WorldWideScience

Sample records for attractive therapeutic target

  1. Obesity, insulin resistance, adipocytokines and breast cancer: New biomarkers and attractive therapeutic targets.

    Science.gov (United States)

    Dalamaga, Maria

    2013-08-20

    Worldwide, breast cancer (BC) represents the most common type of non-skin human malignancy and the second leading cause of cancer-related deaths amid women in Western countries. Obesity and its metabolic complications have rapidly become major global health issues and are associated with increased risk for cancer, especially BC in postmenopausal women. Adipose tissue is considered as a genuine endocrine organ secreting a variety of bioactive adipokines, such as leptin, adiponectin, resistin and nicotinamide phosphoribosyl-transferase/visfatin. Recent evidence has indicated that the constellation of obesity, insulin resistance and adipokines is associated with the risk and prognosis of postmenopausal BC. Direct evidence is growing rapidly supporting the stimulating and/or inhibiting role of adipokines in the process of development and progression of BC. Adipokines could exert their effects on the normal and neoplastic mammary tissue by endocrine, paracrine and autocrine mechanisms. Recent studies support a role of adipokines as novel risk factors and potential diagnostic and prognostic biomarkers in BC. This editorial aims at providing important insights into the potential pathophysiological mechanisms linking adipokines to the etiopathogenesis of BC in the context of a dysfunctional adipose tissue and insulin resistance in obesity. A better understanding of these mechanisms may be important for the development of attractive preventive and therapeutic strategies against obesity-related breast malignancy. PMID:24520544

  2. Targeting and Therapeutic Peptides in Nanomedicine for Atherosclerosis

    OpenAIRE

    Chung, Eun Ji

    2016-01-01

    Peptides in atherosclerosis nanomedicine provide structural, targeting, and therapeutic functionality, and can assist in overcoming delivery barriers of traditional pharmaceuticals. Moreover, their inherent biocompatibility and biodegradability make them especially attractive as materials intended for use in vivo. In this review, an overview of nanoparticle-associated targeting and therapeutic peptides for atherosclerosis are provided, including peptides designed for cellular targets such as ...

  3. Therapeutic Targeting of Telomerase

    Directory of Open Access Journals (Sweden)

    Kathrin Jäger

    2016-07-01

    Full Text Available Telomere length and cell function can be preserved by the human reverse transcriptase telomerase (hTERT, which synthesizes the new telomeric DNA from a RNA template, but is normally restricted to cells needing a high proliferative capacity, such as stem cells. Consequently, telomerase-based therapies to elongate short telomeres are developed, some of which have successfully reached the stage I in clinical trials. Telomerase is also permissive for tumorigenesis and 90% of all malignant tumors use telomerase to obtain immortality. Thus, reversal of telomerase upregulation in tumor cells is a potential strategy to treat cancer. Natural and small-molecule telomerase inhibitors, immunotherapeutic approaches, oligonucleotide inhibitors, and telomerase-directed gene therapy are useful treatment strategies. Telomerase is more widely expressed than any other tumor marker. The low expression in normal tissues, together with the longer telomeres in normal stem cells versus cancer cells, provides some degree of specificity with low risk of toxicity. However, long term telomerase inhibition may elicit negative effects in highly-proliferative cells which need telomerase for survival, and it may interfere with telomere-independent physiological functions. Moreover, only a few hTERT molecules are required to overcome senescence in cancer cells, and telomerase inhibition requires proliferating cells over a sufficient number of population doublings to induce tumor suppressive senescence. These limitations may explain the moderate success rates in many clinical studies. Despite extensive studies, only one vaccine and one telomerase antagonist are routinely used in clinical work. For complete eradication of all subpopulations of cancer cells a simultaneous targeting of several mechanisms will likely be needed. Possible technical improvements have been proposed including the development of more specific inhibitors, methods to increase the efficacy of vaccination

  4. Therapeutic Targeting of Telomerase.

    Science.gov (United States)

    Jäger, Kathrin; Walter, Michael

    2016-01-01

    Telomere length and cell function can be preserved by the human reverse transcriptase telomerase (hTERT), which synthesizes the new telomeric DNA from a RNA template, but is normally restricted to cells needing a high proliferative capacity, such as stem cells. Consequently, telomerase-based therapies to elongate short telomeres are developed, some of which have successfully reached the stage I in clinical trials. Telomerase is also permissive for tumorigenesis and 90% of all malignant tumors use telomerase to obtain immortality. Thus, reversal of telomerase upregulation in tumor cells is a potential strategy to treat cancer. Natural and small-molecule telomerase inhibitors, immunotherapeutic approaches, oligonucleotide inhibitors, and telomerase-directed gene therapy are useful treatment strategies. Telomerase is more widely expressed than any other tumor marker. The low expression in normal tissues, together with the longer telomeres in normal stem cells versus cancer cells, provides some degree of specificity with low risk of toxicity. However, long term telomerase inhibition may elicit negative effects in highly-proliferative cells which need telomerase for survival, and it may interfere with telomere-independent physiological functions. Moreover, only a few hTERT molecules are required to overcome senescence in cancer cells, and telomerase inhibition requires proliferating cells over a sufficient number of population doublings to induce tumor suppressive senescence. These limitations may explain the moderate success rates in many clinical studies. Despite extensive studies, only one vaccine and one telomerase antagonist are routinely used in clinical work. For complete eradication of all subpopulations of cancer cells a simultaneous targeting of several mechanisms will likely be needed. Possible technical improvements have been proposed including the development of more specific inhibitors, methods to increase the efficacy of vaccination methods, and

  5. Therapeutic Targeting of Telomerase

    Science.gov (United States)

    Jäger, Kathrin; Walter, Michael

    2016-01-01

    Telomere length and cell function can be preserved by the human reverse transcriptase telomerase (hTERT), which synthesizes the new telomeric DNA from a RNA template, but is normally restricted to cells needing a high proliferative capacity, such as stem cells. Consequently, telomerase-based therapies to elongate short telomeres are developed, some of which have successfully reached the stage I in clinical trials. Telomerase is also permissive for tumorigenesis and 90% of all malignant tumors use telomerase to obtain immortality. Thus, reversal of telomerase upregulation in tumor cells is a potential strategy to treat cancer. Natural and small-molecule telomerase inhibitors, immunotherapeutic approaches, oligonucleotide inhibitors, and telomerase-directed gene therapy are useful treatment strategies. Telomerase is more widely expressed than any other tumor marker. The low expression in normal tissues, together with the longer telomeres in normal stem cells versus cancer cells, provides some degree of specificity with low risk of toxicity. However, long term telomerase inhibition may elicit negative effects in highly-proliferative cells which need telomerase for survival, and it may interfere with telomere-independent physiological functions. Moreover, only a few hTERT molecules are required to overcome senescence in cancer cells, and telomerase inhibition requires proliferating cells over a sufficient number of population doublings to induce tumor suppressive senescence. These limitations may explain the moderate success rates in many clinical studies. Despite extensive studies, only one vaccine and one telomerase antagonist are routinely used in clinical work. For complete eradication of all subpopulations of cancer cells a simultaneous targeting of several mechanisms will likely be needed. Possible technical improvements have been proposed including the development of more specific inhibitors, methods to increase the efficacy of vaccination methods, and

  6. Therapeutic target for protozoal diseases

    Science.gov (United States)

    Rathore, Dharmendar; Jani, Dewal; Nagarkatti, Rana

    2008-10-21

    A novel Fasciclin Related Adhesive Protein (FRAP) from Plasmodium and related parasites is provided as a target for therapeutic intervention in diseases caused by the parasites. FRAP has been shown to play a critical role in adhesion to, or invasion into, host cells by the parasite. Furthermore, FRAP catalyzes the neutralization of heme by the parasite, by promoting its polymerization into hemozoin. This invention provides methods and compositions for therapies based on the administration of protein, DNA or cell-based vaccines and/or antibodies based on FRAP, or antigenic epitopes of FRAP, either alone or in combination with other parasite antigens. Methods for the development of compounds that inhibit the catalytic activity of FRAP, and diagnostic and laboratory methods utilizing FRAP are also provided.

  7. Therapeutic targeting of bile acids

    Science.gov (United States)

    Gores, Gregory J.

    2015-01-01

    The first objectives of this article are to review the structure, chemistry, and physiology of bile acids and the types of bile acid malabsorption observed in clinical practice. The second major theme addresses the classical or known properties of bile acids, such as the role of bile acid sequestration in the treatment of hyperlipidemia; the use of ursodeoxycholic acid in therapeutics, from traditional oriental medicine to being, until recently, the drug of choice in cholestatic liver diseases; and the potential for normalizing diverse bowel dysfunctions in irritable bowel syndrome, either by sequestering intraluminal bile acids for diarrhea or by delivering more bile acids to the colon to relieve constipation. The final objective addresses novel concepts and therapeutic opportunities such as the interaction of bile acids and the microbiome to control colonic infections, as in Clostridium difficile-associated colitis, and bile acid targeting of the farnesoid X receptor and G protein-coupled bile acid receptor 1 with consequent effects on energy expenditure, fat metabolism, and glycemic control. PMID:26138466

  8. Therapeutic targeting of replicative immortality.

    Science.gov (United States)

    Yaswen, Paul; MacKenzie, Karen L; Keith, W Nicol; Hentosh, Patricia; Rodier, Francis; Zhu, Jiyue; Firestone, Gary L; Matheu, Ander; Carnero, Amancio; Bilsland, Alan; Sundin, Tabetha; Honoki, Kanya; Fujii, Hiromasa; Georgakilas, Alexandros G; Amedei, Amedeo; Amin, Amr; Helferich, Bill; Boosani, Chandra S; Guha, Gunjan; Ciriolo, Maria Rosa; Chen, Sophie; Mohammed, Sulma I; Azmi, Asfar S; Bhakta, Dipita; Halicka, Dorota; Niccolai, Elena; Aquilano, Katia; Ashraf, S Salman; Nowsheen, Somaira; Yang, Xujuan

    2015-12-01

    One of the hallmarks of malignant cell populations is the ability to undergo continuous proliferation. This property allows clonal lineages to acquire sequential aberrations that can fuel increasingly autonomous growth, invasiveness, and therapeutic resistance. Innate cellular mechanisms have evolved to regulate replicative potential as a hedge against malignant progression. When activated in the absence of normal terminal differentiation cues, these mechanisms can result in a state of persistent cytostasis. This state, termed "senescence," can be triggered by intrinsic cellular processes such as telomere dysfunction and oncogene expression, and by exogenous factors such as DNA damaging agents or oxidative environments. Despite differences in upstream signaling, senescence often involves convergent interdependent activation of tumor suppressors p53 and p16/pRB, but can be induced, albeit with reduced sensitivity, when these suppressors are compromised. Doses of conventional genotoxic drugs required to achieve cancer cell senescence are often much lower than doses required to achieve outright cell death. Additional therapies, such as those targeting cyclin dependent kinases or components of the PI3K signaling pathway, may induce senescence specifically in cancer cells by circumventing defects in tumor suppressor pathways or exploiting cancer cells' heightened requirements for telomerase. Such treatments sufficient to induce cancer cell senescence could provide increased patient survival with fewer and less severe side effects than conventional cytotoxic regimens. This positive aspect is countered by important caveats regarding senescence reversibility, genomic instability, and paracrine effects that may increase heterogeneity and adaptive resistance of surviving cancer cells. Nevertheless, agents that effectively disrupt replicative immortality will likely be valuable components of new combinatorial approaches to cancer therapy. PMID:25869441

  9. The potential therapeutic targets for cervical cancer

    Directory of Open Access Journals (Sweden)

    L Priyanka Dwarampudi

    2013-01-01

    Full Text Available In case of invasive cervical carcinoma several molecular events were reported and these molecular events resulting in multiple genetic abnormalities. In order to control these tumors multiple molecular therapeutic targets are needed with different molecular mechanisms. Unfortunately, these molecular targets were in early stages of development. Because of less degree of success of conventional therapeutics for late stages of cervical cancer and lowering of prognosis of patients there is an increase in interest for the development of potential therapeutic targets for cervical cancer. This review article emphasizes the current molecular targeted agents; with special attention to estrogen receptors for human papilloma virus infected cervical cancer.

  10. Pathogenesis and new therapeutic targets

    OpenAIRE

    Mertens, Michael

    2010-01-01

    Acute lung injury and its pronounced form, acute respiratory distress syndrome, are life-threatening diseases with 190,000 patients and 74,500 deaths per year in the United States. Until now there have been no therapeutic approaches to lower morbidity and mortality, except for ventilation with small tidal volumes. This partially results from a lack of understanding of the underlying mechanism of ventilator induced acute lung injury on the alveolar and alveolar capillary level. In addition, ph...

  11. The potential therapeutic targets for cervical cancer

    OpenAIRE

    L Priyanka Dwarampudi; Gowthamarajan, K.; Shanmugam, R; Madhuri, K.; Nilani, P.; M N Satish Kumar

    2013-01-01

    In case of invasive cervical carcinoma several molecular events were reported and these molecular events resulting in multiple genetic abnormalities. In order to control these tumors multiple molecular therapeutic targets are needed with different molecular mechanisms. Unfortunately, these molecular targets were in early stages of development. Because of less degree of success of conventional therapeutics for late stages of cervical cancer and lowering of prognosis of patients there is an inc...

  12. Therapeutic targeting of Janus kinases

    OpenAIRE

    Pesu, Marko; Laurence, Arian; Kishore, Nandini; Zwillich, Sam; Chan, Gary; O’Shea, John J.

    2008-01-01

    Cytokines play pivotal roles in immunity and inflammation, and targeting cytokines and their receptors is an effective means of treating such disorders. Type I and II cytokine receptors associate with Janus family kinases (JAKs) to effect intracellular signaling. These structurally unique protein kinases play essential and specific roles in immune cell development and function. One JAK, JAK3, has particularly selective functions. Mutations of this kinase underlie severe combined immunodeficie...

  13. Therapeutic Targeting of Hyaluronan in the Tumor Stroma

    OpenAIRE

    H. Michael Shepard; Frost, Gregory I.; Thompson, Curtis B.; Ping Jiang; Xiaoming Li; Anne Kultti

    2012-01-01

    The tumor stroma, consisting of non-malignant cells and the extracellular matrix, undergoes significant quantitative and qualitative changes throughout malignant transformation and tumor progression. With increasing recognition of the role of the tumor microenvironment in disease progression, stromal components of the tumor have become attractive targets for therapeutic intervention. Stromal accumulation of the glycosaminoglycan hyaluronan occurs in many tumor types and is frequently associat...

  14. Conotoxins: Molecular and Therapeutic Targets

    Science.gov (United States)

    Lewis, Richard J.

    Marine molluscs known as cone snails produce beautiful shells and a complex array of over 50,000 venom peptides evolved for prey capture and defence. Many of these peptides selectively modulate ion channels and transporters, making them a valuable source of new ligands for studying the role these targets play in normal and disease physiology. A number of conopeptides reduce pain in animal models, and several are now in pre-clinical and clinical development for the treatment of severe pain often associated with diseases such as cancer. Less than 1% of cone snail venom peptides are pharmacologically characterised.

  15. Targeting of microRNAs for therapeutics

    DEFF Research Database (Denmark)

    Stenvang, Jan; Lindow, Morten; Kauppinen, Sakari

    2008-01-01

    miRNAs (microRNAs) comprise a class of small endogenous non-coding RNAs that post-transcriptionally repress gene expression by base-pairing with their target mRNAs. Recent evidence has shown that miRNAs play important roles in a wide variety of human diseases, such as viral infections, cancer...... and cardiovascular diseases, and thus miRNAs have rapidly emerged as potential targets for therapeutics. LNAs (locked nucleic acids) comprise a class of bicyclic conformational analogues of RNA, which exhibit high binding affinity to complementary RNA molecules and high stability in blood and tissues in vivo. Recent...

  16. Bioreductive prodrugs as cancer therapeutics: targeting tumor hypoxia.

    Science.gov (United States)

    Guise, Christopher P; Mowday, Alexandra M; Ashoorzadeh, Amir; Yuan, Ran; Lin, Wan-Hua; Wu, Dong-Hai; Smaill, Jeff B; Patterson, Adam V; Ding, Ke

    2014-02-01

    Hypoxia, a state of low oxygen, is a common feature of solid tumors and is associated with disease progression as well as resistance to radiotherapy and certain chemotherapeutic drugs. Hypoxic regions in tumors, therefore, represent attractive targets for cancer therapy. To date, five distinct classes of bioreactive prodrugs have been developed to target hypoxic cells in solid tumors. These hypoxia-activated prodrugs, including nitro compounds, N-oxides, quinones, and metal complexes, generally share a common mechanism of activation whereby they are reduced by intracellular oxidoreductases in an oxygen-sensitive manner to form cytotoxins. Several examples including PR-104, TH-302, and EO9 are currently undergoing phase II and phase III clinical evaluation. In this review, we discuss the nature of tumor hypoxia as a therapeutic target, focusing on the development of bioreductive prodrugs. We also describe the current knowledge of how each prodrug class is activated and detail the clinical progress of leading examples.

  17. Bioreductive prodrugs as cancer therapeutics:targeting tumor hypoxia

    Institute of Scientific and Technical Information of China (English)

    Christopher P. Guise; Alexandra M. Mowday; Amir Ashoorzadeh; Ran Yuan; Wan-Hua Lin; Dong-Hai Wu; Jeff B. Smaill; Adam V. Patterson; Ke Ding

    2014-01-01

    Hypoxia, a state of low oxygen, is a common feature of solid tumors and is associated with disease progression as well as resistance to radiotherapy and certain chemotherapeutic drugs. Hypoxic regions in tumors, therefore, represent attractive targets for cancer therapy. To date, five distinct classes of bioreactive prodrugs have been developed to target hypoxic cels in solid tumors. These hypoxia-activated prodrugs, including nitro compounds, N-oxides, quinones, and metal complexes, generally share a common mechanism of activation whereby they are reduced by intracelular oxidoreductases in an oxygen-sensitive manner to form cytotoxins. Several examples including PR-104, TH-302, and EO9 are currently undergoing phase II and phase III clinical evaluation. In this review, we discuss the nature of tumor hypoxia as a therapeutic target, focusing on the development of bioreductive prodrugs. We also describe the current knowledge of how each prodrug class is activated and detail the clinical progress of leading examples.

  18. Nrf2 Is an Attractive Therapeutic Target for Retinal Diseases

    Science.gov (United States)

    2016-01-01

    Nuclear factor erythroid 2-related factor 2 (Nrf2) is a redox-sensitive transcription factor that binds to antioxidant response elements located in the promoter region of genes encoding many antioxidant enzymes and phase II detoxifying enzymes. Activation of Nrf2 functions is one of the critical defensive mechanisms against oxidative stress in many species. The retina is constantly exposed to reactive oxygen species, and oxidative stress is a major contributor to age-related macular diseases. Moreover, the resulting inflammation and neuronal degeneration are also related to other retinal diseases. The well-known Nrf2 activators, bardoxolone methyl and its derivatives, have been the subject of a number of clinical trials, including those aimed at treating chronic kidney disease, pulmonary arterial hypertension, and mitochondrial myopathies. Recent studies suggest that Nrf2 activation protects the retina from retinal diseases. In particular, this is supported by the finding that Nrf2 knockout mice display age-related retinal degeneration. Moreover, the concept has been validated by the efficacy of Nrf2 activators in a number of retinal pathological models. We have also recently succeeded in generating a novel Nrf2 activator, RS9, using a biotransformation technique. This review discusses current links between retinal diseases and Nrf2 and the possibility of treating retinal diseases by activating the Nrf2 signaling pathway.

  19. EGFR as a therapeutic target in glioblastoma

    Directory of Open Access Journals (Sweden)

    David M Siebert

    2012-01-01

    Full Text Available The tyrosine kinase receptor epidermal growth factor receptor (EGFR can be activated by several ligands, thus triggering downstream pathways regulating cell growth and survival. Its dysregula­tion is particularly important for the development and progression of astrocytomas. After the description of its role in glioblastomas (WHO grade IV astrocytomas, an overview on the therapeutic strategies target­ing EGFR is provided. It analyzes the past and ongoing trials concerning the small molecule tyro­sine kinase inhibitors, i.e. gefitinib, erlotinib and the combination therapies, the EGFR vaccina­tion strategies, the antibodies directed against EGFR and finally the intracranially administered EGFR-targeted therapies. As our understanding of the underlying molecular aberrancies in glioblastoma grows, our ability to better target specific subtypes of glioblastoma should improve. Molecular biomarker enriched clinical trials may lead to improved patient outcomes.

  20. Critical questions in development of targeted nanoparticle therapeutics.

    Science.gov (United States)

    Korsmeyer, Richard

    2016-06-01

    One of the fourteen Grand Challenges for Engineering articulated by the US National Academy of Engineering is 'Engineer Better Medicines'. Although there are many ways that better medicines could be engineered, one of the most promising ideas is to improve our ability to deliver the therapeutic molecule more precisely to the desired target. Most conventional drug delivery methods (oral absorption, intravenous infusion etc.) result in systemic exposure to the therapeutic molecule, which places severe constraints on the types of molecules that can be used. A molecule administered by systemic delivery must be effective at low concentrations in the target tissue, yet safe everywhere else in the body. If drug carriers could be developed to deliver therapeutic molecules selectively to the desired target, it should be possible to greatly improve safety and efficacy of therapy. Nanoparticles (and related nanostructures, such as liposomes, nanoemulsions, micelles and dendrimers) are an attractive drug carrier concept because they can be made from a variety of materials engineered to have properties that allow loading and precise delivery of bound therapeutic molecules. The field of targeted nanoparticles has been extraordinarily active in the academic realm, with thousands of articles published over the last few years. Many of these publications seem to demonstrate very promising results in in vitro studies and even in animal models. In addition, a handful of human clinical trials are in progress. Yet, the biopharmaceutical industry has been relatively slow to make major investments in targeted nanoparticle development programs, despite a clear desire to introduce innovative new therapies to the market. What is the reason for such caution? Some degree of caution is no doubt due to the use of novel materials and the unproven nature of targeted nanoparticle technology, but many other unproven technologies have generated intense interest at various times. We believe that the

  1. Critical questions in development of targeted nanoparticle therapeutics

    Science.gov (United States)

    Korsmeyer, Richard

    2016-01-01

    One of the fourteen Grand Challenges for Engineering articulated by the US National Academy of Engineering is ‘Engineer Better Medicines’. Although there are many ways that better medicines could be engineered, one of the most promising ideas is to improve our ability to deliver the therapeutic molecule more precisely to the desired target. Most conventional drug delivery methods (oral absorption, intravenous infusion etc.) result in systemic exposure to the therapeutic molecule, which places severe constraints on the types of molecules that can be used. A molecule administered by systemic delivery must be effective at low concentrations in the target tissue, yet safe everywhere else in the body. If drug carriers could be developed to deliver therapeutic molecules selectively to the desired target, it should be possible to greatly improve safety and efficacy of therapy. Nanoparticles (and related nanostructures, such as liposomes, nanoemulsions, micelles and dendrimers) are an attractive drug carrier concept because they can be made from a variety of materials engineered to have properties that allow loading and precise delivery of bound therapeutic molecules. The field of targeted nanoparticles has been extraordinarily active in the academic realm, with thousands of articles published over the last few years. Many of these publications seem to demonstrate very promising results in in vitro studies and even in animal models. In addition, a handful of human clinical trials are in progress. Yet, the biopharmaceutical industry has been relatively slow to make major investments in targeted nanoparticle development programs, despite a clear desire to introduce innovative new therapies to the market. What is the reason for such caution? Some degree of caution is no doubt due to the use of novel materials and the unproven nature of targeted nanoparticle technology, but many other unproven technologies have generated intense interest at various times. We believe that

  2. Magnetic antibody-linked nanomatchmakers for therapeutic cell targeting.

    Science.gov (United States)

    Cheng, Ke; Shen, Deliang; Hensley, M Taylor; Middleton, Ryan; Sun, Baiming; Liu, Weixin; De Couto, Geoffrey; Marbán, Eduardo

    2014-01-01

    Stem cell transplantation is a promising strategy for therapeutic cardiac regeneration, but current therapies are limited by inefficient interaction between potentially beneficial cells (either exogenously transplanted or endogenously recruited) and the injured tissue. Here we apply targeted nanomedicine to achieve in vivo cell-mediated tissue repair, imaging and localized enrichment without cellular transplantation. Iron nanoparticles are conjugated with two types of antibodies (one against antigens on therapeutic cells and the other directed at injured cells) to produce magnetic bifunctional cell engager (MagBICE). The antibodies link the therapeutic cells to the injured cells, whereas the iron core of MagBICE enables physical enrichment and imaging. We treat acute myocardial infarction by targeting exogenous bone marrow-derived stem cells (expressing CD45) or endogenous CD34-positive cells to injured cardiomyocytes (expressing myosin light chain. Targeting can be further enhanced by magnetic attraction, leading to augmented functional benefits. MagBICE represents a generalizable platform technology for regenerative medicine. PMID:25205020

  3. Therapeutic strategies targeting cancer stem cells.

    Science.gov (United States)

    Ning, Xiaoyan; Shu, Jianchang; Du, Yiqi; Ben, Qiwen; Li, Zhaoshen

    2013-04-01

    Increasing studies have demonstrated a small proportion of cancer stem cells (CSCs) exist in the cancer cell population. CSCs have powerful self-renewal capacity and tumor-initiating ability and are resistant to chemotherapy and radiation. Conventional anticancer therapies kill the rapidly proliferating bulk cancer cells but spare the relatively quiescent CSCs, which cause cancer recurrence. So it is necessary to develop therapeutic strategies acting specifically on CSCs. In recent years, studies have shown that therapeutic agents such as metformin, salinomycin, DECA-14, rapamycin, oncostatin M (OSM), some natural compounds, oncolytic viruses, microRNAs, cell signaling pathway inhibitors, TNF-related apoptosis inducing ligand (TRAIL), interferon (IFN), telomerase inhibitors, all-trans retinoic acid (ATRA) and monoclonal antibodies can suppress the self-renewal of CSCs in vitro and in vivo. A combination of these agents and conventional chemotherapy drugs can significantly inhibit tumor growth, metastasis and recurrence. These strategies targeting CSCs may bring new hopes to cancer therapy. PMID:23358473

  4. Molecular Therapeutic Targets for Glioma Angiogenesis

    Directory of Open Access Journals (Sweden)

    Shingo Takano

    2010-01-01

    Full Text Available Due to the prominent angiogenesis that occurs in malignant glioma, antiangiogenic therapy has been attempted. There have been several molecular targets that are specific to malignant gliomas, as well as more broadly in systemic cancers. In this review, I will focus on some topics related to molecular therapeutic targets for glioma angiogenesis. First, important angiogenic factors that could be considered molecular targets are VEGF, VEGF-induced proteins on endothelial cells, tissue factor, osteopontin, v3 integrin, and thymidine phosphorylase as well as endogenous inhibitors, soluble Flt1, and thrombospondin 1. Second, hypoxic areas are also decreased by metronomic CPT11 treatment as well as temozolomide. Third, glioma-derived endothelial cells that are genetically and functionally distinct from normal endothelial cells should be targeted, for example, with SDF-1 and CXCR7 chemokine. Fourth, endothelial progenitor cells (EPCs likely contribute towards glioma angiogenesis in the brain and could be useful as a drug delivery tool. Finally, blockade of delta-like 4 (Dll4 results in a nonfunctioning vasculature and could be another important target distinct from VEGF.

  5. Therapeutic strategies for targeting cancer stem cells

    Institute of Scientific and Technical Information of China (English)

    Yu Jeong Kim; Elizabeth L Siegler; Natnaree Siriwon; Pin Wang

    2016-01-01

    The therapeutic limitations of conventional chemotherapeutic drugs present a challenge for cancer therapy; these shortcomings are largely attributed to the ability of cancer cells to repopulate and metastasize after initial therapies. Compelling evidence suggests that cancer stem cells (CSCs) have a crucial impact in current shortcomings of cancer therapy because they are largely responsible for tumor initiation, relapse, metastasis, and chemo-resistance. Thus, a better understanding of the properties and mechanisms underlying CSC resistance to treatments is necessary to improve patient outcomes and survival rates. In this review, the authors characterize and compare different CSC-speciifc biomarkers that are present in various types of tumors. We further discuss multiple targeting approaches currently in preclinical or clinical testing that show great potential for targeting CSCs. This review discusses numerous strategies to eliminate CSCs by targeting surface biomarkers, regulating CSC-associated oncogenes and signaling pathways, inhibiting drug-eflfux pumps involved in drug resistance, modulating the tumor microenvironment and immune system, and applying drug combination therapy using nanomedicine.

  6. Epigenetics and therapeutic targets mediating neuroprotection.

    Science.gov (United States)

    Qureshi, Irfan A; Mehler, Mark F

    2015-12-01

    The rapidly evolving science of epigenetics is transforming our understanding of the nervous system in health and disease and holds great promise for the development of novel diagnostic and therapeutic approaches targeting neurological diseases. Increasing evidence suggests that epigenetic factors and mechanisms serve as important mediators of the pathogenic processes that lead to irrevocable neural injury and of countervailing homeostatic and regenerative responses. Epigenetics is, therefore, of considerable translational significance to the field of neuroprotection. In this brief review, we provide an overview of epigenetic mechanisms and highlight the emerging roles played by epigenetic processes in neural cell dysfunction and death and in resultant neuroprotective responses. This article is part of a Special Issue entitled SI: Neuroprotection.

  7. Ascaris lumbricoides: an overview of therapeutic targets.

    Science.gov (United States)

    Hagel, Isabel; Giusti, Tatiana

    2010-10-01

    A. lumbricoides is the largest of the common nematode parasites of man and has been associated with intestinal pathology, respiratory symptoms and malnutrition in children from endemic areas. Current anthelmintic treatments have proven to be safe. However, a reduced efficacy of single dose drugs has been reported. In veterinary practice, anthelmintic drug resistance is an irreversible problem. Thus, research and development of sensitive tools for early detection of drug resistance as well as new anthelmintic approaches are urgently needed. In this review, we summarized data providing information about current drug therapy against A. lumbricoides and other intestinal helminths, new drugs in experimental trials, future drugs perspectives and the identification of immunogenic parasite molecules that may be suitable vaccine targets. In addition to the WHO recommended drugs (albendazole, mebendazole, levamisole, and pyrantel pamoate), new anthelmintic alternatives such as tribendimidine and Nitazoxanide have proved to be safe and effective against A. lumbricoides and other soil-transmitted helminthiases in human trials. Also, some new drugs for veterinary use, monepantel and cyclooctadepsipeptides (e.g., PF1022A), will probably expand future drug spectrum for human treatments. The development of genomic technology has provided a great amount of available nematode DNA sequences, coupled with new gene function data that may lead to the identification of new drug targets through efficient mining of nematode genomic databases. On the other hand, the identification of nematode antigens involved in different parasite vital functions as well as immunomodulatory molecules in animals and humans may contribute to future studies of new therapeutic approaches.

  8. Discovering Che-1/AATF: a new attractive target for cancer therapy

    Directory of Open Access Journals (Sweden)

    Simona eIezzi

    2015-04-01

    Full Text Available The transcriptional cofactor Che-1/AATF is currently emerging as an important component of the DNA damage response machinery, the complex signaling network that maintains genome integrity and prevents tumorigenesis. Moreover this protein is involved in a wide range of cellular pathways, regulating proliferation and survival in both physiological and pathological conditions. Notably, some evidence indicates that dysregulation of Che-1/AATF levels are associated with the transformation process and elevated levels of Che-1/AATF are required for tumor cell survival. It is for these reasons that Che-1/AATF has been regarded as an attractive, still theoretical, therapeutic target for cancer treatments. In this review, we will provide an updated overview of Che-1/AATF activities, from transcriptional regulation to DNA damage response.

  9. Targeting HCV Entry For Development of Therapeutics

    Directory of Open Access Journals (Sweden)

    Jeffrey F. McKelvy

    2010-08-01

    Full Text Available Recent progress in defining the molecular mechanisms of Hepatitis C Virus (HCV entry affords the opportunity to exploit new viral and host targets for therapeutic intervention. Entry inhibitors would limit the expansion of the infected cell reservoir, and would complement the many replication inhibitors now under development. The current model for the pathway of entry involves the initial docking of the virus onto the cell surface through interactions of virion envelope and associated low density lipoproteins (LDL with cell surface glycosaminoglycans and lipoprotein receptors, followed by more specific utilization with other hepatocyte membrane proteins: Scavenger Receptor Class B type 1 (SR-BI, CD81, Claudin 1 (CLDN1 and Occludin (OCLN. The use of blockers of these interactions, e.g. specific antibodies, suggests that inhibition of any one step in the entry pathway can inhibit infection. Despite this knowledge base, the tools for compound screening, HCV pseudoparticles (HCVpp and cell culture virus (HCVcc, and the ability to adapt them to industrial use are only recently available and as a result drug discovery initiatives are in their infancy. Several therapies aiming at modulating the virus envelope to prevent host cell binding are in early clinical testing. The first test case for blocking a cellular co-receptor is an SR-BI modulator. ITX 5061, an orally active small molecule, targets SR-BI and has shown potent antiviral activity against HCVpp and HCVcc. ITX 5061 has exhibited good safety in previous clinical studies, and is being evaluated in the clinic in chronic HCV patients and patients undergoing liver transplantation. Entry inhibitors promise to be valuable players in the future development of curative therapy against HCV.

  10. Targeting α-synuclein: Therapeutic options.

    Science.gov (United States)

    Dehay, Benjamin; Decressac, Mickael; Bourdenx, Mathieu; Guadagnino, Irene; Fernagut, Pierre-Olivier; Tamburrino, Anna; Bassil, Fares; Meissner, Wassilios G; Bezard, Erwan

    2016-06-01

    The discovery of the central role of α-synuclein (αSyn) in the pathogenesis of Parkinson's disease (PD) has powered, in the last decade, the emergence of novel relevant models of this condition based on viral vector-mediated expression of the disease-causing protein or inoculation of toxic species of αSyn. Although the development of these powerful tools and models has provided considerable insights into the mechanisms underlying neurodegeneration in PD, it has also been translated into the expansion of the landscape of preclinical therapeutic strategies. Much attention is now brought to the proteotoxic mechanisms induced by αSyn and how to block them using strategies inspired by intrinsic cellular pathways such as the enhancement of cellular clearance by the lysosomal-autophagic system, through proteasome-mediated degradation or through immunization. The important effort undertaken by several laboratories and consortia to tackle these issues and identify novel targets warrants great promise for the discovery not only of neuroprotective approaches but also of restorative strategies for PD and other synucleinopathies. In this viewpoint, we summarize the latest advances in this new area of PD research and will discuss promising approaches and ongoing challenges. © 2016 International Parkinson and Movement Disorder Society. PMID:26926119

  11. Key cancer cell signal transduction pathways as therapeutic targets.

    Science.gov (United States)

    Bianco, Roberto; Melisi, Davide; Ciardiello, Fortunato; Tortora, Giampaolo

    2006-02-01

    Growth factor signals are propagated from the cell surface, through the action of transmembrane receptors, to intracellular effectors that control critical functions in human cancer cells, such as differentiation, growth, angiogenesis, and inhibition of cell death and apoptosis. Several kinases are involved in transduction pathways via sequential signalling activation. These kinases include transmembrane receptor kinases (e.g., epidermal growth factor receptor EGFR); or cytoplasmic kinases (e.g., PI3 kinase). In cancer cells, these signalling pathways are often altered and results in a phenotype characterized by uncontrolled growth and increased capability to invade surrounding tissue. Therefore, these crucial transduction molecules represent attractive targets for cancer therapy. This review will summarize current knowledge of key signal transduction pathways, that are altered in cancer cells, as therapeutic targets for novel selective inhibitors. The most advanced targeted agents currently under development interfere with function and expression of several signalling molecules, including the EGFR family; the vascular endothelial growth factor and its receptors; and cytoplasmic kinases such as Ras, PI3K and mTOR.

  12. Targeting NF-κB in glioblastoma: A therapeutic approach.

    Science.gov (United States)

    Friedmann-Morvinski, Dinorah; Narasimamurthy, Rajesh; Xia, Yifeng; Myskiw, Chad; Soda, Yasushi; Verma, Inder M

    2016-01-01

    Glioblastoma multiforme (GBM) is the most common and lethal form of intracranial tumor. We have established a lentivirus-induced mouse model of malignant gliomas, which faithfully captures the pathophysiology and molecular signature of mesenchymal human GBM. RNA-Seq analysis of these tumors revealed high nuclear factor κB (NF-κB) activation showing enrichment of known NF-κB target genes. Inhibition of NF-κB by either depletion of IκB kinase 2 (IKK2), expression of a IκBαM super repressor, or using a NEMO (NF-κB essential modifier)-binding domain (NBD) peptide in tumor-derived cell lines attenuated tumor proliferation and prolonged mouse survival. Timp1, one of the NF-κB target genes significantly up-regulated in GBM, was identified to play a role in tumor proliferation and growth. Inhibition of NF-κB activity or silencing of Timp1 resulted in slower tumor growth in both mouse and human GBM models. Our results suggest that inhibition of NF-κB activity or targeting of inducible NF-κB genes is an attractive therapeutic approach for GBM. PMID:26824076

  13. Therapeutic Targeting of Hyaluronan in the Tumor Stroma

    Energy Technology Data Exchange (ETDEWEB)

    Kultti, Anne, E-mail: akultti@halozyme.com [Department of Research, Halozyme Therapeutics, 11388 Sorrento Valley Road, San Diego, CA 92121 (United States); Li, Xiaoming; Jiang, Ping; Thompson, Curtis B. [Department of Pharmacology and Safety Assessment, Halozyme Therapeutics, 11388 Sorrento Valley Road, San Diego, CA 92121 (United States); Frost, Gregory I. [Department of General and Administrative, Halozyme Therapeutics, 11388 Sorrento Valley Road, San Diego, CA 92121 (United States); Shepard, H. Michael [Department of Research, Halozyme Therapeutics, 11388 Sorrento Valley Road, San Diego, CA 92121 (United States)

    2012-09-06

    The tumor stroma, consisting of non-malignant cells and the extracellular matrix, undergoes significant quantitative and qualitative changes throughout malignant transformation and tumor progression. With increasing recognition of the role of the tumor microenvironment in disease progression, stromal components of the tumor have become attractive targets for therapeutic intervention. Stromal accumulation of the glycosaminoglycan hyaluronan occurs in many tumor types and is frequently associated with a negative disease prognosis. Hyaluronan interacts with other extracellular molecules as well as cellular receptors to form a complex interaction network influencing physicochemical properties, signal transduction, and biological behavior of cancer cells. In preclinical animal models, enzymatic removal of hyaluronan is associated with remodeling of the tumor stroma, reduction of tumor interstitial fluid pressure, expansion of tumor blood vessels and facilitated delivery of chemotherapy. This leads to inhibition of tumor growth and increased survival. Current evidence shows that abnormal accumulation of hyaluronan may be an important stromal target for cancer therapy. In this review we highlight the role of hyaluronan and hyaluronan-mediated interactions in cancer, and discuss historical and recent data on hyaluronidase-based therapies and the effect of hyaluronan removal on tumor growth.

  14. Emerging Mitochondrial Therapeutic Targets in Optic Neuropathies.

    Science.gov (United States)

    Lopez Sanchez, M I G; Crowston, J G; Mackey, D A; Trounce, I A

    2016-09-01

    Optic neuropathies are an important cause of blindness worldwide. The study of the most common inherited mitochondrial optic neuropathies, Leber hereditary optic neuropathy (LHON) and autosomal dominant optic atrophy (ADOA) has highlighted a fundamental role for mitochondrial function in the survival of the affected neuron-the retinal ganglion cell. A picture is now emerging that links mitochondrial dysfunction to optic nerve disease and other neurodegenerative processes. Insights gained from the peculiar susceptibility of retinal ganglion cells to mitochondrial dysfunction are likely to inform therapeutic development for glaucoma and other common neurodegenerative diseases of aging. Despite it being a fast-evolving field of research, a lack of access to human ocular tissues and limited animal models of mitochondrial disease have prevented direct retinal ganglion cell experimentation and delayed the development of efficient therapeutic strategies to prevent vision loss. Currently, there are no approved treatments for mitochondrial disease, including optic neuropathies caused by primary or secondary mitochondrial dysfunction. Recent advances in eye research have provided important insights into the molecular mechanisms that mediate pathogenesis, and new therapeutic strategies including gene correction approaches are currently being investigated. Here, we review the general principles of mitochondrial biology relevant to retinal ganglion cell function and provide an overview of the major optic neuropathies with mitochondrial involvement, LHON and ADOA, whilst highlighting the emerging link between mitochondrial dysfunction and glaucoma. The pharmacological strategies currently being trialed to improve mitochondrial dysfunction in these optic neuropathies are discussed in addition to emerging therapeutic approaches to preserve retinal ganglion cell function.

  15. Neuropeptides as therapeutic targets in anxiety disorders.

    Science.gov (United States)

    Lin, En-Ju D

    2012-01-01

    In addition to the classical neurotransmitters, neuropeptides represent an important class of modulators for affective behaviors and associated disorders, such as anxiety disorders. Many neuropeptides are abundantly expressed in brain regions involved in emotional processing and anxiety behaviors. Moreover, risk factors for anxiety disorders such as stress modulate the expression of various neuropeptides in the brain. Due to the high prevalence of anxiety disorders and yet limited treatment options, there is a clear need for more effective therapeutics. In this regard, the various neuropeptides represent exciting candidates for new therapeutic designs. In this review, I will provide an up-to-date summary on the evidences for the involvement of seven neuropeptides in anxiety: corticotropin-releasing factor, urocortins, vasopressin, oxytocin, substance P, neuropeptide Y and galanin. This review will cover the behavioral effects of these neuropeptides in animal models of anxiety by both genetic and pharmacological manipulations. Human studies indicating a role for these neuropeptides in anxiety disorders will also be discussed.

  16. Therapeutic Approaches to Target Cancer Stem Cells

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, Arlhee, E-mail: arlhee@cim.sld.cu; Leon, Kalet [Department of Systems Biology, Center of Molecular Immunology, 216 Street, PO Box 16040, Atabey, Havana 11600 (Cuba)

    2011-08-15

    The clinical relevance of cancer stem cells (CSC) remains a major challenge for current cancer therapies, but preliminary findings indicate that specific targeting may be possible. Recent studies have shown that these tumor subpopulations promote tumor angiogenesis through the increased production of VEGF, whereas the VEGF neutralizing antibody bevacizumab specifically inhibits CSC growth. Moreover, nimotuzumab, a monoclonal antibody against the epidermal growth factor receptor (EGFR) with a potent antiangiogenic activity, has been shown by our group to reduce the frequency of CSC-like subpopulations in mouse models of brain tumors when combined with ionizing radiation. These studies and subsequent reports from other groups support the relevance of approaches based on molecular-targeted therapies to selectively attack CSC. This review discusses the relevance of targeting both the EGFR and angiogenic pathways as valid approaches to this aim. We discuss the relevance of identifying better molecular markers to develop drug screening strategies that selectively target CSC.

  17. Gastrointestinal stromal tumor and its targeted therapeutics

    Institute of Scientific and Technical Information of China (English)

    Jheri Dupart; Wei Zhang; Jonathan C. Trent

    2011-01-01

    Over the past 60 years, investigators of basic science, pathology, and clinical medicine have studied gastrointestinal stromal tumor (GIST) and made minor advances in patient care. Recent discoveries have led to an understanding of the biological rote of KIT and platelet-derived growth factor receptor-α in GIST and the development of the tyrosine kinase inhibitor imatinib mesylate (Gleevec, formerly STI-571), one of the most exciting examples of targeted therapy to date. The success of targeted therapy in GIST has lead to new developments in our understanding of the medical and surgical management of the disease. Intense study of GIST may lead to new paradigms in the management of cancer.

  18. Antibody therapeutics targeting ion channels:are we there yet?

    Institute of Scientific and Technical Information of China (English)

    Han SUN; Min LI

    2013-01-01

    The combination of technological advances,genomic sequences and market success is catalyzing rapid development of antibodybased therapeutics.Cell surface receptors and ion channel proteins are well known drug targets,but the latter has seen less success.The availability of crystal structures,better understanding of gating biophysics and validation of physiological roles now form an excellent foundation to pursue antibody-based therapeutics targeting ion channels to treat a variety of diseases.

  19. Antibody therapeutics targeting ion channels: are we there yet?

    Science.gov (United States)

    Sun, Han; Li, Min

    2013-01-01

    The combination of technological advances, genomic sequences and market success is catalyzing rapid development of antibody-based therapeutics. Cell surface receptors and ion channel proteins are well known drug targets, but the latter has seen less success. The availability of crystal structures, better understanding of gating biophysics and validation of physiological roles now form an excellent foundation to pursue antibody-based therapeutics targeting ion channels to treat a variety of diseases. PMID:23381110

  20. New Therapeutic Targets for Mood Disorders

    Directory of Open Access Journals (Sweden)

    Rodrigo Machado-Vieira

    2010-01-01

    Full Text Available Existing pharmacological treatments for bipolar disorder (BPD and major depressive disorder (MDD are often insufficient for many patients. Here we describe a number of targets/compounds that clinical and preclinical studies suggest could result in putative novel treatments for mood disorders. These include: (1 glycogen synthase kinase-3 (GSK-3 and protein kinase C (PKC, (2 the purinergic system, (3 histone deacetylases (HDACs, (4 the melatonergic system, (5 the tachykinin neuropeptides system, (6 the glutamatergic system, and (7 oxidative stress and bioenergetics. The paper reviews data on new compounds that have shown antimanic or antidepressant effects in subjects with mood disorders, or similar effects in preclinical animal models. Overall, an improved understanding of the neurobiological underpinnings of mood disorders is critical in order to develop targeted treatments that are more effective, act more rapidly, and are better tolerated than currently available therapies.

  1. GPCRs as potential therapeutic targets in preeclampsia

    OpenAIRE

    McGuane, JT; Conrad, KP

    2012-01-01

    Preeclampsia is an important obstetric complication that arises in 5% of women after the 20th week of gestation, for which there is no specific therapy and no cure. Although much of the recent investigation in this field has focused on soluble forms of the angiogenic membrane receptor tyrosine kinase Flt1 and the transforming growth factor β co-receptor Endoglin, there is significant clinical potential for several GPCR targets and their agonists or antagonists in preeclampsia. In this review,...

  2. New Therapeutic Targets for Mood Disorders

    OpenAIRE

    Rodrigo Machado-Vieira; Giacomo Salvadore; Nancy DiazGranados; Lobna Ibrahim; David Latov; Cristina Wheeler-Castillo; Jacqueline Baumann; Henter, Ioline D.; Carlos A. Zarate

    2010-01-01

    Existing pharmacological treatments for bipolar disorder (BPD) and major depressive disorder (MDD) are often insufficient for many patients. Here we describe a number of targets/compounds that clinical and preclinical studies suggest could result in putative novel treatments for mood disorders. These include: (1) glycogen synthase kinase-3 (GSK-3) and protein kinase C (PKC), (2) the purinergic system, (3) histone deacetylases (HDACs), (4) the melatonergic system, (5) the tachykinin neuropepti...

  3. Neutrophils: potential therapeutic targets in tularemia?

    Directory of Open Access Journals (Sweden)

    Lee-Ann H Allen

    2013-12-01

    Full Text Available The central role of neutrophils in innate immunity and host defense has long been recognized, and the ability of these cells to efficiently engulf and kill invading bacteria has been extensively studied, as has the role of neutrophil apoptosis in resolution of the inflammatory response. In the past few years additional immunoregulatory properties of neutrophils were discovered, and it is now clear that these cells play a much greater role in control of the immune response than was previously appreciated. In this regard, it is noteworthy that Francisella tularensis is one of relatively few pathogens that can successfully parasitize neutrophils as well as macrophages, DC and epithelial cells. Herein we will review the mechanisms used by F. tularensis to evade elimination by neutrophils. We will also reprise effects of this pathogen on neutrophil migration and lifespan as compared with other infectious and inflammatory disease states. In addition, we will discuss the evidence which suggests that neutrophils contribute to disease progression rather than effective defense during tularemia, and consider whether manipulation of neutrophil migration or turnover may be suitable adjunctive therapeutic strategies.

  4. Targeting TRP channels for novel migraine therapeutics.

    Science.gov (United States)

    Dussor, Gregory; Yan, J; Xie, Jennifer Y; Ossipov, Michael H; Dodick, David W; Porreca, Frank

    2014-11-19

    Migraine is increasingly understood to be a disorder of the brain. In susceptible individuals, a variety of "triggers" may influence altered central excitability, resulting in the activation and sensitization of trigeminal nociceptive afferents surrounding blood vessels (i.e., the trigeminovascular system), leading to migraine pain. Transient receptor potential (TRP) channels are expressed in a subset of dural afferents, including those containing calcitonin gene related peptide (CGRP). Activation of TRP channels promotes excitation of nociceptive afferent fibers and potentially lead to pain. In addition to pain, allodynia to mechanical and cold stimuli can result from sensitization of both peripheral afferents and of central pain pathways. TRP channels respond to a variety of endogenous conditions including chemical mediators and low pH. These channels can be activated by exogenous stimuli including a wide range of chemical and environmental irritants, some of which have been demonstrated to trigger migraine in humans. Activation of TRP channels can elicit CGRP release, and blocking the effects of CGRP through receptor antagonism or antibody strategies has been demonstrated to be effective in the treatment of migraine. Identification of approaches that can prevent activation of TRP channels provides an additional novel strategy for discovery of migraine therapeutics.

  5. Sphingolipid and Ceramide Homeostasis: Potential Therapeutic Targets

    Directory of Open Access Journals (Sweden)

    Simon A. Young

    2012-01-01

    Full Text Available Sphingolipids are ubiquitous in eukaryotic cells where they have been attributed a plethora of functions from the formation of structural domains to polarized cellular trafficking and signal transduction. Recent research has identified and characterised many of the key enzymes involved in sphingolipid metabolism and this has led to a heightened interest in the possibility of targeting these processes for therapies against cancers, Alzheimer's disease, and numerous important human pathogens. In this paper we outline the major pathways in eukaryotic sphingolipid metabolism and discuss these in relation to disease and therapy for both chronic and infectious conditions.

  6. Selecting Therapeutic Targets in Inflammatory Bowel Disease (STRIDE)

    DEFF Research Database (Denmark)

    Peyrin-Biroulet, L; Sandborn, W; Sands, B E;

    2015-01-01

    OBJECTIVES: The Selecting Therapeutic Targets in Inflammatory Bowel Disease (STRIDE) program was initiated by the International Organization for the Study of Inflammatory Bowel Diseases (IOIBD). It examined potential treatment targets for inflammatory bowel disease (IBD) to be used for a "treat-t...

  7. Optimal resource allocation for defense of targets based on differing measures of attractiveness.

    Science.gov (United States)

    Bier, Vicki M; Haphuriwat, Naraphorn; Menoyo, Jaime; Zimmerman, Rae; Culpen, Alison M

    2008-06-01

    This article describes the results of applying a rigorous computational model to the problem of the optimal defensive resource allocation among potential terrorist targets. In particular, our study explores how the optimal budget allocation depends on the cost effectiveness of security investments, the defender's valuations of the various targets, and the extent of the defender's uncertainty about the attacker's target valuations. We use expected property damage, expected fatalities, and two metrics of critical infrastructure (airports and bridges) as our measures of target attractiveness. Our results show that the cost effectiveness of security investment has a large impact on the optimal budget allocation. Also, different measures of target attractiveness yield different optimal budget allocations, emphasizing the importance of developing more realistic terrorist objective functions for use in budget allocation decisions for homeland security. PMID:18643831

  8. Is Estrogen a Therapeutic Target for Glaucoma?

    Science.gov (United States)

    Dewundara, Samantha S; Wiggs, Janey L; Sullivan, David A; Pasquale, Louis R

    2016-01-01

    endothelial nitric oxide synthase, a gene receptive to estrogen regulation, are associated with glaucoma. The study concluded that increasing evidence suggests that lifetime exposure to estrogen may alter the pathogenesis of glaucoma. Estrogen exposure may have a neuroprotective effect on the progression of POAG but further studies need to confirm this finding. The role of sex-specific preventive and therapeutic treatment may be on the horizon. PMID:26959139

  9. MicroRNAs: novel therapeutic targets in neurodegenerative diseases.

    Science.gov (United States)

    Roshan, Reema; Ghosh, Tanay; Scaria, Vinod; Pillai, Beena

    2009-12-01

    The prevalence of neurodegenerative disorders is rising steadily as human life expectancy increases. However, limited knowledge of the molecular basis of disease pathogenesis is a major hurdle in the identification of drug targets and development of therapeutic strategies for these largely incurable disorders. Recently, differential expression of endogenous regulatory small RNAs, known as 'microRNAs' (miRNAs), in patients of Alzheimer's disease, Parkinson's disease and models of ataxia suggest that they might have key regulatory roles in neurodegeneration. miRNAs that can target known mediators of neurodegeneration offer potential therapeutic targets. Our bioinformatic analysis suggests novel miRNA-target interactions that could potentially influence neurodegeneration. The recent development of molecules that alter miRNA expression promises valuable tools that will enhance the therapeutic potential of miRNAs.

  10. Superparamagnetic nanoparticles as targeted probes for diagnostic and therapeutic applications†

    OpenAIRE

    Xu, Chenjie; Sun, Shouheng

    2009-01-01

    Superparamagnetic nanoparticles (NPs) have been attractive for medical diagnostics and therapeutics due to their unique magnetic properties and their ability to interact with various biomolecules of interest. The solution phase based chemical synthesis provides a near precise control on NP size, and monodisperse magnetic NPs with standard deviation in diameter of less than 10% are now routinely available. Upon controlled surface functionalization and coupling with fragments of DNA strands, pr...

  11. Beta-3 adrenoceptors as new therapeutic targets for cardiovascular pathologies.

    OpenAIRE

    Gauthier, Chantal; Rozec, Bertrand; Manoury, Boris; Balligand, Jean-Luc

    2011-01-01

    Catecholamines play a key role in the regulation of cardiovascular function, classically through ß(1/2)-adrenoreceptors (AR) activation. After ß(3)-AR cloning in the late 1980s, convincing evidence for ß(3)-AR expression and function in cardiovascular tissues recently initiated a reexamination of their involvement in the pathophysiology of cardiovascular diseases. Their upregulation in diseased cardiovascular tissues and resistance to desensitization suggest they may be attractive therapeutic...

  12. Factor XI as a Therapeutic Target.

    Science.gov (United States)

    Gailani, David; Gruber, Andras

    2016-07-01

    Factor XIa is a plasma serine protease that contributes to thrombin generation primarily through proteolytic activation of factor IX. Traditionally considered part of the intrinsic pathway of coagulation, several lines of evidence now suggest that factor XIa serves as an interface between the vitamin-K-dependent thrombin generation mechanism and the proinflammatory kallikrein-kinin system, allowing the 2 systems to influence each other. Work with animal models and results from epidemiological surveys of human populations support a role for factor XIa in thromboembolic disease. These data and the clinical observation that deficiency of factor XI, the zymogen of factor XIa, produces a relatively mild bleeding disorder suggest that drugs targeting factor XI or XIa could produce an antithrombotic effect while leaving hemostasis largely intact. Results of a recent trial comparing antisense-induced factor XI reduction to standard-dose low molecular-weight heparin as prophylaxis for venous thrombosis during knee replacement are encouraging in this regard. Here, we discuss recent findings on the biochemistry, physiology, and pathology of factor XI as they relate to thromboembolic disease. PMID:27174099

  13. The therapeutic value of targeting inflammation in gastrointestinal cancers

    OpenAIRE

    Sun, Beicheng; Karin, Michael

    2014-01-01

    Inflammation has been implicated in the initiation and progression of gastrointestinal (GI) cancers. Inflammation also plays important roles in subverting immune tolerance, escape from immune surveillance, and conferring resistance to chemotherapeutic agents. Targeting key regulators and mediators of inflammation represents an attractive strategy for GI cancer prevention and treatment. However, the targeting of inflammation in GI cancer is not straight-forward and sometimes inflammation may c...

  14. ENaCs and ASICs as therapeutic targets

    OpenAIRE

    Qadri, Yawar J.; Rooj, Arun K.; Fuller, Catherine M.

    2012-01-01

    The epithelial Na+ channel (ENaC) and acid-sensitive ion channel (ASIC) branches of the ENaC/degenerin superfamily of cation channels have drawn increasing attention as potential therapeutic targets in a variety of diseases and conditions. Originally thought to be solely expressed in fluid absorptive epithelia and in neurons, it has become apparent that members of this family exhibit nearly ubiquitous expression. Therapeutic opportunities range from hypertension, due to the role of ENaC in ma...

  15. Critical questions in development of targeted nanoparticle therapeutics

    OpenAIRE

    Korsmeyer, Richard

    2016-01-01

    One of the fourteen Grand Challenges for Engineering articulated by the US National Academy of Engineering is ‘Engineer Better Medicines’. Although there are many ways that better medicines could be engineered, one of the most promising ideas is to improve our ability to deliver the therapeutic molecule more precisely to the desired target. Most conventional drug delivery methods (oral absorption, intravenous infusion etc.) result in systemic exposure to the therapeutic molecule, which places...

  16. Principles of separation: indications and therapeutic targets for plasma exchange.

    Science.gov (United States)

    Williams, Mark E; Balogun, Rasheed A

    2014-01-01

    Extracorporeal "blood purification," mainly in the form of hemodialysis has been a major portion of the clinical activity of many nephrologists for the past 5 decades. A possibly older procedure, therapeutic plasma exchange, separates and then removes plasma as a method of removing pathogenic material from the patient. In contrast to hemodialysis, therapeutic plasma exchange preferentially removes biologic substances of high molecular weight such as autoantibodies or alloantibodies, antigen-antibody complexes, and Ig paraproteins. These molecular targets may be cleared through two alternative procedures: centrifugal separation and membrane separation. This review presents operational features of each procedure, with relevance to the nephrologist. Kinetics of removal of these plasma constituents are based on the principles of separation by the apheresis technique and by features specific to each molecular target, including their production and compartmentalization in the body. Molecular targets for common renal conditions requiring therapeutic plasma exchange are also discussed in detail.

  17. Automatic Attraction of Visual Attention by Supraletter Features of Former Target Strings

    DEFF Research Database (Denmark)

    Kyllingsbæk, Søren; Van Lommel, Sven; Sørensen, Thomas Alrik;

    2014-01-01

    Observers were trained to search for a particular horizontal string of 3 capital letters presented among similar strings consisting of exactly the same letters in different orders. The training was followed by a test in which the observers searched for a new target that was identical to one...... on the circumference of an imaginary circle around the fixation point. The training phase of Experiment 2 was similar, but in the test phase of the experiment, the strings were located in a vertical array centered on fixation, and in target-present arrays, the target always appeared at fixation. In both experiments......, performance (d’) degraded on trials in which former targets were present, suggesting that the former targets automatically drew processing resources away from the current targets. Apparently, the two experiments showed automatic attraction of visual attention by supraletter features of former target strings....

  18. Particulate Systems for Targeting of Macrophages: Basic and Therapeutic Concepts

    DEFF Research Database (Denmark)

    Moghimi, Seyed Moien; Parhamifar, Ladan; Ahmadvand, Davoud;

    2012-01-01

    and intracellular drug release processes can be optimized through modifications of the drug carrier physicochemical properties, which include hydrodynamic size, shape, composition and surface characteristics. Through such modifications together with understanding of macrophage cell biology, targeting may be aimed...... at a particular subset of macrophages. Advances in basic and therapeutic concepts of particulate targeting of macrophages and related nanotechnology approaches for immune cell modifications are discussed.Copyright © 2012 S. Karger AG, Basel...

  19. Elements toward novel therapeutic targeting of the adrenergic system.

    Science.gov (United States)

    Ghanemi, Abdelaziz; Hu, Xintian

    2015-02-01

    Adrenergic receptors belong to the family of the G protein coupled receptors that represent important targets in the modern pharmacotherapies. Studies on different physiological and pathophysiological properties of the adrenergic system have led to novel evidences and theories that suggest novel possible targeting of such system in a variety of pathologies and disorders, even beyond the classical known therapeutic possibilities. Herein, those advances have been illustrated with selected concepts and different examples. Furthermore, we illustrated the applications and the therapeutic implications that such findings and advances might have in the contexts of experimental pharmacology, therapeutics and clinic. We hope that the content of this work will guide researches devoted to the adrenergic aspects that combine neurosciences with pharmacology. PMID:25481798

  20. A Current Review of Targeted Therapeutics for Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Susana M. Campos

    2010-01-01

    Full Text Available Difficult to detect, ovarian cancer typically presents at an advanced stage. Significant progress has been achieved in the treatment of ovarian cancer with therapeutics focused on DNA replication or cell division. However, despite sensitivity to induction chemotherapy the majority of patients will develop recurrent disease. Conventional agents for recurrent disease offer little in terms of long-term responses. Various targeted therapeutics have been explored in the management of ovarian cancer. These include monoclonal antibodies to epidermal growth factor receptors, small molecule tyrosine kinase inhibitors, monoclonal antibodies directed at the vascular endothelial growth factor (bevacizumab, and the small tyrosine kinase inhibitors that target the vascular endothelial growth factor receptor. Recently, several other agents have come forth as potential therapeutic agents in the management of ovarian cancer. These include monoclonal antibodies to the folate receptor, triple angiokinase inhibitors, PARP inhibitors, aurora kinase inhibitors, inhibitors of the Hedgehog pathway, folate receptor antagonists, and MTOR inhibitors.

  1. EGFR-Targeted Therapeutics: Focus on SCCHN and NSCLC

    Directory of Open Access Journals (Sweden)

    Martin Sattler

    2008-01-01

    Full Text Available Cancers of the head and neck and of the lung are associated with high morbidity and mortality rates that have remained relatively unchanged for more than 3 decades, despite advances in radiation therapies and chemotherapies over the same time. It is generally believed that the efficacy of standard therapy regimens has reached a plateau for these cancers. The discovery of specific aberrant molecular signaling pathways in solid tumors has afforded promising new directions for newer “targeted” cancer therapeutics. Among these, the epidermal growth factor receptor (EGFR shows promise as a therapeutic target. Clinical studies have demonstrated that this targeted approach provides clinically meaningful benefit. This article reviews EGFR-targeted therapies in use and in development, with a focus on the role of EGFR in the pathophysiology of head and neck and lung cancer, and new concepts being investigated to improve outcomes with these agents.

  2. Breast cancer stem cells, EMT and therapeutic targets

    Energy Technology Data Exchange (ETDEWEB)

    Kotiyal, Srishti; Bhattacharya, Susinjan, E-mail: s.bhattacharya@jiit.ac.in

    2014-10-10

    Highlights: • Therapeutic targeting or inhibition of the key molecules of signaling pathways can control growth of breast cancer stem cells (BCSCs). • Development of BCSCs also involves miRNA interactions. • Therapeutic achievement can be done by targeting identified targets in the BCSC pathways. - Abstract: A small heterogeneous population of breast cancer cells acts as seeds to induce new tumor growth. These seeds or breast cancer stem cells (BCSCs) exhibit great phenotypical plasticity which allows them to undergo “epithelial to mesenchymal transition” (EMT) at the site of primary tumor and a future reverse transition. Apart from metastasis they are also responsible for maintaining the tumor and conferring it with drug and radiation resistance and a tendency for post-treatment relapse. Many of the signaling pathways involved in induction of EMT are involved in CSC generation and regulation. Here we are briefly reviewing the mechanism of TGF-β, Wnt, Notch, TNF-α, NF-κB, RTK signalling pathways which are involved in EMT as well as BCSCs maintenance. Therapeutic targeting or inhibition of the key/accessory players of these pathways could control growth of BCSCs and hence malignant cancer. Additionally several miRNAs are dysregulated in cancer stem cells indicating their roles as oncogenes or tumor suppressors. This review also lists the miRNA interactions identified in BCSCs and discusses on some newly identified targets in the BCSC regulatory pathways like SHIP2, nicastrin, Pin 1, IGF-1R, pro-inflammatory cytokines and syndecan which can be targeted for therapeutic achievements.

  3. Automatic Attraction of Visual Attention by Supraletter Features of Former Target Strings

    Directory of Open Access Journals (Sweden)

    Søren eKyllingsbæk

    2014-11-01

    Full Text Available Observers were trained to search for a particular horizontal string of 3 capital letters presented among similar strings consisting of exactly the same letters in different orders. The training was followed by a test in which the observers searched for a new target that was identical to one of the former distractors. The new distractor set consisted of the remaining former distractors plus the former target. On each trial, three letter-strings were displayed, which included the target string with a probability of .5. In Experiment 1, the strings were centered at different locations on the circumference of an imaginary circle around the fixation point. The training phase of Experiment 2 was similar, but in the test phase of the experiment, the strings were located in a vertical array centered on fixation, and in target-present arrays, the target always appeared at fixation. In both experiments, performance (d’ degraded on trials in which former targets were present, suggesting that the former targets automatically drew processing resources away from the current targets. Apparently, the two experiments showed automatic attraction of visual attention by supraletter features of former target strings.

  4. Therapeutic Attraction as a Function of Therapist Attire and Office Furnishings.

    Science.gov (United States)

    Amira, Stephen; Abramowitz, Stephen I.

    1979-01-01

    Undergraduates viewed a simulated therapy segment presented on four videotapes varying in traditionalism of the therapist's attire and office. Ratings of attraction were independent of therapist attire. Subjects' impressions were largely unaffected by office arrangements. Data refute formulations assigning therapist accoutrements a major role in…

  5. Therapeutic Targets of Triglyceride Metabolism as Informed by Human Genetics.

    Science.gov (United States)

    Bauer, Robert C; Khetarpal, Sumeet A; Hand, Nicholas J; Rader, Daniel J

    2016-04-01

    Human genetics has contributed to the development of multiple drugs to treat hyperlipidemia and coronary artery disease (CAD), most recently including antibodies targeting PCSK9 to reduce LDL cholesterol. Despite these successes, a large burden of CAD remains. Genetic and epidemiological studies have suggested that circulating triglyceride (TG)-rich lipoproteins (TRLs) are a causal risk factor for CAD, presenting an opportunity for novel therapeutic strategies. We discuss recent unbiased human genetics testing, including genome-wide association studies (GWAS) and whole-genome or -exome sequencing, that have identified the lipoprotein lipase (LPL) and hepatic lipogenesis pathways as important mechanisms in the regulation of circulating TRLs. Further strengthening the causal relationship between TRLs and CAD, findings such as these may provide novel targets for much-needed potential therapeutic interventions. PMID:26988439

  6. Mitochondria as therapeutic targets for cancer stem cells

    Institute of Scientific and Technical Information of China (English)

    In Sung Song; Jeong Yu Jeong; Seung Hun Jeong; Hyoung Kyu Kim; Kyung Soo Ko; Byoung Doo Rhee; Nari Kim; Jin Han

    2015-01-01

    Cancer stem cells (CSCs) are maintained by theirsomatic stem cells and are responsible for tumorinitiation, chemoresistance, and metastasis. Evidencefor the CSCs existence has been reported for a numberof human cancers. The CSC mitochondria have beenshown recently to be an important target for cancertreatment, but clinical significance of CSCs and theirmitochondria properties remain unclear. Mitochondriatargetedagents are considerably more effectivecompared to other agents in triggering apoptosis ofCSCs, as well as general cancer cells, via mitochondrialdysfunction. Mitochondrial metabolism is altered incancer cells because of their reliance on glycolyticintermediates, which are normally destined for oxidativephosphorylation. Therefore, inhibiting cancer-specificmodifications in mitochondrial metabolism, increasingreactive oxygen species production, or stimulatingmitochondrial permeabilization transition could bepromising new therapeutic strategies to activate celldeath in CSCs as well, as in general cancer cells. Thisreview analyzed mitochondrial function and its potentialas a therapeutic target to induce cell death in CSCs.Furthermore, combined treatment with mitochondriatargeteddrugs will be a promising strategy for thetreatment of relapsed and refractory cancer.

  7. Targeted polymeric therapeutic nanoparticles: design, development and clinical translation†

    OpenAIRE

    Kamaly, Nazila; Xiao, Zeyu; Valencia, Pedro M.; Radovic-Moreno, Aleksandar F.; Farokhzad, Omid C.

    2012-01-01

    Polymeric materials have been used in a range of pharmaceutical and biotechnology products for more than 40 years. These materials have evolved from their earlier use as biodegradable products such as resorbable sutures, orthopaedic implants, macroscale and microscale drug delivery systems such as microparticles and wafers used as controlled drug release depots, to multifunctional nanoparticles (NPs) capable of targeting, and controlled release of therapeutic and diagnostic agents. These newe...

  8. Functions of astrocytes and their potential as therapeutic targets

    OpenAIRE

    Kimelberg, Harold K.; NEDERGAARD, Maiken

    2010-01-01

    Astrocytes are often referred to, and historically have been regarded as, support cells of the mammalian CNS. Work over the last decade suggests otherwise, that astrocytes may in fact play a more active role in higher neural processing than previously recognized. Because astrocytes can potentially serve as novel therapeutic targets, it is critical to understand how astrocytes execute their diverse supportive tasks while maintaining neuronal health. To that end, this review will focus on the s...

  9. Targeting Mitochondria as Therapeutic Strategy for Metabolic Disorders

    OpenAIRE

    Daniela Sorriento; Antonietta Valeria Pascale; Rosa Finelli; Anna Lisa Carillo; Roberto Annunziata; Bruno Trimarco; Guido Iaccarino

    2014-01-01

    Mitochondria are critical regulator of cell metabolism; thus, mitochondrial dysfunction is associated with many metabolic disorders. Defects in oxidative phosphorylation, ROS production, or mtDNA mutations are the main causes of mitochondrial dysfunction in many pathological conditions such as IR/diabetes, metabolic syndrome, cardiovascular diseases, and cancer. Thus, targeting mitochondria has been proposed as therapeutic approach for these conditions, leading to the development of small mol...

  10. Autophagy as a new therapeutic target in Duchenne muscular dystrophy

    OpenAIRE

    Palma, C.; F. Morisi; Cheli, S; S. Pambianco; Cappello, V; Vezzoli, M; Rovere-Querini, P; Moggio, M; Ripolone, M.; Francolini, M; Sandri, M.; Clementi, E

    2012-01-01

    A resolutive therapy for Duchene muscular dystrophy, a severe degenerative disease of the skeletal muscle, is still lacking. Because autophagy has been shown to be crucial in clearing dysfunctional organelles and in preventing tissue damage, we investigated its pathogenic role and its suitability as a target for new therapeutic interventions in Duchenne muscular dystrophy (DMD). Here we demonstrate that autophagy is severely impaired in muscles from patients affected by DMD and mdx mice, a mo...

  11. Macrophages associated with tumors as potential targets and therapeutic intermediates

    OpenAIRE

    Vinogradov, Serguei; Warren, Galya; Wei, Xin

    2014-01-01

    Tumor-associated macrophages (TAMs) form approximately 50% of tumor mass. TAMs were shown to promote tumor growth by suppressing immunocompetent cells, inducing neovascularization and supporting cancer stem cells. TAMs retain mobility in tumor mass, which can potentially be employed for better intratumoral biodistribution of nanocarriers and effective tumor growth inhibition. Due to the importance of TAMs, they are increasingly becoming principal targets of novel therapeutic approaches. In th...

  12. From Toxins Targeting Ligand Gated Ion Channels to Therapeutic Molecules

    Directory of Open Access Journals (Sweden)

    Antoine Taly

    2011-03-01

    Full Text Available Ligand-gated ion channels (LGIC play a central role in inter-cellular communication. This key function has two consequences: (i these receptor channels are major targets for drug discovery because of their potential involvement in numerous human brain diseases; (ii they are often found to be the target of plant and animal toxins. Together this makes toxin/receptor interactions important to drug discovery projects. Therefore, toxins acting on LGIC are presented and their current/potential therapeutic uses highlighted.

  13. [Gap junctions: A new therapeutic target in major depressive disorder?].

    Science.gov (United States)

    Sarrouilhe, D; Dejean, C

    2015-11-01

    Major depressive disorder is a multifactorial chronic and debilitating mood disease with high lifetime prevalence and is associated with excess mortality, especially from cardiovascular diseases and through suicide. The treatments of this disease with tricyclic antidepressants and monoamine oxidase inhibitors are poorly tolerated and those that selectively target serotonin and norepinephrine re-uptake are not effective in all patients, showing the need to find new therapeutic targets. Post-mortem studies of brains from patients with major depressive disorders described a reduced expression of the gap junction-forming membrane proteins connexin 30 and connexin 43 in the prefrontal cortex and the locus coeruleus. The use of chronic unpredictable stress, a rodent model of depression, suggests that astrocytic gap junction dysfunction contributes to the pathophysiology of major depressive disorder. Chronic treatments of rats with fluoxetine and of rat cultured cortical astrocytes with amitriptyline support the hypothesis that the upregulation of gap junctional intercellular communication between brain astrocytes could be a novel mechanism for the therapeutic effect of antidepressants. In conclusion, astrocytic gap junctions are emerging as a new potential therapeutic target for the treatment of patients with major depressive disorder.

  14. Injectable nanomaterials for drug delivery: carriers, targeting moieties, and therapeutics.

    Science.gov (United States)

    Webster, David M; Sundaram, Padma; Byrne, Mark E

    2013-05-01

    Therapeutics such as nucleic acids, proteins/peptides, vaccines, anti-cancer, and other drugs have disadvantages of low bio-availability, rapid clearance, and high toxicity. Thus, there is a significant need for the development of efficient delivery methods and carriers. Injectable nanocarriers have received much attention due to their vast range of structures and ability to contain multiple functional groups, both within the bulk material and on the surface of the particles. Nanocarriers may be tailored to control drug release and/or increase selective cell targeting, cellular uptake, drug solubility, and circulation time, all of which lead to a more efficacious delivery and action of therapeutics. The focus of this review is injectable, targeted nanoparticle drug delivery carriers highlighting the diversity of nanoparticle materials and structures as well as highlighting current therapeutics and targeting moieties. Structures and materials discussed include liposomes, polymersomes, dendrimers, cyclodextrin-containing polymers (CDPs), carbon nanotubes (CNTs), and gold nanoparticles. Additionally, current clinical trial information and details such as trial phase, treatment, active drug, carrier sponsor, and clinical trial identifier for different materials and structures are presented and discussed.

  15. Novel therapeutic Strategies for Targeting Liver Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Naoki Oishi, Xin Wei Wang

    2011-01-01

    Full Text Available The cancer stem cell (CSC hypothesis was first proposed over 40 years ago. Advances in CSC isolation were first achieved in hematological malignancies, with the first CSC demonstrated in acute myeloid leukemia. However, using similar strategies and technologies, and taking advantage of available surface markers, CSCs have been more recently demonstrated in a growing range of epithelial and other solid organ malignancies, suggesting that the majority of malignancies are dependent on such a compartment.Primary liver cancer consists predominantly of hepatocellular carcinoma (HCC and intrahepatic cholangiocarcinoma (ICC. It is believed that hepatic progenitor cells (HPCs could be the origin of some HCCs and ICCs. Furthermore, stem cell activators such as Wnt/β-catenin, TGF-β, Notch and Hedgehog signaling pathways also expedite tumorigenesis, and these pathways could serve as molecular targets to assist in designing cancer prevention strategies. Recent studies indicate that additional factors such as EpCAM, Lin28 or miR-181 may also contribute to HCC progression by targeting HCC CSCs. Various therapeutic drugs that directly modulate CSCs have been examined in vivo and in vitro. However, CSCs clearly have a complex pathogenesis, with a considerable crosstalk and redundancy in signaling pathways, and hence targeting single molecules or pathways may have a limited benefit for treatment. Many of the key signaling molecules are shared by both CSCs and normal stem cells, which add further challenges for designing molecularly targeted strategies specific to CSCs but sparing normal stem cells to avoid side effects. In addition to the direct control of CSCs, many other factors that are needed for the maintenance of CSCs, such as angiogenesis, vasculogenesis, invasion and migration, hypoxia, immune evasion, multiple drug resistance, and radioresistance, should be taken into consideration when designing therapeutic strategies for HCC.Here we provide a brief

  16. Identification of potential glucocorticoid receptor therapeutic targets in multiple myeloma

    Science.gov (United States)

    Thomas, Alexandra L.; Coarfa, Cristian; Qian, Jun; Wilkerson, Joseph J.; Rajapakshe, Kimal; Krett, Nancy L.; Gunaratne, Preethi H.; Rosen, Steven T.

    2015-01-01

    Glucocorticoids (GC) are a cornerstone of combination therapies for multiple myeloma. However, patients ultimately develop resistance to GCs frequently based on decreased glucocorticoid receptor (GR) expression. An understanding of the direct targets of GC actions, which induce cell death, is expected to culminate in potential therapeutic strategies for inducing cell death by regulating downstream targets in the absence of a functional GR. The specific goal of our research is to identify primary GR targets that contribute to GC-induced cell death, with the ultimate goal of developing novel therapeutics around these targets that can be used to overcome resistance to GCs in the absence of GR. Using the MM.1S glucocorticoid-sensitive human myeloma cell line, we began with the broad platform of gene expression profiling to identify glucocorticoid-regulated genes further refined by combination treatment with phosphatidylinositol-3’-kinase inhibition (PI3Ki). To further refine the search to distinguish direct and indirect targets of GR that respond to the combination GC and PI3Ki treatment of MM.1S cells, we integrated 1) gene expression profiles of combination GC treatment with PI3Ki, which induces synergistic cell death; 2) negative correlation between genes inhibited by combination treatment in MM.1S cells and genes over-expressed in myeloma patients to establish clinical relevance and 3) GR chromatin immunoprecipitation with massively parallel sequencing (ChIP-Seq) in myeloma cells to identify global chromatin binding for the glucocorticoid receptor (GR). Using established bioinformatics platforms, we have integrated these data sets to identify a subset of candidate genes that may form the basis for a comprehensive picture of glucocorticoid actions in multiple myeloma. As a proof of principle, we have verified two targets, namely RRM2 and BCL2L1, as primary functional targets of GR involved in GC-induced cell death. PMID:26715915

  17. Therapeutic targeting of CD19 in hematological malignancies: past, present, future and beyond.

    Science.gov (United States)

    Katz, Ben-Zion; Herishanu, Yair

    2014-05-01

    Abstract During the past few decades, CD19 has been at the center of various scientific/translational endeavors to develop targeted therapeutics against B-cell malignancies. Due to the expression pattern of CD19 throughout the B-cell lineage, and on most B-cell malignancies, it became a preferred target for the development of experimental therapeutic agents during the first years of the monoclonal antibodies era. Successful preclinical experiments led to the first generation of clinical trials, based predominantly on toxin/anti-CD19 murine immunoconjugates. These, however, mostly failed due to poor biochemical design of the reagents, and the generation of human anti-murine antibodies. Modern anti-CD19 reagents are based on humanized anti-CD19 antibodies designed to attract components of the immune system, predominantly T-cells, to eliminate CD19+ target cells. These include, for example, modified anti-CD19 antibodies, and bispecific anti-CD19/CD3 antibodies. One of the most attractive approaches to target malignant B-cells is based on the introduction of chimeric antigen receptors (CARs) into patient derived T-cells. CARs are composed of extracellular recognition sequences derived from anti-CD19 antibodies, and intracellular signaling components that can foster T-cell activation. The novel anti-B-cell therapeutics have shown promising clinical effects against various B-cell malignancies, including acute lymphoblastic leukemia (ALL), chronic lymphocytic leukemia (CLL) and non-Hodgkin lymphoma (NHL), although expected side effects (e.g. significant immunosuppression) were also recorded. These novel successful anti-CD19 agents may have the potential to be used in other fields, such as autoimmunity.

  18. Superparamagnetic nanoparticles as targeted probes for diagnostic and therapeutic applications.

    Science.gov (United States)

    Xu, Chenjie; Sun, Shouheng

    2009-08-01

    Superparamagnetic nanoparticles (NPs) have been attractive for medical diagnostics and therapeutics due to their unique magnetic properties and their ability to interact with various biomolecules of interest. The solution phase based chemical synthesis provides a near precise control on NP size, and monodisperse magnetic NPs with standard deviation in diameter of less than 10% are now routinely available. Upon controlled surface functionalization and coupling with fragments of DNA strands, proteins, peptides or antibodies, these NPs can be well-dispersed in biological solutions and used for drug delivery, magnetic separation, magnetic resonance imaging contrast enhancement and magnetic fluid hyperthermia. This Perspective reviews the common syntheses and controlled surface functionalization of monodisperse Fe(3)O(4)-based superparamagnetic NPs. It further outlines the exciting application potentials of these NPs in magnetic resonance imaging and drug delivery. PMID:20449070

  19. Attention attraction in an ophthalmic diagnostic device using sound-modulated fixation targets.

    Science.gov (United States)

    Gramatikov, Boris I; Rangarajan, Shreya; Irsch, Kristina; Guyton, David L

    2016-08-01

    This study relates to eye fixation systems with combined optical and audio systems. Many devices for eye diagnostics and some devices for eye therapeutics require the patient to fixate on a small target for a certain period of time, during which the eyes do not move and data from substructures of one or both eyes are acquired and analyzed. With young pediatric patients, a monotonously blinking target is not sufficient to retain attention steadily. We developed a method for modulating the intensity of a point fixation target using sounds appropriate to the child's age and preference. The method was realized as a subsystem of a Pediatric Vision Screener which employs retinal birefringence scanning for detection of central fixation. Twenty-one children, age 2-18, were studied. Modulation of the fixation target using sounds ensured the eye fixated on the target, and with appropriate choice of sounds, performed significantly better than a monotonously blinking target accompanied by a plain beep. The method was particularly effective with children of ages up to 10, after which its benefit disappeared. Typical applications of target modulation would be as supplemental subsystems in pediatric ophthalmic diagnostic devices, such as scanning laser ophthalmoscopes, optical coherence tomography units, retinal birefringence scanners, fundus cameras, and perimeters. PMID:27245750

  20. CC-chemokine receptors: a potential therapeutic target for Trypanosoma cruzi-elicited myocarditis.

    Science.gov (United States)

    Marino, A P M P; Silva, A A; Santos, P V A; Pinto, L M O; Gazinelli, R T; Teixeira, M M; Lannes-Vieira, J

    2005-03-01

    The comprehension of the pathogenesis of Trypanosoma cruzi-elicited myocarditis is crucial to delineate new therapeutic strategies aiming to ameliorate the inflammation that leads to heart dysfunction, without hampering parasite control. The augmented expression of CCL5/RANTES and CCL3/MIP-1alpha, and their receptor CCR5, in the heart of T. cruzi-infected mice suggests a role for CC-chemokines and their receptors in the pathogenesis of T. cruzi-elicited myocarditis. Herein, we discuss our recent results using a CC-chemokine receptor inhibitor (Met-RANTES), showing the participation of CC-chemokines in T. cruzi infection and unraveling CC-chemokine receptors as an attractive therapeutic target for further evaluation in Chagas disease.

  1. CC-chemokine receptors: a potential therapeutic target for Trypanosoma cruzi-elicited myocarditis

    Directory of Open Access Journals (Sweden)

    APMP Marino

    2005-03-01

    Full Text Available The comprehension of the pathogenesis of Trypanosoma cruzi-elicited myocarditis is crucial to delineate new therapeutic strategies aiming to ameliorate the inflammation that leads to heart dysfunction, without hampering parasite control. The augmented expression of CCL5/RANTES and CCL3/MIP-1alpha, and their receptor CCR5, in the heart of T. cruzi-infected mice suggests a role for CC-chemokines and their receptors in the pathogenesis of T. cruzi-elicited myocarditis. Herein, we discuss our recent results using a CC-chemokine receptor inhibitor (Met-RANTES, showing the participation of CC-chemokines in T. cruzi infection and unraveling CC-chemokine receptors as an attractive therapeutic target for further evaluation in Chagas disease.

  2. Alzheimer’s disease:Risk factors and therapeutic targets

    Institute of Scientific and Technical Information of China (English)

    Laxman Pokhrel

    2015-01-01

    Alzheimer’s disease (AD), a neurodegenerative disorder, has been determined as an outcome of genetic as well as behavioral conditions. The complete understanding of its generation and progress is yet to be understood. However, there has been a significant progress in the diagnosis and identification of the associated risk factors of AD. Several of the risk factors were found connected with cholesterol. Scientists are mainly focusing on the reduction of amyloid β and stabilization of tau protein towards the development of its drugs. To modulate amyloid β, the key components of cholesterol metabolism have been attractive targets and the enzymes involved in the phosphorylation of tau have been tried to stabilize tau protein. This review article briefly highlights the symptoms, risk factors, and drug targets of AD.

  3. Alzheimer’s disease: Risk factors and therapeutic targets

    Directory of Open Access Journals (Sweden)

    Laxman Pokhrel

    2015-09-01

    Full Text Available Alzheimer’s disease (AD, a neurodegenerative disorder, has been determined as an outcome of genetic as well as behavioral conditions. The complete understanding of its generation and progress is yet to be understood. However, there has been a significant progress in the diagnosis and identification of the associated risk factors of AD. Several of the risk factors were found connected with cholesterol. Scientists are mainly focusing on the reduction of amyloid β and stabilization of tau protein towards the development of its drugs. To modulate amyloid β, the key components of cholesterol metabolism have been attractive targets and the enzymes involved in the phosphorylation of tau have been tried to stabilize tau protein. This review article briefly highlights the symptoms, risk factors, and drug targets of AD.

  4. Toll-like receptors as therapeutic targets in cystic fibrosis.

    LENUS (Irish Health Repository)

    Greene, Catherine M

    2008-12-01

    Background: Toll-like receptors (TLRs) are pattern recognition receptors that act as a first-line of defence in the innate immune response by recognising and responding to conserved molecular patterns in microbial factors and endogenous danger signals. Cystic fibrosis (CF)-affected airways represent a milieu potentially rich in TLR agonists and the chronic inflammatory phenotype evident in CF airway epithelial cells is probably due in large part to activation of TLRs. Objective\\/methods: To examine the prospects of developing novel therapies for CF by targeting TLRs. We outline the expression and function of TLRs and explore the therapeutic potential of naturally-occurring and synthetic TLR inhibitors for CF. Results\\/conclusion: Modulation of TLRs has therapeutic potential for the inflammatory lung manifestations of CF.

  5. Neuropeptide Receptors: Novel Targets for HIV/AIDS Therapeutics

    Directory of Open Access Journals (Sweden)

    Donald R. Branch

    2011-03-01

    Full Text Available The vasoactive intestinal peptide/pituitary adenylyl cyclase-activating polypepetide (VPAC receptors are important for many physiologic functions, including glucose homeostasis, neuroprotection, memory, gut function, modulation of the immune system and circadian function. In addition, VPAC receptors have been shown to function in vitro to modulate the infection of HIV by a signal transduction pathway that appears to regulate viral integration. In this article, the affects of VPAC stimulation on HIV infection will be reviewed and approaches for the development of HIV/AIDS therapeutics that target these receptors will be described. Novel HIV/AIDS therapeutics are urgently required to stem the continued spread of this disease, particularly in underdeveloped countries. Drug design to inhibit signaling through VPAC1 and stimulate signaling through VPAC2 could lead to alternative therapies for the treatment and/or prevention of HIV/AIDS.

  6. Human neutrophil elastase: mediator and therapeutic target in atherosclerosis.

    Science.gov (United States)

    Henriksen, Peter A; Sallenave, Jean-Michel

    2008-01-01

    Human neutrophil elastase (HNE) is present within atherosclerotic plaques where it contributes to matrix degradation and weakening of the vessel wall associated with the complications of aneurysm formation and plaque rupture. It is joined by other extracellular proteases in these actions but the broad range of substrates and potency of HNE coupled with the potential for rapid increases in HNE activity associated with neutrophil degranulation in acute coronary syndromes single this disruptive protease out as therapeutic target in atherosclerotic disease. This review summarises the role of HNE in neutrophil-mediated endothelial injury and the evidence for HNE as a mediator of atherosclerotic plaque development. The therapeutic potential of HNE neutralising antiproteases, alpha-1-antitrypsin and elafin, in atherosclerosis, is discussed. PMID:18289916

  7. Targeted complement inhibition and microvasculature in transplants: a therapeutic perspective.

    Science.gov (United States)

    Khan, M A; Hsu, J L; Assiri, A M; Broering, D C

    2016-02-01

    Active complement mediators play a key role in graft-versus-host diseases, but little attention has been given to the angiogenic balance and complement modulation during allograft acceptance. The complement cascade releases the powerful proinflammatory mediators C3a and C5a anaphylatoxins, C3b, C5b opsonins and terminal membrane attack complex into tissues, which are deleterious if unchecked. Blocking complement mediators has been considered to be a promising approach in the modern drug discovery plan, and a significant number of therapeutic alternatives have been developed to dampen complement activation and protect host cells. Numerous immune cells, especially macrophages, develop both anaphylatoxin and opsonin receptors on their cell surface and their binding affects the macrophage phenotype and their angiogenic properties. This review discusses the mechanism that complement contributes to angiogenic injury, and the development of future therapeutic targets by antagonizing activated complement mediators to preserve microvasculature in rejecting the transplanted organ.

  8. Exosomal miRNAs as cancer biomarkers and therapeutic targets.

    Science.gov (United States)

    Thind, Arron; Wilson, Clive

    2016-01-01

    Intercommunication between cancer cells and with their surrounding and distant environments is key to the survival, progression and metastasis of the tumour. Exosomes play a role in this communication process. MicroRNA (miRNA) expression is frequently dysregulated in tumour cells and can be reflected by distinct exosomal miRNA (ex-miRNA) profiles isolated from the bodily fluids of cancer patients. Here, the potential of ex-miRNA as a cancer biomarker and therapeutic target is critically analysed. Exosomes are a stable source of miRNA in bodily fluids but, despite a number of methods for exosome extraction and miRNA quantification, their suitability for diagnostics in a clinical setting is questionable. Furthermore, exosomally transferred miRNAs can alter the behaviour of recipient tumour and stromal cells to promote oncogenesis, highlighting a role in cell communication in cancer. However, our incomplete understanding of exosome biogenesis and miRNA loading mechanisms means that strategies to target exosomes or their transferred miRNAs are limited and not specific to tumour cells. Therefore, if ex-miRNA is to be employed in novel non-invasive diagnostic approaches and as a therapeutic target in cancer, two further advances are necessary: in methods to isolate and detect ex-miRNA, and a better understanding of their biogenesis and functions in tumour-cell communication. PMID:27440105

  9. Endothelial FAK as a therapeutic target in disease.

    Science.gov (United States)

    Infusino, Giovanni A; Jacobson, Jeffrey R

    2012-01-01

    Focal adhesions (FA) are important mediators of endothelial cytoskeletal interactions with the extracellular matrix (ECM) via transmembrane receptors, integrins and integrin-associated intracellular proteins. This communication is essential for a variety of cell processes including EC barrier regulation and is mediated by the non-receptor protein tyrosine kinase, focal adhesion kinase (FAK). As FA mediate the basic response of EC to a variety of stimuli and FAK is essential to these responses, the idea of targeting EC FAK as a therapeutic strategy for an assortment of diseases is highly promising. In particular, inhibition of FAK could prove beneficial in a variety of cancers via effects on EC proliferation and angiogenesis, in acute lung injury (ALI) via the attenuation of lung vascular permeability, and in rheumatoid arthritis via reductions in synovial angiogenesis. In addition, there are potential therapeutic benefits of FAK inhibition in cardiovascular disease and diabetic nephropathy as well. Several drugs that target EC FAK are now in existence and include agents currently under investigation in preclinical models as well as drugs that are readily available such as the sphingolipid analog FTY720 and statins. As the role of EC FAK in the pathogenesis of a variety of diseases continues to be explored and new insights are revealed, drug targeting of FAK will continue to be an important area of investigation and may ultimately lead to highly novel and effective strategies to treat these diseases.

  10. Targeted polymeric therapeutic nanoparticles: design, development and clinical translation.

    Science.gov (United States)

    Kamaly, Nazila; Xiao, Zeyu; Valencia, Pedro M; Radovic-Moreno, Aleksandar F; Farokhzad, Omid C

    2012-04-01

    Polymeric materials have been used in a range of pharmaceutical and biotechnology products for more than 40 years. These materials have evolved from their earlier use as biodegradable products such as resorbable sutures, orthopaedic implants, macroscale and microscale drug delivery systems such as microparticles and wafers used as controlled drug release depots, to multifunctional nanoparticles (NPs) capable of targeting, and controlled release of therapeutic and diagnostic agents. These newer generations of targeted and controlled release polymeric NPs are now engineered to navigate the complex in vivo environment, and incorporate functionalities for achieving target specificity, control of drug concentration and exposure kinetics at the tissue, cell, and subcellular levels. Indeed this optimization of drug pharmacology as aided by careful design of multifunctional NPs can lead to improved drug safety and efficacy, and may be complimentary to drug enhancements that are traditionally achieved by medicinal chemistry. In this regard, polymeric NPs have the potential to result in a highly differentiated new class of therapeutics, distinct from the original active drugs used in their composition, and distinct from first generation NPs that largely facilitated drug formulation. A greater flexibility in the design of drug molecules themselves may also be facilitated following their incorporation into NPs, as drug properties (solubility, metabolism, plasma binding, biodistribution, target tissue accumulation) will no longer be constrained to the same extent by drug chemical composition, but also become in-part the function of the physicochemical properties of the NP. The combination of optimally designed drugs with optimally engineered polymeric NPs opens up the possibility of improved clinical outcomes that may not be achievable with the administration of drugs in their conventional form. In this critical review, we aim to provide insights into the design and development

  11. Exosomal miRNAs as cancer biomarkers and therapeutic targets

    OpenAIRE

    Arron Thind; Clive Wilson

    2016-01-01

    Intercommunication between cancer cells and with their surrounding and distant environments is key to the survival, progression and metastasis of the tumour. Exosomes play a role in this communication process. MicroRNA (miRNA) expression is frequently dysregulated in tumour cells and can be reflected by distinct exosomal miRNA (ex-miRNA) profiles isolated from the bodily fluids of cancer patients. Here, the potential of ex-miRNA as a cancer biomarker and therapeutic target is critically analy...

  12. Inflammatory bowel disease: exploring gut pathophysiology for novel therapeutic targets.

    Science.gov (United States)

    Yadav, Vipul; Varum, Felipe; Bravo, Roberto; Furrer, Esther; Bojic, Daniela; Basit, Abdul W

    2016-10-01

    Ulcerative colitis and Crohn's disease are the 2 major phenotypes of inflammatory bowel disease (IBD), which are influenced by a complex interplay of immunological and genetic elements, though the precise etiology still remains unknown. With IBD developing into a globally prevailing disease, there is a need to explore new targets and a thorough understanding of the pathophysiological differences between the healthy and diseased gut could unearth new therapeutic opportunities. In this review, we provide an overview of the major aspects of IBD pathogenesis and thereafter present a comprehensive analysis of the gut pathophysiology leading to a discussion on some of the most promising targets and biologic therapies currently being explored. These include various gut proteins (CXCL-10, GATA-3, NKG2D, CD98, microRNAs), immune cells recruited to the gut (mast cells, eosinophils, toll-like receptors 2, 4), dysregulated proinflammatory cytokines (interleukin-6, -13, -18, -21), and commensal microbiota (probiotics and fecal microbiota transplantation). We also evaluate some of the emerging nonconventional therapies being explored in IBD treatment focusing on the latest developments in stem cell research, oral targeting of the gut-associated lymphoid tissue, novel anti-inflammatory signaling pathway targeting, adenosine deaminase inhibition, and the beneficial effects of antioxidant and nutraceutical therapies. In addition, we highlight the growth of biologics and their targets in IBD by providing information on the preclinical and clinical development of over 60 biopharmaceuticals representing the state of the art in ulcerative colitis and Crohn's disease drug development. PMID:27220087

  13. Delivery of Therapeutic RNAs Into Target Cells IN VIVO

    Science.gov (United States)

    Ng, Mei Ying; Hagen, Thilo

    2014-02-01

    RNA-based therapy is one of the most promising approaches to treat human diseases. Specifically, the use of short interfering RNA (siRNA) siRNA and microRNA (miRNA) mimics for in vivo RNA interference has immense potential as it directly lowers the expression of the therapeutic target protein. However, there are a number of major roadblocks to the successful implementation of siRNA and other RNA based therapies in the clinic. These include the instability of RNAs in vivo and the difficulty to efficiently deliver the RNA into the target cells. Hence, various innovative approaches have been taken over the years to develop effective RNA delivery methods. These methods include liposome-, polymeric nanoparticle- and peptide-mediated cellular delivery. In a recent innovative study, bioengineered bacterial outer membrane vesicles were used as vehicles for effective delivery of siRNA into cells in vivo.

  14. Therapeutic Implications of Targeting Energy Metabolism in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Meena K. Sakharkar

    2013-01-01

    Full Text Available PPARs are ligand activated transcription factors. PPARγ agonists have been reported as a new and potentially efficacious treatment of inflammation, diabetes, obesity, cancer, AD, and schizophrenia. Since cancer cells show dysregulation of glycolysis they are potentially manageable through changes in metabolic environment. Interestingly, several of the genes involved in maintaining the metabolic environment and the central energy generation pathway are regulated or predicted to be regulated by PPARγ. The use of synthetic PPARγ ligands as drugs and their recent withdrawal/restricted usage highlight the lack of understanding of the molecular basis of these drugs, their off-target effects, and their network. These data further underscores the complexity of nuclear receptor signalling mechanisms. This paper will discuss the function and role of PPARγ in energy metabolism and cancer biology in general and its emergence as a promising therapeutic target in breast cancer.

  15. Cancer Stem Cells: Biological Functions and Therapeutically Targeting

    Directory of Open Access Journals (Sweden)

    Marius Eugen Ciurea

    2014-05-01

    Full Text Available Almost all tumors are composed of a heterogeneous cell population, making them difficult to treat. A small cancer stem cell population with a low proliferation rate and a high tumorigenic potential is thought to be responsible for cancer development, metastasis and resistance to therapy. Stem cells were reported to be involved in both normal development and carcinogenesis, some molecular mechanisms being common in both processes. No less controversial, stem cells are considered to be important in treatment of malignant diseases both as targets and drug carriers. The efforts to understand the role of different signalling in cancer stem cells requires in depth knowledge about the mechanisms that control their self-renewal, differentiation and malignant potential. The aim of this paper is to discuss insights into cancer stem cells historical background and to provide a brief review of the new therapeutic strategies for targeting cancer stem cells.

  16. In Search of New Therapeutic Targets in Obesity Treatment: Sirtuins

    Directory of Open Access Journals (Sweden)

    Alina Kurylowicz

    2016-04-01

    Full Text Available Most of the available non-invasive medical therapies for obesity are non-efficient in a long-term evaluation; therefore there is a constant need for new methods of treatment. Research on calorie restriction has led to the discovery of sirtuins (silent information regulators, SIRTs, enzymes regulating different cellular pathways that may constitute potential targets in the treatment of obesity. This review paper presents the role of SIRTs in the regulation of glucose and lipid metabolism as well as in the differentiation of adipocytes. How disturbances of SIRTs’ expression and activity may lead to the development of obesity and related complications is discussed. A special emphasis is placed on polymorphisms in genes encoding SIRTs and their possible association with susceptibility to obesity and metabolic complications, as well as on data regarding altered expression of SIRTs in human obesity. Finally, the therapeutic potential of SIRTs-targeted strategies in the treatment of obesity and related disorders is discussed.

  17. Targeting angiogenesis-dependent calcified neoplasms using combined polymer therapeutics.

    Directory of Open Access Journals (Sweden)

    Ehud Segal

    Full Text Available BACKGROUND: There is an immense clinical need for novel therapeutics for the treatment of angiogenesis-dependent calcified neoplasms such as osteosarcomas and bone metastases. We developed a new therapeutic strategy to target bone metastases and calcified neoplasms using combined polymer-bound angiogenesis inhibitors. Using an advanced "living polymerization" technique, the reversible addition-fragmentation chain transfer (RAFT, we conjugated the aminobisphosphonate alendronate (ALN, and the potent anti-angiogenic agent TNP-470 with N-(2-hydroxypropylmethacrylamide (HPMA copolymer through a Glycine-Glycine-Proline-Norleucine linker, cleaved by cathepsin K, a cysteine protease overexpressed at resorption sites in bone tissues. In this approach, dual targeting is achieved. Passive accumulation is possible due to the increase in molecular weight following polymer conjugation of the drugs, thus extravasating from the tumor leaky vessels and not from normal healthy vessels. Active targeting to the calcified tissues is achieved by ALN's affinity to bone mineral. METHODS AND FINDING: The anti-angiogenic and antitumor potency of HPMA copolymer-ALN-TNP-470 conjugate was evaluated both in vitro and in vivo. We show that free and conjugated ALN-TNP-470 have synergistic anti-angiogenic and antitumor activity by inhibiting proliferation, migration and capillary-like tube formation of endothelial and human osteosarcoma cells in vitro. Evaluation of anti-angiogenic, antitumor activity and body distribution of HPMA copolymer-ALN-TNP-470 conjugate was performed on severe combined immunodeficiency (SCID male mice inoculated with mCherry-labeled MG-63-Ras human osteosarcoma and by modified Miles permeability assay. Our targeted bi-specific conjugate reduced VEGF-induced vascular hyperpermeability by 92% and remarkably inhibited osteosarcoma growth in mice by 96%. CONCLUSIONS: This is the first report to describe a new concept of a narrowly-dispersed combined

  18. EphB4 as a therapeutic target in mesothelioma

    International Nuclear Information System (INIS)

    Malignant pleural mesothelioma (MPM) often develops decades following exposure to asbestos. Current best therapy produces a response in only half of patients, and the median survival with this therapy remains under a year. A search for novel targets and therapeutics is underway, and recently identified targets include VEGF, Notch, and EphB4-Ephrin-B2. Each of these targets has dual activity, promoting tumor cell growth as well as tumor angiogenesis. We investigated EphB4 expression in 39 human mesothelioma tissues by immunohistochemistry. Xenograft tumors established with human mesothelioma cells were treated with an EphB4 inhibitor (monomeric soluble EphB4 fused to human serum albumin, or sEphB4-HSA). The combinatorial effect of sEphB4-HSA and biologic agent was also studied. EphB4 was overexpressed in 72% of mesothelioma tissues evaluated, with 85% of epithelioid and 38% of sarcomatoid subtypes demonstrating overexpression. The EphB4 inhibitor sEphB4-HSA was highly active as a single agent to inhibit tumor growth, accompanied by tumor cell apoptosis and inhibition of PI3K and Src signaling. Combination of sEphB4-HSA and the anti-VEGF antibody (Bevacizumab) was superior to each agent alone and led to complete tumor regression. EphB4 is a potential therapeutic target in mesothelioma. Clinical investigation of sEphB4-HSA as a single agent and in combination with VEGF inhibitors is warranted

  19. Endocannabinoid System: A Multi-Facet Therapeutic Target.

    Science.gov (United States)

    Kaur, Rimplejeet; Ambwani, Sneha R; Singh, Surjit

    2016-01-01

    the therapeutic targets for both cannabinoid receptor agonists and antagonists. One challenge is to develop drugs that target only cannabinoid receptors in a particular tissue and another is to invent drugs that act selectively on cannabinoid receptors located outside the blood brain barrier. Besides this, development of the suitable dosage forms with maximum efficacy and minimum adverse effects is also warranted. Another angle to be introspected for therapeutic abilities of this group of drugs is non-CB1 and non-CB2 receptor targets for cannabinoids. In order to successfully exploit the therapeutic potential of endocannabinoid system, it is imperative to further characterize the endocannabinoid system in terms of identification of the exact cellular location of cannabinoid receptors and their role as "protective" and "disease inducing substance", time-dependent changes in the expression of cannabinoid receptors. PMID:27086601

  20. Phosphoglycerate Dehydrogenase: Potential Therapeutic Target and Putative Metabolic Oncogene

    Directory of Open Access Journals (Sweden)

    Cheryl K. Zogg

    2014-01-01

    Full Text Available Exemplified by cancer cells’ preference for glycolysis, for example, the Warburg effect, altered metabolism in tumorigenesis has emerged as an important aspect of cancer in the past 10–20 years. Whether due to changes in regulatory tumor suppressors/oncogenes or by acting as metabolic oncogenes themselves, enzymes involved in the complex network of metabolic pathways are being studied to understand their role and assess their utility as therapeutic targets. Conversion of glycolytic intermediate 3-phosphoglycerate into phosphohydroxypyruvate by the enzyme phosphoglycerate dehydrogenase (PHGDH—a rate-limiting step in the conversion of 3-phosphoglycerate to serine—represents one such mechanism. Forgotten since classic animal studies in the 1980s, the role of PHGDH as a potential therapeutic target and putative metabolic oncogene has recently reemerged following publication of two prominent papers near-simultaneously in 2011. Since that time, numerous studies and a host of metabolic explanations have been put forward in an attempt to understand the results observed. In this paper, I review the historic progression of our understanding of the role of PHGDH in cancer from the early work by Snell through its reemergence and rise to prominence, culminating in an assessment of subsequent work and what it means for the future of PHGDH.

  1. Metformin and prostate cancer stem cells: a novel therapeutic target.

    Science.gov (United States)

    Mayer, M J; Klotz, L H; Venkateswaran, V

    2015-12-01

    Prostate cancer is the second most frequently diagnosed cancer in the world. Localized disease can be effectively treated with radiation therapy or radical prostatectomy. However, advanced prostate cancer is more difficult to treat and if metastatic, is incurable. There is a need for more effective therapy for advanced prostate cancer. One potential target is the cancer stem cell (CSC). CSCs have been described in several solid tumors, including prostate cancer, and contribute to therapeutic resistance and tumor recurrence. Metformin, a common oral biguanide used to treat type 2 diabetes, has been demonstrated to have anti-neoplastic effects. Specifically, metformin targets CSCs in breast cancer, pancreatic cancer, glioblastoma and colon cancer. Metformin acts directly on the mitochondria to inhibit oxidative phosphorylation and reduce mitochondrial ATP production. This forces tumor cells to compensate by increasing the rate of glycolysis. CSCs rely heavily on mitochondrial oxidative phosphorylation for energy production. The glycolytic switch results in an energy crisis in these cells. Metformin could be used to exploit this metabolic weakness in CSCs. This would increase CSC sensitivity to conventional cancer therapies, circumventing treatment resistance and enhancing treatment efficacy. This review will explore the characteristics of prostate CSCs, their role in tumor propagation and therapeutic resistance and the role of metformin as a potential prostate CSC sensitizer to current anticancer therapies. PMID:26215782

  2. Carcinoma-Associated Fibroblasts Are a Promising Therapeutic Target

    Energy Technology Data Exchange (ETDEWEB)

    Togo, Shinsaku, E-mail: shinsaku@juntendo.ac.jp [Department of Respiratory Medicine, Juntendo University School of Medicine, Tokyo 113-8412 (Japan); Polanska, Urszula M. [CR-UK Stromal-Tumour Interaction Group, Paterson Institute for Cancer Research, The University of Manchester, Wilmslow Road, Manchester M20 4BX (United Kingdom); Horimoto, Yoshiya [Department of Pathology and Oncology, Juntendo University School of Medicine, Tokyo 113-8412 (Japan); Atopy Research Centre, Juntendo University School of Medicine, Tokyo 113-8412 (Japan); Department of Breast Oncology, Juntendo University School of Medicine, Tokyo 113-8412 (Japan); Orimo, Akira, E-mail: shinsaku@juntendo.ac.jp [CR-UK Stromal-Tumour Interaction Group, Paterson Institute for Cancer Research, The University of Manchester, Wilmslow Road, Manchester M20 4BX (United Kingdom); Department of Pathology and Oncology, Juntendo University School of Medicine, Tokyo 113-8412 (Japan); Atopy Research Centre, Juntendo University School of Medicine, Tokyo 113-8412 (Japan)

    2013-01-31

    Human carcinomas frequently exhibit significant stromal reactions such as the so-called “desmoplastic stroma” or “reactive stroma”, which is characterised by the existence of large numbers of stromal cells and extracellular matrix proteins. Carcinoma-associated fibroblasts (CAFs), which are rich in activated fibroblast populations exemplified by myofibroblasts, are among the predominant cell types present within the tumour-associated stroma. Increased numbers of stromal myofibroblasts are often associated with high-grade malignancies with poor prognoses in humans. CAF myofibroblasts possess abilities to promote primary tumour development, growth and progression by stimulating the processes of neoangiogenesis as well as tumour cell proliferation, survival, migration and invasion. Moreover, it has been demonstrated that CAFs serve as a niche supporting the metastatic colonisation of disseminated carcinoma cells in distant organs. Their contribution to primary and secondary malignancies makes these fibroblasts a potential therapeutic target and they also appear to be relevant to the development of drug resistance and tumour recurrence. This review summarises our current knowledge of tumour-promoting CAFs and discusses the therapeutic feasibility of targeting these cells as well as disrupting heterotypic interactions with other cell types in tumours that may improve the efficacy of current anti-tumour therapies.

  3. Alveolar bone loss: mechanisms, potential therapeutic targets, and interventions.

    Science.gov (United States)

    Intini, G; Katsuragi, Y; Kirkwood, K L; Yang, S

    2014-05-01

    This article reviews recent research into mechanisms underlying bone resorption and highlights avenues of investigation that may generate new therapies to combat alveolar bone loss in periodontitis. Several proteins, signaling pathways, stem cells, and dietary supplements are discussed as they relate to periodontal bone loss and regeneration. RGS12 is a crucial protein that mediates osteoclastogenesis and bone destruction, and a potential therapeutic target. RGS12 likely regulates osteoclast differentiation through regulating calcium influx to control the calcium oscillation-NFATc1 pathway. A working model for RGS10 and RGS12 in the regulation of Ca(2+) oscillations during osteoclast differentiation is proposed. Initiation of inflammation depends on host cell-microbe interactions, including the p38 mitogen-activated protein kinase (MAPK) signaling pathway. Oral p38 inhibitors reduced lipopolysaccharide (LPS)-induced bone destruction in a rat periodontitis model but showed unsatisfactory safety profiles. The p38 substrate MK2 is a more specific therapeutic target with potentially superior tolerability. Furthermore, MKP-1 shows anti-inflammatory activity, reducing inflammatory cytokine biosynthesis and bone resorption. Multipotent skeletal stem cell (SSC) populations exist within the bone marrow and periosteum of long bones. These bone-marrow-derived SSCs and periosteum-derived SSCs have shown therapeutic potential in several applications, including bone and periodontal regeneration. The existence of craniofacial bone-specific SSCs is suggested based on existing studies. The effects of calcium, vitamin D, and soy isoflavone supplementation on alveolar and skeletal bone loss in post-menopausal women were investigated. Supplementation resulted in stabilization of forearm bone mass density and a reduced rate of alveolar bone loss over 1 yr, compared with placebo. Periodontal attachment levels were also well-maintained and alveolar bone loss suppressed during 24 wk of

  4. Alveolar bone loss: mechanisms, potential therapeutic targets, and interventions.

    Science.gov (United States)

    Intini, G; Katsuragi, Y; Kirkwood, K L; Yang, S

    2014-05-01

    This article reviews recent research into mechanisms underlying bone resorption and highlights avenues of investigation that may generate new therapies to combat alveolar bone loss in periodontitis. Several proteins, signaling pathways, stem cells, and dietary supplements are discussed as they relate to periodontal bone loss and regeneration. RGS12 is a crucial protein that mediates osteoclastogenesis and bone destruction, and a potential therapeutic target. RGS12 likely regulates osteoclast differentiation through regulating calcium influx to control the calcium oscillation-NFATc1 pathway. A working model for RGS10 and RGS12 in the regulation of Ca(2+) oscillations during osteoclast differentiation is proposed. Initiation of inflammation depends on host cell-microbe interactions, including the p38 mitogen-activated protein kinase (MAPK) signaling pathway. Oral p38 inhibitors reduced lipopolysaccharide (LPS)-induced bone destruction in a rat periodontitis model but showed unsatisfactory safety profiles. The p38 substrate MK2 is a more specific therapeutic target with potentially superior tolerability. Furthermore, MKP-1 shows anti-inflammatory activity, reducing inflammatory cytokine biosynthesis and bone resorption. Multipotent skeletal stem cell (SSC) populations exist within the bone marrow and periosteum of long bones. These bone-marrow-derived SSCs and periosteum-derived SSCs have shown therapeutic potential in several applications, including bone and periodontal regeneration. The existence of craniofacial bone-specific SSCs is suggested based on existing studies. The effects of calcium, vitamin D, and soy isoflavone supplementation on alveolar and skeletal bone loss in post-menopausal women were investigated. Supplementation resulted in stabilization of forearm bone mass density and a reduced rate of alveolar bone loss over 1 yr, compared with placebo. Periodontal attachment levels were also well-maintained and alveolar bone loss suppressed during 24 wk of

  5. The histone demethylase LSD1 is a novel oncogene and therapeutic target in oral cancer.

    Science.gov (United States)

    Wang, Yanling; Zhu, Yumin; Wang, Qiong; Hu, Huijun; Li, Zhongwu; Wang, Dongmiao; Zhang, Wei; Qi, Bin; Ye, Jinhai; Wu, Heming; Jiang, Hongbing; Liu, Laikui; Yang, Jianrong; Cheng, Jie

    2016-04-28

    The histone demethylase LSD1 functions as a key pro-oncogene and attractive therapeutic target in human cancer. Here we sought to interrogate the oncogenic roles of LSD1 in OSCC tumorigenesis and therapeutic intervention by integrating chemical-induced OSCC model, genetic and pharmacological loss-of-function approaches. Our data revealed that aberrant LSD1 overexpression in OSCC was significantly associated with tumor aggressiveness and shorter overall survival. Increased abundance of LSD1 was detected along with disease progression in DMBA- or 4NQO-induced OSCC animal models. LSD1 depletion via siRNA-mediated knockdown in OSCC cells resulted in impaired cell proliferation, migration/invasion, tumorsphere formation and reduced xenograft growth while inducing cell apoptosis and enhancing chemosensitivity to 5-FU. Moreover, treatments of LSD1 chemical inhibitors (pargyline and tranylcypromine) induced its protein reduction probably via enhanced protein degradation and produced similar phenotypic changes resembling LSD1 silencing in OSCC cells. Pharmacological inhibition of LSD1 by intraperitoneal delivery of these inhibitors resulted in impaired xenograft overgrowth. Taken together, our data reveal the tumorigenic roles of LSD1 and identified LSD1 as a novel biomarker with diagnostic and prognostic significance, and also establish that targeting LSD1 by chemical inhibitors is a viable therapeutic strategy against OSCC. PMID:26872725

  6. BONE TUMOR ENVIRONMENT AS POTENTIAL THERAPEUTIC TARGET IN EWING SARCOMA

    Directory of Open Access Journals (Sweden)

    Françoise eREDINI

    2015-12-01

    Full Text Available Ewing sarcoma is the second most common pediatric bone tumor, with three cases per million worldwide. In clinical terms, ES is an aggressive, rapidly fatal malignancy that mainly develops in osseous sites (85%, but also in extraskeletal soft tissue. It spreads naturally to the lungs, bones and bone marrow with poor prognosis in the two latter cases. Bone lesions from primary or secondary (metastases tumors are characterized by extensive bone remodeling, more often due to osteolysis. Osteoclast activation and subsequent bone resorption is responsible for the clinical features of bone tumors including pain, vertebral collapse and spinal cord compression. Based on the vicious cycle concept of tumor cells and bone resorbing cells, drugs which target osteoclasts may be promising agents as adjuvant setting for treating bone tumors, including Ewing sarcoma. There is also increasing evidence that cellular and molecular protagonists present in the bone microenvironment play a part in establishing a favorable niche for tumor initiation and progression. The purpose of this review is to discuss the potential therapeutic value of drugs targeting the bone tumor microenvironment in Ewing Sarcoma. The first part of the review will focus on targeting the bone resorbing function of osteoclasts by means of bisphosphonates (BPs or drugs blocking the pro-resorbing cytokine Receptor Activator of NF-kappa B Ligand (RANKL. Second, the role of this peculiar hypoxic microenvironment will be discussed in the context of resistance to chemotherapy, escape from the immune system, or neo-angiogenesis. Therapeutic interventions based on these specificities could be then proposed in the context of Ewing sarcoma.

  7. Frizzled-7 as a Potential Therapeutic Target in Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Koji Ueno

    2008-07-01

    Full Text Available We investigated whether one of the Wnt receptors, frizzled-7 (FZD7, functions in the canonical Wnt signaling pathway of colorectal cancer (CRC cells harboring an APC or CTNNB1 mutation and may be a potential therapeutic target for sporadic CRCs. The expression level of FZD gene family members in colon cancer cells and primary CRC tissues were determined by real-time PCR. Activation of the Wnt signaling pathway was evaluated by TOPflash assay. The expression level of Wnt target genes was determined by real-time polymerase chain reaction and/or Western blot analysis. Cell growth and cell invasion were assessed by MTS and matrigel assays, respectively. Among 10 FZD gene family members, FZD7 mRNA was predominantly expressed in six colon cancer cell lines with APC or CTNNB1 mutation. These six cell lines were transfected with FZD7 cDNA together with a TOPflash reporter plasmid, resulting in a 1.5- to 24.3-fold increase of Tcf transcriptional activity. The mRNA expression levels of seven known Wnt target genes were also increased by 1.5- to 3.4-fold after transfection of FZD7 cDNA into HCT-116 cells. The six cell lines were then cotransfected with FZD7-siRNA and a TOPflash reporter plasmid, which reduced Tcf transcriptional activity to 20% to 80%. FZD7-siRNA was shown to significantly decrease cell viability and in vitro invasion activity after transfection into HCT-116 cells. Our present data demonstrated that FZD7 activates the canonical Wnt pathway in colon cancer cells despite the presence of APC or CTNNB1 mutation and that FZD7-siRNA may be used as a therapeutic reagent for CRCs.

  8. RPS2: a novel therapeutic target in prostate cancer

    Directory of Open Access Journals (Sweden)

    Stearns Mark E

    2009-01-01

    Full Text Available Abstract Background A number of studies have previously shown that the over expression of different ribosomal proteins might play an important role in cancer (i.e. S3a, L10, L16. We have previously reported that RPS2, a 33 Kda ribosomal protein was over expressed in malignant prostate cancer cell lines and in archived tumor specimens. Thus, RPS2 or other aberrantly over-expressed ribosomal proteins might promote cancer and be excellent therapeutic targets for treatment of the disease. Methods Western blotting and RT-PCR have been used to measure and compare the levels of expression of RPS2 in a variety of malignant prostate cancer cell lines, plus normal and benign cells lines. We have developed a 'ribozyme-like' DNAZYM-1P '10–23' motif oligonucleotide and examined whether it targets RPS2 in different cell lines by RT-PCR and Western blots. Growth and apoptosis assays were carried out to measure whether DNAZYM-1P 'knock-down' of RPS2 influenced cell proliferation or survival. We have also developed a SCID mouse tumor model with PC-3ML cells to determine whether DNAZYM-1P targeting of RPS2 compromised tumor growth and mouse survival rates in vivo. Results Western blots showed that PC-3ML, LNCaP, CPTX-1532, and pBABE-cmyc stably transfected IBC-10a cells all over-expressed RPS2, whereas IBC-10a parent, NPTX-1532, and BPH-1 cells or mouse NIH-3T3 cells expressed barely detectable levels of RPS2. RT-PCR assays showed that DNAZYM-1P, which targeted RPS2, 'knocked-down' RPS2 expression in the malignant cells (i.e. PC-3ML cells in vitro. The DNAZYM-1P also inhibited cell growth and induced apoptosis in the malignant prostate cells, but had little effect on the normal IBC-10a or NPTX-1532 cell lines. Finally, SCID mouse tumor modeling studies showed that DNAZYM-1P blocked tumor growth and metastasis by PC-3ML cells and eventually eradicated tumors following localized or systemic i.v. delivery. Mouse survival studies revealed that there was a dosage

  9. Understanding and targeting cancer stem cells:therapeutic implications and challenges

    Institute of Scientific and Technical Information of China (English)

    Ke CHEN; Ying-hui HUANG; Ji-long CHEN

    2013-01-01

    Cancer stem cells (CSCs) have been identified as rare cell populations in many cancers,including leukemia and solid tumors.Accumulating evidence has suggested that CSCs are capable of self-renewal and differentiation into various types of cancer cells.Aberrant regulation of gene expression and some signaling pathways has been observed in CSCs compared to other tumor cells.CSCs are thought to be responsible for cancer initiation,progression,metastasis,recurrence and drug resistance.The CSC hypothesis has recently attracted much attention due to the potential for discovery and development of CSC-related therapies and the identification of key molecules involved in controlling the unique properties of CSC populations.Over the past several years,a tremendous amount of effort has been invested in the development of new drugs,such as nanomedicines,that can take advantage of the "Achilles'heel" of CSCs by targeting cell-surface molecular markers or various signaling pathways.Novel compounds and therapeutic strategies that selectively target CSCs have been identified,some of which have been evaluated in preclinical and clinical studies.In this article,we review new findings related to the investigation of the CSC hypothesis,and discuss the crucial pathways involved in regulating the development of CSC populations and the advances in studies of drug resistance.In addition,we review new CSC-targeted therapeutic strategies aiming to eradicate malignancies.

  10. Neuroendothelial NMDA receptors as therapeutic targets in experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Macrez, Richard; Ortega, Maria C; Bardou, Isabelle; Mehra, Anupriya; Fournier, Antoine; Van der Pol, Susanne M A; Haelewyn, Benoit; Maubert, Eric; Lesept, Flavie; Chevilley, Arnaud; de Castro, Fernando; De Vries, Helga E; Vivien, Denis; Clemente, Diego; Docagne, Fabian

    2016-09-01

    Multiple sclerosis is among the most common causes of neurological disability in young adults. Here we provide the preclinical proof of concept of the benefit of a novel strategy of treatment for multiple sclerosis targeting neuroendothelial N-methyl-D-aspartate glutamate receptors. We designed a monoclonal antibody against N-methyl-D-aspartate receptors, which targets a regulatory site of the GluN1 subunit of N-methyl-D-aspartate receptor sensitive to the protease tissue plasminogen activator. This antibody reverted the effect of tissue plasminogen activator on N-methyl-D-aspartate receptor function without affecting basal N-methyl-D-aspartate receptor activity (n = 21, P mouse, at the vicinity of tight junctions of the blood-spinal cord barrier. Noteworthy, it reduced human leucocyte transmigration in an in vitro model of the blood-brain barrier (n = 12, P multiple sclerosis, and highlights the therapeutic potential of strategies targeting the protease-regulated site of N-methyl-D-aspartate receptor. PMID:27435092

  11. Autophagy: A new therapeutic target for liver fibrosis

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Hepatic fibrosis is a wound-healing response to liverinjury and the result of imbalance of extracellular matrix(ECM) accumulation and degradation. The relentless production and progressive accumulation of ECM canlead to end-stage liver disease. Although significantprogress has been achieved in elucidating the mechanismsof fibrogenesis, effective anti-fibrotic strategiesare still lacking. Autophagy is an intracellular process ofself-digestion of defective organelles to provide materialrecycling or energy for cell survival. Autophagy hasbeen implicated in the pathophysiology of many humandisorders including hepatic fibrosis. However, the exactrelationships between autophagy and hepatic fibrosisare not totally clear and need further investigations.A new therapeutic target for liver fibrosis could bedeveloped with a better understanding of autophagy.

  12. Molecular markers as therapeutic targets in lung cancer

    Institute of Scientific and Technical Information of China (English)

    Hsin-Hui Tseng; Biao He

    2013-01-01

    Lung cancer is responsible for 29% of cancer deaths in the United States and has very low 5-year survival rates of approximately 11% in men and 15% in women.Although the early diagnosis of lung cancer may increase the survival rate with adequate treatment,advanced lung cancers are often metastasized and receive limited benefit from therapeutic regimens.As conventional treatments for lung cancer reach their limitations,researchers have attempted to discover novel drug therapies aimed at specific targets contributing to the progression of tumorigenesis.Recent advances in systems biology have enabled the molecular biology of lung carcinogenesis to be elucidated.Our understanding of the physiologic processes of tumor development provide a means to design more effective and specific drugs with less toxicity,thereby accelerating the delivery of new drug therapies to the patient's bedside.

  13. Hippocampal Area CA2: An Overlooked but Promising Therapeutic Target.

    Science.gov (United States)

    Chevaleyre, Vivien; Piskorowski, Rebecca A

    2016-08-01

    While the hippocampus has long been recognized as a brain structure specialized in mapping 'space' in rodents, human studies and now recent data from rodents have shown that its function extends well beyond spatial coding. Recently, an overlooked area of the hippocampus, CA2, has emerged as a critical region for social memory. This area is also uniquely altered during several pathologies such as schizophrenia and age-related dementia. Because of its singular connectivity, we propose that area CA2 resides at the interface between emotional brain activity and higher cognitive function. Furthermore, because of the unique expression of multiple neuromodulator receptors in area CA2, we posit that this region may represent a fruitful therapeutic target for diseases where social dysfunction occurs. PMID:27372610

  14. Featuring the nucleosome surface as a therapeutic target.

    Science.gov (United States)

    da Silva, Isabel Torres Gomes; de Oliveira, Paulo Sergio Lopes; Santos, Guilherme Martins

    2015-05-01

    Chromatin is the major regulator of gene expression and genome maintenance. Proteins that bind the nucleosome, the repetitive unit of chromatin, and the histone H4 tail are critical to establishing chromatin architecture and phenotypic outcomes. Intriguingly, nucleosome-binding proteins (NBPs) and the H4 tail peptide compete for the same binding site at an acidic region on the nucleosome surface. Although the essential facts about the nucleosome were revealed 17 years ago, new insights into its atomic structure and molecular mechanisms are still emerging. Several complex nucleosome:NBP structures were recently revealed, characterizing the NBP-binding sites on the nucleosome surface. Here we discuss the potential of the nucleosome surface as a therapeutic target and the impact and development of exogenous nucleosome-binding molecules (eNBMs).

  15. Inflammation as a Therapeutic Target for Diabetic Neuropathies.

    Science.gov (United States)

    Pop-Busui, Rodica; Ang, Lynn; Holmes, Crystal; Gallagher, Katherine; Feldman, Eva L

    2016-03-01

    Diabetic neuropathies (DNs) are one of the most prevalent chronic complications of diabetes and a major cause of disability, high mortality, and poor quality of life. Given the complex anatomy of the peripheral nervous system and types of fiber dysfunction, DNs have a wide spectrum of clinical manifestations. The treatment of DNs continues to be challenging, likely due to the complex pathogenesis that involves an array of systemic and cellular imbalances in glucose and lipids metabolism. These lead to the activation of various biochemical pathways, including increased oxidative/nitrosative stress, activation of the polyol and protein kinase C pathways, activation of polyADP ribosylation, and activation of genes involved in neuronal damage, cyclooxygenase-2 activation, endothelial dysfunction, altered Na(+)/K(+)-ATPase pump function, impaired C-peptide-related signaling pathways, endoplasmic reticulum stress, and low-grade inflammation. This review summarizes current evidence regarding the role of low-grade inflammation as a potential therapeutic target for DNs. PMID:26897744

  16. Macrophages associated with tumors as potential targets and therapeutic intermediates.

    Science.gov (United States)

    Vinogradov, Serguei; Warren, Galya; Wei, Xin

    2014-04-01

    Tumor-associated macrophages (TAMs) form approximately 50% of tumor mass. TAMs were shown to promote tumor growth by suppressing immunocompetent cells, inducing neovascularization and supporting cancer stem cells. TAMs retain mobility in tumor mass, which can potentially be employed for better intratumoral biodistribution of nanocarriers and effective tumor growth inhibition. Due to the importance of TAMs, they are increasingly becoming principal targets of novel therapeutic approaches. In this review, we compare features of macrophages and TAMs that are essential for TAM-directed therapies, and illustrate the advantages of nanomedicine that are related to the preferential capture of nanocarriers by Mϕ in the process of drug delivery. We discuss recent efforts in reprogramming or inhibiting tumor-protecting properties of TAMs, and potential strategies to increase efficacy of conventional chemotherapy by combining with macrophage-associated delivery of nanodrugs. PMID:24827844

  17. Neuropeptide Y (NPY) as a therapeutic target for neurodegenerative diseases.

    Science.gov (United States)

    Duarte-Neves, Joana; Pereira de Almeida, Luís; Cavadas, Cláudia

    2016-11-01

    Neuropeptide Y (NPY) and NPY receptors are widely expressed in the mammalian central nervous system. Studies in both humans and rodent models revealed that brain NPY levels are altered in some neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, Huntington's disease and Machado-Joseph disease. In this review, we will focus on the roles of NPY in the pathological mechanisms of these disorders, highlighting NPY as a neuroprotective agent, as a neural stem cell proliferative agent, as an agent that increases trophic support, as a stimulator of autophagy and as an inhibitor of excitotoxicity and neuroinflammation. Moreover, the effect of NPY in some clinical manifestations commonly observed in Alzheimer's disease, Parkinson's disease, Huntington's disease and Machado-Joseph disease, such as depressive symptoms and body weight loss, are also discussed. In conclusion, this review highlights NPY system as a potential therapeutic target in neurodegenerative diseases.

  18. Autophagy as a Therapeutic Target in Cardiovascular Disease

    Science.gov (United States)

    Nemchenko, Andriy; Chiong, Mario; Turer, Aslan; Lavandero, Sergio; Hill, Joseph A.

    2011-01-01

    The epidemic of heart failure continues apace, and development of novel therapies with clinical efficacy has lagged. Now, important insights into the molecular circuitry of cardiovascular autophagy have raised the prospect that this cellular pathway of protein quality control may be a target of clinical relevance. Whereas basal levels of autophagy are required for cell survival, excessive levels – or perhaps distinct forms of autophagic flux – contribute to disease pathogenesis. Our challenge will be to distinguish mechanisms that drive adaptive versus maladaptive autophagy and to manipulate those pathways for therapeutic gain. Recent evidence suggests this may be possible. Here, we review the fundamental biology of autophagy and its role in a variety of forms of cardiovascular disease. We discuss ways in which this evolutionarily conserved catabolic mechanism can be manipulated, discuss studies presently underway in heart disease, and provide our perspective on where this exciting field may lead in the future. PMID:21723289

  19. Epigenetic modulators as therapeutic targets in prostate cancer.

    Science.gov (United States)

    Graça, Inês; Pereira-Silva, Eva; Henrique, Rui; Packham, Graham; Crabb, Simon J; Jerónimo, Carmen

    2016-01-01

    Prostate cancer is one of the most common non-cutaneous malignancies among men worldwide. Epigenetic aberrations, including changes in DNA methylation patterns and/or histone modifications, are key drivers of prostate carcinogenesis. These epigenetic defects might be due to deregulated function and/or expression of the epigenetic machinery, affecting the expression of several important genes. Remarkably, epigenetic modifications are reversible and numerous compounds that target the epigenetic enzymes and regulatory proteins were reported to be effective in cancer growth control. In fact, some of these drugs are already being tested in clinical trials. This review discusses the most important epigenetic alterations in prostate cancer, highlighting the role of epigenetic modulating compounds in pre-clinical and clinical trials as potential therapeutic agents for prostate cancer management. PMID:27651838

  20. MicroRNA: an Emerging Therapeutic Target and Intervention Tool

    Directory of Open Access Journals (Sweden)

    Decheng Yang

    2008-06-01

    Full Text Available MicroRNAs (miRNAs are a class of short non-coding RNAs with posttranscriptional regulatory functions. To date, more than 600 human miRNAs have been experimentally identified, and estimated to regulate more than one third of cellular messenger RNAs. Accumulating evidence has linked the dysregulated expression patterns of miRNAs to a variety of diseases, such as cancer, neurodegenerative diseases, cardiovascular diseases and viral infections. MiRNAs provide its particular layer of network for gene regulation, thus possessing the great potential both as a novel class of therapeutic targets and as a powerful intervention tool. In this regard, synthetic RNAs that contain the binding sites of miRNA have been shown to work as a “decoy” or “miRNA sponge” to inhibit the function of specific miRNAs. On the other hand, miRNA expression vectors have been used to restore or overexpress specific miRNAs to achieve a long-term effect. Further, double-stranded miRNA mimetics for transient replacement have been experimentally validated. Endogenous precursor miRNAs have also been used as scaffolds for the induction of RNA interference. This article reviews the recent progress on this emerging technology as a powerful tool for gene regulation studies and particularly as a rationale strategy for design of therapeutics.

  1. Gli as a novel therapeutic target in malignant pleural mesothelioma.

    Directory of Open Access Journals (Sweden)

    Hui Li

    Full Text Available Malignant pleural mesothelioma (MPM is a highly aggressive tumor with poor prognosis. Current treatment is rarely curative, thus novel meaningful therapies are urgently needed. Inhibition of Hedgehog (Hh signaling at the cell membrane level in several cancers has shown anti-cancer activity in recent clinical studies. Evidence of Hh-independent Gli activation suggests Gli as a more potent therapeutic target. The current study is aimed to evaluate the potential of Gli as a therapeutic target to treat MPM. The expression profiles of Gli factors and other Hh signaling components were characterized in 46 MPM patient tissue samples by RT-PCR and immunohistochemistry. Cultured cell lines were employed to investigate the requirement of Gli activation in tumor cell growth by inhibiting Gli through siRNA or a novel small molecule Gli inhibitor (Gli-I. A xenograft model was used to evaluate Gli-I in vivo. In addition, a side by side comparison between Gli and Smoothened (Smo inhibition was conducted in vitro using siRNA and small molecule inhibitors. Our study reported aberrant Gli1 and Gli2 activation in a large majority of tissues. Inhibition of Gli by siRNAs or Gli-I suppressed cell growth dramatically both in vitro and in vivo. Inhibition of Gli exhibited better cytotoxicity than that of Smo by siRNA and small molecule inhibitors vismodegib and cyclopamine. Combination of Gli-I and pemetrexed, as well as Gli-I and vismodegib demonstrated synergistic effects in suppression of MPM proliferation in vitro. In summary, Gli activation plays a critical role in MPM. Inhibition of Gli function holds strong potential to become a novel, clinically effective approach to treat MPM.

  2. Pathogenic inflammation and its therapeutic targeting in systemic lupus erythematosus

    Directory of Open Access Journals (Sweden)

    Timothy Andrew Gottschalk

    2015-10-01

    Full Text Available Systemic Lupus Erythematosus (SLE, lupus is a highly complex and heterogeneous autoimmune disease that most often afflicts women in their child-bearing years. It is characterized by circulating self-reactive antibodies that deposit in tissues including skin, kidneys and brain, and the ensuing inflammatory response can lead to irreparable tissue damage. Over many years, clinical trials in SLE have focused on agents that control B and T lymphocyte activation, and, with the single exception of an agent known as Belimumab which targets the B cell survival factor BAFF, they have been disappointing. At present, standard therapy for SLE with mild disease is the agent hydroxychloroquine. During disease flares, steroids are often used, while the more severe manifestations with major organ involvement warrant potent, broad-spectrum immuno-suppression with cyclophosphamide or mycophenolate. Current treatments have severe and dose-limiting toxicities and thus a more specific therapy targeting a causative factor or signaling pathway would be greatly beneficial in SLE treatment. Moreover, the ability to control inflammation alongside B cell activation may be a superior approach for disease control. There has been a recent focus on the innate immune system and associated inflammation, which has uncovered key players in driving the pathogenesis of SLE. Delineating some of these intricate inflammatory mechanisms has been possible with studies using spontaneous mouse mutants and genetically engineered mice. These strains, to varying degrees, exhibit hallmarks of the human disease and therefore have been utilized to model human SLE and to test new drugs. Developing a better understanding of the initiation and perpetuation of disease in SLE may uncover suitable novel targets for therapeutic intervention. Here we discuss the involvement of inflammation in SLE disease pathogenesis, with a focus on several key proinflammatory cytokines and myeloid growth factors, and

  3. Breast cancer phenotypes regulated by tissue factor-factor VII pathway: Possible therapeutic targets.

    Science.gov (United States)

    Koizume, Shiro; Miyagi, Yohei

    2014-12-10

    Breast cancer is a leading cause of cancer death in women, worldwide. Fortunately, breast cancer is relatively chemosensitive, with recent advances leading to the development of effective therapeutic strategies, significantly increasing disease cure rate. However, disease recurrence and treatment of cases lacking therapeutic molecular targets, such as epidermal growth factor receptor 2 and hormone receptors, referred to as triple-negative breast cancers, still pose major hurdles in the treatment of breast cancer. Thus, novel therapeutic approaches to treat aggressive breast cancers are essential. Blood coagulation factor VII (fVII) is produced in the liver and secreted into the blood stream. Tissue factor (TF), the cellular receptor for fVII, is an integral membrane protein that plays key roles in the extrinsic coagulation cascade. TF is overexpressed in breast cancer tissues. The TF-fVII complex may be formed in the absence of injury, because fVII potentially exists in the tissue fluid within cancer tissues. The active form of this complex (TF-fVIIa) may stimulate the expression of numerous malignant phenotypes in breast cancer cells. Thus, the TF-fVII pathway is a potentially attractive target for breast cancer treatment. To date, a number of studies investigating the mechanisms by which TF-fVII signaling contributes to breast cancer progression, have been conducted. In this review, we summarize the mechanisms controlling TF and fVII synthesis and regulation in breast cancer cells. Our current understanding of the TF-fVII pathway as a mediator of breast cancer progression will be also described. Finally, we will discuss how this knowledge can be applied to the design of future therapeutic strategies. PMID:25493229

  4. Estrogen receptor beta is a novel therapeutic target for photoaging.

    Science.gov (United States)

    Chang, Ken C N; Wang, Yihe; Oh, Inn Gyung; Jenkins, Susan; Freedman, Leonard P; Thompson, Catherine C; Chung, Jin Ho; Nagpal, Sunil

    2010-05-01

    One of the many harmful factors faced by the skin is solar UV radiation, which damages skin by inducing chronic low-grade inflammation through increased expression of proinflammatory cytokines, metalloproteinases (MMPs) and cyclooxygenase-2 (COX-2). Estrogen receptors (ERs) alpha and beta are ligand-dependent transcription factors that are expressed in skin, and an ERbeta agonist has previously shown efficacy in vivo in models of pain and inflammation. Because ERbeta does not carry the breast and uterine proliferation liabilities of ERalpha, we decided to explore the possibility of using ERbeta as a target for photoaging. We show that ERbeta-selective compounds suppressed the expression of cytokines and MMPs in activated keratinocytes and fibroblast-based in vitro models of photoaging. Furthermore, in activated dermal fibroblasts, ERbeta-selective compounds also inhibited COX-2. These activities of ERbeta ligands in skin cells correlated with the expression levels of ERbeta and showed reversal by treatment with a potent synthetic ER antagonist. Furthermore, the pharmacology of ERbeta-selective compound was observed in wild-type but not in skin cells obtained from ERbeta knockout mice. Finally, we demonstrate that a synthetic ERbeta agonist inhibited UV-induced photodamage and skin wrinkle formation in a murine model of photoaging. Therefore, the potential of an ERbeta ligand to regulate multiple pathways underlying the cause of photoaging suggests ERbeta to be a novel therapeutic target for the prevention and treatment of photoaging. PMID:20110405

  5. Transcription Inhibition as a Therapeutic Target for Cancer

    International Nuclear Information System (INIS)

    During tumorigenesis the transformed cells lose their normal growth control mechanisms and become dependent on oncogenes' products and pathways for survival. Treatments tailored to block the expression or function of transforming genes have shown efficacy in eliminating neoplastic cells. The mRNAs of many oncogenes, as well as regulators of other key processes such as cell proliferation, angiogenesis, and apoptosis, typically have shorter half-lives. Agents that impede mRNA synthesis are expected to selectively hinder the expression of these genes and, therefore, be detrimental to neoplastic cells that are physiologically dependent on them. In addition to exploiting the tumor cells' dependency on short-lived transcripts, RNA-directed agents also take advantage of the differential sensitivity between transformed and non-transformed cells, as the cytotoxic effects of inhibiting RNA synthesis have not been seen in non-transformed cells. The abrogation of the formation of oncotranscripts provides a new concept in cancer therapeutics and numerous agents have been developed which are able to target transcription. The focus of this review is to give an overview of transcription and the different inhibitory strategies that target various aspects of the transcriptional process

  6. Cannabidiol in Humans—The Quest for Therapeutic Targets

    Directory of Open Access Journals (Sweden)

    Stéphane Potvin

    2012-05-01

    Full Text Available Cannabidiol (CBD, a major phytocannabinoid constituent of cannabis, is attracting growing attention in medicine for its anxiolytic, antipsychotic, antiemetic and anti-inflammatory properties. However, up to this point, a comprehensive literature review of the effects of CBD in humans is lacking. The aim of the present systematic review is to examine the randomized and crossover studies that administered CBD to healthy controls and to clinical patients. A systematic search was performed in the electronic databases PubMed and EMBASE using the key word “cannabidiol”. Both monotherapy and combination studies (e.g., CBD + ∆9-THC were included. A total of 34 studies were identified: 16 of these were experimental studies, conducted in healthy subjects, and 18 were conducted in clinical populations, including multiple sclerosis (six studies, schizophrenia and bipolar mania (four studies, social anxiety disorder (two studies, neuropathic and cancer pain (two studies, cancer anorexia (one study, Huntington’s disease (one study, insomnia (one study, and epilepsy (one study. Experimental studies indicate that a high-dose of inhaled/intravenous CBD is required to inhibit the effects of a lower dose of ∆9-THC. Moreover, some experimental and clinical studies suggest that oral/oromucosal CBD may prolong and/or intensify ∆9-THC-induced effects, whereas others suggest that it may inhibit ∆9-THC-induced effects. Finally, preliminary clinical trials suggest that high-dose oral CBD (150–600 mg/d may exert a therapeutic effect for social anxiety disorder, insomnia and epilepsy, but also that it may cause mental sedation. Potential pharmacokinetic and pharmacodynamic explanations for these results are discussed.

  7. SKP2 is a direct transcriptional target of MYCN and a potential therapeutic target in neuroblastoma.

    Science.gov (United States)

    Evans, Laura; Chen, Lindi; Milazzo, Giorgio; Gherardi, Samuele; Perini, Giovanni; Willmore, Elaine; Newell, David R; Tweddle, Deborah A

    2015-07-10

    SKP2 is the substrate recognition subunit of the ubiquitin ligase complex which targets p27(KIP1) for degradation. Induced at the G1/S transit of the cell cycle, SKP2 is frequently overexpressed in human cancers and contributes to malignancy. We previously identified SKP2 as a possible MYCN target gene and hence hypothesise that SKP2 is a potential therapeutic target in MYCN amplified disease. A positive correlation was identified between MYCN activity and SKP2 mRNA expression in Tet21N MYCN-regulatable cells and a panel of MYCN amplified and non-amplified neuroblastoma cell lines. In chromatin immunoprecipitation and reporter gene assays, MYCN bound directly to E-boxes within the SKP2 promoter and induced transcriptional activity which was decreased by the removal of MYCN and E-box mutation. Although SKP2 knockdown inhibited cell growth in both MYCN amplified and non-amplified cells, cell cycle arrest and apoptosis were induced only in non-MYCN amplified neuroblastoma cells. In conclusion these data identify SKP2 as a direct transcriptional target of MYCN and supports SKP2 as a potential therapeutic target in neuroblastoma.

  8. Importins and exportins as therapeutic targets in cancer.

    Science.gov (United States)

    Mahipal, Amit; Malafa, Mokenge

    2016-08-01

    The nuclear transport proteins, importins and exportins (karyopherin-β proteins), may play an important role in cancer by transporting key mediators of oncogenesis across the nuclear membrane in cancer cells. During nucleocytoplasmic transport of tumor suppressor proteins and cell cycle regulators during the processing of these proteins, aberrant cellular growth signaling and inactivation of apoptosis can occur, both critical to growth and development of tumors. Karyopherin-β proteins bind to these cargo proteins and RanGTP for active transport across the nuclear membrane through the nuclear pore complex. Importins and exportins are overexpressed in multiple tumors including melanoma, pancreatic, breast, colon, gastric, prostate, esophageal, lung cancer, and lymphomas. Furthermore, some of the karyopherin-β proteins such as exportin-1 have been implicated in drug resistance in cancer. Importin and exportin inhibitors are being considered as therapeutic targets against cancer and have shown preclinical anticancer activity. Moreover, synergistic activity has been observed with various chemotherapeutic and targeted agents. However, clinical development of the exportin-1 inhibitor leptomycin B was stopped due to adverse events, including vomiting, anorexia, and dehydration. Selinexor, a selective nuclear export inhibitor, is being tested in multiple clinical trials both as a single agent and in combination with chemotherapy. Selinexor has demonstrated clinical activity in multiple cancers, especially acute myelogenous leukemia and multiple myeloma. The roles of other importin and exportin inhibitors still need to be investigated clinically. Targeting the key mediators of nucleocytoplasmic transport in cancer cells represents a novel strategy in cancer intervention with the potential to significantly affect outcomes. PMID:27113410

  9. The Paramyxovirus Polymerase Complex as a Target for Next-Generation Anti-Paramyxovirus Therapeutics

    Directory of Open Access Journals (Sweden)

    Richard K Plemper

    2015-05-01

    Full Text Available The paramyxovirus family includes major human and animal pathogens, including measles virus, mumps virus, and human respiratory syncytial virus (RSV, as well as the emerging zoonotic Hendra and Nipah viruses. In the United States, RSV is the leading cause of infant hospitalizations due to viral infectious disease. Despite their clinical significance, effective drugs for the improved management of paramyxovirus disease are lacking. The development of novel anti-paramyxovirus therapeutics is therefore urgently needed. Paramyxoviruses contain RNA genomes of negative polarity, necessitating a virus-encoded RNA-dependent RNA polymerase (RdRp complex for replication and transcription. Since an equivalent enzymatic activity is absent in host cells, the RdRp complex represents an attractive druggable target, although structure-guided drug development campaigns are hampered by the lack of high-resolution RdRp crystal structures. Here, we review the current structural and functional insight into the paramyxovirus polymerase complex in conjunction with an evaluation of the mechanism of activity and developmental status of available experimental RdRp inhibitors. Our assessment spotlights the importance of the RdRp complex as a premier target for therapeutic intervention and examines how high-resolution insight into the organization of the complex will pave the path towards the structure-guided design and optimization of much-needed next-generation paramyxovirus RdRp blockers.

  10. Targeted therapeutic delivery using engineered exosomes and its applications in cardiovascular diseases.

    Science.gov (United States)

    Xitong, Dang; Xiaorong, Zeng

    2016-01-10

    Exosomes are 30-120 nm membrane bound vesicles secreted naturally by almost all cells and exist in all body fluids. Accumulating evidence has shown that exosomes contain proteins, lipids, DNA, mRNA, miRNA, and lncRNA that can be transferred from producer cells to recipient cells, facilitating cell-cell communication. As the natural carrier of these signal molecules, exosomes possess many other properties such as stability, biocompatibility, biological barrier permeability, low toxicity, and low immunogenicity, which make them an attractive vehicle for therapeutic delivery. How exosomes target recipient cells in vivo remains largely unknown, however, exosomes are selectively enriched in some transmembrane proteins that can be genetically engineered to display ligands/homing peptides on their surface, which confers exosome targeting capability to cells bearing cognate receptors. With the discovery of many peptides homing to diseased tissues or organs through phage display and in vivo biopanning technologies, there is ample opportunity to explore the potential use of exosome for targeted gene therapy. Here, we briefly review exosome biogenesis, mechanisms of exosome-mediated cell–cell communication, and exosome isolation and purification methods, and specifically focus on the emerging exosome targeting technologies.

  11. Cell Membrane-Cloaked Nanoparticles for Targeted Therapeutics

    Science.gov (United States)

    Luk, Brian Tsengchi

    interactions between membranes and synthetic nanoparticles, and how the membrane coating technique faithfully translates the complexities of natural cellular membranes to the nanoscale. The following three sections explore potential therapeutic applications of membrane-coated nanoparticles for targeted drug delivery, biodetoxification, and immunomodulation. Ultimately, cell membrane-cloaked nanoparticles have the potential to significantly change the landscape of nanomedicine. The novel applications presented in this thesis are just a few of many examples currently being researched, with countless more avenues waiting to be explored.

  12. Pyruvate Dehydrogenase Kinase as a Novel Therapeutic Target in Oncology

    Directory of Open Access Journals (Sweden)

    Gopinath eSutendra

    2013-03-01

    Full Text Available Current drug development in oncology is non-selective as it typically focuses on pathways essential for the survival of all dividing cells. The unique metabolic profile of cancer, which is characterized by increased glycolysis and suppressed mitochondrial glucose oxidation provides cancer cells with a proliferative advantage, conducive with apoptosis resistance and even increased angiogenesis. Recent evidence suggests that targeting the cancer-specific metabolic and mitochondrial remodeling may offer selectivity in cancer treatment. Pyruvate dehydrogenase kinase (PDK is a mitochondrial enzyme that is activated in a variety of cancers and results in the selective inhibition of pyruvate dehydrogenase (PDH, a complex of enzymes that converts cytosolic pyruvate to mitochondrial acetyl-CoA, the substrate for the Krebs’ cycle. Inhibition of PDK with either small interfering RNAs or the orphan drug dichloroacetate (DCA shifts the metabolism of cancer cells from glycolysis to glucose oxidation and reverses the suppression of mitochondria-dependent apoptosis. In addition, this therapeutic strategy increases the production of diffusible Krebs’ cycle intermediates and mitochondria-derived reactive oxygen species (mROS, activating p53 or inhibiting pro-proliferative and pro-angiogenic transcription factors like nuclear factor of activated T-cells (NFAT and hypoxia-inducible factor 1α (HIF1α. These effects result in decreased tumor growth and angiogenesis in a variety of cancers with high selectivity. In a small but mechanistic clinical trial in patients with glioblastoma, a highly aggressive and vascular form of brain cancer, DCA decreased tumor angiogenesis and tumor growth, suggesting that metabolic targeting therapies can be translated directly to patients. Therefore, reversing the mitochondrial suppression with metabolic-modulating drugs, like PDK inhibitors holds promise in the rapidly expanding field of metabolic oncology.

  13. Matrix metalloproteinases as therapeutic targets for idiopathic pulmonary fibrosis.

    Science.gov (United States)

    Craig, Vanessa J; Zhang, Li; Hagood, James S; Owen, Caroline A

    2015-11-01

    Idiopathic pulmonary fibrosis (IPF) is a restrictive lung disease that is associated with high morbidity and mortality. Current medical therapies are not fully effective at limiting mortality in patients with IPF, and new therapies are urgently needed. Matrix metalloproteinases (MMPs) are proteinases that, together, can degrade all components of the extracellular matrix and numerous nonmatrix proteins. MMPs and their inhibitors, tissue inhibitors of MMPs (TIMPs), have been implicated in the pathogenesis of IPF based upon the results of clinical studies reporting elevated levels of MMPs (including MMP-1, MMP-7, MMP-8, and MMP-9) in IPF blood and/or lung samples. Surprisingly, studies of gene-targeted mice in murine models of pulmonary fibrosis (PF) have demonstrated that most MMPs promote (rather than inhibit) the development of PF and have identified diverse mechanisms involved. These mechanisms include MMPs: (1) promoting epithelial-to-mesenchymal transition (MMP-3 and MMP-7); (2) increasing lung levels or activity of profibrotic mediators or reducing lung levels of antifibrotic mediators (MMP-3, MMP-7, and MMP-8); (3) promoting abnormal epithelial cell migration and other aberrant repair processes (MMP-3 and MMP-9); (4) inducing the switching of lung macrophage phenotypes from M1 to M2 types (MMP-10 and MMP-28); and (5) promoting fibrocyte migration (MMP-8). Two MMPs, MMP-13 and MMP-19, have antifibrotic activities in murine models of PF, and two MMPs, MMP-1 and MMP-10, have the potential to limit fibrotic responses to injury. Herein, we review what is known about the contributions of MMPs and TIMPs to the pathogenesis of IPF and discuss their potential as therapeutic targets for IPF.

  14. Glioblastoma: Molecular Pathways, Stem Cells and Therapeutic Targets

    Energy Technology Data Exchange (ETDEWEB)

    Jhanwar-Uniyal, Meena, E-mail: meena_jhanwar@nymc.edu; Labagnara, Michael; Friedman, Marissa; Kwasnicki, Amanda; Murali, Raj [Department of Neurosurgery, New York Medical College, Valhalla, NY 10595 (United States)

    2015-03-25

    Glioblastoma (GBM), a WHO-defined Grade IV astrocytoma, is the most common and aggressive CNS malignancy. Despite current treatment modalities, the survival time remains dismal. The main cause of mortality in patients with this disease is reoccurrence of the malignancy, which is attributed to treatment-resistant cancer stem cells within and surrounding the primary tumor. Inclusion of novel therapies, such as immuno- and DNA-based therapy, may provide better means of treating GBM. Furthermore, manipulation of recently discovered non-coding microRNAs, some of which regulate tumor growth through the development and maintenance of GBM stem cells, could provide new prospective therapies. Studies conducted by The Cancer Genome Atlas (TCGA) also demonstrate the role of molecular pathways, specifically the activated PI3K/AKT/mTOR pathway, in GBM tumorigenesis. Inhibition of the aforementioned pathway may provide a more direct and targeted method to GBM treatment. The combination of these treatment modalities may provide an innovative therapeutic approach for the management of GBM.

  15. Targeting CBLB as a potential therapeutic approach for disseminated candidiasis.

    Science.gov (United States)

    Xiao, Yun; Tang, Juan; Guo, Hui; Zhao, Yixia; Tang, Rong; Ouyang, Song; Zeng, Qiuming; Rappleye, Chad A; Rajaram, Murugesan V S; Schlesinger, Larry S; Tao, Lijian; Brown, Gordon D; Langdon, Wallace Y; Li, Belinda T; Zhang, Jian

    2016-08-01

    Disseminated candidiasis has become one of the leading causes of hospital-acquired blood stream infections with high mobility and mortality. However, the molecular basis of host defense against disseminated candidiasis remains elusive, and treatment options are limited. Here we report that the E3 ubiquitin ligase CBLB directs polyubiquitination of dectin-1 and dectin-2, two key pattern-recognition receptors for sensing Candida albicans, and their downstream kinase SYK, thus inhibiting dectin-1- and dectin-2-mediated innate immune responses. CBLB deficiency or inactivation protects mice from systemic infection with a lethal dose of C. albicans, and deficiency of dectin-1, dectin-2, or both in Cblb(-/-) mice abrogates this protection. Notably, silencing the Cblb gene in vivo protects mice from lethal systemic C. albicans infection. Our data reveal that CBLB is crucial for homeostatic control of innate immune responses mediated by dectin-1 and dectin-2. Our data also indicate that CBLB represents a potential therapeutic target for protection from disseminated candidiasis. PMID:27428899

  16. [50 years of hepatology - from therapeutic nihilism to targeted therapies].

    Science.gov (United States)

    Manns, Michael P

    2013-04-01

    Over the past 50 years significant progress has been made in the whole field of hepatology. Part of this is translation of basic research (biochemistry, immunology, virology, molecular biology and others) into clinical hepatology. This enabled us to understand more about the pathogenesis of liver diseases and led to the discovery of the five major hepatotropic viruses, the identification of hepatocellular autoantigens, and to the development of specific therapies for chronic hepatitis B, C and D. In addition, the molecular basis of most genetic liver diseases has been identified. Significant progress was made in the development of medical therapies for various liver diseases with different underlying etiologies. Surgery significantly contributed to the progress in the management of liver diseases; examples are laparoscopic cholecystectomy and the development of liver transplantation. A multimodal therapeutic algorithm has been established for the therapy of hepatocelluar carcinoma (HCC); with Sorafenib "targeted therapy" has entered the area of HCC. The progress made over the last 50 years not only led to an aetiological differentiation of acute and chronic liver diseases but also to specific therapies based on the identification and understanding of the underlying etiology. PMID:23585265

  17. MPS1 kinase as a potential therapeutic target in medulloblastoma

    Science.gov (United States)

    Alimova, Irina; Ng, June; Harris, Peter; Birks, Diane; Donson, Andrew; Taylor, Michael D.; Foreman, Nicholas K.; Venkataraman, Sujatha; Vibhakar, Rajeev

    2016-01-01

    Medulloblastoma is the most common type of malignant brain tumor that affects children. Although recent advances in chemotherapy and radiation have improved outcomes, high-risk patients perform poorly with significant morbidity. Gene expression profiling has revealed that monopolar spindle 1 (MPS1) (TTK1) is highly expressed in medulloblastoma patient samples compared to that noted in normal cerebellum. MPS1 is a key regulator of the spindle assembly checkpoint (SAC), a mitotic mechanism specifically required for proper chromosomal alignment and segregation. The SAC can be activated in aneuploid cancer cells and MPS1 is overexpressed in many types of cancers. A previous study has demonstrated the effectiveness of inhibiting MPS1 with small-molecule inhibitors, but the role of MPS1 in medulloblastoma is unknown. In the present study, we demonstrated that MPS1 inhibition by shRNA or with a small-molecule drug, NMS-P715, resulted in decreased cell growth, inhibition of clonogenic potential and induction of apoptosis in cells belonging to both the Shh and group 3 medulloblastoma genomic signature. These findings highlight MPS1 as a rational therapeutic target for medulloblastoma. PMID:27633003

  18. SOCS3: A novel therapeutic target for cardioprotection.

    Science.gov (United States)

    Yasukawa, Hideo; Nagata, Takanobu; Oba, Toyoharu; Imaizumi, Tsutomu

    2012-10-01

    The suppressors of cytokine signaling (SOCS) family of proteins are cytokine-inducible inhibitors of Janus kinase (JAK)-signal transducer and activator of the transcription (STAT) signaling pathways. Among the family, SOCS1 and SOCS3 potently suppress cytokine actions by inhibiting JAK kinase activities. The generation of mice lacking individual SOCS genes has been instrumental in defining the role of individual SOCS proteins in specific cytokine pathways in vivo; SOCS1 is an essential negative regulator of interferon-γ (IFNγ) and SOCS3 is an essential negative regulator of leukemia inhibitory factor (LIF). JAK-STAT3 activating cytokines have exhibited cardioprotective roles in the heart. The cardiac-specific deletion of SOCS3 enhances the activation of cardioprotective signaling pathways, inhibits myocardial apoptosis and fibrosis and results in the inhibition of left ventricular remodeling after myocardial infarction (MI). We propose that myocardial SOCS3 is a key determinant of left ventricular remodeling after MI, and SOCS3 may serve as a novel therapeutic target to prevent left ventricular remodeling after MI. In this review, we discuss the signaling pathways mediated by JAK-STAT and SOCS proteins and their roles in the development of myocardial injury under stress (e.g., pressure overload, viral infection and ischemia). PMID:24058778

  19. Obesity, insulin resistance, adipocytokines and breast cancer: New biomarkers and attractive therapeutic targets

    OpenAIRE

    Dalamaga, Maria

    2013-01-01

    Worldwide, breast cancer (BC) represents the most common type of non-skin human malignancy and the second leading cause of cancer-related deaths amid women in Western countries. Obesity and its metabolic complications have rapidly become major global health issues and are associated with increased risk for cancer, especially BC in postmenopausal women. Adipose tissue is considered as a genuine endocrine organ secreting a variety of bioactive adipokines, such as leptin, adiponectin, resistin a...

  20. "Siglec"ting the allergic response for therapeutic targeting.

    Science.gov (United States)

    Bochner, Bruce S

    2016-06-01

    As a physician-scientist, I have pursued research related to translational immunology with the goal of improving our ability to diagnose and treat allergic, immunologic and other diseases involving eosinophils, basophils and mast cells. We have tried to delineate novel mechanisms of human disease, working whenever possible with primary human cells and tissues, attempting to identify targets that might be amenable to the development of new therapies. As a general strategy, we have compared eosinophils, basophils, mast cells and neutrophils to look for pathways in inflammation that were unique to distinct subsets of these cells. In doing so, the concepts of glycobiology did not enter my mind until we began noticing some intriguing functional differences involving selectins and their ligands among these cell types. One simple observation, that neutrophils were coated with a glycan that allowed them to interact with an endothelial adhesion molecule while eosinophils lacked this structure, pried open the glyco-door for me. Fruitful collaborations with card-carrying glycobiologists soon followed that have forever positively influenced our science, and have enhanced our hypotheses, experimental design, research opportunities and discoveries. Within a few years, we helped to discover Siglec-8, an I-type lectin expressed only on human eosinophils, basophils, mast cells. This receptor, together with its closest mouse counterpart Siglec-F, has been the primary focus of our work now for over a decade. If not for those in the fields of glycobiology and glycoimmunology, my lab would not have made much progress toward the goal of leveraging Siglec-8 for therapeutic purposes. PMID:26911285

  1. GABAergic signaling as therapeutic target for Autism Spectrum Disorders

    Directory of Open Access Journals (Sweden)

    Giada eCellot

    2014-07-01

    Full Text Available GABA, the main inhibitory neurotransmitter in the adult brain, early in postnatal life exerts a depolarizing and excitatory action. This depends on accumulation of chloride inside the cell via the cation-chloride importer NKCC1, being the expression of the chloride exporter KCC2 very low at birth. The developmentally regulated expression of KCC2 results in extrusion of chloride with age and a shift of GABA from the depolarizing to the hyperpolarizing direction. The depolarizing action of GABA leads to intracellular calcium rise through voltage-dependent calcium channels and/or NMDA receptors. GABA-mediated calcium signals regulate a variety of developmental processes from cell proliferation migration, differentiation, synapse maturation and neuronal wiring. Therefore, it is not surprising that some forms of neuro-developmental disorders such as Autism Spectrum Disorders (ASDs are associated with alterations of GABAergic signaling and impairment of the excitatory/inhibitory balance in selective neuronal circuits. In this review we will discuss how changes of GABAA-mediated neurotransmission affect several forms of ASDs including the Fragile X, the Angelman and Rett syndromes. Then, we will describe various animal models of ASDs with GABAergic dysfunctions, highlighting their behavioral deficits and the possibility to rescue them by targeting selective components of the GABAergic synapse. In particular, we will discuss how in some cases, reverting the polarity of GABA responses from the depolarizing to the hyperpolarizing direction with the diuretic bumetanide, a selective blocker of NKCC1, may have beneficial effects on ASDs, thus opening new therapeutic perspectives for the treatment of these devastating disorders.

  2. Targeting amyloid-degrading enzymes as therapeutic strategies in neurodegeneration.

    Science.gov (United States)

    Turner, Anthony J; Fisk, Lilia; Nalivaeva, Natalia N

    2004-12-01

    The levels of amyloid beta-peptides (Abeta) in the brain represent a dynamic equilibrium state as a result of their biosynthesis from the amyloid precursor protein (APP) by beta- and gamma-secretases, their degradation by a team of amyloid-degrading enzymes, their subsequent oligomerization, and deposition into senile plaques. While most therapeutic attention has focused on developing inhibitors of secretases to prevent Abeta formation, enhancing the rate of Abeta degradation represents an alternative and viable strategy. Current evidence both in vivo and in vitro suggests that there are three major players in amyloid turnover: neprilysin, endothelin converting enzyme(s), and insulin-degrading enzyme, all of which are zinc metallopeptidases. Other proteases have also been implicated in amyloid metabolism, including angiotensin-converting enzyme, and plasmin but for these the evidence is less compelling. Neprilysin and endothelin converting enzyme(s) are homologous membrane proteins of the M13 peptidase family, which normally play roles in the biosynthesis and/or metabolism of regulatory peptides. Insulin-degrading enzyme is structurally and mechanistically distinct. The regional, cellular, and subcellular localizations of these enzymes differ, providing an efficient and diverse mechanism for protecting the brain against the normal accumulation of toxic Abeta peptides. Reduction in expression levels of some of these proteases following insults (e.g., hypoxia and ischemia) or aging might predispose to the development of Alzheimer's disease. Conversely, enhancement of their levels by gene delivery or pharmacological means could be neuroprotective. Even a relatively small enhancement of Abeta metabolism could slow the inexorable progression of the disease. The relative merits of targeting these enzymes for the treatment of Alzheimer's disease will be reviewed and possible side-effects of enhancing their activity evaluated.

  3. MYC as therapeutic target in leukemia and lymphoma

    Directory of Open Access Journals (Sweden)

    Cortiguera MG

    2015-07-01

    Full Text Available Maria G Cortiguera,1 Ana Batlle-López,1,2 Marta Albajar,1,2 M Dolores Delgado,1,3 Javier León1,3 1Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC, CSIC-University of Cantabria, 2Department of Hemathology, Hospital Universitario Marqués de Valdecilla, 3Department of Molecular Biology, University of Cantabria, Santander, Spain Abstract: MYC is a transcription factor that is involved in the expression of many genes. Deregulated MYC is found in about half of human tumors, being more prevalent in hematological neoplasms. Deregulation mechanisms include chromosomal translocation (particularly in lymphoma, amplification, and hyperactivation of MYC transcription. Here we review MYC involvement in the major types of leukemia and lymphoma. MYC rearrangements appear in all Burkitt lymphomas and are common in other lymphoma types, whereas in acute lymphoblastic leukemia, acute myeloid leukemia, lymphoproliferative, and myeloproferative diseases, they are less frequent. However, MYC overexpression is present in all types of hematological malignancies and often correlates with a worse prognosis. Data in leukemia-derived cells and in animal models of lymphomagenesis and leukemogenesis suggest that MYC would be a good therapeutic target. Several MYC-directed therapies have been assayed in preclinical settings and even in clinical trials. First, peptides and small molecules that interrupt the MYC–MAX interaction impair MYC-mediated tumorogenesis in several mouse models of solid tumors, although not yet in lymphoma and leukemia models. Second, there are a number of small molecules inhibiting the interaction of MYC–MAX heterodimers with DNA, still in the preclinical research phase. Third, inhibitors of MYC expression via the inhibition of BRD4 (a reader of acetylated histones have been shown to control the growth of MYC-transformed leukemia and lymphoma cells and are being used in clinic trials. Finally, we review a number of promising MYC

  4. Inter-organ metabolic communication involved in energy homeostasis: potential therapeutic targets for obesity and metabolic syndrome.

    Science.gov (United States)

    Yamada, Tetsuya; Oka, Yoshitomo; Katagiri, Hideki

    2008-01-01

    The global rate of obesity is rising alarmingly, exerting a major adverse impact on human health by increasing the prevalences of disorders, such as diabetes, hypertension and heart disease. To maintain systemic energy homeostasis, metabolic information must be communicated among organs/tissues. Obesity-related disorders can be thought of as resulting from dysregulation of this vital inter-tissue communication. Remarkable advances in obesity research during this decade have shown humoral factors manufactured and secreted by adipose tissue (adipocytokines) to be of great importance. In addition to these humoral factors, such as nutrients (glucose, fatty acids and amino acids) and hormones (insulin, adipocytokines and so on), the functional significance of the autonomic nervous system has recently attracted research attention. Autonomic nerves are essential components of the endogenous system for maintaining energy homeostasis, making them potential therapeutic targets for obesity-related disorders. This review focuses on the therapeutic possibilities of targeting inter-organ communication systems.

  5. Organization, Function, and Therapeutic Targeting of the Morbillivirus RNA-Dependent RNA Polymerase Complex.

    Science.gov (United States)

    Sourimant, Julien; Plemper, Richard K

    2016-01-01

    The morbillivirus genus comprises major human and animal pathogens, including the highly contagious measles virus. Morbilliviruses feature single stranded negative sense RNA genomes that are wrapped by a plasma membrane-derived lipid envelope. Genomes are encapsidated by the viral nucleocapsid protein forming ribonucleoprotein complexes, and only the encapsidated RNA is transcribed and replicated by the viral RNA-dependent RNA polymerase (RdRp). In this review, we discuss recent breakthroughs towards the structural and functional understanding of the morbillivirus polymerase complex. Considering the clinical burden imposed by members of the morbillivirus genus, the development of novel antiviral therapeutics is urgently needed. The viral polymerase complex presents unique structural and enzymatic properties that can serve as attractive candidates for druggable targets. We evaluate distinct strategies for therapeutic intervention and examine how high-resolution insight into the organization of the polymerase complex may pave the path towards the structure-based design and optimization of next-generation RdRp inhibitors. PMID:27626440

  6. Periostin: a promising target of therapeutical intervention for prostate cancer

    Directory of Open Access Journals (Sweden)

    Ding Weihong

    2011-06-01

    RNA-Periostin LNCap cells growed slowly in vitro and in vivo. The tissues of xenografts as PCa were verificated by HE staining. Additionally, the weak positive Periostin expressed tumor cells could be seen in the tissues of 6 xenografts from the group of down-regulated Periostin LNCap cells which had a significant decrease of the amount of Periostin compared to the other two group. Furthermore, our results demonstrated that sliencing Periostin could inhibit migration of LNCap cells in vitro. Conclusions Our data indicates that Periostin as an up-regulated protein in PCa may be a promising target of therapeutical intervention for PCa in future.

  7. Functionally-defined Therapeutic Targets in Diffuse Intrinsic Pontine Glioma

    Science.gov (United States)

    Grasso, Catherine S.; Tang, Yujie; Truffaux, Nathalene; Berlow, Noah E.; Liu, Lining; Debily, Marie-Anne; Quist, Michael J.; Davis, Lara E.; Huang, Elaine C.; Woo, Pamelyn J; Ponnuswami, Anitha; Chen, Spenser; Johung, Tessa B.; Sun, Wenchao; Kogiso, Mari; Du, Yuchen; Lin, Qi; Huang, Yulun; Hütt-Cabezas, Marianne; Warren, Katherine E.; Dret, Ludivine Le; Meltzer, Paul S.; Mao, Hua; Quezado, Martha; van Vuurden, Dannis G.; Abraham, Jinu; Fouladi, Maryam; Svalina, Matthew N.; Wang, Nicholas; Hawkins, Cynthia; Nazarian, Javad; Alonso, Marta M.; Raabe, Eric; Hulleman, Esther; Spellman, Paul T.; Li, Xiao-Nan; Keller, Charles; Pal, Ranadip; Grill, Jacques; Monje, Michelle

    2015-01-01

    Diffuse Intrinsic Pontine Glioma (DIPG) is a fatal childhood cancer. We performed a chemical screen in patient-derived DIPG cultures along with RNAseq analyses and integrated computational modeling to identify potentially effective therapeutic strategies. The multi-histone deacetylase inhibitor panobinostat demonstrated efficacy in vitro and in DIPG orthotopic xenograft models. Combination testing of panobinostat with histone demethylase inhibitor GSKJ4 revealed synergy. Together, these data suggest a promising therapeutic strategy for DIPG. PMID:25939062

  8. Prioritization of Eco-tourism Attractions (The target villages of Charmahal O Bakhtiar province

    Directory of Open Access Journals (Sweden)

    D. Rahimi

    2012-01-01

    Full Text Available Extended abstract1-IntroductionIn today’s world tourism is one of the essential revenue generating industries that serves as a means for cultural exchange among nation as well. Rural-tourism is a branch of tourism that is limited to the rural environment with respect to the culture and traditional customs that include their hand-craft, behavior, hospitality, green-tours, farm-tours, hunting, their cooking manners etc. Any country that intends to attract tourists in this field should be equipped with the following two characteristics: the potential that is the natural resources and the ability to provide services and facilities for rural-tourism that is the accommodation.2- Theoretical basesThis idea was first established during the 19th century in the western civilization when due to industrialization and urban-dwelling, transportation and welfare; people had more leisure time to visit rural areas in vast numbers.In the 20 year forecast program of development in the realm of tourism a national approach is adopted to promote the deprived regions’ potentials through manipulation of their natural/rural capacities and abilities. In order to finance the fundamental aspects of such programs, the authorities would face numerous problems.One of the measures that could overcome these problems to a certain degree is to prioritize the villages in a province based on their potentials then categorizes them as the village-tourism centers. For this purpose, an attempt is made to prioritize the potential villages by applying AHP, which is to validate them for investment, which will include all that is needed for Village Tourism. This issue has been of concern in different countries where putting the available natural resources at the National Tourist Industry’s services would be beneficial.- The study zoneCharmahal o Bakhtiar is a province with an area of 16,532 Km2. The geographic and demographic features of this province are presented in Table 1: RowTarget

  9. Hypoxia-Inducible Factor-1 as a Therapeutic Target in Endometrial Cancer Management

    Directory of Open Access Journals (Sweden)

    Laura M. S. Seeber

    2010-01-01

    Full Text Available In the Western world, endometrial cancer (EC is the most common malignant tumor of the female genital tract. Solid tumors like EC outgrow their vasculature resulting in hypoxia. Tumor hypoxia is important because it renders an aggressive phenotype and leads to radio- and chemo-therapy resistance. Hypoxia-inducible factor-1 (HIF-1 plays an essential role in the adaptive cellular response to hypoxia and is associated with poor clinical outcome in EC. Therefore, HIF-1 could be an attractive therapeutic target. Selective HIF-1 inhibitors have not been identified. A number of nonselective inhibitors which target signaling pathways upstream or downstream HIF-1 are known to decrease HIF-1 protein levels. In clinical trials for the treatment of advanced and/or recurrent EC are the topoisomerase I inhibitor Topotecan, mTOR-inhibitor Rapamycin, and angiogenesis inhibitor Bevacizumab. Preliminary data shows encouraging results for these agents. Further work is needed to identify selective HIF-1 inhibitors and to translate these into clinical trials.

  10. Therapeutic opportunities in Ewing sarcoma: EWS-FLI inhibition via LSD1 targeting.

    Science.gov (United States)

    Theisen, Emily R; Pishas, Kathleen I; Saund, Ranajeet S; Lessnick, Stephen L

    2016-04-01

    Ewing sarcoma is an aggressive primary pediatric bone tumor, often diagnosed in adolescents and young adults. A pathognomonic reciprocal chromosomal translocation results in a fusion gene coding for a protein which derives its N-terminus from a FUS/EWS/TAF15 (FET) protein family member, commonly EWS, and C-terminus containing the DNA-binding domain of an ETS transcription factor, commonly FLI1. Nearly 85% of cases express the EWS-FLI protein which functions as a transcription factor and drives oncogenesis. As the primary genomic lesion and a protein which is not expressed in normal cells, disrupting EWS-FLI function is an attractive therapeutic strategy for Ewing sarcoma. However, transcription factors are notoriously difficult targets for the development of small molecules. Improved understanding of the oncogenic mechanisms employed by EWS-FLI to hijack normal cellular programming has uncovered potential novel approaches to pharmacologically block EWS-FLI function. In this review we examine targeting the chromatin regulatory enzymes recruited to conspire in oncogenesis with a focus on the histone lysine specific demethylase 1 (LSD1). LSD1 inhibitors are being aggressively investigated in acute myeloid leukemia and the results of early clinical trials will help inform the future use of LSD1 inhibitors in sarcoma. High LSD1 expression is observed in Ewing sarcoma patient samples and mechanistic and preclinical data suggest LSD1 inhibition globally disrupts the function of EWS-ETS proteins. PMID:26848860

  11. Targeted Tumor Therapy with "Magnetic Drug Targeting": Therapeutic Efficacy of Ferrofluid Bound Mitoxantrone

    Science.gov (United States)

    Alexiou, Ch.; Schmid, R.; Jurgons, R.; Bergemann, Ch.; Arnold, W.; Parak, F.G.

    The difference between success or failure of chemotherapy depends not only on the drug itself but also on how it is delivered to its target. Biocompatible ferrofluids (FF) are paramagnetic nanoparticles, that may be used as a delivery system for anticancer agents in locoregional tumor therapy, called "magnetic drug targeting". Bound to medical drugs, such magnetic nanoparticles can be enriched in a desired body compartment (tumor) using an external magnetic field, which is focused on the area of the tumor. Through this form of target directed drug application, one attempts to concentrate a pharmacological agent at its site of action in order to minimize unwanted side effects in the organism and to increase its locoregional effectiveness. Tumor bearing rabbits (VX2 squamous cell carcinoma) in the area of the hind limb, were treated by a single intra-arterial injection (A. femoralis) of mitoxantrone bound ferrofluids (FF-MTX), while focusing an external magnetic field (1.7 Tesla) onto the tumor for 60 minutes. Complete tumor remissions could be achieved in these animals in a dose related manner (20% and 50% of the systemic dose of mitoxantrone), without any negative side effects, like e.g. leucocytopenia, alopecia or gastrointestinal disorders. The strong and specific therapeutic efficacy in tumor treatment with mitoxantrone bound ferrofluids may indicate that this system could be used as a delivery system for anticancer agents, like radionuclids, cancer-specific antibodies, anti-angiogenetic factors, genes etc.

  12. The effect of target's physical attractiveness and dominance on STD-risk perceptions

    NARCIS (Netherlands)

    Dijkstra, P; Buunk, BP; Blanton, H

    2000-01-01

    Utilizing a 2 x 2 design, the present study examined the effect of a female's physical attractiveness and dominance on men's sexual motivation and sexually transmitted disease (STD) risk perceptions in a sample of 72 heterosexual male college students. As predicted, participants a ere more motivated

  13. Mesenchymal stem cells as therapeutic delivery vehicles targeting tumor stroma

    DEFF Research Database (Denmark)

    Serakinci, Nedime; Christensen, Rikke; Sørensen, Flemming Brandt;

    2011-01-01

    The field of stem cell biology continues to evolve by characterization of further types of stem cells and by exploring their therapeutic potential for experimental and clinical applications. Human mesenchymal stem cells (hMSCs) are one of the most promising candidates simply because...... of their easiness of both ex vivo expansion in culture dishes and genetic manipulation. Despite many extensive isolation and expansion studies, relatively little has been done with regard to hMSCs' therapeutic potential. Although clinical trials using hMSCs are underway, their use in cancer therapy still needs...... better understanding and in vivo supporting data. The homing ability of hMSCs was investigated by creating a human xenograft model by transplanting an ovarian cancer cell line into immunocompromised mice. Then, genetically engineered hMSC-telo1 cells were injected through the tail vein...

  14. BMPs as Therapeutic Targets and Biomarkers in Astrocytic Glioma

    Directory of Open Access Journals (Sweden)

    Pilar González-Gómez

    2014-01-01

    Full Text Available Astrocytic glioma is the most common brain tumor. The glioma initiating cell (GIC fraction of the tumor is considered as highly chemoresistant, suggesting that GICs are responsible for glioma relapse. A potential treatment for glioma is to induce differentiation of GICs to a more benign and/or druggable cell type. Given BMPs are among the most potent inducers of GIC differentiation, they have been considered as noncytotoxic therapeutic compounds that may be of use to prevent growth and recurrence of glioma. We herein summarize advances made in the understanding of the role of BMP signaling in astrocytic glioma, with a particular emphasis on the effects exerted on GICs. We discuss the prognostic value of BMP signaling components and the implications of BMPs in the differentiation of GICs and in their sensitization to alkylating drugs and oncolytic therapy/chemotherapy. This mechanistic insight may provide new opportunities for therapeutic intervention of brain cancer.

  15. Galectins as therapeutic targets for hematological malignancies: a hopeful sweetness.

    Science.gov (United States)

    Pena, Camilo; Mirandola, Leonardo; Figueroa, Jose A; Hosiriluck, Nattamol; Suvorava, Natallia; Trotter, Kayley; Reidy, Adair; Rakhshanda, Rahman; Payne, Drew; Jenkins, Marjorie; Grizzi, Fabio; Littlefield, Lauren; Chiriva-Internati, Maurizio; Cobos, Everardo

    2014-09-01

    Galectins are family of galactose-binding proteins known to play critical roles in inflammation and neoplastic progression. Galectins facilitate the growth and survival of neoplastic cells by regulating their cross-talk with the extracellular microenvironment and hampering anti-neoplastic immunity. Here, we review the role of galectins in the biology of hematological malignancies and their promise as potential therapeutic agents in these diseases. PMID:25405162

  16. MicroRNA as therapeutic targets for treatment of depression

    OpenAIRE

    Hansen KF; Obrietan K

    2013-01-01

    Katelin F Hansen, Karl Obrietan Department of Neuroscience, Ohio State University, Columbus, OH, USA Abstract: Depression is a potentially life-threatening mental disorder affecting approximately 300 million people worldwide. Despite much effort, the molecular underpinnings of clinical depression remain poorly defined, and current treatments carry limited therapeutic efficacy and potentially burdensome side effects. Recently, small noncoding RNA molecules known as microRNA (miRNA) have gaine...

  17. ROCK as a Therapeutic Target of Diabetic Retinopathy

    OpenAIRE

    Tatsuro Ishibashi; Yasuaki Hata; Ryoichi Arita

    2010-01-01

    The increasing global prevalence of diabetes is a critical problem for public health. In particular, diabetic retinopathy, a prevalent ocular complication of diabetes mellitus, causes severe vision loss in working population. A better understanding of the pathogenesis and the development of new pharmacologic treatments are needed. This paper describes the relevance between Rho/ROCK pathway and the pathogenesis of diabetic retinopathy from its early to late stages. Moreover, the therapeutic po...

  18. Attractive target wave patterns in complex networks consisting of excitable nodes

    International Nuclear Information System (INIS)

    This review describes the investigations of oscillatory complex networks consisting of excitable nodes, focusing on the target wave patterns or say the target wave attractors. A method of dominant phase advanced driving (DPAD) is introduced to reveal the dynamic structures in the networks supporting oscillations, such as the oscillation sources and the main excitation propagation paths from the sources to the whole networks. The target center nodes and their drivers are regarded as the key nodes which can completely determine the corresponding target wave patterns. Therefore, the center (say node A) and its driver (say node B) of a target wave can be used as a label, (A,B), of the given target pattern. The label can give a clue to conveniently retrieve, suppress, and control the target waves. Statistical investigations, both theoretically from the label analysis and numerically from direct simulations of network dynamics, show that there exist huge numbers of target wave attractors in excitable complex networks if the system size is large, and all these attractors can be labeled and easily controlled based on the information given by the labels. The possible applications of the physical ideas and the mathematical methods about multiplicity and labelability of attractors to memory problems of neural networks are briefly discussed. (topical review - statistical physics and complex systems)

  19. Airway surface liquid homeostasis in cystic fibrosis: pathophysiology and therapeutic targets.

    Science.gov (United States)

    Haq, Iram J; Gray, Michael A; Garnett, James P; Ward, Christopher; Brodlie, Malcolm

    2016-03-01

    Cystic fibrosis (CF) is a life-limiting disease characterised by recurrent respiratory infections, inflammation and lung damage. The volume and composition of the airway surface liquid (ASL) are important in maintaining ciliary function, mucociliary clearance and antimicrobial properties of the airway. In CF, these homeostatic mechanisms are impaired, leading to a dehydrated and acidic ASL. ASL volume depletion in CF is secondary to defective anion transport by the abnormal cystic fibrosis transmembrane conductance regulator protein (CFTR). Abnormal CFTR mediated bicarbonate transport creates an unfavourable, acidic environment, which impairs antimicrobial function and alters mucus properties and clearance. These disease mechanisms create a disordered airway milieu, consisting of thick mucopurulent secretions and chronic bacterial infection. In addition to CFTR, there are additional ion channels and transporters in the apical airway epithelium that play a role in maintaining ASL homeostasis. These include the epithelial sodium channel (ENaC), the solute carrier 26A (SLC26A) family of anion exchangers, and calcium-activated chloride channels. In this review we discuss how the ASL is abnormal in CF and how targeting these alternative channels and transporters could provide an attractive therapeutic strategy to correct the underlying ASL abnormalities evident in CF.

  20. ABCC4/MRP4: a MYCN-regulated transporter and potential therapeutic target in neuroblastoma.

    Directory of Open Access Journals (Sweden)

    Tony eHuynh

    2012-12-01

    Full Text Available Resistance to cytotoxic drugs is thought to be a major cause of treatment failure in childhood neuroblastoma, and members of the ATP-binding cassette (ABC transporter superfamily may contribute to this phenomenon by active efflux of chemotherapeutic agents from cancer cells. As a member of the C subfamily of ABC transporters, multidrug resistance-associated protein MRP4/ABCC4 has the ability to export a variety of endogenous and exogenous substances across the plasma membrane. In light of its capacity for chemotherapeutic drug efflux, MRP4 has been studied in the context of drug resistance in a number of cancer cell types. However, MRP4 also influences cancer cell biology independently of chemotherapeutic drug exposure, which highlights the potential importance of endogenous MRP4 substrates in cancer biology. Furthermore, MRP4 is a direct transcriptional target of Myc family oncoproteins and expression of this transporter is a powerful independent predictor of clinical outcome in neuroblastoma. Together these features suggest that inhibition of MRP4 may be an attractive therapeutic approach for neuroblastoma and other cancers that rely on MRP4. In this respect, existing options for MRP4 inhibition are relatively non-selective and thus development of more specific anti-MRP4 compounds should be a major focus of future work in this area.

  1. Prioritization of Eco-tourism Attractions (The target villages of Charmahal O Bakhtiar province)

    OpenAIRE

    D. Rahimi; M. Ranjbar Dashtestani

    2012-01-01

    Extended abstract1-IntroductionIn today’s world tourism is one of the essential revenue generating industries that serves as a means for cultural exchange among nation as well. Rural-tourism is a branch of tourism that is limited to the rural environment with respect to the culture and traditional customs that include their hand-craft, behavior, hospitality, green-tours, farm-tours, hunting, their cooking manners etc. Any country that intends to attract tourists in this field should be equipp...

  2. Non-Target Impacts of an Attract-and-Kill Formulation Based on Plant Volatiles: Responses of some Generalist Predators.

    Science.gov (United States)

    Gregg, Peter C; Del Socorro, Alice P; Binns, Matthew R

    2016-07-01

    Responses of non-target insects to a blend of plant volatiles used as components in an attract-and-kill formulation for Helicoverpa spp. (Lepidoptera: Noctuidae) were studied in an Australian cotton field. Two experiments, one involving suction sampling during the day and the other at night, were conducted. Rows that had been treated with the volatile blend, with no added insecticide, were sampled with a large suction sampler 18, 42, and 85 h (day experiment) and 6, 30, and 78 h (night experiment) after treatment. Rows located 5, 10, 20, and 300 m away from the treated row were similarly sampled. Of seven generalist predators, only one accumulated on the treated rows compared to the untreated rows. Of the other six, five were found in lower numbers on the treated rows, and for one no significant effects were detected. Compared to pre-spray baseline levels, numbers of several taxa increased across the whole field after spraying, suggesting area-wide attraction, but localized responses to the treated rows were weak, and apparent repellence was more common than attraction. We suggest that attract-and-kill with plant volatiles should have minimal effects on populations of these predators, and is likely to be compatible with integrated pest management.

  3. Gene therapy of cancer and development of therapeutic target gene

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Min; Kwon, Hee Chung

    1998-04-01

    We applied HSV-tk/GCV strategy to orthotopic rat hepatoma model and showed anticancer effects of hepatoma. The increased expression of Lac Z gene after adenovirus-mediated gene delivery throughout hepatic artery was thought that is increased the possibility of gene therapy for curing hepatoma. With the construction of kGLP-laboratory, it is possible to produce a good quantity and quality of adenovirus in lage-scale production and purification of adenovirus vector. Also, the analysis of hepatoma related genes by PCR-LOH could be used for the diagnosis of patients and the development of therapeutic gene.

  4. Is tau a suitable therapeutical target in tauopathies?

    Institute of Scientific and Technical Information of China (English)

    Elena; Gomez; de; Barreda; Jesús; Avila

    2010-01-01

    Tau is an intracellular protein,found mainly in neurons,but it can also be found in the extracellular space in pathological situations.Here we discuss whether intracellular tau,in aggregated form or modified by phosphorylation,could be toxic inside a neuron.On the other hand,it has been proposed that extracellular tau could be toxic.In this review,we address the question if the elimination of tau would be a possible therapeutic method to avoid tauopathy disorder and we suggest ways to eliminate intracellular and extracellular tau as treatment.

  5. Gene therapy of cancer and development of therapeutic target gene

    International Nuclear Information System (INIS)

    We applied HSV-tk/GCV strategy to orthotopic rat hepatoma model and showed anticancer effects of hepatoma. The increased expression of Lac Z gene after adenovirus-mediated gene delivery throughout hepatic artery was thought that is increased the possibility of gene therapy for curing hepatoma. With the construction of kGLP-laboratory, it is possible to produce a good quantity and quality of adenovirus in lage-scale production and purification of adenovirus vector. Also, the analysis of hepatoma related genes by PCR-LOH could be used for the diagnosis of patients and the development of therapeutic gene

  6. The Natural Flavonoid Pinocembrin: Molecular Targets and Potential Therapeutic Applications.

    Science.gov (United States)

    Lan, Xi; Wang, Wenzhu; Li, Qiang; Wang, Jian

    2016-04-01

    Pinocembrin is a natural flavonoid compound extracted from honey, propolis, ginger roots, wild marjoram, and other plants. In preclinical studies, it has shown anti-inflammatory and neuroprotective effects as well as the ability to reduce reactive oxygen species, protect the blood-brain barrier, modulate mitochondrial function, and regulate apoptosis. Considering these pharmaceutical characteristics, pinocembrin has potential as a drug to treat ischemic stroke and other clinical conditions. In this review, we summarize its pharmacologic characteristics and discuss its mechanisms of action and potential therapeutic applications. PMID:25744566

  7. Development of new estrogen receptor-targeting therapeutic agents for tamoxifen-resistant breast cancer

    OpenAIRE

    Jiang, Quan; Zheng, Shilong; Wang, Guangdi

    2013-01-01

    Despite our deepening understanding of the mechanisms of resistance and intensive efforts to develop therapeutic solutions to combat resistance, de novo and acquired tamoxifen resistance remains a clinical challenge, and few effective regimens exist to treat tamoxifen-resistant breast cancer. The complexity of tamoxifen resistance calls for diverse therapeutic approaches. This review presents several therapeutic strategies and lead compounds targeting the estrogen receptor signaling pathways ...

  8. Cancer targeted therapeutics: From molecules to drug delivery vehicles.

    Science.gov (United States)

    Liu, Daxing; Auguste, Debra T

    2015-12-10

    The pitfall of all chemotherapeutics lies in drug resistance and the severe side effects experienced by patients. One way to reduce the off-target effects of chemotherapy on healthy tissues is to alter the biodistribution of drug. This can be achieved in two ways: Passive targeting utilizes shape, size, and surface chemistry to increase particle circulation and tumor accumulation. Active targeting employs either chemical moieties (e.g. peptides, sugars, aptamers, antibodies) to selectively bind to cell membranes or responsive elements (e.g. ultrasound, magnetism, light) to deliver its cargo within a local region. This article will focus on the systemic administration of anti-cancer agents and their ability to home to tumors and, if relevant, distant metastatic sites.

  9. Therapeutic approaches targeting intestinal microflora in inflammatory bowel disease

    Institute of Scientific and Technical Information of China (English)

    Akira Andoh; Yoshihide Fujiyama

    2006-01-01

    Inflammatory bowel diseases, ulcerative colitis, and Crohn's disease, are chronic intestinal disorders of unknown etiology in which in genetically susceptible individuals, the mucosal immune system shows an aberrant response towards commensal bacteria.The gastrointestinal tract has developed ingenious mechanisms to coexist with its autologous microflora,but rapidly responds to invading pathogens and then returns to homeostasis with its commensal bacteria after the pathogenic infection is cleared. In case of disruption of this tightly-regulated homeostasis, chronic intestinal inflammation may be induced. Previous studies showed that some commensal bacteria are detrimental while others have either no influence or have a protective action. In addition, each host has a genetically determined response to detrimental and protective bacterial species. These suggest that therapeutic manipulation of imbalance of microflora can influence health and disease. This review focuses on new insights into the role of commensal bacteria in gut health and disease, and presents recent findings in innate and adaptive immune interactions. Therapeutic approaches to modulate balance of intestinal microflora and their potential mechanisms of action are also discussed.

  10. Recent Progress and Advances in HGF/MET-Targeted Therapeutic Agents for Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Yilong Zhang

    2015-03-01

    Full Text Available The hepatocyte growth factor (HGF: MET axis is a ligand-mediated receptor tyrosine kinase pathway that is involved in multiple cellular functions, including proliferation, survival, motility, and morphogenesis. Aberrancy in the HGF/MET pathway has been reported in multiple tumor types and is associated with tumor stage and prognosis. Thus, targeting the HGF/MET pathway has become a potential therapeutic strategy in oncology development in the last two decades. A number of novel therapeutic agents—either as therapeutic proteins or small molecules that target the HGF/MET pathway—have been tested in patients with different tumor types in clinical studies. In this review, recent progress in HGF/MET pathway-targeted therapy for cancer treatment, the therapeutic potential of HGF/MET-targeted agents, and challenges in the development of such agents will be discussed.

  11. Identification of attractive drug targets in neglected-disease pathogens using an in silico approach.

    Directory of Open Access Journals (Sweden)

    Gregory J Crowther

    Full Text Available BACKGROUND: The increased sequencing of pathogen genomes and the subsequent availability of genome-scale functional datasets are expected to guide the experimental work necessary for target-based drug discovery. However, a major bottleneck in this has been the difficulty of capturing and integrating relevant information in an easily accessible format for identifying and prioritizing potential targets. The open-access resource TDRtargets.org facilitates drug target prioritization for major tropical disease pathogens such as the mycobacteria Mycobacterium leprae and Mycobacterium tuberculosis; the kinetoplastid protozoans Leishmania major, Trypanosoma brucei, and Trypanosoma cruzi; the apicomplexan protozoans Plasmodium falciparum, Plasmodium vivax, and Toxoplasma gondii; and the helminths Brugia malayi and Schistosoma mansoni. METHODOLOGY/PRINCIPAL FINDINGS: Here we present strategies to prioritize pathogen proteins based on whether their properties meet criteria considered desirable in a drug target. These criteria are based upon both sequence-derived information (e.g., molecular mass and functional data on expression, essentiality, phenotypes, metabolic pathways, assayability, and druggability. This approach also highlights the fact that data for many relevant criteria are lacking in less-studied pathogens (e.g., helminths, and we demonstrate how this can be partially overcome by mapping data from homologous genes in well-studied organisms. We also show how individual users can easily upload external datasets and integrate them with existing data in TDRtargets.org to generate highly customized ranked lists of potential targets. CONCLUSIONS/SIGNIFICANCE: Using the datasets and the tools available in TDRtargets.org, we have generated illustrative lists of potential drug targets in seven tropical disease pathogens. While these lists are broadly consistent with the research community's current interest in certain specific proteins, and suggest

  12. Therapeutic strategies targeting B-cells in multiple sclerosis.

    Science.gov (United States)

    Milo, Ron

    2016-07-01

    Multiple sclerosis (MS) is a chronic inflammatory and demyelinating disease of the central nervous system (CNS) that traditionally has been considered to be mediated primarily by T-cells. Increasing evidence, however, suggests the fundamental role of B-cells in the pathogenesis of the disease. Recent strategies targeting B-cells in MS have demonstrated impressive and sometimes surprising results: B-cell depletion by monoclonal antibodies targeting the B-cell surface antigen CD20 (e.g. rituximab, ocrelizumab, ofatumumab) was shown to exert profound anti-inflammatory effect in MS with favorable risk-benefit ratio, with ocrelizumab demonstrating efficacy in both relapsing-remitting (RR) and primary-progressive (PP) MS in phase III clinical trials. Depletion of CD52 expressing T- and B-cells and monocytes by alemtuzumab resulted in impressive and durable suppression of disease activity in RRMS patients. On the other hand, strategies targeting B-cell cytokines such as atacicept resulted in increased disease activity. As our understanding of the biology of B-cells in MS is increasing, new compounds that target B-cells continue to be developed which promise to further expand the armamentarium of MS therapies and allow for more individualized therapy for patients with this complex disease.

  13. 1st Joint European Conference on Therapeutic Targets and Medicinal Chemistry (TTMC 2015).

    Science.gov (United States)

    Le Borgne, Marc; Haidar, Samer; Duval, Olivier; Wünsch, Bernhard; Jose, Joachim

    2015-01-01

    The European Conference on Therapeutic Targets and Medicinal Chemistry is a new two-day meeting on drug discovery that is focused on therapeutic targets and the use of tools to explore all fields of drug discovery and drug design such as molecular modelling, bioorganic chemistry, NMR studies, fragment screening, in vitro assays, in vivo assays, structure activity relationships, autodisplay. Abstracts of keynote lectures, plenary lectures, junior lectures, flash presentations, and posters presented during the meeting are collected in this report. PMID:26712767

  14. Novel drugs that target the estrogen-related receptor alpha: their therapeutic potential in breast cancer

    International Nuclear Information System (INIS)

    The incidence of breast cancer continues to rise: 1.7 million women were diagnosed with and 521,000 women died from breast cancer in 2012. This review considers first current treatment options: surgery; radiotherapy; and systemic endocrine, anti-biological, and cytotoxic therapies. Clinical management includes prevention, early detection by screening, treatment with curative intent, management of chronic disease, and palliative control of advanced breast cancer. Next, the potential of novel drugs that target DNA repair, growth factor dependence, intracellular and intercellular signal transduction, and cell cycle are considered. Estrogen-related receptor alpha has attracted attention as a therapeutic target in triple-negative breast cancers with de novo resistance to, and in breast cancers with acquired resistance to, endocrine therapies such as antiestrogens and aromatase inhibitors. Estrogen-related receptor alpha is an orphan receptor and transcription factor. Its activity is regulated by coregulator proteins and posttranslational modification. It is an energy sensor that controls adaptation to energy demand and may facilitate glycolytic metabolism and mitochondrial oxidative respiration in breast cancer cells. Estrogen-related receptor alpha increases breast cancer cell migration, proliferation, and tumor development. It is expressed at high levels in estrogen receptor-negative tumors, and is proposed to activate estrogen-responsive genes in endocrine-resistant tumors. The structures and functions of the ligand-binding domains of estrogen receptor alpha and estrogen-related receptor alpha, their ability to bind estrogens, phytoestrogens, and synthetic ligands, and the effects of ligand agonists, antagonists, and inverse agonists on biological activity, are evaluated. Synthetic ligands of estrogen-related receptor alpha have activity in preclinical models of metabolic disorders, diabetes, osteoporosis, and oncology. The clinical settings in which these novel

  15. Targeting Notch degradation system provides promise for breast cancer therapeutics.

    Science.gov (United States)

    Liu, Jing; Shen, Jia-Xin; Wen, Xiao-Fen; Guo, Yu-Xian; Zhang, Guo-Jun

    2016-08-01

    Notch receptor signaling pathways play an important role, not only in normal breast development but also in breast cancer development and progression. As a group of ligand-induced proteins, different subtypes of mammalian Notch (Notch1-4) are sensitive to subtle changes in protein levels. Thus, a clear understanding of mechanisms of Notch protein turnover is essential for understanding normal and pathological mechanisms of Notch functions. It has been suggested that there is a close relationship between the carcinogenesis and the dysregulation of Notch degradation. However, this relationship remains mostly undefined in the context of breast cancer, as protein degradation is mediated by numerous signaling pathways as well as certain molecule modulators (activators/inhibitors). In this review, we summarize the published data regarding the regulation of Notch family member degradation in breast cancer, while emphasizing areas that are likely to provide new therapeutic modalities for mechanism-based anti-cancer drugs. PMID:27263934

  16. Targeting the Fanconi Anemia Pathway to Identify Tailored Anticancer Therapeutics

    Directory of Open Access Journals (Sweden)

    Chelsea Jenkins

    2012-01-01

    Full Text Available The Fanconi Anemia (FA pathway consists of proteins involved in repairing DNA damage, including interstrand cross-links (ICLs. The pathway contains an upstream multiprotein core complex that mediates the monoubiquitylation of the FANCD2 and FANCI heterodimer, and a downstream pathway that converges with a larger network of proteins with roles in homologous recombination and other DNA repair pathways. Selective killing of cancer cells with an intact FA pathway but deficient in certain other DNA repair pathways is an emerging approach to tailored cancer therapy. Inhibiting the FA pathway becomes selectively lethal when certain repair genes are defective, such as the checkpoint kinase ATM. Inhibiting the FA pathway in ATM deficient cells can be achieved with small molecule inhibitors, suggesting that new cancer therapeutics could be developed by identifying FA pathway inhibitors to treat cancers that contain defects that are synthetic lethal with FA.

  17. Overview of Nrf2 as Therapeutic Target in Epilepsy

    Directory of Open Access Journals (Sweden)

    Liliana Carmona-Aparicio

    2015-08-01

    Full Text Available Oxidative stress is a biochemical state of imbalance in the production of reactive oxygen and nitrogen species and antioxidant defenses. It is involved in the physiopathology of degenerative and chronic neuronal disorders, such as epilepsy. Experimental evidence in humans and animals support the involvement of oxidative stress before and after seizures. In the past few years, research has increasingly focused on the molecular pathways of this process, such as that involving transcription factor nuclear factor E2-related factor 2 (Nrf2, which plays a central role in the regulation of antioxidant response elements (ARE and modulates cellular redox status. The aim of this review is to present experimental evidence on the role of Nrf2 in this neurological disorder and to further determine the therapeutic impact of Nrf2 in epilepsy.

  18. Overview of Nrf2 as Therapeutic Target in Epilepsy.

    Science.gov (United States)

    Carmona-Aparicio, Liliana; Pérez-Cruz, Claudia; Zavala-Tecuapetla, Cecilia; Granados-Rojas, Leticia; Rivera-Espinosa, Liliana; Montesinos-Correa, Hortencia; Hernández-Damián, Jacqueline; Pedraza-Chaverri, José; Sampieri, Aristides; Coballase-Urrutia, Elvia; Cárdenas-Rodríguez, Noemí

    2015-08-07

    Oxidative stress is a biochemical state of imbalance in the production of reactive oxygen and nitrogen species and antioxidant defenses. It is involved in the physiopathology of degenerative and chronic neuronal disorders, such as epilepsy. Experimental evidence in humans and animals support the involvement of oxidative stress before and after seizures. In the past few years, research has increasingly focused on the molecular pathways of this process, such as that involving transcription factor nuclear factor E2-related factor 2 (Nrf2), which plays a central role in the regulation of antioxidant response elements (ARE) and modulates cellular redox status. The aim of this review is to present experimental evidence on the role of Nrf2 in this neurological disorder and to further determine the therapeutic impact of Nrf2 in epilepsy.

  19. Overview of Nrf2 as Therapeutic Target in Epilepsy

    Science.gov (United States)

    Carmona-Aparicio, Liliana; Pérez-Cruz, Claudia; Zavala-Tecuapetla, Cecilia; Granados-Rojas, Leticia; Rivera-Espinosa, Liliana; Montesinos-Correa, Hortencia; Hernández-Damián, Jacqueline; Pedraza-Chaverri, José; Sampieri, Aristides III; Coballase-Urrutia, Elvia; Cárdenas-Rodríguez, Noemí

    2015-01-01

    Oxidative stress is a biochemical state of imbalance in the production of reactive oxygen and nitrogen species and antioxidant defenses. It is involved in the physiopathology of degenerative and chronic neuronal disorders, such as epilepsy. Experimental evidence in humans and animals support the involvement of oxidative stress before and after seizures. In the past few years, research has increasingly focused on the molecular pathways of this process, such as that involving transcription factor nuclear factor E2-related factor 2 (Nrf2), which plays a central role in the regulation of antioxidant response elements (ARE) and modulates cellular redox status. The aim of this review is to present experimental evidence on the role of Nrf2 in this neurological disorder and to further determine the therapeutic impact of Nrf2 in epilepsy. PMID:26262608

  20. [The development of therapeutics targeting oxidative stress in prostate cancer].

    Science.gov (United States)

    Shiota, Masaki; Yokomizo, Akira; Naito, Seiji

    2014-12-01

    Oxidative stress is caused by increased reactive-oxygen species (ROS) due to augmented ROS production and impaired anti-oxidative capacity. Recently, oxidative stress has been revealed to promote castration resistance via androgen receptor(AR)-dependent pathway such as AR overexpression, AR cofactor, and AR post-translational modification as well as AR-independent pathway, leading to the emergence of castration-resistant prostate cancer (CRPC). Therefore, antioxidants therapy using natural and chemical ROS scavengers and inhibitors of ROS production seems to be a promising therapy for CRPC as well as preventing castration resistance. However, at present, the application to therapeutics is limited. Therefore, further research on oxidative stress in prostate cancer, as well as on the development for clinical application would be needed.

  1. Mesenchymal Migration as a Therapeutic Target in Glioblastoma

    Directory of Open Access Journals (Sweden)

    Jessie Zhong

    2010-01-01

    Full Text Available Extensive infiltration of the surrounding healthy brain tissue is a cardinal feature of glioblastomas, highly lethal brain tumors. Deep infiltration by the glioblastoma cells renders complete surgical excision difficult and contemporary adjuvant therapies have had little impact on long-term survival. Thus, deep infiltration and resistance to irradiation and chemotherapy remain a major cause of patient mortality. Modern therapies specifically targeted to this unique aspect of glioblastoma cell biology hold significant promise to substantially improve survival rates for glioblastoma patients. In the present paper, we focus on the role of adhesion signaling molecules and the actin cytoskeleton in the mesenchymal mode of motility that characterizes invading glioblastoma cells. We then review current approaches to targeting these elements of the glioblastoma cell migration machinery and discuss other aspects of cell migration that may improve the treatment of infiltrating glioblastoma.

  2. Vocal Tremor: Novel Therapeutic Target for Deep Brain Stimulation

    Directory of Open Access Journals (Sweden)

    Vinod K. Ravikumar

    2016-10-01

    Full Text Available Tremulous voice is characteristically associated with essential tremor, and is referred to as essential vocal tremor (EVT. Current estimates suggest that up to 40% of individuals diagnosed with essential tremor also present with EVT, which is associated with an impaired quality of life. Traditional EVT treatments have demonstrated limited success in long-term management of symptoms. However, voice tremor has been noted to decrease in patients receiving deep brain stimulation (DBS with the targeting of thalamic nuclei. In this study, we describe our multidisciplinary procedure for awake, frameless DBS with optimal stimulation targets as well as acoustic analysis and laryngoscopic assessment to quantify tremor reduction. Finally, we investigate the most recent clinical evidence regarding the procedure.

  3. Nucleic Acid Aptamers for Target Validation and Therapeutic Applications

    OpenAIRE

    Pendergrast, P. Shannon; Marsh, H Nicholas; Grate, Dilara; Healy, Judith M.; Stanton, Martin

    2005-01-01

    In the simplest view, aptamers can be thought of as nucleic acid analogs to antibodies. They are able to bind specifically to proteins, and, in many cases, that binding leads to a modulation of protein activity. New aptamers are rapidly generated through the SELEX (Systematic Evolution of Ligands by Exponential enrichment) process and have a very high target affinity and specificity (picomoles to nanomoles). Furthermore, aptamers composed of modified nucleotides have a long in vivo half-life ...

  4. MicroRNAs as potential therapeutic targets in kidney disease

    OpenAIRE

    Gomez, Ivan G.; Grafals, Monica; Portilla, Didier; Duffield, Jeremy S.

    2013-01-01

    One cornerstone of Chronic Kidney Disease (CKD) is fibrosis, as kidneys are susceptible due to their high vascularity and predisposition to ischemia. Presently, only therapies targeting the angiotensin receptor are used in clinical practice to retard the progression of CKD. Thus, there is a pressing need for new therapies designed to treat the damaged kidney. Several independent laboratories have identified a number of microRNAs that are dysregulated in human and animal models of CKD. We will...

  5. Contemporary Therapeutic Approaches Targeting Bone Complications in Prostate Cancer

    OpenAIRE

    Lee, Richard J.; Saylor, Philip J.; Smith, Matthew R.

    2010-01-01

    Skeletal complications are major causes of morbidity in patients with prostate cancer. Despite the osteoblastic appearance of prostate cancer bone metastases, elevated serum and urinary markers of bone resorption are indicative of high osteoclast activity. Increased osteoclast activity is independently associated with subsequent skeletal complications, disease progression, and death. Osteoclast-targeted therapies aim to reduce the risk for disease-related skeletal complications, bone metastas...

  6. Update on Aurora Kinase Targeted Therapeutics in Oncology

    Science.gov (United States)

    Green, Myke R.; Woolery, Joseph E.

    2011-01-01

    Introduction Mammalian cells contain three distinct serine/threonine protein kinases with highly conserved catalytic domains, including aurora A and B kinases that are essential regulators of mitotic entry and progression. Overexpression of aurora A and/or B kinase is associated with high proliferation rates and poor prognosis, making them ideal targets for anti-cancer therapy. Disruption of mitotic machinery is a proven anti-cancer strategy employed by multiple chemotherapeutic agents. Numerous small molecule inhibitors of the aurora kinases have been discovered and tested in vivo and in vitro, with a few currently in phase II testing. Areas covered This review provides the reader with updated results from both preclinical and human studies for each of the aurora kinase inhibitors (AKI) that are currently being investigated. The paper also covers in detail the late breaking and phase I data presented for AKIs thereby allowing the reader to compare and contrast individual and classrelated effects of AKIs. Expert opinion While the successful development and approval of an AKI for anti-cancer therapy remains unresolved, pre-clinical identification of resistant mechanisms would help design better early phase clinical trials where relevant combinations may be evaluated prior to phase II testing. The authors believe that aurora kinases are important anti-cancer targets that operate in collaboration with other oncogenes intimately involved in uncontrolled tumor proliferation and by providing a unique, targeted and complimentary anti-cancer mechanism, expand the available armamentarium against cancer. PMID:21556291

  7. Emerging targets for addiction neuropharmacology: From mechanisms to therapeutics.

    Science.gov (United States)

    Ubaldi, Massimo; Cannella, Nazzareno; Ciccocioppo, Roberto

    2016-01-01

    Drug abuse represents a considerable burden of disease and has enormous economic impacts on societies. Over the years, few medications have been developed for clinical use. Their utilization is endowed with several limitations, including partial efficacy or significant side effects. On the other hand, the successful advancement of these compounds provides an important proof of concept for the feasibility of drug development programs in addiction. In recent years, a wealth of information has been generated on the psychological mechanisms, genetic or epigenetic predisposing factors, and neurobiological adaptations induced by drug consumption that interact with each other to contribute to disease progression. It is now clear that addiction develops through phases, from initial recreational use to excessive consumption and compulsive drug seeking, with a shift from positive to negative reinforcement driving motivated behaviors. A greater understanding of these mechanisms has opened new vistas in drug development programs. Researchers' attention has been shifted from investigation of classical targets associated with reward to biological substrates responsible for negative reinforcement, impulse loss of control, and maladaptive mechanisms resulting from protracted drug use. From this research, several new biological targets for the development of innovative therapies have started to emerge. This chapter offers an overview of targets currently under scrutiny for the development of new medications for addiction. This work is not exhaustive but rather it provides a few examples of how this research has advanced in recent years by virtue of studies carried out in our laboratory. PMID:26822362

  8. MicroRNAs: a novel therapeutic target for schizophrenia.

    LENUS (Irish Health Repository)

    Bravo, Javier A

    2011-01-01

    Schizophrenia is one of the most disabling psychiatric conditions. Current treatments target monoamine receptors but this approach does not address the full complexity of the disorder. Here we explore the possibility of developing new anti-psychotics by targeting microRNAs (miRNAs), single stranded RNA molecules, 21-23 nucleotides in length that are not translated into proteins and regulate gene expression. The present review reveals that research involving schizophrenia and miRNA is very recent (the earliest report from 2007) and miRNAs add a significant layer of complexity to the pathophysiology of the disorder. However, miRNAs offer an exciting potential not only to understand the underlying mechanisms of schizophrenia, but also for the future development of antipsychotics, as the human miRNA system provides a rich and diverse opportunity for pharmacological targeting. However, technology is still developing in order to produce effective strategies to modulate specific and localized changes in miRNA, particularly in relation to the central nervous system and schizophrenia.

  9. V-ATPase as an effective therapeutic target for sarcomas

    International Nuclear Information System (INIS)

    Malignant tumors show intense glycolysis and, as a consequence, high lactate production and proton efflux activity. We investigated proton dynamics in osteosarcoma, rhabdomyosarcoma, and chondrosarcoma, and evaluated the effects of esomeprazole as a therapeutic agent interfering with tumor acidic microenvironment. All sarcomas were able to survive in an acidic microenvironment (up to 5.9–6.0 pH) and abundant acidic lysosomes were found in all sarcoma subtypes. V-ATPase, a proton pump that acidifies intracellular compartments and transports protons across the plasma membrane, was detected in all cell types with a histotype-specific expression pattern. Esomeprazole administration interfered with proton compartmentalization in acidic organelles and induced a significant dose-dependent toxicity. Among the different histotypes, rhabdomyosarcoma, expressing the highest levels of V-ATPase and whose lysosomes are most acidic, was mostly susceptible to ESOM treatment. - Highlights: • Osteosarcoma, rhabdomyosarcoma, and chondrosarcoma survive in acidic microenvironment. • At acidic extracellular pH, sarcoma survival is dependent on V-ATPase expression. • Esomeprazole administration induce a significant dose-dependent toxicity

  10. V-ATPase as an effective therapeutic target for sarcomas

    Energy Technology Data Exchange (ETDEWEB)

    Perut, Francesca, E-mail: francesca.perut@ior.it [Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine, Istituto Ortopedico Rizzoli, Bologna (Italy); Avnet, Sofia; Fotia, Caterina; Baglìo, Serena Rubina; Salerno, Manuela [Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine, Istituto Ortopedico Rizzoli, Bologna (Italy); Hosogi, Shigekuni [Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine, Istituto Ortopedico Rizzoli, Bologna (Italy); Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto (Japan); Kusuzaki, Katsuyuki [Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto (Japan); Baldini, Nicola [Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine, Istituto Ortopedico Rizzoli, Bologna (Italy); Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna (Italy)

    2014-01-01

    Malignant tumors show intense glycolysis and, as a consequence, high lactate production and proton efflux activity. We investigated proton dynamics in osteosarcoma, rhabdomyosarcoma, and chondrosarcoma, and evaluated the effects of esomeprazole as a therapeutic agent interfering with tumor acidic microenvironment. All sarcomas were able to survive in an acidic microenvironment (up to 5.9–6.0 pH) and abundant acidic lysosomes were found in all sarcoma subtypes. V-ATPase, a proton pump that acidifies intracellular compartments and transports protons across the plasma membrane, was detected in all cell types with a histotype-specific expression pattern. Esomeprazole administration interfered with proton compartmentalization in acidic organelles and induced a significant dose-dependent toxicity. Among the different histotypes, rhabdomyosarcoma, expressing the highest levels of V-ATPase and whose lysosomes are most acidic, was mostly susceptible to ESOM treatment. - Highlights: • Osteosarcoma, rhabdomyosarcoma, and chondrosarcoma survive in acidic microenvironment. • At acidic extracellular pH, sarcoma survival is dependent on V-ATPase expression. • Esomeprazole administration induce a significant dose-dependent toxicity.

  11. PPARγ as a Novel Therapeutic Target in Lung Cancer

    Directory of Open Access Journals (Sweden)

    Aravind T. Reddy

    2016-01-01

    Full Text Available Lung cancer is the leading cause of cancer-related death, with more than half the patients having advanced-stage disease at the time of initial diagnosis and thus facing a poor prognosis. This dire situation poses a need for new approaches in prevention and treatment. Peroxisome proliferator-activated receptor γ (PPARγ is a ligand-activated transcription factor belonging to the nuclear hormone receptor superfamily. Its involvement in adipocyte differentiation and glucose and lipid homeostasis is well-recognized, but accumulating evidence now suggests that PPARγ may also function as a tumor suppressor, inhibiting development of primary tumors and metastases in lung cancer and other malignancies. Besides having prodifferentiation, antiproliferative, and proapoptotic effects, PPARγ agonists have been shown to prevent cancer cells from acquiring the migratory and invasive capabilities essential for successful metastasis. Angiogenesis and secretion of certain matrix metalloproteinases and extracellular matrix proteins within the tumor microenvironment are also regulated by PPARγ. This review of the current literature highlights the potential of PPARγ agonists as novel therapeutic modalities in lung cancer, either as monotherapy or in combination with standard cytotoxic chemotherapy.

  12. Therapeutics targeting inflammation in the immune reconstitution inflammatory syndrome.

    Science.gov (United States)

    Shahani, Lokesh; Hamill, Richard J

    2016-01-01

    Immune reconstitution inflammatory syndrome (IRIS) is characterized by improvement in a previously incompetent human immune system manifesting as worsening of clinical symptoms secondary to the ability of the immune system to now mount a vigorous inflammatory response. IRIS was first recognized in the setting of human immunodeficiency virus, and this clinical setting continues to be where it is most frequently encountered. Hallmarks of the pathogenesis of IRIS, independent of the clinical presentation and the underlying pathogen, include excessive activation of the immune system, with increased circulating effector memory T cells, and elevated levels of serum cytokines and inflammatory markers. Patients with undiagnosed opportunistic infections remain at risk for unmasking IRIS at the time of active antiretroviral therapy (ART) initiation. Systematic screening for opportunistic infections before starting ART is a key element to prevent this phenomenon. Appropriate management of IRIS requires prompt recognition of the syndrome and exclusion of alternative diagnoses, particularly underlying infections and drug resistance. Controlled studies supporting the use of pharmacologic interventions in IRIS are scare, and recommendations are based on case series and expert opinions. The only controlled trial published to date, showed reduction in morbidity in patients with paradoxical tuberculosis-related IRIS with the use of oral corticosteroids. There are currently limited data to recommend other anti-inflammatory or immunomodulatory therapies that are discussed in this review, and further research is needed. Ongoing research regarding the immune pathogenesis of IRIS will likely direct future rational therapeutic approaches and clinical trials. PMID:26303886

  13. Therapeutic Targets in Sepsis: Past, Present, and Future.

    Science.gov (United States)

    Seeley, Eric J; Bernard, Gordon R

    2016-06-01

    Antibiotics and fluids have been standard treatment for sepsis since World War II. Many molecular mediators of septic shock have since been identified. In models of sepsis, blocking these mediators improved organ injury and decreased mortality. Clinical trials, however, have failed. The absence of new therapies has been vexing to clinicians, clinical researchers, basic scientists, and the pharmaceutical industry. This article examines the evolution of sepsis therapy and theorizes about why so many well-reasoned therapies have not worked in human trials. We review new molecular targets for sepsis and examine trial designs that might lead to successful treatments for sepsis. PMID:27229636

  14. MDSCs in cancer: Conceiving new prognostic and therapeutic targets.

    Science.gov (United States)

    De Sanctis, Francesco; Solito, Samantha; Ugel, Stefano; Molon, Barbara; Bronte, Vincenzo; Marigo, Ilaria

    2016-01-01

    The incomplete clinical efficacy of anti-tumor immunotherapy can depend on the presence of an immunosuppressive environment in the host that supports tumor progression. Tumor-derived cytokines and growth factors induce an altered hematopoiesis that modifies the myeloid cell differentiation process, promoting proliferation and expansion of cells with immunosuppressive skills, namely myeloid derived suppressor cells (MDSCs). MDSCs promote tumor growth not only by shaping immune responses towards tumor tolerance, but also by supporting several processes necessary for the neoplastic progression such as tumor angiogenesis, cancer stemness, and metastasis dissemination. Thus, MDSC targeting represents a promising tool to eliminate host immune dysfunctions and increase the efficacy of immune-based cancer therapies.

  15. Therapeutic targeting of epidermal growth factor receptor in human cancer: successes and limitations%Therapeutic targeting of epidermal growth factor receptor in humancancer: successes and limitations

    Institute of Scientific and Technical Information of China (English)

    Jill Wykosky; Tim Fenton; Frank Furnari; Webster K. Cavenee

    2011-01-01

    Epidermal growth factor receptor (EGFR) is one of the most commonly altered genes in human cancer by way of over-expression, amplification, and mutation. Targeted inhibition of EGFR activity suppresses signal transduction pathways which control tumor cell growth, proliferation, and resistance to apoptosis. Small molecule tyrosine kinase inhibitors and monoclonal antibodies are among the most common EGFR-targeting agents and have been used clinically for treating various malignancies. This review discusses the successes and challenges of targeting EGFR in human cancer. The genetic alterations of EGFR tend to occur more often in some solid tumors than others, as do the mechanisms of resistance to targeted inhibition. The clinical and basic science experiences with these agents thus far have important implications for the future of therapeutic targeting of EGFR.

  16. Therapeutic targets in prostaglandin E2 signaling for neurologic disease

    Science.gov (United States)

    Cimino, P.J.; Keene, C. Dirk; Breyer, Richard M.; Montine, Kathleen S.; Montine, Thomas J.

    2009-01-01

    Prostaglandins (PGs) are potent autocrine and paracrine oxygenated lipid molecules that contribute appreciably to physiologic and pathophysiologic responses in almost all organs, including brain. Emerging data indicate that the PGs, and more specifically PGE2, play a central role in brain diseases including ischemic injury and several neurodegenerative diseases. Given concerns over the potential toxicity from protracted use of cyclooxygenase inhibitors in the elderly, attention is now focused on blocking PGE2 signaling that is mediated by interactions with four distinct G protein-coupled receptors, EP1-4, which are differentially expressed on neuronal and glial cells throughout the central nervous system. EP1 activation has been shown to mediate Ca2+-dependent neurotoxicity in ischemic injury. EP2 activation has been shown to mediate microglial-induced paracrine neurotoxicity as well as suppress microglia internalization of aggregated neurotoxic peptides. Animal models support the potential efficacy of targeting specific EP receptor subtypes in Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and ischemic stroke. However promising these preclinical studies are, they have yet to be followed by clinical trials targeting any EP receptor in neurologic diseases. PMID:18691044

  17. MOGAT2: A New Therapeutic Target for Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Muhua Yang

    2015-08-01

    Full Text Available Metabolic syndrome is an ever-increasing health problem among the world’s population. It is a group of intertwined maladies that includes obesity, hypertriglyceridemia, hypertension, nonalcoholic fatty liver disease (NAFLD, and diabetes mellitus type II (T2D. There is a direct correlation between high triacylglycerol (triglyceride; TAG level and severity of metabolic syndrome. Thus, controlling the synthesis of TAG will have a great impact on overall systemic lipid metabolism and thus metabolic syndrome progression. The Acyl-CoA: monoacylglycerolacyltransferase (MGAT family has three members (MGAT1, -2, and -3 that catalyze the first step in TAG production, conversion of monoacylglycerol (MAG to diacylglycerol (DAG. TAG is then directly synthesized from DAG by a Acyl-CoA: diacylglycerolacyltransferase (DGAT. The conversion of MAG → DAG → TAG is the major pathway for the production of TAG in the small intestine, and produces TAG to a lesser extent in the liver. Transgenic and pharmacological studies in mice have demonstrated the beneficial effects of MGAT inhibition as a therapy for treating several metabolic diseases, including obesity, insulin resistance, T2D, and NAFLD. In this review, the significance of several properties of MGAT physiology, including tissue expression pattern and its relationship to overall TAG metabolism, enzymatic biochemical properties and their effects on drug discovery, and finally what is the current knowledge about MGAT small molecule inhibitors and their efficacy will be discussed. Overall, this review highlights the therapeutic potential of inhibiting MGAT for lowering TAG synthesis and whether this avenue of drug discovery warrants further clinical investigation.

  18. Emerging innovative therapeutic approaches targeting PCSK9 to lower lipids.

    Science.gov (United States)

    Shantha, G P S; Robinson, J G

    2016-01-01

    Statins are established therapies for cardiovascular disease prevention and ezetimibe has recently been shown to modestly reduce cardiovascular events when added to background statin therapy. Yet here remains a clear unmet need for additional therapies aimed at lowering low density lipoprotein cholesterol (LDL-C) to further reduce cardiovascular risk. Multiple strategies targeting proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibition have emerged as effective modalities for LDL-C lowering. PCSK9 monoclonal antibodies are the farthest along in clinical development and alirocumab and evolocumab were approved for clinical use by regulatory agencies in 2015. In addition to robust LDL-C lowering (nearly 50-65% from baseline), they improve other lipid parameters as well. Adverse events associated with these medications are minimal. Importantly, they improve clinical cardiovascular disease outcomes, although long-term study results are awaited. Cost may be an important limiting factor in their use and we propose two possible solutions which can potentially curtail cost.

  19. Skp2 is a promising therapeutic target in breast cancer

    Directory of Open Access Journals (Sweden)

    Zhiwei eWang

    2012-01-01

    Full Text Available Breast cancer is the most common type of cancer among American women, and remains the second leading cause of cancer-related death for female in the United States. It has been known that several signaling pathways and various factors play critical roles in the development and progression of breast cancer, such as estrogen receptor, Notch, PTEN, Her2, PI3K/Akt, BRCA1 and BRCA2. Emerging evidence has shown that the F-box protein Skp2 (S-phase kinase associated protein 2 also plays an important role in the pathogenesis of breast cancer. Therefore, in this brief review, we summarize the novel functions of Skp2 in the pathogenesis of breast cancer. Moreover, we provide further evidence regarding the state of our knowledge toward the development of novel Skp2 inhibitors especially natural chemopreventive agents as targeted approach for the prevention and/or treatment of breast cancer.

  20. Autophagy as a target for therapeutic uses of multifunctional peptides.

    Science.gov (United States)

    Muciño, Gabriel; Castro-Obregón, Susana; Hernandez-Pando, Rogelio; Del Rio, Gabriel

    2016-04-01

    The emergence of complex diseases is promoting a change from one-target to multitarget drugs and peptides are ideal molecules to fulfill this polypharmacologic role. Here we review current status in the design of polypharmacological peptides aimed to treat complex diseases, focusing on tuberculosis. In this sense, combining multiple activities in single molecules is a two-sided sword, as both positive and negative side effects might arise. These polypharmacologic compounds may be directed to regulate autophagy, a catabolic process that enables cells to eliminate intracellular microbes (xenophagy), such as Mycobacterium tuberculosis (MBT). Here we review some strategies to control MBT infection and propose that a peptide combining both antimicrobial and pro-autophagic activities would have a greater potential to limit MBT infection. This endeavor may complement the knowledge gained in understanding the mechanism of action of antibiotics and may lead to the design of better polypharmacological peptides to treat complex diseases such as tuberculosis. PMID:26968336

  1. Targeting nicotine addiction: the possibility of a therapeutic vaccine

    Directory of Open Access Journals (Sweden)

    Escobar-Chávez JJ

    2011-04-01

    Full Text Available José Juan Escobar-Chávez1, Clara Luisa Domínguez-Delgado2, Isabel Marlen Rodríguez-Cruz21Unidad de Investigación Multidisciplinaria, Facultad de Estudios Superiores Cuautitlán-Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Estado de México, México; 2División de Estudios de Posgrado (Tecnología Farmacéutica, Facultad de Estudios Superiores Cuautitlán-Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Estado de México, MéxicoAbstract: Cigarette smoking is the primary cause of lung cancer, cardiovascular diseases, reproductive disorders, and delayed wound healing all over the world. The goals of smoking cessation are both to reduce health risks and to improve quality of life. The development of novel and more effective medications for smoking cessation is crucial in the treatment of nicotine dependence. Currently, first-line smoking cessation therapies include nicotine replacement products and bupropion. The partial nicotinic receptor agonist, varenicline, has recently been approved by the US Food and Drug Administration (FDA for smoking cessation. Clonidine and nortriptyline have demonstrated some efficacy, but side effects may limit their use to second-line treatment products. Other therapeutic drugs that are under development include rimonabant, mecamylamine, monoamine oxidase inhibitors, and dopamine D3 receptor antagonists. Nicotine vaccines are among newer products seeking approval from the FDA. Antidrug vaccines are irreversible, provide protection over years and need booster injections far beyond the critical phase of acute withdrawal symptoms. Interacting with the drug in the blood rather than with a receptor in the brain, the vaccines are free of side effects due to central interaction. For drugs like nicotine, which interacts with different types of receptors in many organs, this is a further advantage. Three anti-nicotine vaccines are today in an advanced stage of clinical evaluation. Results

  2. Ion Channels in Obesity: Pathophysiology and Potential Therapeutic Targets.

    Science.gov (United States)

    Vasconcelos, Luiz H C; Souza, Iara L L; Pinheiro, Lílian S; Silva, Bagnólia A

    2016-01-01

    Obesity is a multifactorial disease related to metabolic disorders and associated with genetic determinants. Currently, ion channels activity has been linked to many of these disorders, in addition to the central regulation of food intake, energetic balance, hormone release and response, as well as the adipocyte cell proliferation. Therefore, the objective of this work is to review the current knowledge about the influence of ion channels in obesity development. This review used different sources of literature (Google Scholar, PubMed, Scopus, and Web of Science) to assess the role of ion channels in the pathophysiology of obesity. Ion channels present diverse key functions, such as the maintenance of physiological homeostasis and cell proliferation. Cell biology and pharmacological experimental evidences demonstrate that proliferating cells exhibit ion channel expression, conductance, and electrical properties different from the resting cells. Thereby, a large variety of ion channels has been identified in the pathogenesis of obesity such as potassium, sodium, calcium and chloride channels, nicotinic acetylcholine receptor and transient receptor potential channels. The fundamental involvement of these channels on the generation of obesity leads to the progress in the knowledge about the mechanisms responsible for the obesity pathophysiology, consequently emerging as new targets for pharmacological modulation. PMID:27065858

  3. Ion Channels in Obesity: Pathophysiology and Potential Therapeutic Targets

    Directory of Open Access Journals (Sweden)

    LUIZ HENRIQUE CÉSAR VASCONCELOS

    2016-03-01

    Full Text Available Obesity is a multifactorial disease related to metabolic disorders and associated with genetic determinants. Currently, ion channels activity has been linked to many of these disorders, in addition to the central regulation of food intake, energetic balance, hormone release and response, as well as the adipocyte cell proliferation. Therefore, the objective of this work is to review the current knowledge about the influence of ion channels in obesity development. This review used different sources of literature (Google Scholar, PubMed, Scopus and Web of Science to assess the role of ion channels in the pathophysiology of obesity. Ion channels present diverse key functions, such as the maintenance of physiological homeostasis and cell proliferation. Cell biology and pharmacological experimental evidences demonstrate that proliferating cells exhibit ion channel expression, conductance and electrical properties different from the resting cells. Thereby, a large variety of ion channels has been identified in the pathogenesis of obesity such as potassium, sodium, calcium and chloride channels, nicotinic acetylcholine receptor and transient receptor potential channels. The fundamental involvement of these channels on the generation of obesity leads to the progress in the knowledge about the mechanisms responsible for the obesity pathophysiology, consequently emerging as new targets for pharmacological modulation.

  4. Pathophysiological mechanisms involved in non-alcoholicsteatohepatitis and novel potential therapeutic targets

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Non-alcoholic fatty liver disease (NAFLD) is a major healthcare problem and represents the hepatic expression ofthe metabolic syndrome. NAFLD is classified as nonalcoholicfatty liver (NAFL) or simple steatosis, and nonalcoholicsteatohepatitis (NASH). NASH is characterizedby the presence of steatosis and inflammation withor without fibrosis. The physiopathology of NAFL andNASH and their progression to cirrhosis involve severalparallel and interrelated mechanisms, such as, insulinresistance (IR), lipotoxicity, inflammation, oxidativestress, and recently the gut-liver axis interaction has beendescribed. Incretin-based therapies could play a role inthe treatment of NAFLD. Glucagon-like peptide-1 (GLP-1)is an intestinal mucosa-derived hormone which is secretedinto the bloodstream in response to nutrient ingestion;it favors glucose-stimulated insulin secretion, inhibitionof postprandial glucagon secretion and delayed gastricemptying. It also promotes weight loss and is involvedin lipid metabolism. Once secreted, GLP-1 is quicklydegraded by dipeptidyl peptidase-4 (DPP-4). Therefore,DPP-4 inhibitors are able to extend the activity of GLP-1.Currently, GLP-1 agonists and DPP-4 inhibitors representattractive options for the treatment of NAFLD andNASH. The modulation of lipid and glucose metabolismthrough nuclear receptors, such as the farsenoid Xreceptor, also constitutes an attractive therapeutic target.Obeticholic acid is a potent activator of the farnesoidX nuclear receptor and reduces liver fat content andfibrosis in animal models. Ursodeoxycholic acid (UDCA)is a hydrophilic bile acid with immunomodulatory, antiinflammatory,antiapoptotic, antioxidant and antifibroticproperties. UDCA can improve IR and modulatelipid metabolism through its interaction with nuclearreceptors such as, TGR5, farnesoid X receptor-a, orthe small heterodimeric partner. Finally, pharmacologicmodulation of the gut microbiota could have a role in thetherapy of NAFLD and

  5. RhoC a new target for therapeutic vaccination against metastatic cancer

    DEFF Research Database (Denmark)

    Wenandy, L.; Sorensen, R.B.; Straten, P.T.;

    2008-01-01

    of cancer makes RhoC a very attractive target for anti-cancer immunotherapy. Herein, we describe an HLA-A3 restricted epitope from RhoC, which is recognized by cytotoxic T cells. Moreover, RhoC-specific T cells show cytotoxic potential against HLA-matched cancer cells of different origin. Thus, RhoC may...

  6. Cerebral Edema in Traumatic Brain Injury: Pathophysiology and Prospective Therapeutic Targets.

    Science.gov (United States)

    Winkler, Ethan A; Minter, Daniel; Yue, John K; Manley, Geoffrey T

    2016-10-01

    Traumatic brain injury is a heterogeneous disorder resulting from an external force applied to the head. The development of cerebral edema plays a central role in the evolution of injury following brain trauma and is closely associated with neurologic outcomes. Recent advances in the understanding of the molecular and cellular pathways contributing to the posttraumatic development of cerebral edema have led to the identification of multiple prospective therapeutic targets. The authors summarize the pathogenic mechanisms underlying cerebral edema and highlight the molecular pathways that may be therapeutically targeted to mitigate cerebral edema and associated sequelae following traumatic brain injury. PMID:27637397

  7. P2RX7 purinoceptor: a therapeutic target for ameliorating the symptoms of duchenne muscular dystrophy.

    Directory of Open Access Journals (Sweden)

    Anthony Sinadinos

    2015-10-01

    Full Text Available Duchenne muscular dystrophy (DMD is the most common inherited muscle disease, leading to severe disability and death in young men. Death is caused by the progressive degeneration of striated muscles aggravated by sterile inflammation. The pleiotropic effects of the mutant gene also include cognitive and behavioral impairments and low bone density. Current interventions in DMD are palliative only as no treatment improves the long-term outcome. Therefore, approaches with a translational potential should be investigated, and key abnormalities downstream from the absence of the DMD product, dystrophin, appear to be strong therapeutic targets. We and others have demonstrated that DMD mutations alter ATP signaling and have identified P2RX7 purinoceptor up-regulation as being responsible for the death of muscles in the mdx mouse model of DMD and human DMD lymphoblasts. Moreover, the ATP-P2RX7 axis, being a crucial activator of innate immune responses, can contribute to DMD pathology by stimulating chronic inflammation. We investigated whether ablation of P2RX7 attenuates the DMD model mouse phenotype to assess receptor suitability as a therapeutic target.Using a combination of molecular, histological, and biochemical methods and behavioral analyses in vivo we demonstrate, to our knowledge for the first time, that genetic ablation of P2RX7 in the DMD model mouse produces a widespread functional attenuation of both muscle and non-muscle symptoms. In dystrophic muscles at 4 wk there was an evident recovery in key functional and molecular parameters such as improved muscle structure (minimum Feret diameter, p < 0.001, increased muscle strength in vitro (p < 0.001 and in vivo (p = 0.012, and pro-fibrotic molecular signatures. Serum creatine kinase (CK levels were lower (p = 0.025, and reduced cognitive impairment (p = 0.006 and bone structure alterations (p < 0.001 were also apparent. Reduction of inflammation and fibrosis persisted at 20 mo in leg (p = 0

  8. Heat shock proteins 27, 40, and 70 as combinational and dual therapeutic cancer targets

    OpenAIRE

    McConnell, Jeanette R.; McAlpine, Shelli R.

    2013-01-01

    The heat shock proteins are essential players in the development of cancer and they are prime therapeutic targets. Targeting multiple hsps in dual therapies decreases the likelihood of drug resistance compared to utilizing mono-therapies. Further, employing an hsp inhibitor in combination with another therapy has proven clinically successful. Examples of efficacious strategies include the inhibition of hsp27, which prevents protein aggregation, controlling hsp40’s role as an ATPase modulator,...

  9. Epidermal growth factor receptor-targeted antibody therapy - Mechanisms of action and modulators of therapeutic efficacy

    NARCIS (Netherlands)

    Lammerts van Bueren, Jeroen Jilles

    2008-01-01

    Cancer is an increasing disease in the world population, and in recent years there has been substantial interest in the development of novel therapeutic agents specifically targeting growth factor receptors on tumor cells. The epidermal growth factor receptor (EGFR) represents a tyrosine kinase cell

  10. Small flexible structure for targeted delivery of therapeutic and imaging moieties in precision medicine

    Science.gov (United States)

    Li, Bingjie; Qiu, Xiuchun; Zou, Chaoxia; Ran, Henry; Zhang, Fujun; Ke, Shi

    2016-01-01

    The goals of precision medicine are to link diagnostic and therapeutic agents, improve clinical outcomes, and minimize side effects. We present a simple, small, flexible three-armed core structure that can be conjugated to targeting, imaging, and therapeutic moieties. The targeting molecule can be a peptide, protein, or chemical compound. The diagnostic reporter can be optical and/or nuclear in nature, and can be replaced by chemo- and/or radiotherapeutic compounds for treatment using a single targeting molecule. Imaging components can be used to detect disease biomarkers, monitor treatment response, and guide surgery in real-time to create a tumor-free margin. Isotope impurity can be exploited to visualize whole-body distribution of therapeutic agents. The one-to-one ratio of targeting component to therapeutic agents facilitates dose calculation. The simple synthesis and flexible, modular nature of the agent facilitate high-purity, large-scale production. The core capacity to “seek, treat, and see” may advance precision medicine in the future. PMID:27027441

  11. Insights into orphan nuclear receptors as prognostic markers and novel therapeutic targets for breast cancer

    OpenAIRE

    Reidun eAesoy; Colin D Clyne; Ashwini eChand

    2015-01-01

    The roles of orphan nuclear receptors in breast cancer development and progression are not well understood. In this review, we correlate orphan nuclear receptor expression in breast cancer tumour subtypes with patient outcomes and provide an overview of functional evidence that identifies candidate orphan nuclear receptors as prognostic markers or as therapeutic targets in breast cancer.

  12. Plasma-derived Extracellular Vesicles Contain Predictive Biomarkers and Potential Therapeutic Targets for Myocardial Ischemic (MI) Injury.

    Science.gov (United States)

    Cheow, Esther Sok Hwee; Cheng, Woo Chin; Lee, Chuen Neng; de Kleijn, Dominique; Sorokin, Vitaly; Sze, Siu Kwan

    2016-08-01

    Myocardial infarction (MI) triggers a potent inflammatory response via the release of circulatory mediators, including extracellular vesicles (EVs) by damaged cardiac cells, necessary for myocardial healing. Timely repression of inflammatory response are critical to prevent and minimize cardiac tissue injuries, nonetheless, progression in this aspect remains challenging. The ability of EVs to trigger a functional response upon delivery of carried bioactive cargos, have made them clinically attractive diagnostic biomarkers and vectors for therapeutic interventions. Using label-free quantitative proteomics approach, we compared the protein cargo of plasma EVs between patients with MI and from patients with stable angina (NMI). We report, for the first time, the proteomics profiling on 252 EV proteins that were modulated with >1.2-fold after MI. We identified six up-regulated biomarkers with potential for clinical applications; these reflected post-infarct pathways of complement activation (Complement C1q subcomponent subunit A (C1QA), 3.23-fold change, p = 0.012; Complement C5 (C5), 1.27-fold change, p = 0.087), lipoprotein metabolism (Apoliporotein D (APOD), 1.86-fold change, p = 0.033; Apolipoprotein C-III (APOCC3), 2.63-fold change, p = 0.029) and platelet activation (Platelet glycoprotein Ib alpha chain (GP1BA), 9.18-fold change, p coagulation pathways, indicating potential for therapeutic targeting of this mechanism in MI. Taken together, these data demonstrated that plasma EVs contain novel diagnostic biomarkers and therapeutic targets that can be further developed for clinical use to benefit patients with coronary artery diseases (CADs). PMID:27234505

  13. Multi-target screening mines hesperidin as a multi-potent inhibitor: Implication in Alzheimer's disease therapeutics.

    Science.gov (United States)

    Chakraborty, Sandipan; Bandyopadhyay, Jaya; Chakraborty, Sourav; Basu, Soumalee

    2016-10-01

    Alzheimer's disease (AD) is the most frequent form of neurodegenerative disorder in elderly people. Involvement of several pathogenic events and their interconnections make this disease a complex disorder. Therefore, designing compounds that can inhibit multiple toxic pathways is the most attractive therapeutic strategy in complex disorders like AD. Here, we have designed a multi-tier screening protocol combining ensemble docking to mine BACE1 inhibitor, as well as 2-D QSAR models for anti-amyloidogenic and antioxidant activities. An in house developed phytochemical library of 200 phytochemicals has been screened through this multi-target procedure which mine hesperidin, a flavanone glycoside commonly found in citrus food items, as a multi-potent phytochemical in AD therapeutics. Steady-state and time-resolved fluorescence spectroscopy reveal that binding of hesperidin to the active site of BACE1 induces a conformational transition of the protein from open to closed form. Hesperidin docks close to the catalytic aspartate residues and orients itself in a way that blocks the cavity opening thereby precluding substrate binding. Hesperidin is a high affinity BACE1 inhibitor and only 500 nM of the compound shows complete inhibition of the enzyme activity. Furthermore, ANS and Thioflavin-T binding assay show that hesperidin completely inhibits the amyloid fibril formation which is further supported by atomic force microscopy. Hesperidin exhibits moderate ABTS(+) radical scavenging assay but strong hydroxyl radical scavenging ability, as evident from DNA nicking assay. Present study demonstrates the applicability of a novel multi-target screening procedure to mine multi-potent agents from natural origin for AD therapeutics. PMID:27068363

  14. Phytochemical-mediated Protein Expression Profiling and the Potential Applications in Therapeutic Drug Target Identifications.

    Science.gov (United States)

    Wong, Fai-Chu; Tan, Siok-Thing; Chai, Tsun-Thai

    2016-07-29

    Many phytochemicals derived from edible medicinal plants have been investigated intensively for their various bioactivities. However, the detailed mechanism and their corresponding molecular targets frequently remain elusive. In this review, we present a summary of the research works done on phytochemical-mediated molecular targets, identified via proteomic approach. Concurrently, we also highlighted some pharmaceutical drugs which could be traced back to their origins in phytochemicals. For ease of presentation, these identified protein targets were categorized into two important healthcare-related fields, namely anti-bacterial and anti-cancer research. Through this review, we hope to highlight the usefulness of comparative proteomic as a powerful tool in phytochemical-mediated protein target identifications. Likewise, we wish to inspire further investigations on some of these protein targets identified over the last few years. With contributions from all researchers, the accumulative efforts could eventually lead to the discovery of some target-specific, low-toxicity therapeutic agents. PMID:26193174

  15. Targeting the Neddylation Pathway to Suppress the Growth of Prostate Cancer Cells: Therapeutic Implication for the Men’s Cancer

    Directory of Open Access Journals (Sweden)

    Xiaofang Wang

    2014-01-01

    Full Text Available The neddylation pathway has been recognized as an attractive anticancer target in several malignancies, and its selective inhibitor, MLN4924, has recently advanced to clinical development. However, the anticancer effect of this compound against prostate cancer has not been well investigated. In this study, we demonstrated that the neddylation pathway was functional and targetable in prostate cancer cells. Specific inhibition of this pathway with MLN4924 suppressed the proliferation and clonogenic survival of prostate cancer cells. Mechanistically, MLN4924 treatment inhibited cullin neddylation, inactivated Cullin-RING E3 ligases (CRLs, and led to accumulation of tumor-suppressive CRLs substrates, including cell cycle inhibitors (p21, p27, and WEE1, NF-κB signaling inhibitor IκBα, and DNA replication licensing proteins (CDT1 and ORC1. As a result, MLN4924 triggered DNA damage, G2 phase cell cycle arrest, and apoptosis. Taken together, our results demonstrate the effectiveness of targeting the neddylation pathway with MLN4924 in suppressing the growth of prostate cancer cells, implicating a potentially new therapeutic approach for the men’s cancer.

  16. Chemokines as Therapeutic Targets to Improve Healing Efficiency of Chronic Wounds

    OpenAIRE

    Satish, Latha

    2015-01-01

    Significance: Impaired wound healing leading to chronic wounds is an important clinical problem that needs immediate attention to develop new effective therapies. Members of the chemokine family seem to be attractive and amenable to stimulate the healing process in chronic wounds. Targeting specific chemokines and/or their receptors has the potential to modify chronic inflammation to acute inflammation, which will hasten the healing process.

  17. Promise and challenges on the horizon of MET-targeted cancer therapeutics

    Institute of Scientific and Technical Information of China (English)

    Yu-Wen; Zhang

    2015-01-01

    MET(MNNG HOS transforming gene) is one of the receptor tyrosine kinases whose activities are frequently altered in human cancers, and it is a promising therapeutic target. MET is normally activated by its lone ligand, hepatocyte growth factor(HGF), eliciting its diverse biological activities that are crucial for development and physiology. Alteration of the HGF-MET axis results in inappropriate activation of a cascade of intracellular signaling pathways that contributes to hallmark cancer events including deregulated cell proliferation and survival, angiogenesis, invasion, andmetastasis. Aberrant MET activation results from autocrine or paracrine mechanisms due to overexpression of HGF and/or MET or from a ligand-independent mechanism caused by activating mutations or amplification of MET. The literature provides compelling evidence for the role of MET signaling in cancer development and progression. The finding that cancer cells often use MET activation to escape therapies targeting other pathways strengthens the argument for MET-targeted therapeutics. Diverse strategies have been explored to deactivate MET signaling, and compounds and biologics targeting the MET pathway are in clinical development. Despite promising results from various clinical trials, we are still waiting for true MET-targeted therapeutics in the clinic. This review will explore recent progress and hurdles in the pursuit of METtargeted cancer drugs and discuss the challenges in such development.

  18. Development of multifunctional nanoparticles for targeted drug delivery and noninvasive imaging of therapeutic effect.

    Science.gov (United States)

    Sajja, Hari Krishna; East, Michael P; Mao, Hui; Wang, Y Andrew; Nie, Shuming; Yang, Lily

    2009-03-01

    Nanotechnology is a multidisciplinary scientific field undergoing explosive development. Nanometer-sized particles offer novel structural, optical and electronic properties that are not attainable with individual molecules or bulk solids. Advances in nanomedicine can be made by engineering biodegradable nanoparticles such as magnetic iron oxide nanoparticles, polymers, dendrimers and liposomes that are capable of targeted delivery of both imaging agents and anticancer drugs. This leads toward the concept and possibility of personalized medicine for the potential of early detection of cancer lesions, determination of molecular signatures of the tumor by noninvasive imaging and, most importantly, molecular targeted cancer therapy. Increasing evidence suggests that the nanoparticles, whose surface contains a targeting molecule that binds to receptors highly expressed in tumor cells, can serve as cancer image contrast agents to increase sensitivity and specificity in tumor detection. In comparison with other small molecule contrast agents, the advantage of using nanoparticles is their large surface area and the possibility of surface modifications for further conjugation or encapsulation of large amounts of therapeutic agents. Targeted nanoparticles ferry large doses of therapeutic agents into malignant cells while sparing the normal healthy cells. Such multifunctional nanodevices hold the promise of significant improvement of current clinical management of cancer patients. This review explores the development of nanoparticles for enabling and improving the targeted delivery of therapeutic agents, the potential of nanomedicine, and the development of novel and more effective diagnostic and screening techniques to extend the limits of molecular diagnostics providing point-of-care diagnosis and more personalized medicine.

  19. Steroid hormone receptors and prostate cancer: role of structural dynamics in therapeutic targeting

    Science.gov (United States)

    Kumar, Raj

    2016-01-01

    Steroid hormone receptors (SHRs) act in cell type- and gene-specific manner through interactions with coregulatory proteins to regulate numerous physiological and pathological processes at the level of gene regulation. Binding of steroid receptor modulator (SRM) ligand leads to allosteric changes in SHR to exert positive or negative effects on the expression of target genes. Due, in part, to the fact that current SRMs generally target ligand binding domain (LBD)/AF2 and neglect intrinsically disordered (ID) N-terminal domain (NTD)/AF1, clinically relevant SRMs lack selectivity and are also prone to the development of resistance over time. Therefore, to maximize the efficacy of SHR-based therapeutics, the possibility of developing unique modulators that act to control AF1 activity must be considered. Recent studies targeting androgen receptor's (AR's) ID AF1 domain for the castration-resistant prostate cancer has provided the possibility of therapeutically targeting ID NTD/AF1 surfaces by allosteric modulations to achieve desired effects. In this review article, we discuss how inter- and intra- molecular allosteric regulations controlled by AR's structural flexibility and dynamics particularly the ID NTD/AF1 is an emerging area of investigation, which could be exploited for drug development and therapeutic targeting of prostate cancer. PMID:27364545

  20. Complement therapeutics in inflammatory diseases: promising drug candidates for C3-targeted intervention.

    Science.gov (United States)

    Mastellos, D C; Ricklin, D; Hajishengallis, E; Hajishengallis, G; Lambris, J D

    2016-02-01

    There is increasing appreciation that complement dysregulation lies at the heart of numerous immune-mediated and inflammatory disorders. Complement inhibitors are therefore being evaluated as new therapeutic options in various clinical translation programs and the first clinically approved complement-targeted drugs have profoundly impacted the management of certain complement-mediated diseases. Among the many members of the intricate protein network of complement, the central component C3 represents a 'hot-spot' for complement-targeted therapeutic intervention. C3 modulates both innate and adaptive immune responses and is linked to diverse immunomodulatory systems and biological processes that affect human pathophysiology. Compelling evidence from preclinical disease models has shown that C3 interception may offer multiple benefits over existing therapies or even reveal novel therapeutic avenues in disorders that are not commonly regarded as complement-driven, such as periodontal disease. Using the clinically developed compstatin family of C3 inhibitors and periodontitis as illustrative examples, this review highlights emerging therapeutic concepts and developments in the design of C3-targeted drug candidates as novel immunotherapeutics for oral and systemic inflammatory diseases. PMID:26332138

  1. Annexin A9 (ANXA9) biomarker and therapeutic target in epithelial cancer

    Science.gov (United States)

    Hu, Zhi; Kuo, Wen-Lin; Neve, Richard M.; Gray, Joe W.

    2012-06-12

    Amplification of the ANXA9 gene in human chromosomal region 1q21 in epithelial cancers indicates a likelihood of both in vivo drug resistance and metastasis, and serves as a biomarker indicating these aspects of the disease. ANXA9 can also serve as a therapeutic target. Interfering RNAs (iRNAs) (such as siRNA and miRNA) and shRNA adapted to inhibit ANXA9 expression, when formulated in a therapeutic composition, and delivered to cells of the tumor, function to treat the epithelial cancer.

  2. Combined analgesics in (headache pain therapy: shotgun approach or precise multi-target therapeutics?

    Directory of Open Access Journals (Sweden)

    Fiebich Bernd L

    2011-03-01

    Full Text Available Abstract Background Pain in general and headache in particular are characterized by a change in activity in brain areas involved in pain processing. The therapeutic challenge is to identify drugs with molecular targets that restore the healthy state, resulting in meaningful pain relief or even freedom from pain. Different aspects of pain perception, i.e. sensory and affective components, also explain why there is not just one single target structure for therapeutic approaches to pain. A network of brain areas ("pain matrix" are involved in pain perception and pain control. This diversification of the pain system explains why a wide range of molecularly different substances can be used in the treatment of different pain states and why in recent years more and more studies have described a superior efficacy of a precise multi-target combination therapy compared to therapy with monotherapeutics. Discussion In this article, we discuss the available literature on the effects of several fixed-dose combinations in the treatment of headaches and discuss the evidence in support of the role of combination therapy in the pharmacotherapy of pain, particularly of headaches. The scientific rationale behind multi-target combinations is the therapeutic benefit that could not be achieved by the individual constituents and that the single substances of the combinations act together additively or even multiplicatively and cooperate to achieve a completeness of the desired therapeutic effect. As an example the fixesd-dose combination of acetylsalicylic acid (ASA, paracetamol (acetaminophen and caffeine is reviewed in detail. The major advantage of using such a fixed combination is that the active ingredients act on different but distinct molecular targets and thus are able to act on more signalling cascades involved in pain than most single analgesics without adding more side effects to the therapy. Summary Multitarget therapeutics like combined analgesics broaden

  3. Advances in the proteomic discovery of novel therapeutic targets in cancer

    Directory of Open Access Journals (Sweden)

    Guo S

    2013-10-01

    Full Text Available Shanchun Guo,1 Jin Zou,2 Guangdi Wang3 1Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, 2Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA, USA; 3Research Centers in Minority Institutions Cancer Research Program, Xavier University of Louisiana, New Orleans, LA, USA Abstract: Proteomic approaches are continuing to make headways in cancer research by helping to elucidate complex signaling networks that underlie tumorigenesis and disease progression. This review describes recent advances made in the proteomic discovery of drug targets for therapeutic development. A variety of technical and methodological advances are overviewed with a critical assessment of challenges and potentials. A number of potential drug targets, such as baculoviral inhibitor of apoptosis protein repeat-containing protein 6, macrophage inhibitory cytokine 1, phosphoglycerate mutase 1, prohibitin 1, fascin, and pyruvate kinase isozyme 2 were identified in the proteomic analysis of drug-resistant cancer cells, drug action, and differential disease state tissues. Future directions for proteomics-based target identification and validation to be more translation efficient are also discussed. Keywords: proteomics, cancer, therapeutic target, signaling network, tumorigenesis

  4. Gene Therapy for Advanced Melanoma: Selective Targeting and Therapeutic Nucleic Acids

    Directory of Open Access Journals (Sweden)

    Joana R. Viola

    2013-01-01

    Full Text Available Despite recent advances, the treatment of malignant melanoma still results in the relapse of the disease, and second line treatment mostly fails due to the occurrence of resistance. A wide range of mutations are known to prevent effective treatment with chemotherapeutic drugs. Hence, approaches with biopharmaceuticals including proteins, like antibodies or cytokines, are applied. As an alternative, regimens with therapeutically active nucleic acids offer the possibility for highly selective cancer treatment whilst avoiding unwanted and toxic side effects. This paper gives a brief introduction into the mechanism of this devastating disease, discusses the shortcoming of current therapy approaches, and pinpoints anchor points which could be harnessed for therapeutic intervention with nucleic acids. We bring the delivery of nucleic acid nanopharmaceutics into perspective as a novel antimelanoma therapeutic approach and discuss the possibilities for melanoma specific targeting. The latest reports on preclinical and already clinical application of nucleic acids in melanoma are discussed.

  5. Targeting the Raf kinase cascade in cancer therapy--novel molecular targets and therapeutic strategies.

    Science.gov (United States)

    Lee, John T; McCubrey, James A

    2002-12-01

    The mitogen-activated protein kinases (MAPKs) are a group of signal transducers with oncogenic potential in an assortment of cell types. Dysregulated signalling from any of the members of this family has been shown to result in development of human malignancies. Consequently, the collective goal of the scientific community is to inhibit aberrant signalling initiated from these molecules whilst minimising toxicity associated with such inhibition. This review covers events responsible for MAPK activation in detail, with an emphasis placed upon possible points of pharmacological intervention. A discussion addressing numerous chemotherapeutic approaches that have been developed over the previous decade for MAPK inhibition is also included. In addition, emphasis is placed upon the various arrays of kinase inhibitors, small molecule inhibitors, competitive inhibitors, nucleic acid aptamers and other molecules which have been proven effective in prevention of MAPK signalling. Finally, the potential therapeutic promise of many of these compounds is addressed in a manner that encompasses the complexities of MAPK signal transduction, in addition to concerns surrounding the development of drug resistance.

  6. Gene Body Methylation can alter Gene Expression and is a Therapeutic Target in Cancer

    Science.gov (United States)

    Yang, Xiaojing; Han, Han; De Carvalho, Daniel D.; Lay, Fides D.; Jones, Peter A.; Liang, Gangning

    2014-01-01

    SUMMARY DNA methylation in promoters is well known to silence genes and is the presumed therapeutic target of methylation inhibitors. Gene body methylation is positively correlated with expression yet its function is unknown. We show that 5-aza-2'-deoxycytidine treatment not only reactivates genes but decreases the over-expression of genes, many of which are involved in metabolic processes regulated by c-MYC. Down-regulation is caused by DNA demethylation of the gene bodies and restoration of high levels of expression requires remethylation by DNMT3B. Gene body methylation may therefore be an unexpected therapeutic target for DNA methylation inhibitors, resulting in the normalization of gene over-expression induced during carcinogenesis. Our results provide direct evidence for a causal relationship between gene body methylation and transcription. PMID:25263941

  7. Cell division cycle associated 1 as a novel prognostic biomarker and therapeutic target for oral cancer.

    Science.gov (United States)

    Thang, Phung Manh; Takano, Atsushi; Yoshitake, Yoshihiro; Shinohara, Masanori; Murakami, Yoshinori; Daigo, Yataro

    2016-10-01

    Oral cavity carcinoma (OCC) is one of the most common causes of cancer-related death worldwide and has poor clinical outcome after standard therapies. Therefore, new prognostic biomarkers and therapeutic targets for OCC are urgently needed. We selected cell division cycle associated 1 (CDCA1) as a candidate OCC biomarker. Immunohistochemical analysis confirmed that CDCA1 protein was expressed in 67 of 99 OCC tissues (67.7%), but not in healthy oral epithelia. CDCA1 expression was significantly associated with poor prognosis in OCC patients (P=0.0244). Knockdown of CDCA1 by siRNAs significantly increased apoptosis of tumor cells. These data suggest that CDCA1 represents a novel prognostic biomarker and therapeutic target for OCC. PMID:27499128

  8. Pattern recognition receptors as potential therapeutic targets in inflammatory rheumatic disease.

    Science.gov (United States)

    Mullen, Lisa M; Chamberlain, Giselle; Sacre, Sandra

    2015-05-15

    The pattern recognition receptors of the innate immune system are part of the first line of defence against pathogens. However, they also have the ability to respond to danger signals that are frequently elevated during tissue damage and at sites of inflammation. Inadvertent activation of pattern recognition receptors has been proposed to contribute to the pathogenesis of many conditions including inflammatory rheumatic diseases. Prolonged inflammation most often results in pain and damage to tissues. In particular, the Toll-like receptors and nucleotide-binding oligomerisation domain-like receptors that form inflammasomes have been postulated as key contributors to the inflammation observed in rheumatoid arthritis, osteoarthritis, gout and systemic lupus erythematosus. As such, there is increasing interest in targeting these receptors for therapeutic treatment in the clinic. Here the role of pattern recognition receptors in the pathogenesis of these diseases is discussed, with an update on the development of interventions to modulate the activity of these potential therapeutic targets.

  9. Molecular pathways: novel approaches for improved therapeutic targeting of Hedgehog signaling in cancer stem cells.

    Science.gov (United States)

    Justilien, Verline; Fields, Alan P

    2015-02-01

    The Hedgehog (Hh) signaling pathway is critical for embryonic development. In adult tissues, Hh signaling is relatively quiescent with the exception of roles in tissue maintenance and repair. Aberrant activation of Hh signaling is implicated in multiple aspects of transformation, including the maintenance of the cancer stem cell (CSC) phenotype. Preclinical studies indicate that CSCs from many tumor types are sensitive to Hh pathway inhibition and that Hh-targeted therapeutics block many aspects of transformation attributed to CSCs, including drug resistance, relapse, and metastasis. However, to date, Hh inhibitors, specifically those targeting Smoothened [such as vismodegib, BMS-833923, saridegib (IPI-926), sonidegib/erismodegib (LDE225), PF-04449913, LY2940680, LEQ 506, and TAK-441], have demonstrated good efficacy as monotherapy in patients with basal cell carcinoma and medulloblastoma, but have shown limited activity in other tumor types. This lack of success is likely due to many factors, including a lack of patient stratification in early trials, cross-talk between Hh and other oncogenic signaling pathways that can modulate therapeutic response, and a limited knowledge of Hh pathway activation mechanisms in CSCs from most tumor types. Here, we discuss Hh signaling mechanisms in the context of human cancer, particularly in the maintenance of the CSC phenotype, and consider new therapeutic strategies that hold the potential to expand considerably the scope and therapeutic efficacy of Hh-directed anticancer therapy. PMID:25646180

  10. Targeting reactive nitrogen species: a promising therapeutic strategy for cerebral ischemia-reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Xing-miao CHEN; Han-sen CHEN; Ming-jing XU; Jian-gang SHEN

    2013-01-01

    Ischemic stroke accounts for nearly 80% of stroke cases.Recanalization with thrombolysis is a currently crucial therapeutic strategy for re-building blood supply,but the thrombolytic therapy often companies with cerebral ischemia-reperfusion injury,which are mediated by free radicals.As an important component of free radicals,reactive nitrogen species (RNS),including nitric oxide (NO) and peroxynitrite (ONO0ˉ),play important roles in the process of cerebral ischemia-reperfusion injury.Ischemia-reperfusion results in the production of nitric oxide (NO) and peroxynitrite (ONOOˉ) in ischemic brain,which trigger numerous molecular cascades and lead to disruption of the blood brain barrier and exacerbate brain damage.There are few therapeutic strategies available for saving ischemic brains and preventing the subsequent brain damage.Recent evidence suggests that RNS could be a therapeutic target for the treatment of cerebral ischemia-reperfusion injury.Herein,we reviewed the recent progress regarding the roles of RNS in the process of cerebral ischemic-reperfusion injury and discussed the potentials of drug development that target NO and ONO0ˉ to treat ischemic stroke.We conclude that modulation for RNS level could be an important therapeutic strategy for preventing cerebral ischemiareperfusion injury.

  11. Cornering metastases: therapeutic targeting of circulating tumor cells and stem cells.

    Directory of Open Access Journals (Sweden)

    Bishoy eFaltas

    2012-07-01

    Full Text Available The last decade has witnessed an evolution of our understanding of the biology of the metastatic cascade. Recent insights into the metastatic process show that it is complex, dynamic and multi-directional. This process starts at a very early stage in the natural history of solid tumor growth leading to early development of metastases that grow in parallel with the primary tumor. The role of stem cells in perpetuating cancer metastases is increasingly becoming more evident. At the same time, there is a growing recognition of the crucial role circulating tumor cells (CTCs play in the development of metastases. These insights have laid the biological foundations for therapeutic targeting of CTCs, a promising area of research that aims to reduce cancer morbidity and mortality by preventing the development of metastases at a very early stage. The hematogenous transport phase of the metastatic cascade provides critical access to CTCs for therapeutic targeting aiming to interrupt the metastatic process. Recent advances in the fields of nanotechnology and micro-fluidics have led to the development of several devices for in-vivo targeting of CTC during transit in the circulation. Selectin-coated tubes that target cell adhesion molecules, immuno-magnetic separators and in-vivo photoacoustic flow cytometers are currently being developed for this purpose. On the pharmacological front, several pharmacological and immunological agents targeting cancer stem cells are currently being developed. Such agents may ultimately prove to be effective against circulating tumor stem cells (CTSCs. Although still in its infancy, therapeutic targeting of CTCs and CTSCs offers an unprecedented opportunity to prevent the development of metastasis and potentially alter the natural history of cancer. By rendering cancer a local disease, these approaches could lead to major reductions in metastasis-related morbidity and mortality.

  12. MicroRNAs are potential therapeutic targets in fibrosing kidney disease: lessons from animal models

    OpenAIRE

    Duffield, Jeremy S.; Grafals, Monica; Portilla, Didier

    2012-01-01

    Chronic disease of the kidneys has reached epidemic proportions in industrialized nations. New therapies are urgently sought. Using a combination of animal models of kidney disease and human biopsy samples, a pattern of dysregulated microRNA expression has emerged which is common to chronic diseases. A number of these dysregulated microRNA have recently been shown to have functional consequences for the disease process and therefore may be potential therapeutic targets. We highlight microRNA-...

  13. From DNA to Targeted Therapeutics: Bringing Synthetic Biology to the Clinic

    OpenAIRE

    Chen, Yvonne Y; Smolke, Christina D.

    2011-01-01

    Synthetic biology aims to make biological engineering more scalable and predictable, lowering the cost and facilitating the translation of synthetic biological systems to practical applications. Increasingly sophisticated, rationally designed synthetic systems that are capable of complex functions pave the way to translational applications, including disease diagnostics and targeted therapeutics. Here, we provide an overview of recent developments in synthetic biology in the context of transl...

  14. Mitochondrial fusion and fission proteins: Novel therapeutic targets for combating cardiovascular disease.

    OpenAIRE

    Hall, A.; Burke, N; Dongworth, R.; Hausenloy, D.

    2014-01-01

    Mitochondria are no longer considered to be solely the static powerhouses of the cell. While they are undoubtedly essential to sustaining life and meeting the energy requirements of the cell through oxidative phosphorylation, they are now regarded as highly dynamic organelles with multiple funtions, playing key roles in cell survival and death. In this review, we discuss the emerging role of mitochondrial fusion and fission proteins, as novel therapeutic targets for treating a wide range of c...

  15. Targeting leukemic fusion proteins with small interfering RNAs: recent advances and therapeutic potentials

    Institute of Scientific and Technical Information of China (English)

    Maria THOMAS; Johann GREIL; Olaf HEIDENREICH

    2006-01-01

    RNA interference has become an indispensable research tool to study gene functions in a wide variety of organisms.Because of their high efficacy and specificity,RNA interference-based approaches may also translate into new therapeutic strategies to treat human diseases.In particular,oncogenes such as leukemic fusion proteins,which arise from chromosomal translocations,are promising targets for such gene silencing approaches,because they are exclusively expressed in precancerous and cancerous tissues,and because they are frequently indispensable for maintaining the malignant phenotype.This review summarizes recent developments in targeting leukemia-specific genes and discusses problems and approaches for possible clinical applications.

  16. Hypoxia-Inducible Factors: Mediators of Cancer Progression; Prognostic and Therapeutic Targets in Soft Tissue Sarcomas

    Energy Technology Data Exchange (ETDEWEB)

    Sadri, Navid; Zhang, Paul J., E-mail: pjz@mail.med.upenn.edu [Anatomic Pathology, Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, 3400 Spruce Street, 6th Floor Founders Building, Philadelphia, PA 19104 (United States)

    2013-04-02

    Soft-tissue sarcomas remain aggressive tumors that result in death in greater than a third of patients due to either loco-regional recurrence or distant metastasis. Surgical resection remains the main choice of treatment for soft tissue sarcomas with pre- and/or post-operational radiation and neoadjuvant chemotherapy employed in more advanced stage disease. However, in recent decades, there has been little progress in the average five-year survival for the majority of patients with high-grade soft tissue sarcomas, highlighting the need for improved targeted therapeutic agents. Clinical and preclinical studies demonstrate that tumor hypoxia and up-regulation of hypoxia-inducible factors (HIFs) is associated with decreased survival, increased metastasis, and resistance to therapy in soft tissue sarcomas. HIF-mediated gene expression regulates many critical aspects of tumor biology, including cell survival, metabolic programming, angiogenesis, metastasis, and therapy resistance. In this review, we discuss HIFs and HIF-mediated genes as potential prognostic markers and therapeutic targets in sarcomas. Many pharmacological agents targeting hypoxia-related pathways are in development that may hold therapeutic potential for treating both primary and metastatic sarcomas that demonstrate increased HIF expression.

  17. Engineering novel targeted nanoparticle formulations to increase the therapeutic efficacy of conventional chemotherapeutics against multiple myeloma

    Science.gov (United States)

    Ashley, Jonathan D.

    Multiple myeloma (MM) is a hematological malignancy which results from the uncontrolled clonal expansion of plasma cells within the body. Despite recent medical advances, this disease remains largely incurable, with a median survival of ˜7 years, owing to the development of drug resistance. This dissertation will explore new advances in nanotechnology that will combine the cytotoxic effects of small molecule chemotherapeutics with the tumor targeting capabilities of nanoparticles to create novel nanoparticle formulations that exhibit enhanced therapeutic indices in the treatment of MM. First, doxorubicin was surfaced conjugated onto micellar nanoparticles via an acid labile hydrazone bond to increase the drug accumulation at the tumor. The cell surface receptor Very Late Antigen-4 (VLA-4; alpha4beta1) is expressed on cancers of hematopoietic origin and plays a vital role in the cell adhesion mediated drug resistance (CAM-DR) in MM. Therefore, VLA-4 antagonist peptides were conjugated onto the nanoparticles via a multifaceted procedure to actively target MM cells and simultaneously inhibit CAM-DR. The micellar doxorubicin nanoparticles were able to overcome CAM-DR and demonstrated improved therapeutic index relative to free doxorubicin. In addition to doxorubicin, other classes of therapeutic agents, such as proteasome inhibitors, can be incorporated in nanoparticles for improved therapeutic outcomes. Utilizing boronic acid chemistry, bortezomib prodrugs were synthesized using a reversible boronic ester bond and then incorporated into liposomes. The different boronic ester bonds that could be potentially used in the synthesis of bortezomib prodrugs were screened based on stability using isobutylboronic acid. The liposomal bortezomib nanoparticles demonstrated significant proteasome inhibition and cytotoxicity in MM cells in vitro, and dramatically reduced the non-specific toxicities associated with free bortezomib while maintaining significant tumor growth

  18. Engineering Multi-Walled Carbon Nanotube Therapeutic Bionanofluids to Selectively Target Papillary Thyroid Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Idit Dotan

    Full Text Available The incidence of papillary thyroid carcinoma (PTC has risen steadily over the past few decades as well as the recurrence rates. It has been proposed that targeted ablative physical therapy could be a therapeutic modality in thyroid cancer. Targeted bio-affinity functionalized multi-walled carbon nanotubes (BioNanofluid act locally, to efficiently convert external light energy to heat thereby specifically killing cancer cells. This may represent a promising new cancer therapeutic modality, advancing beyond conventional laser ablation and other nanoparticle approaches.Thyroid Stimulating Hormone Receptor (TSHR was selected as a target for PTC cells, due to its wide expression. Either TSHR antibodies or Thyrogen or purified TSH (Thyrotropin were chemically conjugated to our functionalized Bionanofluid. A diode laser system (532 nm was used to illuminate a PTC cell line for set exposure times. Cell death was assessed using Trypan Blue staining.TSHR-targeted BioNanofluids were capable of selectively ablating BCPAP, a TSHR-positive PTC cell line, while not TSHR-null NSC-34 cells. We determined that a 2:1 BCPAP cell:α-TSHR-BioNanofluid conjugate ratio and a 30 second laser exposure killed approximately 60% of the BCPAP cells, while 65% and >70% of cells were ablated using Thyrotropin- and Thyrogen-BioNanofluid conjugates, respectively. Furthermore, minimal non-targeted killing was observed using selective controls.A BioNanofluid platform offering a potential therapeutic path for papillary thyroid cancer has been investigated, with our in vitro results suggesting the development of a potent and rapid method of selective cancer cell killing. Therefore, BioNanofluid treatment emphasizes the need for new technology to treat patients with local recurrence and metastatic disease who are currently undergoing either re-operative neck explorations, repeated administration of radioactive iodine and as a last resort external beam radiation or chemotherapy, with

  19. Advances in Antisense Oligonucleotide Development for Target Identification, Validation, and as Novel Therapeutics

    Directory of Open Access Journals (Sweden)

    Moizza Mansoor

    2008-01-01

    Full Text Available Antisense oligonucleotides (As-ODNs are single stranded, synthetically prepared strands of deoxynucleotide sequences, usually 18–21 nucleotides in length, complementary to the mRNA sequence of the target gene. As-ODNs are able to selectively bind cognate mRNA sequences by sequence-specific hybridization. This results in cleavage or disablement of the mRNA and, thus, inhibits the expression of the target gene. The specificity of the As approach is based on the probability that, in the human genome, any sequence longer than a minimal number of nucleotides (nt, 13 for RNA and 17 for DNA, normally occurs only once. The potential applications of As-ODNs are numerous because mRNA is ubiquitous and is more accessible to manipulation than DNA. With the publication of the human genome sequence, it has become theoretically possible to inhibit mRNA of almost any gene by As-ODNs, in order to get a better understanding of gene function, investigate its role in disease pathology and to study novel therapeutic targets for the diseases caused by dysregulated gene expression. The conceptual simplicity, the availability of gene sequence information from the human genome, the inexpensive availability of synthetic oligonucleotides and the possibility of rational drug design makes As-ODNs powerful tools for target identification, validation and therapeutic intervention. In this review we discuss the latest developments in antisense oligonucleotide design, delivery, pharmacokinetics and potential side effects, as well as its uses in target identification and validation, and finally focus on the current developments of antisense oligonucleotides in therapeutic intervention in various diseases.

  20. Engineering Multi-Walled Carbon Nanotube Therapeutic Bionanofluids to Selectively Target Papillary Thyroid Cancer Cells

    Science.gov (United States)

    Paliouras, Miltiadis; Mitmaker, Elliot J.; Trifiro, Mark A.

    2016-01-01

    Background The incidence of papillary thyroid carcinoma (PTC) has risen steadily over the past few decades as well as the recurrence rates. It has been proposed that targeted ablative physical therapy could be a therapeutic modality in thyroid cancer. Targeted bio-affinity functionalized multi-walled carbon nanotubes (BioNanofluid) act locally, to efficiently convert external light energy to heat thereby specifically killing cancer cells. This may represent a promising new cancer therapeutic modality, advancing beyond conventional laser ablation and other nanoparticle approaches. Methods Thyroid Stimulating Hormone Receptor (TSHR) was selected as a target for PTC cells, due to its wide expression. Either TSHR antibodies or Thyrogen or purified TSH (Thyrotropin) were chemically conjugated to our functionalized Bionanofluid. A diode laser system (532 nm) was used to illuminate a PTC cell line for set exposure times. Cell death was assessed using Trypan Blue staining. Results TSHR-targeted BioNanofluids were capable of selectively ablating BCPAP, a TSHR-positive PTC cell line, while not TSHR-null NSC-34 cells. We determined that a 2:1 BCPAP cell:α-TSHR-BioNanofluid conjugate ratio and a 30 second laser exposure killed approximately 60% of the BCPAP cells, while 65% and >70% of cells were ablated using Thyrotropin- and Thyrogen-BioNanofluid conjugates, respectively. Furthermore, minimal non-targeted killing was observed using selective controls. Conclusion A BioNanofluid platform offering a potential therapeutic path for papillary thyroid cancer has been investigated, with our in vitro results suggesting the development of a potent and rapid method of selective cancer cell killing. Therefore, BioNanofluid treatment emphasizes the need for new technology to treat patients with local recurrence and metastatic disease who are currently undergoing either re-operative neck explorations, repeated administration of radioactive iodine and as a last resort external beam

  1. Novel therapeutic approaches for pulmonary arterial hypertension: Unique molecular targets to site-specific drug delivery.

    Science.gov (United States)

    Vaidya, Bhuvaneshwar; Gupta, Vivek

    2015-08-10

    Pulmonary arterial hypertension (PAH) is a cardiopulmonary disorder characterized by increased blood pressure in the small arterioles supplying blood to lungs for oxygenation. Advances in understanding of molecular and cellular biology techniques have led to the findings that PAH is indeed a cascade of diseases exploiting multi-faceted complex pathophysiology, with cellular proliferation and vascular remodeling being the key pathogenic events along with several cellular pathways involved. While current therapies for PAH do provide for amelioration of disease symptoms and acute survival benefits, their full therapeutic potential is hindered by patient incompliance and off-target side effects. To overcome the issues related with current therapy and to devise a more selective therapy, various novel pathways are being investigated for PAH treatment. In addition, inability to deliver anti-PAH drugs to the disease site i.e., distal pulmonary arterioles has been one of the major challenges in achieving improved patient outcomes and improved therapeutic efficacy. Several novel carriers have been explored to increase the selectivity of currently approved anti-PAH drugs and to act as suitable carriers for the delivery of investigational drugs. In the present review, we have discussed potential of various novel molecular pathways/targets including RhoA/Rho kinase, tyrosine kinase, endothelial progenitor cells, vasoactive intestinal peptide, and miRNA in PAH therapeutics. We have also discussed various techniques for site-specific drug delivery of anti-PAH therapeutics so as to improve the efficacy of approved and investigational drugs. This review will provide gainful insights into current advances in PAH therapeutics with an emphasis on site-specific drug payload delivery.

  2. Recent Advancements in Targeted Delivery of Therapeutic Molecules in Neurodegenerative Disease - Spinocerebellar Ataxia - Opportunities and Challenges

    Directory of Open Access Journals (Sweden)

    Satya Prakash

    2008-01-01

    Full Text Available Drug discovery and its methodologies have been very effective in terms of treating cancers and immunological disorders but have not been able to stop genetic diseases as most of the drugs target at the protein level. They merely mitigate the symptoms of the disease. Spinocerebellar ataxia is a neurological genetic disorder that is caused by the formation of an abnormal protein. There have been several reports on ataxic drug development but actual clinical treatment is yet to be achieved. Oligonucleotide therapy called sequence specific siRNA mediated gene silencing has evolved with promising results. This approach emphasizes on suppressing the expression of the diseased gene at mRNA level. However, there is a limitation in delivery of siRNA to the target site. Several methods have been developed over the last decade to enhance the target specific delivery of DNA, siRNA, protein and small drug molecules for therapeutic purpose with less or no side effects. This review discusses the latest upcoming technologies in the field that focus on a number of nonviral nanocarriers for targeted delivery. In this review, we explore the promise and potential of novel therapeutics with interest on ataxia therapy.

  3. Cysteine proteases as therapeutic targets: does selectivity matter? A systematic review of calpain and cathepsin inhibitors.

    Science.gov (United States)

    Siklos, Marton; BenAissa, Manel; Thatcher, Gregory R J

    2015-11-01

    Cysteine proteases continue to provide validated targets for treatment of human diseases. In neurodegenerative disorders, multiple cysteine proteases provide targets for enzyme inhibitors, notably caspases, calpains, and cathepsins. The reactive, active-site cysteine provides specificity for many inhibitor designs over other families of proteases, such as aspartate and serine; however, a) inhibitor strategies often use covalent enzyme modification, and b) obtaining selectivity within families of cysteine proteases and their isozymes is problematic. This review provides a general update on strategies for cysteine protease inhibitor design and a focus on cathepsin B and calpain 1 as drug targets for neurodegenerative disorders; the latter focus providing an interesting query for the contemporary assumptions that irreversible, covalent protein modification and low selectivity are anathema to therapeutic safety and efficacy.

  4. Recent Advances in Targetable Therapeutics in Metastatic Non-Squamous NSCLC

    Directory of Open Access Journals (Sweden)

    Pranshu eBansal

    2016-05-01

    Full Text Available Lung adenocarcinoma is the most common subtype of non-small cell lung cancer (NSCLC. With the discovery of epidermal growth factor receptor (EGFR mutations, anaplastic lymphoma kinase (ALK rearrangements and effective targeted therapies, therapeutic options are expanding for patients with lung adenocarcinoma. Here, we review novel therapies in non-squamous NSCLC, which are directed against oncogenic targets, including EGFR, ALK, ROS1, BRAF, MET, human epidermal growth factor receptor 2 (HER2, vascular endothelial growth factor receptor 2 (VEGFR2, RET and NTRK. With the rapidly evolving molecular testing and development of new targeted agents, our ability to further personalize therapy in non-squamous NSCLC is rapidly expanding.

  5. CD19-targeted CAR T-cell therapeutics for hematologic malignancies: interpreting clinical outcomes to date.

    Science.gov (United States)

    Park, Jae H; Geyer, Mark B; Brentjens, Renier J

    2016-06-30

    Adoptive transfer of T cells genetically modified to express chimeric antigen receptors (CARs) targeting CD19 has produced impressive results in treating patients with B-cell malignancies. Although these CAR-modified T cells target the same antigen, the designs of CARs vary as well as several key aspects of the clinical trials in which these CARs have been studied. It is unclear whether these differences have any impact on clinical outcome and treatment-related toxicities. Herein, we review clinical results reflecting the investigational use of CD19-targeted CAR T-cell therapeutics in patients with B-cell hematologic malignancies, in light of differences in CAR design and production, and outline the limitations inherent in comparing outcomes between studies. PMID:27207800

  6. MicroRNAs are potential therapeutic targets in fibrosing kidney disease: lessons from animal models

    Science.gov (United States)

    Duffield, Jeremy S; Grafals, Monica; Portilla, Didier

    2012-01-01

    Chronic disease of the kidneys has reached epidemic proportions in industrialized nations. New therapies are urgently sought. Using a combination of animal models of kidney disease and human biopsy samples, a pattern of dysregulated microRNA expression has emerged which is common to chronic diseases. A number of these dysregulated microRNA have recently been shown to have functional consequences for the disease process and therefore may be potential therapeutic targets. We highlight microRNA-21, the most comprehensively studied microRNA in the kidney so far. MicroRNA-21 is expressed widely in healthy kidney but studies from knockout mice indicate it is largely inert. Although microRNA-21 is upregulated in many cell compartments including leukocytes, epithelial cells and myofibroblasts, the inert microRNA-21 also appears to become activated, by unclear mechanisms. Mice lacking microRNA-21 are protected from kidney injury and fibrosis in several distinct models of kidney disease, and systemically administered oligonucleotides that specifically bind to the active site in microRNA-21, inhibiting its function, recapitulate the genetic deletion of microRNA-21, suggesting inhibitory oligonucleotides may have therapeutic potential. Recent studies of microRNA-21 targets in kidney indicate that it normally functions to silence metabolic pathways including fatty acid metabolism and pathways that prevent Reactive Oxygen Species generation in peroxisomes and mitochondria in epithelial cells and myofibroblasts. Targeting specific pathogenic microRNAs in a specific manner is feasible in vivo and may be a new therapeutic target in disease of the kidney PMID:25018773

  7. Pathophysiological significance and therapeutic targeting of germinal center kinase in diffuse large B-cell lymphoma.

    Science.gov (United States)

    Matthews, Julie Marie; Bhatt, Shruti; Patricelli, Matthew P; Nomanbhoy, Tyzoon K; Jiang, Xiaoyu; Natkunam, Yasodha; Gentles, Andrew J; Martinez, Ezequiel; Zhu, Daxing; Chapman, Jennifer Rose; Cortizas, Elena; Shyam, Ragini; Chinichian, Shideh; Advani, Ranjana; Tan, Li; Zhang, Jianming; Choi, Hwan Geun; Tibshirani, Robert; Buhrlage, Sara J; Gratzinger, Dita; Verdun, Ramiro; Gray, Nathanael S; Lossos, Izidore S

    2016-07-14

    Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of non-Hodgkin lymphoma, yet 40% to 50% of patients will eventually succumb to their disease, demonstrating a pressing need for novel therapeutic options. Gene expression profiling has identified messenger RNAs that lead to transformation, but critical events transforming cells are normally executed by kinases. Therefore, we hypothesized that previously unrecognized kinases may contribute to DLBCL pathogenesis. We performed the first comprehensive analysis of global kinase activity in DLBCL, to identify novel therapeutic targets, and discovered that germinal center kinase (GCK) was extensively activated. GCK RNA interference and small molecule inhibition induced cell-cycle arrest and apoptosis in DLBCL cell lines and primary tumors in vitro and decreased the tumor growth rate in vivo, resulting in a significantly extended lifespan of mice bearing DLBCL xenografts. GCK expression was also linked to adverse clinical outcome in a cohort of 151 primary DLBCL patients. These studies demonstrate, for the first time, that GCK is a molecular therapeutic target in DLBCL tumors and that inhibiting GCK may significantly extend DLBCL patient survival. Because the majority of DLBCL tumors (∼80%) exhibit activation of GCK, this therapy may be applicable to most patients. PMID:27151888

  8. Sensitivity of chronic lymphocytic leukemia cells to small targeted therapeutic molecules: An in vitro comparative study.

    Science.gov (United States)

    Sylvan, Sandra Eketorp; Skribek, Henriette; Norin, Stefan; Muhari, Orsolya; Österborg, Anders; Szekely, Laszlo

    2016-01-01

    New drugs targeting important cellular signaling pathways are currently being developed for chronic lymphocytic leukemia (CLL). It is therefore of interest to analyze their in vitro killing capacity in manufacturer-independent, comparative experiments. We here report on the sensitivity of CLL cells to a panel of emerging targeted therapeutics using high-throughput screening based on an automated fluorescence digital scanning system. Fresh CLL cells from 42 patients with indolent or progressive CLL were cultured for 72 hours on microtiter plates in a unique primary cell culture medium. Antitumor effects of 31 small therapeutic molecules (and, as controls, 29 cytostatic agents) at equimolar concentration were compared in a fluorescence survival assay. In vitro sensitivity to each drug exhibited considerable interpatient variability. The highest mean direct killing was observed for one survivin inhibitor (YM-155), two bcl-2 inhibitors (ABT-199, ABT-737), and one selective CDK inhibitor (dinaciclib). Their killing capacity was, in contrast to most cytostatic agents, similarly high in refractory versus untreated CLL patients and was significantly higher on cells with the 17p deletion/TP53 mutation than on cells with other cytogenetic abnormalities (p = 0.02). Sensitivity of bone marrow and lymph node cells was highly correlated with that of blood cells. Even though direct killing may not be the only therapeutic effector function in vivo, results from this head-to-head comparison may help to identify drugs of particular interest for intensified clinical development. PMID:26325331

  9. Targeting the endocannabinoid system with cannabinoid receptor agonists: pharmacological strategies and therapeutic possibilities.

    Science.gov (United States)

    Pertwee, Roger G

    2012-12-01

    Human tissues express cannabinoid CB(1) and CB(2) receptors that can be activated by endogenously released 'endocannabinoids' or exogenously administered compounds in a manner that reduces the symptoms or opposes the underlying causes of several disorders in need of effective therapy. Three medicines that activate cannabinoid CB(1)/CB(2) receptors are now in the clinic: Cesamet (nabilone), Marinol (dronabinol; Δ(9)-tetrahydrocannabinol (Δ(9)-THC)) and Sativex (Δ(9)-THC with cannabidiol). These can be prescribed for the amelioration of chemotherapy-induced nausea and vomiting (Cesamet and Marinol), stimulation of appetite (Marinol) and symptomatic relief of cancer pain and/or management of neuropathic pain and spasticity in adults with multiple sclerosis (Sativex). This review mentions several possible additional therapeutic targets for cannabinoid receptor agonists. These include other kinds of pain, epilepsy, anxiety, depression, Parkinson's and Huntington's diseases, amyotrophic lateral sclerosis, stroke, cancer, drug dependence, glaucoma, autoimmune uveitis, osteoporosis, sepsis, and hepatic, renal, intestinal and cardiovascular disorders. It also describes potential strategies for improving the efficacy and/or benefit-to-risk ratio of these agonists in the clinic. These are strategies that involve (i) targeting cannabinoid receptors located outside the blood-brain barrier, (ii) targeting cannabinoid receptors expressed by a particular tissue, (iii) targeting upregulated cannabinoid receptors, (iv) selectively targeting cannabinoid CB(2) receptors, and/or (v) adjunctive 'multi-targeting'. PMID:23108552

  10. The Role of Chemokines in Breast Cancer Pathology and Its Possible Use as Therapeutic Targets

    Directory of Open Access Journals (Sweden)

    M. Isabel Palacios-Arreola

    2014-01-01

    Full Text Available Chemokines are small proteins that primarily regulate the traffic of leukocytes under homeostatic conditions and during specific immune responses. The chemokine-chemokine receptor system comprises almost 50 chemokines and approximately 20 chemokine receptors; thus, there is no unique ligand for each receptor and the binding of different chemokines to the same receptor might have disparate effects. Complicating the system further, these effects depend on the cellular milieu. In cancer, although chemokines are associated primarily with the generation of a protumoral microenvironment and organ-directed metastasis, they also mediate other phenomena related to disease progression, such as angiogenesis and even chemoresistance. Therefore, the chemokine system is becoming a target in cancer therapeutics. We review the emerging data and correlations between chemokines/chemokine receptors and breast cancer, their implications in cancer progression, and possible therapeutic strategies that exploit the chemokine system.

  11. Potential prospects of nanomedicine for targeted therapeutics in inflammatory bowel diseases.

    Science.gov (United States)

    Pichai, Madharasi V A; Ferguson, Lynnette R

    2012-06-21

    Inflammatory bowel diseases (IBDs) such as Crohn's disease are highly debilitating. There are inconsistencies in response to and side effects in the current conventional medications, failures in adequate drug delivery, and the lack of therapeutics to offer complete remission in the presently available treatments of IBD. This suggests the need to explore beyond the horizons of conventional approaches in IBD therapeutics. This review examines the arena of the evolving IBD nanomedicine, studied so far in animal and in vitro models, before comprehensive clinical testing in humans. The investigations carried out so far in IBD models have provided substantial evidence of the nanotherapeutic approach as having the potential to overcome some of the current drawbacks to conventional IBD therapy. We analyze the pros and cons of nanotechnology in IBD therapies studied in different models, aimed at different targets and mechanisms of IBD pathogenesis, in an attempt to predict its possible impact in humans. PMID:22736912

  12. Macrophage migration inhibitory factor: a potential therapeutic target for rheumatoid arthritis

    Science.gov (United States)

    Kim, Kyoung-Woon; Kim, Hae-Rim

    2016-01-01

    Macrophage migration inhibitory factor (MIF) is originally identified in the culture medium of activated T lymphocytes as a soluble factor that inhibits the random migration of macrophages. MIF is now recognized as a multipotent cytokine involved in the regulation of immune and inf lammatory responses. In rheumatoid arthritis (RA), MIF promotes inf lammatory responses by inducing proinflammatory cytokines and tissue-degrading molecules, promoting the proliferation and survival of synovial fibroblasts, stimulating neutrophil chemotaxis, and regulating angiogenesis and osteoclast differentiation. Expression of MIF in synovial tissue and synovial fluid levels of MIF are elevated in RA patients. Specifically, MIF levels correlate with RA disease activity and high levels are associated with bone erosion. In animal models of RA, the genetic and therapeutic inhibition of MIF has been shown to control inflammation and bone destruction. Based on the role of MIF in RA pathogenesis, small molecular inhibitors targeting it or its receptor pathways could provide a new therapeutic option for RA patients. PMID:27169879

  13. Possible molecular targets for therapeutic applications of caffeic acid phenethyl ester in inflammation and cancer

    Directory of Open Access Journals (Sweden)

    Ghulam Murtaza

    2015-03-01

    Full Text Available Of the various derivatives of caffeic acid, caffeic acid phenethyl ester (CAPE is a hydrophobic, bioactive polyphenolic ester obtained from propolis extract. The objective in writing this review article was to summarize all published studies on therapeutics of CAPE in inflammation and cancer to extract direction for future research. The possible molecular targets for the action of CAPE, include various transcription factors such as nuclear factor-κB, tissue necrosis factor-α, interleukin-6, cyclooxygenase-2, Nrf2, inducible nitric oxide synthase, nuclear factor of activated T cells, hypoxia-inducible factor-1α, and signal transducers and activators of transcription. Based on the valuable data on its therapeutics in inflammation and cancer, clinical studies of CAPE should also be conducted to explore its toxicities, if any.

  14. Potential prospects of nanomedicine for targeted therapeutics in inflammatory bowel diseases

    Institute of Scientific and Technical Information of China (English)

    Madharasi VA Pichai; Lynnette R Ferguson

    2012-01-01

    Inflammatory bowel diseases (IBDs) such as Crohn's disease are highly debilitating.There are inconsistencies in response to and side effects in the current conventional medications,failures in adequate drug delivery,and the lack of therapeutics to offer complete remission in the presently available treatments of IBD.This suggests the need to explore beyond the horizons of conventional approaches in IBD therapeutics.This review examines the arena of the evolving IBD nanomedicine,studied so far in animal andin vitro models,before comprehensive clinical testing in humans.The investigations carried out so far in IBD models have provided substantial evidence of the nanotherapeutic approach as having the potential to overcome some of the current drawbacks to conventional IBD therapy.We analyze the pros and cons of nanotechnology in IBD therapies studied in different models,aimed at different targets and mechanisms of IBD pathogenesis,in an attempt to predict its possible impact in humans.

  15. Integrin α5β1, the Fibronectin Receptor, as a Pertinent Therapeutic Target in Solid Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Schaffner, Florence; Ray, Anne Marie; Dontenwill, Monique, E-mail: monique.dontenwill@unistra.fr [UMR 7213 CNRS, Laboratoire de Biophotonique et Pharmacologie, Tumoral signaling and therapeutic targets, Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch (France)

    2013-01-15

    Integrins are transmembrane heterodimeric proteins sensing the cell microenvironment and modulating numerous signalling pathways. Changes in integrin expression between normal and tumoral cells support involvement of specific integrins in tumor progression and aggressiveness. This review highlights the current knowledge about α5β1 integrin, also called the fibronectin receptor, in solid tumors. We summarize data showing that α5β1 integrin is a pertinent therapeutic target expressed by tumoral neovessels and tumoral cells. Although mainly evaluated in preclinical models, α5β1 integrin merits interest in particular in colon, breast, ovarian, lung and brain tumors where its overexpression is associated with a poor prognosis for patients. Specific α5β1 integrin antagonists will be listed that may represent new potential therapeutic agents to fight defined subpopulations of particularly aggressive tumors.

  16. Network science for the identification of novel therapeutic targets in epilepsy

    Science.gov (United States)

    Scott, Rod C.

    2016-01-01

    The quality of life of children with epilepsy is a function of seizures and associated cognitive and behavioral comorbidities. Current treatments are not successful at stopping seizures in approximately 30% of patients despite the introduction of multiple new antiepileptic drugs over the last decade. In addition, modification of seizures has only a modest impact on the comorbidities. Therefore, novel approaches to identify therapeutic targets that improve seizures and comorbidities are urgently required. The potential of network science as applied to genetic, local neural network, and global brain data is reviewed. Several examples of possible new therapeutic approaches defined using novel network tools are highlighted. Further study to translate the findings into clinical practice is now required. PMID:27239287

  17. Macrophage migration inhibitory factor: a potential therapeutic target for rheumatoid arthritis.

    Science.gov (United States)

    Kim, Kyoung-Woon; Kim, Hae-Rim

    2016-07-01

    Macrophage migration inhibitory factor (MIF) is originally identified in the culture medium of activated T lymphocytes as a soluble factor that inhibits the random migration of macrophages. MIF is now recognized as a multipotent cytokine involved in the regulation of immune and inf lammatory responses. In rheumatoid arthritis (RA), MIF promotes inf lammatory responses by inducing proinflammatory cytokines and tissue-degrading molecules, promoting the proliferation and survival of synovial fibroblasts, stimulating neutrophil chemotaxis, and regulating angiogenesis and osteoclast differentiation. Expression of MIF in synovial tissue and synovial fluid levels of MIF are elevated in RA patients. Specifically, MIF levels correlate with RA disease activity and high levels are associated with bone erosion. In animal models of RA, the genetic and therapeutic inhibition of MIF has been shown to control inflammation and bone destruction. Based on the role of MIF in RA pathogenesis, small molecular inhibitors targeting it or its receptor pathways could provide a new therapeutic option for RA patients. PMID:27169879

  18. Regulatory T Cells in the Tumor Microenvironment and Cancer Progression: Role and Therapeutic Targeting

    Science.gov (United States)

    Chaudhary, Belal; Elkord, Eyad

    2016-01-01

    Recent years have seen significant efforts in understanding and modulating the immune response in cancer. In this context, immunosuppressive cells, including regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs), have come under intense investigation for their proposed roles in suppressing tumor-specific immune responses and establishing an immunosuppressive tumor microenvironment, thus enabling tumor immune evasion. Additionally, recent evidence indicates that Tregs comprise diverse and heterogeneous subsets; phenotypically and functionally distinct subsets of tumor-infiltrating Tregs could contribute differently to cancer prognosis and clinical outcomes. Understanding Treg biology in the setting of cancer, and specifically the tumor microenvironment, is important for designing effective cancer therapies. In this review, we critically examine the role of Tregs in the tumor microenvironment and in cancer progression focusing on human studies. We also discuss the impact of current therapeutic modalities on Treg biology and the therapeutic opportunities for targeting Tregs to enhance anti-tumor immune responses and clinical benefits. PMID:27509527

  19. Immune Pathways in Atopic Dermatitis, and Definition of Biomarkers through Broad and Targeted Therapeutics.

    Science.gov (United States)

    Mansouri, Yasaman; Guttman-Yassky, Emma

    2015-04-29

    Atopic dermatitis (AD) is the most common inflammatory skin disease. Recent research findings have provided an insight into the complex pathogenic mechanisms involved in this disease. Despite a rising prevalence, effective and safe therapeutics for patients with moderate-to-severe AD are still lacking. Biomarkers of lesional, nonlesional skin, and blood have been developed for baseline as well as after treatment with broad and specific treatments (i.e., cyclosporine A and dupilumab). These biomarkers will help with the development of novel targeted therapeutics and assessment of disease reversal, with the promise of a more personalized treatment approach. Since AD involves more than one subtype (i.e., intrinsic/extrinsic, pediatric/adult, etc.), these molecular fingerprints needs to be validated in all subpopulations with AD.

  20. Sjögren's syndrome: from pathogenesis to novel therapeutic targets.

    Science.gov (United States)

    Barone, Francesca; Colafrancesco, Serena

    2016-01-01

    Primary Sjögren's syndrome (pSS) is a chronic inflammatory autoimmune disease, characterised by a chronic infiltration of exocrine glands, mainly salivary glands, with the histological features of focal lymphocytic sialoadenitis. Disease spectrum is broad and the occurrence of several extra-glandular manifestations, and in rare cases lymphoma development, is well known. A specific approved treatment for pSS is still lacking and the detection of novel therapeutic biologic target is ongoing. The identification of biological fingerprints seems essential in order to stratify patients both in clinical trials and in real life. Discovery of new components of the inflammatory response will be the key in the future for the identification of novel additional therapeutic options. PMID:27586806

  1. Osteopontin as potential biomarker and therapeutic target in gastric and liver cancers

    Institute of Scientific and Technical Information of China (English)

    Dong-Xing Cao; Zhi-Jie Li; Xiao-Ou Jiang; Yick Liang Lum; Ester Khin; Nikki P Lee; Guo-Hao Wu; John M Luk

    2012-01-01

    Gastric cancer and liver cancer are among the most common malignancies and the leading causes of death worldwide,due to late detection and high recurrence rates.Today,these cancers have a heavy socioeconomic burden,for which a full understanding of their pathophysiological features is warranted to search for promising biomarkers and therapeutic targets.Osteopontin (OPN) is overexpressed in most patients with gastric and liver cancers.Over the past decade,emerging evidence has revealed a correlation of OPN level and clinicopathological features and prognosis in gastric and liver cancers,indicating its potential as an independent prognostic indicator in such patients.Functional studies have verified the potential of OPN knockdown as a therapeutic approach in vitro and in vivo.Furthermore,OPN mediates multifaceted roles in the interaction between cancer cells and the tumor microenvironment,in which many details need further exploration.OPN signaling results in various functions,including prevention of apoptosis,modulation of angiogenesis,malfunction of tumor-associated macrophages,degradation of extracellular matrix,activation of phosphoinositide 3-kinase-Akt and nuclear factor-κB pathways,which lead to tumor formation and progression,particularly in gastric and liver cancers.This editorial aims to review recent findings on alteration in OPN expression and its clinicopathological associations with tumor progression,its potential as a therapeutic target,and putative mechanisms in gastric and liver cancers.Better understanding of the implications of OPN in tumorigenesis might facilitate development of therapeutic regimens to benefit patients with these deadly malignancies.

  2. ErbB polymorphisms: insights and implications for response to targeted cancer therapeutics.

    Science.gov (United States)

    Alaoui-Jamali, Moulay A; Morand, Grégoire B; da Silva, Sabrina Daniela

    2015-01-01

    Advances in high-throughput genomic-scanning have expanded the repertory of genetic variations in DNA sequences encoding ErbB tyrosine kinase receptors in humans, including single nucleotide polymorphisms (SNPs), polymorphic repetitive elements, microsatellite variations, small-scale insertions and deletions. The ErbB family members: EGFR, ErbB2, ErbB3, and ErbB4 receptors are established as drivers of many aspects of tumor initiation and progression to metastasis. This knowledge has provided rationales for the development of an arsenal of anti-ErbB therapeutics, ranging from small molecule kinase inhibitors to monoclonal antibodies. Anti-ErbB agents are becoming the cornerstone therapeutics for the management of cancers that overexpress hyperactive variants of ErbB receptors, in particular ErbB2-positive breast cancer and non-small cell lung carcinomas. However, their clinical benefit has been limited to a subset of patients due to a wide heterogeneity in drug response despite the expression of the ErbB targets, attributed to intrinsic (primary) and to acquired (secondary) resistance. Somatic mutations in ErbB tyrosine kinase domains have been extensively investigated in preclinical and clinical setting as determinants for either high sensitivity or resistance to anti-ErbB therapeutics. In contrast, only scant information is available on the impact of SNPs, which are widespread in genes encoding ErbB receptors, on receptor structure and activity, and their predictive values for drug susceptibility. This review aims to briefly update polymorphic variations in genes encoding ErbB receptors based on recent advances in deep sequencing technologies, and to address challenging issues for a better understanding of the functional impact of single versus combined SNPs in ErbB genes to receptor topology, receptor-drug interaction, and drug susceptibility. The potential of exploiting SNPs in the era of stratified targeted therapeutics is discussed. PMID:25699077

  3. Membrane-bound complement regulatory proteins as biomarkers and potential therapeutic targets for SLE.

    Science.gov (United States)

    Das, Nibhriti; Biswas, Bintili; Khera, Rohan

    2013-01-01

    For the last two decades, there had been remarkable advancement in understanding the role of complement regulatory proteins in autoimmune disorders and importance of complement inhibitors as therapeutics. Systemic lupus erythematosus is a prototype of systemic autoimmune disorders. The disease, though rare, is potentially fatal and afflicts women at their reproductive age. It is a complex disease with multiorgan involvement, and each patient presents with a different set of symptoms. The diagnosis is often difficult and is based on the diagnostic criteria set by the American Rheumatology Association. Presence of antinuclear antibodies and more specifically antidouble-stranded DNA indicates SLE. Since the disease is multifactorial and its phenotypes are highly heterogeneous, there is a need to identify multiple noninvasive biomarkers for SLE. Lack of validated biomarkers for SLE disease activity or response to treatment is a barrier to the efficient management of the disease, drug discovery, as well as development of new therapeutics. Recent studies with gene knockout mice have suggested that membrane-bound complement regulatory proteins (CRPs) may critically determine the sensitivity of host tissues to complement injury in autoimmune and inflammatory disorders. Case-controlled and followup studies carried out in our laboratory suggest an intimate relation between the level of DAF, MCP, CR1, and CD59 transcripts and the disease activity in SLE. Based on comparative evaluation of our data on these four membrane-bound complement regulatory proteins, we envisaged CR1 and MCP transcripts as putative noninvasive disease activity markers and the respective proteins as therapeutic targets for SLE. Following is a brief appraisal on membrane-bound complement regulatory proteins DAF, MCP, CR1, and CD59 as biomarkers and therapeutic targets for SLE. PMID:23402019

  4. The molecular phenotype of endocapillary proliferation: novel therapeutic targets for IgA nephropathy.

    Directory of Open Access Journals (Sweden)

    Jeffrey B Hodgin

    Full Text Available IgA nephropathy (IgAN is a clinically and pathologically heterogeneous disease. Endocapillary proliferation is associated with higher risk of progressive disease, and clinical studies suggest that corticosteroids mitigate this risk. However, corticosteroids are associated with protean cellular effects and significant toxicity. Furthermore the precise mechanism by which they modulate kidney injury in IgAN is not well delineated. To better understand molecular pathways involved in the development of endocapillary proliferation and to identify novel specific therapeutic targets, we evaluated the glomerular transcriptome of microdissected kidney biopsies from 22 patients with IgAN. Endocapillary proliferation was defined according to the Oxford scoring system independently by 3 nephropathologists. We analyzed mRNA expression using microarrays and identified transcripts differentially expressed in patients with endocapillary proliferation compared to IgAN without endocapillary lesions. Next, we employed both transcription factor analysis and in silico drug screening and confirmed that the endocapillary proliferation transcriptome is significantly enriched with pathways that can be impacted by corticosteroids. With this approach we also identified novel therapeutic targets and bioactive small molecules that may be considered for therapeutic trials for the treatment of IgAN, including resveratrol and hydroquinine. In summary, we have defined the distinct molecular profile of a pathologic phenotype associated with progressive renal insufficiency in IgAN. Exploration of the pathways associated with endocapillary proliferation confirms a molecular basis for the clinical effectiveness of corticosteroids in this subgroup of IgAN, and elucidates new therapeutic strategies for IgAN.

  5. ErbB polymorphisms: Insights and implications for response to targeted cancer therapeutics

    Directory of Open Access Journals (Sweden)

    Moulay A Alaoui-Jamali

    2015-02-01

    Full Text Available Advances in high-throughput genomic-scanning have expanded the repertory of genetic variations in DNA sequences encoding ErbB tyrosine kinase receptors in humans, including single nucleotide polymorphisms (SNPs, polymorphic repetitive elements, microsatellite variations, small-scale insertions and deletions. The ErbB family members: EGFR, ErbB2, ErbB3 and ErbB4 receptors are established as drivers of many aspects of tumor initiation and progression to metastasis. This knowledge has provided rationales for the development of an arsenal of anti-ErbB therapeutics, ranging from small molecule kinase inhibitors to monoclonal antibodies. Anti-ErbB agents are becoming the cornerstone therapeutics for the management of cancers that overexpress hyperactive variants of ErbB receptors, in particular ErbB2-positive breast cancer and non-small cell lung carcinomas. However, their clinical benefit has been limited to a subset of patients due to a wide heterogeneity in drug response despite the expression of the ErbB targets, attributed to intrinsic (primary and to acquired (secondary resistance. Somatic mutations in ErbB tyrosine kinase domains have been extensively investigated in preclinical and clinical setting as determinants for either high sensitivity or resistance to anti-ErbB therapeutics. In contrast, only scant information is available on the impact of SNPs, which are widespread in genes encoding ErbB receptors, on receptor structure and activity, and their predictive values for drug susceptibility. This review aims to briefly update polymorphic variations in genes encoding ErbB receptors based on recent advances in deep sequencing technologies, and to address challenging issues for a better understanding of the functional impact of single versus combined SNPs in ErbB genes to receptor topology, receptor-drug interaction, and drug susceptibility. The potential of exploiting SNPs in the era of stratified targeted therapeutics is discussed.

  6. DISC1 pathway in brain development: exploring therapeutic targets for major psychiatric disorders

    Directory of Open Access Journals (Sweden)

    Atsushi eKamiya

    2012-03-01

    Full Text Available Genetic risk factors for major psychiatric disorders play key roles in neurodevelopment. Thus, exploring the molecular pathways of risk genes is important not only for understanding the molecular mechanisms underlying brain development, but also to decipher how genetic disturbances affect brain maturation and functioning relevant to major mental illnesses. During the last decade, there has been significant progress in determining the mechanisms whereby risk genes impact brain development. Nonetheless, given that the majority of psychiatric disorders have etiological complexities encompassing multiple risk genes and environmental factors, the biological mechanisms of these diseases remain poorly understood. How can we move forward in our research for discovery of the biological markers and novel therapeutic targets for major mental disorders? Here we review recent progress in the neurobiology of Disrupted in schizophrenia 1 (DISC1, a major risk gene for major mental disorders, with a particular focus on its roles in cerebral cortex development. Convergent findings implicate DISC1 as part of a large, multi-step pathway implicated in various cellular processes and signal transduction. We discuss links between the DISC1 pathway and environmental factors, such as immune/inflammatory responses, which may suggest novel therapeutic targets. Existing treatments for major mental disorders are hampered by a limited number of pharmacological targets. Consequently, elucidation of the DISC1 pathway, and its association with neuropsychiatric disorders, may offer hope for novel treatment interventions.

  7. Fetal Alcohol Spectrum Disorder (FASD Associated Neural Defects: Complex Mechanisms and Potential Therapeutic Targets

    Directory of Open Access Journals (Sweden)

    James A. Marrs

    2013-06-01

    Full Text Available Fetal alcohol spectrum disorder (FASD, caused by prenatal alcohol exposure, can result in craniofacial dysmorphism, cognitive impairment, sensory and motor disabilities among other defects. FASD incidences are as high as 2% to 5 % children born in the US, and prevalence is higher in low socioeconomic populations. Despite various mechanisms being proposed to explain the etiology of FASD, the molecular targets of ethanol toxicity during development are unknown. Proposed mechanisms include cell death, cell signaling defects and gene expression changes. More recently, the involvement of several other molecular pathways was explored, including non-coding RNA, epigenetic changes and specific vitamin deficiencies. These various pathways may interact, producing a wide spectrum of consequences. Detailed understanding of these various pathways and their interactions will facilitate the therapeutic target identification, leading to new clinical intervention, which may reduce the incidence and severity of these highly prevalent preventable birth defects. This review discusses manifestations of alcohol exposure on the developing central nervous system, including the neural crest cells and sensory neural placodes, focusing on molecular neurodevelopmental pathways as possible therapeutic targets for prevention or protection.

  8. Nrf2 as molecular target for polyphenols: A novel therapeutic strategy in diabetic retinopathy.

    Science.gov (United States)

    Nabavi, Seyed Fazel; Barber, Alistair J; Spagnuolo, Carmela; Russo, Gian Luigi; Daglia, Maria; Nabavi, Seyed Mohammad; Sobarzo-Sánchez, Eduardo

    2016-10-01

    Diabetic retinopathy is a microvascular complication of diabetes that is considered one of the leading causes of blindness among adults. More than 4.4 million people suffer from this disorder throughout the world. Growing evidence suggests that oxidative stress plays a crucial role in the pathophysiology of diabetic retinopathy. Nuclear factor erythroid 2-related factor 2 (Nrf2), a redox sensitive transcription factor, plays an essential protective role in regulating the physiological response to oxidative and electrophilic stress via regulation of multiple genes encoding antioxidant proteins and phase II detoxifying enzymes. Many studies suggest that dozens of natural compounds, including polyphenols, can supress oxidative stress and inflammation through targeting Nrf2 and consequently activating the antioxidant response element-related cytoprotective genes. Therefore, Nrf2 may provide a new therapeutic target for treatment of diabetic retinopathy. In the present article, we will focus on the role of Nrf2 in diabetic retinopathy and the ability of polyphenols to target Nrf2 as a therapeutic strategy. PMID:26926494

  9. Neurosurgery for schizophrenia: an update on pathophysiology and a novel therapeutic target.

    Science.gov (United States)

    Mikell, Charles B; Sinha, Saurabh; Sheth, Sameer A

    2016-04-01

    The main objectives of this review were to provide an update on the progress made in understanding specific circuit abnormalities leading to psychotic symptoms in schizophrenia and to propose rational targets for therapeutic deep brain stimulation (DBS). Refractory schizophrenia remains a major unsolved clinical problem, with 10%-30% of patients not responding to standard treatment options. Progress made over the last decade was analyzed through reviewing structural and functional neuroimaging studies in humans, along with studies of animal models of schizophrenia. The authors reviewed theories implicating dysfunction in dopaminergic and glutamatergic signaling in the pathophysiology of the disorder, paying particular attention to neurosurgically relevant nodes in the circuit. In this context, the authors focused on an important pathological circuit involving the associative striatum, anterior hippocampus, and ventral striatum, and discuss the possibility of targeting these nodes for therapeutic neuromodulation with DBS. Finally, the authors examined ethical considerations in the treatment of these vulnerable patients. The functional anatomy of neural circuits relevant to schizophrenia remains of great interest to neurosurgeons and psychiatrists and lends itself to the development of specific targets for neuromodulation. Ongoing progress in the understanding of these structures will be critical to the development of potential neurosurgical treatments of schizophrenia.

  10. Modulation of heat shock transcription factor 1 as a therapeutic target for small molecule intervention in neurodegenerative disease.

    Directory of Open Access Journals (Sweden)

    Daniel W Neef

    2010-01-01

    Full Text Available Neurodegenerative diseases such as Huntington disease are devastating disorders with no therapeutic approaches to ameliorate the underlying protein misfolding defect inherent to poly-glutamine (polyQ proteins. Given the mounting evidence that elevated levels of protein chaperones suppress polyQ protein misfolding, the master regulator of protein chaperone gene transcription, HSF1, is an attractive target for small molecule intervention. We describe a humanized yeast-based high-throughput screen to identify small molecule activators of human HSF1. This screen is insensitive to previously characterized activators of the heat shock response that have undesirable proteotoxic activity or that inhibit Hsp90, the central chaperone for cellular signaling and proliferation. A molecule identified in this screen, HSF1A, is structurally distinct from other characterized small molecule human HSF1 activators, activates HSF1 in mammalian and fly cells, elevates protein chaperone expression, ameliorates protein misfolding and cell death in polyQ-expressing neuronal precursor cells and protects against cytotoxicity in a fly model of polyQ-mediated neurodegeneration. In addition, we show that HSF1A interacts with components of the TRiC/CCT complex, suggesting a potentially novel regulatory role for this complex in modulating HSF1 activity. These studies describe a novel approach for the identification of new classes of pharmacological interventions for protein misfolding that underlies devastating neurodegenerative disease.

  11. Musashi1 as a potential therapeutic target and diagnostic marker for lung cancer

    OpenAIRE

    Wang, Xiao-Yang; Yu, Huina; Linnoila, R. Ilona; Li, Laodong; Li, Dangyu; Mo, Biwen; Okano, Hideyuki; Luiz O. F. Penalva; Glazer, Robert I.

    2013-01-01

    Lung cancer remains one of the leading causes of cancer-related deaths worldwide with a 5-year survival rate of less than 20%. One approach to improving survival is the identification of biomarkers to detect early stage disease. In this study, we investigated the potential of the stem cell and progenitor cell marker, Musashi1 (Msi1), as a diagnostic marker and potential therapeutic target for lung cancer. Functional studies in A549 bronchioalveolar carcinoma and NCI-H520 squamous cell carcino...

  12. Therapeutic Targets for Neurodevelopmental Disorders Emerging from Animal Models with Perinatal Immune Activation

    Directory of Open Access Journals (Sweden)

    Daisuke Ibi

    2015-11-01

    Full Text Available Increasing epidemiological evidence indicates that perinatal infection with various viral pathogens enhances the risk for several psychiatric disorders. The pathophysiological significance of astrocyte interactions with neurons and/or gut microbiomes has been reported in neurodevelopmental disorders triggered by pre- and postnatal immune insults. Recent studies with the maternal immune activation or neonatal polyriboinosinic polyribocytidylic acid models of neurodevelopmental disorders have identified various candidate molecules that could be responsible for brain dysfunction. Here, we review the functions of several candidate molecules in neurodevelopment and brain function and discuss their potential as therapeutic targets for psychiatric disorders.

  13. The ER mitochondria calcium cycle and ER stress response as therapeutic targets in amyotrophic lateral sclerosis

    Directory of Open Access Journals (Sweden)

    Vedrana eTadic

    2014-05-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is a neurodegenerative disease characterized by progressive loss of upper and lower motor neurons. Although the etiology remains unclear, disturbances in calcium homoeostasis and protein folding are essential features of neurodegeneration in this disorder. Here, we review recent research findings on the interaction between endoplasmic reticulum (ER and mitochondria, and its effect on calcium signaling and oxidative stress. We further provide insights into studies, providing evidence that structures of the ER mitochondria calcium cycle (ERMCC serve as a promising targets for therapeutic approaches for treatment of ALS.

  14. Progress in the development of therapeutic antibodies targeting prion proteins and β-amyloid peptides

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Prion diseases and Alzheimer’s disease (AD) are characterized by protein misfolding, and can lead to dementia. However, prion diseases are infectious and transmissible, while AD is not. The similarities and differences between these diseases have led researchers to perform comparative studies. In the last 2 decades, progress has been made in immunotherapy using anti-prion protein and anti-β-amyloid antibodies. In this study, we review new ideas and strategies for therapeutic antibodies targeting prion diseases and AD through conformation dependence.

  15. Visceral hypersensitivity and electromechanical dysfunction as therapeutic targets in pediatric functional dyspepsia

    Institute of Scientific and Technical Information of China (English)

    John; M; Rosen; Jose; T; Cocjin; Jennifer; V; Schurman; Jennifer; M; Colombo; Craig; A; Friesen

    2014-01-01

    Functional gastrointestinal disorders(FGID) are common clinical syndromes diagnosed in the absence of biochemical,structural,or metabolic abnormalities. They account for significant morbidity and health care expenditures and are identifiable across variable age,geography,and culture. Etiology of abdominal pain associated FGIDs,including functional dyspepsia(FD),remains incompletely understood,but growing evidence implicates the importance of visceral hypersensitivity and electromechanical dysfunction. This manuscript explores data supporting the role of visceral hypersensitivity and electromechanical dysfunction in FD,with focus on pediatric data when available,and provides a summary of potential therapeutic targets.

  16. Toll-like receptors are potential therapeutic targets in rheumatoid arthritis

    Institute of Scientific and Technical Information of China (English)

    Siamak; Sandoghchian; Shotorbani

    2011-01-01

    Toll-like receptors (TLRs) are found on the membranes of pattern recognition receptors and not only play important roles in activating immune responses but are also involved in the pathogenesis of inflammatory disease, injury and cancer. Furthermore, TLRs are also able to recognize endogenous alarmins released by damaged tissue and necrosis and/or apoptotic cells and are present in numerous autoimmune diseases. Therefore, the release of endogenous TLR ligands plays an important role in initiating and driving inflammatory diseases. Increasing data suggest a role for TLR signaling in rheumatoid arthritis, which is an autoimmune disease. Although their involvement is not comprehensively understood, the TLRs signaling transducers may provide potential therapeutic targets.

  17. Targeted anti-inflammatory therapeutics in asthma and chronic obstructive lung disease.

    Science.gov (United States)

    Durham, Andrew L; Caramori, Gaetano; Chung, Kian F; Adcock, Ian M

    2016-01-01

    Asthma and chronic obstructive pulmonary disease (COPD) are chronic inflammatory diseases of the airway, although the drivers and site of the inflammation differ between diseases. Asthmatics with a neutrophilic airway inflammation are associated with a poor response to corticosteroids, whereas asthmatics with eosinophilic inflammation respond better to corticosteroids. Biologicals targeting the Th2-eosinophil nexus such as anti-interleukin (IL)-4, anti-IL-5, and anti-IL-13 are ineffective in asthma as a whole but are more effective if patients are selected using cellular (eg, eosinophils) or molecular (eg, periostin) biomarkers. This highlights the key role of individual inflammatory mediators in driving the inflammatory response and for accurate disease phenotyping to allow greater understanding of disease and development of patient-oriented antiasthma therapies. In contrast to asthmatic patients, corticosteroids are relatively ineffective in COPD patients. Despite stratification of COPD patients, the results of targeted therapy have proved disappointing with the exception of recent studies using CXC chemokine receptor (CXCR)2 antagonists. Currently, several other novel mediator-targeted drugs are undergoing clinical trials. As with asthma specifically targeted treatments may be of most benefit in specific COPD patient endotypes. The use of novel inflammatory mediator-targeted therapeutic agents in selected patients with asthma or COPD and the detection of markers of responsiveness or nonresponsiveness will allow a link between clinical phenotypes and pathophysiological mechanisms to be delineated reaching the goal of endotyping patients. PMID:26334389

  18. Integrated nanotechnology platform for tumor-targeted multimodal imaging and therapeutic cargo release.

    Science.gov (United States)

    Hosoya, Hitomi; Dobroff, Andrey S; Driessen, Wouter H P; Cristini, Vittorio; Brinker, Lina M; Staquicini, Fernanda I; Cardó-Vila, Marina; D'Angelo, Sara; Ferrara, Fortunato; Proneth, Bettina; Lin, Yu-Shen; Dunphy, Darren R; Dogra, Prashant; Melancon, Marites P; Stafford, R Jason; Miyazono, Kohei; Gelovani, Juri G; Kataoka, Kazunori; Brinker, C Jeffrey; Sidman, Richard L; Arap, Wadih; Pasqualini, Renata

    2016-02-16

    A major challenge of targeted molecular imaging and drug delivery in cancer is establishing a functional combination of ligand-directed cargo with a triggered release system. Here we develop a hydrogel-based nanotechnology platform that integrates tumor targeting, photon-to-heat conversion, and triggered drug delivery within a single nanostructure to enable multimodal imaging and controlled release of therapeutic cargo. In proof-of-concept experiments, we show a broad range of ligand peptide-based applications with phage particles, heat-sensitive liposomes, or mesoporous silica nanoparticles that self-assemble into a hydrogel for tumor-targeted drug delivery. Because nanoparticles pack densely within the nanocarrier, their surface plasmon resonance shifts to near-infrared, thereby enabling a laser-mediated photothermal mechanism of cargo release. We demonstrate both noninvasive imaging and targeted drug delivery in preclinical mouse models of breast and prostate cancer. Finally, we applied mathematical modeling to predict and confirm tumor targeting and drug delivery. These results are meaningful steps toward the design and initial translation of an enabling nanotechnology platform with potential for broad clinical applications.

  19. Targeted anti-inflammatory therapeutics in asthma and chronic obstructive lung disease

    Science.gov (United States)

    Durham, Andrew L.; Caramori, Gaetano; Chung, Kian F.; Adcock, Ian M.

    2016-01-01

    Asthma and chronic obstructive pulmonary disease (COPD) are chronic inflammatory diseases of the airway, although the drivers and site of the inflammation differ between diseases. Asthmatics with a neutrophilic airway inflammation are associated with a poor response to corticosteroids, whereas asthmatics with eosinophilic inflammation respond better to corticosteroids. Biologicals targeting the Th2-eosinophil nexus such as anti–interleukin (IL)-4, anti–IL-5, and anti–IL-13 are ineffective in asthma as a whole but are more effective if patients are selected using cellular (eg, eosinophils) or molecular (eg, periostin) biomarkers. This highlights the key role of individual inflammatory mediators in driving the inflammatory response and for accurate disease phenotyping to allow greater understanding of disease and development of patient-oriented antiasthma therapies. In contrast to asthmatic patients, corticosteroids are relatively ineffective in COPD patients. Despite stratification of COPD patients, the results of targeted therapy have proved disappointing with the exception of recent studies using CXC chemokine receptor (CXCR)2 antagonists. Currently, several other novel mediator-targeted drugs are undergoing clinical trials. As with asthma specifically targeted treatments may be of most benefit in specific COPD patient endotypes. The use of novel inflammatory mediator-targeted therapeutic agents in selected patients with asthma or COPD and the detection of markers of responsiveness or nonresponsiveness will allow a link between clinical phenotypes and pathophysiological mechanisms to be delineated reaching the goal of endotyping patients. PMID:26334389

  20. Targeted anti-inflammatory therapeutics in asthma and chronic obstructive lung disease.

    Science.gov (United States)

    Durham, Andrew L; Caramori, Gaetano; Chung, Kian F; Adcock, Ian M

    2016-01-01

    Asthma and chronic obstructive pulmonary disease (COPD) are chronic inflammatory diseases of the airway, although the drivers and site of the inflammation differ between diseases. Asthmatics with a neutrophilic airway inflammation are associated with a poor response to corticosteroids, whereas asthmatics with eosinophilic inflammation respond better to corticosteroids. Biologicals targeting the Th2-eosinophil nexus such as anti-interleukin (IL)-4, anti-IL-5, and anti-IL-13 are ineffective in asthma as a whole but are more effective if patients are selected using cellular (eg, eosinophils) or molecular (eg, periostin) biomarkers. This highlights the key role of individual inflammatory mediators in driving the inflammatory response and for accurate disease phenotyping to allow greater understanding of disease and development of patient-oriented antiasthma therapies. In contrast to asthmatic patients, corticosteroids are relatively ineffective in COPD patients. Despite stratification of COPD patients, the results of targeted therapy have proved disappointing with the exception of recent studies using CXC chemokine receptor (CXCR)2 antagonists. Currently, several other novel mediator-targeted drugs are undergoing clinical trials. As with asthma specifically targeted treatments may be of most benefit in specific COPD patient endotypes. The use of novel inflammatory mediator-targeted therapeutic agents in selected patients with asthma or COPD and the detection of markers of responsiveness or nonresponsiveness will allow a link between clinical phenotypes and pathophysiological mechanisms to be delineated reaching the goal of endotyping patients.

  1. Integrated nanotechnology platform for tumor-targeted multimodal imaging and therapeutic cargo release.

    Science.gov (United States)

    Hosoya, Hitomi; Dobroff, Andrey S; Driessen, Wouter H P; Cristini, Vittorio; Brinker, Lina M; Staquicini, Fernanda I; Cardó-Vila, Marina; D'Angelo, Sara; Ferrara, Fortunato; Proneth, Bettina; Lin, Yu-Shen; Dunphy, Darren R; Dogra, Prashant; Melancon, Marites P; Stafford, R Jason; Miyazono, Kohei; Gelovani, Juri G; Kataoka, Kazunori; Brinker, C Jeffrey; Sidman, Richard L; Arap, Wadih; Pasqualini, Renata

    2016-02-16

    A major challenge of targeted molecular imaging and drug delivery in cancer is establishing a functional combination of ligand-directed cargo with a triggered release system. Here we develop a hydrogel-based nanotechnology platform that integrates tumor targeting, photon-to-heat conversion, and triggered drug delivery within a single nanostructure to enable multimodal imaging and controlled release of therapeutic cargo. In proof-of-concept experiments, we show a broad range of ligand peptide-based applications with phage particles, heat-sensitive liposomes, or mesoporous silica nanoparticles that self-assemble into a hydrogel for tumor-targeted drug delivery. Because nanoparticles pack densely within the nanocarrier, their surface plasmon resonance shifts to near-infrared, thereby enabling a laser-mediated photothermal mechanism of cargo release. We demonstrate both noninvasive imaging and targeted drug delivery in preclinical mouse models of breast and prostate cancer. Finally, we applied mathematical modeling to predict and confirm tumor targeting and drug delivery. These results are meaningful steps toward the design and initial translation of an enabling nanotechnology platform with potential for broad clinical applications. PMID:26839407

  2. Critical analysis of the potential for therapeutic targeting of mammalian target of rapamycin (mTOR in gastric cancer

    Directory of Open Access Journals (Sweden)

    Inokuchi M

    2014-04-01

    Full Text Available Mikito Inokuchi,1 Keiji Kato,1 Kazuyuki Kojima,2 Kenichi Sugihara1 1Department of Surgical Oncology, 2Department of Minimally Invasive Surgery, Tokyo Medical and Dental University, Tokyo, Japan Abstract: Multidisciplinary treatment including chemotherapy has become the global standard of care for patients with metastatic gastric cancer (mGC; nonetheless, survival remains poor. Although many molecular-targeted therapies have been developed for various cancers, only anti-HER2 treatment has produced promising results in patients with mGC. Mammalian target of rapamycin (mTOR plays a key role in cell proliferation, antiapoptosis, and metastasis in signaling pathways from the tyrosine kinase receptor, and its activation has been demonstrated in gastric cancer (GC cells. This review discusses the clinical relevance of mTOR in GC and examines its potential as a therapeutic target in patients with mGC. Preclinical studies in animal models suggest that suppression of the mTOR pathway inhibits the proliferation of GC cells and delays tumor progression. The mTOR inhibitor everolimus has been evaluated as second- or third-line treatment in clinical trials. Adverse events were well tolerated although the effectiveness of everolimus alone was limited. Everolimus is now being evaluated in combination with chemotherapy in Phase III clinical studies in this subgroup of patients. Two Phase III studies include exploratory biomarker research designed to evaluate the predictive value of the expression or mutation of molecules related to the Akt/mTOR signaling pathway. These biomarker studies may lead to the realization of targeted therapy for selected patients with mGC in the future. Keywords: gastric cancer, mTOR, everolimus

  3. Integrated Genomic Characterization Reveals Novel, Therapeutically Relevant Drug Targets in FGFR and EGFR Pathways in Sporadic Intrahepatic Cholangiocarcinoma

    OpenAIRE

    Borad, Mitesh J.; Champion, Mia D.; Egan, Jan B.; Liang, Winnie S.; Rafael Fonseca; Bryce, Alan H.; Ann E McCullough; Barrett, Michael T.; Katherine Hunt; Maitray D Patel; Young, Scott W.; Collins, Joseph M.; Silva, Alvin C; Condjella, Rachel M.; Matthew Block

    2014-01-01

    Advanced cholangiocarcinoma continues to harbor a difficult prognosis and therapeutic options have been limited. During the course of a clinical trial of whole genomic sequencing seeking druggable targets, we examined six patients with advanced cholangiocarcinoma. Integrated genome-wide and whole transcriptome sequence analyses were performed on tumors from six patients with advanced, sporadic intrahepatic cholangiocarcinoma (SIC) to identify potential therapeutically actionable events. Among...

  4. A peptide for targeted, systemic delivery of imaging and therapeutic compounds into acute brain injuries

    Science.gov (United States)

    Mann, Aman P.; Scodeller, Pablo; Hussain, Sazid; Joo, Jinmyoung; Kwon, Ester; Braun, Gary B.; Mölder, Tarmo; She, Zhi-Gang; Kotamraju, Venkata Ramana; Ranscht, Barbara; Krajewski, Stan; Teesalu, Tambet; Bhatia, Sangeeta; Sailor, Michael J.; Ruoslahti, Erkki

    2016-06-01

    Traumatic brain injury (TBI) is a major health and socio-economic problem, but no pharmacological agent is currently approved for the treatment of acute TBI. Thus, there is a great need for advances in this field. Here, we describe a short peptide (sequence CAQK) identified by in vivo phage display screening in mice with acute brain injury. The CAQK peptide selectively binds to injured mouse and human brain, and systemically injected CAQK specifically homes to sites of brain injury in mouse models. The CAQK target is a proteoglycan complex upregulated in brain injuries. Coupling to CAQK increased injury site accumulation of systemically administered molecules ranging from a drug-sized molecule to nanoparticles. CAQK-coated nanoparticles containing silencing oligonucleotides provided the first evidence of gene silencing in injured brain parenchyma by systemically administered siRNA. These findings present an effective targeting strategy for the delivery of therapeutics in clinical management of acute brain injuries.

  5. Insulin Resistance and Endothelial Dysfunction Constitute a Common Therapeutic Target in Cardiometabolic Disorders

    Directory of Open Access Journals (Sweden)

    A. Janus

    2016-01-01

    Full Text Available Insulin resistance and other risk factors for atherosclerosis, such as hypertension and hypercholesterolemia, promote endothelial dysfunction and lead to development of metabolic syndrome which constitutes an introduction to cardiovascular disease. The insulin resistance and endothelial dysfunction cross talk between each other by numerous metabolic pathways. Hence, targeting one of these pathologies with pleiotropic treatment exerts beneficial effect on another one. Combined and expletive treatment of hypertension, lipid disorders, and insulin resistance with nonpharmacological interventions and conventional pharmacotherapy may inhibit the transformation of metabolic disturbances to fully developed cardiovascular disease. This paper summarises the common therapeutic targets for insulin resistance, endothelial dysfunction, and vascular inflammatory reaction at molecular level and analyses the potential pleiotropic effects of drugs used currently in management of cardiovascular disease, metabolic syndrome, and diabetes.

  6. Characterization of FGFR signaling pathway as therapeutic targets for sarcoma patients

    Institute of Scientific and Technical Information of China (English)

    Wen-Ya Zhou; Hong Zheng; Xiao-Ling Du; Ji-Long Yang

    2016-01-01

    The fibroblast growth factor receptor (FGFR) family plays important roles in regulating cell growth, proliferation, survival, differentiation and angiogenesis. Deregulation of the FGF/FGFR signaling pathway has been associated with multiple development syndromes and cancers, and thus therapeutic strategies targeting FGFs and FGFR in human cancer are currently being explored. However, few studies on the FGF/FGFR pathway have been conducted in sarcoma, which has a poor outcome with traditional treatments such as surgery, chemotherapy, and radiotherapy. Hence, in the present review, we provide an overview of the role of the FGF/FGFR pathway signal in sarcoma and FGFR inhibitors, which might be new targets for the treatment of sarcomas according to recent research.

  7. Targeting FGF19/FGFR4 Pathway: A Novel Therapeutic Strategy for Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Dimitra Repana

    2015-10-01

    Full Text Available Hepatocellular carcinoma (HCC is a lethal cancer with limited systemic therapeutic options. Liver carcinogenesis is a complex procedure and various pathways have been found to be deregulated which are potential targets for novel treatments. Aberrant signalling through FGF19 and its receptor FGFR4 seems to be the oncogenic driver for a subset of HCCs and is associated with poor prognosis. Inhibition of the pathway in preclinical models has shown antitumour activity and has triggered further evaluation of this strategy to in vivo models. This review aims to describe the role of the FGF19/FGFR4 pathway in hepatocellular carcinoma and its role as a potential predictive biomarker for novel targeted agents against FGF19/FGFR4 signalling.

  8. Exploring apposite therapeutic target for apoptosis in filarial parasite: a plausible hypothesis.

    Science.gov (United States)

    Hande, Sneha; Goswami, Kalyan; Jena, Lingaraj; Reddy, Maryada Venkata Rami

    2014-03-01

    Human lymphatic filariasis is a parasitic disease with profound socioeconomic encumbrance owing to its associated disability, affecting predominantly but not limited to the developing nations of tropics and subtropics. There are several technical issues like poor therapeutic and preventive repertoire as well as administrative and infrastructural limitations which jeopardize the salvage measures and further complicate the plight. Therefore, considering the gravity of the problem, WHO has mandated (under tropical disease research scheme) for placing emphasis on validation of novel therapeutic targets against this disease with the unfortunate tag of 'neglected tropical disease'. However, dearth of knowledge of parasite biology viciously coupled with difficulty of access to parasitic material from suitable animal model along with growing cost burden of high end research poses formidable challenge. Based on the recent research evidences, here we propose a premise with targeted apoptotic impact as a novel rationale to be exploited towards anti-parasitic drug development. The new era of bioinformatics ushers in new optimism with a wide range of genomic and proteomic database in public domain. Such platform might offer wonders for drug research, but needs highly selective criterion specificity. In order to test our hypothesis presumptively, we deployed a scheme for identification of target proteins from filarial parasitic origin through wide database search with precise criteria of non-homology against the host along with functional essentiality for the parasite. Further screening for proteins with growth potential from such list of essential non-homologous proteins was undertaken to mine out suitable representative target for ensuing apoptotic impact though effective inhibitors. A unique protein enzyme, RNA dependent RNA polymerase, which besides its vital role in RNA virus is believed to have regulatory role in gene expression, emerged as a plausible target. This protein

  9. Quantitative Phosphoproteomics Reveals Wee1 Kinase as a Therapeutic Target in a Model of Proneural Glioblastoma.

    Science.gov (United States)

    Lescarbeau, Rebecca S; Lei, Liang; Bakken, Katrina K; Sims, Peter A; Sarkaria, Jann N; Canoll, Peter; White, Forest M

    2016-06-01

    Glioblastoma (GBM) is the most common malignant primary brain cancer. With a median survival of about a year, new approaches to treating this disease are necessary. To identify signaling molecules regulating GBM progression in a genetically engineered murine model of proneural GBM, we quantified phosphotyrosine-mediated signaling using mass spectrometry. Oncogenic signals, including phosphorylated ERK MAPK, PI3K, and PDGFR, were found to be increased in the murine tumors relative to brain. Phosphorylation of CDK1 pY15, associated with the G2 arrest checkpoint, was identified as the most differentially phosphorylated site, with a 14-fold increase in phosphorylation in the tumors. To assess the role of this checkpoint as a potential therapeutic target, syngeneic primary cell lines derived from these tumors were treated with MK-1775, an inhibitor of Wee1, the kinase responsible for CDK1 Y15 phosphorylation. MK-1775 treatment led to mitotic catastrophe, as defined by increased DNA damage and cell death by apoptosis. To assess the extensibility of targeting Wee1/CDK1 in GBM, patient-derived xenograft (PDX) cell lines were also treated with MK-1775. Although the response was more heterogeneous, on-target Wee1 inhibition led to decreased CDK1 Y15 phosphorylation and increased DNA damage and apoptosis in each line. These results were also validated in vivo, where single-agent MK-1775 demonstrated an antitumor effect on a flank PDX tumor model, increasing mouse survival by 1.74-fold. This study highlights the ability of unbiased quantitative phosphoproteomics to reveal therapeutic targets in tumor models, and the potential for Wee1 inhibition as a treatment approach in preclinical models of GBM. Mol Cancer Ther; 15(6); 1332-43. ©2016 AACR. PMID:27196784

  10. Glycoprotein non-metastatic b (GPNMB: A metastatic mediator and emerging therapeutic target in cancer

    Directory of Open Access Journals (Sweden)

    Maric G

    2013-07-01

    Full Text Available Gordana Maric,1,2 April AN Rose,3 Matthew G Annis,1,2 Peter M Siegel1,2,4,5 1Goodman Cancer Research Centre, 2Department of Medicine, 3Faculty of Medicine, 4Department of Biochemistry, 5Department of Anatomy and Cell Biology, McGill University, Montréal, Québec, Canada Abstract: Molecularly targeted therapies are rapidly growing with respect to their clinical development and impact on cancer treatment due to their highly selective anti-tumor action. However, many aggressive cancers such as triple-negative breast cancer (TNBC currently lack well-defined therapeutic targets against which such agents can be developed. The identification of tumor-associated antigens and the generation of antibody drug-conjugates represent an emerging area of intense interest and growth in the field of cancer therapeutics. Glycoprotein non-metastatic b (GPNMB has recently been identified as a gene that is over-expressed in numerous cancers, including TNBC, and often correlates with the metastatic phenotype. In breast cancer, GPNMB expression in the tumor epithelium is associated with a reduction in disease-free and overall survival. Based on these findings, glembatumumab vedotin (CDX-011, an antibody-drug conjugate that selectively targets GPNMB, is currently being investigated in clinical trials for patients with metastatic breast cancer and unresectable melanoma. This review discusses the physiological and potential pathological roles of GPNMB in normal and cancer tissues, respectively, and details the clinical advances and challenges in targeting GPNMB-expressing malignancies. Keywords: GPNMB, osteoactivin, breast cancer, antibody-drug conjugates, CDX-011

  11. Expression and therapeutic targeting of dopamine receptor-1 (D1R) in breast cancer.

    Science.gov (United States)

    Borcherding, D C; Tong, W; Hugo, E R; Barnard, D F; Fox, S; LaSance, K; Shaughnessy, E; Ben-Jonathan, N

    2016-06-16

    Patients with advanced breast cancer often fail to respond to treatment, creating a need to develop novel biomarkers and effective therapeutics. Dopamine (DA) is a catecholamine that binds to five G protein-coupled receptors. We discovered expression of DA type-1 receptors (D1Rs) in breast cancer, thereby identifying these receptors as novel therapeutic targets in this disease. Strong to moderate immunoreactive D1R expression was found in 30% of 751 primary breast carcinomas, and was associated with larger tumors, higher tumor grades, node metastasis and shorter patient survival. DA and D1R agonists, signaling through the cGMP/protein kinase G (PKG) pathway, suppressed cell viability, inhibited invasion and induced apoptosis in multiple breast cancer cell lines. Fenoldopam, a peripheral D1R agonist that does not penetrate the brain, dramatically suppressed tumor growth in two mouse models with D1R-expressing xenografts by increasing both necrosis and apoptosis. D1R-expressing primary tumors and metastases in mice were detected by fluorescence imaging. In conclusion, D1R overexpression is associated with advanced breast cancer and poor prognosis. Activation of the D1R/cGMP/PKG pathway induces apoptosis in vitro and causes tumor shrinkage in vivo. Fenoldopam, which is FDA (Food and Drug Administration) approved to treat renal hypertension, could be repurposed as a novel therapeutic agent for patients with D1R-expressing tumors.

  12. Cell to cell spreading of misfolded proteins as a therapeutic target in motor neuron disease.

    Science.gov (United States)

    Pasquali, Livia; Lenzi, Paola; Biagioni, Francesca; Siciliano, Gabriele; Fornai, Francesco

    2014-01-01

    Despite a number of genetic mutations and molecular mechanisms are recognized to participate in amyotrophic lateral sclerosis (ALS), such a devastating neurological disorder still lacks a substantial cure. The present manuscript rather than a general overview of potential therapeutic approaches focuses on novel research findings detailing novel molecular mechanisms which appear to be promising for developing future ALS therapeutics. A special emphasis is given to the abnormal autophagy status and to those autophagy substrates which aggregate in the form of misfolded proteins. In fact, as reviewed in the first part of the manuscript, altered autophagy pathway is present in most genetic mutations responsible for familial ALS. These mutations impair clearance of autophagy substrates, which determines accumulation of giant altered mitochondria and misfolded proteins. Therefore, a considerable piece of the review is dedicated to unconventional processing of misfolded proteins leading to unconventional protein secretions which may underlie a prionoid cellto- cell spreading of ALS neuropathology. The intimate mechanisms regulating these steps are analyzed in order to comprehend which potential therapeutic targets might be considered in future studies. At the same time, negative findings concerning recent trials are explained in light of novel disease mechanisms. In the final part of the review the replacement therapy with focal stem cells implantation is discussed in relationship with toxic mechanisms operating in the intercellular space of the spinal cord and motor-related areas. PMID:24934358

  13. Nuclear Export as a Novel Therapeutic Target: The CRM1 Connection.

    Science.gov (United States)

    Lu, Chuanwen; Figueroa, Jose A; Liu, Zhongwei; Konala, Venu; Aulakh, Amardeep; Verma, Rashmi; Cobos, Everardo; Chiriva-Internati, Maurizio; Gao, Weimin

    2015-01-01

    The integrity of eukaryotic cellular function depends on molecular and biochemical compartmentalization. The transport of macromolecules between compartments requires specific and energydriven mechanisms. It occurs through a class of transport proteins known as karyopherins, which are divided in three different groups (exportins, importins, and transportins). The ubiquitous exportin Chromosome Region Maintenance 1 (CRM1) is involved in the transport of many proteins and RNA molecules from nucleus to cytoplasm. We have reviewed the available evidence supporting the relevance of CRM1 in the biology of several human neoplasms, its potential role in drug resistance, and its promise as a therapeutic target. Here we discuss different cancer related proteins (tumor suppressor genes, oncogenes, and enzymatic therapeutic targets), their function, and their association with CRM1, as well as agents that specifically inhibit CRM1, their mechanism of action, and their clinical relevance in certain human neoplasms. The directionality of nuclear transport and the specific molecular cargo in question are of paramount importance when examining the effects that CRM1 inhibition may have on cellular pathophysiology. The available data point out the potential role of CRM1-dependent nuclear export of regulatory proteins in the biology of certain human malignancies. Further studies should expand and clarify the importance of this mechanism in the pathobiology of human neoplasia. PMID:26324128

  14. The Role of Tau in Neurodegenerative Diseases and Its Potential as a Therapeutic Target

    Directory of Open Access Journals (Sweden)

    Michael S. Wolfe

    2012-01-01

    Full Text Available The abnormal deposition of proteins in and around neurons is a common pathological feature of many neurodegenerative diseases. Among these pathological proteins, the microtubule-associated protein tau forms intraneuronal filaments in a spectrum of neurological disorders. The discovery that dominant mutations in the MAPT gene encoding tau are associated with familial frontotemporal dementia strongly supports abnormal tau protein as directly involved in disease pathogenesis. This and other evidence suggest that tau is a worthwhile target for the prevention or treatment of tau-associated neurodegenerative diseases, collectively called tauopathies. However, it is critical to understand the normal biological roles of tau, the specific molecular events that induce tau to become neurotoxic, the biochemical nature of pathogenic tau, the means by which pathogenic tau exerts neurotoxicity, and how tau pathology propagates. Based on known differences between normal and abnormal tau, a number of approaches have been taken toward the discovery of potential therapeutics. Key questions still remain open, such as the nature of the connection between the amyloid-β protein of Alzheimer’s disease and tau pathology. Answers to these questions should help better understand the nature of tauopathies and may also reveal new therapeutic targets and strategies.

  15. Immune system of the inner ear as a novel therapeutic target for sensorineural hearing loss

    Directory of Open Access Journals (Sweden)

    Takayuki eOkano

    2014-09-01

    Full Text Available Sensorineural hearing loss (SNHL is a common clinical condition resulting from dysfunction in one or more parts in the auditory pathway between the inner ear and auditory cortex. Despite the prevalence of SNHL, little is known about its etiopathology, although several mechanisms have been postulated including ischemia, viral infection or reactivation, and microtrauma. Immune-mediated inner ear disease has been introduced and accepted as one SNHL pathophysiology; it responds to immunosuppressive therapy and is one of the few reversible forms of bilateral SNHL. The concept of immune-mediated inner ear disease is straightforward and comprehensible, but criteria for clinical diagnosis and the precise mechanism of hearing loss have not been determined. Moreover, the therapeutic mechanisms of corticosteroids are unclear, leading to several misconceptions by both clinicians and investigators concerning corticosteroid therapy. This review addresses our current understanding of the immune system in the inner ear and its involvement in the pathophysiology in SNHL. Treatment of SNHL, including immune-mediated inner ear disorder, will be discussed with a focus on the immune mechanism and immunocompetent cells as therapeutic targets. Finally, possible interventions modulating the immune system in the inner ear to repair the tissue organization and improve hearing in patients with SNHL will be discussed. Tissue macrophages in the inner ear appear to be a potential target for modulating the immune response in the inner ear in the pathophysiology of SNHL.

  16. CDKN3 mRNA as a Biomarker for Survival and Therapeutic Target in Cervical Cancer.

    Directory of Open Access Journals (Sweden)

    Eira Valeria Barrón

    Full Text Available The cyclin-dependent kinase inhibitor 3 (CDKN3 gene, involved in mitosis, is upregulated in cervical cancer (CC. We investigated CDKN3 mRNA as a survival biomarker and potential therapeutic target for CC. CDKN3 mRNA was measured in 134 CC and 25 controls by quantitative PCR. A 5-year survival study was conducted in 121 of these CC patients. Furthermore, CDKN3-specific siRNAs were used to investigate whether CDKN3 is involved in proliferation, migration, and invasion in CC-derived cell lines (SiHa, CaSki, HeLa. CDKN3 mRNA was on average 6.4-fold higher in tumors than in controls (p = 8 x 10-6, Mann-Whitney. A total of 68.2% of CC patients over expressing CDKN3 gene (fold change ≥ 17 died within two years of diagnosis, independent of the clinical stage and HPV type (Hazard Ratio = 5.0, 95% CI: 2.5-10, p = 3.3 x 10-6, Cox proportional-hazards regression. In contrast, only 19.2% of the patients with lower CDKN3 expression died in the same period. In vitro inactivation of CDKN3 decreased cell proliferation on average 67%, although it had no effect on cell migration and invasion. CDKN3 mRNA may be a good survival biomarker and potential therapeutic target in CC.

  17. Translating discovery in zebrafish pancreatic development to human pancreatic cancer: biomarkers, targets, pathogenesis, and therapeutics.

    Science.gov (United States)

    Yee, Nelson S; Kazi, Abid A; Yee, Rosemary K

    2013-06-01

    Abstract Experimental studies in the zebrafish have greatly facilitated understanding of genetic regulation of the early developmental events in the pancreas. Various approaches using forward and reverse genetics, chemical genetics, and transgenesis in zebrafish have demonstrated generally conserved regulatory roles of mammalian genes and discovered novel genetic pathways in exocrine pancreatic development. Accumulating evidence has supported the use of zebrafish as a model of human malignant diseases, including pancreatic cancer. Studies have shown that the genetic regulators of exocrine pancreatic development in zebrafish can be translated into potential clinical biomarkers and therapeutic targets in human pancreatic adenocarcinoma. Transgenic zebrafish expressing oncogenic K-ras and zebrafish tumor xenograft model have emerged as valuable tools for dissecting the pathogenetic mechanisms of pancreatic cancer and for drug discovery and toxicology. Future analysis of the pancreas in zebrafish will continue to advance understanding of the genetic regulation and biological mechanisms during organogenesis. Results of those studies are expected to provide new insights into how aberrant developmental pathways contribute to formation and growth of pancreatic neoplasia, and hopefully generate valid biomarkers and targets as well as effective and safe therapeutics in pancreatic cancer.

  18. Medicinal plants growing in the Judea region: network approach for searching potential therapeutic targets

    Directory of Open Access Journals (Sweden)

    Arie Budovsky

    2012-09-01

    Full Text Available Plants growing in the Judea region are widely used in traditional medicine of the Levant region. Nevertheless, they have not so far been sufficiently analyzed and their medicinal potential has not been evaluated. This study is the first attempt to fill the gap in the knowledge of the plants growing in the region. Comprehensive data mining of online botanical databases and peer-reviewed scientific literature including ethno-pharmacological surveys from the Levant region was applied to compile a full list of plants growing in the Judea region, with the focus on their medicinal applications. Around 1300 plants growing in the Judea region were identified. Of them, 25% have medicinal applications which were analyzed in this study. Screening for chemical-protein interactions, together with the network-based analysis of potential targets, will facilitate discovery and therapeutic applications of the Judea region plants. Such an approach could also be applied as an integrative platform for further searching the potential therapeutic targets of plants growing in other regions of the world.

  19. Neurological disorders and therapeutics targeted to surmount the blood–brain barrier

    Directory of Open Access Journals (Sweden)

    Kanwar JR

    2012-07-01

    Full Text Available Jagat R Kanwar, Bhasker Sriramoju, Rupinder K KanwarNanomedicine Laboratory of Immunology and Molecular Biomedical Research, Centre for Biotechnology and Interdisciplinary Biosciences, Institute for Frontier Materials (IFM, Deakin University, Waurn Ponds, Victoria, AustraliaAbstract: We are now in an aging population, so neurological disorders, particularly the neurodegenerative diseases, are becoming more prevalent in society. As per the epidemiological studies, Europe alone suffers 35% of the burden, indicating an alarming rate of disease progression. Further, treatment for these disorders is a challenging area due to the presence of the tightly regulated blood–brain barrier and its unique ability to protect the brain from xenobiotics. Conventional therapeutics, although effective, remain critically below levels of optimum therapeutic efficacy. Hence, methods to overcome the blood–brain barrier are currently a focus of research. Nanotechnological applications are gaining paramount importance in addressing this question, and yielding some promising results. This review addresses the pathophysiology of the more common neurological disorders and novel drug candidates, along with targeted nanoparticle applications for brain delivery.Keywords: blood–brain barrier, neurological diseases, brain delivery, targeted nanoparticles

  20. Evidence for the endothelin system as an emerging therapeutic target for the treatment of chronic pain

    Directory of Open Access Journals (Sweden)

    Smith TP

    2014-08-01

    Full Text Available Terika P Smith,1 Tami Haymond,1 Sherika N Smith,1 Sarah M Sweitzer1,2 1Department of Pharmacology, Physiology and Neuroscience, University of South Carolina, Columbia, SC, USA; 2Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, Clinton, SC, USA Abstract: Many people worldwide suffer from pain and a portion of these sufferers are diagnosed with a chronic pain condition. The management of chronic pain continues to be a challenge, and despite taking prescribed medication for pain, patients continue to have pain of moderate severity. Current pain therapies are often inadequate, with side effects that limit medication adherence. There is a need to identify novel therapeutic targets for the management of chronic pain. One potential candidate for the treatment of chronic pain is therapies aimed at modulating the vasoactive peptide endothelin-1. In addition to vasoactive properties, endothelin-1 has been implicated in pain transmission in both humans and animal models of nociception. Endothelin-1 directly activates nociceptors and potentiates the effect of other algogens, including capsaicin, formalin, and arachidonic acid. In addition, endothelin-1 has been shown to be involved in inflammatory pain, cancer pain, neuropathic pain, diabetic neuropathy, and pain associated with sickle cell disease. Therefore, endothelin-1 may prove a novel therapeutic target for the relief of many types of chronic pain. Keywords: endothelin-1, acute pain, chronic pain, endothelin receptor antagonists

  1. The significance of dynamin 2 expression for prostate cancer progression, prognostication, and therapeutic targeting.

    Science.gov (United States)

    Xu, Bin; Teng, Liang Hong; Silva, Sabrina Daniela da; Bijian, Krikor; Al Bashir, Samir; Jie, Su; Dolph, Michael; Alaoui-Jamali, Moulay A; Bismar, Tarek A

    2014-02-01

    Dynamin 2 (Dyn2) is essential for intracellular vesicle formation and trafficking, cytokinesis, and receptor endocytosis. In this study, we investigated the implication of Dyn2 as a prognostic marker and therapeutic target for progressive prostate cancer (PCA). We evaluated Dyn2 protein expression by immunohistochemistry in two cohorts: men with localized PCA treated by retropubic radical prostatectomy (n = 226), and men with advanced/castrate-resistant PCA (CRPC) treated by transurethral resection of prostate (TURP) (n = 253). The role of Dyn2 in cell invasiveness was assessed by in vitro and in vivo experiments using androgen-responsive and refractory PCA preclinical models. Dyn2 expression was significantly increased across advanced stages of PCA compared to benign prostate tissue (P size and lymph node metastases in vivo. In isolated PCA cells, Dyn2 was found to regulate focal adhesion turnover, which is critical for cell migration; this mechanism requires full Dyn2 compared to mutants deficient in GTPase activity. In conclusion, Dyn2 overexpression is associated with neoplastic prostate epithelium and is associated with poor prognosis. Inhibition of Dyn2 prevents cell invasiveness in androgen-responsive and -refractory PCA models, supporting the potential benefit of Dyn2 to serve as a therapeutic target for advanced PCA.

  2. Targeting Nicotinamide Phosphoribosyltransferase as a Potential Therapeutic Strategy to Restore Adult Neurogenesis.

    Science.gov (United States)

    Wang, Shu-Na; Xu, Tian-Ying; Li, Wen-Lin; Miao, Chao-Yu

    2016-06-01

    Adult neurogenesis is the process of generating new neurons throughout life in the olfactory bulb and hippocampus of most mammalian species, which is closely related to aging and disease. Nicotinamide phosphoribosyltransferase (NAMPT), also an adipokine known as visfatin, is the rate-limiting enzyme for mammalian nicotinamide adenine dinucleotide (NAD) salvage synthesis by generating nicotinamide mononucleotide (NMN) from nicotinamide. Recent findings from our laboratory and other laboratories have provided much evidence that NAMPT might serve as a therapeutic target to restore adult neurogenesis. NAMPT-mediated NAD biosynthesis in neural stem/progenitor cells is important for their proliferation, self-renewal, and formation of oligodendrocytes in vivo and in vitro. Therapeutic interventions by the administration of NMN, NAD, or recombinant NAMPT are effective for restoring adult neurogenesis in several neurological diseases. We summarize adult neurogenesis in aging, ischemic stroke, traumatic brain injury, and neurodegenerative disease and review the advances of targeting NAMPT in restoring neurogenesis. Specifically, we provide emphasis on the P7C3 family, a class of proneurogenic compounds that are potential NAMPT activators, which might shed light on future drug development in neurogenesis restoration. PMID:27018006

  3. Targeting Nitric Oxide with Natural Derived Compounds as a Therapeutic Strategy in Vascular Diseases

    Directory of Open Access Journals (Sweden)

    Maurizio Forte

    2016-01-01

    Full Text Available Within the family of endogenous gasotransmitters, nitric oxide (NO is the smallest gaseous intercellular messenger involved in the modulation of several processes, such as blood flow and platelet aggregation control, essential to maintain vascular homeostasis. NO is produced by nitric oxide synthases (NOS and its effects are mediated by cGMP-dependent or cGMP-independent mechanisms. Growing evidence suggests a crosstalk between the NO signaling and the occurrence of oxidative stress in the onset and progression of vascular diseases, such as hypertension, heart failure, ischemia, and stroke. For these reasons, NO is considered as an emerging molecular target for developing therapeutic strategies for cardio- and cerebrovascular pathologies. Several natural derived compounds, such as polyphenols, are now proposed as modulators of NO-mediated pathways. The aim of this review is to highlight the experimental evidence on the involvement of nitric oxide in vascular homeostasis focusing on the therapeutic potential of targeting NO with some natural compounds in patients with vascular diseases.

  4. Targeting Nitric Oxide with Natural Derived Compounds as a Therapeutic Strategy in Vascular Diseases

    Science.gov (United States)

    Forte, Maurizio; Damato, Antonio; Ambrosio, Mariateresa; Puca, Annibale A.; Sciarretta, Sebastiano; Frati, Giacomo; Vecchione, Carmine

    2016-01-01

    Within the family of endogenous gasotransmitters, nitric oxide (NO) is the smallest gaseous intercellular messenger involved in the modulation of several processes, such as blood flow and platelet aggregation control, essential to maintain vascular homeostasis. NO is produced by nitric oxide synthases (NOS) and its effects are mediated by cGMP-dependent or cGMP-independent mechanisms. Growing evidence suggests a crosstalk between the NO signaling and the occurrence of oxidative stress in the onset and progression of vascular diseases, such as hypertension, heart failure, ischemia, and stroke. For these reasons, NO is considered as an emerging molecular target for developing therapeutic strategies for cardio- and cerebrovascular pathologies. Several natural derived compounds, such as polyphenols, are now proposed as modulators of NO-mediated pathways. The aim of this review is to highlight the experimental evidence on the involvement of nitric oxide in vascular homeostasis focusing on the therapeutic potential of targeting NO with some natural compounds in patients with vascular diseases. PMID:27651855

  5. Identification of unique expression signatures and therapeutic targets in esophageal squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Yan Wusheng

    2012-01-01

    Full Text Available Abstract Background Esophageal squamous cell carcinoma (ESCC, the predominant histological subtype of esophageal cancer, is characterized by high mortality. Previous work identified important mRNA expression differences between normal and tumor cells; however, to date there are limited ex vivo studies examining expression changes occurring during normal esophageal squamous cell differentiation versus those associated with tumorigenesis. In this study, we used a unique tissue microdissection strategy and microarrays to measure gene expression profiles associated with cell differentiation versus tumorigenesis in twelve cases of patient-matched normal basal squamous epithelial cells (NB, normal differentiated squamous epithelium (ND, and squamous cell cancer. Class comparison and pathway analysis were used to compare NB versus tumor in a search for unique therapeutic targets. Results As a first step towards this goal, gene expression profiles and pathways were evaluated. Overall, ND expression patterns were markedly different from NB and tumor; whereas, tumor and NB were more closely related. Tumor showed a general decrease in differentially expressed genes relative to NB as opposed to ND that exhibited the opposite trend. FSH and IgG networks were most highly dysregulated in normal differentiation and tumorigenesis, respectively. DNA repair pathways were generally elevated in NB and tumor relative to ND indicating involvement in both normal and pathological growth. PDGF signaling pathway and 12 individual genes unique to the tumor/NB comparison were identified as therapeutic targets, and 10 associated ESCC gene-drug pairs were identified. We further examined the protein expression level and the distribution patterns of four genes: ODC1, POSTN, ASPA and IGF2BP3. Ultimately, three genes (ODC1, POSTN, ASPA were verified to be dysregulated in the same pattern at both the mRNA and protein levels. Conclusions These data reveal insight into genes and

  6. Potential Diagnostic, Prognostic and Therapeutic Targets of MicroRNAs in Human Gastric Cancer

    Directory of Open Access Journals (Sweden)

    Ming-Ming Tsai

    2016-06-01

    Full Text Available Human gastric cancer (GC is characterized by a high incidence and mortality rate, largely because it is normally not identified until a relatively advanced stage owing to a lack of early diagnostic biomarkers. Gastroscopy with biopsy is the routine method for screening, and gastrectomy is the major therapeutic strategy for GC. However, in more than 30% of GC surgical patients, cancer has progressed too far for effective medical resection. Thus, useful biomarkers for early screening or detection of GC are essential for improving patients’ survival rate. MicroRNAs (miRNAs play an important role in tumorigenesis. They contribute to gastric carcinogenesis by altering the expression of oncogenes and tumor suppressors. Because of their stability in tissues, serum/plasma and other body fluids, miRNAs have been suggested as novel tumor biomarkers with suitable clinical potential. Recently, aberrantly expressed miRNAs have been identified and tested for clinical application in the management of GC. Aberrant miRNA expression profiles determined with miRNA microarrays, quantitative reverse transcription-polymerase chain reaction and next-generation sequencing approaches could be used to establish sample specificity and to identify tumor type. Here, we provide an up-to-date summary of tissue-based GC-associated miRNAs, describing their involvement and that of their downstream targets in tumorigenic and biological processes. We examine correlations among significant clinical parameters and prognostic indicators, and discuss recurrence monitoring and therapeutic options in GC. We also review plasma/serum-based, GC-associated, circulating miRNAs and their clinical applications, focusing especially on early diagnosis. By providing insights into the mechanisms of miRNA-related tumor progression, this review will hopefully aid in the identification of novel potential therapeutic targets.

  7. HIV capsid is a tractable target for small molecule therapeutic intervention.

    Directory of Open Access Journals (Sweden)

    Wade S Blair

    Full Text Available Despite a high current standard of care in antiretroviral therapy for HIV, multidrug-resistant strains continue to emerge, underscoring the need for additional novel mechanism inhibitors that will offer expanded therapeutic options in the clinic. We report a new class of small molecule antiretroviral compounds that directly target HIV-1 capsid (CA via a novel mechanism of action. The compounds exhibit potent antiviral activity against HIV-1 laboratory strains, clinical isolates, and HIV-2, and inhibit both early and late events in the viral replication cycle. We present mechanistic studies indicating that these early and late activities result from the compound affecting viral uncoating and assembly, respectively. We show that amino acid substitutions in the N-terminal domain of HIV-1 CA are sufficient to confer resistance to this class of compounds, identifying CA as the target in infected cells. A high-resolution co-crystal structure of the compound bound to HIV-1 CA reveals a novel binding pocket in the N-terminal domain of the protein. Our data demonstrate that broad-spectrum antiviral activity can be achieved by targeting this new binding site and reveal HIV CA as a tractable drug target for HIV therapy.

  8. Kinesin family members KIF11 and KIF23 as potential therapeutic targets in malignant pleural mesothelioma.

    Science.gov (United States)

    Kato, Tatsuya; Lee, Daiyoon; Wu, Licun; Patel, Priya; Young, Ahn Jin; Wada, Hironobu; Hu, Hsin-Pei; Ujiie, Hideki; Kaji, Mitsuhito; Kano, Satoshi; Matsuge, Shinichi; Domen, Hiromitsu; Kaga, Kichizo; Matsui, Yoshiro; Kanno, Hiromi; Hatanaka, Yutaka; Hatanaka, Kanako C; Matsuno, Yoshihiro; de Perrot, Marc; Yasufuku, Kazuhiro

    2016-08-01

    Malignant pleural mesothelioma (MPM) is a rare and aggressive form of cancer commonly associated with asbestos exposure that stems from the thoracic mesothelium with high mortality rate. Currently, treatment options for MPM are limited, and new molecular targets for treatments are urgently needed. Using quantitative reverse transcription-polymerase chain reaction (RT-PCR) and an RNA interference-based screening, we screened two kinesin family members as potential therapeutic targets for MPM. Following in vitro investigation of the target silencing effects on MPM cells, a total of 53 MPMs were analyzed immunohistochemically with tissue microarray. KIF11 and KIF23 transcripts were found to be overexpressed in the majority of clinical MPM samples as well as human MPM cell lines as determined by quantitative RT-PCR. Gene knockdown in MPM cell lines identified growth inhibition following knockdown of KIF11 and KIF23. High expression of KIF11 (KIF11-H) and KIF23 (KIF23-H) were found in 43.4 and 50.9% of all the MPM cases, respectively. Patients who received curative resection with tumors displaying KIF23-H showed shorter overall survival (P=0.0194). These results provide that inhibition of KIF11 and KIF23 may hold promise for treatment of MPMs, raising the possibility that kinesin-based drug targets may be developed in the future. PMID:27279560

  9. Identification of CD90 as Putative Cancer Stem Cell Marker and Therapeutic Target in Insulinomas.

    Science.gov (United States)

    Buishand, Floryne O; Arkesteijn, Ger J A; Feenstra, Laurien R; Oorsprong, Claire W D; Mestemaker, Margiet; Starke, Achim; Speel, Ernst-Jan M; Kirpensteijn, Jolle; Mol, Jan A

    2016-06-01

    The long-term prognosis after surgical resection of malignant insulinoma (INS) is poor. Novel adjuvant therapies, specifically targeting cancer stem cells (CSCs), are warranted. Therefore, the goal of this study was to characterize and target putative INS CSCs. Using fluorescence-activated cell sorting, human INS cell line CM and pancreatic carcinoid cell line BON1 were screened for the presence of stem cell-associated markers. CD90, CD166, and GD2 were identified as potential CSC markers. Only CD90(+) INS cells had an increased tumor-initiating potential in athymic nude mice. Anti-CD90 monoclonal antibodies decreased the viability and metastatic potential of injected cells in a zebrafish embryo INS xenograft model. Primary INS stained positive for CD90 by immunohistochemistry, however also intratumoral fibroblasts and vascular endothelium showed positive staining. The results of this study suggest that anti-CD90 monoclonals form a potential novel adjuvant therapeutic modality by targeting either INS cells directly, or by targeting the INS microenvironment. PMID:27049037

  10. Control of Aedes albopictus with attractive toxic sugar baits (ATSB) and potential impact on non-target organisms in St. Augustine, Florida

    OpenAIRE

    Revay, Edita E.; Müller, Gunter C.; Qualls, Whitney A; Kline, Daniel; Naranjo, Diana P.; Arheart, Kristopher L; Kravchenko, Vasiliy D; Yfremova, Zoya; Hausmann, Axel; Beier, John C.; Schlein, Yosef; Xue, Rui-De

    2014-01-01

    The purpose of this study was to test the efficacy of bait stations and foliar applications containing attractive toxic sugar baits (ATSB) and eugenol to control Aedes albopictus. At the same time the potential impact of these control methods was evaluated on non-target organisms. The study was conducted at five tire sites in St. Augustine, Florida. Aedes albopictus populations were significantly reduced with ATSB-eugenol applications applied directly to non-flowering vegetation and as bait s...

  11. MicroRNAs as novel therapeutic targets to treat kidney injury and fibrosis.

    Science.gov (United States)

    Gomez, Ivan G; Nakagawa, Naoki; Duffield, Jeremy S

    2016-05-01

    MicroRNAs (miRs), a class of small noncoding RNAs that act as post-transcriptional regulators of gene expression, have attracted increasing attention as critical regulators of organogenesis, cancer, and disease. Interest has been spurred by development of a novel class of synthetic RNA oligonucleotides with excellent drug-like properties that hybridize to a specific miR, preventing its action. In kidney disease, a small number of miRs are dysregulated. These overlap with regulated miRs in nephrogenesis and kidney cancers. Several dysregulated miRs have been identified in fibrotic diseases of other organs, representing a "fibrotic signature," and some of these fibrotic miRs contribute remarkably to the pathogenesis of kidney disease. Chronic kidney disease, affecting ∼10% of the population, leads to kidney failure, with few treatment options. Here, we will explore the pathological mechanism of miR-21, whose pre-eminent role in amplifying kidney disease and fibrosis by suppressing mitochondrial biogenesis and function is established. Evolving roles for miR-214, -199, -200, -155, -29, -223, and -126 in kidney disease will be discussed, and we will demonstrate how studying functions of distinct miRs has led to new mechanistic insights for kidney disease progression. Finally, the utility of anti-miR oligonucleotides as potential novel therapeutics to treat chronic disease will be highlighted. PMID:26911854

  12. Evaluation of LMP1 of Epstein-Barr virus as a therapeutic target by its inhibition

    Directory of Open Access Journals (Sweden)

    Wilson Joanna B

    2010-07-01

    Full Text Available Abstract Background The latent membrane protein-1 (LMP1 encoded by Epstein-Barr virus (EBV is an oncoprotein which acts by constitutive activation of various signalling pathways, including NF-κB. In so doing it leads to deregulated cell growth intrinsic to the cancer cell as well as having extrinsic affects upon the tumour microenvironment. These properties and that it is a foreign antigen, lead to the proposition that LMP1 may be a good therapeutic target in the treatment of EBV associated disease. LMP1 is expressed in several EBV-associated malignancies, notably in Hodgkin's lymphoma and nasopharyngeal carcinoma (NPC. However, the viral protein is only detected in approximately 30%-50% of NPC samples, as such its role in carcinogenesis and tumour maintenance can be questioned and thus its relevance as a therapeutic target. Results In order to explore if LMP1 has a continuous function in established tumours, its activity was inhibited through expression of a dominant negative LMP1 mutant in tumour cell lines derived from transgenic mice. LMP1 is the tumour predisposing oncogene in two different series of transgenic mice which separately give rise to either B-cell lymphomas or carcinomas. Inhibition of LMP1 activity in the carcinoma cell lines lead to a reduction in clonagenicity and clone viability in all of the cell lines tested, even those with low or below detection levels of LMP1. Inhibition of LMP1 activity in the transgenic B-cell lines was incompatible with growth and survival of the cells and no clones expressing the dominant negative LMP1 mutant could be established. Conclusions LMP1 continues to provide a tumour cell growth function in cell lines established from LMP1 transgenic mouse tumours, of both B-cell and epithelial cell origin. LMP1 can perform this function, even when expressed at such low levels as to be undetectable, whereby evidence of its expression can only be inferred by its inhibition being detrimental to the growth

  13. Molecular pathogenesis and targeted therapeutics in Ewing sarcoma/primitive neuroectodermal tumours

    Directory of Open Access Journals (Sweden)

    Kelleher Fergal C

    2012-02-01

    Full Text Available Abstract Background Ewing sarcoma/PNET is managed with treatment paradigms involving combinations of chemotherapy, surgery, and sometimes radiation. Although the 5-year survival rate of non-metastatic disease approaches 70%, those cases that are metastatic and those that recur have 5-year survival rates of less than 20%. Molecularly targeted treatments offer the potential to further improve treatment outcomes. Methods A PUBMED search was performed from 1997 to 2011. Published literature that included the topic of the Ewing sarcoma/PNET was also referenced. Results Insulin-like growth factor-1 receptor (IGF-1R antagonists have demonstrated modest single agent efficacy in phase I/II clinical trials in Ewing sarcoma/PNET, but have a strong preclinical rationale. Based on in vitro and animal data, treatment using antisense RNA and cDNA oligonucleotides directed at silencing the EWS-FLI chimera that occurs in most Ewing sarcoma/PNET may have potential therapeutic importance. However drug delivery and degradation problems may limit this therapeutic approach. Protein-protein interactions can be targeted by inhibition of RNA helicase A, which binds to EWS/FLI as part of the transcriptional complex. Tumour necrosis factor related apoptosis inducing ligand induction using interferon has been used in preclinical models. Interferons may be incorporated into future chemotherapeutic treatment paradigms. Histone deacetylase inhibitors can restore TGF-β receptor II allowing TFF-β signalling, which appears to inhibit growth of Ewing sarcoma/PNET cell lines in vitro. Immunotherapy using allogeneic natural killer cells has activity in Ewing sarcoma/PNET cell lines and xenograft models. Finally, cyclin dependent kinase inhibitors such as flavopiridol may be clinically efficacious in relapsed Ewing sarcoma/PNET. Conclusion Preclinical evidence exists that targeted therapeutics may be efficacious in the ESFT. IGF-1R antagonists have demonstrated efficacy in phase I

  14. Targeting hepatitis B virus and human papillomavirus induced carcinogenesis: novel patented therapeutics.

    Science.gov (United States)

    Kanwar, Rupinder K; Singh, Neha; Gurudevan, Sneha; Kanwar, Jagat R

    2011-05-01

    Viral infections leading to carcinogenesis tops the risk factors list for the development of human cancer. The decades of research has provided ample scientific evidence that directly links 10-15% of the worldwide incidence of human cancers to the infections with seven human viruses. Moreover, the insights gained into the molecular pathogenetic and immune mechanisms of hepatitis B virus (HBV) and human papillomavirus (HPV) viral transmission to tumour progression, and the identification of their viral surface antigens as well as oncoproteins have provided the scientific community with opportunities to target these virus infections through the development of prophylactic vaccines and antiviral therapeutics. The preventive vaccination programmes targeting HBV and high risk HPV infections, linked to hepatocellular carcinoma (HCC) and cervical cancer respectively have been recently reported to alter age-old cancer patterns on an international scale. In this review, with an emphasis on HBV and HPV mediated carcinogenesis because of the similarities and differences in their global incidence patterns, viral transmission, mortality, molecular pathogenesis and prevention, we focus on the development of recently identified HBV and HPV targeting innovative strategies resulting in several patents and patent applications. PMID:21517743

  15. Neuromuscular therapeutics by RNA-targeted suppression of ACHE gene expression.

    Science.gov (United States)

    Dori, Amir; Soreq, Hermona

    2006-10-01

    RNA-targeted therapeutics offers inherent advantages over small molecule drugs wherever one out of several splice variant enzymes should be inhibited. Here, we report the use of Monarsen, a 20-mer acetylcholinesterase-targeted antisense agent with three 3'-2'o-methyl-protected nucleotides, for selectively attenuating the stress-induced accumulation of the normally rare, soluble "readthrough" acetylcholinesterase variant AChE-R. Acetylcholine hydrolysis by AChE-R may cause muscle fatigue and moreover, limit the cholinergic anti-inflammatory blockade, yielding inflammation-associated pathology. Specific AChE-R targeting by Monarsen was achieved in cultured cells, experimental animals, and patient volunteers. In rats with experimental autoimmune myasthenia gravis, oral delivery of Monarsen improved muscle action potential in a lower dose regimen (nanomolar versus micromolar), rapid and prolonged manner (up to 72 h versus 2-4 h) as compared with the currently used small molecule anticholinesterases. In central nervous system neurons of both rats and cynomolgus monkeys, systematic Monarsen treatment further suppressed the levels of the proinflammatory cytokines interleukin-1 (IL-1) and IL-6. Toxicology testing and ongoing clinical trials support the notion that Monarsen treatment would offer considerable advantages over conventional cholinesterase inhibitors with respect to dosing, specificity, side effects profile, and duration of efficacy, while raising some open questions regarding its detailed mechanism of action. PMID:17145929

  16. Barriers to the Preclinical Development of Therapeutics that Target Aging Mechanisms

    Science.gov (United States)

    Burd, Christin E.; Gill, Matthew S.; Niedernhofer, Laura J.; Robbins, Paul D.; Austad, Steven N.; Barzilai, Nir

    2016-01-01

    Through the progress of basic science research, fundamental mechanisms that contribute to age-related decline are being described with increasing depth and detail. Although these efforts have identified new drug targets and compounds that extend life span in model organisms, clinical trials of therapeutics that target aging processes remain scarce. Progress in aging research is hindered by barriers associated with the translation of basic science discoveries into the clinic. This report summarizes discussions held at a 2014 Geroscience Network retreat focused on identifying hurdles that currently impede the preclinical development of drugs targeting fundamental aging processes. From these discussions, it was evident that aging researchers have varied perceptions of the ideal preclinical pipeline. To forge a clear and cohesive path forward, several areas of controversy must first be resolved and new tools developed. Here, we focus on five key issues in preclinical drug development (drug discovery, lead compound development, translational preclinical biomarkers, funding, and integration between researchers and clinicians), expanding upon discussions held at the Geroscience Retreat and suggesting areas for further research. By bringing these findings to the attention of the aging research community, we hope to lay the foundation for a concerted preclinical drug development pipeline. PMID:27535964

  17. NADPH Oxidase as a Therapeutic Target for Neuroprotection against Ischaemic Stroke: Future Perspectives

    Directory of Open Access Journals (Sweden)

    Carli L. Roulston

    2013-04-01

    Full Text Available Oxidative stress caused by an excess of reactive oxygen species (ROS is known to contribute to stroke injury, particularly during reperfusion, and antioxidants targeting this process have resulted in improved outcomes experimentally. Unfortunately these improvements have not been successfully translated to the clinical setting. Targeting the source of oxidative stress may provide a superior therapeutic approach. The NADPH oxidases are a family of enzymes dedicated solely to ROS production and pre-clinical animal studies targeting NADPH oxidases have shown promising results. However there are multiple factors that need to be considered for future drug development: There are several homologues of the catalytic subunit of NADPH oxidase. All have differing physiological roles and may contribute differentially to oxidative damage after stroke. Additionally, the role of ROS in brain repair is largely unexplored, which should be taken into consideration when developing drugs that inhibit specific NADPH oxidases after injury. This article focuses on the current knowledge regarding NADPH oxidase after stroke including in vivo genetic and inhibitor studies. The caution required when interpreting reports of positive outcomes after NADPH oxidase inhibition is also discussed, as effects on long term recovery are yet to be investigated and are likely to affect successful clinical translation.

  18. NADPH Oxidase as a Therapeutic Target for Neuroprotection against Ischaemic Stroke: Future Perspectives.

    Science.gov (United States)

    McCann, Sarah K; Roulston, Carli L

    2013-01-01

    Oxidative stress caused by an excess of reactive oxygen species (ROS) is known to contribute to stroke injury, particularly during reperfusion, and antioxidants targeting this process have resulted in improved outcomes experimentally. Unfortunately these improvements have not been successfully translated to the clinical setting. Targeting the source of oxidative stress may provide a superior therapeutic approach. The NADPH oxidases are a family of enzymes dedicated solely to ROS production and pre-clinical animal studies targeting NADPH oxidases have shown promising results. However there are multiple factors that need to be considered for future drug development: There are several homologues of the catalytic subunit of NADPH oxidase. All have differing physiological roles and may contribute differentially to oxidative damage after stroke. Additionally, the role of ROS in brain repair is largely unexplored, which should be taken into consideration when developing drugs that inhibit specific NADPH oxidases after injury. This article focuses on the current knowledge regarding NADPH oxidase after stroke including in vivo genetic and inhibitor studies. The caution required when interpreting reports of positive outcomes after NADPH oxidase inhibition is also discussed, as effects on long term recovery are yet to be investigated and are likely to affect successful clinical translation. PMID:24961415

  19. Control of Aedes albopictus with attractive toxic sugar baits (ATSB) and potential impact on non-target organisms in St. Augustine, Florida.

    Science.gov (United States)

    Revay, Edita E; Müller, Gunter C; Qualls, Whitney A; Kline, Daniel L; Naranjo, Diana P; Arheart, Kristopher L; Kravchenko, Vasiliy D; Yefremova, Zoya; Hausmann, Axel; Beier, John C; Schlein, Yosef; Xue, Rui-De

    2014-01-01

    The purpose of this study was to test the efficacy of bait stations and foliar applications containing attractive toxic sugar baits (ATSB) and eugenol to control Aedes albopictus. At the same time, the potential impact of these control methods was evaluated on non-target organisms. The study was conducted at five tire sites in St. Augustine, Florida. A. albopictus populations were significantly reduced with ATSB-eugenol applications applied directly to non-flowering vegetation and as bait stations compared with non-attractive sugar baits and control. The application of ATSB made to non-flowering vegetation resulted in more significant reductions of mosquito populations compared to the application of ATSB presented in a bait station. Over 5.5% of the non-targets were stained in the flowering vegetation application site. However, when the attractive sugar bait application was made to non-flowering vegetation or presented in bait stations, the impact on non-target insects was very low for all non-target orders as only 0.6% of the individual insects were stained with the dye from the sugar solutions, respectively. There were no significant differences between the staining of mosquitoes collected in flowering vegetation (206/1000) or non-flowering vegetation (242/1000) sites during the non-target evaluation. Our field studies support the use of eugenol as an active ingredient for controlling the dengue vector A. albopictus when used as an ATSB toxin and demonstrates potential use in sub-tropical and tropical environments for dengue control.

  20. Protein kinase Calpha and epsilon small-molecule targeted therapeutics: a new roadmap to two Holy Grails in drug discovery?

    Science.gov (United States)

    O'Brian, Catherine A; Chu, Feng; Bornmann, William G; Maxwell, David S

    2006-02-01

    Protein kinase (PK)Calpha and epsilon are rational targets for cancer therapy. However, targeted experimental therapeutics that inhibit PKCalpha or epsilon are unavailable. The authors established recently that covalent modification of an active-site cysteine in human PKCepsilon, Cys452, by small molecules, for example 2-mercaptoethanolamine, is necessary and sufficient to render PKCepsilon kinase-dead. Cys452 is conserved in only eleven human protein kinase genes, including PKCalpha. Therefore, the design of small molecules that bind PKC active sites with an electrophile substituent positioned proximal to the Cys452 side chain may lead to targeted therapeutics that selectively inhibit PKCepsilon, PKCalpha or other PKC isozymes.

  1. Receptor tyrosine kinase (c-Kit) inhibitors: a potential therapeutic target in cancer cells

    Science.gov (United States)

    Abbaspour Babaei, Maryam; Kamalidehghan, Behnam; Saleem, Mohammad; Huri, Hasniza Zaman; Ahmadipour, Fatemeh

    2016-01-01

    c-Kit, a receptor tyrosine kinase, is involved in intracellular signaling, and the mutated form of c-Kit plays a crucial role in occurrence of some cancers. The function of c-Kit has led to the concept that inhibiting c-Kit kinase activity can be a target for cancer therapy. The promising results of inhibition of c-Kit for treatment of cancers have been observed in some cancers such as gastrointestinal stromal tumor, acute myeloid leukemia, melanoma, and other tumors, and these results have encouraged attempts toward improvement of using c-Kit as a capable target for cancer therapy. This paper presents the findings of previous studies regarding c-Kit as a receptor tyrosine kinase and an oncogene, as well as its gene targets and signaling pathways in normal and cancer cells. The c-Kit gene location, protein structure, and the role of c-Kit in normal cell have been discussed. Comprehending the molecular mechanism underlying c-Kit-mediated tumorogenesis is consequently essential and may lead to the identification of future novel drug targets. The potential mechanisms by which c-Kit induces cellular transformation have been described. This study aims to elucidate the function of c-Kit for future cancer therapy. In addition, it has c-Kit inhibitor drug properties and their functions have been listed in tables and demonstrated in schematic pictures. This review also has collected previous studies that targeted c-Kit as a novel strategy for cancer therapy. This paper further emphasizes the advantages of this approach, as well as the limitations that must be addressed in the future. Finally, although c-Kit is an attractive target for cancer therapy, based on the outcomes of treatment of patients with c-Kit inhibitors, it is unlikely that Kit inhibitors alone can lead to cure. It seems that c-Kit mutations alone are not sufficient for tumorogenesis, but do play a crucial role in cancer occurrence. PMID:27536065

  2. Facial attractiveness.

    Science.gov (United States)

    Little, Anthony C

    2014-11-01

    Facial attractiveness has important social consequences. Despite a widespread belief that beauty cannot be defined, in fact, there is considerable agreement across individuals and cultures on what is found attractive. By considering that attraction and mate choice are critical components of evolutionary selection, we can better understand the importance of beauty. There are many traits that are linked to facial attractiveness in humans and each may in some way impart benefits to individuals who act on their preferences. If a trait is reliably associated with some benefit to the perceiver, then we would expect individuals in a population to find that trait attractive. Such an approach has highlighted face traits such as age, health, symmetry, and averageness, which are proposed to be associated with benefits and so associated with facial attractiveness. This view may postulate that some traits will be universally attractive; however, this does not preclude variation. Indeed, it would be surprising if there existed a template of a perfect face that was not affected by experience, environment, context, or the specific needs of an individual. Research on facial attractiveness has documented how various face traits are associated with attractiveness and various factors that impact on an individual's judgments of facial attractiveness. Overall, facial attractiveness is complex, both in the number of traits that determine attraction and in the large number of factors that can alter attraction to particular faces. A fuller understanding of facial beauty will come with an understanding of how these various factors interact with each other. WIREs Cogn Sci 2014, 5:621-634. doi: 10.1002/wcs.1316 CONFLICT OF INTEREST: The author has declared no conflicts of interest for this article. For further resources related to this article, please visit the WIREs website. PMID:26308869

  3. Targeting Specific HATs for Neurodegenerative Disease Treatment: Translating Basic Biology to Therapeutic Possibilities

    Directory of Open Access Journals (Sweden)

    Sheila K. Pirooznia

    2013-03-01

    Full Text Available Dynamic epigenetic regulation of neurons is emerging as a fundamental mechanism by which neurons adapt their transcriptional responses to specific developmental and environmental cues. While defects within the neural epigenome have traditionally been studied in the context of early developmental and heritable cognitive disorders, recent studies point to aberrant histone acetylation status as a key mechanism underlying acquired inappropriate alterations of genome structure and function in post-mitotic neurons during the aging process. Indeed, it is becoming increasingly evident that chromatin acetylation status can be impaired during the lifetime of neurons through mechanisms related to loss of function of histone acetyltransferase (HATs activity. Several HATs have been shown to participate in vital neuronal functions such as regulation of neuronal plasticity and memory formation. As such, dysregulation of such HATs has been implicated in the pathogenesis associated with age-associated neurodegenerative diseases and cognitive decline. In order to counteract the loss of HAT function in neurodegenerative diseases, the current therapeutic strategies involve the use of small molecules called histone deacetylase (HDAC inhibitors that antagonize HDAC activity and thus enhance acetylation levels. Although this strategy has displayed promising therapeutic effects, currently used HDAC inhibitors lack target specificity, raising concerns about their applicability. With rapidly evolving literature on HATs and their respective functions in mediating neuronal survival and higher order brain function such as learning and memory, modulating the function of specific HATs holds new promises as a therapeutic tool in neurodegenerative diseases. In this review, we focus on the recent progress in research regarding epigenetic histone acetylation mechanisms underlying neuronal activity and cognitive function. We discuss the current understanding of specific HDACs and

  4. Dysfunction of two lysosome degradation pathways of α-synuclein in Parkinson's disease: potential therapeutic targets?

    Institute of Scientific and Technical Information of China (English)

    Tian-Fang Jiang; Sheng-Di Chen

    2012-01-01

    Parkinson's disease (PD) is pathologically characterized by the presence of α-synuclein (α-syn)-positive intracytoplasmic inclusions named Lewy bodies in the dopaminergic neurons of the substantia nigra.A series of morbid consequences are caused by pathologically high amounts or mutant forms of α-syn,such as defects of membrane trafficking and lipid metabolism.In this review,we consider evidence that both point mutation and overexpression of α-syn result in aberrant degradation in neurons and microglia,and this is associated with the autophagy-lysosome pathway and endosomelysosome system,leading directly to pathological intracellular aggregation,abnormal externalization and re-internalization cycling (and,in turn,internalization and re-externalization),and exocytosis.Based on these pathological changes,an increasing number of researchers have focused on these new therapeutic targets,aiming at alleviating the pathological accumulation of α-syn and re-establishing normal degradation.

  5. Female resistance to pneumonia identifies lung macrophage nitric oxide synthase-3 as a therapeutic target

    DEFF Research Database (Denmark)

    Yang, Zhiping; Huang, Yuh-Chin T; Koziel, Henry;

    2014-01-01

    To identify new approaches to enhance innate immunity to bacterial pneumonia, we investigated the natural experiment of gender differences in resistance to infections. Female and estrogen-treated male mice show greater resistance to pneumococcal pneumonia, seen as greater bacterial clearance......). Epidemiologic data show decreased hospitalization for pneumonia in women receiving estrogen or statins (known to activate NOS3). Pharmacologic targeting of NOS3 with statins or another small-molecule compound (AVE3085) enhanced macrophage bacterial killing, improved bacterial clearance, and increased host...... survival in both primary and secondary (post-influenza) pneumonia. The data identify a novel mechanism for host defense via NOS3 and suggest a potential therapeutic strategy to reduce secondary bacterial pneumonia after influenza....

  6. Therapeutic potential of mGluR5 targeting in Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Anil eKumar

    2015-06-01

    Full Text Available Decades of research dedicated towards Alzheimer's disease (AD has culminated in much of the current understanding of the neurodegeneration associated with disease. However, delineating the pathophysiology and finding a possible cure for the disease is still wanting. This is in part due to the lack of knowledge pertaining to the connecting link between neurodegenerative and neuroinflammatory pathways. Consequently, the inefficacy and ill-effects of the drugs currently available for AD encourage the need for alternative and safe therapeutic intervention. In this review we highlight the potential of mGluR5, a metabotropic glutamatergic receptor, in understanding the mechanism underlying the neuronal death and neuroinflammation in AD. We also discuss the role of mGlu5 receptor in mediating the neuron-glia interaction in the disease. Finally, we discuss the potential of mGluR5 as target for treating AD.

  7. Bromodomain and extra-terminal (BET) family proteins: New therapeutic targets in major diseases

    Indian Academy of Sciences (India)

    Balasundaram Padmanabhan; Shruti Mathur; Manjula Ramu; Shailesh Tripathi

    2016-06-01

    The bromodomains and extra-terminal domain (BET) family proteins recognize acetylated chromatin through their bromodomains (BDs) and helps in regulating gene expression. BDs are chromatin ‘readers’; by interacting with acetylated lysines on the histone tails, they recruit chromatin-regulating proteins on the promoter region to regulate gene expression and repression. Extensive efforts have been employed by the scientific communities worldwide, to identify and develop potential inhibitors of BET family BDs to regulate protein expression by inhibiting acetylated histone (H3/H4) interactions. Several small molecule inhibitors have been reported, which not only have high affinity, but also have high specificity to BET BDs. These developments make BET family proteins to be an important therapeutic targets, for major diseases such as cancer, neurological disorders, obesity and inflammation. Here, we review and discuss the structural biology of BET family BDs and their applications in major diseases.

  8. β1 integrins as therapeutic targets to disrupt hallmarks of cancer

    Directory of Open Access Journals (Sweden)

    Anne-Florence eBlandin

    2015-11-01

    Full Text Available Integrins belong to a large family of αβ heterodimeric transmembrane proteins first recognized as adhesion molecules that bind to dedicated elements of the extracellular matrix and also to other surrounding cells. As important sensors of the cell microenvironment, they regulate numerous signaling pathways in response to structural variations of the extracellular matrix. Biochemical and biomechanical cues provided by this matrix and transmitted to cells via integrins are critically modified in tumoral settings. Integrins repertoire are subjected to expression level modifications, in tumor cells and in surrounding cancer-associated cells, implicated in tumor initiation and progression as well. As critical players in numerous cancer hallmarks, defined by Hanahan and Weinberg in 2011, integrins represent pertinent therapeutic targets. We will briefly summarize here our current knowledge about integrin implications in those different hallmarks focusing primarily on β1 integrins.

  9. Apelin and APJ, a novel critical factor and therapeutic target for atherosclerosis

    Institute of Scientific and Technical Information of China (English)

    Deguan Lv; Hening Li; Linxi Chen

    2013-01-01

    Apelin is a bioactive peptide discovered recently that has been proved to be an endogenous ligand of the APJ receptor.Apelin and APJ are widely distributed in the central nervous system and peripheral tissues.Researches have confirmed that apelin/APJ involved in a wide range of physiological and pathological functions in the cardiovascular system.Investigations indicated that apelin is a novel critical factor in the development of atherosclerosis (AS).In this review,we discuss the roles of apelin in the vascular smooth muscle cell proliferation,monocytes-endothelial cell adhesion,and angiogenesis that potentially reveals a new cellular mechanism of AS.Considering these roles,apelin and APJ may be novel therapeutic targets of AS.

  10. Telomere components as potential therapeutic targets for treating microbial pathogen infections

    Directory of Open Access Journals (Sweden)

    Bibo eLi

    2012-11-01

    Full Text Available In a number of microbial pathogens that undergoes antigenic variation to evade the host’s immune attack, genes encoding surface antigens are located at subtelomeric loci, and recent studies have revealed that telomere components play important roles in regulation of surface antigen expression in several of these pathogens, indicating that telomeres play critical roles in microbial pathogen virulence regulation. Importantly, although telomere protein components and their functions are largely conserved from protozoa to mammals, telomere protein homologues in microbial pathogens and humans have low sequence homology. Therefore, pathogen telomere components are potential drug targets for therapeutic approaches because first, most telomere proteins are essential for pathogens’ survival, and second, disruption of pathogens’ antigenic variation mechanism would facilitate host’s immune system to clear the infection.

  11. Demyelination as a rational therapeutic target for ischemic or traumatic brain injury.

    Science.gov (United States)

    Shi, Hong; Hu, Xiaoming; Leak, Rehana K; Shi, Yejie; An, Chengrui; Suenaga, Jun; Chen, Jun; Gao, Yanqin

    2015-10-01

    Previous research on stroke and traumatic brain injury (TBI) heavily emphasized pathological alterations in neuronal cells within gray matter. However, recent studies have highlighted the equal importance of white matter integrity in long-term recovery from these conditions. Demyelination is a major component of white matter injury and is characterized by loss of the myelin sheath and oligodendrocyte cell death. Demyelination contributes significantly to long-term sensorimotor and cognitive deficits because the adult brain only has limited capacity for oligodendrocyte regeneration and axonal remyelination. In the current review, we will provide an overview of the major causes of demyelination and oligodendrocyte cell death following acute brain injuries, and discuss the crosstalk between myelin, axons, microglia, and astrocytes during the process of demyelination. Recent discoveries of molecules that regulate the processes of remyelination may provide novel therapeutic targets to restore white matter integrity and improve long-term neurological recovery in stroke or TBI patients. PMID:25819104

  12. Innate immune receptors in heart failure: Side effect or potential therapeutic target?

    Institute of Scientific and Technical Information of China (English)

    Katharina; B; Wagner; Stephan; B; Felix; Alexander; Riad

    2014-01-01

    Heart failure(HF) is a leading cause of mortality and morbidity in western countries and occasions major expenses for public health systems. Although optimal medical treatment is widely available according to current guidelines, the prognosis of patients with HF is still poor. Despite the etiology of the disease, increased systemic or cardiac activation of the innate immune system is well documented in several types of HF. In some cases there is evidence of an association between innate immune activation and clinical outcome of patients with this disease. However, the few large trials conducted with the use of anti-inflammatory medication in HF have not revealed its benefits. Thus, greater understanding of the relationship between alteration in the immune system and development and progression of HF is urgently necessary: prior to designing therapeutic interventions that target pathological inflammatory processes in preventing harmful cardiac effects of immune modulatory therapy. In this regard, relatively recently discovered receptors of the innate immune system, i.e., namely toll-like receptors(TLRs) and nodlike receptors(NLRs)-are the focus of intense cardiovascular research. These receptors are main up-stream regulators of cytokine activation. This review will focus on current knowledge of the role of TLRs and NLRs, as well as on downstream cytokine activation, and will discuss potential therapeutic implications.

  13. Circulating microRNAs as Biomarkers, Therapeutic Targets, and Signaling Molecules

    Directory of Open Access Journals (Sweden)

    Seena K. Ajit

    2012-03-01

    Full Text Available Small noncoding microRNAs (miRNAs are important regulators of post-transcriptional gene regulation and have altered the prevailing view of a linear relationship between gene and protein expression. Aberrant miRNA expression is an emerging theme for a wide variety of diseases, highlighting the fundamental role played by miRNAs in both physiological and pathological states. The identification of stable miRNAs in bodily fluids paved the way for their use as novel biomarkers amenable to clinical diagnosis in translational medicine. Identification of miRNAs in exosomes that are functional upon delivery to the recipient cells has highlighted a novel method of intercellular communication. Delivery of miRNAs to recipient cells via blood, with functional gene regulatory consequences, opens up novel avenues for target intervention. Exosomes thus offer a novel strategy for delivering drugs or RNA therapeutic agents. Though much work lies ahead, circulating miRNAs are unequivocally ushering in a new era of novel biomarker discovery, intercellular communication mechanisms, and therapeutic intervention strategies.

  14. Lipoprotein-associated phospholipase A2: a novel marker of cardiovascular risk and potential therapeutic target.

    Science.gov (United States)

    Macphee, Colin; Benson, G Martin; Shi, Yi; Zalewski, Andrew

    2005-06-01

    Although the clinical benefit of statins is well established, these agents reduce the risk of cardiovascular events by only 20 - 40%, and the residual risk for high-risk patients is considerable. The recognition of atherosclerosis as an inflammatory disease has opened the door to numerous complementary therapeutic approaches to further reduce risk and the overall burden of cardiovascular disease. Lipoprotein-associated phospholipase A(2) (Lp-PLA(2)) is a novel inflammatory marker of cardiovascular risk that is being evaluated as a potential therapeutic target. The biological function of this enzyme in atherosclerosis has been controversial but recent evidence supports its pro-atherogenic role. The enzyme is predominantly bound to low-density lipoprotein cholesterol particles in humans, and its activity produces bioactive lipid mediators that promote inflammatory processes present at every stage of atherogenesis, from atheroma initiation to plaque destabilisation and rupture. Initial clinical studies suggest that the inhibitors of Lp-PLA(2) can block enzyme activity in plasma and within atherosclerotic plaques. However, more studies are needed to determine the potential clinical benefits of inhibiting Lp-PLA(2). PMID:16004595

  15. Animal models and therapeutic molecular targets of cancer: utility and limitations

    Directory of Open Access Journals (Sweden)

    Cekanova M

    2014-10-01

    Full Text Available Maria Cekanova, Kusum Rathore Department of Small Animal Clinical Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN, USA Abstract: Cancer is the term used to describe over 100 diseases that share several common hallmarks. Despite prevention, early detection, and novel therapies, cancer is still the second leading cause of death in the USA. Successful bench-to-bedside translation of basic scientific findings about cancer into therapeutic interventions for patients depends on the selection of appropriate animal experimental models. Cancer research uses animal and human cancer cell lines in vitro to study biochemical pathways in these cancer cells. In this review, we summarize the important animal models of cancer with focus on their advantages and limitations. Mouse cancer models are well known, and are frequently used for cancer research. Rodent models have revolutionized our ability to study gene and protein functions in vivo and to better understand their molecular pathways and mechanisms. Xenograft and chemically or genetically induced mouse cancers are the most commonly used rodent cancer models. Companion animals with spontaneous neoplasms are still an underexploited tool for making rapid advances in human and veterinary cancer therapies by testing new drugs and delivery systems that have shown promise in vitro and in vivo in mouse models. Companion animals have a relatively high incidence of cancers, with biological behavior, response to therapy, and response to cytotoxic agents similar to those in humans. Shorter overall lifespan and more rapid disease progression are factors contributing to the advantages of a companion animal model. In addition, the current focus is on discovering molecular targets for new therapeutic drugs to improve survival and quality of life in cancer patients. Keywords: mouse cancer model, companion animal cancer model, dogs, cats, molecular targets

  16. Development of therapeutic Au-methylene blue nanoparticles for targeted photodynamic therapy of cervical cancer cells.

    Science.gov (United States)

    Yu, Jiashing; Hsu, Che-Hao; Huang, Chih-Chia; Chang, Po-Yang

    2015-01-14

    Photodynamic therapy (PDT) involves the cellular uptake of a photosensitizer (PS) combined with oxygen molecules and light at a specific wavelength to be able to trigger cancer cell death via the apoptosis pathway, which is less harmful and has less inflammatory side effect than necrosis. However, the traditional PDT treatment has two main deficiencies: the dark toxicity of the PS and the poor selectivity of the cellular uptake of PS between the target cells and normal tissues. In this work, methylene blue (MB), a known effective PS, combined with Au nanoparticles (NPs) was prepared using an intermolecular interaction between a polystyrene-alt-maleic acid (PSMA) layer on the Au NPs and MB. The Au@polymer/MB NPs produced a high quantum yield of singlet oxygen molecules, over 50% as much as that of free MB, when they were excited by a dark red light source at 660 nm, but without significant dark toxicity. Furthermore, transferrin (Tf) was conjugated on the Au@polymer/MB NPs via an EDC/NHS reaction to enhance the selectivity to HeLa cells compared to 3T3 fibroblasts. With a hand-held single laser treatment (32 mW/cm) for 4 min, the new Au@polymer/MB-Tf NPs showed a 2-fold enhancement of PDT efficiency toward HeLa cells over the use of free MB at 4 times dosage. Cellular staining examinations showed that the HeLa cells reacted with Au@polymer/MB-Tf NPs and the 660 nm light excitation triggered PDT, which caused the cells to undergo apoptosis ("programmed" cell death). We propose that applying this therapeutic Au@polymer/MB-Tf nanoagent is facile and safe for delivery and cancer cell targeting to simultaneously minimize side effects and accomplish a significant enhancement in photodynamic therapeutic efficiency toward next-generation nanomedicine development.

  17. ATP synthase ecto-α-subunit: a novel therapeutic target for breast cancer

    Directory of Open Access Journals (Sweden)

    Pan Jian

    2011-12-01

    Full Text Available Abstract Background Treatment failure for breast cancer is frequently due to lymph node metastasis and invasion to neighboring organs. The aim of the present study was to investigate invasion- and metastasis-related genes in breast cancer cells in vitro and in vivo. Identification of new targets will facilitate the developmental pace of new techniques in screening and early diagnosis. Improved abilities to predict progression and metastasis, therapeutic response and toxicity will help to increase survival of breast cancer patients. Methods Differential protein expression in two breast cancer cell lines, one with high and the other with low metastatic potential, was analyzed using two-dimensional liquid phase chromatographic fractionation (Proteome Lab PF 2D system followed by matrix-assisted laser desorption/time-of-flight mass spectrometry (MALDI-TOF/MS. Results Up regulation of α-subunit of ATP synthase was identified in high metastatic cells compared with low metastatic cells. Immunohistochemical analysis of 168 human breast cancer specimens on tissue microarrays revealed a high frequency of ATP synthase α-subunit expression in breast cancer (94.6% compared to normal (21.2% and atypical hyperplasia (23% breast tissues. Levels of ATP synthase expression levels strongly correlated with large tumor size, poor tumor differentiation and advanced tumor stages (P Conclusions Over-expression of ATP synthase α-subunit may be involved in the progression and metastasis of breast cancer, perhaps representing a potential biomarker for diagnosis, prognosis and a therapeutic target for breast cancer. This finding of this study will help us to better understand the molecular mechanism of tumor metastasis and to improve the screening, diagnosis, as well as prognosis and/or prediction of responses to therapy for breast cancer.

  18. Functional amyloid signaling via the inflammasome, necrosome, and signalosome: New therapeutic targets in heart failure

    Directory of Open Access Journals (Sweden)

    Traci L Parry

    2015-05-01

    Full Text Available As the most common cause of death and disability globally, heart disease remains an incompletely understood enigma. A growing number of cardiac diseases are being characterized by the presence of misfolded proteins underlying their pathophysiology, including cardiac amyloidosis and dilated cardiomyopathy (DCM. At least nine precursor proteins have been implicated in the development of cardiac amyloidosis, most commonly caused by multiple myeloma (MM light chain disease and disease-causing mutant or wildtype transthyretin (TTR. Similarly aggregates with PSEN1 and COFILIN-2 have been identified in up to 1/3 of idiopathic DCM cases studied indicating the potential predominance of misfolded proteins in heart failure. In this review, we present recent evidence linking misfolded proteins mechanistically with heart failure and present multiple lines of new therapeutic approaches that target the prevention of misfolded proteins in cardiac TTR amyloid disease. These include multiple small molecule pharmacological chaperones now in clinical trials designed specifically to support TTR folding by rational design, such as tafamidis, and chaperones previously developed for other purposes, such as doxycycline and tauroursodeoxycholic acid. Lastly, we present newly discovered non-pathological functional amyloid structures, such as the inflammasome and necrosome signaling complexes, which can be activated directly by amyloid. These may represent future targets to successfully attenuate amyloid-induced proteotoxicity in heart failure as the inflammasome, for example, is being therapeutically inhibited experimentally in autoimmune disease. Together, these studies demonstrate multiple novel points in which new therapies may be used to primarily prevent misfolded proteins or to inhibit their downstream amyloid-mediated effectors, such as the inflammasome, to prevent proteotoxicity in heart failure.

  19. Functional Amyloid Signaling via the Inflammasome, Necrosome, and Signalosome: New Therapeutic Targets in Heart Failure.

    Science.gov (United States)

    Parry, Traci L; Melehani, Jason H; Ranek, Mark J; Willis, Monte S

    2015-01-01

    As the most common cause of death and disability, globally, heart disease remains an incompletely understood enigma. A growing number of cardiac diseases are being characterized by the presence of misfolded proteins underlying their pathophysiology, including cardiac amyloidosis and dilated cardiomyopathy (DCM). At least nine precursor proteins have been implicated in the development of cardiac amyloidosis, most commonly caused by multiple myeloma light chain disease and disease-causing mutant or wildtype transthyretin (TTR). Similarly, aggregates with PSEN1 and COFILIN-2 have been identified in up to one-third of idiopathic DCM cases studied, indicating the potential predominance of misfolded proteins in heart failure. In this review, we present recent evidence linking misfolded proteins mechanistically with heart failure and present multiple lines of new therapeutic approaches that target the prevention of misfolded proteins in cardiac TTR amyloid disease. These include multiple small molecule pharmacological chaperones now in clinical trials designed specifically to support TTR folding by rational design, such as tafamidis, and chaperones previously developed for other purposes, such as doxycycline and tauroursodeoxycholic acid. Last, we present newly discovered non-pathological "functional" amyloid structures, such as the inflammasome and necrosome signaling complexes, which can be activated directly by amyloid. These may represent future targets to successfully attenuate amyloid-induced proteotoxicity in heart failure, as the inflammasome, for example, is being therapeutically inhibited experimentally in autoimmune disease. Together, these studies demonstrate multiple novel points in which new therapies may be used to primarily prevent misfolded proteins or to inhibit their downstream amyloid-mediated effectors, such as the inflammasome, to prevent proteotoxicity in heart failure. PMID:26664897

  20. Vancomycin Therapeutic Targets and Nephrotoxicity in Critically Ill Children With Cancer.

    Science.gov (United States)

    Seixas, Glaucia T F; Araujo, Orlei R; Silva, Dafne C B; Arduini, Rodrigo G; Petrilli, Antonio S

    2016-03-01

    To obtain pharmacokinetic and pharmacodynamic data for vancomycin in a cohort of critically ill pediatric oncology patients, we analyzed 256 measurements of vancomycin concentrations in 94 patients. Variables were tested as possible risk factors for vancomycin-related nephrotoxicity or death for 28 days. We found the following: mean vancomycin trough serum concentration, 15.6 ± 12.4 μg/mL; mean vancomycin clearance, 0.16 ± 0.098 L/h/kg; and mean vancomycin distribution volume, 1.04 ± 0.11 L/kg. Only 13.6% of serum trough level measurements were between 15 and 20 μg/mL. The trough levels showed a strong correlation with the AUC (area under the curve of serum concentrations vs. time over 24 h to the minimum inhibitory concentration ratio), with a 94% positive predictive value for AUC/MIC ≥ 400, but only for MIC=1. The doses that are currently used (60 mg/kg/d) attained the therapeutic target (AUC/MIC ≥ 400) in only 56% of measurements, considering MIC=1. A serum trough level of ≥ 20 μg/mL was an independent risk for nephrotoxicity (P = 0.0008; odds ratio = 17.83). Vancomycin-related nephrotoxicity was a predictor of death for up to 28 days (P = 0.003, odds ratio = 7.68). Currently administered doses of vancomycin do not reach the therapeutic target for critical cancer patients, particularly if staphylococci isolates have a MIC>1.

  1. Keap1-Nrf2 pathway: A promising target towards lung cancer prevention and therapeutics

    Institute of Scientific and Technical Information of China (English)

    Ying-Hui Tong; Bo Zhang; Yun Fan; Neng-Ming Lin

    2015-01-01

    Objectives: Drugs for targeted therapy have become a new strategy of adjuvant therapy for treatment of lung cancer.The Keapl (kelch-like ECH-associated protein 1)-Nrf2 (nuclear factor erythroid 2-related factor 2) pathway is recognized to be critical in regulating genes related to the cellular protective response and protecting cells from oxidative damages and toxic insult.Methods: Pubmed, Embase, OVID, and the Cochrane Library databases were searched from the beginning of each database without any limitations to the date of publication.Search terms were "Nrf2" or "Keap1" and "Lung cancer".Results: The upregulation of Nrf2 had been closely related to tumor protection and drug resistance.The aberrant state of Keap 1 or Nrf2 that were frequently found in lung cancer conferred a poor prognosis.Nrf2 could prevent cells from undergoing oncogenesis as a tumor suppressor, while it could also promote cancer progression and resistance to chemotherapeutic drugs as an oncogene,depending on the different stages of tumor progression.Target Nrf2 signaling by specific chemicals showed it could prevent tumor growth or combat chemoresistance.Conclusions: Increasing evidence has demonstrated the dual roles of the Keap1-Nrf2 pathway in tumor initiation and progression.In this paper, we provide a comprehensive overview of the potency of the Keap 1-Nrf2 pathway as an antitumor target, and the current status of Nrf2 activators or inhibitors for therapeutic approaches.Further studies are required to clarify the role of Nrf2 in lung cancer at different tumor stages, in order to maximize the efficacy of Keap1-Nrf2 targeting agents.Copyright 2015, Chinese Medical Association Production.Production and hosting by Elsevier B.V.on behalf of KeAi Communications Co., Ltd.This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/ by-nc-nd/4.0/).

  2. Targeted localized use of therapeutic antibodies: a review of non-systemic, topical and oral applications.

    Science.gov (United States)

    Jones, Russell G A; Martino, Angela

    2016-01-01

    Therapeutic antibodies provide important tools in the "medicine chest" of today's clinician for the treatment of a range of disorders. Typically monoclonal or polyclonal antibodies are administered in large doses, either directly or indirectly into the circulation, via a systemic route which is well suited for disseminated ailments. Diseases confined within a specific localized tissue, however, may be treated more effectively and at reduced cost by a delivery system which targets directly the affected area. To explore the advantages of the local administration of antibodies, we reviewed current alternative, non-systemic delivery approaches which are in clinical use, being trialed or developed. These less conventional approaches comprise: (a) local injections, (b) topical and (c) peroral administration routes. Local delivery includes intra-ocular injections into the vitreal humor (i.e. Ranibizumab for age-related macular degeneration), subconjunctival injections (e.g. Bevacizumab for corneal neovascularization), intra-articular joint injections (i.e. anti-TNF alpha antibody for persistent inflammatory monoarthritis) and intratumoral or peritumoral injections (e.g. Ipilimumab for cancer). A range of other strategies, such as the local use of antibacterial antibodies, are also presented. Local injections of antibodies utilize doses which range from 1/10th to 1/100th of the required systemic dose therefore reducing both side-effects and treatment costs. In addition, any therapeutic antibody escaping from the local site of disease into the systemic circulation is immediately diluted within the large blood volume, further lowering the potential for unwanted effects. Needle-free topical application routes become an option when the condition is restricted locally to an external surface. The topical route may potentially be utilized in the form of eye drops for infections or corneal neovascularization or be applied to diseased skin for psoriasis, dermatitis, pyoderma

  3. Vascular endothelial growth factor:an attractive target in the treatment of hypoxic/ischemic brain injury

    Institute of Scientific and Technical Information of China (English)

    Hui Guo; Hui Zhou; Jie Lu; Yi Qu; Dan Yu; Yu Tong

    2016-01-01

    Cerebral hypoxia or ischemia results in cell death and cerebral edema, as well as other cellular reactions such as angiogenesis and the reestablishment of functional microvasculature to promote recovery from brain injury. Vascular endothelial growth factor is expressed in the central nervous system after hypoxic/ischemic brain injury, and is involved in the process of brain repairvia the regulation of angiogenesis, neurogenesis, neurite outgrowth, and cerebral edema, which all require vascular endothelial growth factor signaling. In this review, we focus on the role of the vascular endothelial growth factor signaling pathway in the response to hypoxic/ischemic brain injury, and discuss potential therapeutic interventions.

  4. From Molecular Classification to Targeted Therapeutics: The Changing Face of Systemic Therapy in Metastatic Gastroesophageal Cancer

    Directory of Open Access Journals (Sweden)

    Adrian Murphy

    2015-01-01

    Full Text Available Histological classification of adenocarcinoma or squamous cell carcinoma for esophageal cancer or using the Lauren classification for intestinal and diffuse type gastric cancer has limited clinical utility in the management of advanced disease. Germline mutations in E-cadherin (CDH1 or mismatch repair genes (Lynch syndrome were identified many years ago but given their rarity, the identification of these molecular alterations does not substantially impact treatment in the advanced setting. Recent molecular profiling studies of upper GI tumors have added to our knowledge of the underlying biology but have not led to an alternative classification system which can guide clinician’s therapeutic decisions. Recently the Cancer Genome Atlas Research Network has proposed four subtypes of gastric cancer dividing tumors into those positive for Epstein-Barr virus, microsatellite unstable tumors, genomically stable tumors, and tumors with chromosomal instability. Unfortunately to date, many phase III clinical trials involving molecularly targeted agents have failed to meet their survival endpoints due to their use in unselected populations. Future clinical trials should utilize molecular profiling of individual tumors in order to determine the optimal use of targeted therapies in preselected patients.

  5. MicroRNAs as newer therapeutic targets: A big hope from a tiny player

    Directory of Open Access Journals (Sweden)

    Hardik S Ghelani

    2012-01-01

    Full Text Available MicroRNAs (miRNAs are a novel group of universally present small noncoding endogenous RNAs that regulate gene expression and protein coding by base pairing with the 3′ untranslated region (UTR of target mRNAs. So they have been associated with several physiological processes and play an important role in the manifestation of diverse diseases. miRNAs expression is associated with the normal and diverse pathophysiological state including cardiac hypertrophy, neurodegenerative diseases, diabetes and its complication, and cancer because individual miRNAs are associated with the regulation of the expression of multiple target genes. Modulating the expression of a single miRNA can influence an entire gene network and thereby modify complex disease phenotypes. From recent studies, it has been confirmed that miRNA has a potential physiological role in various body systems. But in some specialized condition over expression of miRNA within the cytoplasm also leads to some pathological condition in the body. Here, we summarize the roles of miRNAs in various pathological conditions and consider the advantages and potential challenges of miRNA-based therapeutic approaches compared to conventional drug-based therapies.

  6. NADPH oxidase enzymes in skin fibrosis: molecular targets and therapeutic agents.

    Science.gov (United States)

    Babalola, Olubukola; Mamalis, Andrew; Lev-Tov, Hadar; Jagdeo, Jared

    2014-05-01

    Fibrosis is characterized by the excessive deposition of extracellular matrix components eventually resulting in organ dysfunction and failure. In dermatology, fibrosis is the hallmark component of many skin diseases, including systemic sclerosis, graft-versus-host disease, hypertrophic scars, keloids, nephrogenic systemic fibrosis, porphyria cutanea tarda, restrictive dermopathy and other conditions. Fibrotic skin disorders may be debilitating and impair quality of life. There are few FDA-approved anti-fibrotic drugs; thus, research in this area is crucial in addressing this deficiency. Recent investigations elucidating the pathogenesis of skin fibrosis have implicated endogenous reactive oxygen species produced by the multicomponent nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox) enzyme complex. In this review, we discuss Nox enzymes and their role in skin fibrosis. An overview of the Nox enzyme family is presented and their role in the pathogenesis of skin fibrosis is discussed. The mechanisms by which Nox enzymes influence specific fibrotic skin disorders are also reviewed. Finally, we describe the therapeutic approaches to ameliorate skin fibrosis by directly targeting Nox enzymes with the use of statins, p47phox subunit modulators, or GKT137831, a competitive inhibitor of Nox enzymes. Nox enzymes can also be targeted indirectly via scavenging ROS with antioxidants. We believe that Nox modulators are worthy of further investigation and have the potential to transform the management of skin fibrosis by dermatologists.

  7. Therapeutic efficacy by targeting correction of Notch1-induced aberrants in uveal tumors.

    Directory of Open Access Journals (Sweden)

    Xiaolin Huang

    Full Text Available There is a need for more effective treatments for uveal melanoma. The recombinant oncolytic adenovirus H101 replicates specifically in p53-depleted tumor cells, and has been approved for use by the Chinese State Food and Drug Administration. However, this treatment is associated with subsequent remission. Transfection of uveal melanoma cells with a small interfering RNA against Notch1 (siNotch1 effectively suppressed Notch1 expression, resulting in significant cell growth inhibition when combined with H101 treatment. Combined treatment with siNotch1 and H101 (H101-Notch1-siRNA greatly enhanced apoptosis and cell cycle arrest in vitro as compared to treatment with H101 or siNotch1 alone. For in vivo treatments, the combined treatment of siNotch1 and H101 showed remarkable tumor growth inhibition and prolonged mouse survival in the OCM1 xenograft model. We predict that Notch pathway deregulation could be a feature of uveal melanoma, and could be a therapeutic target, especially if p53 is concurrently targeted.

  8. Stromal Fibroblast in Age-Related Cancer: Role in Tumorigenesis and Potential as Novel Therapeutic Target.

    Science.gov (United States)

    Elkhattouti, Abdelouahid; Hassan, Mohamed; Gomez, Christian R

    2015-01-01

    Incidence of most common cancers increases with age due to accumulation of damage to cells and tissues. Stroma, the structure close to the basement membrane, is gaining increased attention from clinicians and researchers due to its increasingly, yet incompletely understood role in the development of age-related cancer. With advanced age, stroma generates a pro-tumorigenic microenvironment, exemplified by the senescence-associated secretory phenotype (SASP). Components of the SASP, such as cytokines, chemokines, and high energy metabolites are main drivers of age-related cancer initiation and sustain its progression. Our purpose is to provide insight into the mechanistic role of the stroma, with particular emphasis on stromal fibroblasts, on the development of age-related tumors. We also present evidence of the potential of the stroma as target for tumor therapy. Likewise, a rationale for age-related antitumor therapy targeting the stroma is presented. We expect to foster debate on the underlining basis of age-related cancer pathobiology. We also would like to promote discussion on novel stroma-based anticancer therapeutic strategies tailored to treat the elderly. PMID:26284191

  9. Stromal Fibroblast in Age-related Cancer: Role in Tumorigenesis and Potential as Novel Therapeutic Target

    Directory of Open Access Journals (Sweden)

    Abdelouahid eElkhattouti

    2015-07-01

    Full Text Available Incidence of most common cancers increases with age due to accumulation of damage to cells and tissues. Stroma, the structure close to the basement membrane, is gaining increased attention from clinicians and researchers due to its increasingly, yet incompletely understood role in the development of age-related cancer. With advanced age, stroma generates a pro-tumorigenic microenvironment, exemplified by the secretory-associated specific phenotype (SASP. Components of the SASP such as cytokines, chemokines, and high energy metabolites are main drivers of age-related cancer initiation and sustain its progression. Our purpose is to provide insight into the mechanistic role of the stroma, with particular emphasis on stromal fibroblasts, on the development of age-related tumors. We also present evidence of the potential of the stroma as target for tumor therapy. Likewise, a rationale for age-related antitumor therapy targeting the stroma is presented. We expect to foster debate on the underlining basis of age-related cancer pathobiology. We also would like to promote discussion on novel stroma-based anticancer therapeutic strategies tailored to treat the elderly.

  10. Chaperonopathies and chaperonotherapy. Hsp60 as therapeutic target in cancer: potential benefits and risks.

    Science.gov (United States)

    Cappello, Francesco; Angileri, Francesca; de Macario, Everly Conway; Macario, Alberto J L

    2013-01-01

    In this minireview we focus on Hsp60 as a target for anticancer therapy. We discuss the new concepts of chaperonopathies and chaperonotherapy and present information on Hsp60 localization in the cell membrane of human tumor cells. We describe novel mechanisms for Hsp60 reaching the extracellular environment that involve membrane-associated stages, as well as data on anti-Hsp60 antibodies found in human sera, both in normal subjects and patients affected by autoimmune diseases. Finally, we discuss possible therapeutic applications of anti-Hsp60 antibodies in cancer treatment, evaluating also side effects on non-tumor cells. In conclusion, the way for investigating Hsp60-targeted anti-tumor therapy is open, at least for those tumors that express Hsp60 on its surface and/or secrete it outside the cell, as is the search for the molecular mechanisms involved in Hsp60 translocation from cytosol to cell membrane: elucidation of this mechanism will greatly facilitate the optimization of chaperonotherapy centered on Hsp60 with anti-tumor efficacy and minimal side effects.

  11. From molecular classification to targeted therapeutics: the changing face of systemic therapy in metastatic gastroesophageal cancer.

    Science.gov (United States)

    Murphy, Adrian; Kelly, Ronan J

    2015-01-01

    Histological classification of adenocarcinoma or squamous cell carcinoma for esophageal cancer or using the Lauren classification for intestinal and diffuse type gastric cancer has limited clinical utility in the management of advanced disease. Germline mutations in E-cadherin (CDH1) or mismatch repair genes (Lynch syndrome) were identified many years ago but given their rarity, the identification of these molecular alterations does not substantially impact treatment in the advanced setting. Recent molecular profiling studies of upper GI tumors have added to our knowledge of the underlying biology but have not led to an alternative classification system which can guide clinician's therapeutic decisions. Recently the Cancer Genome Atlas Research Network has proposed four subtypes of gastric cancer dividing tumors into those positive for Epstein-Barr virus, microsatellite unstable tumors, genomically stable tumors, and tumors with chromosomal instability. Unfortunately to date, many phase III clinical trials involving molecularly targeted agents have failed to meet their survival endpoints due to their use in unselected populations. Future clinical trials should utilize molecular profiling of individual tumors in order to determine the optimal use of targeted therapies in preselected patients.

  12. Potential Molecular Targeted Therapeutics: Role of PI3-K/Akt/mTOR Inhibition in Cancer.

    Science.gov (United States)

    Sokolowski, Kevin M; Koprowski, Steven; Kunnimalaiyaan, Selvi; Balamurugan, Mariappan; Gamblin, T Clark; Kunnimalaiyaan, Muthusamy

    2016-01-01

    Primary liver cancer is one of the most commonly occurring cancers worldwide. Hepatocellular carcinoma (HCC) represents the majority of primary liver cancer and is the 3rd most common cause of cancer-related deaths globally. Survival rates of patients with HCC are dependent upon early detection as concomitant liver dysfunction and advanced disease limits traditional therapeutic options such as resection or ablation. Unfortunately, at the time of diagnosis, most patients are not eligible for curative surgery and have a five-year relative survival rate less than 20%, leading to systemic therapy as the only option. Currently, sorafenib is the only approved systemic therapy; however, it has a limited survival advantage and low efficacy prompting alternative strategies. The inception of sorafenib for HCC systemic therapy and the understanding involved of cancer therapy have led to an enhanced focus of the PI3-k/Akt/mTOR pathway as a potential area of targeting including pan and isoform-specific PI3-K inhibitors, Akt blockade, and mTOR suppression. The multitude, expanding roles, and varying clinical trials of these inhibitors have led to an increase in knowledge and availability for current and future studies. In this review, we provide a review of the literature with the aim to focus on potential targets for HCC therapies as well as an in depth focus on Akt inhibition.

  13. NADPH oxidase enzymes in skin fibrosis: molecular targets and therapeutic agents.

    Science.gov (United States)

    Babalola, Olubukola; Mamalis, Andrew; Lev-Tov, Hadar; Jagdeo, Jared

    2014-05-01

    Fibrosis is characterized by the excessive deposition of extracellular matrix components eventually resulting in organ dysfunction and failure. In dermatology, fibrosis is the hallmark component of many skin diseases, including systemic sclerosis, graft-versus-host disease, hypertrophic scars, keloids, nephrogenic systemic fibrosis, porphyria cutanea tarda, restrictive dermopathy and other conditions. Fibrotic skin disorders may be debilitating and impair quality of life. There are few FDA-approved anti-fibrotic drugs; thus, research in this area is crucial in addressing this deficiency. Recent investigations elucidating the pathogenesis of skin fibrosis have implicated endogenous reactive oxygen species produced by the multicomponent nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox) enzyme complex. In this review, we discuss Nox enzymes and their role in skin fibrosis. An overview of the Nox enzyme family is presented and their role in the pathogenesis of skin fibrosis is discussed. The mechanisms by which Nox enzymes influence specific fibrotic skin disorders are also reviewed. Finally, we describe the therapeutic approaches to ameliorate skin fibrosis by directly targeting Nox enzymes with the use of statins, p47phox subunit modulators, or GKT137831, a competitive inhibitor of Nox enzymes. Nox enzymes can also be targeted indirectly via scavenging ROS with antioxidants. We believe that Nox modulators are worthy of further investigation and have the potential to transform the management of skin fibrosis by dermatologists. PMID:24155025

  14. Apelin/APJ system as a therapeutic target in diabetes and its complications.

    Science.gov (United States)

    Hu, Haoliang; He, Lu; Li, Lanfang; Chen, Linxi

    2016-09-01

    The G-protein-coupled receptor APJ and its endogenous ligand apelin are widely expressed in many peripheral tissues and central nervous system, including adipose tissue, skeletal muscles and hypothalamus. Apelin/APJ system, involved in numerous physiological functions like angiogenesis, fluid homeostasis and energy metabolism regulation, is notably implicated in the development of different pathologies such as diabetes and its complications. Increasing evidence suggests that apelin regulates insulin sensitivity, stimulates glucose utilization and enhances brown adipogenesis in different tissues associated with diabetes. Moreover, apelin is also involved in the regulation of diabetic complications via binding to APJ receptor. Apelin improves diabetes-induced kidney hypertrophia, normalizes obesity-associated cardiac hypertrophy and negatively promotes retinal angiogenesis in diabetic retinopathy. In this review, we provide a comprehensive overview about the role of apelin/APJ system in different tissues related with diabetes. Furthermore, we describe the pathogenesis of diabetic complications associated with apelin/APJ system. Finally, agonists and antagonists targeted to APJ receptor are described in the literature. Thus, we highlight apelin/APJ system as a novel therapeutic target for pharmacological intervention in treating diabetes and its complications. PMID:27650065

  15. Dynamic Regulation of APE1/Ref-1 as a Therapeutic Target Protein.

    Science.gov (United States)

    Choi, Sunga; Joo, Hee Kyoung; Jeon, Byeong Hwa

    2016-05-01

    Apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE1/Ref-1) is a multifunctional protein that plays a central role in the cellular response to DNA damage and redox regulation against oxidative stress. APE1/Ref-1 functions in the DNA base excision repair pathway, the redox regulation of several transcription factors, and the control of intracellular redox status through the inhibition of reactive oxygen species (ROS) production. APE1/Ref-1 is predominantly localized in the nucleus; however, its subcellular localization is dynamically regulated and it may be found in the mitochondria or elsewhere in the cytoplasm. Studies have identified a nuclear localization signal and a mitochondrial target sequence in APE1/Ref-1, as well as the involvement of the nuclear export system, as determinants of APE1/Ref-1 subcellular distribution. Recently, it was shown that APE1/Ref-1 is secreted in response to hyperacetylation at specific lysine residues. Additionally, post-translational modifications such as phosphorylation, S-nitrosation, and ubiquitination appear to play a role in fine-tuning the activities and subcellular localization of APE1/Ref-1. In this review, we will introduce the multifunctional role of APE1/Ref-1 and its potential usefulness as a therapeutic target in cancer and cardiovascular disease.

  16. Targeting estrogen receptor β as preventive therapeutic strategy for Leber's hereditary optic neuropathy.

    Science.gov (United States)

    Pisano, Annalinda; Preziuso, Carmela; Iommarini, Luisa; Perli, Elena; Grazioli, Paola; Campese, Antonio F; Maresca, Alessandra; Montopoli, Monica; Masuelli, Laura; Sadun, Alfredo A; d'Amati, Giulia; Carelli, Valerio; Ghelli, Anna; Giordano, Carla

    2015-12-15

    Leber's hereditary optic neuropathy (LHON) is a maternally inherited blinding disease characterized by degeneration of retinal ganglion cells (RGCs) and consequent optic nerve atrophy. Peculiar features of LHON are incomplete penetrance and gender bias, with a marked male prevalence. Based on the different hormonal metabolism between genders, we proposed that estrogens play a protective role in females and showed that these hormones ameliorate mitochondrial dysfunction in LHON through the estrogen receptors (ERs). We also showed that ERβ localize to the mitochondria of RGCs. Thus, targeting ERβ may become a therapeutic strategy for LHON specifically aimed at avoiding or delaying the onset of disease in mutation carriers. Here, we tested the effects of ERβ targeting on LHON mitochondrial defective metabolism by treating LHON cybrid cells carrying the m.11778G>A mutation with a combination of natural estrogen-like compounds that bind ERβ with high selectivity. We demonstrated that these molecules improve cell viability by reducing apoptosis, inducing mitochondrial biogenesis and strongly reducing the levels of reactive oxygen species in LHON cells. These effects were abolished in cells with ERβ knockdown by silencing receptor expression or by using specific receptor antagonists. Our observations support the hypothesis that estrogen-like molecules may be useful in LHON prophylactic therapy. This is particularly important for lifelong disease prevention in unaffected LHON mutation carriers. Current strategies attempting to combat degeneration of RGCs during the acute phase of LHON have not been very effective. Implementing a different and preemptive approach with a low risk profile may be very helpful.

  17. Current understanding of BRAF alterations in diagnosis, prognosis and therapeutic targeting in paediatric low grade gliomas

    Directory of Open Access Journals (Sweden)

    Catherine Louise Penman

    2015-03-01

    Full Text Available The mitogen-activated protein kinase (MAPK pathway is known to play a key role in the initiation and maintenance of many tumours as well as normal development. This often occurs through mutation of the genes encoding RAS and RAF proteins which are involved in signal transduction in this pathway. BRAF is one of three RAF kinases which act as downstream effectors of growth factor signalling leading to cell cycle progression, proliferation and survival. Initially reported as a point mutation (V600E in the majority of metastatic melanomas, other alterations in the BRAF gene have now been reported in a variety of human cancers including papillary thyroid cancer, colon carcinomas, hairy cell leukaemia and more recently in gliomas. The identification of oncogenic mutations in the BRAF gene have led to a revolution in the treatment of metastatic melanoma using targeted molecular therapies that affect the MAPK pathway either directly through BRAF inhibition or downstream through inhibition of MEK. This review describes the molecular biology of BRAF in the context of paediatric low grade gliomas, the role of BRAF as a diagnostic marker, the prognostic implications of BRAF and evidence for therapeutic targeting of BRAF.

  18. Therapeutic Modulation of Apoptosis: Targeting the BCL-2 Family at the Interface of the Mitochondrial Membrane

    Science.gov (United States)

    Nemec, Kathleen N.

    2008-01-01

    A vast portion of human disease results when the process of apoptosis is defective. Disorders resulting from inappropriate cell death range from autoimmune and neurodegenerative conditions to heart disease. Conversely, prevention of apoptosis is the hallmark of cancer and confounds the efficacy of cancer therapeutics. In the search for optimal targets that would enable the control of apoptosis, members of the BCL-2 family of anti- and pro-apoptotic factors have figured prominently. Development of BCL-2 antisense approaches, small molecules, and BH3 peptidomimetics has met with both success and failure. Success-because BCL-2 proteins play essential roles in apoptosis. Failure-because single targets for drug development have limited scope. By examining the activity of the BCL-2 proteins in relation to the mitochondrial landscape and drawing attention to the significant mitochondrial membrane alterations that ensue during apoptosis, we demonstrate the need for a broader based multi-disciplinary approach for the design of novel apoptosis-modulating compounds in the treatment of human disease. PMID:18972587

  19. Nanocarriers for spleen targeting: anatomo-physiological considerations, formulation strategies and therapeutic potential.

    Science.gov (United States)

    Jindal, Anil B

    2016-10-01

    There are several clinical advantages of spleen targeting of nanocarriers. For example, enhanced splenic concentration of active agents could provide therapeutic benefits in spleen resident infections and hematological disorders including malaria, hairy cell leukemia, idiopathic thrombocytopenic purpura, and autoimmune hemolytic anemia. Furthermore, spleen delivery of immunosuppressant agents using splenotropic carriers may reduce the chances of allograft rejection in organ transplantation. Enhanced concentration of radiopharmaceuticals in the spleen may improve visualization of the organ, which could provide benefit in the diagnosis of splenic disorders. Unique anatomical features of the spleen including specialized microvasculature environment and slow blood circulation rate enable it an ideal drug delivery site. Because there is a difference in blood flow between spleen and liver, splenic delivery is inversely proportional to the hepatic uptake. It is therefore desirable engineering of nanocarriers, which, upon intravenous administration, can avoid uptake by hepatic Kupffer cells to enhance splenic localization. Stealth and non-spherical nanocarriers have shown enhanced splenic delivery of active agents by avoiding hepatic uptake. The present review details the research in the field of splenotropy. Formulation strategies to design splenotropic drug delivery systems are discussed. The review also highlights the clinical relevance of spleen targeting of nanocarriers and application in diagnostics. PMID:27334277

  20. Emerging Lung Cancer Therapeutic Targets Based on the Pathogenesis of Bone Metastases

    Directory of Open Access Journals (Sweden)

    Moses O. Oyewumi

    2014-01-01

    Full Text Available Lung cancer is the second most common cancer and the leading cause of cancer related mortality in both men and women. Each year, more people die of lung cancer than of colon, breast, and prostate cancers combined. It is widely accepted that tumor metastasis is a formidable barrier to effective treatment of lung cancer. The bone is one of the frequent metastatic sites for lung cancer occurring in a large number of patients. Bone metastases can cause a wide range of symptoms that could impair quality of life of lung cancer patients and shorten their survival. We strongly believe that molecular targets (tumor-related and bone microenvironment based that have been implicated in lung cancer bone metastases hold great promise in lung cancer therapeutics. Thus, this paper discusses some of the emerging molecular targets that have provided insights into the cascade of metastases in lung cancer with the focus on bone invasion. It is anticipated that the information gathered might be useful in future efforts of optimizing lung cancer treatment strategies.

  1. Type I IL-1 Receptor (IL-1RI as Potential New Therapeutic Target for Bronchial Asthma

    Directory of Open Access Journals (Sweden)

    Jyh-Hong Lee

    2010-01-01

    Full Text Available The IL-1R/TLR family has been receiving considerable attention as potential regulators of inflammation through their ability to act as either activators or suppressors of inflammation. Asthma is a chronic inflammatory disease characterized by airway hyperresponsiveness, allergic inflammation, elevated serum total, allergen-specific IgE levels, and increased Th2 cytokine production. The discovery that the IL-1RI–IL-1 and ST2–IL-33 pathways are crucial for allergic inflammation has raised interest in these receptors as potential targets for developing new therapeutic strategies for bronchial asthma. This paper discusses the current use of neutralizing mAb or soluble receptor constructs to deplete cytokines, the use of neutralizing mAb or recombinant receptor antagonists to block cytokine receptors, and gene therapy from experimental studies in asthma. Targeting IL-1RI–IL-1 as well as ST2–IL-33 pathways may promise a disease-modifying approach in the future.

  2. Magnetic resonance monitoring of focused ultrasound/magnetic nanoparticle targeting delivery of therapeutic agents to the brain

    OpenAIRE

    Liu, Hao-Li; Hua, Mu-Yi; Yang, Hung-Wei; Huang, Chiung-Yin; Chu, Po-Chun; Wu, Jia-Shin; Tseng, I-Chou; Wang, Jiun-Jie; Yen, Tzu-Chen; Chen, Pin-Yuan; Wei, Kuo-Chen

    2010-01-01

    The superparamagnetic properties of magnetic nanoparticles (MNPs) allow them to be guided by an externally positioned magnet and also provide contrast for MRI. However, their therapeutic use in treating CNS pathologies in vivo is limited by insufficient local accumulation and retention resulting from their inability to traverse biological barriers. The combined use of focused ultrasound and magnetic targeting synergistically delivers therapeutic MNPs across the blood–brain barrier to enter th...

  3. Fatal attraction

    DEFF Research Database (Denmark)

    Jensen, Kim Ebensgaard

    2012-01-01

    of the use of the Danish ihjel-construction which accounts for patterns of attraction of construction-verb attraction, patterns of productivity, and various types of subconstructions, including item- and item-class-based ones and metaphorical extensions. The description of the ihjel-construction should also...

  4. Delivery of Therapeutics Targeting the mRNA-Binding Protein HuR Using 3DNA Nanocarriers Suppresses Ovarian Tumor Growth.

    Science.gov (United States)

    Huang, Yu-Hung; Peng, Weidan; Furuuchi, Narumi; Gerhart, Jacquelyn; Rhodes, Kelly; Mukherjee, Neelanjan; Jimbo, Masaya; Gonye, Gregory E; Brody, Jonathan R; Getts, Robert C; Sawicki, Janet A

    2016-03-15

    Growing evidence shows that cancer cells use mRNA-binding proteins and miRNAs to posttranscriptionally regulate signaling pathways to adapt to harsh tumor microenvironments. In ovarian cancer, cytoplasmic accumulation of mRNA-binding protein HuR (ELAVL1) is associated with poor prognosis. In this study, we observed high HuR expression in ovarian cancer cells compared with ovarian primary cells, providing a rationale for targeting HuR. RNAi-mediated silencing of HuR in ovarian cancer cells significantly decreased cell proliferation and anchorage-independent growth, and impaired migration and invasion. In addition, HuR-depleted human ovarian xenografts were smaller than control tumors. A biodistribution study showed effective tumor-targeting by a novel Cy3-labeled folic acid (FA)-derivatized DNA dendrimer nanocarrier (3DNA). We combined siRNAs against HuR with FA-3DNA and found that systemic administration of the resultant FA-3DNA-siHuR conjugates to ovarian tumor-bearing mice suppressed tumor growth and ascites development, significantly prolonging lifespan. NanoString gene expression analysis identified multiple HuR-regulated genes that function in many essential cellular and molecular pathways, an attractive feature of candidate therapeutic targets. Taken together, these results are the first to demonstrate the versatility of the 3DNA nanocarrier for in vivo-targeted delivery of a cancer therapeutic and support further preclinical investigation of this system adapted to siHuR-targeted therapy for ovarian cancer. PMID:26921342

  5. RGS6 as a Novel Therapeutic Target in CNS Diseases and Cancer.

    Science.gov (United States)

    Ahlers, Katelin E; Chakravarti, Bandana; Fisher, Rory A

    2016-05-01

    Regulator of G protein signaling (RGS) proteins are gatekeepers regulating the cellular responses induced by G protein-coupled receptor (GPCR)-mediated activation of heterotrimeric G proteins. Specifically, RGS proteins determine the magnitude and duration of GPCR signaling by acting as a GTPase-activating protein for Gα subunits, an activity facilitated by their semiconserved RGS domain. The R7 subfamily of RGS proteins is distinguished by two unique domains, DEP/DHEX and GGL, which mediate membrane targeting and stability of these proteins. RGS6, a member of the R7 subfamily, has been shown to specifically modulate Gαi/o protein activity which is critically important in the central nervous system (CNS) for neuronal responses to a wide array of neurotransmitters. As such, RGS6 has been implicated in several CNS pathologies associated with altered neurotransmission, including the following: alcoholism, anxiety/depression, and Parkinson's disease. In addition, unlike other members of the R7 subfamily, RGS6 has been shown to regulate G protein-independent signaling mechanisms which appear to promote both apoptotic and growth-suppressive pathways that are important in its tumor suppressor function in breast and possibly other tissues. Further highlighting the importance of RGS6 as a target in cancer, RGS6 mediates the chemotherapeutic actions of doxorubicin and blocks reticular activating system (Ras)-induced cellular transformation by promoting degradation of DNA (cytosine-5)-methyltransferase 1 (DNMT1) to prevent its silencing of pro-apoptotic and tumor suppressor genes. Together, these findings demonstrate the critical role of RGS6 in regulating both G protein-dependent CNS pathology and G protein-independent cancer pathology implicating RGS6 as a novel therapeutic target. PMID:27002730

  6. Asthma phenotyping: a necessity for improved therapeutic precision and new targeted therapies.

    Science.gov (United States)

    Chung, Kian Fan

    2016-02-01

    Asthma is a common heterogeneous disease with a complex pathophysiology that carries a significant mortality rate and high morbidity. Current therapies based on inhaled corticosteroids and long-acting β-agonists remain effective in a large proportion of patients with asthma, but ~10% (considered to have 'severe asthma') do not respond to these treatments even at high doses or with the use of oral corticosteroids. Analytical clustering methods have revealed phenotypes that include dependence on high-dose corticosteroid treatment, severe airflow obstruction and recurrent exacerbations associated with an allergic background and late onset of disease. One severe phenotype is eosinophilic inflammation-predominant asthma, with late-onset disease, rhinosinusitis, aspirin sensitivity and exacerbations. Blood and sputum eosinophilia have been used to distinguish patients with high Th2 inflammation and to predict therapeutic response to treatments targeted towards Th2-associated cytokines. New therapies in the form of humanized antibodies against Th2 targets, such as anti-IgE, anti-IL4Rα, anti-IL-5 and anti-IL-13 antibodies, have shown encouraging results in terms of reduction in exacerbations and improvement in airflow in patients with a 'Th2-high' expression profile and blood eosinophilia. Research efforts are now focusing on elucidating the phenotypes underlying the non-Th2-high (or Th2-low) group, which constitutes ~50% of severe asthma cases. There is an increasing need to use biomarkers to indicate the group of patients who will respond to a specifically targeted treatment. The use of improved tools to measure activity of disease, a better definition of severe asthma and the delineation of inflammatory pathways with omics analyses using computational tools, will lead to better-defined phenotypes for specific therapies. PMID:26076339

  7. Metabolic pathway analysis approach: identification of novel therapeutic target against methicillin resistant Staphylococcus aureus.

    Science.gov (United States)

    Uddin, Reaz; Saeed, Kiran; Khan, Waqasuddin; Azam, Syed Sikander; Wadood, Abdul

    2015-02-10

    Multiple Drug Resistant (MDR) bacteria are no more inhibited by the front line antibiotics due to extreme resistance. Methicillin Resistant Staphylococcus aureus (MRSA) is one of the MDR pathogens notorious for its widespread infection around the world. The high resistance acquired by MRSA needs a serious concern and efforts should be carried out for the discovery of better therapeutics. With this aim, we designed a comparison of the metabolic pathways of the pathogen, MRSA strain 252 (MRSA252) with the human host (i.e., Homo sapiens) by using well-established in silico methods. We identified several metabolic pathways unique to MRSA (i.e., absent in the human host). Furthermore, a subtractive genomics analysis approach was applied for retrieval of proteins only from the unique metabolic pathways. Subsequently, proteins of unique MRSA pathways were compared with the host proteins. As a result, we have shortlisted few unique and essential proteins that could act as drug targets against MRSA. We further assessed the druggability potential of the shortlisted targets by comparing them with the DrugBank Database (DBD). The identified drug targets could be useful for an effective drug discovery phase. We also searched the sequences of unique as well as essential enzymes from MRSA in Protein Data Bank (PDB). We shortlisted at least 12 enzymes for which there was no corresponding deposition in PDB, reflecting that their crystal structures are yet to be solved! We selected Glutamate synthase out of those 12 enzymes owing to its participation in significant metabolic pathways of the pathogen e.g., Alanine, Aspartate, Glutamate and Nitrogen metabolism and its evident suitability as drug target among other MDR bacteria e.g., Mycobacteria. Due to the unavailability of any crystal structure of Glutamate synthase in PDB, we generated the 3D structure by homology modeling. The modeled structure was validated by multiple analysis tools. The active site of Glutamate synthase was

  8. DUBbing Cancer: Deubiquitylating Enzymes Involved in Epigenetics, DNA Damage and the Cell Cycle As Therapeutic Targets

    Science.gov (United States)

    Pinto-Fernandez, Adan; Kessler, Benedikt M.

    2016-01-01

    Controlling cell proliferation is one of the hallmarks of cancer. A number of critical checkpoints ascertain progression through the different stages of the cell cycle, which can be aborted when perturbed, for instance by errors in DNA replication and repair. These molecular checkpoints are regulated by a number of proteins that need to be present at the right time and quantity. The ubiquitin system has emerged as a central player controlling the fate and function of such molecules such as cyclins, oncogenes and components of the DNA repair machinery. In particular, proteases that cleave ubiquitin chains, referred to as deubiquitylating enzymes (DUBs), have attracted recent attention due to their accessibility to modulation by small molecules. In this review, we describe recent evidence of the critical role of DUBs in aspects of cell cycle checkpoint control, associated DNA repair mechanisms and regulation of transcription, representing pathways altered in cancer. Therefore, DUBs involved in these processes emerge as potentially critical targets for the treatment of not only hematological, but potentially also solid tumors.

  9. Tumor Progression Locus 2 (Tpl2 Kinase as a Novel Therapeutic Target for Cancer: Double-Sided Effects of Tpl2 on Cancer

    Directory of Open Access Journals (Sweden)

    Hye Won Lee

    2015-02-01

    Full Text Available Tumor progression locus 2 (Tpl2 is a mitogen-activated protein kinase (MAPK kinase kinase (MAP3K that conveys various intra- and extra-cellular stimuli to effector proteins of cells provoking adequate adoptive responses. Recent studies have elucidated that Tpl2 is an indispensable signal transducer as an MAP3K family member in diverse signaling pathways that regulate cell proliferation, survival, and death. Since tumorigenesis results from dysregulation of cellular proliferation, differentiation, and apoptosis, Tpl2 participates in many decisive molecular processes of tumor development and progression. Moreover, Tpl2 is closely associated with cytokine release of inflammatory cells, which has crucial effects on not only tumor cells but also tumor microenvironments. These critical roles of Tpl2 in human cancers make it an attractive anti-cancer therapeutic target. However, Tpl2 contradictorily works as a tumor suppressor in some cancers. The double-sided effects of Tpl2 originate from the specific upstream and downstream signaling environment of each tumor, since Tpl2 interacts with various signaling components. This review summarizes recent studies concerning the possible roles of Tpl2 in human cancers and considers its possibility as a therapeutic target, against which novel anti-cancer agents could be developed.

  10. Glo1 genetic amplification as a potential therapeutic target in hepatocellular carcinoma

    Science.gov (United States)

    Zhang, Shirong; Liang, Xiaodong; Zheng, Xiaoliang; Huang, Haixiu; Chen, Xufeng; Wu, Kan; Wang, Bing; Ma, Shenglin

    2014-01-01

    Glyoxalase 1 (Glo1) gene aberrations is associated with tumorigenesis and progression in numerous cancers. In this study, we explored the role of Glo1 genetic amplification and expression in Chinese patients with hepatocellular carcinoma (HCC), and Glo1 genetic amplification as potential therapeutic target for HCC. We used fluorescence in situ hybridization (FISH) analysis and qRT-PCR to examine Glo1 genetic aberrations and Glo1 mRNA expression in paired tumor samples obtained from HCC patients. Glo1 genetic amplification was identified in a subset of HCC patient (6%, 3/50), and up-regulation of Glo1 expression was found in 48% (24/50) of tumor tissues compared with adjacent non-tumorous tissues. Statistic analysis showed that Glo1-upregulation significantly correlated with high serum level of alpha-fetoprotein (AFP). Interfering Glo1 expression with shRNA knocking-down led to significant inhibition of cell growth and induced apoptosis in primarily cultured HCC cells carrying genetic amplified Glo1 gene, while no inhibitory effects on cell proliferation were observed in HCC cells with normal copies of Glo1 gene. Glo1 knockdown also inhibited tumor growth and induced apoptosis in xenograft tumors established from primarily cultured HCC cells with Glo1 gene amplification. In addition, Glo1 knocking-down with shRNA interfering caused cellular accumulation of methylglyoxal, a Glo1 cytotoxic substrate. Our data suggested Glo1 pathway activation is required for cell proliferation and cell survival of HCC cells carrying Glo1 genetic amplification. Intervention of Glo1 activation could be a potential therapeutic option for patients with HCC carrying Glo1 gene amplification. PMID:24966916

  11. MicroRNAs and liver cancer associated with iron overload: therapeutic targets unravelled.

    Science.gov (United States)

    Greene, Catherine M; Varley, Robert B; Lawless, Matthew W

    2013-08-28

    Primary liver cancer is a global disease that is on the increase. Hepatocellular carcinoma (HCC) accounts for most primary liver cancers and has a notably low survival rate, largely attributable to late diagnosis, resistance to treatment, tumour recurrence and metastasis. MicroRNAs (miRNAs/miRs) are regulatory RNAs that modulate protein synthesis. miRNAs are involved in several biological and pathological processes including the development and progression of HCC. Given the poor outcomes with current HCC treatments, miRNAs represent an important new target for therapeutic intervention. Several studies have demonstrated their role in HCC development and progression. While many risk factors underlie the development of HCC, one process commonly altered is iron homeostasis. Iron overload occurs in several liver diseases associated with the development of HCC including Hepatitis C infection and the importance of miRNAs in iron homeostasis and hepatic iron overload is well characterised. Aberrant miRNA expression in hepatic fibrosis and injury response have been reported, as have dysregulated miRNA expression patterns affecting cell cycle progression, evasion of apoptosis, invasion and metastasis. In 2009, miR-26a delivery was shown to prevent HCC progression, highlighting its therapeutic potential. Several studies have since investigated the clinical potential of other miRNAs with one drug, Miravirsen, currently in phase II clinical trials. miRNAs also have potential as biomarkers for the diagnosis of HCC and to evaluate treatment efficacy. Ongoing studies and clinical trials suggest miRNA-based treatments and diagnostic methods will have novel clinical applications for HCC in the coming years, yielding improved HCC survival rates and patient outcomes.

  12. Nitric oxide synthase inhibition and oxidative stress in cardiovascular diseases: possible therapeutic targets?

    Science.gov (United States)

    Rochette, Luc; Lorin, Julie; Zeller, Marianne; Guilland, Jean-Claude; Lorgis, Luc; Cottin, Yves; Vergely, Catherine

    2013-12-01

    Nitric oxide (NO) is synthetized enzymatically from l-arginine (l-Arg) by three NO synthase isoforms, iNOS, eNOS and nNOS. The synthesis of NO is selectively inhibited by guanidino-substituted analogs of l-Arg or methylarginines such as asymmetric dimethylarginine (ADMA), which results from protein degradation in cells. Many disease states, including cardiovascular diseases and diabetes, are associated with increased plasma levels of ADMA. The N-terminal catalytic domain of these NOS isoforms binds the heme prosthetic group as well as the redox cofactor, tetrahydrobiopterin (BH(4)) associated with a regulatory protein, calmodulin (CaM). The enzymatic activity of NOS depends on substrate and cofactor availability. The importance of BH(4) as a critical regulator of eNOS function suggests that BH(4) may be a rational therapeutic target in vascular disease states. BH(4) oxidation appears to be a major contributor to vascular dysfunction associated with hypertension, ischemia/reperfusion injury, diabetes and other cardiovascular diseases as it leads to the increased formation of oxygen-derived radicals due to NOS uncoupling rather than NO. Accordingly, abnormalities in vascular NO production and transport result in endothelial dysfunction leading to various cardiovascular disorders. However, some disorders including a wide range of functions in the neuronal, immune and cardiovascular system were associated with the over-production of NO. Inhibition of the enzyme should be a useful approach to treat these pathologies. Therefore, it appears that both a lack and excess of NO production in diseases can have various important pathological implications. In this context, NOS modulators (exogenous and endogenous) and their therapeutic effects are discussed.

  13. New Strategies for the Next Generation of Matrix-Metalloproteinase Inhibitors: Selectively Targeting Membrane-Anchored MMPs with Therapeutic Antibodies

    Directory of Open Access Journals (Sweden)

    Laetitia Devy

    2011-01-01

    Full Text Available MMP intervention strategies have met with limited clinical success due to severe toxicities. In particular, treatment with broad-spectrum MMP-inhibitors (MMPIs caused musculoskeletal pain and inflammation. Selectivity may be essential for realizing the clinical potential of MMPIs. Here we review discoveries pinpointing membrane-bound MMPs as mediators of mechanisms underlying cancer and inflammation and as possible therapeutic targets for prevention/treatment of these diseases. We discuss strategies to target these therapeutic proteases using highly selective inhibitory agents (i.e., human blocking antibodies against individual membrane-bound MMPs.

  14. Polo-like kinase 1, a new therapeutic target in hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    Wei Chuen Mok; Shanthi Wasser; Theresa Tan; Seng Gee Lim

    2012-01-01

    AIM:To investigate the role of polo-like kinase 1 (PLK1)as a therapeutic target for hepatocellular carcinoma (HCC).METHODS:PLK1 gene expression was evaluated in HCC tissue and HCC cell lines.Gene knockdown with short-interfering RNA (siRNA) was used to study PLK1 gene and protein expression using real-time reverse transcription polymerase chain reaction (RT-PCR) and Western blotting,and cell proliferation using 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2(4-sulfophenyl)-2H-tetrazolium (MTS) and bromodeoxyuridine(BrdU) assays.Apoptosis was evaluated using the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay,and caspase-inhibition assay.Huh-7cells were transplanted into nude mice and co-cultured with PLK1 siRNA or control siRNA,and tumor progression was compared with controls.RESULTS:RT-PCR showed that PLK1 was overexpressed 12-fold in tumor samples compared with controls,and also was overexpressed in Huh-7 cells.siRNA against PLK1 showed a reduction in PLK1 gene and protein expression of up to 96% in Huh-7 cells,and areduction in cell proliferation by 68% and 92% in MTS and BrdU cell proliferation assays,respectively.There was a 3-fold increase in apoptosis events,and TUNEL staining and caspase-3 assays suggested that this was caspase-independent.The pan-caspase inhibitor Z-VAD-FMK was unable to rescue the apoptotic cells.Immnofluorescence co-localized endonuclease-G to fragmented chromosomes,implicating it in apoptosis.Huh-7 cells transplanted subcutaneously into nude mice showed tumor regression in siPLK1-treated mice,but not in controls.CONCLUSION:Knockdown of PLK1 overexpression in HCC was shown to be a potential therapeutic target,leading to apoptosis through the endonuclease-G pathway.

  15. The G protein α chaperone Ric-8 as a potential therapeutic target.

    Science.gov (United States)

    Papasergi, Makaía M; Patel, Bharti R; Tall, Gregory G

    2015-01-01

    Resistance to inhibitors of cholinesterase (Ric-8)A and Ric-8B are essential genes that encode positive regulators of heterotrimeric G protein α subunits. Controversy persists surrounding the precise way(s) that Ric-8 proteins affect G protein biology and signaling. Ric-8 proteins chaperone nucleotide-free Gα-subunit states during biosynthetic protein folding prior to G protein heterotrimer assembly. In organisms spanning the evolutionary window of Ric-8 expression, experimental perturbation of Ric-8 genes results in reduced functional abundances of G proteins because G protein α subunits are misfolded and degraded rapidly. Ric-8 proteins also act as Gα-subunit guanine nucleotide exchange factors (GEFs) in vitro. However, Ric-8 GEF activity could strictly be an in vitro phenomenon stemming from the ability of Ric-8 to induce partial Gα unfolding, thereby enhancing GDP release. Ric-8 GEF activity clearly differs from the GEF activity of G protein-coupled receptors (GPCRs). G protein βγ is inhibitory to Ric-8 action but obligate for receptors. It remains an open question whether Ric-8 has dual functions in cells and regulates G proteins as both a molecular chaperone and GEF. Clearly, Ric-8 has a profound influence on heterotrimeric G protein function. For this reason, we propose that Ric-8 proteins are as yet untested therapeutic targets in which pharmacological inhibition of the Ric-8/Gα protein-protein interface could serve to attenuate the effects of disease-causing G proteins (constitutively active mutants) and/or GPCR signaling. This minireview will chronicle the understanding of Ric-8 function, provide a comparative discussion of the Ric-8 molecular chaperoning and GEF activities, and support the case for why Ric-8 proteins should be considered potential targets for development of new therapies. PMID:25319541

  16. Propagation of tau pathology in Alzheimer's disease: identification of novel therapeutic targets.

    Science.gov (United States)

    Pooler, Amy M; Polydoro, Manuela; Wegmann, Susanne; Nicholls, Samantha B; Spires-Jones, Tara L; Hyman, Bradley T

    2013-01-01

    Accumulation and aggregation of the microtubule-associated protein tau are a pathological hallmark of neurodegenerative disorders such as Alzheimer's disease (AD). In AD, tau becomes abnormally phosphorylated and forms inclusions throughout the brain, starting in the entorhinal cortex and progressively affecting additional brain regions as the disease progresses. Formation of these inclusions is thought to lead to synapse loss and cell death. Tau is also found in the cerebrospinal fluid (CSF), and elevated levels are a biomarker for AD. Until recently, it was thought that the presence of tau in the CSF was due to the passive release of aggregated tau from dead or dying tangle-bearing neurons. However, accumulating evidence from different AD model systems suggests that tau is actively secreted and transferred between synaptically connected neurons. Transgenic mouse lines with localized expression of aggregating human tau in the entorhinal cortex have demonstrated that, as these animals age, tau becomes mislocalized from axons to cell bodies and dendrites and that human tau-positive aggregates form first in the entorhinal cortex and later in downstream projection targets. Numerous in vitro and in vivo studies have provided insight into the mechanisms by which tau may be released and internalized by neurons and have started to provide insight into how tau pathology may spread in AD. In this review, we discuss the evidence for regulated tau release and its specific uptake by neurons. Furthermore, we identify possible therapeutic targets for preventing the propagation of tau pathology, as inhibition of tau transfer may restrict development of tau tangles in a small subset of neurons affected in early stages of AD and therefore prevent widespread neuron loss and cognitive dysfunction associated with later stages of the disease.

  17. Choline Kinase Alpha as an Androgen Receptor Chaperone and Prostate Cancer Therapeutic Target

    Science.gov (United States)

    Asim, Mohammad; Massie, Charles E.; Orafidiya, Folake; Pértega-Gomes, Nelma; Warren, Anne Y.; Esmaeili, Mohsen; Selth, Luke A.; Zecchini, Heather I.; Luko, Katarina; Qureshi, Arham; Baridi, Ajoeb; Menon, Suraj; Madhu, Basetti; Escriu, Carlos; Lyons, Scott; Vowler, Sarah L.; Zecchini, Vincent R.; Shaw, Greg; Hessenkemper, Wiebke; Russell, Roslin; Mohammed, Hisham; Stefanos, Niki; Lynch, Andy G.; Grigorenko, Elena; D’Santos, Clive; Taylor, Chris; Lamb, Alastair; Sriranjan, Rouchelle; Yang, Jiali; Stark, Rory; Dehm, Scott M.; Rennie, Paul S.; Carroll, Jason S.; Griffiths, John R.; Tavaré, Simon; Mills, Ian G.; McEwan, Iain J.; Baniahmad, Aria; Tilley, Wayne D.; Neal, David E.

    2016-01-01

    Background: The androgen receptor (AR) is a major drug target in prostate cancer (PCa). We profiled the AR-regulated kinome to identify clinically relevant and druggable effectors of AR signaling. Methods: Using genome-wide approaches, we interrogated all AR regulated kinases. Among these, choline kinase alpha (CHKA) expression was evaluated in benign (n = 195), prostatic intraepithelial neoplasia (PIN) (n = 153) and prostate cancer (PCa) lesions (n = 359). We interrogated how CHKA regulates AR signaling using biochemical assays and investigated androgen regulation of CHKA expression in men with PCa, both untreated (n = 20) and treated with an androgen biosynthesis inhibitor degarelix (n = 27). We studied the effect of CHKA inhibition on the PCa transcriptome using RNA sequencing and tested the effect of CHKA inhibition on cell growth, clonogenic survival and invasion. Tumor xenografts (n = 6 per group) were generated in mice using genetically engineered prostate cancer cells with inducible CHKA knockdown. Data were analyzed with χ2 tests, Cox regression analysis, and Kaplan-Meier methods. All statistical tests were two-sided. Results: CHKA expression was shown to be androgen regulated in cell lines, xenografts, and human tissue (log fold change from 6.75 to 6.59, P = .002) and was positively associated with tumor stage. CHKA binds directly to the ligand-binding domain (LBD) of AR, enhancing its stability. As such, CHKA is the first kinase identified as an AR chaperone. Inhibition of CHKA repressed the AR transcriptional program including pathways enriched for regulation of protein folding, decreased AR protein levels, and inhibited the growth of PCa cell lines, human PCa explants, and tumor xenografts. Conclusions: CHKA can act as an AR chaperone, providing, to our knowledge, the first evidence for kinases as molecular chaperones, making CHKA both a marker of tumor progression and a potential therapeutic target for PCa. PMID:26657335

  18. Identification of cell surface targets for HIV-1 therapeutics using genetic screens

    International Nuclear Information System (INIS)

    Human immunodeficiency virus (HIV) drugs designed to interfere with obligatory utilization of certain host cell factors by virus are less likely to encounter development of resistant strains than drugs directed against viral components. Several cellular genes required for productive infection by HIV were identified by the use of genetic suppressor element (GSE) technology as potential targets for anti-HIV drug development. Fragmented cDNA libraries from various pools of human peripheral blood mononuclear cells (PBMC) were expressed in vitro in human immunodeficiency virus type 1 (HIV-1)-susceptible cell lines and subjected to genetic screens to identify GSEs that interfered with viral replication. After three rounds of selection, more than 15 000 GSEs were sequenced, and the cognate genes were identified. The GSEs that inhibited the virus were derived from a diverse set of genes including cell surface receptors, cytokines, signaling proteins, transcription factors, as well as genes with unknown function. Approximately 2.5% of the identified genes were previously shown to play a role in the HIV-1 life cycle; this finding supports the biological relevance of the assay. GSEs were derived from the following 12 cell surface proteins: CXCR4, CCR4, CCR7, CD11C, CD44, CD47, CD68, CD69, CD74, CSF3R, GABBR1, and TNFR2. Requirement of some of these genes for viral infection was also investigated by using RNA interference (RNAi) technology; accordingly, 10 genes were implicated in early events of the viral life cycle, before viral DNA synthesis. Thus, these cell surface proteins represent novel targets for the development of therapeutics against HIV-1 infection and AIDS

  19. Therapeutic Targeting of miR-29b/HDAC4 Epigenetic Loop in Multiple Myeloma.

    Science.gov (United States)

    Amodio, Nicola; Stamato, Maria Angelica; Gullà, Anna Maria; Morelli, Eugenio; Romeo, Enrica; Raimondi, Lavinia; Pitari, Maria Rita; Ferrandino, Ida; Misso, Gabriella; Caraglia, Michele; Perrotta, Ida; Neri, Antonino; Fulciniti, Mariateresa; Rolfo, Christian; Anderson, Kenneth C; Munshi, Nikhil C; Tagliaferri, Pierosandro; Tassone, Pierfrancesco

    2016-06-01

    Epigenetic abnormalities are common in hematologic malignancies, including multiple myeloma, and their effects can be efficiently counteracted by a class of tumor suppressor miRNAs, named epi-miRNAs. Given the oncogenic role of histone deacetylases (HDAC) in multiple myeloma, we investigated whether their activity could be antagonized by miR-29b, a well-established epi-miRNA. We demonstrated here that miR-29b specifically targets HDAC4 and highlighted that both molecules are involved in a functional loop. In fact, silencing of HDAC4 by shRNAs inhibited multiple myeloma cell survival and migration and triggered apoptosis and autophagy, along with the induction of miR-29b expression by promoter hyperacetylation, leading to the downregulation of prosurvival miR-29b targets (SP1, MCL-1). Moreover, treatment with the pan-HDAC inhibitor SAHA upregulated miR-29b, overcoming the negative control exerted by HDAC4. Importantly, overexpression or inhibition of miR-29b, respectively, potentiated or antagonized SAHA activity on multiple myeloma cells, as also shown in vivo by a strong synergism between miR-29b synthetic mimics and SAHA in a murine xenograft model of human multiple myeloma. Altogether, our results shed light on a novel epigenetic circuitry regulating multiple myeloma cell growth and survival and open new avenues for miR-29b-based epi-therapeutic approaches in the treatment of this malignancy. Mol Cancer Ther; 15(6); 1364-75. ©2016 AACR. PMID:27196750

  20. Molecular interaction of a kinase inhibitor midostaurin with anticancer drug targets, S100A8 and EGFR: transcriptional profiling and molecular docking study for kidney cancer therapeutics.

    Directory of Open Access Journals (Sweden)

    Zeenat Mirza

    Full Text Available The S100A8 and epidermal growth factor receptor (EGFR proteins are proto-oncogenes that are strongly expressed in a number of cancer types. EGFR promotes cellular proliferation, differentiation, migration and survival by activating molecular pathways. Involvement of proinflammatory S100A8 in tumor cell differentiation and progression is largely unclear and not studied in kidney cancer (KC. S100A8 and EGFR are potential therapeutic biomarkers and anticancer drug targets for KC. In this study, we explored molecular mechanisms of interaction profiles of both molecules with potential anticancer drugs. We undertook transcriptional profiling in Saudi KCs using Affymetrix HuGene 1.0 ST arrays. We identified 1478 significantly expressed genes, including S100A8 and EGFR overexpression, using cut-off p value <0.05 and fold change ≥2. Additionally, we compared and confirmed our findings with expression data available at NCBI's GEO database. A significant number of genes associated with cancer showed involvement in cell cycle progression, DNA repair, tumor morphology, tissue development, and cell survival. Atherosclerosis signaling, leukocyte extravasation signaling, notch signaling, and IL-12 signaling were the most significantly disrupted signaling pathways. The present study provides an initial transcriptional profiling of Saudi KC patients. Our analysis suggests distinct transcriptomic signatures and pathways underlying molecular mechanisms of KC progression. Molecular docking analysis revealed that the kinase inhibitor "midostaurin" has amongst the selected drug targets, the best ligand properties to S100A8 and EGFR, with the implication that its binding inhibits downstream signaling in KC. This is the first structure-based docking study for the selected protein targets and anticancer drug, and the results indicate S100A8 and EGFR as attractive anticancer targets and midostaurin with effective drug properties for therapeutic intervention in KC.

  1. Targeting NK-1 Receptors to Prevent and Treat Pancreatic Cancer: A New Therapeutic Approach

    International Nuclear Information System (INIS)

    Pancreatic cancer (PC) is the fourth leading cause of cancer related-deaths in both men and women, and the 1- and 5-year relative survival rates are 25% and 6%, respectively. It is known that smoking, alcoholism and psychological stress are risk factors that can promote PC and increase PC progression. To date, the prevention of PC is crucial because there is no curative treatment. After binding to the neurokinin-1 (NK-1) receptor (a receptor coupled to the stimulatory G-protein Gαs that activates adenylate cyclase), the peptide substance P (SP)—at high concentrations—is involved in many pathophysiological functions, such as depression, smoking, alcoholism, chronic inflammation and cancer. It is known that PC cells and samples express NK-1 receptors; that the NK-1 receptor is overexpressed in PC cells in comparison with non-tumor cells, and that nanomolar concentrations of SP induce PC cell proliferation. By contrast, NK-1 receptor antagonists exert antidepressive, anxiolytic and anti-inflammatory effects and anti-alcohol addiction. These antagonists also exert an antitumor action since in vitro they inhibit PC cell proliferation (PC cells death by apoptosis), and in a xenograft PC mouse model they exert both antitumor and anti-angiogenic actions. NK-1 receptor antagonists could be used for the treatment of PC and hence the NK-1 receptor could be a new promising therapeutic target in PC

  2. Inflammatory and immune responses in the cochlea: potential therapeutic targets for sensorineural hearing loss

    Directory of Open Access Journals (Sweden)

    Masato eFujioka

    2014-12-01

    Full Text Available The inner ear was previously assumed to be an immune-privileged organ due to the existence of its tight junction-based blood-labyrinth barrier. However, studies performed during the past decade revealed that the mesenchymal region of the cochlea, including its lateral wall, is a common site of inflammation. Neutrophils do not enter this region, which is consistent with the old dogma; however, bone marrow-derived resident macrophages are always present in the spiral ligament of the lateral wall and are activated in response to various types of insults, including noise exposure, ischemia, mitochondrial damage and surgical stress. Recent studies have also revealed another type of immune cell, called perivascular melanocyte-like macrophages (PVM/Ms, in the stria vascularis. These dedicated antigen-presenting cells also control vascular contraction and permeability. This review discusses a series of reports regarding inflammatory/immune cells in the cochlear lateral wall, the pathways involved in cochlear damage and their potential as therapeutic targets.

  3. Redox Signaling as a Therapeutic Target to Inhibit Myofibroblast Activation in Degenerative Fibrotic Disease

    Directory of Open Access Journals (Sweden)

    Natalie Sampson

    2014-01-01

    Full Text Available Degenerative fibrotic diseases encompass numerous systemic and organ-specific disorders. Despite their associated significant morbidity and mortality, there is currently no effective antifibrotic treatment. Fibrosis is characterized by the development and persistence of myofibroblasts, whose unregulated deposition of extracellular matrix components disrupts signaling cascades and normal tissue architecture leading to organ failure and death. The profibrotic cytokine transforming growth factor beta (TGFβ is considered the foremost inducer of fibrosis, driving myofibroblast differentiation in diverse tissues. This review summarizes recent in vitro and in vivo data demonstrating that TGFβ-induced myofibroblast differentiation is driven by a prooxidant shift in redox homeostasis. Elevated NADPH oxidase 4 (NOX4-derived hydrogen peroxide (H2O2 supported by concomitant decreases in nitric oxide (NO signaling and reactive oxygen species scavengers are central factors in the molecular pathogenesis of fibrosis in numerous tissues and organs. Moreover, complex interplay between NOX4-derived H2O2 and NO signaling regulates myofibroblast differentiation. Restoring redox homeostasis via antioxidants or NOX4 inactivation as well as by enhancing NO signaling via activation of soluble guanylyl cyclases or inhibition of phosphodiesterases can inhibit and reverse myofibroblast differentiation. Thus, dysregulated redox signaling represents a potential therapeutic target for the treatment of wide variety of different degenerative fibrotic disorders.

  4. Therapeutic Targeting of Redox Signaling in Myofibroblast Differentiation and Age-Related Fibrotic Disease

    Directory of Open Access Journals (Sweden)

    Natalie Sampson

    2012-01-01

    Full Text Available Myofibroblast activation plays a central role during normal wound healing. Whereas insufficient myofibroblast activation impairs wound healing, excessive myofibroblast activation promotes fibrosis in diverse tissues (including benign prostatic hyperplasia, BPH leading to organ dysfunction and also promotes a stromal response that supports tumor progression. The incidence of impaired wound healing, tissue fibrosis, BPH, and certain cancers strongly increases with age. This paper summarizes findings from in vitro fibroblast-to-myofibroblast differentiation systems that serve as cellular models to study fibrogenesis of diverse tissues. Supported by substantial in vivo data, a large body of evidence indicates that myofibroblast differentiation induced by the profibrotic cytokine transforming growth factor beta is driven by a prooxidant shift in redox homeostasis due to elevated production of NADPH oxidase 4 (NOX4-derived hydrogen peroxide and supported by concomitant decreases in nitric oxide/cGMP signaling and reactive oxygen species (ROS scavenging enzymes. Fibroblast-to-myofibroblast differentiation can be inhibited and reversed by restoring redox homeostasis using antioxidants or NOX4 inactivation as well as enhancing nitric oxide/cGMP signaling via activation of soluble guanylyl cyclases or inhibition of phosphodiesterases. Current evidence indicates the therapeutic potential of targeting the prooxidant shift in redox homeostasis for the treatment of age-related diseases associated with myofibroblast dysregulation.

  5. Quantitative proteomics approach to screening of potential diagnostic and therapeutic targets for laryngeal carcinoma.

    Directory of Open Access Journals (Sweden)

    Li Li

    Full Text Available To discover candidate biomarkers for diagnosis and detection of human laryngeal carcinoma and explore possible mechanisms of this cancer carcinogenesis, two-dimensional strong cation-exchange/reversed-phase nano-scale liquid chromatography/mass spectrometry analysis was used to identify differentially expressed proteins between the laryngeal carcinoma tissue and the adjacent normal tissue. As a result, 281 proteins with significant difference in expression were identified, and four differential proteins, Profilin-1 (PFN1, Nucleolin (NCL, Cytosolic non-specific dipeptidase (CNDP2 and Mimecan (OGN with different subcellular localization were selectively validated. Semiquantitative RT-PCR and Western blotting were performed to detect the expression of the four proteins employing a large collection of human laryngeal carcinoma tissues, and the results validated the differentially expressed proteins identified by the proteomics. Furthermore, we knocked down PFN1 in immortalized human laryngeal squamous cell line Hep-2 cells and then the proliferation and metastasis of these transfected cells were measured. The results showed that PFN1 silencing inhibited the proliferation and affected the migration ability of Hep-2 cells, providing some new insights into the pathogenesis of PFN1 in laryngeal carcinoma. Altogether, our present data first time show that PFN1, NCL, CNDP2 and OGN are novel potential biomarkers for diagnosis and therapeutic targets for laryngeal carcinoma, and PFN1 is involved in the metastasis of laryngeal carcinoma.

  6. Calcium/calmodulin-dependent protein kinase IV: A multifunctional enzyme and potential therapeutic target.

    Science.gov (United States)

    Naz, Huma; Islam, Asimul; Ahmad, Faizan; Hassan, Md Imtaiyaz

    2016-05-01

    The calcium/calmodulin-dependent protein kinase IV (CAMKIV) belongs to the serine/threonine protein kinase family, and is primarily involved in transcriptional regulation in lymphocytes, neurons and male germ cells. CAMKIV operates the signaling cascade and regulates activity of several transcription activators by phosphorylation, which in turn plays pivotal roles in immune response, inflammation and memory consolidation. In this review, we tried to focus on different aspects of CAMKIV to understand the significance of this protein in the biological system. This enzyme is associated with varieties of disorders such as cerebral hypoxia, azoospermia, endometrial and ovarian cancer, systemic lupus, etc., and hence it is considered as a potential therapeutic target. Structure of CAMKIV is comprised of five distinct domains in which kinase domain is responsible for enzyme activity. CAMKIV is involved in varieties of cellular functions such as regulation of gene expression, T-cell maturation, regulation of survival phase of dendritic cells, bone growth and metabolism, memory consolidation, sperm motility, regulation of microtubule dynamics, cell-cycle progression and apoptosis. In this review, we performed an extensive analysis on structure, function and regulation of CAMKIV and associated diseases. PMID:26773169

  7. SERPINA4 is a novel independent prognostic indicator and a potential therapeutic target for colorectal cancer.

    Science.gov (United States)

    Sun, Hui-Min; Mi, Yu-Shuai; Yu, Fu-Dong; Han, Yang; Liu, Xi-Sheng; Lu, Su; Zhang, Yu; Zhao, Sen-Lin; Ye, Ling; Liu, Ting-Ting; Yang, Dao-Hua; Sun, Xiao-Feng; Qin, Xue-Bin; Zhou, Zong-Guang; Tang, Hua-Mei; Peng, Zhi-Hai

    2016-01-01

    Serpina family A member 4 (SERPINA4), also known as kallistatin, exerts important effects in inhibiting tumor growth and angiogenesis in many malignancies. However, the precise role of SERPINA4 in CRC has not been fully elucidated. The present study aimed to investigate the expression of SERPINA4 and its clinical significance in CRC. Quantitative real-time polymerase chain reaction (qRT-PCR) and western blot analyses showed that the mRNA and protein expression of SERPINA4 in colorectal cancer (CRC) specimens was significantly decreased than that in adjacent normal mucosa. Immunohistochemistry (IHC) was conducted to characterize the expression pattern of SERPINA4 by using a tissue microarray (TMA) containing 327 archived paraffin-embedded CRC specimens. Statistical analyses revealed that decreased SERPINA4 expression was significantly associated with invasion depth, nodal involvement, distant metastasis, American Joint Committee on Cancer (AJCC) stage, and tumor differentiation. SERPINA4 was also an independent prognostic indicator of disease-free survival and overall survival in patients with CRC. Furthermore, the impact of altered SERPINA4 expression on CRC cells was analyzed with a series of in vitro and in vivo assays. The results demonstrated that SERPINA4 significantly inhibits malignant tumor progression and serves as a novel prognostic indicator and a potential therapeutic target for CRC. PMID:27648355

  8. Targeting of beta adrenergic receptors results in therapeutic efficacy against models of hemangioendothelioma and angiosarcoma.

    Directory of Open Access Journals (Sweden)

    Jessica M Stiles

    Full Text Available Therapeutic targeting of the beta-adrenergic receptors has recently shown remarkable efficacy in the treatment of benign vascular tumors such as infantile hemangiomas. As infantile hemangiomas are reported to express high levels of beta adrenergic receptors, we examined the expression of these receptors on more aggressive vascular tumors such as hemangioendotheliomas and angiosarcomas, revealing beta 1, 2, and 3 receptors were indeed present and therefore aggressive vascular tumors may similarly show increased susceptibility to the inhibitory effects of beta blockade. Using a panel of hemangioendothelioma and angiosarcoma cell lines, we demonstrate that beta adrenergic inhibition blocks cell proliferation and induces apoptosis in a dose dependent manner. Beta blockade is selective for vascular tumor cells over normal endothelial cells and synergistically effective when combined with standard chemotherapeutic or cytotoxic agents. We demonstrate that inhibition of beta adrenergic signaling induces large scale changes in the global gene expression patterns of vascular tumors, including alterations in the expression of established cell cycle and apoptotic regulators. Using in vivo tumor models we demonstrate that beta blockade shows remarkable efficacy as a single agent in reducing the growth of angiosarcoma tumors. In summary, these experiments demonstrate the selective cytotoxicity and tumor suppressive ability of beta adrenergic inhibition on malignant vascular tumors and have laid the groundwork for a promising treatment of angiosarcomas in humans.

  9. Targeting NK-1 Receptors to Prevent and Treat Pancreatic Cancer: A New Therapeutic Approach

    Energy Technology Data Exchange (ETDEWEB)

    Muñoz, Miguel, E-mail: mmunoz@cica.es [Research Laboratory on Neuropeptides (IBIS), Virgen del Rocío University Hospital, 41013 Sevilla (Spain); Coveñas, Rafael [Laboratory of Neuroanatomy of the Peptidergic System (Lab. 14), Institute of Neurosciences of Castilla y León (INCYL), University of Salamanca, 37008 Salamanca (Spain)

    2015-07-06

    Pancreatic cancer (PC) is the fourth leading cause of cancer related-deaths in both men and women, and the 1- and 5-year relative survival rates are 25% and 6%, respectively. It is known that smoking, alcoholism and psychological stress are risk factors that can promote PC and increase PC progression. To date, the prevention of PC is crucial because there is no curative treatment. After binding to the neurokinin-1 (NK-1) receptor (a receptor coupled to the stimulatory G-protein Gαs that activates adenylate cyclase), the peptide substance P (SP)—at high concentrations—is involved in many pathophysiological functions, such as depression, smoking, alcoholism, chronic inflammation and cancer. It is known that PC cells and samples express NK-1 receptors; that the NK-1 receptor is overexpressed in PC cells in comparison with non-tumor cells, and that nanomolar concentrations of SP induce PC cell proliferation. By contrast, NK-1 receptor antagonists exert antidepressive, anxiolytic and anti-inflammatory effects and anti-alcohol addiction. These antagonists also exert an antitumor action since in vitro they inhibit PC cell proliferation (PC cells death by apoptosis), and in a xenograft PC mouse model they exert both antitumor and anti-angiogenic actions. NK-1 receptor antagonists could be used for the treatment of PC and hence the NK-1 receptor could be a new promising therapeutic target in PC.

  10. HDAC4 reduction: a novel therapeutic strategy to target cytoplasmic huntingtin and ameliorate neurodegeneration.

    Directory of Open Access Journals (Sweden)

    Michal Mielcarek

    2013-11-01

    Full Text Available Histone deacetylase (HDAC 4 is a transcriptional repressor that contains a glutamine-rich domain. We hypothesised that it may be involved in the molecular pathogenesis of Huntington's disease (HD, a protein-folding neurodegenerative disorder caused by an aggregation-prone polyglutamine expansion in the huntingtin protein. We found that HDAC4 associates with huntingtin in a polyglutamine-length-dependent manner and co-localises with cytoplasmic inclusions. We show that HDAC4 reduction delayed cytoplasmic aggregate formation, restored Bdnf transcript levels, and rescued neuronal and cortico-striatal synaptic function in HD mouse models. This was accompanied by an improvement in motor coordination, neurological phenotypes, and increased lifespan. Surprisingly, HDAC4 reduction had no effect on global transcriptional dysfunction and did not modulate nuclear huntingtin aggregation. Our results define a crucial role for the cytoplasmic aggregation process in the molecular pathology of HD. HDAC4 reduction presents a novel strategy for targeting huntingtin aggregation, which may be amenable to small-molecule therapeutics.

  11. pH-Sensitive stimulus-responsive nanocarriers for targeted delivery of therapeutic agents.

    Science.gov (United States)

    Karimi, Mahdi; Eslami, Masoud; Sahandi-Zangabad, Parham; Mirab, Fereshteh; Farajisafiloo, Negar; Shafaei, Zahra; Ghosh, Deepanjan; Bozorgomid, Mahnaz; Dashkhaneh, Fariba; Hamblin, Michael R

    2016-09-01

    In recent years miscellaneous smart micro/nanosystems that respond to various exogenous/endogenous stimuli including temperature, magnetic/electric field, mechanical force, ultrasound/light irradiation, redox potentials, and biomolecule concentration have been developed for targeted delivery and release of encapsulated therapeutic agents such as drugs, genes, proteins, and metal ions specifically at their required site of action. Owing to physiological differences between malignant and normal cells, or between tumors and normal tissues, pH-sensitive nanosystems represent promising smart delivery vehicles for transport and delivery of anticancer agents. Furthermore, pH-sensitive systems possess applications in delivery of metal ions and biomolecules such as proteins, insulin, etc., as well as co-delivery of cargos, dual pH-sensitive nanocarriers, dual/multi stimuli-responsive nanosystems, and even in the search for new solutions for therapy of diseases such as Alzheimer's. In order to design an optimized system, it is necessary to understand the various pH-responsive micro/nanoparticles and the different mechanisms of pH-sensitive drug release. This should be accompanied by an assessment of the theoretical and practical challenges in the design and use of these carriers. WIREs Nanomed Nanobiotechnol 2016, 8:696-716. doi: 10.1002/wnan.1389 For further resources related to this article, please visit the WIREs website. PMID:26762467

  12. Targeting Potassium Channels for Increasing Delivery of Imaging Agents and Therapeutics to Brain Tumors

    Directory of Open Access Journals (Sweden)

    Nagendra Sanyasihally Ningaraj

    2013-05-01

    Full Text Available Every year in the US, 20,000 new primary and nearly 200,000 metastatic brain tumor cases are reported. The cerebral microvessels/ capillaries that form the blood–brain barrier (BBB not only protect the brain from toxic agents in the blood but also pose a significant hindrance to the delivery of small and large therapeutic molecules. Different strategies have been employed to circumvent the physiological barrier posed by blood-brain tumor barrier (BTB. Studies in our laboratory have identified significant differences in the expression levels of certain genes and proteins between normal and brain tumor capillary endothelial cells. In this study, we validated the non-invasive and clinically relevant Dynamic Contrast Enhancing-Magnetic Resonance Imaging (DCE-MRI method with invasive, clinically irrelevant but highly accurate Quantitative Autoradiography (QAR method using rat glioma model. We also showed that DCE-MRI metric of tissue vessel perfusion-permeability is sensitive to changes in blood vessel permeability following administration of calcium-activated potassium (BKCa channel activator NS-1619. Our results show that human gliomas and brain tumor endothelial cells that overexpress BKCa channels can be targeted for increased BTB permeability for MRI enhancing agents to brain tumors. We conclude that monitoring the outcome of increased MRI enhancing agents’ delivery to microsatellites and leading tumor edges in glioma patients would lead to beneficial clinical outcome.

  13. Targeting developmental regulators of zebrafish exocrine pancreas as a therapeutic approach in human pancreatic cancer

    Directory of Open Access Journals (Sweden)

    Nelson S. Yee

    2012-02-01

    Histone deacetylases (HDACs and RNA polymerase III (POLR3 play vital roles in fundamental cellular processes, and deregulation of these enzymes has been implicated in malignant transformation. Hdacs and Polr3 are required for exocrine pancreatic epithelial proliferation during morphogenesis in zebrafish. We aim to test the hypothesis that Hdacs and Polr3 cooperatively control exocrine pancreatic growth, and combined inhibition of HDACs and POLR3 produces enhanced growth suppression in pancreatic cancer. In zebrafish larvae, combination of a Hdac inhibitor (Trichostatin A and an inhibitor of Polr3 (ML-60218 synergistically prohibited the expansion of exocrine pancreas. In human pancreatic adenocarcinoma cells, combination of the HDAC inhibitor suberoylanilide hydroxamic acid (SAHA and ML-60218 produced augmented suppression of colony formation and proliferation, and induction of cell cycle arrest and apoptotic cell death. The enhanced cytotoxicity was associated with supra-additive upregulation of the pro-apoptotic regulator BAX and the cyclin-dependent kinase inhibitor p21CDKN1A. tRNAs have been shown to have pro-proliferative and anti-apoptotic roles, and SAHA-stimulated expression of tRNAs was reversed by ML-60218. These findings demonstrate that chemically targeting developmental regulators of exocrine pancreas can be translated into an approach with potential impact on therapeutic response in pancreatic cancer, and suggest that counteracting the pro-malignant side effect of HDAC inhibitors can enhance their anti-tumor activity.

  14. Insulin and Insulin-Sensitizing Drugs in Neurodegeneration: Mitochondria as Therapeutic Targets

    Directory of Open Access Journals (Sweden)

    Paula I. Moreira

    2009-12-01

    Full Text Available Insulin, besides its glucose lowering effects, is involved in the modulation of lifespan, aging and memory and learning processes. As the population ages, neurodegenerative disorders become epidemic and a connection between insulin signaling dysregulation, cognitive decline and dementia has been established. Mitochondria are intracellular organelles that despite playing a critical role in cellular metabolism are also one of the major sources of reactive oxygen species. Mitochondrial dysfunction, oxidative stress and neuroinflammation, hallmarks of neurodegeneration, can result from impaired insulin signaling. Insulin-sensitizing drugs such as the thiazolidinediones are a new class of synthetic compounds that potentiate insulin action in the target tissues and act as specific agonists of the peroxisome proliferator-activated receptor gamma (PPAR-γ. Recently, several PPAR agonists have been proposed as novel and possible therapeutic agents for neurodegenerative disorders. Indeed, the literature shows that these agents are able to protect against mitochondrial dysfunction, oxidative damage, inflammation and apoptosis. This review discusses the role of mitochondria and insulin signaling in normal brain function and in neurodegeneration. Furthermore, the potential protective role of insulin and insulin sensitizers in Alzheimer´s, Parkinson´s and Huntington´s diseases and amyotrophic lateral sclerosis will be also discussed.

  15. G protein-coupled receptors as therapeutic targets for multiple sclerosis

    Institute of Scientific and Technical Information of China (English)

    Changsheng Du; Xin Xie

    2012-01-01

    G protein-coupled receptors (GPCRs) mediate most of our physiological responses to hormones,neurotransmitters and environmental stimulants.They are considered as the most successful therapeutic targets for a broad spectrum of diseases.Multiple sclerosis (MS) is an inflammatory disease that is characterized by immune-mediated demyelination and degeneration of the central nervous system (CNS).It is the leading cause of non-traumatic disability in young adults.Great progress has been made over the past few decades in understanding the pathogenesis of MS.Numerous data from animal and clinical studies indicate that many GPCRs are critically involved in various aspects of MS pathogenesis,including antigen presentation,cytokine production,T-cell differentiation,T-cell proliferation,T-cell invasion,etc.In this review,we summarize the recent findings regarding the expression or functional changes of GPCRs in MS patients or animal models,and the influences of GPCRs on disease severity upon genetic or pharmacological manipulations.Hopefully some of these findings will lead to the development of novel therapies for MS in the near future.

  16. Molecular pathogenesis of myocardial remodeling and new potential therapeutic targets in chronic heart failure

    Directory of Open Access Journals (Sweden)

    Distefano Giuseppe

    2012-09-01

    Full Text Available Abstract It is well known that the natural history of chronic heart failure (CHF,regardless of age and aetiology,is characterized by progressive cardiac dysfunction refractory to conventional cardiokinetic, diuretic and peripheral vasodilator therapy. Several previous studies, both in animals and humans, showed that the key pathogenetic element of CHF negative clinical evolution is constituted by myocardial remodeling. This is a complex pathologic process of ultrastructural rearrangement of the heart induced by various neuro-humoral factors released by cardiac fibrocells in response to biomechanical stress connected to chronic haemodynamic overload. Typical features of myocardial remodeling are represented by cardiomyocytes hypertrophy and apoptosis, extracellular matrix alterations, mesenchymal fibrotic and phlogistic processes and by cardiac gene expression modifications with fetal genetic program reactivation. In the last years, increasing knowledge of subtle molecular and cellular mechanisms involved in myocardial remodeling has led to the discovery of some new potential therapeutic targets capable of inducing its regression. In this paper our attention is focused on the possible use of antiapoptotic and antifibrotic agents, and on the fascinating perspectives offered by the development of myocardial gene therapy and, in particular, by myocardial regenerative therapy.

  17. Therapeutic potential of targeting protein for Xklp2 silencing for pancreatic cancer

    International Nuclear Information System (INIS)

    The targeting protein for Xklp2 (TPX2) is a microtubule- and, cell cycle-associated protein who’s overexpression has been reported in various malignancies. In this study, we verified the overexpression of TPX2 in both surgically resected specimens of pancreatic cancer and multiple pancreatic cancer cell lines. Subsequently, we found that TPX2 siRNA effectively suppressed the proliferation of pancreatic cancer cells in culture, and the direct injection of TPX2 siRNA into subcutaneously implanted pancreatic cancer cells in nude mice revealed antiproliferative effects. These results implied a therapeutic potential of TPX2 siRNA in pancreatic cancer. Among 56 angiogenesis-related factors examined using angiogenesis arrays, the average protein levels of insulin-like growth factor-binding protein-3 (IGFBP-3) were significantly higher in TPX2 siRNA-treated tumors than in the Control siRNA-treated tumors. Moreover, we demonstrated that CD34-positive microvessels were significantly reduced in tumors treated with TPX2 siRNA compared to tumors that treated with Control siRNA. The attenuated expression of CD34 in TPX2 siRNA-treated tumors coincided with the overexpression of IGFBP-3. These results indicated that TPX2 has an impact on tumor angiogenesis in pancreatic cancer. The results also implied that the antiangiogenic effect observed in TPX2 siRNA-treated pancreatic cancer cells may be partly explained by the upregulation of IGFBP-3

  18. Neuropeptides as therapeutic targets to combat stress-associated behavioral and neuroendocrinological effects.

    Science.gov (United States)

    Bali, Anjana; Singh, Nirmal; Jaggi, Amteshwar Singh

    2014-03-01

    Stress has become an integral part of human life and organisms are being constantly subjected to stress and the ability to cope with such stress is a crucial determinant of health and disease. Neuropeptides (bioactive peptides) play a crucial role in mediating different effects of acute and chronic stress. Some of these neuropeptides including oxytocin, urocortins, neuropeptide Y (NPY), neuropeptide S, cocaine and amphetamine regulated transcript, endorphins, enkephalins, ghrelin and thyrotropin-releasing hormone primarily attenuate stress and act as anxiolytic. On the other hand, neuropeptides including corticotropin releasing hormone, vasopressin, dynorphin, angiotensin, nesfatin-1, orexin and cholecystokinin primarily tend to promote stress related anxiety behavior. However, these neuropeptide tend to produce different actions depending on the type of receptors, the nature and intensity of the stressor. For example, NPY may exhibit anxiolytic effects by activating NPY1 and Y5 receptors, while pro-depressive effects are produced through NPY2 and Y4 receptors. Galanin may produce 'prodepressive' effects by activating its Gal 1 receptors and exert 'antidepressant' effects through Gal 2 receptors. The present review describes different neuropeptides as therapeutic targets to attenuate stress-induced behavioral and neuroendocrinological effects.

  19. Nrf2/ARE Signaling Pathway: Key Mediator in Oxidative Stress and Potential Therapeutic Target in ALS

    Directory of Open Access Journals (Sweden)

    Susanne Petri

    2012-01-01

    Full Text Available Nrf2 (nuclear erythroid 2-related factor 2 is a basic region leucine-zipper transcription factor which binds to the antioxidant response element (ARE and thereby regulates the expression of a large battery of genes involved in the cellular antioxidant and anti-inflammatory defence as well as mitochondrial protection. As oxidative stress, inflammation and mitochondrial dysfunctions have been identified as important pathomechanisms in amyotrophic lateral sclerosis (ALS, this signaling cascade has gained interest both with respect to ALS pathogenesis and therapy. Nrf2 and Keap1 expressions are reduced in motor neurons in postmortem ALS tissue. Nrf2-activating compounds have shown therapeutic efficacy in the ALS mouse model and other neurodegenerative disease models. Alterations in Nrf2 and Keap1 expression and dysregulation of the Nrf2/ARE signalling program could contribute to the chronic motor neuron degeneration in ALS and other neurodegenerative diseases. Therefore, Nrf2 emerges as a key neuroprotective molecule in neurodegenerative diseases. Our recent studies strongly support that the Nrf2/ARE signalling pathway is an important mediator of neuroprotection and therefore represents a promising target for development of novel therapies against ALS, Parkinson’s disease (PD, Huntington’s disease (HD, and Alzheimer’s disease (AD.

  20. Sonic Hedgehog Signaling Drives Proliferation of Synoviocytes in Rheumatoid Arthritis: A Possible Novel Therapeutic Target

    Directory of Open Access Journals (Sweden)

    Mingxia Wang

    2014-01-01

    Full Text Available Sonic hedgehog (Shh signaling controls many aspects of human development, regulates cell growth and differentiation in adult tissues, and is activated in a number of malignancies. Rheumatoid arthritis (RA is characterized by chronic synovitis and pannus formation associated with activation of fibroblast-like synoviocytes (FLS. We investigated whether Shh signaling plays a role in the proliferation of FLS in RA. Expression of Shh signaling related components (Shh, Ptch1, Smo, and Gli1 in RA synovial tissues was examined by immunohistochemistry (IHC and in FLS by IHC, immunofluorescence (IF, quantitative RT-PCR, and western blotting. Expression of Shh, Smo, and Gli1 in RA synovial tissue was higher than that in control tissue (P<0.05. Cyclopamine (a specific inhibitor of Shh signaling decreased mRNA expression of Shh, Ptch1, Smo, and Gli1 in cultured RA FLS, Shh, and Smo protein expression, and significantly decreased FLS proliferation. Flow cytometry analysis suggested that cyclopamine treatment resulted in cell cycle arrest of FLS in G1 phase. Our data show that Shh signaling is activated in synovium of RA patients in vivo and in cultured FLS form RA patients in vitro, suggesting a role in the proliferation of FLS in RA. It may therefore be a novel therapeutic target in RA.

  1. Identification of tumorigenic cells and therapeutic targets in pancreatic neuroendocrine tumors.

    Science.gov (United States)

    Krampitz, Geoffrey Wayne; George, Benson M; Willingham, Stephen B; Volkmer, Jens-Peter; Weiskopf, Kipp; Jahchan, Nadine; Newman, Aaron M; Sahoo, Debashis; Zemek, Allison J; Yanovsky, Rebecca L; Nguyen, Julia K; Schnorr, Peter J; Mazur, Pawel K; Sage, Julien; Longacre, Teri A; Visser, Brendan C; Poultsides, George A; Norton, Jeffrey A; Weissman, Irving L

    2016-04-19

    Pancreatic neuroendocrine tumors (PanNETs) are a type of pancreatic cancer with limited therapeutic options. Consequently, most patients with advanced disease die from tumor progression. Current evidence indicates that a subset of cancer cells is responsible for tumor development, metastasis, and recurrence, and targeting these tumor-initiating cells is necessary to eradicate tumors. However, tumor-initiating cells and the biological processes that promote pathogenesis remain largely uncharacterized in PanNETs. Here we profile primary and metastatic tumors from an index patient and demonstrate that MET proto-oncogene activation is important for tumor growth in PanNET xenograft models. We identify a highly tumorigenic cell population within several independent surgically acquired PanNETs characterized by increased cell-surface protein CD90 expression and aldehyde dehydrogenase A1 (ALDHA1) activity, and provide in vitro and in vivo evidence for their stem-like properties. We performed proteomic profiling of 332 antigens in two cell lines and four primary tumors, and showed that CD47, a cell-surface protein that acts as a "don't eat me" signal co-opted by cancers to evade innate immune surveillance, is ubiquitously expressed. Moreover, CD47 coexpresses with MET and is enriched in CD90(hi)cells. Furthermore, blocking CD47 signaling promotes engulfment of tumor cells by macrophages in vitro and inhibits xenograft tumor growth, prevents metastases, and prolongs survival in vivo. PMID:27035983

  2. Tuberculosis therapeutics: Engineering of nanomedicinal systems for local delivery of targeted drug cocktails

    Science.gov (United States)

    D'Addio, Suzanne M.

    In this thesis, a multifunctional nanocarrier drug delivery system was investigated and optimized to improve tuberculosis therapy by promoting the intracellular delivery of high payloads of antibiotics. To meet the needs of a patient population which continues to grow by close to 10 million people a year, innovative therapeutics must be formulated by robust and scalable processes. We use Flash NanoPrecipitation for the continuous precipitation of nanocarriers by block copolymer directed assembly, which enables the development of nanocarriers with tunable properties. Stable nanocarriers of Rifampicin and a hydrophobic Rifampicin prodrug have efficacy against tuberculosis in vitro that is equivalent to the soluble Rifampicin. To overcome poor in vivo efficacy of the recently discovered antitubercular drug SQ641, we co-encapsulate SQ641 and Cyclosporine A in a stable aqueous nanocarrier suspension, which enables drug administration and also enhances intracellular accumulation and antitubercular efficacy relative to SQ641 in solution. Since the mannose receptor is involved in the phagocytosis of tuberculosis bacilli, we modify the surface of nanocarriers with mannoside residues to target specific intracellular accumulation in macrophages. The surface density of mannoside terminated polyethylene glycol chains was controlled between 0 and 75% and in vitro cellular association reveals a 9% surface density is optimal for internalization mediated by the mannose receptor. We explore the preparation of large, porous aerosol carrier particles of with tunable deposition characteristics by spray freeze drying with ultrasonic atomization for direct dosing to the lungs. Nanocarriers are loaded at 3 - 50 wt% in mannitol particles with constant size, limited nanocarrier aggregation, and 63% dose delivered to the lungs, as determined by in vitro cascade impaction. There has been a lag in the development of new technologies to facilitate development and commercialization of

  3. Fatal attraction

    DEFF Research Database (Denmark)

    Jensen, Kim Ebensgaard

    2012-01-01

    for redundancies and incongruities in construction networks which enables linguists to take into account details of language use, which would otherwise not be facilitated in complete inheritance models. Secondly, making use of the method of collostructional analysis, the article offers a corpus-based description...... of the use of the Danish ihjel-construction which accounts for patterns of attraction of construction-verb attraction, patterns of productivity, and various types of subconstructions, including item- and item-class-based ones and metaphorical extensions. The description of the ihjel-construction should also...

  4. Controlling the angiogenic switch in developing atherosclerotic plaques: Possible targets for therapeutic intervention

    Directory of Open Access Journals (Sweden)

    Slevin Mark

    2009-09-01

    Full Text Available Abstract Plaque angiogenesis may have an important role in the development of atherosclerosis. Vasa vasorum angiogenesis and medial infiltration provides nutrients to the developing and expanding intima and therefore, may prevent cellular death and contribute to plaque growth and stabilization in early lesions. However in more advanced plaques, inflammatory cell infiltration, and concomitant production of numerous pro-angiogenic cytokines may be responsible for induction of uncontrolled neointimal microvessel proliferation resulting in production of immature and fragile neovessels similar to that seen in tumour development. These could contribute to development of an unstable haemorrhagic rupture-prone environment. Increasing evidence has suggested that the expression of intimal neovessels is directly related to the stage of plaque development, the risk of plaque rupture, and subsequently, the presence of symptomatic disease, the timing of ischemic neurological events and myocardial/cerebral infarction. Despite this, there is conflicting evidence regarding the causal relationship between neovessel expression and plaque thrombosis with some in vivo experimental models suggesting the contrary and as yet, few direct mediators of angiogenesis have been identified and associated with plaque instability in vivo. In recent years, an increasing number of angiogenic therapeutic targets have been proposed in order to facilitate modulation of neovascularization and its consequences in diseases such as cancer and macular degeneration. A complete knowledge of the mechanisms responsible for initiation of adventitial vessel proliferation, their extension into the intimal regions and possible de-novo synthesis of neovessels following differentiation of bone-marrow-derived stem cells is required in order to contemplate potential single or combinational anti-angiogenic therapies. In this review, we will examine the importance of angiogenesis in complicated plaque

  5. Molecular Expression Profile Reveals Potential Biomarkers and Therapeutic Targets in Canine Endometrial Lesions.

    Science.gov (United States)

    Voorwald, Fabiana Azevedo; Marchi, Fabio Albuquerque; Villacis, Rolando Andre Rios; Alves, Carlos Eduardo Fonseca; Toniollo, Gilson Hélio; Amorim, Renee Laufer; Drigo, Sandra Aparecida; Rogatto, Silvia Regina

    2015-01-01

    Cystic endometrial hyperplasia (CEH), mucometra, and pyometra are common uterine diseases in intact dogs, with pyometra being a life threatening disease. This study aimed to determine the gene expression profile of these lesions and potential biomarkers for closed-cervix pyometra, the most severe condition. Total RNA was extracted from 69 fresh endometrium samples collected from 21 healthy female dogs during diestrus, 16 CEH, 15 mucometra and 17 pyometra (eight open and nine closed-cervixes). Global gene expression was detected using the Affymetrix Canine Gene 1.0 ST Array. Unsupervised analysis revealed two clusters, one mainly composed of diestrus and CEH samples and the other by 12/15 mucometra and all pyometra samples. When comparing pyometra with other groups, 189 differentially expressed genes were detected. SLPI, PTGS2/COX2, MMP1, S100A8, S100A9 and IL8 were among the top up-regulated genes detected in pyometra, further confirmed by external expression data. Notably, a particular molecular profile in pyometra from animals previously treated with exogenous progesterone compounds was observed in comparison with pyometra from untreated dogs as well as with other groups irrespective of exogenous hormone treatment status. In addition to S100A8 and S100A9 genes, overexpression of the inflammatory cytokines IL1B, TNF and IL6 as well as LTF were detected in the pyometra from treated animals. Interestingly, closed pyometra was more frequently detected in treated dogs (64% versus 33%), with IL1B, TNF, LBP and CXCL10 among the most relevant overexpressed genes. This molecular signature associated with potential biomarkers and therapeutic targets, such as CXCL10 and COX2, should guide future clinical studies. Based on the gene expression profile we suggested that pyometra from progesterone treated dogs is a distinct molecular entity. PMID:26222498

  6. Expanding antitumor therapeutic windows by targeting cancer-specific nicotinamide adenine dinucleotide phosphate-biogenesis pathways

    Directory of Open Access Journals (Sweden)

    Chakrabarti G

    2015-03-01

    Full Text Available Gaurab Chakrabarti,1,2,4 David E Gerber,3,4 David A Boothman1,2,4 1Department of Pharmacology, 2Department of Radiation Oncology, 3Division of Hematology and Oncology, 4Harold C Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA Abstract: Nicotinamide adenine dinucleotide phosphate (NADPH biogenesis is an essential mechanism by which both normal and cancer cells maintain redox balance. While antitumor approaches to treat cancers through elevated reactive oxygen species (ROS are not new ideas, depleting specific NADPH-biogenesis pathways that control recovery and repair pathways are novel, viable approaches to enhance cancer therapy. However, to elicit efficacious therapies exploiting NADPH-biogenic pathways, it is crucial to understand and specifically define the roles of NADPH-biogenesis pathways used by cancer cells for survival or recovery from cell stress. It is equally important to select NADPH-biogenic pathways that are expendable or not utilized in normal tissue to avoid unwanted toxicity. Here, we address recent literature that demonstrates specific tumor-selective NADPH-biogenesis pathways that can be exploited using agents that target specific cancer cell pathways normally not utilized in normal cells. Defining NADPH-biogenesis profiles of specific cancer-types should enable novel strategies to exploit these therapeutic windows for increased efficacy against recalcitrant neoplastic disease, such as pancreatic cancers. Accomplishing the goal of using ROS as a weapon against cancer cells will also require agents, such as NQO1 bioactivatable drugs, that selectively induce elevated ROS levels in cancer cells, while normal cells are protected. Keywords: reactive oxygen species (ROS, NQO1-bioactivatable drugs, nicotinamide adenine dinucleotide phosphate (NADPH, glutathione (GSH, biogenic pathways, antioxidant

  7. Pericyst may be a new pharmacological and therapeutic target for hydatid disease

    Institute of Scientific and Technical Information of China (English)

    WU Xiang-wei; CHEN Xue-ling; ZHANG Shi-jie; ZHANG Xi; SUN Hong; PENG Xin-yu

    2011-01-01

    Background Most hydatid cysts with calcified walls are biologically and clinically silent and inactive. Transforming growth factor-beta 1 (TGF-β1) plays a critical role in the calcification process of cells. The aim of this study was to assess the effect of modulating TGF-β1 signaling on the calcification of hydatid cysts.Methods Pericyst cells isolated from hepatic hydatid cysts were cultured with osteogenic media. These cells were assessed for alkaline phosphatase activity and mineralization capacity using Alizarin Red staining. Cells were also treated with recombinant human TGF-β1 and TGF-β inhibitor, and the expression profiles of osteoblast markers (RUNX2,osterix, and osteocalcin) were analyzed using Western blotting. The effects of inhibiting TGF-β1 signaling on calcification of pericyst walls were assessed using different doses of TGF-β inhibitor for 7 weeks in a preclinical disease model of liver cystic echinococcosis.Results Cells within the pericyst displayed high levels of alkaline phosphatase activity and mineralized nodule formation, as induced by osteogenic media. These activities, as well as expression profiles of osteoblast markers (RUNX2, osterix, and osteocalcin) could be inhibited by addition of recombinant human TGF-β1 (rhTGF-β1) and enhanced by TGF-β inhibitor. In the animal model of cystic echinococcosis, inhibition of TGF-β1 signaling increased calcification of the pericyst wall, which was associated with decreased cyst load index and lower viability of protoscoleces.Conclusions Cells within the pericysts adopt an osteoblast-like phenotype and have osteogenic potential. Inhibition of TGF-β1 signaling increases hydatid cyst calcification. Pharmacological modulation of calcification in pericysts may be a new therapeutic target in the treatment of hydatid disease.

  8. S100B as a Potential Biomarker and Therapeutic Target in Multiple Sclerosis.

    Science.gov (United States)

    Barateiro, Andreia; Afonso, Vera; Santos, Gisela; Cerqueira, João José; Brites, Dora; van Horssen, Jack; Fernandes, Adelaide

    2016-08-01

    Multiple sclerosis (MS) pathology is characterized by neuroinflammation and demyelination. Recently, the inflammatory molecule S100B was identified in cerebrospinal fluid (CSF) and serum of MS patients. Although seen as an astrogliosis marker, lower/physiological levels of S100B are involved in oligodendrocyte differentiation/maturation. Nevertheless, increased S100B levels released upon injury may induce glial reactivity and oligodendrocyte demise, exacerbating tissue damage during an MS episode or delaying the following remyelination. Here, we aimed to unravel the functional role of S100B in the pathogenesis of MS. Elevated S100B levels were detected in the CSF of relapsing-remitting MS patients at diagnosis. Active demyelinating MS lesions showed increased expression of S100B and its receptor, the receptor for advanced glycation end products (RAGE), in the lesion area, while chronic active lesions displayed increased S100B in demyelinated areas with lower expression of RAGE in the rim. Interestingly, reactive astrocytes were identified as the predominant cellular source of S100B, whereas RAGE was expressed by activated microglia/macrophages. Using an ex vivo demyelinating model, cerebral organotypic slice cultures treated with lysophosphatidylcholine (LPC), we observed a marked elevation of S100B upon demyelination, which co-localized mostly with astrocytes. Inhibition of S100B action using a directed antibody reduced LPC-induced demyelination, prevented astrocyte reactivity and abrogated the expression of inflammatory and inflammasome-related molecules. Overall, high S100B expression in MS patient samples suggests its usefulness as a diagnostic biomarker for MS, while the beneficial outcome of its inhibition in our demyelinating model indicates S100B as an emerging therapeutic target in MS. PMID:26184632

  9. Molecular Expression Profile Reveals Potential Biomarkers and Therapeutic Targets in Canine Endometrial Lesions.

    Directory of Open Access Journals (Sweden)

    Fabiana Azevedo Voorwald

    Full Text Available Cystic endometrial hyperplasia (CEH, mucometra, and pyometra are common uterine diseases in intact dogs, with pyometra being a life threatening disease. This study aimed to determine the gene expression profile of these lesions and potential biomarkers for closed-cervix pyometra, the most severe condition. Total RNA was extracted from 69 fresh endometrium samples collected from 21 healthy female dogs during diestrus, 16 CEH, 15 mucometra and 17 pyometra (eight open and nine closed-cervixes. Global gene expression was detected using the Affymetrix Canine Gene 1.0 ST Array. Unsupervised analysis revealed two clusters, one mainly composed of diestrus and CEH samples and the other by 12/15 mucometra and all pyometra samples. When comparing pyometra with other groups, 189 differentially expressed genes were detected. SLPI, PTGS2/COX2, MMP1, S100A8, S100A9 and IL8 were among the top up-regulated genes detected in pyometra, further confirmed by external expression data. Notably, a particular molecular profile in pyometra from animals previously treated with exogenous progesterone compounds was observed in comparison with pyometra from untreated dogs as well as with other groups irrespective of exogenous hormone treatment status. In addition to S100A8 and S100A9 genes, overexpression of the inflammatory cytokines IL1B, TNF and IL6 as well as LTF were detected in the pyometra from treated animals. Interestingly, closed pyometra was more frequently detected in treated dogs (64% versus 33%, with IL1B, TNF, LBP and CXCL10 among the most relevant overexpressed genes. This molecular signature associated with potential biomarkers and therapeutic targets, such as CXCL10 and COX2, should guide future clinical studies. Based on the gene expression profile we suggested that pyometra from progesterone treated dogs is a distinct molecular entity.

  10. Experimental evidence of Migfilin as a new therapeutic target of hepatocellular carcinoma metastasis

    Energy Technology Data Exchange (ETDEWEB)

    Gkretsi, Vasiliki, E-mail: vasso.gkretsi@gmail.com [Department of Biomedical Research and Technology, Institute for Research and Technology-Thessaly, Centre for Research and Technology-Hellas (CE.R.T.H.), Larissa 41222 (Greece); Bogdanos, Dimitrios P. [Department of Biomedical Research and Technology, Institute for Research and Technology-Thessaly, Centre for Research and Technology-Hellas (CE.R.T.H.), Larissa 41222 (Greece); Department of Rheumatology, School of Medicine, University of Thessaly, University Hospital of Larissa, 41110 Larissa (Greece); Institute of Liver Studies, King' s College Hospital, Denmark Hill, London SE5 9RS (United Kingdom)

    2015-06-10

    Migfilin is a novel cell–matrix adhesion protein known to interact with Vasodilator Stimulated Phosphoprotein (VASP) and be localized both at cell–matrix and cell–cell adhesions. To date there is nothing known about its role in hepatocellular carcinoma (HCC). As matrix is important in metastasis, we aimed to investigate the Migfilin's role in HCC metastasis using two human HCC cell lines that differ in their metastatic potential; non-invasive Alexander cells and the highly invasive HepG2 cells. We silenced Migfilin by siRNA and studied its effect on signaling and metastasis-related cellular properties. We show that Migfilin's expression is elevated in HepG2 cells and its silencing leads to upregulation of actin reorganization-related proteins, namely phosphor-VASP (Ser157 and Ser239), Fascin-1 and Rho-kinase-1, promoting actin polymerization and inhibiting cell invasion. Phosphor-Akt (Ser473) is decreased contributing to the upregulation of free and phosphor-β-catenin (Ser33/37Thr41) and inducing proliferation. Migfilin elimination upregulates Extracellular Signal–regulated kinase, which increases cell adhesion in HepG2 and reduces invasiveness. This is the first study to reveal that Migfilin inhibition can halt HCC metastasis in vitro, providing the molecular mechanism involved and presenting Migfilin as potential therapeutic target against HCC metastasis. - Highlights: • Migfilin is a cell–matrix and cell–cell adhesion protein known to interact with VASP. • Nothing is known about Migfilin's role in hepatocellular carcinoma (HCC). • We eliminated Migfilin from 2 HCC cell lines and studied in vitro metastasis. • Its silencing inhibits cell invasion and promotes adhesion in HepG2 invasive cells. • We provide molecular mechanism by which Migfilin elimination halts HCC metastasis.

  11. Ectopic ATP synthase in endothelial cells: a novel cardiovascular therapeutic target.

    Science.gov (United States)

    Fu, Yi; Zhu, Yi

    2010-01-01

    Adenosine triphosphate (ATP) synthase produces ATP in cells and is found on the inner membrane of mitochondria or the cell plasma membrane (ectopic ATP synthase). Here, we summarize the functions of ectopic ATP synthase in vascular endothelial cells (ECs). Ectopic ATP synthase is involved in adenosine metabolism on the cell surface through its ATP generation or hydrolysis activity. The ATP/ADP generated by the enzyme on the plasma membrane can bind to P2X/P2Y receptors and activate the related signalling pathways to regulate endothelial function. The β-chain of ectopic ATP synthase on the EC surface can recruit inflammatory cells and activate cytotoxic activity to damage ECs and induce vascular inflammation. Angiostatin and other angiogenesis inhibitors can have anti-angiogenic functions by inhibiting ectopic ATP synthase on ECs. Moreover, ectopic ATP synthase on ECs is a receptor for apoA-I, the acceptor of cholesterol efflux, which implies that endothelial ectopic ATP synthase is involved in cholesterol metabolism. Coupling factor 6 (CF6), a part of ectopic ATP synthase, is released from ECs and can inhibit prostacyclin synthesis and promote nitric oxide (NO) degradation to enhance NO bioactivity. Because ATP/ADP generated by ectopic ATP synthase can induce NO production, substances such as CF6 can inhibit NO generation by inhibiting surface ATP/ADP production. Thus, the components of ectopic ATP synthase are associated with regulation of vascular tone. Through these functions, ectopic ATP synthase on ECs is considered a potential and novel therapeutic target for atherosclerosis, hypertension and lipid disorders. PMID:21247400

  12. Neuropeptide and sigma receptors as novel therapeutic targets for the pharmacotherapy of depression.

    Science.gov (United States)

    Paschos, Konstantinos A; Veletza, Stavroula; Chatzaki, Ekaterini

    2009-09-01

    Among the most prevalent of mental illnesses, depression is increasing in incidence in the Western world. It presents with a wide variety of symptoms that involve both the CNS and the periphery. Multiple pharmacological observations led to the development of the monoamine theory as a biological basis for depression, according to which diminished neurotransmission within the CNS, including that of the dopamine, noradrenaline (norepinephrine) and serotonin systems, is the leading cause of the disorder. Current conventional pharmacological antidepressant therapies, using selective monoamine reuptake inhibitors, tricyclic antidepressants and monoamine oxidase inhibitors, aim to enhance monoaminergic neurotransmission. However, the use of these agents presents severe disadvantages, including a delay in the alleviation of depressive symptoms, significant adverse effects and high frequencies of non-responding patients. Neuroendocrinological data of recent decades reveal that depression and anxiety disorders may occur simultaneously due to hypothalamus-pituitary-adrenal (HPA) axis hyperactivity. As a result, the stress-diathesis model was developed, which attempts to associate genetic and environmental influences in the aetiology of depression. The amygdala and the hippocampus control the activity of the HPA axis in a counter-balancing way, and a plethora of regulatory neuropeptide signalling pathways are involved. Intervention at these molecular targets may lead to alternative antidepressant therapeutic solutions that are expected to overcome the limitations of existing antidepressants. This prospect is based on preclinical evidence from pharmacological and genetic modifications of the action of neuropeptides such as corticotropin-releasing factor, substance P, galanin, vasopressin and neuropeptide Y. The recent synthesis of orally potent non-peptide micromolecules that can selectively bind to various neuropeptide receptors permits the onset of clinical trials to evaluate

  13. Increased fatty acid synthase as a potential therapeutic target in multiple myeloma

    Institute of Scientific and Technical Information of China (English)

    Wei-qin WANG; Xiao-ying ZHAO; Hai-yan WANG; Yun LIANG

    2008-01-01

    Objective: To determine fatty acid synthase (FAS) expression in human multiple myeloma and verify its potential as a therapeutic target in multiple myeloma. Methods: FAS expression was determined by immunohistochemistry, reverse-transcription polymerase chain reaction (RT-PCR) and immunoblot analysis in bone marrow samples obtained from 27 patients with multiple myeloma (MM patients) and peripheral blood mononuclear cells (PBMCs) obtained from 12 healthy donors. In parallel, additional analyses were performed on 2 human multiple myeloma cell lines, U266 and RPMI8226. U266 cells were treated with cerulenin at various concentrations (5 to 320μg/ml) for 24 h, and metabolic activity was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays. Apoptosis was evaluated by dual Annexin V/PI (propidium iodide) labeling and flow cytometry (FCM) in U266 cells treated with 20μg/ml cerulenin for 12 h or 24 h. Results: By immunohistochemistry, we found that 19 of 27 bone marrow samples obtained from MM patients expressed significantly high levels of FAS. Similarly, by RT-PCR, 22 of 27 bone marrow samples obtained from MM patients, U266 and RPMI8226 showed FAS expression, whereas PBMC samples from 12 healthy donors did not express detectable level of FAS. FAS protein expression was confirmed by immunoblot analysis in 16 of 27 bone marrow samples obtained from MM patients, U266 and RPMI8226 cell lines, and no FAS protein expression was detected in PBMC samples from 12 healthy donors. U266 cells were highly sensitive to cerulenin treatment, with a dosage-related effect on metabolic activity, as a measure for cell proliferation. U266 cells treated with20 μg/ml cerulenin for 12 and 24h also showed early sign of apoptosis with 56.9% and 69.3% Annexin V+/PI+ cells, and late apoptotic and necrotic cells with 3.2% and 17.6% Annexin V+/PI+ cells. Conclusion: Increased FAS expression existed in multiple myeloma samples and human myeloma cell lines

  14. Judging attractiveness: Biases due to raters’ own attractiveness and intelligence

    OpenAIRE

    Stacy Yen-Lin Sim; Jenna Saperia; Jill Anne Brown; Frank John Bernieri

    2015-01-01

    Tennis and Dabbs (1975) reported that physically attractive males showed a positivity bias when rating the attractiveness of others. The opposite pattern was observed for females. We attempted to replicate and extend these findings by: (1) using self-assessed attractiveness rather than the experimentally derived attractiveness measure used in previous research, (2) using face-to-face interactions with targets as opposed to using photographs, and (3) examining the effect of another ego-involvi...

  15. CO2-free hydrogen as a substitute to fossil fuels: What are the targets? Prospective assessment of the hydrogen market attractiveness

    International Nuclear Information System (INIS)

    Hydrogen is usually presented as a promising energy carrier that has a major role to play in low carbon mobility, through the use of fuel cells. However, such a market is not expected in the short term. In the meantime, hydrogen may also contribute to reduce carbon emissions in diverse sectors: oil refining, low carbon mobility through the industrial deployment of advanced bio-fuels, natural gas consumption, and methanol production. According to the targeted market, objective costs are rather different; and so is the reachable mitigated CO2 amount. This paper assesses the dynamics of these markets' attractiveness, in order to provide target costs for CO2-free hydrogen production. The potential of the markets of hydrogen as a fuel and hydrogen for the biomass-to-liquid production is highlighted, as they could represent significant volumes by 2050, as well as interesting perspectives for CO2 emission reduction. However the targets are very sensitive to the CO2 price, thus highlighting the requirement for economic instruments in order to facilitate the penetration of such technologies. Hydrogen is then highlighted as a key player of the energy system in the years to come, as the connection of the energy and mobility sectors. (authors)

  16. Targeted anti-cancer prodrug based on carbon nanotube with photodynamic therapeutic effect and pH-triggered drug release

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Jianquan; Zeng, Fang, E-mail: mcfzeng@scut.edu.cn; Xu, Jiangsheng; Wu, Shuizhu, E-mail: shzhwu@scut.edu.cn [South China University of Technology, College of Materials Science and Engineering, State Key Laboratory of Luminescent Materials and Devices (China)

    2013-09-15

    Herein, we describe a multifunctional anti-cancer prodrug system based on water-dispersible carbon nanotube (CNT); this prodrug system features active targeting, pH-triggered drug release, and photodynamic therapeutic properties. For this prodrug system (with the size of {approx}100-300 nm), an anti-cancer drug, doxorubicin (DOX), was incorporated onto CNT via a cleavable hydrazone bond; and a targeting ligand (folic acid) was also coupled onto CNT. This prodrug can preferably enter folate receptor (FR)-positive cancer cells and undergo intracellular release of the drug triggered by the reduced pH. The targeted CNT-based prodrug system can cause lower cell viability toward FR-positive cells compared to the non-targeted ones. Moreover, the CNT carrier exhibits photodynamic therapeutic (PDT) action; and the cell viability of FR-positive cancer cells can be further reduced upon light irradiation. The dual effects of pH-triggered drug release and PDT increase the therapeutic efficacy of the DOX-CNT prodrug. This study may offer some useful insights on designing and improving the applicability of CNT for other drug delivery systems.

  17. Potential prospects of nanomedicine for targeted therapeutics in inflammatory bowel diseases

    OpenAIRE

    Pichai, Madharasi VA; Lynnette R. Ferguson

    2012-01-01

    Inflammatory bowel diseases (IBDs) such as Crohn’s disease are highly debilitating. There are inconsistencies in response to and side effects in the current conventional medications, failures in adequate drug delivery, and the lack of therapeutics to offer complete remission in the presently available treatments of IBD. This suggests the need to explore beyond the horizons of conventional approaches in IBD therapeutics. This review examines the arena of the evolving IBD nanomedicine, studied ...

  18. Model‐Based Assessment of Plasma Citrate Flux Into the Liver: Implications for NaCT as a Therapeutic Target

    OpenAIRE

    Z. Li; Erion, DM; Maurer, TS

    2016-01-01

    Cytoplasmic citrate serves as an important regulator of gluconeogenesis and carbon source for de novo lipogenesis in the liver. For this reason, the sodium‐coupled citrate transporter (NaCT), a plasma membrane transporter that governs hepatic influx of plasma citrate in human, is being explored as a potential therapeutic target for metabolic disorders. As cytoplasmic citrate also originates from intracellular mitochondria, the relative contribution of these two pathways represents critical in...

  19. Potential therapeutic targets for oral cancer: ADM, TP53, EGFR, LYN, CTLA4, SKIL, CTGF, CD70.

    Directory of Open Access Journals (Sweden)

    Saurabh Bundela

    Full Text Available In India, oral cancer has consistently ranked among top three causes of cancer-related deaths, and it has emerged as a top cause for the cancer-related deaths among men. Lack of effective therapeutic options is one of the main challenges in clinical management of oral cancer patients. We interrogated large pool of samples from oral cancer gene expression studies to identify potential therapeutic targets that are involved in multiple cancer hallmark events. Therapeutic strategies directed towards such targets can be expected to effectively control cancer cells. Datasets from different gene expression studies were integrated by removing batch-effects and was used for downstream analyses, including differential expression analysis. Dependency network analysis was done to identify genes that undergo marked topological changes in oral cancer samples when compared with control samples. Causal reasoning analysis was carried out to identify significant hypotheses, which can explain gene expression profiles observed in oral cancer samples. Text-mining based approach was used to detect cancer hallmarks associated with genes significantly expressed in oral cancer. In all, 2365 genes were detected to be differentially expressed genes, which includes some of the highly differentially expressed genes like matrix metalloproteinases (MMP-1/3/10/13, chemokine (C-X-C motif ligands (IL8, CXCL-10/-11, PTHLH, SERPINE1, NELL2, S100A7A, MAL, CRNN, TGM3, CLCA4, keratins (KRT-3/4/13/76/78, SERPINB11 and serine peptidase inhibitors (SPINK-5/7. XIST, TCEAL2, NRAS and FGFR2 are some of the important genes detected by dependency and causal network analysis. Literature mining analysis annotated 1014 genes, out of which 841 genes were statistically significantly annotated. The integration of output of various analyses, resulted in the list of potential therapeutic targets for oral cancer, which included targets such as ADM, TP53, EGFR, LYN, CTLA4, SKIL, CTGF and CD70.

  20. βMolecular Pathways: Novel Approaches for Improved Therapeutic Targeting of Hedgehog Signaling in Cancer Stem Cells

    OpenAIRE

    Justilien, Verline; Fields, Alan P.

    2015-01-01

    The Hedgehog (Hh) signaling pathway is critical for embryonic development. In adult tissues, Hh signaling is relatively quiescent with the exception of roles in tissue maintenance and repair. Aberrant activation of Hh signaling is implicated in multiple aspects of transformation including the maintenance of the cancer stem cell (CSC) phenotype. Pre-clinical studies indicate that CSCs from many tumor types are sensitive to Hh pathway inhibition and that Hh-targeted therapeutics block many aspe...

  1. PDX-1 Is a Therapeutic Target for Pancreatic Cancer, Insulinoma and Islet Neoplasia Using a Novel RNA Interference Platform

    OpenAIRE

    Liu, Shi-He; Rao, Donald D; Nemunaitis, John; Senzer, Neil; Zhou, Guisheng; Dawson, David; Gingras, Marie-Claude; Wang, Zhaohui; Gibbs, Richard,; Norman, Michael; Nancy S Templeton; DeMayo, Francesco J; O'Malley, Bert; Sanchez, Robbi; Fisher, William E.

    2012-01-01

    Pancreatic and duodenal homeobox-1 (PDX-1) is a transcription factor that regulates insulin expression and islet maintenance in the adult pancreas. Our recent studies demonstrate that PDX-1 is an oncogene for pancreatic cancer and is overexpressed in pancreatic cancer. The purpose of this study was to demonstrate that PDX-1 is a therapeutic target for both hormonal symptoms and tumor volume in mouse models of pancreatic cancer, insulinoma and islet neoplasia. Immunohistochemistry of human pan...

  2. Combined therapeutic benefit of mitochondria-targeted antioxidant, MitoQ10, and angiotensin receptor blocker, losartan, on cardiovascular function

    OpenAIRE

    McLachlan, Jennifer; Beattie, Elisabeth; Murphy, Michael P; Koh-Tan, Caline H.H.; Olson, Erin; Beattie, Wendy; Dominiczak, Anna F.; Nicklin, Stuart A.; Graham, Delyth

    2014-01-01

    Objective: Mitochondria-derived reactive oxygen species (ROS) play important roles in the development of cardiovascular disease highlighting the need for novel targeted therapies. This study assessed the potential therapeutic benefit of combining the mitochondria-specific antioxidant, MitoQ10, with the low-dose angiotensin receptor blocker (ARB), losartan, on attenuation of hypertension and left ventricular hypertrophy. In parallel, we investigated the impact of MitoQ10 on cardiac hypertro...

  3. Targeting immune response with therapeutic vaccines in premalignant lesions and cervical cancer: hope or reality from clinical studies.

    Science.gov (United States)

    Vici, P; Pizzuti, L; Mariani, L; Zampa, G; Santini, D; Di Lauro, L; Gamucci, T; Natoli, C; Marchetti, P; Barba, M; Maugeri-Saccà, M; Sergi, D; Tomao, F; Vizza, E; Di Filippo, S; Paolini, F; Curzio, G; Corrado, G; Michelotti, A; Sanguineti, G; Giordano, A; De Maria, R; Venuti, A

    2016-10-01

    Human papillomavirus (HPV) is widely known as a cause of cervical cancer (CC) and cervical intraepithelial neoplasia (CIN). HPVs related to cancer express two main oncogenes, i.e. E6 and E7, considered as tumorigenic genes; their integration into the host genome results in the abnormal regulation of cell cycle control. Due to their peculiarities, these oncogenes represent an excellent target for cancer immunotherapy. In this work the authors highlight the potential use of therapeutic vaccines as safe and effective pharmacological tools in cervical disease, focusing on vaccines that have reached the clinical trial phase. Many therapeutic HPV vaccines have been tested in clinical trials with promising results. Adoptive T-cell therapy showed clinical activity in a phase II trial involving advanced CC patients. A phase II randomized trial showed clinical activity of a nucleic acid-based vaccine in HPV16 or HPV18 positive CIN. Several trials involving peptide-protein-based vaccines and live-vector based vaccines demonstrated that these approaches are effective in CIN as well as in advanced CC patients. HPV therapeutic vaccines must be regarded as a therapeutic option in cervical disease. The synergic combination of HPV therapeutic vaccines with radiotherapy, chemotherapy, immunomodulators or immune checkpoint inhibitors opens a new and interesting scenario in this disease.

  4. Therapeutic effect of photodynamic therapy combined with targeted delivery of silencing vascular endothelial growth factor (Conference Presentation)

    Science.gov (United States)

    Hsu, Yih-Chih

    2016-03-01

    Photodynamic therapy is a novel therapeutic modality to treat cancer by using a photosensitizer which is activated by a light source to produce reactive oxygen species and mediates tumours oxygen-independent hypoxic conditions. Vascular endothelial growth factor (VEGF) is one of the primary factors that affect tumor angiogenesis. Another emerging treatment to cure cancer is the use of interference RNA to silence a specific mRNA sequence. Such treatment requires a delivery system such as liposomes. The nanoparticle size measured was about 30 nm. Cellular uptake study was performed to verify that the nanoparticles have a sigma receptor mediated pathway. Non-targeted LCP NPs did not show significant difference with or without haloperidol but has a lower intensity as than targeted LCP NPs. These results confirm that LCP NPs have a receptor mediated pathway. Cell viability was found to decrease at 25 nM of transfected VEGF siRNA. Combined therapy of PDT and VEGF siRNA showed significant response as compared with PDT and gene therapy alone. In vivo toxicity assay with mice treated with targeted LCP NPs containing control siRNA or VEGF siRNA and non-targeted LCP NPs containing VEGF siRNA did not show any significant difference with the PBS injected group which suggests that there is no toxicity with the dose. It suggests that PDT combined with targeted gene therapy has a potential mean to achieve better therapeutic outcome.

  5. Enzyme inhibition as a key target for the development of novel metal-based anti-cancer therapeutics.

    Science.gov (United States)

    Griffith, Darren; Parker, James P; Marmion, Celine J

    2010-06-01

    Historically, DNA has been the target for many metal-based anti-cancer drugs, but drawbacks of prevailing therapies have stimulated the search for new molecular targets which may present unique opportunities for therapeutic exploitation. Enzyme inhibition has recently been identified as an alternative and significant target. The pursuit of novel metallodrug candidates that selectively target enzymes is now the subject of intense investigation in medicinal bioinorganic chemistry and chemical biology. In the field of drug design, it is recognised by many that exploiting the structural and chemical diversity of metal ions for the identification of potential hit and lead candidates can dramatically increase the number of possible drug candidates that may be added to the already abundant armoury of chemotherapeutic agents. This review will focus on recent key advancements in enzyme inhibition as a key target for the development of novel metal-based anti-cancer therapeutics. The enormous clinical success of classical platinum drugs, amongst others, coupled with the wealth of knowledge accumulated in recent years on enzyme structure and function, has undoubtedly been the impetus behind the development of new metallodrug candidates with enzyme inhibitory properties. Recent trends in this field will be reviewed with a particular emphasis on metal complexes that inhibit protein and lipid kinases, matrix metalloproteases, telomerases, topoisomerases, glutathione-S-transferases, and histone deacetylases.

  6. Inhibition of nitric oxide is a good therapeutic target for bladder tumors that express iNOS.

    Science.gov (United States)

    Belgorosky, Denise; Langle, Yanina; Prack Mc Cormick, Bárbara; Colombo, Lucas; Sandes, Eduardo; Eiján, Ana María

    2014-01-30

    Bladder cancer is the second cause of death for urological tumors in man. When the tumor is nonmuscle invasive, transurethral resection is curative. On the other hand, radical cystectomy is the treatment chosen for patients with invasive tumors, but still under treatment, these patients have high risk of dying, by the development of metastatic disease within 5 years. It is therefore important to identify a new therapeutic target to avoid tumor recurrences and tumor progression. Nitric oxide (NO) is an important biological messenger known to influence several types of cancers. In bladder cancer, production of NO and expression and activity of inducible NO synthase was associated to recurrence and progression. The objective of this work was to analyze if inhibition of nitric oxide production could be considered a therapeutic target for bladder tumors expressing iNOS. Using a bladder cancer murine model with different invasiveness grade we have demonstrated that NO inhibition was able to inhibit growth of bladder tumors expressing iNOS. Furthermore, invasive properties of MB49-I orthotopic growth was inhibited using NO inhibitors. This paper also shows that levels of NO in urine can be correlated with tumor size. In conclusion, inhibition of NO could be considered as a therapeutic target that prevents tumor growth and progression. Also, urine NO levels may be useful for measuring tumor growth.

  7. Computer-Aided Targeting of the PI3K/Akt/mTOR Pathway: Toxicity Reduction and Therapeutic Opportunities

    Directory of Open Access Journals (Sweden)

    Tan Li

    2014-10-01

    Full Text Available The PI3K/Akt/mTOR pathway plays an essential role in a wide range of biological functions, including metabolism, macromolecular synthesis, cell growth, proliferation and survival. Its versatility, however, makes it a conspicuous target of many pathogens; and the consequential deregulations of this pathway often lead to complications, such as tumorigenesis, type 2 diabetes and cardiovascular diseases. Molecular targeted therapy, aimed at modulating the deregulated pathway, holds great promise for controlling these diseases, though side effects may be inevitable, given the ubiquity of the pathway in cell functions. Here, we review a variety of factors found to modulate the PI3K/Akt/mTOR pathway, including gene mutations, certain metabolites, inflammatory factors, chemical toxicants, drugs found to rectify the pathway, as well as viruses that hijack the pathway for their own synthetic purposes. Furthermore, this evidence of PI3K/Akt/mTOR pathway alteration and related pathogenesis has inspired the exploration of computer-aided targeting of this pathway to optimize therapeutic strategies. Herein, we discuss several possible options, using computer-aided targeting, to reduce the toxicity of molecularly-targeted therapy, including mathematical modeling, to reveal system-level control mechanisms and to confer a low-dosage combination therapy, the potential of PP2A as a therapeutic target, the formulation of parameters to identify patients who would most benefit from specific targeted therapies and molecular dynamics simulations and docking studies to discover drugs that are isoform specific or mutation selective so as to avoid undesired broad inhibitions. We hope this review will stimulate novel ideas for pharmaceutical discovery and deepen our understanding of curability and toxicity by targeting the PI3K/Akt/mTOR pathway.

  8. Essential proteins and possible therapeutic targets of Wolbachia endosymbiont and development of FiloBase--a comprehensive drug target database for Lymphatic filariasis.

    Science.gov (United States)

    Sharma, Om Prakash; Kumar, Muthuvel Suresh

    2016-01-01

    Lymphatic filariasis (Lf) is one of the oldest and most debilitating tropical diseases. Millions of people are suffering from this prevalent disease. It is estimated to infect over 120 million people in at least 80 nations of the world through the tropical and subtropical regions. More than one billion people are in danger of getting affected with this life-threatening disease. Several studies were suggested its emerging limitations and resistance towards the available drugs and therapeutic targets for Lf. Therefore, better medicine and drug targets are in demand. We took an initiative to identify the essential proteins of Wolbachia endosymbiont of Brugia malayi, which are indispensable for their survival and non-homologous to human host proteins. In this current study, we have used proteome subtractive approach to screen the possible therapeutic targets for wBm. In addition, numerous literatures were mined in the hunt for potential drug targets, drugs, epitopes, crystal structures, and expressed sequence tag (EST) sequences for filarial causing nematodes. Data obtained from our study were presented in a user friendly database named FiloBase. We hope that information stored in this database may be used for further research and drug development process against filariasis. URL: http://filobase.bicpu.edu.in. PMID:26806463

  9. Essential proteins and possible therapeutic targets of Wolbachia endosymbiont and development of FiloBase-a comprehensive drug target database for Lymphatic filariasis

    Science.gov (United States)

    Sharma, Om Prakash; Kumar, Muthuvel Suresh

    2016-01-01

    Lymphatic filariasis (Lf) is one of the oldest and most debilitating tropical diseases. Millions of people are suffering from this prevalent disease. It is estimated to infect over 120 million people in at least 80 nations of the world through the tropical and subtropical regions. More than one billion people are in danger of getting affected with this life-threatening disease. Several studies were suggested its emerging limitations and resistance towards the available drugs and therapeutic targets for Lf. Therefore, better medicine and drug targets are in demand. We took an initiative to identify the essential proteins of Wolbachia endosymbiont of Brugia malayi, which are indispensable for their survival and non-homologous to human host proteins. In this current study, we have used proteome subtractive approach to screen the possible therapeutic targets for wBm. In addition, numerous literatures were mined in the hunt for potential drug targets, drugs, epitopes, crystal structures, and expressed sequence tag (EST) sequences for filarial causing nematodes. Data obtained from our study were presented in a user friendly database named FiloBase. We hope that information stored in this database may be used for further research and drug development process against filariasis. URL: http://filobase.bicpu.edu.in. PMID:26806463

  10. Design and conduct of early-phase radiotherapy trials with targeted therapeutics: Lessons from the PRAVO experience

    International Nuclear Information System (INIS)

    New strategies to facilitate the improvement of physical and integrated biological optimization of high-precision treatment protocols are an important priority for modern radiation oncology. From a clinical perspective, as knowledge accumulates from molecular radiobiology, there is a complex and exciting opportunity to investigate novel approaches to rational patient treatment stratification based on actionable tumor targets, together with the appropriate design of next-generation early-phase radiotherapy trials utilizing targeted therapeutics, to formally evaluate relevant clinical and biomarker endpoints. A unique aspect in the development pathway of systemic agents with presumed radiosensitizing activity will also be the need for special attention on patient eligibility and the rigorous definition of radiation dose–volume relationships and potential dose-limiting toxicities. Based on recent experience from systematically investigating histone deacetylase inhibitors as radiosensitizing agents, from initial studies in preclinical tumor models through the conduct of a phase I clinical study to evaluate tumor activity of the targeted agent as well as patient safety and tumor response to the combined treatment modality, this communication will summarize principles relating to early clinical evaluation of combining radiotherapy and targeted therapeutics

  11. Phosphotyrosine profiling identifies ephrin receptor A2 as a potential therapeutic target in esophageal squamous-cell carcinoma.

    Science.gov (United States)

    Syed, Nazia; Barbhuiya, Mustafa A; Pinto, Sneha M; Nirujogi, Raja Sekhar; Renuse, Santosh; Datta, Keshava K; Khan, Aafaque Ahmad; Srikumar, Kotteazeth; Prasad, T S Keshava; Kumar, M Vijaya; Kumar, Rekha Vijay; Chatterjee, Aditi; Pandey, Akhilesh; Gowda, Harsha

    2015-01-01

    Esophageal squamous-cell carcinoma (ESCC) is one of the most common malignancies in Asia. Currently, surgical resection of early-stage tumor is the best available treatment. However, most patients present late when surgery is not an option. Data suggest that chemotherapy regimens are inadequate for clinical management of advanced cancer. Targeted therapy has emerged as one of the most promising approaches to treat several malignancies. A prerequisite for developing targeted therapy is prior knowledge of proteins and pathways that drive proliferation in malignancies. We carried out phosphotyrosine profiling across four different ESCC cell lines and compared it to non-neoplastic Het-1A cell line to identify activated tyrosine kinase signaling pathways in ESCC. A total of 278 unique phosphopeptides were identified across these cell lines. This included several tyrosine kinases and their substrates that were hyperphosphorylated in ESCC. Ephrin receptor A2 (EPHA2), a receptor tyrosine kinase, was hyperphosphorylated in all the ESCC cell lines used in the study. EPHA2 is reported to be oncogenic in several cancers and is also known to promote metastasis. Immunohistochemistry-based studies have revealed EPHA2 is overexpressed in nearly 50% of ESCC. We demonstrated EPHA2 as a potential therapeutic target in ESCC by carrying out siRNA-based knockdown studies. Knockdown of EPHA2 in ESCC cell line TE8 resulted in significant decrease in cell proliferation and invasion, suggesting it is a promising therapeutic target in ESCC that warrants further evaluation.

  12. TiPs: a database of therapeutic targets in pathogens and associated tools.

    KAUST Repository

    Lepore, Rosalba

    2013-05-21

    MOTIVATION: The need for new drugs and new targets is particularly compelling in an era that is witnessing an alarming increase of drug resistance in human pathogens. The identification of new targets of known drugs is a promising approach, which has proven successful in several cases. Here, we describe a database that includes information on 5153 putative drug-target pairs for 150 human pathogens derived from available drug-target crystallographic complexes. AVAILABILITY AND IMPLEMENTATION: The TiPs database is freely available at http://biocomputing.it/tips. CONTACT: anna.tramontano@uniroma1.it or allegra.via@uniroma1.it.

  13. Proteomic analysis of imatinib-resistant CML-T1 cells reveals calcium homeostasis as a potential therapeutic target

    Science.gov (United States)

    Toman, O.; Kabickova, T.; Vit, O.; Fiser, R.; Polakova, K. Machova; Zach, J.; Linhartova, J.; Vyoral, D.; Petrak, J.

    2016-01-01

    Chronic myeloid leukemia (CML) therapy has markedly improved patient prognosis after introduction of imatinib mesylate for clinical use. However, a subset of patients develops resistance to imatinib and other tyrosine kinase inhibitors (TKIs), mainly due to point mutations in the region encoding the kinase domain of the fused BCR-ABL oncogene. To identify potential therapeutic targets in imatinib-resistant CML cells, we derived imatinib-resistant CML-T1 human cell line clone (CML-T1/IR) by prolonged exposure to imatinib in growth media. Mutational analysis revealed that the Y235H mutation in BCR-ABL is probably the main cause of CML-T1/IR resistance to imatinib. To identify alternative therapeutic targets for selective elimination of imatinib-resistant cells, we compared the proteome profiles of CML-T1 and CML-T1/IR cells using 2-DE-MS. We identified eight differentially expressed proteins, with strongly upregulated Na+/H+ exchanger regulatory factor 1 (NHERF1) in the resistant cells, suggesting that this protein may influence cytosolic pH, Ca2+ concentration or signaling pathways such as Wnt in CML-T1/IR cells. We tested several compounds including drugs in clinical use that interfere with the aforementioned processes and tested their relative toxicity to CML-T1 and CML-T1/IR cells. Calcium channel blockers, calcium signaling antagonists and modulators of calcium homeostasis, namely thapsigargin, ionomycin, verapamil, carboxyamidotriazole and immunosuppressive drugs cyclosporine A and tacrolimus (FK-506) were selectively toxic to CML-T1/IR cells. The putative cellular targets of these compounds in CML-T1/IR cells are postulated in this study. We propose that Ca2+ homeostasis can be a potential therapeutic target in CML cells resistant to TKIs. We demonstrate that a proteomic approach may be used to characterize a TKI-resistant population of CML cells enabling future individualized treatment options for patients. PMID:27430982

  14. Cannabinoid receptor 2 as a potential therapeutic target in rheumatoid arthritis

    OpenAIRE

    Fukuda, Shin; Kohsaka, Hitoshi; Takayasu, Aiko; Yokoyama, Waka; Miyabe, Chie; Miyabe, Yoshishige; Harigai, Masayoshi; Miyasaka, Nobuyuki; Nanki, Toshihiro

    2014-01-01

    Background Some of cannabinoids, which are chemical compounds contained in marijuana, are immunosuppressive. One of the receptors, CB receptor 1 (CB1), is expressed predominantly by the cells in the central nervous system, whereas CB receptor 2 (CB2) is expressed primarily by immune cells. Theoretically, selective CB2 agonists should be devoid of psychoactive effects. In this study, we investigated therapeutic effects of a selective CB2 agonist on arthritis. Methods The expression of CB2 was ...

  15. Potential Diagnostic, Prognostic and Therapeutic Targets of MicroRNAs in Human Gastric Cancer

    OpenAIRE

    Ming-Ming Tsai; Chia-Siu Wang; Chung-Ying Tsai; Hsiang-Wei Huang; Hsiang-Cheng Chi; Yang-Hsiang Lin; Pei-Hsuan Lu; Kwang-Huei Lin

    2016-01-01

    Human gastric cancer (GC) is characterized by a high incidence and mortality rate, largely because it is normally not identified until a relatively advanced stage owing to a lack of early diagnostic biomarkers. Gastroscopy with biopsy is the routine method for screening, and gastrectomy is the major therapeutic strategy for GC. However, in more than 30% of GC surgical patients, cancer has progressed too far for effective medical resection. Thus, useful biomarkers for early screening or detect...

  16. Bacterial Heat-Stable Enterotoxins: Translation of Pathogenic Peptides into Novel Targeted Diagnostics and Therapeutics

    OpenAIRE

    Chang Chang; Stoecker, Brian A.; Snook, Adam E.; Peng Li; Magee, Michael S; Glen Marszalowicz; Michael Valentino; Lin, Jieru E.; Waldman, Scott A

    2010-01-01

    Heat-stable toxins (STs) produced by enterotoxigenic bacteria cause endemic and traveler’s diarrhea by binding to and activating the intestinal receptor guanylyl cyclase C (GC-C). Advances in understanding the biology of GC-C have extended ST from a diarrheagenic peptide to a novel therapeutic agent. Here, we summarize the physiological and pathophysiological role of GC-C in fluid-electrolyte regulation and intestinal crypt-villus homeostasis, as well as describe translational opportunities o...

  17. Cell Survival and Apoptosis Signaling as Therapeutic Target for Cancer: Marine Bioactive Compounds

    OpenAIRE

    Kim Se-Kwon; Senthilkumar Kalimuthu

    2013-01-01

    Inhibition of apoptosis leads to activation of cell survival factors (e.g., AKT) causes continuous cell proliferation in cancer. Apoptosis, the major form of cellular suicide, is central to various physiological processes and the maintenance of homeostasis in multicellular organisms. A number of discoveries have clarified the molecular mechanism of apoptosis, thus clarifying the link between apoptosis and cell survival factors, which has a therapeutic outcome. Induction of apoptosis and inhib...

  18. Animal models and therapeutic molecular targets of cancer: utility and limitations

    OpenAIRE

    Cekanova M; Rathore K

    2014-01-01

    Maria Cekanova, Kusum Rathore Department of Small Animal Clinical Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN, USA Abstract: Cancer is the term used to describe over 100 diseases that share several common hallmarks. Despite prevention, early detection, and novel therapies, cancer is still the second leading cause of death in the USA. Successful bench-to-bedside translation of basic scientific findings about cancer into therapeutic interventions for pa...

  19. Targeting reactive nitrogen species: a promising therapeutic strategy for cerebral ischemia-reperfusion injury

    OpenAIRE

    Chen, Xing-miao; Chen, Han-sen; Xu, Ming-jing; Shen, Jian-gang

    2012-01-01

    Ischemic stroke accounts for nearly 80% of stroke cases. Recanalization with thrombolysis is a currently crucial therapeutic strategy for re-building blood supply, but the thrombolytic therapy often companies with cerebral ischemia-reperfusion injury, which are mediated by free radicals. As an important component of free radicals, reactive nitrogen species (RNS), including nitric oxide (NO) and peroxynitrite (ONOO(-)), play important roles in the process of cerebral ischemia-reperfusion injur...

  20. GABAB receptor as therapeutic target for drug addiction: from baclofen to positive allosteric modulators

    OpenAIRE

    Roberta Agabio; Giancarlo Colombo

    2015-01-01

    The present paper summarizes experimental and clinical data indicating the therapeutic potential of the GABAB receptor agonist, baclofen, in the treatment of alcohol use disorder (AUD) and substance use disorder (SUD). Multiple preclinical studies have demonstrated the ability of baclofen to suppress alcohol drinking (including binge- and relapse-like drinking), oral alcohol self-administration, and intravenous self-administration of cocaine, nicotine, amphetamine, methamphetamine, morphine, ...

  1. S100A1: A Multifaceted Therapeutic Target in Cardiovascular Disease

    OpenAIRE

    Rohde, David; Ritterhoff, Julia; Voelkers, Mirko; Hugo A. Katus; Parker, Thomas G.; Most, Patrick

    2010-01-01

    Cardiovascular disease is the leading cause of death worldwide, showing a dramatically growing prevalence. It is still associated with a poor clinical prognosis, indicating insufficient long-term treatment success of currently available therapeutic strategies. Investigations of the pathomechanisms underlying cardiovascular disorders uncovered the Ca2+ binding protein S100A1 as a critical regulator of both cardiac performance and vascular biology. In cardiomyocytes, S100A1 was found to interac...

  2. GSK-3 is a viable potential target for therapeutic intervention in bipolar disorder

    OpenAIRE

    Rowe, Michael K.; Wiest, Charlotte; Chuang, De-Maw

    2007-01-01

    Bipolar disorder is a serious psychiatric condition that has been treated for over fifty years with lithium. Lithium is a well established glycogen synthase kinase-3 (GSK-3) inhibitor, suggesting that manipulating GSK-3 may have therapeutic value in treating bipolar disorder. GSK-3 is regulated by a wide variety of mechanisms including phosphorylation, binding with protein complexes, phosphorylation state of its substrates, cellular localization and autoregulation, thus providing a wide numbe...

  3. Novel Therapeutic Targets in Depression and Anxiety: Antioxidants as a Candidate Treatment

    OpenAIRE

    Xu, Ying; Wang, Chuang; Klabnik, Jonathan J; O’Donnell, James M

    2014-01-01

    There is growing evidence that the imbalance between oxidative stress and the antioxidant defense system may be associated with the development neuropsychiatric disorders, such as depression and anxiety. Major depression and anxiety are presently correlated with a lowered total antioxidant state and by an activated oxidative stress (OS) pathway. The classical antidepressants may produce therapeutic effects other than regulation of monoamines by increasing the antioxidant levels and normalizin...

  4. Combined MYC and P53 defects emerge at medulloblastoma relapse and define rapidly progressive, therapeutically targetable disease.

    Science.gov (United States)

    Hill, Rebecca M; Kuijper, Sanne; Lindsey, Janet C; Petrie, Kevin; Schwalbe, Ed C; Barker, Karen; Boult, Jessica K R; Williamson, Daniel; Ahmad, Zai; Hallsworth, Albert; Ryan, Sarra L; Poon, Evon; Robinson, Simon P; Ruddle, Ruth; Raynaud, Florence I; Howell, Louise; Kwok, Colin; Joshi, Abhijit; Nicholson, Sarah Leigh; Crosier, Stephen; Ellison, David W; Wharton, Stephen B; Robson, Keith; Michalski, Antony; Hargrave, Darren; Jacques, Thomas S; Pizer, Barry; Bailey, Simon; Swartling, Fredrik J; Weiss, William A; Chesler, Louis; Clifford, Steven C

    2015-01-12

    We undertook a comprehensive clinical and biological investigation of serial medulloblastoma biopsies obtained at diagnosis and relapse. Combined MYC family amplifications and P53 pathway defects commonly emerged at relapse, and all patients in this group died of rapidly progressive disease postrelapse. To study this interaction, we investigated a transgenic model of MYCN-driven medulloblastoma and found spontaneous development of Trp53 inactivating mutations. Abrogation of p53 function in this model produced aggressive tumors that mimicked characteristics of relapsed human tumors with combined P53-MYC dysfunction. Restoration of p53 activity and genetic and therapeutic suppression of MYCN all reduced tumor growth and prolonged survival. Our findings identify P53-MYC interactions at medulloblastoma relapse as biomarkers of clinically aggressive disease that may be targeted therapeutically. PMID:25533335

  5. Cell Survival and Apoptosis Signaling as Therapeutic Target for Cancer: Marine Bioactive Compounds

    Directory of Open Access Journals (Sweden)

    Kim Se-Kwon

    2013-01-01

    Full Text Available Inhibition of apoptosis leads to activation of cell survival factors (e.g., AKT causes continuous cell proliferation in cancer. Apoptosis, the major form of cellular suicide, is central to various physiological processes and the maintenance of homeostasis in multicellular organisms. A number of discoveries have clarified the molecular mechanism of apoptosis, thus clarifying the link between apoptosis and cell survival factors, which has a therapeutic outcome. Induction of apoptosis and inhibition of cell survival by anticancer agents has been shown to correlate with tumor response. Cellular damage induces growth arrest and tumor suppression by inducing apoptosis, necrosis and senescence; the mechanism of cell death depends on the magnitude of DNA damage following exposure to various anticancer agents. Apoptosis is mainly regulated by cell survival and proliferating signaling molecules. As a new therapeutic strategy, alternative types of cell death might be exploited to control and eradicate cancer cells. This review discusses the signaling of apoptosis and cell survival, as well as the potential contribution of marine bioactive compounds, suggesting that new therapeutic strategies might follow.

  6. Targeting childhood, adolescent and young adult non-Hodgkin lymphoma: therapeutic horizons.

    Science.gov (United States)

    Galardy, Paul J; Bedekovics, Tibor; Hermiston, Michelle L

    2016-05-01

    Non-Hodgkin lymphoma (NHL) is the third most common malignancy in children, adolescents and young adults (CAYA). NHL is a diverse set of diseases that arise at key regulatory checkpoints during B or T cell development in the bone marrow, germinal centre or thymus. While advances in the use of conventional cytotoxic agents have led to dramatic improvements in survival, these cures are associated with significant acute and long-term toxicities. Moreover, the prognosis for CAYA patients with relapsed or refractory NHL remains dismal, with the vast majority dying of their disease. Thanks to a large number of candidate-based biological studies, together with large-scale sequencing efforts, there has been an explosion of knowledge regarding the molecular pathophysiology of B- and T-NHL. This has ushered development of a flurry of novel therapeutic approaches that may simultaneously provide new hope for relapsed patients and an opportunity to reduce the therapeutic burden in newly diagnosed CAYA. Here we review a selection of the most promising new therapeutic approaches to these diseases. While the vast majority of these agents are untested in children, on-going work from many cooperative groups will soon explore their use in paediatric disease, in hope of further improving outcomes while maximizing quality of life. PMID:27019108

  7. Glycogen synthase kinase-3: A promising therapeutic target for Fragile X Syndrome

    Directory of Open Access Journals (Sweden)

    Marjelo M. Mines

    2011-11-01

    Full Text Available Recent advances in understanding the pathophysiological mechanisms contributing to Fragile X Syndrome (FXS have increased optimism that drug interventions can provide significant therapeutic benefits. FXS results from inadequate expression of functional fragile X mental retardation protein (FMRP. FMRP may have several functions, but it is most well-established as an RNA-binding protein that regulates translation, and it is by this mechanism that FMRP is capable of affecting numerous cellular processes by selectively regulating protein levels. The multiple cellular functions regulated by FMRP suggest that multiple interventions may be required for reversing the effects of deficient FMRP. Evidence that inhibitors of glycogen synthase kinase-3 (GSK3 may contribute to the therapeutic treatment of FXS is reviewed here. In the mouse model of FXS, which lacks FMRP expression (FX mice, GSK3 is hyperactive in several brain regions. Furthermore, significant improvements in several FX-related phenotypes have been obtained in FX mice following the administration of lithium, and in some case other GSK3 inhibitors. These responses include normalization of heightened audiogenic seizure susceptibility and of hyperactive locomotor behavior, enhancement of passive avoidance learning retention and of sociability behaviors, and corrections of macroorchidism, neuronal spine density, and neural plasticity measured electrophysiologically as long term depression. A pilot clinical trial of lithium in FXS patients also found improvements in several measures of behavior. Taken together, these findings indicate that lithium and other inhibitors of GSK3 are promising candidate therapeutic agents for treating FXS.

  8. Helping Eve Overcome ADAM: G-Quadruplexes in the ADAM-15 Promoter as New Molecular Targets for Breast Cancer Therapeutics

    Directory of Open Access Journals (Sweden)

    Robert V. Brown

    2013-12-01

    Full Text Available ADAM-15, with known zymogen, secretase, and disintegrin activities, is a catalytically active member of the ADAM family normally expressed in early embryonic development and aberrantly expressed in various cancers, including breast, prostate and lung. ADAM-15 promotes extracellular shedding of E-cadherin, a soluble ligand for the HER2/neu receptor, leading to activation, increased motility, and proliferation. Targeted downregulation of both ADAM-15 and HER2/neu function synergistically kills breast cancer cells, but to date there are no therapeutic options for decreasing ADAM-15 function or expression. In this vein, we have examined a unique string of guanine-rich DNA within the critical core promoter of ADAM-15. This region of DNA consists of seven contiguous runs of three or more consecutive guanines, which, under superhelical stress, can relax from duplex DNA to form an intrastrand secondary G-quadruplex (G4 structure. Using biophysical and biological techniques, we have examined the G4 formation within the entire and various truncated regions of the ADAM-15 promoter, and demonstrate strong intrastrand G4 formation serving to function as a biological silencer element. Characterization of the predominant G4 species formed within the ADAM-15 promoter will allow for specific drug targeting and stabilization, and the further development of novel, targeted therapeutics.

  9. Improved targeting of JAK2 leads to increased therapeutic efficacy in myeloproliferative neoplasms

    OpenAIRE

    Bhagwat, Neha; Koppikar, Priya; Keller, Matthew; Marubayashi, Sachie; Shank, Kaitlyn; Rampal, Raajit; Qi, Jun; Kleppe, Maria; Patel, Hardik J.; Shah, Smit K.; Taldone, Tony; James E Bradner; Chiosis, Gabriela; Levine, Ross L.

    2014-01-01

    Genetic deletion of JAK2 in vivo shows that MPN cells remain fully dependent on JAK2 signaling for survival.Dual JAK2 targeting with JAK and HSP90 inhibitors offers increased efficacy in murine models and primary samples.

  10. Magnetic nanoparticles for targeted therapeutic gene delivery and magnetic-inducing heating on hepatoma

    International Nuclear Information System (INIS)

    Gene therapy holds great promise for treating cancers, but their clinical applications are being hampered due to uncontrolled gene delivery and expression. To develop a targeted, safe and efficient tumor therapy system, we constructed a tissue-specific suicide gene delivery system by using magnetic nanoparticles (MNPs) as carriers for the combination of gene therapy and hyperthermia on hepatoma. The suicide gene was hepatoma-targeted and hypoxia-enhanced, and the MNPs possessed the ability to elevate temperature to the effective range for tumor hyperthermia as imposed on an alternating magnetic field (AMF). The tumoricidal effects of targeted gene therapy associated with hyperthermia were evaluated in vitro and in vivo. The experiment demonstrated that hyperthermia combined with a targeted gene therapy system proffer an effective tool for tumor therapy with high selectivity and the synergistic effect of hepatoma suppression. (paper)

  11. Therapeutic aptamers: developmental potential as anticancer drugs

    OpenAIRE

    Lee, Ji Won; Kim, Hyun Jung; Heo, Kyun

    2015-01-01

    Aptamers, composed of single-stranded DNA or RNA oligonucleotides that interact with target molecules through a specific three-dimensional structure, are selected from pools of combinatorial oligonucleotide libraries. With their high specificity and affinity for target proteins, ease of synthesis and modification, and low immunogenicity and toxicity, aptamers are considered to be attractive molecules for development as anticancer therapeutics. Two aptamers - one targeting nucleolin and a seco...

  12. Targeting Bruton's tyrosine kinase signaling as an emerging therapeutic agent of B-cell malignancies

    OpenAIRE

    Xia, Bing; QU, FULIAN; Yuan, Tian; Zhang, Yizhuo

    2015-01-01

    It is becoming increasingly evident that B-cell receptor (BCR) signaling is central to the development and function of B cells. BCR signaling has emerged as a pivotal pathway and a key driver of numerous B-cell lymphomas. Disruption of BCR signaling can be lethal to malignant B cells. Recently, kinase inhibitors that target BCR signaling have induced notable clinical responses. These inhibitors include spleen tyrosine kinase, mammalian target of rapamycin, phosphoinositide 3′-kinase and Bruto...

  13. A novel targeted inhibitor of the alternative pathway of complement and its therapeutic application in ischemia/reperfusion injury.

    Science.gov (United States)

    Huang, Yuxiang; Qiao, Fei; Atkinson, Carl; Holers, V Michael; Tomlinson, Stephen

    2008-12-01

    Bioavailability and therapeutic efficacy of soluble Crry, a mouse inhibitor of all complement activation pathways, is significantly enhanced when linked to a fragment of complement receptor 2 (CR2), a receptor that targets C3 activation products. In this study, we characterize alternative pathway-specific inhibitors consisting of a single or dimeric N-terminal region of mouse factor H (fH; short consensus repeats 1-5) linked to the same CR2 fragment (CR2-fH and CR2-fHfH). Both CR2-fH and CR2-fHfH were highly effective at inhibiting the alternative pathway in vitro and demonstrated a higher specific activity than CR2-Crry. CR2-fH was also more effective than endogenous serum fH in blocking target deposition of C3. Target binding and complement inhibitory activity of CR2-fH/CR2-fHfH was dependent on CR2- and C3-mediated interactions. The alternative pathway of complement plays a role in intestine ischemia/reperfusion injury. However, serum fH fails to provide protection against intestine ischemia/reperfusion injury although it can bind to and provide cell surfaces with protection from complement and is present in plasma at a high concentration. In a mouse model, CR2-fH and CR2-fHfH provided complete protection from local (intestine) and remote (lung) injury. CR2-fH targeted to the site of local injury and greatly reduced levels of tissue C3 deposition. Thus, the targeting mechanism significantly enhances alternative pathway-specific complement inhibitory activity of the N-terminal domain of fH and has the potential to reduce side effects that may be associated with systemic complement blockade. The data further indicate alternative pathway dependence for local and remote injury following intestinal ischemia/reperfusion in a clinically relevant therapeutic paradigm. PMID:19017999

  14. A novel targeted inhibitor of the alternative pathway of complement and its therapeutic application in ischemia/reperfusion injury.

    Science.gov (United States)

    Huang, Yuxiang; Qiao, Fei; Atkinson, Carl; Holers, V Michael; Tomlinson, Stephen

    2008-12-01

    Bioavailability and therapeutic efficacy of soluble Crry, a mouse inhibitor of all complement activation pathways, is significantly enhanced when linked to a fragment of complement receptor 2 (CR2), a receptor that targets C3 activation products. In this study, we characterize alternative pathway-specific inhibitors consisting of a single or dimeric N-terminal region of mouse factor H (fH; short consensus repeats 1-5) linked to the same CR2 fragment (CR2-fH and CR2-fHfH). Both CR2-fH and CR2-fHfH were highly effective at inhibiting the alternative pathway in vitro and demonstrated a higher specific activity than CR2-Crry. CR2-fH was also more effective than endogenous serum fH in blocking target deposition of C3. Target binding and complement inhibitory activity of CR2-fH/CR2-fHfH was dependent on CR2- and C3-mediated interactions. The alternative pathway of complement plays a role in intestine ischemia/reperfusion injury. However, serum fH fails to provide protection against intestine ischemia/reperfusion injury although it can bind to and provide cell surfaces with protection from complement and is present in plasma at a high concentration. In a mouse model, CR2-fH and CR2-fHfH provided complete protection from local (intestine) and remote (lung) injury. CR2-fH targeted to the site of local injury and greatly reduced levels of tissue C3 deposition. Thus, the targeting mechanism significantly enhances alternative pathway-specific complement inhibitory activity of the N-terminal domain of fH and has the potential to reduce side effects that may be associated with systemic complement blockade. The data further indicate alternative pathway dependence for local and remote injury following intestinal ischemia/reperfusion in a clinically relevant therapeutic paradigm.

  15. Therapeutic effects of lentivirus-mediated shRNA targeting of cyclin D1 in human gastric cancer

    International Nuclear Information System (INIS)

    Gastric cancer is the second most common cause of cancer-related death in males and the fourth in females. Traditional treatment has poor prognosis because of recurrence and systemic side effects. Therefore, the development of new therapeutic strategies is an important issue. Lentivirus-mediated shRNA stably inhibits target genes and can efficiently transduce most cells. Since overexpressed cyclin D1 is closely related to human gastric cancer progression, inhibition of cyclin D1 using specific targeting could be an effective treatment method of human gastric cancer. The therapeutic effect of lentivirus-mediated shRNA targeting of cyclin D1 (ShCCND1) was analyzed both in vitro and in vivo experiments. In vitro, NCI-N87 cells with downregulation of cyclin D1 by ShCCND1 showed significant inhibition of cell proliferation, cell motility, and clonogenicity. Downregulation of cyclin D1 in NCI-N87 cells also resulted in significantly increased G1 arrest and apoptosis. In vivo, stable NCI-N87 cells expressing ShCCND1 were engrafted into nude mice. Then, the cancer-growth inhibition effect of lentivirus was confirmed. To assess lentivirus including ShCCND1 as a therapeutic agent, intratumoral injection was conducted. Tumor growth of the lentivirus-treated group was significantly inhibited compared to growth of the control group. These results are in accordance with the in vitro data and lend support to the mitotic figure count and apoptosis analysis of the tumor mass. The lentivirus-mediated ShCCND1 was constructed, which effectively inhibited growth of NCI-N87-derived cancer both in vitro and in vivo. The efficiency of shRNA knockdown and variation in the degree of inhibition is mediated by different shRNA sequences and cancer cell lines. These experimental results suggest the possibility of developing new gastric cancer therapies using lentivirus-mediated shRNA

  16. Nanomedicine: nanoparticles, molecular biosensors, and targeted gene/drug delivery for combined single-cell diagnostics and therapeutics

    Science.gov (United States)

    Prow, Tarl W.; Salazar, Jose H.; Rose, William A.; Smith, Jacob N.; Reece, Lisa; Fontenot, Andrea A.; Wang, Nan A.; Lloyd, R. Stephen; Leary, James F.

    2004-07-01

    Next generation nanomedicine technologies are being developed to provide for continuous and linked molecular diagnostics and therapeutics. Research is being performed to develop "sentinel nanoparticles" which will seek out diseased (e.g. cancerous) cells, enter those living cells, and either perform repairs or induce those cells to die through apoptosis. These nanoparticles are envisioned as multifunctional "smart drug delivery systems". The nanosystems are being developed as multilayered nanoparticles (nanocrystals, nanocapsules) containing cell targeting molecules, intracellular re-targeting molecules, molecular biosensor molecules, and drugs/enzymes/gene therapy. These "nanomedicine systems" are being constructed to be autonomous, much like present-day vaccines, but will have sophisticated targeting, sensing, and feedback control systems-much more sophisticated than conventional antibody-based therapies. The fundamental concept of nanomedicine is to not to just kill all aberrant cells by surgery, radiation therapy, or chemotherapy. Rather it is to fix cells, when appropriate, one cell-at-a-time, to preserve and re-build organ systems. When cells should not be fixed, such as in cases where an improperly repaired cell might give rise to cancer cells, the nanomedical therapy would be to induce apoptosis in those cells to eliminate them without the damagin bystander effects of the inflammatory immune response system reacting to necrotic cells or those which have died from trauma or injury. The ultimate aim of nanomedicine is to combine diagnostics and therapeutics into "real-time medicine", using where possible in-vivo cytometry techniques for diagnostics and therapeutics. A number of individual components of these multi-component nanoparticles are already working in in-vitro and ex-vivo cell and tissue systems. Work has begun on construction of integrated nanomedical systems.

  17. Physical Attractiveness Stereotypes about Marriage: Attractiveness Matching Is Good.

    Science.gov (United States)

    Sussman, Steve; And Others

    Previous research on physical attractiveness stereotypes about marriage have used stimulus individuals in isolation. To examine these attractiveness stereotypes using couples as targets, 72 college students (36 females, 36 males) rated eight photographs of four male-female couple types. Members of each couple were either matched (attractive…

  18. Myofibrillogenesis regulator 1 (MR-1 is a novel biomarker and potential therapeutic target for human ovarian cancer

    Directory of Open Access Journals (Sweden)

    Feng Jingjing

    2011-06-01

    Full Text Available Abstract Background Myofibrillogenesis regulator 1 (MR-1 is overexpressed in human cancer cells and plays an essential role in cancer cell growth. However, the significance of MR-1 in human ovarian cancer has not yet been explored. The aim of this study was to examine whether MR-1 is a predictor of ovarian cancer and its value as a therapeutic target in ovarian cancer patients. Methods Reverse-transcription polymerase chain reaction (PCR and quantitative real-time PCR were used to detect MR-1 mRNA levels in tissue samples from 26 ovarian cancer patients and 25 controls with benign ovarian disease. Anti-MR-1 polyclonal antibodies were prepared, tested by ELISA and western blotting, and then used for immunohistochemical analysis of the tissue samples. Adhesion and invasion of 292T cells was also examined after transfection of a pMX-MR-1 plasmid. Knockdown of MR-1 expression was achieved after stable transfection of SKOV3 cells with a short hairpin DNA pGPU6/GFP/Neo plasmid against the MR-1 gene. In addition, SKOV3 cells were treated with paclitaxel and carboplatin, and a potential role for MR-1 as a therapeutic target was evaluated. Results MR-1 was overexpressed in ovarian cancer tissues and SKOV3 cells. 293T cells overexpressed MR-1, and cellular spread and invasion were enhanced after transfection of the pMX-MR-1 plasmid, suggesting that MR-1 is critical for ovarian cancer cell growth. Knockdown of MR-1 expression inhibited cell adhesion and invasion, and treatment with anti-cancer drugs decreased its expression in cancer cells. Taken together, these results provide the first evidence of the cellular and molecular mechanisms by which MR-1 might serve as a novel biological marker and potential therapeutic target for ovarian cancer. Conclusions MR-1 may be a biomarker for diagnosis of ovarian cancer. It may also be useful for monitoring of the effects of anti-cancer therapies. Further studies are needed to clarify whether MR-1 is an early

  19. A Novel Targeted Inhibitor of the Alternative Pathway of Complement and Its Therapeutic Application in Ischemia/Reperfusion Injury1

    OpenAIRE

    Huang, Yuxiang; Qiao, Fei; Atkinson, Carl; Holers, V. Michael; Tomlinson, Stephen

    2008-01-01

    Bioavailability and therapeutic efficacy of soluble Crry, a mouse inhibitor of all complement activation pathways, is significantly enhanced when linked to a fragment of complement receptor 2 (CR2), a receptor that targets C3 activation products. In this study, we characterize alternative pathway-specific inhibitors consisting of a single or dimeric N-terminal region of mouse factor H (fH; short consensus repeats 1–5) linked to the same CR2 fragment (CR2-fH and CR2-fHfH). Both CR2-fH and CR2-...

  20. Developmental origins of metabolic disorders: The need for biomarker candidates and therapeutic targets from adequate preclinical models

    Directory of Open Access Journals (Sweden)

    Antonio Gonzalez-Bulnes

    2016-03-01

    Full Text Available The investigation on obesity and associated disorders have changed from an scenario in which genome drove the phenotype to a dynamic setup in which prenatal and early-postnatal conditions are determinant. However, research in human beings is difficult due to confounding factors (lifestyle and socioeconomic heterogeneity plus ethical issues. Hence, there is currently an intensive effort for developing adequate preclinical models, aiming for an adequate combination of basic studies in rodent models and specific preclinical studies in large animals. The results of these research strategies may increase the identification and development of contrasted biomarkers and therapeutic targets.

  1. Bacterial Heat-Stable Enterotoxins: Translation of Pathogenic Peptides into Novel Targeted Diagnostics and Therapeutics

    Directory of Open Access Journals (Sweden)

    Chang Chang

    2010-08-01

    Full Text Available Heat-stable toxins (STs produced by enterotoxigenic bacteria cause endemic and traveler’s diarrhea by binding to and activating the intestinal receptor guanylyl cyclase C (GC-C. Advances in understanding the biology of GC-C have extended ST from a diarrheagenic peptide to a novel therapeutic agent. Here, we summarize the physiological and pathophysiological role of GC-C in fluid-electrolyte regulation and intestinal crypt-villus homeostasis, as well as describe translational opportunities offered by STs, reflecting the unique characteristics of GC-C, in treating irritable bowel syndrome and chronic constipation, and in preventing and treating colorectal cancer.

  2. Targeting ferritin receptors for the selective delivery of imaging and therapeutic agents to breast cancer cells

    Science.gov (United States)

    Geninatti Crich, S.; Cadenazzi, M.; Lanzardo, S.; Conti, L.; Ruiu, R.; Alberti, D.; Cavallo, F.; Cutrin, J. C.; Aime, S.

    2015-04-01

    In this work the selective uptake of native horse spleen ferritin and apoferritin loaded with MRI contrast agents has been assessed in human breast cancer cells (MCF-7 and MDA-MB-231). The higher expression of L-ferritin receptors (SCARA5) led to an enhanced uptake in MCF-7 as shown in T2 and T1 weighted MR images, respectively. The high efficiency of ferritin internalization in MCF-7 has been exploited for the simultaneous delivery of curcumin, a natural therapeutic molecule endowed with antineoplastic and anti-inflammatory action, and the MRI contrast agent Gd-HPDO3A. This theranostic system is able to treat selectively breast cancer cells over-expressing ferritin receptors. By entrapping in apoferritin both Gd-HPDO3A and curcumin, it was possible to deliver a therapeutic dose of 167 μg ml-1 (as calculated by MRI) of this natural drug to MCF-7 cells, thus obtaining a significant reduction of cell proliferation.In this work the selective uptake of native horse spleen ferritin and apoferritin loaded with MRI contrast agents has been assessed in human breast cancer cells (MCF-7 and MDA-MB-231). The higher expression of L-ferritin receptors (SCARA5) led to an enhanced uptake in MCF-7 as shown in T2 and T1 weighted MR images, respectively. The high efficiency of ferritin internalization in MCF-7 has been exploited for the simultaneous delivery of curcumin, a natural therapeutic molecule endowed with antineoplastic and anti-inflammatory action, and the MRI contrast agent Gd-HPDO3A. This theranostic system is able to treat selectively breast cancer cells over-expressing ferritin receptors. By entrapping in apoferritin both Gd-HPDO3A and curcumin, it was possible to deliver a therapeutic dose of 167 μg ml-1 (as calculated by MRI) of this natural drug to MCF-7 cells, thus obtaining a significant reduction of cell proliferation. Electronic supplementary information (ESI) available: Competition studies with free apoferritin, Fig. S1; APO-FITC intracellular distribution by

  3. Is phosphoadenosine phosphate phosphatase a target of lithium’s therapeutic effect?

    OpenAIRE

    Shaltiel, G.; Deutsch, J.; Rapoport, S I; Basselin, M.; Belmaker, R. H.; Agam, G.

    2009-01-01

    Lithium, which is approved for treating patients with bipolar disorder, is reported to inhibit 3′(2′)-phosphoadenosine-5′-phosphate (PAP) phosphatase activity. In yeast, deletion of PAP phosphatase results in elevated PAP levels and in inhibition of sulfation and of growth. The effect of lithium on PAP phosphatase is remarkable for the low Ki (~0.2 mM), suggesting that this system would be almost completely shut down in vivo with therapeutic levels of 1 mM lithium, thereby elevating PAP level...

  4. Multi-omics approach to infer cancer therapeutic targets on chromosome 20q across tumor types

    Science.gov (United States)

    Snijders, Antoine M; Mao, Jian-Hua

    2016-01-01

    The identification of good targets is a critical step for the development of targeted therapies for cancer treatment. Here, we used a multi-omics approach to delineate potential targets on chromosome 20q, which frequently shows a complex pattern of DNA copy number amplification in many human cancers suggesting the presence of multiple driver genes. By comparing the amounts of individual mRNAs in cancer from 11 different human tissues with those in their corresponding normal tissues, we identified 18 genes that were robustly elevated across human cancers. Moreover, we found that higher expression levels of a majority of these genes were associated with poor prognosis in many human cancer types. Using DNA copy number and expression data for all 18 genes obtained from The Cancer Genome Atlas project, we discovered that amplification is a major mechanism driving overexpression of these 18 genes in the majority of human cancers. Our integrated analysis suggests that 18 genes on chromosome 20q might serve as novel potential molecular targets for targeted cancer therapy.

  5. Gut microbiota and obesity: role in aetiology and potential therapeutic target.

    Science.gov (United States)

    Moran, Carthage P; Shanahan, Fergus

    2014-08-01

    Obesity is epidemic; chronic energy surplus is clearly important in obesity development but other factors are at play. Indigenous gut microbiota are implicated in the aetiopathogenesis of obesity and obesity-related disorders. Evidence from murine models initially suggested a role for the gut microbiota in weight regulation and the microbiota has been shown to contribute to the low grade inflammation that characterises obesity. The microbiota and its metabolites mediate some of the alterations of the microbiota-gut-brain axis, the endocannabinoid system, and bile acid metabolism, found in obesity-related disorders. Modulation of the gut microbiota is an attractive proposition for prevention or treatment of obesity, particularly as traditional measures have been sub-optimal.

  6. HER3/ErbB3, an emerging cancer therapeutic target.

    Science.gov (United States)

    Zhang, Ningyan; Chang, Yujun; Rios, Adan; An, Zhiqiang

    2016-01-01

    HER3 is a member of the HER (EGFR/ErbB) receptor family consisting of four closely related type 1 transmembrane receptors (EGFR, HER2, HER3, and HER4). HER receptors are part of a complex signaling network intertwined with the Ras/Raf/MAPK, PI3K/AKT, JAK/STAT, and PKC signaling pathways. Aberrant activation of the HER receptors and downstream signaling molecules tips the balance on cellular events, leading to various types of cancers. Monoclonal antibodies (mAbs) and small molecule inhibitors targeting EGFR and HER2 tyrosine kinase activities exhibit clinical benefits in the treatment of several types of cancers, but their clinical efficacy is limited by the occurrence of drug resistance. HER3 is the preferred dimerization partner of HER2 and it is well established that HER3 plays an important role in drug resistance to EGFR- and HER2-targeting therapies. Since HER3 has limited kinase activity, mAbs are being explored to target HER3 for cancer therapy. Currently, approximately a dozen of anti-HER3 mAbs are at different stages of clinical development. However, the lack of established biomarkers has made it more challenging to stratify cancer patients to whom HER3-targeting therapies can be more effective. In this review, we focus on the validation of HER3 as a cancer drug target, the recent development in biomarker discovery for anti-HER3 therapies, and the progress made in the clinical development of HER3-targeting mAbs. PMID:26496898

  7. The DNA base excision repair protein Ape1/Ref-1 as a therapeutic and chemopreventive target.

    Science.gov (United States)

    Fishel, Melissa L; Kelley, Mark R

    2007-01-01

    With our growing understanding of the pathways involved in cell proliferation and signaling, targeted therapies, in the treatment of cancer are entering the clinical arena. New and emerging targets are proteins involved in DNA repair pathways. Inhibition of various proteins in the DNA repair pathways sensitizes cancer cells to DNA damaging agents such as chemotherapy and/or radiation. We study the apurinic endonuclease 1/redox factor-1 (Ape1/Ref-1) and believe that its crucial function in DNA repair and reduction-oxidation or redox signaling make it an excellent target for sensitizing tumor cells to chemotherapy. Ape1/Ref-1 is an essential enzyme in the base excision repair (BER) pathway which is responsible for the repair of DNA caused by oxidative and alkylation damage. As importantly, Ape1/Ref-1 also functions as a redox factor maintaining transcription factors in an active reduced state. Ape1/Ref-1 stimulates the DNA binding activity of numerous transcription factors that are involved in cancer promotion and progression such as AP-1 (Fos/Jun), NFkappaB, HIF-1alpha, CREB, p53 and others. We will discuss what is known regarding the pharmacological targeting of the DNA repair activity, as well as the redox activity of Ape1/Ref-1, and explore the budding clinical utility of inhibition of either of these functions in cancer treatment. A brief discussion of the effect of polymorphisms in its DNA sequence is included because of Ape1/Ref-1's importance to maintenance and integrity of the genome. Experimental modification of Ape1/Ref-1 activity changes the response of cells and of organisms to DNA damaging agents, suggesting that Ape1/Ref-1 may also be a productive target of chemoprevention. In this review, we will provide an overview of Ape1/Ref-1's activities and explore the potential of this protein as a target in cancer treatment as well as its role in chemoprevention.

  8. Therapeutics formulated to target cancer stem cells: Is it in our future?

    Directory of Open Access Journals (Sweden)

    Mousa Shaker A

    2011-03-01

    Full Text Available Abstract With the political, social and financial drives for cancer research, many advances have been made in the treatment of many different cancer types. For example, given the increase in awareness, early detection, and treatment of breast and prostate cancers, we have seen substantial increases in survival rates. Unfortunately there are some realms of cancer that have not seen these substantial advancements, largely due to their rapid progression and the inability to specifically target therapy. The hypothesis that cancers arise from a small population of cells, called cancer stem cells (CSCs, is gaining more popularity amongst researchers. There are, however, still many skeptics who bring into question the validity of this theory. Many skeptics believe that there is not a specific subset of cells that originate with these characteristics, but that they develop certain features over time making them more resistant to conventional therapy. It is theorized that many of the relapses occurring after remission are due to our inability to destroy the self-renewing CSCs. This central idea, that CSCs are biologically different from all other cancer cells, has directed research towards the development of therapy to target CSCs directly. The major dilemma in targeting therapy in myeloproliferative disorders, malignancies of the central nervous system or malignancies in general, is the inability to target CSCs as opposed to normal stem cells. However, with the recent advances in the identifications of unique molecular signatures for CSCs along with ongoing clinical trials targeting CSCs, it is possible to use targeted nanotechnology-based strategies in the management of different types of cancers.

  9. Scanning for Therapeutic Targets within the Cytokine Network of Idiopathic Inflammatory Myopathies

    Directory of Open Access Journals (Sweden)

    Boel De Paepe

    2015-08-01

    Full Text Available The idiopathic inflammatory myopathies (IIM constitute a heterogeneous group of chronic disorders that include dermatomyositis (DM, polymyositis (PM, sporadic inclusion body myositis (IBM and necrotizing autoimmune myopathy (NAM. They represent distinct pathological entities that, most often, share predominant inflammation in muscle tissue. Many of the immunopathogenic processes behind the IIM remain poorly understood, but the crucial role of cytokines as essential regulators of the intramuscular build-up of inflammation is undisputed. This review describes the extensive cytokine network within IIM muscle, characterized by strong expression of Tumor Necrosis Factors (TNFα, LTβ, BAFF, Interferons (IFNα/β/γ, Interleukins (IL-1/6/12/15/18/23 and Chemokines (CXCL9/10/11/13, CCL2/3/4/8/19/21. Current therapeutic strategies and the exploration of potential disease modifying agents based on manipulation of the cytokine network are provided. Reported responses to anti-TNFα treatment in IIM are conflicting and new onset DM/PM has been described after administration of anti-TNFα agents to treat other diseases, pointing to the complex effects of TNFα neutralization. Treatment with anti-IFNα has been shown to suppress the IFN type 1 gene signature in DM/PM patients and improve muscle strength. Beneficial effects of anti-IL-1 and anti-IL-6 therapy have also been reported. Cytokine profiling in IIM aids the development of therapeutic strategies and provides approaches to subtype patients for treatment outcome prediction.

  10. PIM kinases as potential therapeutic targets in a subset of peripheral T cell lymphoma cases.

    Directory of Open Access Journals (Sweden)

    Esperanza Martín-Sánchez

    Full Text Available Currently, there is no efficient therapy for patients with peripheral T cell lymphoma (PTCL. The Proviral Integration site of Moloney murine leukemia virus (PIM kinases are important mediators of cell survival. We aimed to determine the therapeutic value of PIM kinases because they are overexpressed in PTCL patients, T cell lines and primary tumoral T cells. PIM kinases were inhibited genetically (using small interfering and short hairpin RNAs and pharmacologically (mainly with the pan-PIM inhibitor (PIMi ETP-39010 in a panel of 8 PTCL cell lines. Effects on cell viability, apoptosis, cell cycle, key proteins and gene expression were evaluated. Individual inhibition of each of the PIM genes did not affect PTCL cell survival, partially because of a compensatory mechanism among the three PIM genes. In contrast, pharmacological inhibition of all PIM kinases strongly induced apoptosis in all PTCL cell lines, without cell cycle arrest, in part through the induction of DNA damage. Therefore, pan-PIMi synergized with Cisplatin. Importantly, pharmacological inhibition of PIM reduced primary tumoral T cell viability without affecting normal T cells ex vivo. Since anaplastic large cell lymphoma (ALK+ ALCL cell lines were the most sensitive to the pan-PIMi, we tested the simultaneous inhibition of ALK and PIM kinases and found a strong synergistic effect in ALK+ ALCL cell lines. Our findings suggest that PIM kinase inhibition could be of therapeutic value in a subset of PTCL, especially when combined with ALK inhibitors, and might be clinically beneficial in ALK+ ALCL.

  11. Model‐Based Assessment of Plasma Citrate Flux Into the Liver: Implications for NaCT as a Therapeutic Target

    Science.gov (United States)

    Erion, DM; Maurer, TS

    2016-01-01

    Cytoplasmic citrate serves as an important regulator of gluconeogenesis and carbon source for de novo lipogenesis in the liver. For this reason, the sodium‐coupled citrate transporter (NaCT), a plasma membrane transporter that governs hepatic influx of plasma citrate in human, is being explored as a potential therapeutic target for metabolic disorders. As cytoplasmic citrate also originates from intracellular mitochondria, the relative contribution of these two pathways represents critical information necessary to underwrite confidence in this target. In this work, hepatic influx of plasma citrate was quantified via pharmacokinetic modeling of published clinical data. The influx was then compared to independent literature estimates of intracellular citrate flux in human liver. The results indicate that, under normal conditions, NaCT inhibition will have a limited impact on hepatic citrate concentrations across species. PMID:27069776

  12. Model-Based Assessment of Plasma Citrate Flux Into the Liver: Implications for NaCT as a Therapeutic Target.

    Science.gov (United States)

    Li, Z; Erion, D M; Maurer, T S

    2016-03-01

    Cytoplasmic citrate serves as an important regulator of gluconeogenesis and carbon source for de novo lipogenesis in the liver. For this reason, the sodium-coupled citrate transporter (NaCT), a plasma membrane transporter that governs hepatic influx of plasma citrate in human, is being explored as a potential therapeutic target for metabolic disorders. As cytoplasmic citrate also originates from intracellular mitochondria, the relative contribution of these two pathways represents critical information necessary to underwrite confidence in this target. In this work, hepatic influx of plasma citrate was quantified via pharmacokinetic modeling of published clinical data. The influx was then compared to independent literature estimates of intracellular citrate flux in human liver. The results indicate that, under normal conditions, NaCT inhibition will have a limited impact on hepatic citrate concentrations across species. PMID:27069776

  13. Aurora kinases in childhood acute leukemia: The promise of aurora B as therapeutic target

    NARCIS (Netherlands)

    S.A. Hartsink-Segers (S.); C.M. Zwaan (Michel); C. Exalto (Carla); M.W.J. Luijendijk (M. W J); V. Calvert (V.); E.F. Petricoin (Emanuel F.); W.E. Evans (William); D. Reinhardt (Dirk); V. de Haas (Valerie); M. Hedtjärn (M.); B.R. Hansen (B.); T. Koch (T.); H.N. Caron (Huib); R. Pieters (Rob); M.L. den Boer (Monique)

    2013-01-01

    textabstractWe investigated the effects of targeting the mitotic regulators aurora kinase A and B in pediatric acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML). Aurora protein expression levels in pediatric ALL and AML patient samples were determined by western blot and reverse ph

  14. Targeting brain tumor cAMP: the case for sex-specific therapeutics

    Directory of Open Access Journals (Sweden)

    Nicole M Warrington

    2015-07-01

    Full Text Available A relationship between cyclic adenosine 3’, 5’-monophosphate (cAMP levels and brain tumor biology has been evident for nearly as long as cAMP and its synthetase, adenylate cyclase (ADCY have been known. The importance of the pathway in brain tumorigenesis has been demonstrated in vitro and in multiple animal models. Recently, we provided human validation for a cooperating oncogenic role for cAMP in brain tumorigenesis when we found that SNPs in ADCY8 were correlated with glioma (brain tumor risk in individuals with Neurofibromatosis type 1 (NF1. Together, these studies provide a strong rationale for targeting cAMP in brain tumor therapy. However, the cAMP pathway is well known to be sexually dimorphic, and SNPs in ADCY8 affected glioma risk in a sex-specific fashion, elevating the risk for females while protecting males. The cAMP pathway can be targeted at multiple levels in the regulation of its synthesis and degradation. Sex differences in response to drugs that target cAMP regulators indicate that successful targeting of the cAMP pathway for brain tumor patients is likely to require matching specific mechanisms of drug action with patient sex.

  15. Method for Targeted Therapeutic Delivery of Proteins into Cells | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The Protein Expression Laboratory at the National Cancer Institute in Frederick, MD is seeking statements of capability or interest from parties interested in collaborative research to further develop a platform technology for the targeted intra-cellular delivery of proteins using virus-like particles (VLPs).

  16. mTOR as a multifunctional therapeutic target in HIV infection

    DEFF Research Database (Denmark)

    Nicoletti, Ferdinando; Fagone, Paolo; Meroni, PierLuigi;

    2011-01-01

    Patients undergoing long-term highly active antiretroviral therapy treatment are probably at a higher risk of various HIV-related complications. Hyperactivation of The mammalian target of rapamycin (mTOR) has been found to contribute to dysregulated apoptosis and autophagy which determine CD4(+)-T...

  17. ADAM-17: a novel therapeutic target for triple negative breast cancer.

    LENUS (Irish Health Repository)

    McGowan, P M

    2013-02-01

    Validated targeted therapy is currently unavailable for patients with invasive breast cancer negative for oestrogen receptors, progesterone receptors and HER2 [i.e., those with triple-negative (TN) disease]. ADAM-17 is a protease involved in the activations of several ligands that bind to and promotes intracellular signalling from the EGFR\\/HER family of receptors.

  18. Assay strategies for the discovery and validation of therapeutics targeting Brugia pahangi Hsp90.

    Directory of Open Access Journals (Sweden)

    Tony Taldone

    Full Text Available The chemotherapy of lymphatic filariasis relies upon drugs such as diethylcarbamazine and ivermectin that largely target the microfilarial stages of the parasite, necessitating continued treatment over the long reproductive life span of the adult worm. The identification of compounds that target adult worms has been a long-term goal of WHO. Here we describe a fluorescence polarization assay for the identification of compounds that target Hsp90 in adult filarial worms. The assay was originally developed to identify inhibitors of Hsp90 in tumor cells, and relies upon the ability of small molecules to inhibit the binding of fluorescently labelled geldanamycin to Hsp90. We demonstrate that the assay works well with soluble extracts of Brugia, while extracts of the free-living nematode C. elegans fail to bind the probe, in agreement with data from other experiments. The assay was validated using known inhibitors of Hsp90 that compete with geldanamycin for binding to Hsp90, including members of the synthetic purine-scaffold series of compounds. The efficacy of some of these compounds against adult worms was confirmed in vitro. Moreover, the assay is sufficiently sensitive to differentiate between binding of purine-scaffold compounds to human and Brugia Hsp90. The assay is suitable for high-throughput screening and provides the first example of a format with the potential to identify novel inhibitors of Hsp90 in filarial worms and in other parasitic species where Hsp90 may be a target.

  19. Therapeutic Target Achievement in Type 2 Diabetic Patients after Hyperglycemia, Hypertension, Dyslipidemia Management

    Directory of Open Access Journals (Sweden)

    Ah Young Kang

    2011-06-01

    Full Text Available BackgroundOur study group established "3H care" in 2002. The meaning of "3H care" attain and maintain adequate controls over hypertension, hyperlipidemia, and hyperglycemia in type 2 diabetic patients. This study evaluated the achievement of target goals after one year or more of "3H care" by specialists in our diabetic clinic.MethodsThis was a retrospective study of 200 type 2 diabetic patients who received "3H care" for one year or more in our diabetic clinic. We evaluated achievement of target goals for metabolic controls as suggested by the American Diabetes Association.ResultsOverall, 200 type 2 diabetes patients were enrolled, of whom 106 were males (53% and 94 were females (47%. After one year of "3H care," the mean HbA1c was 7.2±1.5% and the percentage of patients achieving glycemic control (HbA1c <7% was 51.8%. However only 32.2% of hypertensive patients achieved the recommended target. After one year of "3H care," the percentages of those who achieved the target value for dyslipidemia were 80.0% for total cholesterol, 66.3% for low density lipoprotein cholesterol, 57.9% for triglyceride, and 51.8% for high density lipoprotein cholesterol. The percentage that achieved all three targets level was only 4.4% after one year and 14.8% after two years.ConclusionThe results of this study demonstrate that only a minor proportion of patients with type 2 diabetes achieved the recommended goals despite the implementation of "3H care." It is our suggestion that better treatment strategies and methods should be used to control hypertension, hyperlipidemia and hyperglycemia.

  20. Circulating endothelial progenitor cells in traumatic brain injury: an emerging therapeutic target?

    Institute of Scientific and Technical Information of China (English)

    WEI Hui-jie; JIANG Rong-cai; LIU Li; ZHANG Jian-ning

    2010-01-01

    Traumatic brain injury (TBI) is a major cause ofmortality and morbidity in the world. Recent clinical investigations and basic researches suggest that strategies to improve angiogenesis following TBI may provide promising opportunities to improve clinical outcomes and brain functional recovery. More and more evidences show that circulating endothelial progenitor cells (EPCs), which have been identified in the peripheral blood, may play an important role in the pathologic and physiological angiogenesis in adults. Moreover, impressive data demonstrate that EPCs are mobilized from bone marrow to blood circulation in response to traumatic or inflammatory stimulations.In this review, we discussed the role of EPCs in the repair of brain injury and the possible therapeutic implication for functional recovery of TBl in the future.

  1. Platelet-Derived Growth Factor as a Therapeutic Target for Systemic Autoimmune Diseases

    Directory of Open Access Journals (Sweden)

    Hideto Kameda

    2007-01-01

    Full Text Available Some systemic rheumatic diseases and disorders, especially fibrotic and vascular disorders, are often refractory to corticosteroid therapy. Recently, ever accumulating evidence suggests that platelet-derived growth factor (PDGF is involved in those refractory diseases. Imatinib mesylate inhibits the activation of PDGF receptor as well as c-Abl, Bcr-Abl and c-Kit tyrosine kinases. It has therefore been widely used for the treatment of chronic myeloid leukemia and gastrointestinal stromal tumors. Imatinib effectively suppresses the activation and proliferation of fibroblasts, mesangial cells and smooth muscle cells both in vitro and in vivo. Additionally, it has recently been reported that some patients with rheumatoid arthritis or idiopathic pulmonary arterial hypertension demonstrated a good clinical response to imatinib therapy. Imatinib may therefore overcome the limitations of current therapeutic strategy with corticosteroids and immunosuppressive agents for refractory diseases, such as systemic sclerosis and interstitial lung diseases, without clinical intolerability.

  2. Respiratory virus modulation of host nucleocytoplasmic transport; target for therapeutic intervention?

    Directory of Open Access Journals (Sweden)

    Leon eCaly

    2015-08-01

    Full Text Available The respiratory diseases caused by Rhinovirus, Respiratory Syncytial Virus and Influenza virus represent a large social and financial burden on healthcare worldwide. Although all three viruses have distinctly unique properties in terms of infection and replication, they share the ability to exploit/manipulate the host-cell nucleocytoplasmic transport system in order to replicate effectively and efficiently. This review outlines the various ways in which infection by these viruses impacts on the host nucleocytoplasmic transport system, and examples where inhibition thereof in turn decreases viral replication. The highly conserved nature of the nucleocytoplasmic transport system and the viral proteins that interact with it make this virus-host interface a prime candidate for the development of specific antiviral therapeutics in the future.

  3. Mucosal targeting of therapeutic molecules using genetically modified lactic acid bacteria: an update.

    Science.gov (United States)

    LeBlanc, Jean Guy; Aubry, Camille; Cortes-Perez, Naima G; de Moreno de LeBlanc, Alejandra; Vergnolle, Nathalie; Langella, Philippe; Azevedo, Vasco; Chatel, Jean-Marc; Miyoshi, Anderson; Bermúdez-Humarán, Luis G

    2013-07-01

    Lactic acid bacteria (LAB) represent a heterogeneous group of microorganisms naturally present in many foods and those have proved to be effective mucosal delivery vectors. Moreover, some specific strains of LAB exert beneficial properties (known as probiotic effect) on both human and animal health. Although probiotic effects are strain-specific traits, it is theoretically possible, using genetic engineering techniques, to design strains that can exert a variety of beneficial properties. During the two past decades, a large variety of therapeutic molecules has been successfully expressed in LAB, and although this field has been largely reviewed in recent years, approximately 20 new publications appear each year. Thus, the aim of this minireview is not to extensively assess the entire literature but to update progress made within the last 2 years regarding the use of the model LAB Lactococcus lactis and certain species of lactobacilli as live recombinant vectors for the development of new safe mucosal vaccines. PMID:23600579

  4. Chemokines in Chronic Liver Allograft Dysfunction Pathogenesis and Potential Therapeutic Targets

    Directory of Open Access Journals (Sweden)

    Bin Liu

    2013-01-01

    Full Text Available Despite advances in immunosuppressive drugs, long-term success of liver transplantation is still limited by the development of chronic liver allograft dysfunction. Although the exact pathogenesis of chronic liver allograft dysfunction remains to be established, there is strong evidence that chemokines are involved in organ damage induced by inflammatory and immune responses after liver surgery. Chemokines are a group of low-molecular-weight molecules whose function includes angiogenesis, haematopoiesis, mitogenesis, organ fibrogenesis, tumour growth and metastasis, and participating in the development of the immune system and in inflammatory and immune responses. The purpose of this review is to collect all the research that has been done so far concerning chemokines and the pathogenesis of chronic liver allograft dysfunction and helpfully, to pave the way for designing therapeutic strategies and pharmaceutical agents to ameliorate chronic allograft dysfunction after liver transplantation.

  5. Implication of Caspase-3 as a Common Therapeutic Target for Multineurodegenerative Disorders and Its Inhibition Using Nonpeptidyl Natural Compounds

    Directory of Open Access Journals (Sweden)

    Saif Khan

    2015-01-01

    Full Text Available Caspase-3 has been identified as a key mediator of neuronal apoptosis. The present study identifies caspase-3 as a common player involved in the regulation of multineurodegenerative disorders, namely, Alzheimer’s disease (AD, Parkinson’s disease (PD, Huntington’s disease (HD, and amyotrophic lateral sclerosis (ALS. The protein interaction network prepared using STRING database provides a strong evidence of caspase-3 interactions with the metabolic cascade of the said multineurodegenerative disorders, thus characterizing it as a potential therapeutic target for multiple neurodegenerative disorders. In silico molecular docking of selected nonpeptidyl natural compounds against caspase-3 exposed potent leads against this common therapeutic target. Rosmarinic acid and curcumin proved to be the most promising ligands (leads mimicking the inhibitory action of peptidyl inhibitors with the highest Gold fitness scores 57.38 and 53.51, respectively. These results were in close agreement with the fitness score predicted using X-score, a consensus based scoring function to calculate the binding affinity. Nonpeptidyl inhibitors of caspase-3 identified in the present study expeditiously mimic the inhibitory action of the previously identified peptidyl inhibitors. Since, nonpeptidyl inhibitors are preferred drug candidates, hence, discovery of natural compounds as nonpeptidyl inhibitors is a significant transition towards feasible drug development for neurodegenerative disorders.

  6. Follicular Helper T Cells in Systemic Lupus Erythematosus: Why Should They Be Considered as Interesting Therapeutic Targets?

    Science.gov (United States)

    Sawaf, Matthieu; Dumortier, Hélène; Monneaux, Fanny

    2016-01-01

    Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by B cell hyperactivity leading to the production of autoantibodies, some of which having a deleterious effect. Reducing autoantibody production thus represents a way of controlling lupus pathogenesis, and a better understanding of the molecular and cellular factors involved in the differentiation of B cells into plasma cells could allow identifying new therapeutic targets. Follicular helper T cells (TFH) represent a distinct subset of CD4(+) T cells specialized in providing help to B cells. They are required for the formation of germinal centers and the generation of long-lived serological memory and, as such, are suspected to play a central role in SLE. Recent advances in the field of TFH biology have allowed the identification of important molecular factors involved in TFH differentiation, regulation, and function. Interestingly, some of these TFH-related molecules have been described to be dysregulated in lupus patients. In the present review, we give an overview of the aberrant expression and/or function of such key players in lupus, and we highlight their potential as therapeutic targets. PMID:27635407

  7. A role for plasma cell targeting agents in immune tolerance induction in autoimmune disease and antibody responses to therapeutic proteins.

    Science.gov (United States)

    Rosenberg, A S; Pariser, A R; Diamond, B; Yao, L; Turka, L A; Lacana, E; Kishnani, P S

    2016-04-01

    Antibody responses to life saving therapeutic protein products, such as enzyme replacement therapies (ERT) in the setting of lysosomal storage diseases, have nullified product efficacy and caused clinical deterioration and death despite treatment with immune-suppressive therapies. Moreover, in some autoimmune diseases, pathology is mediated by a robust antibody response to endogenous proteins such as is the case in pulmonary alveolar proteinosis, mediated by antibodies to Granulocyte Macrophage-Colony Stimulating Factor (GM-CSF). In this work, we make the case that in such settings, when the antibody response is high titered, sustained, and refractory to immune suppressive treatments, the antibody response is mediated by long-lived plasma cells which are relatively unperturbed by immune suppressants including rituximab. However, long-lived plasma cells can be targeted by proteasome inhibitors such as bortezomib. Recent reports of successful reversal of antibody responses with bortezomib in the settings of ERT and Thrombotic Thrombocytopenic Purpura (TTP) argue that the safety and efficacy of such plasma cell targeting agents should be evaluated in larger scale clinical trials to delineate the risks and benefits of such therapies in the settings of antibody-mediated adverse effects to therapeutic proteins and autoantibody mediated pathology. PMID:26928739

  8. Evolving Insights into the Pathophysiology of Diabetic Neuropathy: Implications of Malfunctioning Glia and Discovery of Novel Therapeutic Targets.

    Science.gov (United States)

    Rahman, Md Habibur; Jha, Mithilesh Kumar; Suk, Kyoungho

    2016-01-01

    Diabetic neuropathy subsequent to chronic high blood glucose-induced nerve damage is one of the most frustrating and debilitating complications of diabetes, which affects the quality of life in patients with diabetes. Approximately 60-70% of patients with diabetes suffer from a distal symmetrical form of mild to severe neuropathy that progresses in a fiber-length-dependent pattern, with sensory and autonomic manifestations predominating. High glucose and oxidative stress-mediated damage in neurons and glial cells, as well as neuroinflammation and crosstalk between these disease processes, have garnered immense attention as the essential mechanisms underlying the development and progression of diabetic neuropathy. Although the metabolic causes of diabetic neuropathy are well understood and documented, treatment options for this disorder are still limited, highlighting the need for further studies to identify new molecular and therapeutic targets. This review covers recent advances in our knowledge of the pathophysiology of diabetic neuropathy, discusses how persistent hyperglycemic conditions and malfunctioning glia drive disease progression, and finally explores the possibilities and challenges offered by several potential novel therapeutic targets for both preventing and reversing diabetic neuropathy.

  9. Complex DNA repair pathways as possible therapeutic targets to overcome temozolomide resistance in glioblastoma

    Directory of Open Access Journals (Sweden)

    Koji eYoshimoto

    2012-12-01

    Full Text Available Many conventional chemotherapeutic drugs exert their cytotoxic function by inducing DNA damage in the tumor cell. Therefore, a cell-inherent DNA repair pathway, which reverses the DNA-damaging effect of the cytotoxic drugs, can mediate therapeutic resistance to chemotherapy. The monofunctional DNA-alkylating agent temozolomide (TMZ is a commonly used chemotherapeutic drug and the gold standard treatment for glioblastoma. Although the activity of DNA repair protein O6-methylguanine-DNA methyltransferase (MGMT has been described as the main modulator to determine the sensitivity of glioblastoma to TMZ, a subset of glioblastoma does not respond despite MGMT inactivation, suggesting that another DNA repair mechanism may also modulate the tolerance to TMZ. Considerable interest has focused on MGMT, mismatch repair (MMR, and the base-excision repair (BER pathway in the mechanism of mediating TMZ resistance, but emerging roles for the DNA strand-break repair pathway have been demonstrated. In the first part of this review article, we briefly review the significant role of MGMT, MMR, and the BER pathway in the tolerance to TMZ; in the last part, we review the recent publications that demonstrate possible roles of DNA strand-break repair pathways, such as single-strand break (SSB repair and double-strand break (DSB repair, as well as the Fanconi anemia pathway in the repair process after alkylating agent-based therapy. It is possible that all of these repair pathways have a potential to modulate the sensitivity to TMZ and aid in overcoming the therapeutic resistance in the clinic.

  10. Apolipoprotein J: A New Predictor and Therapeutic Target in Cardiovascular Disease?

    Institute of Scientific and Technical Information of China (English)

    Ning Yang; Qin Qin

    2015-01-01

    Objective:To review the functional mechanism of apolipoprotein J (apoJ) in the process of atherosclerosis and the feasibility of apoJ as a therapeutic endpoint.Data Sources:Relevant articles published in English from 1983 to present were selected from PubMed.The terms of"atherosclerosis,apolipoprotein J,clusterin (CLU),oxidative stress,and inflammation" were used for searching.Study Selection:Articles studying the role of apoJ with atherosclerosis and restenosis after injury were reviewed.Articles focusing on the intrinsic determinants of atherosclerosis were selected.The exclusion criteria of articles were that the studies on immunologic vasculitis.Results:ApoJ,involved in numerous physiological process important for lipid transportation and vascular smooth muscle cell differentiation,including apoptotic cell death,cell-cycle regulation,cell adhesion,tissue remodeling,immune system regulation,and oxidative stress,plays a role in the development of clinical atherosclerosis.In the process of relieving atherosclerosis,apoJ can promote cholesterol and phospholipid export from macrophage-foam cells,and exhibit cytoprotective and anti-inflammatory actions by interacting with lots of known inflammatory proteins which may predict the onset of clinical cardiovascular events and may actually play a causal role in mediating atherosclerotic disease such as C-reactive protein,paraoxonase,and leptin.As known as CLU,apoJ has been identified to play central roles in the process of vascular smooth cells migration,adhesion,and proliferation,which can contribute significantly to restenosis after vascular injury.Conclusions:Intense effort and substantial progress have been made to identify the apoJ that relieves atherosclerosis and vascular restenosis after percutaneous coronary intervention.More work is needed to elucidate the exact mechanisms of and the interrelationship between the actions of apoJ and to successfully achieve regression of atherosclerosis by regarding it as a

  11. Integrated genomic characterization reveals novel, therapeutically relevant drug targets in FGFR and EGFR pathways in sporadic intrahepatic cholangiocarcinoma.

    Directory of Open Access Journals (Sweden)

    Mitesh J Borad

    2014-02-01

    Full Text Available Advanced cholangiocarcinoma continues to harbor a difficult prognosis and therapeutic options have been limited. During the course of a clinical trial of whole genomic sequencing seeking druggable targets, we examined six patients with advanced cholangiocarcinoma. Integrated genome-wide and whole transcriptome sequence analyses were performed on tumors from six patients with advanced, sporadic intrahepatic cholangiocarcinoma (SIC to identify potential therapeutically actionable events. Among the somatic events captured in our analysis, we uncovered two novel therapeutically relevant genomic contexts that when acted upon, resulted in preliminary evidence of anti-tumor activity. Genome-wide structural analysis of sequence data revealed recurrent translocation events involving the FGFR2 locus in three of six assessed patients. These observations and supporting evidence triggered the use of FGFR inhibitors in these patients. In one example, preliminary anti-tumor activity of pazopanib (in vitro FGFR2 IC50≈350 nM was noted in a patient with an FGFR2-TACC3 fusion. After progression on pazopanib, the same patient also had stable disease on ponatinib, a pan-FGFR inhibitor (in vitro, FGFR2 IC50≈8 nM. In an independent non-FGFR2 translocation patient, exome and transcriptome analysis revealed an allele specific somatic nonsense mutation (E384X in ERRFI1, a direct negative regulator of EGFR activation. Rapid and robust disease regression was noted in this ERRFI1 inactivated tumor when treated with erlotinib, an EGFR kinase inhibitor. FGFR2 fusions and ERRFI mutations may represent novel targets in sporadic intrahepatic cholangiocarcinoma and trials should be characterized in larger cohorts of patients with these aberrations.

  12. Remote magnetic targeting of iron oxide nanoparticles for cardiovascular diagnosis and therapeutic drug delivery: where are we now?

    Science.gov (United States)

    Bietenbeck, Michael; Florian, Anca; Faber, Cornelius; Sechtem, Udo; Yilmaz, Ali

    2016-01-01

    Magnetic resonance imaging (MRI) allows for an accurate assessment of both functional and structural cardiac parameters, and thereby appropriate diagnosis and validation of cardiovascular diseases. The diagnostic yield of cardiovascular MRI examinations is often increased by the use of contrast agents that are almost exclusively based on gadolinium compounds. Another clinically approved contrast medium is composed of superparamagnetic iron oxide nanoparticles (IONs). These particles may expand the field of contrast-enhanced cardiovascular MRI as recently shown in clinical studies focusing on acute myocardial infarction (AMI) and atherosclerosis. Furthermore, IONs open up new research opportunities such as remote magnetic drug targeting (MDT). The approach of MDT relies on the coupling of bioactive molecules and magnetic nanoparticles to form an injectable complex. This complex, in turn, can be attracted to and retained at a desired target inside the body with the help of applied magnetic fields. In comparison to common systemic drug applications, MDT techniques promise both higher concentrations at the target site and lower concentrations elsewhere in the body. Moreover, concurrent or subsequent MRI can be used for noninvasive monitoring of drug distribution and successful delivery to the desired organ in vivo. This review does not only illustrate the basic conceptual and biophysical principles of IONs, but also focuses on new research activities and achievements in the cardiovascular field, mainly in the management of AMI. Based on the presentation of successful MDT applications in preclinical models of AMI, novel approaches and the translational potential of MDT are discussed. PMID:27486321

  13. Spider-venom peptides that target voltage-gated sodium channels: pharmacological tools and potential therapeutic leads.

    Science.gov (United States)

    Klint, Julie K; Senff, Sebastian; Rupasinghe, Darshani B; Er, Sing Yan; Herzig, Volker; Nicholson, Graham M; King, Glenn F

    2012-09-15

    Voltage-gated sodium (Na(V)) channels play a central role in the propagation of action potentials in excitable cells in both humans and insects. Many venomous animals have therefore evolved toxins that modulate the activity of Na(V) channels in order to subdue their prey and deter predators. Spider venoms in particular are rich in Na(V) channel modulators, with one-third of all known ion channel toxins from spider venoms acting on Na(V) channels. Here we review the landscape of spider-venom peptides that have so far been described to target vertebrate or invertebrate Na(V) channels. These peptides fall into 12 distinct families based on their primary structure and cysteine scaffold. Some of these peptides have become useful pharmacological tools, while others have potential as therapeutic leads because they target specific Na(V) channel subtypes that are considered to be important analgesic targets. Spider venoms are conservatively predicted to contain more than 10 million bioactive peptides and so far only 0.01% of this diversity been characterised. Thus, it is likely that future research will reveal additional structural classes of spider-venom peptides that target Na(V) channels.

  14. Inflammatory therapeutic targets in coronary atherosclerosis – from molecular biology to clinical application

    Directory of Open Access Journals (Sweden)

    Fabian eLinden

    2014-11-01

    Full Text Available Atherosclerosis is the leading cause of death worldwide. Over the past two decades, it has been clearly recognized that atherosclerosis is an inflammatory disease of the arterial wall. Accumulating data from animal experiments have supported this hypothesis, however, clinical applications making use of this knowledge remain scarce. In spite of optimal interventional and medical therapy, the risk for recurrent myocardial infarction remains by about 20% over three years after acute coronary syndromes, novel therapies to prevent atherogenesis or treat atherosclerosis are urgently needed. This review summarizes selected potential molecu-lar inflammatory targets that may be of clinical relevance. We also review recent and ongoing clinical trails that target inflammatory processes aiming at preventing adverse cardiovascular events. Overall, it seems surprising that translation of basic science into clinical practice has not been a great success. In conclusion, we propose to focus on specific efforts that promote translational science in order to improve outcome and prognosis of patients suffering from atherosclerosis.

  15. Eosinophils and mast cells as therapeutic targets in pediatric functional dyspepsia

    Institute of Scientific and Technical Information of China (English)

    Craig; A; Friesen; Jennifer; V; Schurman; Jennifer; M; Colombo; Susan; M; Abdel-Rahman

    2013-01-01

    There is an increasing appreciation for the importance of inflammation as a pathophysiologic entity that contributes to functional gastrointestinal disorders including functional dyspepsia(FD).Importantly,inflammation may serve as a mediator between psychologic and physiologic functions.This manuscript reviews the literature implicating two inflammatory cell types,mast cells and eosinophils,in the generation of dyspeptic symptoms and explores their potential as targets for the treatment of FD.There are a number of inciting events which may initiate an inflammatory response,and the subsequent recruitment and activation of mast cells and eosinophils.These include internal triggers such as stress and anxiety,as well as external triggers such as microbes and allergens.Previous studies suggest that there may be efficacy in utilizing medications directed at mast cells and eosinophils.Evidence exists to suggest that combining "anti-inflammatory" medications with other treatments targeting stress can improve the rate of symptom resolution in pediatric FD.

  16. Targeted anti-inflammatory therapeutics in asthma and chronic obstructive lung disease

    OpenAIRE

    Durham, Andrew L.; Caramori, Gaetano; Chung, Kian F; Adcock, Ian M.

    2016-01-01

    Asthma and chronic obstructive pulmonary disease (COPD) are chronic inflammatory diseases of the airway, although the drivers and site of the inflammation differ between diseases. Asthmatics with a neutrophilic airway inflammation are associated with a poor response to corticosteroids, whereas asthmatics with eosinophilic inflammation respond better to corticosteroids. Biologicals targeting the Th2-eosinophil nexus such as anti–interleukin (IL)-4, anti–IL-5, and anti–IL-13 are ineffective in ...

  17. Researchers Use a Kinome Screen to Identify New Therapeutic Targets | Office of Cancer Genomics

    Science.gov (United States)

    The tumor suppressor p53 is mutated in over 50% of head and neck squamous cell carcinomas (HNSCC), yet there are currently no available therapies to target it. CTD2 researchers at the Fred Hutchison Cancer Research Center hypothesized that HNSCC cancer cells with p53 mutations are dependent on particular kinases for survival. In a study published in Clinical Cancer Research, they sought to identify these kinases using RNAi against known kinase genes in mouse and human cell lines.

  18. Identification of Bruton's tyrosine kinase as a therapeutic target in acute myeloid leukemia

    OpenAIRE

    Rushworth, Stuart A.; Murray, Megan Y; Zaitseva, Lyubov; Bowles, Kristian M.; MacEwan, David J.

    2014-01-01

    Bruton's tyrosine kinase (BTK) is a cytoplasmic protein found in all hematopoietic cell lineages except for T cells. BTK mediates signalling downstream of a number of receptors. Pharmacological targeting of BTK using ibrutinib (previously PCI-32765) has recently shown encouraging clinical activity in a range of lymphoid malignancies. This study reports for the first time that ibrutinib inhibits blast proliferation from human acute myeloid leukaemia (AML) and that treatment with ibrutinib sign...

  19. Insights into Orphan Nuclear Receptors as Prognostic Markers and Novel Therapeutic Targets for Breast Cancer

    OpenAIRE

    Aesoy, Reidun; Clyne, Colin D.; Chand, Ashwini L

    2015-01-01

    There is emerging evidence asserting the importance of orphan nuclear receptors (ONRs) in cancer initiation and progression. In breast cancer, there is a lot unknown about ONRs in terms of their expression profile and their transcriptional targets in the various stages of tumor progression. With the classification of breast tumors into distinct molecular subtypes, we assess ONR expression in the different breast cancer subtypes and with patient outcomes. Complementing this, we review evidence...

  20. Integrated nanotechnology platform for tumor-targeted multimodal imaging and therapeutic cargo release

    OpenAIRE

    Hosoya, Hitomi; Andrey S Dobroff; Driessen, Wouter H. P.; Cristini, Vittorio; Brinker, Lina M.; Staquicini, Fernanda I.; Cardó-Vila, Marina; D’Angelo, Sara; Ferrara, Fortunato; Proneth, Bettina; Lin, Yu-Shen; Dunphy, Darren R.; Dogra, Prashant; Melancon, Marites P.; Stafford, R. Jason

    2016-01-01

    The main goal in the emerging field of cancer nanomedicine is to generate, standardize, and produce multifunctional carriers designed to improve the response of drugs against tumors. Here we report the design, development, and preclinical validation of a ligand-directed bioinorganic platform that integrates tumor targeting, receptor-mediated cell internalization, photon-to-heat conversion, and drug delivery. This enabling hydrogel-based technology can accommodate a broad variety of ligands, n...