brand marketing model on social networks.The world‘s most successful brand marketing models exploratoryanalysis of a single case study revealed a brand marketingsocial networking tools that affect consumers the most. Basedon information analysis and methodological studies, develop abrand marketing model on social networks.

  19. Foundations of implementing the competitive layer model by Lotka-Volterra recurrent neural networks.

    Science.gov (United States)

    Yi, Zhang

    2010-03-01

    The competitive layer model (CLM) can be described by an optimization problem. The problem can be further formulated by an energy function, called the CLM energy function, in the subspace of nonnegative orthant. The set of minimum points of the CLM energy function forms the set of solutions of the CLM problem. Solving the CLM problem means to find out such solutions. Recurrent neural networks (RNNs) can be used to implement the CLM to solve the CLM problem. The key point is to make the set of minimum points of the CLM energy function just correspond to the set of stable attractors of the recurrent neural networks. This paper proposes to use Lotka-Volterra RNNs (LV RNNs) to implement the CLM. The contribution of this paper is to establish foundations of implementing the CLM by LV RNNs. The contribution mainly contains three parts. The first part is on the CLM energy function. Necessary and sufficient conditions for minimum points of the CLM energy function are established by detailed study. The second part is on the convergence of the proposed model of the LV RNNs. It is proven that interesting trajectories are convergent. The third part is the most important. It proves that the set of stable attractors of the proposed LV RNN just equals the set of minimum points of the CLM energy function in the nonnegative orthant. Thus, the LV RNNs can be used to solve the problem of the CLM. It is believed that by establishing such basic rigorous theories, more and interesting applications of the CLM can be found.

  20. Modeling the Dynamics of Compromised Networks

    Energy Technology Data Exchange (ETDEWEB)

    Soper, B; Merl, D M

    2011-09-12

    Accurate predictive models of compromised networks would contribute greatly to improving the effectiveness and efficiency of the detection and control of network attacks. Compartmental epidemiological models have been applied to modeling attack vectors such as viruses and worms. We extend the application of these models to capture a wider class of dynamics applicable to cyber security. By making basic assumptions regarding network topology we use multi-group epidemiological models and reaction rate kinetics to model the stochastic evolution of a compromised network. The Gillespie Algorithm is used to run simulations under a worst case scenario in which the intruder follows the basic connection rates of network traffic as a method of obfuscation.

  1. Information Network Model Query Processing

    Science.gov (United States)

    Song, Xiaopu

    Information Networking Model (INM) [31] is a novel database model for real world objects and relationships management. It naturally and directly supports various kinds of static and dynamic relationships between objects. In INM, objects are networked through various natural and complex relationships. INM Query Language (INM-QL) [30] is designed to explore such information network, retrieve information about schema, instance, their attributes, relationships, and context-dependent information, and process query results in the user specified form. INM database management system has been implemented using Berkeley DB, and it supports INM-QL. This thesis is mainly focused on the implementation of the subsystem that is able to effectively and efficiently process INM-QL. The subsystem provides a lexical and syntactical analyzer of INM-QL, and it is able to choose appropriate evaluation strategies and index mechanism to process queries in INM-QL without the user's intervention. It also uses intermediate result structure to hold intermediate query result and other helping structures to reduce complexity of query processing.

  2. Existence of the solutions and the attractors for the large-scale atmospheric equations

    Institute of Scientific and Technical Information of China (English)

    HUANG Haiyang; GUO Boling

    2006-01-01

    In this paper, firstly, the proper function space is chosen, and the proper expression of the operators is introduced such that the complex large-scale atmospheric motion equations can be described by a simple and abstract equation, by which the definition of the weak solution of the atmospheric equations is made. Secondly, the existence of the weak solution for the atmospheric equations and the steady state equations is proved by using the Galerkin method. The existence of the non-empty global attractors for the atmospheric equations in the sense of the Chepyzhov-Vishik's definition is obtained by constructing a trajectory attractor set of the atmospheric motion equations.The result obtained here is the foundation for studying the topological structure and the dynamical behavior of the atmosphere attractors. Moreover, the methods used here are also valid for studying the other atmospheric motion models.

  3. Non-BPS Attractors in 5d and 6d Extended Supergravity

    CERN Document Server

    Andrianopoli, L; Marrani, A; Trigiante, M

    2008-01-01

    We connect the attractor equations of a certain class of N=2, d=5 supergravities with their (1,0), d=6 counterparts, by relating the moduli space of non-BPS d=5 black hole/black string attractors to the moduli space of extremal dyonic black string d=6 non-BPS attractors. For d = 5 real special symmetric spaces and for N = 4,6,8 theories, we explicitly compute the flat directions of the black object potential corresponding to vanishing eigenvalues of its Hessian matrix. In the case N = 4, we study the relation to the (2,0), d=6 theory. We finally describe the embedding of the N=2, d=5 magic models in N=8, d=5 supergravity as well as the interconnection among the corresponding charge orbits.

  4. Asymptotic global fast dynamics and attractor fractal dimension of the TDGL-equations of superconductivity

    Science.gov (United States)

    Willie, Robert

    2016-09-01

    In this paper, we study a model system of equations of the time dependent Ginzburg-Landau equations of superconductivity in a Lorentz gauge, in scale of Hilbert spaces E^{α } with initial data in E^{β } satisfying 3α + β ≥ N/2, where N=2,3 is such that the spatial domain of the equations [InlineEquation not available: see fulltext.]. We show in the asymptotic dynamics of the equations, well-posedness of the dynamical system for a global exponential attractor {{U}}subset E^{α } compact in E^{β } if α >β , uniform differentiability of orbits on the attractor in E0\\cong L2, and the existence of an explicit finite bounding estimate on the fractal dimension of the attractor yielding that its Hausdorff dimension is as well finite. Uniform boundedness in (0,∞ )× Ω of solutions in E^{1/2}\\cong H1(Ω ) is in addition investigated.

  5. Hyperbolic chaotic attractor in amplitude dynamics of coupled self-oscillators with periodic parameter modulation

    DEFF Research Database (Denmark)

    Isaeva, Olga B.; Kuznetsov, Sergey P.; Mosekilde, Erik

    2011-01-01

    The paper proposes an approach to constructing feasible examples of dynamical systems with hyperbolic chaotic attractors based on the successive transfer of excitation between two pairs of self-oscillators that are alternately active. An angular variable that measures the relations of the current...... amplitudes for the two oscillators of each pair undergoes a transformation in accordance with the expanding circle map during each cycle of the process. We start with equations describing the dynamics in terms of complex or real amplitudes and then examine two models based on van der Pol oscillators. One...... variables, portraits of attractors, Lyapunov exponents, etc. The uniformly hyperbolic nature of the attractor in the stroboscopic Poincare map is confirmed for a real-amplitude version of the equations by computations of statistical distribution of angles between stable and unstable manifolds...

  6. Multilayer weighted social network model

    Science.gov (United States)

    Murase, Yohsuke; Török, János; Jo, Hang-Hyun; Kaski, Kimmo; Kertész, János

    2014-11-01

    Recent empirical studies using large-scale data sets have validated the Granovetter hypothesis on the structure of the society in that there are strongly wired communities connected by weak ties. However, as interaction between individuals takes place in diverse contexts, these communities turn out to be overlapping. This implies that the society has a multilayered structure, where the layers represent the different contexts. To model this structure we begin with a single-layer weighted social network (WSN) model showing the Granovetterian structure. We find that when merging such WSN models, a sufficient amount of interlayer correlation is needed to maintain the relationship between topology and link weights, while these correlations destroy the enhancement in the community overlap due to multiple layers. To resolve this, we devise a geographic multilayer WSN model, where the indirect interlayer correlations due to the geographic constraints of individuals enhance the overlaps between the communities and, at the same time, the Granovetterian structure is preserved.

  7. A Strange Double-Deck Butterfly Chaotic Attractor from a Permanent Magnet Synchronous Motor with Smooth Air Gap: Numerical Analysis and Experimental Observation

    Directory of Open Access Journals (Sweden)

    Zhonglin Wang

    2014-01-01

    Full Text Available A permanent magnet synchronous motor (PMSM model with smooth air gap and an exogenous periodic input is introduced and analyzed in this paper. With a simple mathematical transformation, a new nonautonomous Lorenz-like system is derived from this PMSM model, and this new three-dimensional system can display the complicated dynamics such as the chaotic attractor and the multiperiodic orbits by adjusting the frequency and amplitude of the exogenous periodic inputs. Moreover, this new system shows a double-deck chaotic attractor that is completely different from the four-wing chaotic attractors on topological structures, although the phase portrait shapes of the new attractor and the four-wing chaotic attractors are similar. The exotic phenomenon has been well demonstrated and investigated by numerical simulations, bifurcation analysis, and electronic circuit implementation.

  8. Brand Marketing Model on Social Networks

    OpenAIRE

    Jolita Jezukevičiūtė; Vida Davidavičienė

    2014-01-01

    The paper analyzes the brand and its marketing solutions onsocial networks. This analysis led to the creation of improvedbrand marketing model on social networks, which will contributeto the rapid and cheap organization brand recognition, increasecompetitive advantage and enhance consumer loyalty. Therefore,the brand and a variety of social networks are becoming a hotresearch area for brand marketing model on social networks.The world‘s most successful brand marketing models exploratoryanalys...

  9. Energy landscapes of resting-state brain networks

    Directory of Open Access Journals (Sweden)

    Takamitsu eWatanabe

    2014-02-01

    Full Text Available During rest, the human brain performs essential functions such as memory maintenance, which are associated with resting-state brain networks (RSNs including the default-mode network (DMN and frontoparietal network (FPN. Previous studies based on spiking-neuron network models and their reduced models, as well as those based on imaging data, suggest that resting-state network activity can be captured as attractor dynamics, i.e., dynamics of the brain state toward an attractive state and transitions between different attractors. Here, we analyze the energy landscapes of the RSNs by applying the maximum entropy model, or equivalently the Ising spin model, to human RSN data. We use the previously estimated parameter values to define the energy landscape, and the disconnectivity graph method to estimate the number of local energy minima (equivalent to attractors in attractor dynamics, the basin size, and hierarchical relationships among the different local minima. In both of the DMN and FPN, low-energy local minima tended to have large basins. A majority of the network states belonged to a basin of one of a few local minima. Therefore, a small number of local minima constituted the backbone of each RSN. In the DMN, the energy landscape consisted of two groups of low-energy local minima that are separated by a relatively high energy barrier. Within each group, the activity patterns of the local minima were similar, and different minima were connected by relatively low energy barriers. In the FPN, all dominant energy were separated by relatively low energy barriers such that they formed a single coarse-grained global minimum. Our results indicate that multistable attractor dynamics may underlie the DMN, but not the FPN, and assist memory maintenance with different memory states.

  10. Network Bandwidth Utilization Forecast Model on High Bandwidth Network

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Wucherl; Sim, Alex

    2014-07-07

    With the increasing number of geographically distributed scientific collaborations and the scale of the data size growth, it has become more challenging for users to achieve the best possible network performance on a shared network. We have developed a forecast model to predict expected bandwidth utilization for high-bandwidth wide area network. The forecast model can improve the efficiency of resource utilization and scheduling data movements on high-bandwidth network to accommodate ever increasing data volume for large-scale scientific data applications. Univariate model is developed with STL and ARIMA on SNMP path utilization data. Compared with traditional approach such as Box-Jenkins methodology, our forecast model reduces computation time by 83.2percent. It also shows resilience against abrupt network usage change. The accuracy of the forecast model is within the standard deviation of the monitored measurements.

  11. Tiling Spaces, Codimension One Attractors and Shape

    CERN Document Server

    Clark, Alex

    2011-01-01

    We show that any codimension one hyperbolic attractor of a di?eomorphism of a (d+1)-dimensional closed manifold is shape equivalent to a (d+1)-dimensional torus with a ?nite number of points removed, or, in the non-orientable case, to a space with a 2 to 1 covering by such a torus-less-points. Furthermore, we show that each orientable attractor is homeomorphic to a tiling space associated to an aperiodic tiling of Rd, but that the converse is generally not true. This work allows the de?nition of a new invariant for aperiodic tilings, in many cases ?ner than the cohomological or K-theoretic invariants studied to date.

  12. Evidence for attractors in English intonation.

    Science.gov (United States)

    Braun, Bettina; Kochanski, Greg; Grabe, Esther; Rosner, Burton S

    2006-06-01

    Although the pitch of the human voice is continuously variable, some linguists contend that intonation in speech is restricted to a small, limited set of patterns. This claim is tested by asking subjects to mimic a block of 100 randomly generated intonation contours and then to imitate themselves in several successive sessions. The produced f0 contours gradually converge towards a limited set of distinct, previously recognized basic English intonation patterns. These patterns are "attractors" in the space of possible intonation English contours. The convergence does not occur immediately. Seven of the ten participants show continued convergence toward their attractors after the first iteration. Subjects retain and use information beyond phonological contrasts, suggesting that intonational phonology is not a complete description of their mental representation of intonation. PMID:16838543

  13. Distributed Combat System of Systems Network Modeling

    Directory of Open Access Journals (Sweden)

    Yanbo Qi

    2013-08-01

    Full Text Available How to generate the topology model of Distributed combat System of Systems network is an important issue in combat analysis. A combat network construction algorithm was proposed to solve the problem. The improved hierarchy network evolving method was used to construct the command and control network, and the combat network generation algorithm was developed by the growth and local priority connections of new node joining into the command network. And then the analytical expression of the degree distribution of the network model was deduced via the mean-field theory method. Finally, the network model was analyzed according to the topology statistical parameters. The analyzing results show that under the same command span, though the command network topology doesn’t change when command level was increased, but the topology performance of the combat network is improved. This is in line with actual combat network; the comparison of degree distribution of analytical results and simulation results indicated that the degree distribution of network model we proposed follows a power law distribution, with exponential value depending on the initial number of command and control network and the number of nodes connected to the rest of the network , verifying the validity of the algorithm model.

  14. Two-Layer Feedback Neural Networks with Associative Memories

    Institute of Scientific and Technical Information of China (English)

    WU Gui-Kun; ZHAO Hong

    2008-01-01

    We construct a two-layer feedback neural network by a Monte Carlo based algorithm to store memories as fixed-point attractors or as limit-cycle attractors. Special attention is focused on comparing the dynamics of the network with limit-cycle attractors and with fixed-point attractors. It is found that the former has better retrieval property than the latter. Particularly, spurious memories may be suppressed completely when the memories are stored as a long-limit cycle. Potential application of limit-cycle-attractor networks is discussed briefly.

  15. Coherence resonance in bursting neural networks

    Science.gov (United States)

    Kim, June Hoan; Lee, Ho Jun; Min, Cheol Hong; Lee, Kyoung J.

    2015-10-01

    Synchronized neural bursts are one of the most noticeable dynamic features of neural networks, being essential for various phenomena in neuroscience, yet their complex dynamics are not well understood. With extrinsic electrical and optical manipulations on cultured neural networks, we demonstrate that the regularity (or randomness) of burst sequences is in many cases determined by a (few) low-dimensional attractor(s) working under strong neural noise. Moreover, there is an optimal level of noise strength at which the regularity of the interburst interval sequence becomes maximal—a phenomenon of coherence resonance. The experimental observations are successfully reproduced through computer simulations on a well-established neural network model, suggesting that the same phenomena may occur in many in vivo as well as in vitro neural networks.

  16. Coherence resonance in bursting neural networks.

    Science.gov (United States)

    Kim, June Hoan; Lee, Ho Jun; Min, Cheol Hong; Lee, Kyoung J

    2015-10-01

    Synchronized neural bursts are one of the most noticeable dynamic features of neural networks, being essential for various phenomena in neuroscience, yet their complex dynamics are not well understood. With extrinsic electrical and optical manipulations on cultured neural networks, we demonstrate that the regularity (or randomness) of burst sequences is in many cases determined by a (few) low-dimensional attractor(s) working under strong neural noise. Moreover, there is an optimal level of noise strength at which the regularity of the interburst interval sequence becomes maximal-a phenomenon of coherence resonance. The experimental observations are successfully reproduced through computer simulations on a well-established neural network model, suggesting that the same phenomena may occur in many in vivo as well as in vitro neural networks.

  17. The Unity of Cosmological Attractors

    NARCIS (Netherlands)

    Galante, Mario; Kallosh, Renata; Linde, Andrei; Roest, Diederik

    2015-01-01

    Recently, several broad classes of inflationary models have been discovered whose cosmological predictions are stable with respect to significant modifications of the inflaton potential. Some classes of models are based on a non-minimal coupling to gravity. These models, which we will call $\\xi$-att

  18. Exponential Attractor for a Nonlinear Boussinesq Equation

    Institute of Scientific and Technical Information of China (English)

    Ahmed Y. Abdallah

    2006-01-01

    This paper is devoted to prove the existence of an exponential attractor for the semiflow generated by a nonlinear Boussinesq equation. We formulate the Boussinesq equation as an abstract equation in the Hilbert space H20(0, 1) × L2(0, 1). The main step in this research is to show that there exists an absorbing set for the solution semiflow in the Hilbert space H03(0, 1) × H10(0, 1).

  19. Hypermoduli Stabilization, Flux Attractors, and Generating Functions

    CERN Document Server

    Larsen, Finn; Robbins, Daniel

    2009-01-01

    We study stabilization of hypermoduli with emphasis on the effects of generalized fluxes. We find a class of no-scale vacua described by ISD conditions even in the presence of geometric flux. The associated flux attractor equations can be integrated by a generating function with the property that the hypermoduli are determined by a simple extremization principle. We work out several orbifold examples where all vector moduli and many hypermoduli are stabilized, with VEVs given explicitly in terms of fluxes.

  20. Analysis by fracture network modelling

    International Nuclear Information System (INIS)

    This report describes the Fracture Network Modelling and Performance Assessment Support performed by Golder Associates Inc. during the Heisei-11 (1999-2000) fiscal year. The primary objective of the Golder Associates work scope during HY-11 was to provide theoretical and review support to the JNC HY-12 Performance assessment effort. In addition, Golder Associates provided technical support to JNC for the Aespoe Project. Major efforts for performance assessment support included analysis of PAWorks pathways and software documentation, verification, and performance assessment visualization. Support for the Aespoe project including 'Task 4' predictive modelling of sorbing tracer transport in TRUE-1 rock block, and integrated hydrogeological and geochemical modelling of Aespoe island for 'Task 5'. Technical information about Golder Associates HY-11 support to JNC is provided in the appendices to this report. (author)

  1. Modelling delay propagation within an airport network

    NARCIS (Netherlands)

    Pyrgiotis, N.; Malone, K.M.; Odoni, A.

    2013-01-01

    We describe an analytical queuing and network decomposition model developed to study the complex phenomenon of the propagation of delays within a large network of major airports. The Approximate Network Delays (AND) model computes the delays due to local congestion at individual airports and capture

  2. An acoustical model based monitoring network

    NARCIS (Netherlands)

    Wessels, P.W.; Basten, T.G.H.; Eerden, F.J.M. van der

    2010-01-01

    In this paper the approach for an acoustical model based monitoring network is demonstrated. This network is capable of reconstructing a noise map, based on the combination of measured sound levels and an acoustic model of the area. By pre-calculating the sound attenuation within the network the noi

  3. Multistability in Large Scale Models of Brain Activity.

    Directory of Open Access Journals (Sweden)

    Mathieu Golos

    2015-12-01

    Full Text Available Noise driven exploration of a brain network's dynamic repertoire has been hypothesized to be causally involved in cognitive function, aging and neurodegeneration. The dynamic repertoire crucially depends on the network's capacity to store patterns, as well as their stability. Here we systematically explore the capacity of networks derived from human connectomes to store attractor states, as well as various network mechanisms to control the brain's dynamic repertoire. Using a deterministic graded response Hopfield model with connectome-based interactions, we reconstruct the system's attractor space through a uniform sampling of the initial conditions. Large fixed-point attractor sets are obtained in the low temperature condition, with a bigger number of attractors than ever reported so far. Different variants of the initial model, including (i a uniform activation threshold or (ii a global negative feedback, produce a similarly robust multistability in a limited parameter range. A numerical analysis of the distribution of the attractors identifies spatially-segregated components, with a centro-medial core and several well-delineated regional patches. Those different modes share similarity with the fMRI independent components observed in the "resting state" condition. We demonstrate non-stationary behavior in noise-driven generalizations of the models, with different meta-stable attractors visited along the same time course. Only the model with a global dynamic density control is found to display robust and long-lasting non-stationarity with no tendency toward either overactivity or extinction. The best fit with empirical signals is observed at the edge of multistability, a parameter region that also corresponds to the highest entropy of the attractors.

  4. Eight challenges for network epidemic models

    Directory of Open Access Journals (Sweden)

    Lorenzo Pellis

    2015-03-01

    Full Text Available Networks offer a fertile framework for studying the spread of infection in human and animal populations. However, owing to the inherent high-dimensionality of networks themselves, modelling transmission through networks is mathematically and computationally challenging. Even the simplest network epidemic models present unanswered questions. Attempts to improve the practical usefulness of network models by including realistic features of contact networks and of host–pathogen biology (e.g. waning immunity have made some progress, but robust analytical results remain scarce. A more general theory is needed to understand the impact of network structure on the dynamics and control of infection. Here we identify a set of challenges that provide scope for active research in the field of network epidemic models.

  5. An evolutionary model of social networks

    Science.gov (United States)

    Ludwig, M.; Abell, P.

    2007-07-01

    Social networks in communities, markets, and societies self-organise through the interactions of many individuals. In this paper we use a well-known mechanism of social interactions — the balance of sentiment in triadic relations — to describe the development of social networks. Our model contrasts with many existing network models, in that people not only establish but also break up relations whilst the network evolves. The procedure generates several interesting network features such as a variety of degree distributions and degree correlations. The resulting network converges under certain conditions to a steady critical state where temporal disruptions in triangles follow a power-law distribution.

  6. Unity of Cosmological Inflation Attractors

    NARCIS (Netherlands)

    Galante, Mario; Kallosh, Renata; Linde, Andrei; Roest, Diederik

    2015-01-01

    Recently, several broad classes of inflationary models have been discovered whose cosmological predictions, in excellent agreement with Planck, are stable with respect to significant modifications of the inflaton potential. Some classes of models are based on a nonminimal coupling to gravity. These

  7. Modeling Diagnostic Assessments with Bayesian Networks

    Science.gov (United States)

    Almond, Russell G.; DiBello, Louis V.; Moulder, Brad; Zapata-Rivera, Juan-Diego

    2007-01-01

    This paper defines Bayesian network models and examines their applications to IRT-based cognitive diagnostic modeling. These models are especially suited to building inference engines designed to be synchronous with the finer grained student models that arise in skills diagnostic assessment. Aspects of the theory and use of Bayesian network models…

  8. Graph Annotations in Modeling Complex Network Topologies

    CERN Document Server

    Dimitropoulos, Xenofontas; Vahdat, Amin; Riley, George

    2007-01-01

    The coarsest approximation of the structure of a complex network, such as the Internet, is a simple undirected unweighted graph. This approximation, however, loses too much detail. In reality, objects represented by vertices and edges in such a graph possess some non-trivial internal structure that varies across and differentiates among distinct types of links or nodes. In this work, we abstract such additional information as network annotations. We introduce a network topology modeling framework that treats annotations as an extended correlation profile of a network. Assuming we have this profile measured for a given network, we present an algorithm to rescale it in order to construct networks of varying size that still reproduce the original measured annotation profile. Using this methodology, we accurately capture the network properties essential for realistic simulations of network applications and protocols, or any other simulations involving complex network topologies, including modeling and simulation ...

  9. Attractor scenarios and superluminal signals in k-essence cosmology

    CERN Document Server

    Kang, Jin U; Winitzki, Sergei

    2007-01-01

    Cosmological scenarios with k-essence are invoked in order to explain the observed late-time acceleration of the universe. These scenarios avoid the need for fine-tuned initial conditions (the "coincidence problem") because of the attractor-like dynamics of the k-essence field \\phi. It was recently shown that all k-essence scenarios with Lagrangians p=L(X)/\\phi^2, necessarily involve an epoch where perturbations of \\phi propagate faster than light (the "no-go theorem"). We carry out a comprehensive study of attractor-like cosmological solutions ("trackers") involving a k-essence scalar field \\phi and another matter component. The result of this study is a complete classification of k-essence Lagrangians that admit asymptotically stable tracking solutions, among all Lagrangians of the form p=K(\\phi)L(X) . Using this classification, we select the class of models that describe the late-time acceleration and avoid the coincidence problem through the tracking mechanism. An analogous "no-go theorem" still holds for...

  10. ATTRACTORS FOR DISCRETIZATION OF GINZBURG-LANDAU-BBM EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    Mu-rong Jiang; Bo-ling Guo

    2001-01-01

    In this paper, Ginzburg-Landau equation coupled with BBM equationwith periodic initial boundary value conditions are discreted by the finite difference method in spatial direction. Existence of the attractors for the spatially discreted Ginzburg-Landau-BBM equations is proved. For each mesh size, there exist attractors for the discretized system. Moreover, finite Hausdorff and fractal dimensions of the discrete attractors are obtained and the bounds are independent of the mesh sizes.

  11. Invariability, orbits and fuzzy attractors

    Science.gov (United States)

    Perez-Gonzaga, S.; Lloret-Climent, M.; Nescolarde-Selva, J. A.

    2016-01-01

    In this paper, we present a generalization of a new systemic approach to abstract fuzzy systems. Using a fuzzy relations structure will retain the information provided by degrees of membership. In addition, to better suit the situation to be modelled, it is advisable to use T-norm or T-conorm distinct from the minimum and maximum, respectively. This gain in generality is due to the completeness of the work on a higher level of abstraction. You cannot always reproduce the results obtained previously, and also sometimes different definitions with different views are obtained. In any case this approach proves to be much more effective when modelling reality.

  12. How to model wireless mesh networks topology

    International Nuclear Information System (INIS)

    The specification of network connectivity model or topology is the beginning of design and analysis in Computer Network researches. Wireless Mesh Networks is an autonomic network that is dynamically self-organised, self-configured while the mesh nodes establish automatic connectivity with the adjacent nodes in the relay network of wireless backbone routers. Researches in Wireless Mesh Networks range from node deployment to internetworking issues with sensor, Internet and cellular networks. These researches require modelling of relationships and interactions among nodes including technical characteristics of the links while satisfying the architectural requirements of the physical network. However, the existing topology generators model geographic topologies which constitute different architectures, thus may not be suitable in Wireless Mesh Networks scenarios. The existing methods of topology generation are explored, analysed and parameters for their characterisation are identified. Furthermore, an algorithm for the design of Wireless Mesh Networks topology based on square grid model is proposed in this paper. The performance of the topology generated is also evaluated. This research is particularly important in the generation of a close-to-real topology for ensuring relevance of design to the intended network and validity of results obtained in Wireless Mesh Networks researches

  13. Model Of Neural Network With Creative Dynamics

    Science.gov (United States)

    Zak, Michail; Barhen, Jacob

    1993-01-01

    Paper presents analysis of mathematical model of one-neuron/one-synapse neural network featuring coupled activation and learning dynamics and parametrical periodic excitation. Demonstrates self-programming, partly random behavior of suitable designed neural network; believed to be related to spontaneity and creativity of biological neural networks.

  14. Magneto-electric network models in electromagnetism

    OpenAIRE

    Demenko, A.; Sykulski, J. K.

    2006-01-01

    Purpose – The aim of this paper is to develop network models of an electromagnetic field containing both eddy and displacement currents. The proposed network models provide good physical insight, help understanding of complicated electromagnetic phenomena and aid explanation of methods of analysis of electromagnetic systems. Design/methodology/approach – The models consist of magnetic and electric networks coupled via sources. The analogy between the finite element method and the loop and nod...

  15. CIMS Network Protocol and Its Net Models

    Institute of Scientific and Technical Information of China (English)

    罗军舟; 顾冠群

    1997-01-01

    Computer communication network architectures for cims are based on the OSI Reference Model.In this paper,CIMS network protocol model is set up on the basis of the corresqonding service model.Then the authors present a formal specification of transport protocols by using an extended Predicate/Transition net system that is briefly introduced in the third part.Finally,the general methods for the Petri nets based formal specification of CIMS network protocols are outlined.

  16. Agent-based modeling and network dynamics

    CERN Document Server

    Namatame, Akira

    2016-01-01

    The book integrates agent-based modeling and network science. It is divided into three parts, namely, foundations, primary dynamics on and of social networks, and applications. The book begins with the network origin of agent-based models, known as cellular automata, and introduce a number of classic models, such as Schelling’s segregation model and Axelrod’s spatial game. The essence of the foundation part is the network-based agent-based models in which agents follow network-based decision rules. Under the influence of the substantial progress in network science in late 1990s, these models have been extended from using lattices into using small-world networks, scale-free networks, etc. The book also shows that the modern network science mainly driven by game-theorists and sociophysicists has inspired agent-based social scientists to develop alternative formation algorithms, known as agent-based social networks. The book reviews a number of pioneering and representative models in this family. Upon the gi...

  17. Edge exchangeable models for network data

    CERN Document Server

    Crane, Harry

    2016-01-01

    Exchangeable models for vertex labeled graphs cannot replicate the large sample behaviors of sparsity and power law degree distributions observed in many network datasets. Out of this mathematical impossibility emerges the question of how network data can be modeled in a way that reflects known empirical behaviors and respects basic statistical principles. We address this question by observing that edges, not vertices, act as the statistical units in most network datasets, making a theory of edge labeled networks more natural for most applications. Within this context we introduce the new invariance principle of {\\em edge exchangeability}, which unlike its vertex exchangeable counterpart can produce networks with sparse and/or power law structure. We characterize the class of all edge exchangeable network models and identify a particular two parameter family of models with suitable theoretical properties for statistical inference. We discuss issues of estimation from edge exchangeable models and compare our a...

  18. Modeling Network Evolution Using Graph Motifs

    CERN Document Server

    Conway, Drew

    2011-01-01

    Network structures are extremely important to the study of political science. Much of the data in its subfields are naturally represented as networks. This includes trade, diplomatic and conflict relationships. The social structure of several organization is also of interest to many researchers, such as the affiliations of legislators or the relationships among terrorist. A key aspect of studying social networks is understanding the evolutionary dynamics and the mechanism by which these structures grow and change over time. While current methods are well suited to describe static features of networks, they are less capable of specifying models of change and simulating network evolution. In the following paper I present a new method for modeling network growth and evolution. This method relies on graph motifs to generate simulated network data with particular structural characteristic. This technique departs notably from current methods both in form and function. Rather than a closed-form model, or stochastic ...

  19. Modeling data throughput on communication networks

    Energy Technology Data Exchange (ETDEWEB)

    Eldridge, J.M.

    1993-11-01

    New challenges in high performance computing and communications are driving the need for fast, geographically distributed networks. Applications such as modeling physical phenomena, interactive visualization, large data set transfers, and distributed supercomputing require high performance networking [St89][Ra92][Ca92]. One measure of a communication network`s performance is the time it takes to complete a task -- such as transferring a data file or displaying a graphics image on a remote monitor. Throughput, defined as the ratio of the number of useful data bits transmitted per the time required to transmit those bits, is a useful gauge of how well a communication system meets this performance measure. This paper develops and describes an analytical model of throughput. The model is a tool network designers can use to predict network throughput. It also provides insight into those parts of the network that act as a performance bottleneck.

  20. Queuing theory models for computer networks

    Science.gov (United States)

    Galant, David C.

    1989-01-01

    A set of simple queuing theory models which can model the average response of a network of computers to a given traffic load has been implemented using a spreadsheet. The impact of variations in traffic patterns and intensities, channel capacities, and message protocols can be assessed using them because of the lack of fine detail in the network traffic rates, traffic patterns, and the hardware used to implement the networks. A sample use of the models applied to a realistic problem is included in appendix A. Appendix B provides a glossary of terms used in this paper. This Ames Research Center computer communication network is an evolving network of local area networks (LANs) connected via gateways and high-speed backbone communication channels. Intelligent planning of expansion and improvement requires understanding the behavior of the individual LANs as well as the collection of networks as a whole.

  1. Free Energy, Value, and Attractors

    Directory of Open Access Journals (Sweden)

    Karl Friston

    2012-01-01

    Full Text Available It has been suggested recently that action and perception can be understood as minimising the free energy of sensory samples. This ensures that agents sample the environment to maximise the evidence for their model of the world, such that exchanges with the environment are predictable and adaptive. However, the free energy account does not invoke reward or cost-functions from reinforcement-learning and optimal control theory. We therefore ask whether reward is necessary to explain adaptive behaviour. The free energy formulation uses ideas from statistical physics to explain action in terms of minimising sensory surprise. Conversely, reinforcement-learning has its roots in behaviourism and engineering and assumes that agents optimise a policy to maximise future reward. This paper tries to connect the two formulations and concludes that optimal policies correspond to empirical priors on the trajectories of hidden environmental states, which compel agents to seek out the (valuable states they expect to encounter.

  2. Using Nonlinear Stochastic Evolutionary Game Strategy to Model an Evolutionary Biological Network of Organ Carcinogenesis Under a Natural Selection Scheme.

    Science.gov (United States)

    Chen, Bor-Sen; Tsai, Kun-Wei; Li, Cheng-Wei

    2015-01-01

    Molecular biologists have long recognized carcinogenesis as an evolutionary process that involves natural selection. Cancer is driven by the somatic evolution of cell lineages. In this study, the evolution of somatic cancer cell lineages during carcinogenesis was modeled as an equilibrium point (ie, phenotype of attractor) shifting, the process of a nonlinear stochastic evolutionary biological network. This process is subject to intrinsic random fluctuations because of somatic genetic and epigenetic variations, as well as extrinsic disturbances because of carcinogens and stressors. In order to maintain the normal function (ie, phenotype) of an evolutionary biological network subjected to random intrinsic fluctuations and extrinsic disturbances, a network robustness scheme that incorporates natural selection needs to be developed. This can be accomplished by selecting certain genetic and epigenetic variations to modify the network structure to attenuate intrinsic fluctuations efficiently and to resist extrinsic disturbances in order to maintain the phenotype of the evolutionary biological network at an equilibrium point (attractor). However, during carcinogenesis, the remaining (or neutral) genetic and epigenetic variations accumulate, and the extrinsic disturbances become too large to maintain the normal phenotype at the desired equilibrium point for the nonlinear evolutionary biological network. Thus, the network is shifted to a cancer phenotype at a new equilibrium point that begins a new evolutionary process. In this study, the natural selection scheme of an evolutionary biological network of carcinogenesis was derived from a robust negative feedback scheme based on the nonlinear stochastic Nash game strategy. The evolvability and phenotypic robustness criteria of the evolutionary cancer network were also estimated by solving a Hamilton-Jacobi inequality - constrained optimization problem. The simulation revealed that the phenotypic shift of the lung cancer

  3. METHODOLOGICAL NOTES: Strange attractors in rattleback dynamics

    Science.gov (United States)

    Borisov, Aleksei V.; Mamaev, Ivan S.

    2003-04-01

    This review is dedicated to the dynamics of the rattleback, a phenomenon with curious physical properties that is studied in nonholonomic mechanics. All known analytical results are collected here, and some results of our numerical simulation are presented. In particular, three-dimensional Poincare maps associated with dynamical systems are systematically investigated for the first time. It is shown that the loss of stability of periodic and quasiperiodic solutions, which gives rise to strange attractors, is typical of the three-dimensional maps related to rattleback dynamics. This explains some newly discovered properties of the rattleback related to the transition from regular to chaotic solutions at certain values of the physical parameters.

  4. Dimensions of attractors in pinched skew products

    CERN Document Server

    Gröger, M

    2011-01-01

    We study dimensions of strange non-chaotic attractors and their associated physical measures in so-called pinched skew products, introduced by Grebogi and his coworkers in 1984. Our main results are that the Hausdorff dimension, the pointwise dimension and the information dimension are all equal to one, although the box-counting dimension is known to be two. The assertion concerning the pointwise dimension is deduced from the stronger result that the physical measure is rectifiable. Our findings confirm a conjecture by Ding, Grebogi and Ott from 1989.

  5. 3rd School on Attractor Mechanism

    CERN Document Server

    SAM 2007; The Attractor Mechanism: Proceedings of the INFN-Laboratori Nazionali di Frascati School 2007

    2010-01-01

    This book is based upon lectures presented in June 2007 at the INFN-Laboratori Nazionali di Frascati School on Attractor Mechanism, directed by Stefano Bellucci. The symposium included such prestigious lecturers as S. Ferrara, M. Gunaydin, P. Levay, and T. Mohaupt. All lectures were given at a pedagogical, introductory level, which is reflected in the specific "flavor" of this volume. The book also benefits from extensive discussions about, and related reworking of, the various contributions. In addition, this volume contains contributions originating from short presentations of rece

  6. Attractor Explosions and Catalyzed Vacuum Decay

    Energy Technology Data Exchange (ETDEWEB)

    Green, Daniel; Silverstein, Eva; Starr, David

    2006-05-05

    We present a mechanism for catalyzed vacuum bubble production obtained by combining moduli stabilization with a generalized attractor phenomenon in which moduli are sourced by compact objects. This leads straightforwardly to a class of examples in which the Hawking decay process for black holes unveils a bubble of a different vacuum from the ambient one, generalizing the new endpoint for Hawking evaporation discovered recently by Horowitz. Catalyzed vacuum bubble production can occur for both charged and uncharged bodies, including Schwarzschild black holes for which massive particles produced in the Hawking process can trigger vacuum decay. We briefly discuss applications of this process to the population and stability of metastable vacua.

  7. Attractors of the periodically forced Rayleigh system

    Directory of Open Access Journals (Sweden)

    Petre Bazavan

    2011-07-01

    Full Text Available The autonomous second order nonlinear ordinary differential equation(ODE introduced in 1883 by Lord Rayleigh, is the equation whichappears to be the closest to the ODE of the harmonic oscillator withdumping.In this paper we present a numerical study of the periodic andchaotic attractors in the dynamical system associated with the generalized Rayleigh equation. Transition between periodic and quasiperiodic motion is also studied. Numerical results describe the system dynamics changes (in particular bifurcations, when the forcing frequency is varied and thus, periodic, quasiperiodic or chaotic behaviour regions are predicted.

  8. A Conceptual Model of Learning Networks

    Science.gov (United States)

    Koper, Rob

    In the TENCompetence project a set of UML models (Booch et al. 1999) have been developed to specify the core concepts for Learning Networks Services that support professional competence development. The three most important, high-level models are (a) the use case model, (b) the conceptual model, and (c) the domain model. The first model identifies the primary use cases we need in order to support professional competence development. The second model describes the concept of competence and competence development from a theoretical point of view. What is a competence? How does it relate to the cognitive system of an actor? How are competences developed? The third model is a UML Domain Model that defines, among other things, the components of a Learning Network, defines the concepts and relationships between the concepts in a Learning Network and provides a starting point for the design of the overall architecture for Learning Network Services, including the data model.

  9. Random graph models for dynamic networks

    CERN Document Server

    Zhang, Xiao; Newman, M E J

    2016-01-01

    We propose generalizations of a number of standard network models, including the classic random graph, the configuration model, and the stochastic block model, to the case of time-varying networks. We assume that the presence and absence of edges are governed by continuous-time Markov processes with rate parameters that can depend on properties of the nodes. In addition to computing equilibrium properties of these models, we demonstrate their use in data analysis and statistical inference, giving efficient algorithms for fitting them to observed network data. This allows us, for instance, to estimate the time constants of network evolution or infer community structure from temporal network data using cues embedded both in the probabilities over time that node pairs are connected by edges and in the characteristic dynamics of edge appearance and disappearance. We illustrate our methods with a selection of applications, both to computer-generated test networks and real-world examples.

  10. Exponential-family Random Network Models

    OpenAIRE

    Fellows, I; Handcock, MS

    2012-01-01

    Random graphs, where the connections between nodes are considered random variables, have wide applicability in the social sciences. Exponential-family Random Graph Models (ERGM) have shown themselves to be a useful class of models for representing com- plex social phenomena. We generalize ERGM by also modeling nodal attributes as random variates, thus creating a random model of the full network, which we call Exponential-family Random Network Models (ERNM). We demonstrate how this framework a...

  11. Calibration of the head direction network: a role for symmetric angular head velocity cells.

    Science.gov (United States)

    Stratton, Peter; Wyeth, Gordon; Wiles, Janet

    2010-06-01

    Continuous attractor networks require calibration. Computational models of the head direction (HD) system of the rat usually assume that the connections that maintain HD neuron activity are pre-wired and static. Ongoing activity in these models relies on precise continuous attractor dynamics. It is currently unknown how such connections could be so precisely wired, and how accurate calibration is maintained in the face of ongoing noise and perturbation. Our adaptive attractor model of the HD system that uses symmetric angular head velocity (AHV) cells as a training signal shows that the HD system can learn to support stable firing patterns from poorly-performing, unstable starting conditions. The proposed calibration mechanism suggests a requirement for symmetric AHV cells, the existence of which has previously been unexplained, and predicts that symmetric and asymmetric AHV cells should be distinctly different (in morphology, synaptic targets and/or methods of action on postsynaptic HD cells) due to their distinctly different functions. PMID:20354898

  12. Modelling the structure of complex networks

    DEFF Research Database (Denmark)

    Herlau, Tue

    networks has been independently studied as mathematical objects in their own right. As such, there has been both an increased demand for statistical methods for complex networks as well as a quickly growing mathematical literature on the subject. In this dissertation we explore aspects of modelling complex....... The next chapters will treat some of the various symmetries, representer theorems and probabilistic structures often deployed in the modelling complex networks, the construction of sampling methods and various network models. The introductory chapters will serve to provide context for the included written...

  13. Monochromaticity in Neutral Evolutionary Network Models

    OpenAIRE

    Halu, Arda; Bianconi, Ginestra

    2012-01-01

    Recent studies on epistatic networks of model organisms have unveiled a certain type of modular property called monochromaticity in which the networks are clusterable into functional modules that interact with each other through the same type of epistasis. Here we propose and study three epistatic network models that are inspired by the Duplication-Divergence mechanism to gain insight into the evolutionary basis of monochromaticity and to test if it can be explained as the outcome of a neutra...

  14. Chromatin remodeling system, cancer stem-like attractors, and cellular reprogramming.

    Science.gov (United States)

    Zhang, Yue; Moriguchi, Hisashi

    2011-11-01

    The cancer cell attractors theory provides a next-generation understanding of carcinogenesis and natural explanation of punctuated clonal expansions of tumor progression. The impressive notion of atavism of cancer is now updated but more evidence is awaited. Besides, the mechanisms that the ectopic expression of some germline genes result in somatic tumors such as melanoma and brain tumors are emerging but are not well understood. Cancer could be triggered by cells undergoing abnormal cell attractor transitions, and may be reversible with "cyto-education". From mammals to model organisms like Caenorhabditis elegans and Drosophila melanogaster, the versatile Mi-2β/nucleosome remodeling and histone deacetylation complexes along with their functionally related chromatin remodeling complexes (CRCs), i.e., the dREAM/Myb-MuvB complex and Polycomb group complex are likely master regulators of cell attractors. The trajectory that benign cells switch to cancerous could be the reverse of navigation of embryonic cells converging from a series of intermediate transcriptional states to a final adult state, which is supported by gene expression dynamics inspector assays and some cross-species genetic evidence. The involvement of CRCs in locking cancer attractors may help find the recipes of perturbing genes to achieve successful reprogramming such that the reprogrammed cancer cell function in the same way as the normal cells. PMID:21909785

  15. Random attractor of non-autonomous stochastic Boussinesq lattice system

    International Nuclear Information System (INIS)

    In this paper, we first consider the existence of tempered random attractor for second-order non-autonomous stochastic lattice dynamical system of nonlinear Boussinesq equations effected by time-dependent coupled coefficients and deterministic forces and multiplicative white noise. Then, we establish the upper semicontinuity of random attractors as the intensity of noise approaches zero

  16. TRAJECTORY ATTRACTORS FOR NONCLASSICAL DIFFUSION EQUATIONS WITH FADING MEMORY

    Institute of Scientific and Technical Information of China (English)

    Yonghai WANG; Lingzhi WANG

    2013-01-01

    In this article,we consider the existence of trajectory and global attractors for nonclassical diffusion equations with linear fading memory.For this purpose,we will apply the method presented by Chepyzhov and Miranville [7,8],in which the authors provide some new ideas in describing the trajectory attractors for evolution equations with memory.

  17. Synchronization in Coupled Oscillators with Two Coexisting Attractors

    Institute of Scientific and Technical Information of China (English)

    ZHU Han-Han; YANG Jun-Zhong

    2008-01-01

    Dynamics in coupled Duffing oscillators with two coexisting symmetrical attractors is investigated. For a pair of Dutffng oscillators coupled linearly, the transition to the synchronization generally consists of two steps: Firstly, the two oscillators have to jump onto a same attractor, then they reach synchronization similarly to coupled monostable oscillators. The transition scenarios to the synchronization observed are strongly dependent on initial conditions.

  18. Experimental confirmation of a new reversed butterfly-shaped attractor

    Institute of Scientific and Technical Information of China (English)

    Liu Ling; Su Yan-Chen; Liu Chong-Xin

    2007-01-01

    This paper reports a new reverse butterfly-shaped chaotic attractor and its experimental confirmation. Some basic dynamical properties, and chaotic behaviours of this new reverse butterfly attractor are studied. Simulation results support brief theoretical derivations. Furthermore, the system is experimentally confirmed by a simple electronic circuit.

  19. Hidden attractor in the Rabinovich system, Chua circuits and PLL

    Science.gov (United States)

    Kuznetsov, N. V.; Leonov, G. A.; Mokaev, T. N.; Seledzhi, S. M.

    2016-06-01

    In this report the existence of hidden attractors in Rabinovich system, phase-locked loop and coupled Chua circuits is considered. It is shown that the existence of hidden attractors may complicate the analysis of the systems and significantly affect the synchronization.

  20. Finite fractal dimensionality of attractors for nonlocal evolution equations

    Directory of Open Access Journals (Sweden)

    Severino Horacio da Silva

    2013-09-01

    Full Text Available In this work we consider the Dirichlet problem governed by a non local evolution equation. We prove the existence of exponential attractors for the flow generated by this problem, and as a consequence we obtain the finite dimensionality of the global attractor whose existence was proved in [1

  1. Nonconsensus opinion model on directed networks

    NARCIS (Netherlands)

    Qu, B.; Li, Q.; Havlin, S.; Stanley, E.; Wang, H.

    2014-01-01

    Dynamic social opinion models have been widely studied on undirected networks, and most of them are based on spin interaction models that produce a consensus. In reality, however, many networks such as Twitter and the World Wide Web are directed and are composed of both unidirectional and bidirectio

  2. Extremal Black Hole and Flux Vacua Attractors

    CERN Document Server

    Bellucci, S; Kallosh, R; Marrani, A

    2007-01-01

    These lectures provide a pedagogical, introductory review of the so-called Attractor Mechanism (AM) at work in two different 4-dimensional frameworks: extremal black holes in N=2 supergravity and N=1 flux compactifications. In the first case, AM determines the stabilization of scalars at the black hole event horizon purely in terms of the electric and magnetic charges, whereas in the second context the AM is responsible for the stabilization of the universal axion-dilaton and of the (complex structure) moduli purely in terms of the RR and NSNS fluxes. Two equivalent approaches to AM, namely the so-called ``criticality conditions'' and ``New Attractor'' ones, are analyzed in detail in both frameworks, whose analogies and differences are discussed. Also a stringy analysis of both frameworks (relying on Hodge-decomposition techniques) is performed, respectively considering Type IIB compactified on $CY_{3}$ and its orientifolded version, associated with $\\frac{CY_{3}\\times T^{2}}{\\mathbb{Z}_{2}}$. Finally, recent...

  3. Performance modeling of network data services

    Energy Technology Data Exchange (ETDEWEB)

    Haynes, R.A.; Pierson, L.G.

    1997-01-01

    Networks at major computational organizations are becoming increasingly complex. The introduction of large massively parallel computers and supercomputers with gigabyte memories are requiring greater and greater bandwidth for network data transfers to widely dispersed clients. For networks to provide adequate data transfer services to high performance computers and remote users connected to them, the networking components must be optimized from a combination of internal and external performance criteria. This paper describes research done at Sandia National Laboratories to model network data services and to visualize the flow of data from source to sink when using the data services.

  4. Unified Hybrid Network Theoretical Model Trilogy

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The first of the unified hybrid network theoretical model trilogy (UHNTF) is the harmonious unification hybrid preferential model (HUHPM), seen in the inner loop of Fig. 1, the unified hybrid ratio is defined.

  5. Network models in economics and finance

    CERN Document Server

    Pardalos, Panos; Rassias, Themistocles

    2014-01-01

    Using network models to investigate the interconnectivity in modern economic systems allows researchers to better understand and explain some economic phenomena. This volume presents contributions by known experts and active researchers in economic and financial network modeling. Readers are provided with an understanding of the latest advances in network analysis as applied to economics, finance, corporate governance, and investments. Moreover, recent advances in market network analysis  that focus on influential techniques for market graph analysis are also examined. Young researchers will find this volume particularly useful in facilitating their introduction to this new and fascinating field. Professionals in economics, financial management, various technologies, and network analysis, will find the network models presented in this book beneficial in analyzing the interconnectivity in modern economic systems.

  6. Broken Scale Invariance, Alpha-Attractors and Vector Impurity

    CERN Document Server

    Akarsu, Ozgur; Kahya, Emre O; Ozdemir, Nese; Ozkan, Mehmet

    2016-01-01

    We show that if the {\\alpha}-attractor model is realized by the spontaneous breaking of the scale symmetry, then the stability and the dynamics of the vector field that gauges the scale symmetry severely constrains the {\\alpha}-parameter as 5/6 < {\\alpha} < 1, restricting the inflationary predictions in a very tiny region in the n_s vs r plane that are in great agreement with the latest Planck data. Although the different values of {\\alpha} do not make a tangible difference for n_s and r, they provide radically different scenarios for the post-inflationary dynamics which determines the standard BBN processes and the large scale isotropy of the universe.

  7. Strange Attractors in Multipath propagation Detection and characterisation

    CERN Document Server

    Tannous, C; Angus, A G

    2001-01-01

    Multipath propagation of radio waves in indoor/outdoor environments shows a highly irregular behavior as a function of time. Typical modeling of this phenomenon assumes the received signal is a stochastic process composed of the superposition of various altered replicas of the transmitted one, their amplitudes and phases being drawn from specific probability densities. We set out to explore the hypothesis of the presence of deterministic chaos in signals propagating inside various buildings at the University of Calgary. The correlation dimension versus embedding dimension saturates to a value between 3 and 4 for various antenna polarizations. The full Liapunov spectrum calculated contains two positive exponents and yields through the Kaplan-Yorke conjecture the same dimension obtained from the correlation sum. The presence of strange attractors in multipath propagation hints to better ways to predict the behaviour of the signal and better methods to counter the effects of interference. The use of Neural Netwo...

  8. Strategic games on a hierarchical network model

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Among complex network models, the hierarchical network model is the one most close to such real networks as world trade web, metabolic network, WWW, actor network, and so on. It has not only the property of power-law degree distribution, but growth based on growth and preferential attachment, showing the scale-free degree distribution property. In this paper, we study the evolution of cooperation on a hierarchical network model, adopting the prisoner's dilemma (PD) game and snowdrift game (SG) as metaphors of the interplay between connected nodes. BA model provides a unifying framework for the emergence of cooperation. But interestingly, we found that on hierarchical model, there is no sign of cooperation for PD game, while the frequency of cooperation decreases as the common benefit decreases for SG. By comparing the scaling clustering coefficient properties of the hierarchical network model with that of BA model, we found that the former amplifies the effect of hubs. Considering different performances of PD game and SG on complex network, we also found that common benefit leads to cooperation in the evolution. Thus our study may shed light on the emergence of cooperation in both natural and social environments.

  9. On the existence of non-supersymmetric black hole attractors for two-parameter Calabi-Yau's and attractor equations

    Science.gov (United States)

    Kaura, P.; Misara, A.

    2006-12-01

    We look for possible nonsupersymmetric black hole attractor solutions for type II compactification on (the mirror of) CY_3(2,128) expressed as a degree-12 hypersurface in WCP^4[1,1,2,2,6]. In the process, (a) for points away from the conifold locus, we show that the attractors could be connected to an elliptic curve fibered over C^8 which may also be "arithmetic" (in some cases, it is possible to interpret the extremization conditions as an endomorphism involving complex multiplication of an arithmetic elliptic curve), and (b) for points near the conifold locus, we show that the attractors correspond to a version of A_1-singularity in the space Image(Z^6-->R^2/Z_2(embedded in R^3)) fibered over the complex structure moduli space. The potential can be thought of as a real (integer) projection in a suitable coordinate patch of the Veronese map: CP^5-->CP^{20}, fibered over the complex structure moduli space. We also discuss application of the equivalent Kallosh's attractor equations for nonsupersymmetric attractors and show that (a) for points away from the conifold locus, the attractor equations demand that the attractor solutions be independent of one of the two complex structure moduli, and (b) for points near the conifold locus, the attractor equations imply switching off of one of the six components of the fluxes. Both these features are more obvious using the atractor equations than the extremization of the black hole potential.

  10. Towards reproducible descriptions of neuronal network models.

    Directory of Open Access Journals (Sweden)

    Eilen Nordlie

    2009-08-01

    Full Text Available Progress in science depends on the effective exchange of ideas among scientists. New ideas can be assessed and criticized in a meaningful manner only if they are formulated precisely. This applies to simulation studies as well as to experiments and theories. But after more than 50 years of neuronal network simulations, we still lack a clear and common understanding of the role of computational models in neuroscience as well as established practices for describing network models in publications. This hinders the critical evaluation of network models as well as their re-use. We analyze here 14 research papers proposing neuronal network models of different complexity and find widely varying approaches to model descriptions, with regard to both the means of description and the ordering and placement of material. We further observe great variation in the graphical representation of networks and the notation used in equations. Based on our observations, we propose a good model description practice, composed of guidelines for the organization of publications, a checklist for model descriptions, templates for tables presenting model structure, and guidelines for diagrams of networks. The main purpose of this good practice is to trigger a debate about the communication of neuronal network models in a manner comprehensible to humans, as opposed to machine-readable model description languages. We believe that the good model description practice proposed here, together with a number of other recent initiatives on data-, model-, and software-sharing, may lead to a deeper and more fruitful exchange of ideas among computational neuroscientists in years to come. We further hope that work on standardized ways of describing--and thinking about--complex neuronal networks will lead the scientific community to a clearer understanding of high-level concepts in network dynamics, and will thus lead to deeper insights into the function of the brain.

  11. Characterization and Modeling of Network Traffic

    DEFF Research Database (Denmark)

    Shawky, Ahmed; Bergheim, Hans; Ragnarsson, Olafur;

    2011-01-01

    This paper attempts to characterize and model backbone network traffic, using a small number of statistics. In order to reduce cost and processing power associated with traffic analysis. The parameters affecting the behaviour of network traffic are investigated and the choice is that inter......-arrival time, IP addresses, port numbers and transport protocol are the only necessary parameters to model network traffic behaviour. In order to recreate this behaviour, a complex model is needed which is able to recreate traffic behaviour based on a set of statistics calculated from the parameters values....... The model investigates the traffic generation mechanisms, and grouping traffic into flows and applications....

  12. Complex networks analysis in socioeconomic models

    CERN Document Server

    Varela, Luis M; Ausloos, Marcel; Carrete, Jesus

    2014-01-01

    This chapter aims at reviewing complex networks models and methods that were either developed for or applied to socioeconomic issues, and pertinent to the theme of New Economic Geography. After an introduction to the foundations of the field of complex networks, the present summary adds insights on the statistical mechanical approach, and on the most relevant computational aspects for the treatment of these systems. As the most frequently used model for interacting agent-based systems, a brief description of the statistical mechanics of the classical Ising model on regular lattices, together with recent extensions of the same model on small-world Watts-Strogatz and scale-free Albert-Barabasi complex networks is included. Other sections of the chapter are devoted to applications of complex networks to economics, finance, spreading of innovations, and regional trade and developments. The chapter also reviews results involving applications of complex networks to other relevant socioeconomic issues, including res...

  13. Pathway Analysis Based on Attractor and Cross Talk in Colon Cancer

    Directory of Open Access Journals (Sweden)

    Yanxia Liu

    2016-01-01

    Full Text Available Colon cancer is the third and second most common cancer form in men and women worldwide. It is generally accepted that colon cancer mainly results from diet. The aim of this study was to identify core pathways which elucidated the molecular mechanisms in colon cancer. The microarray data of E-GEOD-44861 was downloaded from ArrayExpress database. All human pathways were obtained from Kyoto Encyclopedia of Genes and Genomes database. In total, 135 differential expressed genes (DEG were identified using Linear Models for Microarray Data package. Differential pathways were identified with the method of attractor after overlapping with DEG. Pathway cross talk network (PCN was constructed by combining protein-protein interactions and differential pathways. Cross talks of all pathways were obtained in PCN. There were 65 pathways with RankProd (RP values 100. Five pathways were satisfied with P value 100, which were considered to be the most important pathways in colon cancer. In conclusion, the five pathways were identified in the center status of colon cancer, which may contribute to understanding the mechanism and development of colon cancer.

  14. Pathway Analysis Based on Attractor and Cross Talk in Colon Cancer

    Science.gov (United States)

    2016-01-01

    Colon cancer is the third and second most common cancer form in men and women worldwide. It is generally accepted that colon cancer mainly results from diet. The aim of this study was to identify core pathways which elucidated the molecular mechanisms in colon cancer. The microarray data of E-GEOD-44861 was downloaded from ArrayExpress database. All human pathways were obtained from Kyoto Encyclopedia of Genes and Genomes database. In total, 135 differential expressed genes (DEG) were identified using Linear Models for Microarray Data package. Differential pathways were identified with the method of attractor after overlapping with DEG. Pathway cross talk network (PCN) was constructed by combining protein-protein interactions and differential pathways. Cross talks of all pathways were obtained in PCN. There were 65 pathways with RankProd (RP) values 100. Five pathways were satisfied with P value 100, which were considered to be the most important pathways in colon cancer. In conclusion, the five pathways were identified in the center status of colon cancer, which may contribute to understanding the mechanism and development of colon cancer. PMID:27746583

  15. Boolean networks as modelling framework

    Directory of Open Access Journals (Sweden)

    Florian eGreil

    2012-08-01

    Full Text Available In a network, the components of a given system are represented as nodes, the interactions are abstracted as links between the nodes. Boolean networks refer to a class of dynamics on networks, in fact it is the simplest possible dynamics where each node has a value 0 or 1. This allows to investigate extensively the dynamics both analytically and by numerical experiments. The present article focuses on the theoretical concept of relevant components and the immediate application in plant biology, references for more in-depths treatment of the mathematical details are also given.

  16. Implementing network constraints in the EMPS model

    Energy Technology Data Exchange (ETDEWEB)

    Helseth, Arild; Warland, Geir; Mo, Birger; Fosso, Olav B.

    2010-02-15

    This report concerns the coupling of detailed market and network models for long-term hydro-thermal scheduling. Currently, the EPF model (Samlast) is the only tool available for this task for actors in the Nordic market. A new prototype for solving the coupled market and network problem has been developed. The prototype is based on the EMPS model (Samkjoeringsmodellen). Results from the market model are distributed to a detailed network model, where a DC load flow detects if there are overloads on monitored lines or intersections. In case of overloads, network constraints are generated and added to the market problem. Theoretical and implementation details for the new prototype are elaborated in this report. The performance of the prototype is tested against the EPF model on a 20-area Nordic dataset. (Author)

  17. Modelling and control of road traffic networks

    OpenAIRE

    Haut, Bertrand

    2007-01-01

    Road traffic networks offer a particularly challenging research subject to the control community. The traffic congestion around big cities is constantly increasing and is now becoming a major problem. However, the dynamics of a road network exhibit some complex behaviours such as nonlinearities, delays and saturation effects that prevent the use of some classical control algorithms. This thesis presents different models and control algorithms used for road traffic networks. The dynamics ar...

  18. Delivery Time Reliability Model of Logistics Network

    OpenAIRE

    Liusan Wu; Qingmei Tan; Yuehui Zhang

    2013-01-01

    Natural disasters like earthquake and flood will surely destroy the existing traffic network, usually accompanied by delivery delay or even network collapse. A logistics-network-related delivery time reliability model defined by a shortest-time entropy is proposed as a means to estimate the actual delivery time reliability. The less the entropy is, the stronger the delivery time reliability remains, and vice versa. The shortest delivery time is computed separately based on two different assum...

  19. Modelling of virtual production networks

    Directory of Open Access Journals (Sweden)

    2011-03-01

    Full Text Available Nowadays many companies, especially small and medium-sized enterprises (SMEs, specialize in a limited field of production. It requires forming virtual production networks of cooperating enterprises to manufacture better, faster and cheaper. Apart from that, some production orders cannot be realized, because there is not a company of sufficient production potential. In this case the virtual production networks of cooperating companies can realize these production orders. These networks have larger production capacity and many different resources. Therefore it can realize many more production orders together than each of them separately. Such organization allows for executing high quality product. The maintenance costs of production capacity and used resources are not so high. In this paper a methodology of rapid prototyping of virtual production networks is proposed. It allows to execute production orders on time considered existing logistic constraints.

  20. Boolean networks with multiexpressions and parameters.

    Science.gov (United States)

    Zou, Yi Ming

    2013-01-01

    To model biological systems using networks, it is desirable to allow more than two levels of expression for the nodes and to allow the introduction of parameters. Various modeling and simulation methods addressing these needs using Boolean models, both synchronous and asynchronous, have been proposed in the literature. However, analytical study of these more general Boolean networks models is lagging. This paper aims to develop a concise theory for these different Boolean logic-based modeling methods. Boolean models for networks where each node can have more than two levels of expression and Boolean models with parameters are defined algebraically with examples provided. Certain classes of random asynchronous Boolean networks and deterministic moduli asynchronous Boolean networks are investigated in detail using the setting introduced in this paper. The derived theorems provide a clear picture for the attractor structures of these asynchronous Boolean networks.

  1. Input-driven unsupervised learning in recurrent neural networks

    OpenAIRE

    Zecchina, Riccardo; Baldassi, Carlo

    2014-01-01

    Understanding the theoretical foundations of how memories are encoded and retrieved in neural populations is a central challenge in neuroscience. A popular theoretical scenario for modeling memory function is an attractor neural network with Hebbian learning (e.g. the Hopfield model). The model simplicity and the locality of the synaptic update rules come at the cost of a limited storage capacity, compared with the capacity achieved with supervised learning algorithms, whose biological plausi...

  2. Introducing Synchronisation in Deterministic Network Models

    DEFF Research Database (Denmark)

    Schiøler, Henrik; Jessen, Jan Jakob; Nielsen, Jens Frederik D.;

    2006-01-01

    The paper addresses performance analysis for distributed real time systems through deterministic network modelling. Its main contribution is the introduction and analysis of models for synchronisation between tasks and/or network elements. Typical patterns of synchronisation are presented leading....... The suggested models are intended for incorporation into an existing analysis tool a.k.a. CyNC based on the MATLAB/SimuLink framework for graphical system analysis and design....

  3. Homophyly/Kinship Model: Naturally Evolving Networks

    Science.gov (United States)

    Li, Angsheng; Li, Jiankou; Pan, Yicheng; Yin, Xianchen; Yong, Xi

    2015-10-01

    It has been a challenge to understand the formation and roles of social groups or natural communities in the evolution of species, societies and real world networks. Here, we propose the hypothesis that homophyly/kinship is the intrinsic mechanism of natural communities, introduce the notion of the affinity exponent and propose the homophyly/kinship model of networks. We demonstrate that the networks of our model satisfy a number of topological, probabilistic and combinatorial properties and, in particular, that the robustness and stability of natural communities increase as the affinity exponent increases and that the reciprocity of the networks in our model decreases as the affinity exponent increases. We show that both homophyly/kinship and reciprocity are essential to the emergence of cooperation in evolutionary games and that the homophyly/kinship and reciprocity determined by the appropriate affinity exponent guarantee the emergence of cooperation in evolutionary games, verifying Darwin’s proposal that kinship and reciprocity are the means of individual fitness. We propose the new principle of structure entropy minimisation for detecting natural communities of networks and verify the functional module property and characteristic properties by a healthy tissue cell network, a citation network, some metabolic networks and a protein interaction network.

  4. Evaluating Network Models: A Likelihood Analysis

    CERN Document Server

    Wang, Wen-Qiang; Zhou, Tao

    2011-01-01

    Many models are put forward to mimic the evolution of real networked systems. A well-accepted way to judge the validity is to compare the modeling results with real networks subject to several structural features. Even for a specific real network, we cannot fairly evaluate the goodness of different models since there are too many structural features while there is no criterion to select and assign weights on them. Motivated by the studies on link prediction algorithms, we propose a unified method to evaluate the network models via the comparison of the likelihoods of the currently observed network driven by different models, with an assumption that the higher the likelihood is, the better the model is. We test our method on the real Internet at the Autonomous System (AS) level, and the results suggest that the Generalized Linear Preferential (GLP) model outperforms the Tel Aviv Network Generator (Tang), while both two models are better than the Barab\\'asi-Albert (BA) and Erd\\"os-R\\'enyi (ER) models. Our metho...

  5. Using cell fate attractors to uncover transcriptional regulation of HL60 neutrophil differentiation

    Directory of Open Access Journals (Sweden)

    Kauffman Stuart A

    2009-02-01

    Full Text Available Abstract Background The process of cellular differentiation is governed by complex dynamical biomolecular networks consisting of a multitude of genes and their products acting in concert to determine a particular cell fate. Thus, a systems level view is necessary for understanding how a cell coordinates this process and for developing effective therapeutic strategies to treat diseases, such as cancer, in which differentiation plays a significant role. Theoretical considerations and recent experimental evidence support the view that cell fates are high dimensional attractor states of the underlying molecular networks. The temporal behavior of the network states progressing toward different cell fate attractors has the potential to elucidate the underlying molecular mechanisms governing differentiation. Results Using the HL60 multipotent promyelocytic leukemia cell line, we performed experiments that ultimately led to two different cell fate attractors by two treatments of varying dosage and duration of the differentiation agent all-trans-retinoic acid (ATRA. The dosage and duration combinations of the two treatments were chosen by means of flow cytometric measurements of CD11b, a well-known early differentiation marker, such that they generated two intermediate populations that were poised at the apparently same stage of differentiation. However, the population of one treatment proceeded toward the terminally differentiated neutrophil attractor while that of the other treatment reverted back toward the undifferentiated promyelocytic attractor. We monitored the gene expression changes in the two populations after their respective treatments over a period of five days and identified a set of genes that diverged in their expression, a subset of which promotes neutrophil differentiation while the other represses cell cycle progression. By employing promoter based transcription factor binding site analysis, we found enrichment in the set of divergent

  6. Modelling and designing electric energy networks

    International Nuclear Information System (INIS)

    The author gives an overview of his research works in the field of electric network modelling. After a brief overview of technological evolutions from the telegraph to the all-electric fly-by-wire aircraft, he reports and describes various works dealing with a simplified modelling of electric systems and with fractal simulation. Then, he outlines the challenges for the design of electric networks, proposes a design process, gives an overview of various design models, methods and tools, and reports an application in the design of electric networks for future jumbo jets

  7. A Chaotic Attractor in Delayed Memristive System

    Directory of Open Access Journals (Sweden)

    Lidan Wang

    2012-01-01

    Full Text Available Over the last three decades, theoretical design and circuitry implementation of various chaotic generators by simple electronic circuits have been a key subject of nonlinear science. In 2008, the successful development of memristor brings new activity for this research. Memristor is a new nanometre-scale passive circuit element, which possesses memory and nonlinear characteristics. This makes it have a unique charm to attract many researchers’ interests. In this paper, memristor, for the first time, is introduced in a delayed system to design a signal generator to produce chaotic behaviour. By replacing the nonlinear function with memristors in parallel, the memristor oscillator exhibits a chaotic attractor. The simulated results demonstrate that the performance is well predicted by the mathematical analysis and supports the viability of the design.

  8. Stochastic discrete model of karstic networks

    Science.gov (United States)

    Jaquet, O.; Siegel, P.; Klubertanz, G.; Benabderrhamane, H.

    Karst aquifers are characterised by an extreme spatial heterogeneity that strongly influences their hydraulic behaviour and the transport of pollutants. These aquifers are particularly vulnerable to contamination because of their highly permeable networks of conduits. A stochastic model is proposed for the simulation of the geometry of karstic networks at a regional scale. The model integrates the relevant physical processes governing the formation of karstic networks. The discrete simulation of karstic networks is performed with a modified lattice-gas cellular automaton for a representative description of the karstic aquifer geometry. Consequently, more reliable modelling results can be obtained for the management and the protection of karst aquifers. The stochastic model was applied jointly with groundwater modelling techniques to a regional karst aquifer in France for the purpose of resolving surface pollution issues.

  9. Modeling GMPLS and Optical MPLS Networks

    DEFF Research Database (Denmark)

    Christiansen, Henrik Lehrmann; Wessing, Henrik

    2003-01-01

    . The MPLS concept is attractive because it can work as a unifying control structure. covering all technologies. This paper describes how a novel scheme for optical MPLS and circuit switched GMPLS based networks can incorporated in such multi-domain, MPLS-based scenarios and how it could be modeled. Network...

  10. Simple models of human brain functional networks.

    Science.gov (United States)

    Vértes, Petra E; Alexander-Bloch, Aaron F; Gogtay, Nitin; Giedd, Jay N; Rapoport, Judith L; Bullmore, Edward T

    2012-04-10

    Human brain functional networks are embedded in anatomical space and have topological properties--small-worldness, modularity, fat-tailed degree distributions--that are comparable to many other complex networks. Although a sophisticated set of measures is available to describe the topology of brain networks, the selection pressures that drive their formation remain largely unknown. Here we consider generative models for the probability of a functional connection (an edge) between two cortical regions (nodes) separated by some Euclidean distance in anatomical space. In particular, we propose a model in which the embedded topology of brain networks emerges from two competing factors: a distance penalty based on the cost of maintaining long-range connections; and a topological term that favors links between regions sharing similar input. We show that, together, these two biologically plausible factors are sufficient to capture an impressive range of topological properties of functional brain networks. Model parameters estimated in one set of functional MRI (fMRI) data on normal volunteers provided a good fit to networks estimated in a second independent sample of fMRI data. Furthermore, slightly detuned model parameters also generated a reasonable simulation of the abnormal properties of brain functional networks in people with schizophrenia. We therefore anticipate that many aspects of brain network organization, in health and disease, may be parsimoniously explained by an economical clustering rule for the probability of functional connectivity between different brain areas.

  11. Network Design Models for Container Shipping

    DEFF Research Database (Denmark)

    Reinhardt, Line Blander; Kallehauge, Brian; Nielsen, Anders Nørrelund;

    This paper presents a study of the network design problem in container shipping. The paper combines the network design and fleet assignment problem into a mixed integer linear programming model minimizing the overall cost. The major contributions of this paper is that the time of a vessel route...

  12. Queueing models for mobile ad hoc networks

    NARCIS (Netherlands)

    Haan, de Roland

    2009-01-01

    This thesis presents models for the performance analysis of a recent communication paradigm: mobile ad hoc networking. The objective of mobile ad hoc networking is to provide wireless connectivity between stations in a highly dynamic environment. These dynamics are driven by the mobility of stations

  13. Cyber threat model for tactical radio networks

    Science.gov (United States)

    Kurdziel, Michael T.

    2014-05-01

    The shift to a full information-centric paradigm in the battlefield has allowed ConOps to be developed that are only possible using modern network communications systems. Securing these Tactical Networks without impacting their capabilities has been a challenge. Tactical networks with fixed infrastructure have similar vulnerabilities to their commercial counterparts (although they need to be secure against adversaries with greater capabilities, resources and motivation). However, networks with mobile infrastructure components and Mobile Ad hoc Networks (MANets) have additional unique vulnerabilities that must be considered. It is useful to examine Tactical Network based ConOps and use them to construct a threat model and baseline cyber security requirements for Tactical Networks with fixed infrastructure, mobile infrastructure and/or ad hoc modes of operation. This paper will present an introduction to threat model assessment. A definition and detailed discussion of a Tactical Network threat model is also presented. Finally, the model is used to derive baseline requirements that can be used to design or evaluate a cyber security solution that can be scaled and adapted to the needs of specific deployments.

  14. IMPULSIVE CONTROL OF CHAOTIC ATTRACTORS IN NONLINEAR CHAOTIC SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    马军海; 任彪; 陈予恕

    2004-01-01

    Based on the study from both domestic and abroad, an impulsive control scheme on chaotic attractors in one kind of chaotic system is presented.By applying impulsive control theory of the universal equation, the asymptotically stable condition of impulsive control on chaotic attractors in such kind of nonlinear chaotic system has been deduced, and with it, the upper bond of the impulse interval for asymptotically stable control was given. Numerical results are presented, which are considered with important reference value for control of chaotic attractors.

  15. No fermionic wigs for BPS attractors in 5 dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Gentile, Lorenzo G.C., E-mail: lgentile@pd.infn.it [DISIT, Università del Piemonte Orientale, via T. Michel, 11, Alessandria I-15120 (Italy); Dipartimento di Fisica “Galileo Galilei”, Università di Padova, via Marzolo 8, I-35131 Padova (Italy); INFN, Sezione di Padova, via Marzolo 8, I-35131 Padova (Italy); Grassi, Pietro A., E-mail: pgrassi@mfn.unipmn.it [DISIT, Università del Piemonte Orientale, via T. Michel, 11, Alessandria I-15120 (Italy); INFN – Gruppo Collegato di Alessandria – Sezione di Torino (Italy); Marrani, Alessio, E-mail: alessio.marrani@fys.kuleuven.be [Instituut voor Theoretische Fysica, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Mezzalira, Andrea, E-mail: andrea.mezzalira@ulb.ac.be [Physique Théorique et Mathématique, Université Libre de Bruxelles, C.P. 231, B-1050 Bruxelles (Belgium); Sabra, Wafic A., E-mail: ws00@aub.edu.lb [Centre for Advanced Mathematical Sciences and Physics Department, American University of Beirut (Lebanon)

    2014-07-30

    We analyze the fermionic wigging of 1/2-BPS (electric) extremal black hole attractors in N=2, D=5 ungauged Maxwell–Einstein supergravity theories, by exploiting anti-Killing spinors supersymmetry transformations. Regardless of the specific data of the real special geometry of the manifold defining the scalars of the vector multiplets, and differently from the D=4 case, we find that there are no corrections for the near-horizon attractor value of the scalar fields; an analogous result also holds for 1/2-BPS (magnetic) extremal black string. Thus, the attractor mechanism receives no fermionic corrections in D=5 (at least in the BPS sector)

  16. Embeddings of a strange attractor into R3.

    Science.gov (United States)

    Tsankov, Tsvetelin D; Nishtala, Arunasri; Gilmore, Robert

    2004-05-01

    The algorithm for determining a global Poincaré section is applied to a previously studied dynamical system on R2 x S1 and a one-parameter family of embeddings of the strange attractor it generates into R3. We find that the topological properties of the attractor are embedding dependent to a limited extent. These embeddings rigidly preserve mechanism, which is a simple stretch and fold. The embeddings studied show three discrete topological degrees of freedom: parity, global torsion, and braid type of the genus-one torus bounding the embedded attractor. PMID:15244912

  17. Model-based control of networked systems

    CERN Document Server

    Garcia, Eloy; Montestruque, Luis A

    2014-01-01

    This monograph introduces a class of networked control systems (NCS) called model-based networked control systems (MB-NCS) and presents various architectures and control strategies designed to improve the performance of NCS. The overall performance of NCS considers the appropriate use of network resources, particularly network bandwidth, in conjunction with the desired response of the system being controlled.   The book begins with a detailed description of the basic MB-NCS architecture that provides stability conditions in terms of state feedback updates . It also covers typical problems in NCS such as network delays, network scheduling, and data quantization, as well as more general control problems such as output feedback control, nonlinear systems stabilization, and tracking control.   Key features and topics include: Time-triggered and event-triggered feedback updates Stabilization of uncertain systems subject to time delays, quantization, and extended absence of feedback Optimal control analysis and ...

  18. Modeling trust context in networks

    CERN Document Server

    Adali, Sibel

    2013-01-01

    We make complex decisions every day, requiring trust in many different entities for different reasons. These decisions are not made by combining many isolated trust evaluations. Many interlocking factors play a role, each dynamically impacting the others.? In this brief, 'trust context' is defined as the system level description of how the trust evaluation process unfolds.Networks today are part of almost all human activity, supporting and shaping it. Applications increasingly incorporate new interdependencies and new trust contexts. Social networks connect people and organizations throughout

  19. Modeling Network Traffic in Wavelet Domain

    Directory of Open Access Journals (Sweden)

    Sheng Ma

    2004-12-01

    Full Text Available This work discovers that although network traffic has the complicated short- and long-range temporal dependence, the corresponding wavelet coefficients are no longer long-range dependent. Therefore, a "short-range" dependent process can be used to model network traffic in the wavelet domain. Both independent and Markov models are investigated. Theoretical analysis shows that the independent wavelet model is sufficiently accurate in terms of the buffer overflow probability for Fractional Gaussian Noise traffic. Any model, which captures additional correlations in the wavelet domain, only improves the performance marginally. The independent wavelet model is then used as a unified approach to model network traffic including VBR MPEG video and Ethernet data. The computational complexity is O(N for developing such wavelet models and generating synthesized traffic of length N, which is among the lowest attained.

  20. Graphical Model Theory for Wireless Sensor Networks

    Energy Technology Data Exchange (ETDEWEB)

    Davis, William B.

    2002-12-08

    Information processing in sensor networks, with many small processors, demands a theory of computation that allows the minimization of processing effort, and the distribution of this effort throughout the network. Graphical model theory provides a probabilistic theory of computation that explicitly addresses complexity and decentralization for optimizing network computation. The junction tree algorithm, for decentralized inference on graphical probability models, can be instantiated in a variety of applications useful for wireless sensor networks, including: sensor validation and fusion; data compression and channel coding; expert systems, with decentralized data structures, and efficient local queries; pattern classification, and machine learning. Graphical models for these applications are sketched, and a model of dynamic sensor validation and fusion is presented in more depth, to illustrate the junction tree algorithm.

  1. Monochromaticity in neutral evolutionary network models.

    Science.gov (United States)

    Halu, Arda; Bianconi, Ginestra

    2012-12-01

    Recent studies on epistatic networks of model organisms have unveiled a certain type of modular property called monochromaticity in which the networks are clustered into functional modules that interact with each other through the same type of epistasis. Here, we propose and study three epistatic network models that are inspired by the duplication-divergence mechanism to gain insight into the evolutionary basis of monochromaticity and to test if it can be explained as the outcome of a neutral evolutionary hypothesis. We show that the epistatic networks formed by these stochastic evolutionary models have monochromaticity conflict distributions that are centered close to zero and are statistically significantly different from their randomized counterparts. In particular, the last model we propose yields a strictly monochromatic solution. Our results agree with the monochromaticity findings in real organisms and point toward the possible role of a neutral mechanism in the evolution of this phenomenon. PMID:23367998

  2. Graphical Model Theory for Wireless Sensor Networks

    International Nuclear Information System (INIS)

    Information processing in sensor networks, with many small processors, demands a theory of computation that allows the minimization of processing effort, and the distribution of this effort throughout the network. Graphical model theory provides a probabilistic theory of computation that explicitly addresses complexity and decentralization for optimizing network computation. The junction tree algorithm, for decentralized inference on graphical probability models, can be instantiated in a variety of applications useful for wireless sensor networks, including: sensor validation and fusion; data compression and channel coding; expert systems, with decentralized data structures, and efficient local queries; pattern classification, and machine learning. Graphical models for these applications are sketched, and a model of dynamic sensor validation and fusion is presented in more depth, to illustrate the junction tree algorithm

  3. Modelling subtle growth of linguistic networks

    CERN Document Server

    Kulig, Andrzej; Kwapien, Jaroslaw; Oswiecimka, Pawel

    2014-01-01

    We investigate properties of evolving linguistic networks defined by the word-adjacency relation. Such networks belong to the category of networks with accelerated growth but their shortest path length appears to reveal the network size dependence of different functional form than the ones known so far. We thus compare the networks created from literary texts with their artificial substitutes based on different variants of the Dorogovtsev-Mendes model and observe that none of them is able to properly simulate the novel asymptotics of the shortest path length. Then, we identify grammar induced local chain-like linear growth as a missing element in this model and extend it by incorporating such effects. It is in this way that a satisfactory agreement with the empirical result is obtained.

  4. Survey of propagation Model in wireless Network

    OpenAIRE

    Hemant Kumar Sharma; Sanjeev Sharma; Krishna Kumar Pandey

    2011-01-01

    To implementation of mobile ad hoc network wave propagation models are necessary to determine propagation characteristic through a medium. Wireless mobile ad hoc networks are self creating and self organizing entity. Propagation study provides an estimation of signal characteristics. Accurate prediction of radio propagation behaviour for MANET is becoming a difficult task. This paper presents investigation of propagation model. Radio wave propagation mechanisms are absorption, reflection, ref...

  5. IP Network Management Model Based on NGOSS

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jin-yu; LI Hong-hui; LIU Feng

    2004-01-01

    This paper addresses a management model for IP network based on Next Generation Operation Support System (NGOSS). It makes the network management on the base of all the operation actions of ISP, It provides QoS to user service through the whole path by providing end-to-end Service Level Agreements (SLA) management through whole path. Based on web and coordination technology, this paper gives an implement architecture of this model.

  6. Energy-oriented models for WDM networks

    OpenAIRE

    Ricciardi, Sergio; Careglio, Davide; Palmieri, Francesco; Fiore, Ugo; Santos Boada, Germán; Solé Pareta, Josep

    2010-01-01

    A realistic energy-oriented model is necessary to formally characterize the energy consumption and the consequent carbon footprint of actual and future high-capacity WDM networks. The energy model describes the energy consumption of the various network elements (NE) and predicts their energy consumption behavior under different traffic loads and for the diverse traffic types, including all optical and electronic traffic, O/E/O conversions, 3R regenerations, add/drop multiplexing, etc. Besi...

  7. Trajectory attractor for a non-autonomous Magnetohydrodynamic equations of Non-Newtonian Fluids

    CERN Document Server

    Razafimandimby, Paul Andre

    2011-01-01

    In this article we initiate the mathematical study of the dynamics of a system of nonlinear Partial Differential Equations modelling the motion of incompressible, isothermal and conducting modified bipolar fluids in presence of magnetic field. We mainly prove the existence of weak solutions to the model. We also prove the existence of a trajectory attractor to the translation semigroup acting on the trajectories of the set of weak solutions and that of external forces. Some results concerning the structure of this trajectory attractor are also given. The results from this paper may be useful in the investigation of some system of PDEs arising from the coupling of incompressible fluids of $p$-structure and the Maxwell equations.

  8. Bifurcation analysis of oscillating network model of pattern recognition in the rabbit olfactory bulb

    Science.gov (United States)

    Baird, Bill

    1986-08-01

    A neural network model describing pattern recognition in the rabbit olfactory bulb is analysed to explain the changes in neural activity observed experimentally during classical Pavlovian conditioning. EEG activity recorded from an 8×8 arry of 64 electrodes directly on the surface on the bulb shows distinct spatial patterns of oscillation that correspond to the animal's recognition of different conditioned odors and change with conditioning to new odors. The model may be considered a variant of Hopfield's model of continuous analog neural dynamics. Excitatory and inhibitory cell types in the bulb and the anatomical architecture of their connection requires a nonsymmetric coupling matrix. As the mean input level rises during each breath of the animal, the system bifurcates from homogenous equilibrium to a spatially patterned oscillation. The theory of multiple Hopf bifurcations is employed to find coupled equations for the amplitudes of these unstable oscillatory modes independent of frequency. This allows a view of stored periodic attractors as fixed points of a gradient vector field and thereby recovers the more familiar dynamical systems picture of associative memory.

  9. Model-Based Clustering of Large Networks

    CERN Document Server

    Vu, Duy Quang; Schweinberger, Michael

    2012-01-01

    We describe a network clustering framework, based on finite mixture models, that can be applied to discrete-valued networks with hundreds of thousands of nodes and billions of edge variables. Relative to other recent model-based clustering work for networks, we introduce a more flexible modeling framework, improve the variational-approximation estimation algorithm, discuss and implement standard error estimation via a parametric bootstrap approach, and apply these methods to much larger datasets than those seen elsewhere in the literature. The more flexible modeling framework is achieved through introducing novel parameterizations of the model, giving varying degrees of parsimony, using exponential family models whose structure may be exploited in various theoretical and algorithmic ways. The algorithms, which we show how to adapt to the more complicated optimization requirements introduced by the constraints imposed by the novel parameterizations we propose, are based on variational generalized EM algorithms...

  10. A survey of statistical network models

    CERN Document Server

    Goldenberg, Anna; Fienberg, Stephen E; Airoldi, Edoardo M

    2009-01-01

    Networks are ubiquitous in science and have become a focal point for discussion in everyday life. Formal statistical models for the analysis of network data have emerged as a major topic of interest in diverse areas of study, and most of these involve a form of graphical representation. Probability models on graphs date back to 1959. Along with empirical studies in social psychology and sociology from the 1960s, these early works generated an active network community and a substantial literature in the 1970s. This effort moved into the statistical literature in the late 1970s and 1980s, and the past decade has seen a burgeoning network literature in statistical physics and computer science. The growth of the World Wide Web and the emergence of online networking communities such as Facebook, MySpace, and LinkedIn, and a host of more specialized professional network communities has intensified interest in the study of networks and network data. Our goal in this review is to provide the reader with an entry poin...

  11. Features from the non-attractor beginning of inflation

    CERN Document Server

    Cai, Yi-Fu; Wang, Dong-Gang; Wang, Ziwei

    2016-01-01

    We study the effects of the non-attractor initial conditions for the canonical single-field inflation. The non-attractor stage can last only several $e$-folding numbers, and should be followed by hilltop inflation. This two-stage evolution leads to large scale suppression in the primordial power spectrum, which is favored by recent observations. Moreover we give a detailed calculation of primordial non-Guassianity due to the "from non-attractor to slow-roll" transition, and find step features in the local and equilateral shapes. We conclude that a plateau-like inflaton potential with an initial non-attractor phase yields interesting features in both power spectrum and bispectrum.

  12. Investigating the Rossler Attractor Using Lorentz Plot and Lyapunov Exponents

    OpenAIRE

    P. Kvarda

    2002-01-01

    To investigate the Rossler attractor, introduced in 1976 by O.E. Rossler [3], we used Lorenz plot to show deterministic character and designated the Lyapunov exponent to show the chaotic character of the system.

  13. A Hyperchaotic Attractor Coined from Chaotic Lu System

    Institute of Scientific and Technical Information of China (English)

    BAO Bo-Cheng; LIU Zhong

    2008-01-01

    We report a new hyperchaotic attractor coined from the chaotic Lu system by using a state feedback controller. Theoretical analyses and simulation experiments are conducted to investigate the dynamical behaviour of the proposed hyperchaotic system.

  14. The attractor of the stochastic generalized Ginzburg-Landau equation

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The stochastic generalized Ginzburg-Landau equation with additive noise can be solved pathwise and the unique solution generates a random system.Then we prove the random system possesses a global random attractor in H01.

  15. Designing Network-based Business Model Ontology

    DEFF Research Database (Denmark)

    Hashemi Nekoo, Ali Reza; Ashourizadeh, Shayegheh; Zarei, Behrouz

    2015-01-01

    Survival on dynamic environment is not achieved without a map. Scanning and monitoring of the market show business models as a fruitful tool. But scholars believe that old-fashioned business models are dead; as they are not included the effect of internet and network in themselves. This paper...... such as shared-mental model and trust. However, it mostly covers previous business model elements. To confirm the applicability of this ontology, it has been implemented in business angel network and showed how it works....

  16. Network Modeling and Simulation A Practical Perspective

    CERN Document Server

    Guizani, Mohsen; Khan, Bilal

    2010-01-01

    Network Modeling and Simulation is a practical guide to using modeling and simulation to solve real-life problems. The authors give a comprehensive exposition of the core concepts in modeling and simulation, and then systematically address the many practical considerations faced by developers in modeling complex large-scale systems. The authors provide examples from computer and telecommunication networks and use these to illustrate the process of mapping generic simulation concepts to domain-specific problems in different industries and disciplines. Key features: Provides the tools and strate

  17. Modeling, Optimization & Control of Hydraulic Networks

    DEFF Research Database (Denmark)

    Tahavori, Maryamsadat

    2014-01-01

    . The nonlinear network model is derived based on the circuit theory. A suitable projection is used to reduce the state vector and to express the model in standard state-space form. Then, the controllability of nonlinear nonaffine hydraulic networks is studied. The Lie algebra-based controllability matrix is used...... to solve nonlinear optimal control problems. In the water supply system model, the hydraulic resistance of the valve is estimated by real data and it is considered to be a disturbance. The disturbance in our system is updated every 24 hours based on the amount of water usage by consumers every day. Model...

  18. Performance modeling, stochastic networks, and statistical multiplexing

    CERN Document Server

    Mazumdar, Ravi R

    2013-01-01

    This monograph presents a concise mathematical approach for modeling and analyzing the performance of communication networks with the aim of introducing an appropriate mathematical framework for modeling and analysis as well as understanding the phenomenon of statistical multiplexing. The models, techniques, and results presented form the core of traffic engineering methods used to design, control and allocate resources in communication networks.The novelty of the monograph is the fresh approach and insights provided by a sample-path methodology for queueing models that highlights the importan

  19. MODEL FOR NETWORKED BUSINESS: Case study of Application Service Provider's network

    OpenAIRE

    Pesonen, Tero

    2011-01-01

    MODEL FOR NETWORKED BUSINESS Case study of Application Service Provider's network The aim of the research was to create a network business model to optimise benefits for a business network in the area of software industry. The main research questions were: ? What kind of network business models can be found? ? What are the value creation mechanisms as well as advantages and disadvantages of different models? ? How to use former frameworks to develop a network business mode...

  20. How Anatomy Shapes Dynamics: A Semi-Analytical Study of the Brain at Rest by a Simple Spin Model

    Directory of Open Access Journals (Sweden)

    Gustavo eDeco

    2012-09-01

    Full Text Available Resting state networks show a surprisingly coherent and robust spatiotemporal organization. Previous theoretical studies demonstrated that these patterns can be understood as emergent on the basis of the underlying neuroanatomical connectivity skeleton. Integrating the biologically realistic DTI/DSI based neuroanatomical connectivity into a brain model of Ising spin dynamics, we found the presence of latent ghost multi-stable attractors, which can be studied analytically. The multistable attractor landscape defines a functionally meaningful dynamic repertoire of the brain network that is inherently present in the neuroanatomical connectivity. We demonstrate that the more entropy of attractors exists, the richer is the dynamical repertoire and consequently the brain network displays more capabilities of computation. We hypothesize therefore that human brain connectivity developed a scale free type of architecture in order to be able to store a large number of different and flexibly accessible brain functions

  1. Modeling Emergence in Neuroprotective Regulatory Networks

    Energy Technology Data Exchange (ETDEWEB)

    Sanfilippo, Antonio P.; Haack, Jereme N.; McDermott, Jason E.; Stevens, S.L.; Stenzel-Poore, Mary

    2013-01-05

    The use of predictive modeling in the analysis of gene expression data can greatly accelerate the pace of scientific discovery in biomedical research by enabling in silico experimentation to test disease triggers and potential drug therapies. Techniques that focus on modeling emergence, such as agent-based modeling and multi-agent simulations, are of particular interest as they support the discovery of pathways that may have never been observed in the past. Thus far, these techniques have been primarily applied at the multi-cellular level, or have focused on signaling and metabolic networks. We present an approach where emergence modeling is extended to regulatory networks and demonstrate its application to the discovery of neuroprotective pathways. An initial evaluation of the approach indicates that emergence modeling provides novel insights for the analysis of regulatory networks that can advance the discovery of acute treatments for stroke and other diseases.

  2. Optimal transportation networks models and theory

    CERN Document Server

    Bernot, Marc; Morel, Jean-Michel

    2009-01-01

    The transportation problem can be formalized as the problem of finding the optimal way to transport a given measure into another with the same mass. In contrast to the Monge-Kantorovitch problem, recent approaches model the branched structure of such supply networks as minima of an energy functional whose essential feature is to favour wide roads. Such a branched structure is observable in ground transportation networks, in draining and irrigation systems, in electrical power supply systems and in natural counterparts such as blood vessels or the branches of trees. These lectures provide mathematical proof of several existence, structure and regularity properties empirically observed in transportation networks. The link with previous discrete physical models of irrigation and erosion models in geomorphology and with discrete telecommunication and transportation models is discussed. It will be mathematically proven that the majority fit in the simple model sketched in this volume.

  3. Passive control of chaotic system with multiple strange attractors

    Institute of Scientific and Technical Information of China (English)

    Song Yun-Zhong; Zhao Guang-Zhou; Qi Dong-Lian

    2006-01-01

    In this paper we present a new simple controller for a chaotic system, that is, the Newton-Leipnik equation with two strange attractors: the upper attractor (UA) and the lower attractor (LA). The controller design is based on the passive technique. The final structure of this controller for original stabilization has a simple nonlinear feedback form.Using a passive method, we prove the stability of a closed-loop system. Based on the controller derived from the passive principle, we investigate three different kinds of chaotic control of the system, separately: the original control forcing the chaotic motion to settle down to the origin from an arbitrary position of the phase space; the chaotic intra-attractor control for stabilizing the equilibrium points only belonging to the upper chaotic attractor or the lower chaotic one,and the inter-attractor control for compelling the chaotic oscillation from one basin to another one. Both theoretical analysis and simulation results verify the validity of the suggested method.

  4. Non-supersymmetric attractors in R2 gravities

    International Nuclear Information System (INIS)

    We investigate the attractor mechanism for spherically symmetric extremal black holes in a theory of general R2 gravity in 4-dimensions, coupled to gauge fields and moduli fields. For the general R2 theory, we look for solutions which are analytic near the horizon, show that they exist and enjoy the attractor behavior. The attractor point is determined by extremization of an effective potential at the horizon. This analysis includes the backreaction and supports the validity of non-supersymmetric attractors in the presence of higher derivative interactions. To include a wider class of solutions, we continue our analysis for the specific case of a Gauss-Bonnet theory which is non- topological, due to the coupling of Gauss-Bonnet terms to the moduli fields. We find that the regularity of moduli fields at the horizon is sufficient for attractor behavior. For the non-analytic sector, this regularity condition in turns implies the minimality of the effective potential at the attractor point. (author)

  5. Modeling of urban traffic networks with lattice Boltzmann model

    Science.gov (United States)

    Meng, Jian-ping; Qian, Yue-hong; Dai, Shi-qiang

    2008-02-01

    It is of great importance to uncover the characteristics of traffic networks. However, there have been few researches concerning kinetics models for urban traffic networks. In this work, a lattice Boltzmann model (LBM) for urban traffic networks is proposed by incorporating the ideas of the Biham-Middleton-Levine (BML) model into the LBM for road traffic. In the present model, situations at intersections with the red and green traffic signals are treated as a kind of boundary conditions varying with time. Thus, the urban traffic network could be described in the mesoscopic level. By performing numerical simulations under the periodic boundary conditions, the behavior of average velocity is investigated in detail. The numerical results agree quite well with those given by the Chowdhury-Schadschneider (ChSch) model (Chowdhury D. and Schadschneider A., Phys. Rev. E, 59 (1999) R1311). Furthermore, the statistical noise is reduced in this discrete kinetics model, thus, the present model has considerably high computational efficiency.

  6. Periodicity, chaos, and multiple attractors in a memristor-based Shinriki's circuit

    Energy Technology Data Exchange (ETDEWEB)

    Kengne, J. [Laboratory of Automation and Applied Computer (LAIA), Department of Electrical Engineering, IUT-FV Bandjoun, University of Dschang, Dschang (Cameroon); Njitacke Tabekoueng, Z.; Kamdoum Tamba, V.; Nguomkam Negou, A. [Laboratory of Automation and Applied Computer (LAIA), Department of Electrical Engineering, IUT-FV Bandjoun, University of Dschang, Dschang (Cameroon); Department of Physics, Laboratory of Electronics and Signal Processing (LETS), Faculty of Science, University of Dschang, Dschang (Cameroon)

    2015-10-15

    In this contribution, a novel memristor-based oscillator, obtained from Shinriki's circuit by substituting the nonlinear positive conductance with a first order memristive diode bridge, is introduced. The model is described by a continuous time four-dimensional autonomous system with smooth nonlinearities. The basic dynamical properties of the system are investigated including equilibria and stability, phase portraits, frequency spectra, bifurcation diagrams, and Lyapunov exponents' spectrum. It is found that in addition to the classical period-doubling and symmetry restoring crisis scenarios reported in the original circuit, the memristor-based oscillator experiences the unusual and striking feature of multiple attractors (i.e., coexistence of a pair of asymmetric periodic attractors with a pair of asymmetric chaotic ones) over a broad range of circuit parameters. Results of theoretical analyses are verified by laboratory experimental measurements.

  7. Periodicity, chaos, and multiple attractors in a memristor-based Shinriki's circuit

    Science.gov (United States)

    Kengne, J.; Njitacke Tabekoueng, Z.; Kamdoum Tamba, V.; Nguomkam Negou, A.

    2015-10-01

    In this contribution, a novel memristor-based oscillator, obtained from Shinriki's circuit by substituting the nonlinear positive conductance with a first order memristive diode bridge, is introduced. The model is described by a continuous time four-dimensional autonomous system with smooth nonlinearities. The basic dynamical properties of the system are investigated including equilibria and stability, phase portraits, frequency spectra, bifurcation diagrams, and Lyapunov exponents' spectrum. It is found that in addition to the classical period-doubling and symmetry restoring crisis scenarios reported in the original circuit, the memristor-based oscillator experiences the unusual and striking feature of multiple attractors (i.e., coexistence of a pair of asymmetric periodic attractors with a pair of asymmetric chaotic ones) over a broad range of circuit parameters. Results of theoretical analyses are verified by laboratory experimental measurements.

  8. Attractors of derivative complex Ginzburg-Landau equation in unbounded domains

    Institute of Scientific and Technical Information of China (English)

    GUO Boling; HAN Yongqian

    2007-01-01

    The Ginzburg-Landau-type complex equations are simplified mathematical models for various pattern formation systems in mechanics, physics, and chemistry. In this paper, the derivative complex Ginzburg- Landau (DCGL) equation in an unbounded domain ΩС R2 is studied. We extend the Gagliardo-Nirenberg inequality to the weighted Sobolev spaces introduced by S. V. Zelik. Applied this Gagliardo-Nirenberg inequality of the weighted Sobolev spaces and based on the technique for the semi-linear system of parabolic equations which has been developed by M. A. Efendiev and S. V. Zelik, the global attractor in the corresponding phase space is constructed, the upper bound of its Kolmogorov's ε-entropy is obtained, and the spatial chaos of the attractor for DCGL equation in R2 is detailed studied.

  9. Periodicity, chaos, and multiple attractors in a memristor-based Shinriki's circuit

    International Nuclear Information System (INIS)

    In this contribution, a novel memristor-based oscillator, obtained from Shinriki's circuit by substituting the nonlinear positive conductance with a first order memristive diode bridge, is introduced. The model is described by a continuous time four-dimensional autonomous system with smooth nonlinearities. The basic dynamical properties of the system are investigated including equilibria and stability, phase portraits, frequency spectra, bifurcation diagrams, and Lyapunov exponents' spectrum. It is found that in addition to the classical period-doubling and symmetry restoring crisis scenarios reported in the original circuit, the memristor-based oscillator experiences the unusual and striking feature of multiple attractors (i.e., coexistence of a pair of asymmetric periodic attractors with a pair of asymmetric chaotic ones) over a broad range of circuit parameters. Results of theoretical analyses are verified by laboratory experimental measurements

  10. Enhanced Gravity Model of trade: reconciling macroeconomic and network models

    CERN Document Server

    Almog, Assaf; Garlaschelli, Diego

    2015-01-01

    The bilateral trade relations between world countries form a complex network, the International Trade Network (ITN), which is involved in an increasing number of worldwide economic processes, including globalization, integration, industrial production, and the propagation of shocks and instabilities. Characterizing the ITN via a simple yet accurate model is an open problem. The classical Gravity Model of trade successfully reproduces the volume of trade between two connected countries using known macroeconomic properties such as GDP and geographic distance. However, it generates a network with an unrealistically homogeneous topology, thus failing to reproduce the highly heterogeneous structure of the real ITN. On the other hand, network models successfully reproduce the complex topology of the ITN, but provide no information about trade volumes. Therefore macroeconomic and network models of trade suffer from complementary limitations but are still largely incompatible. Here, we make an important step forward ...

  11. An evolving network model with modular growth

    Institute of Scientific and Technical Information of China (English)

    Zou Zhi-Yun; Liu Peng; Lei Li; Gao Jian-Zhi

    2012-01-01

    In this paper,we propose an evolving network model growing fast in units of module,according to the analysis of the evolution characteristics in real complex networks.Each module is a small-world network containing several interconnected nodes and the nodes between the modules are linked by preferential attachment on degree of nodes.We study the modularity measure of the proposed model,which can be adjusted by changing the ratio of the number of innermodule edges and the number of inter-module edges.In view of the mean-field theory,we develop an analytical function of the degree distribution,which is verified by a numerical example and indicates that the degree distribution shows characteristics of the small-world network and the scale-free network distinctly at different segments.The clustering coefficient and the average path length of the network are simulated numerically,indicating that the network shows the small-world property and is affected little by the randomness of the new module.

  12. Modelling complex networks by random hierarchical graphs

    Directory of Open Access Journals (Sweden)

    M.Wróbel

    2008-06-01

    Full Text Available Numerous complex networks contain special patterns, called network motifs. These are specific subgraphs, which occur oftener than in randomized networks of Erdős-Rényi type. We choose one of them, the triangle, and build a family of random hierarchical graphs, being Sierpiński gasket-based graphs with random "decorations". We calculate the important characteristics of these graphs - average degree, average shortest path length, small-world graph family characteristics. They depend on probability of decorations. We analyze the Ising model on our graphs and describe its critical properties using a renormalization-group technique.

  13. A Network Model of Credit Risk Contagion

    Directory of Open Access Journals (Sweden)

    Ting-Qiang Chen

    2012-01-01

    Full Text Available A network model of credit risk contagion is presented, in which the effect of behaviors of credit risk holders and the financial market regulators and the network structure are considered. By introducing the stochastic dominance theory, we discussed, respectively, the effect mechanisms of the degree of individual relationship, individual attitude to credit risk contagion, the individual ability to resist credit risk contagion, the monitoring strength of the financial market regulators, and the network structure on credit risk contagion. Then some derived and proofed propositions were verified through numerical simulations.

  14. Grid architecture model of network centric warfare

    Institute of Scientific and Technical Information of China (English)

    Yan Tihua; Wang Baoshu

    2006-01-01

    NCW(network centric warfare) is an information warfare concentrating on network. A global network-centric warfare architecture with OGSA grid technology is put forward, which is a four levels system including the user level, the application level, the grid middleware layer and the resource level. In grid middleware layer, based on virtual hosting environment, a BEPL4WS grid service composition method is introduced. In addition, the NCW grid service model is built with the help of Eclipse-SDK-3.0.1 and Bpws4j.

  15. Spatial Models and Networks of Living Systems

    DEFF Research Database (Denmark)

    Juul, Jeppe Søgaard

    variables of the system. However, this approach disregards any spatial structure of the system, which may potentially change the behaviour drastically. An alternative approach is to construct a cellular automaton with nearest neighbour interactions, or even to model the system as a complex network....... Such systems are known to be stabilized by spatial structure. Finally, I analyse data from a large mobile phone network and show that people who are topologically close in the network have similar communication patterns. This main part of the thesis is based on six different articles, which I have co...

  16. Modeling Computations in a Semantic Network

    CERN Document Server

    Rodriguez, Marko A

    2007-01-01

    Semantic network research has seen a resurgence from its early history in the cognitive sciences with the inception of the Semantic Web initiative. The Semantic Web effort has brought forth an array of technologies that support the encoding, storage, and querying of the semantic network data structure at the world stage. Currently, the popular conception of the Semantic Web is that of a data modeling medium where real and conceptual entities are related in semantically meaningful ways. However, new models have emerged that explicitly encode procedural information within the semantic network substrate. With these new technologies, the Semantic Web has evolved from a data modeling medium to a computational medium. This article provides a classification of existing computational modeling efforts and the requirements of supporting technologies that will aid in the further growth of this burgeoning domain.

  17. Dynamic Modeling of the Electric Transportation Network

    CERN Document Server

    Scir`e, A; Eguiluz, V M; Scir\\`{e}, Alessandro; Tuval, Id\\'an

    2005-01-01

    We introduce a model for the dynamic self-organization of the electric grid. The model is characterized by a conserved magnitude, energy, that can travel following the links of the network to satisfy nodes' load. The load fluctuates in time causing local overloads that drive the dynamic evolution of the network topology. Our model displays a transition from a fully connected network to a configuration with a non-trivial topology and where global failures are suppressed. The most efficient topology is characterized by an exponential degree distribution, in agreement with the topology of the real electric grid. The model intrinsically presents self-induced break-down events, which can be thought as representative of real black-outs.

  18. Keystone Business Models for Network Security Processors

    OpenAIRE

    Arthur Low; Steven Muegge

    2013-01-01

    Network security processors are critical components of high-performance systems built for cybersecurity. Development of a network security processor requires multi-domain experience in semiconductors and complex software security applications, and multiple iterations of both software and hardware implementations. Limited by the business models in use today, such an arduous task can be undertaken only by large incumbent companies and government organizations. Neither the “fabless semiconductor...

  19. Decomposed Implicit Models of Piecewise - Linear Networks

    Directory of Open Access Journals (Sweden)

    J. Brzobohaty

    1992-05-01

    Full Text Available The general matrix form of the implicit description of a piecewise-linear (PWL network and the symbolic block diagram of the corresponding circuit model are proposed. Their decomposed forms enable us to determine quite separately the existence of the individual breakpoints of the resultant PWL characteristic and their coordinates using independent network parameters. For the two-diode and three-diode cases all the attainable types of the PWL characteristic are introduced.

  20. Stochastic modeling and analysis of telecoms networks

    CERN Document Server

    Decreusefond, Laurent

    2012-01-01

    This book addresses the stochastic modeling of telecommunication networks, introducing the main mathematical tools for that purpose, such as Markov processes, real and spatial point processes and stochastic recursions, and presenting a wide list of results on stability, performances and comparison of systems.The authors propose a comprehensive mathematical construction of the foundations of stochastic network theory: Markov chains, continuous time Markov chains are extensively studied using an original martingale-based approach. A complete presentation of stochastic recursions from an

  1. Non-nequilibrium model on Apollonian networks

    CERN Document Server

    Lima, F W S; Araújo, Ascânio D

    2012-01-01

    We investigate the Majority-Vote Model with two states ($-1,+1$) and a noise $q$ on Apollonian networks. The main result found here is the presence of the phase transition as a function of the noise parameter $q$. We also studies de effect of redirecting a fraction $p$ of the links of the network. By means of Monte Carlo simulations, we obtained the exponent ratio $\\gamma/\

  2. Nonnuclear Attractors in Heteronuclear Diatomic Systems.

    Science.gov (United States)

    Terrabuio, Luiz Alberto; Teodoro, Tiago Quevedo; Matta, Chérif F; Haiduke, Roberto Luiz Andrade

    2016-03-01

    Nonnuclear attractors (NNAs) are observed in the electron density of a variety of systems, but the factors governing their appearance and their contribution to the system's properties remain a mystery. The NNA occurring in homo- and heteronuclear diatomics of main group elements with atomic numbers up to Z = 38 is investigated computationally (at the UCCSD/cc-pVQZ level of theory) by varying internuclear separations. This was done to determine the NNA occurrence window along with the evolution of the respective pseudoatomic basin properties. Two distinct categories of NNAs were detected in the data analyzed by means of catastrophe theory. Type "a" implies electronic charge transfer between atoms mediated by a pseudoatom. Type "b" shows an initial relocation of some electronic charge to a pseudoatom, which posteriorly returns to the same atom that donated this charge in the first place. A small difference of polarizability between the atoms that compose these heteronuclear diatomics seems to favor NNA formation. We also show that the NNA arising tends to result in some perceptible effects on molecular dipole and/or quadrupole moment curves against internuclear distance. Finally, successive cationic ionization results in the fast disappearance of the NNA in Li2 indicating that its formation is mainly governed by the field generated by the quantum mechanical electronic density and only depends parametrically on the bare nuclear field/potential at a given molecular geometry. PMID:26842391

  3. Evaluation of EOR Processes Using Network Models

    DEFF Research Database (Denmark)

    Larsen, Jens Kjell; Krogsbøll, Anette

    1998-01-01

    The report consists of the following parts: 1) Studies of wetting properties of model fluids and fluid mixtures aimed at an optimal selection of candidates for micromodel experiments. 2) Experimental studies of multiphase transport properties using physical models of porous networks (micromodels)...

  4. Modelling cooperative agents in infrastructure networks

    NARCIS (Netherlands)

    Ligtvoet, A.; Chappin, E.J.L.; Stikkelman, R.M.

    2010-01-01

    This paper describes the translation of concepts of cooperation into an agent-based model of an industrial network. It first addresses the concept of cooperation and how this could be captured as heuristical rules within agents. Then it describes tests using these heuristics in an abstract model of

  5. Empirical generalization assessment of neural network models

    DEFF Research Database (Denmark)

    Larsen, Jan; Hansen, Lars Kai

    1995-01-01

    This paper addresses the assessment of generalization performance of neural network models by use of empirical techniques. We suggest to use the cross-validation scheme combined with a resampling technique to obtain an estimate of the generalization performance distribution of a specific model...

  6. Nonconsensus opinion model on directed networks.

    Science.gov (United States)

    Qu, Bo; Li, Qian; Havlin, Shlomo; Stanley, H Eugene; Wang, Huijuan

    2014-11-01

    Dynamic social opinion models have been widely studied on undirected networks, and most of them are based on spin interaction models that produce a consensus. In reality, however, many networks such as Twitter and the World Wide Web are directed and are composed of both unidirectional and bidirectional links. Moreover, from choosing a coffee brand to deciding who to vote for in an election, two or more competing opinions often coexist. In response to this ubiquity of directed networks and the coexistence of two or more opinions in decision-making situations, we study a nonconsensus opinion model introduced by Shao et al. [Phys. Rev. Lett. 103, 018701 (2009)PRLTAO0031-900710.1103/PhysRevLett.103.018701] on directed networks. We define directionality ξ as the percentage of unidirectional links in a network, and we use the linear correlation coefficient ρ between the in-degree and out-degree of a node to quantify the relation between the in-degree and out-degree. We introduce two degree-preserving rewiring approaches which allow us to construct directed networks that can have a broad range of possible combinations of directionality ξ and linear correlation coefficient ρ and to study how ξ and ρ impact opinion competitions. We find that, as the directionality ξ or the in-degree and out-degree correlation ρ increases, the majority opinion becomes more dominant and the minority opinion's ability to survive is lowered. PMID:25493838

  7. Nonconsensus opinion model on directed networks

    Science.gov (United States)

    Qu, Bo; Li, Qian; Havlin, Shlomo; Stanley, H. Eugene; Wang, Huijuan

    2014-11-01

    Dynamic social opinion models have been widely studied on undirected networks, and most of them are based on spin interaction models that produce a consensus. In reality, however, many networks such as Twitter and the World Wide Web are directed and are composed of both unidirectional and bidirectional links. Moreover, from choosing a coffee brand to deciding who to vote for in an election, two or more competing opinions often coexist. In response to this ubiquity of directed networks and the coexistence of two or more opinions in decision-making situations, we study a nonconsensus opinion model introduced by Shao et al. [Phys. Rev. Lett. 103, 018701 (2009), 10.1103/PhysRevLett.103.018701] on directed networks. We define directionality ξ as the percentage of unidirectional links in a network, and we use the linear correlation coefficient ρ between the in-degree and out-degree of a node to quantify the relation between the in-degree and out-degree. We introduce two degree-preserving rewiring approaches which allow us to construct directed networks that can have a broad range of possible combinations of directionality ξ and linear correlation coefficient ρ and to study how ξ and ρ impact opinion competitions. We find that, as the directionality ξ or the in-degree and out-degree correlation ρ increases, the majority opinion becomes more dominant and the minority opinion's ability to survive is lowered.

  8. Dual modeling of political opinion networks

    Science.gov (United States)

    Wang, R.; A. Wang, Q.

    2011-09-01

    We present the result of a dual modeling of opinion networks. The model complements the agent-based opinion models by attaching to the social agent (voters) network a political opinion (party) network having its own intrinsic mechanisms of evolution. These two subnetworks form a global network, which can be either isolated from, or dependent on, the external influence. Basically, the evolution of the agent network includes link adding and deleting, with the opinion changes influenced by social validation, the political climate, the attractivity of the parties, and the interaction between them. The opinion network is initially composed of numerous nodes representing opinions or parties that are located on a one dimensional axis according to their political positions. The mechanism of evolution includes union, splitting, change of position, and attractivity, taking into account the pairwise node interaction decaying with node distance in power law. The global evolution ends in a stable distribution of the social agents over a quasistable and fluctuating stationary number of remaining parties. Empirical study on the lifetime distribution of numerous parties and vote results is carried out to verify numerical results.

  9. Delay and Disruption Tolerant Networking MACHETE Model

    Science.gov (United States)

    Segui, John S.; Jennings, Esther H.; Gao, Jay L.

    2011-01-01

    To verify satisfaction of communication requirements imposed by unique missions, as early as 2000, the Communications Networking Group at the Jet Propulsion Laboratory (JPL) saw the need for an environment to support interplanetary communication protocol design, validation, and characterization. JPL's Multi-mission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE), described in Simulator of Space Communication Networks (NPO-41373) NASA Tech Briefs, Vol. 29, No. 8 (August 2005), p. 44, combines various commercial, non-commercial, and in-house custom tools for simulation and performance analysis of space networks. The MACHETE environment supports orbital analysis, link budget analysis, communications network simulations, and hardware-in-the-loop testing. As NASA is expanding its Space Communications and Navigation (SCaN) capabilities to support planned and future missions, building infrastructure to maintain services and developing enabling technologies, an important and broader role is seen for MACHETE in design-phase evaluation of future SCaN architectures. To support evaluation of the developing Delay Tolerant Networking (DTN) field and its applicability for space networks, JPL developed MACHETE models for DTN Bundle Protocol (BP) and Licklider/Long-haul Transmission Protocol (LTP). DTN is an Internet Research Task Force (IRTF) architecture providing communication in and/or through highly stressed networking environments such as space exploration and battlefield networks. Stressed networking environments include those with intermittent (predictable and unknown) connectivity, large and/or variable delays, and high bit error rates. To provide its services over existing domain specific protocols, the DTN protocols reside at the application layer of the TCP/IP stack, forming a store-and-forward overlay network. The key capabilities of the Bundle Protocol include custody-based reliability, the ability to cope with intermittent connectivity

  10. Cellular automata modelling of biomolecular networks dynamics.

    Science.gov (United States)

    Bonchev, D; Thomas, S; Apte, A; Kier, L B

    2010-01-01

    The modelling of biological systems dynamics is traditionally performed by ordinary differential equations (ODEs). When dealing with intracellular networks of genes, proteins and metabolites, however, this approach is hindered by network complexity and the lack of experimental kinetic parameters. This opened the field for other modelling techniques, such as cellular automata (CA) and agent-based modelling (ABM). This article reviews this emerging field of studies on network dynamics in molecular biology. The basics of the CA technique are discussed along with an extensive list of related software and websites. The application of CA to networks of biochemical reactions is exemplified in detail by the case studies of the mitogen-activated protein kinase (MAPK) signalling pathway, the FAS-ligand (FASL)-induced and Bcl-2-related apoptosis. The potential of the CA method to model basic pathways patterns, to identify ways to control pathway dynamics and to help in generating strategies to fight with cancer is demonstrated. The different line of CA applications presented includes the search for the best-performing network motifs, an analysis of importance for effective intracellular signalling and pathway cross-talk. PMID:20373215

  11. Modelling Users` Trust in Online Social Networks

    Directory of Open Access Journals (Sweden)

    Iacob Cătoiu

    2014-02-01

    Full Text Available Previous studies (McKnight, Lankton and Tripp, 2011; Liao, Lui and Chen, 2011 have shown the crucial role of trust when choosing to disclose sensitive information online. This is the case of online social networks users, who must disclose a certain amount of personal data in order to gain access to these online services. Taking into account privacy calculus model and the risk/benefit ratio, we propose a model of users’ trust in online social networks with four variables. We have adapted metrics for the purpose of our study and we have assessed their reliability and validity. We use a Partial Least Squares (PLS based structural equation modelling analysis, which validated all our initial assumptions, indicating that our three predictors (privacy concerns, perceived benefits and perceived risks explain 48% of the variation of users’ trust in online social networks, the resulting variable of our study. We also discuss the implications and further research opportunities of our study.

  12. The Kuramoto model in complex networks

    CERN Document Server

    Rodrigues, Francisco A; Ji, Peng; Kurths, Jürgen

    2016-01-01

    Synchronization of an ensemble of oscillators is an emergent phenomenon present in several complex systems, ranging from social and physical to biological and technological systems. The most successful approach to describe how coherent behavior emerges in these complex systems is given by the paradigmatic Kuramoto model. This model has been traditionally studied in complete graphs. However, besides being intrinsically dynamical, complex systems present very heterogeneous structure, which can be represented as complex networks. This report is dedicated to review main contributions in the field of synchronization in networks of Kuramoto oscillators. In particular, we provide an overview of the impact of network patterns on the local and global dynamics of coupled phase oscillators. We cover many relevant topics, which encompass a description of the most used analytical approaches and the analysis of several numerical results. Furthermore, we discuss recent developments on variations of the Kuramoto model in net...

  13. Research on Modeling of Genetic Networks Based on Information Measurement

    Institute of Scientific and Technical Information of China (English)

    ZHANG Guo-wei; SHAO Shi-huang; ZHANG Ying; LI Hai-ying

    2006-01-01

    As the basis of network of biology organism, the genetic network is concerned by many researchers.Current modeling methods to genetic network, especially the Boolean networks modeling method are analyzed. For modeling the genetic network, the information theory is proposed to mining the relations between elements in network. Through calculating the values of information entropy and mutual entropy in a case, the effectiveness of the method is verified.

  14. Features and heterogeneities in growing network models

    Science.gov (United States)

    Ferretti, Luca; Cortelezzi, Michele; Yang, Bin; Marmorini, Giacomo; Bianconi, Ginestra

    2012-06-01

    Many complex networks from the World Wide Web to biological networks grow taking into account the heterogeneous features of the nodes. The feature of a node might be a discrete quantity such as a classification of a URL document such as personal page, thematic website, news, blog, search engine, social network, etc., or the classification of a gene in a functional module. Moreover the feature of a node can be a continuous variable such as the position of a node in the embedding space. In order to account for these properties, in this paper we provide a generalization of growing network models with preferential attachment that includes the effect of heterogeneous features of the nodes. The main effect of heterogeneity is the emergence of an “effective fitness” for each class of nodes, determining the rate at which nodes acquire new links. The degree distribution exhibits a multiscaling behavior analogous to the the fitness model. This property is robust with respect to variations in the model, as long as links are assigned through effective preferential attachment. Beyond the degree distribution, in this paper we give a full characterization of the other relevant properties of the model. We evaluate the clustering coefficient and show that it disappears for large network size, a property shared with the Barabási-Albert model. Negative degree correlations are also present in this class of models, along with nontrivial mixing patterns among features. We therefore conclude that both small clustering coefficients and disassortative mixing are outcomes of the preferential attachment mechanism in general growing networks.

  15. Extracting protein regulatory networks with graphical models.

    Science.gov (United States)

    Grzegorczyk, Marco

    2007-09-01

    During the last decade the development of high-throughput biotechnologies has resulted in the production of exponentially expanding quantities of biological data, such as genomic and proteomic expression data. One fundamental problem in systems biology is to learn the architecture of biochemical pathways and regulatory networks in an inferential way from such postgenomic data. Along with the increasing amount of available data, a lot of novel statistical methods have been developed and proposed in the literature. This article gives a non-mathematical overview of three widely used reverse engineering methods, namely relevance networks, graphical Gaussian models, and Bayesian networks, whereby the focus is on their relative merits and shortcomings. In addition the reverse engineering results of these graphical methods on cytometric protein data from the RAF-signalling network are cross-compared via AUROC scatter plots. PMID:17893851

  16. String networks with junctions in competition models

    CERN Document Server

    Avelino, P P; Losano, L; Menezes, J; de Oliveira, B F

    2016-01-01

    In this work we give specific examples of competition models, with six and eight species, whose three-dimensional dynamics naturally leads to the formation of string networks with junctions, associated with regions that have a high concentration of enemy species. We study the two- and three-dimensional evolution of such networks, both using stochastic network and mean field theory simulations. If the predation, reproduction and mobility probabilities do not vary in space and time, we find that the networks attain scaling regimes with a characteristic length roughly proportional to $t^{1/2}$, where $t$ is the physical time, thus showing that the presence of junctions, on its own, does not have a significant impact on their scaling properties.

  17. Unsupervised model compression for multilayer bootstrap networks

    OpenAIRE

    ZHANG, XIAO-LEI

    2015-01-01

    Recently, multilayer bootstrap network (MBN) has demonstrated promising performance in unsupervised dimensionality reduction. It can learn compact representations in standard data sets, i.e. MNIST and RCV1. However, as a bootstrap method, the prediction complexity of MBN is high. In this paper, we propose an unsupervised model compression framework for this general problem of unsupervised bootstrap methods. The framework compresses a large unsupervised bootstrap model into a small model by ta...

  18. A Model for Telestrok Network Evaluation

    DEFF Research Database (Denmark)

    Storm, Anna; Günzel, Franziska; Theiss, Stephan

    2011-01-01

    was developed from the third-party payer perspective. In principle, it enables telestroke networks to conduct cost-effectiveness studies, because the majority of the required data can be extracted from health insurance companies’ databases and the telestroke network itself. The model presents a basis...... analysis lacking, current telestroke reimbursement by third-party payers is limited to special contracts and not included in the regular billing system. Based on a systematic literature review and expert interviews with health care economists, third-party payers and neurologists, a Markov model...

  19. Mobility Models for Next Generation Wireless Networks Ad Hoc, Vehicular and Mesh Networks

    CERN Document Server

    Santi, Paolo

    2012-01-01

    Mobility Models for Next Generation Wireless Networks: Ad Hoc, Vehicular and Mesh Networks provides the reader with an overview of mobility modelling, encompassing both theoretical and practical aspects related to the challenging mobility modelling task. It also: Provides up-to-date coverage of mobility models for next generation wireless networksOffers an in-depth discussion of the most representative mobility models for major next generation wireless network application scenarios, including WLAN/mesh networks, vehicular networks, wireless sensor networks, and

  20. Boolean Networks with Multi-Expressions and Parameters.

    Science.gov (United States)

    Zou, Yi Ming

    2013-07-01

    To model biological systems using networks, it is desirable to allow more than two levels of expression for the nodes and to allow the introduction of parameters. Various modeling and simulation methods addressing these needs using Boolean models, both synchronous and asynchronous, have been proposed in the literature. However, analytical study of these more general Boolean networks models is lagging. This paper aims to develop a concise theory for these different Boolean logic based modeling methods. Boolean models for networks where each node can have more than two levels of expression and Boolean models with parameters are defined algebraically with examples provided. Certain classes of random asynchronous Boolean networks and deterministic moduli asynchronous Boolean networks are investigated in detail using the setting introduced in this paper. The derived theorems provide a clear picture for the attractor structures of these asynchronous Boolean networks.

  1. A three-threshold learning rule approaches the maximal capacity of recurrent neural networks

    OpenAIRE

    Alireza Alemi; Carlo Baldassi; Nicolas Brunel; Riccardo Zecchina

    2015-01-01

    Understanding the theoretical foundations of how memories are encoded and retrieved in neural populations is a central challenge in neuroscience. A popular theoretical scenario for modeling memory function is the attractor neural network scenario, whose prototype is the Hopfield model. The model simplicity and the locality of the synaptic update rules come at the cost of a poor storage capacity, compared with the capacity achieved with perceptron learning algorithms. Here, by transforming the...

  2. A Three-Threshold Learning Rule Approaches the Maximal Capacity of Recurrent Neural Networks

    OpenAIRE

    Brunel, Nicolas; Zecchina, Riccardo; Baldassi, Carlo

    2015-01-01

    Understanding the theoretical foundations of how memories are encoded and retrieved in neural populations is a central challenge in neuroscience. A popular theoretical scenario for modeling memory function is the attractor neural network scenario, whose prototype is the Hopfield model. The model simplicity and the locality of the synaptic update rules come at the cost of a poor storage capacity, compared with the capacity achieved with perceptron learning algorithms. Here, by transforming the...

  3. Bifurcations and chaos control in discrete small-world networks

    Institute of Scientific and Technical Information of China (English)

    Li Ning; Sun Hai-Yi; Zhang Qing-Ling

    2012-01-01

    An impulsive delayed feedback control strategy to control period-doubling bifurcations and chaos is proposed.The control method is then applied to a discrete small-world network model.Qualitative analyses and simulations show that under a generic condition,the bifurcations and the chaos can be delayed or eliminated completely.In addition,the periodic orbits embedded in the chaotic attractor can be stabilized.

  4. Security Modeling on the Supply Chain Networks

    Directory of Open Access Journals (Sweden)

    Marn-Ling Shing

    2007-10-01

    Full Text Available In order to keep the price down, a purchaser sends out the request for quotation to a group of suppliers in a supply chain network. The purchaser will then choose a supplier with the best combination of price and quality. A potential supplier will try to collect the related information about other suppliers so he/she can offer the best bid to the purchaser. Therefore, confidentiality becomes an important consideration for the design of a supply chain network. Chen et al. have proposed the application of the Bell-LaPadula model in the design of a secured supply chain network. In the Bell-LaPadula model, a subject can be in one of different security clearances and an object can be in one of various security classifications. All the possible combinations of (Security Clearance, Classification pair in the Bell-LaPadula model can be thought as different states in the Markov Chain model. This paper extends the work done by Chen et al., provides more details on the Markov Chain model and illustrates how to use it to monitor the security state transition in the supply chain network.

  5. An evolving model of online bipartite networks

    Science.gov (United States)

    Zhang, Chu-Xu; Zhang, Zi-Ke; Liu, Chuang

    2013-12-01

    Understanding the structure and evolution of online bipartite networks is a significant task since they play a crucial role in various e-commerce services nowadays. Recently, various attempts have been tried to propose different models, resulting in either power-law or exponential degree distributions. However, many empirical results show that the user degree distribution actually follows a shifted power-law distribution, the so-called Mandelbrot’s law, which cannot be fully described by previous models. In this paper, we propose an evolving model, considering two different user behaviors: random and preferential attachment. Extensive empirical results on two real bipartite networks, Delicious and CiteULike, show that the theoretical model can well characterize the structure of real networks for both user and object degree distributions. In addition, we introduce a structural parameter p, to demonstrate that the hybrid user behavior leads to the shifted power-law degree distribution, and the region of power-law tail will increase with the increment of p. The proposed model might shed some lights in understanding the underlying laws governing the structure of real online bipartite networks.

  6. Distributed Bayesian Networks for User Modeling

    DEFF Research Database (Denmark)

    Tedesco, Roberto; Dolog, Peter; Nejdl, Wolfgang;

    2006-01-01

    The World Wide Web is a popular platform for providing eLearning applications to a wide spectrum of users. However – as users differ in their preferences, background, requirements, and goals – applications should provide personalization mechanisms. In the Web context, user models used...... by such adaptive applications are often partial fragments of an overall user model. The fragments have then to be collected and merged into a global user profile. In this paper we investigate and present algorithms able to cope with distributed, fragmented user models – based on Bayesian Networks – in the context...... of Web-based eLearning platforms. The scenario we are tackling assumes learners who use several systems over time, which are able to create partial Bayesian Networks for user models based on the local system context. In particular, we focus on how to merge these partial user models. Our merge mechanism...

  7. Network Reconstruction with Realistic Models

    OpenAIRE

    Grzegorczyk, Marco; Aderhold, Andrej; Husmeier, Dirk

    2015-01-01

    We extend a recently proposed gradient-matching method for inferring interactions in complex systems described by differential equations in various respects: improved gradient inference, evaluation of the influence of the prior on kinetic parameters, comparative evaluation of two model selection paradigms: marginal likelihood versus DIC (divergence information criterion), comparative evaluation of different numerical procedures for computing the marginal likelihood, extension of the methodolo...

  8. An autocatalytic network model for stock markets

    Science.gov (United States)

    Caetano, Marco Antonio Leonel; Yoneyama, Takashi

    2015-02-01

    The stock prices of companies with businesses that are closely related within a specific sector of economy might exhibit movement patterns and correlations in their dynamics. The idea in this work is to use the concept of autocatalytic network to model such correlations and patterns in the trends exhibited by the expected returns. The trends are expressed in terms of positive or negative returns within each fixed time interval. The time series derived from these trends is then used to represent the movement patterns by a probabilistic boolean network with transitions modeled as an autocatalytic network. The proposed method might be of value in short term forecasting and identification of dependencies. The method is illustrated with a case study based on four stocks of companies in the field of natural resource and technology.

  9. Delivery Time Reliability Model of Logistics Network

    Directory of Open Access Journals (Sweden)

    Liusan Wu

    2013-01-01

    Full Text Available Natural disasters like earthquake and flood will surely destroy the existing traffic network, usually accompanied by delivery delay or even network collapse. A logistics-network-related delivery time reliability model defined by a shortest-time entropy is proposed as a means to estimate the actual delivery time reliability. The less the entropy is, the stronger the delivery time reliability remains, and vice versa. The shortest delivery time is computed separately based on two different assumptions. If a path is concerned without capacity restriction, the shortest delivery time is positively related to the length of the shortest path, and if a path is concerned with capacity restriction, a minimax programming model is built to figure up the shortest delivery time. Finally, an example is utilized to confirm the validity and practicality of the proposed approach.

  10. International Trade: a Reinforced Urn Network Model

    CERN Document Server

    Peluso, Stefano; Muliere, Pietro; Lomi, Alessandro

    2016-01-01

    We propose a unified modelling framework that theoretically justifies the main empirical regularities characterizing the international trade network. Each country is associated to a Polya urn whose composition controls the propensity of the country to trade with other countries. The urn composition is updated through the walk of the Reinforced Urn Process of Muliere et al. (2000). The model implies a local preferential attachment scheme and a power law right tail behaviour of bilateral trade flows. Different assumptions on the urns' reinforcement parameters account for local clustering, path-shortening and sparsity. Likelihood-based estimation approaches are facilitated by feasible likelihood analytical derivation in various network settings. A simulated example and the empirical results on the international trade network are discussed.

  11. Attractors and soak times in artisanal fi shing with traps

    Directory of Open Access Journals (Sweden)

    Evandro Figueiredo Sebastiani

    2009-12-01

    Full Text Available Traps are used by artisanal fishers as fishing gear in places where other fishing modalities are impeded or limited. The advantage of this type of fishing modality is the possibility of keeping fish alive and in the case of capturing species of low commercial value or size below the permitted minimum this fishing gear allows the release of such specimens back to nature, resulting in a sustainability aspect to the use of this fishing gear. This study aims to evaluate the effects of different attractors and times of submersion on the efficiency of the traps used. Sardines, shrimps and trash fish were employed as attractors. To evaluate the soak time, two periods were tested: 24 and 96 hours. The sardines, used as the attractor, resulted in a production of 1,296.4 ± 397.4g, significantly superior (p <0.05 to other attractors. In relation to the soak time, the period of 24 hours resulted in an average production of 1,719.2 ± 866.0g, significantly (p <0.05 superior to the period of 96 hours. The results led to the conclusion that to optimize this capture by fishing gear, sardines should be used as the attractor, together with a soak time of 24 hours.

  12. Hippocampal Attractor Dynamics Predict Memory-Based Decision Making.

    Science.gov (United States)

    Steemers, Ben; Vicente-Grabovetsky, Alejandro; Barry, Caswell; Smulders, Peter; Schröder, Tobias Navarro; Burgess, Neil; Doeller, Christian F

    2016-07-11

    Memories are thought to be retrieved by attractor dynamics if a given input is sufficiently similar to a stored attractor state [1-5]. The hippocampus, a region crucial for spatial navigation [6-12] and episodic memory [13-18], has been associated with attractor-based computations [5, 9], receiving support from the way rodent place cells "remap" nonlinearly between spatial representations [19-22]. In humans, nonlinear response patterns have been reported in perceptual categorization tasks [23-25]; however, it remains elusive whether human memory retrieval is driven by attractor dynamics and what neural mechanisms might underpin them. To test this, we used a virtual reality [7, 11, 26-28] task where participants learned object-location associations within two distinct virtual reality environments. Participants were subsequently exposed to four novel intermediate environments, generated by linearly morphing the background landscapes of the familiar environments, while tracking fMRI activity. We show that linear changes in environmental context cause linear changes in activity patterns in sensory cortex but cause dynamic, nonlinear changes in both hippocampal activity pattern and remembered locations. Furthermore, the sigmoidal response in the hippocampus scaled with the strength of the sigmoidal pattern in spatial memory. These results indicate that mnemonic decisions in an ambiguous novel context relate to putative attractor dynamics in the hippocampus, which support the dynamic remapping of memories. PMID:27345167

  13. Bayesian Network Based XP Process Modelling

    Directory of Open Access Journals (Sweden)

    Mohamed Abouelela

    2010-07-01

    Full Text Available A Bayesian Network based mathematical model has been used for modelling Extreme Programmingsoftware development process. The model is capable of predicting the expected finish time and theexpected defect rate for each XP release. Therefore, it can be used to determine the success/failure of anyXP Project. The model takes into account the effect of three XP practices, namely: Pair Programming,Test Driven Development and Onsite Customer practices. The model’s predictions were validated againsttwo case studies. Results show the precision of our model especially in predicting the project finish time.

  14. Keystone Business Models for Network Security Processors

    Directory of Open Access Journals (Sweden)

    Arthur Low

    2013-07-01

    Full Text Available Network security processors are critical components of high-performance systems built for cybersecurity. Development of a network security processor requires multi-domain experience in semiconductors and complex software security applications, and multiple iterations of both software and hardware implementations. Limited by the business models in use today, such an arduous task can be undertaken only by large incumbent companies and government organizations. Neither the “fabless semiconductor” models nor the silicon intellectual-property licensing (“IP-licensing” models allow small technology companies to successfully compete. This article describes an alternative approach that produces an ongoing stream of novel network security processors for niche markets through continuous innovation by both large and small companies. This approach, referred to here as the "business ecosystem model for network security processors", includes a flexible and reconfigurable technology platform, a “keystone” business model for the company that maintains the platform architecture, and an extended ecosystem of companies that both contribute and share in the value created by innovation. New opportunities for business model innovation by participating companies are made possible by the ecosystem model. This ecosystem model builds on: i the lessons learned from the experience of the first author as a senior integrated circuit architect for providers of public-key cryptography solutions and as the owner of a semiconductor startup, and ii the latest scholarly research on technology entrepreneurship, business models, platforms, and business ecosystems. This article will be of interest to all technology entrepreneurs, but it will be of particular interest to owners of small companies that provide security solutions and to specialized security professionals seeking to launch their own companies.

  15. A Model of Mental State Transition Network

    Science.gov (United States)

    Xiang, Hua; Jiang, Peilin; Xiao, Shuang; Ren, Fuji; Kuroiwa, Shingo

    Emotion is one of the most essential and basic attributes of human intelligence. Current AI (Artificial Intelligence) research is concentrating on physical components of emotion, rarely is it carried out from the view of psychology directly(1). Study on the model of artificial psychology is the first step in the development of human-computer interaction. As affective computing remains unpredictable, creating a reasonable mental model becomes the primary task for building a hybrid system. A pragmatic mental model is also the fundament of some key topics such as recognition and synthesis of emotions. In this paper a Mental State Transition Network Model(2) is proposed to detect human emotions. By a series of psychological experiments, we present a new way to predict coming human's emotions depending on the various current emotional states under various stimuli. Besides, people in different genders and characters are taken into consideration in our investigation. According to the psychological experiments data derived from 200 questionnaires, a Mental State Transition Network Model for describing the transitions in distribution among the emotions and relationships between internal mental situations and external are concluded. Further more the coefficients of the mental transition network model were achieved. Comparing seven relative evaluating experiments, an average precision rate of 0.843 is achieved using a set of samples for the proposed model.

  16. The Kuramoto model in complex networks

    Science.gov (United States)

    Rodrigues, Francisco A.; Peron, Thomas K. DM.; Ji, Peng; Kurths, Jürgen

    2016-01-01

    Synchronization of an ensemble of oscillators is an emergent phenomenon present in several complex systems, ranging from social and physical to biological and technological systems. The most successful approach to describe how coherent behavior emerges in these complex systems is given by the paradigmatic Kuramoto model. This model has been traditionally studied in complete graphs. However, besides being intrinsically dynamical, complex systems present very heterogeneous structure, which can be represented as complex networks. This report is dedicated to review main contributions in the field of synchronization in networks of Kuramoto oscillators. In particular, we provide an overview of the impact of network patterns on the local and global dynamics of coupled phase oscillators. We cover many relevant topics, which encompass a description of the most used analytical approaches and the analysis of several numerical results. Furthermore, we discuss recent developments on variations of the Kuramoto model in networks, including the presence of noise and inertia. The rich potential for applications is discussed for special fields in engineering, neuroscience, physics and Earth science. Finally, we conclude by discussing problems that remain open after the last decade of intensive research on the Kuramoto model and point out some promising directions for future research.

  17. Neural Network Model of Memory Retrieval.

    Science.gov (United States)

    Recanatesi, Stefano; Katkov, Mikhail; Romani, Sandro; Tsodyks, Misha

    2015-01-01

    Human memory can store large amount of information. Nevertheless, recalling is often a challenging task. In a classical free recall paradigm, where participants are asked to repeat a briefly presented list of words, people make mistakes for lists as short as 5 words. We present a model for memory retrieval based on a Hopfield neural network where transition between items are determined by similarities in their long-term memory representations. Meanfield analysis of the model reveals stable states of the network corresponding (1) to single memory representations and (2) intersection between memory representations. We show that oscillating feedback inhibition in the presence of noise induces transitions between these states triggering the retrieval of different memories. The network dynamics qualitatively predicts the distribution of time intervals required to recall new memory items observed in experiments. It shows that items having larger number of neurons in their representation are statistically easier to recall and reveals possible bottlenecks in our ability of retrieving memories. Overall, we propose a neural network model of information retrieval broadly compatible with experimental observations and is consistent with our recent graphical model (Romani et al., 2013). PMID:26732491

  18. Modelling crime linkage with Bayesian networks

    NARCIS (Netherlands)

    J. de Zoete; M. Sjerps; D. Lagnado; N. Fenton

    2015-01-01

    When two or more crimes show specific similarities, such as a very distinct modus operandi, the probability that they were committed by the same offender becomes of interest. This probability depends on the degree of similarity and distinctiveness. We show how Bayesian networks can be used to model

  19. Unified Model for Generation Complex Networks with Utility Preferential Attachment

    Institute of Scientific and Technical Information of China (English)

    WU Jian-Jun; GAO Zi-You; SUN Hui-Jun

    2006-01-01

    In this paper, based on the utility preferential attachment, we propose a new unified model to generate different network topologies such as scale-free, small-world and random networks. Moreover, a new network structure named super scale network is found, which has monopoly characteristic in our simulation experiments. Finally, the characteristics ofthis new network are given.

  20. Hybrid simulation models of production networks

    CERN Document Server

    Kouikoglou, Vassilis S

    2001-01-01

    This book is concerned with a most important area of industrial production, that of analysis and optimization of production lines and networks using discrete-event models and simulation. The book introduces a novel approach that combines analytic models and discrete-event simulation. Unlike conventional piece-by-piece simulation, this method observes a reduced number of events between which the evolution of the system is tracked analytically. Using this hybrid approach, several models are developed for the analysis of production lines and networks. The hybrid approach combines speed and accuracy for exceptional analysis of most practical situations. A number of optimization problems, involving buffer design, workforce planning, and production control, are solved through the use of hybrid models.

  1. Network Coding Capacity of Random Wireless Networks under a SINR Model

    OpenAIRE

    Kong, Zhenning; Aly, Salah A.; Soljanin, Emina; Yeh, Edmund M.; Klappenecker, Andreas

    2008-01-01

    Previous work on network coding capacity for random wired and wireless networks have focused on the case where the capacities of links in the network are independent. In this paper, we consider a more realistic model, where wireless networks are modelled by random geometric graphs with interference and noise. In this model, the capacities of links are not independent. By employing coupling and martingale methods, we show that, under mild conditions, the network coding capacity for random wire...

  2. Modeling Multistandard Wireless Networks in OPNET

    DEFF Research Database (Denmark)

    Zakrzewska, Anna; Berger, Michael Stübert; Ruepp, Sarah Renée

    2011-01-01

    Future wireless communication is emerging towards one heterogeneous platform. In this new environment wireless access will be provided by multiple radio technologies that are cooperating and complementing one another. The paper investigates the possibilities of developing such a multistandard sys...... system using OPNET Modeler. A network model consisting of LTE interworking with WLAN and WiMAX is considered from the radio resource management perspective. In particular, implementing a joint packet scheduler across multiple systems is discussed more in detail....

  3. XY model in small-world networks

    OpenAIRE

    Kim, Beom Jun; Hong, H.; Holme, Petter; Jeon, Gun Sang; Minnhagen, Petter; Choi, M. Y.

    2001-01-01

    The phase transition in the XY model on one-dimensional small-world networks is investigated by means of Monte-Carlo simulations. It is found that long-range order is present at finite temperatures, even for very small values of the rewiring probability, suggesting a finite-temperature transition for any nonzero rewiring probability. Nature of the phase transition is discussed in comparison with the globally-coupled XY model.

  4. Constructing a fish metabolic network model

    OpenAIRE

    Li, S.; Pozhitkov, A.; R. Ryan; Manning, C; Brown-Peterson, N.; Brouwer, M

    2010-01-01

    We report the construction of a genome-wide fish metabolic network model, MetaFishNet, and its application to analyzing high throughput gene expression data. This model is a stepping stone to broader applications of fish systems biology, for example by guiding study design through comparison with human metabolism and the integration of multiple data types. MetaFishNet resources, including a pathway enrichment analysis tool, are accessible at http://metafishnet.appspot.com.

  5. On the number of attractors of Boolean automata circuits

    OpenAIRE

    Demongeot, Jacques; Noual, Mathilde; Sené, Sylvain

    2009-01-01

    In line with fields of theoretical computer science and biology that study Boolean automata networks often seen as models of regulation networks, we present some results concerning the dynamics of networks whose underlying interaction graphs are circuits, that is Boolean automata circuits. In the context of biological regulation, former studies have highlighted the importance of circuits on the asymptotic dynamical behaviour of the biological networks that contain them. Our work focuses on th...

  6. Separation of attractors in 1-modulus quantum corrected special geometry

    CERN Document Server

    Bellucci, S; Marrani, A; Shcherbakov, A

    2008-01-01

    We study the solutions to the N=2, d=4 Attractor Equations in a dyonic, extremal, static, spherically symmetric and asymptotically flat black hole background, in the simplest case of perturbative quantum corrected cubic Special Kahler geometry consistent with continuous axion-shift symmetry, namely in the 1-modulus Special Kahler geometry described (in a suitable special symplectic coordinate) by the holomorphic Kahler gauge-invariant prepotential F=t^3+i*lambda, with lambda real. By performing computations in the ``magnetic'' charge configuration, we find evidence for interesting phenomena (absent in the classical limit of vanishing lambda). Namely, for a certain range of the quantum parameter lambda we find a ``splitting'' of attractors, i.e. the existence of multiple solutions to the Attractor Equations for fixed supporting charge configuration. This corresponds to the existence of ``area codes'' in the radial evolution of the scalar t, determined by the various disconnected regions of the moduli space, wh...

  7. Modelling dendritic ecological networks in space: anintegrated network perspective

    Science.gov (United States)

    Peterson, Erin E.; Ver Hoef, Jay M.; Isaak, Dan J.; Falke, Jeffrey A.; Fortin, Marie-Josée; Jordon, Chris E.; McNyset, Kristina; Monestiez, Pascal; Ruesch, Aaron S.; Sengupta, Aritra; Som, Nicholas; Steel, E. Ashley; Theobald, David M.; Torgersen, Christian E.; Wenger, Seth J.

    2013-01-01

    Dendritic ecological networks (DENs) are a unique form of ecological networks that exhibit a dendritic network topology (e.g. stream and cave networks or plant architecture). DENs have a dual spatial representation; as points within the network and as points in geographical space. Consequently, some analytical methods used to quantify relationships in other types of ecological networks, or in 2-D space, may be inadequate for studying the influence of structure and connectivity on ecological processes within DENs. We propose a conceptual taxonomy of network analysis methods that account for DEN characteristics to varying degrees and provide a synthesis of the different approaches within

  8. On traffic modelling in GPRS networks

    DEFF Research Database (Denmark)

    Madsen, Tatiana Kozlova; Schwefel, Hans-Peter; Prasad, Ramjee;

    2005-01-01

    Optimal design and dimensioning of wireless data networks, such as GPRS, requires the knowledge of traffic characteristics of different data services. This paper presents an in-detail analysis of an IP-level traffic measurements taken in an operational GPRS network. The data measurements reported...... here are done at the Gi interface. The aim of this paper is to reveal some key statistics of GPRS data applications and to validate if the existing traffic models can adequately describe traffic volume and inter-arrival time distribution for different services. Additionally, we present a method of user...

  9. Global attractors of a degenerate parabolic equation and their error estimates

    Institute of Scientific and Technical Information of China (English)

    HU Xiaohong; ZHANG Xingyou

    2004-01-01

    The existences of the global attractor A? for a degenerate parabolic equation and of the homogenized attractorA0 for the corresponding homogenized equation are studied, and explicit estimates for the distance between A? and A0 are given.

  10. Neural Network Model of memory retrieval

    Directory of Open Access Journals (Sweden)

    Stefano eRecanatesi

    2015-12-01

    Full Text Available Human memory can store large amount of information. Nevertheless, recalling is often achallenging task. In a classical free recall paradigm, where participants are asked to repeat abriefly presented list of words, people make mistakes for lists as short as 5 words. We present amodel for memory retrieval based on a Hopfield neural network where transition between itemsare determined by similarities in their long-term memory representations. Meanfield analysis ofthe model reveals stable states of the network corresponding (1 to single memory representationsand (2 intersection between memory representations. We show that oscillating feedback inhibitionin the presence of noise induces transitions between these states triggering the retrieval ofdifferent memories. The network dynamics qualitatively predicts the distribution of time intervalsrequired to recall new memory items observed in experiments. It shows that items having largernumber of neurons in their representation are statistically easier to recall and reveals possiblebottlenecks in our ability of retrieving memories. Overall, we propose a neural network model ofinformation retrieval broadly compatible with experimental observations and is consistent with ourrecent graphical model (Romani et al., 2013.

  11. Connectivity and thought: the influence of semantic network structure in a neurodynamical model of thinking.

    Science.gov (United States)

    Marupaka, Nagendra; Iyer, Laxmi R; Minai, Ali A

    2012-08-01

    Understanding cognition has been a central focus for psychologists, neuroscientists and philosophers for thousands of years, but many of its most fundamental processes remain very poorly understood. Chief among these is the process of thought itself: the spontaneous emergence of specific ideas within the stream of consciousness. It is widely accepted that ideas, both familiar and novel, arise from the combination of existing concepts. From this perspective, thought is an emergent attribute of memory, arising from the intrinsic dynamics of the neural substrate in which information is embedded. An important issue in any understanding of this process is the relationship between the emergence of conceptual combinations and the dynamics of the underlying neural networks. Virtually all theories of ideation hypothesize that ideas arise during the thought process through association, each one triggering the next through some type of linkage, e.g., structural analogy, semantic similarity, polysemy, etc. In particular, it has been suggested that the creativity of ideation in individuals reflects the qualitative structure of conceptual associations in their minds. Interestingly, psycholinguistic studies have shown that semantic networks across many languages have a particular type of structure with small-world, scale free connectivity. So far, however, these related insights have not been brought together, in part because there has been no explicitly neural model for the dynamics of spontaneous thought. Recently, we have developed such a model. Though simplistic and abstract, this model attempts to capture the most basic aspects of the process hypothesized by theoretical models within a neurodynamical framework. It represents semantic memory as a recurrent semantic neural network with itinerant dynamics. Conceptual combinations arise through this dynamics as co-active groups of neural units, and either dissolve quickly or persist for a time as emergent metastable attractors

  12. A Networks Approach to Modeling Enzymatic Reactions.

    Science.gov (United States)

    Imhof, P

    2016-01-01

    Modeling enzymatic reactions is a demanding task due to the complexity of the system, the many degrees of freedom involved and the complex, chemical, and conformational transitions associated with the reaction. Consequently, enzymatic reactions are not determined by precisely one reaction pathway. Hence, it is beneficial to obtain a comprehensive picture of possible reaction paths and competing mechanisms. By combining individually generated intermediate states and chemical transition steps a network of such pathways can be constructed. Transition networks are a discretized representation of a potential energy landscape consisting of a multitude of reaction pathways connecting the end states of the reaction. The graph structure of the network allows an easy identification of the energetically most favorable pathways as well as a number of alternative routes.

  13. Models for the Generation of Heterogeneous Complex Networks

    OpenAIRE

    Youssef, Bassant El Sayed

    2015-01-01

    Complex networks are composed of a large number of interacting nodes. Examples of complex networks include the topology of the Internet, connections between websites or web pages in the World Wide Web (WWW), and connections between participants in social networks.Due to their ubiquity, modeling complex networks is importantfor answering many research questions that cannot be answered without a mathematical model. For example, mathematical models of complex networks can be used to find the mo...

  14. Compact Global Chaotic Attractors of Discrete Control Systems

    Directory of Open Access Journals (Sweden)

    Cheban David

    2014-01-01

    Full Text Available The paper is dedicated to the study of the problem of existence of compact global chaotic attractors of discrete control systems and to the description of its structure. We consider so called switched systems with discrete time xn+1 = fv(n(xn, where v: Z+ → {1; 2; : : : ;m}. If m≥2 we give sufficient conditions (the family M := {f1; f2; : : : ; fm} of functions is contracting in the extended sense for the existence of a compact global chaotic attractor. We study this problem in the framework of non-autonomous dynamical systems (cocycles

  15. KSC Centralized Index Model in Complex Network

    Directory of Open Access Journals (Sweden)

    Jian Xu

    2014-05-01

    Full Text Available To dig potential spread nodes in a complex network mainly relies on using centralized indicators such as the node degree, closeness, betweenness and K-shell to evaluate spread node, which causes that the excavation accuracy is not high and adaptability not strong and induces other shortcomings, therefore this paper proposes KSC of centering indicator model. This model not only considers the internal attributes of nodes, but also takes the external attributes of nodes into account, and it finally conducts simulation experiments on propagation through the use of SIR model. The experimental results show that: The proposed algorithm is suitable for a variety of complex networks and it finds better, more promising and more influential dissemination nodes.

  16. The noisy voter model on complex networks

    CERN Document Server

    Carro, Adrián; Miguel, Maxi San

    2016-01-01

    We propose a new analytical method to study stochastic, binary-state models on complex networks. Moving beyond the usual mean-field theories, this alternative approach is based on the introduction of an uncorrelated network approximation, allowing to deal with the network structure as parametric heterogeneity. As an illustration, we study the noisy voter model, a modification of the original voter model including random changes of state. The proposed method is able to unfold the dependence of the model not only on the mean degree (the mean-field prediction) but also on more complex averages over the degree distribution. In particular, we find that the degree heterogeneity ---variance of the underlying degree distribution--- has a strong influence on the location of the critical point of a noise-induced, finite-size transition occurring in the model, on the local ordering of the system, and on the functional form of its temporal correlations. Finally, we show how this latter point opens the possibility of infe...

  17. The role of the positive emotional attractor in vision and shared vision: toward effective leadership, relationships, and engagement.

    Science.gov (United States)

    Boyatzis, Richard E; Rochford, Kylie; Taylor, Scott N

    2015-01-01

    Personal and shared vision have a long history in management and organizational practices yet only recently have we begun to build a systematic body of empirical knowledge about the role of personal and shared vision in organizations. As the introductory paper for this special topic in Frontiers in Psychology, we present a theoretical argument as to the existence and critical role of two states in which a person, dyad, team, or organization may find themselves when engaging in the creation of a personal or shared vision: the positive emotional attractor (PEA) and the negative emotional attractor (NEA). These two primary states are strange attractors, each characterized by three dimensions: (1) positive versus negative emotional arousal; (2) endocrine arousal of the parasympathetic nervous system versus sympathetic nervous system; and (3) neurological activation of the default mode network versus the task positive network. We argue that arousing the PEA is critical when creating or affirming a personal vision (i.e., sense of one's purpose and ideal self). We begin our paper by reviewing the underpinnings of our PEA-NEA theory, briefly review each of the papers in this special issue, and conclude by discussing the practical implications of the theory. PMID:26052300

  18. The Role of the Positive and Negative Emotional Attractors in Vision and Shared Vision: Toward Effective Leadership, Relationships and Engagement

    Directory of Open Access Journals (Sweden)

    Richard Eleftherios Boyatzis

    2015-05-01

    Full Text Available Personal and shared vision have a long history in management and organizational practices yet only recently have we begun to build a systematic body of empirical knowledge about the role of personal and shared vision in organizations. As the introductory paper for this special topic in Frontiers in Psychology, we present a theoretical argument as to the existence and critical role of two states in which a person, dyad, team, or organization may find themselves when engaging in the creation of a personal or shared vision: the positive emotional attractor (PEA and the negative emotional attractor (NEA. These two primary states are strange attractors, each characterized by three dimensions: (1 positive versus negative emotional arousal; (2 endocrine arousal of the parasympathetic nervous system versus sympathetic nervous system; and (3 neurological activation of the default mode network versus the task positive network. We argue that arousing the PEA is critical when creating or affirming a personal vision (i.e., sense of one’s purpose and ideal self. We begin our paper by reviewing the underpinnings of our PEA-NEA theory, briefly review each of the papers in this special issue, and conclude by discussing the practical implications of the theory.

  19. Hopfield's Model of Patterns Recognition and Laws of Artistic Perception

    Science.gov (United States)

    Yevin, Igor; Koblyakov, Alexander

    The model of patterns recognition or attractor network model of associative memory, offered by J.Hopfield 1982, is the most known model in theoretical neuroscience. This paper aims to show, that such well-known laws of art perception as the Wundt curve, perception of visual ambiguity in art, and also the model perception of musical tonalities are nothing else than special cases of the Hopfield’s model of patterns recognition.

  20. On designing heteroclinic networks from graphs

    Science.gov (United States)

    Ashwin, Peter; Postlethwaite, Claire

    2013-12-01

    Robust heteroclinic networks are invariant sets that can appear as attractors in symmetrically coupled or otherwise constrained dynamical systems. These networks may have a complicated structure determined to a large extent by the constraints and dimension of the system. As these networks are of great interest as dynamical models of biological and cognitive processes, it is useful to understand how particular directed graphs can be realised as attracting robust heteroclinic networks between states in phase space. This paper presents two methods of realising arbitrarily complex directed graphs as robust heteroclinic networks for flows generated by ODEs-we say the ODEs realise the graphs as heteroclinic networks between equilibria that represent the vertices. Suppose we have a directed graph on nv vertices with ne edges. The “simplex realisation” embeds the graph as an invariant set of a flow on an (nv-1)-simplex. This method realises the graph as long as it is one- and two-cycle free. The “cylinder realisation” embeds a graph as an invariant set of a flow on a (ne+1)-dimensional space. This method realises the graph as long as it is one-cycle free. In both cases we realise the graph as an invariant set within an attractor, and discuss some illustrative examples, including the influence of noise and parameters on the dynamics. In particular we show that the resulting heteroclinic network may or may not display “memory” of the vertices visited.

  1. Chaotic neural network applied to two-dimensional motion control.

    Science.gov (United States)

    Yoshida, Hiroyuki; Kurata, Shuhei; Li, Yongtao; Nara, Shigetoshi

    2010-03-01

    Chaotic dynamics generated in a chaotic neural network model are applied to 2-dimensional (2-D) motion control. The change of position of a moving object in each control time step is determined by a motion function which is calculated from the firing activity of the chaotic neural network. Prototype attractors which correspond to simple motions of the object toward four directions in 2-D space are embedded in the neural network model by designing synaptic connection strengths. Chaotic dynamics introduced by changing system parameters sample intermediate points in the high-dimensional state space between the embedded attractors, resulting in motion in various directions. By means of adaptive switching of the system parameters between a chaotic regime and an attractor regime, the object is able to reach a target in a 2-D maze. In computer experiments, the success rate of this method over many trials not only shows better performance than that of stochastic random pattern generators but also shows that chaotic dynamics can be useful for realizing robust, adaptive and complex control function with simple rules.

  2. Models and Algorithm for Stochastic Network Designs

    Institute of Scientific and Technical Information of China (English)

    Anthony Chen; Juyoung Kim; Seungjae Lee; Jaisung Choi

    2009-01-01

    The network design problem (NDP) is one of the most difficult and challenging problems in trans-portation. Traditional NDP models are often posed as a deterministic bilevel program assuming that all rele-vant inputs are known with certainty. This paper presents three stochastic models for designing transporta-tion networks with demand uncertainty. These three stochastic NDP models were formulated as the ex-pected value model, chance-constrained model, and dependent-chance model in a bilevel programming framework using different criteria to hedge against demand uncertainty. Solution procedures based on the traffic assignment algorithm, genetic algorithm, and Monte-Cado simulations were developed to solve these stochastic NDP models. The nonlinear and nonconvex nature of the bilevel program was handled by the genetic algorithm and traffic assignment algorithm, whereas the stochastic nature was addressed through simulations. Numerical experiments were conducted to evaluate the applicability of the stochastic NDP models and the solution procedure. Results from the three experiments show that the solution procedures are quite robust to different parameter settings.

  3. Network Strategies in the Voter Model

    CERN Document Server

    Javarone, Marco Alberto

    2013-01-01

    We study a simple voter model with two competing parties. In particular, we represent the case of political elections, where people can choose to support one of the two competitors or to remain neutral. People interact in a social network and their opinion depends on those of their neighbors. Therefore, people may change opinion over time, i.e., they can support one competitor or none. The two competitors try to gain the people's consensus by interacting with their neighbors and also with other people. In particular, competitors define temporal connections, following a strategy, to interact with people they do not know, i.e., with all the people that are not their neighbors. We analyze the proposed model to investigate which network strategies are more advantageous, for the competitors, in order to gain the popular consensus. As result, we found that the best network strategy depends on the topology of the social network. Finally, we investigate how the charisma of competitors affects the outcomes of the prop...

  4. Modelling conflicts with cluster dynamics on networks

    CERN Document Server

    Tadic, Bosiljka

    2010-01-01

    We introduce cluster dynamical models of conflicts in which only the largest cluster can be involved in an action. This mimics the situations in which an attack is planned by a central body, and the largest attack force is used. We study the model in its annealed random graph version, on a fixed network, and on a network evolving through the actions. The sizes of actions are distributed with a power-law tail, however, the exponent is non-universal and depends on the frequency of actions and sparseness of the available connections between units. Allowing the network reconstruction over time in a self-organized manner, e.g., by adding the links based on previous liaisons between units, we find that the power-law exponent depends on the evolution time of the network. Its lower limit is given by the universal value 5/2, derived analytically for the case of random fragmentation processes. In the temporal patterns behind the size of actions we find long-range correlations in the time series of number of clusters an...

  5. Modeling Dynamic Evolution of Online Friendship Network

    Institute of Scientific and Technical Information of China (English)

    吴联仁; 闫强

    2012-01-01

    In this paper,we study the dynamic evolution of friendship network in SNS (Social Networking Site).Our analysis suggests that an individual joining a community depends not only on the number of friends he or she has within the community,but also on the friendship network generated by those friends.In addition,we propose a model which is based on two processes:first,connecting nearest neighbors;second,strength driven attachment mechanism.The model reflects two facts:first,in the social network it is a universal phenomenon that two nodes are connected when they have at least one common neighbor;second,new nodes connect more likely to nodes which have larger weights and interactions,a phenomenon called strength driven attachment (also called weight driven attachment).From the simulation results,we find that degree distribution P(k),strength distribution P(s),and degree-strength correlation are all consistent with empirical data.

  6. Features and heterogeneities in growing network models

    CERN Document Server

    Ferretti, Luca; Yang, Bin; Marmorini, Giacomo; Bianconi, Ginestra

    2011-01-01

    Many complex networks from the World-Wide-Web to biological networks are growing taking into account the heterogeneous features of the nodes. The feature of a node might be a discrete quantity such as a classification of a URL document as personal page, thematic website, news, blog, search engine, social network, ect. or the classification of a gene in a functional module. Moreover the feature of a node can be a continuous variable such as the position of a node in the embedding space. In order to account for these properties, in this paper we provide a generalization of growing network models with preferential attachment that includes the effect of heterogeneous features of the nodes. The main effect of heterogeneity is the emergence of an "effective fitness" for each class of nodes, determining the rate at which nodes acquire new links. Beyond the degree distribution, in this paper we give a full characterization of the other relevant properties of the model. We evaluate the clustering coefficient and show ...

  7. Performance modeling, loss networks, and statistical multiplexing

    CERN Document Server

    Mazumdar, Ravi

    2009-01-01

    This monograph presents a concise mathematical approach for modeling and analyzing the performance of communication networks with the aim of understanding the phenomenon of statistical multiplexing. The novelty of the monograph is the fresh approach and insights provided by a sample-path methodology for queueing models that highlights the important ideas of Palm distributions associated with traffic models and their role in performance measures. Also presented are recent ideas of large buffer, and many sources asymptotics that play an important role in understanding statistical multiplexing. I

  8. Artificial Neural Network Model for Predicting Compressive

    Directory of Open Access Journals (Sweden)

    Salim T. Yousif

    2013-05-01

    Full Text Available   Compressive strength of concrete is a commonly used criterion in evaluating concrete. Although testing of the compressive strength of concrete specimens is done routinely, it is performed on the 28th day after concrete placement. Therefore, strength estimation of concrete at early time is highly desirable. This study presents the effort in applying neural network-based system identification techniques to predict the compressive strength of concrete based on concrete mix proportions, maximum aggregate size (MAS, and slump of fresh concrete. Back-propagation neural networks model is successively developed, trained, and tested using actual data sets of concrete mix proportions gathered from literature.    The test of the model by un-used data within the range of input parameters shows that the maximum absolute error for model is about 20% and 88% of the output results has absolute errors less than 10%. The parametric study shows that water/cement ratio (w/c is the most significant factor  affecting the output of the model.     The results showed that neural networks has strong potential as a feasible tool for predicting compressive strength of concrete.

  9. Networks in Cell Biology = Modelling cell biology with networks

    OpenAIRE

    Buchanan, Mark; Caldarelli, Guido; De Los Rios, Paolo; Rao, Francesco; Vendruscolo, M.

    2010-01-01

    The science of complex biological networks is transforming research in areas ranging from evolutionary biology to medicine. This is the first book on the subject, providing a comprehensive introduction to complex network science and its biological applications. With contributions from key leaders in both network theory and modern cell biology, this book discusses the network science that is increasingly foundational for systems biology and the quantitative understanding of living systems. It ...

  10. New Federated Collaborative Networked Organization Model (FCNOM

    Directory of Open Access Journals (Sweden)

    Morcous M. Yassa

    2012-01-01

    Full Text Available Formation of Collaborative Networked Organization (CNO usually comes upon expected business opportunities and needs huge of negotiation during its lifecycle, especially to increase the Dynamic Virtual Organization (DVO configuration automation. Decision makers need more comprehensive information about CNO system to support their decisions. Unfortunately, there is no single formal modeling, tool, approach or any comprehensive methodology that covers all perspectives. In spite of there are some approaches to model CNO have been existed, these approaches model the CNO either with respect to the technology, or business without considering organizational behavior, federation modeling, and external environments. The aim of this paper is to propose an integrated framework that combines the existed modeling perspectives, as well as, proposes new ones. Also, it provides clear CNO boundaries. By using this approach the view of CNO environment becomes clear and unified. Also, it minimizes the negotiations within CNO components during its life cycle, supports DVO configuration automation, as well as, helps decision making for DVO, and achieves harmonization between CNO partners. The proposed FCNOM utilizes CommonKADS methodology organization model for describing CNO components. Insurance Collaborative Network has been used as an example to proof the proposed FCNOM model.

  11. Influence of Deterministic Attachments for Large Unifying Hybrid Network Model

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Large unifying hybrid network model (LUHPM) introduced the deterministic mixing ratio fd on the basis of the harmonious unification hybrid preferential model, to describe the influence of deterministic attachment to the network topology characteristics,

  12. Modeling In-Network Aggregation in VANETs

    NARCIS (Netherlands)

    Dietzel, Stefan; Kargl, Frank; Heijenk, Geert; Schaub, Florian

    2011-01-01

    The multitude of applications envisioned for vehicular ad hoc networks requires efficient communication and dissemination mechanisms to prevent network congestion. In-network data aggregation promises to reduce bandwidth requirements and enable scalability in large vehicular networks. However, most

  13. Reliable Communication Models in Interdependent Critical Infrastructure Networks

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sangkeun (Matt) [ORNL; Chinthavali, Supriya [ORNL; Shankar, Mallikarjun [ORNL

    2016-01-01

    Modern critical infrastructure networks are becoming increasingly interdependent where the failures in one network may cascade to other dependent networks, causing severe widespread national-scale failures. A number of previous efforts have been made to analyze the resiliency and robustness of interdependent networks based on different models. However, communication network, which plays an important role in today's infrastructures to detect and handle failures, has attracted little attention in the interdependency studies, and no previous models have captured enough practical features in the critical infrastructure networks. In this paper, we study the interdependencies between communication network and other kinds of critical infrastructure networks with an aim to identify vulnerable components and design resilient communication networks. We propose several interdependency models that systematically capture various features and dynamics of failures spreading in critical infrastructure networks. We also discuss several research challenges in building reliable communication solutions to handle failures in these models.

  14. Nonequilibrium Zaklan model on Apollonian Networks

    CERN Document Server

    Lima, F W S

    2012-01-01

    The Zaklan model had been proposed and studied recently using the equilibrium Ising model on Square Lattices (SL) by Zaklan et al (2008), near the critical temperature of the Ising model presenting a well-defined phase transition; but on normal and modified Apollonian networks (ANs), Andrade et al. (2005, 2009) studied the equilibrium Ising model. They showed the equilibrium Ising model not to present on ANs a phase transition of the type for the 2D Ising model. Here, within the context of agent-based Monte-Carlo simulations, we study the Zaklan model using the well-known majority-vote model (MVM) with noise and apply it to tax evasion on ANs, to show that differently from the Ising model the MVM on ANs presents a well defined phase transition. To control the tax evasion in the economics model proposed by Zaklan et al, MVM is applied in the neighborhood of the critical noise $q_{c}$ to the Zaklan model. Here we show that the Zaklan model is robust because this can be studied besides using equilibrium dynamics...

  15. Electronic circuits modeling using artificial neural networks

    Directory of Open Access Journals (Sweden)

    Andrejević Miona V.

    2003-01-01

    Full Text Available In this paper artificial neural networks (ANN are applied to modeling of electronic circuits. ANNs are used for application of the black-box modeling concept in the time domain. Modeling process is described, so the topology of the ANN, the testing signal used for excitation, together with the complexity of ANN are considered. The procedure is first exemplified in modeling of resistive circuits. MOS transistor, as a four-terminal device, is modeled. Then nonlinear negative resistive characteristic is modeled in order to be used as a piece-wise linear resistor in Chua's circuit. Examples of modeling nonlinear dynamic circuits are given encompassing a variety of modeling problems. A nonlinear circuit containing quartz oscillator is considered for modeling. Verification of the concept is performed by verifying the ability of the model to generalize i.e. to create acceptable responses to excitations not used during training. Implementation of these models within a behavioral simulator is exemplified. Every model is implemented in realistic surrounding in order to show its interaction, and of course, its usage and purpose.

  16. Uniform attractors of non-autonomous dissipative semilinear wave equations

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The asymptotic long time behaviors of a certain type of non-autonomous dissipative semilinear wave equations are studied. The existence of uniform attractors is proved and their upper bounds for both Hausdorff and Fractal dimensions of uniform are given when the external force satisfies suitable conditions.

  17. EXPONENTIAL ATTRACTOR FOR A CLASS OF NONCLASSICAL DIFFUSION EQUATION

    Institute of Scientific and Technical Information of China (English)

    尚亚东; 郭柏灵

    2003-01-01

    In this paper,we consider the asymptotic behavior of solutions for a class of nonclassical diffusion equation.We show the squeezing property and the existence of exponential attractor for this equation.We also make the estimates on its fractal dimension and exponential attraction.

  18. Multistability and hidden attractors in a relay system with hysteresis

    DEFF Research Database (Denmark)

    Zhusubaliyev, Zhanybai T.; Mosekilde, Erik; Rubanov, Vasily G.;

    2015-01-01

    For nonlinear dynamic systems with switching control, the concept of a "hidden attractor" naturally applies to a stable dynamic state that either (1) coexists with the stable switching cycle or (2), if the switching cycle is unstable, has a basin of attraction that does not intersect with the nei...

  19. Global Periodic Attractor for Strongly Damped and Driven Wave Equations

    Institute of Scientific and Technical Information of China (English)

    Hong-yan Li; Sheng-fan Zhou

    2006-01-01

    In this paper we consider the strongly damped and driven nonlinear wave equations under homogeneous Dirichlet boundary conditions. By introducing a new norm which is equivalent to the usual norm, we obtain the existence of a global periodic attractor attracting any bounded set exponentially in the phase space,which implies that the system behaves exactly as a one-dimensional system.

  20. A non-reward attractor theory of depression.

    Science.gov (United States)

    Rolls, Edmund T

    2016-09-01

    A non-reward attractor theory of depression is proposed based on the operation of the lateral orbitofrontal cortex and supracallosal cingulate cortex. The orbitofrontal cortex contains error neurons that respond to non-reward for many seconds in an attractor state that maintains a memory of the non-reward. The human lateral orbitofrontal cortex is activated by non-reward during reward reversal, and by a signal to stop a response that is now incorrect. Damage to the human orbitofrontal cortex impairs reward reversal learning. Not receiving reward can produce depression. The theory proposed is that in depression, this lateral orbitofrontal cortex non-reward system is more easily triggered, and maintains its attractor-related firing for longer. This triggers negative cognitive states, which in turn have positive feedback top-down effects on the orbitofrontal cortex non-reward system. Treatments for depression, including ketamine, may act in part by quashing this attractor. The mania of bipolar disorder is hypothesized to be associated with oversensitivity and overactivity in the reciprocally related reward system in the medial orbitofrontal cortex and pregenual cingulate cortex. PMID:27181908

  1. On the Supersymmetry of Bianchi attractors in Gauged supergravity

    CERN Document Server

    Chakrabarty, Bidisha; Samanta, Rickmoy

    2016-01-01

    Bianchi attractors are near horizon geometries with homogeneous symmetries in the spatial directions. We construct supersymmetric Bianchi attractors in $\\mathcal{N}=2, d=4,5$ gauged supergravity coupled to vector and hypermultiplets. In $d=4$, in the Bianchi I class we construct an electric $1/4$ BPS $AdS_2\\times\\mathbb{R}^2$ geometry. In $d=5$ we consider gauged supergravity with a generic gauging of symmetries of the scalar manifold and the R symmetry. Analyzing the gaugino and hyperino conditions we show that when the fermionic shifts do not vanish there are no supersymmetric Bianchi attractors. When the central charge satisfies an extremization condition, some of the fermionic shifts vanish and supersymmetry requires that the symmetries of the scalar manifold be ungauged. This allows supersymmetric Bianchi attractors sourced by massless gauge fields and a cosmological constant. In the Bianchi I class we show that the anisotropic $AdS_3\\times\\mathbb{R}^2$ solution is $1/2$ BPS. We also construct a new clas...

  2. Attractors for stochastic lattice dynamical systems with a multiplicative noise

    Institute of Scientific and Technical Information of China (English)

    Tomás CARABALLO; Kening LU

    2008-01-01

    In this paper,we consider a stochastic lattice differential equation with diffusive nearest neighbor interaction,a dissipative nonlinear reaction term,and multiplicative white noise at each node.We prove the existence of a compact global random attractor which,pulled back,attracts tempered random bounded sets.

  3. GLOBAL ATTRACTOR OF NONLINEAR STRAIN WAVES IN ELASTIC WAVEGUIDES

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The initial-boundary value problem of the propagation of nonlinear longitudinal elastic waves in an initially strained rod is considered. The rod is assumed to interact with the surrouding elastic and viscous external medium. The long time behavior of solutions are derived and global attractors in E1 space is obtained.

  4. A proposed "osi based" network troubles identification model

    CERN Document Server

    Kayri, Murat; 10.5121/ijngn.2010.2302

    2010-01-01

    The OSI model, developed by ISO in 1984, attempts to summarize complicated network cases on layers. Moreover, network troubles are expressed by taking the model into account. However, there has been no standardization for network troubles up to now. Network troubles have only been expressed by the name of the related layer. In this paper, it is pointed out that possible troubles on the related layer vary and possible troubles on each layer are categorized for functional network administration and they are standardized in an eligible way. The proposed model for network trouble shooting was developed considering the OSI model.

  5. Mathematical model for spreading dynamics of social network worms

    International Nuclear Information System (INIS)

    In this paper, a mathematical model for social network worm spreading is presented from the viewpoint of social engineering. This model consists of two submodels. Firstly, a human behavior model based on game theory is suggested for modeling and predicting the expected behaviors of a network user encountering malicious messages. The game situation models the actions of a user under the condition that the system may be infected at the time of opening a malicious message. Secondly, a social network accessing model is proposed to characterize the dynamics of network users, by which the number of online susceptible users can be determined at each time step. Several simulation experiments are carried out on artificial social networks. The results show that (1) the proposed mathematical model can well describe the spreading dynamics of social network worms; (2) weighted network topology greatly affects the spread of worms; (3) worms spread even faster on hybrid social networks

  6. A network model for Ebola spreading.

    Science.gov (United States)

    Rizzo, Alessandro; Pedalino, Biagio; Porfiri, Maurizio

    2016-04-01

    The availability of accurate models for the spreading of infectious diseases has opened a new era in management and containment of epidemics. Models are extensively used to plan for and execute vaccination campaigns, to evaluate the risk of international spreadings and the feasibility of travel bans, and to inform prophylaxis campaigns. Even when no specific therapeutical protocol is available, as for the Ebola Virus Disease (EVD), models of epidemic spreading can provide useful insight to steer interventions in the field and to forecast the trend of the epidemic. Here, we propose a novel mathematical model to describe EVD spreading based on activity driven networks (ADNs). Our approach overcomes the simplifying assumption of homogeneous mixing, which is central to most of the mathematically tractable models of EVD spreading. In our ADN-based model, each individual is not bound to contact every other, and its network of contacts varies in time as a function of an activity potential. Our model contemplates the possibility of non-ideal and time-varying intervention policies, which are critical to accurately describe EVD spreading in afflicted countries. The model is calibrated from field data of the 2014 April-to-December spreading in Liberia. We use the model as a predictive tool, to emulate the dynamics of EVD in Liberia and offer a one-year projection, until December 2015. Our predictions agree with the current vision expressed by professionals in the field, who consider EVD in Liberia at its final stage. The model is also used to perform a what-if analysis to assess the efficacy of timely intervention policies. In particular, we show that an earlier application of the same intervention policy would have greatly reduced the number of EVD cases, the duration of the outbreak, and the infrastructures needed for the implementation of the intervention. PMID:26804645

  7. A network model for Ebola spreading.

    Science.gov (United States)

    Rizzo, Alessandro; Pedalino, Biagio; Porfiri, Maurizio

    2016-04-01

    The availability of accurate models for the spreading of infectious diseases has opened a new era in management and containment of epidemics. Models are extensively used to plan for and execute vaccination campaigns, to evaluate the risk of international spreadings and the feasibility of travel bans, and to inform prophylaxis campaigns. Even when no specific therapeutical protocol is available, as for the Ebola Virus Disease (EVD), models of epidemic spreading can provide useful insight to steer interventions in the field and to forecast the trend of the epidemic. Here, we propose a novel mathematical model to describe EVD spreading based on activity driven networks (ADNs). Our approach overcomes the simplifying assumption of homogeneous mixing, which is central to most of the mathematically tractable models of EVD spreading. In our ADN-based model, each individual is not bound to contact every other, and its network of contacts varies in time as a function of an activity potential. Our model contemplates the possibility of non-ideal and time-varying intervention policies, which are critical to accurately describe EVD spreading in afflicted countries. The model is calibrated from field data of the 2014 April-to-December spreading in Liberia. We use the model as a predictive tool, to emulate the dynamics of EVD in Liberia and offer a one-year projection, until December 2015. Our predictions agree with the current vision expressed by professionals in the field, who consider EVD in Liberia at its final stage. The model is also used to perform a what-if analysis to assess the efficacy of timely intervention policies. In particular, we show that an earlier application of the same intervention policy would have greatly reduced the number of EVD cases, the duration of the outbreak, and the infrastructures needed for the implementation of the intervention.

  8. Evolutionary algorithms in genetic regulatory networks model

    CERN Document Server

    Raza, Khalid

    2012-01-01

    Genetic Regulatory Networks (GRNs) plays a vital role in the understanding of complex biological processes. Modeling GRNs is significantly important in order to reveal fundamental cellular processes, examine gene functions and understanding their complex relationships. Understanding the interactions between genes gives rise to develop better method for drug discovery and diagnosis of the disease since many diseases are characterized by abnormal behaviour of the genes. In this paper we have reviewed various evolutionary algorithms-based approach for modeling GRNs and discussed various opportunities and challenges.

  9. A Trust Evaluation Model for Industrial Control Ethernet Network

    Directory of Open Access Journals (Sweden)

    ZHOU Sen-xin

    2011-10-01

    Full Text Available Industrial control ethernet networks are more impotant in connecting with equipments each other of enterprise comprehensive automation and integrating information. With the explosive growth of network techniques, the traditional control networks can no longer satisfy the security demands on network connectivity, data storage and information exchanges.New types of networks emerged in recent years in order to provide solutions for the increasing requirements on networked services. We propose a trust evaluation model for industrial control ethernet network . Our study shows the importance and necessity of applying theoretical analyses to understand the complex characteristics of trusted industrial control ethernet networks.

  10. Complex networks-based energy-efficient evolution model for wireless sensor networks

    International Nuclear Information System (INIS)

    Based on complex networks theory, we present two self-organized energy-efficient models for wireless sensor networks in this paper. The first model constructs the wireless sensor networks according to the connectivity and remaining energy of each sensor node, thus it can produce scale-free networks which have a performance of random error tolerance. In the second model, we not only consider the remaining energy, but also introduce the constraint of links to each node. This model can make the energy consumption of the whole network more balanced. Finally, we present the numerical experiments of the two models.

  11. Modeling online social networks based on preferential linking

    Institute of Scientific and Technical Information of China (English)

    Hu Hai-Bo; Guo Jin-Li; Chen Jun

    2012-01-01

    We study the phenomena of preferential linking in a large-scale evolving online social network and find that the linear preference holds for preferential creation,preferential acceptance,and preferential attachment.Based on the linear preference,we propose an analyzable model,which illustrates the mechanism of network growth and reproduces the process of network evolution.Our simulations demonstrate that the degree distribution of the network produced by the model is in good agreement with that of the real network.This work provides a possible bridge between the micro-mechanisms of network growth and the macrostructures of online social networks.

  12. Modeling online social networks based on preferential linking

    International Nuclear Information System (INIS)

    We study the phenomena of preferential linking in a large-scale evolving online social network and find that the linear preference holds for preferential creation, preferential acceptance, and preferential attachment. Based on the linear preference, we propose an analyzable model, which illustrates the mechanism of network growth and reproduces the process of network evolution. Our simulations demonstrate that the degree distribution of the network produced by the model is in good agreement with that of the real network. This work provides a possible bridge between the micro-mechanisms of network growth and the macrostructures of online social networks

  13. Network Modeling of Crohn's Disease Incidence.

    Directory of Open Access Journals (Sweden)

    Jean-Marc Victor

    Full Text Available Numerous genetic and environmental risk factors play a role in human complex genetic disorders (CGD. However, their complex interplay remains to be modelled and explained in terms of disease mechanisms.Crohn's Disease (CD was modeled as a modular network of patho-physiological functions, each summarizing multiple gene-gene and gene-environment interactions. The disease resulted from one or few specific combinations of module functional states. Network aging dynamics was able to reproduce age-specific CD incidence curves as well as their variations over the past century in Western countries. Within the model, we translated the odds ratios (OR associated to at-risk alleles in terms of disease propensities of the functional modules. Finally, the model was successfully applied to other CGD including ulcerative colitis, ankylosing spondylitis, multiple sclerosis and schizophrenia.Modeling disease incidence may help to understand disease causative chains, to delineate the potential of personalized medicine, and to monitor epidemiological changes in CGD.

  14. Modeling the Human Genome Maintenance network

    Science.gov (United States)

    Simão, Éder M.; Cabral, Heleno B.; Castro, Mauro A. A.; Sinigaglia, Marialva; Mombach, José C. M.; Librelotto, Giovani R.

    2010-10-01

    We present the Ontocancro Database ( www.ontocancro.org) illustrated with applications to network modeling and pathway functional analysis. The database compiles information on gene pathways involved in Human Genome Maintenance Mechanisms (GMM) whose dysfunction accounts for cancer and several genetic syndromes. Ontocancro is the most complete, manually curated information resource available providing genomics and interatomics data on 120 GMM pathways (comprising a total of 1435 genes) obtained from curated databases and the literature. It was developed to facilitate the GMM network and functional modeling for the integration of genomic, transcriptomic and interatomic data. The database’s main contribution is the Ontocancro pathways that are expanded versions of standard GMM pathways for including additional genes with evidences of functional involvement in GMM. Using these pathways we find the largest cluster of interacting proteins involving GMM and on it we project a microarray study of adenoma to identify the regions of the network that are highly altered. In the last application we present the dynamical alterations of the pathways in a study of the effect of Cadmium, a known carcinogenic substance, on prostate cells to find that it produces a strong decrease of the pathway activity.

  15. Qualitative analysis of the Rössler equations: Bifurcations of limit cycles and chaotic attractors

    Science.gov (United States)

    Barrio, Roberto; Blesa, Fernando; Serrano, Sergio

    2009-06-01

    In this paper we study different aspects of the paradigmatic Rössler model. We perform a detailed study of the local and global bifurcations of codimension one and two of limit cycles. This provides us a global idea of the three-parametric evolution of the system. We also study the regions of parameters where we may expect a chaotic behavior by the use of different Chaos Indicators. The combination of the different techniques gives an idea of the different routes to chaos and the different kinds of chaotic attractors we may found in this system.

  16. Stochastic ecological network occupancy (SENO) models: a new tool for modeling ecological networks across spatial scales

    Science.gov (United States)

    Lafferty, Kevin D.; Dunne, Jennifer A.

    2010-01-01

    Stochastic ecological network occupancy (SENO) models predict the probability that species will occur in a sample of an ecological network. In this review, we introduce SENO models as a means to fill a gap in the theoretical toolkit of ecologists. As input, SENO models use a topological interaction network and rates of colonization and extinction (including consumer effects) for each species. A SENO model then simulates the ecological network over time, resulting in a series of sub-networks that can be used to identify commonly encountered community modules. The proportion of time a species is present in a patch gives its expected probability of occurrence, whose sum across species gives expected species richness. To illustrate their utility, we provide simple examples of how SENO models can be used to investigate how topological complexity, species interactions, species traits, and spatial scale affect communities in space and time. They can categorize species as biodiversity facilitators, contributors, or inhibitors, making this approach promising for ecosystem-based management of invasive, threatened, or exploited species.

  17. Towards a Realistic Model for Failure Propagation in Interdependent Networks

    CERN Document Server

    Sturaro, Agostino; Conti, Mauro; Das, Sajal K

    2015-01-01

    Modern networks are becoming increasingly interdependent. As a prominent example, the smart grid is an electrical grid controlled through a communications network, which in turn is powered by the electrical grid. Such interdependencies create new vulnerabilities and make these networks more susceptible to failures. In particular, failures can easily spread across these networks due to their interdependencies, possibly causing cascade effects with a devastating impact on their functionalities. In this paper we focus on the interdependence between the power grid and the communications network, and propose a novel realistic model, HINT (Heterogeneous Interdependent NeTworks), to study the evolution of cascading failures. Our model takes into account the heterogeneity of such networks as well as their complex interdependencies. We compare HINT with previously proposed models both on synthetic and real network topologies. Experimental results show that existing models oversimplify the failure evolution and network...

  18. Potential flux landscapes determine the global stability of a Lorenz chaotic attractor under intrinsic fluctuations.

    Science.gov (United States)

    Li, Chunhe; Wang, Erkang; Wang, Jin

    2012-05-21

    We developed a potential flux landscape theory to investigate the dynamics and the global stability of a chemical Lorenz chaotic strange attractor under intrinsic fluctuations. Landscape was uncovered to have a butterfly shape. For chaotic systems, both landscape and probabilistic flux are crucial to the dynamics of chaotic oscillations. Landscape attracts the system down to the chaotic attractor, while flux drives the coherent motions along the chaotic attractors. Barrier heights from the landscape topography provide a quantitative measure for the robustness of chaotic attractor. We also found that the entropy production rate and phase coherence increase as the molecular numbers increase. Power spectrum analysis of autocorrelation function provides another way to quantify the global stability of chaotic attractor. We further found that limit cycle requires more flux and energy to sustain than the chaotic strange attractor. Finally, by detailed analysis we found that the curl probabilistic flux may provide the origin of the chaotic attractor.

  19. Experimental distinction between chaotic and strange nonchaotic attractors on the basis of consistency.

    Science.gov (United States)

    Uenohara, Seiji; Mitsui, Takahito; Hirata, Yoshito; Morie, Takashi; Horio, Yoshihiko; Aihara, Kazuyuki

    2013-06-01

    We experimentally study strange nonchaotic attractors (SNAs) and chaotic attractors by using a nonlinear integrated circuit driven by a quasiperiodic input signal. An SNA is a geometrically strange attractor for which typical orbits have nonpositive Lyapunov exponents. It is a difficult problem to distinguish between SNAs and chaotic attractors experimentally. If a system has an SNA as a unique attractor, the system produces an identical response to a repeated quasiperiodic signal, regardless of the initial conditions, after a certain transient time. Such reproducibility of response outputs is called consistency. On the other hand, if the attractor is chaotic, the consistency is low owing to the sensitive dependence on initial conditions. In this paper, we analyze the experimental data for distinguishing between SNAs and chaotic attractors on the basis of the consistency.

  20. A hybrid neural network model for consciousness

    Institute of Scientific and Technical Information of China (English)

    蔺杰; 金小刚; 杨建刚

    2004-01-01

    A new framework for consciousness is introduced based upon traditional artificial neural network models. This framework reflects explicit connections between two parts of the brain: one global working memory and distributed modular cerebral networks relating to specific brain functions. Accordingly this framework is composed of three layers,physical mnemonic layer and abstract thinking layer,which cooperate together through a recognition layer to accomplish information storage and cognition using algorithms of how these interactions contribute to consciousness:(1)the reception process whereby cerebral subsystems group distributed signals into coherent object patterns;(2)the partial recognition process whereby patterns from particular subsystems are compared or stored as knowledge; and(3)the resonant learning process whereby global workspace stably adjusts its structure to adapt to patterns' changes. Using this framework,various sorts of human actions can be explained,leading to a general approach for analyzing brain functions.

  1. Modelling Traffic in IMS Network Nodes

    Directory of Open Access Journals (Sweden)

    BA Alassane

    2013-07-01

    Full Text Available IMS is well integrated with existing voice and data networks, while adopting many of their keycharacteristics.The Call Session Control Functions (CSCFs servers are the key part of the IMS structure. They are themain components responsible for processing and routing signalling messages.When CSCFs servers (P-CSCF, I-CSCF, S-CSCF are running on the same host, the SIP message can beinternally passed between SIP servers using a single operating system mechanism like a queue. It increasesthe reliability of the network [5], [6]. We have proposed in a last work for each type of service (between ICSCFand S-CSCF (call, data, multimedia.[23], to use less than two servers well dimensioned andrunning on the same operating system.Instead dimensioning servers, in order to increase performance, we try to model traffic on IMS nodes,particularly on entries nodes; it will provide results on separation of incoming flows, and then offer moresatisfactory service.

  2. A hybrid neural network model for consciousness

    Institute of Scientific and Technical Information of China (English)

    蔺杰; 金小刚; 杨建刚

    2004-01-01

    A new framework for consciousness is introduced based upon traditional artificial neural network models. This framework reflects explicit connections between two parts of the brain: one global working memory and distributed modular cerebral networks relating to specific brain functions. Accordingly this framework is composed of three layers, physical mnemonic layer and abstract thinking layer, which cooperate together through a recognition layer to accomplish information storage and cognition using algorithms of how these interactions contribute to consciousness: (l) the reception process whereby cerebral subsystems group distributed signals into coherent object patterns; (2) the partial recognition process whereby patterns from particular subsystems are compared or stored as knowledge; and (3) the resonant learning process whereby global workspace stably adjusts its structure to adapt to patterns' changes. Using this framework, various sorts of human actions can be explained, leading to a general approach for analyzing brain functions.

  3. In-in and δN calculations of the bispectrum from non-attractor single-field inflation

    Science.gov (United States)

    Chen, Xingang; Firouzjahi, Hassan; Komatsu, Eiichiro; Namjoo, Mohammad Hossein; Sasaki, Misao

    2013-12-01

    In non-attractor single-field inflation models producing a scale-invariant power spectrum, the curvature perturbation on super-horizon scales grows as Script Rproptoa3. This is so far the only known class of self-consistent single-field models with a Bunch-Davies initial state that can produce a large squeezed-limit bispectrum violating Maldacena's consistency relation. Given the importance of this result, we calculate the bispectrum with three different methods: using quantum field theory calculations in two different gauges, and classical calculations (the δN formalism). All the results agree, giving the local-form bispectrum parameter of flocalNL = 5(1+cs2)/(4cs2). This result is valid for arbitrary values of the speed of sound parameter, cs, for a particular non-attractor model we consider in this paper.

  4. Modeling GSM Based Network Communication in Vehicular Network

    OpenAIRE

    M. Milton Joe; Ramakrishnan, B.; R. S. Shaji

    2014-01-01

    Obviously fair communication establishment in every technology increases the efficiency. As we know well, vehicles are used in day to day life of every human being to move from one location to another location. If network communication is formed between vehicles, mobile phones and home based telephones, it will increase the safety of the passengers by communicating with one another. In this paper, we propose GSM based network communication in vehicles, which will develop reliable network comm...

  5. Optimizing neural network models: motivation and case studies

    OpenAIRE

    Harp, S A; T. Samad

    2012-01-01

    Practical successes have been achieved  with neural network models in a variety of domains, including energy-related industry. The large, complex design space presented by neural networks is only minimally explored in current practice. The satisfactory results that nevertheless have been obtained testify that neural networks are a robust modeling technology; at the same time, however, the lack of a systematic design approach implies that the best neural network models generally  rem...

  6. A Proposed "OSI Based" Network Troubles Identification Model

    Directory of Open Access Journals (Sweden)

    Murat Kayri

    2010-09-01

    Full Text Available The OSI model, developed by ISO in 1984, attempts to summarize complicated network cases on layers.Moreover, network troubles are expressed by taking the model into account. However, there has been nostandardization for network troubles up to now. Network troubles have only been expressed by the name ofthe related layer. In this paper, it is pointed out that possible troubles on the related layer vary and possibletroubles on each layer are categorized for functional network administration and they are standardized inan eligible way. The proposed model for network trouble shooting was developed considering the OSImodel

  7. Bayesian Recurrent Neural Network for Language Modeling.

    Science.gov (United States)

    Chien, Jen-Tzung; Ku, Yuan-Chu

    2016-02-01

    A language model (LM) is calculated as the probability of a word sequence that provides the solution to word prediction for a variety of information systems. A recurrent neural network (RNN) is powerful to learn the large-span dynamics of a word sequence in the continuous space. However, the training of the RNN-LM is an ill-posed problem because of too many parameters from a large dictionary size and a high-dimensional hidden layer. This paper presents a Bayesian approach to regularize the RNN-LM and apply it for continuous speech recognition. We aim to penalize the too complicated RNN-LM by compensating for the uncertainty of the estimated model parameters, which is represented by a Gaussian prior. The objective function in a Bayesian classification network is formed as the regularized cross-entropy error function. The regularized model is constructed not only by calculating the regularized parameters according to the maximum a posteriori criterion but also by estimating the Gaussian hyperparameter by maximizing the marginal likelihood. A rapid approximation to a Hessian matrix is developed to implement the Bayesian RNN-LM (BRNN-LM) by selecting a small set of salient outer-products. The proposed BRNN-LM achieves a sparser model than the RNN-LM. Experiments on different corpora show the robustness of system performance by applying the rapid BRNN-LM under different conditions.

  8. Epidemic model with isolation in multilayer networks

    CERN Document Server

    Zuzek, L G Alvarez; Braunstein, L A

    2014-01-01

    The Susceptible-Infected-Recovered (SIR) model has successfully mimicked the propagation of such airborne diseases as influenza A (H1N1). Although the SIR model has recently been studied in a multilayer networks configuration, in almost all the research the dynamic movement of infected individuals, e.g., how they are often kept in isolation, is disregarded. We study the SIR model in two multilayer networks and use an isolation parameter, indicating time period, to measure the effect of isolating infected individuals from both layers. This isolation reduces the transmission of the disease because the time in which infection can spread is reduced. In this scenario we find that the epidemic threshold increases with the isolation time and the isolation parameter and the impact of the propagation is reduced. We also find that when isolation is total there is a threshold for the isolation parameter above which the disease never becomes an epidemic. We also find that regular epidemic models always overestimate the e...

  9. Inferring gene regression networks with model trees

    Directory of Open Access Journals (Sweden)

    Aguilar-Ruiz Jesus S

    2010-10-01

    Full Text Available Abstract Background Novel strategies are required in order to handle the huge amount of data produced by microarray technologies. To infer gene regulatory networks, the first step is to find direct regulatory relationships between genes building the so-called gene co-expression networks. They are typically generated using correlation statistics as pairwise similarity measures. Correlation-based methods are very useful in order to determine whether two genes have a strong global similarity but do not detect local similarities. Results We propose model trees as a method to identify gene interaction networks. While correlation-based methods analyze each pair of genes, in our approach we generate a single regression tree for each gene from the remaining genes. Finally, a graph from all the relationships among output and input genes is built taking into account whether the pair of genes is statistically significant. For this reason we apply a statistical procedure to control the false discovery rate. The performance of our approach, named REGNET, is experimentally tested on two well-known data sets: Saccharomyces Cerevisiae and E.coli data set. First, the biological coherence of the results are tested. Second the E.coli transcriptional network (in the Regulon database is used as control to compare the results to that of a correlation-based method. This experiment shows that REGNET performs more accurately at detecting true gene associations than the Pearson and Spearman zeroth and first-order correlation-based methods. Conclusions REGNET generates gene association networks from gene expression data, and differs from correlation-based methods in that the relationship between one gene and others is calculated simultaneously. Model trees are very useful techniques to estimate the numerical values for the target genes by linear regression functions. They are very often more precise than linear regression models because they can add just different linear

  10. Design and Implementation of a Network Security Model for Cooperative Network

    Directory of Open Access Journals (Sweden)

    Salah Alabady

    2009-06-01

    Full Text Available In this paper a design and implementation of a network security model was presented, using routers and firewall.Also this paper was conducted the network security weakness in router and firewall network devices, type of threats andresponses to those threats, and the method to prevent the attacks and hackers to access the network. Also this paper provides achecklist to use in evaluating whether a network is adhering to best practices in network security and data confidentiality. Themain aim of this research is to protect the network from vulnerabilities, threats, attacks, configuration weaknesses and securitypolicy weaknesses.

  11. Social network models predict movement and connectivity in ecological landscapes

    Science.gov (United States)

    Fletcher, Robert J.; Acevedo, M.A.; Reichert, Brian E.; Pias, Kyle E.; Kitchens, Wiley M.

    2011-01-01

    Network analysis is on the rise across scientific disciplines because of its ability to reveal complex, and often emergent, patterns and dynamics. Nonetheless, a growing concern in network analysis is the use of limited data for constructing networks. This concern is strikingly relevant to ecology and conservation biology, where network analysis is used to infer connectivity across landscapes. In this context, movement among patches is the crucial parameter for interpreting connectivity but because of the difficulty of collecting reliable movement data, most network analysis proceeds with only indirect information on movement across landscapes rather than using observed movement to construct networks. Statistical models developed for social networks provide promising alternatives for landscape network construction because they can leverage limited movement information to predict linkages. Using two mark-recapture datasets on individual movement and connectivity across landscapes, we test whether commonly used network constructions for interpreting connectivity can predict actual linkages and network structure, and we contrast these approaches to social network models. We find that currently applied network constructions for assessing connectivity consistently, and substantially, overpredict actual connectivity, resulting in considerable overestimation of metapopulation lifetime. Furthermore, social network models provide accurate predictions of network structure, and can do so with remarkably limited data on movement. Social network models offer a flexible and powerful way for not only understanding the factors influencing connectivity but also for providing more reliable estimates of connectivity and metapopulation persistence in the face of limited data.

  12. Dynamic Pathloss Model for Future Mobile Communication Networks

    DEFF Research Database (Denmark)

    Kumar, Ambuj; Mihovska, Albena Dimitrova; Prasad, Ramjee

    2016-01-01

    — Future mobile communication networks (MCNs) are expected to be more intelligent and proactive based on new capabilities that increase agility and performance. However, for any successful mobile network service, the dexterity in network deployment is a key factor. The efficiency of the network p...... that incorporates the environmental dynamics factor in the propagation model for intelligent and proactively iterative networks...... that are essentially static. Therefore, once the signal level drops beyond the predicted values due to any variance in the environmental conditions, very crowded areas may not be catered well enough by the deployed network that had been designed with the static path loss model. This paper proposes an approach......— Future mobile communication networks (MCNs) are expected to be more intelligent and proactive based on new capabilities that increase agility and performance. However, for any successful mobile network service, the dexterity in network deployment is a key factor. The efficiency of the network...

  13. Communications network design and costing model users manual

    Science.gov (United States)

    Logan, K. P.; Somes, S. S.; Clark, C. A.

    1983-01-01

    The information and procedures needed to exercise the communications network design and costing model for performing network analysis are presented. Specific procedures are included for executing the model on the NASA Lewis Research Center IBM 3033 computer. The concepts, functions, and data bases relating to the model are described. Model parameters and their format specifications for running the model are detailed.

  14. Evolution of Multispecificity in an Immune Network

    CERN Document Server

    Harada, K

    1999-01-01

    Divergence in antigen response of the immune network is discussed, based on shape-space modelling. The present model extends the shape-space model by introducing the evolution of specificity of idiotypes. When the amount of external antigen increases, stability of the immune network changes and the network responds to the antigen. It is shown that specific and non-specific responses emerge as a function of antigen levels. A specific response is observed with a fixed point attractor, and a non-specific response is observed with a long-lived chaotic transient state of the lymphocyte population dynamics. The network topology also changes between these two states. The relevance of such a long-lived transient state is discussed with respect to immune function.

  15. Neural Networks For Electrohydrodynamic Effect Modelling

    Directory of Open Access Journals (Sweden)

    Wiesław Wajs

    2004-01-01

    Full Text Available This paper presents currently achieved results concerning methods of electrohydrodynamiceffect used in geophysics simulated with feedforward networks trained with backpropagation algorithm, radial basis function networks and generalized regression networks.

  16. Neural Networks for Electrohydrodynamic Effect Modelling

    Directory of Open Access Journals (Sweden)

    Jolanta Gancarz

    2004-01-01

    Full Text Available This paper presents currently achieved results concerning methods of electrohydrodynamic effect used in geophysics simulated with feedforward networks trained with backpropagation algorithm, radial basis function networks and generalized regression networks.

  17. Modeling GSM Based Network Communication in Vehicular Network

    Directory of Open Access Journals (Sweden)

    M. Milton Joe

    2014-02-01

    Full Text Available Obviously fair communication establishment in every technology increases the efficiency. As we know well, vehicles are used in day to day life of every human being to move from one location to another location. If network communication is formed between vehicles, mobile phones and home based telephones, it will increase the safety of the passengers by communicating with one another. In this paper, we propose GSM based network communication in vehicles, which will develop reliable network communication between vehicles, mobile phones and home based telephones. The added advantage GSM based network communication among vehicles will lead to safety of travel by tracking the vehicle's location, since GSM based network communication is established in vehicles.

  18. Modeling and Robustness of Knowledge Network in Supply Chain

    Institute of Scientific and Technical Information of China (English)

    王道平; 沈睿芳

    2014-01-01

    The growth and evolution of the knowledge network in supply chain can be characterized by dynamic growth clustering and non-homogeneous degree distribution. The networks with the above characteristics are also known as scale-free networks. In this paper, the knowledge network model in supply chain is established, in which the preferential attachment mechanism based on the node strength is adopted to simulate the growth and evolution of the network. The nodes in the network have a certain preference in the choice of a knowledge partner. On the basis of the network model, the robustness of the three network models based on different preferential attachment strategies is in-vestigated. The robustness is also referred to as tolerances when the nodes are subjected to random destruction and malicious damage. The simulation results of this study show that the improved network has higher connectivity and stability.

  19. New generation of elastic network models.

    Science.gov (United States)

    López-Blanco, José Ramón; Chacón, Pablo

    2016-04-01

    The intrinsic flexibility of proteins and nucleic acids can be grasped from remarkably simple mechanical models of particles connected by springs. In recent decades, Elastic Network Models (ENMs) combined with Normal Model Analysis widely confirmed their ability to predict biologically relevant motions of biomolecules and soon became a popular methodology to reveal large-scale dynamics in multiple structural biology scenarios. The simplicity, robustness, low computational cost, and relatively high accuracy are the reasons behind the success of ENMs. This review focuses on recent advances in the development and application of ENMs, paying particular attention to combinations with experimental data. Successful application scenarios include large macromolecular machines, structural refinement, docking, and evolutionary conservation. PMID:26716577

  20. Fundamentals of complex networks models, structures and dynamics

    CERN Document Server

    Chen, Guanrong; Li, Xiang

    2014-01-01

    Complex networks such as the Internet, WWW, transportationnetworks, power grids, biological neural networks, and scientificcooperation networks of all kinds provide challenges for futuretechnological development. In particular, advanced societies havebecome dependent on large infrastructural networks to an extentbeyond our capability to plan (modeling) and to operate (control).The recent spate of collapses in power grids and ongoing virusattacks on the Internet illustrate the need for knowledge aboutmodeling, analysis of behaviors, optimized planning and performancecontrol in such networks. F

  1. Pruning Boltzmann networks and hidden Markov models

    DEFF Research Database (Denmark)

    Pedersen, Morten With; Stork, D.

    1996-01-01

    We present sensitivity-based pruning algorithms for general Boltzmann networks. Central to our methods is the efficient calculation of a second-order approximation to the true weight saliencies in a cross-entropy error. Building upon previous work which shows a formal correspondence between linea...... and thus the proper weight is pruned at each pruning step. In all our experiments in small problems, pruning reduces the generalization error; in most cases the pruned networks facilitate interpretation as well......We present sensitivity-based pruning algorithms for general Boltzmann networks. Central to our methods is the efficient calculation of a second-order approximation to the true weight saliencies in a cross-entropy error. Building upon previous work which shows a formal correspondence between linear...... Boltzmann chains and hidden Markov models (HMMs), we argue that our method can be applied to HMMs as well. We illustrate pruning on Boltzmann zippers, which are equivalent to two HMMs with cross-connection links. We verify that our second-order approximation preserves the rank ordering of weight saliencies...

  2. A Search Model with a Quasi-Network

    DEFF Research Database (Denmark)

    Ejarque, Joao Miguel

    This paper adds a quasi-network to a search model of the labor market. Fitting the model to an average unemployment rate and to other moments in the data implies the presence of the network is not noticeable in the basic properties of the unemployment and job finding rates. However, the network c...

  3. Floral morphogenesis: stochastic explorations of a gene network epigenetic landscape.

    Directory of Open Access Journals (Sweden)

    Elena R Alvarez-Buylla

    Full Text Available In contrast to the classical view of development as a preprogrammed and deterministic process, recent studies have demonstrated that stochastic perturbations of highly non-linear systems may underlie the emergence and stability of biological patterns. Herein, we address the question of whether noise contributes to the generation of the stereotypical temporal pattern in gene expression during flower development. We modeled the regulatory network of organ identity genes in the Arabidopsis thaliana flower as a stochastic system. This network has previously been shown to converge to ten fixed-point attractors, each with gene expression arrays that characterize inflorescence cells and primordial cells of sepals, petals, stamens, and carpels. The network used is binary, and the logical rules that govern its dynamics are grounded in experimental evidence. We introduced different levels of uncertainty in the updating rules of the network. Interestingly, for a level of noise of around 0.5-10%, the system exhibited a sequence of transitions among attractors that mimics the sequence of gene activation configurations observed in real flowers. We also implemented the gene regulatory network as a continuous system using the Glass model of differential equations, that can be considered as a first approximation of kinetic-reaction equations, but which are not necessarily equivalent to the Boolean model. Interestingly, the Glass dynamics recover a temporal sequence of attractors, that is qualitatively similar, although not identical, to that obtained using the Boolean model. Thus, time ordering in the emergence of cell-fate patterns is not an artifact of synchronous updating in the Boolean model. Therefore, our model provides a novel explanation for the emergence and robustness of the ubiquitous temporal pattern of floral organ specification. It also constitutes a new approach to understanding morphogenesis, providing predictions on the population dynamics of

  4. Compartmentalization analysis using discrete fracture network models

    Energy Technology Data Exchange (ETDEWEB)

    La Pointe, P.R.; Eiben, T.; Dershowitz, W. [Golder Associates, Redmond, VA (United States); Wadleigh, E. [Marathon Oil Co., Midland, TX (United States)

    1997-08-01

    This paper illustrates how Discrete Fracture Network (DFN) technology can serve as a basis for the calculation of reservoir engineering parameters for the development of fractured reservoirs. It describes the development of quantitative techniques for defining the geometry and volume of structurally controlled compartments. These techniques are based on a combination of stochastic geometry, computational geometry, and graph the theory. The parameters addressed are compartment size, matrix block size and tributary drainage volume. The concept of DFN models is explained and methodologies to compute these parameters are demonstrated.

  5. Networks model of the East Turkistan terrorism

    Science.gov (United States)

    Li, Ben-xian; Zhu, Jun-fang; Wang, Shun-guo

    2015-02-01

    The presence of the East Turkistan terrorist network in China can be traced back to the rebellions on the BAREN region in Xinjiang in April 1990. This article intends to research the East Turkistan networks in China and offer a panoramic view. The events, terrorists and their relationship are described using matrices. Then social network analysis is adopted to reveal the network type and the network structure characteristics. We also find the crucial terrorist leader. Ultimately, some results show that the East Turkistan network has big hub nodes and small shortest path, and that the network follows a pattern of small world network with hierarchical structure.

  6. AHaH computing-from metastable switches to attractors to machine learning.

    Directory of Open Access Journals (Sweden)

    Michael Alexander Nugent

    Full Text Available Modern computing architecture based on the separation of memory and processing leads to a well known problem called the von Neumann bottleneck, a restrictive limit on the data bandwidth between CPU and RAM. This paper introduces a new approach to computing we call AHaH computing where memory and processing are combined. The idea is based on the attractor dynamics of volatile dissipative electronics inspired by biological systems, presenting an attractive alternative architecture that is able to adapt, self-repair, and learn from interactions with the environment. We envision that both von Neumann and AHaH computing architectures will operate together on the same machine, but that the AHaH computing processor may reduce the power consumption and processing time for certain adaptive learning tasks by orders of magnitude. The paper begins by drawing a connection between the properties of volatility, thermodynamics, and Anti-Hebbian and Hebbian (AHaH plasticity. We show how AHaH synaptic plasticity leads to attractor states that extract the independent components of applied data streams and how they form a computationally complete set of logic functions. After introducing a general memristive device model based on collections of metastable switches, we show how adaptive synaptic weights can be formed from differential pairs of incremental memristors. We also disclose how arrays of synaptic weights can be used to build a neural node circuit operating AHaH plasticity. By configuring the attractor states of the AHaH node in different ways, high level machine learning functions are demonstrated. This includes unsupervised clustering, supervised and unsupervised classification, complex signal prediction, unsupervised robotic actuation and combinatorial optimization of procedures-all key capabilities of biological nervous systems and modern machine learning algorithms with real world application.

  7. AHaH computing-from metastable switches to attractors to machine learning.

    Science.gov (United States)

    Nugent, Michael Alexander; Molter, Timothy Wesley

    2014-01-01

    Modern computing architecture based on the separation of memory and processing leads to a well known problem called the von Neumann bottleneck, a restrictive limit on the data bandwidth between CPU and RAM. This paper introduces a new approach to computing we call AHaH computing where memory and processing are combined. The idea is based on the attractor dynamics of volatile dissipative electronics inspired by biological systems, presenting an attractive alternative architecture that is able to adapt, self-repair, and learn from interactions with the environment. We envision that both von Neumann and AHaH computing architectures will operate together on the same machine, but that the AHaH computing processor may reduce the power consumption and processing time for certain adaptive learning tasks by orders of magnitude. The paper begins by drawing a connection between the properties of volatility, thermodynamics, and Anti-Hebbian and Hebbian (AHaH) plasticity. We show how AHaH synaptic plasticity leads to attractor states that extract the independent components of applied data streams and how they form a computationally complete set of logic functions. After introducing a general memristive device model based on collections of metastable switches, we show how adaptive synaptic weights can be formed from differential pairs of incremental memristors. We also disclose how arrays of synaptic weights can be used to build a neural node circuit operating AHaH plasticity. By configuring the attractor states of the AHaH node in different ways, high level machine learning functions are demonstrated. This includes unsupervised clustering, supervised and unsupervised classification, complex signal prediction, unsupervised robotic actuation and combinatorial optimization of procedures-all key capabilities of biological nervous systems and modern machine learning algorithms with real world application. PMID:24520315

  8. Artificial neural network models for image understanding

    Science.gov (United States)

    Kulkarni, Arun D.; Byars, P.

    1991-06-01

    In this paper we introduce a new class of artificial neural network (ANN) models based on transformed domain feature extraction. Many optical and/or digital recognition systems based on transformed domain feature extraction are available in practice. Optical systems are inherently parallel in nature and are preferred for real time applications, whereas digital systems are more suitable for nonlinear operations. In our ANN models we combine advantages of both digital and optical systems. Many transformed domain feature extraction techniques have been developed during the last three decades. They include: the Fourier transform (FT), the Walsh Hadamard transform (WHT), the discrete cosine transform (DCT), etc. As an example, we have developed ANN models using the FT and WHT domain features. The models consist of two stages, the feature extraction stage and the recognition stage. We have used back-propagation and competitive learning algorithms in the recognition stage. We have used these ANN models for invariant object recognition. The models have been used successfully to recognize various types of aircraft, and also have been tested with test patterns. ANN models based on other transforms can be developed in a similar fashion.

  9. Traffic chaotic dynamics modeling and analysis of deterministic network

    Science.gov (United States)

    Wu, Weiqiang; Huang, Ning; Wu, Zhitao

    2016-07-01

    Network traffic is an important and direct acting factor of network reliability and performance. To understand the behaviors of network traffic, chaotic dynamics models were proposed and helped to analyze nondeterministic network a lot. The previous research thought that the chaotic dynamics behavior was caused by random factors, and the deterministic networks would not exhibit chaotic dynamics behavior because of lacking of random factors. In this paper, we first adopted chaos theory to analyze traffic data collected from a typical deterministic network testbed — avionics full duplex switched Ethernet (AFDX, a typical deterministic network) testbed, and found that the chaotic dynamics behavior also existed in deterministic network. Then in order to explore the chaos generating mechanism, we applied the mean field theory to construct the traffic dynamics equation (TDE) for deterministic network traffic modeling without any network random factors. Through studying the derived TDE, we proposed that chaotic dynamics was one of the nature properties of network traffic, and it also could be looked as the action effect of TDE control parameters. A network simulation was performed and the results verified that the network congestion resulted in the chaotic dynamics for a deterministic network, which was identical with expectation of TDE. Our research will be helpful to analyze the traffic complicated dynamics behavior for deterministic network and contribute to network reliability designing and analysis.

  10. A Model of Genetic Variation in Human Social Networks

    CERN Document Server

    Fowler, James H; Christakis, Nicholas A

    2008-01-01

    Social networks influence the evolution of cooperation and they exhibit strikingly systematic patterns across a wide range of human contexts. Both of these facts suggest that variation in the topological attributes of human social networks might have a genetic basis. While genetic variation accounts for a significant portion of the variation in many complex social behaviors, the heritability of egocentric social network attributes is unknown. Here we show that three of these attributes (in-degree, transitivity, and centrality) are heritable. We then develop a "mirror network" method to test extant network models and show that none accounts for observed genetic variation in human social networks. We propose an alternative "attract and introduce" model that generates significant heritability as well as other important network features, and we show that this model with two simple forms of heterogeneity is well suited to the modeling of real social networks in humans. These results suggest that natural selection ...

  11. A Time Series Modeling and Prediction of Wireless Network Traffic

    Directory of Open Access Journals (Sweden)

    S. Gowrishankar

    2009-01-01

    Full Text Available The number of users and their network utilization will enumerate the traffic of the network. The accurate and timely estimation of network traffic is increasingly becoming important in achieving guaranteed Quality of Service (QoS in a wireless network. The better QoS can be maintained in the network by admission control, inter or intra network handovers by knowing the network traffic in advance. Here wireless network traffic is modeled as a nonlinear and nonstationary time series. In this framework, network traffic is predicted using neural network and statistical methods. The results of both the methods are compared on different time scales or time granularity. The Neural Network(NN architectures used in this study are Recurrent Radial Basis Function Network (RRBFN and Echo state network (ESN.The statistical model used here in this work is Fractional Auto Regressive Integrated Moving Average (FARIMA model. The traffic prediction accuracy of neural network and statistical models are in the range of 96.4% to 98.3% and 78.5% to 80.2% respectively.

  12. A hybrid routing model for mitigating congestion in networks

    Science.gov (United States)

    He, Kun; Xu, Zhongzhi; Wang, Pu

    2015-08-01

    Imbalance between fast-growing transport demand and limited network supply has resulted in severe congestion in many transport networks. Increasing network supply or reducing transport demand could mitigate congestion, but these remedies are usually associated with high implementation cost. Combining shortest path (SP) routing and minimum cost (MC) routing, we developed a hybrid routing model to alleviate congestion in networks. This model requires only a small fraction of the total number of agents to use MC routes, and effectively mitigates congestion in networks under homogeneous or heterogeneous transport demand, offering new insights for improving the efficiency of practical transport networks.

  13. A novel mathematical model for coverage in wireless sensor network

    Institute of Scientific and Technical Information of China (English)

    YAN Zhen-ya; ZHENG Bao-yu

    2006-01-01

    Coverage problem is one of the fundamental issues in the design of wireless sensor network, which has a great impact on the performance of sensor network. In this article,coverage problem was investigated using a mathematical model named Birth-death process. In this model, sensor nodes joining into networks at every period of time is considered as the rebirth of network and the quitting of sensor nodes from the networks is considered as the death of the network. In the end, an analytical solution is used to investigate the appropriate rate to meet the coverage requirement.

  14. Echo state networks as an alternative to traditional artificial neural networks in rainfall–runoff modelling

    Directory of Open Access Journals (Sweden)

    N. J. de Vos

    2013-01-01

    Full Text Available Despite theoretical benefits of recurrent artificial neural networks over their feedforward counterparts, it is still unclear whether the former offer practical advantages as rainfall–runoff models. The main drawback of recurrent networks is the increased complexity of the training procedure due to their architecture. This work uses the recently introduced and conceptually simple echo state networks for streamflow forecasts on twelve river basins in the Eastern United States, and compares them to a variety of traditional feedforward and recurrent approaches. Two modifications on the echo state network models are made that increase the hydrologically relevant information content of their internal state. The results show that the echo state networks outperform feedforward networks and are competitive with state-of-the-art recurrent networks, across a range of performance measures. This, along with their simplicity and ease of training, suggests that they can be considered promising alternatives to traditional artificial neural networks in rainfall–runoff modelling.

  15. Echo state networks as an alternative to traditional artificial neural networks in rainfall-runoff modelling

    Science.gov (United States)

    de Vos, N. J.

    2013-01-01

    Despite theoretical benefits of recurrent artificial neural networks over their feedforward counterparts, it is still unclear whether the former offer practical advantages as rainfall-runoff models. The main drawback of recurrent networks is the increased complexity of the training procedure due to their architecture. This work uses the recently introduced and conceptually simple echo state networks for streamflow forecasts on twelve river basins in the Eastern United States, and compares them to a variety of traditional feedforward and recurrent approaches. Two modifications on the echo state network models are made that increase the hydrologically relevant information content of their internal state. The results show that the echo state networks outperform feedforward networks and are competitive with state-of-the-art recurrent networks, across a range of performance measures. This, along with their simplicity and ease of training, suggests that they can be considered promising alternatives to traditional artificial neural networks in rainfall-runoff modelling.

  16. An Improved Car-Following Model in Vehicle Networking Based on Network Control

    Directory of Open Access Journals (Sweden)

    D. Y. Kong

    2014-01-01

    Full Text Available Vehicle networking is a system to realize information interoperability between vehicles and people, vehicles and roads, vehicles and vehicles, and cars and transport facilities, through the network information exchange, in order to achieve the effective monitoring of the vehicle and traffic flow. Realizing information interoperability between vehicles and vehicles, which can affect the traffic flow, is an important application of network control system (NCS. In this paper, a car-following model using vehicle networking theory is established, based on network control principle. The car-following model, which is an improvement of the traditional traffic model, describes the traffic in vehicle networking condition. The impact that vehicle networking has on the traffic flow is quantitatively assessed in a particular scene of one-way, no lane changing highway. The examples show that the capacity of the road is effectively enhanced by using vehicle networking.

  17. Chaos-Geometric approach to analysis of chaotic attractor dynamics for the one-ring fibre laser

    Directory of Open Access Journals (Sweden)

    Georgy Prepelitsa

    2015-09-01

    Full Text Available Earlier we have developed new chaos-geometric approach to  modelling and analysis of nonlinear processes dynamics of the complex systems. It combines together application of the advanced mutual information approach, correlation integral analysis, Lyapunov exponent's analysis etc. Here we present the results of its application to studying low-and high-D attractor dynamics of the one-ring fibre laser

  18. Performance of an integrated network model

    Science.gov (United States)

    Lehmann, François; Dunn, David; Beaulieu, Marie-Dominique; Brophy, James

    2016-01-01

    Objective To evaluate the changes in accessibility, patients’ care experiences, and quality-of-care indicators following a clinic’s transformation into a fully integrated network clinic. Design Mixed-methods study. Setting Verdun, Que. Participants Data on all patient visits were used, in addition to 2 distinct patient cohorts: 134 patients with chronic illness (ie, diabetes, arteriosclerotic heart disease, or both); and 450 women between the ages of 20 and 70 years. Main outcome measures Accessibility was measured by the number of walk-in visits, scheduled visits, and new patient enrolments. With the first cohort, patients’ care experiences were measured using validated serial questionnaires; and quality-of-care indicators were measured using biologic data. With the second cohort, quality of preventive care was measured using the number of Papanicolaou tests performed as a surrogate marker. Results Despite a negligible increase in the number of physicians, there was an increase in accessibility after the clinic’s transition to an integrated network model. During the first 4 years of operation, the number of scheduled visits more than doubled, nonscheduled visits (walk-in visits) increased by 29%, and enrolment of vulnerable patients (those with chronic illnesses) at the clinic remained high. Patient satisfaction with doctors was rated very highly at all points of time that were evaluated. While the number of Pap tests done did not increase with time, the proportion of patients meeting hemoglobin A1c and low-density lipoprotein guideline target levels increased, as did the number of patients tested for microalbuminuria. Conclusion Transformation to an integrated network model of care led to increased efficiency and enhanced accessibility with no negative effects on the doctor-patient relationship. Improvements in biologic data also suggested better quality of care. PMID:27521410

  19. An Adaptive Complex Network Model for Brain Functional Networks

    OpenAIRE

    Gomez Portillo, Ignacio J.; Gleiser, Pablo M.

    2009-01-01

    Brain functional networks are graph representations of activity in the brain, where the vertices represent anatomical regions and the edges their functional connectivity. These networks present a robust small world topological structure, characterized by highly integrated modules connected sparsely by long range links. Recent studies showed that other topological properties such as the degree distribution and the presence (or absence) of a hierarchical structure are not robust, and show diffe...

  20. A graph model for opportunistic network coding

    KAUST Repository

    Sorour, Sameh

    2015-08-12

    © 2015 IEEE. Recent advancements in graph-based analysis and solutions of instantly decodable network coding (IDNC) trigger the interest to extend them to more complicated opportunistic network coding (ONC) scenarios, with limited increase in complexity. In this paper, we design a simple IDNC-like graph model for a specific subclass of ONC, by introducing a more generalized definition of its vertices and the notion of vertex aggregation in order to represent the storage of non-instantly-decodable packets in ONC. Based on this representation, we determine the set of pairwise vertex adjacency conditions that can populate this graph with edges so as to guarantee decodability or aggregation for the vertices of each clique in this graph. We then develop the algorithmic procedures that can be applied on the designed graph model to optimize any performance metric for this ONC subclass. A case study on reducing the completion time shows that the proposed framework improves on the performance of IDNC and gets very close to the optimal performance.