WorldWideScience

Sample records for attractively interacting bose-einstein

  1. A Model for Macroscopic Quantum Tunneling of Bose-Einstein Condensate with Attractive Interaction

    Institute of Scientific and Technical Information of China (English)

    YAN Ke-Zhu; TAN Wei-Han

    2000-01-01

    Based on the numerical wave function solutions of neutral atoms with attractive interaction in a harmonic trap, we propose an exactly solvable model for macroscopic quantum tunneling of a Bose condensate with attractive interaction. We calculate the rate of macroscopic quantum tunneling from a metastable condensate state to the collapse state and analyze the stability of the attractive Bose-Einstein condensation.

  2. Collapse of a self-gravitating Bose-Einstein condensate with attractive self-interaction

    Science.gov (United States)

    Chavanis, Pierre-Henri

    2016-10-01

    We study the collapse of a self-gravitating Bose-Einstein condensate with attractive self-interaction. Equilibrium states in which the gravitational attraction and the attraction due to the self-interaction are counterbalanced by the quantum pressure (Heisenberg's uncertainty principle) exist only below a maximum mass Mmax=1.012 ℏ/√{G m |as| } where asMmax the system is expected to collapse and form a black hole. We study the collapse dynamics by making a Gaussian ansatz for the wave function and reducing the problem to the study of the motion of a particle in an effective potential. We find that the collapse time scales as (M /Mmax-1 )-1 /4 for M →Mmax+ and as M-1 /2 for M ≫Mmax. Other analytical results are given above and below the critical point corresponding to a saddle-node bifurcation. We apply our results to QCD axions with mass m =10-4 eV /c2 and scattering length as=-5.8 ×10-53 m for which Mmax=6.5 ×10-14M⊙ and R =3.3 ×10-4R⊙. We confirm our previous claim that bosons with attractive self-interaction, such as QCD axions, may form low mass stars (axion stars or dark matter stars) but cannot form dark matter halos of relevant mass and size. These mini axion stars could be the constituents of dark matter. They can collapse into mini black holes of mass ˜10-14M⊙ in a few hours. In that case, dark matter halos would be made of mini black holes. We also apply our results to ultralight axions with mass m =1.93 ×10-20 eV /c2 and scattering length as=-8.29 ×10-60 fm for which Mmax=0.39 ×1 06M⊙ and R =33 pc . These ultralight axions could cluster into dark matter halos. Axionic dark matter halos with attractive self-interaction can collapse into supermassive black holes of mass ˜1 06M⊙ (similar to those reported at the center of galaxies) in about one million years. We point out the limitations of the Gaussian ansatz to describe the late stages of the collapse dynamics. We also mention the possibility that, instead of forming a black hole

  3. Interactions of Ultracold Impurity Particles with Bose-Einstein Condensates

    Science.gov (United States)

    2015-06-23

    AFRL-OSR-VA-TR-2015-0141 INTERACTIONS OF ULTRACOLD IMPURITY PARTICLES WITH BOSE- EINSTEIN CONDENSATES Georg Raithel UNIVERSITY OF MICHIGAN Final...SUBTITLE Interactions of ultracold impurity particles with Bose- Einstein Condensates 5a. CONTRACT NUMBER FA9550-10-1-0453 5b. GRANT NUMBER 5c...Interactions of ultracold impurity particles with Bose- Einstein Condensates Contract/Grant #: FA9550-10-1-0453 Reporting Period: 8/15/2010 to 2/14

  4. Observation of Attractive and Repulsive Polarons in a Bose-Einstein Condensate

    DEFF Research Database (Denmark)

    Jørgensen, Nils B.; Wacker, Lars; Skalmstang, Kristoffer Theis;

    2016-01-01

    for an impurity interacting with a Bose-Einstein condensate (BEC). We measure the energy of the impurity both for attractive and repulsive interactions with the BEC, and find excellent agreement with theories that incorporate three-body correlations, both in the weak-coupling limits and across unitarity. Our...

  5. Rotating Bose-Einstein condensate with attractive interaction in one dimension : Single-L states and mesoscopics

    NARCIS (Netherlands)

    Kartsev, PF

    2003-01-01

    We present the results of an exact numeric simulation of N one-dimensional bosons with attractive delta-functional interaction in a rotating ring. We prove that even at intermediate values of N, the system can be described by conventional methods of weakly interacting gas, the dimensionless paramete

  6. Accelerated expansion of a universe containing a self-interacting Bose-Einstein gas

    Energy Technology Data Exchange (ETDEWEB)

    Izquierdo, German; Besprosvany, Jaime, E-mail: german.izquierdo@gmail.co, E-mail: bespro@fisica.unam.m [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Circuito de la Investigacion CientIfica S/N, Ciudad Universitaria, CP 04510, Mexico, Distrito Federal (Mexico)

    2010-03-21

    Acceleration of the universe is obtained from a model of non-relativistic particles with a short-range attractive interaction, at low enough temperature to produce a Bose-Einstein condensate. Conditions are derived for negative-pressure behavior. In particular, we show that a phantom-accelerated regime at the beginning of the universe solves the horizon problem, consistently with nucleosynthesis.

  7. Existence and mass concentration of 2D attractive Bose-Einstein condensates with periodic potentials

    Science.gov (United States)

    Wang, Qingxuan; Zhao, Dun

    2017-02-01

    In this paper we consider a two-dimensional attractive Bose-Einstein condensate with periodic potential, described by Gross-Pitaevskii (GP) functional. By concentration-compactness lemma we show that minimizers of this functional exist when the interaction strength a satisfies a* 0, and there is no minimizer for a ≥a*. When a approaches a*, using concentration-compactness arguments again we obtain an optimal energy estimate depending on the shape of periodic potential. Moreover, we analyze the mass concentration.

  8. Fidelity of quantum state for interacting system of light field and atomic Bose-Einstein condensate

    Institute of Scientific and Technical Information of China (English)

    Chunjia Huang; Ming Zhou; Fanzhi Kong; Jiayuan Fang; Kewei Mo

    2005-01-01

    @@ The evolution characteristics of quantum state fidelity in an interacting system of single-mode light field and atomic Bose-Einstein condensate have been studied and the influence of the initial light field intensity and the interaction among atoms of Bose-Einstein condensate on the quantum state fidelity respectively have been discussed.

  9. Effect of interaction strength on gap solitons of Bose-Einstein condensates in optical lattices

    Institute of Scientific and Technical Information of China (English)

    Yang Ru-Shu; Yang Jiang-He

    2008-01-01

    We have developed a systematic analytical approach to the study on the dynamic properties of the linear and the nonlinear excitations for quasi-one-dimensional Bose-Einstein condensate trapped in optical lattices. A novel linear dispersion relation and an algebraic soliton solution of the condensate are derived analytically under consideration of Bose-Einstein condensate with a periodic potential. By analysing the soliton solution, we find that the interatomic interaction strength has an important effect on soliton dynamic properties of Bose-Einstein condensate.

  10. Stability properties of vector solitons in two-component Bose-Einstein condensates with tunable interactions

    Institute of Scientific and Technical Information of China (English)

    Zhang Xiao-Fei; Zhang Pei; He Wan-Quan; Liu Xun-Xu

    2011-01-01

    By using a unified theory of the formation of various types of vector-solitons in two-component Bose-Einstein condensates with tunable interactions, we obtain a family of exact vector-soliton solutions for the coupled nonlinear Schr(o)dinger equations. Moreover, the Bogoliubov equation shows that there exists stable dark soliton in specific situations. Our results open up new ways in considerable experimental interest for the quantum control of multi-component Bose-Einstein condensates.

  11. Bose-Einstein Correlations in charged current muon-neutrino interactions in NOMAD

    CERN Document Server

    Zei, R

    2004-01-01

    Bose-Einstein Correlations in one and two dimensions have been studied in charged current muon-neutrino interaction events collected with NOMAD. In one dimension the Bose-Einstein effect has been analyzed with the Goldhaber and the Kopylov parametrizations. The two-dimensional shape of the source has been investigated in the longitudinal co-moving frame. A significant difference between the transverse and the longitudinal sizes is observed.

  12. Observation of Attractive and Repulsive Polarons in a Bose-Einstein Condensate.

    Science.gov (United States)

    Jørgensen, Nils B; Wacker, Lars; Skalmstang, Kristoffer T; Parish, Meera M; Levinsen, Jesper; Christensen, Rasmus S; Bruun, Georg M; Arlt, Jan J

    2016-07-29

    The problem of an impurity particle moving through a bosonic medium plays a fundamental role in physics. However, the canonical scenario of a mobile impurity immersed in a Bose-Einstein condensate (BEC) has not yet been realized. Here, we use radio frequency spectroscopy of ultracold bosonic ^{39}K atoms to experimentally demonstrate the existence of a well-defined quasiparticle state of an impurity interacting with a BEC. We measure the energy of the impurity both for attractive and repulsive interactions, and find excellent agreement with theories that incorporate three-body correlations, both in the weak-coupling limits and across unitarity. The spectral response consists of a well-defined quasiparticle peak at weak coupling, while for increasing interaction strength, the spectrum is strongly broadened and becomes dominated by the many-body continuum of excited states. Crucially, no significant effects of three-body decay are observed. Our results open up exciting prospects for studying mobile impurities in a bosonic environment and strongly interacting Bose systems in general.

  13. Modulational instability for a self-attractive two-component Bose-Einstein condensate

    Institute of Scientific and Technical Information of China (English)

    Li Sheng-Chang; Duan Wen-Shan

    2009-01-01

    By means of the multiple-scale expansion method, the coupled nonlinear Schr(o)dinger equations without an explicit external potential are obtained in two-dimensional geometry for a self-attractive Bose-Einstein condensate composed of different hyperfine states. The modulational instability of two-component condensate is investigated by using a simple technique. Based on the discussion about two typical cases, the explicit expression of the growth rate for a purely growing modulational instability and the optimum stable conditions are given and analysed analytically. The results show that the modulational instability of this two-dimensional system is quite different from that in a one-dimensional system.

  14. Effects of three-body interaction on collective excitation and stability of Bose-Einstein condensate

    Institute of Scientific and Technical Information of China (English)

    Peng Ping; Li Guan-Qiang

    2009-01-01

    This paper investigates the collective excitation and stability of low-dimensional Bose-Einstein condensates with two-and three-body interactions by the variational analysis of the time-dependent Gross-Pitaevskii-Ginzburg equation.The spectrum of the low-energy excitation and the effective potential for the width of the condensate are obtained.The results show that:(i) the repulsive two-body interaction among atoms makes the frequency red-shifted for the internal excitation and the repulsive or attractive three-body interaction always makes it blue-shifted; (ii) the region for the existence of the stable bound states is obtained by identifying the critical value of the two-and three-body interactions.

  15. Bose-Einstein condensation in a two-component Bose gas with harmonic oscillator interaction

    Science.gov (United States)

    Abulseoud, A. A.; Abbas, A. H.; Galal, A. A.; El-Sherbini, Th M.

    2016-07-01

    In this article a system containing two species of identical bosons interacting via a harmonic oscillator potential is considered. It is assumed that the number of bosons of each species is the same and that bosons belonging to the same species repel each other while those belonging to different species attract. The Hamiltonian is diagonalized and the energy spectrum of the system is written down. The behaviour of the system in the thermodynamic limit is studied within the framework of the grand canonical ensemble, and thermodynamic parameters, such as the internal energy, entropy and specific heat capacity are calculated. It is shown that the system exhibits a single species Bose-Einstein condensation when the coupling strengths are equal and a dual species condensation when they are different.

  16. Interference of Atomic Bose-Einstein Condensate Interacting with Laser Field

    Institute of Scientific and Technical Information of China (English)

    YU Zhao-Xian; JIAO Zhi-Yong; SUN Jin-Zuo

    2004-01-01

    Interference of an atomic Bose-Einstein condensate interacting with a laser field in a double-well potential with dissipation is investigated. If properly selecting the laser field and the initial states of the atoms in the two wells,we find that the intensity exhibits revivals and collapses. The fidelity of interference is affected by the total number of atoms in the two wells and dissipation.

  17. Creation of 39K Bose-Einstein condensates with tunable interaction

    DEFF Research Database (Denmark)

    Winter, Nils

    2013-01-01

    ultracold atoms. Secondly an experimental apparatus for the creation and investigation of ultracold potassium-rubidium mixtures with tunable interactions was constructed and first 39K and 41K Bose-Einstein condensates were created. This experimental apparatus features a dual-species magneto-optical trap...... for laser cooling as well as magnetic and optical traps for evaporative cooling until quantum degeneracy is reached. The optical potential is formed by a focused laser beam and allows to trap the atoms while their scattering length is tuned by an external magnetic field. The apparatus is able create single...... Bose-Einstein condensates and thus accumulate ultracold atoms in a single quantum state enables the construction of model systems which can be precisely controlled. That allows a deeper understanding of complicated quantum systems. Ultracold atoms in optical lattices are an excellent example, since...

  18. Mass-radius relation of Newtonian self-gravitating Bose-Einstein condensates with short-range interactions: II. Numerical results

    CERN Document Server

    Chavanis, P H

    2011-01-01

    We develop the suggestion that dark matter could be a Bose-Einstein condensate. We determine the mass-radius relation of a Newtonian self-gravitating Bose-Einstein condensate with short-range interactions described by the Gross-Pitaevskii-Poisson system. We numerically solve the equation of hydrostatic equilibrium describing the balance between the gravitational attraction and the pressure due to quantum effects (Heisenberg's uncertainty principle) and short-range interactions (scattering). We connect the non-interacting limit to the Thomas-Fermi limit. We also consider the case of attractive self-interaction. We compare the exact mass-radius relation obtained numerically with the approximate analytical relation obtained with a Gaussian ansatz. An overall good agreement is found.

  19. Internal Josephson-like tunnelling in two-component Bose-Einstein condensates affected by sign of the atomic interaction and external trapping potential

    Institute of Scientific and Technical Information of China (English)

    Xiong Bo; Liu Xun-Xu

    2007-01-01

    This paper studies the Josephson-like tunnelling in two-component Bose-Einstein condensates coupled with microwave field, which is in respond to various attractive and repulsive atomic interaction under the various aspect ratio of trapping potential. It is very interesting to find that the dynamic of Josephson-like tunnelling can be controlled from fast damped oscillations to nondamped oscillation, and relative number of atoms changes from asymmetric occupation to symmetric occupation correspondingly.

  20. Observation of attractive and repulsive polarons in a Bose-Einstein condensate

    DEFF Research Database (Denmark)

    Jørgensen, Nils Byg

    2016-01-01

    The problem of an impurity particle moving through a bosonic medium plays a fundamental role in physics, ranging from organic electronics to the Standard Model. However, despite intense theoretical investigation, the canonical scenario of a mobile impurity immersed in a Bose-Einstein condensate...

  1. Stability and Chaos of Two Coupled Bose-Einstein Condensates with Three-Body Interaction

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    We study the dynamics of two Bose-Einstein condensates (BECs) tunnel-coupled by a double-well potential.A real three-body interaction term is considered and a two-mode approximation is used to derive two coupled equations,which describe the relative population and relative phase. By solving the equations and analyzing the stability of the system, we find the stable stationary solutions for a constant atomic scattering length. When a periodically time-varying scattering length is applied, Melnikov analysis and numerical calculation demonstrate the existence of chaotic behavior and the dependence of chaos on the three-body interaction parameters.

  2. Interactions and collisions of discrete breathers in two-species Bose-Einstein condensates in optical lattices

    Science.gov (United States)

    Campbell, Russell; Oppo, Gian-Luca; Borkowski, Mateusz

    2015-01-01

    The dynamics of static and traveling breathers in two-species Bose-Einstein condensates in a one-dimensional optical lattice is modelled within the tight-binding approximation. Two coupled discrete nonlinear Schrödinger equations describe the interaction of the condensates in two cases of relevance: a mixture of two ytterbium isotopes and a mixture of 87Rb and 41K. Depending on their initial separation, interaction between static breathers of different species can lead to the formation of symbiotic structures and transform one of the breathers from a static into a traveling one. Collisions between traveling and static discrete breathers composed of different species are separated into four distinct regimes ranging from totally elastic when the interspecies interaction is highly attractive to mutual destruction when the interaction is sufficiently large and repulsive. We provide an explanation of the collision features in terms of the interspecies coupling and the negative effective mass of the discrete breathers.

  3. Modulational Instability of (1+1)-Dimensional Bose-Einstein Condensate with Three-Body Interatomic Interaction

    Institute of Scientific and Technical Information of China (English)

    WU Lei; ZHANG Jie-Fang

    2007-01-01

    The modulational instability of Bose-Einstein condensate with three-body interatomic interaction and external harmonic trapping potential is investigated. Both of our analytical and numerical results show that the external potential will either cause the excitation of modulationally unstable modes or restrain the modulationally unstable modes from growing.

  4. Dynamical and Geometric Phases of a Two Energy-Level Bose-Einstein Condensate Interacting with a Laser Field

    Institute of Scientific and Technical Information of China (English)

    YU Zhao-Xian; JIAO Zhi-Yong; JIN Shuo; WANG Ji-Suo

    2007-01-01

    By using of the invariant theory, we study a two energy-level Bose-Einstein condensate interacting with a timedependent laser field, the dynamical and geometric phases are given respectively. The Aharonov-Anandan phase is also obtained under the cyclical evolution.

  5. Tunneling dynamics of Bose-Einstein condensates with higher-order interactions in optical lattice

    Institute of Scientific and Technical Information of China (English)

    Tie Lu; Xue Ju-Kui

    2011-01-01

    The nonlinear Landau-Zener tunneling and nonlinear Rabi oscillations of Bose-Einstein condensate (BEC) with higher-order atomic interaction between the Bloch bands in an accelerating optical lattice are discussed.Within the two-level model,the tunneling probability of BEC with higher-order atomic interaction between Bloch bands is obtained.We finds that the tunneling rate is closely related to the higher-order atomic interaction.Furthermore,the nonlinear Rabi oscillations of BEC with higher-order atomic interaction between the bands are discussed by imposing a periodic modulation on the level bias.Analytical expressions of the critical higher-order atomic interaction for suppressing/enhancing the Rabi oscillations are obtained.It is shown that the critical value strongly depends on the modulation parameters (i.e.,the modulation amplitude and frequency) and the strength of periodic potential.

  6. Bose-Einstein Condensates in Optical Lattices with Higher-Order Interactions

    Institute of Scientific and Technical Information of China (English)

    张爱霞; 薛具奎

    2012-01-01

    The higher-order interactions of Bose-Einstein condensate in multi-dimensional optical lattices are discussed both analytically and numerically.It is demonstrated that the effects of the higher-order atomic interactions on the sound speed and the stabilities of Bloch waves strongly depend on the lattice strength.In the presence of higher-order effects,tighter and high-dimensional lattices are confirmed to be two positive factors for maintaining the system's energetic stability,and the dynamical instability of Bloch waves can take place simultaneously with the energetic instability.In addition,we find that the higher-order interactions exhibit a long-range behavior and the long-lived coherent Bloch oscillations in a tilted optical lattice exist.Our results provide an effective way to probe the higher-order interactions in optical lattices.

  7. A Simple Model of Bose-Einstein Condensation of Interacting Particles

    Science.gov (United States)

    Poluektov, Yu. M.

    2017-03-01

    A simple model of Bose-Einstein condensation of interacting particles is proposed. It is shown that in the condensate state the dependence of thermodynamic quantities on the interaction constant does not allow an expansion in powers of the coupling constant. Therefore, it is impossible to pass to the Einstein model of condensation in an ideal Bose gas by means of a limiting passage, setting the interaction constant to zero. The account for the interaction between particles eliminates difficulties in the description of condensation available in the model of an ideal gas, which are connected with the fulfillment of thermodynamic relations and an infinite value of the particle number fluctuation in the condensate phase.

  8. Critical temperature of Bose-Einstein condensation for weakly interacting bose gas in a potential trap

    Institute of Scientific and Technical Information of China (English)

    YU; Xuecai; YE; Yutang; WU; Yunfeng; XIE; Kang; CHENG; Lin

    2005-01-01

    The critical temperature of Bose-Einstein condensation at minimum momentum state for weakly interacting Bose gases in a power-law potential and the deviation of the critical temperature from ideal bose gas are studied. The effect of interaction on the critical temperature is ascribed to the ratiao α/λc, where α is the scattering length for s wave and λc is de Broglie wavelength at critical temperature. As α/λc<<1/(2π)2, the interaction is negligible. The presented deviation of the critical temperature for three dimensional harmonic potential is well in agreement with recent measurement of critical temperature for 87Rb bose gas trapped in a harmonic well.

  9. Multimode Kapitza-Dirac interferometer on Bose-Einstein condensates with atomic interactions

    Science.gov (United States)

    He, Tianchen; Niu, Pengbin

    2017-03-01

    The dynamics of multimode interferometers for Bose Einstein condensation (BEC) with atomic interactions confined to a harmonic trap is investigated. At the initial time t = 0, several spatially addressable wave packets (modes) with different momenta are created by the first Kapitza-Dirac pulse. These modes are coherently recombined by the harmonic potential with atomic interactions. The second Kapitza-Dirac pulse splits the evolved modes a second time and separates them along different paths for a second time. The signal to noise ratio is numerically calculated by the Fisher information and the Cramér-Rao lower bound. We find that the small atomic interactions decrease the measurement accuracy for current atom interferometers when measuring the gravitational acceleration. Its impact on measurement precision can be reduced by improving the Kapitza-Dirac strength.

  10. Rayleigh surface wave interaction with the 2D exciton Bose-Einstein condensate

    Energy Technology Data Exchange (ETDEWEB)

    Boev, M. V.; Kovalev, V. M., E-mail: vadimkovalev@isp.nsc.ru [Russian Academy of Sciences, Institute of Semiconductor Physics, Siberian Branch (Russian Federation)

    2015-06-15

    We describe the interaction of a Rayleigh surface acoustic wave (SAW) traveling on the semiconductor substrate with the excitonic gas in a double quantum well located on the substrate surface. We study the SAW attenuation and its velocity renormalization due to the coupling to excitons. Both the deformation potential and piezoelectric mechanisms of the SAW-exciton interaction are considered. We focus on the frequency and excitonic density dependences of the SAW absorption coefficient and velocity renormalization at temperatures both above and well below the critical temperature of Bose-Einstein condensation of the excitonic gas. We demonstrate that the SAW attenuation and velocity renormalization are strongly different below and above the critical temperature.

  11. Feedback control of an interacting Bose-Einstein condensate using phase-contrast imaging

    Science.gov (United States)

    Szigeti, S. S.; Hush, M. R.; Carvalho, A. R. R.; Hope, J. J.

    2010-10-01

    The linewidth of an atom laser is limited by density fluctuations in the Bose-Einstein condensate (BEC) from which the atom laser beam is outcoupled. In this paper we show that a stable spatial mode for an interacting BEC can be generated using a realistic control scheme that includes the effects of the measurement backaction. This model extends the feedback theory, based on a phase-contrast imaging setup, presented by Szigeti, Hush, Carvalho, and Hope [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.80.013614 80, 013614 (2009)]. In particular, it is applicable to a BEC with large interatomic interactions and solves the problem of inadequacy of the mean-field (coherent state) approximation by utilizing a fixed number state approximation. Our numerical analysis shows the control to be more effective for a condensate with a large nonlinearity.

  12. Feedback control of an interacting Bose-Einstein condensate using phase-contrast imaging

    CERN Document Server

    Szigeti, Stuart S; Carvalho, Andre R R; Hope, Joseph J

    2010-01-01

    The linewidth of an atom laser is limited by density fluctuations in the Bose-Einstein condensate (BEC) from which the atom laser beam is outcoupled. In this paper we show that a stable spatial mode for an interacting BEC can be generated using a realistic control scheme that includes the effects of the measurement backaction. This model extends the feedback theory, based on a phase-contrast imaging setup, presented in \\cite{Szigeti:2009}. In particular, it is applicable to a BEC with large interatomic interactions and solves the problem of inadequacy of the mean-field (coherent state) approximation by utilising a fixed number state approximation. Our numerical analysis shows the control to be more effective for a condensate with a large nonlinearity.

  13. Dynamics and Interaction of Vortex Lines in an Elongated Bose-Einstein Condensate

    Science.gov (United States)

    Serafini, S.; Barbiero, M.; Debortoli, M.; Donadello, S.; Larcher, F.; Dalfovo, F.; Lamporesi, G.; Ferrari, G.

    2015-10-01

    We study the real-time dynamics of vortices in a large elongated Bose-Einstein condensate (BEC) of sodium atoms using a stroboscopic technique. Vortices are produced via the Kibble-Zurek mechanism in a quench across the BEC transition and they slowly precess keeping their orientation perpendicular to the long axis of the trap as expected for solitonic vortices in a highly anisotropic condensate. Good agreement with theoretical predictions is found for the precession period as a function of the orbit amplitude and the number of condensed atoms. In configurations with two or more vortices, we see signatures of vortex-vortex interaction in the shape and visibility of the orbits. In addition, when more than two vortices are present, their decay is faster than the thermal decay observed for one or two vortices. The possible role of vortex reconnection processes is discussed.

  14. Quantum Statistical Behaviors of Interaction of an Atomic Bose-Einstein Condensate with Laser

    Institute of Scientific and Technical Information of China (English)

    YU Zhao-Xian; JIAO Zhi-Yong

    2001-01-01

    We have investigated quantum statistical behaviors of photons and atoms in interaction of an atomic Bose Einstein condensate with quantized laser field. When the quantized laser field is initially prepared in a superposition state which exhibits holes in its photon-number distribution, while the atomic field is initially in a Fock state, it is found that there is energy exchange between photons and atoms. For the input and output states, the photons and atoms may exhibit the sub-Poissonian distribution. The input and output laser fields may exhibit quadrature squeezing, but for the atomic field, only the output state exhibits quadrature squeezing. It is shown that there exists the violation of the Cauchy-Schwartz inequality, which means that the correlation between photons and atoms is nonclassical.``

  15. Primordial Universe with radiation and Bose-Einstein condensate

    CERN Document Server

    Alvarenga, F G; Fracalossi, R; Freitas, R C; Gonçalves, S V B; Monerat, G A; Oliveira-Neto, G; Silva, E V Corrêa

    2016-01-01

    In this work we derive a scenario where the early Universe consists of radiation and the Bose-Einstein condensate. We have included in our analysis the possibility of gravitational self-interaction due to the Bose-Einstein condensate being attractive or repulsive. After presenting the general structure of our model, we proceed to compute the finite-norm wave packet solutions to the Wheeler-DeWitt equation. The behavior of the scale factor is studied by applying the many-worlds interpretation of quantum mechanics. At the quantum level the cosmological model, in both attractive and repulsive cases, is free from the Big Bang singularity.

  16. Bose-Einstein correlations in charged current muon-neutrino interactions in the NOMAD experiment at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Astier, P.; Autiero, D.; Baldisseri, A.; Baldo-Ceolin, M.; Banner, M.; Bassompierre, G.; Benslama, K.; Besson, N.; Bird, I.; Blumenfeld, B.; Bobisut, F.; Bouchez, J.; Boyd, S.; Bueno, A.; Bunyatov, S.; Camilleri, L.; Cardini, A.; Cattaneo, P.W.; Cavasinni, V. E-mail: vincenzo.cavasinni@pi.infn.it; Cervera-Villanueva, A.; Challis, R.C.; Chukanov, A.; Collazuol, G.; Conforto, G.; Conta, C.; Contalbrigo, M.; Cousins, R.; Daniels, D.; Degaudenzi, H.; Del Prete, T.; De Santo, A.; Dignan, T.; Di Lella, L.; Couto e Silva, E. do; Dumarchez, J.; Ellis, M.; Feldman, G.J.; Ferrari, R.; Ferrere, D.; Flaminio, V.; Fraternali, M.; Gaillard, J.-M.; Gangler, E.; Geiser, A.; Geppert, D.; Gibin, D.; Gninenko, S.; Godley, A.; Gomez-Cadenas, J.-J.; Gosset, J.; Goessling, C.; Gouanere, M.; Grant, A.; Graziani, G.; Guglielmi, A.; Hagner, C.; Hernando, J.; Hubbard, D.; Hurst, P.; Hyett, N.; Iacopini, E.; Joseph, C.; Juget, F.; Kent, N.; Kirsanov, M.; Klimov, O.; Kokkonen, J.; Kovzelev, A.; Krasnoperov, A.; Lacaprara, S.; Lachaud, C.; Lakic, B.; Lanza, A.; La Rotonda, L.; Laveder, M.; Letessier-Selvon, A.; Levy, J.-M.; Linssen, L.; Ljubicic, A.; Long, J.; Lupi, A.; Lyubushkin, V.; Marchionni, A.; Martelli, F.; Mechain, X.; Mendiburu, J.-P.; Meyer, J.-P.; Mezzetto, M.; Mishra, S.R.; Moorhead, G.F.; Naumov, D.; Nedelec, P.; Nefedov, Yu.; Nguyen-Mau, C.; Orestano, D.; Pastore, F.; Peak, L.S.; Pennacchio, E.; Pessard, H.; Petti, R.; Placci, A.; Polesello, G.; Pollmann, D.; Polyarush, A.; Popov, B.; Poulsen, C.; Rebuffi, L.; Rico, J.; Riemann, P.; Roda, C.; Rubbia, A.; Salvatore, F.; Schahmaneche, K.; Schmidt, B.; Schmidt, T.; Sconza, A.; Sevior, M.; Sillou, D.; Soler, F.J.P.; Sozzi, G.; Steele, D.; Stiegler, U.; Stipcevic, M.; Stolarczyk, Th.; Tareb-Reyes, M.; Taylor, G.N.; Tereshchenko, V.; Toropin, A.; Touchard, A.-M.; Tovey, S.N.; Tran, M.-T.; Tsesmelis, E.; Ulrichs, J.; Vacavant, L.; Valdata-Nappi, M.; Valuev, V.; Vannucci, F.; Varvell, K.E.; Veltri, M.; Vercesi, V. [and others

    2004-05-10

    Bose-Einstein correlations in one and two dimensions have been studied, with high statistics, in charged current muon-neutrino interaction events collected with the NOMAD detector at CERN. In one dimension the Bose-Einstein effect has been analyzed with the Goldhaber and the Kopylov-Podgoretskii phenomenological parametrizations. The Goldhaber parametrization gives the radius of the pion emission region R{sub G}=1.01{+-}0.05(stat){sup +0.09}{sub -0.06}(sys) fm and for the chaoticity parameter the value {lambda}=0.40{+-}0.03(stat){sup +0.01}{sub -0.06}(sys). Using the Kopylov-Podgoretskii parametrization yields R{sub KP}=2.07{+-}0.04(stat){sup +0.01}{sub -0.14}(sys) fm and {lambda}{sub KP}=0.29{+-}0.06(stat){sup +0.01}{sub -0.04}(sys). Different parametrizations of the long-range correlations have been also studied. The two-dimensional shape of the source has been investigated in the longitudinal comoving frame. A significant difference between the transverse and the longitudinal dimensions is observed. The high statistics of the collected sample allowed the study of the Bose-Einstein correlations as a function of rapidity, charged particle multiplicity and hadronic energy. A weak dependence of both radius and chaoticity on multiplicity and hadronic energy is found.

  17. Numerically exact dynamics of the interacting many-body Schroedinger equation for Bose-Einstein condensates. Comparison to Bose-Hubbard and Gross-Pitaevskii theory

    Energy Technology Data Exchange (ETDEWEB)

    Sakmann, Kaspar

    2010-07-21

    In this thesis, the physics of trapped, interacting Bose-Einstein condensates is analyzed by solving the many-body Schroedinger equation. Particular emphasis is put on coherence, fragmentation and reduced density matrices. First, the ground state of a trapped Bose-Einstein condensate and its correlation functions are obtained. Then the dynamics of a bosonic Josephson junction is investigated by solving the time-dependent many-body Schroedinger equation numerically exactly. These are the first exact results in literature in this context. It is shown that the standard approximations of the field, Gross-Pitaevskii theory and the Bose-Hubbard model fail at weak interaction strength and within their range of expected validity. For stronger interactions the dynamics becomes strongly correlated and a new equilibration phenomenon is discovered. By comparison with exact results it is shown that a symmetry of the Bose- Hubbard model between attractive and repulsive interactions must be considered an artefact of the model. A conceptual innovation of this thesis are time-dependent Wannier functions. Equations of motion for time-dependent Wannier functions are derived from the variational principle. By comparison with exact results it is shown that lattice models can be greatly improved at little computational cost by letting the Wannier functions of a lattice model become time-dependent. (orig.)

  18. Matter-Wave Solitons in Two-Component Bose-Einstein Condensates with Tunable Interactions and Time Varying Potential

    Institute of Scientific and Technical Information of China (English)

    宣恒农; 左苗

    2011-01-01

    We present three families of exact matter-wave soliton solutions for an effective one-dimension two- component Bose-Einstein condensates (BECs) with tunable interactions, harmonic potential and gain or loss term. We investigate the dynamics of bright-bright solitons, bright-dark solitons and dark-dark solitons for the time-dependent expulsive harmonic trap potential, periodically modulated harmonic trap potential, and kinklike modulated harmonic trap potential. Through the Feshbach resonance, these dynamics can be realized in experiments by suitable control of time-dependent trap parameters, atomic interactions, and interaction with thermal cloud.

  19. Dynamics and Matter-Wave Solitons in Bose-Einstein Condensates with Two- and Three-Body Interactions

    Directory of Open Access Journals (Sweden)

    Jing Chen

    2014-01-01

    Full Text Available By means of similarity transformation, this paper proposes the matter-wave soliton solutions and dynamics of the variable coefficient cubic-quintic nonlinear Schrödinger equation arising from Bose-Einstein condensates with time-dependent two- and three-body interactions. It is found that, under the effect of time-dependent two- and three-body interaction and harmonic potential with time-dependent frequency, the density of atom condensates will gradually diminish and finally collapse.

  20. Crossover dynamics of dispersive shocks in Bose-Einstein condensates characterized by two- and three-body interactions

    KAUST Repository

    Crosta, M.

    2012-04-10

    We show that the perturbative nonlinearity associated with three-atom interactions, competing with standard two-body repulsive interactions, can change dramatically the evolution of one-dimensional (1D) dispersive shock waves in a Bose-Einstein condensate. In particular, we prove the existence of a rich crossover dynamics, ranging from the formation of multiple shocks regularized by nonlinear oscillations culminating in coexisting dark and antidark matter waves to 1D-soliton collapse. For a given scattering length, all these different regimes can be accessed by varying the density of atoms in the condensate.

  1. Propagation and interaction of matter-wave solitons in Bose-Einstein condensates with time-dependent scattering length and varying potentials

    Energy Technology Data Exchange (ETDEWEB)

    Li Biao; Li Yuqi [Nonlinear Science Center, Ningbo University, Ningbo 315211 (China); Zhang Xiaofei; Liu, W M, E-mail: biaolee2000@yahoo.com.cn [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2011-09-14

    We present two families of one-soliton solutions and three families of two-soliton solutions for a generalized nonlinear Schroedinger equation, which is characterized by the time-dependent scattering length and varying potentials. Then, we investigate the propagation of one-soliton and interactions of two-soliton by some selected control functions. The results show that the intensities of one- and two-soliton first increase rapidly to a peak value, and then decay very slowly to the background value; thus, the lifetimes of both one-soliton and two-soliton in Bose-Einstein condensates can be extended largely at least to the order of the lifetime of a Bose-Einstein condensate in real experiments. Our results open up new ways of considerable experimental interest for the management of matter-wave solitons in Bose-Einstein condensates.

  2. Bose-Einstein Hypernetworks

    CERN Document Server

    Guo, Jin-Li

    2015-01-01

    The paper proposes a Bose-Einstein hypernetwork model, and studies evolving mechanisms and topological properties of hyperedge hyperdegrees of the hypernetwork. We analyze the model by using a Poisson process theory and a continuous technique, and give a characteristic equation of hyperedge hyperdegrees of the Bose-Einstein hypernetwork. We obtain the stationary average hyperedge hyperdegree distribution of the hypernetwork by the characteristic equation. The paper first studies topological properties of hyperedge hyperdegrees. Bose-Einstein condensation model can be seen as a special case of this kind of hypernetworks. Condensation degree is proposed, in particular, the condensation of particles can be classified according to the condensation degree.

  3. Bose-Einstein Correlations in Charged Current Muon-Neutrino Interactions in the NOMAD Experiment at CERN

    CERN Document Server

    Astier, P.; Baldisseri, A.; Baldo-Ceolin, M.; Banner, M.; Bassompierre, G.; Benslama, K.; Besson, N.; Bird, I.; Blumenfeld, Barry J.; Bobisut, F.; Bouchez, J.; Boyd, S.; Bueno, A.; Bunyatov, S.; Camilleri, L.; Cardini, A.; Cattaneo, P.W.; Cavasinni, V.; Cervera-Villanueva, A.; Challis, R.C.; Chukanov, A.; Collazuol, G.; Conforto, G.; Conta, C.; Contalbrigo, M.; Cousins, R.; Daniels, D.; Degaudenzi, H.; Del Prete, T.; De Santo, A.; Dignan, T.; Di Lella, L.; do Couto e Silva, E.; Dumarchez, J.; Ellis, Malcolm; Feldman, G.J.; Ferrari, R.; Ferrere, D.; Flaminio, V.; Fraternali, M.; Gaillard, J.M.; Gangler, E.; Geiser, A.; Geppert, D.; Gibin, D.; Gninenko, S.; Godley, A.; Gomez-Cadenas, J.J.; Gosset, J.; Gossling, C.; Gouanere, M.; Grant, A.; Graziani, G.; Guglielmi, A.; Hagner, C.; Hernando, J.; Hubbard, D.; Hurst, P.; Hyett, N.; Iacopini, E.; Joseph, C.; Juget, F.; Kent, N.; Kirsanov, M.; Klimov, O.; Kokkonen, J.; Kovzelev, A.; Krasnoperov, A.; Lacaprara, S.; Lachaud, C.; Lakic, B.; Lanza, A.; La Rotonda, L.; Laveder, M.; Letessier-Selvon, A.; Levy, J.M.; Linssen, L.; Ljubicic, A.; Long, J.; Lupi, A.; Lyubushkin, V.; Marchionni, A.; Martelli, F.; Mechain, X.; Mendiburu, J.P.; Meyer, J.P.; Mezzetto, M.; Mishra, S.R.; Moorhead, G.F.; Naumov, D.; Nedelec, P.; Nefedov, Yu.; Nguyen-Mau, C.; Orestano, D.; Pastore, F.; Peak, L.S.; Pennacchio, E.; Pessard, H.; Petti, R.; Placci, A.; Polesello, G.; Pollmann, D.; Polyarush, A.; Popov, B.; Poulsen, C.; Rebuffi, L.; Rico, J.; Riemann, P.; Roda, C.; Rubbia, A.; Salvatore, F.; Schahmaneche, K.; Schmidt, B.; Schmidt, T.; Sconza, A.; Sevior, M.; Sillou, D.; Soler, F.J.P.; Sozzi, G.; Steele, D.; Stiegler, U.; Stipcevic, M.; Stolarczyk, Th.; Tareb-Reyes, M.; Taylor, G.N.; Tereshchenko, V.; Toropin, A.; Touchard, A.M.; Tovey, S.N.; Tran, M.T.; Tsesmelis, E.; Ulrichs, J.; Vacavant, L.; Valdata-Nappi, M.; Valuev, V.; Vannucci, F.; Varvell, K.E.; Veltri, M.; Vercesi, V.; Vidal-Sitjes, G.; Vieira, J.M.; Vinogradova, T.; Weber, F.V.; Weisse, T.; Wilson, F.F.; Winton, L.J.; Yabsley, Bruce D.; Zaccone, H.; Zei, R.; Zuber, K.; Zuccon, P.

    2004-01-01

    Bose-Einstein Correlations in one and two dimensions have been studied, with high statistics, in charged current muon-neutrino interaction events collected with the NOMAD detector at CERN. In one dimension the Bose-Einstein effect has been analyzed with the Goldhaber and the Kopylov-Podgoretskii phenomenological parametrizations. The Goldhaber parametrization gives the radius of the pion emission region R_G = 1.01+/-0.05(stat)+0.09-0.06(sys) fm and for the chaoticity parameter the value lambda = 0.40+/-0.03(stat)+0.01-0.06(sys). Using the Kopylov-Podgoretskii parametrization yields R_KP = 2.07+/-0.04(stat)+0.01-0.14(sys) fm and lambda_KP = 0.29+/-0.06(stat)+0.01-0.04(sys). Different parametrizations of the long-range correlations have been also studied. The two-dimensional shape of the source has been investigated in the longitudinal co-moving frame. A significant difference between the transverse and the longitudinal dimensions is observed. The high statistics of the collected sample allowed the study of the...

  4. Variational study of polarons in Bose-Einstein condensates

    OpenAIRE

    2014-01-01

    We use a class of variational wave functions to study the properties of an impurity in a Bose-Einstein condensate, i.e. the "Bose polaron". The impurity interacts with the condensate through a contact interaction, which can be tuned by a Feshbach resonance. We find a stable attractive polaron branch that evolves continuously across the resonance to a tight-binding diatomic molecule deep in the positive scattering length side. A repulsive polaron branch with finite lifetime is also observed an...

  5. Analytical method for yrast line states in the interacting two-component Bose-Einstein condensate

    Institute of Scientific and Technical Information of China (English)

    解炳昊; 景辉

    2002-01-01

    The yrast spectrum for the harmonically trapped two-component Bose-Einstein condensate (BEC), omitting thedifference between the two components, has been studied using an analytical method. The energy eigenstates andeigenvalues for L=0,1,2,3 are given. We illustrate that there are different eigenstate behaviours between the even Land odd L cases for the two-component BEC in two dimensions. Except for symmetric states, there are antisymmetricstates for the permutation of the two components, which cannot reduce to those in a single condensate case when thevalue of L is odd.

  6. Covariant theory of Bose-Einstein condensates in curved spacetimes with electromagnetic interactions: the hydrodynamic approach

    CERN Document Server

    Chavanis, Pierre-Henri

    2016-01-01

    We develop a hydrodynamic representation of the Klein-Gordon-Maxwell-Einstein equations. These equations combine quantum mechanics, electromagnetism, and general relativity. We consider the case of an arbitrary curved spacetime, the case of weak gravitational fields in a static or expanding background, and the nonrelativistic (Newtonian) limit. The Klein-Gordon-Maxwell-Einstein equations govern the evolution of a complex scalar field, possibly describing self-gravitating Bose-Einstein condensates, coupled to an electromagnetic field. They may find applications in the context of dark matter, boson stars, and neutron stars with a superfluid core.

  7. Nonlinear vortex-phonon interactions in a Bose-Einstein condensate

    Science.gov (United States)

    Mendonça, J. T.; Haas, F.; Gammal, A.

    2016-07-01

    We consider the nonlinear coupling between an exact vortex solution in a Bose-Einstein condensate and a spectrum of elementary excitations in the medium. These excitations, or Bogoliubov-de Gennes modes, are indeed a special kind of phonons. We treat the spectrum of elementary excitations in the medium as a gas of quantum particles, sometimes also called bogolons. An exact kinetic equation for the bogolon gas is derived, and an approximate form of this equation, valid in the quasi-classical limit, is also obtained. We study the energy transfer between the vortex and the bogolon gas, and establish conditions for vortex instability and damping.

  8. MATHEMATICAL ANALYSIS OF THE COLLAPSE IN BOSE-EINSTEIN CONDENSATE

    Institute of Scientific and Technical Information of China (English)

    Li Xiaoguang; Zhang Jian; Wu Yonghong

    2009-01-01

    In this article, the authors consider the collapse solutions of Cauchy problem for the nonlinear Schrodinger equation iψt +1/2Δψ-1/2ω2|x|2ψ+ |ψ|2+|ψ|2ψ=0, x∈R2, which models the Bose-Einstein condensate with attractive interactions. The authors establish the lower bound of collapse rate as t→T. Furthermore, the L2-concentration property of the radially symmetric collapse solutions is obtained.

  9. Boundary-Dependent Chaotic Regions for a Bose-Einstein Condensate Interacting with Laser Field

    Institute of Scientific and Technical Information of China (English)

    ZHU Qian-Quan; HAI Wen-Hua; DENG Hai-Ming

    2007-01-01

    Spatial chaos of a Bose-Einstein condensate perturbed by a weak laser standing wave and a weak laser S pulse is studied. By using the perturbed chaotic solution we investigate the new type of Melnikov chaotic regions, which depend on an integration constant CQ determined by the boundary conditions. It is shown that when the |c0| values are small, the chaotic region corresponds to small values of laser wave vector k, and the chaotic region for the larger k values is related to the large |c0| values. The result is confirmed numerically by finding the chaotic and regular orbits on the Poincaré section for the two different parameter regions. Thus, for a fixed c0 the adjustment of k from a small value to large value can transform the chaotic region into the regular one or on the contrary, which suggests a feasible method for eliminating or generating Melnikov chaos.

  10. Chaotic behavior of three interacting vortices in a confined Bose-Einstein condensate

    Energy Technology Data Exchange (ETDEWEB)

    Kyriakopoulos, Nikos [SUPA, Department of Physics and Institute for Complex Systems and Mathematical Biology, King' s College, University of Aberdeen, Aberdeen AB24 3UE (United Kingdom); Koukouloyannis, Vassilis [Physics Department, Aristotle University of Thessaloniki, GR-54124 Thessaloniki (Greece); Skokos, Charalampos [Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch 7701 (South Africa); Physics Department, Aristotle University of Thessaloniki, GR-54124 Thessaloniki (Greece); Kevrekidis, Panayotis G. [Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts 01003-9305 (United States)

    2014-06-01

    Motivated by recent experimental works, we investigate a system of vortex dynamics in an atomic Bose-Einstein condensate (BEC), consisting of three vortices, two of which have the same charge. These vortices are modeled as a system of point particles which possesses a Hamiltonian structure. This tripole system constitutes a prototypical model of vortices in BECs exhibiting chaos. By using the angular momentum integral of motion, we reduce the study of the system to the investigation of a two degree of freedom Hamiltonian model and acquire quantitative results about its chaotic behavior. Our investigation tool is the construction of scan maps by using the Smaller ALignment Index as a chaos indicator. Applying this approach to a large number of initial conditions, we manage to accurately and efficiently measure the extent of chaos in the model and its dependence on physically important parameters like the energy and the angular momentum of the system.

  11. Bose-Einstein Condensation in Strong-Coupling Quark Color Superconductor near Flavor SU(3) Limit

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiao-Bing; REN Chun-Fu; ZHANG Yi

    2011-01-01

    Near the flavor SU(3) limit, we propose an analytical description for color-flavor-locked-type Bardeen-Cooper-Schrieffer (BCS) phase in the Nambu Jona-Lasinio (NJL) model. The diquark behaviors in light-flavor and strange-flavor-involved channels and Bose-Einstein condensation (BEC) of bound diquark states are studied. When the attractive interaction between quarks is strong enough, a BCS-BEC crossover is predicted in the environment with color-flavor-locked pairing pattern. The resulting Bose-Einstein condensed phase is found to be an intergrade phase before the emergence of the previous-predicted BEC phase in two-flavor quark superconductor.

  12. Soliton resonance in bose-einstein condensate

    Science.gov (United States)

    Zak, Michail; Kulikov, I.

    2002-01-01

    A new phenomenon in nonlinear dispersive systems, including a Bose-Einstein Condensate (BEC), has been described. It is based upon a resonance between an externally induced soliton and 'eigen-solitons' of the homogeneous cubic Schrodinger equation. There have been shown that a moving source of positive /negative potential induces bright /dark solitons in an attractive / repulsive Bose condensate.

  13. Bose-Einstein condensation in quantum glasses

    OpenAIRE

    2009-01-01

    The role of geometrical frustration in strongly interacting bosonic systems is studied with a combined numerical and analytical approach. We demonstrate the existence of a novel quantum phase featuring both Bose-Einstein condensation and spin-glass behaviour. The differences between such a phase and the otherwise insulating "Bose glasses" are elucidated.

  14. Competition between Bose-Einstein Condensation and Spin Dynamics.

    Science.gov (United States)

    Naylor, B; Brewczyk, M; Gajda, M; Gorceix, O; Maréchal, E; Vernac, L; Laburthe-Tolra, B

    2016-10-28

    We study the impact of spin-exchange collisions on the dynamics of Bose-Einstein condensation by rapidly cooling a chromium multicomponent Bose gas. Despite relatively strong spin-dependent interactions, the critical temperature for Bose-Einstein condensation is reached before the spin degrees of freedom fully thermalize. The increase in density due to Bose-Einstein condensation then triggers spin dynamics, hampering the formation of condensates in spin-excited states. Small metastable spinor condensates are, nevertheless, produced, and they manifest in strong spin fluctuations.

  15. Hyperchaos of two coupled Bose-Einstein condensates with a three-body interaction

    Institute of Scientific and Technical Information of China (English)

    Wang Zhi-Xia; Zhang Xi-He; Shen Ke

    2008-01-01

    We investigate the dynamics of two tunnel-coupled Boee-Einstein condensates(BECs)in a double-well potential.The effects of the three-body recombination loss and the feeding of the condensates from the thermal cloud are studied in the case of attractive interatomic interaction.An imaginary three-body interaction term is considered and a two-mode approximation is used to derive three coupled equations which describe the total atomic numbers of the two condensates,the relative population and relative phase respectively.Theoretical analyses and numerical calculations demonstrate the existence of chaotic and hyperchaotic behaviour by using a periodically time-varying scattering length.

  16. Matter-wave solutions of Bose-Einstein condensates with three-body interaction in linear magnetic and time-dependent laser fields

    Institute of Scientific and Technical Information of China (English)

    Etienne Wamba; Timoléon C. Kofané; Alidou Mohamadou

    2012-01-01

    We construct,through a further extension of the tanh-function method,the matter-wave solutions of Bose-Einstein condensates (BECs) with a three-body interaction.The BECs are trapped in a potential comprising the linear magnetic and the time-dependent laser fields.The exact solutions obtained include soliton solutions,such as kink and antikink as well as bright,dark,multisolitonic modulated waves.We realize that the motion and the shape of the solitary wave can be manipulated by controlling the strengths of the fields.

  17. Bose-Einstein correlations and results on minimum bias interactions, underlying event and particle production from ATLAS

    Directory of Open Access Journals (Sweden)

    Kulchitsky Yuri

    2016-01-01

    Full Text Available The report on the recent results of soft-QCD with the ATLAS experiment at the LHC is presented. The effect of space-time geometry in the hadronization phase has been studied in the context of Bose-Einstein correlations between charged particles, for determining the size and shape of the source from which particles are emitted. Bose-Einstein correlation parameters are investigated in proton-proton collisions at 0.9 and 7 TeV, up to very high charged particle multiplicities. Measurements of the properties of charged particle production are presented from proton-proton collisions at different centre-of-mass energies in the range of 0.9 to 13 TeV and compared to various Monte Carlo event generator models. Furthermore, particle distributions sensitive to the underlying event have been measured and are compared to theoretical models. The production properties of mesons and baryons are presented and compared to predictions.

  18. Short-range intervortex interaction and interacting dynamics of half-quantized vortices in two-component Bose-Einstein condensates

    Science.gov (United States)

    Kasamatsu, Kenichi; Eto, Minoru; Nitta, Muneto

    2016-01-01

    We study the interaction and dynamics of two half-quantized vortices in two-component Bose-Einstein condensates. Using the Padé approximation for the vortex core profile, we calculate the intervortex potential, whose asymptotic form for a large distance has been derived by Eto et al. [Phys. Rev. A 83, 063603 (2011), 10.1103/PhysRevA.83.063603]. Through numerical simulations of the two-dimensional Gross-Pitaevskii equations, we reveal different kinds of dynamical trajectories of the vortices depending on the combinations of signs of circulations and the intercomponent density coupling. Under the adiabatic limit, we derive the equations of motion for the vortex coordinates, in which the motion is caused by the balance between Magnus force and the intervortex forces. The initial velocity of the vortex motion can be explained quantitatively by this point vortex approximation, but understanding the long-time behavior of the dynamics needs more consideration beyond our model.

  19. Bloch Oscillations of Two-Component Bose-Einstein Condensates in Optical Lattices

    Institute of Scientific and Technical Information of China (English)

    GU Huai-Qiang; WANG Zhi-Cheng; JIN Kang; TAN Lei

    2006-01-01

    @@ We study the Bloch oscillations of two-component Bose-Einstein condensates trapped in spin-dependent optical lattices. The influence of the intercomponent atom interaction on the system is discussed in detail Accelerated breakdown of the Bloch oscillations and revival phenomena are found respectively for the repulsive and attractive case. For both the cases, the system will finally be set in a quantum self-trapping state due to dynamical instability.

  20. Thermodynamic identities and particle number fluctuations in weakly interacting Bose-Einstein condensates

    Energy Technology Data Exchange (ETDEWEB)

    Illuminati, Fabrizio [Institut fuer Physik, Universitaet Potsdam, Am Neuen Palais 10, D-14415, Potsdam (Germany); Dipartimento di Fisica, Universita di Salerno, and INFM, Unita di Salerno, I-84081 Baronissi SA (Italy); Navez, Patrick [Institut fuer Physik, Universitaet Potsdam, Am Neuen Palais 10, D-14415, Potsdam (Germany); Institute of Materials Science, Demokritos NCSR, POB 60228, 15310 Athens (Greece); Wilkens, Martin [Institut fuer Physik, Universitaet Potsdam, Am Neuen Palais 10, D-14415, Potsdam (Germany)

    1999-08-14

    We derive exact thermodynamic identities relating the average number of condensed atoms and the root-mean-square fluctuations determined in different statistical ensembles for the weakly interacting Bose gas confined in a box. This is achieved by introducing the concept of auxiliary partition functions for model Hamiltonians that do conserve the total number of particles. Exploiting such thermodynamic identities, we provide the first, completely analytical prediction of the microcanonical particle number fluctuations in the weakly interacting Bose gas. Such fluctuations, as a function of the volume V of the box are found to behave normally, in contrast with the anomalous scaling behaviour V{sup 4/3} of the fluctuations in the ideal Bose gas. (author). Letter-to-the-editor.

  1. Dimensional reduction in Bose-Einstein condensed clouds of atoms confined in tight potentials of any geometry and any interaction strength

    CERN Document Server

    Sandin, P; Gulliksson, M; Smyrnakis, J; Magiropoulos, M; Kavoulakis, G M

    2016-01-01

    Motivated by numerous experiments on Bose-Einstein condensed atoms which have been performed in tight trapping potentials of various geometries (elongated and/or toroidal/annular), we develop a general method which allows us to reduce the corresponding three-dimensional Gross-Pitaevskii equation for the order parameter into an effectively one-dimensional equation, taking into account the interactions (i.e., treating the width of the transverse profile variationally) and the curvature of the trapping potential. As an application of our model we consider atoms which rotate in a toroidal trapping potential. We evaluate the state of lowest energy for a fixed value of the angular momentum within various approximations of the effectively one-dimensional model and compare our results with the full solution of the three-dimensional problem, thus getting evidence for the accuracy of our model.

  2. Dimensional reduction in Bose-Einstein condensed clouds of atoms confined in tight potentials of any geometry and any interaction strength

    Science.gov (United States)

    Sandin, P.; Ögren, M.; Gulliksson, M.; Smyrnakis, J.; Magiropoulos, M.; Kavoulakis, G. M.

    2017-01-01

    Motivated by numerous experiments on Bose-Einstein condensed atoms which have been performed in tight trapping potentials of various geometries [elongated and/or toroidal (annular)], we develop a general method which allows us to reduce the corresponding three-dimensional Gross-Pitaevskii equation for the order parameter into an effectively one-dimensional equation, taking into account the interactions (i.e., treating the width of the transverse profile variationally) and the curvature of the trapping potential. As an application of our model we consider atoms which rotate in a toroidal trapping potential. We evaluate the state of lowest energy for a fixed value of the angular momentum within various approximations of the effectively one-dimensional model and compare our results with the full solution of the three-dimensional problem, thus getting evidence for the accuracy of our model.

  3. Vortex dynamics in coherently coupled Bose-Einstein condensates

    CERN Document Server

    Calderaro, Luca; Massignan, Pietro; Wittek, Peter

    2016-01-01

    In classical hydrodynamics with uniform density, vortices move with the local fluid velocity. This description is rewritten in terms of forces arising from the interaction with other vortices. Two such positive straight vortices experience a repulsive interaction and precess in a positive (anticlockwise) sense around their common centroid. A similar picture applies to vortices in a two-component two-dimensional uniform Bose-Einstein condensate (BEC) coherently coupled through rf Rabi fields. Unlike the classical case, however, the rf Rabi coupling induces an attractive interaction and two such vortices with positive signs now rotate in the negative (clockwise) sense. Pairs of counter-rotating vortices are instead found to translate with uniform velocity perpendicular to the line joining their cores. This picture is extended to a single vortex in a two-component trapped BEC. Although two uniform vortex-free components experience familiar Rabi oscillations of particle-number difference, such behavior is absent ...

  4. Approaching Bose-Einstein Condensation

    Science.gov (United States)

    Ferrari, Loris

    2011-01-01

    Bose-Einstein condensation (BEC) is discussed at the level of an advanced course of statistical thermodynamics, clarifying some formal and physical aspects that are usually not covered by the standard pedagogical literature. The non-conventional approach adopted starts by showing that the continuum limit, in certain cases, cancels out the crucial…

  5. Entanglement Properties in Two-Component Bose-Einstein Condensate

    Science.gov (United States)

    Jiang, Di-You

    2016-10-01

    We investigate entanglement inseparability and bipartite entanglement of in two-component Bose-Einstein condensate in the presence of the nonlinear interatomic interaction, interspecies interaction. Entanglement inseparability and bipartite entanglement have the similar properties. More entanglement can be generated by adjusting the nonlinear interatomic interaction and control the time interval of the entanglement by adjusting interspecies interaction.

  6. Two scales in Bose-Einstein correlations

    Energy Technology Data Exchange (ETDEWEB)

    Khoze, V.A.; Ryskin, M.G. [University of Durham, Institute for Particle Physics Phenomenology, Durham (United Kingdom); Petersburg Nuclear Physics Institute, NRC ' Kurchatov Institute' , Gatchina, Saint Petersburg (Russian Federation); Martin, A.D. [University of Durham, Institute for Particle Physics Phenomenology, Durham (United Kingdom); Schegelsky, V.A. [Petersburg Nuclear Physics Institute, NRC ' Kurchatov Institute' , Gatchina, Saint Petersburg (Russian Federation)

    2016-04-15

    We argue that the secondaries produced in high-energy hadron collisions are emitted by small-size sources distributed over a much larger area in impact parameter space occupied by the interaction amplitude. That is, Bose-Einstein correlation of two emitted identical particles should be described by a 'two-radii' parametrisation ansatz. We discuss the expected energy, charged multiplicity and transverse momentum of the pair (that is, √(s), N{sub ch}, k{sub t}) behaviour of both the small and the large size components. (orig.)

  7. Polaron in Bose-Einstein-Condensation System

    Institute of Scientific and Technical Information of China (English)

    HUANG Bei-Bing; WAN Shao-Long

    2009-01-01

    We consider the motion of an impurity in a Bose-Einstein condensate system at T=0 K with the contact interactions for boson-boson and boson-impurity.Under the forward-scattering approximation,we obtain a Fr(o)hlich-like Hamiltonian for this system,which means that a polaron can be formed.The effective mass,the phonon number and the energy to form a polaron are obtained.We also discuss the validity of the forwardscattering approximation for this system.

  8. Dark Lump Excitations in Bose-Einstein Condensates

    Institute of Scientific and Technical Information of China (English)

    黄国翔; 朱善华

    2002-01-01

    Key Laboratory for Optical and Magnetic Resonance Spectroscopy and Department of Physics, East China Normal University, Shanghai 200062We investigate the dynamics of two-dimensional matter-wave pulses in a Bose-Einstein condensate with diskshaped traps. For the case ofrepulsive atom-atom interactions, a Kadomtsev-Petviashvili equation with positive dispersion is derived using the method of multiple scales. The results show that it is possible to excite dark lump-like two-dimensional nonlinear excitations in the Bose-Einstein condensate.

  9. Bose Einstein condensation of the classical axion field in cosmology?

    CERN Document Server

    Davidson, Sacha

    2013-01-01

    The axion is a motivated cold dark matter candidate, which it would be interesting to distinguish from weakly interacting massive particles. Sikivie has suggested that axions could behave differently during non-linear galaxy evolution, if they form a bose einstein condensate. Using classical equations of motion during linear structure formation, we explore whether "gravitational thermalisation" can drive axions to a bose einstein condensate. At linear order in G_N, we interpret that the principle activities of gravity are to expand the Universe and grow density fluctuations. From the anisotropic stress, we estimate a short dissipation scale for axions which does not confirm previous estimates of their gravitational thermalisation rate.

  10. Exact solutions for generalized variable-coefficients Ginzburg-Landau equation: Application to Bose-Einstein condensates with multi-body interatomic interactions

    Science.gov (United States)

    Kengne, E.; Lakhssassi, A.; Vaillancourt, R.; Liu, Wu-Ming

    2012-12-01

    We present a double-mapping method (D-MM), a natural combination of a similarity with F-expansion methods, for obtaining general solvable nonlinear evolution equations. We focus on variable-coefficients complex Ginzburg-Landau equations (VCCGLE) with multi-body interactions. We show that it is easy by this method to find a large class of exact solutions of Gross-Pitaevskii and Gross-Pitaevskii-Ginzburg equations. We apply the D-MM to investigate the dynamics of Bose-Einstein condensation with two- and three-body interactions. As a surprising result, we obtained that it is very easy to use the built D-MM to obtain a large class of exact solutions of VCCGLE with two-body interactions via a generalized VCCGLE with two- and three-body interactions containing cubic-derivative terms. The results show that the proposed method is direct, concise, elementary, and effective, and can be a very effective and powerful mathematical tool for solving many other nonlinear evolution equations in physics.

  11. Investigating tunable KRb gases and Bose-Einstein condensates

    DEFF Research Database (Denmark)

    Jørgensen, Nils Byg

    2015-01-01

    We present the production of dual-species Bose-Einstein condensates of 39K and 87Rb with tunable interactions. A dark spontaneous force optical trap was used for 87Rb to reduce the losses in 39K originating from light-assisted collisions in the magneto optical trapping phase. Using sympathetic...

  12. Hydrodynamic excitations in a Bose-Einstein condensate

    NARCIS (Netherlands)

    Meppelink, R

    2009-01-01

    The field of Bose-Einstein condensation (BEC) in dilute atomic gases provides a fruitful playground to test well-developed theories of quantum fluids. Research using BECs can address open questions relating to the many-body aspects of two-component quantum liquids, namely the interaction between the

  13. CGC/saturation approach for high energy soft interactions: `soft' Pomeron structure and $v_{n}$ in hadron and nucleus collisions from Bose-Einstein correlation

    CERN Document Server

    Gotsman, E; Maor, U

    2016-01-01

    In the framework of our model of soft interactions at high energy based on CGC/saturation approach,we show that Bose-Einstein correlations of identical gluons lead to large values of $v_n$. We demonstrate how three dimensional scales of high energy interactions: hadron radius, typical size of the wave function in diffractive production of small masses (size of the constituent quark), and the saturation momentum, influence the values of BE correlations, and in particular, the values of $v_n$. Our calculation shows that the structure of the `dressed' Pomeron leads to values of $v_n$ which are close to experimental values for proton-proton scattering, 20\\% smaller than the observed values for proton-lead collisions, and close to lead-lead collisions for 0-10\\% centrality. Bearing this result in mind, we conclude that it is premature to consider, that the appearance of long range rapidity azimuthal correlations are due only to the hydrodynamical behaviour of the quark-gluon plasma.

  14. Dispersive interaction of a Bose-Einstein condensate with a movable mirror of an optomechanical cavity in the presence of laser phase noise

    Science.gov (United States)

    Dalafi, A.; Naderi, M. H.

    2016-12-01

    We theoretically investigate the dispersive interaction of a Bose-Einstein condensate (BEC) trapped inside an optomechanical cavity with a moving end mirror in the presence of the laser phase noise (LPN) as well as the atomic collisions. We assume that the effective frequency of the optical mode is much greater than those of the mechanical and the Bogoliubov modes of the movable mirror and the BEC. In the adiabatic approximation where the damping rate of the cavity is faster than those of the other modes, the system behaves as an effective two-mode model in which the atomic and mechanical modes are coupled to each other through the mediation of the optical field by an effective coupling parameter. We show that in the effective two-mode model, the LPN appears as a classical stochastic pump term which drives the amplitude quadratures of the mechanical and the Bogoliubov modes. It is also shown that a strong stationary mirror-atom entanglement can be established just in the dispersive and Doppler regimes where the two modes come into resonance with each other and the effect of the LPN gets very small.

  15. Self-Trapping State and Atomic Tunnelling Current of an Atomic Bose-Einstein Condensate Interacting with a Laser Field in a Double-Well Potential

    Institute of Scientific and Technical Information of China (English)

    YU Zhao-Xian; JIAO Zhi-Yong

    2002-01-01

    We present a theoretical treatment of dynamics of an atomic Bose-Einstein condensation interacting witha single-mode quantized travelling-wave laser field in a double-well potential. When the atom-field system is initiallyin a coherent state, expressions for the energy exchange between atoms and photons are derived. It is revealed thatatoms in the two wells can be in a self-trapping state when the tunnelling frequency satisfies two specific conditions,in which the resonant and far off-resonant cases are included. It is found that there is an alternating current with twodifferent sinusoidal oscillations between the two wells, but no dc characteristic of the atomic tunnelling current occurs.It should be emphasized that when without the laser field, both the population difference and the atomic tunnellingcurrent are only a single oscillation. But they will respectively become a superposition of two oscillations with differentoscillatory frequencies in the presence of the laser field. For the two oscillations of the population difference, one alwayshas an increment in the oscillatory frequency, the other can have an increment or a decrease under different cases. Theseconclusions are also suitable to those of the atomic tunnelling current. As a possible application, by measurement of theatomic tunnelling current between the two wells, the number of Bose-condensed atoms can be evaluated. lBy properlyselecting the laser field, the expected atomic tunnelling current can be obtained too.

  16. Basic Mean-Field Theory for Bose-Einstein Condensates

    Science.gov (United States)

    Kevrekidis, P. G.; Frantzeskakis, D. J.; Carretero-González, R.

    The phenomenon of Bose-Einstein condensation, initially predicted by Bose [1] and Einstein [2, 3] in 1924, refers to systems of particles obeying the Bose statistics. In particular, when a gas of bosonic particles is cooled below a critical transition temperature T c , the particles merge into the Bose-Einstein condensate (BEC), in which a macroscopic number of particles (typically 103 to 106) share the same quantum state. Bose-Einstein condensation is in fact a quantum phase transition, which is connected to the manifestation of fundamental physical phenomena, such as superfluidity in liquid helium and superconductivity in metals (see, e.g., [4] for a relevant discussion and references). Dilute weakly-interacting BECs were first realized experimentally in 1995 in atomic gases, and specifically in vapors of rubidium [5] and sodium [6]. In the same year, first signatures of Bose-Einstein condensation in vapors of lithium were also reported [7] and were later more systematically confirmed [8]. The significance and importance of the emergence of BECs has been recognized through the 2001 Nobel prize in Physics [9, 10]. During the last years there has been an explosion of interest in the physics of BECs. Today, over fifty experimental groups around the world can routinely produce BECs, while an enormous amount of theoretical work has ensued.

  17. Tunneling Dynamics Between Atomic and Molecular Bose-Einstein Condensates

    Institute of Scientific and Technical Information of China (English)

    CHEN Chang-Yong

    2004-01-01

    Tunneling dynamics of multi-atomic molecules between atomic and multi-atomic molecular Bose-Einstein condensates with Feshbach resonance is investigated.It is indicated that the tunneling in the two Bose-Einstein condensates depends on not only the inter-atomic-molecular nonlinear interactions and the initial number of atoms in these condensates,but also the tunneling coupling between the atomic condensate and the multi-atomic molecular condensate.It is discovered that besides oscillating tunneling current between the atomic condensate and the multi-atomic molecular condensate,the nonlinear multi-atomic molecular tunneling dynamics sustains a self-locked population imbalance:a macroscopic quantum self-trapping effect.The influence of de-coherence caused by non-condensate atoms on the tunneling dynamics is studied.It is shown that de-coherence suppresses the multi-atomic molecular tunneling.Moreover,the conception of the molecular Bose-Einstein condensate,which is different from the conventional single-atomic Bose-Einstein condensate,is specially emphasized in this paper.

  18. Chaos control of a Bose-Einstein condensate in a moving optical lattice

    Science.gov (United States)

    Zhang, Zhiying; Feng, Xiuqin; Yao, Zhihai

    2016-07-01

    Chaos control of a Bose-Einstein condensate (BEC) loaded into a moving optical lattice with attractive interaction is investigated on the basis of Lyapunov stability theory. Three methods are designed to control chaos in BEC. As a controller, a bias constant, periodic force, or wavelet function feedback is added to the BEC system. Numerical simulations reveal that chaotic behavior can be well controlled to achieve periodicity by regulating control parameters. Different periodic orbits are available for different control parameters only if the maximal Lyapunov exponent of the system is negative. The abundant effect of chaotic control is also demonstrated numerically. Chaos control can be realized effectively by using our proposed control strategies.

  19. The τ-model of Bose-Einstein Correlations: Some recent results

    Directory of Open Access Journals (Sweden)

    Metzger Wesley J.

    2016-01-01

    Full Text Available Bose-Einstein correlations of pairs of identical charged pions produced in hadronic Z decays and in 7 TeV pp minimum bias interactions are investigated within the framework of the τ-model.

  20. Steady-state entanglement of a Bose-Einstein condensate and a nanomechanical resonator

    CERN Document Server

    Asjad, Muhammad; 10.1103/PhysRevA.84.033606

    2011-01-01

    We analyze the steady-state entanglement between Bose-Einstein condensate trapped inside an optical cavity with a moving end mirror (nanomechanical resonator) driven by a single mode laser. The quantized laser field mediates the interaction between the Bose-Einstein condensate and nanomechanical resonator. In particular, we study the influence of temperature on the entanglement of the coupled system, and note that the steady-state entanglement is fragile with respect to temperature.

  1. Transition of a mesoscopic bosonic gas into a Bose-Einstein condensat

    CERN Document Server

    Schelle, Alexej

    2011-01-01

    The condensate number distribution during the transition of a dilute, weakly interacting gas of N=200 bosonic atoms into a Bose-Einstein condensate is modeled within number conserving master equation theory of Bose-Einstein condensation. Initial strong quantum fluctuations occuring during the exponential cycle of condensate growth reduce in a subsequent saturation stage, before the Bose gas finally relaxes towards the Gibbs-Boltzmann equilibrium.

  2. Transition of a mesoscopic bosonic gas into a Bose-Einstein condensate

    OpenAIRE

    2011-01-01

    The condensate number distribution during the transition of a dilute, weakly interacting gas of N=200 bosonic atoms into a Bose-Einstein condensate is modeled within number conserving master equation theory of Bose-Einstein condensation. Initial strong quantum fluctuations occuring during the exponential cycle of condensate growth reduce in a subsequent saturation stage, before the Bose gas finally relaxes towards the Gibbs-Boltzmann equilibrium.

  3. Tunneling Dynamics of Two-Species Bose-Einstein Condensates

    Institute of Scientific and Technical Information of China (English)

    YANG Li-Min; YU Zhao-Xian; JIAO Zhi-Yong

    2003-01-01

    We have studied the tunneling dynamics of two-species Bose-Einstein condensates. It is shown that the population difference and the Josephson-like tunneling current between the two condensates exhibit oscillation behaviors and there exists macroscopic quantum self-trapping, which strongly depends on the initial state, interatomic nonlinear self-interaction, interspecies nonlinear interaction, and the total number of atoms in the two condensates.

  4. Recent developments in Bose-Einstein condensation

    Energy Technology Data Exchange (ETDEWEB)

    Kalman, G.

    1997-09-22

    This paper contains viewgraphs on developments on Bose-Einstein condensation. Some topics covered are: strongly coupled coulomb systems; standard response functions of the first and second kind; dynamical mean field theory; quasi localized charge approximation; and the main equations.

  5. Scalar field as a Bose-Einstein condensate?

    Energy Technology Data Exchange (ETDEWEB)

    Castellanos, Elías; Escamilla-Rivera, Celia [Mesoamerican Centre for Theoretical Physics (ICTP regional headquarters in Central America, the Caribbean and Mexico), Universidad Autónoma de Chiapas, Carretera Zapata Km. 4, Real del Bosque (Terán), 29040, Tuxtla Gutiérrez, Chiapas (Mexico); Macías, Alfredo [Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, A.P. 55-534, Mexico D.F. 09340 (Mexico); Núñez, Darío, E-mail: ecastellanos@mctp.mx, E-mail: cescamilla@mctp.mx, E-mail: amac@xanum.uam.mx, E-mail: nunez@nucleares.unam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior C.U., A.P. 70-543, México D.F. 04510 (Mexico)

    2014-11-01

    We discuss the analogy between a classical scalar field with a self-interacting potential, in a curved spacetime described by a quasi-bounded state, and a trapped Bose-Einstein condensate. In this context, we compare the Klein-Gordon equation with the Gross-Pitaevskii equation. Moreover, the introduction of a curved background spacetime endows, in a natural way, an equivalence to the Gross-Pitaevskii equation with an explicit confinement potential. The curvature also induces a position dependent self-interaction parameter. We exploit this analogy by means of the Thomas-Fermi approximation, commonly used to describe the Bose-Einstein condensate, in order to analyze the quasi bound scalar field distribution surrounding a black hole.

  6. The Weak-Coupling of Bose-Einstein Condensates

    Institute of Scientific and Technical Information of China (English)

    ZHOU Xiao-Ji; MA Zao-Yuan; CHEN Xu-Zong; WANG Yi-Qiu

    2003-01-01

    The coherent characteristics of four trapped Bose-Einstein condensates (BEC) conjunct one by one in aring shape which is divided by two far off-resonant lasers, are studied. Four coupled Gross-Pitaevskii equations are usedto describe the dynamics of the system. Two kinds of self-trapping effects are discussed in the coupled BECs, and thephase diagrams for different initial conditions and different coupling strengths are discussed. This study can be used todetermine interaction parameters between atoms in BEC.

  7. Vortex dynamics in coherently coupled Bose-Einstein condensates

    Science.gov (United States)

    Calderaro, Luca; Fetter, Alexander L.; Massignan, Pietro; Wittek, Peter

    2017-02-01

    In classical hydrodynamics with uniform density, vortices move with the local fluid velocity. This description is rewritten in terms of forces arising from the interaction with other vortices. Two such positive straight vortices experience a repulsive interaction and precess in a positive (anticlockwise) sense around their common centroid. A similar picture applies to vortices in a two-component, two-dimensional uniform Bose-Einstein condensate (BEC) coherently coupled through rf Rabi fields. Unlike the classical case, however, the rf Rabi coupling induces an attractive interaction and two such vortices with positive signs now rotate in the negative (clockwise) sense. Pairs of counter-rotating vortices are instead found to translate with uniform velocity perpendicular to the line joining their cores. This picture is extended to a single vortex in a two-component trapped BEC. Although two uniform vortex-free components experience familiar Rabi oscillations of particle-number difference, such behavior is absent for a vortex in one component because of the nonuniform vortex phase. Instead the coherent Rabi coupling induces a periodic vorticity transfer between the two components.

  8. Hubbard Model for Atomic Impurities Bound by the Vortex Lattice of a Rotating Bose-Einstein Condensate.

    Science.gov (United States)

    Johnson, T H; Yuan, Y; Bao, W; Clark, S R; Foot, C; Jaksch, D

    2016-06-17

    We investigate cold bosonic impurity atoms trapped in a vortex lattice formed by condensed bosons of another species. We describe the dynamics of the impurities by a bosonic Hubbard model containing occupation-dependent parameters to capture the effects of strong impurity-impurity interactions. These include both a repulsive direct interaction and an attractive effective interaction mediated by the Bose-Einstein condensate. The occupation dependence of these two competing interactions drastically affects the Hubbard model phase diagram, including causing the disappearance of some Mott lobes.

  9. Bose-Einstein condensation of light: general theory.

    Science.gov (United States)

    Sob'yanin, Denis Nikolaevich

    2013-08-01

    A theory of Bose-Einstein condensation of light in a dye-filled optical microcavity is presented. The theory is based on the hierarchical maximum entropy principle and allows one to investigate the fluctuating behavior of the photon gas in the microcavity for all numbers of photons, dye molecules, and excitations at all temperatures, including the whole critical region. The master equation describing the interaction between photons and dye molecules in the microcavity is derived and the equivalence between the hierarchical maximum entropy principle and the master equation approach is shown. The cases of a fixed mean total photon number and a fixed total excitation number are considered, and a much sharper, nonparabolic onset of a macroscopic Bose-Einstein condensation of light in the latter case is demonstrated. The theory does not use the grand canonical approximation, takes into account the photon polarization degeneracy, and exactly describes the microscopic, mesoscopic, and macroscopic Bose-Einstein condensation of light. Under certain conditions, it predicts sub-Poissonian statistics of the photon condensate and the polarized photon condensate, and a universal relation takes place between the degrees of second-order coherence for these condensates. In the macroscopic case, there appear a sharp jump in the degrees of second-order coherence, a sharp jump and kink in the reduced standard deviations of the fluctuating numbers of photons in the polarized and whole condensates, and a sharp peak, a cusp, of the Mandel parameter for the whole condensate in the critical region. The possibility of nonclassical light generation in the microcavity with the photon Bose-Einstein condensate is predicted.

  10. Mechanocaloric and Thermomechanical Effects in Bose-Einstein Condensed Systems

    OpenAIRE

    Marques, G. C.; Bagnato, V. S.; Muniz, S. R.; Spehler, D.

    2005-01-01

    In this paper we extend previous hydrodynamic equations, governing the motion of Bose-Einstein-condensed fluids, to include temperature effects. This allows us to analyze some differences between a normal fluid and a Bose-Einstein-condensed one. We show that, in close analogy with superfluid He-4, a Bose-Einstein-condensed fluid exhibits the mechanocaloric and thermomechanical effects. In our approach we can explain both effects without using the hypothesis that the Bose-Einstein-condensed fl...

  11. Interaction-Assisted Quantum Tunneling of a Bose-Einstein Condensate Out of a Single Trapping Well

    Science.gov (United States)

    Potnis, Shreyas; Ramos, Ramon; Maeda, Kenji; Carr, Lincoln D.; Steinberg, Aephraim M.

    2017-02-01

    We experimentally study tunneling of Bose-condensed Rb 87 atoms prepared in a quasibound state and observe a nonexponential decay caused by interatomic interactions. A combination of a magnetic quadrupole trap and a thin 1.3 μ m barrier created using a blue-detuned sheet of light is used to tailor traps with controllable depth and tunneling rate. The escape dynamics strongly depend on the mean-field energy, which gives rise to three distinct regimes—classical spilling over the barrier, quantum tunneling, and decay dominated by background losses. We show that the tunneling rate depends exponentially on the chemical potential. Our results show good agreement with numerical solutions of the 3D Gross-Pitaevskii equation.

  12. Bose-Einstein Condensation in low dimensionality

    Science.gov (United States)

    Nho, Kwangsik; Landau, D. P.

    2006-03-01

    Using path integral Monte Carlo simulation methods[1], we have studied properties of Bose-Einstein Condensates harmonically trapped in low dimemsion. Each boson has a hard-sphere potential whose core radius equals its corresponding scattering length. We have tightly confined the motion of trapped particles in one or more direction by increasing the trap anisotropy in order to simulate lower dimensional atomic gases. We have investigated the effect of both the temperature and the dimemsionality on the energetics and structural properties such as the total energy, the density profile, and the superfluid fraction. Our results show that the physics of low dimensional bosonic systems is very different from that of their three dimensional counterparts[2]. The superfluid fraction for a quasi-2D boson gas decreases faster than that for both a quasi-1D system[3] and a true 3D system with increasing temperature. The superfluid fraction decreases gradually as the two-body interaction strength increases although it shows no noticable dependence for both a quasi-1D system and a true 3D system. [1] K. Nho and D. P. Landau, Phys. Rev. A. 70, 53614 (2004).[2] N. D. Mermin and H. Wagner, Phys. Rev. Lett. 22, 1133 (1966);1.5inP. C. Hohenberg, Phys. Rev. 158, 383 (1967).[3] K. Nho and D. Blume, Phys. Rev. Lett. 95, 193601 (2005).

  13. Observation of Weak Collapse in a Bose-Einstein Condensate

    CERN Document Server

    Eigen, Christoph; Suleymanzade, Aziza; Navon, Nir; Hadzibabic, Zoran; Smith, Robert P

    2016-01-01

    We study the collapse of an attractive atomic Bose-Einstein condensate prepared in the uniform potential an optical-box trap. We characterise the critical point for collapse and the collapse dynamics, observing universal behaviour in agreement with theoretical expectations. Most importantly, we observe a clear experimental signature of the counterintuitive weak collapse, namely that making the system more unstable can result in a smaller particle loss. We experimentally determine the scaling laws that govern the weak-collapse atom loss, providing a benchmark for the general theories of nonlinear wave phenomena.

  14. Number-conserving master equation theory for a dilute Bose-Einstein condensate

    CERN Document Server

    Schelle, Alexej; Delande, Dominique; Buchleitner, Andreas

    2010-01-01

    We describe the transition of $N$ weakly interacting atoms into a Bose-Einstein condensate within a number-conserving quantum master equation theory. Based on the separation of time scales for condensate formation and non-condensate thermalization, we derive a master equation for the condensate subsystem in the presence of the non-condensate environment under the inclusion of all two body interaction processes. We numerically monitor the condensate particle number distribution during condensate formation, and derive a condition under which the unique equilibrium steady state of a dilute, weakly interacting Bose-Einstein condensate is given by a Gibbs-Boltzmann thermal state of $N$ non-interacting atoms.

  15. Atomic Tunnelling Dynamics of Two Squeezed Bose-Einstein Condensates

    Institute of Scientific and Technical Information of China (English)

    LI Jin-Hui; KUANG Le-Man

    2003-01-01

    In this paper, tunnelling dynamics of squeezed Bose-Einstein condensates (BEC's) in the presence of the nonlinear self-interaction of each species, the interspecies nonlinear interaction, and the Josephson-like tunnelling interaction is investigated by using the second quantization approach. The influence of BEC squeezing on macroscopic quantum self-trapping (MQST) and quantum coherent atomic tunnelling is analyzed in detail. It is shown that the MQST and coherent atomic tunnelling between two squeezed BEC's can be manipulated through changing squeezing amplitude and squeezing phase of BEC squeezed states.

  16. Bouncing dynamics of Bose-Einstein condensates under the effects of gravity

    Science.gov (United States)

    Sekh, Golam Ali

    2017-03-01

    Bouncing dynamics of quasi-one dimensional Bose-Einstein condensates (BECs) falling under gravity on delta-function potentials is investigated. First, we consider a single component BEC in the presence of cubic-quintic nonlinearity and study dynamical behavior of different parameters of the system using variational and numerical approaches. We see that the quintic nonlinearity plays a dominant role over cubic nonlinear interaction to extend the bouncing dynamics in the non-linear regime. We find that a matter-wave performs bouncing motion only for certain discrete values of initial position above the reflecting potential. We then consider bouncing dynamics of binary BECs. It is shown that the pair of matter-waves bounces together if inter-species interaction is attractive. However, their pairing breaks down if the inter-species interaction is made repulsive.

  17. Bose-Einstein condensation of atomic hydrogen

    NARCIS (Netherlands)

    Willmann, L

    1999-01-01

    The recent creation of a Bose-Einstein condensate of atomic hydrogen has added a new system to this exciting field, The differences between hydrogen and the alkali metal atoms require other techniques for the initial trapping and cooling of the atoms and the subsequent detection of the condensate. T

  18. Chaos in a Bose-Einstein condensate

    Institute of Scientific and Technical Information of China (English)

    Wang Zhi-Xia; Ni Zheng-Guo; Cong Fu-Zhong; Liu Xue-Shen; Chen Lei

    2010-01-01

    It is demonstrated that Smale-horseshoe chaos exists in the time evolution of the one-dimensional Bose-Einstein condensate driven by time-periodic harmonic or inverted-harmonic potential.A formally exact solution of the timedependent Gross-Pitaevskii equation is constructed,which describes the matter shock waves with chaotic or periodic amplitudes and phases.

  19. Initial stages of Bose-Einstein condensation

    NARCIS (Netherlands)

    Stoof, H.T.C.

    1997-01-01

    We present the quantum theory for the nucleation of Bose-Einstein condensation in a dilute atomic Bose gas. This quantum theory has the important advantage that both the kinetic and coherent stages of the nucleation process can be described in a unified way by a single Fokker-Planck equation.

  20. Initial stages of Bose-Einstein condensation

    NARCIS (Netherlands)

    Stoof, H.T.C.

    2001-01-01

    We present the quantum theory for the nucleation of Bose-Einstein condensation in a dilute atomic Bose gas. This quantum theory confirms the results of the semiclassical treatment, but has the important advantage that both the kinetic and coherent stages of the nucleation process can now be describe

  1. Nonlinear Wave in a Disc-Shaped Bose-Einstein Condensate

    Institute of Scientific and Technical Information of China (English)

    DUAN Wen-Shan; CHEN Jian-Hong; YANG Hong-Juan; SHI Yu-Ren; WANG Hong-Yan

    2006-01-01

    @@ We discuss the possible nonlinear wavesof atomic matter wave in a Bose-Einstein condensate. One and two of two-dimensional (2D) dark solitons in the Bose-Einstein condensed system are investigated. A rich dynamics is studied for the interactions between two solitons. The interaction profiles of two solitons are greatly different if the angle between them are different. If the angle is small enough, the maximum amplitude during the interaction between two solitons is even less than that of a single soliton. However, if the angle is large enough, the maximum amplitude of two solitons can gradually attend to the sum of two soliton amplitudes.

  2. Scalar Field as a Bose-Einstein Condensate?

    CERN Document Server

    Castellanos, Elías; Núñez, Darío

    2013-01-01

    We present a flat space analogy between a classical scalar field with a self-interacting potential and a Bose-Einstein condensate (BEC). In particular, we reduce the Klein-Gordon equation, governing the dynamics of the scalar field, to a Gross-Pitaevskii--like equation (GPE), governing the dynamics of BEC's. Moreover, the introduction of a curved background spacetime endows, in a natural way, the resulting GPE-like equation with an explicit confinement potential. Additionally, Thomas-Fermi approximation is applied to the 3-dimensional version of this GPE, in order to calculate some thermodynamical properties of the self-interacting scalar field system.

  3. Behaviour of Rotating Bose-Einstein Condensates Under Shrinking

    Institute of Scientific and Technical Information of China (English)

    ZHAI Hui; ZHOU Qi

    2005-01-01

    @@ When the repulsive interaction strength between atoms decreases, the size of a rotating Bose-Einstein condensate will consequently shrink. We find that the rotational frequency will increase during the shrinking of condensate,which is a quantum mechanical analogy to ballet dancing. Compared to a non-rotating condensate, the size of a rotating BEC will eventually be satiated at a finite value when the interaction strength is gradually reduced.We also calculate the vortex dynamics induced by the atomic current, and discuss the difference of vortex dynamics in this case and that observed in a recent experiment carried out by the JILA group [Phys. Rev. Lett.90 (2003) 170405].

  4. Entanglement dynamics in two-component Bose-Einstein condensates

    Institute of Scientific and Technical Information of China (English)

    Hao Ya-Jiang; Liang Jiu-Qing

    2006-01-01

    Based on the exact solution of the time-dependent Schrodinger equation for two-species Bose-Einstein condensates(BECs) consisting of two hyperfine states of the atoms coupled by a tuned adiabatic and time-varying Raman coupling,we obtain analytically the entanglement dynamics of the system with various initial states, particularly the SU(2)coherent state, for both of cases with and without the nonlinear interactions. It is shown that the effect of nonlinear interaction on the entanglement appears only in a longer time period depending on the BEC parameters.

  5. Einstein, Bose and Bose-Einstein Statistics

    Science.gov (United States)

    Wali, Kameshwar C.

    2005-05-01

    In June 1924, a relatively unknown Satyendra Nath Bose from Dacca, India, wrote a letter to Einstein beginning with ``Respected Sir, I have ventured to send you the accompanying article for your perusal. I am anxious to know what you think of it. You will see that I have ventured to deduce the coefficient 8πυ^2/c^3 in Planck's law independent of the classical electrodynamics, only assuming that the ultimate elementary regions in Phase-space have the content h^3. I do not know sufficient German to translate the paper. If you think the paper worth publication, I shall be grateful if you arrange for its publication in Zeitschrift für Physik.'' Einstein did translate the article himself and got it published. He wrote to Ehrenfest: ``The Indian Bose has given a beautiful derivation of Planck's law, including the constant [i.e.8πυ^2/c^3].'' Einstein extended the ideas of Bose that implied, among other things, a new statistics for the light-quanta to the molecules of an ideal gas and wrote to Ehrenfest, `from a certain temperature on, the molecules ``condense'' without attractive forces, that is, they accumulate at zero velocity. The theory is pretty, but is there also some truth to it?' Abraham Pais has called Bose's paper ``the fourth and the last revolutionary papers of the old quantum theory.'' My paper will present the works of Bose and Einstein in their historical perspective and the eventual birth of the new quantum Bose-Einstein statistics.

  6. Impurity in a Bose-Einstein Condensate and the Efimov Effect

    Science.gov (United States)

    Levinsen, Jesper; Parish, Meera M.; Bruun, Georg M.

    2015-09-01

    We investigate the zero-temperature properties of an impurity particle interacting with a Bose-Einstein condensate (BEC), using a variational wave function that includes up to two Bogoliubov excitations of the BEC. This allows one to capture three-body Efimov physics, as well as to recover the first nontrivial terms in the weak-coupling expansion. We show that the energy and quasiparticle residue of the dressed impurity (polaron) are significantly lowered by three-body correlations, even for weak interactions where there is no Efimov trimer state in a vacuum. For increasing attraction between the impurity and the BEC, we observe a smooth crossover from atom to Efimov trimer, with a superposition of states near the Efimov resonance. We furthermore demonstrate that three-body loss does not prohibit the experimental observation of these effects. Our results thus suggest a route to realizing Efimov physics in a stable quantum many-body system for the first time.

  7. High visibility gravimetry with a Bose-Einstein condensate

    CERN Document Server

    Debs, J E; Barter, T H; Döring, D; Dennis, G R; McDonald, G; Robins, N P; Close, J D

    2010-01-01

    We present results from an atomic gravimeter using a Bose-Einstein condensate with fringe visibility up to 85%. A direct comparison with a thermal state displays a significant increase in visibility for a condensed source. We do not observe any detrimental effects of atom-atom interactions, provided the cloud is allowed to reach the ballistic free-expansion regime. By increasing the space-time area enclosed by our interferometer using large-momentum-transfer beamsplitters, we achieve a precision of 17 ppm in a measurement of the local acceleration due to gravity.

  8. Stability of self-gravitating Bose-Einstein condensates

    Science.gov (United States)

    Schroven, Kris; List, Meike; Lämmerzahl, Claus

    2015-12-01

    We study the ground state and the first three radially excited states of a self-gravitating Bose-Einstein condensate with respect to the influence of two external parameters, the total mass and the strength of interactions between particles. For this we use the so-called Gross-Pitaevskii-Newton system. In this context we especially determine the case of very high total masses where the ground state solutions of the Gross-Pitaevskii-Newton system can be approximated with the Thomas-Fermi limit. Furthermore, stability properties of the computed radially excited states are examined by applying arguments of the catastrophe theory.

  9. The Rethermalizing Bose-Einstein Condensate of Dark Matter Axions

    CERN Document Server

    Banik, Nilanjan; Sikivie, Pierre; Todarello, Elisa Maria

    2015-01-01

    The axions produced during the QCD phase transition by vacuum realignment, string decay and domain wall decay thermalize as a result of their gravitational self-interactions when the photon temperature is approximately 500 eV. They then form a Bose-Einstein condensate (BEC). Because the axion BEC rethermalizes on time scales shorter than the age of the universe, it has properties that distinguish it from other forms of cold dark matter. The observational evidence for caustic rings of dark matter in galactic halos is explained if the dark matter is axions, at least in part, but not if the dark matter is entirely WIMPs or sterile neutrinos.

  10. Brownian motion of solitons in a Bose-Einstein condensate.

    Science.gov (United States)

    Aycock, Lauren M; Hurst, Hilary M; Efimkin, Dmitry K; Genkina, Dina; Lu, Hsin-I; Galitski, Victor M; Spielman, I B

    2017-03-07

    We observed and controlled the Brownian motion of solitons. We launched solitonic excitations in highly elongated [Formula: see text] Bose-Einstein condensates (BECs) and showed that a dilute background of impurity atoms in a different internal state dramatically affects the soliton. With no impurities and in one dimension (1D), these solitons would have an infinite lifetime, a consequence of integrability. In our experiment, the added impurities scatter off the much larger soliton, contributing to its Brownian motion and decreasing its lifetime. We describe the soliton's diffusive behavior using a quasi-1D scattering theory of impurity atoms interacting with a soliton, giving diffusion coefficients consistent with experiment.

  11. Stability of self-gravitating Bose-Einstein-Condensates

    CERN Document Server

    Schroven, Kris; Lämmerzahl, Claus

    2015-01-01

    We study the ground state and the first three radially excited states of a self-gravitating Bose-Einstein- Condensate with respect to the influence of two external parameters, the total mass and the strength of interactions between particles. For this we use the so-called Gross-Pitaevskii-Newton system. In this context we especially determine the case of very high total masses where the ground state solutions of the Gross-Pitaevskii- Newton system can be approximated with the Thomas-Fermi limit. Furthermore, stability properties of the computed radially excited states are examined by applying arguments of the catastrophe theory.

  12. Astrophysical Bose-Einstein Condensates and Superradiance

    CERN Document Server

    Kuhnel, Florian

    2014-01-01

    We investigate gravitational analogue models to describe slowly rotating objects (e.g., dark-matter halos, or boson stars) in terms of Bose-Einstein condensates, trapped in their own gravitational potentials. We begin with a modified Gross-Pitaevskii equation, and show that the resulting background equations of motion are stable, as long as the rotational component is treated as a small perturbation. The dynamics of the fluctuations of the velocity potential are effectively governed by the Klein-Gordon equation of a "Eulerian metric", where we derive the latter by the use of a relativistic Lagrangian extrapolation. Superradiant scattering on such objects is studied. We derive conditions for its occurence and estimate its strength. Our investigations might give an observational handle to phenomenologically constrain Bose-Einstein condensates.

  13. Astrophysical Bose-Einstein condensates and superradiance

    Science.gov (United States)

    Kühnel, Florian; Rampf, Cornelius

    2014-11-01

    We investigate gravitational analogue models to describe slowly rotating objects (e.g., dark-matter halos, or boson stars) in terms of Bose-Einstein condensates, trapped in their own gravitational potentials. We begin with a modified Gross-Pitaevskii equation, and show that the resulting background equations of motion are stable, as long as the rotational component is treated as a small perturbation. The dynamics of the fluctuations of the velocity potential are effectively governed by the Klein-Gordon equation of an "Eulerian metric," where we derive the latter by the use of a relativistic Lagrangian extrapolation. Superradiant scattering on such objects is studied. We derive conditions for its occurrence and estimate its strength. Our investigations might give an observational handle to phenomenologically constrain Bose-Einstein condensates.

  14. Quantum Effects of Bose-Einstein Condensates

    Institute of Scientific and Technical Information of China (English)

    YU Zhao-Xian; JIAO Zhi-Yong; SUN Jin-Zuo

    2004-01-01

    In this paper,we study quadrature squeezings of two Bose-Einstein condensates with collision and nonclassical properties of pair entanglement in four wave mixing in Bose-Einstein condensates.With the aid of a numerical method,we find that the two modes(pair entanglement modes)a1 and a2 may exhibit quadrature squeezing,in which they are affected by the initial phase.It is shown that the two pump modes exhibit the same super-Poissonian distribution.The analysis for the mode-mode correlation shows that there always exists a violation of the Cauchy-Schwartz inequality,which means that correlation between the two pump modes is nonclassical.

  15. Relative Phase with the Overlap Region of Two Bose-Einstein Condensates

    Institute of Scientific and Technical Information of China (English)

    周小计; 李卫东; 陈徐宗; 王义遒

    2002-01-01

    We present an expression of the relative phase for two interacting Bose-Einstein condensates released from an isotropic trapping potential. We discuss the interference condition between condensates and the visibility of the interference pattern reflecting the interaction between the condensates.

  16. Phase of Two-Component Bose-Einstein Condensates with a Coupling Drive

    Institute of Scientific and Technical Information of China (English)

    YU Zhao-Xian; JIN Shuo; JIAO Zhi-Yong; WANG Ji-Suo

    2007-01-01

    By using the invariant theory, we study the phases of two-component Bose-Einstein condensates with a coupling drive under the case that the strength of the interatomic interaction in each condensate equals the interspecies interaction. The dynamical and geometric phases are presented respectively. The Aharonov-Anandan phase is also obtained under the cyclical evolution.

  17. Mechanocaloric and thermomechanical effects in Bose-Einstein-condensed systems

    Science.gov (United States)

    Marques, G. C.; Bagnato, V. S.; Muniz, S. R.; Spehler, D.

    2004-05-01

    In this paper we extend previous hydrodynamic equations, governing the motion of Bose-Einstein-condensed fluids, to include temperature effects. This allows us to analyze some differences between a normal fluid and a Bose-Einstein-condensed one. We show that, in close analogy with superfluid 4He , a Bose-Einstein-condensed fluid exhibits the mechanocaloric and thermomechanical effects. In our approach we can explain both effects without using the hypothesis that the Bose-Einstein-condensed fluid has zero entropy. Such ideas could be investigated in existing experiments.

  18. Bose-Einstein condensation in dilute atomic gases

    Science.gov (United States)

    Arlt, J.; Bongs, K.; Sengstock, K.; Ertmer, W.

    2002-02-01

    Bose-Einstein condensation is one of the most curious and fascinating phenomena in physics. It lies at the heart of such intriguing processes as superfluidity and superconductivity. However, in most cases, only a small part of the sample is Bose-condensed and strong interactions are present. A weakly interacting, pure Bose-Einstein condensate (BEC) has therefore been called the "holy grail of atomic physics". In 1995 this grail was found by producing almost pure BECs in dilute atomic gases. We review the experimental development that led to the realization of BEC in these systems and explain how BECs are now routinely produced in about 25 laboratories worldwide. The tremendous experimental progress of the past few years is outlined and a number of recent experiments show the current status of the field. Electronic supplementary material to this paper can be obtained by using the Springer LINK server located at http://dx.doi.org/10.1007/s00114-001-0277-8.

  19. Vortices and hysteresis in a rotating Bose-Einstein condensate with anharmonic confinement

    DEFF Research Database (Denmark)

    Jackson, A.D.; Kavoulakis, G.M.

    2004-01-01

    Vortices; Bose-Einstein condensation; phase diagrams; phase transformation Udgivelsesdato: 4 August......Vortices; Bose-Einstein condensation; phase diagrams; phase transformation Udgivelsesdato: 4 August...

  20. Parametric amplification of matter waves in dipolar spinor Bose-Einstein condensates

    DEFF Research Database (Denmark)

    Deuretzbacher, F.; Gebreyesus, G.; Topic, O.;

    2010-01-01

    Spin-changing collisions may lead under proper conditions to the parametric amplification of matter waves in spinor Bose-Einstein condensates. Magnetic dipole-dipole interactions, although typically very weak in alkali-metal atoms, are shown to play a very relevant role in the amplification process...

  1. Phase separation and dynamics of two-component Bose-Einstein condensates

    DEFF Research Database (Denmark)

    Lee, Kean Loon; Jørgensen, Nils Byg; Liu, I-Kang;

    2016-01-01

    The miscibility of two interacting quantum systems is an important testing ground for the understanding of complex quantum systems. Two-component Bose-Einstein condensates enable the investigation of this scenario in a particularly well controlled setting. In a homogeneous system, the transition...

  2. Phonon Spectrum and Modulational Instability in a Bose-Einstein Condensate Array

    Institute of Scientific and Technical Information of China (English)

    杨晓雪; 吴颖

    2002-01-01

    We derive the phonon spectrum and the corresponding modulational instability conditions of an array of trapscontaining Bose-Einstein condensates with each trap linked to adjacent traps by tunnelling. It is shown thatmodulational instability regimes always exist regardless of the sign of the two-body interaction.

  3. Motion of a Bose-Einstein Condensate Bright Soliton Incident on a Step-Like Potential

    Institute of Scientific and Technical Information of China (English)

    CHENG Yong-Shan; GONG Rong-Zhou; LI Hong

    2007-01-01

    @@ The motion characteristics of a Bose-Einstein condensate bright soliton incident on a local step-like potential barrier are investigated analytically by means of the variational approach. The dynamics of the soliton-potential interaction is studied as well.

  4. Entanglement in Bose-Einstein Condensates with One-Body Losses

    Science.gov (United States)

    Li, Song-Song

    2017-02-01

    We investigate quantum entanglement in two mutually non-interacting and spatially non-overlapping Bose-Einstein condensates in two harmonic potentials with one-body losses. One-body losses play an important role in the dynamical process of generating quantum entanglement. The stronger one-body losses induce more entanglement and maintain in a longer time interval.

  5. Coherently scattering atoms from an excited Bose-Einstein condensate

    NARCIS (Netherlands)

    Bijlsma, M.J.; Stoof, H.T.C.

    2000-01-01

    We consider scattering atoms from a fully Bose-Einstein condensed gas. If we take these atoms to be identical to those in the Bose-Einstein condensate, this scattering process is to a large extent analogous to Andreev reflection from the interface between a superconducting and a normal metal. We det

  6. Knot Solitons in Spinor Bose-Einstein Condensates

    Science.gov (United States)

    Hall, David; Ray, Michael; Tiurev, Konstantin; Ruokokoski, Emmi; Gheorghe, Andrei Horia; Möttönen, Mikko

    2016-05-01

    Knots are familiar entities that appear at a captivating nexus of art, technology, mathematics and science. Following a lengthy period of theoretical investigation and development, they have recently attracted great experimental interest in classical contexts ranging from knotted DNA and nanostructures to vortex knots in fluids. We demonstrate here the controlled creation and detection of knot solitons in the quantum-mechanical order parameter of a spinor Bose-Einstein condensate. Images of the superfluid reveal the circular shape of the soliton core and its associated linked rings. Our observations of the knot soliton establish an experimental foundation for future studies of their stability, dynamics and applications within quantum systems. Supported in part by NSF Grant PHY-1205822.

  7. Photon condensation: A new paradigm for Bose-Einstein condensation

    Science.gov (United States)

    Rajan, Renju; Ramesh Babu, P.; Senthilnathan, K.

    2016-10-01

    Bose-Einstein condensation is a state of matter known to be responsible for peculiar properties exhibited by superfluid Helium-4 and superconductors. Bose-Einstein condensate (BEC) in its pure form is realizable with alkali atoms under ultra-cold temperatures. In this paper, we review the experimental scheme that demonstrates the atomic Bose-Einstein condensate. We also elaborate on the theoretical framework for atomic Bose-Einstein condensation, which includes statistical mechanics and the Gross-Pitaevskii equation. As an extension, we discuss Bose-Einstein condensation of photons realized in a fluorescent dye filled optical microcavity. We analyze this phenomenon based on the generalized Planck's law in statistical mechanics. Further, a comparison is made between photon condensate and laser. We describe how photon condensate may be a possible alternative for lasers since it does not require an energy consuming population inversion process.

  8. Bose-Einstein Condensation of Atomic Hydrogen

    CERN Document Server

    Kleppner, D; Killian, T C; Fried, D G; Willmann, L; Landhuis, D; Moss, S C; Kleppner, Daniel; Greytak, Thomas J.; Killian, Thomas C.; Fried, Dale G.; Willmann, Lorenz; Landhuis, David; Moss, Stephen C.

    1998-01-01

    We have observed Bose-Einstein condensation (BEC) of trapped atomic hydrogen, and studied it by two-photon spectroscopy of the 1S-2S transition. In these lecture notes we briefly review the history of spin-polarized atomic hydrogen and describe the final steps to BEC. Laser spectroscopy, which probes the difference in mean field energy of the 1S and 2S states, is used to study the condensate, which has a peak density of 4.8e15 cm^-3 and population of 10^9.

  9. CGC/saturation approach for high energy soft interactions: 'soft' Pomeron structure and v{sub n} in hadron and nucleus collisions from Bose-Einstein correlations

    Energy Technology Data Exchange (ETDEWEB)

    Gotsman, E.; Maor, U. [Tel Aviv University, Department of Particle Physics School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Science, Tel Aviv (Israel); Levin, E. [Tel Aviv University, Department of Particle Physics School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Science, Tel Aviv (Israel); Universidad Tecnica Federico Santa Maria and Centro Cientifico-Tecnologico de Valparaiso, Departemento de Fisica, Valparaiso (Chile)

    2016-11-15

    In the framework of our model of soft interactions at high energy based on the CGC/saturation approach, we show that Bose-Einstein correlations of identical gluons lead to large values of v{sub n}. We demonstrate how three dimensional scales of high energy interactions, hadron radius, typical size of the wave function in diffractive production of small masses (size of the constituent quark), and the saturation momentum, influence the values of BE correlations, and in particular, the values of v{sub n}. Our calculation shows that the structure of the 'dressed' Pomeron leads to values of v{sub n} which are close to experimental values for proton-proton scattering, 20 % smaller than the observed values for proton-lead collisions and close to lead-lead collisions for 0-10 % centrality. Bearing this result in mind, we conclude that it is premature to consider that the appearance of long range rapidity azimuthal correlations are due only to the hydrodynamical behaviour of the quark-gluon plasma. (orig.)

  10. Transport of Bose-Einstein condensates through two dimensional cavities

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, Timo

    2015-06-01

    The recent experimental advances in manipulating ultra-cold atoms make it feasible to study coherent transport of Bose-Einstein condensates (BEC) through various mesoscopic structures. In this work the quasi-stationary propagation of BEC matter waves through two dimensional cavities is investigated using numerical simulations within the mean-field approach of the Gross-Pitaevskii equation. The focus is on the interplay between interference effects and the interaction term in the non-linear wave equation. One sees that the transport properties show a complicated behaviour with multi-stability, hysteresis and dynamical instabilities for non-vanishing interaction. Furthermore, the prominent weak localization effect, which is a robust interference effect emerging after taking a configuration average, is reduced and partially inverted for non-vanishing interaction.

  11. Quantum filaments in dipolar Bose-Einstein condensates

    Science.gov (United States)

    Wächtler, F.; Santos, L.

    2016-06-01

    Collapse in dipolar Bose-Einstein condensates may be arrested by quantum fluctuations. Due to the anisotropy of the dipole-dipole interactions, the dipole-driven collapse induced by soft excitations is compensated by the repulsive Lee-Huang-Yang contribution resulting from quantum fluctuations of hard excitations, in a similar mechanism as that recently proposed for Bose-Bose mixtures. The arrested collapse results in self-bound filamentlike droplets, providing an explanation for the intriguing results of recent dysprosium experiments. Arrested instability and droplet formation are general features directly linked to the nature of the dipole-dipole interactions, and should hence play an important role in all future experiments with strongly dipolar gases.

  12. Thermalization and Bose-Einstein Condensation in Overpopulated Glasma

    CERN Document Server

    Blaizot, Jean-Paul; Liao, Jinfeng; McLerran, Larry; Venugopalan, Raju

    2012-01-01

    We report recent progress on understanding the thermalization of the quark-gluon plasma during the early stage in a heavy ion collision. The initially high overpopulation in the far-from-equilibrium gluonic matter ("Glasma") is shown to play a crucial role. The strongly interacting nature (and thus fast evolution) naturally arises as an {\\em emergent property} of this pre-equilibrium matter where the intrinsic coupling is weak but the highly occupied gluon states coherently amplify the scattering. A possible transient Bose-Einstein Condensate is argued to form dynamically on a rather general ground. We develop a kinetic approach for describing its evolution toward thermalization, and based on that we find approximate scaling solutions as well as numerically study the onset of condensation.

  13. Thermalization and Bose-Einstein Condensation in Overpopulated Glasma

    Energy Technology Data Exchange (ETDEWEB)

    Blaizot, Jean-Paul; Gelis, François [Institut de Physique Théorique (URA 2306 du CNRS), CEA/DSM/Saclay, 91191, Gif-sur-Yvette Cedex (France); Liao, Jinfeng [Physics Department and CEEM, Indiana University, 2401 N Milo B. Sampson Lane, Bloomington, IN 47408 (United States); RIKEN BNL Research Center, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States); McLerran, Larry [Physics Department, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States); RIKEN BNL Research Center, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States); Venugopalan, Raju [Physics Department, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2013-05-02

    We report recent progress on understanding the thermalization of the quark-gluon plasma during the early stage in a heavy ion collision. The initially high overpopulation in the far-from-equilibrium gluonic matter (“Glasma”) is shown to play a crucial role. The strongly interacting nature (and thus fast evolution) naturally arises as an emergent property of this pre-equilibrium matter where the intrinsic coupling is weak but the highly occupied gluon states coherently amplify the scattering. A possible transient Bose-Einstein Condensate is argued to form dynamically on a rather general ground. We develop a kinetic approach for describing its evolution toward thermalization as well as the onset of condensation.

  14. Landau criterion for an anisotropic Bose-Einstein condensate

    Science.gov (United States)

    Yu, Zeng-Qiang

    2017-03-01

    In this work we discuss the Landau criterion for anisotropic superfluidity. To this end we consider a pointlike impurity moving in a uniform Bose-Einstein condensate with either interparticle dipole-dipole interaction or Raman-induced spin-orbit coupling. In both cases we find that the Landau critical velocity vc is generally smaller than the sound velocity in the moving direction. Beyond vc, the energy dissipation rate is explicitly calculated via a perturbation approach. In the plane-wave phase of a spin-orbit-coupled Bose gas, the dissipationless motion is suppressed by the Raman coupling even in the direction orthogonal to the recoil momentum. Our predictions can be tested in the experiments with ultracold atoms.

  15. Kinetics of Bose-Einstein Condensation in a Trap

    CERN Document Server

    Gardiner, C W; Ballagh, R J; Davis, M J

    1997-01-01

    The formation process of a Bose-Einstein condensate in a trap is described using a master equation based on quantum kinetic theory, which can be well approximated by a description using only the condensate mode in interaction with a thermalized bath of noncondensate atoms. A rate equation of the form n = 2W(n)[(1-exp((mu_n - mu)/kT))n + 1] is derived, in which the difference between the condensate chemical potential mu_n and the bath chemical potential mu gives the essential behavior. Solutions of this equation, in conjunction with the theoretical description of the process of evaporative cooling, give a characteristic latency period for condensate formation and appear to be consistent with the observed behavior of both rubidium and sodium condensate formation.

  16. Confinement versus Bose-Einstein condensation

    CERN Document Server

    Langfeld, K

    2004-01-01

    The deconfinement phase transition at high baryon densities and low temperatures evades a direct investigation by means of lattice gauge calculations. In order to make this regime of QCD accessible by computer simulations, two proposal are made: (i) A Lattice Effective Theory (LET) is designed which incorporates gluon and diquark fields. The deconfinement transition takes place when the diquark fields undergo Bose-Einstein condensation. (ii) Rather than using eigenstates of the particle number operator, I propose to perform simulations for a fixed expectation value of the baryonic Noether current. This approach changes the view onto the finite density regime, but evades the sign and overlap problems. The latter proposal is exemplified for the LET: Although the transition from the confinement to the condensate phase is first order in the coupling constant space at zero baryon densities, the transition at finite densities appears to be a crossover.

  17. Solitonic vortices in Bose-Einstein condensates

    Science.gov (United States)

    Tylutki, M.; Donadello, S.; Serafini, S.; Pitaevskii, L. P.; Dalfovo, F.; Lamporesi, G.; Ferrari, G.

    2015-04-01

    We analyse, theoretically and experimentally, the nature of solitonic vortices (SV) in an elongated Bose-Einstein condensate. In the experiment, such defects are created via the Kibble-Zurek mechanism, when the temperature of a gas of sodium atoms is quenched across the BEC transition, and are imaged after a free expansion of the condensate. By using the Gross-Pitaevskii equation, we calculate the in-trap density and phase distributions characterizing a SV in the crossover from an elongated quasi-1D to a bulk 3D regime. The simulations show that the free expansion strongly amplifies the key features of a SV and produces a remarkable twist of the solitonic plane due to the quantized vorticity associated with the defect. Good agreement is found between simulations and experiments.

  18. Controllable optical bistability of Bose-Einstein condensate in an optical cavity with a Kerr medium

    Institute of Scientific and Technical Information of China (English)

    Zheng Qiang; Li Sheng-Chang; Zhang Xiao-Ping; You Tai-Jie; Fu Li-Bin

    2012-01-01

    We study the optical bistability for a Bose-Einstein condensate of atoms in a driven optical cavity with a Kerr medium.We find that both the threshold point of optical bistability transition and the width of optical bistability hysteresis can be controlled by appropriately adjusting the Kerr interaction between the photons.In particular,we show that the optical bistability will disappear when the Kerr interaction exceeds a critical value.

  19. Comment on "Stimulated Raman adiabatic passage from an atomic to a molecular Bose-Einstein condensate"

    OpenAIRE

    2002-01-01

    Collective two-color photoassociation of a freely-interacting 87Rb Bose-Einstein condensate is theoretically examined, focusing on stimulated Raman adiabatic passage (STIRAP) from an atomic to a stable molecular condensate. In particular, Drummond et al. [Phys. Rev. A 65, 063619 (2002); cond-mat/0110578] have predicted that particle-particle interactions can limit the efficiency of collective atom-molecule STIRAP, and that optimizing the laser parameters can partially overcome this limitation...

  20. Measurements of Bose-Einstein correlations with the ATLAS detector

    CERN Document Server

    Sykora, Ivan; The ATLAS collaboration

    2015-01-01

    The Bose-Einstein correlations provide a unique opportunity for detailed understanding of space-time characteristics of the hadronization region, for determining the size and shape of the source from which particles are emitted and for interpreting quark confinement effects. The correlations lead to enhancement in production of identical bosons that are close in phase space. The ATLAS collaboration has performed a measurement of Bose-Einstein correlations of pairs of charged particles with transverse momentum greater than 100 MeV in p-p collisions at 900 GeV and 7 TeV. Bose-Einstein correlation parameters are investigated up to very high charged-particle multiplicities. The dependence of the Bose-Einstein correlation parameters on the average transverse momentum per pair is also investigated.

  1. On the Bose-Einstein distribution and Bose condensation

    OpenAIRE

    2008-01-01

    For a system of identical Bose particles sitting on integer energy levels, we give sharp estimates for the convergence of the sequence of occupation numbers to the Bose-Einstein distribution and for the Bose condensation effect.

  2. Coherent zero-field magnetization resonance in a dipolar spin-1 Bose-Einstein condensate

    Science.gov (United States)

    Zhang, Wenxian; Yi, S.; Chapman, M. S.; You, J. Q.

    2015-08-01

    With current magnetic-field shielding and high-precision detection in dipolar spinor Bose-Einstein condensates, it is possible to experimentally detect the low- or zero-field nonsecular dipolar dynamics. Here we analytically investigate the zero-field nonsecular magnetic dipolar interaction effect, with an emphasis on magnetization dynamics in a spin-1 Bose-Einstein condensate under the single spatial mode approximation within the mean-field theory. Due to the biaxial nature of the dipolar interaction, a novel resonance occurs in the condensate magnetization oscillation, in contrast to the previous assumption of a conserved magnetization in strong magnetic fields. Furthermore, we propose a dynamical-decoupling detection method for such a resonance, which cancels the stray magnetic fields in experiment but restores the magnetization dynamics. Our results shed light on the dipolar systems and may find potential applications beyond cold atoms.

  3. Bose-Einstein condensation of the classical axion field in cosmology?

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, Sacha; Elmer, Martin, E-mail: s.davidson@ipnl.in2p3.fr, E-mail: m.elmer@ipnl.in2p3.fr [IPNL, Université de Lyon, Université Lyon 1, CNRS/IN2P3, 4 rue E. Fermi, Villeurbanne cedex, 69622 (France)

    2013-12-01

    The axion is a motivated cold dark matter candidate, which it would be interesting to distinguish from weakly interacting massive particles. Sikivie has suggested that axions could behave differently during non-linear galaxy evolution, if they form a Bose-Einstein condensate, and argues that ''gravitational thermalisation'' drives them to a Bose-Einstein condensate during the radiation dominated era. Using classical equations of motion during linear structure formation, we explore whether the gravitational interactions of axions can generate enough entropy. At linear order in G{sub N}, we interpret that the principle activities of gravity are to expand the Universe and grow density fluctuations. To quantify the rate of entropy creation we use the anisotropic stress to estimate a short dissipation scale for axions which does not confirm previous estimates of their gravitational thermalisation rate.

  4. Semi-classical Dynamics of Superradiant Rayleigh Scattering in a Bose-Einstein Condensate

    CERN Document Server

    Müller, J H; Targat, R le; Arlt, J J; Polzik, E S; Hilliard, A J

    2016-01-01

    Due to its coherence properties and high optical depth, a Bose-Einstein condensate provides an ideal setting to investigate collective atom-light interactions. Superradiant light scattering in a Bose-Einstein condensate is a fascinating example of such an interaction. It is an analogous process to Dicke superradiance, in which an electronically inverted sample decays collectively, leading to the emission of one or more light pulses in a well-defined direction. Through time-resolved measurements of the superradiant light pulses emitted by an end-pumped BEC, we study the close connection of superradiant light scattering with Dicke superradiance. A 1D model of the system yields good agreement with the experimental data and shows that the dynamics results from the structures that build up in the light and matter-wave fields along the BEC. This paves the way for exploiting the atom-photon correlations generated by the superradiance.

  5. Ferroelectricity by Bose-Einstein condensation in a quantum magnet

    Science.gov (United States)

    Kimura, S.; Kakihata, K.; Sawada, Y.; Watanabe, K.; Matsumoto, M.; Hagiwara, M.; Tanaka, H.

    2016-09-01

    The Bose-Einstein condensation is a fascinating phenomenon, which results from quantum statistics for identical particles with an integer spin. Surprising properties, such as superfluidity, vortex quantization or Josephson effect, appear owing to the macroscopic quantum coherence, which spontaneously develops in Bose-Einstein condensates. Realization of Bose-Einstein condensation is not restricted in fluids like liquid helium, a superconducting phase of paired electrons in a metal and laser-cooled dilute alkali atoms. Bosonic quasi-particles like exciton-polariton and magnon in solids-state systems can also undergo Bose-Einstein condensation in certain conditions. Here, we report that the quantum coherence in Bose-Einstein condensate of the magnon quasi particles yields spontaneous electric polarization in the quantum magnet TlCuCl3, leading to remarkable magnetoelectric effect. Very soft ferroelectricity is realized as a consequence of the O(2) symmetry breaking by magnon Bose-Einstein condensation. The finding of this ferroelectricity will open a new window to explore multi-functionality of quantum magnets.

  6. Ferroelectricity by Bose-Einstein condensation in a quantum magnet.

    Science.gov (United States)

    Kimura, S; Kakihata, K; Sawada, Y; Watanabe, K; Matsumoto, M; Hagiwara, M; Tanaka, H

    2016-09-26

    The Bose-Einstein condensation is a fascinating phenomenon, which results from quantum statistics for identical particles with an integer spin. Surprising properties, such as superfluidity, vortex quantization or Josephson effect, appear owing to the macroscopic quantum coherence, which spontaneously develops in Bose-Einstein condensates. Realization of Bose-Einstein condensation is not restricted in fluids like liquid helium, a superconducting phase of paired electrons in a metal and laser-cooled dilute alkali atoms. Bosonic quasi-particles like exciton-polariton and magnon in solids-state systems can also undergo Bose-Einstein condensation in certain conditions. Here, we report that the quantum coherence in Bose-Einstein condensate of the magnon quasi particles yields spontaneous electric polarization in the quantum magnet TlCuCl3, leading to remarkable magnetoelectric effect. Very soft ferroelectricity is realized as a consequence of the O(2) symmetry breaking by magnon Bose-Einstein condensation. The finding of this ferroelectricity will open a new window to explore multi-functionality of quantum magnets.

  7. "Charged" phonons in an external field: a QED analog with Bose-Einstein condensates

    CERN Document Server

    Leizerovitch, Shay

    2016-01-01

    We propose a method for using ultracold atomic Bose-Einstein condensates, to form an analog model of a relativistic massive field that carries "charge" and interacts with an external non-dynamical gauge field. Such a "scalar QED" analog model, may be useful for simulating certain of QFT involving charged particles. In particular, the Schwinger pair-creation of "charged" phonons in a constant external field, and vacuum instability.

  8. Generation of Entangled Coherent States in Raman-Coupled Bose-Einstein Condensates

    Institute of Scientific and Technical Information of China (English)

    KUANG Le-Man; ZENG Ai-Hua; KUANG Zhen-Hua

    2004-01-01

    A method for producing entangled coherent states (ECSs) for atomic Bose-Einstein condensates (BECs) is presented. The proposed method involves a BEC with three internal states and two classical laser beams in a three-level Lambda configuration. We show how to generate multi-state ECSs through properly manipulating strengths of these interactions and laser detunings. A maximally entangled coherent state is obtained explicitly.

  9. Exact Analytical Solutions in Bose-Einstein Condensates with Time-Dependent Atomic Scattering Length

    Institute of Scientific and Technical Information of China (English)

    CHEN Yong; LI Biao; ZHENG Yu

    2007-01-01

    In the paper, the generalized Riccati equation rational expansion method is presented. Making use of the method and symbolic computation, we present three families of exact analytical solutions of Bose-Einstein condensates with the time-dependent interatomic interaction in an expulsive parabolic potential. Then the dynamics of two anlytical solutions are demonstrated by computer simulations under some selectable parameters including the Feshbach-managed nonlinear coefficient and the hyperbolic secant function coefficient.

  10. Dynamics of dark-bright solitons in cigar-shaped Bose-Einstein condensates

    Energy Technology Data Exchange (ETDEWEB)

    Middelkamp, S. [Zentrum fuer Optische Quantentechnologien, Universitaet Hamburg, 22761 Hamburg (Germany); Chang, J.J.; Hamner, C. [Washington State University, Department of Physics and Astronomy, Pullman, WA 99164 (United States); Carretero-Gonzalez, R. [Nonlinear Physics Group, Escuela Tecnica Superior de Ingenieria Informatica, Departamento de Fisica Aplicada I, Universidad de Sevilla, Avda. Reina Mercedes s/n, 41012 Sevilla (Spain); Kevrekidis, P.G., E-mail: kevrekid@gmail.co [Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA 01003-4515 (United States); Achilleos, V.; Frantzeskakis, D.J. [Department of Physics, University of Athens, Panepistimiopolis, Zografos, Athens 157 84 (Greece); Schmelcher, P. [Zentrum fuer Optische Quantentechnologien, Universitaet Hamburg, 22761 Hamburg (Germany); Engels, P. [Washington State University, Department of Physics and Astronomy, Pullman, WA 99164 (United States)

    2011-01-17

    We explore the stability and dynamics of dark-bright (DB) solitons in two-component elongated Bose-Einstein condensates by developing effective one-dimensional vector equations and solving the three-dimensional Gross-Pitaevskii equations. A strong dependence of the oscillation frequency and of the stability of the DB soliton on the atom number of its components is found; importantly, the wave may become dynamically unstable even in the 1D regime. As the atom number in the dark-soliton-supporting component is further increased, spontaneous symmetry breaking leads to oscillatory dynamics in the transverse degrees of freedom. Moreover, the interactions of two DB solitons are investigated with an emphasis on the importance of their relative phases. Experimental results showcasing multiple DB soliton oscillations and a DB-DB collision in a Bose-Einstein condensate consisting of two hyperfine states of {sup 87}Rb confined in an elongated optical dipole trap are presented.

  11. Observation of the supersolid stripe phase in spin-orbit coupled Bose-Einstein condensates

    CERN Document Server

    Li, Junru; Huang, Wujie; Burchesky, Sean; Shteynas, Boris; Top, Furkan Çağrı; Jamison, Alan O; Ketterle, Wolfgang

    2016-01-01

    Supersolidity is an intriguing concept. It combines the property of superfluid flow with the long-range spatial periodicity of solids, two properties which are often mutually exclusive. The original discussion of quantum crystals and supersolidity focuses on solid Helium-4 where it was predicted that vacancies could form dilute weakly interacting Bose-Einstein condensates. In this system, direct observation of supersolidity has been elusive. The concept of supersolidity was then generalized to include other superfluid systems which break the translational symmetry of space. One of such systems is a Bose-Einstein condensate with spin-orbit coupling which has a supersolid stripe phase. Despite several recent studies of this system, the stripe phase has not been observed. Here we report the direct observation of the predicted density modulation of the stripe phase using Bragg reflection. Our work establishes a system with unique symmetry breaking properties. Of future interest is further spatial symmetry breakin...

  12. Dynamics and thermalization of a Bose-Einstein condensate in a Sinai-oscillator trap

    Science.gov (United States)

    Ermann, Leonardo; Vergini, Eduardo; Shepelyansky, Dima L.

    2016-07-01

    We study numerically the evolution of Bose-Einstein condensate in the Sinai-oscillator trap described by the Gross-Pitaevskii equation in two dimensions. In the absence of interactions, this trap mimics the properties of Sinai billiards where the classical dynamics is chaotic and the quantum evolution is described by generic properties of quantum chaos and random matrix theory. We show that, above a certain border, the nonlinear interactions between atoms lead to the emergence of dynamical thermalization which generates the statistical Bose-Einstein distribution over eigenmodes of the system without interactions. Below the thermalization border, the evolution remains quasi-integrable. Such a Sinai-oscillator trap, formed by the oscillator potential and a repulsive disk located in the vicinity of the center, had been already realized in first experiments with the Bose-Einstein condensate formation by Ketterle group in 1995 and we argue that it can form a convenient test bed for experimental investigations of dynamical of thermalization. Possible links and implications for Kolmogorov turbulence in absence of noise are also discussed.

  13. Unconventional Bose-Einstein Condensations from Spin-Orbit Coupling

    Institute of Scientific and Technical Information of China (English)

    ZHOU Xiang-Fa; WU Cong-Jun; Ian Mondragon-Shem

    2011-01-01

    According to the "no-node" theorem, the many-body ground state wavefunctions of conventional Bose-Einstein condensations (BEC) are positive-definite, thus time-reversal symmetry cannot be spontaneously broken. We find that multi-component bosons with spin-orbit coupling provide an unconventional type of BECs beyond this paradigm. We focus on a subtle case ofisotropic Rashba spin-orbit coupling and the spin-independent interaction. In the limit of the weak confining potential, the condensate wavefunctions are frustrated at the Hartree-Fock level due to the degeneracy of the Rashba ring. Quantum zero-point energy selects the spin-spiral type condensate through the "order-from-disorder" mechanism. In a strong harmonic confining trap, the condensate spontaneously generates a half-quantum vortex combined with the skyrmion type of spin texture. In both cases, time-reversal symmetry is spontaneously broken. These phenomena can be realized in both cold atom systems with artificial spin-orbit couplings generated from atom-laser interactions and exciton condensates in semi-conductor systems.%@@ According to the"no-node"theorem,the many-body ground state wavefunctions of conventional Bose-Einstein condensations(BEC)are positive-definite,thus time-reversal symmetry cannot be spontaneously broken.We find that multi-component bosons with spin-orbit coupling provide an unconventional type of BECs beyond this paradigm.We focus on a subtle case of isotropic Rashba spin-orbit coupling and the spin-independent interaction.In the limit of the weak confining potential,the condensate wavefunctions are frustrated at the Hartree-Fork level due to the degeneracy of the Rashba ring.Quantum zero-point energy selects the spin-spiral type condensate through the"order-from-disorder"mechanism.In a strong harmonic confining trap,the condensate spontaneously generates a half-quantum vortex combined with the skyrmion type of spin texture.In both cases,time-reversal symmetry is spontaneously broken

  14. Bose-Einstein condensation of plexcitons

    CERN Document Server

    Rodriguez, S R K; Rivas, J Gomez

    2013-01-01

    Bosons (particles with integer spin) above a critical density to temperature ratio may macroscopically populate the ground state of a system, in an effect known as Bose-Einstein Condensation (BEC). The observation of BEC in dilute atomic gases was a great triumph of modern physics, a task requiring nK cooling of atoms. Following these demonstrations, a quest for lighter bosons enabling BEC at higher temperatures came to light. Photons in a microcavity were destined to fulfil this quest. Their coupling to semiconductor excitons allowed the condensation of exciton-polaritons at a few K in solid-state, and the condensation of photons was later observed in a liquid-state dye at room-temperature. Distinctly, one of the most actively studied excitations in condensed matter, surface plasmon polaritons - collective oscillations of conduction electrons in metals -, has never been shown or predicted to exhibit BEC. The strong radiative and Ohmic losses in metals, together with the lack of a suitable (e.g. harmonic) pot...

  15. Nonlinear phenomena in Bose-Einstein condensates

    Science.gov (United States)

    Carr, Lincoln D.

    2008-05-01

    We present a medley of results from the last three years on nonlinear phenomena in BECs [1]. These include exact dynamics of multi-component condensates in optical lattices [2], vortices and ring solitons [3], macroscopic quantum tunneling [4], nonlinear band theory [5], and a pulsed atomic soliton laser [6]. 1. Emergent Nonlinear Phenomena in Bose-Einstein Condensates: Theory and Experiment, ed. P. G. Kevrekidis, D. J. Frantzeskakis, and R. Carretero-Gonzalez (Springer-Verlag, 2008). 2. R. Mark Bradley, James E. Bernard, and L. D. Carr, e-print arXiv:0711.1896 (2007). 3. G. Herring, L. D. Carr, R. Carretero-Gonzalez, P. G. Kevrekidis, D. J. Frantzeskakis, Phys. Rev. A in press, e-print arXiv:0709.2193 (2007); L. D. Carr and C. W. Clark, Phys. Rev. A v. 74, p.043613 (2006); L. D. Carr and C. W. Clark, Phys. Rev. Lett. v. 97, p.010403 (2006). 4. L. D. Carr, M. J. Holland, and B. A. Malomed, J. Phys. B: At. Mol. Opt. Phys., v.38, p.3217 (2005) 5. B. T. Seaman, L. D. Carr, and M. J. Holland, Phys. Rev. A, v. 71, p.033622 (2005). 6. L. D. Carr and J. Brand, Phys. Rev. A, v.70, p.033607 (2004); L. D. Carr and J. Brand, Phys. Rev. Lett., v.92, p.040401 (2004).

  16. Elastic scattering of a Bose-Einstein condensate at a potential landscape

    OpenAIRE

    2013-01-01

    We investigate the elastic scattering of Bose-Einstein condensates at shallow periodic and disorder potentials. We show that the collective scattering of the macroscopic quantum object couples to internal degrees of freedom of the Bose-Einstein condensate such that the Bose-Einstein condensate gets depleted. As a precursor for the excitation of the Bose-Einstein condensate we observe wave chaos within a mean-field theory.

  17. Modelling Bose-Einstein correlations at LEP 2

    CERN Document Server

    Lönnblad, L

    1998-01-01

    We present new algorithms for simulating Bose-Einstein correlations among final-state bosons in an event generator. The algorithms are all based on introducing Bose-Einstein correlations as a shift of final-state momenta among identical bosons, and differ only in the way energy and momentum conservation is ensured. The benefits and shortcomings of this approach, that may be viewed as a local reweighting strategy, is compared to the ones of recently proposed algorithms involving global event reweighting. We use the new algorithms to improve on our previous study of the effects of Bose-Einstein correlations on the W mass measurement at LEP 2. The intrinsic uncertainty could be as high as 100 MeV but is probably reduced to the order of 30 MeV with realistic experimental reconstruction procedures.

  18. Decay of hydrodynamic modes in dilute Bose-Einstein condensates

    Science.gov (United States)

    Gust, Erich; Reichl, Linda

    2015-03-01

    We present the results of Bogoliubov mean field theory applied to the hydrodynamic modes in a dilute Bose-Einstein condensate. The condensate has six hydrodynamic modes, two of which are decaying shear modes related to the viscosity, and two pairs pairs of sound modes which undergo an avoided crossing as the equilibrium temperature is varied. The two pairs of sound modes decay at very different rates, except in the neighborhood of the avoided crossing, where the identity of the longest-lived mode switches. The predicted speed and lifetime of the longest-lived sound mode are consistent with recent experimental observations on sound in an 87Rb Bose-Einstein condensate. The strong depedence of the decay rates on temperature implies a possible new method for determining the temperature of Bose-Einstein condensates. The authors wish to thank the Robert A. Welch Foundation Grant No. F-1051 for support of this work.

  19. Bose-Einstein correlations in W-pair decays

    Science.gov (United States)

    Barate, R.; Decamp, D.; Ghez, P.; Goy, C.; Jezequel, S.; Lees, J.-P.; Martin, F.; Merle, E.; Minard, M.-N.; Pietrzyk, B.; Alemany, R.; Bravo, S.; Casado, M. P.; Chmeissani, M.; Crespo, J. M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, L.; Graugés, E.; Juste, A.; Martinez, M.; Merino, G.; Miquel, R.; Mir, L. M.; Morawitz, P.; Pacheco, A.; Riu, I.; Ruiz, H.; Colaleo, A.; Creanza, D.; de Palma, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Boix, G.; Buchmüller, O.; Cattaneo, M.; Cerutti, F.; Ciulli, V.; Davies, G.; Dissertori, G.; Drevermann, H.; Forty, R. W.; Frank, M.; Gianotti, F.; Greening, T. C.; Halley, A. W.; Hansen, J. B.; Harvey, J.; Janot, P.; Jost, B.; Kado, M.; Leroy, O.; Maley, P.; Mato, P.; Minten, A.; Moutoussi, A.; Ranjard, F.; Rolandi, L.; Schlatter, D.; Schmitt, M.; Schneider, O.; Spagnolo, P.; Tejessy, W.; Teubert, F.; Tournefier, E.; Valassi, A.; Wright, A. E.; Ajaltouni, Z.; Badaud, F.; Chazelle, G.; Deschamps, O.; Dessagne, S.; Falvard, A.; Ferdi, C.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.-C.; Pallin, D.; Pascolo, J. M.; Perret, P.; Podlyski, F.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Nilsson, B. S.; Rensch, B.; Wäänänen, A.; Daskalakis, G.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Vayaki, A.; Blondel, A.; Brient, J.-C.; Machefert, F.; Rougé, A.; Swynghedauw, M.; Tanaka, R.; Videau, H.; Focardi, E.; Parrini, G.; Zachariadou, K.; Corden, M.; Georgiopoulos, C.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Chiarella, V.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Chalmers, M.; Kennedy, J.; Lynch, J. G.; Negus, P.; O'Shea, V.; Raeven, B.; Smith, D.; Teixeira-Dias, P.; Thompson, A. S.; Ward, J. J.; Cavanaugh, R.; Dhamotharan, S.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E. E.; Leibenguth, G.; Putzer, A.; Tittel, K.; Werner, S.; Wunsch, M.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Dornan, P. J.; Girone, M.; Goodsir, S.; Marinelli, N.; Martin, E. B.; Nash, J.; Nowell, J.; Przysiezniak, H.; Sciabà, A.; Sedgbeer, J. K.; Thompson, J. C.; Thomson, E.; Williams, M. D.; Ghete, V. M.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bowdery, C. K.; Buck, P. G.; Ellis, G.; Finch, A. J.; Foster, F.; Hughes, G.; Jones, R. W. L.; Robertson, N. A.; Smizanska, M.; Williams, M. I.; Giehl, I.; Hölldorfer, F.; Jakobs, K.; Kleinknecht, K.; Kröcker, M.; Müller, A.-S.; Nürnberger, H.-A.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.-G.; Schmeling, S.; Wachsmuth, H.; Zeitnitz, C.; Ziegler, T.; Bonissent, A.; Carr, J.; Coyle, P.; Ealet, A.; Fouchez, D.; Payre, P.; Rousseau, D.; Tilquin, A.; Aleppo, M.; Antonelli, M.; Gilardoni, S.; Ragusa, F.; Büscher, V.; Dietl, H.; Ganis, G.; Hüttmann, K.; Lütjens, G.; Mannert, C.; Männer, W.; Moser, H.-G.; Schael, S.; Settles, R.; Seywerd, H.; Stenzel, H.; Wiedenmann, W.; Wolf, G.; Azzurri, P.; Boucrot, J.; Callot, O.; Chen, S.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, P.; Jacholkowska, A.; Lefrançois, J.; Serin, L.; Veillet, J.-J.; Videau, I.; de Vivie de Régie, J.-B.; Zerwas, D.; Bagliesi, G.; Boccali, T.; Bozzi, C.; Calderini, G.; Dell'Orso, R.; Ferrante, I.; Giassi, A.; Gregorio, A.; Ligabue, F.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Sguazzoni, G.; Tenchini, R.; Venturi, A.; Verdini, P. G.; Blair, G. A.; Coles, J.; Cowan, G.; Green, M. G.; Hutchcroft, D. E.; Jones, L. T.; Medcalf, T.; Strong, J. A.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Norton, P. R.; Tomalin, I. R.; Bloch-Devaux, B.; Colas, P.; Fabbro, B.; Faïf, G.; Lançon, E.; Lemaire, M.-C.; Locci, E.; Perez, P.; Rander, J.; Renardy, J.-F.; Rosowsky, A.; Seager, P.; Trabelsi, A.; Tuchming, B.; Vallage, B.; Black, S. N.; Dann, J. H.; Loomis, C.; Kim, H. Y.; Konstantinidis, N.; Litke, A. M.; McNeil, M. A.; Taylor, G.; Booth, C. N.; Cartwright, S.; Combley, F.; Hodgson, P. N.; Lehto, M.; Thompson, L. F.; Affholderbach, K.; Böhrer, A.; Brandt, S.; Grupen, C.; Hess, J.; Misiejuk, A.; Prange, G.; Sieler, U.; Borean, C.; Giannini, G.; Gobbo, B.; Putz, J.; Rothberg, J.; Wasserbaech, S.; Williams, R. W.; Armstrong, S. R.; Elmer, P.; Ferguson, D. P. S.; Gao, Y.; González, S.; Hayes, O. J.; Hu, H.; Jin, S.; Kile, J.; McNamara, P. A., III; Nielsen, J.; Orejudos, W.; Pan, Y. B.; Saadi, Y.; Scott, I. J.; Walsh, J.; von Wimmersperg-Toeller, J. H.; Wu, S. L.; Wu, X.; Zobernig, G.

    2000-04-01

    Bose-Einstein correlations are studied in semileptonic (WW-->qq¯lν) and fully hadronic (WW-->qq¯qq¯) W-pair decays with the ALEPH detector at LEP at centre-of-mass energies of 172, 183 and 189 GeV. They are compared with those made at the Z peak after correction for the different flavour compositions. A Monte Carlo model of Bose-Einstein correlations based on the JETSET hadronization scheme was tuned to the Z data and reproduces the correlations in the WW-->qq¯lν events. The same Monte Carlo reproduces the correlations in the WW-->qq¯qq¯ channel assuming independent fragmentation of the two W's. A variant of this model with Bose-Einstein correlations between decay products of different W's is disfavoured.

  20. Are Quasiparticles and Phonons Identical in Bose-Einstein Condensates?

    Science.gov (United States)

    Tsutsui, Kazumasa; Kato, Yusuke; Kita, Takafumi

    2016-12-01

    We study an interacting spinless Bose-Einstein condensate to clarify theoretically whether the spectra of its quasiparticles (one-particle excitations) and collective modes (two-particle excitations) are identical, as concluded by Gavoret and Nozières [http://doi.org/10.1016/0003-4916(64)90200-3" xlink:type="simple">Ann. Phys. (N.Y.) 28, 349 (1964)]. We derive analytic expressions for their first and second moments so as to extend the Bijl-Feynman formula for the peak of the collective-mode spectrum to its width (inverse lifetime) and also to the one-particle channel. The obtained formulas indicate that the width of the collective-mode spectrum manifestly vanishes in the long-wavelength limit, whereas that of the quasiparticle spectrum apparently remains finite. We also evaluate the peaks and widths of the two spectra numerically for a model interaction potential in terms of the Jastrow wave function optimized by a variational method. It is thereby found that the width of the quasiparticle spectrum increases towards a constant as the wavenumber decreases. This marked difference in the spectral widths implies that the two spectra are distinct. In particular, the lifetime of the quasiparticles remains finite even in the long-wavelength limit.

  1. Symmetry breaking and singularity structure in Bose-Einstein condensates

    Science.gov (United States)

    Commeford, K. A.; Garcia-March, M. A.; Ferrando, A.; Carr, Lincoln D.

    2012-08-01

    We determine the trajectories of vortex singularities that arise after a single vortex is broken by a discretely symmetric impulse in the context of Bose-Einstein condensates in a harmonic trap. The dynamics of these singularities are analyzed to determine the form of the imprinted motion. We find that the symmetry-breaking process introduces two effective forces: a repulsive harmonic force that causes the daughter trajectories to be ejected from the parent singularity and a Magnus force that introduces a torque about the axis of symmetry. For the analytical noninteracting case we find that the parent singularity is reconstructed from the daughter singularities after one period of the trapping frequency. The interactions between singularities in the weakly interacting system do not allow the parent vortex to be reconstructed. Analytic trajectories were compared to the actual minima of the wave function, showing less than 0.5% error for an impulse strength of v=0.00005. We show that these solutions are valid within the impulse regime for various impulse strengths using numerical integration of the Gross-Pitaevskii equation. We also show that the actual duration of the symmetry-breaking potential does not significantly change the dynamics of the system as long as the strength is below v=0.0005.

  2. Coupling a single electron to a Bose-Einstein condensate

    CERN Document Server

    Balewski, Jonathan B; Gaj, Anita; Peter, David; Büchler, Hans Peter; Löw, Robert; Hofferberth, Sebastian; Pfau, Tilman

    2013-01-01

    The coupling of electrons to matter is at the heart of our understanding of material properties such as electrical conductivity. One of the most intriguing effects is that electron-phonon coupling can lead to the formation of a Cooper pair out of two repelling electrons, the basis for BCS superconductivity. Here we study the interaction of a single localized electron with a Bose-Einstein condensate (BEC) and show that it can excite phonons and eventually set the whole condensate into a collective oscillation. We find that the coupling is surprisingly strong as compared to ionic impurities due to the more favorable mass ratio. The electron is held in place by a single charged ionic core forming a Rydberg bound state. This Rydberg electron is described by a wavefunction extending to a size comparable to the dimensions of the BEC, namely up to 8 micrometers. In such a state, corresponding to a principal quantum number of n=202, the Rydberg electron is interacting with several tens of thousands of condensed atoms...

  3. Quantum backreaction of quantum fluid in Bose-Einstein condensates

    Institute of Scientific and Technical Information of China (English)

    Xu Yan; Xiong Zu-Zhou; Chen Bing; Li Zhao-Xin; Tan Lei

    2009-01-01

    In this paper, with the full field operator φ expressed in terms of a particle-number-conserving mean-field ansatz, we investigate the dynamical behaviour of Bose-Einstein eondensates from microscopic physics. Including the firstorder term correction from single-particle excitation and the remaining higher-order term correction from collective excitations simultaneously, we obtain the formulation for a closed local expression of quantum backreaetion Q, and discuss the influence on static Bose-Einstein condensates. Even though the quantum backreaction is small, it still has some influence on its dynamics.

  4. Bose-Einstein correlations in multiple particle production

    Energy Technology Data Exchange (ETDEWEB)

    Zalewski, Kacper

    1999-03-01

    Bose-Einstein correlations are studied in the framework of a class of independent particle production models. This generalizes the studies for a variety of models proposed previously. It is shown that the Bose-Einstein correlations lead for this class of models to Einstein's condensation at sufficiently high density. They also enhance unusual charge distributions and may explain the centauro and anticentauro events reported by cosmic ray physicists. For typical models the correlations cause a shrinking of the momentum distribution of the produced identical particles and an apparent shrinking of the production region.

  5. Bose-Einstein correlations in multiple particle production

    CERN Document Server

    Zalewski, Kasper

    1999-01-01

    Bose-Einstein correlations are studied in the framework of a class of independent particle production models. This generalizes the studies for a variety of models proposed previously. It is shown that the Bose-Einstein correlations lead for this class of models to Einstein's condensation at sufficiently high density. They also enhance unusual charge distributions and may explain the centauro and anticentauro events reported by cosmic ray physicists. For typical models the correlations cause a shrinking of the momentum distribution of the produced identical particles and an apparent shrinking of the production region.

  6. Space-time curvature signatures in Bose-Einstein condensates

    Science.gov (United States)

    Matos, Tonatiuh; Gomez, Eduardo

    2015-05-01

    We derive a generalized Gross-Pitaevski (GP) equation for a Bose Einstein Condensate (BEC) immersed in a weak gravitational field starting from the covariant Complex Klein-Gordon field in a curved space-time. We compare it with the traditional GP equation where the gravitational field is added by hand as an external potential. We show that there is a small difference of order gz/c2 between them that could be measured in the future using Bose-Einstein Condensates. This represents the next order correction to the Newtonian gravity in a curved space-time.

  7. The Study of the Phase of Bose-Einstein Condensate

    Institute of Scientific and Technical Information of China (English)

    ZHOU Xiao-Ji; WANG Yi-Qiu; LI Wei-Dong

    2001-01-01

    We first propose to study the phase of Bose-Einstein condensate in the phase space. The mcan value of the phase and the phase fluctuation of Bose-Einstein condensate are considered, and their explicit expressions are given with the Thomas-Fermi approximation. For a finite atom number, we find that the phase of condensate is determined by the oscillation frequency of the harmonic confining potential at certain time. The effects of the atom number and time on the phase of condensate are also discussed for the same kinds of atoms.``

  8. Manipulating localized matter waves in multicomponent Bose-Einstein condensates.

    Science.gov (United States)

    Manikandan, K; Muruganandam, P; Senthilvelan, M; Lakshmanan, M

    2016-03-01

    We analyze vector localized solutions of two-component Bose-Einstein condensates (BECs) with variable nonlinearity parameters and external trap potentials through a similarity transformation technique which transforms the two coupled Gross-Pitaevskii equations into a pair of coupled nonlinear Schrödinger equations with constant coefficients under a specific integrability condition. In this analysis we consider three different types of external trap potentials: a time-independent trap, a time-dependent monotonic trap, and a time-dependent periodic trap. We point out the existence of different interesting localized structures; namely, rogue waves, dark- and bright-soliton rogue waves, and rogue-wave breatherlike structures for the above three cases of trap potentials. We show how the vector localized density profiles in a constant background get deformed when we tune the strength of the trap parameter. Furthermore, we investigate the nature of the trajectories of the nonautonomous rogue waves. We also construct the dark-dark rogue wave solution for the repulsive-repulsive interaction of two-component BECs and analyze the associated characteristics for the three different kinds of traps. We then deduce single-, two-, and three-composite rogue waves for three-component BECs and discuss the correlated characteristics when we tune the strength of the trap parameter for different trap potentials.

  9. Shock Waves in a Bose-Einstein Condensate

    Science.gov (United States)

    Kulikov, Igor; Zak, Michail

    2005-01-01

    A paper presents a theoretical study of shock waves in a trapped Bose-Einstein condensate (BEC). The mathematical model of the BEC in this study is a nonlinear Schroedinger equation (NLSE) in which (1) the role of the wave function of a single particle in the traditional Schroedinger equation is played by a space- and time-dependent complex order parameter (x,t) proportional to the square root of the density of atoms and (2) the atoms engage in a repulsive interaction characterized by a potential proportional to | (x,t)|2. Equations that describe macroscopic perturbations of the BEC at zero temperature are derived from the NLSE and simplifying assumptions are made, leading to equations for the propagation of sound waves and the transformation of sound waves into shock waves. Equations for the speeds of shock waves and the relationships between jumps of velocity and density across shock fronts are derived. Similarities and differences between this theory and the classical theory of sound waves and shocks in ordinary gases are noted. The present theory is illustrated by solving the equations for the example of a shock wave propagating in a cigar-shaped BEC.

  10. PHD TUTORIAL: Finite-temperature models of Bose Einstein condensation

    Science.gov (United States)

    Proukakis, Nick P.; Jackson, Brian

    2008-10-01

    The theoretical description of trapped weakly interacting Bose-Einstein condensates is characterized by a large number of seemingly very different approaches which have been developed over the course of time by researchers with very distinct backgrounds. Newcomers to this field, experimentalists and young researchers all face a considerable challenge in navigating through the 'maze' of abundant theoretical models, and simple correspondences between existing approaches are not always very transparent. This tutorial provides a generic introduction to such theories, in an attempt to single out common features and deficiencies of certain 'classes of approaches' identified by their physical content, rather than their particular mathematical implementation. This tutorial is structured in a manner accessible to a non-specialist with a good working knowledge of quantum mechanics. Although some familiarity with concepts of quantum field theory would be an advantage, key notions, such as the occupation number representation of second quantization, are nonetheless briefly reviewed. Following a general introduction, the complexity of models is gradually built up, starting from the basic zero-temperature formalism of the Gross-Pitaevskii equation. This structure enables readers to probe different levels of theoretical developments (mean field, number conserving and stochastic) according to their particular needs. In addition to its 'training element', we hope that this tutorial will prove useful to active researchers in this field, both in terms of the correspondences made between different theoretical models, and as a source of reference for existing and developing finite-temperature theoretical models.

  11. Critical Temperature Associated to Symmetry Breaking of Klein--Gordon fields versus Condensation Temperature in a Weakly interacting Bose--Einstein Gas

    CERN Document Server

    Castellanos, Elias

    2012-01-01

    We deduce the relation between the critical temperature associated to the U(1) symmetry breaking of scalar fields with one--loop correction potential immersed in a thermal bath, and the condensation temperature of the aforementioned system in the thermodynamic limit, within the semiclassical approximation for a weakly interacting bosonic gas with a positive coupling constant. Additionally, we show that the shift in the condensation temperature caused by the coupling constant is independent of the thermal bath.

  12. Stationary and nonstationary fluid flow of a bose-einstein condensate through a penetrable barrier.

    Science.gov (United States)

    Engels, P; Atherton, C

    2007-10-19

    We experimentally study the fluid flow induced by a broad, penetrable barrier moving through an elongated dilute gaseous Bose-Einstein condensate. The barrier is created by a laser beam swept through the condensate, and the resulting dipole potential can be either attractive or repulsive. We examine both cases and find regimes of stable and unstable fluid flow: At slow speeds of the barrier, the fluid flow is steady due to the superfluidity of the condensate. At intermediate speeds, we observe an unsteady regime in which the condensate gets filled with dark solitons. At faster speeds, soliton formation completely ceases, and a remarkable absence of excitation in the condensate is seen again.

  13. Dynamics of Bose-Einstein Condensates: Exact Representation and Topological Classification of Coherent Matter Waves

    Directory of Open Access Journals (Sweden)

    Leilei Jia

    2014-01-01

    Full Text Available By using the bifurcation theory of dynamical systems, we present the exact representation and topological classification of coherent matter waves in Bose-Einstein condensates (BECs, such as solitary waves and modulate amplitude waves (MAWs. The existence and multiplicity of such waves are determined by the parameter regions selected. The results show that the characteristic of coherent matter waves can be determined by the “angular momentum” in attractive BECs while for repulsive BECs; the waves of the coherent form are all MAWs. All exact explicit parametric representations of the above waves are exhibited and numerical simulations support the result.

  14. Influence of multiplicity and kinematical cuts on Bose-Einstein correlation in [pi][sup +]p-interactions at 250 GeV/c

    Energy Technology Data Exchange (ETDEWEB)

    Agababyan, N.M. (Univ. Instelling Antwerpen, Wilrijk (Belgium)); Ajinenko, I.V.; Atayan, M.R. (Univ. Instelling Antwerpen, Wilrijk (Belgium)); Boettcher, H. (Inst. fuer Hochenergiephysik, Berlin-Zeuthen (Germany)); Botterweck, F.; Charlet, M.; Chliapnikov, P.V.; Wolf, E.A. de (Univ. Instelling Antwerpen, Wilrijk (Belgium) Inter-Univ. Inst. for High Energies, VUB/ULB, Brussels (Belgium)); Dziunikowska, K. (Inst. of Physics and Nuclear Techniques of the Academy of Mining and Metallurgy and Inst. of Nuclear Physics, Krakow (Poland)); Endler, A.M.F.; Garutchava, Z.C.; Gulkanyan, H.R. (Univ. Instelling Antwerpen, Wilrijk (Belgium)); Hakobyan, R.Sh. (Univ. Instelling Antwerpen, Wilrijk (Belgium)); Kisielewska, D. (Inst. of Physics and Nuclear Techniques of the Academy of Mining and Metallurgy and Inst. of Nuclear Physics, Krakow (Poland)); Kittel, W.; Mehrabyan, S.S. (Univ. Instelling Antwerpen, Wilrijk (Belgium)); Olkiewicz, K. (Inst. of Physics and Nuclear Techniques of the Academ; EHS/NA22 Collaboration

    1993-08-01

    The correlation of negative particles at small momentum difference and its dependence on multiplicity and on kinematical cuts is studied in [pi][sup +]p-interactions at 250 GeV/c. In terms of the Kopylov-Podgoretskii parametrization, an average radius of the pion emitting region of r[sub K]=1.59[+-]0.14 fm and a life-time (or emission depth) [tau]=0.83[+-]0.25 fm are found. The Lorentz invariant parametrization of Goldhaber gives r[sub G]=0.85[+-]0.04 fm. Assuming two different sources of pions, their radii are estimated as r[sub 1]=1.75[+-]0.25 fm and r[sub 2]=0.60[+-]0.08 fm. An angular and multiplicity dependence of the space-time size of the source is observed. The source is elongated along the collision axis and has larger size r[sub K] at higher multiplicities. The radius r[sub K] decreases with increasing pion pair momentum. The size of the emitting region appears to be larger for low rapidity pions than for pions from the fragmentation region. No evidence is found for a unique reference frame, where the pion source is motionless for each [pi][sup +]p collision, i.e. where the space-time size of the source is definitely smaller than in any other frame. (orig.)

  15. A Time-Splitting and Sine Spectral Method for Dynamics of Dipolar Bose-Einstein Condensate

    Directory of Open Access Journals (Sweden)

    Si-Qi Li

    2013-01-01

    Full Text Available A two-component Bose-Einstein condensate (BEC described by two coupled a three-dimension Gross-Pitaevskii (GP equations is considered, where one equation has dipole-dipole interaction while the other one has only the usual s-wave contact interaction, in a cigar trap. The time-splitting and sine spectral method in space is proposed to discretize the time-dependent equations for computing the dynamics of dipolar BEC. The singularity in the dipole-dipole interaction brings significant difficulties both in mathematical analysis and in numerical simulations. Numerical results are given to show the efficiency of this method.

  16. Diffused vorticity approach to the oscillations of a rotating Bose-Einstein condensate confined in a harmonic plus quartic trap

    Indian Academy of Sciences (India)

    M Cozzini

    2006-01-01

    The collective modes of a rotating Bose-Einstein condensate confined in an attractive quadratic plus quartic trap are investigated. Assuming the presence of a large number of vortices we apply the diffused vorticity approach to the system. We then use the sum rule technique for the calculation of collective frequencies, comparing the results with the numerical solution of the linearized hydrodynamic equations. Numerical solutions also show the existence of low-frequency multipole modes which are interpreted as vortex oscillations.

  17. Effects of external magnetic trap on two dark solitons of a two-component Bose-Einstein condensate

    Institute of Scientific and Technical Information of China (English)

    Hong Li; D. N. Wang

    2008-01-01

    Two dark solitons are considered in a two-component Bose-Einstein condensate with an external magnetic trap, and effects of the trap potential on their dynamics are investigated by the numerical simulation. The results show that the dark solitons attract, collide and repel periodically in two components as time changes, the time period depends strictly on the initial condition and the potential, and there are obvious self-trapping effects on the two dark solitons.

  18. Stochastic dynamics of a trapped Bose-Einstein condensate

    NARCIS (Netherlands)

    Duine, R.A.; Stoof, H.T.C.

    2001-01-01

    We present a variational solution of the Langevin field equation describing the nonequilibrium dynamics of a harmonically trapped Bose-Einstein condensate. If the thermal cloud remains in equilibrium at all times, we find that the equations of motion for the parameters in our variational ansatz are

  19. Bose-Einstein condensation in helium white dwarf stars. I

    Energy Technology Data Exchange (ETDEWEB)

    Mosquera, M.E. [Faculty of Astronomy and Geophysics, University of La Plata, Paseo del Bosque s.n., La Plata (Argentina); Department of Physics, University of La Plata, c.c. 67 1900, La Plata (Argentina); Civitarese, O., E-mail: osvaldo.civitarese@fisica.unlp.edu.a [Department of Physics, University of La Plata, c.c. 67 1900, La Plata (Argentina); Benvenuto, O.G.; De Vito, M.A. [Faculty of Astronomy and Geophysics, University of La Plata, Paseo del Bosque s.n., La Plata (Argentina); Instituto de Astrofisica La Plata, CCT (Argentina)

    2010-01-18

    The formation of a Bose-Einstein condensate in the interior of helium white dwarfs stars is discussed. Following the proposal made by Gabadadze and Rosen, we have explored the consequences of such a mechanism by calculating the cooling time of the stars. We have found that it is shorter than the value predicted by the standard model.

  20. Phase diffusion in a Bose-Einstein condensate of light

    NARCIS (Netherlands)

    De Leeuw, A. W.; Van Der Wurff, E. C I; Duine, R. A.; Stoof, H. T C

    2014-01-01

    We study phase diffusion in a Bose-Einstein condensate of light in a dye-filled optical microcavity, i.e., the spreading of the probability distribution for the condensate phase. To observe this phenomenon, we propose an interference experiment between the condensed photons and an external laser. We

  1. Excitation Spectrum of Three Dressed Bose-Einstein Condensates

    Institute of Scientific and Technical Information of China (English)

    OU-YANG Zhong-Wen; KUANG Le-Man

    2000-01-01

    We study quantum dynamics of three dressed Bose-Einstein condensates in a high-Q cavity. The quasiparticle excitation spectrum of this system is found numerically. The stability of the quasiparticle excitation is analyzed. It is shown that there exist instabilities in the excitation spectrum.

  2. Spontaneous symmetry breaking in spinor Bose-Einstein condensates

    DEFF Research Database (Denmark)

    Scherer, Manuel; Lücke, Bernd; Peise, Jan;

    2013-01-01

    We present an analytical model for the theoretical analysis of spin dynamics and spontaneous symmetry breaking in a spinor Bose-Einstein condensate (BEC). This allows for an excellent intuitive understanding of the processes and provides good quantitative agreement with the experimental results...

  3. Bose-Einstein correlation within the framework of hadronic mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Burande, Chandrakant S. [Vilasrao Deshmukh College of Engineering and Technology, Mouda, India-441104, Email: csburande@gmail.com (India)

    2015-03-10

    The Bose-Einstein correlation is the phenomenon in which protons and antiprotons collide at extremely high energies; coalesce one into the other resulting into the fireball of finite dimension. They annihilate each other and produces large number of mesons that remain correlated at distances very large compared to the size of the fireball. It was believed that Einstein’s special relativity and relativistic quantum mechanics are the valid frameworks to represent this phenomenon. Although, these frameworks are incomplete and require arbitrary parameters (chaoticity) to fit the experimental data which are prohibited by the basic axioms of relativistic quantum mechanics, such as that for the vacuum expectation values. Moreover, correlated mesons can not be treated as a finite set of isolated point-like particles because it is non-local event due to overlapping of wavepackets. Therefore, the Bose-Einstein correlation is incompatible with the axiom of expectation values of quantum mechanics. In contrary, relativistic hadronic mechanics constructed by Santilli allows an exact representation of the experimental data of the Bose-Einstein correlation and restore the validity of the Lorentz and Poincare symmetries under nonlocal and non-Hamiltonian internal effects. Further, F. Cardone and R. Mignani observed that the Bose-Einstein two-point correlation function derived by Santilli is perfectly matched with experimental data at high energy.

  4. Fully permanent magnet atom chip for Bose-Einstein condensation

    NARCIS (Netherlands)

    T. Fernholz; R. Gerritsma; S. Whitlock; I. Barb; R.J.C. Spreeuw

    2008-01-01

    We describe a proof-of-principle experiment on a fully permanent magnet atom chip. We study ultracold atoms and produce a Bose-Einstein condensate. The magnetic trap is loaded efficiently by adiabatic transport of a magnetic trap via the application of uniform external fields. Radio frequency spectr

  5. A single electron in a Bose-Einstein condensate

    Energy Technology Data Exchange (ETDEWEB)

    Balewski, Jonathan Benedikt

    2014-02-20

    This thesis deals with the production and study of Rydberg atoms in ultracold quantum gases. Especially a single electron in a Bose-Einstein condensate can be realized. This new idea, its experimental realization and theoretical description, as well as the development of application probabilities in a manifold of fields form the main topic of this thesis.

  6. Anisotropic collisions of dipolar Bose-Einstein condensates in the universal regime

    CERN Document Server

    Burdick, Nathaniel Q; Tang, Yijun; Lev, Benjamin L

    2016-01-01

    We report the measurement of collisions between two Bose-Einstein condensates with strong dipolar interactions. The collision velocity is significantly larger than the internal velocity distribution widths of the individual condensates, and thus, with the condensates being sufficiently dilute, a halo corresponding to the two-body differential scattering cross section is observed. The results demonstrate a novel regime of quantum scattering, relevant to dipolar interactions, in which a large number of angular momentum states become coupled during the collision. We perform Monte-Carlo simulations to provide a detailed comparison between theoretical two-body cross sections and the experimental observations.

  7. Finding new signature effects on galactic dynamics to constrain Bose-Einstein-condensed cold dark matter

    CERN Document Server

    Rindler-Daller, Tanja

    2012-01-01

    If cosmological cold dark matter (CDM) consists of light enough bosonic particles that their phase-space density exceeds unity, they will comprise a Bose-Einstein condensate (BEC). The nature of this BEC-CDM as a quantum fluid may then distinguish it dynamically from the standard form of CDM involving a collisionless gas of non-relativistic particles that interact purely gravitationally. We summarize some of the dynamical properties of BEC-CDM that may lead to observable signatures in galactic halos and present some of the bounds on particle mass and self-interaction coupling strength that result from a comparison with observed galaxies.

  8. Rydberg dressing of a one-dimensional Bose-Einstein condensate

    CERN Document Server

    Płodzień, Marcin; van Druten, N J; Kokkelmans, Servaas

    2016-01-01

    We study the influence of Rydberg dressed interactions in a one-dimensional (1D) Bose-Einstein Condensate (BEC). We show that 1D is advantageous over 3D for observing BEC Rydberg dressing. The effects of dressing are studied by investigating collective BEC dynamics after a rapid switch-off of the Rydberg dressing interaction. The results can be interpreted as an effective modification of the $s$-wave scattering length. We include this modification in an analytical model for the 1D BEC, and compare it to numerical calculations of Rydberg dressing under realistic experimental conditions.

  9. Bose-Einstein condensates in an optical cavity with sub-recoil bandwidth

    Science.gov (United States)

    Klinder, J.; Keßler, H.; Georges, Ch.; Vargas, J.; Hemmerich, A.

    2016-12-01

    This article provides a brief synopsis of our recent work on the interaction of Bose-Einstein condensates with the light field inside an optical cavity exhibiting a bandwidth on the order of the recoil frequency. Three different coupling scenarios are discussed giving rise to different physical phenomena at the borderline between the fields of quantum optics and many-body physics. This includes sub-recoil opto-mechanical cooling, cavity-controlled matter wave superradiance and the emergence of a superradiant superfluid or a superradiant Mott insulating many-body phase in a self-organized intra-cavity optical lattice with retarded infinite range interactions.

  10. Dynamics of Two-Component Bose-Einstein Condensates

    Science.gov (United States)

    Baik, Eunsil

    I explored the vortex dynamics in homonuclear species two-component Bose-Einstein condensates (BECs) based on the knowledge of vortex dynamics in one-component BECs. The vortex dynamics in BECs depends on the background fields induced by different external potentials and other vortices. The motion of vortices is numerically computed and the numerical results are compared to the theoretical formulas where possible. In the study of the vortex-vortex interaction dynamics in one-component BECs, a power law relationship between the motion of the vortices and their separation distance is depicted. In addition to that, the relationship between the linear and the angular velocities of the vortices is found to be similar to the relationship between the tangential and the angular velocities of classical fluid vortices. In the case of two-component BEC dynamics, two different cases are studied: one without atomic inter-conversion between the two components and the other with atomic inter-conversion. The stability analysis of the two-component BECs is conducted to identify the stable regions as well as the regions of mixed and separated states. When a vortex is seeded in one component, this vortex induces a hump in the other component at the same location as the vortex, which leads to the vortex-hump dynamics. The vortex-hump-vortex-hump interaction dynamics without atomic inter-conversion depicts a power law relation between the motion of vortex-humps and the separation distance; whereas, the vortex-hump-vortex-hump interaction dynamics with atomic inter-conversion reveals a more complex relation between the motion of vortex-humps and the separation distance.

  11. Mixtures of ultracold gases: Fermi sea and Bose-Einstein condensate of lithium isotopes

    Science.gov (United States)

    Schreck, F.

    2003-03-01

    This thesis presents studies of quantum degenerate atomic gases of fermionic ^6Li and bosonic ^7Li. Degeneracy is reached by evaporative cooling of ^7Li in a strongly confining magnetic trap. Since at low temperatures direct evaporative cooling is not possible for a polarized fermionic gas, ^6Li is sympathetically cooled by thermal contact with ^7Li. In a first series of experiments both isotopes are trapped in their low-field seeking higher hyperfine states. A Fermi degeneracy of T/T_F=0.25(5) is achieved for 10^5 fermions. For more than 300 atoms, the ^7Li condensate collapses, due to the attractive interatomic interaction in this state. This limits the degeneracy reached for both species. To overcome this limit, in a second series of experiments ^7Li and ^6Li atoms are transferred to their low field seeking lower hyperfine states, where the boson-boson interaction is repulsive but weak. The inter-isotope collisions are used to thermalize the mixture. A ^7Li Bose-Einstein condensate (BEC) of 10^4 atoms immersed in a Fermi sea is produced. The BEC is quasi-one-dimensional and the thermal fraction can be negligible. The measured degeneracies are T/T_C=T/T_F=0.2(1). The temperature is measured using the bosonic thermal fraction, which vanishes at the lowest temperatures, limiting our measurement sensitivity. In a third series of experiments, the bosons are transferred into an optical trap and their internal state is changed to |F=1,m_F=1rangle, the lowest energy state. A Feshbach resonance is detected and used to produce a BEC with tunable atomic interactions. When the effective interaction between atoms is tuned to be small and attractive, we observe the formation of a matter-wave bright soliton. Propagation of the soliton without spreading over a macroscopic distance of 1.1 mm is observed. Mélanges de gaz ultrafroids: mer de Fermi et condensat de Bose-Einstein des isotopes du lithium Cette thèse décrit l'étude des gaz de fermions ^6Li et de bosons ^7Li dans le

  12. Dynamic stability and manipulation of bright matter-wave solitons by optical lattices in Bose-Einstein condensates

    Institute of Scientific and Technical Information of China (English)

    Song Chang-Sheng; Li Jing; Zong Feng-De

    2012-01-01

    An extended variation approach to describing the dynamic evolution of self-attractive Bose-Einstein condensates is developed.We consider bright matter-wave solitons in the presence of a parabolic magnetic potential and a timespace periodic optical lattice.The dynamics of condensates is shown to be well approximated by four coupled nonlinear differential equations.A noteworthy feature is that the extended variation approach gives a critical strength ratio to support multiple stable lattice sites for the condensate.We further examine the existence of the solitons and their stabilities at the multiple stable lattice sites. In this case,the analytical predictions of Bose-Einstein condensates variational dynamics are found to be in good agreement with numerical simulations.We then find a stable region for successful manipulating matter-wave solitons without collapse,which are dragged from an initial stationary to a prescribed position by a moving periodic optical lattice.

  13. Eigenmodal analysis of Anderson localization: Applications to photonic lattices and Bose-Einstein condensates

    Science.gov (United States)

    Ying, Guanwen; Kouzaev, Guennadi

    2016-10-01

    We present the eigenmodal analysis techniques enhanced towards calculations of optical and non-interacting Bose-Einstein condensate (BEC) modes formed by random potentials and localized by Anderson effect. The results are compared with the published measurements and verified additionally by the convergence criterion. In 2-D BECs captured in circular areas, the randomness shows edge localization of the high-order Tamm-modes. To avoid strong diffusive effect, which is typical for BECs trapped by speckle potentials, a 3-D-lattice potential with increased step magnitudes is proposed, and the BECs in these lattices are simulated and plotted.

  14. Modified uncertainty principle from the free expansion of a Bose-Einstein Condensate

    CERN Document Server

    Castellanos, Elías

    2015-01-01

    We develop an analytical and numerical analysis of the free expansion of a Bose-Einstein condensate, in which we assume that the single particle energy spectrum is deformed due to a possible quantum structure of space time. Also we consider the presence of inter particle interactions in order to study more realistic and specific scenarios. The modified free velocity expansion of the condensate leads in a natural way to a modification of the uncertainty principle, which allows us to investigate some possible features of the Planck scale regime in low-energy earth-based experiments.

  15. A tale of two condensates: the odd "Bose - Einstein" condensation of atomic Hydrogen

    OpenAIRE

    1998-01-01

    The recent report of the observation of Bose-Einstein condensation in atomic Hydrogen, characterized by an "anomalous" density spectrum, is shown to be in agreement with the prediction of the existence of two condensates for temperatures lower than a well defined temperature (which for Hydrogen is $ 105~ \\mu K $), based on the QED coherent interaction in a gas of ultracold atoms at a density $n > n_0 (n_0=(1/\\lambda)^3, \\lambda$ being the wave-length of the e.m. modes resonantly coupled to th...

  16. Dual-species Bose-Einstein condensate of Rb87 and Cs133

    Science.gov (United States)

    McCarron, D. J.; Cho, H. W.; Jenkin, D. L.; Köppinger, M. P.; Cornish, S. L.

    2011-07-01

    We report the formation of a dual-species Bose-Einstein condensate of Rb87 and Cs133 in the same trapping potential. Our method exploits the efficient sympathetic cooling of Cs133 via elastic collisions with Rb87, initially in a magnetic quadrupole trap and subsequently in a levitated optical trap. The two condensates each contain up to 2×104 atoms and exhibit a striking phase separation, revealing the mixture to be immiscible due to strong repulsive interspecies interactions. Sacrificing all the Rb87 during the cooling, we create single-species Cs133 condensates of up to 6×104 atoms.

  17. Critical temperature of Bose-Einstein condensation in trapped atomic Bose-Fermi mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Albus, A P [Institut fuer Physik, Universitaet Potsdam, D-14469 Potsdam (Germany); Giorgini, S [Dipartimento di Fisica, Universita di Trento, and Istituto Nazionale per la Fisica della Materia, I-38050 Povo (Italy); Illuminati, F [Dipartimento di Fisica, Universita di Salerno, and Istituto Nazionale per la Fisica della Materia, I-84081 Baronissi (Italy); Viverit, L [Dipartimento di Fisica, Universita di Trento, and Istituto Nazionale per la Fisica della Materia, I-38050 Povo (Italy)

    2002-12-14

    We calculate the shift in the critical temperature of Bose-Einstein condensation for a dilute Bose-Fermi mixture confined by a harmonic potential, to lowest order in both the Bose-Bose and Bose-Fermi coupling constants. The relative importance of the effect on the critical temperature of the boson-boson and boson-fermion interactions is investigated as a function of the parameters of the mixture. The possible relevance of the shift of the transition temperature in current experiments on trapped Bose-Fermi mixtures is discussed. (letter to the editor)

  18. Korteweg de Vries Description of Dark Solitons in Bose-Einstein Condensates

    Institute of Scientific and Technical Information of China (English)

    HUANG Guo-Xiang

    2001-01-01

    We investigate the dynamics of pulses in a cigar-shaped Bose-Einstein condensate with repulsive atom-atom interactions without using Thomas-Fermi approximation. In the linear level our results give the Bogoliubov excitation spectrum for sound propagation with speed c = c0/ , where c0 is the speed for the case without a trap. We develop a Korteweg de Vries (KdV) description for dark soliton propagation in the system and show that it is the quantum pressure that contributes the dispersion necessary for the formation of the dark solitons.

  19. Bose-Einstein Condensation of Atomic Hydrogen observation for the thesis

    CERN Document Server

    Fried, D G; Willmann, L; Landhuis, D; Moss, S C; Kleppner, D; Greytak, T J; Fried, Dale G.; Killian, Thomas C.; Willmann, Lorenz; Landhuis, David; Moss, Stephen C.; Kleppner, Daniel; Greytak, Thomas J.

    1998-01-01

    We report observation of Bose-Einstein condensation of a trapped, dilute gas of atomic hydrogen. The condensate and normal gas are studied by two-photon spectroscopy of the 1S-2S transition. Interactions among the atoms produce a shift of the resonance frequency proportional to density. The condensate is clearly distinguished by its large frequency shift. The peak condensate density is 4.8 +/- 1.1 \\times 10^{15} cm^{-3}, corresponding to a condensate population of 10^9 atoms. The BEC transition occurs at about T=50 uK and n=1.8 \\times 10^{14} cm^{-3}.

  20. Creation and counting of defects in a temperature-quenched Bose-Einstein condensate

    Science.gov (United States)

    Donadello, S.; Serafini, S.; Bienaimé, T.; Dalfovo, F.; Lamporesi, G.; Ferrari, G.

    2016-08-01

    We study the spontaneous formation of defects in the order parameter of a trapped ultracold bosonic gas while crossing the critical temperature for Bose-Einstein condensation at different rates. The system has the shape of an elongated ellipsoid, whose transverse width can be varied. For slow enough temperature quenches we find a power-law scaling of the average defect number with the quench rate, as predicted by the Kibble-Zurek mechanism. A breakdown of such a scaling is found for fast quenches, leading to a saturation of the average defect number. We suggest an explanation for this saturation in terms of the mutual interactions among defects.

  1. Comment on "Stimulated Raman adiabatic passage from an atomic to a molecular Bose-Einstein condensate"

    CERN Document Server

    Mackie, M; Mackie, Matt; Javanainen, Juha

    2002-01-01

    We theoretically examine collective two-color photoassociation of a 87Rb Bose-Einstein condensate, focusing on stimulated Raman adiabatic passage (STIRAP) from atoms to molecules. In particular, Drummond et al. [Phys. Rev. A 65, 063619 (2002); cond-mat/0110578] have predicted that particle-particle interactions limit the efficiency of atom-molecule conversion to around forty percent. We demonstrate that mean-field shifts can be sidelined by switching to modest densities, and that STIRAP subsequently proceeds at near-unit efficiency.

  2. Modified uncertainty principle from the free expansion of a Bose-Einstein condensate

    Science.gov (United States)

    Castellanos, Elías; Escamilla-Rivera, Celia

    2017-01-01

    In this paper, we present a theoretical and numerical analysis of the free expansion of a Bose-Einstein condensate, where we assume that the single particle energy spectrum is deformed due to a possible quantum structure of spacetime. Also, we consider the presence of interparticle interactions in order to study more realistic and specific scenarios. The modified free velocity expansion of the condensate leads in a natural way to a modification of the uncertainty principle, which allows us to investigate some possible features of the Planck scale regime in low-energy earth-based experiments.

  3. Fragmented Superradiance of a Bose-Einstein Condensate in an Optical Cavity

    Science.gov (United States)

    Lode, Axel U. J.; Bruder, Christoph

    2017-01-01

    The Dicke model and the superradiance of two-level systems in a radiation field have many applications. Recently, a Dicke quantum phase transition has been realized with a Bose-Einstein condensate in a cavity. We numerically solve the many-body Schrödinger equation and study correlations in the ground state of interacting bosons in a cavity as a function of the strength of a driving laser. Beyond a critical strength, the bosons occupy multiple modes macroscopically while remaining superradiant. This fragmented superradiance can be detected by analyzing the variance of single-shot measurements.

  4. Statics characteristics of two Bose-Einstein condensate dark solitons trapped in an optical lattice

    Institute of Scientific and Technical Information of China (English)

    CHENG Yong-shan; GONG Rong-zhou; LI Hong

    2006-01-01

    The statics characteristics of two coupled Bose-Einstein condensate (BEC) dark solitons trapped in an optical lattice are investigated with the variational approach.It is found that the interaction between a ‘kink’ and an ‘anti-kink’ with opposite phase gradients is effectively repulsive, and the optical lattice can be controllably used to produce a pair of static BEC dark solitons.Its effect depends on the initial location of the BEC dark solitons, the lattice amplitude and wave number.

  5. Coherence Times of Bose-Einstein Condensates beyond the Shot-Noise Limit via Superfluid Shielding

    CERN Document Server

    Burton, William Cody; Chung, Woo Chang; Vadia, Samarth; Chen, Wenlan; Ketterle, Wolfgang

    2016-01-01

    We demonstrate a new way to extend the coherence time of separated Bose-Einstein condensates that involves immersion into a superfluid bath. When both the system and the bath have similar scattering lengths, immersion in a superfluid bath cancels out inhomogeneous potentials either imposed by external fields or inherent in density fluctuations due to atomic shot noise. This effect, which we call superfluid shielding, allows for coherence lifetimes beyond the projection noise limit. We probe the coherence between separated condensates in different sites of an optical lattice by monitoring the contrast and decay of Bloch oscillations. Our technique demonstrates a new way that interactions can improve the performance of quantum devices.

  6. Tunneling Dynamics of Two-Species Molecular Bose-Einstein Condensates

    Institute of Scientific and Technical Information of China (English)

    CHEN Chang-Yong; GAO Ke-Lin

    2004-01-01

    We study tunneling dynamics of atomic group in two-species molecular Bose-Einstein condensates. It is shown that the tunneling of the atom group depends on not only the tunneling coupling constant between the atomic pair molecular condensate and the three-atomic group molecular condensate, but also the inter-molecular nonlinear interactions and the initial number of atoms in these condensates. It is discovered that besides oscillating tunneling current between the atomic pair molecular condensate and the three-atomic group molecular condensate, the nonlinear atomic group tunneling dynamics sustains a self-maintained population imbalance: a macroscopic quantum self-trapping effect.

  7. Solitons in Bose-Einstein Condensates with Time-Dependent Atomic Scattering Length in a Harmonic Trap

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiao-Fei; ZHANG Pei; YANG Qin

    2008-01-01

    We obtain the integrable relation for the one-dimensional nonlinear Schrodinger equations which describes the dynamics of a Bose-Einstein Condensates with time-dependent scattering length in a harmonic potential. The exact one-and two-soliton solutions are constructed analytically by using the Hirota method. Then we further discuss the dynamics of the one soliton and the interactions between two solitons in currently experimental conditions.

  8. Fermi-Decay Law of Bose-Einstein Condensate Trapped in an Anharmonic Potential

    Institute of Scientific and Technical Information of China (English)

    LIU Yuan; JIA Ya-Fei; LI Wei-Dong

    2012-01-01

    The Fermi-decay law of Bose-Einstein condensate, which is trapped by a cigar-shaped anharmonic trap and subjected to a weak random perturbation, is investigated by numerically calculating quantum fidelity (Loschmidt echo), to reveal the coherence loss of the condensate. We find that there are three indispensable factors, anharmonic trap, weak random perturbation and nonlinear interaction, in charging of the Fermi-decay law. The anharmonic trap creates anharmonic oscillations, and the weak random perturbation causes coherence loss by disturbing their coherent oscillations, while the nonlinear interaction enhances the loss to the Fermi-decay law. Based on the Fermi-decay law, some suggestions are presented to prolong the coherent time during coherently manipulating condensates.%The Fermi-decay law of Bose Einstein condensate,which is trapped by a cigar-shaped anharmonic trap and subjected to a weak random perturbation,is investigated by numerically calculating quantum fidelity (Loschmidt echo),to reveal the coherence loss of the condensate.We find that there are three indispensable factors,anharmonic trap,weak random perturbation and nonlinear interaction,in charging of the Fermi-decay law.The anharmonic trap creates anharmonic oscillations,and the weak random perturbation causes coherence loss by disturbing their coherent oscillations,while the nonlinear interaction enhances the loss to the Fermi-decay law.Based on the Fermi-decay law,some suggestions are presented to prolong the coherent time during coherently manipulating condensates.

  9. Theory of cold atoms: Bose-Einstein statistics

    Science.gov (United States)

    Yukalov, V. I.

    2016-06-01

    This tutorial is the continuation of the previous tutorial part, published in (2013 Laser Phys. 23 062001), where the basic mathematical techniques required for an accurate description of cold atoms for both types of quantum statistics are expounded. In the present part, the specifics of the correct theoretical description of atoms obeying Bose-Einstein statistics are explained, including trapped Bose atoms. In the theory of systems exhibiting the phenomenon of Bose-Einstein condensation, there exists a number of delicate mathematical points, whose misunderstanding often results in principally wrong conclusions. This is why the consideration in the present tutorial is sufficiently detailed in order that the reader could clearly understand the underlying mathematics and would avoid confusions.

  10. Collective Excitations in Spin-2 Bose-Einstein Condensates

    Institute of Scientific and Technical Information of China (English)

    HOU Jing-Min; TIAN Li-Jun

    2005-01-01

    The Green's functions and the correlation functions in spin-2 Bose-Einstein condensates at finite temperature are defined and the generalized Dyson-Beliaev equations are introduced. We discuss the spin conservation in z direction and decouple thre Green's functions and the generalized Dyson-Beliaev equations according to different spin conservations in z direction. The anomalous vertex functions are introduced and the self-energies are separated into the proper self-energies and the improper self-energies. The generalized Dyson-Beliaev equations are decoupled according to separation of the self-energies. We calculate the Green's functions step by step in the Bogoliubov approximation and discuss the collective excitations in spin-2 Bose-Einstein condensates in the polar, ferromagnetic, and cyclic cases,respectively.

  11. Breakdown of Bose-Einstein Distribution in Photonic Crystals

    Science.gov (United States)

    Lo, Ping-Yuan; Xiong, Heng-Na; Zhang, Wei-Min

    2015-03-01

    In the last two decades, considerable advances have been made in the investigation of nano-photonics in photonic crystals. Previous theoretical investigations of photon dynamics were carried out at zero temperature. Here, we investigate micro/nano cavity photonics in photonic crystals at finite temperature. Due to photonic-band-gap-induced localized long-lived photon dynamics, we discover that cavity photons in photonic crystals do not obey Bose-Einstein statistical distribution. Within the photonic band gap and in the vicinity of the band edge, cavity photons combine the long-lived non-Markovain dynamics with thermal fluctuations together to form photon states that memorize the initial cavity state information. As a result, Bose-Einstein distribution is completely broken down in these regimes, even if the thermal energy is larger or much larger than the cavity detuning energy. In this investigation, a crossover phenomenon from equilibrium to nonequilibrium steady states is also revealed.

  12. Bose-Einstein correlations in W-pair decays

    CERN Document Server

    Barate, R; Ghez, P; Goy, C; Jézéquel, S; Lees, J P; Martin, F; Merle, E; Minard, M N; Pietrzyk, B; Alemany, R; Bravo, S; Casado, M P; Chmeissani, M; Crespo, J M; Fernández, E; Fernández-Bosman, M; Garrido, L; Graugès-Pous, E; Juste, A; Martínez, M; Merino, G; Miquel, R; Mir, L M; Morawitz, P; Pacheco, A; Riu, I; Ruiz, H; Colaleo, A; Creanza, D; De Palma, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Abbaneo, D; Boix, G; Buchmüller, O L; Cattaneo, M; Cerutti, F; Ciulli, V; Davies, G; Dissertori, G; Drevermann, H; Forty, Roger W; Frank, M; Gianotti, F; Greening, T C; Halley, A W; Hansen, J B; Harvey, J; Janot, P; Jost, B; Kado, M; Leroy, O; Maley, P; Mato, P; Minten, Adolf G; Moutoussi, A; Ranjard, F; Rolandi, Luigi; Schlatter, W D; Schmitt, M; Schneider, O; Spagnolo, P; Tejessy, W; Teubert, F; Tournefier, E; Valassi, Andrea; Wright, A E; Ajaltouni, Ziad J; Badaud, F; Chazelle, G; Deschamps, O; Dessagne, S; Falvard, A; Ferdi, C; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Pascolo, J M; Perret, P; Podlyski, F; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Rensch, B; Wäänänen, A; Daskalakis, G; Kyriakis, A; Markou, C; Simopoulou, Errietta; Vayaki, Anna; Blondel, A; Brient, J C; Machefert, F P; Rougé, A; Swynghedauw, M; Tanaka, R; Videau, H L; Focardi, E; Parrini, G; Zachariadou, K; Corden, M; Georgiopoulos, C H; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Chiarella, V; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Chalmers, M; Kennedy, J; Lynch, J G; Negus, P; O'Shea, V; Räven, B; Smith, D; Teixeira-Dias, P; Thompson, A S; Ward, J J; Cavanaugh, R J; Dhamotharan, S; Geweniger, C; Hanke, P; Hepp, V; Kluge, E E; Leibenguth, G; Putzer, A; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Girone, M; Goodsir, S M; Marinelli, N; Martin, E B; Nash, J; Nowell, J; Przysiezniak, H; Sciabà, A; Sedgbeer, J K; Thompson, J C; Thomson, E; Williams, M D; Ghete, V M; Girtler, P; Kneringer, E; Kuhn, D; Rudolph, G; Bowdery, C K; Buck, P G; Ellis, G; Finch, A J; Foster, F; Hughes, G; Jones, R W L; Robertson, N A; Smizanska, M; Williams, M I; Giehl, I; Hölldorfer, F; Jakobs, K; Kleinknecht, K; Kröcker, M; Müller, A S; Nürnberger, H A; Quast, G; Renk, B; Rohne, E; Sander, H G; Schmeling, S; Wachsmuth, H W; Zeitnitz, C; Ziegler, T; Aubert, Jean-Jacques; Bonissent, A; Carr, J; Coyle, P; Ealet, A; Fouchez, D; Tilquin, A; Aleppo, M; Antonelli, M; Gilardoni, S S; Ragusa, F; Büscher, V; Dietl, H; Ganis, G; Hüttmann, K; Lütjens, G; Mannert, C; Männer, W; Moser, H G; Schael, S; Settles, Ronald; Seywerd, H C J; Stenzel, H; Wiedenmann, W; Wolf, G; Azzurri, P; Boucrot, J; Callot, O; Chen, S; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Jacholkowska, A; Lefrançois, J; Serin, L; Veillet, J J; Videau, I; De Vivie de Régie, J B; Zerwas, D; Bagliesi, G; Boccali, T; Bozzi, C; Calderini, G; Dell'Orso, R; Ferrante, I; Giassi, A; Gregorio, A; Ligabue, F; Marrocchesi, P S; Messineo, A; Palla, Fabrizio; Rizzo, G; Sanguinetti, G; Sguazzoni, G; Tenchini, Roberto; Venturi, A; Verdini, P G; Blair, G A; Coles, J; Cowan, G D; Green, M G; Hutchcroft, D E; Jones, L T; Medcalf, T; Strong, J A; Botterill, David R; Clifft, R W; Edgecock, T R; Norton, P R; Tomalin, I R; Bloch-Devaux, B; Colas, P; Fabbro, B; Faïf, G; Lançon, E; Lemaire, M C; Locci, E; Pérez, P; Rander, J; Renardy, J F; Rosowsky, A; Seager, P; Trabelsi, A; Tuchming, B; Vallage, B; Black, S N; Dann, J H; Loomis, C; Kim, H Y; Konstantinidis, N P; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Cartwright, S L; Combley, F; Hodgson, P N; Lehto, M H; Thompson, L F; Affholderbach, K; Böhrer, A; Brandt, S; Grupen, Claus; Hess, J; Misiejuk, A; Prange, G; Sieler, U; Borean, C; Giannini, G; Gobbo, B; Pütz, J; Rothberg, J E; Wasserbaech, S R; Williams, R W; Armstrong, S R; Elmer, P; Ferguson, D P S; Gao, Y; González, S; Hayes, O J; Hu, H; Jin, S; Kile, J; McNamara, P A; Nielsen, J; Orejudos, W; Pan, Y B; Saadi, Y; Scott, I J; Walsh, J; Von Wimmersperg-Töller, J H; Wu Sau Lan; Wu, X; Zobernig, G

    2000-01-01

    Bose-Einstein correlations are studied in semileptonicWW --> qqbarlnu and fully hadronic WW --> qqbarqqbar W-pair decays with the ALEPH detector at LEP at centre-of-mass energies of 172, 183 and 189GeV. They are compared with those made at the Z peak after correction for the different flavour compositions. A Monte Carlo model of Bose-Einsteincorrelations based on the JETSET hadronization scheme was tuned to the Z data and reproduces the correlations in the WW --> qqbarlnu events. The same Monte Carlo reproduces the correlations in the WW --> qqbarqqbarchannel assuming independent fragmentation of the two W's. A variant thismodel with Bose-Einstein correlations between decay products of different W's is disfavoured.

  13. Interferometry with Bose-Einstein Condensates in Microgravity

    CERN Document Server

    Müntinga, H; Krutzik, M; Wenzlawski, A; Arnold, S; Becker, D; Bongs, K; Dittus, H; Duncker, H; Gaaloul, N; Gherasim, C; Giese, E; Grzeschik, C; Hänsch, T W; Hellmig, O; Herr, W; Herrmann, S; Kajari, E; Kleinert, S; Lämmerzahl, C; Lewoczko-Adamczyk, W; Malcolm, J; Meyer, N; Nolte, R; Peters, A; Popp, M; Reichel, J; Roura, A; Rudolph, J; Schiemangk, M; Schneider, M; Seidel, S T; Sengstock, K; Tamma, V; Valenzuela, T; Vogel, A; Walser, R; Wendrich, T; Windpassinger, P; Zeller, W; van Zoest, T; Ertmer, W; Schleich, W P; Rasel, E M

    2013-01-01

    Atom interferometers covering macroscopic domains of space-time are a spectacular manifestation of the wave nature of matter. Due to their unique coherence properties, Bose-Einstein condensates are ideal sources for an atom interferometer in extended free fall. In this paper we report on the realization of an asymmetric Mach-Zehnder interferometer operated with a Bose-Einstein condensate in microgravity. The resulting interference pattern is similar to the one in the far-field of a double-slit and shows a linear scaling with the time the wave packets expand. We employ delta-kick cooling in order to enhance the signal and extend our atom interferometer. Our experiments demonstrate the high potential of interferometers operated with quantum gases for probing the fundamental concepts of quantum mechanics and general relativity.

  14. Bose-Einstein correlations in WW pair production at LEP

    CERN Document Server

    Van Remortel, N

    2003-01-01

    This paper presents an overview of the latest results from the L3 and DELPHI collaborations concerning the measurement of Bose-Einstein correlations between identical bosons coming from different W's in fully hadronic WW decays. Using the same method, L3 sees no indication of any inter-W BEC effect, while DELPHI reports an indication of inter-W BEC between like-charged particles of the order of three standard deviations.

  15. Stability of Bright Solitons in Bose-Einstein Condensates

    Institute of Scientific and Technical Information of China (English)

    YU Hui-You; YAN Jia-Ren; XIE Qiong-Tao

    2004-01-01

    We investigate the stability of bright solitons in Bose-Einstein condensates by including a feeding term and a loss one in the Gross-Pitaevskii equation. Based on the direct approach of perturbation theory for the nonlinear Schrodinger equation, we give the explicit dependence of the height and other related quantities of bright solitons on the feeding and loss term. It is found that the three-body recombination loss plays a crucial role in stabilizing bright solitons.

  16. The Bose-Einstein effect and the joint WW decay

    OpenAIRE

    1998-01-01

    The influence of the Bose - Einstein interference effect on the joint WW hadronic decay is discussed. It is shown that the weight method incorporating this effect into Monte Carlo generators produces in a natural way an excess of average multiplicity as compared to the independent decay of two W bosons. The quantitative results for the average multiplicity and momentum distribution of charged pions, obtained with a simple parametrization of weights compatible with the observed shape of the "B...

  17. Quantum coherent oscillations between two coupled bose-einstein condensates

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The theoretical investigation of quantum coherent atomic oscillations between two coupled Bose-Einstein condensates(BECs) is studied. We apply the inseparable wave function of time-space to describe two trapped BECs in a double-well magnetic trap. According to Thomas-Fermi approximation, dynamical equations of the interwell phase difference and population imbalance are obtained. Using numerical method, coherent atomic tunneling and macroscopic quantum self-trapping(MQST) effect are investigated.

  18. Bloch oscillations of Bose-Einstein condensates: breakdown and revival.

    Science.gov (United States)

    Witthaut, D; Werder, M; Mossmann, S; Korsch, H J

    2005-03-01

    We investigate the dynamics of Bose-Einstein condensates in a tilted one-dimensional periodic lattice within the mean-field (Gross-Pitaevskii) description. Unlike in the linear case the Bloch oscillations decay because of nonlinear dephasing. Pronounced revival phenomena are observed. These are analyzed in detail in terms of a simple integrable model constructed by an expansion in Wannier-Stark resonance states. We also briefly discuss the pulsed output of such systems for stronger static fields.

  19. Vortices in the Wake of Rapid Bose-Einstein Condensation

    CERN Document Server

    Anglin, J R

    1999-01-01

    A second order phase transition induced by a rapid quench can lock out topological defects with densities far exceeding their equilibrium expectation values. We use quantum kinetic theory to show that this mechanism, originally postulated in the cosmological context, and analysed so far only on the mean field classical level, should allow spontaneous generation of vortex lines in trapped Bose-Einstein condensates of simple topology, or of winding number in toroidal condensates.

  20. Asymmetric Superradiant Scattering Patterns from Bose-Einstein Condensates

    Institute of Scientific and Technical Information of China (English)

    CHEN Yuan-Kai; ZHOU Xiao-Ji; YANG Fan; CHEN Xu-Zong

    2008-01-01

    The asymmetric patterns of superradiance from Bose-Einstein condensates are studied for the spatially inhomogeneous pump pulse with the semiclassical Maxwell-Schr(o)dinger equations.The coupling dynamics between the optical field and condensate in the strong pulse and a faded wing in the weak coupling regime are discussed,which not only explain the spatial effects in the process of superradiance,but also supply a new method to control its patterns.

  1. Bose-Einstein Correlations from Random Walk Models

    CERN Document Server

    Tomasik, Boris; Pisút, J; Tomasik, Boris; Heinz, Ulrich; Pisut, Jan

    1998-01-01

    We argue that the recently suggested ``random walk models'' for the extrapolation of hadronic transverse mass spectra from pp or pA to AB collisions fail to describe existing data on Bose-Einstein correlations. In particular they are unable to reproduce the measured magnitude and K_\\perp-dependence of R_s in Pb+Pb collisions and the increase of R_l with increasing size of the collision system.

  2. Stability of trapped Bose-Einstein condensates in one-dimensional tilted optical lattice potential

    Institute of Scientific and Technical Information of China (English)

    Fang Jian-Shu; Liao Xiang-Ping

    2011-01-01

    Using the direct perturbation technique, this paper obtains a general perturbed solution of the Bose-Einstein condensates trapped in one-dimensional tilted optical lattice potential. We also gave out two necessary and sufficient conditions for boundedness of the perturbed solution. Theoretical analytical results and the corresponding numerical results show that the perturbed solution of the Bose-Einstein condensate system is unbounded in general and indicate that the Bose-Einstein condensates are Lyapunov-unstable. However, when the conditions for boundedness of the perturbed solution are satisfied, then the Bose-Einstein condensates are Lyapunov-stable.

  3. Probing a scattering resonance in Rydberg molecules with a Bose-Einstein condensate

    CERN Document Server

    Schlagmüller, Michael; Nguyen, Huan; Lochead, Graham; Engel, Felix; Böttcher, Fabian; Westphal, Karl M; Kleinbach, Kathrin S; Löw, Robert; Hofferberth, Sebastian; Pfau, Tilman; Pérez-Ríos, Jesús; Greene, Chris H

    2015-01-01

    We present spectroscopy of a single Rydberg atom excited within a Bose-Einstein condensate. We not only observe the density shift as discovered by Amaldi and Segre in 1934, but a line shape which changes with the principal quantum number n. The line broadening depends precisely on the interaction potential energy curves of the Rydberg electron with the neutral atom perturbers. In particular, we show the relevance of the triplet p-wave shape resonance in the Rydberg electron-Rb(5S) scattering, which significantly modifies the interaction potential. With a peak density of 5.5x10^14 cm^-3, and therefore an inter-particle spacing of 1300 a0 within a Bose-Einstein condensate, the potential energy curves can be probed at these Rydberg ion - neutral atom separations. We present a simple microscopic model for the spectroscopic line shape by treating the atoms overlapped with the Rydberg orbit as zero-velocity, uncorrelated, point-like particles, with binding energies associated with their ion-neutral separation, and ...

  4. Engineered potentials in ultracold Bose-Einstein condensates

    Science.gov (United States)

    Campbell, Daniel L.

    Bose-Einstein condensates (BECs) are a recent addition to the portfolio of quantum materials some of which have profound commercial and military applications e.g., superconductors, superfluids and light emitting diodes. BECs exist in the lowest motional modes of a trap and have the lowest temperatures achieved by mankind. With full control over the shape of the trap the experimentalist may explore an extremely diverse set of Hamiltonians which may be altered mid-experiment. These properties are particularly suited for realizing novel quantum systems. This thesis explores interaction-driven domain formation and the subsequent domain coarsening for two immiscible BEC components. Because quantum coherences associated with interactions in BECs can be derived from low energy scattering theory we compare our experimental results to both a careful simulation (performed by Brandon Anderson) and an analytical prediction. This result very carefully explores the question of how a metastable system relaxes at the extreme limit of low temperature. We also explore spin-orbit coupling (SOC) of a BEC which links the linear and discrete momentum transferable by two counterpropagating ''Raman'' lasers that resonantly couple the ground electronic states of our BECs. SOC is used similarly in condensed matter systems to describe coupling between charge carrier spin and crystal momentum and is a necessary component of the quantum spin Hall effect and topological insulators. SOC links the linear and discrete momentum transferable by two counterpropagating ''Raman'' lasers and a subset of the ground electronic states of our BEC. The phases of an effective 2-spin component spin-orbit coupling (SOC) in a spin-1 BEC are described in Lin et al. (2011). We measure the phase transition between two phases of a spin-1 BEC with SOC which cannot be mimicked by a spin-1/2 system. The order parameter that describes transitions between these two phases is insensitive to magnetic field fluctuations. I

  5. Parametric resonance of capillary waves at the interface between two immiscible Bose-Einstein condensates

    NARCIS (Netherlands)

    Kobyakov, D.; Bychkov, V.; Lundh, E.; Bezett, A.H.; Marklund, M.

    2012-01-01

    We study the parametric resonance of capillary waves on the interface between two immiscible Bose-Einstein condensates pushed towards each other by an oscillating force. Guided by analytical models, we solve numerically the coupled Gross-Pitaevskii equations for a two-component Bose-Einstein condens

  6. Multiplicity, Jet, and Transverse Mass dependence of Bose-Einstein Correlations in e+e− - Annihilation

    Directory of Open Access Journals (Sweden)

    Metzger Wesley J.

    2015-01-01

    Full Text Available Bose-Einstein correlations of pairs of identical charged pions produced in hadronic Z decays are analyzed for both two- and three-jet events. A parametrization suggested by the τ-model is used to investigate the dependence of the Bose-Einstein correlation function on track multiplicity, number of jets, and transverse momentum.

  7. Measurement of Genuine Three-Particle Bose-Einstein Correlations in Hadronic Z decay

    CERN Document Server

    Achard, P; Aguilar-Benítez, M; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Anderhub, H; Andreev, V P; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Bajo, A; Baksay, G; Baksay, L; Baldew, S V; Banerjee, S; Banerjee, Sw; Barczyk, A; Barillère, R; Bartalini, P; Basile, M; Batalova, N; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Bellucci, L; Berbeco, R; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Biasini, M; Biglietti, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böhm, A; Boldizsar, L; Borgia, B; Bottai, S; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brochu, F; Burger, J D; Burger, W J; Cai, X D; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada, M; Chamizo-Llatas, M; Chang, Y H; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chiefari, G; Cifarelli, Luisa; Cindolo, F; Clare, I; Clare, R; Coignet, G; Colino, N; Costantini, S; de la Cruz, B; Cucciarelli, S; van Dalen, J A; De Asmundis, R; Déglon, P L; Debreczeni, J; Degré, A; Dehmelt, K; Deiters, K; Della Volpe, D; Delmeire, E; Denes, P; De Notaristefani, F; De Salvo, A; Diemoz, M; Dierckxsens, M; Dionisi, C; Dittmar, Michael; Doria, A; Dova, M T; Duchesneau, D; Echenard, B; Eline, A; El-Mamouni, H; Engler, A; Eppling, F J; Ewers, A; Extermann, Pierre; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, Marta; Ferguson, T; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Fisher, W; Fisk, I; Forconi, G; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gentile, S; Giagu, S; Gong, Z F; Grenier, G; Grimm, O; Grünewald, M W; Guida, M; van Gulik, R; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hakobyan, R S; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hirschfelder, J; Hofer, H; Hohlmann, M; Holzner, G; Hou, S R; Hu, Y; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Käfer, D; Kaur, M; Kienzle-Focacci, M N; Kim, J K; Kirkby, Jasper; Kittel, E W; Klimentov, A; König, A C; Kopal, M; Koutsenko, V F; Kräber, M H; Krämer, R W; Krenz, W; Krüger, A; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Le Goff, J M; Leiste, R; Levtchenko, M; Levchenko, P M; Li, C; Likhoded, S A; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lü, Y S; Lübelsmeyer, K; Luci, C; Luminari, L; Lustermann, W; Ma Wen Gan; Malgeri, L; Malinin, A; Maña, C; Mangeol, D J J; Mans, J; Martin, J P; Marzano, F; Mazumdar, K; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Mihul, A; Milcent, H; Mirabelli, G; Mnich, J; Mohanty, G B; Muanza, G S; Muijs, A J M; Musicar, B; Musy, M; Nagy, S; Natale, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Niessen, T; Nisati, A; Nowak, H; Ofierzynski, R A; Organtini, G; Palomares, C; Pandoulas, D; Paolucci, P; Paramatti, R; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Pedace, M; Pensotti, S; Perret-Gallix, D; Petersen, B; Piccolo, D; Pierella, F; Pioppi, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Pothier, J; Prokofiev, D O; Prokofev, D; Quartieri, J; Rahal-Callot, G; Rahaman, M A; Raics, P; Raja, N; Ramelli, R; Rancoita, P G; Ranieri, R; Raspereza, A V; Razis, P A; Ren, D; Rescigno, M; Reucroft, S; Riemann, S; Riles, K; Roe, B P; Romero, L; Rosca, A; Rosier-Lees, S; Roth, S; Rosenbleck, C; Roux, B; Rubio, Juan Antonio; Ruggiero, G; Rykaczewski, H; Sakharov, A; Saremi, S; Sarkar, S; Salicio, J; Sánchez, E; Sanders, M P; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Schopper, Herwig Franz; Schotanus, D J; Schwering, G; Sciacca, C; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shumilov, E; Shvorob, A V; Siedenburg, T; Son, D; Souga, C; Spillantini, P; Steuer, M; Stickland, D P; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Sushkov, S V; Suter, H; Swain, J D; Szillási, Z; Tang, X W; Tarjan, P; Tauscher, Ludwig; Taylor, L; Tellili, B; Teyssier, D; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tung, K L; Ulbricht, J; Valente, E; Van de Walle, R T; Vásquez, R P; Veszpremi, V; Vesztergombi, G; Vetlitskii, I; Vicinanza, D; Viertel, Gert M; Villa, S; Vivargent, M; Vlachos, S; Vodopyanov, I; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Wadhwa, M; Wallraff, W; Wang, X L; Wang, Z M; Weber, M; Wienemann, P; Wilkens, H; Wynhoff, S; Xia, L; Xu, Z Z; Yamamoto, J; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Yeh, S C; Zalite, A; Zalite, Yu; Zhang, Z P; Zhao, J; Zhu, G Y; Zhu, R Y; Zhuang, H L; Zichichi, A; Zimmermann, B; Zöller, M

    2002-01-01

    We measure three-particle Bose-Einstein correlations in hadronic Z decay with the L3 detector at LEP. Genuine three-particle Bose-Einstein correlations are observed. By comparing two- and three-particle correlations we find that the data are consistent with fully incoherent pion production.

  8. Bose-Einstein Condensate in a Linear Trap with a Dimple Potential

    Institute of Scientific and Technical Information of China (English)

    Haydar Uncu; Devrim Tarhan

    2013-01-01

    We study Bose-Einstein condensation in a linear trap with a dimple potential where we model dimple potentials by Dirac δ function.Attractive and repulsive dimple potentials are taken into account.This model allows simple,explicit numerical and analytical investigations of noninteracting gases.Thus,the Schr(o)dinger equation is used instead of the Gross-Pitaevski equation.We calculate the atomic density,the chemical potential,the critical temperature and the condensate fraction.The role of the relative depth of the dimple potential with respect to the linear trap in large condensate formation at enhanced temperatures is clearly revealed.Moreover,we also present a semi-classical method for calculating various quantities such as entropy analytically.Moreover,we compare the results of this paper with the results of a previous paper in which the harmonic trap with a dimple potential in 1D is investigated.

  9. Cosmological evolution of a complex scalar field with repulsive or attractive self-interaction

    CERN Document Server

    Suárez, Abril

    2016-01-01

    We study the cosmological evolution of a complex scalar field with a self-interaction potential $V(|\\varphi|^2)$, possibly describing self-gravitating Bose-Einstein condensates, using a fully general relativistic treatment. We generalize the hydrodynamic representation of the Klein-Gordon-Einstein equations in the weak field approximation developed in our previous paper. We establish the general equations governing the evolution of a spatially homogeneous complex scalar field in an expanding background. We show how they can be simplified in the fast oscillation regime and derive the equation of state of the scalar field in parametric form for an arbitrary potential. We explicitly consider the case of a quartic potential with repulsive or attractive self-interaction and determine the phase diagram of the scalar field. We show that the transition between the weakly self-interacting regime and the strongly self-interacting regime depends on how the scattering length of the bosons compares with their effective Sc...

  10. Geometrical Pumping with a Bose-Einstein Condensate.

    Science.gov (United States)

    Lu, H-I; Schemmer, M; Aycock, L M; Genkina, D; Sugawa, S; Spielman, I B

    2016-05-20

    We realized a quantum geometric "charge" pump for a Bose-Einstein condensate (BEC) in the lowest Bloch band of a novel bipartite magnetic lattice. Topological charge pumps in filled bands yield quantized pumping set by the global-topological-properties of the bands. In contrast, our geometric charge pump for a BEC occupying just a single crystal momentum state exhibits nonquantized charge pumping set by local-geometrical-properties of the band structure. Like topological charge pumps, for each pump cycle we observed an overall displacement (here, not quantized) and a temporal modulation of the atomic wave packet's position in each unit cell, i.e., the polarization.

  11. Space-Time Curvature Signatures in Bose-Einstein Condensates

    CERN Document Server

    Matos, Tonatiuh

    2015-01-01

    We derive a generalized Gross-Pitaevski (GP) equation immersed on a electromagnetic and a weak gravitational field starting from the covariant Complex Klein-Gordon field in a curved space-time. We compare it with the GP equation where the gravitational field is added by hand as an external potential. We show that there is a small difference of order $g z/c^2$ between them that could be measured in the future using Bose-Einstein Condensates (BEC). This represents the next order correction to the Newtonian gravity in a curved space-time.

  12. Vortex formation during the growth of Bose-Einstein condensates

    Science.gov (United States)

    Weiler, Chad; Neely, Tyler; Scherer, David; Anderson, Brian

    2007-06-01

    We experimentally study of the growth of Bose-Einstein condensates in harmonic trapping potentials with laser-induced perturbations to the potential well. We find that some time- independent perturbations can significantly impact the growth process and final state of the BEC. In particular, in numerical simulations and our experiments, we have observed the generation of vortices and vortex-antivortex pairs as a result of creating BECs in perturbed potentials. We will describe the results of our ongoing and completed experiments (D.R. Scherer, C.N. Weiler, T.W. Neely, B.P. Anderson, cond-mat/0610187, to be published in Phys. Rev. Lett.).

  13. Radial action-phase quantization in Bose-Einstein condensates

    Energy Technology Data Exchange (ETDEWEB)

    Reinisch, Gilbert [Departement Cassiopee, Observatoire de la Cote d' Azur, BP 4229, 06304-Nice cedex 4 (France)], E-mail: gilbert@oca.eu

    2008-02-04

    The 2D radial stationary nonlinear Schroedinger equation yields a new action-phase quantization of energy, in contrast with the linear case where the energy levels are degenerated with respect to the Ermakov constant. Characteristic values of radial energy quantization are given in the Gross-Pitaevskii mean-field description for the main vortex-nucleation experiments performed in rotating Bose-Einstein condensates. Finally, the link with Einstein's conjecture about non-quantizability of quasiperiodic orbits on a 2D torus is pointed out.

  14. Colliding Bose-Einstein condensates to observe Efimov physics.

    Science.gov (United States)

    Wang, Yujun; D'Incao, J P; Nägerl, H-C; Esry, B D

    2010-03-19

    We explore the manifestation of Efimov physics through the collision energy dependence of the three-body scattering observables and propose that it can be measured by observing atom loss in collisions of Bose-Einstein condensates. Our study shows that log-periodic Efimov features in the scattering observables extend beyond the usual threshold regime to nonzero collision energies and result from two interfering pathways. Further, these oscillations have a one-to-one connection with the scattering length oscillations at zero energy and thus to Efimov states themselves.

  15. Topological phases and circulating states of Bose-Einstein condensates

    CERN Document Server

    Petrosyan, K G

    1999-01-01

    We show that the quantum topological effect predicted by Aharonov and Casher (AC effect) [Phys. Rev. Lett. 53, 319 (1984)] may be used to create circulating states of magnetically trapped atomic Bose-Einstein condensates (BEC). A simple experimental setup is suggested based on a multiply connected geometry such as a toroidal trap or a magnetic trap pinched by a blue-detuned laser. We give numerical estimates of such effects within the current atomic BEC experiments, and point out some interesting properties of the associated quantized circulating states.

  16. Observation of Solitonic Vortices in Bose-Einstein Condensates

    Science.gov (United States)

    Donadello, Simone; Serafini, Simone; Tylutki, Marek; Pitaevskii, Lev P.; Dalfovo, Franco; Lamporesi, Giacomo; Ferrari, Gabriele

    2014-08-01

    We observe solitonic vortices in an atomic Bose-Einstein condensate (BEC) after free expansion. Clear signatures of the nature of such defects are the twisted planar density depletion around the vortex line, observed in absorption images, and the double dislocation in the interference pattern obtained through homodyne techniques. Both methods allow us to determine the sign of the quantized circulation. Experimental observations agree with numerical simulations. These solitonic vortices are the decay product of phase defects of the BEC order parameter spontaneously created after a rapid quench across the BEC transition in a cigar-shaped harmonic trap and are shown to have a very long lifetime.

  17. Bose-Einstein Correlations and the Tau-Model

    CERN Document Server

    Metzger, W J; Csörgő, T; Kittel, W

    2011-01-01

    Bose-Einstein correlations of pairs of identical charged pions produced in hadronic Z decays are analyzed in terms of various parametrizations. A good description is achieved using a L\\'evy stable distribution in conjunction with a model where a particle's momentum is highly correlated with its space-time point of production, the tau model. However, a small but significant elongation of the particle emission region is observed in the Longitudinal Center of Mass frame, which is not accommodated in the tau model. This is investigated using an ad hoc modification of the tau model.

  18. Tunneling of Spinor Bose-Einstein Condensates in Optical Lattice

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    In this letter, we have studied the tunneling effects and fluctuations of spinor Bose-Einstein condensates in optical lattice. It is found that there exist tunneling effects and fluctuations between lattices l and l + 1, l and l - 1,respectively. In particular, when the optical lattice is infinitely long and the spin excitations are in the long-wavelength limit, tunneling effects disappear between lattices l and l+ 1, and l and l - 1. In this case the fluctuations are a constant,and the magnetic soliton appears.

  19. Composite nature of hadrons and Bose-Einstein correlations

    Directory of Open Access Journals (Sweden)

    Bialas A.

    2016-01-01

    Full Text Available I am reporting results of two papers, written together with W.Florkowski and K.Zalewski [1, 2], discussing the consequences of the observation [3] that, due to their composite nature and thus finite size, hadrons observed in the HBT measurements must be correlated in space-time. Using the blast-wave model [4] adjusted [1] to ALICE data on the measured HBT radii in pp collisions at 7 TeV [5], the full Bose-Einstein correlation functions in three direction (out, side, long are evaluated. The results are presented together with some additional comments.

  20. Bose-Einstein condensation of dark matter axions.

    Science.gov (United States)

    Sikivie, P; Yang, Q

    2009-09-11

    We show that cold dark matter axions thermalize and form a Bose-Einstein condensate (BEC). We obtain the axion state in a homogeneous and isotropic universe, and derive the equations governing small axion perturbations. Because they form a BEC, axions differ from ordinary cold dark matter in the nonlinear regime of structure formation and upon entering the horizon. Axion BEC provides a mechanism for the production of net overall rotation in dark matter halos, and for the alignment of cosmic microwave anisotropy multipoles.

  1. On Multistep Bose-Einstein Condensation in Anisotropic Traps

    CERN Document Server

    Shiokawa, K

    2000-01-01

    Multistep Bose-Einstein condensation of an ideal Bose gas in anisotropic harmonic atom traps is studied. In the presence of strong anisotropy realized by the different trap frequency in each direction, finite size effect dictates a series of dimensional crossovers into lower-dimensional excitations. Two-step condensation and the dynamical reduction of the effective dimension can appear in three separate steps. When the multistep behavior occurs, the occupation number of atoms excited in each dimension is shown to behave similarly as a function of the temperature.

  2. Collisional Dynamics of Half-Quantum Vortices in a Spinor Bose-Einstein Condensate.

    Science.gov (United States)

    Seo, Sang Won; Kwon, Woo Jin; Kang, Seji; Shin, Y

    2016-05-01

    We present an experimental study on the interaction and dynamics of half-quantum vortices (HQVs) in an antiferromagnetic spinor Bose-Einstein condensate. By exploiting the orbit motion of a vortex dipole in a trapped condensate, we perform a collision experiment of two HQV pairs, and observe that the scattering motions of the HQVs is consistent with the short-range vortex interaction that arises from nonsingular magnetized vortex cores. We also investigate the relaxation dynamics of turbulent condensates containing many HQVs, and demonstrate that spin wave excitations are generated by the collisional motions of the HQVs. The short-range vortex interaction and the HQV-magnon coupling represent two characteristics of the HQV dynamics in the spinor superfluid.

  3. Excitation spectra of a Bose-Einstein condensate with an angular spin-orbit coupling

    Science.gov (United States)

    Vasić, Ivana; Balaž, Antun

    2016-09-01

    A theoretical model of a Bose-Einstein condensate with angular spin-orbit coupling has recently been proposed and it has been established that a half-skyrmion represents the ground state in a certain regime of spin-orbit coupling and interaction. Here we investigate low-lying excitations of this phase by using the Bogoliubov method and numerical simulations of the time-dependent Gross-Pitaevskii equation. We find that a sudden shift of the trap bottom results in a complex two-dimensional motion of the system's center of mass that is markedly different from the response of a competing phase, and comprises two dominant frequencies. Moreover, the breathing mode frequency of the half-skyrmion is set by both the spin-orbit coupling and the interaction strength, while in the competing state it takes a universal value. Effects of interactions are especially pronounced at the transition between the two phases.

  4. Multiple dark-bright solitons in atomic Bose-Einstein condensates

    Energy Technology Data Exchange (ETDEWEB)

    Yan, D.; Kevrekidis, P. G. [Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts 01003-4515 (United States); Chang, J. J.; Hamner, C.; Engels, P. [Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164 (United States); Achilleos, V.; Frantzeskakis, D. J. [Department of Physics, University of Athens, Panepistimiopolis, Zografos, GR-157 84 Athens (Greece); Carretero-Gonzalez, R. [Nonlinear Dynamical Systems Group, Department of Mathematics and Statistics and Computational Science Research Center, San Diego State University, San Diego, California 92182-7720 (United States); Schmelcher, P. [Zentrum fuer Optische Quantentechnologien, Universitaet Hamburg, Luruper Chaussee 149, D-22761 Hamburg (Germany)

    2011-11-15

    Motivated by recent experimental results, we present a systematic theoretical analysis of dark-bright-soliton interactions and multiple-dark-bright-soliton complexes in atomic two-component Bose-Einstein condensates. We study analytically the interactions between two dark-bright solitons in a homogeneous condensate and then extend our considerations to the presence of the trap. We illustrate the existence of robust stationary dark-bright-soliton ''molecules,'' composed of two or more solitons, which are formed due to the competition of the interaction forces between the dark- and bright-soliton components and the trap force. Our analysis is based on an effective equation of motion, derived for the distance between two dark-bright solitons. This equation provides equilibrium positions and characteristic oscillation frequencies of the solitons, which are found to be in good agreement with the eigenfrequencies of the anomalous modes of the system.

  5. A geometrothermodynamic approach to ideal quantum gases and Bose-Einstein condensates

    CERN Document Server

    Quevedo, Hernando

    2015-01-01

    We analyze in the context of geometrothermodynamics the behavior of ideal quantum gases which satisfy either the Fermi statistics or the Bose statistics. Although the corresponding Hamiltonian does not contain a potential, indicating the lack of classical thermodynamic interaction, we show that the curvature of the equilibrium space is non-zero, and can be interpreted as a measure of the effective quantum interaction between the gas particles. In the limiting case of a classical Boltzmann gas, we show that the equilibrium space becomes flat, as expected from the physical viewpoint. In addition, we derive a thermodynamic fundamental equation for the Bose-Einstein condensation and, using the Ehrenfest scheme, we show that it can be considered as a first order phase transition which in the equilibrium space corresponds to a curvature singularity. This result indicates that the curvature of the equilibrium space can be used to measure the thermodynamic interaction in classical and quantum systems.

  6. Fano resonances control and slow light with Bose-Einstein Condensate in a cavity setup

    CERN Document Server

    Akram, M Javed; Khan, M Miskeen; Saif, Farhan

    2015-01-01

    We theoretically investigate the probe field transmission in an optomechanical cavity setup with Bose-Einstein Condensate (BEC), where the standing wave that forms in the cavity results in an one-dimensional optical lattice potential. We report that in the presence of atom-atom interactions, the coupling of the cavity field with condensate (Bogoliubov mode), the cavity field fluctuations and the condensate fluctuations leads to the emergence of the tunable Fano resonances in the probe absorption spectrum. Within the experimental reach, based on analytical and numerical simulations, we find that the optomechanical system with BEC provides great flexibility to tune the Fano resonances, as the width of the resonance is controllable by the coupling field and additionally, with the atom-atom interaction. Moreover, Fano resonances are analyzed for the fluctuations of the cavity field and the fluctuations of the condensate with finite atomic two-body interaction, which shows an excellent compatibility with the origi...

  7. Collapsing dynamics of attractive Bose-Einstein condensates

    DEFF Research Database (Denmark)

    Bergé, L.; Juul Rasmussen, J.

    2002-01-01

    The self-similar collapse of 3D and quasi-2D atom condensates with negative scattering length is examined. 3D condensates are shown to blow up following the scenario of weak collapse, for which 3-body recombination weakly dissipates the atoms. In contrast, 2D condensates undergo a strong collapse...

  8. Semi-classical dynamics of superradiant Rayleigh scattering in a Bose-Einstein condensate

    Science.gov (United States)

    Müller, J. H.; Witthaut, D.; le Targat, R.; Arlt, J. J.; Polzik, E. S.; Hilliard, A. J.

    2016-10-01

    Due to its coherence properties and high optical depth, a Bose-Einstein condensate [BEC] provides an ideal setting to investigate collective atom-light interactions. Superradiant light scattering [SLS] in a BEC is a fascinating example of such an interaction. It is an analogous process to Dicke superradiance, in which an electronically inverted sample decays collectively, leading to the emission of one or more light pulses in a well-defined direction. Through time-resolved measurements of the superradiant light pulses emitted by an end-pumped BEC, we study the close connection of SLS with Dicke superradiance. A 1D model of the system yields good agreement with the experimental data and shows that the dynamics result from the structures that build up in the light and matter-wave fields along the BEC. This paves the way for exploiting the atom-photon correlations generated by the superradiance.

  9. Scalar field as a Bose-Einstein condensate in a Schwarzschild-de Sitter spacetime

    CERN Document Server

    Castellanos, Elías; Lämmerzahl, Claus; Macías, Alfredo

    2015-01-01

    In this paper we analyze some properties of a scalar field configuration, where it is considered a trapped Bose-Einstein condensate in a Schwarzschild-de Sitter background spacetime. In a natural way, the geometry of the curved spacetime provides an effective trapping potential for the scalar field configuration. This fact allows to explore some thermodynamical properties of the system. Additionally, the curved geometry of the spacetime also induces a position dependent self-interaction parameter, that can be interpreted as a kind of \\emph{gravitational Feshbach resonance}, which could affect the stability of the \\emph{cloud} and could be used to obtain information about the interactions among the components of the system.

  10. Phase Separation and Dynamics of two-component Bose-Einstein condensates

    CERN Document Server

    Lee, Kean Loon; Liu, I-Kang; Wacker, Lars; Arlt, Jan J; Proukakis, Nick P

    2016-01-01

    The miscibility of two interacting quantum systems is an important testing ground for the understanding of complex quantum systems. Two-component Bose-Einstein condensates enable the investigation of this scenario in a particularly well controlled setting. In a homogeneous system, the transition between mixed and separated phases is fully characterised by a `miscibility parameter', based on the ratio of intra- to inter-species interaction strengths. Here we show, however, that this parameter is no longer the optimal one for trapped gases, for which the location of the phase boundary depends critically on atom numbers. We demonstrate how monitoring of damping rates and frequencies of dipole oscillations enables the experimental mapping of the phase diagram by numerical implementation of a fully self-consistent finite-temperature kinetic theory for binary condensates. The change in damping rate is explained in terms of surface oscillation in the immiscible regime, and counterflow instability in the miscible reg...

  11. Dynamics of vortex dipoles in confined Bose-Einstein condensates

    Energy Technology Data Exchange (ETDEWEB)

    Torres, P.J. [Departamento de Matematica Aplicada, Universidad de Granada, 18071 Granada (Spain); Kevrekidis, P.G., E-mail: kevrekid@gmail.com [Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA 01003-4515 (United States); Frantzeskakis, D.J. [Department of Physics, University of Athens, Panepistimiopolis, Zografos, Athens 157 84 (Greece); Carretero-Gonzalez, R. [Nonlinear Dynamical System Group, Computational Science Research Center, and Department of Mathematics and Statistics, San Diego State University, San Diego, CA 92182-7720 (United States); Schmelcher, P. [Zentrum fuer Optische Quantentechnologien, Universitaet Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany); Hall, D.S. [Department of Physics, Amherst College, Amherst, MA 01002-5000 (United States)

    2011-08-01

    We present a systematic theoretical analysis of the motion of a pair of straight counter-rotating vortex lines within a trapped Bose-Einstein condensate. We introduce the dynamical equations of motion, identify the associated conserved quantities, and illustrate the integrability of the ensuing dynamics. The system possesses a stationary equilibrium as a special case in a class of exact solutions that consist of rotating guiding-center equilibria about which the vortex lines execute periodic motion; thus, the generic two-vortex motion can be classified as quasi-periodic. We conclude with an analysis of the linear and nonlinear stability of these stationary and rotating equilibria. -- Highlights: → A model describing the motion of a vortex dipole in a quasi two-dimensional trapped Bose-Einstein condensate is considered. → The model is integrable and the generic motion of the dipole is quasi-periodic. → Stationary and periodic (guiding-center) equilibria are identified. → Both equilibria are found to be dynamically stable.

  12. Bose-Einstein graviton condensate in a Schwarzschild black hole

    CERN Document Server

    Alfaro, Jorge; Gabbanelli, Luciano

    2016-01-01

    We analyze in detail a previous proposal by Dvali and G\\'omez that black holes could be treated as consisting of a Bose-Einstein condensate of gravitons. In order to do so we extend the Einstein-Hilbert action with a chemical potential-like term, thus placing ourselves in a grand-canonical ensemble. The form and characteristics of this chemical potential-like piece are discussed in some detail. After this, we proceed to expand the ensuing equations of motion up to second order around the classical Schwarzschild metric so that some non-linear terms in the metric fluctuation are kept. We argue that the resulting equations could be interpreted as the Gross-Pitaevskii equation describing a graviton Bose-Einstein condensate trapped by the black hole gravitational field. Next we search for solutions and, modulo some very plausible assumptions, we find out that the condensate vanishes outside the horizon but is non-zero in its interior. Based on hints from a numerical integration of the equations we formulate an ans...

  13. Atom Interferometry on Sounding Rockets with Bose-Einstein Condensates

    Science.gov (United States)

    Seidel, Stephan T.; Becker, Dennis; Lachmann, Maike D.; Herr, Waldemar; Rasel, Ernst M.; Quantus Collaboration

    2016-05-01

    One of the fundamental postulates of our description of nature is the universality of free fall, stating that the force exerted upon an object due to gravity is independent of its constitution. A precise test of this assumption is the comparison of the free fall of two ultra-cold clouds of different atomic species via atom interferometry. Since the sensitivity of the measurement is proportional to the square of the propagation time in the interferometer, it can be increased by performing the experiments in microgravity. In order to fully utilize the potential of the experiments the usage of a Bose-Einstein-Condensate as the initial state is necessary, because it is characterized by a small initial size and a low expansion velocity. As a step towards the transfer of such a system into space three sounding rocket missions with atom interferometers are currently being prepared. The launch of the first mission, aimed at the first demonstration of a Bose-Einstein-Condensate in space and an atom interferometer based on it is planned for 2016 from ESRANGE, Sweden. It will be followed by two more missions that extend the scientific goals to the creation of degenerate mixtures and dual-species atom interferometry. This research is funded by the German Space Agency DLR under Grant Number DLR 50 1131-37.

  14. Simulation of gravitational objects in Bose-Einstein condensates

    CERN Document Server

    Weinfurtner, S E C

    2004-01-01

    In this diplom-arbeit I consider a specific class of "analogue models" of curved spacetime that are specifically based on the use of Bose-Einstein condensates. As is usual in "analogue models", we are primarily interested in the kinematics of fields and quanta immersed in a curved-space background. We are not directly concerned with the Einstein equations of general relativity. Over the last few years numerous papers concerning "analogue models" have been published, the key result being that in many dynamical systems the perturbations have equations of motion that are governed by an "effective metric" that can often be interpreted in terms of an equivalent gravitational field. After a brief introduction concerning Bose-Einstein condensates and general relativity, I explain the connection between these two fields. Several specific examples are then explored in a little more detail: 1) Sinks and acoustic black holes [dumb holes]. 2) Ring-shaped Laval nozzles and acoustic horizons. 3) the de Sitter universe. In ...

  15. The spin evolution of spin-3 52Cr Bose-Einstein condensate

    Institute of Scientific and Technical Information of China (English)

    situ Shu-Ping; He Yan-Zhang

    2011-01-01

    This paper studies theoretically the spin evolution of a Bose-Einstein condensate starting from a mixture of two or three groups of 52Cr (spin-3) atoms in an optical trap. The initial state is so chosen that the condensate has total magnetization zero so that the system does not distinguish up and down. It is assumed that the system is very dilute (particle number is very small), the temperature is very low, and the frequency of the harmonic trap is large enough.In these situations, the deviation caused by the neglect of the dipole-dipole interaction and by using the single-mode approximation is reduced. A theoretical calculation beyond the mean field theory is performed and the numerical results are helpful for the evaluation of the unknown strength go.

  16. Quantum Enhancement of the Index of Refraction in a Bose-Einstein Condensate.

    Science.gov (United States)

    Bons, P C; de Haas, R; de Jong, D; Groot, A; van der Straten, P

    2016-04-29

    We study the index of refraction of an ultracold bosonic gas in the dilute regime. Using phase-contrast imaging with light detuned from resonance by several tens of linewidths, we image a single cloud of ultracold atoms for 100 consecutive shots, which enables the study of the scattering rate as a function of temperature and density using only a single cloud. We observe that the scattering rate is increased below the critical temperature for Bose-Einstein condensation by a factor of 3 compared to the single-atom scattering rate. We show that current atom-light interaction models to second order of the density show a similar increase, where the magnitude of the effect depends on the model that is used to calculate the pair-correlation function. This confirms that the effect of quantum statistics on the index of refraction is dominant in this regime.

  17. Output Rate of Atomic Four-Wave Mixing in Two-Component Bose-Einstein Condensate

    Institute of Scientific and Technical Information of China (English)

    LI Jia-Hua; LI Wei-Bing; PENG Ju-Cun

    2004-01-01

    In this letter, following the proposal of Heurich et al. [Phys. Rev. A63 (2001) 033605], we analyze and discuss output rate of atomic four-wave mixing in the two-component Bose-Einstein condensate under the condition of the steady state. The results show that the magnitude of the signal beam increases with the increase of the intensity of the probe beam, up to a saturated value, then it decreases as the probe beam increases. The influence of the interaction range on the signal beam is also predicted. In particular, it is worth while pointing out that in contrast to the previous solutions, our obtained analytical solutions are of very simple and explicit forms, which open the door for further investigating the related physical mechanisms.

  18. Thermalization of the quark-gluon plasma and dynamical formation of Bose-Einstein Condensate

    CERN Document Server

    Liao, Jinfeng

    2012-01-01

    We report recent progress on understanding the thermalization of the quark-gluon plasma during the early stage in a heavy ion collision. The initially high overpopulation in the pre-equilibrium gluonic matter (``glasma'') is shown to play a crucial role. The strongly interacting nature (and thus fast evolution) naturally arises as an {\\em emergent property} of this pre-equilibrium matter where the intrinsic coupling is weak but the highly occupied gluon states coherently amplify the scattering. A possible transient Bose-Einstein Condensate is argued to form dynamically on a rather general ground. We develop the kinetic approach for describing this highly overpopulated system and find approximate scaling solutions as well as numerically study the onset of condensation. Finally we discuss possible phenomenological implications.

  19. Levy-Feldgeim distributions for one-dimensional analysis of the Bose-Einstein correlations

    CERN Document Server

    Okorokov, V A

    2016-01-01

    The paper presents the study of relations between parameters of the two central-symmetrical Levy - Feldgeim distributions which can be used for investigation of one-dimensional Bose - Einstein correlations (1D BEC). The systems of equations are suggested for femtoscopic 1D parameters, strength of correlations and radius, in the case of two general view stable distributions for the first time. The relations take into account possible various finite ranges of the Lorentz invariant four-momentum difference for two central-symmetrical Levy - Feldgeim distributions. The systems of transcendental equations are derived for specific case of general view stable distributions most used for experimental study of 1D BEC, namely, for Cauchy and Gauss parameterizations. The mathematical formalism is verified with help of available experimental results for 1D BEC in various processes of strong interaction. The estimations for 1D femtoscopic parameters agree well with experiments in cases of the pair of general central-symme...

  20. Second harmonic generation of propagating collective excitations in Bose-Einstein condensates

    Institute of Scientific and Technical Information of China (English)

    Huang Guo-Xiang

    2004-01-01

    We consider a possible second harmonic generation (SHG) of propagating collective excitations in a two-component Bose-Einstein condensate (BEC) with repulsive atom-atom interactions. We show that the phase-matching condition for the SHG can be fulfilled if the wave vectors and frequencies of the excitations are chosen adequately from different dispersion branches. We solve the nonlinear amplitude equations for the SHG derived using a method of multiple-scales and provide SHG solutions similar to those obtained for a SHG in nonlinear optical media. A possible experimental realization of the SHG for the propagating collective modes in a cigar-shaped two-component BEC is also discussed.

  1. Effective mass approach for a Bose-Einstein condensate in an optical lattice

    Institute of Scientific and Technical Information of China (English)

    DUAN ZhengLu; STEEL M J; XU AiTing; ZHANG WeiPing

    2009-01-01

    We study the stationary and propagating solutions for a Bose-Einstein condensate (BEC) in a periodic optical potential with an additional confining optical or magnetic potential.Using an effective mass approximation we express the condensate wave function in terms of slowly-varying envelopes modulating the Bloch modes of the optical lattice.In the limit of a weak nonlinearity,we derive a nonlinear Schr(o)dinger equation for propagation of the envelope function which does not contain the rapid oscillation of the lattice.We then consider the ground state solutions in detail in the regime of weak,moderate and strong nonlinear interactions.We describe the form of solution which is appropriate in each regime,and place careful limits on the validity of each type of solution.Finally we extend the study to the propagating dynamics of a spinor atomic BEC in an optical lattice and some interesting phenomena are revealed.

  2. Composite-boson approach to molecular Bose-Einstein condensates in mixtures of ultracold Fermi gases

    Science.gov (United States)

    Bouvrie, P. Alexander; Tichy, Malte C.; Roditi, Itzhak

    2017-02-01

    We show that an ansatz based on independent composite bosons [Phys. Rep. 463, 215 (2008), 10.1016/j.physrep.2007.11.003] accurately describes the condensate fraction of molecular Bose-Einstein condensates in ultracold Fermi gases. The entanglement between the fermionic constituents of a single Feshbach molecule then governs the many-particle statistics of the condensate, from the limit of strong interaction to close to unitarity. This result strengthens the role of entanglement as the indispensable driver of composite-boson behavior. The condensate fraction of fermion pairs at zero temperature that we compute matches excellently previous results obtained by means of fixed-node diffusion Monte Carlo methods and the Bogoliubov depletion approximation. This paves the way towards the exploration of the BEC-BCS crossover physics in mixtures of cold Fermi gases with an arbitrary number of fermion pairs as well as the implementation of Hong-Ou-Mandel-like interference experiments proposed within coboson theory.

  3. Gravitational Waves as a New Probe of Bose-Einstein Condensate Dark Matter

    CERN Document Server

    Dev, P S Bhupal; Ohmer, Sebastian

    2016-01-01

    There exists a class of ultralight Dark Matter (DM) models which could form a Bose-Einstein condensate (BEC) in the early universe and behave as a single coherent wave instead of individual particles in galaxies. We show that a generic BEC DM halo intervening along the line of sight of a gravitational wave (GW) signal could induce an observable change in the speed of GW, with the effective refractive index depending only on the mass and self-interaction of the constituent DM particles and the GW frequency. Hence, we propose to use the deviation in the speed of GW as a new probe of the BEC DM parameter space. With a multi-messenger approach to GW astronomy and/or with extended sensitivity to lower GW frequencies, the entire BEC DM parameter space can be effectively probed by our new method in the near future.

  4. On the observation of nonclassical excitations in Bose-Einstein condensates

    CERN Document Server

    Finke, Andreas; Weinfurtner, Silke

    2016-01-01

    In the recent experimental and theoretical literature well-established nonclassicality criteria from the field of quantum optics have been directly applied to the case of excitations in matter-waves. Among these are violations of Cauchy-Schwarz inequalities, Glauber-Sudarshan P-nonclassicality, sub-Poissonian number-difference squeezing (also known as the two-mode variance) and the criterion of nonseparability. We review the strong connection of these criteria and their meaning in quantum optics, and point out differences in the interpretation between light and matter waves. We then calculate observables for a homogenous Bose-Einstein condensate undergoing an arbitrary modulation in the interaction parameter at finite initial temperature, within both the quantum theory as well as a classical reference. We conclude that to date in experiments relevant for analogue gravity, nonclassical effects have not conclusively been observed and conjecture that additional, noncommuting, observables have to be measured to t...

  5. Dark matter as a Bose-Einstein Condensate: the relativistic non-minimally coupled case

    Energy Technology Data Exchange (ETDEWEB)

    Bettoni, Dario; Colombo, Mattia; Liberati, Stefano, E-mail: bettoni@sissa.it, E-mail: mattia.colombo@studenti.unitn.it, E-mail: liberati@sissa.it [SISSA, Via Bonomea 265, Trieste, 34136 (Italy)

    2014-02-01

    Bose-Einstein Condensates have been recently proposed as dark matter candidates. In order to characterize the phenomenology associated to such models, we extend previous investigations by studying the general case of a relativistic BEC on a curved background including a non-minimal coupling to curvature. In particular, we discuss the possibility of a two phase cosmological evolution: a cold dark matter-like phase at the large scales/early times and a condensed phase inside dark matter halos. During the first phase dark matter is described by a minimally coupled weakly self-interacting scalar field, while in the second one dark matter condensates and, we shall argue, develops as a consequence the non-minimal coupling. Finally, we discuss how such non-minimal coupling could provide a new mechanism to address cold dark matter paradigm issues at galactic scales.

  6. Impurity driven Brownian motion of solitons in elongated Bose-Einstein Condensates

    CERN Document Server

    Aycock, L M; Genkina, D; Lu, H -I; Galitski, V; Spielman, I B

    2016-01-01

    Solitons, spatially-localized, mobile excitations resulting from an interplay between nonlinearity and dispersion, are ubiquitous in physical systems from water channels and oceans to optical fibers and Bose-Einstein condensates (BECs). For the first time, we observed and controlled the Brownian motion of solitons. We launched long-lived dark solitons in highly elongated $^{87}\\rm{Rb}$ BECs and showed that a dilute background of impurity atoms in a different internal state dramatically affects the soliton. With no impurities and in one-dimension (1-D), these solitons would have an infinite lifetime, a consequence of integrability. In our experiment, the added impurities scatter off the much larger soliton, contributing to its Brownian motion and decreasing its lifetime. We describe the soliton's diffusive behavior using a quasi-1-D scattering theory of impurity atoms interacting with a soliton, giving diffusion coefficients consistent with experiment.

  7. Theory of single-shot phase contrast imaging in spinor Bose-Einstein condensates.

    Science.gov (United States)

    Ilo-Okeke, Ebubechukwu O; Byrnes, Tim

    2014-06-13

    We introduce a theoretical framework for single-shot phase contrast imaging (PCI) measurements of spinor Bose-Einstein condensates (BECs). Our model allows for the simple calculation of the quantum backaction resulting from the measurement, and the amount of information that is read out. We find that there is an optimum time Gτ ∼ 1/N for the light-matter interaction (G is the ac Stark shift frequency, N is the number of particles in the BEC), where the maximum amount of information can be read out from the BEC. A universal information-disturbance tradeoff law ε(F)ε(G) ∝ 1/N(2) is found where ε(F) is the amount of backaction and ε(G) is the estimation error. The PCI measurement can also be found to be a direct probe of the quantum fluctuations of the BEC, via the noise of the PCI signal.

  8. Theory of single-shot phase contrast imaging in spinor Bose-Einstein condensates

    CERN Document Server

    Ilo-Okeke, Ebubechukwu O

    2014-01-01

    We introduce a theoretical framework for single-shot phase contrast imaging (PCI) measurements of spinor Bose-Einstein condensates. Our model allows for the simple calculation of the quantum backaction resulting from the measurement, and the amount of information that is read out. We find that there is an optimum time $ G\\tau \\sim 1/N $ for the light-matter interaction ($G $ is the ac Stark shift frequency, $ N $ is the number of particles in the BEC), where the maximum amount of information can be read out from the BEC. A universal information-disturbance tradeoff law $ \\epsilon_F \\epsilon_G \\propto 1/N^2 $ is found where $ \\epsilon_F $ is the amount of backaction and $ \\epsilon_G $ is the estimation error. The PCI measurement can also be found to be a direct probe of the quantum fluctuations of the BEC, via the noise of the PCI signal.

  9. Interferometry with non-classical motional states of a Bose-Einstein condensate

    Science.gov (United States)

    van Frank, S.; Negretti, A.; Berrada, T.; Bücker, R.; Montangero, S.; Schaff, J.-F.; Schumm, T.; Calarco, T.; Schmiedmayer, J.

    2014-05-01

    The Ramsey interferometer is a prime example of precise control at the quantum level. It is usually implemented using internal states of atoms, molecules or ions, for which powerful manipulation procedures are now available. Whether it is possible to control external degrees of freedom of more complex, interacting many-body systems at this level remained an open question. Here we demonstrate a two-pulse Ramsey-type interferometer for non-classical motional states of a Bose-Einstein condensate in an anharmonic trap. The control sequences used to manipulate the condensate wavefunction are obtained from optimal control theory and are directly optimized to maximize the interferometric contrast. They permit a fast manipulation of the atomic ensemble compared to the intrinsic decay processes and many-body dephasing effects. This allows us to reach an interferometric contrast of 92% in the experimental implementation.

  10. Tunneling Dynamics of Two-Species Bose-Einstein Condensates with Feshbach Resonances

    Institute of Scientific and Technical Information of China (English)

    CHENChanu-Yonu

    2003-01-01

    We investigate tunneling dynamics of atomic group consisting of three atoms in Bose-Einstein condensates with Feshbach resonance. It is shown that the tunneling of the atom group depends not only on the inter-atomic nonlinear interactions and the initial number of atoms in these condensates, but also on the tunneling coupling between the atomic condensate and the three-atomic molecular condensate. It is found that besides oscillating tunneling current between the atomic condensate and the molecular condensate, the nonlinear atomic group tunneling dynamics sustains a self-maintained population imbalance: a macroscopic quantum self-trapping effect. The influence of de-coherence caused by non-condensate atoms on the tunneling dynamics is studied. It is indicated that de-coherence suppresses the atomic group tunneling.

  11. Tunneling Dynamics of Two-Species Bose-Einstein Condensates with Feshbach Resonances

    Institute of Scientific and Technical Information of China (English)

    CHEN Chang-Yong

    2003-01-01

    We investigate tunneling dynamics of atomic group consisting of three atoms in Bose-Einstein condensateswith Feshbach resonance. It is shown that the tunneling of the atom group depends not only on the inter-atomicnonlinear interactions and the initial number of atoms in these condensates, but also on the tunneling coupling betweenthe atomic condensate and the three-atomic molecular condensate. It is found that besides oscillating tunneling currentbetween the atomic condensate and the molecular condensate, the nonlinear atomic group tunneling dynamics sustains aself-maintained population imbalance: a macroscopic quantum self-trapping effect. The influence of de-coherence causedby non-condensate atoms on the tunneling dynamics is studied. It is indicated that de-coherence suppresses the atomicgroup tunneling.

  12. Effect of Time-Dependent Atomic Scattering Length on Solitons in Bose-Einstein Condensates with a Complex Potential

    Institute of Scientific and Technical Information of China (English)

    WANG Tian-Yuan

    2009-01-01

    We consider the one-dimensional nonlinear SchrSdinger equations that describe the dynamics of a Bose-Einstein Condensates with time-dependent scattering length in a complex potential.Our results show that as long as the integrable relation is satisfied, exact solutions of the one-dimensional nonlinear SchrSdinger equation can be found in a general closed form, and interactions between two solitons are modulated in a complex potential.We find that the changes of the scattering length and trapping potential can be effectively used to control the interaction between two bright soliton.

  13. Bose Einstein correlations in W-pair decays with an event-mixing technique

    Science.gov (United States)

    ALEPH Collaboration; Schael, S.; Barate, R.; Brunelière, R.; de Bonis, I.; Decamp, D.; Goy, C.; Jézéquel, S.; Lees, J.-P.; Martin, F.; Merle, E.; Minard, M.-N.; Pietrzyk, B.; Trocmé, B.; Bravo, S.; Casado, M. P.; Chmeissani, M.; Crespo, J. M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, Ll.; Martinez, M.; Pacheco, A.; Ruiz, H.; Colaleo, A.; Creanza, D.; de Filippis, N.; de Palma, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Barklow, T.; Buchmüller, O.; Cattaneo, M.; Clerbaux, B.; Drevermann, H.; Forty, R. W.; Frank, M.; Gianotti, F.; Hansen, J. B.; Harvey, J.; Hutchcroft, D. E.; Janot, P.; Jost, B.; Kado, M.; Mato, P.; Moutoussi, A.; Ranjard, F.; Rolandi, L.; Schlatter, D.; Sguazzoni, G.; Teubert, F.; Valassi, A.; Videau, I.; Badaud, F.; Dessagne, S.; Falvard, A.; Fayolle, D.; Gay, P.; Jousset, J.; Michel, B.; Monteil, S.; Pallin, D.; Pascolo, J. M.; Perret, P.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Kraan, A. C.; Nilsson, B. S.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Brient, J.-C.; Machefert, F.; Rougé, A.; Videau, H.; Ciulli, V.; Focardi, E.; Parrini, G.; Antonelli, A.; Antonelli, M.; Bencivenni, G.; Bossi, F.; Capon, G.; Cerutti, F.; Chiarella, V.; Laurelli, P.; Mannocchi, G.; Murtas, G. P.; Passalacqua, L.; Kennedy, J.; Lynch, J. G.; Negus, P.; O'Shea, V.; Thompson, A. S.; Wasserbaech, S.; Cavanaugh, R.; Dhamotharan, S.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E. E.; Putzer, A.; Stenzel, H.; Tittel, K.; Wunsch, M.; Beuselinck, R.; Cameron, W.; Davies, G.; Dornan, P. J.; Girone, M.; Marinelli, N.; Nowell, J.; Rutherford, S. A.; Sedgbeer, J. K.; Thompson, J. C.; White, R.; Ghete, V. M.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bouhova-Thacker, E.; Bowdery, C. K.; Clarke, D. P.; Ellis, G.; Finch, A. J.; Foster, F.; Hughes, G.; Jones, R. W. L.; Pearson, M. R.; Robertson, N. A.; Smizanska, M.; van der Aa, O.; Delaere, C.; Leibenguth, G.; Lemaitre, V.; Blumenschein, U.; Hölldorfer, F.; Jakobs, K.; Kayser, F.; Kleinknecht, K.; Müller, A.-S.; Renk, B.; Sander, H.-G.; Schmeling, S.; Wachsmuth, H.; Zeitnitz, C.; Ziegler, T.; Bonissent, A.; Coyle, P.; Curtil, C.; Ealet, A.; Fouchez, D.; Payre, P.; Tilquin, A.; Ragusa, F.; David, A.; Dietl, H.; Ganis, G.; Hüttmann, K.; Lütjens, G.; Männer, W.; Moser, H.-G.; Settles, R.; Villegas, M.; Wolf, G.; Boucrot, J.; Callot, O.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Jacholkowska, A.; Serin, L.; Veillet, J.-J.; Azzurri, P.; Bagliesi, G.; Boccali, T.; Foà, L.; Giammanco, A.; Giassi, A.; Ligabue, F.; Messineo, A.; Palla, F.; Sanguinetti, G.; Sciabà, A.; Spagnolo, P.; Tenchini, R.; Venturi, A.; Verdini, P. G.; Awunor, O.; Blair, G. A.; Cowan, G.; Garcia-Bellido, A.; Green, M. G.; Medcalf, T.; Misiejuk, A.; Strong, J. A.; Teixeira-Dias, P.; Clifft, R. W.; Edgecock, T. R.; Norton, P. R.; Tomalin, I. R.; Ward, J. J.; Bloch-Devaux, B.; Boumediene, D.; Colas, P.; Fabbro, B.; Lançon, E.; Lemaire, M.-C.; Locci, E.; Perez, P.; Rander, J.; Tuchming, B.; Vallage, B.; Litke, A. M.; Taylor, G.; Booth, C. N.; Cartwright, S.; Combley, F.; Hodgson, P. N.; Lehto, M.; Thompson, L. F.; Böhrer, A.; Brandt, S.; Grupen, C.; Hess, J.; Ngac, A.; Prange, G.; Borean, C.; Giannini, G.; He, H.; Putz, J.; Rothberg, J.; Armstrong, S. R.; Berkelman, K.; Cranmer, K.; Ferguson, D. P. S.; Gao, Y.; González, S.; Hayes, O. J.; Hu, H.; Jin, S.; Kile, J.; McNamara, P. A.; Nielsen, J.; Pan, Y. B.; von Wimmersperg-Toeller, J. H.; Wiedenmann, W.; Wu, J.; Wu, S. L.; Wu, X.; Zobernig, G.; Dissertori, G.

    2005-01-01

    Bose Einstein correlations in W-pair decays are studied using data collected by the ALEPH detector at LEP at e+e- centre-of-mass energies from 183 to 209 GeV. The analysis is based on the comparison of WW→qq¯qq¯ events to “mixed” events constructed with the hadronic part of WW→qq¯ℓν events. The data are in agreement with the hypothesis that Bose Einstein correlations are present only for pions from the same W decay. The JETSET model with Bose Einstein correlations between pions from different W bosons is disfavoured.

  14. Bose-Einstein correlations in W-pair decays with an event-mixing technique

    CERN Document Server

    Schael, S; Brunelière, R; De Bonis, I; Décamp, D; Goy, C; Jézéquel, S; Lees, J P; Martin, F; Merle, E; Minard, M N; Pietrzyk, B; Trocmé, B; Bravo, S; Casado, M P; Chmeissani, M; Crespo, J M; Fernández, E; Fernández-Bosman, M; Garrido, L; Martínez, M; Pacheco, A; Ruiz, H; Colaleo, A; Creanza, D; De Filippis, N; De Palma, M; Iaselli, G; Maggi, G; Maggi, M; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Abbaneo, D; Barklow, T; Buchmüller, O L; Cattaneo, M; Clerbaux, B; Drevermann, H; Forty, R W; Frank, M; Gianotti, F; Hansen, J B; Harvey, J; Hutchcroft, D E; Janot, P; Jost, B; Kado, M; Mato, P; Moutoussi, A; Ranjard, F; Rolandi, Luigi; Schlatter, W D; Sguazzoni, G; Teubert, F; Valassi, A; Videau, I; Badaud, F; Dessagne, S; Falvard, A; Fayolle, D; Gay, P; Jousset, J; Michel, B; Monteil, S; Pallin, D; Pascolo, J M; Perret, P; Hansen, J D; Hansen, J R; Hansen, P H; Kraan, A C; Nilsson, B S; Kyriakis, A; Markou, C; Simopoulou, E; Vayaki, A; Zachariadou, K; Blondel, A; Brient, J C; Machefert, F P; Rougé, A; Videau, H L; Ciulli, V; Focardi, E; Parrini, G; Antonelli, A; Antonelli, M; Bencivenni, G; Bossi, F; Capon, G; Cerutti, F; Chiarella, V; Laurelli, P; Mannocchi, G; Murtas, G P; Passalacqua, L; Kennedy, J; Lynch, J G; Negus, P; O'Shea, V; Thompson, A S; Wasserbaech, S R; Cavanaugh, R J; Dhamotharan, S; Geweniger, C; Hanke, P; Hepp, V; Kluge, E E; Putzer, A; Stenzel, H; Tittel, K; Wunsch, M; Beuselinck, R; Cameron, W; Davies, G; Dornan, P J; Girone, M; Marinelli, N; Nowell, J; Rutherford, S A; Sedgbeer, J K; Thompson, J C; White, R; Ghete, V M; Girtler, P; Kneringer, E; Kuhn, D; Rudolph, G; Bouhova-Thacker, E; Bowdery, C K; Clarke, D P; Ellis, G; Finch, A J; Foster, F; Hughes, G; Jones, R W L; Pearson, M R; Robertson, N A; Smizanska, M; van der Aa, O; Delaere, C; Leibenguth, G; Lemaître, V; Blumenschein, U; Hölldorfer, F; Jakobs, K; Kayser, F; Kleinknecht, K; Müller, A S; Renk, B; Sander, H G; Schmeling, S; Wachsmuth, H W; Zeitnitz, C; Ziegler, T; Bonissent, A; Coyle, P; Curtil, C; Ealet, A; Fouchez, D; Payre, P; Tilquin, A; Ragusa, F; David, A; Dietl, H; Ganis, G; Hüttmann, K; Lütjens, G; Männer, W; Moser, H G; Settles, R; Villegas, M; Wolf, G; Boucrot, J; Callot, O; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Jacholkowska, A; Serin, L; Veillet, J J; Azzurri, P; Bagliesi, G; Boccali, T; Foà, L; Giammanco, A; Giassi, A; Ligabue, F; Messineo, A; Palla, F; Sanguinetti, G; Sciabà, A; Spagnolo, P; Tenchini, R; Venturi, A; Verdini, P G; Awunor, O; Blair, G A; Cowan, G; García-Bellido, A; Green, M G; Medcalf, T; Misiejuk, A; Strong, J A; Teixeira-Dias, P; Clifft, R W; Edgecock, T R; Norton, P R; Tomalin, I R; Ward, J J; Bloch-Devaux, B; Boumediene, D E; Colas, P; Fabbro, B; Lançon, E; Lemaire, M C; Locci, E; Pérez, P; Rander, J; Tuchming, B; Vallage, B; Litke, A M; Taylor, G; Booth, C N; Cartwright, S; Combley, F; Hodgson, P N; Lehto, M H; Thompson, L F; Böhrer, A; Brandt, S; Grupen, C; Hess, J; Ngac, A; Prange, G; Borean, C; Giannini, G; He, H; Pütz, J; Rothberg, J E; Armstrong, S R; Berkelman, K; Cranmer, K; Ferguson, D P S; Gao, Y; González, S; Hayes, O J; Hu, H; Jin, S; Kile, J; McNamara, P A; Nielsen, J; Pan Yi Bin; Von Wimmersperg-Töller, J H; Wiedenmann, W; Wu, J; Wu, S L; Wu, X; Zobernig, G

    2005-01-01

    Bose-Einstein correlations in W-pair decays are studied using data collected by the ALEPH detector at LEP at e+e- centre-of-mass energies from 183 to 209 GeV. The analysis is based on the comparison of WW-->qqqq events to ``mixed'' events constructed with the hadronic part of WW-->qqlnu events. The data are in agreement with the hypothesis that Bose-Einstein correlations are present only for pions from the same W decay. The JETSET model with Bose-Einstein correlations between pions from different W bosons is disfavoured.

  15. Bright Solitons in an Atomic Tunnel Array with Either Attractive or Repulsive Atom-Atom Interactions

    Institute of Scientific and Technical Information of China (English)

    YANG Xiao-Xue; YOU Jun; WU Ying

    2004-01-01

    @@ Taking a coherent state representation, we derive the nonlinear Schrodinger-type differential-difference equations from the quantized model of an array of traps containing Bose-Einstein condensates and linked by the tunnelling process among the adjacent traps. It is shown that no matter whether two-body interactions among atoms are repulsive or attractive, a nearly uniform atom distribution can evolve into a bright soliton-type localized ensemble of atoms and a lump of atom distribution can also be smeared out by redistributing atoms among traps under appropriate initial phase differences of atoms in adjacent traps. These two important features originate from the tailoring effect of the initial phase conditions in coherent tunnelling processes, which differs crucially from the previous tailoring effect coming mainly from the periodicity of optical lattices.

  16. Small size sources of secondaries observed in pp-collisions via Bose-Einstein correlations at the LHC ATLAS experiment

    CERN Document Server

    Schegelsky, V A

    2016-01-01

    Bose-Einstein correlations in proton-proton collisions at the LHC are well descried by the formula with two different scales. It is shown for the first time that the pions are produced by few small size sources distributed over a much larger area in impact parameter space occupied by the interaction amplitude. The dependence of the two radii obtained in this procedure on the charged particle density and the mean transverse momentum of the pion/hadron in the correlated pair are discussed.

  17. Bloch oscillations and mean-field effects of Bose-Einstein condensates in 1D optical lattices.

    Science.gov (United States)

    Morsch, O; Müller, J H; Cristiani, M; Ciampini, D; Arimondo, E

    2001-10-01

    We have loaded Bose-Einstein condensates into one-dimensional, off-resonant optical lattices and accelerated them by chirping the frequency difference between the two lattice beams. For small values of the lattice well depth, Bloch oscillations were observed. Reducing the potential depth further, Landau-Zener tunneling out of the lowest lattice band, leading to a breakdown of the oscillations, was also studied and used as a probe for the effective potential resulting from mean-field interactions as predicted by Choi and Niu [Phys. Rev. Lett. 82, 2022 (1999)]. The effective potential was measured for various condensate densities and trap geometries, yielding good qualitative agreement with theoretical calculations.

  18. Multimode mean-field model for the quantum phase transition of a Bose-Einstein condensate in an optical resonator

    Science.gov (United States)

    Kónya, G.; Szirmai, G.; Domokos, P.

    2011-11-01

    We develop a mean-field model describing the Hamiltonian interaction of ultracold atoms and the optical field in a cavity. The Bose-Einstein condensate is properly defined by means of a grand-canonical approach. The model is efficient because only the relevant excitation modes are taken into account. However, the model goes beyond the two-mode subspace necessary to describe the self-organization quantum phase transition observed recently. We calculate all the second-order correlations of the coupled atom field and radiation field hybrid bosonic system, including the entanglement between the two types of fields.

  19. Multimode mean-field model for the quantum phase transition of a Bose-Einstein condensate in an optical resonator

    CERN Document Server

    Konya, G; Domokos, P

    2011-01-01

    We develop a mean-field model describing the Hamiltonian interaction of ultracold atoms and the optical field in a cavity. The Bose-Einstein condensate is properly defined by means of a grand-canonical approach. The model is efficient because only the relevant excitation modes are taken into account. However, the model goes beyond the two-mode subspace necessary to describe the self-organization quantum phase transition observed recently. We calculate all the second-order correlations of the coupled atom field and radiation field hybrid bosonic system, including the entanglement between the two types of fields.

  20. Bell correlations in a Bose-Einstein condensate.

    Science.gov (United States)

    Schmied, Roman; Bancal, Jean-Daniel; Allard, Baptiste; Fadel, Matteo; Scarani, Valerio; Treutlein, Philipp; Sangouard, Nicolas

    2016-04-22

    Characterizing many-body systems through the quantum correlations between their constituent particles is a major goal of quantum physics. Although entanglement is routinely observed in many systems, we report here the detection of stronger correlations--Bell correlations--between the spins of about 480 atoms in a Bose-Einstein condensate. We derive a Bell correlation witness from a many-particle Bell inequality involving only one- and two-body correlation functions. Our measurement on a spin-squeezed state exceeds the threshold for Bell correlations by 3.8 standard deviations. Our work shows that the strongest possible nonclassical correlations are experimentally accessible in many-body systems and that they can be revealed by collective measurements.

  1. Kinetic approach to a relativistic Bose-Einstein condensate.

    Science.gov (United States)

    Meistrenko, Alex; van Hees, Hendrik; Zhou, Kai; Greiner, Carsten

    2016-03-01

    We apply a Boltzmann approach to the kinetic regime of a relativistic Bose-Einstein condensate of scalar bosons by decomposing the one-particle distribution function in a condensate part and a nonzero momentum part of excited modes, leading to a coupled set of evolution equations which are then solved efficiently with an adaptive higher order Runge-Kutta scheme. We compare our results to the partonic cascade Monte Carlo simulation BAMPS for a critical but far from equilibrium case of massless bosons. Motivated by the color glass condensate initial conditions in QCD with a strongly overpopulated initial glasma state, we also discuss the time evolution starting from an overpopulated initial distribution function of massive scalar bosons. In this system a self-similar evolution of the particle cascade with a nonrelativistic turbulent scaling in the infrared sector is observed as well as a relativistic exponent for the direct energy cascade, confirming a weak wave turbulence in the ultraviolet region.

  2. Moving impurity in an inhomogenous Bose-Einstein condensate

    Science.gov (United States)

    Mathew, Ranchu; Tiesinga, Eite

    2016-05-01

    We study the dynamics of a non-uniform Bose-Einstein condensate (BEC) under the influence of a moving weak point-like impurity. When the condensate density varies slowly compared to its healing length the critical velocity of the impurity, beyond which the condensate becomes unstable, can be calculated using the Local Density Approximation (LDA). This critical velocity corresponds to the smallest local sound speed. The LDA breaks down when the length scale of density variations is of the order of the healing length. We have calculated corrections to the critical velocity in this regime as an asymptotic expansion in the size of the BEC. We also discuss the experimental implications of our calculations by studying the stability of the atomic analogue of a Superconducting Quantum Interference Device (SQUID). The atom-SQUID consists of a BEC in a ring trap with rotating barrier. The impurity corresponds to imperfections in the ring trap.

  3. Dark-bright ring solitons in Bose-Einstein condensates

    Energy Technology Data Exchange (ETDEWEB)

    Stockhofe, J; Schmelcher, P [Zentrum fuer Optische Quantentechnologien, Universitaet Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany); Kevrekidis, P G [Department of Mathematics and Statistics, University of Massachusetts, Amherst MA 01003-4515 (United States); Frantzeskakis, D J, E-mail: jstockho@physnet.uni-hamburg.de, E-mail: kevrekid@math.umass.edu [Department of Physics, University of Athens, Panepistimiopolis, Zografos, Athens 157 84 (Greece)

    2011-10-14

    We study dark-bright (DB) ring solitons in two-component Bose-Einstein condensates. In the limit of large densities of the dark component, we describe the soliton dynamics by means of an equation of motion for the ring radius. The presence of the bright, 'filling' species is demonstrated to have a stabilizing effect on the ring dark soliton. Near the linear limit, we discuss the symmetry-breaking bifurcations of DB soliton stripes and vortex-bright soliton clusters from the DB ring and relate the stabilizing effect of filling to changes in the bifurcation diagram. Finally, we show that the stabilization by means of a second component is not limited to the radially symmetric structures, but can also be observed in a cross-like DB soliton configuration. (fast track communication)

  4. Rapidity dependence of Bose-Einstein correlations at SPS energies

    CERN Document Server

    Kniege, S; Anticic, T; Baatar, B; Barna, D; Bartke, Jerzy; Betev, L; Bialkowska, H; Blume, C; Boimska, B; Botje, M; Bracinik, J; Bramm, R; Buncic, P; Cerny, V; Christakoglou, P; Chvala, O; Cramer, J G; Csat, P; Dinkelaker, P; Eckardt, V; Flierl, D; Fodor, Z; Foka, P; Friese, V; Gál, J; Gazdzicki, M; Genchev, V; Georgopoulos, G; Gadysz, E; Grebieszkow, K; Hegyi, S; Höhne, C; Kadija, K; Karev, A; Kliemant, M; Kolesnikov, V I; Kornas, E; Korus, R; Kowalski, M; Kraus, I; Kreps, M; Laszlo, A; Van Leeuwen, M; Lévai, Peter; Litov, L; Lungwitz, B; Makariev, M; Malakhov, A I; Mateev, M; Melkumov, G L; Mischke, A; Mitrovski, M; Molnr, J; Mrwczy, St; Nicolic, V; Pálla, G; Panagiotou, A D; Panayotov, D; Petridis, A; Pikna, M; Prindle, D; Phlhofer, F; Renfordt, R; Roland, C; Roland, G; Rybczy, M; Rybicki, A; Sandoval, A; Schmitz, N; Schuster, T; Seyboth, P; Siklér, F; Sitár, B; Skrzypczak, E; Stefanek, G; Stock, R; Strabel, C; Ströbele, H; Susa, T; Szentpétery, I; Sziklai, J; Szymanski, P; Trubnikov, V; Varga, D; Vassiliou, Maria; Veres, G I; Vesztergombi, G; Vranic, D; Wetzler, A; Wodarczyk, Z; Zimnyi, J; Kniege, Stefan

    2006-01-01

    This article is devoted to results on pion-pion -Bose-Einstein correlations in central Pb+Pb collisions measured by the NA49 experiment at the CERN SPS. Rapidity as well as transverse momentum dependences of the correlation lengths will be shown for collisions at 20A, 30A, 40A, 80A, and 158A GeV beam energy. Only a weak energy dependence of the radii is observed at SPS energies. The kt-dependence of the correlation lengths as well as the single particle mt-spectra will be compared to model calculations. The rapidity dependence is analysed in a range of 2.5 units of rapidity starting at the center of mass rapidity at each beam energy. The correlation lengths measured in the longitudinally comoving system show only a weak dependence on rapidity.

  5. Breathing Bright Solitons in a Bose-Einstein Condensate

    Institute of Scientific and Technical Information of China (English)

    崇桂书; 海文华; 谢琼涛

    2003-01-01

    A Bose-Einstein condensate with time varying scattering length in time-dependent harmonic trap is analytically investigated and soliton-like solutions of the Gross-Pitaeviskii equation are obtained to describe single soliton,bisoliton and N-soliton properties of the matter wave. The influences of the geometrical property and modulate frequency of trapping potential on soliton behaviour are discussed. When the trap potential has a very small trap aspect ratio or oscillates with a high frequency, the matter wave preserves its shape nearly like a soliton train in propagation, while the breathing behaviour, which displays the periodic collapse and revival of the matter wave,is found for a relatively large aspect ratio or slow varying potential. Meanwhile mass centre of the matter wave translates and/or oscillates for different trap aspect ratio and trap frequencies.

  6. Kinetic approach to a relativistic Bose-Einstein condensate

    CERN Document Server

    Meistrenko, Alex; Zhou, Kai; Greiner, Carsten

    2015-01-01

    We apply a Boltzmann approach to the kinetic regime of a relativistic Bose-Einstein condensate of scalar bosons by decomposing the one-particle distribution function in a condensate part and a non-zero momentum part of excited modes, leading to a coupled set of evolution equations which are then solved efficiently with an adaptive higher order Runge-Kutta scheme. We compare our results to the partonic cascade Monte-Carlo simulation BAMPS for an underpopulated but far from equilibrium case of massless bosons. Motivated by the color glass condensate initial conditions in QCD with a strongly overpopulated initial glasma state, we also discuss the time evolution starting from an overpopulated initial distribution function of massive scalar bosons.

  7. Vortex formation by merging multiple trapped Bose-Einstein condensates

    Science.gov (United States)

    Weiler, Chad; Neely, Tyler; Scherer, David; Anderson, Brian

    2007-06-01

    We have experimentally studied the merging of three trapped Bose-Einstein condensates. We find that, depending on the rate of merging, the final single BEC may contain a single vortex core (for slow merging rates), or multiple cores (for fast merging rates). Similarly, a triple-well trap may initiate the formation of three isolated BECs, but if the barriers between the wells are weak enough, the condensates merge together during their growth; this process can also lead to the formation of vortices in the final BEC. We interpret both scenarios in terms of interference between the initial uncorrelated condensates with indeterminate relative phases. We will discuss the results and interpretation of this experiment (D.R. Scherer, C.N. Weiler, T.W. Neely, B.P. Anderson, cond-mat/0610187, to be published in Phys. Rev. Lett.).

  8. Power spectrum for the Bose-Einstein condensate dark matter

    CERN Document Server

    Velten, Hermano

    2011-01-01

    We assume that dark matter is composed of scalar particles that form a Bose-Einstein condensate (BEC) at some point during the cosmic evolution. Afterwards, cold dark matter is in the form of a condensate and behaves slightly different from the standard dark matter component. We study the large scale perturbative dynamics of the BEC dark matter in a model where this component coexists with baryonic matter and cosmological constant. The perturbative dynamics is studied using neo- Newtonian cosmology (where the pressure is dynamically relevant for the homogeneous and isotropic background) which is assumed to be correct for small values of the sound speed. We show that BEC dark matter effects can be seen in the matter power spectrum if the mass of the condensate particle lies in the range 15meV < m < 700meV leading to a small, but perceptible, excess of power at large scales.

  9. Bose-Einstein condensation of dipolar excitons in quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Timofeev, V B; Gorbunov, A V, E-mail: timofeev@issp.ac.r [Institute of Solid State Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow region (Russian Federation)

    2009-02-01

    The experiments on Bose-Einstein condensation (BEC) of dipolar (spatially-indirect) excitons in the lateral traps in GaAs/AlGaAs Schottky-diode heterostructures with double and single quantum wells are presented. The condensed part of dipolar excitons under detection in the far zone is placed in k-space in the range which is almost two orders of magnitude less than thermal exciton wave vector. BEC occurs spontaneously in a reservoir of thermalized excitons. Luminescence images of Bose-condensate of dipolar excitons exhibit along perimeter of circular trap axially symmetrical spatial structures of equidistant bright spots which strongly depend on excitation power and temperature. By means of two-beam interference experiments with the use of cw and pulsed photoexcitation it was found that the state of dipolar exciton Bose-condensate is spatially coherent and the whole patterned luminescence configuration in real space is described by a common wave function.

  10. Bose-Einstein correlations in pp annihilations at rest

    Energy Technology Data Exchange (ETDEWEB)

    Adler, R.; Alhalel, T.; Angelopoulos, A.; Apostolakis, A.; Aslanides, E.; Backenstoss, G.; Bee, C.P.; Behnke, O.; Bennet, J.; Bertin, V.; Bienlein, J.K.; Bloch, P.; Bula, C.; Carlson, P.; Carvalho, J.; Cawley, E.; Charalambous, S.; Chardalas, M.; Chardin, G.; Chertok, M.B.; Danielsson, M.; Cody, A.; Dedoussis, S.; Dejardin, M.; Derre, J.; Dodgson, M.; Dousse, J.C.; Duclos, J.; Ealet, A.; Eckart, B.; Eleftheriadis, C.; Evangelou, I.; Faravel, L.; Fassnacht, P.; Faure, J.L.; Felder, C.; Ferreira-Marques, R.; Fetscher, W.; Fidecaro, M.; Filipcic, A.; Francis, D.; Fry, J.; Fuglesang, C.; Gabathuler, E.; Gamet, R.; Garreta, D.; Geralis, T.; Gerber, H.J.; Go, A.; Gumplinger, P.; Guyot, C.; Harrison, P.F.; Haselden, A.; Hayman, P.J.; Henry-Couannier, F.; Heyes, W.G.; Hollander, R.W.; Jansson, K.; Johner, H.U.; Jon-And, K.; Kerek, A.; Kern, J.; Kettle, P.R.; Kochowski, C.; Kokkas, P.; Kreuger, R.; Lawry, T.; Gac, R. le; Liolios, A.; Machado, E.; Maley, P.; Mandic, I.; Manthos, N.; Marel, G.; M; CPLEAR Collaboration

    1994-09-01

    Two-charged-pion correlations were studied in pp ([yields] 2[pi][sup +]2[pi][sup -] n[pi][sup 0], n [>=] 0) annihilations at rest with the CPLEAR detector at the Low-Energy Antiproton Ring (LEAR). A strong enhancement was found in the production of pairs of like-sign pions with a small value of the relative four-momentum Q, with respect to pairs of unlike-sign pions. The observed enhancement was interpreted as a consequence of the Bose-Einstein symmetrization of the twopion wave function. The data are well represented by a correlation function parametrized as a double-Gaussian; an exponential parametrization is also statistically acceptable. The value of the correlation strength is found to be > 1. The high-quality large data samples together with the ability for K[sup [+-

  11. Dynamics of Spin-2 Bose-Einstein Condensates

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    We numerically simulate the dynamics of a spin-2 Bose-Einstein condensate. We find that the initial phase plays an important role in the spin component oscillations. The spin mixing processes can fully cancel out due to quantum interference when taking some initial special phase. In all the spin mixing processes, the total spin is conversed.When the initial population is mainly occupied by a component with the maximal or minimal magnetic quantum number,the oscillations of spin components cannot happen due to the total spin conversation. The presence of quadratic Zeeman energy terms suppresses some spin mixing processes so that the oscillations of spin components are suppressed in some initial spin configuration. However, the linear Zecman energy terms have no effects on the spin mixing processes.

  12. Spatial structure of a collisionally inhomogeneous Bose-Einstein condensate

    Energy Technology Data Exchange (ETDEWEB)

    Li, Fei, E-mail: wiself@gmail.com [Hunan First Normal University, Department of Education Science (China); Zhang, Dongxia; Rong, Shiguang; Xu, Ying [Hunan University of Science and Technology, Department of Physics (China)

    2013-11-15

    The spatial structure of a collisionally inhomogeneous Bose-Einstein condensate (BEC) in an optical lattice is studied. A spatially dependent current with an explicit analytic expression is found in the case with a spatially dependent BEC phase. The oscillating amplitude of the current can be adjusted by a Feshbach resonance, and the intensity of the current depends heavily on the initial and boundary conditions. Increasing the oscillating amplitude of the current can force the system to pass from a single-periodic spatial structure into a very complex state. But in the case with a constant phase, the spatially dependent current disappears and the Melnikov chaotic criterion is obtained via a perturbative analysis in the presence of a weak optical lattice potential. Numerical simulations show that a strong optical lattice potential can lead BEC atoms to a state with a chaotic spatial distribution via a quasiperiodic route.

  13. Analogue gravitational phenomena in Bose-Einstein condensates

    CERN Document Server

    Finazzi, Stefano

    2012-01-01

    Analogue gravity is based on the simple observation that perturbations propagating in several physical systems can be described by a quantum field theory in a curved spacetime. While phenomena like Hawking radiation are hardly detectable in astrophysical black holes, these effects may be experimentally tested in analogue systems. In this Thesis, focusing on Bose-Einstein condensates, we present our recent results about analogue models of gravity from three main perspectives: as laboratory tests of quantum field theory in curved spacetime, for the techniques that they provide to address various issues in general relativity, and as toy models of quantum gravity. The robustness of Hawking-like particle creation is investigated in flows with a single black hole horizon. Furthermore, we find that condensates with two (white and black) horizons develop a dynamical instability known in general relativity as black hole laser effect. Using techniques borrowed from analogue gravity, we also show that warp drives, which...

  14. Power spectrum for the Bose-Einstein condensate dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Velten, Hermano, E-mail: velten@physik.uni-bielefeld.de [Departamento de Fisica, UFES, Vitoria, 29075-910 Espirito Santo (Brazil); Fakultaet fuer Physik, Universitaet Bielefeld, Postfach 100131, 33501 Bielefeld (Germany); Wamba, Etienne [Laboratory of Mechanics, Department of Physics, Faculty of Science, University of Yaounde I, P.O. Box 812, Yaounde (Cameroon)

    2012-03-13

    We assume that dark matter is composed of scalar particles that form a Bose-Einstein condensate (BEC) at some point during the cosmic evolution. Afterwards, cold dark matter is in the form of a condensate and behaves slightly different from the standard dark matter component. We study the large scale perturbative dynamics of the BEC dark matter in a model where this component coexists with baryonic matter and cosmological constant. The perturbative dynamics is studied using neo-Newtonian cosmology (where the pressure is dynamically relevant for the homogeneous and isotropic background) which is assumed to be correct for small values of the sound speed. We show that BEC dark matter effects can be seen in the matter power spectrum if the mass of the condensate particle lies in the range 15 MeV

  15. Ex Vacuo Atom Chip Bose-Einstein Condensate (BEC)

    CERN Document Server

    Squires, Matthew B; Kasch, Brian; Stickney, James A; Erickson, Christopher J; Crow, Jonathan A R; Carlson, Evan J; Burke, John H

    2016-01-01

    Ex vacuo atom chips, used in conjunction with a custom thin walled vacuum chamber, have enabled the rapid replacement of atom chips for magnetically trapped cold atom experiments. Atoms were trapped in $>2$ kHz magnetic traps created using high power atom chips. The thin walled vacuum chamber allowed the atoms to be trapped $\\lesssim1$ mm from the atom chip conductors which were located outside of the vacuum system. Placing the atom chip outside of the vacuum simplified the electrical connections and improved thermal management. Using a multi-lead Z-wire chip design, a Bose-Einstein condensate was produced with an external atom chip. Vacuum and optical conditions were maintained while replacing the Z-wire chip with a newly designed cross-wire chip. The atom chips were exchanged and an initial magnetic trap was achieved in less than three hours.

  16. On relativistic particle creation in Bose-Einstein condensates

    CERN Document Server

    Sabín, Carlos

    2014-01-01

    We show that particle creation of Bogoliubov modes in a Bose-Einstein condensate due to the accelerated motion of the trap is a genuinely relativistic effect. To this end we show that Bogoliubov modes can be described by a time rescaling of the Minkowski metric. A consequence of this is that Rindler transformations are perceived by the phonons as generalised Rindler transformations where the speed of light is replaced by the speed of sound, enhancing particle creation at small velocities. Since the non-relativistic limit of a Rindler transformation is just a Galilean transformation entailing no length contraction or time dilation, we show that the effect vanishes in the non-relativistic limit.

  17. Geometrical pumping with a Bose-Einstein condensate

    Science.gov (United States)

    Lu, H.-I; Schemmer, M.; Aycock, L. M.; Genkina, D.; Sugawa, S.

    2016-01-01

    We realized a quantum geometric “charge” pump for a Bose-Einstein condensate (BEC) in the lowest Bloch band of a novel bipartite magnetic lattice. Topological charge pumps in filled bands yield quantized pumping set by the global – topological – properties of the bands. In contrast, our geometric charge pump for a BEC occupying just a single crystal momentum state exibits non-quantized charge pumping set by local – geometrical – properties of the band structure. Like topological charge pumps, for each pump cycle we observed an overall displacement (here, not quantized) and a temporal modulation of the atomic wavepacket’s position in each unit cell, i.e., the polarization. PMID:27258857

  18. Bose-Einstein condensation in liquid 4He under pressure

    Energy Technology Data Exchange (ETDEWEB)

    Glyde, Henry R [University of Delaware; Omar Diallo, Souleymane [ORNL; Azuah, Richard T [NIST Center for Neutron Research (NCRN), Gaithersburg, MD; Kirichek, Oleg [ISIS Facility, Rutherford Appleton Laboratory; Taylor, Jon W. [ISIS Facility, Rutherford Appleton Laboratory

    2011-01-01

    We present neutron scattering measurements of Bose-Einstein condensation, the atomic momen- tum distribution and Final State effects in liquid 4He under pressure. The condensate fraction at low temperature is found to decrease from n0 = 7.25 0.75% at SVP (p 0) to n0 = 3.2 0.75% at pressure p = 24 bar. This indicates an n0 = 3.0% in the liquid at the liquid/solid co-existence line (p = 25.3 bar). The atomic momentum distribution n(k) has high occupation of low k states and differs significantly from a Gaussian (e.g. a classical n(k)). Both n(k) and the Final state function broaden with increasing pressure, reflecting the increased localization of the 4He in space under increased pressure.

  19. Bose-Einstein condensation in an ultra-hot gas of pumped magnons.

    Science.gov (United States)

    Serga, Alexander A; Tiberkevich, Vasil S; Sandweg, Christian W; Vasyuchka, Vitaliy I; Bozhko, Dmytro A; Chumak, Andrii V; Neumann, Timo; Obry, Björn; Melkov, Gennadii A; Slavin, Andrei N; Hillebrands, Burkard

    2014-03-11

    Bose-Einstein condensation of quasi-particles such as excitons, polaritons, magnons and photons is a fascinating quantum mechanical phenomenon. Unlike the Bose-Einstein condensation of real particles (like atoms), these processes do not require low temperatures, since the high densities of low-energy quasi-particles needed for the condensate to form can be produced via external pumping. Here we demonstrate that such a pumping can create remarkably high effective temperatures in a narrow spectral region of the lowest energy states in a magnon gas, resulting in strikingly unexpected transitional dynamics of Bose-Einstein magnon condensate: the density of the condensate increases immediately after the external magnon flow is switched off and initially decreases if it is switched on again. This behaviour finds explanation in a nonlinear 'evaporative supercooling' mechanism that couples the low-energy magnons overheated by pumping with all the other thermal magnons, removing the excess heat, and allowing Bose-Einstein condensate formation.

  20. Laser controlling chaotic region of a two-component Bose-Einstein condensate

    Institute of Scientific and Technical Information of China (English)

    Boli Xia; Wenhua Hai

    2005-01-01

    @@ For a weakly and periodically driven two-component Bose-Einstein condensate (BEC) the Melnikov chaotic solution and boundedness conditions are derived from a direct perturbation theory that leads to the chaotic regions in the parameter space.

  1. The Evolution of Hyperedge Cardinalities and Bose-Einstein Condensation in Hypernetworks.

    Science.gov (United States)

    Guo, Jin-Li; Suo, Qi; Shen, Ai-Zhong; Forrest, Jeffrey

    2016-09-27

    To depict the complex relationship among nodes and the evolving process of a complex system, a Bose-Einstein hypernetwork is proposed in this paper. Based on two basic evolutionary mechanisms, growth and preference jumping, the distribution of hyperedge cardinalities is studied. The Poisson process theory is used to describe the arrival process of new node batches. And, by using the Poisson process theory and a continuity technique, the hypernetwork is analyzed and the characteristic equation of hyperedge cardinalities is obtained. Additionally, an analytical expression for the stationary average hyperedge cardinality distribution is derived by employing the characteristic equation, from which Bose-Einstein condensation in the hypernetwork is obtained. The theoretical analyses in this paper agree with the conducted numerical simulations. This is the first study on the hyperedge cardinality in hypernetworks, where Bose-Einstein condensation can be regarded as a special case of hypernetworks. Moreover, a condensation degree is also discussed with which Bose-Einstein condensation can be classified.

  2. Envelope Periodic Solutions to One-Dimensional Gross-Pitaevskii Equation in Bose-Einstein Condensation

    Institute of Scientific and Technical Information of China (English)

    LIU Shi-Kuo; GAO Bin; FU Zun-Tao; LIU Shi-Da

    2009-01-01

    In this paper, applying the dependent and independent variables transformations as well as the Jacobi elliptic function expansion method, the envelope periodic solutions to one-dimensional Gross-Pitaevskii equation in Bose-Einstein condensates are obtained.

  3. Ground state properties of a Bose-Einstein condensate confined in an anharmonic external potential

    Institute of Scientific and Technical Information of China (English)

    Wang Deng-Long; Yan Xiao-Hong; Tang Yi

    2004-01-01

    In light of the interference experiment of Bose-Einstein condensates, we present an anharmonic external potential model to study ground state properties of Bose-Einstein condensates. The ground state energy and the chemical potential have been analytically obtained, which are lower than those in harmonic trap. Additionally, it is found that the anharmonic strength of the external potential has an important effect on density and velocity distributions of the ground state for the Thomas-Fermi model.

  4. Production and measurement of Bose-Einstein condensate of 87Rb atomic gas

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The research platform for Bose-Einstein condensate in 87Rb atomic gas, which is composed of a double MOT configuration and a QUIC trap, was reported. The properties of the condensate were measured both in time-of-flight and in tight confinement by the absorption imaging method. The measurements agreed with the criterions of Bose-Einstein condensation phase transition. About 2×105 atoms were pure condensed.

  5. Production and measurement of Bose-Einstein condensate of 87Rb atomic gas

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The research platform for Bose-Einstein condensate in 87 Rb atomic gas,which is composed of a double MOT configuration and a QUIC trap,was reported.The properties of the condensate were measured both in time-of-flight and in tight confinement by the absorption imaging method.The measurements agreed with the criterions of Bose-Einstein condensation phase transition.About 2×10 5 atoms were pure condensed.

  6. Observation of F = 2 Spinor Bose-Einstein Condensation in a Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    MA Xiu-Quan; CHEN Shuai; YANG Fan; XIA Lin; ZHOU Xiao-Ji; WANG Yi-Qiu; CHEN Xu-Zong

    2005-01-01

    @@ Multiple-component Bose-Einstein condensation has been observed in a magnetic field generated by a controllable magnetic quadrupole-Ioffe-configuration trap. Different distributions of atoms in spinor Bose-Einstein condensates are created by changing the time difference of switching-off current in quadrupole-Ioffe-configuration coils and bias coils of the magnetic trap. A simple analysis is carried out to explain some phenomena of the experiment.

  7. Measurement of Bose-Einstein Correlations in $e^{+}e^{-}\\to W^{+}W^{-}$ Events at LEP

    CERN Document Server

    Achard, P; Aguilar-Benítez, M; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Anderhub, H; Andreev, V P; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Bajo, A; Baksay, G; Baksay, L; Baldew, S V; Banerjee, S; Banerjee, Sw; Barczyk, A; Barillère, R; Bartalini, P; Basile, M; Batalova, N; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Bellucci, L; Berbeco, R; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Biasini, M; Biglietti, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böhm, A; Boldizsar, L; Borgia, B; Bottai, S; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brochu, F; Burger, J D; Burger, W J; Cai, X D; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada, M; Chamizo-Llatas, M; Chang, Y H; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chiefari, G; Cifarelli, Luisa; Cindolo, F; Clare, I; Clare, R; Coignet, G; Colino, N; Costantini, S; de la Cruz, B; Cucciarelli, S; van Dalen, J A; De Asmundis, R; Déglon, P L; Debreczeni, J; Degré, A; Dehmelt, K; Deiters, K; Della Volpe, D; Delmeire, E; Denes, P; De Notaristefani, F; De Salvo, A; Diemoz, M; Dierckxsens, M; Dionisi, C; Dittmar, Michael; Doria, A; Dova, M T; Duchesneau, D; Echenard, B; Eline, A; El-Mamouni, H; Engler, A; Eppling, F J; Ewers, A; Extermann, Pierre; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, Marta; Ferguson, T; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Fisher, W; Fisk, I; Forconi, G; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gentile, S; Giagu, S; Gong, Z F; Grenier, G; Grimm, O; Grünewald, M W; Guida, M; van Gulik, R; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hakobyan, R S; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hirschfelder, J; Hofer, H; Hohlmann, M; Holzner, G; Hou, S R; Hu, Y; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Käfer, D; Kaur, M; Kienzle-Focacci, M N; Kim, J K; Kirkby, Jasper; Kittel, E W; Klimentov, A; König, A C; Kopal, M; Koutsenko, V F; Kräber, M H; Krämer, R W; Krenz, W; Krüger, A; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Le Goff, J M; Leiste, R; Levtchenko, M; Levchenko, P M; Li, C; Likhoded, S A; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lü, Y S; Lübelsmeyer, K; Luci, C; Luminari, L; Lustermann, W; Ma Wen Gan; Malgeri, L; Malinin, A; Maña, C; Mangeol, D J J; Mans, J; Martin, J P; Marzano, F; Mazumdar, K; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Mihul, A; Milcent, H; Mirabelli, G; Mnich, J; Mohanty, G B; Muanza, G S; Muijs, A J M; Musicar, B; Musy, M; Nagy, S; Natale, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Niessen, T; Nisati, A; Nowak, H; Ofierzynski, R A; Organtini, G; Palomares, C; Pandoulas, D; Paolucci, P; Paramatti, R; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Pedace, M; Pensotti, S; Perret-Gallix, D; Petersen, B; Piccolo, D; Pierella, F; Pioppi, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Pothier, J; Prokofiev, D O; Prokofev, D; Quartieri, J; Rahal-Callot, G; Rahaman, M A; Raics, P; Raja, N; Ramelli, R; Rancoita, P G; Ranieri, R; Raspereza, A V; Razis, P A; Ren, D; Rescigno, M; Reucroft, S; Riemann, S; Riles, K; Roe, B P; Romero, L; Rosca, A; Rosier-Lees, S; Roth, S; Rosenbleck, C; Roux, B; Rubio, Juan Antonio; Ruggiero, G; Rykaczewski, H; Sakharov, A; Saremi, S; Sarkar, S; Salicio, J; Sánchez, E; Sanders, M P; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Schopper, Herwig Franz; Schotanus, D J; Schwering, G; Sciacca, C; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shumilov, E; Shvorob, A V; Siedenburg, T; Son, D; Souga, C; Spillantini, P; Steuer, M; Stickland, D P; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Sushkov, S V; Suter, H; Swain, J D; Szillási, Z; Tang, X W; Tarjan, P; Tauscher, Ludwig; Taylor, L; Tellili, B; Teyssier, D; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tung, K L; Ulbricht, J; Valente, E; Van de Walle, R T; Vásquez, R P; Veszpremi, V; Vesztergombi, G; Vetlitskii, I; Vicinanza, D; Viertel, Gert M; Villa, S; Vivargent, M; Vlachos, S; Vodopyanov, I; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Wadhwa, M; Wallraff, W; Wang, X L; Wang, Z M; Weber, M; Wienemann, P; Wilkens, H; Wynhoff, S; Xia, L; Xu, Z Z; Yamamoto, J; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Yeh, S C; Zalite, A; Zalite, Yu; Zhang, Z P; Zhao, J; Zhu, G Y; Zhu, R Y; Zhuang, H L; Zichichi, A; Zimmermann, B; Zöller, M

    2002-01-01

    Bose-Einstein correlations in W-pair production at LEP are investigated in a data sample of 629 pb$^{-1}$ collected by the L3 detector at $\\sqrt{s}=$ 189--209\\,GeV. Bose-Einstein correlations between pions within a W decay are observed and found to be in good agreement with those in light-quark Z decay. No evidence is found for Bose-Einstein correlations between hadrons coming from different W's in the same event.

  8. Dynamics of Bose-Einstein condensates in novel optical potentials

    Energy Technology Data Exchange (ETDEWEB)

    Kueber, Johannes

    2014-07-21

    Matter wave interferometry offers a novel approach for high precision measurements, such as the determination of physical constants like the local gravity constant g or the fine-structure constant. Since its early demonstration, it has become an important tool in the fields of fundamental and applied physics. The present work covers the implementation of matter wave interferometers as well as the creation of novel guiding potentials for ultra-cold ensembles of atoms and Bose-Einstein condensates for this purpose. In addition, novel techniques for the manipulation of atoms with Bragg lattices are presented, serving as elements for interferometry. The measurements in this work are performed with a Bose-Einstein condensate of 25000 {sup 87}rubidium atoms created in a crossed optical dipole trap. The crossed optical dipole trap is loaded from a magneto-optical trap and allows a measurement every 25 s. This work introduces the novel technique of double Bragg diffraction as a tool for atom optics for the first time experimentally. The creation of beamsplitters and mirrors for advanced interferometric measurements is characterized. An in depth discussion on the momentum distribution of atomic clouds and its influence on double Bragg diffraction is given. Additionally experimental results for higher-order Bragg diffraction are explained and double Bragg diffraction is used to implement a full Ramsey-type interferometer. A second central result of this work is the implementation of novel guiding structures for ultra-cold atoms. These structures are created with conical refraction, an effect that occurs when light is guided along one of the optical axis of a bi-axial crystal. The conical refraction crystal used to operate the novel trapping geometries is a KGd(WO{sub 4}){sub 2} crystal that has been specifically cut orthogonal to one of the optical axis. Two regimes are discussed in detail: the creation of a toroidal matter wave guide and the implementation of a three

  9. Emergent gravitational dynamics in relativistic Bose--Einstein condensate

    CERN Document Server

    Belenchia, Alessio; Mohd, Arif

    2014-01-01

    Analogue models of gravity have played a pivotal role in the past years by providing a test bench for many open issues in quantum field theory in curved spacetime such as the robustness of Hawking radiation and cosmological particle production. More recently, the same models have offered a valuable framework within which current ideas about the emergence of spacetime and its dynamics could be discussed via convenient toy models. In this context, we study here an analogue gravity system based on a relativistic Bose--Einstein condensate. We show that in a suitable limit this system provides not only an example of an emergent spacetime (with a massive and a massless relativistic fields propagating on it) but also that such spacetime is governed by an equation with geometric meaning that takes the familiar form of Nordstr{\\"o}m theory of gravitation. In this equation the gravitational field is sourced by the expectation value of the trace of the effective stress energy tensor of the quasiparticles while the Newto...

  10. Recent experiments with ring Bose-Einstein condensates

    Science.gov (United States)

    Eckel, S.; Kumar, A.; Anderson, N. W.; Campbell, G. K.

    2016-05-01

    Here, we present three recent results of our experiments with ring-shaped 23 Na Bose-Einstein condensates. First, we present results of the effect of temperature on the decay of persistent currents in the presence of a local, stationary perturbation, or weak link. When the weak link rotates, it can drive transitions between quantized persistent current states in the ring, that form hysteresis loops whose size depends strongly on temperature. We find that our data does not fit with a simple model of thermal activation. Second, we present a new method to measure the quantized persistent current state of the ring in a minimally-destructive way. This technique uses phonons as probes of the background flow through the Doppler effect. Finally, we present a set of experiments designed to reproduce the horizon problem in the early universe. Supersonic expansion of the ring creates causally-disconnected regions of BEC whose phase evolves at different rates. When the expansion stops and these regions are allowed to recombine, they form topological excitations. These excitations can be predicted using a simple theory that shows excellent agreement with the data.

  11. Thin accretion disks around cold Bose-Einstein condensate stars

    Energy Technology Data Exchange (ETDEWEB)

    Danila, Bogdan [Babes-Bolyai University, Department of Physics, Cluj-Napoca (Romania); Harko, Tiberiu [University College London, Department of Mathematics, London (United Kingdom); Kovacs, Zoltan

    2015-05-15

    Due to their superfluid properties some compact astrophysical objects, like neutron or quark stars, may contain a significant part of their matter in the form of a Bose-Einstein condensate (BEC). Observationally distinguishing between neutron/quark stars and BEC stars is a major challenge for this latter theoretical model. An observational possibility of indirectly distinguishing BEC stars from neutron/quark stars is through the study of the thin accretion disks around compact general relativistic objects. In the present paper, we perform a detailed comparative study of the electromagnetic and thermodynamic properties of the thin accretion disks around rapidly rotating BEC stars, neutron stars and quark stars, respectively. Due to the differences in the exterior geometry, the thermodynamic and electromagnetic properties of the disks (energy flux, temperature distribution, equilibrium radiation spectrum, and efficiency of energy conversion) are different for these classes of compact objects. Hence in this preliminary study we have pointed out some astrophysical signatures that may allow one to observationally discriminate between BEC stars and neutron/quark stars. (orig.)

  12. Rotation curves in Bose-Einstein Condensate Dark Matter Halos

    CERN Document Server

    Dwornik, M; Gergely, L Á

    2013-01-01

    The study of the rotation curves of spiral galaxies reveals a nearly constant cored density distribution of Cold Dark Matter. N-body simulations however lead to a cuspy distribution on the galactic scale, with a central peak. A Bose-Einstein condensate (BEC) of light particles naturally solves this problem by predicting a repulsive force, obstructing the formation of the peak. After succinctly presenting the BEC model, we test it against rotation curve data for a set of 3 High Surface Brightness (HSB), 3 Low Surface Brightness (LSB) and 3 dwarf galaxies. The BEC model gives a similar fit to the Navarro-Frenk-White (NFW) dark matter model for all HSB and LSB galaxies in the sample. For dark matter dominated dwarf galaxies the addition of the BEC component improved more upon the purely baryonic fit than the NFW component. Thus despite the sharp cut-off of the halo density, the BEC dark matter candidate is consistent with the rotation curve data of all types of galaxies.

  13. Counterdiabatic vortex pump in spinor Bose-Einstein condensates

    Science.gov (United States)

    Ollikainen, T.; Masuda, S.; Möttönen, M.; Nakahara, M.

    2017-01-01

    Topological phase imprinting is a well-established technique for deterministic vortex creation in spinor Bose-Einstein condensates of alkali-metal atoms. It was recently shown that counterdiabatic quantum control may accelerate vortex creation in comparison to the standard adiabatic protocol and suppress the atom loss due to nonadiabatic transitions. Here we apply this technique, assisted by an optical plug, for vortex pumping to theoretically show that sequential phase imprinting up to 20 cycles generates a vortex with a very large winding number. Our method significantly increases the fidelity of the pump for rapid pumping compared to the case without the counterdiabatic control, leading to the highest angular momentum per particle reported to date for the vortex pump. Our studies are based on numerical integration of the three-dimensional multicomponent Gross-Pitaevskii equation, which conveniently yields the density profiles, phase profiles, angular momentum, and other physically important quantities of the spin-1 system. Our results motivate the experimental realization of the vortex pump and studies of the rich physics it involves.

  14. Atom loss resonances in a Bose-Einstein condensate.

    Science.gov (United States)

    Langmack, Christian; Smith, D Hudson; Braaten, Eric

    2013-07-12

    Atom loss resonances in ultracold trapped atoms have been observed at scattering lengths near atom-dimer resonances, at which Efimov trimers cross the atom-dimer threshold, and near two-dimer resonances, at which universal tetramers cross the dimer-dimer threshold. We propose a new mechanism for these loss resonances in a Bose-Einstein condensate of atoms. As the scattering length is ramped to the large final value at which the atom loss rate is measured, the time-dependent scattering length generates a small condensate of shallow dimers coherently from the atom condensate. The coexisting atom and dimer condensates can be described by a low-energy effective field theory with universal coefficients that are determined by matching exact results from few-body physics. The classical field equations for the atom and dimer condensates predict narrow enhancements in the atom loss rate near atom-dimer resonances and near two-dimer resonances due to inelastic dimer collisions.

  15. Study of impurities immersed in a trapped Bose-Einstein condensate*

    Science.gov (United States)

    Nho, Kwangsik; Landau, D. P.

    2007-03-01

    Using path integral Monte Carlo simulation methods[1], we have studied properties of impurities immersed in Bose-Einstein Condensates harmonically trapped in low dimemsion. For two-body interactions, we use a hard-sphere potential whose core radius equals its corresponding scattering length. We assume that the impurities experience the external trapping potential. We have tightly confined the motion of trapped particles in one or more direction by increasing the trap anisotropy in order to simulate lower dimensional atomic gases. By varying the strength of the boson-impurity interactions and the number of impurities, we have investigated the effect of impurities on the energetics and structural properties such as the total energy, the density profile, and the superfluid fraction. Our results show that for impurities with larger two-body interactions than the boson-boson interactions, the impurities move away from the trap center and surround the trapped bosons, and the density profile is found to get narrower, with the peak density getting larger. The total superfluid fraction decreases due to the impurities, although the difference becomes smaller and smaller by increasing the trap anisotropy. *Research supported by NASA[1] K. Nho and D. P. Landau, Phys. Rev. A. 72, 023615 (2005).

  16. Control of Fano resonances and slow light using Bose-Einstein condensates in a nanocavity

    Science.gov (United States)

    Akram, M. Javed; Ghafoor, Fazal; Khan, M. Miskeen; Saif, Farhan

    2017-02-01

    In this study, a standing wave in an optical nanocavity with Bose-Einstein condensate (BEC) constitutes a one-dimensional optical lattice potential in the presence of a finite two bodies atomic interaction. We report that the interaction of a BEC with a standing field in an optical cavity coherently evolves to exhibit Fano resonances in the output field at the probe frequency. The behavior of the reported resonance shows an excellent compatibility with the original formulation of asymmetric resonance as discovered by Fano [U. Fano, Phys. Rev. 124, 1866 (1961), 10.1103/PhysRev.124.1866]. Based on our analytical and numerical results, we find that the Fano resonances and subsequently electromagnetically induced transparency of the probe pulse can be controlled through the intensity of the cavity standing wave field and the strength of the atom-atom interaction in the BEC. In addition, enhancement of the slow light effect by the strength of the atom-atom interaction and its robustness against the condensate fluctuations are realizable using presently available technology.

  17. Vortex reconnections and rebounds in trapped atomic Bose-Einstein condensates

    Science.gov (United States)

    Galantucci, Luca; Serafini, Simone; Iseni, Elena; Bienaime', Tom; Bisset, Russell; Dalfovo, Franco; Lamporesi, Giacomo; Ferrari, Gabriele; Barenghi, Carlo F.

    2016-11-01

    Reconnections and interactions of filamentary coherent structures play a fundamental role in the dynamics of classical and quantum fluids, plasmas and nematic liquid crystals. In quantum fluids vorticity is concentrated into discrete (quantised) vortex lines (unlike ordinary fluids where vorticity is a continuous field), turning vortex reconnections into isolated events, conceptually easier to study. In order to investigate the impact of non-homogeneous density fields on the dynamics of quantum reconnections, we perform a numerical study of two-vortex interactions in magnetically trapped elongated Bose-Einstein condensates in the T=0 limit. We observe different vortex interactions regimes depending on the vortex orientations and their relative velocity: unperturbed orbiting, bounce dynamics, single and double reconnection events. The key ingredients driving the dynamics are the anti-parallel preferred alignment of the vortices and the impact of density gradients arising from the inhomogeneity of the trapping potential. The results are confirmed by ongoing experiments in Trento performed employing an innovative non-destrutive real-time imaging technique capable of determining the axial dynamics and the orientation of the vortices.

  18. Exceptional Points for Nonlinear Schroedinger Equations Describing Bose-Einstein Condensates of Ultracold Atomic Gases

    Directory of Open Access Journals (Sweden)

    G. Wunner

    2011-01-01

    Full Text Available The coalescence of two eigenfunctions with the same energy eigenvalue is not possible in Hermitian Hamiltonians. It is, however, a phenomenon well known from non-hermitian quantum mechanics. It can appear, e.g., for resonances in open systems, with complex energy eigenvalues. If two eigenvalues of a quantum mechanical system which depends on two or more parameters pass through such a branch point singularity at a critical set of parameters, the point in the parameter space is called an exceptional point. We will demonstrate that exceptional points occur not only for non-hermitean Hamiltonians but also in the nonlinear Schroedinger equations which describe Bose-Einstein condensates, i.e., the Gross-Pitaevskii equation for condensates with a short-range contact interaction, and with additional long-range interactions. Typically, in these condensates the exceptional points are also found to be bifurcation points in parameter space. For condensates with a gravity-like interaction between the atoms, these findings can be confirmed in an analytical way.

  19. Parametric resonance of capillary waves at the interface between two immiscible Bose-Einstein condensates

    Science.gov (United States)

    Kobyakov, D.; Bychkov, V.; Lundh, E.; Bezett, A.; Marklund, M.

    2012-08-01

    We study the parametric resonance of capillary waves on the interface between two immiscible Bose-Einstein condensates pushed towards each other by an oscillating force. Guided by analytical models, we solve numerically the coupled Gross-Pitaevskii equations for a two-component Bose-Einstein condensate at zero temperature. We show that, at moderate amplitudes of the driving force, the instability is stabilized due to nonlinear modifications of the oscillation frequency. When the amplitude of the driving force is large enough, we observe a detachment of droplets from the Bose-Einstein condensates, resulting in the generation of quantum vortices (skyrmions). We analytically investigate the vortex dynamics, and conditions of quantized vortex generation.

  20. Magnetic Surface Microtraps for Two-Species Bose-Einstein Condensations

    Institute of Scientific and Technical Information of China (English)

    胡建军; 印建平

    2002-01-01

    We propose a novel magnetic surface microtrap (i.e. a double Z-wire trap) for the study of two-species Bose Einstein condensations. The spatial distributions of the magnetic fields from the double Z-wire configurations and their gradients and curvatures are calculated and analysed. The result shows that the proposed surface trap has double magnetic wells and can be continuously changed into a single-well trap by reducing the current in a straight wire, and the maximum field gradient greater than 5 × 104 G/cm and the maximum field curvature (at each trap centre) greater than 2.5 × 107 G/cm2 can be generated in our double-well traps, which can be used to realize two-species Bose-Einstein condensations and to study the properties of double-well Bose-Einstein condensations and so on.

  1. Gravitational, lensing, and stability properties of Bose-Einstein condensate dark matter halos

    CERN Document Server

    Harko, Tiberiu

    2015-01-01

    The possibility that dark matter, whose existence is inferred from the study of the galactic rotation curves and from the mass deficit in galaxy clusters, can be in a form of a Bose-Einstein condensate has recently been extensively investigated. In the present work, we consider a detailed analysis of the astrophysical properties of the Bose-Einstein condensate dark matter halos that could provide clear observational signatures and help discriminate between different dark matter models. In the Bose-Einstein condensation model dark matter can be described as a non-relativistic, gravitationally confined Newtonian gas, whose density and pressure are related by a polytropic equation of state with index $n=1$. The mass and the gravitational properties of the condensate halos are obtained in a systematic form, including the mean logarithmic slopes of the density and of the tangential velocity. Furthermore, the lensing properties of the condensate dark matter are also investigated in detail. In particular, a general ...

  2. Dynamics of bisolitonic matter waves in a Bose-Einstein condensate subjected to an atomic beam splitter and gravity

    CERN Document Server

    Dikande, Alain Moise; Ebobenow, Joseph

    2010-01-01

    A theoretical scheme for an experimental implementation involving bisolitonic matter waves from an attractive Bose-Einstein condensate, is considered within the framework of a non-perturbative approach to the associate Gross-Pitaevskii equation. The model consists of a single condensate subjected to an expulsive harmonic potential creating a double-condensate structure, and a gravitational potential that induces atomic exchanges between the two overlapping post condensates. Using a non-isospectral scattering transform method, exact expressions for the bright-matter-wave bisolitons are found in terms of double-lump envelopes with the co-propagating pulses displaying more or less pronounced differences in their widths and tails depending on the mass of atoms composing the condensate.

  3. Creating full-Bloch Bose-Einstein condensates with Raman q-plates

    Science.gov (United States)

    Schultz, Justin T.; Hansen, Azure; Murphree, Joseph D.; Jayaseelan, Maitreyi; Bigelow, Nicholas P.

    2016-06-01

    A coherent two-photon optical Raman interaction in a pseudo-spin-1/2 Bose-Einstein condensate (BEC) serves as a q-plate for atoms, converting spin to orbital angular momentum. This Raman q-plate has a singular pattern in its polarization distribution in analogy to the singular birefringent q-plates used in singular optics. The vortex winding direction and magnitude as well as the final spin state of the BEC depend on the initial spin state and the topology of the optical Raman q-plate beams. Drawing on the mathematical and geometric foundations of singular optics, we derive the equivalent Jones matrix for this Raman q-plate and use it to create and characterize atomic spin singularities in the BEC that are analogous to optical C-point singularities in polarization. By tuning the optical Raman parameters, we can generate a coreless vortex spin texture which contains every possible superposition in a two-state system. We identify this spin texture as a full-Bloch BEC since every point on the Bloch sphere is represented at some point in the cross section of the atomic cloud. This spin-orbit interaction and the spin textures it generates may allow for the observation of interesting geometric phases in matter waves and lead to schemes for topological quantum computation with spinor BECs.

  4. Cavity-Optomechanics with Spin-Orbit Coupled Spinor Bose-Einstein Condensate

    CERN Document Server

    Yasir, Kashif Ammar

    2015-01-01

    Cavity-optomechanics, an exploitation of mechanical-effects of light to couple optical-field with mechanical-objects, has made remarkable progress. Besides, spin-orbit (SO)-coupling, interaction between spin of a quantum-particle and its momentum, has provided foundation to analyze various phenomena like spin-Hall effect and topological-insulators. However, SO-coupling and corresponding topological-features have not been examined in optical-cavity with one vibrational-mirror. Here we report cavity-optomechanics with SO-coupled Bose-Einstein condensate, inducing non-Abelian gauge-field in cavity. We ascertain the influences of SO-coupling and long-range atomic-interactions on low-temperature dynamics which can be experimentally measured by maneuvering area underneath density-noise spectrum. It is detected that not only optomechanical-coupling is modifying topological properties of atomic dressed-states but SO-coupling induced topological-effects are also enabling us to control effective-temperature of mechanic...

  5. Skyrmionic vortex lattices in coherently coupled three-component Bose-Einstein condensates

    Science.gov (United States)

    Orlova, Natalia V.; Kuopanportti, Pekko; Milošević, Milorad V.

    2016-08-01

    We show numerically that a harmonically trapped and coherently Rabi-coupled three-component Bose-Einstein condensate can host unconventional vortex lattices in its rotating ground state. The discovered lattices incorporate square and zig-zag patterns, vortex dimers and chains, and doubly quantized vortices, and they can be quantitatively classified in terms of a skyrmionic topological index, which takes into account the multicomponent nature of the system. The exotic ground-state lattices arise due to the intricate interplay of the repulsive density-density interactions and the Rabi couplings as well as the ubiquitous phase frustration between the components. In the frustrated state, domain walls in the relative phases can persist between some components even at strong Rabi coupling, while vanishing between others. Consequently, in this limit the three-component condensate effectively approaches a two-component condensate with only density-density interactions. At intermediate Rabi coupling strengths, however, we face unique vortex physics that occurs neither in the two-component counterpart nor in the purely density-density-coupled three-component system.

  6. Bose-Einstein condensates form in heuristics learned by ciliates deciding to signal 'social' commitments.

    Science.gov (United States)

    Clark, Kevin B

    2010-03-01

    Fringe quantum biology theories often adopt the concept of Bose-Einstein condensation when explaining how consciousness, emotion, perception, learning, and reasoning emerge from operations of intact animal nervous systems and other computational media. However, controversial empirical evidence and mathematical formalism concerning decoherence rates of bioprocesses keep these frameworks from satisfactorily accounting for the physical nature of cognitive-like events. This study, inspired by the discovery that preferential attachment rules computed by complex technological networks obey Bose-Einstein statistics, is the first rigorous attempt to examine whether analogues of Bose-Einstein condensation precipitate learned decision making in live biological systems as bioenergetics optimization predicts. By exploiting the ciliate Spirostomum ambiguum's capacity to learn and store behavioral strategies advertising mating availability into heuristics of topologically invariant computational networks, three distinct phases of strategy use were found to map onto statistical distributions described by Bose-Einstein, Fermi-Dirac, and classical Maxwell-Boltzmann behavior. Ciliates that sensitized or habituated signaling patterns to emit brief periods of either deceptive 'harder-to-get' or altruistic 'easier-to-get' serial escape reactions began testing condensed on initially perceived fittest 'courting' solutions. When these ciliates switched from their first strategy choices, Bose-Einstein condensation of strategy use abruptly dissipated into a Maxwell-Boltzmann computational phase no longer dominated by a single fittest strategy. Recursive trial-and-error strategy searches annealed strategy use back into a condensed phase consistent with performance optimization. 'Social' decisions performed by ciliates showing no nonassociative learning were largely governed by Fermi-Dirac statistics, resulting in degenerate distributions of strategy choices. These findings corroborate

  7. Modulational instability of two-component Bose-Einstein condensates in an optical lattice

    CERN Document Server

    Jin, G R; Nahm, K; Jin, Guang-Ri; Kim, Chul Koo; Nahm, Kyun

    2004-01-01

    We study modulational instability of two-component Bose-Einstein condensates in a deep optical lattice, which is modelled as a coupled discrete nonlinear Schr\\"{o}dinger equation. The excitation spectrum and the modulational instability condition of the total system are presented analytically. In the long-wavelength limit, our results agree with the homogeneous two-component Bose-Einstein condensates case. The discreteness effects result in the appearance of the modulational instability for the condensates in miscible region. The numerical calculations confirm our analytical results and show that the interspecies coupling can transfer the instability from one component to another.

  8. Operator Representation of Fermi-Dirac and Bose-Einstein Integral Functions with Applications

    Directory of Open Access Journals (Sweden)

    M. Aslam Chaudhry

    2007-01-01

    Full Text Available Fermi-Dirac and Bose-Einstein functions arise as quantum statistical distributions. The Riemann zeta function and its extension, the polylogarithm function, arise in the theory of numbers. Though it might not have been expected, these two sets of functions belong to a wider class of functions whose members have operator representations. In particular, we show that the Fermi-Dirac and Bose-Einstein integral functions are expressible as operator representations in terms of themselves. Simpler derivations of previously known results of these functions are obtained by their operator representations.

  9. Ground State and Single Vortex for Bose-Einstein Condensates in Anisotropic Traps

    Institute of Scientific and Technical Information of China (English)

    XU Zhi-Jun; CAI Ping-Gen

    2007-01-01

    For Bose-Einstein condensation of neutral atoms in anisotropic traps at zero temperature, we present simple analytical methods for computing the properties of ground state and single vortex of Bose-Einstein condensates,and compare those results to extensive numerical simulations. The critical angular velocity for production of vortices is calculated for both positive and negative scattering lengths a, and find an analytical expression for the large-N limit of the vortex critical angular velocity for a > 0, and the critical number for condensate population approaches the point of collapse for a < 0, by using approximate variational method.

  10. Nonlinear transport of Bose-Einstein condensates in a double barrier potential

    Institute of Scientific and Technical Information of China (English)

    Fang Jian-Shu

    2008-01-01

    The stable nonlinear transport of the Bose-Einstein condensates through a double barrier potential in a waveguide is studied.By using the direct perturbation method we have obtained a perturbed solution of Gross-Pitaevskii equation.Theoretical analysis reveals that this perturbed solution is a stable periodic solution,which shows that the transport of Bose-Einstein condensed atoms in this system is a stable nonlinear transport.The corresponding numerical results are in good agreement with the theoretical analytical results.

  11. Rashba-type Spin-orbit Coupling in Bilayer Bose-Einstein Condensates

    CERN Document Server

    Su, S -W; Sun, Q; Wen, L; Liu, W -M; Ji, A -C; Ruseckas, J; Juzeliunas, G

    2016-01-01

    We explore a new way of producing the Rasba spin-orbit coupling (SOC) for ultracold atoms by using a two-component (spinor) atomic Bose-Einstein condensate (BEC) confined in a bilayer geometry. The SOC of the Rashba type is created if the atoms pick up a {\\pi} phase after completing a cyclic transition between four combined spin-layer states composed of two spin and two layer states. The cyclic coupling of the spin-layer states is carried out by combining an intralayer Raman coupling and an interlayer laser assisted tunneling. We theoretically determine the ground-state phases of the spin-orbit-coupled BEC for various strengths of the atom-atom interaction and the laser-assisted coupling. It is shown that the bilayer scheme provides a diverse ground-state phase diagram. In an intermediate range of the atom-light coupling two interlacing lattices of half- skyrmions and half-antiskyrmions are spontaneously created. In the strong-coupling regime, where the SOC of the Rashba-type is formed, the ground state repre...

  12. Probing a scattering resonance with Rydberg molecules inside a Bose-Einstein condensate

    Science.gov (United States)

    Perez-Rios, J.; Schlagmüller, M.; Liebisch, T. C.; Nguyen, H.; Lochead, G.; Engel, F.; Böottcher, F.; Westphal, K. M.; Kleinbach, K. S.; Löw, R.; Hofferberth, S.; Pfau, T.; Greene, C. H.

    2016-05-01

    The spectroscopy of a single Rydberg atom within a Bose-Einstein condensate is studied, and as a result a line shape dependence on the principal Rydberg quantum number n is observed, apart from the expected density shift due to the large number of neutrals inside the Rydberg orbit. The observed line broadening depends on the Rydberg electron-neutral interaction, in particular, it manifests the influence of the e-Rb(5S) p-wave scattering shape resonance, which dramatically affects the potential energy landscape for the neutrals embedded within the Rydberg orbit. The observed spectroscopic line shapes are reproduced with an overall good agreement by means of a microscopic model, in which the atoms overlapped with the Rydberg orbit are treated as zero-velocity point-like particles, with binding energies associated with the ion-neutral distance. We acknowledge support from Deutsche Forschungsge5 meinschaft (DFG) within the SFB/TRR21 and the project PF 381/13-1. This work has been supported by NSF under Grand Number PHY-130690.

  13. Genuine Tripartite Entanglement and Nonlocality in Bose-Einstein Condensates by Collective Atomic Recoil

    Directory of Open Access Journals (Sweden)

    Gerardo Adesso

    2013-05-01

    Full Text Available We study a system represented by a Bose-Einstein condensate interacting with a cavity field in presence of a strong off-resonant pumping laser. This system can be described by a three-mode Gaussian state, where two are the atomic modes corresponding to atoms populating upper and lower momentum sidebands and the third mode describes the scattered cavity field light. We show that, as a consequence of the collective atomic recoil instability, these modes possess a genuine tripartite entanglement that increases unboundedly with the evolution time and is larger than the bipartite entanglement in any reduced two-mode bipartition. We further show that the state of the system exhibits genuine tripartite nonlocality, which can be revealed by a robust violation of the Svetlichny inequality when performing displaced parity measurements. Our exact results are obtained by exploiting the powerful machinery of phase-space informational measures for Gaussian states, which we briefly review in the opening sections of the paper.

  14. Useful models of four-wave mixing in Bose Einstein condensates

    Science.gov (United States)

    Infeld, E.; Trippenbach, M.

    2003-11-01

    A recent experiment demonstrated four-wave mixing of wavepackets in a sodium Bose-Einstein condensate (Deng et al 1999 Nature 398 218). This was followed by a theoretical and numerical treatment of the experiment (Trippenbach et al 2000 Phys. Rev. A 62 02368). In the experiment, a short period of free expansion of the condensate, after release from the magnetic trap, was followed by a set of two Bragg pulses which created moving wavepackets. These wavepackets, due to nonlinear interaction and under phase-matching conditions, created a new momentum component in a four-wave mixing process. We propose simple mathematical models for this process. Next we suggest that, instead of exactly matching the frequencies as in the abovementioned experiments, we introduce a small mismatch in the energies, and therefore the frequencies Dgrohgr. We show that such a small mismatch can compensate for the initial phases that are built on the condensate during free expansion. A physical explanation is offered. This compensation can improve the efficiency of four-wave mixing; in some cases even increasing it by a factor of 2. We also deal with the situation where two strong wavepackets are accompanied by a weak input beam applied as a seed both with and without a mismatch. Here the influence of the mismatch is less obviously beneficial. We also comment on recent work by Ketterle's group (Vogels et al 2002 Phys. Rev. Lett. 89 020401).

  15. Nonlinear synthetic gauge potentials and sonic horizons in Bose-Einstein condensates

    CERN Document Server

    Butera, Salvatore; Faccio, Daniele; Öhberg, Patrik

    2016-01-01

    Phonons in a Bose-Einstein condensate can be made to behave as if they propagate in curved spacetime by controlling the condensate flow speed. Seemingly disconnected to this, artificial gauge potentials can be induced in charge neutral atomic condensates by for instance coupling two atomic levels to a laser field. Here we connect these two worlds and show that synthetic interacting gauge fields, i.e., density-dependent gauge potentials, induce a non-trivial spacetime structure for the phonons. This allows for the creation of new spacetime geometries which depend not on the flow speed of the condensate but on an easily controlled transverse laser phase. Using this, we show how to create artificial black holes in a stationary condensate, we simulate charge in a Reissner-Nordstr\\"om black hole and induce cosmological horizons by creating de Sitter spacetimes. We then show how to combine this de Sitter spacetime with a black hole, which also opens up the possibility to study in experiments its quantum stability.

  16. Galactic cold dark matter as a Bose-Einstein condensate of WISPs

    Energy Technology Data Exchange (ETDEWEB)

    Pires, M.O.C.; Souza, J.C.C. de, E-mail: marcelo.pires@ufabc.edu.br, E-mail: jose.souza@ufabc.edu.br [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Rua Santa Adélia 166, 09210-170, Santo André, SP (Brazil)

    2012-11-01

    We propose here the dark matter content of galaxies as a cold bosonic fluid composed of Weakly Interacting Slim Particles (WISPs), represented by spin-0 axion-like particles and spin-1 hidden bosons, thermalized in the Bose-Einstein condensation state and bounded by their self-gravitational potential. We analyze two zero-momentum configurations: the polar phases in which spin alignment of two neighbouring particles is anti-parallel and the ferromagnetic phases in which every particle spin is aligned in the same direction. Using the mean field approximation we derive the Gross-Pitaevskii equations for both cases, and, supposing the dark matter to be a polytropic fluid, we describe the particles density profile as Thomas-Fermi distributions characterized by the halo radii and in terms of the scattering lengths and mass of each particle. By comparing this model with data obtained from 42 spiral galaxies and 19 Low Surface Brightness (LSB) galaxies, we constrain the dark matter particle mass to the range 10{sup −6}–10{sup −4} eV and we find the lower bound for the scattering length to be of the order 10{sup −14} fm.

  17. Phantom vortices: hidden angular momentum in ultracold dilute Bose-Einstein condensates

    Science.gov (United States)

    Weiner, Storm E.; Tsatsos, Marios C.; Cederbaum, Lorenz S.; Lode, Axel U. J.

    2017-01-01

    Vortices are essential to angular momentum in quantum systems such as ultracold atomic gases. The existence of quantized vorticity in bosonic systems stimulated the development of the Gross-Pitaevskii mean-field approximation. However, the true dynamics of angular momentum in finite, interacting many-body systems like trapped Bose-Einstein condensates is enriched by the emergence of quantum correlations whose description demands more elaborate methods. Herein we theoretically investigate the full many-body dynamics of the acquisition of angular momentum by a gas of ultracold bosons in two dimensions using a standard rotation procedure. We demonstrate the existence of a novel mode of quantized vorticity, which we term the phantom vortex. Contrary to the conventional mean-field vortex, can be detected as a topological defect of spatial coherence, but not of the density. We describe previously unknown many-body mechanisms of vortex nucleation and show that angular momentum is hidden in phantom vortices modes which so far seem to have evaded experimental detection. This phenomenon is likely important in the formation of the Abrikosov lattice and the onset of turbulence in superfluids.

  18. Black Hole Type Quantum Computing in Critical Bose-Einstein Systems

    CERN Document Server

    Dvali, Gia

    2015-01-01

    Recent ideas about understanding physics of black hole information-processing in terms of quantum criticality allow us to implement black hole mechanisms of quantum computing within critical Bose-Einstein systems. The generic feature, uncovered both by analytic and numeric studies, is the emergence at the critical point of gapless weakly-interacting modes, which act as qubits for information-storage at a very low energy cost. These modes can be effectively described in terms of either Bogoliubov or Goldstone degrees of freedom. The ground-state at the critical point is maximally entangled and far from being classical. We confirm this near-critical behavior by a new analytic method. We compute growth of entanglement and show its consistency with black hole type behavior. On the other hand, in the over-critical regime the system develops a Lyapunov exponent and scrambles quantum information very fast. By, manipulating the system parameters externally, we can put it in and out of various regimes and in this way ...

  19. Breakdown of Anderson localization in the transport of Bose-Einstein condensates through one-dimensional disordered potentials

    Science.gov (United States)

    Dujardin, Julien; Engl, Thomas; Schlagheck, Peter

    2016-01-01

    We study the transport of an interacting Bose-Einstein condensate through a 1D correlated disorder potential. We use for this purpose the truncated Wigner method, which is, as we show, corresponding to the diagonal approximation of a semiclassical van Vleck-Gutzwiller representation of this many-body transport process. We also argue that semiclassical corrections beyond this diagonal approximation are vanishing under disorder average, thus confirming the validity of the truncated Wigner method in this context. Numerical calculations show that, while for weak atom-atom interaction strengths Anderson localization is preserved with a slight modification of the localization length, for larger interaction strengths a crossover to a delocalized regime exists due to inelastic scattering. In this case, the transport is fully incoherent.

  20. Apparatus to study matter-wave quantum optics in spin space in a sodium spinor Bose-Einstein condensate

    Science.gov (United States)

    Nematollahi, Delaram; Zhang, Qimin; Altermatt, Joseph; Zhong, Shan; Goodman, Matthew; Bhagat, Anita; Schwettmann, Arne

    2016-05-01

    We present our apparatus designed to study matter-wave quantum optics in spin space, including our recently finished vacuum system and laser systems. Microwave-dressed spin-exchange collisions in a sodium spinor Bose-Einstein condensate provide a precisely controllable nonlinear interaction that generates squeezing and acts as a source of entanglement. As a consequence of this entanglement between atoms with magnetic quantum numbers m = +1 and m = -1, the noise of population measurements can be reduced below the shot noise. Versatile microwave pulse sequences will be used to implement an interferometer, a phase-sensitive amplifier and other devices. With an added ion detector to detect Rydberg atoms via pulsed-field ionization, we plan to study the effect of Rydberg excitations on the spin evolution of the ultracold gas.

  1. Drag force on an impurity below the superfluid critical velocity in a quasi-one-dimensional Bose-Einstein condensate.

    Science.gov (United States)

    Sykes, Andrew G; Davis, Matthew J; Roberts, David C

    2009-08-21

    The existence of frictionless flow below a critical velocity for obstacles moving in a superfluid is well established in the context of the mean-field Gross-Pitaevskii theory. We calculate the next order correction due to quantum and thermal fluctuations and find a nonzero force acting on a delta-function impurity moving through a quasi-one-dimensional Bose-Einstein condensate at all subcritical velocities and at all temperatures. The force occurs due to an imbalance in the Doppler shifts of reflected quantum fluctuations from either side of the impurity. Our calculation is based on a consistent extension of Bogoliubov theory to second order in the interaction strength, and finds new analytical solutions to the Bogoliubov-de Gennes equations for a gray soliton. Our results raise questions regarding the quantum dynamics in the formation of persistent currents in superfluids.

  2. The dynamics of straight vortex filaments in a Bose-Einstein condensate with a Gaussian density profile

    CERN Document Server

    Ruban, V P

    2016-01-01

    The dynamics of interacting quantized vortex filaments in a rotating trapped Bose-Einstein condensate, which is in the Thomas-Fermi regime at zero temperature and described by the Gross-Pitaevskii equation, is considered in the hydrodynamical "anelastic" approximation. In the presence of a smoothly inhomogeneous array of filaments (vortex lattice), a non-canonical Hamiltonian equation of motion is derived for the macroscopically averaged vorticity, with taking into account the spatial non-uniformity of the equilibrium condensate density determined by the trap potential. A minimum of the corresponding Hamiltonian describes a static configuration of deformed vortex lattice against a given density background. The minimum condition is reduced to a vector nonlinear partial differential equation of the second order, for which some approximate and exact solutions are found. It is shown that if the condensate density has an anisotropic Gaussian profile then equation of motion for the averaged vorticity admits solutio...

  3. Multiphase Simulated Annealing Based on Boltzmann and Bose-Einstein Distribution Applied to Protein Folding Problem.

    Science.gov (United States)

    Frausto-Solis, Juan; Liñán-García, Ernesto; Sánchez-Hernández, Juan Paulo; González-Barbosa, J Javier; González-Flores, Carlos; Castilla-Valdez, Guadalupe

    2016-01-01

    A new hybrid Multiphase Simulated Annealing Algorithm using Boltzmann and Bose-Einstein distributions (MPSABBE) is proposed. MPSABBE was designed for solving the Protein Folding Problem (PFP) instances. This new approach has four phases: (i) Multiquenching Phase (MQP), (ii) Boltzmann Annealing Phase (BAP), (iii) Bose-Einstein Annealing Phase (BEAP), and (iv) Dynamical Equilibrium Phase (DEP). BAP and BEAP are simulated annealing searching procedures based on Boltzmann and Bose-Einstein distributions, respectively. DEP is also a simulated annealing search procedure, which is applied at the final temperature of the fourth phase, which can be seen as a second Bose-Einstein phase. MQP is a search process that ranges from extremely high to high temperatures, applying a very fast cooling process, and is not very restrictive to accept new solutions. However, BAP and BEAP range from high to low and from low to very low temperatures, respectively. They are more restrictive for accepting new solutions. DEP uses a particular heuristic to detect the stochastic equilibrium by applying a least squares method during its execution. MPSABBE parameters are tuned with an analytical method, which considers the maximal and minimal deterioration of problem instances. MPSABBE was tested with several instances of PFP, showing that the use of both distributions is better than using only the Boltzmann distribution on the classical SA.

  4. Bose-Einstein correlations and color reconnection in W-pair production.

    Energy Technology Data Exchange (ETDEWEB)

    Chekanov, S. V.; De Wolf, E. A.; Kittel, W.; High Energy Physics; Univ. Instelling Antwerp; Univ. Nijmegen

    1999-01-01

    We propose a systematic study of Bose-Einstein correlations between identical hadrons coming from different W decays. Experimentally accessible signatures of these correlations as well as of possible color reconnection effects are discussed on the basis of two-particle inclusive densities.

  5. PHENIX results on L\\'evy analysis of Bose-Einstein correlation functions

    CERN Document Server

    Kincses, Dániel

    2016-01-01

    The nature of the quark-hadron phase transition can be investigated through analyzing the space-time structure of the hadron emission source. For this, the Bose-Einstein or HBT correlations of identified charged particles are among the best observables. In this paper we present the latest results from the RHIC PHENIX experiment on such measurements.

  6. Quantum Dynamics of Cooled Atoms in the Presence of Bose-Einstein Condensates

    Institute of Scientific and Technical Information of China (English)

    YI Xue-Xi; SU Jun-Chen

    2001-01-01

    Under the Markov approximation, the quantum dynamics of cooled atoms in the presence of Bose-Einstein condensates is studied. A master equation governing the evolution of such a system is derived. Using this master equation, the distribution of the atoms in the excited states at finite temperature and the dynamics of the excited atom at zero temperature are given and discussed.

  7. The dynamics of nonstationary solutions in one-dimensional two-component Bose-Einstein condensates

    Institute of Scientific and Technical Information of China (English)

    Lü Bin-Bin; Hao Xue; Tian Qiang

    2011-01-01

    This paper investigates the dynamical properties of nonstationary solutions in one-dimensional two-component Bose-Einstein condensates. It gives three kinds of stationary solutions to this model and develops a general method of constructing nonstationary solutions. It obtains the unique features about general evolution and soliton evolution of nonstationary solutions in this model.

  8. Influence of Decoherence on Interference Between Two Bose-Einstein Condensates

    Institute of Scientific and Technical Information of China (English)

    ZENG Ai-Hua; KUANG Le-Man

    2004-01-01

    The influence of decoherence on interference between two trapped Bose-Einstein condensates with arbitrary initial states is studied. Analytic expressions of the intensity and visibility of the interference pattern are found. It is shown that the decoherence weakens the interference intensity and decreases the visibility of the interference pattern.

  9. Exact analytical solution for quantum spins mixing in spin-1 Bose-Einstein condensates

    Institute of Scientific and Technical Information of China (English)

    Chen Ai-Xi; Qiu Wan-Ying; Wang Zhi-Ping

    2008-01-01

    This paper solves exactly a set of fully quantized coupled equations describing the quantum dynamics of quantum spins mixing in spin-1 Bose-Einstein condensates by deriving the exact explicit analytical expressions for the evolution of creation and annihilation operators.

  10. Electromagnetically Induced Transparency in an Atom-Molecule Bose-Einstein Condensate

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    We propose a new measurement scheme for the atom-molecule dark state by using electromagnetically induced transparency (EIT) technique. Based on a density-matrix formalism, we calculate the absorption coefficient numerically. The appearance of the EIT dip in the spectra profile gives clear evidence for the creation of the dark state in the atom-molecule Bose-Einstein condensate.

  11. Effect of atomic transfer on the decay of a Bose-Einstein condensate

    CERN Document Server

    Zin, P; Charzynski, S; Herschbach, N; Tol, P; Hogervorst, W; Vassen, W; Zin, Pawel; Dragan, Andrzej; Charzynski, Szymon; Herschbach, Norbert; Tol, Paul; Hogervorst, Wim; Vassen, Wim

    2003-01-01

    We present a model describing the decay of a Bose-Einstein condensate, which assumes the system to remain in thermal equilibrium during the decay. We show that under this assumption transfer of atoms occurs from the condensate to the thermal cloud enhancing the condensate decay rate.

  12. Synthesize Neutron-Drip-Line-Nuclides with Free-Neutron Bose-Einstein Condensates Experimentally

    CERN Document Server

    Dong, Bao-Guo

    2014-01-01

    We first show a possible way to create a new type of matter, free-neutron Bose-Einstein condensate by the ultracold free-neutron-pair Bose-Einstein condensation and then determine the neutron drip line experimentally. The Bose-Einstein condensation of bosonic and fermionic atoms in atomic gases was performed experimentally and predicted theoretically early. Neutrons are similar to fermionic atoms. We found free neutrons could be cooled to ultracold neutrons with very low energy by other colder neutral atoms which are cooled by the laser. These neutrons form neutron pairs with spin zero, and then ultracold neutron-pairs form Bose-Einstein condensate. Our results demonstrate how these condensates can react with accelerated ion beams at different energy to synthesize very neutron-rich nuclides near, on or/and beyond the neutron drip line, to determine the neutron drip line and whether there are long-life nuclide or isomer islands beyond the neutron drip line experimentally. Otherwise, these experimental results ...

  13. Phase fluctuations and first-order correlation functions of dissipative Bose-Einstein condensates

    NARCIS (Netherlands)

    De Leeuw, A. W.; Stoof, H. T C; Duine, R. A.

    2014-01-01

    We investigate the finite-lifetime effects on first-order correlation functions of dissipative Bose-Einstein condensates. By taking into account the phase fluctuations up to all orders, we show that the finite-lifetime effects are negligible for the spatial first-order correlation functions, but hav

  14. Multiphase Simulated Annealing Based on Boltzmann and Bose-Einstein Distribution Applied to Protein Folding Problem

    Directory of Open Access Journals (Sweden)

    Juan Frausto-Solis

    2016-01-01

    Full Text Available A new hybrid Multiphase Simulated Annealing Algorithm using Boltzmann and Bose-Einstein distributions (MPSABBE is proposed. MPSABBE was designed for solving the Protein Folding Problem (PFP instances. This new approach has four phases: (i Multiquenching Phase (MQP, (ii Boltzmann Annealing Phase (BAP, (iii Bose-Einstein Annealing Phase (BEAP, and (iv Dynamical Equilibrium Phase (DEP. BAP and BEAP are simulated annealing searching procedures based on Boltzmann and Bose-Einstein distributions, respectively. DEP is also a simulated annealing search procedure, which is applied at the final temperature of the fourth phase, which can be seen as a second Bose-Einstein phase. MQP is a search process that ranges from extremely high to high temperatures, applying a very fast cooling process, and is not very restrictive to accept new solutions. However, BAP and BEAP range from high to low and from low to very low temperatures, respectively. They are more restrictive for accepting new solutions. DEP uses a particular heuristic to detect the stochastic equilibrium by applying a least squares method during its execution. MPSABBE parameters are tuned with an analytical method, which considers the maximal and minimal deterioration of problem instances. MPSABBE was tested with several instances of PFP, showing that the use of both distributions is better than using only the Boltzmann distribution on the classical SA.

  15. THE GROWTH RATE AND STATISTICAL FLUCTUATION OF BOSE-EINSTEIN CONDENSATE FORMATION

    Institute of Scientific and Technical Information of China (English)

    Yan Ke-zhu; Tan Wei-han

    2000-01-01

    Using the generating function method to solve the master equation ofBose-Einstein condensate and to evaluate the growth rate, statisticalfluctuation of condensate atoms, we find out that there is a plateau inthe growth rate curve and a super-Poisson distribution observed.

  16. Collision induced splitting of bright soliton in Bose-Einstein condensate

    Institute of Scientific and Technical Information of China (English)

    Wang Yue-Yue; Zhang Jie-Fang

    2009-01-01

    This paper studies the collision dynamics of bright soliton in Bose-Einstein condensate with trapezoid potential. It is found that besides the total reflection and total transmission, one bright soliton can be divided into two bright solitons with different amplitudes in a controllable manner.

  17. Effect of light assisted collisions on matter wave coherence in superradiant Bose-Einstein condensates

    DEFF Research Database (Denmark)

    Kampel, Nir Shlomo; Griesmaier, Axel Rudolf; Steenstrup, Mads Peter Hornbak;

    2012-01-01

    We investigate experimentally the effects of light assisted collisions on the coherence between momentum states in Bose-Einstein condensates. The onset of superradiant Rayleigh scattering serves as a sensitive monitor for matter-wave coherence. A subtle interplay of binary and collective effects...

  18. Sweeping a molecular Bose-Einstein condensate across a Feshbach resonance

    NARCIS (Netherlands)

    Haque, M.; Stoof, H.T.C.

    2007-01-01

    We consider the dissociation of a molecular Bose-Einstein condensate during a magnetic-field sweep through a Feshbach resonance that starts on the molecular side of the resonance and ends on the atomic side. In particular, we determine the energy distribution of the atoms produced after the sweep. W

  19. Bose-Einstein Condensation of Magnons Pumped by the Bulk Spin Seebeck Effect

    NARCIS (Netherlands)

    Tserkovnyak, Yaroslav; Bender, Scott A.; Duine, Rembert A.; Flebus, Benedetta

    2016-01-01

    We propose inducing Bose-Einstein condensation of magnons in a magnetic insulator by a heat flow oriented toward its boundary. At a critical heat flux, the oversaturated thermal gas of magnons accumulated at the boundary precipitates the condensate, which then grows gradually as the thermal bias is

  20. Single-beam measurement of bose-einstein fluctuations in a natural gaussian radiation field

    NARCIS (Netherlands)

    Alkemade, C.T.J.; Bolwijn, P.T.; Veer, J.H.C. van der

    1966-01-01

    Excess noise caused by Bose-Einstein fluctuations in the radiation from the anode of a carbon-arc was detected in the photo current of a cooled InSb photodiode. Its dependence on several parameters was found to agree with our theory.

  1. Effect of residual Bose-Einstein correlations on the Dalitz plot of hadronic charm meson decay

    CERN Document Server

    Cuautle, E

    1998-01-01

    We show that the presence of residual Bose-Einstein correlations may affect the resonant contribution of hadronic charm decays where two identical pions appear in the final state. The distortion of the phase space of the reaction would be visible in the dalitz plot. The decay D+ --> K- pi+ pi+ is discussed but results can be generalized to any decay with identical bosons.

  2. Dicke superradiance, Bose-Einstein condensation of photons and spontaneous symmetry breaking

    CERN Document Server

    Vyas, Vivek M; Srinivasan, V

    2016-01-01

    It is shown that the phenomenon of Dicke superradiance essentially occurs due to spontaneous symmetry breaking. Two generalised versions of the Dicke model are studied, and compared with a model that describes photonic Bose-Einstein condensate, which was experimentally realised. In all the models, it is seen that, the occurrence of spontaneous symmetry breaking is responsible for coherent radiation emission.

  3. Exact periodic wave and soliton solutions in two-component Bose-Einstein condensates

    Institute of Scientific and Technical Information of China (English)

    Li Hua-Mei

    2007-01-01

    We present several families of exact solutions to a system of coupled nonlinear Schr(o)dinger equations. The model describes a binary mixture of two Bose-Einstein condensates in a magnetic trap potential. Using a mapping deformation method, we find exact periodic wave and soliton solutions, including bright and dark soliton pairs.

  4. On the occurrence and detectability of Bose-Einstein condensation in helium white dwarfs

    Energy Technology Data Exchange (ETDEWEB)

    Benvenuto, O.G.; Vito, M.A. De, E-mail: obenvenu@fcaglp.unlp.edu.ar, E-mail: adevito@fcaglp.unlp.edu.ar [Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Paseo del Bosque S/N, B1900FWA, La Plata (Argentina); Instituto de Astrofísica de La Plata, IALP, CCT-CONICET-UNLP (Argentina)

    2011-02-01

    It has been recently proposed that helium white dwarfs may provide promising conditions for the occurrence of the Bose-Einstein condensation. The argument supporting this expectation is that in some conditions attained in the core of these objects, the typical De Broglie wavelength associated with helium nuclei is of the order of the mean distance between neighboring nuclei. In these conditions the system should depart from classical behavior showing quantum effects. As helium nuclei are bosons, they are expected to condense. In order to explore the possibility of detecting the Bose-Einstein condensation in the evolution of helium white dwarfs we have computed a set of models for a variety of stellar masses and values of the condensation temperature. We do not perform a detailed treatment of the condensation process but mimic it by suppressing the nuclei contribution to the equation of state by applying an adequate function. As the cooling of white dwarfs depends on average properties of the whole stellar interior, this procedure should be suitable for exploring the departure of the cooling process from that predicted by the standard treatment. We find that the Bose-Einstein condensation has noticeable, but not dramatic effects on the cooling process only for the most massive white dwarfs compatible with a helium dominated interior ( ≈ 0.50M{sub s}un) and very low luminosities (say, Log(L/L{sub s}un) < −4.0). These facts lead us to conclude that it seems extremely difficult to find observable signals of the Bose-Einstein condensation. Recently, it has been suggested that the population of helium white dwarfs detected in the globular cluster NGC 6397 is a good candidate for detecting signals of the Bose-Einstein condensation. We find that these stars have masses too low and are too bright to have an already condensed interior.

  5. All-optical production of dual Bose-Einstein condensates of paired fermions and bosons with 6Li and 7Li

    Science.gov (United States)

    Ikemachi, Takuya; Ito, Aki; Aratake, Yukihito; Chen, Yiping; Koashi, Masato; Kuwata-Gonokami, Makoto; Horikoshi, Munekazu

    2017-01-01

    We report the first all-optical production of dual Bose-Einstein condensates (BECs) of paired 6Li (fermion) and one spin state of 7Li (boson) at the magnetic field where the s-wave interactions between fermions are resonant. Fermions are cooled efficiently by evaporative cooling and they serve as coolant for bosons. As a result, the dual condensates can be achieved by using a simple experimental apparatus and procedures, as in the case of the all-optical production of a single BEC. We show that the all-optical method enables us to realize variety of ultracold Bose-Fermi mixtures.

  6. Discussion on the energy content of the galactic dark matter Bose-Einstein condensate halo in the Thomas-Fermi approximation

    Energy Technology Data Exchange (ETDEWEB)

    De Souza, J.C.C.; Pires, M.O.C., E-mail: jose.souza@ufabc.edu.br, E-mail: marcelo.pires@ufabc.edu.br [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Rua Santa Adélia 166, Santo André, SP, 09210-170 (Brazil)

    2014-03-01

    We show that the galactic dark matter halo, considered composed of an axionlike particles Bose-Einstein condensate [6] trapped by a self-graviting potential [5], may be stable in the Thomas-Fermi approximation since appropriate choices for the dark matter particle mass and scattering length are made. The demonstration is performed by means of the calculation of the potential, kinetic and self-interaction energy terms of a galactic halo described by a Boehmer-Harko density profile. We discuss the validity of the Thomas-Fermi approximation for the halo system, and show that the kinetic energy contribution is indeed negligible.

  7. Exponential Attractor for Coupled Ginzburg-Landau Equations Describing Bose-Einstein Condensates and Nonlinear Optical Waveguides and Cavities

    Directory of Open Access Journals (Sweden)

    Gui Mu

    2013-01-01

    Full Text Available The existence of the exponential attractors for coupled Ginzburg-Landau equations describing Bose-Einstein condensates and nonlinear optical waveguides and cavities with periodic initial boundary is obtained by showing Lipschitz continuity and the squeezing property.

  8. Parametrization of Bose-Einstein Correlations in e+e- Annihilation and Reconstruction of the Source Function

    Science.gov (United States)

    Metzger, W. J.; Novák, T.; Csörgő, T.; Kittel, W.

    A short review of Bose-Einstein correlations in hadronic e+e- annihilation is presented. Bose-Einstein correlations of pairs of identical charged pions in hadronic Z-boson decays are analyzed in terms of various parametrizations. A good description is achieved using a Lévy stable distribution in conjunction with a hadronization model having highly correlated configuration and momentum space, the τ-model. Using these results, the source function is reconstructed.

  9. Dwarf spheroidal galaxies and Bose-Einstein condensate dark matter

    CERN Document Server

    Diez-Tejedor, Alberto; Profumo, Stefano

    2014-01-01

    We constrain the parameters of a self-interacting massive dark matter scalar particle in a condensate using the kinematics of the eight brightest dwarf spheroidal satellites of the Milky Way. For the case of an attractive self-interaction the condensate develops a mass density profile with a characteristic scale radius that is closely related to the fundamental parameters of the theory. We find that the velocity dispersion of dwarf spheroidal galaxies suggests a scale radius of the order of 1 kpc, in tension with previous results found using the rotational curve of low-surface-brightness and dwarf galaxies. We discuss the implications of our findings for the particle dark matter model and argue that a single classical coherent state cannot play, in general, a relevant role for the description of dark matter in galaxies.

  10. Spin-momentum coupled Bose-Einstein condensates with lattice band pseudospins.

    Science.gov (United States)

    Khamehchi, M A; Qu, Chunlei; Mossman, M E; Zhang, Chuanwei; Engels, P

    2016-01-01

    The quantum emulation of spin-momentum coupling, a crucial ingredient for the emergence of topological phases, is currently drawing considerable interest. In previous quantum gas experiments, typically two atomic hyperfine states were chosen as pseudospins. Here, we report the observation of a spin-momentum coupling achieved by loading a Bose-Einstein condensate into periodically driven optical lattices. The s and p bands of a static lattice, which act as pseudospins, are coupled through an additional moving lattice that induces a momentum-dependent coupling between the two pseudospins, resulting in s-p hybrid Floquet-Bloch bands. We investigate the band structures by measuring the quasimomentum of the Bose-Einstein condensate for different velocities and strengths of the moving lattice, and compare our measurements to theoretical predictions. The realization of spin-momentum coupling with lattice bands as pseudospins paves the way for engineering novel quantum matter using hybrid orbital bands.

  11. Dark matter as the Bose-Einstein condensation in loop quantum cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Atazadeh, K.; Mousavi, M. [Azarbaijan Shahid Madani University, Department of Physics, Tabriz (Iran, Islamic Republic of); Darabi, F. [Azarbaijan Shahid Madani University, Department of Physics, Tabriz (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha (Iran, Islamic Republic of)

    2016-06-15

    We consider the FLRW universe in a loop quantum cosmological model filled with radiation, baryonic matter (with negligible pressure), dark energy, and dark matter. The dark matter sector is supposed to be of Bose-Einstein condensate type. The Bose-Einstein condensation process in a cosmological context by supposing it as an approximate first-order phase transition, has already been studied in the literature. Here, we study the evolution of the physical quantities related to the early universe description such as the energy density, temperature, and scale factor of the universe, before, during, and after the condensation process. We also consider in detail the evolution era of the universe in a mixed normal-condensate dark matter phase. The behavior and time evolution of the condensate dark matter fraction is also analyzed. (orig.)

  12. Atomic Tunneling Effect in Two-Component Bose-Einstein Condensates with a Coupling Drive

    Institute of Scientific and Technical Information of China (English)

    JIAOZhi-Yong; YUZhao-Xian; YANGXin-Jian

    2004-01-01

    In this paper, we have studied the atomic population difference and the atomic tunneling current of two-component Bose-Einstein condensates with a coupling drive. It is found that when the two-component Bose Einstein condensates are initially in the coherent states, the atomic population difference may exhibit the step structure, in which the numbers of the step increase with the decrease of the Rabi frequency and with the increment of the initial phase difference. The atomic population difference may exhibit collapses, and revivals, in which their periods are affected dramatically by the Rabi frequency and the initial phase difference. The atomic tunneling current may exhibit damping oscillation behaviors, and exist the step structure for the time range of 10-10 ~ 10-9 second.

  13. Developing density functional theory for Bose-Einstein condensates. The case of chemical bonding

    Energy Technology Data Exchange (ETDEWEB)

    Putz, Mihai V., E-mail: mvputz@cbg.uvt.ro [Laboratory of Physical and Computational Chemistry, Chemistry Department, West University of Timisoara, Str. Pestalozzi No. 16, 300115 Timisoara, Romania and Theoretical Physics Institute, Free University Berlin, Arnimallee 14, 14195 Berlin (Germany)

    2015-01-22

    Since the nowadays growing interest in Bose-Einstein condensates due to the expanded experimental evidence on various atomic systems within optical lattices in weak and strong coupling regimes, the connection with Density Functional Theory is firstly advanced within the mean field framework at three levels of comprehension: the many-body normalization condition, Thomas-Fermi limit, and the chemical hardness closure with the inter-bosonic strength and universal Hohenberg-Kohn functional. As an application the traditional Heitler-London quantum mechanical description of the chemical bonding for homopolar atomic systems is reloaded within the non-linear Schrödinger (Gross-Pitaevsky) Hamiltonian; the results show that a two-fold energetic solution is registered either for bonding and antibonding states, with the bosonic contribution being driven by the square of the order parameter for the Bose-Einstein condensate density in free (gas) motion, while the associate wave functions remain as in classical molecular orbital model.

  14. Detecting and imaging single Rydberg electrons in a Bose-Einstein condensate

    CERN Document Server

    Karpiuk, Tomasz; Rzążewski, Kazimierz; Balewski, Jonathan B; Krupp, Alexander T; Gaj, Anita; Löw, Robert; Hofferberth, Sebastian; Pfau, Tilman

    2014-01-01

    The quantum mechanical states of electrons in atoms and molecules are discrete spatial orbitals, which are fundamental for our understanding of atoms, molecules, and solids. They determine a wide range of basic atomic properties, ranging from the coupling to external fields to the whole field of chemistry. Nevertheless, the manifestation of electron orbitals in experiments so far has been rather indirect. In a detailed theoretical model, we analyze the impact of a single Rydberg electron onto a Bose-Einstein condensate and compare the results to experimental data. Based on this validated model we propose a method to optically image the shape of single electron orbitals using electron-phonon coupling in a Bose-Einstein condensate. This scheme requires only established and readily available experimental techniques and allows to directly capture textbook-like spatial images of single electronic orbitals in a single shot experiment.

  15. Bose-Einstein correlations in one and two dimensions in deep inelastic scattering

    CERN Document Server

    Abramowicz, H; Adamus, M; Adler, V; Aghuzumtsyan, G; Antonioli, P; Antonov, A; Arneodo, M; Bailey, D S; Bamberger, A; Barakbaev, A N; Barbagli, G; Barbi, M; Bari, G; Barreiro, F; Bartsch, D; Basile, M; Behrens, U; Bell, M; Bellagamba, L; Benen, A; Bertolin, A; Bhadra, S; Bloch, I; Bodmann, B; Bold, T; Boos, E G; Borras, K; Boscherini, D; Brock, I; Brook, N H; Brugnera, R; Brümmer, N; Bruni, A; Bruni, G; Bussey, P J; Butterworth, J M; Bylsma, B; Caldwell, A; Capua, M; Cara Romeo, G; Carli, T; Carlin, R; Catterall, C D; Chekanov, S; Chiochia, V; Chwastowski, J; Ciborowski, J; Ciesielski, R; Cifarelli, Luisa; Cindolo, F; Cloth, P; Cole, J E; Collins-Tooth, C; Contin, A; Cooper-Sarkar, A M; Coppola, N; Cormack, C; Corradi, M; Corriveau, F; Cottrell, A; D'Agostini, G; Dal Corso, F; Danilov, P; Dannheim, D; De Pasquale, S; Dementiev, R K; Derrick, M; Deshpande, Abhay A; Devenish, R C E; Dhawan, S; Dolgoshein, B A; Doyle, A T; Drews, G; Durkin, L S; Dusini, S; Eisenberg, Y; Ermolov, P F; Eskreys, Andrzej; Ferrando, J; Ferrero, M I; Figiel, J; Filges, D; Foster, B; Foudas, C; Fourletov, S; Fourletova, J; Fricke, U; Fusayasu, T; Gabareen, A; Galas, A; Gallo, E; Garfagnini, A; Geiser, A; Genta, C; Gialas, I; Giusti, P; Gladilin, L K; Gladkov, D; Glasman, C; Gliga, S; Goers, S; Golubkov, Yu A; Goncalo, R; González, O; Göttlicher, P; Grabowska-Bold, I; Grijpink, S; Grzelak, G; Gutsche, O; Gwenlan, C; Haas, T; Hain, W; Hall-Wilton, R; Hamatsu, R; Hamilton, J; Hanlon, S; Hart, J C; Hartmann, H; Hartner, G; Heaphy, E A; Heath, G P; Helbich, M; Heusch, C A; Hilger, E; Hillert, S; Hirose, T; Hochman, D; Holm, U; Iacobucci, G; Iga, Y; Inuzuka, M; Irrgang, P; Jakob, P; Jones, T W; Kagawa, S; Kahle, B; Kaji, H; Kananov, S; Kataoka, M; Katkov, I I; Kcira, D; Khein, L A; Kim, J Y; Kim, Y K; Kind, O; Kisielewska, D; Kitamura, S; Klimek, K; Koffeman, E; Kohno, T; Kooijman, P; Koop, T; Korzhav, I A; Kotanski, A; Kötz, U; Kowal, A M; Kowal, M; Kowalski, H; Kowalski, T; Krakauer, D; Kramberger, G; Kreisel, A; Krumnack, N; Kuze, M; Kuzmin, V A; Labarga, L; Labes, H; Lainesse, J; Lammers, S; Lee, J H; Lelas, D; Levchenko, B B; Levman, G M; Levy, A; Li, L; Lightwood, M S; Lim, H; Lim, I T; Limentani, S; Ling, T Y; Liu, X; Löhr, B; Lohrmann, E; Loizides, J H; Long, K R; Longhin, A; Lukina, O Yu; Luzniak, P; Maddox, E; Magill, S; Mankel, R; Margotti, A; Marini, G; Martin, J F; Mastroberardino, A; Matsuzawa, K; Mattingly, M C K; McCubbin, N A; Mellado, B; Melzer-Pellmann, I A; Menary, S R; Metlica, F; Meyer, U; Miglioranzi, S; Milite, M; Mirea, A; Monaco, V; Montanari, A; Mus, B; Nagano, K; Namsoo, T; Nania, R; Nguyen, C N; Nigro, A; Ning, Y; Notz, D; Nowak, R J; Nuncio-Quiroz, A E; Oh, B Y; Olkiewicz, K; Pac, M Y; Padhi, S; Paganis, S; Palmonari, F; Parenti, A; Park, I H; Patel, S; Paul, E; Pavel, N; Pawlak, J M; Pelfer, P G; Pellegrino, A; Pesci, A; Piotrzkowski, K; Plucinsky, P P; Pokrovskiy, N S; Polini, A; Posocco, M; Proskuryakov, A S; Przybycien, M B; Rautenberg, J; Raval, A; Reeder, D D; Ren, Z; Renner, R; Repond, J; Riveline, U; Karshon, M; Robins, S; Rosin, M; Rurua, L; Ruspa, M; Sacchi, R; Salehi, H; Sartorelli, G; Savin, A A; Saxon, D H; Schagen, S; Schioppa, M; Schlenstedt, S; Schleper, P; Schmidke, W B; Schneekloth, U; Sciulli, F; Shcheglova, L M; Skillicorn, I O; Slominski, W; Smith, W H; Soares, M; Solano, A; Son, D; Sosnovtsev, V V; Stairs, D G; Stanco, L; Standage, J; Stifutkin, A; Stoesslein, U; Stonjek, S; Stopa, P; Straub, P B; Suchkov, S; Susinno, G; Suszycki, L; Sutton, M R; Sztuk, J; Szuba, D; Szuba, J; Tandler, J; Tapper, A D; Targett, C; Tassi, E; Tawara, T; Terron, J; Tiecke, H G; Tokushuku, K; Tsurugai, T; Turcato, M; Tymieniecka, T; Ukleja, A; Ukleja, J; Vázquez, M; Velthuis, J J; Vlasov, N N; Voss, K C; Walczak, R; Walsh, R; Wang, M; Weber, A; Whitmore, J J; Wick, K; Wiggers, L; Will, H H; Wing, M; Wolf, G; Yamada, S; Yamashita, T; Yamazaki, Y; Yoshida, R; Youngman, C; Zambrana, M; Zawiejski, L; Zeuner, W; Zhautykov, B O; Zichichi, A; Ziegler, A; Zotkin, S A; De Wolf, E; Del Peso, J

    2003-01-01

    Bose-Einstein correlations in one and two dimensions have been studied in deep inelastic EP scattering events measured with the ZEUS detector at HERA using an integrated luminosity of 121 pb-1. The correlations are independent of the virtuality of the exchanged photon, Q2, in the range 0.1100 GeV2. The two-dimensional shape of the particle-production source was investigated, and a significant difference between the transverse and the longitudinal dimensions of the source is observed.This difference also shows no Q2 dependence.The results demonstrate that Bose-Einstein interference, and hence the size of the particle-production source, is insensitive to the hard subprocess.

  16. A novel experiment for coupling a Bose-Einstein condensate with two crossed cavity modes

    Science.gov (United States)

    Leonard, Julian; Morales, Andrea; Zupancic, Philip; Donner, Tobias; Esslinger, Tilman

    2015-05-01

    Over the last decade, combining cavity quantum electrodynamics and quantum gases made it possible to explore the coupling of quantized light fields to coherent matter waves, leading e.g. to new optomechanical phenomena and the realization of quantum phase transitions. Triggered by the interest to study setups with more complex cavity geometries, we built a novel, highly flexible experimental system for coupling a Bose-Einstein condensate (BEC) with optical cavities, which allows to switch the cavity setups by means of an interchangeable science platform. report on our latest results on coupling a Bose-Einstein condensate with two crossed cavity modes intersecting under an angle of 60°. The mirrors have been machined in a way to spatially approach them, thus obtaining maximum single atom coupling rates of several MHz. This setup will allow the study of self-ordered phases in different lattice shapes, such as hexagonal and triangular geometries.

  17. Gain-assisted superluminal light propagation through a Bose-Einstein condensate cavity system

    Science.gov (United States)

    Hamide Kazemi, S.; Ghanbari, S.; Mahmoudi, M.

    2016-01-01

    The propagation of a probe laser field in a cavity optomechanical system with a Bose-Einstein condensate is studied. The transmission properties of the system are investigated and it is shown that the group velocity of the probe pulse field can be controlled by Rabi frequency of the pump laser field. The effect of the decay rate of the cavity photons on the group velocity is studied and it is demonstrated that for small values of the decay rates, the light propagation switches from subluminal to superluminal just by changing the Rabi frequency of the pump field. Then, the gain-assisted superluminal light propagation due to the cross-Kerr nonlinearity is established in cavity optomechanical system with a Bose-Einstein condensate. Such behavior can not appear in the pump-probe two-level atomic systems in the normal phase. We also find that the amplification is achieved without inversion in the population of the quantum energy levels.

  18. Spontaneous creation of Kibble-Zurek solitons in a Bose-Einstein condensate

    Science.gov (United States)

    Lamporesi, Giacomo; Donadello, Simone; Serafini, Simone; Dalfovo, Franco; Ferrari, Gabriele

    2013-10-01

    When a system crosses a second-order phase transition on a finite timescale, spontaneous symmetry breaking can cause the development of domains with independent order parameters, which then grow and approach each other creating boundary defects. This is known as the Kibble-Zurek mechanism. Originally introduced in cosmology, it applies to both classical and quantum phase transitions, in a wide variety of physical systems. Here we report on the spontaneous creation of solitons in Bose-Einstein condensates through the Kibble-Zurek mechanism. We measure the power-law dependence of defect number on the quench time, and show that lower atomic densities enhance defect formation. These results provide a promising test bed for the determination of critical exponents in Bose-Einstein condensates.

  19. Bose-Einstein Condensation of Long-Lifetime Polaritons in Thermal Equilibrium.

    Science.gov (United States)

    Sun, Yongbao; Wen, Patrick; Yoon, Yoseob; Liu, Gangqiang; Steger, Mark; Pfeiffer, Loren N; West, Ken; Snoke, David W; Nelson, Keith A

    2017-01-06

    The experimental realization of Bose-Einstein condensation (BEC) with atoms and quasiparticles has triggered wide exploration of macroscopic quantum effects. Microcavity polaritons are of particular interest because quantum phenomena such as BEC and superfluidity can be observed at elevated temperatures. However, polariton lifetimes are typically too short to permit thermal equilibration. This has led to debate about whether polariton condensation is intrinsically a nonequilibrium effect. Here we report the first unambiguous observation of BEC of optically trapped polaritons in thermal equilibrium in a high-Q microcavity, evidenced by equilibrium Bose-Einstein distributions over broad ranges of polariton densities and bath temperatures. With thermal equilibrium established, we verify that polariton condensation is a phase transition with a well-defined density-temperature phase diagram. The measured phase boundary agrees well with the predictions of basic quantum gas theory.

  20. Bose-Einstein Condensation of Long-Lifetime Polaritons in Thermal Equilibrium

    Science.gov (United States)

    Sun, Yongbao; Wen, Patrick; Yoon, Yoseob; Liu, Gangqiang; Steger, Mark; Pfeiffer, Loren N.; West, Ken; Snoke, David W.; Nelson, Keith A.

    2017-01-01

    The experimental realization of Bose-Einstein condensation (BEC) with atoms and quasiparticles has triggered wide exploration of macroscopic quantum effects. Microcavity polaritons are of particular interest because quantum phenomena such as BEC and superfluidity can be observed at elevated temperatures. However, polariton lifetimes are typically too short to permit thermal equilibration. This has led to debate about whether polariton condensation is intrinsically a nonequilibrium effect. Here we report the first unambiguous observation of BEC of optically trapped polaritons in thermal equilibrium in a high-Q microcavity, evidenced by equilibrium Bose-Einstein distributions over broad ranges of polariton densities and bath temperatures. With thermal equilibrium established, we verify that polariton condensation is a phase transition with a well-defined density-temperature phase diagram. The measured phase boundary agrees well with the predictions of basic quantum gas theory.

  1. Coexistence of photonic and atomic Bose-Einstein condensates in ideal atomic gases

    Directory of Open Access Journals (Sweden)

    N. Boichenko

    2015-12-01

    Full Text Available We have studied conditions of photon Bose-Einstein condensate formation that is in thermodynamic equilibrium with ideal gas of two-level Bose atoms below the degeneracy temperature. Equations describing thermodynamic equilibrium in the system were formulated; critical temperatures and densities of photonic and atomic gas subsystems were obtained analytically. Coexistence conditions of these photonic and atomic Bose-Einstein condensates were found. There was predicted the possibility of an abrupt type of photon condensation in the presence of Bose condensate of ground-state atoms: it was shown that the slightest decrease of the temperature could cause a significant gathering of photons in the condensate. This case could be treated as a simple model of the situation known as "stopped light" in cold atomic gas. We also showed how population inversion of atomic levels can be created by lowering the temperature. The latter situation looks promising for light accumulation in atomic vapor at very low temperatures.

  2. Bose-Einstein condensation of pions in heavy-ion collisions

    CERN Document Server

    Begun, Viktor

    2015-01-01

    We analyse in detail the possibility of Bose-Einstein condensation of pions produced in heavy-ion collisions at the beam energy $\\sqrt{s_{\\rm NN}}$ = 2.76 TeV. Our approach is based on the chemical non-equilibrium thermal model of hadron production which has been generalised to include separately the contribution from the local zero-momentum state. In order to study both the hadronic multiplicities and the transverse-momentum spectra, we use the Cracow freeze-out model which parameterises the flow and space-time geometry of the system at freeze-out in a very economic way. Our analysis indicates that about 5\\% of all pions may form the Bose-Einstein condensate.

  3. Atomic Tunneling Effect in Two-Component Bose-Einstein Condensates with a Coupling Drive

    Institute of Scientific and Technical Information of China (English)

    JIAO Zhi-Yong; YU Zhao-Xian; YANG Xin-Jian

    2004-01-01

    In this paper, we have studied the atomic population difference and the atomic tunneling current of twocomponent Bose-Einstein condensates with a coupling drive. It is found that when the two-component Bose-Einstein condensates are initially in the coherent states, the atomic population difference may exhibit the step structure, in which the numbers of the step increase with the decrease of the Rabi frequency and with the increment of the initial phase difference. The atomic population difference may exhibit collapses, and revivals, in which their periods are affected dramatically by the Rabi frequency and the initial phase difference. The atomic tunneling current may exhibit damping oscillation behaviors, and exist the step structure for the time range of 10-10 ~ 10-9 second.

  4. Critical temperature and condensed fraction of Bose-Einstein condensation in optical lattices

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Critical temperature and condensate fraction of Bose-Einstein condensation in the optical lattice are studied. The results show that the critical temperature in optical lattices can be characterized with an equivalent critical temperature in a single lattice, which provide a fast evaluation of critical temperature and condensate fraction of Bose-Einstein condensation confined with pure optical trap. Critical temperature can be estimated with an equivalent critical temperature. It is predicted that critical temperature is proportional to q in q number lattices for superfluid state and should be equal to that in a single lattic for Mott insulate state. Required potential depth or Rabi frequency and maximum atom number in the lattices both for superfluid state and Mott state are presented based on views of thermal mechanical statistics.

  5. SU(2) Coherent State Description of Two-Mode Bose-Einstein Condensates

    Institute of Scientific and Technical Information of China (English)

    WU Ying; YANG Xiao-Xue

    2002-01-01

    We show that the evolution equations for mean quantities such as atom numbers and the inter-modecorrelation for two-mode Bose-Einstein condensates form a closed set of equations in the SU(2) coherent state description,and they are identical in form to the two-mode mean-field model with only a slightly reduced two-body interactionstrength. The exact analytical solutions to the evolution equations are also presented.

  6. Dynamics of solitons in Bose-Einstein condensate with time-dependent atomic scattering length

    Institute of Scientific and Technical Information of China (English)

    Li Hua-Mei

    2006-01-01

    The evolution of solitons in Bose-Einstein condensates (BECs) with time-dependent atomic scattering length in an expulsive parabolic potential is studied. Based on the extended hyperbolic function method, we successfully obtain the bright and dark soliton solutions. In addition, some new soliton solutions in this model are found. The results in this paper include some in the literature (Phys. Rev. Lett. 94 (2005) 050402 and Chin. Phys. Lett. 22 (2005) 1855).

  7. Classical and quantum dynamics of a model for atomic-molecular Bose--Einstein condensates

    OpenAIRE

    Santos Filho, Gilberto Nascimento; Tonel, Arlei Prestes; Foerster, Angela; Links, Jon(Centre for Mathematical Physics, School of Mathematics and Physics, The University of Queensland, 4072, Australia)

    2005-01-01

    We study a model for a two-mode atomic-molecular Bose--Einstein condensate. Starting with a classical analysis we determine the phase space fixed points of the system. It is found that bifurcations of the fixed points naturally separate the coupling parameter space into four regions. The different regions give rise to qualitatively different dynamics. We then show that this classification holds true for the quantum dynamics.

  8. The Planck distribution of phonons in a Bose-Einstein condensate

    OpenAIRE

    Schley, R.; Berkovitz, A.; Rinott, S.; Shammass, I.; Blumkin, A.; Steinhauer, J.

    2013-01-01

    The Planck distribution of photons emitted by a black body led to the development of quantum theory. An analogous distribution of phonons should exist in a Bose-Einstein condensate. We observe this Planck distribution of thermal phonons in a 3D condensate. This observation provides an important confirmation of the basic nature of the condensate's quantized excitations. In contrast to the bunching effect, the density fluctuations are seen to increase with increasing temperature. This is due to...

  9. Investigation of Bose-Einstein Correlations in 3 jet events with the DELPHI detector

    CERN Document Server

    Remortel, N; Mandl, Franz

    2001-01-01

    A preliminary investigation of Bose-Einstein correlations in 3 jet events has been made by analysing the collected data at the $Z^0$ peak from '94 and '95 and the calibration runs during the LEP2 period from '97 to 2000. Three methods were used to extract two-particle correlation functions. No significant difference was found between quark and gluon jets for all three methods.

  10. Investigation of Bose-Einstein correlations in 3 jet events with the DELPHI detector

    CERN Document Server

    Van Remortel, N; Mandl, F

    2002-01-01

    A preliminary investigation of Bose-Einstein correlations in 3 jet events has been made by analysing the collected data at the Z/sup 0/ peak from '94 and '95 and the calibration runs during the LEP2 period from '97 to 2000. Three methods were used to extract two-particle correlation functions. No significant difference was found between quark and gluon jets for all three methods. (11 refs).

  11. Controlling Chaos Probability of a Bose-Einstein Condensate in a Weak Optical Superlattice

    Institute of Scientific and Technical Information of China (English)

    XU Jun; LUO Xiao-Bing

    2009-01-01

    @@ The spatial chaos probability of a Bose-Einstein condensate perturbed by a weak optical superlattice is studied. It is demonstrated that the spatial chaotic solution appears with a certain probability in a given parameter region under a random boundary condition. The effects of the lattice depths and wave vectors on the chaos probability are illustrated, and different regions associated with different chaos probabilities are found. This suggests a feasible scheme for suppressing and strengthening chaos by adjusting the optical superlattice experimentally.

  12. Self-Trapping of Two Bose-Einstein Condensates with a Coupling Drive

    Institute of Scientific and Technical Information of China (English)

    QIU Jian-Guo

    2006-01-01

    We present an approximate analytical solution to the population imbalance of two-component Bose-Einstein condensate with the coupling drive. The dependence of the time evolution of self-trapping upon the radio frequency wave, the Rabi coupling frequency, the initial atom number and relative phase between two condensates are investigated. The lower radio frequency wave, the same atom number and initial relative phase between condensates are beneficial to observe the self-trapping.

  13. Enhanced oscillation lifetime of a Bose-Einstein condensate in the 3D/1D crossover

    CERN Document Server

    Yuen, B; Cotter, J P; Butler, E; Hinds, E A

    2015-01-01

    We have measured the damped motion of a trapped Bose-Einstein condensate, oscillating with respect to a thermal cloud. The cigar-shaped trapping potential provides enough transverse confinement that the dynamics of the system are intermediate between three-dimensional and one-dimensional. We find that oscillations persist for longer than expected for a three-dimensional gas. We attribute this to the suppressed occupation of transverse momentum states, which are essential for damping.

  14. Creation of macroscopic superpositions of flow states with Bose-Einstein condensates

    OpenAIRE

    Dunningham, Jacob; Hallwood, David

    2006-01-01

    We present a straightforward scheme for creating macroscopic superpositions of different superfluid flow states of Bose-Einstein condensates trapped in optical lattices. This scheme has the great advantage that all the techniques required are achievable with current experiments. Furthermore, the relative difficulty of creating cats scales favorably with the size of the cat. This means that this scheme may be well-suited to creating superpositions involving large numbers of particles. Such sta...

  15. Energy spectrum and entanglement of two tunnel-coupled Bose-Einstein condensates

    Institute of Scientific and Technical Information of China (English)

    Cheng Rong; Liang Jiu-Qing

    2007-01-01

    This paper obtains the energy-spectrum and eigenstate corrections of two-mode Bose-Einstein condensates (BECs) coupled by quantum tunnelling by perturbation method in both strong and weak tunnelling regions.The population imbalance between two BECs are then studied in terms of the low-lying eigenstates which also characterize the intrinsic entanglement between the two-mode BECs.The strong parity effect in the weak tunnelling region is also investigated.

  16. Parallel numerical simulations for quantized vortices in Bose-Einstein condensates

    Institute of Scientific and Technical Information of China (English)

    Huang Zhao-Hui; Wang De-Sheng

    2007-01-01

    We employ the parallel computing technology to study numerically the three-dimensional structure of quantized vortices of Bose-Einstein condensates. For anisotropic cases, the bending process of vortices is described in detail by the decrease of Gross-Pitaevskii energy. A completely straight vortex and the steady and symmetrical multiple-vortex configurations are obtained. We analyse the effect of initial conditions and angular velocity on the number and shape of vortices.

  17. Dynamics of Periodic Waves in Bose-Einstein Condensate with Time-Dependent Atomic Scattering Length

    Institute of Scientific and Technical Information of China (English)

    LI Hua-Mei

    2007-01-01

    Evolution of periodic waves and solitary waves in Bose-Einstein condensates (BECs) with time-dependent atomic scattering length in an expulsive parabolic potential is studied. Based on the mapping deformation method, we successfully obtain periodic wave solutions and solitary wave solutions, including the bright and dark soliton solutions. The results in this paper include some in the literatures [Plys. Rev. Lett. 94 (2005) 050402 and Chin. Phys. Lett. 22(2005) 1855].

  18. Dynamics in Two Periodically Driven and Weakly Coupled Bose-Einstein Condensates

    Institute of Scientific and Technical Information of China (English)

    陈付广; 黄德斌; 郭荣伟

    2005-01-01

    In this paper, dynamics in the oscillations of the relative atomic population in two periodically driven and weakly coupled Bose-Einstein eondensates (BECs) was qualitatively studied. Using the well-known Melnikov method, the conditions of existence of the periodic and chaotic coherent atomic tunnellings were given in the model. Our results indicate the typical route from bifurcation of the limited circles to chaos, and are in agreement with the previous numerical results.

  19. Bose-Einstein distribution of money in a free-market economy. II

    Science.gov (United States)

    Kürten, K. E.; Kusmartsev, F. V.

    2011-01-01

    We argue about the application of methods of statistical mechanics to free economy (Kusmartsev F. V., Phys. Lett. A, 375 (2011) 966) and find that the most general distribution of money or income in a free-market economy has a general Bose-Einstein distribution form. Therewith the market is described by three parameters: temperature, chemical potential and the space dimensionality. Numerical simulations and a detailed analysis of a generic model confirm this finding.

  20. Bose-Einstein Condensation in a Dilute Gas; the First 70 Years and Some Recent Experiments

    Science.gov (United States)

    Cornell, E. A.; Wieman, C. E.

    Bose-Einstein condensation, or BEC, has a long and rich history dating from the early 1920s. In this article we will trace briefly over this history and some of the developments in physics that made possible our successful pursuit of BEC in a gas. We will then discuss what was involved in this quest. In this discussion we will go beyond the usual technical description to try and address certain questions that we now hear frequently, but are not covered in our past research papers. These are questions along the lines of ``How did you get the idea and decide to pursue it? Did you know it was going to work? How long did it take you and why?'' We will review some of our favorites from among the experiments we have carried out with BEC. There will then be a brief encore on why we are optimistic that BEC can be created with nearly any species of magnetically trappable atom. Throughout this article we will try to explain what makes BEC in a dilute gas so interesting, unique, and experimentally challenging. REFID="S0217979202014681FN001"> This article is our ``Nobel Lecture'' and as such takes a relatively personal approach to the story of the development of experimental Bose-Einstein condensation. For a somewhat more scholarly treatment of the history, the interested reader is referred to E. A. Cornell, J. R. Ensher and C. E. Wieman, ``Experiments in dilute atomic Bose-Einstein condensation in Bose-Einstein Condensation in Atomic Gases, Proceedings of the International School of Physics ``Enrico Fermi'' Course CXL'' (M. Inguscio, S. Stringari and C. E. Wieman, Eds., Italian Physical Society, 1999), pp. 15-66, which is also available as cond-mat/9903109. For a reasonably complete technical review of the three years of explosive progress that immediately followed the first observation of BEC, we recommend reading the above article in combination with the corresponding review from Ketterle, cond-mat/9904034.

  1. A variational approech to stationary and rotating Bose-Einstein condensates

    OpenAIRE

    2006-01-01

    Cataloged from PDF version of article. After the experimental demonstration of Bose-Einstein condensation (BEC) in alkali gases [6, 7, 18], the number of theoretical and experimental papers on ultracold atomic physics increased enormously [48]. BEC experiments provide a way to manipulate quantum many-body systems, and measure their properties precisely. Although the theory of BEC is simpler compared to other many-body systems due to strong correlation, a fully analytical tre...

  2. A Proposed Casimir-Like Effect Between Contaminants in Ideal Bose-Einstein Condensates

    OpenAIRE

    2007-01-01

    It is hypothesized that, within Bose-Einstein condensates, contaminants will form a potential that effects the energy state of a condensate. While assuming a system governed by the Gross-Pitaevskii equation, contaminants are modelled as boundary conditions for the wave function of the condensate. It is then found that the energy of the system depends directly upon the distance between contaminants. Energy is minimized as two particles either come together or move apart depending on the nature...

  3. Landau Damping of Collective Modes in a Disc-Shaped Bose-Einstein Condensate

    Institute of Scientific and Technical Information of China (English)

    MA Xiao-Dong; MA Yong-Li; HUANG Guo-Xiang

    2007-01-01

    We investigate the Landau damping of collective modes in an anisotropic Bose-Einstein condensate (BEC). Based on divergence-free analytical solutions for the ground state wavefunction of the condensate and all eigenvalues and eigenfunctions for thermal excited quasiparticles, we make a detailed analytical calculation on coupling matrix elements. We evaluate the Landau damping ora quadrupole collective mode in the BEC with a disc-shaped trap and discuss its dependence on temperature and particle number of the system.

  4. Josephson Dynamics of a Bose-Einstein Condensate Trapped in a Double-Well Potential

    Institute of Scientific and Technical Information of China (English)

    YANG Hong-Wei; ZUO Wei

    2007-01-01

    The Josephson equations for a Bose-Einstein Condensate gas trapped in a double-well potential are derived with the two-mode approximation by the Gross-Pitaevskii equation. The dynamical characteristics of the equations are obtained by the numerical phase diagrams. The nonlinear self-trapping effect appeared in the phase diagrams are emphatically discussed, and the condition EcN>4EJ is presented.

  5. Nonlinear Mixing of Collective Modes in Harmonically Trapped Bose-Einstein Condensates

    OpenAIRE

    Mizoguchi, Takahiro; Watabe, Shohei; Nikuni, Tetsuro

    2016-01-01

    We study nonlinear mixing effects among quadrupole modes and scissors modes in a harmonically trapped Bose-Einstein condensate. Using a perturbative technique in conjunction with a variational approach with a Gaussian trial wave function for the Gross-Pitaevskii equation, we find that mode mixing selectively occurs. Our perturbative approach is useful in gaining qualitative understanding of the recent experiment [Yamazaki et al., J. Phys. Soc. Japan 84, 44001 (2015)], exhibiting a beating phe...

  6. Calculation of the Spin-Dependent Optical Lattice in Rubidium Bose-Einstein Condensation

    Institute of Scientific and Technical Information of China (English)

    CAO Ming-Tao; HAN Liang; QI Yue-Rong; ZHANG Shou-Gang; GAO Hong; LI Fu-Li

    2012-01-01

    We provide a theoretical study to calculate the spin-dependent optical lattice with rubidium Bose-Einstein condensation (BEC) in a steady magnetic field.The optical dipole potential variation at different Zeeman levels are obtained.We also show that atoms can be transported in three dimensions by changing the polarization of the trapping field.An explanation of this transportation process in an atomic coordinate is presented.

  7. Finite Number and Finite Size Effects in Relativistic Bose-Einstein Condensation

    CERN Document Server

    Shiokawa, K

    1999-01-01

    Bose-Einstein condensation of a relativistic ideal Bose gas in a rectangular cavity is studied. Finite size corrections to the critical temperature are obtained by the heat kernel method. Using zeta-function regularization of one-loop effective potential, lower dimensional critical temperatures are calculated. In the presence of strong anisotropy, the condensation is shown to occur in multisteps. The criteria of this behavior is that critical temperatures corresponding to lower dimensional systems are smaller than the three dimensional critical temperature.

  8. Local management of the nonlinearity of Bose-Einstein condensates with pinched potentials

    Science.gov (United States)

    Guerreiro, A.; Silva, Nuno A.

    2016-12-01

    We present a proposal for the local control of the nonlinearity in quasi-one-dimensional Bose-Einstein condensates induced by a local pinching of the transverse confining potential. We investigate the scattering of bright matter-wave solitons through a pinched potential using numerical simulations of the full three-dimensional Gross-Pitaevskii equation and the corresponding effective one-dimensional model with spatially varying nonlinearity.

  9. Entropy density of an adiabatic relativistic Bose-Einstein condensate star

    Energy Technology Data Exchange (ETDEWEB)

    Khaidir, Ahmad Firdaus; Kassim, Hasan Abu; Yusof, Norhasliza [Theoretical Physics Lab., Department of Physics, Faculty of Science Building, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-04-24

    Inspired by recent works, we investigate how the thermodynamics parameters (entropy, temperature, number density, energy density, etc) of Bose-Einstein Condensate star scale with the structure of the star. Below the critical temperature in which the condensation starts to occur, we study how the entropy behaves with varying temperature till it reaches its own stability against gravitational collapse and singularity. Compared to photon gases (pressure is described by radiation) where the chemical potential, μ is zero, entropy of photon gases obeys the Stefan-Boltzmann Law for a small values of T while forming a spiral structure for a large values of T due to general relativity. The entropy density of Bose-Einstein Condensate is obtained following the similar sequence but limited under critical temperature condition. We adopt the scalar field equation of state in Thomas-Fermi limit to study the characteristics of relativistic Bose-Einstein condensate under varying temperature and entropy. Finally, we obtain the entropy density proportional to (σT{sup 3}-3T) which obeys the Stefan-Boltzmann Law in ultra-relativistic condition.

  10. Bose-Einstein correlations between hard photons produced in heavy ions collisions; Correlations Bose-Einstein entre photons durs produits dans les collisions d`ions lourds

    Energy Technology Data Exchange (ETDEWEB)

    Marques Moreno, F.M.

    1994-06-01

    Heavy-ion collisions offer the unique possibility to create in the laboratory nuclear matter far from equilibrium. The electromagnetic probe constituted by hard photons and the Bose-Einstein correlations were used to study the properties of such a matter (size, density, temperature...). It is shown how the formalism has evolved from Young experiments to heavy-ion collisions experiments. The experiments performed with the photon multidetector TAPS at Ganil are described. The systems studied are: {sup 86}KR + {sup nat}Ni at 60.0 A.MeV, and {sup 181}Ta + {sup 197}Au at 39.5 A.MeV. Results are presented concerning the production of gamma, pi{sup 0}, e{sup +-} and {gamma}{gamma} correlation. The results are interpreted with the help of static and dynamic calculations describing hard photon production in heavy ion collisions. For the first time in Nuclear Physics, the existence of the Bose-Einstein effect for photons in the range of gamma is demonstrated, and the existence of two different photon sources is postulated, reflecting the density oscillations taking place in the nuclear matter created in heavy-ion collisions. (from author) 55 figs., 22 tabs., 76 refs.

  11. Effect of the particle-hole channel on BCS-Bose-Einstein condensation crossover in atomic Fermi gases.

    Science.gov (United States)

    Chen, Qijin

    2016-01-01

    BCS-Bose-Einstein condensation (BEC) crossover is effected by increasing pairing strength between fermions from weak to strong in the particle-particle channel, and has attracted a lot of attention since the experimental realization of quantum degenerate atomic Fermi gases. Here we study the effect of the (often dropped) particle-hole channel on the zero T gap Δ(0), superfluid transition temperature Tc, the pseudogap at Tc, and the mean-field ratio 2Δ(0)/, from BCS through BEC regimes, using a pairing fluctuation theory which includes self-consistently the contributions of finite-momentum pairs and features a pseudogap in single particle excitation spectrum. Summing over the infinite particle-hole ladder diagrams, we find a complex dynamical structure for the particle-hole susceptibility χph, and conclude that neglecting the self-energy feedback causes a serious over-estimate of χph. While our result in the BCS limit agrees with Gor'kov et al., the particle-hole channel effect becomes more complex and pronounced in the crossover regime, where χph is reduced by both a smaller Fermi surface and a big (pseudo)gap. Deep in the BEC regime, the particle-hole channel contributions drop to zero. We predict a density dependence of the magnetic field at the Feshbach resonance, which can be used to quantify χph and test different theories.

  12. Vortices in Bose-Einstein condensates: A review of the experimental results

    Indian Academy of Sciences (India)

    R Srinivasan

    2006-01-01

    Rotating dilute Bose-Einstein condensates (BEC) of alkali atoms offer a testing ground for theories of vortices in weakly interacting superfluids. In a rotating superfluid, quantised vortices, with a vorticity h/m, form above a critical velocity. Such vortices have been generated in BEC of alkali atoms by different techniques such as (a) wave function engineering of a two-component BEC, (b) decay of solitons, (c) rotation of a thermal cloud before cooling it below the condensation temperature, (d) stirring with an `optical' spoon, (e) rotating a deformation in the anisotropic trap in which the condensate is trapped and (f ) by creating Berry phase by adiabatically reversing the axial magnetic field. Since the core of a vortex is a fraction of a micrometer in diameter, it cannot be directly imaged optically. The condensate with vortices is allowed to ballistically expand till the size increases by one order before the vortices are imaged. Surface wave spectroscopy and the change in aspect ratio of a rotating cloud are the other techniques used. Studies have been made on the creation and dynamics of single vortex and on systems with more than a hundred vortices. Results have been obtained on vortex nucleation, stability of vortex structures, nature of the vortex lattice and defects in such a lattice. Important results are: (a) evidence exists that vortex nucleation takes place by a surface mode instability; but this is not the only mechanism; (b) the vortex lattice is perfectly triangular right up to the edge; (c) in the initial stages of rotation of the cloud a tangled web of vortices is seen; it takes a few hundred milliseconds before the vortices arrange themselves in a lattice; this time appears to be independent of temperature; (d) the decay of vortices appears to arise from the transfer of energy to the rotating thermal component and is dependent on temperature; (e) defects in the lattices such as dislocations and grain boundaries are seen; (f) transverse

  13. Study of Bose-Einstein Correlations in $e^{+}e^{-}\\to W^{+}W^{-}$ events at LEP

    CERN Document Server

    Abbiendi, G; Åkesson, T; Alexander, G; Allison, J; Amaral, P; Anagnostou, G; Anderson, K J; Asai, S; Axen, D A; Azuelos, Georges; Bailey, I; Barberio, E; Barillari, T; Barlow, R J; Batley, J Richard; Bechtle, P; Behnke, T; Bell, K W; Bell, P J; Bella, G; Bellerive, A; Benelli, G; Bethke, Siegfried; Biebel, O; Boeriu, O; Bock, P; Boutemeur, M; Braibant, S; Brigliadori, L; Brown, R M; Büsser, K; Burckhart, H J; Campana, S; Carnegie, R K; Carter, A A; Carter, J R; Chang, C Y; Charlton, D G; Ciocca, C; Csilling, Akos; Cuffiani, M; Dado, S; de Roeck, A; De Wolf, E A; Desch, Klaus; Dienes, B; Donkers, M; Dubbert, J; Duchovni, E; Duckeck, G; Duerdoth, I P; Etzion, E; Fabbri, Franco Luigi; Feld, L; Ferrari, P; Fiedler, F; Fleck, I; Ford, M; Frey, A; Gagnon, P; Gary, J W; Gaycken, G; Geich-Gimbel, C; Giacomelli, G; Giacomelli, P; Giunta, M; Goldberg, J; Gross, E; Grunhaus, Jacob; Gruwé, M; Günther, P O; Sen-Gupta, A; Hajdu, C; Hamann, M; Hanson, G G; Harel, A; Hauschild, M; Hawkes, C M; Hawkings, R; Hemingway, Richard J; Herten, G; Heuer, R D; Hill, J C; Hoffman, K; Horváth, D; Igo-Kemenes, P; Ishii, K; Jeremie, H; Jovanovic, P; Junk, T R; Kanaya, N; Kanzaki, J; Karlen, Dean A; Kawagoe, K; Kawamoto, T; Keeler, Richard K; Kellogg, R G; Kennedy, B W; Kluth, S; Klein, K; Kobayashi, T; Kobel, M; Komamiya, S; Kramer, T; Kress, T; Krieger, P; Von Krogh, J; Krüger, K; Kühl, T; Kupper, M; Lafferty, G D; Landsman, Hagar Yaël; Lanske, D; Layter, J G; Lellouch, D; Letts, J; Levinson, L; Lillich, J; Lloyd, S L; Loebinger, F K; Lü, J; Ludwig, A; Ludwig, J; Mader, W; Marcellini, S; Martin, A J; Masetti, G; Mashimo, T; Mättig, P; McKenna, J A; McPherson, R A; Meijers, F; Menges, W; Merritt, F S; Mes, H; Meyer, N; Michelini, Aldo; Mihara, S; Mikenberg, G; Miller, D J; Moed, S; Mohr, W; Mori, T; Mutter, A; Nagai, K; Nakamura, I; Nanjo, H; Neal, H A; Nisius, R; O'Neale, S W; Oh, A; Oreglia, M J; Orito, S; Pahl, C; Pásztor, G; Pater, J R; Pilcher, J E; Pinfold, J L; Plane, D E; Poli, B; Pooth, O; Przybycien, M B; Quadt, A; Rabbertz, K; Rembser, C; Renkel, P; Roney, J M; Rozen, Y; Runge, K; Sachs, K; Saeki, T; Sarkisyan-Grinbaum, E; Schaile, A D; Schaile, O; Scharff-Hansen, P; Schieck, J; Schörner-Sadenius, T; Schröder, M; Schumacher, M; Scott, W G; Seuster, R; Shears, T G; Shen, B C; Sherwood, P; Skuja, A; Smith, A M; Sobie, R J; Söldner-Rembold, S; Spanó, F; Stahl, A; Strom, D; Ströhmer, R; Tarem, S; Tasevsky, M; Teuscher, R; Thomson, M A; Torrence, E; Toya, D; Tran, P; Trigger, I; Trócsányi, Z L; Tsur, E; Turner-Watson, M F; Ueda, I; Ujvári, B; Vollmer, C F; Vannerem, P; Vertesi, R; Verzocchi, M; Voss, H; Vossebeld, Joost Herman; Ward, C P; Ward, D R; Watkins, P M; Watson, A T; Watson, N K; Wells, P S; Wengler, T; Wermes, N; Wilson, G W; Wilson, J A; Wolf, G; Wyatt, T R; Yamashita, S; Zer-Zion, D; Zivkovic, L

    2004-01-01

    Bose-Einstein correlation between like-sign charged-particle pairs in e+e- -> W+W- events recorded with the OPAL detector at LEP at centre-of-mass energies between 183 GeV and 209 GeV are studied. Recently proposed methods which allow direct searches for correlations in the data via distributions of test variables are used to investigate the presence of correlations between hadrons originating from different W bosons in W+W- -> qqqq events. Within the statistics of the data sample no evidence for inter-WW Bose-Einstein correlations is obtained. The data are also compared with predictions of a recent implementation of Bose-Einstein correlation effects in the Monte Carlo model PYTHIA.

  14. Laser pulse amplification and dispersion compensation in an effectively extended optical cavity containing Bose-Einstein condensates

    CERN Document Server

    Tarhan, Devrim; Mustecaplioglu, Ozgur E; 10.1088/0953-4075/46/1/015501

    2013-01-01

    We review and critically evaluate our proposal of a pulse amplification scheme based on two Bose-Einstein condensates inside the resonator of a mode-locked laser. Two condensates are used for compensating the group velocity dispersion. Ultraslow light propagation through the condensate leads to a considerable increase in the cavity round-trip delay time, lowers the effective repetition rate of the laser, and hence scales up the output pulse energy. It has been recently argued that atom-atom interactions would make our proposal even more efficient. However, neither in our original proposal nor in the case of interactions, limitations due to heating of the condensates by optical energy absorption were taken into account. Our results show that there is a critical time of operation, $~0.3$ ms, for the optimal amplification factor, which is in the order of $\\sim 10^2$ at effective condensate lengths in the order of $\\sim 50$ $\\mu$m. The bandwidth limitation of the amplifier on the minimum temporal width of the pul...

  15. Quantum Kibble-Zurek Mechanism in a Spin-1 Bose-Einstein Condensate.

    Science.gov (United States)

    Anquez, M; Robbins, B A; Bharath, H M; Boguslawski, M; Hoang, T M; Chapman, M S

    2016-04-15

    The dynamics of a quantum phase transition are explored using slow quenches from the polar to the broken-axisymmetry phases in a small spin-1 ferromagnetic Bose-Einstein condensate. Measurements of the evolution of the spin populations reveal a power-law scaling of the temporal onset of excitations versus quench speed as predicted from quantum extensions of the Kibble-Zurek mechanism. The satisfactory agreement of the measured scaling exponent with the analytical theory and numerical simulations provides experimental confirmation of the quantum Kibble-Zurek model.

  16. Dark solitons in atomic Bose-Einstein condensates: from theory to experiments

    Energy Technology Data Exchange (ETDEWEB)

    Frantzeskakis, D J, E-mail: dfrantz@phys.uoa.g [Department of Physics, University of Athens, Panepistimiopolis, Zografos, Athens 15784 (Greece)

    2010-05-28

    This review paper presents an overview of the theoretical and experimental progress on the study of matter-wave dark solitons in atomic Bose-Einstein condensates. Upon introducing the general framework, we discuss the statics and dynamics of single and multiple matter-wave dark solitons in the quasi one-dimensional setting, in higher dimensional settings, as well as in the dimensionality crossover regime. Special attention is paid to the connection between theoretical results, obtained by various analytical approaches, and relevant experimental observations. (topical review)

  17. Guiding-center dynamics of vortex dipoles in Bose-Einstein condensates

    Energy Technology Data Exchange (ETDEWEB)

    Middelkamp, S.; Schmelcher, P. [Zentrum fuer Optische Quantentechnologien, Universitaet Hamburg, Luruper Chaussee 149, DE-22761 Hamburg (Germany); Torres, P. J. [Departamento de Matematica Aplicada, Universidad de Granada, ES-18071 Granada (Spain); Kevrekidis, P. G. [Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts 01003-4515 (United States); Frantzeskakis, D. J. [Department of Physics, University of Athens, Panepistimiopolis, Zografos, Athens 157 84 (Greece); Carretero-Gonzalez, R. [Nonlinear Dynamical System Group, Computational Science Research Center and Department of Mathematics and Statistics, San Diego State University, San Diego, California 92182-7720 (United States); Freilich, D. V.; Hall, D. S. [Department of Physics, Amherst College, Amherst, Massachusetts 01002-5000 (United States)

    2011-07-15

    A quantized vortex dipole is the simplest vortex molecule, comprising two countercirculating vortex lines in a superfluid. Although vortex dipoles are endemic in two-dimensional superfluids, the precise details of their dynamics have remained largely unexplored. We present here several striking observations of vortex dipoles in dilute-gas Bose-Einstein condensates, and develop a vortex-particle model that generates vortex line trajectories that are in good agreement with the experimental data. Interestingly, these diverse trajectories exhibit essentially identical quasiperiodic behavior, in which the vortex lines undergo stable epicyclic orbits.

  18. Fidelity of Interference Between Two Bose-Einstein Condensates with Collision and Dissipation

    Institute of Scientific and Technical Information of China (English)

    YU Zhao-Xian; JIAO Zhi-Yong

    2002-01-01

    Interference between the two Bose-Einstein condensates with collision and dissipation is investigated. Itis found that when the two condensates are initially in the coherent state, the interference intensity is affected by thecollision and dissipation, but for the initial Fock state, it is only related to the dissipation. Whether the initial stateis in the coherent state or in a Fock state, the fidelity time has nothing to do with collision. For the initial coherentstate, the fidelity loss rate is zero, but for the initial Fock state, it is determined by the initial particle number of thetwo condensates and dissipation.

  19. Tachyon condensation due to domain-wall annihilation in Bose-Einstein condensates.

    Science.gov (United States)

    Takeuchi, Hiromitsu; Kasamatsu, Kenichi; Tsubota, Makoto; Nitta, Muneto

    2012-12-14

    We show theoretically that a domain-wall annihilation in two-component Bose-Einstein condensates causes tachyon condensation accompanied by spontaneous symmetry breaking in a two-dimensional subspace. Three-dimensional vortex formation from domain-wall annihilations is considered a kink formation in subspace. Numerical experiments reveal that the subspatial dynamics obey the dynamic scaling law of phase-ordering kinetics. This model is experimentally feasible and provides insights into how the extra dimensions influence subspatial phase transition in higher-dimensional space.

  20. An event mixing technique for Bose-Einstein correlations of two bosons in exclusive reactions

    CERN Document Server

    He, Qing-Hua; Fukasawa, H; Hashimoto, R; Honda, Y; Ishikawa, T; Iwata, T; Kaida, S; Kasagi, J; Kawano, A; Kuwasaki, S; Maeda, K; Masumoto, S; Miyabe, M; Miyahara, F; Mochizuki, K; Muramatsu, N; Nakamura, A; Nawa, K; Ogushi, S; Okada, Y; Onodera, Y; Ozawa, K; Sakamoto, Y; Sato, M; Shimizu, H; Sugai, H; Suzuki, K; Tajima, Y; Takahashi, S; Taniguchi, Y; Tsuchikawa, Y; Yamazaki, H; Yamazaki, R; Yoshida, H Y

    2016-01-01

    We have developed an event mixing technique to observe Bose-Einstein correlations (BEC) between two identical neutral pions produced in photo-induced reactions in the non-perturbative QCD energy region. It is found that the missing-mass consistency cut and the pion-energy cut are essential for the event mixing method to effectively extract BEC observables. A Monte Carlo (MC) simulation is used to validate these constraints and confirms the efficiency of this method. Our work paves the way for similar BEC studies at lower energies where the multiplicity of emitted bosons is limited.

  1. Gluon Transport Equation with Effective Mass and Dynamical Onset of Bose-Einstein Condensation

    CERN Document Server

    Blaizot, Jean-Paul; Liao, Jinfeng

    2015-01-01

    We study the transport equation describing a dense system of gluons, in the small scattering angle approximation, taking into account medium-generated effective masses of the gluons. We focus on the case of overpopulated systems that are driven to Bose-Einstein condensation on their way to thermalization. The presence of a mass modifies the dispersion relation of the gluon, as compared to the massless case, but it is shown that this does not change qualitatively the scaling behavior in the vicinity of the onset.

  2. Synchronization and Stabilization of Chaotic Dynamics in a Quasi-1D Bose-Einstein Condensate

    Directory of Open Access Journals (Sweden)

    B. A. Idowu

    2013-01-01

    Full Text Available A nonlinear control is proposed for the exponential stabilization and synchronization of chaotic behaviour in a model of Bose-Einstein condensate (BEC. The active control technique is designed based on Lyapunov stability theory and Routh-Hurwitz criteria. The control design approach in both cases guarantees the stability of the controlled states. Whereas the synchronization of two identical BEC in their chaotic states can be realized using the scheme; a suitable controller is also capable of driving the otherwise chaotic oscillation to a stable state which could be expected in practice. The effectiveness of this technique is theoretically and numerically demonstrated.

  3. Bose-Einstein Kondensation: Når atomer synger i kor

    DEFF Research Database (Denmark)

    Nygaard, Nicolai

    2005-01-01

    I 1924 udledte den unge bengalske fysiker S. N. Bose Plancks strålingslov ved at postulere, at fotoner er uskelnelige partikler. Deres tællestatistik er derfor forskellig fra klassiske partikler, som kan skelnes fra hinanden. Da Boses artikel blev afvist af Philosophical Magazine, sendte han manu...... manuskriptet til Einstein, som prompte oversatte det til tysk og sørgede for at det blev publiceret. Einstein udvidede efterfølgende Boses analyse til at omfatte massive partikler og opdagede herved det fænomen vi idag kender som Bose-Einstein kondensation. Udgivelsesdato: Marts...

  4. Controllable Persistent Atom Current of Bose-Einstein Condensates in an Optical Lattice Ring

    Institute of Scientific and Technical Information of China (English)

    ZHENG Gong-Ping; LIANG Jiu-Qing

    2005-01-01

    In this paper the macroscopic quantum state of Bose-Einstein condensates in optical lattices is studied by solving the periodic Gross-Pitaevskii equation in one-dimensional geometry. It is shown that an exact solution seen to be a travelling wave of excited macroscopic quantum states resultes in a persistent atom current, which can be controlled by adjusting of the barrier height of the optical periodic potential. A critical condition to generate the travelling wave is demonstrated and we moreover propose a practical experiment to realize the persistent atom current in a toroidal atom waveguide.

  5. Multistability and Critical Fluctuation in a Split Bose-Einstein Condensate

    Institute of Scientific and Technical Information of China (English)

    WU Ying; SUN Chang-Pu

    2002-01-01

    By using a two-mode description, we show that there exist the multistability, phase transition and associatedcritical fluctuations in the macroscopic tunnelling process between the halves of a double-well trap containing a Bose-Einstein condensate. The phase transition that two of the triple stable states and an unstable state merge into one stablestate or a reverse process takes place whenever the ratio of the mean field energy per particle to the tunnelling energygoes across a critical value of order one. The critical fluctuation phenomenon corresponds to squeezed states for thephase difference between the two wells accompanying with large fluctuations of atom numbers.

  6. Head-on collision of ring dark solitons in Bose-Einstein condensates

    Institute of Scientific and Technical Information of China (English)

    Xue Ju-Kui; Peng Ping

    2006-01-01

    The ring dark solitons and their head-on collisions in a Bose-Einstein condensates with thin disc-shaped potential are studied. It is shown that the system admits a solution with two concentric ring solitons, one moving inwards and the other moving outwards, which in small-amplitude limit, are described by the two cylindrical KdV equations in the shifts following the head-on collisions between two ring dark solitary waves are derived. It is shown that the phase shifts decrease with the radial coordinate r according to the r-1/3 law and depend on the initial soliton amplitude and radius.

  7. Elliptic Function Waves of Spinor Bose-Einstein Condensates in an Optical Lattice

    Institute of Scientific and Technical Information of China (English)

    XIE Yuan-Dong

    2009-01-01

    An improved nonlinear Schrodinger equation different from usual one of spinor Bose-Einstein condensates (BECs) in an optical lattice are obtained by taking into account a nonlinear term in the equation of motion for probability amplitude of spins carefully. The elliptic function wave solutions of the model are found under specific boundary condition, for example, the two ends of the atomic chain are fixed. In the case of limit the elliptic function wave solutions are reduced into spin-wave-like or solitons.

  8. Dynamics of bubbles in a two-component Bose-Einstein condensate

    Science.gov (United States)

    Sasaki, Kazuki; Suzuki, Naoya; Saito, Hiroki

    2011-03-01

    The dynamics of a phase-separated two-component Bose-Einstein condensate are investigated, in which a bubble of one component moves through the other component. Numerical simulations of the Gross-Pitaevskii equation reveal a variety of dynamics associated with the creation of quantized vortices. In two dimensions, a circular bubble deforms into an ellipse and splits into fragments with vortices, which undergo the Magnus effect. The Bénard-von Kármán vortex street is also generated. In three dimensions, a spherical bubble deforms into toruses with vortex rings. When two rings are formed, they exhibit leapfrogging dynamics.

  9. Partial coherence in the core/halo picture of Bose-Einstein n-particle correlations

    CERN Document Server

    Csörgö, T; Schmidt-Sørensen, J; Ster, A

    1999-01-01

    We study the influence of a possible coherent component in the boson source on the two-, three- and $n$-particle correlation functions in a generalized core/halo type of boson-emitting source. In particular, a simple formula is presented for the strengh of the $n$-particle correlation functions for such systems. Graph rules are obtained to evaluate the correlation functions of arbitrary high order. The importance of experimental determination of the 4-th and 5-th order Bose-Einstein correlation function is emphasized.

  10. A quantum sensor: simultaneous precision gravimetry and magnetic gradiometry with a Bose-Einstein condensate

    CERN Document Server

    Hardman, Kyle S; McDonald, Gordon D; Manju, Perumbil; Wigley, Paul B; Sooriyabadara, Mahasen A; Kuhn, Carlos C N; Debs, John E; Close, John D; Robins, Nicholas P

    2016-01-01

    A Bose-Einstein condensate is used as an atomic source for a high precision sensor. A $5\\times 10^6$ atom F=1 spinor condensate of $^{87}$Rb is released into free fall for up to $750$ms and probed with a Mach-Zehnder atom interferometer based on Bragg transitions. The Bragg interferometer simultaneously addresses the three magnetic states, $\\left| m_f=1,0,-1 \\right\\rangle$, facilitating a simultaneous measurement of the acceleration due to gravity with an asymptotic precision of $2.1\\times 10^{-9}$$\\Delta$g/g and the magnetic field gradient to a precision $8$pT/m.

  11. Decoherence in a quantum harmonic oscillator monitored by a Bose-Einstein condensate

    CERN Document Server

    Brouard, S; Sokolovski, D

    2010-01-01

    We investigate the dynamics of a quantum oscillator, whose evolution is monitored by a Bose-Einstein condensate (BEC) trapped in a symmetric double well potential. It is demonstrated that the oscillator may experience various degrees of decoherence depending on the variable being measured and the state in which the BEC is prepared. These range from a `coherent' regime in which only the variances of the oscillator position and momentum are affected by measurement, to a slow (power law) or rapid (Gaussian) decoherence of the mean values themselves.

  12. Energy-band structure and intrinsic coherent properties in two weakly linked Bose-Einstein condensates

    Science.gov (United States)

    Li, Wei-Dong; Zhang, Yunbo; Liang, J.-Q.

    2003-06-01

    The energy-band structure and energy splitting due to quantum tunneling in two weakly linked Bose-Einstein condensates were calculated by using the instanton method. The intrinsic coherent properties of Bose-Josephson junction (BJJ) were investigated in terms of energy splitting. For EC/EJ≪1, the energy splitting is small and the system is globally phase coherent. In the opposite limit, EC/EJ≫1, the energy splitting is large and the system becomes phase dissipated. Our results suggest that one should investigate the coherence phenomena of BJJ in proper condition such as EC/EJ˜1.

  13. Chaotic Josephson effects in two-coupled Bose-Einstein condensates

    Science.gov (United States)

    Fang, Jianshu; Hai, Wenhua; Chong, Guishu; Xie, Qiongtao

    2005-04-01

    We discuss the chaotic Josephson effects in two weakly coupled Bose-Einstein condensates (BECs). The boson Josephson junction (BJJ) dynamics in BECs is governed by the two-mode Gross-Pitaevskii equation. We obtained a perturbed chaotic solution of the BJJ equation by using the direct perturbation technique. Theoretical analysis reveals that the stable oscillating orbits are embedded in the Melnikov chaotic attractors. The corresponding numerical results show that the Poincaré sections in the equivalent phase space (φ,φ˙) sensitively depends on the system parameter and initial conditions. Therefore, we can control the transitions between chaos and order by adjusting these parameters and conditions.

  14. Bose-Einstein condensates in the presence of Weyl spin-orbit coupling

    Science.gov (United States)

    Wu, Ting; Liao, Renyuan

    2017-01-01

    We consider two-component Bose-Einstein condensates subject to Weyl spin-orbit coupling. We obtain mean-field ground state phase diagram by variational method. In the regime where interspecies coupling is larger than intraspecies coupling, the system is found to be fully polarized and condensed at a finite momentum lying along the quantization axis. We characterize this phase by studying the excitation spectrum, the sound velocity, the quantum depletion of condensates, the shift of ground state energy, and the static structure factor. We find that spin-orbit coupling and interspecies coupling generally leads to competing effects.

  15. Bose-Einstein Correlations of Charged and Neutral Kaons in Deep Inelastic Scattering at HERA

    CERN Document Server

    Chekanov, S; Magill, S; Musgrave, B; Nicholass, D; Repond, J; Yoshida, R; Mattingly, M C K; Jechow, M; Pavel, N; Yagues-Molina, A G; Antonelli, S; Antonioli, P; Bari, G; Basile, M; Bellagamba, L; Bindi, M; Boscherini, D; Bruni, A; Bruni, G; Cifarelli, L; Cindolo, F; Contin, A; Corradi, M; De Pasquale, S; Iacobucci, G; Margotti, A; Nania, R; Polini, A; Sartorelli, G; Zichichi, A; Bartsch, D; Brock, I; Goers, S; Hartmann, H; Hilger, E; Jakob, H P; Jüngst, M; Kind, O M; Nuncio-Quiroz, A E; Paul, E; Renner, R; Samson, U; Schonberg, V; Shehzadi, R; Wlasenko, M; Brook, N H; Heath, G P; Morris, J D; Namsoo, T; Capua, M; Fazio, S; Mastroberardino, A; Schioppa, M; Susinno, G; Tassi, E; Kim, J Y; Ma, K J; Ibrahim, Z A; Kamaluddin, B; Wan-Abdullah, W A T; Ning, Y; Ren, Z; Sciulli, F; Chwastowski, J; Eskreys, A; Figiel, J; Galas, A; Gil, M; Olkiewicz, K; Stopa, P; Zawiejski, L; Adamczyk, L; Bold, T; Grabowska-Bold, I; Kisielewska, D; Lukasik, J; Przybycien, M; Suszycki, L; Kotanski, A; Slominski, W; Adler, V; Behrens, U; Bloch, I; Blohm, C; Bonato, A; Borras, K; Ciesielski, R; Coppola, N; Dossanov, A; Drugakov, V; Fourletova, J; Geiser, A; Gladkov, D; Göttlicher, P; Grebenyuk, J; Gregor, I; Haas, T; Hain, W; Horn, C; Huttmann, A; Kahle, B; Katkov, I I; Klein, U; Kötz, U; Kowalski, H; Lobodzinska, E; Löhr, B; Mankel, R; Melzer-Pellmann, I A; Miglioranzi, S; Montanari, A; Notz, D; Rinaldi, L; Roloff, P; Rubinsky, I; Santamarta, R; Schneekloth, U; Spiridonov, A; Stadie, H; Szuba, D; Szuba, J; Theedt, T; Wolf, G; Wrona, K; Youngman, C; Zeuner, W; Lohmann, W; Schlenstedt, S; Barbagli, G; Gallo, E; Pelfer, P G; Bamberger, A; Dobur, D; Karstens, F; Vlasov, N N; Bussey, P J; Doyle, A T; Dunne, W; Ferrando, J; Forrest, M; Saxon, D H; Skillicorn, I O; Gialas, I; Papageorgiu, K; Gosau, T; Holm, U; Klanner, R; Lohrmann, E; Salehi, H; Schleper, P; Schörner-Sadenius, T; Sztuk, J; Wichmann, K; Wick, K; Foudas, C; Fry, C; Long, K R; Tapper, A D; Kataoka, M; Matsumoto, T; Nagano, K; Tokushuku, K; Yamada, S; Yamazaki, Y; Barakbaev, A N; Boos, E G; Pokrovskiy, N S; Zhautykov, B O; Aushev, V; Son, D; De Favereau, J; Piotrzkowski, K; Barreiro, F; Glasman, C; Jiménez, M; Labarga, L; Del Peso, J; Ron, E; Soares, M; Terron, J; Zambrana, M; Corriveau, F; Liu, C; Walsh, R; Zhou, C; Tsurugai, T; Antonov, A; Dolgoshein, B A; Sosnovtsev, V; Stifutkin, A; Suchkov, S; Dementiev, R K; Ermolov, P F; Gladilin, L K; Khein, L A; Korzhavina, I A; Kuzmin, V A; Levchenko, B B; Lukina, O Yu; Proskuryakov, A S; Shcheglova, L M; Zotkin, D S; Zotkin, S A; Abt, I; Büttner, C; Caldwell, A; Kollar, D; Schmidke, W B; Sutiak, J; Grigorescu, G; Keramidas, A; Koffeman, E; Kooijman, P; Pellegrino, A; Tiecke, H; Vázquez, M; Wiggers, L; Brümmer, N; Bylsma, B; Durkin, L S; Lee, A; Ling, T Y; Allfrey, P D; Bell, M A; Cooper-Sarkar, A M; Cottrell, A; Devenish, R C E; Foster, B; Korcsak-Gorzo, K; Patel, S; Roberfroid, V; Robertson, A; Straub, P B; Uribe-Estrada, C; Walczak, R; Bellan, P; Bertolin, A; Brugnera, R; Carlin, R; Dal Corso, F; Dusini, S; Garfagnini, A; Limentani, S; Longhin, A; Stanco, L; Turcato, M; Oh, B Y; Raval, A; Ukleja, J; Whitmore, J J; Iga, Y; D'Agostini, G; Marini, G; Nigro, A; Cole, J E; Hart, J C; Abramowicz, H; Gabareen, A; Ingbir, R; Kananov, S; Levy, A; Kuze, M; Maeda, J; Hori, R; Kagawa, S; Okazaki, N; Shimizu, S; Tawara, T; Hamatsu, R; Kaji, H; Kitamura, S; Ota, O; Ri, Y D; Ferrero, M I; Monaco, V; Sacchi, R; Solano, A; Arneodo, M; Ruspa, M; Fourletov, S; Martin, J F; Boutle, S K; Butterworth, J M; Gwenlan, C; Jones, T W; Loizides, J H; Sutton, M R; Wing, M; Brzozowska, B; Ciborowski, J; Grzelak, G; Kulinski, P; Luzniak, P; Malka, J; Nowak, R J; Pawlak, J M; Tymieniecka, T; Ukleja, A; Zarnecki, A F; Adamus, M; Plucinsky, P P; Eisenberg, Y; Giller, I; Hochman, D; Karshon, U; Rosin, M; Brownson, E; Danielson, T; Everett, A; Kcira, D; Reeder, D D; Ryan, P; Savin, A A; Smith, W H; Wolfe, H; Bhadra, S; Catterall, C D; Cui, Y; Hartner, G; Menary, S; Noor, U; Standage, J; Whyte, J

    2007-01-01

    Bose-Einstein correlations of charged and neutral kaons have been measured in e+-p deep inelastic scattering with an integrated luminosity of 121 pb-1 using the ZEUS detector at HERA. The two-particle correlation function was studied as a function of the four-momentum difference of the kaon pairs, Q_12=sqrt{-(p_1-p_2)^2}, assuming a Gaussian shape for the particle source. The values of the radius of the production volume, r, and of the correlation strength, lambda, were obtained for both neutral and charged kaons. The radii for charged and neutral kaons are similar and are consistent with those obtained at LEP.

  16. Stability of the graviton Bose-Einstein condensate in the brane-world

    Science.gov (United States)

    Casadio, Roberto; da Rocha, Roldão

    2016-12-01

    We consider a solution of the effective four-dimensional Einstein equations, obtained from the general relativistic Schwarzschild metric through the principle of Minimal Geometric Deformation (MGD). Since the brane tension can, in general, introduce new singularities on a relativistic Eötvös brane model in the MGD framework, we require the absence of observed singularities, in order to constrain the brane tension. We then study the corresponding Bose-Einstein condensate (BEC) gravitational system and determine the critical stability region of BEC MGD stellar configurations. Finally, the critical stellar densities are shown to be related with critical points of the information entropy.

  17. Atom Michelson interferometer on a chip using a Bose-Einstein condensate.

    Science.gov (United States)

    Wang, Ying-Ju; Anderson, Dana Z; Bright, Victor M; Cornell, Eric A; Diot, Quentin; Kishimoto, Tetsuo; Prentiss, Mara; Saravanan, R A; Segal, Stephen R; Wu, Saijun

    2005-03-11

    An atom Michelson interferometer is implemented on an "atom chip." The chip uses lithographically patterned conductors and external magnetic fields to produce and guide a Bose-Einstein condensate. Splitting, reflecting, and recombining of condensate atoms are achieved by a standing-wave light field having a wave vector aligned along the atom waveguide. A differential phase shift between the two arms of the interferometer is introduced by either a magnetic-field gradient or with an initial condensate velocity. Interference contrast is still observable at 20% with an atom propagation time of 10 ms.

  18. The inhomogeneous Kibble-Zurek mechanism: vortex nucleation during Bose-Einstein condensation

    Energy Technology Data Exchange (ETDEWEB)

    Del Campo, A [Institut fuer Theoretische Physik, Leibniz Universitaet Hannover, Appelstr. 2, D-30167 Hannover (Germany); Retzker, A; Plenio, M B, E-mail: adolfo.delcampo@itp.uni-hannover.de [Institut fuer Theoretische Physik, Albert-Einstein Allee 11, Universitaet Ulm, D-89069 Ulm (Germany)

    2011-08-15

    The Kibble-Zurek mechanism is applied to the spontaneous formation of vortices in a harmonically trapped thermal gas following a temperature quench through the critical value for Bose-Einstein condensation. Whereas in the homogeneous scenario, vortex nucleation is always expected, we show that it can be completely suppressed in the presence of the confinement potential whenever the speed of the spatial front undergoing condensation is lower than a threshold velocity. Otherwise, the interplay between the geometry and the causality leads to different scaling laws for the density of vortices as a function of the quench rate, as we also illustrate for the case of a toroidal trapping potential.

  19. Mechanism of stimulated Hawking radiation in a laboratory Bose-Einstein condensate

    CERN Document Server

    Wang, Yi-Hsieh; Edwards, Mark; Clark, Charles W

    2016-01-01

    We model a sonic black hole analog in a quasi one-dimensional Bose-Einstein condensate, using a Gross-Pitaevskii equation matching the configuration of a recent experiment by Steinhauer. The model agrees well with the experimental observations, with no adjustable parameters, demonstrating their hydrodynamic nature. With enhanced but experimentally feasible parameters we establish by spectral analysis that a growing bow wave is generated at the inner (white hole) horizon, stimulating the emission of Hawking radiation. The black hole laser effect plays no role.

  20. Bose-Einstein Condensate Dark Matter Model Tested by Galactic Rotation Curves

    Science.gov (United States)

    Dwornik, Marek; Keresztes, Zoltán Gergely, László Á.

    2015-01-01

    Rotation curves of spiral galaxies are fundamental tools in the study of dark matter. Here we test the Bose-Einstein condensate (BEC) dark matter model against rotation curve data of High and Low Surface Brightness (HSB and LSB) galaxies, respectively. When the rotational velocities increase over the whole observed range, the fit of the BEC model is similar to the one of the Navarro-Frenk-White (NFW) dark matter model. When however the rotation curves exhibit long flat regions, the NFW profiles provide a slightly better fit.

  1. Bose-Einstein condensate dark matter model tested by galactic rotation curves

    CERN Document Server

    Dwornik, Marek; Gergely, László Á

    2013-01-01

    Rotation curves of spiral galaxies are fundamental tools in the study of dark matter. Here we test the Bose-Einstein condensate (BEC) dark matter model against rotation curve data of High and Low Surface Brightness (HSB and LSB) galaxies, respectively. When the rotational velocities increase over the whole observed range, the fit of the BEC model is similar to the one of the Navarro-Frenk-White (NFW) dark matter model. When however the rotation curves exhibit long flat regions, the NFW profiles provide a slightly better fit.

  2. A hybrid two-component Bose-Einstein condensate interferometer for measuring magnetic field gradients

    Science.gov (United States)

    Xu, Fei; Huang, Jiahao; Liu, Quan

    2017-03-01

    We have proposed a scheme to detect magnetic field gradients via an interferometer based on a double-well two-component Bose-Einstein condensate (BEC). Utilizing a sequence of quantum control operations on both external and internal degree of the BEC, one can extract the magnetic field gradients by measuring either the population in one component or the fidelity between the final external state and the initial ground state. Our scheme can be implemented by current experimental techniques of manipulating ultracold atoms.

  3. Self-Magnetization of charged particles and Bose-Einstein Condensation

    CERN Document Server

    Rojas, H P; Cuesta, H M

    2004-01-01

    We discuss the Bose-Einstein condensation of relativistic vector charged particles in a strong external magnetic field in very dense matter, as may be paired spin-up electrons. We show that for electrons such systems may maintain self-consistently magnetic fields of order in between the interval $10^{10}-10^{13}$ Gauss. This could be the origin of large magnetic fields in some white dwarfs, but may also impose bounds due to the arising of strong anisotropy in the pressures, which may produce a transverse collapse of the star.

  4. Impurity-induced localization of Bose-Einstein condensates in one-dimensional optical lattices

    Institute of Scientific and Technical Information of China (English)

    Wang Jian-Jun; Zhang Ai-Xia; Xue Ju-Kui

    2011-01-01

    The impurity-induced localization of two-component Bose-Einstein condensates loaded into deep one-dimensional optical lattices is studied both analytically and numerically.It is shown that,the analytical criteria for self-trapping and moving soliton/breather of the primary-component condensate are modified significantly by an admixture of an impurity component(the second component).The realization of the self-trapped state and the moving soliton/breather states of the primary-component becomes more easy with the minor admixture of the impurity-component,even if the two components are partly overlapped.

  5. Feshbach-enhancement of Raman photoassociation in a Bose-Einstein condensate

    CERN Document Server

    Mackie, Matt; Boyce, Heather; Shinn, Mannix; Katz, Lev

    2011-01-01

    We model the formation of stable heteronuclear molecules via pulsed Raman photoassociation of a two-component Bose-Einstein condensate near a strong Feshbach resonance, for both counterintuitive and intuitive pulse sequencing. Compared to lasers alone, weak Raman photoassociation is enhanced by as much as a factor of ten (five) for a counterintuitive (intuitive) pulse sequence, whereas strong Raman photoassociation is barely enhanced at all--regardless of pulse sequence. Stronger intra-atom, molecule, or atom-molecule collisions lead to an expected decrease in conversion efficiency, but stronger ambient inter-atom collisions lead to an unexpected increase in the efficiency of stable molecule production.

  6. Strong Outcoupling from Spin-2 87Rb Bose-Einstein Condensates

    Institute of Scientific and Technical Information of China (English)

    YANG Fan; XIA Lin; ZHOU Xiao-Ji; MA Xiu-Quan; CHEN Xu-Zong

    2005-01-01

    @@ A pulsed atom laser is experimentally demonstrated by means of outcoupling coherent atoms from 87Rb BoseEinstein condensates in magnetic trap via radio-frequency pulses. To study the strong outcoupling dynamics of the atom laser, the original |F = 2, mF = 2〉 condensate and the coupled |F = 2, mF = 1〉 component, both of which overlap in space usually, are separated spatially by collective oscillations. The number of atoms in three of the five Zeeman states are measured and compared with the theoretical results.

  7. Quantitative and Qualitative Analysis of Bose-Einstein Condensation in Harmonic Traps

    Institute of Scientific and Technical Information of China (English)

    HU Guang-Xi; YE Ji-Ping; DAI Xian-Xi; DAI Ji-Xin; William E. Evenson

    2003-01-01

    A simple and direct approach to handle summation is presented. With this approach, we analytically investigate Bose-Einstein condensation of ideal Bose gas trapped in an isotropic harmonic oscillator potential. We get the accurate expression of Tc which is very close to (0.43% larger than) the experimental data. We find the curve of internal energy of the system vs. temperature has a turning point which marks the beginning of a condensation. We also find that there exists specific heat jump at the transition temperature, no matter whether the system is macroscopic or finite. This phenomenon could be a manifestation of a phase transition in finite systems.

  8. Rabi Oscillations in Two-Component Bose-Einstein Condensates with a Coupling Drive

    Institute of Scientific and Technical Information of China (English)

    LI Wei-Dong; FAN Wen-Bing; ZHOU Xiao-Ji; WANG Yi-Qiu; LIANG Jiu-Qing

    2002-01-01

    The Rabi oscillations in two-component Bose-Einstein condensates with a coupling drive are studiedby means of a pair of bosonic operators. The coupling drive and initial phase difference will affect the amplitudeand the period of the Rabi oscillations. The Rabi oscillations will vanish in the evolution of the condensate densityfor some special initial phase differences (ψ = 0 or π). Our theory provides not only an analytical framework forquantitative predictions for two-component condensates, but also gives an intuitive understanding of some mysteriousfeatures observed in experiments and numerical. simulations.

  9. Bose-Einstein condensation of spin-1 field in an Einstein universe

    Science.gov (United States)

    Altaie, M. B.; Malkawi, Ehab

    2000-10-01

    In this paper we investigate the Bose-Einstein condensation of massive spin-1 particles in an Einstein universe. The system is considered under relativistic conditions taking into consideration the possibility of particle-antiparticle pair production. An exact expression for the charge density is obtained, then certain approximations are employed in order to obtain the solutions in closed form. A discussion of the approximations employed in this and other work is given. The effects of finite-size and spin-curvature coupling are emphasized.

  10. Bose-Einstein condensation of spin-1 field in an Einstein universe

    Energy Technology Data Exchange (ETDEWEB)

    Altaie, M.A. [Department of Physics, University of Yarmouk, Irbid (Jordan)]. E-mail: maltaie@yu.edu.jo; Malkawi, Ehab [Department of Physics, Jordan University of Science and Technology, Irbid (Jordan)

    2000-10-13

    In this paper we investigate the Bose-Einstein condensation of massive spin-1 particles in an Einstein universe. The system is considered under relativistic conditions taking into consideration the possibility of particle-antiparticle pair production. An exact expression for the charge density is obtained, then certain approximations are employed in order to obtain the solutions in closed form. A discussion of the approximations employed in this and other work is given. The effects of finite-size and spin-curvature coupling are emphasized. (author)

  11. Bose-Einstein Condensation in a Two-Dimensional System with Sixty Bosons

    Institute of Scientific and Technical Information of China (English)

    Bao Cheng-Guang

    2000-01-01

    A 60-boson system confined on a sphere has been qualitatively studied based on symmetry considerations. The low-lying spectrum is dominated by the ground rotation band based on the fullerene structure. In this band all the L=1 to L=5 states are found to be prohibited by symmetry. Therefore, there is a large gap lying between the ground state and the first excited state. The magnitude of this gap, which is associated with the critical temperature of Bose-Einstein condensation, has been evaluated. It is found that, the smaller the radius of the sphere of confinement, the higher the critical temperature.

  12. Stability Diagrams of a Bose-Einstein Condensate in a Periodic Array of Quantum Wells

    Institute of Scientific and Technical Information of China (English)

    XUE Rui; LIANG Zhao-Xin; LI Wei-Dong

    2009-01-01

    With the help of a set of exact closed-form solutions to the stationary Gross-Pitaevskii equation, we compre-hensively investigate Landau and dynamical instabilities of a Bose-Einstein condensate in a periodic array of quantum wells. In the tight-binding limit, the analytical expressions for both Landau and dynamical instabilities are obtained in terms of the compressibility and effective mass of the BEC system. Then the stability phase diagrams are shown to be similar to the one in the case of the sinusoidal optical lattice.

  13. Bose-Einstein Correlations in a Space-Time Approach to $e^{+} e^{-}$ Annihilation into Hadrons

    CERN Document Server

    Kinder-Geiger, Klaus; Heinz, Ulrich W; Wiedemann, Urs Achim

    2000-01-01

    A new treatment of Bose-Einstein correlations is incorporated in a space-time parton-shower model for e+ e- annihilation into hadrons. Two alternative afterburners are discussed, and we use a simple calculable model to demonstrate that they reproduce successfully the size of the hadron emission region. One of the afterburners is used to calculate two-pion correlations in e+ e- -> Z^0 -> hadrons and e+ e- -> W+ W- -> hadrons. Results are shown with and without resonance decays, for correlations along and transverse to the thrust jet axis in these two classes of events.

  14. Effects of spatial noncommutativity on energy spectrum of a trapped Bose-Einstein condensate

    CERN Document Server

    Luo, Y H; Ge, Zi-Ming; Luo, You-Hua

    2005-01-01

    In noncommutative space, we examine the problem of a noninteracting and harmonically trapped Bose-Einstein condensate, and derive a simple analytic expression for the effect of spatial noncommutativity on energy spectrum of the condensate. It indicates that the ground-state energy incorporating the spatial noncommutativity is reduced to a lower level, which depends upon the noncommutativity parameter $\\theta$. The appeared gap between the noncommutative space and commutative one for the ground-state level of the condensate should be a signal of spatial noncommutativity.

  15. Analog quantum simulation of gravitational waves in a Bose-Einstein condensate

    Energy Technology Data Exchange (ETDEWEB)

    Bravo, Tupac; Sabin, Carlos; Fuentes, Ivette [University of Nottingham, School of Mathematical Sciences, Nottingham (United Kingdom)

    2015-01-04

    We show how to vary the physical properties of a Bose-Einstein condensate (BEC) in order to mimic an effective gravitational-wave spacetime. In particular, we focus in the simulation of the recently discovered creation of particles by a real spacetime distortion in box-type traps. We show that, by modulating the speed of sound in the BEC, the phonons experience the effects of a simulated spacetime ripple with experimentally amenable parameters. These results will inform the experimental programme of gravitational wave astronomy with cold atoms. (orig.)

  16. Quantum Correlation of Many Atoms in Spinor Bose-Einstein Condensates

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In this letter, we have studied sub-Poissonian distributions and quantum correlation of atoms in spinor Bose Einstein condensates. It is found that there exists the sub-Poissonian distributions for spin-1 and spin-(-1) components,respectively. There may exist the violation of the Cauchy-Schwartz inequality. For the same atomic numbers, the regions that include violation of the Cauchy-Schwartz inequality will shift rightwards with the increment of the Rabi frequency,whereas for the same Rabi frequency, the regions will shift leftwards with the increment of the atomic numbers.

  17. Active cancellation of stray magnetic fields in a Bose-Einstein condensation experiment

    Science.gov (United States)

    Dedman, C. J.; Dall, R. G.; Byron, L. J.; Truscott, A. G.

    2007-02-01

    A method of active field cancellation is described, which greatly reduces the stray magnetic field within the trap region of a Bose-Einstein condensation experiment. An array of six single-axis magnetic sensors is used to interpolate the field at the trap center, thus avoiding the impractical requirement of placing the sensor within the trap. The system actively suppresses all frequencies from dc to approximately 3000 Hz, and the performance is superior to conventional active Helmholtz cancellation systems. A method of reducing the field gradient, by driving the six Helmholtz coils independently, is also investigated.

  18. Stability of the graviton Bose-Einstein condensate in the brane-world

    CERN Document Server

    Casadio, Roberto

    2016-01-01

    We consider a solution of the effective four-dimensional Einstein equations, obtained from the general relativistic Schwarzschild metric through the principle of Minimal Geometric Deformation (MGD). Since the brane tension can, in general, introduce new singularities on a relativistic E\\"otv\\"os brane model in the MGD framework, we require the absence of observed singularities, in order to constrain the brane tension. We then study the corresponding Bose-Einstein condensate (BEC) gravitational system and determine the critical stability region of BEC MGD stellar configurations. Finally, the critical stellar densities are shown to be related with critical points of the information entropy.

  19. Reconstruction of the joint state of a two-mode Bose-Einstein condensate

    CERN Document Server

    Bolda, E L; Walls, D F; Bolda, Eric L.; Tan, Sze M.; Walls, Dan F.

    1997-01-01

    We propose a scheme to reconstruct the state of a two-mode Bose-Einstein condensate, with a given total number of atoms, using an atom interferometer that requires beam splitter, phase shift and non-ideal atom counting operations. The density matrix in the number-state basis can be computed directly from the probabilities of different counts for various phase shifts between the original modes, unless the beamsplitter is exactly balanced. Simulated noisy data from a two-mode coherent state is produced and the state is reconstructed, for 49 atoms. The error can be estimated from the singular values of the transformation matrix between state and probability data.

  20. Measuring two-particle Bose-Einstein correlations with PHOBOS@RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Betts, R.; Barton, D.; Carroll, A. [and others

    1995-07-15

    The authors present results of a simulation of the measurement of two-particle Bose-Einstein correlations in central Au-Au collisions with the PHOBOS detector at RHIC. This measurement is expected to yield information on the relevant time and distance scales in these collisions. As the space-time scale is directly connected with the equation of state governing the evolution of the particle source, this information will be essential in understanding the physics of nucleus-nucleus collisions at RHIC energies. The authors demonstrate that the PHOBOS detector has sufficient resolution and acceptance to distinguish a variety of physics scenarios.

  1. Nonlinear Waves in a Cigar-Shaped Bose-Einstein Condensate with Dissipation

    Institute of Scientific and Technical Information of China (English)

    YANG Qiu-Ying; YANG Xiao-Xian; ZHANG Gui-Qing; SHI Yu-Ren; ZHANG Ying-Yue; DUAN Wen-Shan; CHEN Tian-Lun

    2008-01-01

    We discuss the possibIe nonlinear waves of atomic matter waves in a cigar-shaped Bose-Einstein condensate with dissipation. The waves can be described by a KdV-type equation. The KdV-type equation has a solitary wave solution. The amplitude, speed, and width of the wave vary exponentially with time t. The dissipative term of γ plays an important role for the wave amplitude, speed, and width. Comparisons have been given between the analytical solutions and the numerical results. It is shown that both are in good agreement.

  2. Laser pulse amplification and dispersion compensation in an effectively extended optical cavity containing Bose-Einstein condensates

    OpenAIRE

    Sennaroğlu, Alphan; Müstecaplıoğlu, Özgür Esat; Tarhan, D.

    2013-01-01

    Laser pulse amplification and dispersion compensation in effectively extended optical cavity containing Bose-Einstein condensates D Tarhan1, A Sennaroglu2, ¨O E M¨ustecaplıo˘glu2 1Harran University, Department of Physics, 63300, S¸anlıurfa, Turkey 2Ko¸c University, Department of Physics, 34450, Sarıyer, Istanbul, Turkey E-mail: Abstract. We review and critically evaluate our proposal of a pulse amplification scheme based on two Bose-Einstein cond...

  3. Localized spatially nonlinear matter waves in atomic-molecular Bose-Einstein condensates with space-modulated nonlinearity.

    Science.gov (United States)

    Yao, Yu-Qin; Li, Ji; Han, Wei; Wang, Deng-Shan; Liu, Wu-Ming

    2016-01-01

    The intrinsic nonlinearity is the most remarkable characteristic of the Bose-Einstein condensates (BECs) systems. Many studies have been done on atomic BECs with time- and space- modulated nonlinearities, while there is few work considering the atomic-molecular BECs with space-modulated nonlinearities. Here, we obtain two kinds of Jacobi elliptic solutions and a family of rational solutions of the atomic-molecular BECs with trapping potential and space-modulated nonlinearity and consider the effect of three-body interaction on the localized matter wave solutions. The topological properties of the localized nonlinear matter wave for no coupling are analysed: the parity of nonlinear matter wave functions depends only on the principal quantum number n, and the numbers of the density packets for each quantum state depend on both the principal quantum number n and the secondary quantum number l. When the coupling is not zero, the localized nonlinear matter waves given by the rational function, their topological properties are independent of the principal quantum number n, only depend on the secondary quantum number l. The Raman detuning and the chemical potential can change the number and the shape of the density packets. The stability of the Jacobi elliptic solutions depends on the principal quantum number n, while the stability of the rational solutions depends on the chemical potential and Raman detuning.

  4. Squeezing via coupling of Bose-Einstein condensates in a double-well potential with a cavity light field

    Institute of Scientific and Technical Information of China (English)

    Zhou Lu; Kong Ling-Bo; Zhan Ming-Sheng

    2008-01-01

    Squeezing via the interaction between the cavity light field and the Bose-Einstein Condensate (BEC) in a doublewell potential is considered within the context of the two-mode approximation.For the cavity light field initially in a coherent state,it is shown that by choosing appropriate parameters,quadrature squeezing of the cavity light field can be achieved and it exhibits periodic oscillation.We also study the case in which BEC is tuned to resonance by periodically modulating the trapping potential,and the quadrature squeezing of the cavity field exhibits periodic collapse and revival effect.Both analytic and numerical calculations are performed,and they are found to be in good agreement with each other. The result shows that the quantum statistical properties of the cavity light field can be manipulated by its coupling with the condensates in the double-well potential.On the other hand,dynamical properties of the condensates in the double-well potential will be reflected by the quadrature squeezing of the light field.

  5. Vector dark-antidark solitary waves in multicomponent Bose-Einstein condensates

    Science.gov (United States)

    Danaila, I.; Khamehchi, M. A.; Gokhroo, V.; Engels, P.; Kevrekidis, P. G.

    2016-11-01

    Multicomponent Bose-Einstein condensates exhibit an intriguing variety of nonlinear structures. In recent theoretical work [C. Qu, L. P. Pitaevskii, and S. Stringari, Phys. Rev. Lett. 116, 160402 (2016), 10.1103/PhysRevLett.116.160402], the notion of magnetic solitons has been introduced. Here we examine a variant of this concept in the form of vector dark-antidark solitary waves in multicomponent Bose-Einstein condensates (BECs). We first provide concrete experimental evidence for such states in an atomic BEC and subsequently illustrate the broader concept of these states, which are based on the interplay between miscibility and intercomponent repulsion. Armed with this more general conceptual framework, we expand the notion of such states to higher dimensions presenting the possibility of both vortex-antidark states and ring-antidark-ring (dark soliton) states. We perform numerical continuation studies, investigate the existence of these states, and examine their stability using the method of Bogoliubov-de Gennes analysis. Dark-antidark and vortex-antidark states are found to be stable for broad parametric regimes. In the case of ring dark solitons, where the single-component ring state is known to be unstable, the vector entity appears to bear a progressively more and more stabilizing role as the intercomponent coupling is increased.

  6. On the occurrence and detectability of Bose-Einstein condensation in helium white dwarfs

    CERN Document Server

    Benvenuto, O G

    2011-01-01

    It has been recently proposed that helium white dwarfs may provide promising conditions for the occurrence of the Bose-Einstein condensation. The argument supporting this expectation is that in some conditions attained in the core of these objects, the typical De Broglie wavelength associated with helium nuclei is of the order of the mean distance between neighboring nuclei. In these conditions the system should depart from classical behavior showing quantum effects. As helium nuclei are bosons, they are expected to condense. In order to explore the possibility of detecting the Bose-Einstein condensation in the evolution of helium white dwarfs we have computed a set of models for a variety of stellar masses and values of the condensation temperature. We do not perform a detailed treatment of the condensation process but mimic it by suppressing the nuclei contribution to the equation of state by applying an adequate function. As the cooling of white dwarfs depends on average properties of the whole stellar int...

  7. Bose-Einstein Condensation and Bose Glasses in an S = 1 Organo-metallic quantum magnet

    Energy Technology Data Exchange (ETDEWEB)

    Zapf, Vivien [Los Alamos National Laboratory

    2012-06-01

    I will speak about Bose-Einstein condensation (BEC) in quantum magnets, in particular the compound NiCl2-4SC(NH2)2. Here a magnetic field-induced quantum phase transition to XY antiferromagnetism can be mapped onto BEC of the spins. The tuning parameter for BEC transition is the magnetic field rather than the temperature. Some interesting phenomena arise, for example the fact that the mass of the bosons that condense can be strongly renormalized by quantum fluctuations. I will discuss the utility of this mapping for both understanding the nature of the quantum magnetism and testing the thermodynamic limit of Bose-Einstein Condensation. Furthermore we can dope the system in a clean and controlled way to create the long sought-after Bose Glass transition, which is the bosonic analogy of Anderson localization. I will present experiments and simulations showing evidence for a new scaling exponent, which finally makes contact between theory and experiments. Thus we take a small step towards the difficult problem of understanding the effect of disorder on bosonic wave functions.

  8. A stripe phase with supersolid properties in spin-orbit-coupled Bose-Einstein condensates.

    Science.gov (United States)

    Li, Jun-Ru; Lee, Jeongwon; Huang, Wujie; Burchesky, Sean; Shteynas, Boris; Top, Furkan Çağrı; Jamison, Alan O; Ketterle, Wolfgang

    2017-03-01

    Supersolidity combines superfluid flow with long-range spatial periodicity of solids, two properties that are often mutually exclusive. The original discussion of quantum crystals and supersolidity focused on solid (4)He and triggered extensive experimental efforts that, instead of supersolidity, revealed exotic phenomena including quantum plasticity and mass supertransport. The concept of supersolidity was then generalized from quantum crystals to other superfluid systems that break continuous translational symmetry. Bose-Einstein condensates with spin-orbit coupling are predicted to possess a stripe phase with supersolid properties. Despite several recent studies of the miscibility of the spin components of such a condensate, the presence of stripes has not been detected. Here we observe the predicted density modulation of this stripe phase using Bragg reflection (which provides evidence for spontaneous long-range order in one direction) while maintaining a sharp momentum distribution (the hallmark of superfluid Bose-Einstein condensates). Our work thus establishes a system with continuous symmetry-breaking properties, associated collective excitations and superfluid behaviour.

  9. Centrifugal Effects in a Bose-Einstein Condensate

    CERN Document Server

    Kuklov, A B; Levine, A M; Schreiber, W M; Birman, J L; Birman, Joseph L.

    1996-01-01

    Single particle states in the atomic trap employing the rotating magnetic field are found using the full time-dependent instantaneous trapping potential. These states are compared with those of the effective time-averaged potential. We show that the trapping is possible when the frequency of the rotations exceeds some threshold. Slightly above this threshold the weakly interacting gas of the trapped atoms acquires the properties of a quasi-1D system in the frame rotating together with the field. The role of the atom-atom interaction in changing the ideal gas solution is discussed. We show that in the limit of large numbers of particles the rotating field whose angular frequency is appropriately modulated can be utilized as a driving force principally for the center of mass motion as well as for the angular momentum $L = 2$ normal modes of the Bose condensate. A mechanism of quantum evaporation forced by the rotating field is analyzed.

  10. Controlled Manipulation with a Bose-Einstein Condensates N-Soliton Train under the Influence of Harmonic and Tilted Periodic Potentials

    Institute of Scientific and Technical Information of China (English)

    ZONG Feng-De; ZHANG Jie-Fang

    2008-01-01

    A model of the perturbed complex Toda chain (PCTC) to describe the dynamics of a Bose-Einstein condensate (BEC) N-soliton train trapped in an applied combined external potential consisting of both a weak harmonic and tilted periodic component is first developed. Using the developed theory, the BEC N-soliton train dynamics is shown to be well approximated by 4N coupled nonlinear differential equations, which describe the fundamental interactions in the system arising from the interplay of amplitude, velocity, centre-of-mass position, and phase. The simplified analytic theory allows for an efficient and convenient method for characterizing the BEC N-soliton train behaviour. It further gives the critical values of the strength of the potential for which one or more localized states can be extracted from a soliton train and demonstrates that the BEC N-soliton train can move selectively from one lattice site to another by simply manipulating the strength of the potential.

  11. Dark Matter Halos as Bose-Einstein Condensates

    CERN Document Server

    Mielke, E W; Schunck, F E; Mielke, Eckehard W.; Fuchs, Burkhard; Schunck, Franz E.

    2006-01-01

    Galactic dark matter is modelled by a scalar field in order to effectively modify Kepler's law without changing standard Newtonian gravity. In particular, a solvable toy model with a self-interaction U(Phi) borrowed from non-topological solitons produces already qualitatively correct rotation curves and scaling relations. Although relativistic effects in the halo are very small, we indicate corrections arising from the general relativistic formulation. Thereby, we can also probe the weak gravitational lensing of our soliton type halo. For cold scalar fields, it corresponds to a gravitationally confined Boson-Einstein condensate, but of galactic dimensions.

  12. Atomic Coherent State, Entangled State and Phase Operator for Studying Interference Between Two Bose-Einstein Condensates

    Institute of Scientific and Technical Information of China (English)

    TANG Xu-Bing; FAN Hong-Yi

    2008-01-01

    For studying the interference between two Bose-Einstein condensates we introduce the atomic coherent state (ACS) in the Schwinger bosonic realization along with the phase operator to directly calculate the interference pattern with steady relative phase cos φ. Eigenstates of the density operator of condensates are classified as ACS is also demonstrated. The entangled state representation is used in some calculations.

  13. Large amplitude spatial fluctuations in the boundary region of the Bose-Einstein condensate in the Gross-Pitaevskii regime

    DEFF Research Database (Denmark)

    Tuszynski, J. A.; Middleton, J.; Portet, S.;

    2003-01-01

    The Gross-Pitaevskii regime of a Bose-Einstein condensate is investigated using a fully non-linear approach. The confining potential first adopted is that of a linear ramp. An infinite class of new analytical solutions of this linear ramp potential approximation to the Gross-Pitaevskii equation...

  14. Soluble model of Bose-atoms with two level internal structure: non-conventional Bose-Einstein condensation

    Directory of Open Access Journals (Sweden)

    M. Corgini

    2010-01-01

    Full Text Available For a Bose atom system whose energy operator is diagonal in the so-called number operators and its ground state has an internal two-level structure with negative energies, exact expressions for the limit free canonical energy and pressure are obtained. The existence of non-conventional Bose-Einstein condensation has been also proved.

  15. Tunneling of Bose-Einstein condensate and interference effect in a harmonic trap with a Gaussian energy barrier

    Institute of Scientific and Technical Information of China (English)

    Hua Wei; Li Bin; Liu Xue-Shen

    2011-01-01

    The tunneling effect of Bose-Einstein condensate (BEC) in a harmonic trap with a Gaussian energy barrier is studied in this paper. The initial condensate evolves into two separate moving condensates after the tunneling time under certain conditions. The interference pattern between the two moving condensates is given as a comparison and as a further demonstration of the existence of the global phase.

  16. Bose-Einstein Correlations in $e^{+} e^{-} \\to W^{+}W^{-}$ at 172 and 183 GeV

    CERN Document Server

    Abbiendi, G; Alexander, Gideon; Allison, J; Altekamp, N; Anderson, K J; Anderson, S; Arcelli, S; Asai, S; Ashby, S F; Axen, D A; Azuelos, Georges; Ball, A H; Barberio, E; Barlow, R J; Bartoldus, R; Batley, J Richard; Baumann, S; Bechtluft, J; Behnke, T; Bell, K W; Bella, G; Bellerive, A; Bentvelsen, Stanislaus Cornelius Maria; Bethke, Siegfried; Betts, S; Biebel, O; Biguzzi, A; Bird, S D; Blobel, Volker; Bloodworth, Ian J; Bock, P; Böhme, J; Bonacorsi, D; Boutemeur, M; Braibant, S; Bright-Thomas, P G; Brigliadori, L; Brown, R M; Burckhart, Helfried J; Capiluppi, P; Carnegie, R K; Carter, A A; Carter, J R; Chang, C Y; Charlton, D G; Chrisman, D; Ciocca, C; Clarke, P E L; Clay, E; Cohen, I; Conboy, J E; Cooke, O C; Couyoumtzelis, C; Coxe, R L; Cuffiani, M; Dado, S; Dallavalle, G M; Davis, R; De Jong, S; de Roeck, A; Dervan, P J; Desch, Klaus; Dienes, B; Dixit, M S; Dubbert, J; Duchovni, E; Duckeck, G; Duerdoth, I P; Eatough, D; Estabrooks, P G; Etzion, E; Fabbri, Franco Luigi; Fanti, M; Faust, A A; Fiedler, F; Fierro, M; Fleck, I; Folman, R; Fürtjes, A; Futyan, D I; Gagnon, P; Gary, J W; Gascon, J; Gascon-Shotkin, S M; Gaycken, G; Geich-Gimbel, C; Giacomelli, G; Giacomelli, P; Gibson, V; Gibson, W R; Gingrich, D M; Glenzinski, D A; Goldberg, J; Gorn, W; Grandi, C; Graham, K; Gross, E; Grunhaus, Jacob; Gruwé, M; Hanson, G G; Hansroul, M; Hapke, M; Harder, K; Harel, A; Hargrove, C K; Hartmann, C; Hauschild, M; Hawkes, C M; Hawkings, R; Hemingway, Richard J; Herndon, M; Herten, G; Heuer, R D; Hildreth, M D; Hill, J C; Hobson, P R; Hoch, M; Höcker, Andreas; Hoffman, K; Homer, R James; Honma, A K; Horváth, D; Hossain, K R; Howard, R; Hüntemeyer, P; Igo-Kemenes, P; Imrie, D C; Ishii, K; Jacob, F R; Jawahery, A; Jeremie, H; Jimack, Martin Paul; Jones, C R; Jovanovic, P; Junk, T R; Karlen, D A; Kartvelishvili, V G; Kawagoe, K; Kawamoto, T; Kayal, P I; Keeler, Richard K; Kellogg, R G; Kennedy, B W; Kim, D H; Klier, A; Kluth, S; Kobayashi, T; Kobel, M; Koetke, D S; Kokott, T P; Kolrep, M; Komamiya, S; Kowalewski, R V; Kress, T; Krieger, P; Von Krogh, J; Kühl, T; Kyberd, P; Lafferty, G D; Landsman, Hagar Yaël; Lanske, D; Lauber, J; Lautenschlager, S R; Lawson, I; Layter, J G; Lazic, D; Lee, A M; Lellouch, Daniel; Letts, J; Levinson, L; Liebisch, R; List, B; Littlewood, C; Lloyd, A W; Lloyd, S L; Loebinger, F K; Long, G D; Losty, Michael J; Ludwig, J; Liu, D; Macchiolo, A; MacPherson, A L; Mader, W F; Mannelli, M; Marcellini, S; Markopoulos, C; Martin, A J; Martin, J P; Martínez, G; Mashimo, T; Mättig, P; McDonald, W J; McKenna, J A; McKigney, E A; McMahon, T J; McPherson, R A; Meijers, F; Menke, S; Merritt, F S; Mes, H; Meyer, J; Michelini, Aldo; Mihara, S; Mikenberg, G; Miller, D J; Mir, R; Mohr, W; Montanari, A; Mori, T; Nagai, K; Nakamura, I; Neal, H A; Nellen, B; Nisius, R; O'Neale, S W; Oakham, F G; Odorici, F; Ögren, H O; Oreglia, M J; Orito, S; Pálinkás, J; Pásztor, G; Pater, J R; Patrick, G N; Patt, J; Pérez-Ochoa, R; Petzold, S; Pfeifenschneider, P; Pilcher, J E; Pinfold, James L; Plane, D E; Poffenberger, P R; Polok, J; Przybycien, M B; Rembser, C; Rick, Hartmut; Robertson, S; Robins, S A; Rodning, N L; Roney, J M; Roscoe, K; Rossi, A M; Rozen, Y; Runge, K; Runólfsson, O; Rust, D R; Sachs, K; Saeki, T; Sahr, O; Sang, W M; Sarkisyan-Grinbaum, E; Sbarra, C; Schaile, A D; Schaile, O; Scharf, F; Scharff-Hansen, P; Schieck, J; Schmitt, B; Schmitt, S; Schöning, A; Schröder, M; Schumacher, M; Schwick, C; Scott, W G; Seuster, R; Shears, T G; Shen, B C; Shepherd-Themistocleous, C H; Sherwood, P; Siroli, G P; Sittler, A; Skuja, A; Smith, A M; Snow, G A; Sobie, Randall J; Söldner-Rembold, S; Spagnolo, S; Sproston, M; Stahl, A; Stephens, K; Steuerer, J; Stoll, K; Strom, D; Ströhmer, R; Surrow, B; Talbot, S D; Tanaka, S; Taras, P; Tarem, S; Teuscher, R; Thiergen, M; Thomas, J; Thomson, M A; Von Törne, E; Torrence, E; Towers, S; Trigger, I; Trócsányi, Z L; Tsur, E; Turcot, A S; Turner-Watson, M F; Ueda, I; Van Kooten, R; Vannerem, P; Verzocchi, M; Voss, H; Wäckerle, F; Wagner, A; Ward, C P; Ward, D R; Watkins, P M; Watson, A T; Watson, N K; Wells, P S; Wermes, N; White, J S; Wilson, G W; Wilson, J A; Wyatt, T R; Yamashita, S; Yekutieli, G; Zacek, V; Zer-Zion, D

    1999-01-01

    Bose-Einstein correlations between like-charge pions are studied in hadronic final states produced by e+e- annihilations at center-of-mass energies of 172 and 183 GeV. Three event samples are studied, each dominated by one of the processes W+W- to qqlnu, W+W- to qqqq, or (Z/g)* to qq. After demonstrating the existence of Bose-Einstein correlations in W decays, an attempt is made to determine Bose-Einstein correlations for pions originating from the same W boson and from different W bosons, as well as for pions from (Z/g)* to qq events. The following results are obtained for the individual chaoticity parameters lambda assuming a common source radius R: lambda_same = 0.63 +- 0.19 +- 0.14, lambda_diff = 0.22 +- 0.53 +- 0.14, lambda_Z = 0.47 +- 0.11 +- 0.08, R = 0.92 +- 0.09 +- 0.09. In each case, the first error is statistical and the second is systematic. At the current level of statistical precision it is not established whether Bose-Einstein correlations, between pions from different W bosons exist or not.

  17. SO(3,2) Structure and Distributions of Two-Component Bose-Einstein Condensates with Lower Excitations

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hong-Biao

    2003-01-01

    The eigenstates describing two-component Bose-Einstein condensates (BEC) with weakly excitations have been found, by using the SO(3,2) algebraic mean-field approximation. We show that the two-component modified BEC (see Eq (26)) possesses uniquely super-Poissonian distribution in a fixcd magnetic ficld along z direction. The distribution will be uncertain, if B = 0.

  18. Bose-Einstein condensation in a frustrated triangular optical lattice

    Science.gov (United States)

    Janzen, Peter; Huang, Wen-Min; Mathey, L.

    2016-12-01

    The recent experimental condensation of ultracold atoms in a triangular optical lattice with a negative effective tunneling parameter paves the way for the study of frustrated systems in a controlled environment. Here, we explore the critical behavior of the chiral phase transition in such a frustrated lattice in three dimensions. We represent the low-energy action of the lattice system as a two-component Bose gas corresponding to the two minima of the dispersion. The contact repulsion between the bosons separates into intra- and intercomponent interactions, referred to as V0 and V12, respectively. We first employ a Huang-Yang-Luttinger approximation of the free energy. For V12/V0=2 , which corresponds to the bare interaction, this approach suggests a first-order phase transition, at which both the U (1 ) symmetry of condensation and the Z2 symmetry of the emergent chiral order are broken simultaneously. Furthermore, we perform a renormalization-group calculation at one-loop order. We demonstrate that the coupling regime 0 shares the critical behavior of the Heisenberg fixed point at V12/V0=1 . For V12/V0>1 we show that V0 flows to a negative value, while V12 increases and remains positive. This results in a breakdown of the effective quartic-field theory due to a cubic anisotropy and, again, suggests a discontinuous phase transition.

  19. Cold-atom gravimetry with a Bose-Einstein condensate

    Energy Technology Data Exchange (ETDEWEB)

    Debs, J. E.; Altin, P. A.; Barter, T. H.; Doering, D.; Dennis, G. R.; McDonald, G.; Close, J. D.; Robins, N. P. [Australian Centre for Quantum Atom Optics and Department of Quantum Science, Australian National University, Canberra 0200 (Australia); Anderson, R. P. [School of Physics, Monash University, Melbourne 3800 (Australia)

    2011-09-15

    We present a cold-atom gravimeter operating with a sample of Bose-condensed {sup 87}Rb atoms. Using a Mach-Zehnder configuration with the two arms separated by a two-photon Bragg transition, we observe interference fringes with a visibility of (83{+-}6)% at T=3 ms. We exploit large momentum transfer (LMT) beam splitting to increase the enclosed space-time area of the interferometer using higher-order Bragg transitions and Bloch oscillations. We also compare fringes from condensed and thermal sources and observe a reduced visibility of (58{+-}4)% for the thermal source. We suspect the loss in visibility is caused partly by wave-front aberrations, to which the thermal source is more susceptible due to its larger transverse momentum spread. Finally, we discuss briefly the potential advantages of using a coherent atomic source for LMT, and we present a simple mean-field model to demonstrate that with currently available experimental parameters, interaction-induced dephasing will not limit the sensitivity of inertial measurements using freely falling, coherent atomic sources.

  20. A Simple and Efficient Numerical Method for Computing the Dynamics of Rotating Bose--Einstein Condensates via Rotating Lagrangian Coordinates

    KAUST Repository

    Bao, Weizhu

    2013-01-01

    We propose a simple, efficient, and accurate numerical method for simulating the dynamics of rotating Bose-Einstein condensates (BECs) in a rotational frame with or without longrange dipole-dipole interaction (DDI). We begin with the three-dimensional (3D) Gross-Pitaevskii equation (GPE) with an angular momentum rotation term and/or long-range DDI, state the twodimensional (2D) GPE obtained from the 3D GPE via dimension reduction under anisotropic external potential, and review some dynamical laws related to the 2D and 3D GPEs. By introducing a rotating Lagrangian coordinate system, the original GPEs are reformulated to GPEs without the angular momentum rotation, which is replaced by a time-dependent potential in the new coordinate system. We then cast the conserved quantities and dynamical laws in the new rotating Lagrangian coordinates. Based on the new formulation of the GPE for rotating BECs in the rotating Lagrangian coordinates, a time-splitting spectral method is presented for computing the dynamics of rotating BECs. The new numerical method is explicit, simple to implement, unconditionally stable, and very efficient in computation. It is spectral-order accurate in space and second-order accurate in time and conserves the mass on the discrete level. We compare our method with some representative methods in the literature to demonstrate its efficiency and accuracy. In addition, the numerical method is applied to test the dynamical laws of rotating BECs such as the dynamics of condensate width, angular momentum expectation, and center of mass, and to investigate numerically the dynamics and interaction of quantized vortex lattices in rotating BECs without or with the long-range DDI.Copyright © by SIAM.

  1. Equilibrium vortex lattices of a binary rotating atomic Bose-Einstein condensate with unequal atomic masses

    Science.gov (United States)

    Dong, Biao; Wang, Lin-Xue; Chen, Guang-Ping; Han, Wei; Zhang, Shou-Gang; Zhang, Xiao-Fei

    2016-10-01

    We perform a detailed numerical study of the equilibrium ground-state structures of a binary rotating Bose-Einstein condensate with unequal atomic masses. Our results show that the ground-state distribution and its related vortex configurations are complex events that differ markedly depending strongly on the strength of rotation frequency, as well as on the ratio of atomic masses. We also discuss the structures and radii of the clouds, the number and the size of the core region of the vortices, as a function of the rotation frequency, and of the ratio of atomic masses, and the analytical results agree well with our numerical simulations. This work may open an alternate way in the quantum control of the binary rotating quantum gases with unequal atomic masses.

  2. Localization-delocalization transition in spin-orbit-coupled Bose-Einstein condensate.

    Science.gov (United States)

    Li, Chunyan; Ye, Fangwei; Kartashov, Yaroslav V; Konotop, Vladimir V; Chen, Xianfeng

    2016-01-01

    We address the impact of the spin-orbit (SO) coupling on the localization-delocalization-transition (LDT) in a spin-orbit coupled Bose-Einstein condensate in a bichromatic potential. We find that SO coupling significantly alters the threshold depth of the one of sublattices above which the lowest eigenstates transform from delocalizated into localized. For some moderate coupling strengths the threshold is strongly reduced, which is explained by the SO coupling-induced band flattening in one of the sub-lattices. We explain why simultaneous Rabi and SO coupling are necessary ingredients for LDT threshold cancellation and show that strong SO coupling drives the system into the state where its evolution becomes similar to the evolution of a one-component system. We also find that defocusing nonlinearity can lead to localization of the states which are delocalized in the linear limit.

  3. Inflationary Quasiparticle Creation and Thermalization Dynamics in Coupled Bose-Einstein Condensates.

    Science.gov (United States)

    Posazhennikova, Anna; Trujillo-Martinez, Mauricio; Kroha, Johann

    2016-06-01

    A Bose gas in a double-well potential, exhibiting a true Bose-Einstein condensate (BEC) amplitude and initially performing Josephson oscillations, is a prototype of an isolated, nonequilibrium many-body system. We investigate the quasiparticle (QP) creation and thermalization dynamics of this system by solving the time-dependent Keldysh-Bogoliubov equations. We find avalanchelike QP creation due to a parametric resonance between BEC and QP oscillations, followed by slow, exponential relaxation to a thermal state at an elevated temperature, controlled by the initial excitation energy of the oscillating BEC above its ground state. The crossover between the two regimes occurs because of an effective decoupling of the QP and BEC oscillations. This dynamics is analogous to elementary particle creation in models of the early universe. The thermalization in our setup occurs because the BEC acts as a grand canonical reservoir for the quasiparticle system.

  4. Adiabatic and Non-adiabatic quenches in a Spin-1 Bose Einstein Condensate

    Science.gov (United States)

    Boguslawski, Matthew; Hebbe Madhusudhana, Bharath; Anquez, Martin; Robbins, Bryce; Barrios, Maryrose; Hoang, Thai; Chapman, Michael

    2016-05-01

    A quantum phase transition (QPT) is observed in a wide range of phenomena. We have studied the dynamics of a spin-1 ferromagnetic Bose-Einstein condensate for both adiabatic and non-adiabatic quenches through a QPT. At the quantum critical point (QCP), finite size effects lead to a non-zero gap, which makes an adiabatic quench possible through the QPT. We experimentally demonstrate such a quench, which is forbidden at the mean field level. For faster quenches through the QCP, the vanishing energy gap causes the reaction timescale of the system to diverge, preventing the system from adiabatically following the ground state. We measure the temporal evolution of the spin populations for different quench speeds and determine the exponents characterizing the scaling of the onset of excitations, which are in good agreement with the predictions of Kibble-Zurek mechanism.

  5. Generation and control of chaos in a Bose-Einstein condensate

    Institute of Scientific and Technical Information of China (English)

    Xu Jun; Hai Wen-Hua; Li Hui

    2007-01-01

    For a Bose-Einstein condensate (BEG) confined in a double lattice consisting of two weak laser standing waves we find the Melnikov chaotic solution and chaotic region of parameter space by using the direct perturbation method. In the chaotic region, spatial evolutions of the chaotic solution and the corresponding distribution of particle number density are bounded but unpredictable between their superior and inferior limits. It is illustrated that when the relation fci fa k% between the two laser wave vectors is kept, the adjustment from k2 <k1 to k2 ≥ k1 can transform the chaotic region into regular one or the other way round. This suggests a feasible scheme for generating and controlling chaos, which could lead to an experimental observation in the near future.

  6. Comment on "Gain-assisted superluminal light propagation through a Bose-Einstein condensate cavity system"

    CERN Document Server

    Macke, Bruno

    2016-01-01

    In a recent theoretical article [Eur. Phys. J. D 70, 1 (2016)], Kazemi et al. claim to have demonstrated superluminal light transmission in an optomechanical system where a Bose-Einstein condensate serves as the mechanical oscillator. In fact the superluminal propagation is only inferred from the existence of a minimum of transmission of the system at the probe frequency. This condition is not sufficient and we show that, in all the cases where superluminal propagation is claimed by Kazemi et al., the propagation is in reality subluminal. Moreover, we point out that the system under consideration is not minimum-phase-shift. The Kramers-Kronig relations then only fix a lower limit to the group delay and we show that these two quantities have sometimes opposite signs.

  7. Role of thermal friction in relaxation of turbulent Bose-Einstein condensates

    CERN Document Server

    Kim, Joon Hyun; Shin, Y

    2016-01-01

    In recent experiments, the relaxation dynamics of highly oblate, turbulent Bose-Einstein condensates (BECs) was investigated by measuring the vortex decay rates in various sample conditions [Phys. Rev. A $\\bf 90$, 063627 (2014)] and, separately, the thermal friction coefficient $\\alpha$ for vortex motion was measured from the long-time evolution of a corotating vortex pair in a BEC [Phys. Rev. A $\\bf 92$, 051601(R) (2015)]. We present a comparative analysis of the experimental results, and find that the vortex decay rate $\\Gamma$ is almost linearly proportional to $\\alpha$. We perform numerical simulations of the time evolution of a turbulent BEC using a point-vortex model equipped with longitudinal friction and vortex-antivortex pair annihilation, and observe that the linear dependence of $\\Gamma$ on $\\alpha$ is quantitatively accounted for in the dissipative point-vortex model. The numerical simulations reveal that thermal friction in the experiment was too strong to allow for the emergence of a vortex-clus...

  8. Bose-Einstein correlations of charged and neutral kaons in deep inelastic scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Chekanov, S.; Derrick, M.; Magill, S. [Argonne National Laboratory, Argonne, IL (US)] (and others)

    2007-05-15

    Bose-Einstein correlations of charged and neutral kaons have been measured in e{sup {+-}}p deep inelastic scattering with an integrated luminosity of 121 pb{sup -1} using the ZEUS detector at HERA. The two-particle correlation function was studied as a function of the four-momentum difference of the kaon pairs, Q{sub 12}={radical}(-(p{sub 1}-p{sub 2}){sup 2}), assuming a Gaussian shape for the particle source. The values of the radius of the production volume, r, and of the correlation strength, {lambda}, were obtained for both neutral and charged kaons. The radii for charged and neutral kaons are similar and are consistent with those obtained at LEP. (orig.)

  9. Measuring the rates of spontaneous vortex formation in highly oblate Bose-Einstein condensates

    Science.gov (United States)

    Neely, Tyler; Samson, Edward; Bradley, Ashton; Davis, Matthew; Anderson, Brian

    2009-05-01

    By studying the dynamics of the Bose-Einstein condensation transition in highly oblate (˜11:1 aspect ratio) traps, we have measured the dependence of spontaneous vortex formation on BEC growth rate, extending our previous experimental and numerical observations of spontaneous vortex formation in weakly oblate (˜2:1 aspect ratio) traps [1]. Our condensation procedure in these highly oblate traps allows us to create BECs over a large range of growth times, from approximately 200 ms to over 2 s. By characterizing vortex formation vs. BEC growth rate, and comparing experimental and numerical results, the Kibble-Zurek mechanism for topological defect formation may be quantitatively studied in our system. [1] C.N. Weiler, T.W. Neely, D.R. Scherer, A.S. Bradley, M.J. Davis, and B.P. Anderson., Nature 455, 948 (2008).

  10. Remote entanglement between a single atom and a Bose-Einstein condensate.

    Science.gov (United States)

    Lettner, M; Mücke, M; Riedl, S; Vo, C; Hahn, C; Baur, S; Bochmann, J; Ritter, S; Dürr, S; Rempe, G

    2011-05-27

    Entanglement between stationary systems at remote locations is a key resource for quantum networks. We report on the experimental generation of remote entanglement between a single atom inside an optical cavity and a Bose-Einstein condensate (BEC). To produce this, a single photon is created in the atom-cavity system, thereby generating atom-photon entanglement. The photon is transported to the BEC and converted into a collective excitation in the BEC, thus establishing matter-matter entanglement. After a variable delay, this entanglement is converted into photon-photon entanglement. The matter-matter entanglement lifetime of 100 μs exceeds the photon duration by 2 orders of magnitude. The total fidelity of all concatenated operations is 95%. This hybrid system opens up promising perspectives in the field of quantum information.

  11. Faraday and resonant waves in binary collisionally-inhomogeneous Bose-Einstein condensates

    CERN Document Server

    Sudharsan, J B; Raportaru, Mihaela Carina; Nicolin, Alexandru I; Balaz, Antun

    2016-01-01

    We study Faraday and resonant waves in two-component quasi-one-dimensional (cigar-shaped) collisionally inhomogeneous Bose-Einstein condensates subject to periodic modulation of the radial confinement. We show by means of extensive numerical simulations that, as the system exhibits stronger spatially-localised binary collisions (whose scattering length is taken for convenience to be of Gaussian form), the system becomes effectively a linear one. In other words, as the scattering length approaches a delta-function, we observe that the two nonlinear configurations typical for binary cigar-shaped condensates, namely the segregated and the symbiotic one, turn into two overlapping Gaussian wave functions typical for linear systems, and that the instability onset times of the Faraday and resonant waves become longer. Moreover, our numerical simulations show that the spatial period of the excited waves (either resonant or Faraday ones) decreases as the inhomogeneity becomes stronger. Our results also demonstrate tha...

  12. Production of large $^{41}$K Bose-Einstein condensates using D1 gray molasses

    CERN Document Server

    Chen, Hao-Ze; Wu, Yu-Ping; Liu, Xiang-Pei; Wang, Xiao-Qiong; Wang, Yu-Xuan; Chen, Yu-Ao; Pan, Jian-Wei

    2016-01-01

    We use D1 gray molasses to achieve Bose-Einstein condensation of a large number of $^{41}$K atoms in an optical dipole trap. By combining a new configuration of compressed-MOT with D1 gray molasses, we obtain a cold sample of $2.4\\times10^9$ atoms with a temperature as low as 42 $\\mu$K. After magnetically transferring the atoms into the final glass cell, we perform a two-stage evaporative cooling. A condensate with up to $1.2\\times10^6$ atoms in the lowest Zeeman state $|F=1,m_F=1\\rangle$ is achieved in the optical dipole trap. Furthermore, we observe two narrow Feshbach resonances in the lowest hyperfine channel, which are in good agreement with theoretical predictions.

  13. Neutral impurities in a Bose-Einstein condensate for simulation of the Froehlich-polaron

    Energy Technology Data Exchange (ETDEWEB)

    Hohmann, Michael; Kindermann, Farina; Gaenger, Benjamin; Lausch, Tobias [University of Kaiserslautern, Department of Physics and Research Center OPTIMAS, Kaiserslautern (Germany); Mayer, Daniel; Schmidt, Felix; Widera, Artur [University of Kaiserslautern, Department of Physics and Research Center OPTIMAS, Kaiserslautern (Germany); Graduate School Materials Science in Mainz, Kaiserslautern (Germany)

    2015-12-15

    We present an experimental system to study the Bose polaron by immersion of single, well-controllable neutral Cs impurities into a Rb Bose-Einstein condensate (BEC). We show that, by proper optical traps, independent control over impurity and BEC allows for precision relative positioning of the two sub-systems as well as for dynamical studies and independent read-out. We furthermore estimate that measuring the polaron binding energy of Froehlich-type Bose polarons in the low and intermediate coupling regime is feasible with our experimental constraints and limitations discussed, and we outline how a parameter regime can be reached to characterize differences between Froehlich and Bose-polaron in the strong coupling regime. (orig.)

  14. Observation of von K\\'arm\\'an Vortex Street in a Bose-Einstein Condensate

    CERN Document Server

    Kwon, Woo Jin; Seo, Sang Won; Shin, Y

    2016-01-01

    We report on the experimental observation of von K\\'arm\\'an street of quantum vortex clusters generated from a moving obstacle in a highly oblate Bose-Einstein condensate. For a low obstacle velocity $v$ above a critical value, we observe regular shedding of vortex clusters each consisting of two like-sign vortices, and as $v$ is increased, we find that the shedding pattern becomes irregular with many different kinds of vortex clusters. The transition from a von K\\'arm\\'an street regime to turbulence reveals remarkable similarities between a superfluid and a classical viscous fluid. Our work opens a new direction for experimental investigations of the superfluid Reynolds number characterizing universal superfluid hydrodynamics.

  15. Polymer quantization in the Bogoliubov's regime for a homogeneous one-dimensional Bose-Einstein condensate

    CERN Document Server

    Castellanos, Elías; Hernández-Hernández, Héctor H; Santos, Elí

    2016-01-01

    In the present report we analyze the eventual modifications caused by the polymer quantization upon the ground state of a homogeneous one-dimensional Bose-Einstein condensate. We obtain the ground state energy of the corresponding N-body system and, consequently, the corresponding speed of sound, allowing us to explore the sensitivity of the system to corrections caused by the polymer quantization. The corrections arising from the polymer quantization can be improved for dense systems together with small values of the corresponding one-dimensional scattering length. However, these corrections remain constrained due to finite size effects of the system. The contributions of the polymer length scale to the properties of the ground state energy of the system allow us to explore, as a first approximation and when the Bogoliubov's formalism is valid, the sensitivity of this many-body system to traces caused by the discreteness of space suggested by the polymer quantization.

  16. Phase slips and vortex dynamics in Josephson oscillations between Bose-Einstein condensates

    Science.gov (United States)

    Abad, M.; Guilleumas, M.; Mayol, R.; Piazza, F.; Jezek, D. M.; Smerzi, A.

    2015-02-01

    We study the relation between Josephson dynamics and topological excitations in a dilute Bose-Einstein condensate confined in a double-well trap. We show that the phase slips responsible for the self-trapping regime are created by vortex rings entering and annihilating inside the weak-link region or created at the center of the barrier and expanding outside the system. Large amplitude oscillations just before the onset of self-trapping are also strictly connected with the dynamics of vortex rings at the edges of the inter-well barrier. Our results extend and analyze the dynamics of the vortex-induced phase slippages suggested a few decades ago in relation to the “ac” Josephson effect of superconducting and superfluid helium systems.

  17. The entropy of an acoustic black hole in Bose-Einstein condensates

    CERN Document Server

    Rinaldi, Massimiliano

    2011-01-01

    We compute the entropy associated to the Hawking emission of a $(1+1)$-dimensional acoustic black hole in a Bose-Einstein condensate. We use the brick wall model proposed by 't Hooft, adapted to the momentum space, in order to tackle the case when high frequency dispersion is taken in account. As expected, we find that in the hydrodynamic limit the entropy only depends on the size of the box in the near-horizon region, as for gravitational $(1+1)$-dimensional black holes. When dispersion effects are considered, we find an additional contribution that depends on the size of the near-horizon region measured in units of healing length. Moreover, the size of the box is fixed by the black hole parameters, and the leading term contribution to the entropy can be uniquely determined. We find that the leading term entropy is constant and much larger than the corrections.

  18. Two pion Bose-Einstein correlations in anti pp annihilations at rest

    Energy Technology Data Exchange (ETDEWEB)

    Adler, R.; Alhalel, T.; Angelopoulos, A.; Apostolakis, A.; Aslanides, E.; Backenstoss, G.; Bee, C.P.; Bennet, J.; Bertin, V.; Bienlein, J.K.; Bloch, P.; Bula, C.; Carlson, P.; Carvalho, J.; Cawley, E.; Charalambous, S.; Chardalas, M.; Chardin, G.; Danielsson, M.; Dedoussis, S.; Dejardin, M.; Derre, J.; Dodgson, M.; Dousse, J.C.; Duclos, J.; Ealet, A.; Eckart, B.; Eleftheriadis, C.; Evangelou, I.; Faravel, L.; Fassnacht, P.; Faure, J.L.; Felder, C.; Ferreira-Marques, R.; Fetscher, W.; Fidecaro, M.; Filipcic, A.; Francis, D.; Fry, J.R.; Fuglesang, C.; Gabathuler, E.; Gamet, R.; Garreta, D.; Geralis, T.; Gerber, H.J.; Go, A.; Gumplinger, P.; Guyot, C.; Harrison, P.F.; Hayman, P.J.; Heyes, W.G.; Hollander, R.W.; Jansson, K.; Johner, H.U.; Jon-And, K.; Kerek, A.; Kern, J.; Kettle, P.R.; Kochowski, C.; Kokkas, P.; Kreuger, R.; Lawry, T.; Le Gac, R.; Liolios, A.; Machado, E.; Maley, P.; Madic, I.; Manthos, N.; Marel, G.; Mikuz, M.; Miller, J.P.; Montanet, F.; Nakada, T.; Onofre, A.; Pagels, B; CPLEAR Collaboration

    1993-06-07

    Bose-Einstein (BE) correlations between like-sign charged pions were studied in anti pp annihilations at rest into four-prong events, using data taken with the CPLEAR detector at LEAR (CERN). A strong enhancement was found in the production of pairs of like-sign pions of similar momenta, with respect to the pairs of unlike-sign pions. The observed BE-enhancement was used to extract the values for the strength [lambda] of the effect and the radius r of the pion emitting source. The extracted value of [lambda]>1 is of relevant importance and clearly does not depend on the assumed parametrization of the correlation function. The influence of the normalization and fitting procedure, the detector resolution, the resonances production and decay and the neutral-pion multiplicity cuts, on the size of the pion source and the strength of the effect was investigated. (orig.)

  19. One-body and Two-body Fractional Parentage Coefficients for Spinor Bose-Einstein Condensation

    Institute of Scientific and Technical Information of China (English)

    BAO Cheng-guang

    2006-01-01

    A very effective tool,namely,the analytical expression of the fractional parentage coefficients (FPC),is introduced in this paper to deal with the total spin states of N-body spinor bosonic systems,where N is supposed to be large and the spin of each boson is one.In particular,the analytical forms of the one-body and two-body FPC for the total spin states with {N} and {N-1,1} permutation symmetries have been derived.These coefficients facilitate greatly the calculation of related matrix elements,and they can be used even in the case of N →∞.Theyappear as a powerful tool for the establishment of an improved theory of spinor Bose-Einstein condensation,where the eigenstates have the total spin S and its Z-component being both conserved.

  20. Exploring the quantum-classical transition in an optical Bose-Einstein condensate

    Science.gov (United States)

    Zhang, Keye; Meystre, Pierre; Zhang, Weiping

    2014-05-01

    Recent experiments have demonstrated the Bose-Einstein condensation of photons in a dye microcavity. A remarkable feature is that it behaves as a condensate of massive particles essentially at room temperature and is coupled to the heat reservoir that realizes grand-canonical conditions. We analyze theoretically the control of that system by a secondary coherent cavity field that produces an optomechanical-like coupling between the probe and the condensate. We find that the controllable quantum statistics associated with the size of the reservoir allow one to prepare the photon condensate in a variety of nonclassical states, carry out quantum nondemolition measurements of its number fluctuations, and provide an effective tool to explore the physics of the quantum-classical transition regime.