Attosecond time delays in the nuclear dynamics of strong-field molecular dissociation
Armstrong, Greg; Ultrafast Molecular Physics Group Collaboration
2016-05-01
The relative time delay in the photoemission from neighboring atomic valence sub-shells has become an area of considerable recent interest, with delays of tens of attoseconds reported in pump-probe experiments for a number of atomic targets. Such delays may be extracted, for example, from phase differences in the photoelectron energy spectra for the different sub-shells as a function of delay between pump and probe pulses. The focus of such experiments has, to date, been atomic targets, on the assumption that only electronic motion can lead to delays on the attosecond scale.We investigate the molecular analogue of such studies by calculating the kinetic-energy release (KER) spectrum for neighboring vibrational states as a function of pump-probe delay time. In particular, we focus on molecular targets where electronic excitation is negligible, and show that attosecond time delays are also possible for purely nuclear motion. We will present evidence of these attosecond delays derived from both numerical solutions of the time-dependent Schrödinger equation and experiment. We analyze and understand the observed shifts using the photon-phase formalism. G.S.J. Armstrong, J. McKenna, B. Gaire, M. Zohrabi, B. Berry, B. Jochim, Kanaka Raju, P., P. Feizollah, K.D. Carnes, Ben-Itzhak, B.D. Esry.
Optical vortices discern attosecond time delay in electron emission from magnetic sublevels
Wätzel, Jonas
2016-01-01
Photoionization from energetically distinct electronic states may have a relative time delay of tens of attoseconds. Here we demonstrate that pulses of optical vortices allow measuring such attoseconds delays from magnetic sublevels, even from a spherically symmetric target. The di?erence in the time delay is substantial and exhibits a strong angular dependence. Furthermore, we find an atomic scale variation in the time delays depending on the target orbital position in the laser spot. The findings o?er thus a qualitatively new way for a spatio-temporal sensing of the magnetic states from which the photoelectrons originate, with a spatial resolution way below the di?raction limit of the vortex beam. Our conclusions follow from analytical considerations based on symmetry, complemented and confirmed with full numerical simulations of the quantum dynamics.
Fullerene photoemission time delay explores molecular cavity in attoseconds
Magrakvelidze, Maia; Dixit, Gopal; Madjet, Mohamed El-Amine; Chakraborty, Himadri S
2014-01-01
Time-resolved photoelectron spectroscopy can probe interference oscillations in C60 valence emissions that produce series of minima whose energy separation depends on the molecular size. We show that the quantum phase associated with these minima exhibits rapid variations due to electron correlations, causing rich structures in the photoemission time delay. These findings provide a way to utilize temporal information to access the fullerene cavity size, that is making the time to "see" the space, and can be generalized to photoemissions from clusters and nanostructures.
Diagrammatic approach to attosecond delays in photoionization
Dahlström, J M; Lindroth, E
2012-01-01
We study laser-assisted photoionization by attosecond pulses using a time-independent formalism based on diagrammatic many-body perturbation theory. Our aim is to provide an ab inito route to the "delays" for this above-threshold ionization process, which is essential for a quantitative understanding of attosecond metrology. We present correction curves for characterization schemes of attosecond pulses, such as "streaking", that account for the delayed atomic response in ionization from neon and argon. We also verify that photoelectron delays from many-electron atoms can be measured using similar schemes if, instead, the so-called continuum--continuum delay is subtracted. Our method is general and it can be extended also to more complex systems and additional correlation effects can be introduced systematically.
Attosecond delays in molecular photoionization
Huppert, Martin; Baykusheva, Denitsa; von Conta, Aaron; Wörner, Hans Jakob
2016-01-01
We report measurements of energy-dependent attosecond photoionization delays between the two outer-most valence shells of N$_2$O and H$_2$O. The combination of single-shot signal referencing with the use of different metal foils to filter the attosecond pulse train enables us to extract delays from congested spectra. Remarkably large delays up to 160 as are observed in N$_2$O, whereas the delays in H$_2$O are all smaller than 50 as in the photon-energy range of 20-40 eV. These results are interpreted by developing a theory of molecular photoionization delays. The long delays measured in N$_2$O are shown to reflect the population of molecular shape resonances that trap the photoelectron for a duration of up to $\\sim$110 as. The unstructured continua of H$_2$O result in much smaller delays at the same photon energies. Our experimental and theoretical methods make the study of molecular attosecond photoionization dynamics accessible.
Resonant enhancement of a single attosecond pulse in a gas medium by a time-delayed control field
International Nuclear Information System (INIS)
An optical coherent control scheme has been proposed and theoretically investigated where an extreme ultraviolet single attosecond pulse (SAP) propagates through dense helium gas dressed by a time-delayed femtosecond laser pulse. The laser pulse couples the 2s2p(1P) and 2s2(1S) autoionizing states when the SAP excites the 2s2p state. After going through the gas, the spectral and temporal profiles of the SAP are strongly distorted. A narrowed but enhanced spike in the spectrum shows up for specific intensities and time delays of the laser, which exemplifies the control of a broadband photon wave packet by an ultrashort dressing field for the first time. We analyse the photon and electron dynamics and determine the dressing condition that maximizes this enhancement. The result demonstrates new possibilities of attosecond optical control.
Introduction to attosecond delays in photoionization
International Nuclear Information System (INIS)
This tutorial presents an introduction to the interaction of light and matter on the attosecond timescale. Our aim is to detail the theoretical description of ultra-short time delays and to relate these to the phase of extreme ultraviolet (XUV) light pulses and to the asymptotic phaseshifts of photoelectron wave packets. Special emphasis is laid on time-delay experiments, where attosecond XUV pulses are used to photoionize target atoms at well-defined times, followed by a probing process in real time by a phase-locked, infrared laser field. In this way, the laser field serves as a ‘clock’ to monitor the ionization event, but the observable delays do not correspond directly to the delay associated with single-photon ionization. Instead, a significant part of the observed delay originates from a measurement induced process, which obscures the single-photon ionization dynamics. This artefact is traced back to a phaseshift of the above-threshold ionization transition matrix element, which we call the continuum-continuum phase. It arises due to the laser-stimulated transitions between Coulomb continuum states. As we shall show here, these measurement-induced effects can be separated from the single-photon ionization process, using analytical expressions of universal character, so that eventually the attosecond time delays in photoionization can be accessed.
Energy Technology Data Exchange (ETDEWEB)
Feng Liqiang [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics Chinese Academy of Sciences, Dalian 116023 (China); Chu Tianshu, E-mail: tschu@dicp.ac.cn [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics Chinese Academy of Sciences, Dalian 116023 (China); Institute for Computational Sciences and Engineering, Laboratory of New Fiber Materials and Modern Textile, the Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071 (China)
2012-03-15
Highlights: Black-Right-Pointing-Pointer Investigation of HHG spectra and single isolated attosecond pulse generation. Black-Right-Pointing-Pointer Irradiation from a model Ne atom by two-color time delayed pulse. Black-Right-Pointing-Pointer Observation of time delay effect and relative phase effect. Black-Right-Pointing-Pointer Revelation of the optimal condition for generating isolated attosecond pulse. Black-Right-Pointing-Pointer Generation of a single isolated attosecond pulse of 45as. - Abstract: In this paper, we theoretically investigate the delay time effect on the high-order harmonic generation (HHG) when a model Ne atom is exposed to a two-color time delayed pulse, consisting of a 5fs/800 nm fundamental field and a 20fs/2000 nm controlling field. It shows that the HHG spectra are strongly sensitive to the delay time between the two laser fields, in particular, for the zero carrier-envelope phase (CEP) {phi} case (corresponding to the 800 nm fundamental field), the maximum cutoff energy has been achieved at zero delay time. However, with the introduction of the CEP ({phi} = 180 Degree-Sign ), the delay effect on HHG is changed, exhibiting a 'U' structure harmonic emission from -1 T to 1 T. In addition, the combinations of different controlling pulse frequencies and pulse intensities have also been considered, showing the similar results as the original controlling field case, but with some characteristics. Finally, by properly superposing the optimal harmonic spectrum, an isolated 45as pulse is generated without phase compensation.
Time-resolved photoemission using attosecond streaking
Nagele, Stefan; Wais, Michael; Wachter, Georg; Burgdörfer, Joachim
2014-01-01
We theoretically study time-resolved photoemission in atoms as probed by attosecond streaking. We review recent advances in the study of the photoelectric effect in the time domain and show that the experimentally accessible time shifts can be decomposed into distinct contributions that stem from the field-free photoionization process itself and from probe-field induced corrections. We perform accurate quantum-mechanical as well as classical simulations of attosecond streaking for effective one-electron systems and determine all relevant contributions to the time delay with attosecond precision. In particular, we investigate the properties and limitations of attosecond streaking for the transition from short-ranged potentials (photodetachment) to long-ranged Coulomb potentials (photoionization). As an example for a more complex system, we study time-resolved photoionization for endohedral fullerenes $A$@$\\text{C}_{60}$ and discuss how streaking time shifts are modified due to the interaction of the $\\text{C}_...
Theory of attosecond delays in laser-assisted photoionization
Energy Technology Data Exchange (ETDEWEB)
Dahlström, J.M., E-mail: marcus.dahlstrom@fysik.su.se [Department of Physics, Lund University, P.O. Box 118, 22100 Lund (Sweden); Atomic Physics, Fysikum, Stockholm University, AlbaNova University Center, SE-106 91 Stockholm (Sweden); Guénot, D.; Klünder, K.; Gisselbrecht, M.; Mauritsson, J. [Department of Physics, Lund University, P.O. Box 118, 22100 Lund (Sweden); L’Huillier, A., E-mail: anne.lhuillier@fysik.lth.se [Department of Physics, Lund University, P.O. Box 118, 22100 Lund (Sweden); Maquet, A. [UPMC Université Paris 6, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05 (France); CNRS, UMR 7614, LCPMR, Paris (France); Taïeb, R., E-mail: richard.taieb@upmc.fr [UPMC Université Paris 6, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05 (France); CNRS, UMR 7614, LCPMR, Paris (France)
2013-03-12
Highlights: ► We find the phase for laser-assisted XUV ionization transition matrix elements (M). ► The phase of M is simply: the sum of the scattering phase of the intermediate continuum state and an universal phase. ► The universal phase is independent of the initial state and it leads to a delay observed in attosecond time-delay experiments. - Abstract: We study the temporal aspects of laser-assisted extreme ultraviolet (XUV) photoionization using attosecond pulses of harmonic radiation. The aim of this paper is to establish the general form of the phase of the relevant transition amplitudes and to make the connection with the time-delays that have been recently measured in experiments. We find that the overall phase contains two distinct types of contributions: one is expressed in terms of the phase-shifts of the photoelectron continuum wavefunction while the other is linked to continuum–continuum transitions induced by the infrared (IR) laser probe. Our formalism applies to both kinds of measurements reported so far, namely the ones using attosecond pulse trains of XUV harmonics and the others based on the use of isolated attosecond pulses (streaking). The connection between the phases and the time-delays is established with the help of finite difference approximations to the energy derivatives of the phases. The observed time-delay is a sum of two components: a one-photon Wigner-like delay and a universal delay that originates from the probing process itself.
Theory of attosecond delays in laser-assisted photoionization
International Nuclear Information System (INIS)
Highlights: ► We find the phase for laser-assisted XUV ionization transition matrix elements (M). ► The phase of M is simply: the sum of the scattering phase of the intermediate continuum state and an universal phase. ► The universal phase is independent of the initial state and it leads to a delay observed in attosecond time-delay experiments. - Abstract: We study the temporal aspects of laser-assisted extreme ultraviolet (XUV) photoionization using attosecond pulses of harmonic radiation. The aim of this paper is to establish the general form of the phase of the relevant transition amplitudes and to make the connection with the time-delays that have been recently measured in experiments. We find that the overall phase contains two distinct types of contributions: one is expressed in terms of the phase-shifts of the photoelectron continuum wavefunction while the other is linked to continuum–continuum transitions induced by the infrared (IR) laser probe. Our formalism applies to both kinds of measurements reported so far, namely the ones using attosecond pulse trains of XUV harmonics and the others based on the use of isolated attosecond pulses (streaking). The connection between the phases and the time-delays is established with the help of finite difference approximations to the energy derivatives of the phases. The observed time-delay is a sum of two components: a one-photon Wigner-like delay and a universal delay that originates from the probing process itself
Multiphoton transitions for delay-zero calibration in attosecond spectroscopy
Herrmann, Jens; Chen, Shaohao; Wu, Mengxi; Ludwig, André; Kasmi, Lamia; Schafer, Kenneth J; Gallmann, Lukas; Gaarde, Mette B; Keller, Ursula
2014-01-01
The exact delay-zero calibration in an attosecond pump-probe experiment is important for the correct interpretation of experimental data. In attosecond transient absorption spectroscopy the determination of the delay-zero exclusively from the experimental results is not straightforward and may introduce significant errors. Here, we report the observation of quarter-laser-cycle (4{\\omega}) oscillations in a transient absorption experiment in helium using an attosecond pulse train overlapped with a precisely synchronized, moderately strong infrared pulse. We demonstrate how to extract and calibrate the delay-zero with the help of the highly nonlinear 4{\\omega} signal. A comparison with the solution of the time-dependent Schr\\"odinger equation is used to confirm the accuracy and validity of the approach. Moreover, we study the mechanisms behind the quarter-laser-cycle and the better-known half-laser-cycle oscillations as a function of experimental parameters. This investigation yields an indication of the robust...
Multiphoton transitions for delay-zero calibration in attosecond spectroscopy
International Nuclear Information System (INIS)
The exact delay-zero calibration in an attosecond pump-probe experiment is important for the correct interpretation of experimental data. In attosecond transient absorption spectroscopy the determination of the delay-zero exclusively from the experimental results is not straightforward and may introduce significant errors. Here, we report the observation of quarter-laser-cycle (4ω) oscillations in a transient absorption experiment in helium using an attosecond pulse train overlapped with a precisely synchronized, moderately strong infrared pulse. We demonstrate how to extract and calibrate the delay-zero with the help of the highly nonlinear 4ω signal. A comparison with the solution of the time-dependent Schrödinger equation is used to confirm the accuracy and validity of the approach. Moreover, we study the mechanisms behind the quarter-laser-cycle and the better-known half-laser-cycle oscillations as a function of experimental parameters. This investigation yields an indication of the robustness of our delay-zero calibration approach. (paper)
Theory of attosecond delays in laser-assisted photoionization
Dahlström, J M; Klünder, K; Gisselbrecht, M; Mauritsson, J; L'Huillier, A; Maquet, A; Taïeb, R
2011-01-01
We study the temporal aspects of laser-assisted extreme ultraviolet (XUV) photoionization using attosecond pulses of harmonic radiation. The aim of this paper is to establish the general form of the phase of the relevant transition amplitudes and to make the connection with the time-delays that have been recently measured in experiments. We find that the overall phase contains two distinct types of contributions: one is expressed in terms of the phase-shifts of the photoelectron continuum wavefunction while the other is linked to continuum--continuum transitions induced by the infrared (IR) laser probe. Our formalism applies to both kinds of measurements reported so far, namely the ones using attosecond pulse trains of XUV harmonics and the others based on the use of isolated attosecond pulses (streaking). The connection between the phases and the time-delays is established with the help of finite difference approximations to the energy derivatives of the phases. This makes clear that the observed time-delays...
Study of attosecond delays using perturbation diagrams and exterior complex scaling
Dahlström, J M
2014-01-01
We describe in detail how attosecond delays in laser-assisted photoionization can be computed using perturbation theory based on two-photon matrix elements. Special emphasis is laid on above-threshold ionization, where the electron interacts with an infrared field after photoionization by an extreme ultraviolet field. Correlation effects are introduced using diagrammatic many-body theory to the level of the random-phase approximation with exchange (RPAE). Our aim is to provide an ab initio route to correlated multi-photon processes that are required for an accurate description of experiments on the attosecond time scale. Here, our results are focused on photoionization of the M -shell of argon atoms, where experiments have been carried out using the so-called RABITT technique. An influence of autoionizing resonances in attosecond delay measurements is observed. Further, it is shown that the delay depends on both detection angle of the photoelectron and energy of the probe photon.
Time-resolved photoemission by attosecond streaking: extraction of time information
Nagele, S; Pazourek, R; Feist, J.; Doblhoff-Dier, K; Lemell, C.; Tőkési, K; Burgdörfer, J.
2011-01-01
Attosecond streaking of atomic photoemission holds the promise to provide unprecedented information on the release time of the photoelectron. We show that attosecond streaking phase shifts indeed contain timing (or spectral phase) information associated with the Eisenbud-Wigner-Smith time delay matrix of quantum scattering. However, this is only accessible if the influence of the streaking infrared (IR) field on the emission process is properly accounted for. The IR probe field can strongly m...
Real-Time Probing of Electron Dynamics Using Attosecond Time-Resolved Spectroscopy
Ramasesha, Krupa; Leone, Stephen R.; Neumark, Daniel M.
2016-05-01
Attosecond science has paved the way for direct probing of electron dynamics in gases and solids. This review provides an overview of recent attosecond measurements, focusing on the wealth of knowledge obtained by the application of isolated attosecond pulses in studying dynamics in gases and solid-state systems. Attosecond photoelectron and photoion measurements in atoms reveal strong-field tunneling ionization and a delay in the photoemission from different electronic states. These measurements applied to molecules have shed light on ultrafast intramolecular charge migration. Similar approaches are used to understand photoemission processes from core and delocalized electronic states in metal surfaces. Attosecond transient absorption spectroscopy is used to follow the real-time motion of valence electrons and to measure the lifetimes of autoionizing channels in atoms. In solids, it provides the first measurements of bulk electron dynamics, revealing important phenomena such as the timescales governing the switching from an insulator to a metallic state and carrier-carrier interactions.
Real-Time Probing of Electron Dynamics Using Attosecond Time-Resolved Spectroscopy.
Ramasesha, Krupa; Leone, Stephen R; Neumark, Daniel M
2016-05-27
Attosecond science has paved the way for direct probing of electron dynamics in gases and solids. This review provides an overview of recent attosecond measurements, focusing on the wealth of knowledge obtained by the application of isolated attosecond pulses in studying dynamics in gases and solid-state systems. Attosecond photoelectron and photoion measurements in atoms reveal strong-field tunneling ionization and a delay in the photoemission from different electronic states. These measurements applied to molecules have shed light on ultrafast intramolecular charge migration. Similar approaches are used to understand photoemission processes from core and delocalized electronic states in metal surfaces. Attosecond transient absorption spectroscopy is used to follow the real-time motion of valence electrons and to measure the lifetimes of autoionizing channels in atoms. In solids, it provides the first measurements of bulk electron dynamics, revealing important phenomena such as the timescales governing the switching from an insulator to a metallic state and carrier-carrier interactions. PMID:26980312
Attosecond Time-Resolved Autoionization of Argon
International Nuclear Information System (INIS)
Autoionization of argon atoms was studied experimentally by transient absorption spectroscopy with isolated attosecond pulses. The peak position, intensity, linewidth, and shape of the 3s3p6np 1P Fano resonance series (26.6-29.2 eV) were modified by intense few-cycle near infrared laser pulses, while the delay between the attosecond pulse and the laser pulse was changed by a few femtoseconds. Numerical simulations revealed that the experimentally observed splitting of the 3s3p64p 1P line is caused by the coupling between two short-lived highly excited states in the strong laser field.
Exploring single-photon ionization on the attosecond time scale
International Nuclear Information System (INIS)
One of the fundamental processes in nature is the photoelectric effect in which an electron is ripped away from its atom via the interaction with a photon. This process was long believed to be instantaneous but with the development of attosecond pulses (1 as 10−18 s) we can finally get an insight into its dynamic. Here we measure a delay in ionization time between two differently bound electrons. The outgoing electrons are created via ionization with a train of attosecond pulses and we probe their relative delay with a synchronized infrared laser. We demonstrate how this probe field influences the measured delays and show that this contribution can be estimated with a universal formula, which allows us to extract field free atomic data.
Probing single-photon ionization on the attosecond time scale
Klünder, K; Gisselbrecht, M; Fordell, T; Swoboda, M; Guénot, D; Johnsson, P; Caillat, J; Mauritsson, J; Maquet, A; Taïeb, R; L'Huillier, A
2010-01-01
We study photoionization of argon atoms excited by attosecond pulses using an interferometric measurement technique. We measure the difference in time delays between electrons emitted from the $3s^2$ and from the $3p^6$ shell, at different excitation energies ranging from 32 to 42 eV. The determination of single photoemission time delays requires to take into account the measurement process, involving the interaction with a probing infrared field. This contribution can be estimated using an universal formula and is found to account for a substantial fraction of the measured delay.
Attosecond science and the tunnelling time problem
Energy Technology Data Exchange (ETDEWEB)
Landsman, Alexandra S., E-mail: landsmanster@gmail.com; Keller, Ursula
2015-01-05
The question of how long it takes a particle to tunnel through a potential barrier has been a subject of intense theoretical debate for the last 80 years. In this decade of attosecond science, the answer to this question not only promises to deepen our understanding of fundamental quantum mechanics, but also has significant practical implications for how we interpret attosecond electron dynamics that underlie important phenomena in physics, chemistry and biology. Here we attempt to address this problem in the context of recent experimental measurements which use state-of-the-art ultrafast laser technology to resolve electron dynamics on the attosecond time-scale. This review therefore brings the theory of tunnelling time to the arena of ultrafast science, opening the door to improved resolution of, and cross-fertilization between, significant practical and fundamental questions in both fields.
Study of attosecond delays using perturbation diagrams and exterior complex scaling
International Nuclear Information System (INIS)
We describe in detail how attosecond delays in laser-assisted photoionization can be computed using perturbation theory based on two-photon matrix elements. Special emphasis is laid on above-threshold ionization, where the electron interacts with an infrared field after photoionization by an extreme ultraviolet field. Correlation effects are introduced using diagrammatic many-body theory to the level of the random-phase approximation with exchange. Our aim is to provide an ab initio route to correlated multi-photon processes that are required for an accurate description of experiments on the attosecond time scale. Here, our results are focused on photoionization of the M-shell of argon atoms, where experiments have been carried out using the so-called reconstruction of attosecond beating by the two-photon interference transitions technique. An influence of autoionizing resonances in attosecond delay measurements is observed. Further, it is shown that the delay depends on both detection angle of the photoelectron and energy of the probe photon. (paper)
Attosecond delay of xenon $4d$ photoionization at the giant resonance and Cooper minimum
Magrakvelidze, Maia; Chakraborty, Himadri S
2016-01-01
A Kohn-Sham time-dependent local-density-functional scheme is utilized to predict attosecond time delays of xenon 4d photoionization that involves the 4d giant dipole resonance and Cooper minimum. The fundamental effect of electron correlations to uniquely determine the delay at both regions is demonstrated. In particular, for the giant dipole resonance, the delay underpins strong collective effect, emulating the recent prediction at C60 giant plasmon resonance [T. Barillot et al, Phys. Rev. A 91, 033413 (2015)]. For the Cooper minimum, a qualitative similarity with a photorecombination experiment near argon 3p minimum [S. B. Schoun et al, Phys. Rev. Lett. 112, 153001 (2014)] is found. The result should encourage attosecond measurements of Xe 4d photoemission.
Time-resolved photoemission by attosecond streaking. Extraction of time information
International Nuclear Information System (INIS)
Complete text of publication follows. Attosecond streaking is one of the most spectacular applications within the emerging field of attoscience. Streaking is based on a variant of a pump-probe setting with an extreme ultraviolet (XUV) pulse of a few hundred attoseconds serving as a pump and a phase controlled few-cycle infrared (IR) pulse as a probe. Electrons emitted in the presence of an IR field are accelerated to different final momenta and energies depending on the value of the vector potential at the release time. Thus, time information is mapped onto the energy axis in analogy to conventional streaking. Attosecond streaking of atomic photoemission holds the promise to provide unprecedented information on the release time of the photoelectron. We have shown that attosecond streaking phase shifts indeed contain timing (or spectral phase) information associated with the Eisenbud - Wigner - Smith (EWS) time delay matrix of quantum scattering. We have identified on the one-electron (or independent particle) level considerable state dependent time shifts that can be observed in attosecond streaking and which are of quantum mechanical origin. We found a time delay between the hydrogenic 2s and 2p initial states in He+ exceeding 20 as for a wide range of IR intensities and XUV energies (see Fig. 1). In addition, we have identified large time shifts which result from the coupling between the IR streaking field and the Coulomb field which depend on the final energy of the free electron and can be accounted for classically. The EWS time shift (or energy variation of the scattering phase) is found to be accessible by streaking only if both initial-state-dependent entrance channel and final-state exit channel distortions are properly accounted for. For such a scenario we have shown that time delays on the single-digit attosecond scale due to short-ranged potentials are in reach. Acknowledgements This work was supported by the FWF-Austria, grant nos SFB016 and P21141-N16
Chu, Wei-Chun; C. D. Lin
2012-01-01
An extreme ultraviolet (EUV) single attosecond pulse passing through a laser-dressed dense gas is studied theoretically. The weak EUV pulse pumps the helium gas from the ground state to the 2s2p(1P) autoionizing state, which is coupled to the 2s2(1S) autoionizing state by a femtosecond infrared laser with the intensity in the order of 10^{12} W/cm2. The simulation shows how the transient absorption and emission of the EUV are modified by the coupling laser. A simple analytical expression for ...
Time delays in correlated photoemission processes
Pazourek, R.; Nagele, S.; Burgdörfer, J.
2015-09-01
We theoretically study time-resolved two-photon double ionization (TPDI) of helium as probed by attosecond streaking. We review recent advances in the understanding of the photoelectric effect in the time domain and discuss the differences between one- and two-photon ionization, as well as one- and two-electron emission. We perform exact ab-initio simulations for attosecond streaking experiments in the sequential TPDI regime and compare the results to the two-electron Eisenbud-Wigner-Smith delay for the process. Our calculations directly show that the timing of the emission process sensitively depends on the energy sharing between the two outgoing electrons. In particular, we identify Fano-like interferences in the relative time delay of the two emitted electrons when the sequential ionization channel occurs via intermediate excited ionic (shake-up) states. Furthermore, we find that the photoemission time delays are only weakly dependent on the relative emission angle of the ejected electrons.
Time-resolved photoemission by attosecond streaking: extraction of time information
Nagele, Stefan; Feist, Johannes; Doblhoff-Dier, Katharina; Lemell, Christoph; T\\Hokési, Karoly; Burgdörfer, Joachim
2011-01-01
Attosecond streaking of atomic photoemission holds the promise to provide unprecedented information on the release time of the photoelectron. We show that attosecond streaking phase shifts indeed contain timing (or spectral phase) information associated with the Eisenbud-Wigner-Smith time delay matrix of quantum scattering. However, this is only accessible if the influence of the streaking infrared (IR) field on the emission process is properly accounted for. The IR probe field can strongly modify the observed streaking phase shift. We show that the part of the phase shift ("time shift") due to the interaction between the outgoing electron and the combined Coulomb and IR laser fields can be described classically. By contrast, the strong initial-state dependence of the streaking phase shift is only revealed through the solution of the time-dependent Schr\\"odinger equation in its full dimensionality. We find a time delay between the hydrogenic 2s and 2p initial states in He+ exceeding 20as for a wide range of I...
Time-resolved photoemission by attosecond streaking: extraction of time information
International Nuclear Information System (INIS)
Attosecond streaking of atomic photoemission holds the promise to provide unprecedented information on the release time of the photoelectron. We show that attosecond streaking phase shifts indeed contain timing (or spectral phase) information associated with the Eisenbud-Wigner-Smith time delay matrix of quantum scattering. However, this is only accessible if the influence of the streaking infrared (IR) field on the emission process is properly accounted for. The IR probe field can strongly modify the observed streaking phase shift. We show that the part of the phase shift ('time shift') due to the interaction between the outgoing electron and the combined Coulomb and IR laser fields can be described classically. By contrast, the strong initial-state dependence of the streaking phase shift is only revealed through the solution of the time-dependent Schroedinger equation in its full dimensionality. We find a time delay between the hydrogenic 2s and 2p initial states in He+ exceeding 20 as for a wide range of IR intensities and XUV energies. (fast track communication)
Time-resolved photoemission by attosecond streaking: extraction of time information
Energy Technology Data Exchange (ETDEWEB)
Nagele, S; Pazourek, R; Doblhoff-Dier, K; Lemell, C; Burgdoerfer, J [Institute for Theoretical Physics, Vienna University of Technology, 1040 Vienna (Austria); Feist, J [ITAMP, Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Tokesi, K, E-mail: stefan.nagele@tuwien.ac.at, E-mail: renate.pazourek@tuwien.ac.at [Institute of Nuclear Research of the Hungarian Academy of Sciences (ATOMKI), 4001 Debrecen (Hungary)
2011-04-28
Attosecond streaking of atomic photoemission holds the promise to provide unprecedented information on the release time of the photoelectron. We show that attosecond streaking phase shifts indeed contain timing (or spectral phase) information associated with the Eisenbud-Wigner-Smith time delay matrix of quantum scattering. However, this is only accessible if the influence of the streaking infrared (IR) field on the emission process is properly accounted for. The IR probe field can strongly modify the observed streaking phase shift. We show that the part of the phase shift ('time shift') due to the interaction between the outgoing electron and the combined Coulomb and IR laser fields can be described classically. By contrast, the strong initial-state dependence of the streaking phase shift is only revealed through the solution of the time-dependent Schroedinger equation in its full dimensionality. We find a time delay between the hydrogenic 2s and 2p initial states in He{sup +} exceeding 20 as for a wide range of IR intensities and XUV energies. (fast track communication)
Probing scattering phase shifts by attosecond streaking
Pazourek, Renate; Nagele, Stefan; Doblhoff-Dier, Katharina; Feist, Johannes; Lemell, Christoph; Tökési, Karoly; Burgdörfer, Joachim
2011-01-01
Attosecond streaking is one of the most fundamental processes in attosecond science allowing for a mapping of temporal (i.e. phase) information on the energy domain. We show that on the single-particle level attosecond streaking time shifts contain spectral phase information associated with the Eisenbud-Wigner-Smith (EWS) time delay, provided the influence of the streaking infrared field is properly accounted for. While the streaking phase shifts for short-ranged potentials agree with the ass...
Assembly and application of an instrument for attosecond-time-resolved ionization chronoscopy
International Nuclear Information System (INIS)
In the framework of this thesis a new setup for attosecond time-resolved measurements has been built and observations of ionization dynamics in rare gas atoms have been made. This new technique is entitled Ionization Chronoscopy and gives further evidence that time-resolved experiments in the attosecond regime will become a powerful tool for investigations in atomic physics. (orig.)
Time delay in valence shell photoionization of noble gas atoms
Kheifets, A S
2013-01-01
We use the non-relativistic random phase approximation with exchange to perform calculations of valence shell photoionization of Ne, Ar, Kr and Xe from their respective thresholds to photon energy of 200 eV. The energy derivative of the complex phase of the photoionization matrix elements is converted to the photoelectron group delay that can be measured in attosecond streaking or two-photon transitions interference experiments. Comparison with reported time delay measurements in Ne and Ar at a few selected photon energies is made. Systematic mapping of time delay across a wide range of photon energies in several atomic targets allows to highlight important aspects of fundamental atomic physics that can be probed by attosecond time delay measurements.
Li, X.; Haxton, D. J.; Gaarde, M. B.; Schafer, K. J.; McCurdy, C. W.
2016-02-01
A procedure is suggested for using transient absorption spectroscopy above the ionization threshold to measure the polarization of the continuum induced by an intense optical pulse. In this way transient absorption measurement can be used to probe subfemtosecond intense field dynamics in atoms and molecules. The method is based on an approximation to the dependence of these spectra on time delay between an attosecond XUV probe pulse and an intense pump pulse that is tested over a wide range of intensities and time delays by all-electrons-active calculations using the multiconfiguration time-dependent Hartree-Fock method in the case of neon.
An attosecond time-resolved study of strong-field atomic photoionization
International Nuclear Information System (INIS)
The time evolution of atomic photoionization by an intense few-cycle laser pulse is theoretically investigated. A possible modification of the recent attosecond tunnelling experiment in Uiberacker et al (2007 Nature 446 627) is proposed, which consists of measuring the yield of the doubly charged Li ions produced by the combined action of a strong few-cycle infrared pulse and an ultrashort (attosecond) extreme ultraviolet (XUV) pulse. We predict the results of such an experiment, based on the numerical solution of the time-dependent Schroedinger equation, which describes the atomic electron in a strong laser field. The influence of the XUV pulse is treated in the sudden approximation. It is shown that the dependence of the double ionization cross section on the time delay between the two pulses reflects the time evolution of the strong-field ionization. We demonstrate that even more detailed information can be gained from the forward-backward asymmetry of the photoelectron emission. (fast track communication)
Clemensen, R.E.
1959-11-01
An electrically variable time delay line is described which may be readily controlled simuitaneously with variable impedance matching means coupied thereto such that reflections are prevented. Broadly, the delay line includes a signal winding about a magnetic core whose permeability is electrically variable. Inasmuch as the inductance of the line varies directly with the permeability, the time delay and characteristic impedance of the line both vary as the square root of the permeability. Consequently, impedance matching means may be varied similariy and simultaneously w:th the electrically variable permeability to match the line impedance over the entire range of time delay whereby reflections are prevented.
Tunneling time in attosecond experiments, intrinsic-type of time. Keldysh, and Mandelstam–Tamm time
Kullie, Ossama
2016-05-01
Tunneling time in attosecond and strong-field experiments is one of the most controversial issues in current research, because of its importance to the theory of time, the time operator and the time–energy uncertainty relation in quantum mechanics. In Kullie (2015 Phys. Rev. A 92 052118) we derived an estimation of the (real) tunneling time, which shows an excellent agreement with the time measured in attosecond experiments, our derivation is found by utilizing the time–energy uncertainty relation, and it represents a quantum clock. In this work, we show different aspects of the tunneling time in attosecond experiments, we discuss and compare the different views and approaches, which are used to calculate the tunneling time, i.e. Keldysh time (as a real or imaginary quantity), Mandelstam–Tamm time, the classical view of the time measurement and our tunneling time relation(s). We draw some conclusions concerning the validity and the relation between the different types of the tunneling time with the hope that they will help to answer the question put forward by Orlando et al (2014 J. Phys. B 47 204002, 2014 Phys. Rev. A 89 014102): tunneling time, what does it mean? However, as we will see, the important question is a more general one: how to understand the time and the measurement of the time of a quantum system? In respect to our result, the time in quantum mechanics can be, in more general fashion, classified in two types, intrinsic dynamically connected, and external dynamically not connected to the system, and consequently (perhaps only) classical Newtonian time remains as a parametric type of time.
Time delay anisotropy in photoelectron emission from the isotropic ground state of helium
Heuser, Sebastian; Cirelli, Claudio; Sabbar, Mazyar; Boge, Robert; Lucchini, Matteo; Gallmann, Lukas; Ivanov, Igor; Kheifets, Anatoli S; Dahlström, J Marcus; Lindroth, Eva; Argenti, Luca; Martín, Fernando; Keller, Ursula
2015-01-01
Time delays of electrons emitted from an isotropic initial state and leaving behind an isotropic ion are assumed to be angle-independent. Using an interferometric method involving XUV attosecond pulse trains and an IR probe field in combination with a detection scheme, which allows for full 3D momentum resolution, we show that time delays between electrons liberated from the $1s^{2}$ spherically symmetric ground state of He depend on the emission direction of the electrons with respect to the linear polarization axis of the ionizing XUV light. Such time delays can exhibit values as large as 60 attoseconds. With the help of refined theoretical models we can attribute the observed anisotropy to the interplay between different final quantum states, which arise naturally when two photons are involved in the photoionization process. Since most measurement techniques tracing attosecond electron dynamics have involved at least two photons so far, this is a general, significant, and initially unexpected effect that m...
Tunneling time in attosecond experiments, Keldysh, Mandelstam-Tamm and intrinsic-type of time
Kullie, Ossama
2015-01-01
Tunneling time in attosecond and strong field experiments is one of the most controversial issues in today's research, because of its importance to the theory of time, the time operator and the time-energy uncertainty relation in quantum mechanics. In [1] we derived an estimation of the (real) tunneling time, which shows an excellent agreement with the time measured in attosecond experiments, our derivation is found by utilizing the time-energy uncertainty relation, and it represents a quantum clock. In this work, we show different aspects of the tunneling time in attosecond experiments, we discuss and compare the different views and approaches, which are used to calculate the tunneling time, i.e. Keldysh time (as a real or imaginary quantity), Mandelstam-Tamm time and our tunneling time relation(s). We draw some conclusion concerning the validity and the relation between the different types of the tunneling time with the hope, it will help to answer the the question put forward by Orlando et al [2] tunneling...
Attosecond angle-resolved photoelectron spectroscopy
International Nuclear Information System (INIS)
We report experiments on the characterization of a train of attosecond pulses obtained by high-harmonic generation, using mixed-color (XUV+IR) atomic two-photon ionization and electron detection on a velocity map imaging detector. We demonstrate that the relative phase of the harmonics is encoded both in the photoelectron yield and the angular distribution as a function of XUV-IR time delay, thus making the technique suitable for the detection of single attosecond pulses. The timing of the attosecond pulse with respect to the field oscillation of the driving laser critically depends on the target gas used to generate the harmonics
Attosecond Timing in Optical-to-Electrical Conversion
Baynes, Fred N; Fortier, Tara; Zhou, Qiugui; Beling, Andreas; Campbell, Joe C; Diddames, Scott A
2014-01-01
The most frequency-stable sources of electromagnetic radiation are produced optically, and optical frequency combs provide the means for high fidelity frequency transfer across hundreds of terahertz and into the microwave domain. A critical step in this photonic-based synthesis of microwave signals is the optical-to-electrical conversion process. Here we show that attosecond (as) timing stability can be preserved across the opto-electronic interface of a photodiode, despite an intrinsic temporal response that is more than six orders of magnitude slower. The excess timing noise in the photodetection of a periodic train of ultrashort optical pulses behaves as flicker noise (1/f) with amplitude of 4 as/Sqrt(Hz) at 1 Hz offset. The corresponding fractional frequency fluctuations are 1.4x10-17 at 1 second and 5.5x10-20 at 1000 seconds. These results demonstrate that direct photodetection, as part of frequency-comb-based microwave synthesis, can support the timing performance of the best optical frequency standards...
Treu, Tommaso
2016-01-01
Gravitational time delays, observed in strong lens systems where the variable background source is multiply-imaged by a massive galaxy in the foreground, provide direct measurements of cosmological distance that are very complementary to other cosmographic probes. The success of the technique depends on the availability and size of a suitable sample of lensed quasars or supernovae, precise measurements of the time delays, accurate modeling of the gravitational potential of the main deflector, and our ability to characterize the distribution of mass along the line of sight to the source. We review the progress made during the last 15 years, during which the first competitive cosmological inferences with time delays were made, and look ahead to the potential of significantly larger lens samples in the near future.
Ionization of atoms by chirped attosecond pulses
International Nuclear Information System (INIS)
We investigate the ionization dynamics of atoms by chirped attosecond pulses using the strong field approximation method. The pulse parameters are carefully chosen in the regime where the strong field approximation method is valid. We analyse the effects of the chirp of attosecond pulses on the energy distributions and the corresponding left-right asymmetry of the ionized electrons. For a single chirped attosecond pulse, the ionized electrons can be redistributed and the left-right asymmetry shows oscillations because of the introduction of the chirp. For time-delayed double attosecond pulses at different intensities with the weaker one chirped, exchanging the order of the two pulses shows a relative shift of the energy spectra, which can be explained by the different effective time delays of different frequency components because of the chirp. (atomic and molecular physics)
Measurements of relative photoemission time delays in noble gas atoms
International Nuclear Information System (INIS)
We determine relative photoemission time delays between valence electrons in different noble gas atoms (Ar, Ne and He) in an energy range between 31 and 37 eV. The atoms are ionized by an attosecond pulse train synchronized with an infrared laser field and the delays are measured using an interferometric technique. We compare our results with calculations using the random phase approximation with exchange and multi-configurational Hartree–Fock. We also investigate the influence of the different ionization angular channels. (paper)
All-fibre photonic signal generator for attosecond timing and ultralow-noise microwave
Kwangyun Jung; Jungwon Kim
2015-01-01
High-impact frequency comb applications that are critically dependent on precise pulse timing (i.e., repetition rate) have recently emerged and include the synchronization of X-ray free-electron lasers, photonic analogue-to-digital conversion and photonic radar systems. These applications have used attosecond-level timing jitter of free-running mode-locked lasers on a fast time scale within ~100 μs. Maintaining attosecond-level absolute jitter over a significantly longer time scale can dramat...
The two-electron attosecond streak camera for time-resolving intra-atomic collisions
Energy Technology Data Exchange (ETDEWEB)
Emmanouilidou, A [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Staudte, A; Corkum, P B, E-mail: a.emmanouilidou@ucl.ac.u [Joint Laboratory for Attosecond Science, University of Ottawa and National Research Council, 100 Sussex Drive, Ottawa, ON, K1A 0R6 (Canada)
2010-10-15
We generalize the one-electron attosecond streak camera to time-resolve the correlated two-electron escape dynamics during a collision process involving a deep core electron. The collision process is triggered by an extreme ultraviolet (XUV) attosecond pulse (single-photon absorption) and probed by a weak infrared field. The principle of our two-electron streak camera is that by placing the maximum of the vector potential of the probing field at the time of collision, we get the maximum splitting of the inter-electronic angle of escape. We thereby determine the time of collision.
Directory of Open Access Journals (Sweden)
Massimo Tinto
2014-08-01
Full Text Available Equal-arm detectors of gravitational radiation allow phase measurements many orders of magnitude below the intrinsic phase stability of the laser injecting light into their arms. This is because the noise in the laser light is common to both arms, experiencing exactly the same delay, and thus cancels when it is differenced at the photo detector. In this situation, much lower level secondary noises then set the overall performance. If, however, the two arms have different lengths (as will necessarily be the case with space-borne interferometers, the laser noise experiences different delays in the two arms and will hence not directly cancel at the detector. In order to solve this problem, a technique involving heterodyne interferometry with unequal arm lengths and independent phase-difference readouts has been proposed. It relies on properly time-shifting and linearly combining independent Doppler measurements, and for this reason it has been called time-delay interferometry (TDI. This article provides an overview of the theory, mathematical foundations, and experimental aspects associated with the implementation of TDI. Although emphasis on the application of TDI to the Laser Interferometer Space Antenna (LISA mission appears throughout this article, TDI can be incorporated into the design of any future space-based mission aiming to search for gravitational waves via interferometric measurements. We have purposely left out all theoretical aspects that data analysts will need to account for when analyzing the TDI data combinations.
Dhurandhar, Sanjeev V.; Tinto, Massimo
2005-07-01
Equal-arm interferometric detectors of gravitational radiation allow phase measurements many orders of magnitude below the intrinsic phase stability of the laser injecting light into their arms. This is because the noise in the laser light is common to both arms, experiencing exactly the same delay, and thus cancels when it is differenced at the photo detector. In this situation, much lower level secondary noises then set the overall performance. If, however, the two arms have different lengths (as will necessarily be the case with space-borne interferometers), the laser noise experiences different delays in the two arms and will hence not directly cancel at the detector. In order to solve this problem, a technique involving heterodyne interferometry with unequal arm lengths and independent phase-difference readouts has been proposed. It relies on properly time-shifting and linearly combining independent Doppler measurements, and for this reason it has been called Time-Delay Interferometry (TDI). This article provides an overview of the theory and mathematical foundations of TDI as it will be implemented by the forthcoming space-based interferometers such as the Laser Interferometer Space Antenna (LISA) mission. We have purposely left out from this first version of our "Living Review" article on TDI all the results of more practical and experimental nature, as well as all the aspects of TDI that the data analysts will need to account for when analyzing the LISA TDI data combinations. Our forthcoming "second edition" of this review paper will include these topics.
Directory of Open Access Journals (Sweden)
Dhurandhar Sanjeev V.
2005-07-01
Full Text Available Equal-arm interferometric detectors of gravitational radiation allow phase measurements many orders of magnitude below the intrinsic phase stability of the laser injecting light into their arms. This is because the noise in the laser light is common to both arms, experiencing exactly the same delay, and thus cancels when it is differenced at the photo detector. In this situation, much lower level secondary noises then set the overall performance. If, however, the two arms have different lengths (as will necessarily be the case with space-borne interferometers, the laser noise experiences different delays in the two arms and will hence not directly cancel at the detector. In order to solve this problem, a technique involving heterodyne interferometry with unequal arm lengths and independent phase-difference readouts has been proposed. It relies on properly time-shifting and linearly combining independent Doppler measurements, and for this reason it has been called Time-Delay Interferometry (TDI. This article provides an overview of the theory and mathematical foundations of TDI as it will be implemented by the forthcoming space-based interferometers such as the Laser Interferometer Space Antenna (LISA mission. We have purposely left out from this first version of our "Living Review" article on TDI all the results of more practical and experimental nature, as well as all the aspects of TDI that the data analysts will need to account for when analyzing the LISA TDI data combinations. Our forthcoming "second edition" of this review paper will include these topics.
Angular anisotropy of time delay in XUV+IR photoionization of H2+
Serov, Vladislav V.; Kheifets, A. S.
2016-06-01
We develop a technique for modeling of atomic and molecular ionization in superposition of XUV and IR fields with characteristics typical for attosecond streaking and RABBITT (reconstruction of attosecond beating by interference of two-photon transitions) experiments. The method is based on solving the time-dependent Schrödinger equation in the coordinate frame expanding along with the photoelectron wave packet. The efficiency of the method is demonstrated by calculating angular anisotropy of photoemission time delay of the H2+ ion in a field configuration of recent RABBITT experiments.
Energy Technology Data Exchange (ETDEWEB)
Wirth, A. [Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, D-85748 Garching (Germany); Santra, R. [Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg (Germany); Department of Physics, University of Hamburg, Jungiusstrasse 9, 20355 Hamburg (Germany); Goulielmakis, E., E-mail: elgo@mpq.mpg.de [Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, D-85748 Garching (Germany)
2013-03-12
Highlights: ► Detailing the technique of attosecond transient absorption spectroscopy. ► Tracing the charge state time-resolved ionization of atoms. ► Real-time observation and reconstruction of valence electron motion in Kr{sup +} ions. ► Observation of coherences in correlated multi-hole systems: Kr{sup 2+} and xenon ions. - Abstract: The chemical properties of atoms, molecules and of more complex systems such as clusters, nanoparticles or condensed matter systems are determined by valence electrons. Real-time control of these properties requires the capability of tracing as well as of driving valence electrons on their native temporal scale of motion, that is, within tens to thousands of attoseconds. Here we detail the technique of attosecond transient absorption spectroscopy. It combines the extreme sensitivity of core-level spectroscopy with the unprecedented temporal resolution offered by the tools of attosecond technology. We use the technique to demonstrate real-time tracing and complete characterization of coherent electron motion triggered by single, double or multiple ionization of atoms exposed to intense, few-cycle pulses. Our work opens the door to high fidelity, time-domain studies and control of electron dynamics in the microcosm.
Geometric time delay interferometry
International Nuclear Information System (INIS)
The space-based gravitational-wave observatory LISA, a NASA-ESA mission to be launched after 2012, will achieve its optimal sensitivity using time delay interferometry (TDI), a LISA-specific technique needed to cancel the otherwise overwhelming laser noise in the interspacecraft phase measurements. The TDI observables of the Michelson and Sagnac types have been interpreted physically as the virtual measurements of a synthesized interferometer. In this paper, I present Geometric TDI, a new and intuitive approach to extend this interpretation to all TDI observables. Unlike the standard algebraic formalism, Geometric TDI provides a combinatorial algorithm to explore exhaustively the space of second-generation TDI observables (i.e., those that cancel laser noise in LISA-like interferometers with time-dependent arm lengths). Using this algorithm, I survey the space of second-generation TDI observables of length (i.e., number of component phase measurements) up to 24, and I identify alternative, improved forms of the standard second-generation TDI observables. The alternative forms have improved high-frequency gravitational-wave sensitivity in realistic noise conditions (because they have fewer nulls in the gravitational-wave and noise response functions), and are less susceptible to instrumental gaps and glitches (because their component phase measurements span shorter time periods)
Energy Technology Data Exchange (ETDEWEB)
Locher, R.; Lucchini, M., E-mail: mlucchini@phys.ethz.ch; Herrmann, J.; Sabbar, M.; Weger, M.; Ludwig, A.; Gallmann, L.; Keller, U. [Department of Physics, ETH Zurich, CH-8093 Zürich (Switzerland); Castiglioni, L.; Greif, M.; Hengsberger, M. [Institute of Physics, University of Zurich, CH-8057 Zürich (Switzerland)
2014-01-15
We present our attoline which is a versatile attosecond beamline at the Ultrafast Laser Physics Group at ETH Zurich for attosecond spectroscopy in a variety of targets. High-harmonic generation (HHG) in noble gases with an infrared (IR) driving field is employed to generate pulses in the extreme ultraviolet (XUV) spectral regime for XUV-IR cross-correlation measurements. The IR pulse driving the HHG and the pulse involved in the measurements are used in a non-collinear set-up that gives independent access to the different beams. Single attosecond pulses are generated with the polarization gating technique and temporally characterized with attosecond streaking. This attoline contains two target chambers that can be operated simultaneously. A toroidal mirror relay-images the focus from the first chamber into the second one. In the first interaction region a dedicated double-target allows for a simple change between photoelectron/photoion measurements with a time-of-flight spectrometer and transient absorption experiments. Any end station can occupy the second interaction chamber. A surface analysis chamber containing a hemispherical electron analyzer was employed to demonstrate successful operation. Simultaneous RABBITT measurements in two argon jets were recorded for this purpose.
Geometric Time Delay Interferometry
Vallisneri, M
2005-01-01
The space-based gravitational-wave observatory LISA, a NASA--ESA mission to be launched after 2012, will achieve its optimal sensitivity using Time Delay Interferometry (TDI), a LISA-specific technique needed to cancel the otherwise overwhelming laser noise in the inter-spacecraft phase measurements. In this paper I present_Geometric TDI_, a new, intuitive approach to derive the TDI observables and to understand them as the virtual measurements of a synthesized multi-beam interferometer. Unlike the standard algebraic formalism, Geometric TDI provides a combinatorial algorithm to explore exhaustively the space of _second-generation_ TDI observables (i.e., those that cancel laser noise in LISA-like interferometers with time-dependent armlengths). Using this algorithm, I survey the space of second-generation TDI observables of length (i.e., number of component phase measurements) up to 24, and I identify alternative, improved forms of the standard second-generation TDI observables. The alternative forms have imp...
International Nuclear Information System (INIS)
The first part of the thesis is dealing with issues related to the problem of extending time-resolved spectroscopy into attosecond time domain. Despite of first experimental successes, the technique of generating attosecond light pulses is still in its infancy. As a result, important problems and questions remain unanswered. The purpose of this chapter is the temporal and spatial characterization of harmonic attosecond pulses by theoretical means. Here, an ab-initio numerical model is presented, which gives us detailed, quantitative information on the generation and characterization of such pulses. The topic of the second part is the relativistic ionization. Here we introduce the analytic single-electron-response theory of tunnel ionization of hydrogenlike ions in ultrahigh intensity laser fields. Since the problem of relativistic ionization is intrinsically three-dimensional, ionization rates are obtained from a quasi-classical solution of the three-dimensional Klein-Gordon and Dirac equations. This presents the first quantitative determination of tunneling in atomic ions in the relativistic regime. Such a theory opens the possibility to study strong laser field processes with highly charged ions, where relativistic ionization plays a dominant role. An actual example of such a process, where relativistic tunneling plays an essential role, is given in third part of this thesis. Here we make use of two key properties of relativistic ionization: on the one hand, due to the high nonlinearity of the tunneling process, ionized electrons appear in form of free electron pulses with attosecond pulse duration. On the other hand, since the kinetic energy of a laser-accelerated electrons increases with rising intensity, these attosecond electron pulses gain energy in MeV-range in a relativistic laser field. Based on these two facts, we introduce a method to refocus such energetic attosecond electron pulses to the parent nucleus immediately following ionization. Furthermore
International Nuclear Information System (INIS)
High-order harmonics and single attosecond pulse generation by using an infrared laser pulse combined with attosecond pulse trains (APT) interacting with He+ have been investigated. We show that the ionization for different instant time intervals can be controlled by altering the time delay between the APT and the infrared pulse. Consequently, APT can be used as a tool to control the efficiency of high-order harmonics emitted at different times. By choosing appropriate APT and time delay, the driving pulse width for single attosecond pulse generation can be extended up to six optical cycles
He, Xinkui; Jia, T. Q.; Zhang, Jun; Suzuki, M.; Baba, M.; Ozaki, T.; Li, Ruxin; Xu, Zhizhan; Kuroda, Hiroto
2007-08-01
High-order harmonics and single attosecond pulse generation by using an infrared laser pulse combined with attosecond pulse trains (APT) interacting with He+ have been investigated. We show that the ionization for different instant time intervals can be controlled by altering the time delay between the APT and the infrared pulse. Consequently, APT can be used as a tool to control the efficiency of high-order harmonics emitted at different times. By choosing appropriate APT and time delay, the driving pulse width for single attosecond pulse generation can be extended up to six optical cycles.
Probing scattering phase shifts by attosecond streaking
International Nuclear Information System (INIS)
Attosecond streaking is one of the most fundamental processes in attosecond science allowing for a mapping of temporal (i.e. phase) information on the energy domain. We show that on the single-particle level attosecond streaking time shifts contain spectral phase information associated with the Eisenbud-Wigner-Smith (EWS) time delay, provided the infuence of the streaking infrared feld is properly accounted for. While the streaking phase shifts for short-ranged potentials agree with the associated EWS delays, Coulomb potentials require special care. We show that the interaction between the outgoing electron and the combined Coulomb and IR laser felds lead to a streaking phase shift that can be described classically.
Probing scattering phase shifts by attosecond streaking
Pazourek, Renate; Doblhoff-Dier, Katharina; Feist, Johannes; Lemell, Christoph; Tökési, Karoly; Burgdörfer, Joachim
2011-01-01
Attosecond streaking is one of the most fundamental processes in attosecond science allowing for a mapping of temporal (i.e. phase) information on the energy domain. We show that on the single-particle level attosecond streaking time shifts contain spectral phase information associated with the Eisenbud-Wigner-Smith (EWS) time delay, provided the influence of the streaking infrared field is properly accounted for. While the streaking phase shifts for short-ranged potentials agree with the associated EWS delays, Coulomb potentials require special care. We show that the interaction between the outgoing electron and the combined Coulomb and IR laser fields lead to a streaking phase shift that can be described classically.
Attosecond xuv pulses for complete mapping of the time-dependent wave packets of D2+
International Nuclear Information System (INIS)
We have shown that the whole time-dependent vibrational wave packet of D2+ ions can be reconstructed from the kinetic energy release of the D+ ion pairs when it is probed with an attosecond xuv pulse. Such a full interrogation of the wave packet will pave the way for controlling the generation of tailor-designed wave packets for favorable chemical reaction paths, as well as for probing the time evolution of their interaction with the medium
Institute of Scientific and Technical Information of China (English)
洪峰
2002-01-01
In this paper, existing damping theories are briefly reviewed. On the basis of the existing damping theories, a new kind of damping theory, i.e., the time-delay damping theory, is developed. In the time-delay damping theory, the damping force is considered to be directly proportional to the increment of displacement. The response analysis of an SDOF time-delay damping system is carried out, and the methods for obtaining the solution for a time-delay damping system in the time domain as well as the frequency domain are given. The comparison between results from different damping theories shows that the time-delay damping theory is both reasonable and convenient.
Attosecond Quantum-Beat Spectroscopy in Helium
Shivaram, Niranjan; Timmers, Henry; Sandhu, Arvinder
2015-01-01
The evolution of electron wavepackets determines the course of many physical and chemical phenomena and attosecond spectroscopy aims to measure and control such dynamics in real-time. Here, we investigate radial electron wavepacket motion in Helium by using an XUV attosecond pulse train to prepare a coherent superposition of excited states and a delayed femtosecond IR pulse to ionize them. Quantum beat signals observed in the high resolution photoelectron spectrogram allow us to follow the field-free evolution of the bound electron wavepacket and determine the time-dependent ionization dynamics of the low-lying 2p state.
Coulomb time delays in high harmonic generation
Smirnova, Olga
2016-01-01
Measuring the time it takes to remove an electron from an atom or molecule during photoionization using newly developed attosecond spectroscopies has been a focus of many recent experiments. However, the outcome of such measurement depends on measurement protocols and specific observables available in each particular experiment. One of such protocols relies on high harmonic generation. First, we derive rigorous and general expressions for ionization and recombination times in high harmonic generation experiments. We show that these times are different from, but related to ionization times measured in photo-electron spectroscopy, i.e. using attosecond streak camera, RABBITT and atto-clock methods. Second, we use the Analytical R-Matrix theory (ARM) to calculate these times and compare them with experimental values.
Angular anisotropy of time delay in XUV/IR photoionization of H$_2^+$
Serov, Vladislav V
2016-01-01
We develop a novel technique for modeling of atomic and molecular ionization in superposition of XUV and IR fields with characteristics typical for attosecond streaking and RABBITT experiments. The method is based on solving the time-dependent Schr\\"odinger equation in the coordinate frame expanding along with the photoelectron wave packet. The efficiency of the method is demonstrated by calculating angular anisotropy of photoemission time delay of the H$_2^+$ ion in a field configuration of recent RABBITT experiments.
Time Delay in Molecular Photoionization
Hockett, P; Villeneuve, D M; Corkum, P B
2015-01-01
Time-delays in the photoionization of molecules are investigated. As compared to atomic ionization, the time-delays expected from molecular ionization present a much richer phenomenon, with a strong spatial dependence due to the anisotropic nature of the molecular scattering potential. We investigate this from a scattering theory perspective, and make use of molecular photoionization calculations to examine this effect in representative homonuclear and hetronuclear diatomic molecules, nitrogen and carbon monoxide. We present energy and angle-resolved maps of the Wigner delay time for single-photon valence ionization, and discuss the possibilities for experimental measurements.
Complete temporal reconstruction of attosecond high-harmonic pulse trains
Energy Technology Data Exchange (ETDEWEB)
Kim, Kyung Taec; Ko, Dong Hyuk; Park, Juyun; Tosa, Valer; Nam, Chang Hee, E-mail: chnam@kaist.ac.k [Department of Physics and Coherent X-ray Research Center, KAIST, Daejeon 305-701 (Korea, Republic of)
2010-08-15
The method of complete reconstruction of attosecond bursts has been demonstrated for attosecond high-harmonic pulse trains. The retrieved harmonic field provided detailed information about the envelope and the individual attosecond pulses contained in the attosecond pulse train. The time-frequency analysis revealed complicated spectral chirp structures and the contribution of different quantum paths to attosecond pulse formation.
Attosecond intramolecular electron dynamics
Directory of Open Access Journals (Sweden)
Jaroń-Becker A.
2013-03-01
Full Text Available We present results of numerical simulations indicating a complex laser driven electron dynamics inside simple molecular systems on the attosecond time scale. This attosecond electron dynamics influences the instant of ionization of the molecule and the final electron momentum distributions.
Direct XUV Probing of Attosecond Electron Recollision
International Nuclear Information System (INIS)
We demonstrate that the recolliding electron wave packet, fundamental to many strong field phenomena, can be directly imaged with sub-A spatial and attosecond temporal resolution using attosecond extreme ultraviolet (XUV) pulses. When the recolliding electron revisits the parent ion, it can absorb an XUV photon yielding high energy electron and thereby providing a measurement of the electron energy at the moment of recollision. The full temporal evolution of the recollision wave packet can be reconstructed by measuring the photoelectron spectra for different time delays between the driving laser and the attosecond XUV probe. The strength of the photoelectron signal can be used to characterize the spatial distribution of the electron density in the longitudinal direction. Elliptical polarization can be used to characterize the electron probability in transversal direction
Time delay in quantum scattering
International Nuclear Information System (INIS)
As is well known, the knowledge of the scattering cross section and its angular dependence, as a function of energy, is insufficient to determine the phase shifts uniquely. This led Eisenbud and Wigner to propose the measurement of the scattering lifetime or time delay as an additional independent datum. A rigorous time-dependent study of time delay within the framework of Hilbert space formalism is presented. Specifically, Martin's theory of time delay and the validity of the Eisenbud-Wigner time delay formula are extended to spherically symmetric potentials satisfying the asymptotic fall-off rate V(r) → O(r/sup -2-epsilon/). This extension is obtained by use of a maximal estimate of the rate of convergence of the asymptotic condition and the elimination of Martin's requirement that the scattering operator S be three times differentiable with respect to the free-particle Hamiltonian H0. Also presented are related results on the total time a quantum particle spends inside some bounded regions in position space. It is then proved that any two free particles having identical distributions of energy and angular momentum take exactly identical expectation values for the transit time across an arbitrary spherical region centered at the origin in position space. Ways to extend this result to nonfree Hamiltonians are indicated. Finally, the relationship between the position operator and the Eisenbud-Wigner time delay operator is examined. It is shown that the usual method of calculating time delay based on the classical analysis of the position operator is not exact
Practical issues of retrieving isolated attosecond pulses
International Nuclear Information System (INIS)
The attosecond streaking technique is used for the characterization of isolated extreme ultraviolet (XUV) attosecond pulses. This type of measurement suffers from low photoelectron counts in the streaked spectrogram, and is thus susceptible to shot noise. For the retrieval of few- or mono-cycle attosecond pulses, high-intensity streaking laser fields are required, which cause the energy spectrum of above-threshold ionized (ATI) electrons to overlap with that of the streaked photoelectrons. It is found by using the principal component generalized projections algorithm that the XUV attosecond pulse can accurately be retrieved for simulated and experimental spectrograms with a peak value of 50 or more photoelectron counts. Also, the minimum streaking intensity is found to be more than 50 times smaller than that required by the classical streaking camera for retrieval of pulses with a spectral bandwidth supporting 90 as transform-limited pulse durations. Furthermore, spatial variation of the streaking laser intensity, collection angle of streaked electrons and time delay jitter between the XUV pulse and streaking field can degrade the quality of the streaked spectrogram. We find that even when the XUV and streaking laser focal spots are comparable in size, the streaking electrons are collected from a 4π solid angle, or the delay fluctuates by more than the attosecond pulse duration, the attosecond pulses can still be accurately retrieved. In order to explain the insusceptibility of the streaked spectrogram to these factors, the linearity of the streaked spectrogram with respect to the streaking field is derived under the saddle point approximation.
Perveaux, Aurelie; Gatti, Fabien; Halasz, Gabor; Vibok, Agnes; Lasorne, Benjamin
2014-01-01
Numerical simulations are presented to validate the possible use of cutting-edge attosecond time- resolved photoelectron spectroscopy to observe in real time the creation of an electronic wavepacket and subsequent electronic motion in a neutral molecule photoexcited by a UV pump pulse within a few femtoseconds.
International Nuclear Information System (INIS)
The influence of time-dependent polarization on attosecond pulse generation from an overdense plasma surface driven by laser pulse is discussed analytically and numerically. The results show that the frequency of controlling pulse controls the number and interval of the generated attosecond pulse, that the generation moment of the attosecond pulse is dominated by the phase difference between the controlling and driving pulses, and that the amplitude of the controlling pulse affects the intensity of the attosecond pulse. Using the method of time-dependent polarization, a “single” ultra-strong attosecond pulse with duration τ ≈ 8.6 as and intensity I ≈ 3.08 × 1020 W·cm−2 can be generated. (physics of gases, plasmas, and electric discharges)
International Nuclear Information System (INIS)
We present a time-dependent method for calculating the energy-dependent atomic dipole phase that an electron acquires when it is ionized by the absorption of a single ultraviolet photon. Our approach exactly mirrors the method used to experimentally characterize a train of attosecond pulses. In both methods the total electron phase is measured (calculated) via a two-photon interference involving the absorption or emission of an additional infrared photon in the continuum. In our calculation we use a perfect (zero spectral phase) light field and so extract the atomic dipole phase directly from the electron wave packet. We calculate the atomic phase for argon, neon, and helium at low infrared intensities and compare them to previous perturbative calculations. At moderate infrared probe intensities, we find that that the dipole phase can still be reliably determined using two-photon interference, even when higher-order processes are non-negligible. We also show that a continuum structure, in this case a Cooper minimum in argon, significantly affects the probability for infrared absorption and emission over a range of energies around the minimum, even at low infrared intensities. We conclude that well-characterized attosecond pulse trains can be used to examine continuum structures in atoms and molecules
International Nuclear Information System (INIS)
In order to observe the high-field effect, the external laser field must reach its peak intensity before the electron ionization. To this end, it is important to reduce pulse duration to typical attosecond timescale. In this paper, the interaction electron dynamics between attosecond pulses and dielectric is investigated within the time-dependent density functional theory. Taking the CaF2 crystal as an example, we give a comparison of electron dynamics response between single and double pulses. Moreover, the nonlinear energy absorption and electron excitation processes are simulated by adjusting the polarization direction of the sub-pulse. Present results demonstrate that the double pulses show lower electron excitation and energy absorption than the single pulse, which is in accordance with experimental higher ablation threshold and smaller heat-affected zones of the double pulses. In addition, the curves of final excited electron number and energy absorption exhibit the quasi-symmetry about the axis of 180°, which has not been reported yet.
Energy Technology Data Exchange (ETDEWEB)
Jiao, Yalong [School of Physics, Key Laboratory of Cluster Science of Ministry of Education, Beijing Institute of Technology, Beijing 100081 (China); Wang, Feng, E-mail: wangfeng01@tsinghua.org.cn [Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081 (China); Hong, Xuhai; Su, Wenyong [School of Physics, Key Laboratory of Cluster Science of Ministry of Education, Beijing Institute of Technology, Beijing 100081 (China); Zhang, Zhen [School of Software, Beijing Institute of Technology, Beijing 100081 (China)
2014-01-10
In order to observe the high-field effect, the external laser field must reach its peak intensity before the electron ionization. To this end, it is important to reduce pulse duration to typical attosecond timescale. In this paper, the interaction electron dynamics between attosecond pulses and dielectric is investigated within the time-dependent density functional theory. Taking the CaF{sub 2} crystal as an example, we give a comparison of electron dynamics response between single and double pulses. Moreover, the nonlinear energy absorption and electron excitation processes are simulated by adjusting the polarization direction of the sub-pulse. Present results demonstrate that the double pulses show lower electron excitation and energy absorption than the single pulse, which is in accordance with experimental higher ablation threshold and smaller heat-affected zones of the double pulses. In addition, the curves of final excited electron number and energy absorption exhibit the quasi-symmetry about the axis of 180°, which has not been reported yet.
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Delay time. 236.563 Section 236.563 Transportation... Cab Signal Systems Rules and Instructions; Locomotives § 236.563 Delay time. Delay time of automatic... requirements of § 236.24 shall take into consideration the delay time....
Energy Technology Data Exchange (ETDEWEB)
Xiang, D.; Huang, Z.; Stupakov, G.; /SLAC
2009-12-11
Ever since the discovery of mode-locking, efforts have been devoted to reducing the duration of laser pulses since the ultrashort pulses are critical to explore the dynamics occurred on a ever-shorter timescale. In this paper we describe a scheme that's capable of generating intense attosecond x-ray pulses with duration beyond the atomic unit of time ({approx}24 attoseconds). The scheme combines the echo-enabled harmonic generation technique with the bunch compression which allows one to generate harmonic numbers of a few hundred in a microbunched beam through up-conversion of the frequency of a UV seed laser. A few-cycle intense IR laser is used to generate the required energy chirp in the beam for bunch compression and for selection of an attosecond x-ray pulse. Using a representative realistic set of parameters, we show that 1 nm x-ray pulse with peak power of a few hundred MW and duration as short as 20 attoseconds (FWHM) can be generated from a 200 nm UV seed laser. The proposed scheme may enable the study of electronic dynamics with a resolution beyond the atomic unit of time and may open a new regime of ultrafast sciences.
On the angular dependence of the photoemission time delay in helium
Ivanov, I A; Lindroth, E; Kheifets, A S
2016-01-01
We investigate an angular dependence of the photoemission time delay in helium as measured by the RABBITT (Reconstruction of Attosecond Beating By Interference of Two-photon Transitions) technique. The measured time delay $ \\tau_a=\\tau_W+\\tau_{cc} $ contains two distinct components: the Wigner time delay $\\tau_W$ and the continuum-continuum CC) correction $\\tau_{cc}$. In the case of helium with only one $1s\\to Ep$ photoemission channel, the Wigner time delay $\\tau_W$ does not depend on the photoelectron detection angle relative to the polarization vector. However, the CC correction $\\tau_{cc}$ shows a noticeable angular dependence. We illustrate these findings by performing two sets of calculations. In the first set, we solve the time-dependent Schr\\"odinger equation for the helium atom ionized by an attosecond pulse train and probed by an IR pulse. In the second approach, we employ the lowest order perturbation theory which describes absorption of the XUV and IR photons. Both calculations produce close resul...
Attosecond photoelectron spectroscopy of electron transport in solids
International Nuclear Information System (INIS)
Time-resolved photoelectron spectroscopy of condensed matter systems in the attosecond regime promises new insights into excitation mechanisms and transient dynamics of electrons in solids. This timescale became accessible directly only recently with the development of the attosecond streak camera and of laser systems providing few-cycle, phase-controlled laser pulses in the near-infrared, which are used to generate isolated, sub-femtosecond extreme-ultraviolet pulses with a well-defined timing with respect to the near-infrared pulse. Employing these pulses, the attosecond streak camera offers time resolutions as short as a few 10 attoseconds. In the framework of this thesis, a new, versatile experimental apparatus combining attosecond pulse generation in gases with state of the art surface science techniques is designed, constructed, and commissioned. Employing this novel infrastructure and the technique of the attosecond transient recorder, we investigate transport phenomena occurring after photoexcitation of electrons in tungsten and rhenium single crystals and show that attosecond streaking is a unique method for resolving extremely fast electronic phenomena in solids. It is demonstrated that electrons originating from different energy levels, i.e. from the conduction band and the 4f core level, are emitted from the crystal surface at different times. The origin of this time delay, which is below 150 attoseconds for all studied systems, is investigated by a systematic variation of several experimental parameters, in particular the photon energy of the employed attosecond pulses. These experimental studies are complemented by theoretical studies of the group velocity of highly-excited electrons based on ab initio calculations. While the streaking technique applied on single crystals can provide only information about the relative time delay between two types of photoelectrons, the absolute transport time remains inaccessible. We introduce a scheme of a reference
Attosecond photoelectron spectroscopy of electron transport in solids
Energy Technology Data Exchange (ETDEWEB)
Magerl, Elisabeth
2011-03-31
Time-resolved photoelectron spectroscopy of condensed matter systems in the attosecond regime promises new insights into excitation mechanisms and transient dynamics of electrons in solids. This timescale became accessible directly only recently with the development of the attosecond streak camera and of laser systems providing few-cycle, phase-controlled laser pulses in the near-infrared, which are used to generate isolated, sub-femtosecond extreme-ultraviolet pulses with a well-defined timing with respect to the near-infrared pulse. Employing these pulses, the attosecond streak camera offers time resolutions as short as a few 10 attoseconds. In the framework of this thesis, a new, versatile experimental apparatus combining attosecond pulse generation in gases with state of the art surface science techniques is designed, constructed, and commissioned. Employing this novel infrastructure and the technique of the attosecond transient recorder, we investigate transport phenomena occurring after photoexcitation of electrons in tungsten and rhenium single crystals and show that attosecond streaking is a unique method for resolving extremely fast electronic phenomena in solids. It is demonstrated that electrons originating from different energy levels, i.e. from the conduction band and the 4f core level, are emitted from the crystal surface at different times. The origin of this time delay, which is below 150 attoseconds for all studied systems, is investigated by a systematic variation of several experimental parameters, in particular the photon energy of the employed attosecond pulses. These experimental studies are complemented by theoretical studies of the group velocity of highly-excited electrons based on ab initio calculations. While the streaking technique applied on single crystals can provide only information about the relative time delay between two types of photoelectrons, the absolute transport time remains inaccessible. We introduce a scheme of a reference
Applications of Elliptically Polarized, Few-Cycle Attosecond Pulses
Starace, Anthony F.
2016-05-01
Use of elliptically-polarized light opens the possibility of investigating effects that are not accessible with linearly-polarized pulses. This talk presents two new physical effects that are predicted for ionization of the helium atom by few-cycle, elliptically polarized attosecond pulses. For double ionization of He by an intense elliptically polarized attosecond pulse, we predict a nonlinear dichroic effect (i.e., the difference of the two-electron angular distributions in the polarization plane for opposite helicities of the ionizing pulse) that is sensitive to the carrier-envelope phase, ellipticity, peak intensity I, and temporal duration of the pulse. For single ionization of He by two oppositely circularly polarized, time-delayed attosecond pulses we predict that the photoelectron momentum distributions in the polarization plane have helical vortex structures that are exquisitely sensitive to the time-delay between the pulses, their relative phase, and their handedness. Both of these effects manifest the ability to control the angular distributions of the ionized electrons by means of the attosecond pulse parameters. Our predictions are obtained numerically by solving the six-dimensional two-electron time-dependent Schrödinger equation for the case of elliptically polarized attosecond pulses. They are interpreted analytically by means of perturbation theory analyses of the two ionization processes. This work is supported in part by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), Award No. DE-FG03-96ER14646.
Ramsey method for Auger-electron interference induced by an attosecond twin pulse
Buth, Christian; Schafer, Kenneth J.
2010-01-01
We examine the archetype of an interference experiment for Auger electrons: two electron wave packets are launched by inner-shell ionizing a krypton atom using two attosecond light pulses with a variable time delay. This setting is an attosecond realization of the Ramsey method of separated oscillatory fields. Interference of the two ejected Auger-electron wave packets is predicted, indicating that the coherence between the two pulses is passed to the Auger electrons. For the detection of the...
Few-cycle isolated attosecond pulses
International Nuclear Information System (INIS)
Complete test of publication follows. In the last few years the field of attosecond science has shown impressive and rapid progress, mainly due to the introduction of novel experimental methods for the characterization of extreme ultraviolet (XUV) pulses and attosecond electron wave packets. This development has been also triggered by significant improvements in the control of the electric field of the driving infrared pulses. Particularly interesting for the applications is the generation of isolated attosecond XUV pulses using few-cycle driving pulses. In this case significant progresses have been achieved thanks to the stabilization of the carrier-envelope phase (CEP) of amplified light pulses. In this work we demonstrate that the polarization gating (PG) method with few-cycle phase-stabilized driving pulses allows one to generate few-cycle isolated attosecond pulses tunable on a very broad spectral region. The PG method is based on temporal modulation of the ellipticity of a light pulse, which confines the XUV emission in the temporal gate where the polarization is close to linear. The time-dependent polarization of phase-stabilized sub-6-fs pulses, generated by the hollow fiber technique, has been obtained using two birefringent plates. It is possible to create a linear polarization gate, whose position is imposed by the intensity profile of the pulse whilst the emission time is linked to the CEP of the electric field. The pulses have been analyzed by using a flat-field spectrometer. Continuous XUV spectra, corresponding to the production of isolated attosecond pulses, have been generated for particular CEP values. Upon changing the rotation of the first plate it was possible to tune the XUV emission in a broad spectra range. We have then achieved a complete temporal characterization of the generated isolated attosecond pulses using frequency-resolved optical gating for complete reconstruction of attosecond bursts (FROG CRAB). The measured parabolic phase
Attosecond pulse shaping around a Cooper minimum
Schoun, S B; Wheeler, J; Roedig, C; Agostini, P; DiMauro, L F; Schafer, K J; Gaarde, M B
2013-01-01
High harmonic generation (HHG) is used to measure the spectral phase of the recombination dipole matrix element (RDM) in argon over a broad frequency range that includes the 3p Cooper minimum (CM). The measured RDM phase agrees well with predictions based on the scattering phases and amplitudes of the interfering s- and d-channel contributions to the complementary photoionization process. The reconstructed attosecond bursts that underlie the HHG process show that the derivative of the RDM spectral phase, the group delay, does not have a straight-forward interpretation as an emission time, in contrast to the usual attochirp group delay. Instead, the rapid RDM phase variation caused by the CM reshapes the attosecond bursts.
On Stability of Linear Time-Delay Systems with Multiple Time-Varying Delays
Park, Gwang-Seok; Choi, Ho-Lim
In this letter, delay-dependent stability criterion for linear time-delay systems with multiple time varying delays is proposed by employing the Lyapunov-Krasovskii functional approach and integral inequality. By the N-segmentation of delay length, we obtain less conservative results on the delay bounds which guarantee the asymptotic stability of the linear time-delay systems with multiple time varying delays. Simulation results show that the proposed stability criteria are less conservative than several other existing criteria.
Characteristics of a Delayed System with Time-dependent Delay Time
Kye, Won-Ho; Choi, Muhan; Rim, Sunghwan; Kurdoglyan, M. S.; Kim, Chil-Min; Park, Young-Jai
2004-01-01
The characteristics of a time-delayed system with time-dependent delay time is investigated. We demonstrate the nonlinearity characteristics of the time-delayed system are significantly changed depending on the properties of time-dependent delay time and especially that the reconstructed phase trajectory of the system is not collapsed into simple manifold, differently from the delayed system with fixed delay time. We discuss the possibility of a phase space reconstruction and its applications.
Synchronizing time delay systems using variable delay in coupling
International Nuclear Information System (INIS)
Highlights: → Delay and anticipation in coupling function varies with system dynamics. → Delay or anticipation of the synchronized state is independent of system delay. → Stability analysis developed is quite general. → We demonstrate enhanced security in communication. → Generalized synchronization possible over a wide range of parameter mismatch. - Abstract: We present a mechanism for synchronizing time delay systems using one way coupling with a variable delay in coupling that is reset at finite intervals. We present the analysis of the error dynamics that helps to isolate regions of stability of the synchronized state in the parameter space of interest for single and multiple delays. We supplement this by numerical simulations in a standard time delay system like Mackey Glass system. This method has the advantage that it can be adjusted to be delay or anticipatory in synchronization with a time which is independent of the system delay. We demonstrate the use of this method in communication using the bi channel scheme. We show that since the synchronizing channel carries information from transmitter only at intervals of reset time, it is not susceptible to an easy reconstruction.
Energy Technology Data Exchange (ETDEWEB)
Weber, S. J., E-mail: sebastien.weber@cea.fr; Manschwetus, B.; Billon, M.; Bougeard, M.; Breger, P.; Géléoc, M.; Gruson, V.; Lin, N.; Ruchon, T.; Salières, P.; Carré, B. [Commissariat l’Energie Atomique, Laser, Interactions and Dynamics Laboratory (LIDyL), DSM/IRAMIS, CEA-Saclay, 91191 Gif sur Yvette (France); Böttcher, M.; Huetz, A.; Picard, Y. J. [ISMO, UMR 8214, Université Paris-Sud, Batiment 350, Orsay (France)
2015-03-15
We describe the versatile features of the attosecond beamline recently installed at CEA-Saclay on the PLFA kHz laser. It combines a fine and very complete set of diagnostics enabling high harmonic spectroscopy (HHS) through the advanced characterization of the amplitude, phase, and polarization of the harmonic emission. It also allows a variety of photo-ionization experiments using magnetic bottle and COLTRIMS (COLd Target Recoil Ion Momentum Microscopy) electron spectrometers that may be used simultaneously, thanks to a two-foci configuration. Using both passive and active stabilization, special care was paid to the long term stability of the system to allow, using both experimental approaches, time resolved studies with attosecond precision, typically over several hours of acquisition times. As an illustration, applications to multi-orbital HHS and electron-ion coincidence time resolved spectroscopy are presented.
Time-delayed feedback in neurosystems
Schoell, E.; Hiller, G; Hoevel, P.; Dahlem, M. A.
2008-01-01
The influence of time delay in systems of two coupled excitable neurons is studied in the framework of the FitzHugh-Nagumo model. Time-delay can occur in the coupling between neurons or in a self-feedback loop. The stochastic synchronization of instantaneously coupled neurons under the influence of white noise can be deliberately controlled by local time-delayed feedback. By appropriate choice of the delay time synchronization can be either enhanced or suppressed. In delay-coupled neurons, an...
Theory of attosecond absorption spectroscopy in krypton
DEFF Research Database (Denmark)
Baggesen, Jan Conrad; Lindroth, Eva; Madsen, Lars Bojer
2012-01-01
A theory for time-domain attosecond pump–attosecond probe photoabsorption spectroscopy is formulated and related to the atomic response. The theory is illustrated through a study of attosecond absorption spectroscopy in krypton. The atomic parameters entering the formulation such as energies and...... Auger widths, as well as wave functions and dipole coupling matrix elements, are determined by accurate many-body structure calculations. We create a hole in a valence shell by an attosecond pump, couple an inner-shell electron to the hole by an attosecond probe, and then monitor the formation of the...
Coherent Electron Scattering Captured by an Attosecond Quantum Stroboscope
International Nuclear Information System (INIS)
We demonstrate a quantum stroboscope based on a sequence of identical attosecond pulses that are used to release electrons into a strong infrared (IR) laser field exactly once per laser cycle. The resulting electron momentum distributions are recorded as a function of time delay between the IR laser and the attosecond pulse train using a velocity map imaging spectrometer. Because our train of attosecond pulses creates a train of identical electron wave packets, a single ionization event can be studied stroboscopically. This technique has enabled us to image the coherent electron scattering that takes place when the IR field is sufficiently strong to reverse the initial direction of the electron motion causing it to rescatter from its parent ion
Lensing Time Delays and Cosmological Complementarity
Linder, Eric V.
2011-01-01
Time delays in strong gravitational lensing systems possess significant complementarity with distance measurements to determine the dark energy equation of state, as well as the matter density and Hubble constant. Time delays are most useful when observations permit detailed lens modeling and variability studies, requiring high resolution imaging, long time monitoring, and rapid cadence. We quantify the constraints possible between a sample of 150 such time delay lenses and a near term supern...
State-of-the-art attosecond metrology
International Nuclear Information System (INIS)
Research highlights: → We present a complete setup for investigations with attosecond temporal resoultion. → Few-cycle visible laser pulses are used to generate xray pulses approaching the atomic unit of time. → Attosecond XUV pulses explore ultrafast electronic dynamics in atoms. - Abstract: Tracking and controlling electron dynamics in the interior of atoms, molecules as well as in solids is at the forefront of modern ultrafast science . Time-resolved studies of these dynamics require attosecond temporal resolution that is provided by an ensemble of techniques consolidated under the term 'attosecond metrology'. This work reports the development and commissioning of what we refer to as next-generation attosecond beamline technology: the AS-1 attosecond beamline at the Max-Planck Institute of Quantum Optics. It consists of a phase-stabilized few-cycle laser system, for the generation of XUV radiation, and modules tailored for the spectral filtering and isolation of attosecond pulses as well as for their temporal characterization. The setup produces the shortest attosecond pulses demonstrated to date and combines them with advanced spectroscopic instrumentation (electron-, ion- and XUV-spectrometers). These pulses serve as temporally confined trigger events (attosecond streaking and tunneling spectroscopy) or probe pulses (attosecond absorption and photoelectron spectroscopy) enabling attosecond chronoscopy to be applied to a broad range of systems belonging to the microcosm.
State-of-the-art attosecond metrology
Energy Technology Data Exchange (ETDEWEB)
Schultze, M., E-mail: martin.schultze@mpq.mpg.de [Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermann-Str. 1, D-85748 Garching (Germany); Department fuer Physik, Ludwig-Maximilians-Universitaet, Am Coulombwall 1, D-85748 Garching (Germany); Wirth, A.; Grguras, I.; Uiberacker, M.; Uphues, T.; Verhoef, A.J.; Gagnon, J. [Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermann-Str. 1, D-85748 Garching (Germany); Hofstetter, M.; Kleineberg, U. [Department fuer Physik, Ludwig-Maximilians-Universitaet, Am Coulombwall 1, D-85748 Garching (Germany); Goulielmakis, E. [Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermann-Str. 1, D-85748 Garching (Germany); Krausz, F. [Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermann-Str. 1, D-85748 Garching (Germany); Department fuer Physik, Ludwig-Maximilians-Universitaet, Am Coulombwall 1, D-85748 Garching (Germany)
2011-04-15
Research highlights: {yields} We present a complete setup for investigations with attosecond temporal resoultion. {yields} Few-cycle visible laser pulses are used to generate xray pulses approaching the atomic unit of time. {yields} Attosecond XUV pulses explore ultrafast electronic dynamics in atoms. - Abstract: Tracking and controlling electron dynamics in the interior of atoms, molecules as well as in solids is at the forefront of modern ultrafast science . Time-resolved studies of these dynamics require attosecond temporal resolution that is provided by an ensemble of techniques consolidated under the term 'attosecond metrology'. This work reports the development and commissioning of what we refer to as next-generation attosecond beamline technology: the AS-1 attosecond beamline at the Max-Planck Institute of Quantum Optics. It consists of a phase-stabilized few-cycle laser system, for the generation of XUV radiation, and modules tailored for the spectral filtering and isolation of attosecond pulses as well as for their temporal characterization. The setup produces the shortest attosecond pulses demonstrated to date and combines them with advanced spectroscopic instrumentation (electron-, ion- and XUV-spectrometers). These pulses serve as temporally confined trigger events (attosecond streaking and tunneling spectroscopy) or probe pulses (attosecond absorption and photoelectron spectroscopy) enabling attosecond chronoscopy to be applied to a broad range of systems belonging to the microcosm.
Dynamics of Nonlinear Time-Delay Systems
Lakshmanan, Muthusamy
2010-01-01
Synchronization of chaotic systems, a patently nonlinear phenomenon, has emerged as a highly active interdisciplinary research topic at the interface of physics, biology, applied mathematics and engineering sciences. In this connection, time-delay systems described by delay differential equations have developed as particularly suitable tools for modeling specific dynamical systems. Indeed, time-delay is ubiquitous in many physical systems, for example due to finite switching speeds of amplifiers in electronic circuits, finite lengths of vehicles in traffic flows, finite signal propagation times in biological networks and circuits, and quite generally whenever memory effects are relevant. This monograph presents the basics of chaotic time-delay systems and their synchronization with an emphasis on the effects of time-delay feedback which give rise to new collective dynamics. Special attention is devoted to scalar chaotic/hyperchaotic time-delay systems, and some higher order models, occurring in different bran...
Efficient generation of an isolated single-cycle attosecond pulse
Lan, Pengfei; Cao, Wei; Wang, Xinlin
2007-01-01
A new method for efficiently generating an isolated single-cycle attosecond pulse is proposed. It is shown that the ultraviolet (UV) attosecond pulse can be utilized as a robust tool to control the dynamics of electron wave packets (EWPs). By adding a UV attosecond pulse to an infrared (IR) few-cycle pulse at a proper time, only one return of the EWP to the parent ion is selected to effectively contribute to the harmonics, then an isolated two-cycle 130-as pulse with a bandwidth of 45 eV is obtained. After complementing the chirp, an isolated single-cycle attosecond pulse with a duration less than 100 as seems achievable. In addition, the contribution of the quantum trajectories can be selected by adjusting the delay between the IR and UV fields. Using this method, the harmonic and attosecond pulse yields are efficiently enhanced in contrast to the scheme [G. Sansone {\\it et al.}, Science {\\bf314}, 443 (2006)] using a few-cycle IR pulse in combination with the polarization gating technique.
Efficient generation of an isolated single-cycle attosecond pulse
International Nuclear Information System (INIS)
A method for efficiently generating an isolated single-cycle attosecond pulse is proposed. It is shown that the ultraviolet (UV) attosecond (as) pulse can be utilized as a robust tool to control the dynamics of electron wave packets (EWPs). By adding a UV attosecond pulse to an infrared (IR) few-cycle pulse at a proper time, only one return of the EWP to the parent ion is selected to effectively contribute to the harmonics; then, an isolated two-cycle 130-as pulse with a bandwidth of 45 eV is obtained. After complementing the chirp, an isolated single-cycle attosecond pulse with a duration less than 100 as seems achievable. In addition, the contribution of the quantum trajectories can be selected by adjusting the delay between the IR and UV fields. Using this method, the harmonic and attosecond pulse yields are efficiently enhanced in contrast to the scheme [G. Sansone et al., Science 314, 443 (2006)] using a few-cycle IR pulse in combination with the polarization gating technique
Time delay plots of unflavoured baryons
Kelkar, N. G.; Nowakowski, M.; Khemchandani, K. P.; Jain, S. R.
2004-01-01
We explore the usefulness of the existing relations between the S-matrix and time delay in characterizing baryon resonances in pion-nucleon scattering. We draw attention to the fact that the existence of a positive maximum in time delay is a necessary criterion for the existence of a resonance and should be used as a constraint in conventional analyses which locate resonances from poles of the S-matrix and Argand diagrams. The usefulness of the time delay plots of resonances is demonstrated through a detailed analysis of the time delay in several partial waves of πN elastic scattering.
McCurdy, C. William; Haxton, Daniel; Li, Xuan
2015-05-01
A procedure is proposed for using transient absorption spectroscopy above the ionization threshold to measure the polarization of the continuum induced by an intense optical pulse. In this way transient absorption measurement can be used to probe sub-femtosecond intense field dynamics in atoms and molecules and extract the high frequency polarization that plays a central role in high harmonic generation. The method is based on a robust approximation to the dependence of these spectra on time-delay between an attosecond XUV probe pulse and an intense pump pulse that is verified over a wide range of intensities and time delays by all-electrons-active calculations using the Multiconfiguration Time-Dependent Hartree Fock method. To demonstrate the extraction of the field-induced polarization, we study the transient absorption spectrum of atomic Neon. Work at LBNL supported by USDOE, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division, and work at UC Davis supported by USDOE grant No. DESC0007182.
Time Delay Estimation Algoritms for Echo Cancellation
Directory of Open Access Journals (Sweden)
Boris Simak
2011-01-01
Full Text Available The following case study describes how to eliminate echo in a VoIP network using delay estimation algorithms. It is known that echo with long transmission delays becomes more noticeable to users. Thus, time delay estimation, as a part of echo cancellation, is an important topic during transmission of voice signals over packetswitching telecommunication systems. An echo delay problem associated with IP-based transport networks is discussed in the following text. The paper introduces the comparative study of time delay estimation algorithm, used for estimation of the true time delay between two speech signals. Experimental results of MATLab simulations that describe the performance of several methods based on cross-correlation, normalized crosscorrelation and generalized cross-correlation are also presented in the paper.
Delay Independent Criterion for Multiple Time-delay Systems
Chang, C. J.; Liu, K. F. R.; Yeh, K.; Chen, C. W.; Chung, P. Y.
Based on the fuzzy Lyapunov method, this work addresses the stability conditions for nonlinear systems with multiple time delays to ensure the stability of building structure control systems. The delay independent conditions are derived via the traditional Lyapunov and fuzzy Lyapunov methods for multiple time-delay systems as approximated by the Tagagi-Sugeno (T-S) fuzzy model. The fuzzy Lyapunov function is defined as a fuzzy blending of quadratic Lyapunov functions. A parallel distributed compensation (PDC) scheme is utilized to construct a global fuzzy logic control (FLC) by blending all linear local state feedback controllers in the controller design procedure. Furthermore, the H infinity performance and robustness of the design for modeling errors also need to be considered in the stability conditions.
Switching control and time-delay identification
Chen, Qi; Li, Xiang; Qin, Zhi-Chang; Zhong, Shun; Sun, J. Q.
2014-12-01
The unknown time delay makes the control design a difficult task. When the lower and upper bounds of an unknown time delay of dynamical systems are specified, one can design a supervisory control that switches among a set of controls designed for the sampled time delays in the given range so that the closed-loop system is stable and the control performance is maintained at a desirable level. In this paper, we propose to design a supervisory control to stabilize the system first. After the supervisory control converges, we start an algorithm to identify the unknown time delay, either on-line or off-line, with the known control being implemented. Examples are shown to demonstrate the stabilization and identification for linear time invariant and periodic systems with a single control time delay.
Probing scattering phase shifts by attosecond streaking
International Nuclear Information System (INIS)
Complete text of publication follows. The emerging field of attoscience enables the investigation of electron dynamics as well as timing information of photoionization processes. Attosecond streaking has developed into a powerful tool to achieve temporal resolution on the sub-100 attosecond time scale. It is based on a pump-probe setting with an extreme ultraviolet (XUV) pulse of a few hundred attoseconds duration serving as pump and a phase-controlled few-cycle infrared (IR) pulse as probe. Temporal information about the photoionization process can thus be mapped onto the energy axis in analogy to conventional streaking. We studied attosecond streaking of the release time of electrons in atomic photoemission by solving the time-dependent Schroedinger equation (TDSE) for effective one-electron systems. We presented calculations also employing a restricted ionization model (RIM) in the TDSE. We verified that the trajectory effects on the time shift resulting from the interaction between the outgoing electron and the combined Coulomb and IR laser fields can be described classically. We have shown that Eisenbud-Wigner-Smith (EWS) time shifts (or energy variation of the scattering phase) for short-ranged potentials become accessible by attosecond streaking provided both initial-state dependent entrance channel and final-state exit channel distortions are properly accounted for. For Coulomb potentials the coupling between the IR streaking field and the Coulomb field which depends on the final energy of the free electron dominates the extracted streaking time shift but can be accounted for classically. In addition we have identified considerable state dependent time shifts for easily polarizable initial states which are of quantum mechanical origin. Accounting for polarization of the initial state, the remaining difference of time delays between ionization from states with different angular momentum can be related to the EWS delay of the centrifugal potential
Sennaroğlu, Alphan; Li, Duo; Demirbaş, Ümit; Benedick, Andrew; Fujimoto, James G.; Kaertner, Franz X.
2012-01-01
The timing jitter of optical pulse trains from diode-pumped, semiconductor saturable absorber mode-locked femtosecond Cr:LiSAF lasers is characterized by a single-crystal balanced optical cross-correlator with an equivalent sensitivity in phase noise of -235 dBc/Hz. The RMS timing jitter is 30 attoseconds integrated from 10 kHz to 50 MHz, the Nyquist frequency of the 100 MHz repetition rate oscillator. The AM-to-PM conversion induced excess phase noise is calculated and compared with experime...
Photonic Quantum Circuits with Time Delays
Pichler, Hannes
2015-01-01
We study the dynamics of photonic quantum circuits consisting of nodes coupled by quantum channels. We are interested in the regime where time delay in communication between the nodes is significant. This includes the problem of quantum feedback, where a quantum signal is fed back on a system with a time delay. We develop a matrix product state approach to solve the Quantum Stochastic Schr\\"odinger Equation with time delays, which accounts in an efficient way for the entanglement of nodes with the stream of emitted photons in the waveguide, and thus the non-Markovian character of the dynamics. We illustrate this approach with two paradigmatic quantum optical examples: two coherently driven distant atoms coupled to a photonic waveguide with a time delay, and a driven atom coupled to its own output field with a time delay as an instance of a quantum feedback problem.
Finite time stabilization of delayed neural networks.
Wang, Leimin; Shen, Yi; Ding, Zhixia
2015-10-01
In this paper, the problem of finite time stabilization for a class of delayed neural networks (DNNs) is investigated. The general conditions on the feedback control law are provided to ensure the finite time stabilization of DNNs. Then some specific conditions are derived by designing two different controllers which include the delay-dependent and delay-independent ones. In addition, the upper bound of the settling time for stabilization is estimated. Under fixed control strength, discussions of the extremum of settling time functional are made and a switched controller is designed to optimize the settling time. Finally, numerical simulations are carried out to demonstrate the effectiveness of the obtained results. PMID:26264170
Dimensional reduction of nonlinear time delay systems
Directory of Open Access Journals (Sweden)
M. S. Fofana
2005-01-01
infinite-dimensional problem without the assumption of small time delay. This dimensional reduction is illustrated in this paper with the delay versions of the Duffing and van der Pol equations. For both nonlinear delay equations, transcendental characteristic equations of linearized stability are examined through Hopf bifurcation. The infinite-dimensional nonlinear solutions of the delay equations are decomposed into stable and centre subspaces, whose respective dimensions are determined by the linearized stability of the transcendental equations. Linear semigroups, infinitesimal generators, and their adjoint forms with bilinear pairings are the additional candidates for the infinite-dimensional reduction.
Quantum interference in attosecond transient absorption of laser-dressed helium atoms
Chen, Shaohao; Gaarde, Mette B; Schafer, Kenneth J
2013-01-01
We calculate the transient absorption of an isolated attosecond pulse by helium atoms subject to a delayed infrared (\\ir) laser pulse. With the central frequency of the broad attosecond spectrum near the ionization threshold, the absorption spectrum is strongly modulated at the sub-\\ir-cycle level. Given that the absorption spectrum results from a time-integrated measurement, we investigate the extent to which the delay-dependence of the absorption yields information about the attosecond dynamics of the atom-field energy exchange. We find two configurations in which this is possible. The first involves multi photon transitions between bound states that result in interference between different excitation pathways. The other involves the modification of the bound state absorption lines by the IR field, which we find can result in a sub-cycle time dependence only when ionization limits the duration of the strong field interaction.
Lensing Time Delays and Cosmological Complementarity
Linder, Eric V
2011-01-01
Time delays in strong gravitational lensing systems possess significant complementarity with distance measurements to determine the dark energy equation of state, as well as the matter density and Hubble constant. Time delays are most useful when observations permit detailed lens modeling and variability studies, requiring high resolution imaging, long time monitoring, and rapid cadence. We quantify the constraints possible between a sample of 150 such time delay lenses and a near term supernova program, such as might become available from an Antarctic telescope such as KDUST and the Dark Energy Survey. Adding time delay data to supernovae plus cosmic microwave background information can improve the dark energy figure of merit by almost a factor 5 and determine the matter density \\Omega_m to 0.004, Hubble constant h to 0.7%, and dark energy equation of state time variation w_a to 0.26, systematics permitting.
Lensing time delays and cosmological complementarity
International Nuclear Information System (INIS)
Time delays in strong gravitational lensing systems possess significant complementarity with distance measurements to determine the dark energy equation of state, as well as the matter density and Hubble constant. Time delays are most useful when observations permit detailed lens modeling and variability studies, requiring high resolution imaging, long time monitoring, and rapid cadence. We quantify the constraints possible between a sample of 150 such time delay lenses and a near term supernova program, such as might become available from an Antarctic telescope such as the KDUST and the Dark Energy Survey. Adding time delay data to supernovae plus cosmic microwave background information can improve the dark energy figure of merit by almost a factor 5 and determine the matter density Ωm to 0.004, the Hubble constant h to 0.7%, and the dark energy equation of state time variation wa to 0.26, systematics permitting.
Chaos synchronization in time-delayed systems with parameter mismatches and variable delay times
International Nuclear Information System (INIS)
We investigate synchronization between two undirectionally linearly coupled chaotic nonidentical time-delayed systems and show that parameter mismatches are of crucial importance to achieve synchronization. We establish that independent of the relation between the delay time in the coupled systems and the coupling delay time, only retarded synchronization with the coupling delay time is obtained. We show that with parameter mismatch or without it neither complete nor anticipating synchronization occurs. We derive existence and stability conditions for the retarded synchronization manifold. We demonstrate our approach using examples of the Ikeda and Mackey Glass models. Also for the first time we investigate chaos synchronization in time-delayed systems with variable delay time and find both existence and sufficient stability conditions for the retarded synchronization manifold with the coupling-delay lag time. (author)
Synchronisation of time-delay systems
Bünner, M J; Bünner, Martin J.; Just, Wolfram
1998-01-01
We present the linear-stability analysis of synchronised states in coupled time-delay systems. There exists a synchronisation threshold, for which we derive upper bounds, which does not depend on the delay time. We prove that at least for scalar time-delay systems synchronisation is achieved by transmitting a single scalar signal, even if the synchronised solution is given by a high-dimensional chaotic state with a large number of positive Lyapunov-exponents. The analytical results are compared with numerical simulations of two coupled Mackey-Glass equations.
Delay-dependent stability criteria for time-delay chaotic systems via time-delay feedback control
International Nuclear Information System (INIS)
This paper studies delay-dependent stability of time-delay chaotic systems via time-delayed feedback control (DFC). The delay-dependent stability criteria via DFC are derived from the results based on standard feedback control (SFC), the method can be obtained to stabilize the system to an unstable fixed point. A numerical example is discussed to illustrate the advantage of the obtained result
Attosecond Coherent Control of the Photo-Dissociation of Oxygen Molecules
Sturm, Felix; Ray, Dipanwita; Wright, Travis; Shivaram, Niranjan; Bocharova, Irina; Slaughter, Daniel; Ranitovic, Predrag; Belkacem, Ali; Weber, Thorsten
2016-05-01
Attosecond Coherent Control has emerged in recent years as a technique to manipulate the absorption and ionization in atoms as well as the dissociation of molecules on an attosecond time scale. Single attosecond pulses and attosecond pulse trains (APTs) can coherently excite multiple electronic states. The electronic and nuclear wave packets can then be coupled with a second pulse forming multiple interfering quantum pathways. We have built a high flux extreme ultraviolet (XUV) light source delivering APTs based on HHG that allows to selectively excite neutral and ion states in molecules. Our beamline provides spectral selectivity and attosecond interferometric control of the pulses. In the study presented here, we use APTs, generated by High Harmonic Generation in a high flux extreme ultraviolet light source, to ionize highly excited states of oxygen molecules. We identify the ionization/dissociation pathways revealing vibrational structure with ultra-high resolution ion 3D-momentum imaging spectroscopy. Furthermore, we introduce a delay between IR pulses and XUV/IR pulses to constructively or destructively interfere the ionization and dissociation pathways, thus, enabling the manipulation of both the O2+and the O+ ion yields with attosecond precision. Supported by DOE under Contract No. DE-AC02-05CH11231.
Delay Time in Quaternionic Quantum Mechanics
De Leo, Stefano
2012-01-01
In looking for quaternionic violations of quantum mechanics, we discuss the delay time for pure quaternionic potentials. The study shows in which energy region it is possible to amplify the difference between quaternionic and complex quantum mechanics.
Monolithic Time Delay Integrated APD Arrays Project
National Aeronautics and Space Administration — The overall goal of the proposed program by Epitaxial Technologies is to develop monolithic time delay integrated avalanche photodiode (APD) arrays with sensitivity...
Generation of short and intense isolated Attosecond pulses by field-controlled excited states
Jooya, Hossein Z.; Li, Peng-Cheng; Liao, Sheng-Lun; Chu, Shih-I.
2014-05-01
A new mechanism for the coherent control of the generation of an isolated and ultrashort attosecond laser pulse with enhanced intensity is reported. Frequency and time delay of a weak high harmonics, added to a two color laser, are optimized to produce a 45 attosecond pulse with intensity of more than 70 times bigger than the original one. Resonance excitation and subsequent ionization are analyzed, along with electron trajectory investigation from wavelet time-frequency profile to explain the mechanism of the observed augmentation in this high-harmonic generation. This work is partially supported by DOE.
EDITORIAL: Focus on Attosecond Physics
Bandrauk, André D.; Krausz, Ferenc; Starace, Anthony F.
2008-02-01
Investigations of light-matter interactions and motion in the microcosm have entered a new temporal regime, the regime of attosecond physics. It is a main 'spin-off' of strong field (i.e., intense laser) physics, in which nonperturbative effects are fundamental. Attosecond pulses open up new avenues for time-domain studies of multi-electron dynamics in atoms, molecules, plasmas, and solids on their natural, quantum mechanical time scale and at dimensions shorter than molecular and even atomic scales. These capabilities promise a revolution in our microscopic knowledge and understanding of matter. The recent development of intense, phase-stabilized femtosecond (10-15 s) lasers has allowed unparalleled temporal control of electrons from ionizing atoms, permitting for the first time the generation and measurement of isolated light pulses as well as trains of pulses on the attosecond (1 as = 10-18 s) time scale, the natural time scale of the electron itself (e.g., the orbital period of an electron in the ground state of the H atom is 152 as). This development is facilitating (and even catalyzing) a new class of ultrashort time domain studies in photobiology, photochemistry, and photophysics. These new coherent, sub-fs pulses carried at frequencies in the extreme ultraviolet and soft-x-ray spectral regions, along with their intense, synchronized near-infrared driver waveforms and novel metrology based on sub-fs control of electron-light interactions, are spawning the new science of attosecond physics, whose aims are to monitor, to visualize, and, ultimately, to control electrons on their own time and spatial scales, i.e., the attosecond time scale and the sub-nanometre (Ångstrom) spatial scale typical of atoms and molecules. Additional goals for experiment are to advance the enabling technologies for producing attosecond pulses at higher intensities and shorter durations. According to theoretical predictions, novel methods for intense attosecond pulse generation may in
Identification of nonlinear systems with unknown time delay based on time-delay neural networks.
Ren, X M; Rad, A B
2007-09-01
In this letter, we address the problem of online identification of nonlinear continuous-time systems with unknown time delay based on neural networks (NNs). A novel time-delay NN model with learning algorithm is employed to perform simultaneous system identification and time-delay estimation. The proposed network is an extended version of the time-delay-free dynamical NN. Rigorous stability proof for the identification error is given by means of Lyapunov theory. The simulation studies are provided to demonstrate the performance of the identification algorithm and clarify the theoretical implications. PMID:18220203
Yamazaki, Tatsuya; Hagiwara, Tomomichi
2014-08-01
A new stability analysis method of time-delay systems (TDSs) called the monodromy operator approach has been studied under the assumption that a TDS is represented as a time-delay feedback system consisting of a finite-dimensional linear time-invariant (LTI) system and a pure delay. For applying this approach to TDSs described by delay-differential equations (DDEs), the problem of converting DDEs into representation as time-delay feedback systems has been studied. With regard to such a problem, it was shown that, under discontinuous initial functions, it is natural to define the solutions of DDEs in two different ways, and the above conversion problem was solved for each of these two definitions. More precisely, the solution of a DDE was represented as either the state of the finite-dimensional part of a time-delay feedback system or a part of the output of another time-delay feedback system, depending on which definition of the DDE solution one is talking about. Motivated by the importance in establishing a thorough relationship between time-delay feedback systems and DDEs, this paper discusses the opposite problem of converting time-delay feedback systems into representation as DDEs, including the discussions about the conversion of the initial conditions. We show that the state of (the finite-dimensional part of) a time-delay feedback system can be represented as the solution of a DDE in the sense of one of the two definitions, while its 'essential' output can be represented as that of another DDE in the sense of the other type of definition. Rigorously speaking, however, it is also shown that the latter representation is possible regardless of the initial conditions, while some initial condition could prevent the conversion into the former representation. This study hence establishes that the representation of TDSs as time-delay feedback systems possesses higher ability than that with DDEs, as description methods for LTI TDSs with commensurate delays.
Global synchronization criteria with channel time-delay for chaotic time-delay system
International Nuclear Information System (INIS)
Based on the Lyapunov stabilization theory, matrix measure, and linear matrix inequality (LMIs), this paper studies the chaos synchronization of time-delay system using the unidirectional linear error feedback coupling with time-delay. Some generic conditions of chaos synchronization with time-delay in the transmission channel is established. The chaotic Chua's circuit is used for illustration, where the coupling parameters are determined according to the criteria under which the global chaos synchronization of the time-delay coupled systems is achieved
Global synchronization criteria with channel time-delay for chaotic time-delay system
Energy Technology Data Exchange (ETDEWEB)
Sun Jitao E-mail: sunjt@sh163.net
2004-08-01
Based on the Lyapunov stabilization theory, matrix measure, and linear matrix inequality (LMIs), this paper studies the chaos synchronization of time-delay system using the unidirectional linear error feedback coupling with time-delay. Some generic conditions of chaos synchronization with time-delay in the transmission channel is established. The chaotic Chua's circuit is used for illustration, where the coupling parameters are determined according to the criteria under which the global chaos synchronization of the time-delay coupled systems is achieved.
Time Delay in Swiss Cheese Gravitational Lensing
Chen, Bin; Dai, Xinyu
2010-01-01
We compute time delays for gravitational lensing in a flat LambdaCDM Swiss cheese universe. We assume a primary and secondary pair of light rays are deflected by a single point mass condensation described by a Kottler metric (Schwarzschild with Lambda) embedded in an otherwise homogeneous cosmology. We find that the cosmological constant's effect on the difference in arrival times is non-linear and at most around 0.002% for a large cluster lens; however, we find differences from time delays predicted by conventional linear lensing theory that can reach ~4% for these large lenses. The differences in predicted delay times are due to the failure of conventional lensing to incorporate the lensing mass into the mean mass density of the universe.
SBASI: Actuated pyrotechnic time delay initiator
Salter, S. J.; Lundberg, R. E.; Mcdougal, G. L.
1975-01-01
A precision pyrotechnic time delay initiator for missile staging was developed and tested. Incorporated in the assembly is a single bridgewire Apollo standard initiator (SBASI) for initiation, a through-bulkhead-initiator to provide isolation of the SBASI output from the delay, the pyrotechnic delay, and an output charge. An attempt was made to control both primary and secondary variables affecting functional performance of the delay initiator. Design and functional limit exploration was performed to establish tolerance levels on manufacturing and assembling operations. The test results demonstrate a 2% coefficient of variation at any one temperature and an overall 2.7% coefficient of variation throughout the temperature range of 30 to 120 F. Tests were conducted at simulated operational altitude from sea level to 200,000 feet.
Direct observation of electron dynamics in the attosecond domain.
Föhlisch, A; Feulner, P; Hennies, F; Fink, A; Menzel, D; Sanchez-Portal, D; Echenique, P M; Wurth, W
2005-07-21
Dynamical processes are commonly investigated using laser pump-probe experiments, with a pump pulse exciting the system of interest and a second probe pulse tracking its temporal evolution as a function of the delay between the pulses. Because the time resolution attainable in such experiments depends on the temporal definition of the laser pulses, pulse compression to 200 attoseconds (1 as = 10(-18) s) is a promising recent development. These ultrafast pulses have been fully characterized, and used to directly measure light waves and electronic relaxation in free atoms. But attosecond pulses can only be realized in the extreme ultraviolet and X-ray regime; in contrast, the optical laser pulses typically used for experiments on complex systems last several femtoseconds (1 fs = 10(-15) s). Here we monitor the dynamics of ultrafast electron transfer--a process important in photo- and electrochemistry and used in solid-state solar cells, molecular electronics and single-electron devices--on attosecond timescales using core-hole spectroscopy. We push the method, which uses the lifetime of a core electron hole as an internal reference clock for following dynamic processes, into the attosecond regime by focusing on short-lived holes with initial and final states in the same electronic shell. This allows us to show that electron transfer from an adsorbed sulphur atom to a ruthenium surface proceeds in about 320 as. PMID:16034414
BOLD delay times using group delay in sickle cell disease
Coloigner, Julie; Vu, Chau; Bush, Adam; Borzage, Matt; Rajagopalan, Vidya; Lepore, Natasha; Wood, John
2016-03-01
Sickle cell disease (SCD) is an inherited blood disorder that effects red blood cells, which can lead to vasoocclusion, ischemia and infarct. This disease often results in neurological damage and strokes, leading to morbidity and mortality. Functional Magnetic Resonance Imaging (fMRI) is a non-invasive technique for measuring and mapping the brain activity. Blood Oxygenation Level-Dependent (BOLD) signals contain also information about the neurovascular coupling, vascular reactivity, oxygenation and blood propagation. Temporal relationship between BOLD fluctuations in different parts of the brain provides also a mean to investigate the blood delay information. We used the induced desaturation as a label to profile transit times through different brain areas, reflecting oxygen utilization of tissue. In this study, we aimed to compare blood flow propagation delay times between these patients and healthy subjects in areas vascularized by anterior, middle and posterior cerebral arteries. In a group comparison analysis with control subjects, BOLD changes in these areas were found to be almost simultaneous and shorter in the SCD patients, because of their increased brain blood flow. Secondly, the analysis of a patient with a stenosis on the anterior cerebral artery indicated that signal of the area vascularized by this artery lagged the MCA signal. These findings suggest that sickle cell disease causes blood propagation modifications, and that these changes could be used as a biomarker of vascular damage.
Time Delay Interferometry with Moving Spacecraft Arrays
Tinto, M; Armstrong, J W; Tinto, Massimo; Estabrook, Frank B.; Armstrong, adn J.W.
2004-01-01
Space-borne interferometric gravitational wave detectors, sensitive in the low-frequency (millihertz) band, will fly in the next decade. In these detectors the spacecraft-to-spacecraft light-travel-times will necessarily be unequal, time-varying, and (due to aberration) have different time delays on up- and down-links. Reduction of data from moving interferometric laser arrays in solar orbit will in fact encounter non-symmetric up- and downlink light time differences that are about 100 times larger than has previously been recognized. The time-delay interferometry (TDI) technique uses knowledge of these delays to cancel the otherwise dominant laser phase noise and yields a variety of data combinations sensitive to gravitational waves. Under the assumption that the (different) up- and downlink time delays are constant, we derive the TDI expressions for those combinations that rely only on four inter-spacecraft phase measurements. We then turn to the general problem that encompasses time-dependence of the light...
Theory of strong-field attosecond transient absorption
Wu, Mengxi; Chen, Shaohao; Camp, Seth; Schafer, Kenneth J.; Gaarde, Mette B.
2016-03-01
Attosecond transient absorption is one of the promising new techniques being developed to exploit the availability of sub-femtosecond extreme ultraviolet (XUV) pulses to study the dynamics of the electron on its natural time scale. The temporal resolution in a transient absorption setup comes from the control of the relative delay and coherence between pump and probe pulses, while the spectral resolution comes from the characteristic width of the features that are being probed. In this review we focus on transient absorption scenarios where an attosecond pulse of XUV radiation creates a broadband excitation that is subsequently probed by a few cycle infrared (IR) laser. Because the attosecond XUV pulses are locked to the IR field cycle, the exchange of energy in the laser-matter interaction can be studied with unprecedented precision. We focus on the transient absorption by helium atoms of XUV radiation around the first ionization threshold, where we can simultaneoulsy solve the time-dependent Schrödinger equation for the single atom response and the Maxwell wave equation for the collective response of the nonlinear medium. We use a time-domain method that allows us to treat on an equal footing all the different linear and nonlinear processes by which the medium can exchange energy with the fields. We present several simple models, based on a few-level system interacting with a strong IR field, to explain many of the novel features found in attosecond transient absorption spectrograms. These include the presence of light-induced states, which demonstrate the ability to probe the dressed states of the atom. We also present a time-domain interpretation of the resonant pulse propagation features that appear in absorption spectra in dense, macroscopic media. We close by reviewing several recent experimental results that can be explained in terms of the models we discuss. Our aim is to present a road map for understanding future attosecond transient absorption
Time-delayed autosynchronous swarm control
Biggs, James D.; Bennet, Derek J.; Dadzie, S. Kokou
2012-01-01
In this paper a general Morse potential model of self-propelling particles is considered in the presence of a time-delayed term and a spring potential. It is shown that the emergent swarm behavior is dependent on the delay term and weights of the time-delayed function, which can be set to induce a stationary swarm, a rotating swarm with uniform translation, and a rotating swarm with a stationary center of mass. An analysis of the mean field equations shows that without a spring potential the motion of the center of mass is determined explicitly by a multivalued function. For a nonzero spring potential the swarm converges to a vortex formation about a stationary center of mass, except at discrete bifurcation points where the center of mass will periodically trace an ellipse. The analytical results defining the behavior of the center of mass are shown to correspond with the numerical swarm simulations.
Design and test of a broadband split-and-delay unit for attosecond XUV-XUV pump-probe experiments
Campi, F.; Coudert-Alteirac, H.; Miranda, M.; Rading, L.; Manschwetus, B.; Rudawski, P.; L'Huillier, A.; Johnsson, P.
2016-02-01
We present the design of a split-and-delay unit for the production of two delayed replicas of an incident extreme ultraviolet (XUV) pulse. The device features a single grazing incidence reflection in combination with attenuation of remaining infrared light co-propagating with the XUV beam, offering a high throughput without the need of introducing additional optics that would further decrease the XUV flux. To achieve the required spatial and temporal stabilities, the device is controlled by two PID-controllers monitoring the delay and the beam pointing using an optical reference laser beam, making collimation of the beam by additional optics unnecessary. Finally, we demonstrate the stability of the split-and-delay unit by performing all-reflective autocorrelation measurements on broadband few-cycle laser pulses.
Maximum likelihood window for time delay estimation
International Nuclear Information System (INIS)
Time delay estimation for the detection of leak location in underground pipelines is critically important. Because the exact leak location depends upon the precision of the time delay between sensor signals due to leak noise and the speed of elastic waves, the research on the estimation of time delay has been one of the key issues in leak lovating with the time arrival difference method. In this study, an optimal Maximum Likelihood window is considered to obtain a better estimation of the time delay. This method has been proved in experiments, which can provide much clearer and more precise peaks in cross-correlation functions of leak signals. The leak location error has been less than 1 % of the distance between sensors, for example the error was not greater than 3 m for 300 m long underground pipelines. Apart from the experiment, an intensive theoretical analysis in terms of signal processing has been described. The improved leak locating with the suggested method is due to the windowing effect in frequency domain, which offers a weighting in significant frequencies.
Photoemission time-delay measurements and calculations close to the 3s ionization minimum in Ar
Guenot, D; Arnold, C L; Kroon, D; Dahlstrom, J M; Miranda, M; Fordell, T; Gisselbrecht, M; Johnsson, P; Mauritsson, J; Lindroth, E; Maquet, A; Taieb, R; L'Huillier, A; Kheifets, A S
2012-01-01
We present experimental measurements and theoretical calculations of photoionization time delays from the $3s$ and $3p$ shells in Ar in the photon energy range of 32-42 eV. The experimental measurements are performed by interferometry using attosecond pulse trains and the infrared laser used for their generation. The theoretical approach includes intershell correlation effects between the 3s and 3p shells within the framework of the random phase approximation with exchange (RPAE). The connection between single-photon ionization and the two-color two-photon ionization process used in the measurement is established using the recently developed asymptotic approximation for the complex transition amplitudes of laser-assisted photoionization. We compare and discuss the theoretical and experimental results especially in the region where strong intershell correlations in the 3s to kp channel lead to an induced "Cooper" minimum in the 3s ionization cross-section.
Shivaram, Niranjan; Tong, Xiao-Min; Sandhu, Arvinder S
2011-01-01
Using extreme-ultraviolet attosecond-pulse-trains, we investigate the photoionization dynamics of a Helium atom in the presence of moderately-strong (~10^12 W/cm^2) femtosecond laser pulses. The electronic structure of a laser-dressed atom is traced in real-time through precision measurements of ion-yields and photo-electron angular distributions. Quantum interferences between photo-excitation paths are interpreted using the Floquet formalism. As the laser pulse intensity ramps on femtosecond timescales, we observe transitions between ionization channels mediated by different atomic resonances. The quantum phase of interfering paths is extracted for each channel and compared with simulations. Our results elucidate photoionization mechanisms in strong-fields and open the doors for photo-absorption/ionization control schemes.
Decoherence in Attosecond Photoionization
Pabst, Stefan; Greenman, L.; Ho, P; Mazziotti, D.; Santra, Robin
2011-01-01
The creation of superpositions of hole states via single-photon ionization using attosecond extreme-ultraviolet pulses is studied with the time-dependent configuration interaction singles (TDCIS) method. Specifically, the degree of coherence between hole states in atomic xenon is investigated. We find that interchannel coupling not only affects the hole populations, it also enhances the entanglement between the photoelectron and the remaining ion, thereby reducing the coherence within the ion...
Exploring intense attosecond pulses
Charalambidis, D.; Tzallas, P.; Benis, E. P.; Skantzakis, E.; Maravelias, G.; Nikolopoulos, L. A. A.; Peralta Conde, A.; Tsakiris, G. D.
2008-02-01
After introducing the importance of non-linear processes in the extreme-ultra-violet (XUV) spectral regime to the attosecond (asec) pulse metrology and time domain applications, we present two successfully implemented techniques with excellent prospects in generating intense asec pulse trains and isolated asec pulses, respectively. For the generation of pulse trains two-color harmonic generation is exploited. The interferometric polarization gating technique appropriate for the generation of intense isolated asec pulses is discussed and compared to other relevant approaches.
Joint moments of proper delay times
Energy Technology Data Exchange (ETDEWEB)
Martínez-Argüello, Angel M.; Martínez-Mares, Moisés [Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, Apartado Postal 55-534, 09340 México Distrito Federal (Mexico); García, Julio C. [Departamento de Matemáticas, Universidad Autónoma Metropolitana-Iztapalapa, Apartado Postal 55-534, 09340 México Distrito Federal (Mexico)
2014-08-15
We calculate negative moments of the N-dimensional Laguerre distribution for the orthogonal, unitary, and symplectic symmetries. These moments correspond to those of the proper delay times, which are needed to determine the statistical fluctuations of several transport properties through classically chaotic cavities, like quantum dots and microwave cavities with ideal coupling.
On the time delay between ultrarelativistic particles
Fleury, Pierre
2016-01-01
The time delay between the receptions of ultrarelativistic particles emitted simultaneously is an observable for both fundamental physics and cosmology. The expression of the delay when the particles travel through an arbitrary spacetime has been derived recently in arXiv:1512.08489, using a particular coordinate system and self-consistent assumptions. In this article I show that this formula enjoys a simple physical interpretation: the relative velocity between two ultrarelativistic particles is constant. This result reveals an interesting kinematical property of general relativity, namely that the tidal forces experienced by ultrarelativistic particles in the direction of their motion are much smaller than those experienced orthogonally to their motion.
Control and dynamics of attosecond electron wave packets in strong laser fields
International Nuclear Information System (INIS)
160 as duration. In the second experiment, we use these pulses to create electron wave packets of duration 180 as in argon and study the energy transfer from a strong infrared (IR) laser field to the ionized electrons as a function of the delay between the XUV and IR fields. At the zero crossings of the laser field, a significant energy (∼ 20 eV) is transferred from the IR field to the electrons resulting in dramatically enhanced above-threshold-ionization in conditions where the IR field alone does not induce any significant ionization of the medium. Further, by increasing the pulse length of the individual attosecond pulses, using a different thickness of the aluminum filter, a clear effect is seen in the delay-dependence of the photoelectron spectrum. In conclusion, the manipulations of the XUV amplitudes and phases that we have performed are the first step towards the production of arbitrary attosecond waveforms, which will facilitate broadband coherent control in the XUV range. Using these pulses as the injection mechanism of electron wave packets through ionization, we have studied the interaction between the EWPs and a strong IR field. With the pulse parameters used, the ionization is dominated by the APT, and tunable ATI plateaus appear as an effect of the dressing field. The strong delay dependence seen for these ATI spectra, is a direct consequence of the temporal localization of the EWPs to a time range much shorter than the period of the IR field. Because both the energy and duration of the EWPs can be varied independent of the IR laser, they should be very useful for the study and control of strong field processes. Refs. 2 (author)
Parameter mismatches, variable delay times and synchronization in time-delayed systems
International Nuclear Information System (INIS)
We investigate synchronization between two unidirectionally linearly coupled chaotic non-identical time-delayed systems and show that parameter mismatches are of crucial importance to achieve synchronization. We establish that independent of the relation between the delay time in the coupled systems and the coupling delay time, only retarded synchronization with the coupling delay time is obtained. We show that with parameter mismatch or without it neither complete nor anticipating synchronization occurs. We derive existence and stability conditions for the retarded synchronization manifold. We demonstrate our approach using examples of the Ikeda and Mackey Glass models. Also for the first time we investigate chaos synchronization in time-delayed systems with variable delay time and find both existence and sufficient stability conditions for the retarded synchronization manifold with the coupling-delay lag time. Also for the first time we consider synchronization between two unidirectionally coupled chaotic multi-feedback Ikeda systems and derive existence and stability conditions for the different anticipating, lag, and complete synchronization regimes
Attosecond probing of state-resolved ionization and superpositions of atoms and molecules
Leone, Stephen
2016-05-01
Isolated attosecond pulses in the extreme ultraviolet are used to probe strong field ionization and to initiate electronic and vibrational superpositions in atoms and small molecules. Few-cycle 800 nm pulses produce strong-field ionization of Xe atoms, and the attosecond probe is used to measure the risetimes of the two spin orbit states of the ion on the 4d inner shell transitions to the 5p vacancies in the valence shell. Step-like features in the risetimes due to the subcycles of the 800 nm pulse are observed and compared with theory to elucidate the instantaneous and effective hole dynamics. Isolated attosecond pulses create massive superpositions of electronic states in Ar and nitrogen as well as vibrational superpositions among electronic states in nitrogen. An 800 nm pulse manipulates the superpositions, and specific subcycle interferences, level shifting, and quantum beats are imprinted onto the attosecond pulse as a function of time delay. Detailed outcomes are compared to theory for measurements of time-dynamic superpositions by attosecond transient absorption. Supported by DOE, NSF, ARO, AFOSR, and DARPA.
Generation of subterawatt-attosecond pulses in a soft x-ray free-electron laser
Huang, Senlin; Ding, Yuantao; Huang, Zhirong; Marcus, Gabriel
2016-08-01
We propose a novel scheme to generate attosecond soft x rays in a self-seeded free-electron laser (FEL) suitable for enabling attosecond spectroscopic investigations. A time-energy chirped electron bunch with additional sinusoidal energy modulation is adopted to produce a short seed pulse through a self-seeding monochromator. This short seed pulse, together with high electron current spikes and a cascaded delay setup, enables a high-efficiency FEL with a fresh bunch scheme. Simulations show that using the Linac Coherent Light Source (LCLS) parameters, soft x-ray pulses with a FWHM of 260 attoseconds and a peak power of 0.5 TW can be obtained. This scheme also has the feature of providing a stable central wavelength determined by the self-seeding monochromator.
Light-matter interaction on the attosecond timescale
Dahlström, J M; Maquet, A
2012-01-01
This tutorial presents an introduction to the interaction of light and matter on the attosecond timescale. Our aim is to detail the theoretical description of ultra-short time-delays, and to relate these to the phase of extreme ultraviolet (XUV) light pulses and to the asymptotic phase-shifts of photoelectron wave packets. Special emphasis is laid on time-delay experiments, where attosecond XUV pulses are used to photoionize target atoms at well-defined times, followed by a probing process in real time by a phase-locked, infrared laser field. In this way, the laser field serves as a "clock" to monitor the ionization event, but the observable delays do not correspond directly to the delay associated with single-photon ionization. Instead, a significant part of the observed delay originates from a measurement induced process, which obscures the single-photon ionization dynamics. This artifact is traced back to a phase-shift of the above-threshold ionization transition matrix element, which we call the continuum...
Attosecond Double-Slit Experiment
International Nuclear Information System (INIS)
A new scheme for a double-slit experiment in the time domain is presented. Phase-stabilized few-cycle laser pulses open one to two windows (slits) of attosecond duration for photoionization. Fringes in the angle-resolved energy spectrum of varying visibility depending on the degree of which-way information are measured. A situation in which one and the same electron encounters a single and a double slit at the same time is observed. The investigation of the fringes makes possible interferometry on the attosecond time scale. From the number of visible fringes, for example, one derives that the slits are extended over about 500 as
Attosecond double-slit experiment.
Lindner, F; Schätzel, M G; Walther, H; Baltuska, A; Goulielmakis, E; Krausz, F; Milosević, D B; Bauer, D; Becker, W; Paulus, G G
2005-07-22
A new scheme for a double-slit experiment in the time domain is presented. Phase-stabilized few-cycle laser pulses open one to two windows (slits) of attosecond duration for photoionization. Fringes in the angle-resolved energy spectrum of varying visibility depending on the degree of which-way information are measured. A situation in which one and the same electron encounters a single and a double slit at the same time is observed. The investigation of the fringes makes possible interferometry on the attosecond time scale. From the number of visible fringes, for example, one derives that the slits are extended over about 500 as. PMID:16090782
Isolated attosecond pulses from ionization gating of high-harmonic emission
Energy Technology Data Exchange (ETDEWEB)
Abel, Mark J., E-mail: abelm@berkeley.edu [Departments of Chemistry and Physics, University of California, Berkeley, CA 94720 (United States); Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Pfeifer, Thomas; Nagel, Phillip M.; Boutu, Willem; Bell, M. Justine; Steiner, Colby P.; Neumark, Daniel M. [Departments of Chemistry and Physics, University of California, Berkeley, CA 94720 (United States); Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Leone, Stephen R., E-mail: srl@berkeley.edu [Departments of Chemistry and Physics, University of California, Berkeley, CA 94720 (United States); Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)
2009-12-10
Combining results from several techniques of attosecond spectroscopy, we show that ionization gating of high-harmonic emission on the leading edge of the driving pulse produces isolated attosecond pulses with a contrast ratio (the energy in the main pulse normalized to the energy in adjacent satellite pulses) c=3.3{+-}0.2. Half-cycle cutoff analysis confirms that harmonic generation proceeds in the ionization-gated regime. The attosecond pulse contrast is measured using the technique of carrier-envelope phase (CEP)-scanning, recently developed by our group, in which photoelectrons generated from Ne atoms by the harmonic pulse are streaked as a function of CEP. Streaking of photoelectrons as a function of attosecond time delay also confirms the isolated nature of the harmonic pulse, which is measured to have a duration of 430{+-}15 as, limited by the bandwidth of the reflective X-ray optics employed. The combined measurements imply that the experimental advantages of the ionization gating technique-tunable X-ray emission, relaxed sensitivity to the CEP and scalability to longer driver pulses-are also conferred on isolated attosecond pulse production.
Steering continuum electron dynamics by low-energy attosecond streaking
Geng, Ji-Wei; Xiong, Wei-Hao; Xiao, Xiang-Ru; Gong, Qihuang; Peng, Liang-You
2016-08-01
A semiclassical model is developed to understand the electronic dynamics in the low-energy attosecond streaking. Under a relatively strong infrared (IR) pulse, the low-energy part of photoelectrons initialized by a single attosecond pulse (SAP) can either rescatter with the ionic core and induce interferences structures in the momentum spectra of the ionized electrons or be recaptured into the Rydberg states. The Coulomb potential plays essential roles in both the electron rescattering and recapturing processes. We find that by changing the time delay between the SAP and the IR pulse, the photoelectrons yield or the population of the Rydberg states can be effectively controlled. The present study demonstrates a fascinating way to steer the electron motion in the continuum.
New Delay-dependent Stability Criteria for Linear Systems with Time-varying Delay
Directory of Open Access Journals (Sweden)
Weiwei Zhang
2013-01-01
Full Text Available This paper is concerned with the problem of asymptotic stability for linear systems with time-varying delays. With the introduction of delay-partition approach, some new delay-dependent stability criteria are established and formulated in the form of linear matrix inequalities. Both constant time delays and time-varying delays have been taken into account. Numerical examples are given to demonstrate the effectiveness and less conservativeness of the proposed methods.
GENERAL: Synchronization of time-delay chaotic systems on small-world networks with delayed coupling
Qi, Wei; Wang, Ying-Hai
2009-04-01
By using the well-known Ikeda model as the node dynamics, this paper studies synchronization of time-delay systems on small-world networks where the connections between units involve time delays. It shows that, in contrast with the undelayed case, networks with delays can actually synchronize more easily. Specifically, for randomly distributed delays, time-delayed mutual coupling suppresses the chaotic behaviour by stabilizing a fixed point that is unstable for the uncoupled dynamical system.
New Delay-dependent Stability Criteria for Linear Systems with Time-varying Delay
Weiwei Zhang; Chao Ge; Hong Wang
2013-01-01
This paper is concerned with the problem of asymptotic stability for linear systems with time-varying delays. With the introduction of delay-partition approach, some new delay-dependent stability criteria are established and formulated in the form of linear matrix inequalities. Both constant time delays and time-varying delays have been taken into account. Numerical examples are given to demonstrate the effectiveness and less conservativeness of the proposed methods.
Optimal Control with Time Delays via the Penalty Method
Directory of Open Access Journals (Sweden)
Mohammed Benharrat
2014-01-01
Full Text Available We prove necessary optimality conditions of Euler-Lagrange type for a problem of the calculus of variations with time delays, where the delay in the unknown function is different from the delay in its derivative. Then, a more general optimal control problem with time delays is considered. Main result gives a convergence theorem, allowing us to obtain a solution to the delayed optimal control problem by considering a sequence of delayed problems of the calculus of variations.
Semiclassical model for attosecond angular streaking.
Smolarski, M; Eckle, P; Keller, U; Dörner, R
2010-08-16
Attosecond angular streaking is a new technique to achieve unsurpassed time accuracy of only a few attoseconds. Recently this has been successfully used to set an upper limit on the electron tunneling delay time in strong laser field ionization. The measurement technique can be modeled with either the time-dependent Schrödinger equation (TDSE) or a more simple semiclassical approach that describes the process in two steps in analogy to the three-step model in high harmonic generation (HHG): step one is the tunnel ionization and step two is the classical motion in the strong laser field. Here we describe in detail a semiclassical model which is based on the ADK theory for the tunneling step, with subsequent classical propagation of the electron in the laser field. We take into account different ellipticities of the laser field and a possible wavelength-dependent ellipticity that is typically observed for pulses in the two-optical-cycle regime. This semiclassical model shows excellent agreement with the experimental result. PMID:20721150
Ailing Qi; Xuewei Ju; Qing Zhang; Zengqiang Chen
2016-01-01
This paper is concerned with the structural controllability analysis for discrete-time linear control systems with time-delay. By adding virtual delay nodes, the linear systems with time-delay are transformed into corresponding linear systems without time-delay, and the structural controllability of them is equivalent. That is to say, the time-delay does not affect or change the controllability of the systems. Several examples are also presented to illustrate the theoretical results.
Time development of a wave packet and the time delay
Nakazato, Hiromichi
1997-01-01
A one-dimensional scattering problem off a $\\delta$-shaped potential is solved analytically and the time development of a wave packet is derived from the time-dependent Schr\\"odinger equation. The exact and explicit expression of the scattered wave packet supplies us with interesting information about the "time delay" by potential scattering in the asymptotic region. It is demonstrated that a wave packet scattered by a spin-flipping potential can give us quite a different value for the delay ...
Attosecond physics at the nanoscale
Ciappina, M F; Landsman, A S; Okell, W; Zherebtsov, S; Förg, B; Schötz, J; Seiffert, J L; Fennel, T; Shaaran, T; Zimmermann, T; Chacón, A; Guichard, R; Zaïr, A; Tisch, J W G; Marangos, J P; Witting, T; Braun, A; Maier, S A; Roso, L; Krüger, M; Hommelhoff, P; Kling, M F; Krausz, F; Lewenstein, M
2016-01-01
Recently two emerging areas of research, attosecond and nanoscale physics, have started to come together. Attosecond physics deals with phenomena occurring when ultrashort laser pulses, with duration on the femto- and sub-femtosecond time scales, interact with atoms, molecules or solids. The laser-induced electron dynamics occurs natively on a timescale down to a few hundred or even tens of attoseconds, which is comparable with the optical field. On the other hand, the second branch involves the manipulation and engineering of mesoscopic systems, such as solids, metals and dielectrics, with nanometric precision. Although nano-engineering is a vast and well-established research field on its own, the merger with intense laser physics is relatively recent. In this article we present a comprehensive experimental and theoretical overview of physics that takes place when short and intense laser pulses interact with nanosystems, such as metallic and dielectric nanostructures. In particular we elucidate how the spati...
Angular dependence of Wigner time delay: Relativistic Effects
Mandal, A.; Deshmukh, P. C.; Manson, S. T.; Kkeifets, A. S.
2016-05-01
Laser assisted photoionization time delay mainly consists of two parts: Wigner time delay, and time delay in continuum-continuum transition. Wigner time delay results from the energy derivative of the phase of the photoionization amplitude (matrix element). In general, the photoionization time delay is not the same in all directions relative to the incident photon polarization, although when a single transition dominates the amplitude, the resultant time delay is essentially isotropic. The relativistic-random-phase approximation is employed to determine the Wigner time delay in photoionization from the outer np subshells of the noble gas atoms, Ne through Xe. The time delay is found to significantly depend on angle, as well as energy. The angular dependence of the time delay is found to be quite sensitive to atomic dynamics and relativistic effects, and exhibit strong energy and angular variation in the neighborhood of Cooper minima. Work supported by DOE, Office of Chemical Sciences and DST (India).
Attosecond lighthouses from plasma mirrors
A. Wheeler, Jonathan; Borot, Antonin; Monchocé, Sylvain; Vincenti, Henri; Ricci, Aurélien; Malvache, Arnaud; Lopez-Martens, Rodrigo B.; Quéré, Fabien
2012-01-01
International audience The nonlinear interaction of an intense femtosecond laser pulse with matter can lead to the emission of a train of sub-laser-cycle--attosecond--bursts of short-wavelength radiation1, 2. Much effort has been devoted to producing isolated attosecond pulses, as these are better suited to real-time imaging of fundamental electronic processes3, 4, 5, 6. Successful methods developed so far rely on confining the nonlinear interaction to a single sub-cycle event7, 8, 9. Here...
Time-delay feedback control in a delayed dynamical chaos system and its applications
Ye, Zhi-Yong; Yang, Guang; Deng, Cun-Bing
2011-01-01
The feedback control of a delayed dynamical system, which also includes various chaotic systems with time delays, is investigated. On the basis of stability analysis of a nonautonomous system with delays, some simple yet less conservative criteria are obtained for feedback control in a delayed dynamical system. Finally, the theoretical result is applied to a typical class of chaotic Lorenz system and Chua circuit with delays. Numerical simulations are also given to verify the theoretical results.
Attosecond ionization dynamics
International Nuclear Information System (INIS)
Complete test of publication follows. In the interaction between light and matter, the central energy and bandwidth of the radiation, in relation to the energy structure of the studied atoms or molecules, are important parameters. Extreme ultraviolet attosecond pulses, produced through high-order harmonic generation, have during the last years been increasingly used for such studies, particularly in combination with intense infrared (IR) fields, for time-resolved studies of strong field processes. Attosecond experiments have so far utilized pulses with high central energies, in excess of the ionization, potentials of the studied species. When these pulses interact with matter they induce single-photon ionization, creating electron wave packets with a significant initial energy. In the present work, we have generated attosecond pulse trains in xenon, with individual pulse durations of 370 as. Their central energy is 23 eV, which is above the ionization potential of argon (15.8 eV) and neon (21.6 eV), but below that of helium (24.6 eV). We let these pulses interact with the target gas in the presence of a strong IR laser pulse, and measure the on yield as a function of the phase of the IR field at the time of arrival of the pulse. For helium, where the central energy of the pulses is below the ionization threshold, we find a significant enhancement of the ion yield when the IR field is present. In addition, the ion yield exhibits a sub-cycle modulation as a function of the IR phase. The origin of these effects can be understood through the measured photoelectron momentum distributions, and is confirmed by theoretical calculations based on the integration of the time-dependent Schroedinger equation.
Variable-delay feedback control of unstable steady states in retarded time-delayed systems
Gjurchinovski, Aleksandar; 10.1103/PhysRevE.81.016209
2010-01-01
We study the stability of unstable steady states in scalar retarded time-delayed systems subjected to a variable-delay feedback control. The important aspect of such a control problem is that time-delayed systems are already infinite-dimensional before the delayed feedback control is turned on. When the frequency of the modulation is large compared to the system's dynamics, the analytic approach consists of relating the stability properties of the resulting variable-delay system with those of an analogous distributed delay system. Otherwise, the stability domains are obtained by a numerical integration of the linearized variable-delay system. The analysis shows that the control domains are significantly larger than those in the usual time-delayed feedback control, and that the complexity of the domain structure depends on the form and the frequency of the delay modulation.
Microlensing variability in time-delay quasars
Paraficz, D; Burud, I; Jakobsson, P; Eliasdottir, A
2006-01-01
We have searched for microlensing variability in the light curves of five gravitationally lensed quasars with well-determined time delays: SBS 1520+530, FBQ 0951+2635, RX J0911+0551, B1600+434 and HE 2149-2745. By comparing the light curve of the leading image with a suitably time offset light curve of a trailing image we find that two (SBS 1520+530 and FBQ 0951+2635) out of the five quasars have significant long-term (years) and short-term (100 days) brightness variations that may be attributed to microlensing.The short-term variations may be due to nanolenses, relativistic hot or cold spots in the quasar accretion disks, or coherent microlensing at large optical depth.
Femtosecond THz time domain spectroscopy at 36 kHz scan rate using an acousto-optic delay
Urbanek, B; Eisele, M; Baierl, S; Kaplan, D; Lange, C; Huber, R
2016-01-01
We present a rapid-scan, time-domain terahertz spectrometer employing femtosecond Er:fiber technology and an acousto-optic delay with attosecond precision, enabling scanning of terahertz transients over a 12.4 ps time window at a waveform refresh rate of 36 kHz, and a signal-to-noise ratio of $1.7 \\times 10^5/\\sqrt{\\rm Hz}$. Our approach enables real-time monitoring of dynamic THz processes at unprecedented speeds, which we demonstrate through rapid 2D thickness mapping of a spinning teflon disc at a precision of $10\\,\\rm nm/\\sqrt{\\rm Hz}$. The compact, all-optical design ensures alignment-free operation even in harsh environments.
Robust stability and performance of time-delay control systems.
Keviczky, L; Bányász, Cs
2007-04-01
Most of the optimal and adaptive regulators assume an a priori known time delay. The time-delay mismatch can cause unwanted instability. Influence of this uncertainty is investigated in connection with the required performance and robustness. PMID:17362954
On the effect of time delays in negative feedback amplifiers
Alves, L. N.; Aguiar, R. L.
2005-01-01
Time delays are intrinsic to all existing devices and circuits. For the majority of applications, time delays are so small that their effects can be disregarded. However, when considering feedback amplifiers, depending on open-loop poles and loop gain, the effect of a small time delay inside the feedback path may turn to be of considerable importance. This paper analyzes the frequency response effects associated with time delays in feedback amplifiers, exploiting these effects to achieve band...
The Origins of Time-Delay in Template Biopolymerization Processes
Mier-y-Teran-Romero, Luis; Silber, Mary; Hatzimanikatis, Vassily
2010-01-01
Time-delays are common in many physical and biological systems and they give rise to complex dynamic phenomena. The elementary processes involved in template biopolymerization, such as mRNA and protein synthesis, introduce significant time delays. However, there is not currently a systematic mapping between the individual mechanistic parameters and the time delays in these networks. We present here the development of mathematical, time-delay models for protein translation, based on PDE models...
Non-commutativity, teleology and GRB time delay
Energy Technology Data Exchange (ETDEWEB)
Li Miao, E-mail: mli@itp.ac.c [Kavli Institute for Theoretical Physics China, Key Laboratory of Frontiers in Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); Pang Yi, E-mail: yipang@itp.ac.c [Kavli Institute for Theoretical Physics China, Key Laboratory of Frontiers in Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); Wang Yi, E-mail: wangyi@itp.ac.c [Kavli Institute for Theoretical Physics China, Key Laboratory of Frontiers in Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China)
2010-01-04
We propose a model in which an energy-dependent time delay of a photon originates from space-time non-commutativity, the time delay is due to a non-commutative coupling between dilaton and photon. We predict that in our model, high energy photons with different momentum can either be delayed or superluminal, this may be related to a possible time delay reported by the Fermi LAT and Fermi GBM Collaborations.
Non-Commutativity, Teleology and GRB Time Delay
Li, Miao; Wang, Yi
2009-01-01
We propose a model in which an energy-dependent time delay of a photon originates from space-time non-commutativity, the time delay is due to a noncommutative coupling between dilaton and photon. We predict that in our model, high energy photons with different momenta can either be delayed or superluminal, this may be related to a possible time delay reported by the Fermi LAT and Fermi GBM Collaborations.
Non-commutativity, teleology and GRB time delay
Li, Miao; Pang, Yi; Wang, Yi
2010-01-01
We propose a model in which an energy-dependent time delay of a photon originates from space-time non-commutativity, the time delay is due to a non-commutative coupling between dilaton and photon. We predict that in our model, high energy photons with different momentum can either be delayed or superluminal, this may be related to a possible time delay reported by the Fermi LAT and Fermi GBM Collaborations.
14 CFR 417.221 - Time delay analysis.
2010-01-01
... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Time delay analysis. 417.221 Section 417... OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety Analysis § 417.221 Time delay analysis. (a) General. A flight safety analysis must include a time delay analysis that establishes the mean...
Relativistic calculations of angular dependent photoemission time delay
Kheifets, A S; Deshmukh, P C; Dolmatov, V K; Manson, S T
2016-01-01
Angular dependence of photoemission time delay for the valence $np_{3/2}$ and $np_{1/2}$ subshells of Ar, Kr and Xe is studied in the dipole relativistic random phase approximation. Strong angular anisotropy of the time delay is reproduced near respective Cooper minima while the spin-orbit splitting affects the time delay near threshold.
Time delays in cosmology with gravitational lenses
Falco, E. E.
Gravitational lenses yield a very high rate of return on observational investment. Given their scarcity, their impact on our knowledge of the universe is very significant. In the weak-field limit, lensing studies are based on well-established physics and thus offer a straightforward approach to pursue many currently pressing problems of astrophysics and cosmology. Examples of these are the significance of dark matter and the density, age and size of the universe. I present recent developments in cosmological applications of gravitational lenses, focusing on estimates of the Hubble constant using strong lensing of quasars. I describe our recent measurements of time delays for the images of SDSSJ1004+4112, and discuss prospects for the future utilizing synoptic telescopes, planned and under construction.
Femtosecond terahertz time-domain spectroscopy at 36 kHz scan rate using an acousto-optic delay
Urbanek, B.; Möller, M.; Eisele, M.; Baierl, S.; Kaplan, D.; Lange, C.; Huber, R.
2016-03-01
We present a rapid-scan, time-domain terahertz spectrometer employing femtosecond Er:fiber technology and an acousto-optic delay with attosecond precision, enabling scanning of terahertz transients over a 12.4-ps time window at a waveform refresh rate of 36 kHz, and a signal-to-noise ratio of 1.7 × 105 / √{ H z } . Our approach enables real-time monitoring of dynamic THz processes at unprecedented speeds, which we demonstrate through rapid 2D thickness mapping of a spinning teflon disc at a precision of 10 nm/ √{ H z } . The compact, all-optical design ensures alignment-free operation even in harsh environments.
Delay-dependent stability analysis for discrete-time systems with time varying state delay
Directory of Open Access Journals (Sweden)
Stojanović Sreten B.
2011-01-01
Full Text Available The stability of discrete systems with time-varying delay is considered. Some sufficient delaydependent stability conditions are derived using an appropriate model transformation of the original system. The criteria are presented in the form of LMI, which are dependent on the minimum and maximum delay bounds. It is shown that the stability criteria are approximately the same conservative as the existing ones, but have much simpler mathematical form. The numerical example is presented to illustrate the applicability of the developed results.
International Nuclear Information System (INIS)
We show that attosecond metrology has evolved from proof-of-principle experiments to a level where complex processes can be resolved in time that cannot be accessed using any other existing technique. The cascaded Auger decay following ionization and excitation of the 3d-subshell in Kr with subfemtosecond 94 eV soft x-ray pulses has been energy- and time-resolved in an x-ray pump-infrared probe experiment. This Auger cascade reveals rich multi-electron dynamics, which despite the fact that there are many experimental and theoretical data available, is not yet fully understood. We present time-resolved data showing the sequence of the temporal dynamics in the cascaded Auger decay. The decay time of several groups of lines has been measured, including the lines at the low-energy part of the spectrum, which are predominantly produced by the second-step Auger transitions. Our experimental data reveal long lifetimes (up to 70 fs) of the subvalence excited ionic (intermediate) states in the cascaded resonant Auger decay. Extensive theoretical calculations within the multiconfiguration Dirac-Fock (MCDF) approach show that the observed long lifetime may be attributed to the second-step Auger decay of the resonantly excited 3d-1np states with n = 6,7. Furthermore, our experimental data show that the electrons with a kinetic energy around 25 eV (generally assigned as M4,5N1N1 1S0 normal Auger lines) have a component corresponding to the second-step Auger decay of the ion after resonant Auger transition 3d-1np → 4s2 4p3 4dnp → 4s2 4p4 with a lifetime of 26 ± 4 fs. (paper)
Tracing non-equilibrium plasma dynamics on the attosecond timescale in small clusters
International Nuclear Information System (INIS)
It is shown by microscopic calculations that the energy absorption of a rare-gas cluster from a vacuum-ultraviolet (VUV) pulse can be traced with time-delayed extreme-ultraviolet (XUV) attosecond probe pulses by measuring the kinetic energy of the electrons detached by the probe pulse. By means of this scheme we demonstrate that, for pump pulses as short as one femtosecond, the charging of the cluster proceeds during the formation of an electronic nano-plasma inside the cluster. Using moderate harmonics for the VUV and high harmonics for the XUV pulse from the same near-infrared laser source, this scheme with well defined time delays between pump and probe pulses should be experimentally realizable. Going to even shorter pulse durations we predict that pump and probe pulses of about 250 attoseconds can induce and monitor non-equilibrium dynamics of the nano-plasma
International Nuclear Information System (INIS)
The problem of delay-dependent robust stability for neutral control systems with time-varying delay and time-varying structured uncertainties is investigated. An improved linear matrix inequality-based delay-dependent stability test is introduced to ensure a large upper bound for time-delay. A new class of Lyapunov-Krasovskii functionals combined with the descriptor model transformation and the decomposition technique of coefficient matrix is constructed to derive some novel delay-dependent stability criteria. Finally, numerical examples are given to demonstrate the derived condition are much less conservative than those given in the literature.
Phase and Complete Synchronizations in Time-Delay Systems
Senthilkumar, D. V.; Manju Shrii, M.; Kurths, J.
2013-01-01
Synchronization is a fundamental nonlinear phenomenon that has been intensively investigated during a couple of decades. Recently, synchronization of time-delay systems with or without delay coupling and even synchronization of low-dimensional dynamical systems described by ordinary differential equations and maps with delay coupling have become an active area of research in view of its potential applications. In this article, we provide an overview of our recent results on phase synchronization in time-delay systems, which usually exhibits hyperchaotic attractors with complex topological properties, noise-enhanced phase and noise-induced complete synchronizations in time-delay systems. Further, we demonstrate the phenomena of delay-enhanced and delay-induced stable synchronous chaos in a delay coupled network of time continuous dynamical system using the framework of master stability formalism (MSF) for the first time.
Circularly Polarized Attosecond Pulses and Molecular Atto-Magnetism
Bandrauk, Andre D
2014-01-01
Various schemes are presented for the generation of circularly polarized molecular high-order harmonic generation (MHOHG) from molecules. In particular it is shown that combinations of counter-rotating circularly polarized pulses produce the lowest frequency Coriolis forces with the highest frequency recollisions, thus generating new harmonics which are the source of circular polarized attosecond pulses (CPAPs). These can be used to generate circularly polarized electronic currents in molecular media on attosecond time scale. Molecular attosecond currents allow then for the generation of ultrashort magnetic field pulses on the attosecond time scale, new tools for molecular atto-magnetism (MOLAM).
Survey of time preference, delay discounting models
Directory of Open Access Journals (Sweden)
John R. Doyle
2013-03-01
Full Text Available The paper surveys over twenty models of delay discounting (also known as temporal discounting, time preference, time discounting, that psychologists and economists have put forward to explain the way people actually trade off time and money. Using little more than the basic algebra of powers and logarithms, I show how the models are derived, what assumptions they are based upon, and how different models relate to each other. Rather than concentrate only on discount functions themselves, I show how discount functions may be manipulated to isolate rate parameters for each model. This approach, consistently applied, helps focus attention on the three main components in any discounting model: subjectively perceived money; subjectively perceived time; and how these elements are combined. We group models by the number of parameters that have to be estimated, which means our exposition follows a trajectory of increasing complexity to the models. However, as the story unfolds it becomes clear that most models fall into a smaller number of families. We also show how new models may be constructed by combining elements of different models. The surveyed models are: Exponential; Hyperbolic; Arithmetic; Hyperboloid (Green and Myerson, Rachlin; Loewenstein and Prelec Generalized Hyperboloid; quasi-Hyperbolic (also known as beta-delta discounting; Benhabib et al's fixed cost; Benhabib et al's Exponential / Hyperbolic / quasi-Hyperbolic; Read's discounting fractions; Roelofsma's exponential time; Scholten and Read's discounting-by-intervals (DBI; Ebert and Prelec's constant sensitivity (CS; Bleichrodt et al.'s constant absolute decreasing impatience (CADI; Bleichrodt et al.'s constant relative decreasing impatience (CRDI; Green, Myerson, and Macaux's hyperboloid over intervals models; Killeen's additive utility; size-sensitive additive utility; Yi, Landes, and Bickel's memory trace models; McClure et al.'s two exponentials; and Scholten and Read's trade
Attosecond streaking of Cohen-Fano interferences in the photoionization of H$_2^+$
Ning, Qi-Cheng; Song, Shu-Na; Jiang, Wei-Chao; Nagele, Stefan; Pazourek, Renate; Burgdörfer, Joachim; Gong, Qihuang
2014-01-01
We present the first numerical simulation of the time delay in the photoionization of the simplest diatomic molecule H$_2^+$ as observed by attosecond streaking. We show that the strong variation of the Eisenbud-Wigner-Smith time delay as a function of energy and emission angle becomes observable in the streaking time shift provided laser field-induced components are accounted for. The strongly enhanced photoemission time shifts are traced to destructive Cohen-Fano (or two-center) interferences. Signatures of these interferences in the streaking trace are shown to be enhanced when the ionic fragments are detected in coincidence.
Influence of Dark Energy on Gravitational Time Delay
Institute of Scientific and Technical Information of China (English)
CHEN Ju-Hua; WANG Yong-Jiu
2008-01-01
We investigate the gravitational time delay of light in the Schwarzschild black hole space-time surrounded by quintessence.With the analysis and numerical methods,we find that the gravitational time delay of light in the Schwarzschild black hole space-time surrounded by quintessence incrcases when the normalization factor c incrcases,and that the gravitational time delay also decrcases when the quintessential state parameter ωq incrcases.
Time Delay Tracking for Multiuser Synchronization in CDMA Networks
Directory of Open Access Journals (Sweden)
Zahid Ali
2013-09-01
Full Text Available Multipath propagation, multiple access interference and non-line of sight propagation, etc. have impeded the accuracy in mobile data measurements. Multiuser receivers in asynchronous Code Division Multiple Access (CDMA systems require the knowledge of several parameters such as timing delay between users. In this paper, the problem of time delay estimation for CDMA systems is examined by proposing an approach based on blind nonlinear least mean squares (LMS based early-late delay tracker. A system model is developed and a delay tracking algorithm is presented. The simulation results of the proposed delay tracker are compared with the classical delay-locked loop (DLL approach in a multipath scenario and these show that the proposed delay tracker provides very good performance in challenging cases of closely spaced multipath delays.
Isochronal synchronization of time delay and delay-coupled chaotic systems
Grzybowski, J. M. V.; Macau, E. E. N.; Yoneyama, T.
2011-04-01
This paper studies the problem of isochronal synchronization of time-delay chaotic systems featuring also coupling delay. Based on the Lyapunov-Krasovskii stability theory, sufficient conditions are derived for the stability of isochronal synchronization between a pair of identical chaotic systems. Such criteria permit the proper design of stable proportional linear feedback controller, more specifically, the design of adequate proportional feedback gain matrices. The proposed criteria are suited to systems with (i) intrinsic delay, (ii) coupling delay or (iii) both. Numerical simulations of the synchronization of delay-coupled systems are presented as examples of the application of the criteria.
Lightwave control of attosecond pulse emission from plasma mirrors
Directory of Open Access Journals (Sweden)
Borot Antonin
2013-08-01
Full Text Available We demonstrate attosecond control of collective electron motion in plasmas driven by near-relativistic intensity laser fields of controlled waveform in both space and time. We were able to generate spatially isolated attosecond pulses from a plasma mirrors for the first time.
Laurent, G; Cao, W; Li, H; Wang, Z; Ben-Itzhak, I; Cocke, C L
2012-08-24
We experimentally demonstrate that atomic orbital parity mix interferences can be temporally controlled on an attosecond time scale. Electron wave packets are formed by ionizing argon gas with a comb of odd and even high-order harmonics, in the presence of a weak infrared field. Consequently, a mix of energy-degenerate even and odd parity states is fed in the continuum by one- and two-photon transitions. These interfere, leading to an asymmetric electron emission along the polarization vector. The direction of the emission can be controlled by varying the time delay between the comb and infrared field pulses. We show that such asymmetric emission provides information on the relative phase of consecutive odd and even order harmonics in the attosecond pulse train. PMID:23002742
Dynamic programming based time-delay estimation technique for analysis of time-varying time-delay
International Nuclear Information System (INIS)
A new time-delay estimation (TDE) technique based on dynamic programming is developed to measure the time-varying time-delay between two signals. The dynamic programming based TDE technique provides a frequency response five to ten times better than previously known TDE techniques, namely, those based on time-lag cross-correlation or wavelet analysis. Effects of frequency spectrum, signal-to-noise ratio, and amplitude of time-delay on response of the TDE technique (represented as transfer function) are studied using simulated data signals. The transfer function for the technique decreases with increase in noise in signal; however it is independent of signal spectrum shape. The dynamic programming based TDE technique is applied to the beam emission spectroscopy diagnostic data to measure poloidal velocity fluctuations, which led to the observation of theoretically predicted zonal flows in high-temperature tokamak plasmas.
Improved delay-dependent stability criteria for time-delay systems
Xu, S; Lam, J.
2005-01-01
This note provides an improved asymptotic stability condition for time-delay systems in terms of a strict linear matrix inequality. Unlike previous methods, the mathematical development avoids bounding certain cross terms which often leads to conservatism. When time-varying norm-bounded uncertainties appear in a delay system, an improved robust delay-dependent stability condition is also given. Examples are provided to demonstrate the reduced conservatism of the proposed conditions. © 2005 IE...
Time-Delay Estimation using the Characteristic Roots of Delay Differential Equations
Directory of Open Access Journals (Sweden)
Sun Yi
2012-01-01
Full Text Available Problem statement: For ordinary dynamic systems (i.e., non-delayed, various methods such as linear least-squares, gradient-weighted least-squares, Kalman filtering and other robust techniques have been widely used in signal processing, robotics, civil engineering. On the other hand, time-delay estimation of systems with unknown time-delay is still a challenging problem due to difficulty in formulation caused. Approach: The presented method makes use of the Lambert W function and analytical solutions of scalar first-order Delay Differential Equations (DDEs. The Lambert W function has been known to be useful in solving delay differential equations. From the solutions in terms of the Lambert W function, the dominant characteristic roots can be obtained and used to estimate time-delays. The function is already embedded in various software packages (e.g., MATLAB and thus, the presented method can be readily used for time-delay systems. Results: The presented method and the provided examples show ease of formulation and accuracy of time-delay estimation. Conclusion: Estimation of time-delays can be conducted in an analytical way. The presented method will be extended to general systems of DDEs and application to physical systems.
A novel online adaptive time delay identification technique
Bayrak, Alper; Tatlicioglu, Enver
2016-05-01
Time delay is a phenomenon which is common in signal processing, communication, control applications, etc. The special feature of time delay that makes it attractive is that it is a commonly faced problem in many systems. A literature search on time-delay identification highlights the fact that most studies focused on numerical solutions. In this study, a novel online adaptive time-delay identification technique is proposed. This technique is based on an adaptive update law through a minimum-maximum strategy which is firstly applied to time-delay identification. In the design of the adaptive identification law, Lyapunov-based stability analysis techniques are utilised. Several numerical simulations were conducted with Matlab/Simulink to evaluate the performance of the proposed technique. It is numerically demonstrated that the proposed technique works efficiently in identifying both constant and disturbed time delays, and is also robust to measurement noise.
Attosecond clocking of scattering dynamics in dielectrics
Kling, Matthias
2016-05-01
In the past few years electronic-device scaling has progressed rapidly and miniaturization has reached physical gate lengths below 100 nm, heralding the age of nanoelectronics. Besides the effort in size scaling of integrated circuits, tremendous progress has recently been made in increasing the switching speed where strong-field-based ``dielectric-electronics'' may push it towards the petahertz frontier. In this contest, the investigation of the electronic collisional dynamics occurring in a dielectric material is of primary importance to fully understand the transport properties of such future devices. Here, we demonstrate attosecond chronoscopy of electron collisions in SiO2. In our experiment, a stream of isolated aerodynamically focused SiO2 nanoparticles of 50 nm diameter was delivered into the laser interaction region. Photoemission is initiated by an isolated 250 as pulse at 35 eV and the electron dynamics is traced by attosecond streaking using a delayed few-cycle laser pulse at 700 nm. Electrons were detected by a kilohertz, single-shot velocity-map imaging spectrometer, permitting to separate frames containing nanoparticle signals from frames containing the response of the reference gas only. We find that the nanoparticle photoemission exhibits a positive temporal shift with respect to the reference. In order to understand the physical origin of the shift we performed semi-classical Monte-Carlo trajectory simulations taking into account the near-field distributions in- and outside the nanoparticles as obtained from Mie theory. The simulations indicate a pronounced dependence of the streaking time shift near the highest measured electron energies on the inelastic scattering time, while elastic scattering only shows a small influence on the streaking time shift for typical dielectric materials. We envision our approach to provide direct time-domain access to inelastic scattering for a wide range of dielectrics.
Complex analytic signals applied on time delay estimation
Veličković Zoran S.; Pavlović Vlastimir D.
2008-01-01
In this paper, we present the concept of the time delay estimation based on the transformation of real sensor signals into analytic ones. We analyze the differential time delay values obtained using real seismic signals, simulated complex analytic signals and simulated complex analytic signals with real parts coming from real seismic signals. The simulation results indicate that the application of complex analytic signals leads to reliable computation of the differential time delay. The influ...
Projective Synchronization in Time-Delayed Chaotic Systems
Institute of Scientific and Technical Information of China (English)
FENG Cun-Fang; ZHANG Yan; WANG Ying-Hai
2006-01-01
For the first time, we report on projective synchronization between two time delay chaotic systems with single time delays. It overcomes some limitations of the previous wort, where projective synchronization has been investigated only in finite-dimensional chaotic systems, so we can achieve projective synchronization in infinite-dimensional chaotic systems. We give a general method with which we can achieve projective synchronization in time-delayed chaotic systems. The method is illustrated using the famous delay-differential equations related to optical bistability. Numerical simulations fully support the analytical approach.
Dynamical behaviour of Liu system with time delayed feedback
Institute of Scientific and Technical Information of China (English)
Qian Qin; Wang Lin; Ni Qiao
2008-01-01
This paper investigates the dynamical behaviour of the Liu system with time delayed feedback.Two typical situations are considered and the effect of time-delay parameter on the dynamics of the system is discussed.It is shown that the Liu system with time delayed feedback may exhibit interesting and extremely rich dynamical behaviour.The evolution of the dynamics is shown to be complex with varying time-delay parameter.Moreover,the strange attractor like 'wormhole' is detected via numerical simulations.
Coherent Electron Scattering Captured by an Attosecond Quantum Stroboscope
Mauritsson, J; Gustafsson, E; Swoboda, M; Ruchon, T; LHuillier, A; Schafer, K J
2007-01-01
The basic properties of atoms, molecules and solids are governed by electron dynamics which take place on extremely short time scales. To measure and control these dynamics therefore requires ultrafast sources of radiation combined with efficient detection techniques. The generation of extreme ultraviolet (XUV) attosecond (1 as = 10-18 s) pulses has, for the first time, made direct measurements of electron dynamics possible. Nevertheless, while various applications of attosecond pulses have been demonstrated experimentally, no one has yet captured or controlled the full three dimensional motion of an electron on an attosecond time scale. Here we demonstrate an attosecond quantum stroboscope capable of guiding and imaging electron motion on a sub-femtosecond (1 fs = 10-15 s) time scale. It is based on a sequence of identical attosecond pulses which are synchronized with a guiding laser field. The pulse to pulse separation in the train is tailored to exactly match an optical cycle of the laser field and the ele...
Fractional high-harmonic combs by attosecond-precision split-spectrum pulse control
Directory of Open Access Journals (Sweden)
Laux Martin
2013-03-01
Full Text Available Few-cycle laser fields enable pulse-shaping control of high-order harmonic generation by time delaying variable broadband spectral sections. We report the experimental generation of fractional (noninteger high-harmonic combs by the controlled interference of two attosecond pulse trains. Additionally the energy of the high harmonics is strongly tuned with the relative time delay. We quantify the tuning to directly result from the controlled variation of the instantaneous laser frequency at the shaped driver pulse intensity maximum.
Delay-dependent stability of uncertain fuzzy large-scale systems with time delays
International Nuclear Information System (INIS)
In this paper the delay-dependent stability problem of the Takagi-Sugeno fuzzy large-scale system with time delays and parametric uncertainties is considered. Two delay-dependent robust stability criteria are proposed in terms of linear matrix inequalities (LMIs) by using the Lyapunov-Krasovskii functional method. Generalized Park's inequality is used to derive our results for bounding the cross term. Finally, numerical example is given to demonstrate the correctness and effectiveness of main theoretical results
Improving Delay-Range-Dependent Stability Condition for Systems with Interval Time-Varying Delay
Directory of Open Access Journals (Sweden)
Wei Qian
2013-01-01
Full Text Available This paper discusses the delay-range-dependent stability for systems with interval time-varying delay. Through defining the new Lyapunov-Krasovskii functional and estimating the derivative of the LKF by introducing new vectors, using free matrices and reciprocally convex approach, the new delay-range-dependent stability conditions are obtained. Two well-known examples are given to illustrate the less conservatism of the proposed theoretical results.
Effects of time delays on bifurcation and chaos in a non-autonomous system with multiple time delays
International Nuclear Information System (INIS)
Time delays are often sources of complex behavior in dynamic systems. Yet its complexity needs to be further explored, particularly when multiple time delays are present. As a purpose to gain insight into such complexity under multiple time delays, we investigate the mechanism for the action of multiple time delays on a particular non-autonomous system in this paper. The original mathematical model under consideration is a Duffing oscillator with harmonic excitation. A delayed system is obtained by adding delayed feedbacks to the original system. Two time delays are involved in such system, one of which in the displacement feedback and the other in the velocity feedback. The time delays are taken as adjustable parameters to study their effects on the dynamics of the system. Firstly, the stability of the trivial equilibrium of the linearized system is discussed and the condition under which the equilibrium loses its stability is obtained. This leads to a critical stability boundary where Hopf bifurcation or double Hopf bifurcation may occur. Then, the chaotic behavior of such system is investigated in detail. Particular emphasis is laid on the effect of delay difference between two time delays on the chaotic properties. A Melnikov's analysis is employed to obtain the necessary condition for onset of chaos resulting from homoclinic bifurcation. And numerical analyses via the bifurcation diagram and the top Lyapunov exponent are carried out to show the actual time delay effect. Both the results obtained by the two analyses show that the delay difference between two time delays plays a very important role in inducing or suppressing chaos, so that it can be taken as a simple but efficient 'switch' to control the motion of a system: either from order to chaos or from chaos to order
Robust Stability Criterion for Uncertain Neural Networks with Time Delays
Institute of Scientific and Technical Information of China (English)
LIN Zhi-wei; ZHANG Ning; YANG Hong-jiu
2010-01-01
The robust stability of uncertain neural network with time-varying delay was investigated. The norm-bounded un-certainties are included in the system matrices. The constraint on time-varying delays is removed, which means that a fast time-varying delay is admissible. Some new delay-dependent stability criteria were presented by using Lyapunov-Krasovskii functional and linear matrix inequalities (LMIs) approaches. Finally, a numerical example was given to illustrate the effec-tiveness and innovation nature of the developed techniques.
Stability analysis of linear switching systems with time delays
International Nuclear Information System (INIS)
The issue of stability analysis of linear switching system with discrete and distributed time delays is studied in this paper. An appropriate switching rule is applied to guarantee the stability of the whole switching system. Our results use a Riccati-type Lyapunov functional under a condition on the time delay. So, switching systems with mixed delays are developed. A numerical example is given to illustrate the effectiveness of our results.
Epidemic spreading with time delay in complex networks
Xu, X J; Wang, X M; Wang, Y H
2006-01-01
We present a modified \\emph{susceptible-infected-susceptible} (SIS) model on complex networks, small-world and scale-free, to study epidemic spreading with the effect of time delay which is introduced to the infected phase. Considering the topology of the network, both uniform and degree-dependent delays are studied during the contagion process. We find that the existence of time delay will enhance both outbreaks and prevalence of infectious diseases in the network.
Energy Technology Data Exchange (ETDEWEB)
Foumouo, E; Hamido, A; Antoine, Ph; Piraux, B [Institute of Condensed Matter and Nanosciences, Universite catholique de Louvain, 2, chemin du cyclotron, B-1348 Louvain-la Neuve (Belgium); Bachau, H [Centre des Lasers Intenses et Applications (CELIA), UMR 5107 de l' Universite de Bordeaux 1-CNRS-CEA, 351 Cours de la Liberation, F-33405 Talence (France); Shakeshaft, R, E-mail: bernard.piraux@uclouvain.b [Physics Department, University of Southern California, Los Angeles, CA 90089-0484 (United States)
2010-05-14
We consider the non-sequential double ionization of helium by two XUV photons. To gain further insight into the double-escape mechanism, we examine the interaction of helium with attosecond pulses. Such an interaction allows us to unveil the timescale on which the two electrons interact. By analysing the behaviour of the electron angular and energy distributions versus the pulse duration, we show that in the limit of ultrashort pulse durations, it becomes possible to disentangle the process in which each electron absorbs one photon from the process in which one electron absorbs both photons while ejecting the other electron by a collision. These results, which confirm the double-escape mechanism that we had proposed earlier (2008 J. Phys. B: At. Mol. Opt. Phys. 41 051001), are obtained using two different time-dependent theoretical approaches. The first one is based on Jacobi matrix calculations to extract the relevant information from the ionized wave packet. In the second one, we project the final wave packet on two Coulomb functions. We also develop a simple model based on time-dependent perturbation theory. (fast track communication)
Decoherence in attosecond photoionization.
Pabst, Stefan; Greenman, Loren; Ho, Phay J; Mazziotti, David A; Santra, Robin
2011-02-01
The creation of superpositions of hole states via single-photon ionization using attosecond extreme-ultraviolet pulses is studied with the time-dependent configuration-interaction singles (TDCIS) method. Specifically, the degree of coherence between hole states in atomic xenon is investigated. We find that interchannel coupling not only affects the hole populations, but it also enhances the entanglement between the photoelectron and the remaining ion, thereby reducing the coherence within the ion. As a consequence, even if the spectral bandwidth of the ionizing pulse exceeds the energy splittings among the hole states involved, perfectly coherent hole wave packets cannot be formed. For sufficiently large spectral bandwidth, the coherence can only be increased by increasing the mean photon energy. PMID:21405393
Perveaux, A; Lasorne, B; Gatti, F; Robb, M A; Halász, G J; Vibók, Á
2014-01-01
A nonadiabatic scheme for the description of the coupled electron and nuclear motions in the ozone molecule was proposed recently. An initial coherent nonstationary state was prepared as a superposition of the ground state and the excited Hartley band. In this situation neither the electrons nor the nuclei are in a stationary state. The multiconfiguration time dependent Hartree method was used to solve the coupled nuclear quantum dynamics in the framework of the adiabatic separation of the time-dependent Schr\\"odinger equation. The resulting wave packet shows an oscillation of the electron density between the two chemical bonds. As a first step for probing the electronic motion we computed the time-dependent molecular dipole and the Dyson orbitals. The latter play an important role in the explanation of the photoelectron angular distribution. Calculations of the Dyson orbitals are presented both for the time-independent as well as the time-dependent situations. We limited our description of the electronic mot...
Recovery of the Time-Evolution Equation of Time-Delay Systems from Time Series
Bünner, M J; Kittel, A; Parisi, J; Meyer, Th.
1997-01-01
We present a method for time series analysis of both, scalar and nonscalar time-delay systems. If the dynamics of the system investigated is governed by a time-delay induced instability, the method allows to determine the delay time. In a second step, the time-delay differential equation can be recovered from the time series. The method is a generalization of our recently proposed method suitable for time series analysis of {\\it scalar} time-delay systems. The dynamics is not required to be settled on its attractor, which also makes transient motion accessible to the analysis. If the motion actually takes place on a chaotic attractor, the applicability of the method does not depend on the dimensionality of the chaotic attractor - one main advantage over all time series analysis methods known until now. For demonstration, we analyze time series, which are obtained with the help of the numerical integration of a two-dimensional time-delay differential equation. After having determined the delay time, we recover...
A novel criterion for delayed feedback control of time-delay chaotic systems
International Nuclear Information System (INIS)
This paper investigated stability criterion of time-delay chaotic systems via delayed feedback control (DFC) using the Lyapunov stability theory and linear matrix inequality (LMI) technique. A stabilization criterion is derived in terms of LMIs which can be easily solved by efficient convex optimization algorithms. A numerical example is given to illuminate the design procedure and advantage of the result derived
Time-Delay Systems Lyapunov Functionals and Matrices
Kharitonov, Vladimir L
2013-01-01
Stability is one of the most studied issues in the theory of time-delay systems, but the corresponding chapters of published volumes on time-delay systems do not include a comprehensive study of a counterpart of classical Lyapunov theory for linear delay free systems. The principal goal of the book is to fill this gap, and to provide readers with a systematic and exhaustive treatment of the basic concepts of the Lyapunov-Krasovskii approach to the stability analysis of linear time-delay systems. The book is organized into two parts. The first part is dedicated to the case of retarded type time-delay systems; it consists of four chapters, which respectively deal with results concerning the existence and uniqueness of the solutions of an initial value problem, the class of linear systems with one delay, the case of systems with several delays, and the case of systems with distributed delays. The second part of the book studies the case of neutral type time-delay systems, containing three chapters that e...
Time-energy properties of an attosecond extreme ultra-violet pulse
International Nuclear Information System (INIS)
The time-energy properties of high-order harmonic generation (HHG) are calculated for a linearly polarized 7-fs laser pulse with different carrier-envelope phases (CEPs). The quantum trajectory paths that contribute to an as (1 as=10−18 s) pulse in HHG are identified. The laser-duration dependence and the CEP dependence of HHG energy property are investigated. The study shows that an as extreme ultra-violet (XUV) pulse can be selected from HHG spectrum near cut-off energy with a bandpass optical filter. The theoretical prediction of the pulse duration is proportional to bandwidth. Analysis suggests that a measured narrowband as XUV pulse may consist of instantaneous shorter pulses each dependent on laser pulse duration, intensity, and CEP. These information can be used as references for producing, selecting, improving and manipulating (timing) as pulses. (atomic and molecular physics)
Delay-Dependent Exponential Stability for Discrete-Time BAM Neural Networks with Time-Varying Delays
Directory of Open Access Journals (Sweden)
Yonggang Chen
2008-01-01
Full Text Available This paper considers the delay-dependent exponential stability for discrete-time BAM neural networks with time-varying delays. By constructing the new Lyapunov functional, the improved delay-dependent exponential stability criterion is derived in terms of linear matrix inequality (LMI. Moreover, in order to reduce the conservativeness, some slack matrices are introduced in this paper. Two numerical examples are presented to show the effectiveness and less conservativeness of the proposed method.
Photonic Circuits with Time Delays and Quantum Feedback
Pichler, Hannes; Zoller, Peter
2016-03-01
We study the dynamics of photonic quantum circuits consisting of nodes coupled by quantum channels. We are interested in the regime where the time delay in communication between the nodes is significant. This includes the problem of quantum feedback, where a quantum signal is fed back on a system with a time delay. We develop a matrix product state approach to solve the quantum stochastic Schrödinger equation with time delays, which accounts in an efficient way for the entanglement of nodes with the stream of emitted photons in the waveguide, and thus the non-Markovian character of the dynamics. We illustrate this approach with two paradigmatic quantum optical examples: two coherently driven distant atoms coupled to a photonic waveguide with a time delay, and a driven atom coupled to its own output field with a time delay as an instance of a quantum feedback problem.
Photonic Circuits with Time Delays and Quantum Feedback.
Pichler, Hannes; Zoller, Peter
2016-03-01
We study the dynamics of photonic quantum circuits consisting of nodes coupled by quantum channels. We are interested in the regime where the time delay in communication between the nodes is significant. This includes the problem of quantum feedback, where a quantum signal is fed back on a system with a time delay. We develop a matrix product state approach to solve the quantum stochastic Schrödinger equation with time delays, which accounts in an efficient way for the entanglement of nodes with the stream of emitted photons in the waveguide, and thus the non-Markovian character of the dynamics. We illustrate this approach with two paradigmatic quantum optical examples: two coherently driven distant atoms coupled to a photonic waveguide with a time delay, and a driven atom coupled to its own output field with a time delay as an instance of a quantum feedback problem. PMID:26991174
MSW variable time-delay techniques
Adam, J. D.; Daniel, M. R.; Emtage, P. R.; Weinert, R. W.
1982-07-01
Work performed during the first year of a program to investigate magnetostatic wave device techniques for phased arrays and microwave signal processing is described. Among the topics covered is a variable delay line formed by a backward volume wave down-chirp and a forward volume wave up-chirp; propagation in YIG films biased at an arbitrary angle; propagation and transduction in double YIG films; and the growth of Sm-doped GGG suitable for use as an epitaxial spacer between two YIG films.
Chen, Wu-Hua; Wei, Dan; Lu, Xiaomei
2014-09-01
This paper is concerned with the global exponential synchronization problem of two identical nonlinear time-delay Lur'e systems via delayed impulsive control. Some novel impulsive synchronization criteria are obtained by introducing a discontinuous Lyapunov function and by using the Lyapunov-Razumikhin technique, which are expressed in forms of linear matrix inequalities. The derived criteria reveal the effects of impulsive input delays and impulsive intervals on the stability of synchronization error systems. Then, sufficient conditions on the existence of a delayed impulsive controller are derived by employing these newly-obtained synchronization criteria. Additionally, some synchronization criteria for two identical time-delay Lur'e systems with impulsive effects are presented by using delayed continuous feedback control. The synchronization criteria via delayed continuous feedback control can deal with the case when the impulsive control strategy fails to synchronize two identical impulsive time-delay Lur'e systems. Three numerical examples are provided to illustrate the efficiency of the obtained results.
Li, Jianxiong; Thumm, Uwe
2016-05-01
To study time-resolved photoemission from gold nanospheres, we introduce a quantum-mechanical approach, including the plasmonic near-field-enhancement of the streaking field at the surface of the nanosphere. We use Mie theory to calculate the plasmonically enhanced fields near 10 to 200 nm gold nanospheres, driven by incident near infrared (NIR) or visible laser pulses. We model the gold conduction band in terms of a spherical square well potential. Our simulated streaked photoelectron spectra reveal a plasmonic amplitude enhancement and phase shift related to calculations that exclude the induced plasmonic field. The phase shift is due to the plasma resonance. This suggests the use of streaked photoelectron spectroscopy for imaging the dielectric response and plasmonic field near nanoparticles. Supported by the NSD-EPSCoR program, NSF, and the USDoE.
Indian Academy of Sciences (India)
Arturo C Martí; Marcelo Ponce; Cristina Masoller
2008-06-01
We review our recent work on the synchronization of a network of delay-coupled maps, focusing on the interplay of the network topology and the delay times that take into account the finite velocity of propagation of interactions. We assume that the elements of the network are identical ( logistic maps in the regime where the individual maps, without coupling, evolve in a chaotic orbit) and that the coupling strengths are uniform throughout the network. We show that if the delay times are su±ciently heterogeneous, for adequate coupling strength the network synchronizes in a spatially homogeneous steady state, which is unstable for the individual maps without coupling. This synchronization behavior is referred to as `suppression of chaos by random delays' and is in contrast with the synchronization when all the interaction delay times are homogeneous, because with homogeneous delays the network synchronizes in a state where the elements display in-phase time-periodic or chaotic oscillations. We analyze the influence of the network topology considering four different types of networks: two regular (a ring-type and a ring-type with a central node) and two random (free-scale Barabasi-Albert and small-world Newman-Watts). We find that when the delay times are sufficiently heterogeneous the synchronization behavior is largely independent of the network topology but depends on the network's connectivity, i.e., on the average number of neighbors per node.
Synchronous Hybrid Event- and Time-Driven Consensus in Multiagent Networks With Time Delays.
Xiao, Feng; Chen, Tongwen; Gao, Huijun
2016-05-01
This paper studies the delay robustness of a class of synchronous hybrid event- and time-driven consensus protocols in undirected networks. These protocols can ensure the system performance at reduced data-sampling rates. We consider three types of time delays in feedbacks, including one common time delay, multiple time-invariant delays, and multiple time-varying delays; and by sampled-data control techniques, we characterize the maximum allowable time delay and the event-detecting period for solving the average consensus problem in terms of the algebraic structure of interaction topologies. Simulations are given to show the effectiveness of theoretical results. PMID:26259227
Attosecond control of dissociative ionization of O{sub 2} molecules
Energy Technology Data Exchange (ETDEWEB)
Siu, W.; Kelkensberg, F.; Gademann, G. [FOM Institute AMOLF, Science Park 104, NL-1098 XG Amsterdam (Netherlands); Rouzee, A.; Vrakking, M. J. J. [FOM Institute AMOLF, Science Park 104, NL-1098 XG Amsterdam (Netherlands); Max-Born-Institut, Max-Born Strasse 2A, D-12489 Berlin (Germany); Johnsson, P. [FOM Institute AMOLF, Science Park 104, NL-1098 XG Amsterdam (Netherlands); Department of Physics, Lund University, Post Office Box 118, SE-221 00 Lund (Sweden); Dowek, D. [Laboratoire des Collisions Atomiques et Moleculaires (UMR Universite Paris-Sud et CNRS, 8625), Batiment 351, Universite Paris-Sud, F-91405 Orsay Cedex (France); Lucchini, M.; Calegari, F. [Department of Physics, Politecnico di Milano, Istituto di Fotonica e Nanotecnologie CNR-IFN, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); De Giovannini, U.; Rubio, A. [Nano-bio Spectroscopy Group, ETSF Scientific Development Centre, Universidad del Pais Vasco, Avenida Tolosa 72, E-20018 San Sebastian (Spain); Lucchese, R. R. [Department of Chemistry, Texas A and M University, Post Office Box 30012, College Station, Texas 77842-3012 (United States); Kono, H. [Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578 (Japan); Lepine, F. [Universite Lyon 1/CNRS/LASIM, UMR 5579, 43 Boulevard Du 11 Novembre 1918, F-69622 Villeurbane (France)
2011-12-15
We demonstrate that dissociative ionization of O{sub 2} can be controlled by the relative delay between an attosecond pulse train (APT) and a copropagating infrared (IR) field. Our experiments reveal a dependence of both the branching ratios between a range of electronic states and the fragment angular distributions on the extreme ultraviolet (XUV) to IR time delay. The observations go beyond adiabatic propagation of dissociative wave packets on IR-induced quasistatic potential energy curves and are understood in terms of an IR-induced coupling between electronic states in the molecular ion.
International Nuclear Information System (INIS)
We are constructing a system for attosecond pulse generation via high-order harmonics generation in noble gases. To obtain a single attosecond pulse rather than a pulse train, we employ the regime of a few-cycle-pulse-driven harmonics generation. To achieve it, we are developing an external pulse compressor down to 7 - 10 fs using a gas-filled hollow fiber followed by chirped mirrors. We also proposed the method of high-energy attosecond pulse generation using high-order harmonics generated during the interaction of a relativistic-irradiance laser pulse with a thin foil. (author)
Fundamentals of attosecond optics
Chang, Zenghu
2011-01-01
Attosecond optical pulse generation, along with the related process of high-order harmonic generation, is redefining ultrafast physics and chemistry. A practical understanding of attosecond optics requires significant background information and foundational theory to make full use of these cutting-edge lasers and advance the technology toward the next generation of ultrafast lasers. Fundamentals of Attosecond Optics provides the first focused introduction to the field. The author presents the underlying concepts and techniques required to enter the field, as well as recent research advances th
Time-resolving Attosecond Chiral Dynamics in Molecules with High Harmonic Spectroscopy
Smirnova, O.; Cireasa, R.; Boguslavskiy, A.; Pons, B.; Wong, M. C. H.; Descamps, D.; Petit, S.; Ruf, H.; Thire, N.; Ferre, A.; Suarez, J.; Schmidt, B. E.; Higuet, J.; Alharbi, A. F.; Legare, F.; Blanchet, V.; Fabre, B.; Patchkovskii, S.; Mairesse, Y.; Bhardwaj, R.
2015-05-01
We demonstrate extreme chiral sensitivity of high harmonic generation from randomly oriented ensemble of chiral molecules in elliptical mid-infrared fields, and explain the physical mechanism underlying this very strong chiro-optical response. We also use the high harmonic spectra to follow the electronic chiral response with 0.1 femtosecond resolution. We studied two chiral molecules, epoxypropane and fenchone in 1.8 μm, 50 fs, mid-1013 W/cm2 pulses. Very small ellipticity of the incident light, about 1% in the field, is sufficient to induce several percent difference between the high harmonic response of left and right enantiomers. The origin of this effect lies in chiral-sensitive dynamics of the hole created by strong field ionization. Small differences in this dynamics between ionization and recombination are recorded and amplified by several orders of magnitude in high harmonic spectra. Using time-energy mapping we reconstruct sub-femtosecond chiral dynamics and show that the standard measure of the chiral signal is directly proportional to the recombination amplitude to the chiral-sensitive component of the hole wave-packet.
Finite-time stability of discrete-time systems with time-varying delay
Directory of Open Access Journals (Sweden)
Stojanović Sreten B.
2012-01-01
Full Text Available Finite-time stability can be used in all applications where large values of the state are not acceptable. In this paper, finite-time stability problem for a class of linear time-varying delay systems is studied. Based on Lyapunov-like functions method and using an appropriate model transformation of the original system, the sufficient delay-dependent finite-time stability conditions are derived. The criteria are presented in the form of LMIs, which are dependent on the minimum and maximum delay bounds. The numerical examples are presented to illustrate the applicability of the developed results.
International Nuclear Information System (INIS)
This Letter is concerned with impulsive control of a class of nonlinear time-delay systems. Some uniform stability criteria for the closed-loop time-delay system under delayed impulsive control are derived by using piecewise Lyapunov functions. Then the criteria are applied to impulsive master-slave synchronization of some secure communication systems with transmission delays and sample delays under delayed impulsive control. Two numerical examples are given to illustrate the effectiveness of the derived results
Passivity analysis and synthesis for uncertain time-delay systems
Directory of Open Access Journals (Sweden)
Mahmoud Magdi S.
2001-01-01
Full Text Available In this paper, we investigate the robust passivity analysis and synthesis problems for a class of uncertain time-delay systems. This class of systems arises in the modelling effort of studying water quality constituents in fresh stream. For the analysis problem, we derive a sufficient condition for which the uncertain time-delay system is robustly stable and strictly passive for all admissible uncertainties. The condition is given in terms of a linear matrix inequality. Both the delay-independent and delay-dependent cases are considered. For the synthesis problem, we propose an observer-based design method which guarantees that the closed-loop uncertain time-delay system is stable and strictly passive for all admissible uncertainties. Several examples are worked out to illustrate the developed theory.
Electronically variable time delays using magnetostatic wave technology
Adkins, L. R.; Glass, H. L.; Jin, K. K.; Stearns, F. S.; Ataiiyn, Y. T.
1986-03-01
Variable time delays are necessary in phased array systems to prevent phase squinting and pulse stretching. Methods for providing these time delays include an assortment of fixed cables, ferrite loaded cables, surface acoustic wave (SAW) devices and magnetostatic wave (MSW) devices. Fixed cables are bulky, limiting the number that can be employed per system. Ferrite loaded cables and SAW devices are applicable primarily at frequencies below 1 GHz and provide relatively small delay differentials. MSW wave technology is capable of operating at frequencies up to 20 GHz and providing differential time delays on the order of tens of nanoseconds. An MSW device has recently been demonstrated with a bandwidth greater than 200 MHz centered at 3 GHz. This device has a phase error across the band as low as 8 deg and is capable of providing nearly 50 nS differential delay. Thus, MSW technology appears to be the most promising technique for the next generation of phased array systems.
Attosecond pulse trains as multi-color coherent control
Hernández, J V
2009-01-01
We present a general description of the interaction between multi-color laser pulses and atoms and molecules, focusing on the experimentally relevant example of infrared (IR) pulses overlapped with attosecond pulse trains (APTs). This formulation reveals explicitly and analytically the role of the delay between the IR pulse and APT as a coherent control parameter. Our formulation also shows the nearly equivalent roles of the delay and the carrier-envelope phase in controlling the interference between different multiphoton pathways. We illustrate these points by investigating the single ionization of He and introduce dressed adiabatic hyperspherical potentials to aid the discussion. We confirm the predictions with a full-dimensional, two-electron solution of the time-dependent Schr\\"odinger equation.
Regenerative memory in time-delayed neuromorphic photonic systems
Romeira, B; Figueiredo, José M L; Barland, S; Javaloyes, J
2015-01-01
We investigate a regenerative memory based upon a time-delayed neuromorphic photonic oscillator and discuss the link with temporal localized structures. Our experimental implementation is based upon a optoelectronic system composed of a nanoscale nonlinear resonant tunneling diode coupled to a laser that we link to the paradigm of neuronal activity, the FitzHugh-Nagumo model with delayed feedback.
International Nuclear Information System (INIS)
We report nonlinear multiphoton processes in atoms and molecules by intense high harmonics and their applications to attosecond pulse characterization. Phase matched high harmonics by a loosely focusing geometry produce highly focusable intensity with fully spatiotemporal coherence, which is sufficient to induce nonlinear optical phenomena in the extreme ultraviolet and soft x-ray (XUV) region. With this XUV coherent light source, two-photon double ionization in He is demonstrated with 42-eV high harmonic photons. On the other hand, when intense high harmonics around 20 eV is subjected to N2 molecules, occurrence of Coulomb explosion following to two-photon double ionization is observed in attosecond temporal precision. Taking advantage of larger cross section of two-photon ionization in molecules, we successfully perform the interferometric autocorrelation of an attosecond pulse train with the ion signals produced by Coulomb explosion of nitrogen molecules. The result reveals the phase relation between attosecond pulses in the train.
Tracing and controlling electronic dynamics in atoms and molecules by attosecond pulses
International Nuclear Information System (INIS)
In this review, we will focus on the theoretical aspects in observing and controlling the electronic dynamics in few-electron atoms and molecules by attosecond pulses in different circumstances. In particular, we will first review the main theoretical methods and concepts in strong field and attosecond physics, and then discuss a number of topics including generation of xuv light sources, the probe and steering of the electron motion in the combination of xuv and IR pulses, the photoionization time delay, the electron–electron correlation dynamics in multiple-electron atoms and molecules, etc. Although the present review mainly concentrates on the theoretical aspects, in each section we will also give a brief account of the related experimental implications and implementations for those which have been demonstrated so far or which will be experimentally feasible in the near future
Tracing and controlling electronic dynamics in atoms and molecules by attosecond pulses
Energy Technology Data Exchange (ETDEWEB)
Peng, Liang-You, E-mail: liangyou.peng@pku.edu.cn [State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871 (China); Collaborative Innovation Center of Quantum Matter, Beijing 100871 (China); Jiang, Wei-Chao; Geng, Ji-Wei; Xiong, Wei-Hao [State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871 (China); Gong, Qihuang, E-mail: qhgong@pku.edu.cn [State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871 (China); Collaborative Innovation Center of Quantum Matter, Beijing 100871 (China)
2015-04-18
In this review, we will focus on the theoretical aspects in observing and controlling the electronic dynamics in few-electron atoms and molecules by attosecond pulses in different circumstances. In particular, we will first review the main theoretical methods and concepts in strong field and attosecond physics, and then discuss a number of topics including generation of xuv light sources, the probe and steering of the electron motion in the combination of xuv and IR pulses, the photoionization time delay, the electron–electron correlation dynamics in multiple-electron atoms and molecules, etc. Although the present review mainly concentrates on the theoretical aspects, in each section we will also give a brief account of the related experimental implications and implementations for those which have been demonstrated so far or which will be experimentally feasible in the near future.
Isolated attosecond pulse generation with the chirped two-color laser field
Tai, Huiqin; Li, Fang; Wang, Zhe
2016-07-01
We propose a scheme to generate isolated attosecond pulse using a linearly chirped two-color laser field, which includes a fundamental laser field and a weak infrared control laser field in the multicycle regime. The fundamental laser field consists of one linearly up-chirped and one linearly down-chirped pulses. The control pulse is chirped free. We compare the attosecond pulse generated in the chirped two-color field and the chirp-free field. It is found that an IAP can be generated even without carrier envelop phase stabilization in the chirped two-color laser field with a duration of 40 fs. We also discuss the influence of the relative intensity, relative phase, time delay, and chirping parameters on the generation of IAPs.
Projective Synchronization Between Two Nonidentical Variable Time Delayed Systems
International Nuclear Information System (INIS)
In this paper, we propose a method for the projective synchronization between two different chaotic systems with variable time delays. Using active control approach, the suitable controller is constructed to make the states of two different diverse time delayed systems asymptotically synchronize up to the desired scaling factor. Based on the Lyapunov stability theory, the sufficient condition for the projective synchronization is calculated theoretically. Numerical simulations of the projective synchronization between Mackey-Glass system and Ikeda system with variable time delays are shown to validate the effectiveness of the proposed algorithm. (general)
Strong Discrete Time Approximation of Stochastic Differential Equations with Time Delay
Uwe Kuchler; Eckhard Platen
2000-01-01
The paper introduces an approach for the derivation of discrete time approximations for solutions of stochastic differential equations with time delay. The suggested approximations converge in a strong sense. Furthermore, explicit solutions for linear stochastic delay equations are given.
Study of calculated and measured time dependent delayed neutron yields
International Nuclear Information System (INIS)
Time-dependent delayed neutron emission is of interest in reactor design, reactor dynamics, and nuclear physics studies. The delayed neutrons from neutron-induced fission of 232U, 237Np, 238Pu, 241Am, /sup 242m/Am, 245Cm, and 249Cf were studied for the first time. The delayed neutron emission from 232Th, 233U, 235U, 238U, 239Pu, 241Pu, and 242Pu were measured as well. The data were used to develop an empirical expression for the total delayed neutron yield. The expression gives accurate results for a large variety of nuclides from 232Th to 252Cf. The data measuring the decay of delayed neutrons with time were used to derive another empirical expression predicting the delayed neutron emission with time. It was found that nuclides with similar mass-to-charge ratios have similar decay patterns. Thus the relative decay pattern of one nuclide can be established by any measured nuclide with a similar mass-to-charge ratio. A simple fission product yield model was developed and applied to delayed neutron precursors. It accurately predicts observed yield and decay characteristics. In conclusion, it is possible to not only estimate the total delayed neutron yield for a given nuclide but the time-dependent nature of the delayed neutrons as well. Reactors utilizing recycled fuel or burning actinides are likely to have inventories of fissioning nuclides that have not been studied until now. The delayed neutrons from these nuclides can now be incorporated so that their influence on the stability and control of reactors can be delineated. 8 figures, 39 tables
Heterogeneity of time delays determines synchronization of coupled oscillators
Petkoski, Spase; Spiegler, Andreas; Proix, Timothée; Aram, Parham; Temprado, Jean-Jacques; Jirsa, Viktor K.
2016-07-01
Network couplings of oscillatory large-scale systems, such as the brain, have a space-time structure composed of connection strengths and signal transmission delays. We provide a theoretical framework, which allows treating the spatial distribution of time delays with regard to synchronization, by decomposing it into patterns and therefore reducing the stability analysis into the tractable problem of a finite set of delay-coupled differential equations. We analyze delay-structured networks of phase oscillators and we find that, depending on the heterogeneity of the delays, the oscillators group in phase-shifted, anti-phase, steady, and non-stationary clusters, and analytically compute their stability boundaries. These results find direct application in the study of brain oscillations.
Uniformed model of networked control systems with long time delay
Institute of Scientific and Technical Information of China (English)
Zhu Qixin; Liu Hongli; Hu Shousong
2008-01-01
Feedback control systems wherein the control loops are closed through a real-time network are called networked control systems (NCS). The defining feature of an NCS is that information is exchanged using a network among control system components. Two new concepts including long time delay and short time delay are proposed.The sensor is almost always clock driven. The controller or the actuator is either clock driven or event driven. Four possible driving modes of networked control systems are presented. The open loop mathematic models of networked control systems with long time delay are developed when the system is driven by anyone of the four different modes.The uniformed modeling method of networked control systems with long time delay is proposed. The simulation results are given in the end.
Workspace visualization and time-delay telerobotic operations
Schenker, P. S.; Bejczy, A. K.
1990-01-01
The paper examines the performance of telerobotic tasks where the operator and robot are physically separated, and a comunication time delay of up to several seconds between them exists. This situation is applicable to space robotic servicing-assembly-maintenance operations on low earth or geosynchronous orbits with a ground-based command station. Attention is given to two developments which address advanced time-delay teleoperations for unstructured tasks: (1) the 'phantom robot', a real-time predictive graphics simulator developed to allow teleoperator eye-to-hand coordination or robot free-space kinematics under a time delay of several seconds; and (2) shared compliance control, a modified form of automatic electromechanical impedance control employed in parallel with manual position control to permit soft contact and grasp compliance with workpiece geometry under a time delay of several seconds.
Observation of molecular dipole excitations by attosecond self-streaking
Wachter, Georg; Sato, Shunsuke A; Pazourek, Renate; Wais, Michael; Lemell, Christoph; Tong, Xiao-Min; Yabana, Kazuhiro; Burgdörfer, Joachim
2015-01-01
We propose a protocol to probe the ultrafast evolution and dephasing of coherent electronic excitation in molecules in the time domain by the intrinsic streaking field generated by the molecule itself. Coherent electronic motion in the endohedral fullerene \\Necsixty~is initiated by a moderately intense femtosecond UV-VIS pulse leading to coherent oscillations of the molecular dipole moment that persist after the end of the laser pulse. The resulting time-dependent molecular near-field is probed through the momentum modulation of photoemission from the central neon atom by a time-delayed attosecond XUV pulse. Our ab-initio time-dependent density functional theory and classical trajectory simulations predict that this self-streaking signal accurately traces the molecular dipole oscillations in real time. We discuss the underlying processes and give an analytical model that captures the essence of our ab-initio simulations.
Delay-dependent robust stability criteria of uncertain stochastic systems with time-varying delay
International Nuclear Information System (INIS)
In this paper, the problems of delay-dependent robust stability for uncertain stochastic systems and their corresponding deterministic systems with time-varying delay are investigated. Based on Lyapunov stability theory combined with linear matrix inequalities (LMIs) techniques, some new delay-dependent stability criteria in terms of LMIs are derived by introducing some free weighting matrices which can be selected properly to lead to much less conservative results. Numerical examples are given to illustrate the effectiveness of the proposed method and an improvement over some existing results in the literature.
Liu, Pin-Lin
2014-11-01
This paper is concerned with the improved delay-range-dependent stability and robust stability criteria for linear systems with time-varying delay and norm-bounded uncertainties. In order to obtain much less conservative criteria, a Lyapunov-Krasovskii functional (LKF), which makes use of the information of both the lower and upper bounds of the interval time-varying delay, is proposed to derive new stability criteria. By using delayed decomposition approach (DDA), a tighter upper bound of the derivative of Lyapunov functional can be obtained, and thus the proposed criteria give results with less conservatism compared with some previous ones. The resulting criteria have advantages over some previous ones in that it involves fewer matrix variables but has less conservatism, which are established theoretically. We show, by four well known examples, that our result overcomes the previous allowable maximum admissible upper bound (MAUB) of the time-delay and it is less conservative than the previous results having a relatively small upper bound in the derivative of time delay. PMID:25294004
Delay-Dependent Asymptotic Stability of Cohen-Grossberg Models with Multiple Time-Varying Delays
Directory of Open Access Journals (Sweden)
Songtao Guo
2007-09-01
Full Text Available Dynamical behavior of a class of Cohen-Grossberg models with multiple time-varying delays is studied in detail. Sufficient delay-dependent criteria to ensure local and global asymptotic stabilities of the equilibrium of this network are derived by constructing suitable Lyapunov functionals. The obtained conditions are shown to be less conservative and restrictive than those reported in the known literature. Some numerical examples are included to demonstrate our results.
Improved delay-dependent stability criterion for neural networks with time-varying delays
International Nuclear Information System (INIS)
In this Letter, the problem of stability analysis for neural networks with time-varying delays is considered. By constructing a new Lyapunov functional, a new delay-dependent stability criterion for the network is established in terms of LMIs (linear matrix inequalities) which can be easily solved by various convex optimization algorithms. Two numerical examples are included to show the effectiveness of proposed criterion
Analysis and synthesis of singular systems with time-delays
Wu, Zheng-Guang; Shi, Peng; Chu, Jian
2013-01-01
Singular time-delay systems are very suitable to describe a lot of practical systems such as manufacturing systems, networked control systems, power systems and electrical circuits. Thus, the past two decades have witnessed a significant progress on the theory of singular time-delay systems, and many fundamental and important topics have been successfully investigated including stability analysis, stabilization, guaranteed cost control, filtering, observer design, sliding mode control and so on. The main objective of this book is to present the latest developments and references in the analysis and synthesis of singular time-delay systems with or without Markov jumping parameters in a unified framework. The materials adopted in this book are mainly based on research results of the authors. This book will be of interest to academic researchers working in singular systems, time-delay systems and Markov jump systems and to graduate students interested in systems and control theory.
Time Delay in the Kuramoto Model of Coupled Oscillators
Yeung, M K S; Strogatz, Steven H.
1999-01-01
We generalize the Kuramoto model of coupled oscillators to allow time-delayed interactions. New phenomena include bistability between synchronized and incoherent states, and unsteady solutions with time-dependent order parameters. We derive exact formulas for the stability boundaries of the incoherent and synchronized states, as a function of the delay, in the special case where the oscillators are identical. The experimental implications of the model are discussed for populations of chirping crickets, where the finite speed of sound causes communication delays, and for physical systems such as coupled phase-locked loops or lasers.
Stability of periodic orbits controlled by time-delay feedback
Bleich, M E; Bleich, Michael E; Socolar, Joshua E S
1995-01-01
Extended time-delay auto-synchronization (ETDAS) is a promising technique for stabilizing unstable periodic orbits in low-dimensional dynamical systems. The technique involves continuous feedback of signals delayed by multiples of the orbit's period in a manner that is especially well-suited for fast systems and optical implementation. We show how to analyze the stability of a given implementation of ETDAS without explicit integration of time-delay equations. To illustrate the method and point out some nontrivial features of ETDAS, we obtain the domain of control for a period-one orbit of the driven, damped pendulum.
Stability analysis of perturbed time-delay-systems
International Nuclear Information System (INIS)
This paper presents new sufficient conditions for asymptotic stability of perturbed time-delay systems in terms of the size of the delay constant. The stability analysis is formulated for special class of linear systems with several type of uncertainties. These conditions ield much improved stability bounds than the ones reported in the literature. The proposed stability procedure implies a straightforward method to determine an upper bound on the time delay constant that preserves stability and they are shown to be less restrictive than those reported in the literature. Several numerical examples are given to illustrate the main points of the results.(author). 16 refs
Stability analysis of multiple time-delayed system.
Zheng, Da; Ren, Zhengyun; Fang, Jian-An
2008-10-01
A general class of linear time-invariant systems with time delays is studied. A number of methodologies have been suggested to assess the stability in the parametric domain of time delay or coefficient. This study offers an exact, structured and robust methodology to determine the stability regions of uncertain parameters in both time-delay space and coefficient space. The Rekasius transformation is used as a connection between time-delay space and coefficient space. An explicit analytical expression in terms of the system parameters which reveals the stability regions(pockets) in the domain of time delay and coefficient is presented. The method starts with the determination of all possible values of uncertain parameters which result in purely imaginary characteristic roots. In addition, some special stability boundaries are also discussed. After generating stability boundaries in parametric space, the two-step determination procedure is proposed to determine the actual stability regions. Such an approach can be used to determine the stability regions of any uncertain parameters of any retarded time-delay system. A complete example case study is also provided. PMID:18589418
Stochastic parameter estimation in nonlinear time-delayed vibratory systems with distributed delay
Torkamani, Shahab; Butcher, Eric A.
2013-07-01
The stochastic estimation of parameters and states in linear and nonlinear time-delayed vibratory systems with distributed delay is explored. The approach consists of first employing a continuous time approximation to approximate the delayed integro-differential system with a large set of ordinary differential equations having stochastic excitations. Then the problem of state and parameter estimation in the resulting stochastic ordinary differential system is represented as an optimal filtering problem using a state augmentation technique. By adapting the extended Kalman-Bucy filter to the augmented filtering problem, the unknown parameters of the time-delayed system are estimated from noise-corrupted, possibly incomplete measurements of the states. Similarly, the upper bound of the distributed delay can also be estimated by the proposed technique. As an illustrative example to a practical problem in vibrations, the parameter, delay upper bound, and state estimation from noise-corrupted measurements in a distributed force model widely used for modeling machine tool vibrations in the turning operation is investigated.
Energy Technology Data Exchange (ETDEWEB)
Li Hongjie [College of Mathematics and Information and Engineering, Jiaxing University, Zhejing, 314001 (China); Yue Dong [Department of Control Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 (China)], E-mail: medongy@vip.163.com
2010-03-12
The paper investigates the synchronization stability problem for a class of complex dynamical networks with Markovian jumping parameters and mixed time delays. The complex networks consist of m modes and the networks switch from one mode to another according to a Markovian chain with known transition probability. The mixed time delays are composed of discrete and distributed delays, the discrete time delay is assumed to be random and its probability distribution is known a priori. In terms of the probability distribution of the delays, the new type of system model with probability-distribution-dependent parameter matrices is proposed. Based on the stochastic analysis techniques and the properties of the Kronecker product, delay-dependent synchronization stability criteria in the mean square are derived in the form of linear matrix inequalities which can be readily solved by using the LMI toolbox in MATLAB, the solvability of derived conditions depends on not only the size of the delay, but also the probability of the delay-taking values in some intervals. Finally, a numerical example is given to illustrate the feasibility and effectiveness of the proposed method.
Stability of impulsive neural networks with time delays
International Nuclear Information System (INIS)
Since Hopfield neural networks have a wide application in our life, it is important to study it. In this Letter, we consider the stability of the equilibrium point of the impulsive Hopfield-type neural networks systems with time delays. By using Lyapunov functions and analysis technique, we get a result for the uniform stability of the equilibrium point of the impulsive Hopfield-type neural networks systems with time delays. We can see that impulses do contribute to system's stability behavior
Time Delay Evolution of Five Active Galactic Nuclei
Indian Academy of Sciences (India)
A. Kovačević; L. Č. Popović; A. I. Shapovalova; D. Ilić; A. N. Burenkov; V. H. Chavushyan
2015-12-01
Here we investigate light curves of the continuum and emission lines of five type 1 active galactic nuclei (AGN) from our monitoring campaign, to test time-evolution of their time delays. Using both modeled and observed AGN light curves, we apply Gaussian kernel-based estimator to capture variation of local patterns of their time evolving delays. The largest variations of time delays of all objects occur in the period when continuum or emission lines luminosity is the highest. However, Gaussian kernel-based method shows instability in the case of NGC 5548, 3C 390.3, E1821+643 and NGC 4051 possibly due to numerical discrepancies between damped random walk (DRW) time scale of light curves and sliding time windows of the method. The temporal variations of time lags of Arp 102B can correspond to the real nature of the time lag evolution.
Analytic Time Delays and $H_{0}$ Estimates for Gravitational Lenses
Witt, H J; Keeton, C R
2000-01-01
We study gravitational lens time delays for a general family of lensing potentials, which includes the popular singular isothermal elliptical potential and singular isothermal elliptical density distribution but allows general angular structure. Using a novel approach, we show that the time delay can be cast in a very simple form, depending only on the observed image positions. Including an external shear changes the time delay proportional to the shear strength, and varying the radial profile of the potential changes the time delay approximately linearly. These analytic results can be used to obtain simple estimates of the time delay and the Hubble constant in observed gravitational lenses. The naive estimates for four of five time delay lenses show surprising agreement with each other and with local measurements of H_0; the complicated Q 0957+561 system is the only outlier. The agreement suggests that it is reasonable to use simple isothermal lens models to infer H_0, although it is still important to check...
Delayed biodiversity change: no time to waste
Czech Academy of Sciences Publication Activity Database
Essl, F.; Dullinger, S.; Rabitsch, W.; Hulme, P. E.; Pyšek, Petr; Wilson, J. R. U.; Richardson, D. M.
2015-01-01
Roč. 30, č. 7 (2015), s. 375-378. ISSN 0169-5347 R&D Projects: GA ČR GB14-36079G Grant ostatní: AV ČR(CZ) Praemium Academiae Institutional support: RVO:67985939 Keywords : biological invasions * global change * time lags Subject RIV: EH - Ecology, Behaviour Impact factor: 16.196, year: 2014
International Nuclear Information System (INIS)
We recently developed a transient-coupling measurement scheme, which we employed to uncover coherent laser-induced coupling of doubly-excited helium states to continuum states. Here, we apply this measurement scheme to study in detail the coherent electron dynamics and general absorption phenomena arising for single-excitation of helium around 24 eV with attosecond-pulsed VUV light fields. Exploiting a multidimensional control by (a) varying the time delay between the attosecond and a coupling laser pulse, (b) tuning the coupling laser intensity and (c) analyzing the propagation direction of the transmitted VUV attosecond pulse we observe the transformation of the original (Lorentzian) resonance shapes into Fano line shapes. To understand the mechanism behind this quantum control we performed numerical simulations to model our experimental results, which include the attosecond-pulsed excitation and laser coupling of multiple excited states. These simulations allowed us to identify the ponderomotive dressing of the states in the laser field as a key component for understanding the control of several line shapes of the observed absorption spectra.
Energy Technology Data Exchange (ETDEWEB)
Kaldun, Andreas; Ott, Christian; Stooss, Veit; Raith, Philipp; Meyer, Kristina; Laux, Martin; Blaettermann, Alexander; Ding, Thomas; Pfeifer, Thomas [Max-Planck Institut f. Kernphysik, Heidelberg (Germany)
2013-07-01
We recently developed a transient-coupling measurement scheme, which we employed to uncover coherent laser-induced coupling of doubly-excited helium states to continuum states. Here, we apply this measurement scheme to study in detail the coherent electron dynamics and general absorption phenomena arising for single-excitation of helium around 24 eV with attosecond-pulsed VUV light fields. Exploiting a multidimensional control by (a) varying the time delay between the attosecond and a coupling laser pulse, (b) tuning the coupling laser intensity and (c) analyzing the propagation direction of the transmitted VUV attosecond pulse we observe the transformation of the original (Lorentzian) resonance shapes into Fano line shapes. To understand the mechanism behind this quantum control we performed numerical simulations to model our experimental results, which include the attosecond-pulsed excitation and laser coupling of multiple excited states. These simulations allowed us to identify the ponderomotive dressing of the states in the laser field as a key component for understanding the control of several line shapes of the observed absorption spectra.
Truncated predictor feedback for time-delay systems
Zhou, Bin
2014-01-01
This book provides a systematic approach to the design of predictor based controllers for (time-varying) linear systems with either (time-varying) input or state delays. Differently from those traditional predictor based controllers, which are infinite-dimensional static feedback laws and may cause difficulties in their practical implementation, this book develops a truncated predictor feedback (TPF) which involves only finite dimensional static state feedback. Features and topics: A novel approach referred to as truncated predictor feedback for the stabilization of (time-varying) time-delay systems in both the continuous-time setting and the discrete-time setting is built systematically Semi-global and global stabilization problems of linear time-delay systems subject to either magnitude saturation or energy constraints are solved in a systematic manner Both stabilization of a single system and consensus of a group of systems (multi-agent systems) are treated in a unified manner by applying the truncated pre...
Switched Control of a Time Delayed Compass Gait Robot
Directory of Open Access Journals (Sweden)
Elyes Maherzi
2016-07-01
Full Text Available the analysis and control of delayed systems are becoming more and more research topics in progress. This is mainly due to the fact that the delay is frequently encountered in technological systems. Most control command laws are based on current digital computers and delays are intrinsic to the process or in the control loop caused by the transmission time control sequences, or computing time. In other hand, the controls of humanoid walking robot present a common problem in robotics because it involves physical interaction between an articulated system and its environment. This close relationship is actually a common set of fundamental problems such as the implementation of robust stable dynamic control. This paper presents acomplete approach, based on switched system theory, for the stabilization of a compass gait robot subject to time delays transmission. The multiple feedback gains designed are based on multiple linear systems governed by a switching control law. The establishment of control law in real time is affected by the unknown pounded random delay. The results obtained from this method show that the control law stabilize the compass robot walk despite a varying delay reaching six times sampling period.
An adaptive robust controller for time delay maglev transportation systems
Milani, Reza Hamidi; Zarabadipour, Hassan; Shahnazi, Reza
2012-12-01
For engineering systems, uncertainties and time delays are two important issues that must be considered in control design. Uncertainties are often encountered in various dynamical systems due to modeling errors, measurement noises, linearization and approximations. Time delays have always been among the most difficult problems encountered in process control. In practical applications of feedback control, time delay arises frequently and can severely degrade closed-loop system performance and in some cases, drives the system to instability. Therefore, stability analysis and controller synthesis for uncertain nonlinear time-delay systems are important both in theory and in practice and many analytical techniques have been developed using delay-dependent Lyapunov function. In the past decade the magnetic and levitation (maglev) transportation system as a new system with high functionality has been the focus of numerous studies. However, maglev transportation systems are highly nonlinear and thus designing controller for those are challenging. The main topic of this paper is to design an adaptive robust controller for maglev transportation systems with time-delay, parametric uncertainties and external disturbances. In this paper, an adaptive robust control (ARC) is designed for this purpose. It should be noted that the adaptive gain is derived from Lyapunov-Krasovskii synthesis method, therefore asymptotic stability is guaranteed.
Complex analytic signals applied on time delay estimation
Directory of Open Access Journals (Sweden)
Veličković Zoran S.
2008-01-01
Full Text Available In this paper, we present the concept of the time delay estimation based on the transformation of real sensor signals into analytic ones. We analyze the differential time delay values obtained using real seismic signals, simulated complex analytic signals and simulated complex analytic signals with real parts coming from real seismic signals. The simulation results indicate that the application of complex analytic signals leads to reliable computation of the differential time delay. The influence of specific signal parameters on spectral coherence threshold in systems for passive localization and proposed methods for lowering the threshold is analyzed. The computation of all differential time delays with respect to the reference sensor (geophone is based on the application of Generalized Cross-Correlation (GCC applied on corresponding analytic signals. The difficulties to select a peak of cross-correlation function that corresponds to true differential time delay when dealing with real signals are significantly reduced if GCC is applied on analytic signals. The efficiency of the proposed technique on differential delay estimation is performed on deterministic and real-life signals.
Attosecond double-slit experiment
Lindner, F.; Schaetzel, M. G.; Walther, H.; Baltuska, A.; Goulielmakis, E.; Krausz, F.; Milosevic, D. B; BAUER, D; Becker, W.; Paulus, G G
2005-01-01
A new scheme for a double-slit experiment in the time domain is presented. Phase-stabilized few-cycle laser pulses open one to two windows (``slits'') of attosecond duration for photoionization. Fringes in the angle-resolved energy spectrum of varying visibility depending on the degree of which-way information are observed. A situation in which one and the same electron encounters a single and a double slit at the same time is discussed. The investigation of the fringes makes possible interfe...
Detecting robust time-delayed regulation in Mycobacterium tuberculosis
Directory of Open Access Journals (Sweden)
Rajapakse Jagath C
2009-12-01
Full Text Available Abstract Background Time delays are often found in gene regulation though most techniques of building gene regulatory networks are not capable of capturing such phenomena. Here we look at the delays in the DNA repair system of Mycobacterium tuberculosis which is unusually slow in the bacteria. We propose a method based on a skip-chain model to study this phenomena in gene networks. The Viterbi paths of the underlying Markov chains find the most likely regulatory interactions among genes, taking care of very long delays. Using the derived networks, we discuss the delayed regulations and robustness of the DNA damage seen in the bacterium. Results We evaluated our method on time-course gene expressions after DNA damage with Mitocyin C. Several time-delayed interactions were observed with our analysis. The presence of hubs in the networks indicates that a small number of transcriptional factors regulate the rest of the system. We demonstrate the use of priors to overcome over-fitting problem in the generation of networks. We compare our results with the gene networks derived with dynamic Bayesian networks (DBN. Conclusion Different transcription networks are active at different stages, and constant feedback and regulation is maintained throughout the activities of a biological pathway. Skip-chain models are capable of capturing, long distant and the time-delayed regulations. Use of a Dirichlet prior over parameters and Gibbs prior over structure can greatly reduce the over-fitting in the new model.
Complex Time-Delay Systems Theory and Applications
Atay, Fatihcan M
2010-01-01
Time delays in dynamical systems arise as an inevitable consequence of finite speeds of information transmission. Realistic models increasingly demand the inclusion of delays in order to properly understand, analyze, design, and control real-life systems. The goal of this book is to present the state-of-the-art in research on time-delay dynamics in the framework of complex systems and networks. While the mathematical theory of delay equations is quite mature, its application to the particular problems of complex systems and complexity is a newly emerging field, and the present volume aims to play a pioneering role in this perspective. The chapters in this volume are authored by renowned experts and cover both theory and applications in a wide range of fields, with examples extending from neuroscience and biology to laser physics and vehicle traffic. Furthermore, all chapters include sufficient introductory material and extensive bibliographies, making the book a self-contained reference for both students and ...
Complete chaotic synchronization in mutually coupled time-delay systems.
Landsman, Alexandra S; Schwartz, Ira B
2007-02-01
Complete chaotic synchronization of end lasers has been observed in a line of mutually coupled, time-delayed system of three lasers, with no direct communication between the end lasers. The present paper uses ideas from generalized synchronization to explain the complete synchronization in the presence of long coupling delays, applied to a model of mutually coupled semiconductor lasers in a line. These ideas significantly simplify the analysis by casting the stability in terms of the local dynamics of each laser. The variational equations near the synchronization manifold are analyzed, and used to derive the synchronization condition that is a function of parameters. The results explain and predict the dependence of synchronization on various parameters, such as time delays, strength of coupling and dissipation. The ideas can be applied to understand complete synchronization in other chaotic systems with coupling delays and no direct communication between synchronized subsystems. PMID:17358399
The phantom robot - Predictive displays for teleoperation with time delay
Bejczy, Antal K.; Kim, Won S.; Venema, Steven C.
1990-01-01
An enhanced teleoperation technique for time-delayed bilateral teleoperator control is discussed. The control technique selected for time delay is based on the use of a high-fidelity graphics phantom robot that is being controlled in real time (without time delay) against the static task image. Thus, the motion of the phantom robot image on the monitor predicts the motion of the real robot. The real robot's motion will follow the phantom robot's motion on the monitor with the communication time delay implied in the task. Real-time high-fidelity graphics simulation of a PUMA arm is generated and overlaid on the actual camera view of the arm. A simple camera calibration technique is used for calibrated graphics overlay. A preliminary experiment is performed with the predictive display by using a very simple tapping task. The results with this simple task indicate that predictive display enhances the human operator's telemanipulation task performance significantly during free motion when there is a long time delay. It appears, however, that either two-view or stereoscopic predictive displays are necessary for general three-dimensional tasks.
Attosecond physics attosecond measurements and control of physical systems
Torres, Ricardo; Zaïr, Amelle
2013-01-01
Attophysics is an emerging field in physics devoted to the study and characterization of matter dynamics in the sub-femtosecond time scale. This book gives coverage of a broad set of selected topics in this field, exciting by their novelty and their potential impact. The book is written review-like. It also includes fundamental chapters as introduction to the field for non-specialist physicists. The book is structured in four sections: basics, attosecond pulse technology, applications to measurements and control of physical processes and future perspectives. It is a valuable reference tool for researchers in the field as well as a concise introduction to non-specialist readers.
Robust stability of discrete-time nonlinear system with time-delay
Institute of Scientific and Technical Information of China (English)
LIU Xin-ge; WU Min
2005-01-01
The robustly asymptotical stability problem for discrete-time nonlinear systems with time-delay was investigated. Positive definite matrix are constructed through Lyapunov functional. With the identity transform, property of matrix inverse and S-procedure, a new sufficient condition independent of the size of time-delay for robust stability of discrete-time nonlinear systems with time-delay is established. With Schur complement, another equivalent sufficient condition for robust stability of discrete-time nonlinear systems with time-delay is given. Finally, a sufficient condition dependent on the size of time-delay for robust stability of discrete-time nonlinear systems with time-delay is obtained. A unified approach is used to cast the robust stability problem into a convex optimization involving linear matrix inequalities.
Restrictions and stability of time-delayed dynamical networks
International Nuclear Information System (INIS)
In this paper we present a criteria for the global stability of general time-delayed dynamical networks. We show that under our criteria a network's stability is invariant with respect to the removal of time delays and the addition of single type time delays. As modifying a network's delays can have a destabilizing effect on the system's dynamics, this introduces a new and stronger form of global stability, which we call intrinsic stability. To carry out this analysis we introduce a family of graph transformations that can be used to maintain or modify the spectral radius of a graph. We then introduce the notion of an implicit delay and show that by removing a network's implicit delays the result is a lower dimensional system, which we term a network restriction. We demonstrate that such restrictions can be used to obtain improved estimates of a network's global stability. The effectiveness of our approach is illustrated by applications to various classes of Cohen–Grossberg neural networks. (paper)
Botmart, T.; Niamsup, P.
2012-01-01
We investigate the local exponential synchronization for complex dynamical networks with interval time-varying delays in the dynamical nodes and the switched coupling term simultaneously. The constraint on the derivative of the time-varying delay is not required which allows the time delay to be a fast time-varying function. By using common unitary matrix for different subnetworks, the problem of synchronization is transformed into the stability analysis of some linear switched delay systems....
Time delay due to spin inside a rotating shell
International Nuclear Information System (INIS)
In a previous paper, we have shown that when different images of the same source are observed at a far point by gravitational lensing, there may be an appreciable time delay between these images due to the spin of the central body. In this paper, we derive the time delay in the travel time of massless particles, e.g., photons, propagating inside a massive rotating shell. We analyse this time delay, due to the spin of a shell, in the case when two or more images of the same source, whose photons travel inside a rotating massive shell, are observed at a far point by gravitational lensing. We show that there may be an appreciable time delay due to the spin of the shell. In particular, we consider some astrophysical configurations: a typical rotating galaxy and a typical rotating cluster, or super-cluster of galaxies; this effect might be large enough to be detected at Earth. Thus, this phenomenon should be taken into account in the modelling of the time delay of different images from gravitational lensing and might be detectable in some gravitational-lensing images
Ionization and transient absorption control with a resonant attosecond clock
International Nuclear Information System (INIS)
Metastable states are important actors in the ionisation of atoms and molecules. Sub-femtosecond extreme ultraviolet pulses can coherently populate several transiently bound states at once, thus starting the attosecond clocks which are required to monitor and control ultrafast electronic evolution above the ionisation threshold. Here we illustrate, from a theoretical point of view, the effects coherent superpositions of 1Po doubly excited states in the helium atom have on channel-resolved photoelectron spectra as well as on the transient absorption spectrum of the atom in the extreme ultraviolet region, when they are created by a single-attosecond pulse in the presence of a strong few-cycle near-infrared/visible pulse which acts as a probe. Interference fringes varying rapidly with the pump-probe time delay are visible in both photoelectron and transient absorption spectra. From such fringes, the wave packet itself can conceivably be reconstructed. Conversely, all observables are modulated by the characteristic beating periods of the wave packet, so that control of partial ionisation yields, branching ratios, and light absorption or amplification can be achieved
Discrete-time systems with time-varying time delay: stability and stabilizability
Directory of Open Access Journals (Sweden)
2006-01-01
Full Text Available This paper deals with the class of linear discrete-time systems with varying time delay. The problems of stability and stabilizability for this class of systems are considered. Given an upper bound and a lower bound on the time-varying delay, sufficient conditions for checking the stability of this class of systems are developed. A control design algorithm is also provided. All the results developed in this paper are in the LMI formalism which makes their solvability easier using existing tools. A numerical example is provided to show the effectiveness of the established results.
On pole-placement controllers for linear time-delay systems with commensurate point delays
Directory of Open Access Journals (Sweden)
de la Sen M.
2005-01-01
Full Text Available We investigate the exact and approximate spectrum assignment properties associated with realizable output-feedback pole-placement-type controllers for single-input single-output linear time-invariant time-delay systems with commensurate point delays. The controller synthesis problem is discussed through the solvability of a set of coupled Diophantine equations of polynomials. An extra complexity is incorporated in the above design to cancel extra unsuitable dynamics being generated when solving the above Diophantine equations. Thus, the complete controller tracks any arbitrary prefixed (either finite or delay-dependent closed-loop spectrum. However, if the controller is simplified by deleting the above-mentioned extra complexity, then robust stability and approximated spectrum assignment are still achievable for a certain sufficiently small amount of delayed dynamics. Finally, the approximate spectrum assignment and robust stability problems are revisited under plant disturbances if the nominal controller is maintained. In the current approach, the finite spectrum assignment is only considered as a particular case of the designer's choice of a (delay-dependent arbitrary spectrum assignment objective.
Modified active disturbance rejection control for time-delay systems.
Zhao, Shen; Gao, Zhiqiang
2014-07-01
Industrial processes are typically nonlinear, time-varying and uncertain, to which active disturbance rejection control (ADRC) has been shown to be an effective solution. The control design becomes even more challenging in the presence of time delay. In this paper, a novel modification of ADRC is proposed so that good disturbance rejection is achieved while maintaining system stability. The proposed design is shown to be more effective than the standard ADRC design for time-delay systems and is also a unified solution for stable, critical stable and unstable systems with time delay. Simulation and test results show the effectiveness and practicality of the proposed design. Linear matrix inequality (LMI) based stability analysis is provided as well. PMID:24091193
Time-Delay Estimation in Dispersed Spectrum Cognitive Radio Systems
Directory of Open Access Journals (Sweden)
Celebi Hasari
2010-01-01
Full Text Available Time-delay estimation is studied for cognitive radio systems, which facilitate opportunistic use of spectral resources. A two-step approach is proposed to obtain accurate time-delay estimates of signals that occupy multiple dispersed bands simultaneously, with significantly lower computational complexity than the optimal maximum likelihood (ML estimator. In the first step of the proposed approach, an ML estimator is used for each band of the signal in order to estimate the unknown parameters of the signal occupying that band. Then, in the second step, the estimates from the first step are combined in various ways in order to obtain the final time-delay estimate. The combining techniques that are used in the second step are called optimal combining, signal-to-noise ratio (SNR combining, selection combining, and equal combining. It is shown that the performance of the optimal combining technique gets very close to the Cramer-Rao lower bound at high SNRs. These combining techniques provide various mechanisms for diversity combining for time-delay estimation and extend the concept of diversity in communications systems to the time-delay estimation problem in cognitive radio systems. Simulation results are presented to evaluate the performance of the proposed estimators and to verify the theoretical analysis.
A genetic time-delay circuitry in mammalian cells.
Weber, Wilfried; Kramer, Beat P; Fussenegger, Martin
2007-11-01
Gene expression circuitries with time-delayed expression profiles regulate key events, such as oscillating systems, noise elimination, and coordinated multi-step processes, in all organisms from bacteria to mammalian cells. We present the rational synthesis of a genetic circuit displaying time-delayed expression in silico and in mammalian cells. The network is based on a time-delay circuit, where the tetracycline-responsive transactivator (tTA) induces expression of the pristinamycin-responsive repressor PIP-KRAB, which silences expression of the terminal human placental secreted alkaline phosphatase (SEAP). While the addition of pristinamycin I inactivates PIP-KRAB and results in the immediate resumption of SEAP expression, addition of tetracycline abolishes PIP-KRAB synthesis. Consequently, SEAP production remains repressed until the PIP-KRAB buffer in the cell is eliminated. We characterized in silico and in vivo the time-delayed expression properties and analyzed the impact of the size and stability of the PIP-KRAB buffer on fine-tuning of the response kinetics. This tunable time-delay circuitry represents a biologic building block for emulating a fundamental circuit topology in integrated artificial synthetic gene networks for the design of tailor-made cell types and organisms. PMID:17461420
Wigner time delay in photodetachment of negative ions
Saha, S.; Deshmukh, P. C.; Jose, J.; Kkeifets, A. S.; Manson, S. T.
2016-05-01
In recent years, there has been much interest in studies on Wigner time delay in atomic photoionization using various experimental techniques and theoretical methodologies. In the present work, we report time delay in the photodetachment of negative ions using the relativistic-random-phase approximation (RRPA), which includes relativistic and important correlation effects. Time delay is obtained as energy derivative of phase of the photodetachment complex transition amplitude. We investigate the time delay in the dipole n p --> ɛd channels in the photodetachment of F- and Cl-, and in n f --> ɛg channels in the photodetachment of Tm-. In photodetachment of the negative ions, the photoelectron escapes in the field of the neutral atom and thus does not experience the nuclear Coulomb field; hence the phase is devoid of the Coulomb component. The systems chosen are well suited to examine the sensitivity of the photodetachment time delay to the centrifugal potential. The ions chosen have closed shells, and thus amenable to the RPA. Work supported by DOE, Office of Chemical Sciences, DST (India), and the Australian Research Council.
Attosecond electronic and nuclear quantum photodynamics of the ozone molecule
Energy Technology Data Exchange (ETDEWEB)
Halász, G. J. [Department of Information Technology, University of Debrecen, H-4010 Debrecen, PO Box 12 (Hungary); Perveaux, A.; Lasorne, B.; Gatti, F. [CTMM, Institut Charles Gerhardt Montpellier, F-34095 Montpellier Cedex 5 (France); Robb, M. A. [Imperial College London, Department of Chemistry, London SW7 2AZ (United Kingdom); Vibók, Á. [Department of Theoretical Physics, University of Debrecen, H-40410 Debrecen, PO Box 5 (Hungary)
2013-11-13
Coupled electron-nuclear dynamics simulations are investigated for the ozone molecule on the attosecond time scale. The initial wavepacket is pumped as a coherent superposition of two or three electronic states.
Kalman filtering for time-delayed linear systems
Institute of Scientific and Technical Information of China (English)
LU Xiao; WANG Wei
2006-01-01
This paper is to study the linear minimum variance estimation for discrete- time systems. A simple approach to the problem is presented by developing re-organized innovation analysis for the systems with instantaneous and double time-delayed measurements. It is shown that the derived estimator involves solving three different standard Kalman filtering with the same dimension as the original system. The obtained results form the basis for solving some complicated problems such as H∞ fixed-lag smoothing, preview control, H∞ filtering and control with time delays.
Linearisation via input-output injection of time delay systems
García-Ramírez, Eduardo; Moog, Claude H.; Califano, Claudia; Alejandro Márquez-Martínez, Luis
2016-06-01
This paper deals with the problem of linearisation of systems with constant commensurable delays by input-output injection using algebraic control tools based on the theory of non-commutative rings. Solutions for the problem of linearisation free of delays, and with delays of an observable nonlinear time-delay systems are presented based on the analysis of the input-output equation. These results are achieved by means of constructive algorithms that use the nth derivative of the output expressed in terms of the state-space variables instead of the explicit computation of the input-output representation of the system. Necessary and sufficient conditions are established in both cases by means of an invertible change of coordinates.
Chimera and globally clustered chimera: Impact of time delay
Sheeba, Jane H; Lakshmanan, M
2010-01-01
Following a short report of our preliminary results [Phys. Rev. E 79, 055203(R) (2009)], we present a more detailed study of the effects of coupling delay in diffusively coupled phase oscillator populations. We find that coupling delay induces chimera and globally clustered chimera (GCC) states in delay coupled populations. We show the existence of multi-clustered states that act as link between the chimera and the GCC states. A stable GCC state goes through a variety of GCC states, namely periodic, aperiodic, long-- and short--period breathers and becomes unstable GCC leading to global synchronization in the system, on increasing time delay. We provide numerical evidence and theoretical explanations for the above results and discuss possible applications of the observed phenomena.
Robust Moving Horizon H∞ Control of Discrete Time-Delayed Systems with Interval Time-Varying Delays
Directory of Open Access Journals (Sweden)
F. Yıldız Tascikaraoglu
2014-01-01
Full Text Available In this study, design of a delay-dependent type moving horizon state-feedback control (MHHC is considered for a class of linear discrete-time system subject to time-varying state delays, norm-bounded uncertainties, and disturbances with bounded energies. The closed-loop robust stability and robust performance problems are considered to overcome the instability and poor disturbance rejection performance due to the existence of parametric uncertainties and time-delay appeared in the system dynamics. Utilizing a discrete-time Lyapunov-Krasovskii functional, some delay-dependent linear matrix inequality (LMI based conditions are provided. It is shown that if one can find a feasible solution set for these LMI conditions iteratively at each step of run-time, then we can construct a control law which guarantees the closed-loop asymptotic stability, maximum disturbance rejection performance, and closed-loop dissipativity in view of the actuator limitations. Two numerical examples with simulations on a nominal and uncertain discrete-time, time-delayed systems, are presented at the end, in order to demonstrate the efficiency of the proposed method.
Absolute Stability of Discrete-Time Systems with Delay
Directory of Open Access Journals (Sweden)
Medina Rigoberto
2008-01-01
Full Text Available We investigate the stability of nonlinear nonautonomous discrete-time systems with delaying arguments, whose linear part has slowly varying coefficients, and the nonlinear part has linear majorants. Based on the "freezing" technique to discrete-time systems, we derive explicit conditions for the absolute stability of the zero solution of such systems.
Start time delays in operating room: Different perspectives
Directory of Open Access Journals (Sweden)
Babita Gupta
2011-01-01
Full Text Available Background: Healthcare expenditure is a serious concern, with escalating costs failing to meet the expectations of quality care. The treatment capacities are limited in a hospital setting and the operating rooms (ORs. Their optimal utilization is vital in efficient hospital management. Starting late means considerable wait time for staff, patients and waste of resources. We planned an audit to assess different perspectives of the residents in surgical specialities and anesthesia and OR staff nurses so as to know the causative factors of operative delay. This can help develop a practical model to decrease start time delays in operating room (ORs. Aims: An audit to assess different perspectives of the Operating room (OR staff with respect to the varied causative factors of operative delay in the OR. To aid in the development of a practical model to decrease start time delays in ORs and facilitate on-time starts at Jai Prakash Narayan Apex Trauma centre (JPNATC, All India Institute of Medical Sciences (AIIMS, New Delhi. Methods: We prepared a questionnaire seeking the five main reasons of delay as per their perspective. Results: The available data was analysed. Analysis of the data demonstrated the common causative factors in start time operative delays as: a lack of proper planning, deficiencies in team work, communication gap and limited availability of trained supporting staff. Conclusions: The preparation of the equipment and required material for the OR cases must be done well in advance. Utilization of newer technology enables timely booking and scheduling of cases. Improved inter-departmental coordination and compliance with preanesthetic instructions needs to be ensured. It is essential that the anesthesiologists perform their work promptly, well in time . and supervise the proceedings as the OR manager. This audit is a step forward in defining the need of effective OR planning for continuous quality improvement.
New delay-dependent synchronization criteria for Lur'e systems using time delay feedback control
International Nuclear Information System (INIS)
This Letter is concerned with the problem of master-slave synchronization for Lur'e systems using time delay feedback control. Based on a more general Lur'e-Postnikov Lyapunov functional, some new delay-dependent synchronization criteria are obtained and formulated in the form of linear matrix inequalities (LMIs). These criteria cover some existing results as their special cases. In order to obtain less conservative results, no model transformation is involved through derivation of the synchronization criteria. An example shows that the result obtained in this Letter significantly improves some existing one
Analytic treatment of the network synchronization problem with time delays
Hod, Shahar
2010-01-01
Motivated by novel results in the theory of network synchronization, we analyze the effects of nonzero time delays in stochastic synchronization problems with linear couplings in an arbitrary network. We determine {\\it analytically} the fundamental limit of synchronization efficiency in a noisy environment with uniform time delays. We show that the optimal efficiency of the network is achieved for $\\lambda\\tau={{\\pi^{3/2}}\\over{2\\sqrt{\\pi}+4}}\\approx0.738$, where $\\lambda$ is the coupling strength (relaxation coefficient) and $\\tau$ is the characteristic time delay in the communication between pairs of nodes. Our analysis reveals the underlying mechanism responsible for the trade-off phenomena observed in recent numerical simulations of network synchronization problems.
Delay time calculation for dual-wavelength quantum cascade lasers
Energy Technology Data Exchange (ETDEWEB)
Hamadou, A., E-mail: abd-hamado@yahoo.fr [Département des Sciences et Techniques, Faculté des Sciences et de la Technologie, Université de Bordj Bou Arreridj 34000 (Algeria); Laboratoire d’étude des surfaces et interfaces des matériaux solides (LESIMS), Sétif 19000 (Algeria); Lamari, S. [Laboratoire d’étude des surfaces et interfaces des matériaux solides (LESIMS), Sétif 19000 (Algeria); Département de Physique, Faculté des Sciences, Université Sétif 1, 19000 (Algeria); Thobel, J.-L. [Institut d' Electronique, de Microélectronique et de Nanotechnologie (IEMN), UMR 8520, Université Lille1, Avenue Poincaré, BP 60069, 59652 Villeneuve d' Ascq Cédex (France)
2013-11-28
In this paper, we calculate the turn-on delay (t{sub th}) and buildup (Δt) times of a midinfrared quantum cascade laser operating simultaneously on two laser lines having a common upper level. The approach is based on the four-level rate equations model describing the variation of the electron number in the states and the photon number present within the cavity. We obtain simple analytical formulae for the turn-on delay and buildup times that determine the delay times and numerically apply our results to both the single and bimode states of a quantum cascade laser, in addition the effects of current injection on t{sub th} and Δt are explored.
Delay time calculation for dual-wavelength quantum cascade lasers
International Nuclear Information System (INIS)
In this paper, we calculate the turn-on delay (tth) and buildup (Δt) times of a midinfrared quantum cascade laser operating simultaneously on two laser lines having a common upper level. The approach is based on the four-level rate equations model describing the variation of the electron number in the states and the photon number present within the cavity. We obtain simple analytical formulae for the turn-on delay and buildup times that determine the delay times and numerically apply our results to both the single and bimode states of a quantum cascade laser, in addition the effects of current injection on tth and Δt are explored
Birthrates and delay times of Type Ia supernovae
Wang, Bo; Han, Yunkun; Lei, Zhenxin; Luo, Yangping; Han, Zhanwen; 10.1007/s11433-010-0152-8
2010-01-01
Type Ia supernovae (SNe Ia) play an important role in diverse areas of astrophysics, from the chemical evolution of galaxies to observational cosmology. However, the nature of the progenitors of SNe Ia is still unclear. In this paper, according to a detailed binary population synthesis study, we obtained SN Ia birthrates and delay times from different progenitor models, and compared them with observations. We find that the Galactic SN Ia birthrate from the double-degenerate (DD) model is close to those inferred from observations, while the birthrate from the single-degenerate (SD) model accounts for only about 1/2-2/3 of the observations. If a single starburst is assumed, the distribution of the delay times of SNe Ia from the SD model is a weak bimodality, where the WD + He channel contributes to the SNe Ia with delay times shorter than 100Myr, and the WD + MS and WD + RG channels to those with age longer than 1Gyr.
Birthrates and delay times of Type Ia supernovae
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
Type Ia supernovae (SNe Ia) play an important role in diverse areas of astrophysics, from the chemical evolution of galaxies to observational cosmology. However, the nature of the progenitors of SNe Ia is still unclear. In this paper, according to a detailed binary population synthesis study, we obtained SN Ia birthrates and delay times from different progenitor models, and compared them with observations. We find that the Galactic SN Ia birthrate from the double-degenerate (DD) model is close to those inferred from observations, while the birthrate from the single-degenerate (SD) model accounts for only about 1/2-2/3 of the observations. If a single starburst is assumed, the distribution of the delay times of SNe Ia from the SD model is a weak bimodality, where the WD + He channel contributes to the SNe Ia with delay times shorter than 100 Myr, and the WD + MS and WD + RG channels to those with age longer than 1 Gyr.
Electron versus Proton Timing Delays in Solar Flares
Aschwanden, M J
1996-01-01
Both electrons and ions are accelerated in solar flares and carry nonthermal energy from the acceleration site to the chromospheric energy loss site, but the relative amount of energy carried by electrons versus ions is subject of debate. In this {\\sl Letter} we test whether the observed energy-dependent timing delays of 20-200 keV HXR emission can be explained in terms of propagating electrons versus protons. For a typical flare, we show that the timing delays of fast ($\\lapprox 1$ s) {\\sl HXR pulses} is consistent with time-of-flight differences of directly precipitating electrons, while the timing delays of the {\\sl smooth HXR} flux is consistent with collisional deflection times of trapped electrons. We show that these HXR timing delays cannot be explained either by $\\le 1$ MeV protons (as proposed in a model by Simnett \\& Haines 1990), because of their longer propagation and trapping times, or by $\\approx 40$ MeV protons (which have the same velocity as $\\approx 20$ keV electrons), because of their l...
Measurement of time delay for a prospectively gated CT simulator
Goharian M; Khan R. F. H.
2010-01-01
For the management of mobile tumors, respiratory gating is the ideal option, both during imaging and during therapy. The major advantage of respiratory gating during imaging is that it is possible to create a single artifact-free CT data-set during a selected phase of the patient′s breathing cycle. The purpose of the present work is to present a simple technique to measure the time delay during acquisition of a prospectively gated CT. The time delay of a Philips Brilliance BigBore͐...
Time Delay Properties of a Fabry-Perot Interferometer
Institute of Scientific and Technical Information of China (English)
YUAN Shi; MAN Wei-Ning; YU Jin; GAO Jin-Yue
2001-01-01
The time delay properties of a Fabry-Perot interferometer are investigated. We found that the group velocity of light through a Fabry-Perot interferometer can be reduced to 10-4 of the light speed in vacuum and the time delay is 210ns, when the reflectivity is 0.999 and the distance between two mirrors is 1 cm. The system is analogous to the recently proposed one-dimensional photonic band-gap structures with a defect [Zhu et al. Opt.Commun. 174(2000)139].
Kernel regression estimates of time delays between gravitationally lensed fluxes
Otaibi, Sultanah AL; Cuevas-Tello, Juan C; Mandel, Ilya; Raychaudhury, Somak
2015-01-01
Strongly lensed variable quasars can serve as precise cosmological probes, provided that time delays between the image fluxes can be accurately measured. A number of methods have been proposed to address this problem. In this paper, we explore in detail a new approach based on kernel regression estimates, which is able to estimate a single time delay given several datasets for the same quasar. We develop realistic artificial data sets in order to carry out controlled experiments to test of performance of this new approach. We also test our method on real data from strongly lensed quasar Q0957+561 and compare our estimates against existing results.
Novel stability criteria for neutral systems with multiple time delays
International Nuclear Information System (INIS)
Based on the eigenvalues of characteristic equations, some new criteria are derived to ensure the asymptotic stability for a class of neutral differential equations with multiple time delays. Conditions obtained here are independent of the time delays and easy to be checked. When suitable fj(.) (j = 1, 2, ..., m) are chosen, the model studied in this paper will reduce to a simple form. Moreover, our results can resolve some nonlinear neutral problems which are seldom discussed. Finally, an example with numerical simulation is given to show the effectiveness of our method
Measuring the delay time of transmission line accurately by oscilloscope
International Nuclear Information System (INIS)
In the signal measurements and the diagnoses of transmission line's hitch fields, the transmission line's delay time is usually used. In the paper, a method of using oscilloscope to measure transmission line's delay time is discussed. A method diagnosing transmission line's hitches is also provided. The methods have been used successfully. It will help the power transmission line 's and communication line's hitches to be found and restored fast in many fields, for example, the heavy snow disaster in the southern of China. (authors)
Bao, Haibo; Park, Ju H; Cao, Jinde
2016-01-01
This paper deals with the exponential synchronization of coupled stochastic memristor-based neural networks with probabilistic time-varying delay coupling and time-varying impulsive delay. There is one probabilistic transmittal delay in the delayed coupling that is translated by a Bernoulli stochastic variable satisfying a conditional probability distribution. The disturbance is described by a Wiener process. Based on Lyapunov functions, Halanay inequality, and linear matrix inequalities, sufficient conditions that depend on the probability distribution of the delay coupling and the impulsive delay were obtained. Numerical simulations are used to show the effectiveness of the theoretical results. PMID:26485723
Numerical simulation of time delays in light induced ionization
Su, Jing; Becker, Andreas; Jaroń-Becker, Agnieszka
2012-01-01
We apply a fundamental definition of time delay, as the difference between the time a particle spends within a finite region of a potential and the time a free particle spends in the same region, to determine results for photoionization of an electron by an extreme ultraviolet (XUV) laser field using numerical simulations on a grid. Our numerical results are in good agreement with those of the Wigner-Smith time delay, obtained as the derivative of the phase shift of the scattering wave packet with respect to its energy, for the short-range Yukawa potential. In case of the Coulomb potential we obtain time delays for any finite region, while - as expected - the results do not converge as the size of the region increases towards infinity. The impact of an ultrashort near-infrared probe pulse on the time delay is analyzed for both the Yukawa as well as the Coulomb potential and is found to be small for intensities below $10^{13}$ W/cm$^2$.
Losing track of time through delayed body representations
Directory of Open Access Journals (Sweden)
Thomas Hans Fritz
2015-04-01
Full Text Available The ability to keep track of time is perceived as crucial in most human societies. However, to lose track of time may also serve an important social role, associated with recreational purpose. To this end a number of social technologies are employed, some of which may relate to a manipulation of time perception through a modulation of body representation. Here we investigated an influence of real-time or delayed videos of own-body representations on time perception in an experimental setup with virtual mirrors. Seventy participants were asked to either stay in the installation until they thought that a defined time (90 s had passed, or they were encouraged to stay in the installation as long as they wanted and after exiting were asked to estimate the duration of their stay. Results show that a modulation of body representation by time-delayed representations of the mirror-video displays influenced time perception. Furthermore, these time-delayed conditions were associated with a greater sense of arousal and intoxication. We suggest that feeding in references to the immediate past into working memory could be the underlying mental mechanism mediating the observed modulation of time perception. We argue that such an influence on time perception would probably not only be achieved visually, but might also work with acoustic references to the immediate past (e.g., with music.
Time-delay models of heat transfer systems
International Nuclear Information System (INIS)
The paper deals with a new approach to modeling the heat transfer phenomena by means of differential equations with delays. The infinite order dynamics of thermal processes by suitable combinations of capacitance and delay elements is presented. An identification of transfer function of heat exchangers is presented. In the mathematical treatment of heat transfer systems, it is usually quite advantageous to deal in the frequency domain rather than the time. In such cases, the response of the system to sinusoidal inputs over a band of frequencies must be known. Identification is based on the least square method, which is based on minimization of the weighted sum of the squares of the errors between the absolute magnitudes of the frequency characteristic real object and the frequency characteristic of time-delay model of heat transfer system, which is proposed in this paper. (author)
Low-complexity controllers for time-delay systems
Özbay, Hitay; Bonnet, Catherine; Mounier, Hugues
2014-01-01
This volume in the newly established series Advances in Delays and Dynamics (ADD@S) provides a collection of recent results on the design and analysis of Low Complexity Controllers for Time Delay Systems. A widely used indirect method to obtain low order controllers for time delay systems is to design a controller for the reduced order model of the plant. In the dual indirect approach, an infinite dimensional controller is designed first for the original plant model; then, the controller is approximated by keeping track of the degradation in performance and stability robustness measures. The present volume includes new techniques used at different stages of the indirect approach. It also includes new direct design methods for fixed structure and low order controllers. On the other hand, what is meant by low complexity controller is not necessarily low order controller. For example, Smith predictor or similar type of controllers include a copy of the plant internally in the controller, so they are technically ...
Control of time stability of scintillation spectrometer of delayed coincidences
International Nuclear Information System (INIS)
Paper describes a system to control time stability of a two-detector plastic scintillation spectrometer of three-dimensional coincides. A two-reference control system incorporates a light guide base delay optical line, two light diodes and a two-channel generator of nanosecond pulses. A distinguishing feature of the design system is application of one delay line to form both advance and delay time signal as to the real coincidences in the studied radioactive source. The designed system of control enables to measure periods of half-decay of nuclei excited states within 40-100 ns range ensuring control of position of coincidence curve gravity centers within 4 ps limits
Two-actor conflict with time delay: A dynamical model
Qubbaj, Murad R.; Muneepeerakul, Rachata
2012-11-01
Recent mathematical dynamical models of the conflict between two different actors, be they nations, groups, or individuals, have been developed that are capable of predicting various outcomes depending on the chosen feedback strategies, initial conditions, and the previous states of the actors. In addition to these factors, this paper examines the effect of time delayed feedback on the conflict dynamics. Our analysis shows that under certain initial and feedback conditions, a stable neutral equilibrium of conflict may destabilize for some critical values of time delay, and the two actors may evolve to new emotional states. We investigate the results by constructing critical delay surfaces for different sets of parameters and analyzing results from numerical simulations. These results provide new insights regarding conflict and conflict resolution and may help planners in adjusting and assessing their strategic decisions.
Control of time stability of scintillation spectrometer of delayed coincidences
Morozov, V A
2002-01-01
Paper describes a system to control time stability of a two-detector plastic scintillation spectrometer of three-dimensional coincides. A two-reference control system incorporates a light guide base delay optical line, two light diodes and a two-channel generator of nanosecond pulses. A distinguishing feature of the design system is application of one delay line to form both advance and delay time signal as to the real coincidences in the studied radioactive source. The designed system of control enables to measure periods of half-decay of nuclei excited states within 40-100 ns range ensuring control of position of coincidence curve gravity centers within 4 ps limits
Atomic dynamics with attosecond VUV pulses
International Nuclear Information System (INIS)
Full text: Dynamical information on inner-shell processes was hitherto extracted from linewidths in the energy-domain. The recent realization of attosecond pulses with high photon energies now permits a time-based view of the extremely rapid relaxation processes that follow the creation of an atomic core hole. Extension of the pump-probe technique for this purpose requires i) ultrashort well isolated pulses of sufficiently high photon energy, and ii) a method for sampling the time of the emission of an electron with respect to the photoexcitation event. The exciting (pump) VUV pulses are generated as high harmonics of few-cycle (2-3 cycles of 2.5 fs) laser pulses (hv = 1.6 eV) in a neon medium at intensities exceeding 1014 W/cm2. Proper spectral filtering with dedicated multilayer reflectors at the harmonic cut-off results in VUV radiation bursts as short 250. The generated photon energies of about 100 eV are sufficiently energetic for creating vacancies in atoms, e.g. the M-shell of krypton, with the subsequent core-hole relaxation giving rise to emission of Auger electrons. A delayed (probe) laser ld acts as an ultrafast gate by exchanging momentum with the electron at the instant of its ejection, thus modulating the electrons kinetic energy. Analysis of the formed delay-dependent spectral sidebands reveals the evolution of the Auger wave packet. As the technique does not rely on particular transitions, a wide range of electron-emission processes following inner-shell photoexcitation will become accessible to time-resolved studies
POLE PLACEMENT CONTROLLERS FOR LINEAR TIME-DELAY SYSTEMS WITH COMMENSURATE POINT DELAYS
Institute of Scientific and Technical Information of China (English)
M. de la Sen
2004-01-01
This paper investigates the exact and approximate spectrum assignment properties associated with realizable output-feedback pole-placement type controllers for single-input single-output linear time-invariant time-delay systems with commensurate point delays. The controller synthesis problem is discussed through the solvability of a set of coupled diophantine equations of polynomials. An extra complexity is incorporated to the above design to cancel extra unsuitable dynamics being generated when solving the above diophantine equations. Thus, the complete controller tracks any arbitrary prefixed (either finite or delaydependent) closed-loop spectrum. However, if the controller is simplified by deleting the above mentioned extra complexity, then the robust stability and approximated spectrum assignment are still achievable for a certain sufficiently small amount of delayed dynamics. Finally, the approximate spectrum assignment and robust stability problems are revisited under plant disturbances if the nominal controller is maintained. In the current approach, the finite spectrum assignment is only considered as a particular case to the designer's choice of a (delay-dependent) arbitrary spectrum assignment objective.
Simultaneous Estimation of Time Delays and Quasar Structure
Morgan, Christopher W; Kochanek, C S; Morgan, Nicholas D; Falco, Emilio E; Vuissoz, Christel; Courbin, F; Meylan, G
2007-01-01
We expand our Bayesian Monte Carlo method for analyzing the light curves of gravitationally lensed quasars to simultaneously estimate time delays and quasar structure including their mutual uncertainties. We apply the method to HE1104-1805 and QJ0158-4325, two doubly-imaged quasars with microlensing and intrinsic variability on comparable time scales. For HE1104-1805 the resulting time delay of (Delta t_AB) = t_A - t_B = 162.2 -5.9/+6.3 days and accretion disk size estimate of log(r_s/cm) = 15.7 -0.5/+0.4 at 0.2 micron in the rest frame are consistent with earlier estimates but suggest that existing methods for estimating time delays in the presence of microlensing underestimate the uncertainties. We are unable to measure a time delay for QJ0158-4325, but the accretion disk size is log(r_s/cm) = 14.9 +/- 0.3 at 0.3 micron in the rest frame.
On Tuning PI Controllers for Integrating Plus Time Delay Systems
Directory of Open Access Journals (Sweden)
David Di Ruscio
2010-10-01
Full Text Available Some analytical results concerning PI controller tuning based on integrator plus time delay models are worked out and presented. A method for obtaining PI controller parameters, Kp=alpha/(k*tau, and, Ti=beta*tau, which ensures a given prescribed maximum time delay error, dtau_max, to time delay, tau, ratio parameter delta=dau_max/tau, is presented. The corner stone in this method, is a method product parameter, c=alpha*beta. Analytical relations between the PI controller parameters, Ti, and, Kp, and the time delay error parameter, delta, is presented, and we propose the setting, beta=c/a*(delta+1, and, alpha=a/(delta+1, which gives, Ti=c/a*(delta+1*tau, and Kp=a/((delta+1*k*tau, where the parameter, a, is constant in the method product parameter, c=alpha*beta. It also turns out that the integral time, Ti, is linear in, delta, and the proportional gain, Kp, inversely proportional to, delta+1. For the original Ziegler Nichols (ZN method this parameter is approximately, c=2.38, and the presented method may e.g., be used to obtain new modified ZN parameters with increased robustness margins, also documented in the paper.
Probing sub-cycle strong field ionization dynamics with an attosecond XUV pulse
International Nuclear Information System (INIS)
Full text: The dynamics of ionization in a strong laser field with wavelength around 800 nm (corresponding to an optical field cycle of ∼ 2.6 fs) can be investigated by using 250 attosecond extreme ultraviolet (XUV) pulse as a probe (1 attosecond = 10-18 s). Such pulses are now available in the laboratory and can be precisely timed relative to the laser pulse. The sub-laser-cycle ionization dynamics can be inferred by studying the XUV ionization yield with different time delays between the XUV pulse and the laser pulse. The XUV ionization yield as a function of delay reflects both, the ground state depletion as well as sub-cycle dynamical features of ionization. We present a theoretical investigation of the process. Simulations on one spatial dimension (1-d) show that the sub-cycle features may be attributed to the distortions of the ground state by the strong laser field. However, distortion of the ground state is expected to be larger in 1-d than in 3-d. Therefore we numerically solve the time-dependent Schroedinger equation in 3-d using cylindrical coordinates. We employ a hybrid discretization using finite elements and finite difference techniques. Total XUV ionization yields and electron spectra as a function of delay will be presented and the importance of adiabatic bound state distortion and of dynamical effects will be discussed. (author)
Enhanced multi-colour gating for the generation of high-power isolated attosecond pulses
Haessler, Stefan; Balčiūnas, T.; Fan, G.; Chipperfield, L.; Baltuska, A.
2014-01-01
Isolated attosecond pulses (IAP) generated by high-order harmonic generation are valuable tools that enable dynamics to be studied on the attosecond time scale. The applicability of these IAP would be widened drastically by increasing their energy. Here we analyze the potential of using multi-colour driving pulses for temporally gating the attosecond pulse generation process. We devise how this approach can enable the generation of IAP with the available high-energy kHz-repetition-rate Ytterb...
Multilayer Mirrors for Attosecond Pulse Shaping between 30 and 200 eV
Hofstetter, Michael
2011-01-01
Attosecond (as) physics has become a wide spreaded and still growing research field over the last decades. It allows for probing and controlling core- and outer shell electron dynamics with never before achieved temporal precision. High harmonic generation in gases in combination with advanced extreme ultraviolet (XUV ) optical components enable the generation of isolated attosecond pulses as required for absolute time measurements. But until recently, single attosecond pulse generation ha...
Time delayed processes in physics, biophysics and archaeology
Pelc, Magdalena Anna
2007-01-01
The motion of particles, where the particles: electrons, ions in microtubules or migrated peoples can be described as the superposition of diffusion and ordered waves. In this paper it is shown that the master equation for transport processes can be formulated as the time delayed hyperbolic partial equation. The equation describes the processes with memory. For characteristic times shorter than the relaxation time the master equation is the generalized Klein - Gordon equation. Key words: hyperbolic transport, microtubules, heat waves, Neolithic migration
Attosecond-magnetic-field-pulse generation by intense few-cycle circularly polarized UV laser pulses
Yuan, Kai-Jun; Bandrauk, André D.
2013-07-01
Intense attosecond-magnetic-field pulses are predicted to be produced by intense few-cycle attosecond circularly polarized UV pulses. Numerical solutions of the time-dependent Schrödinger equation for H2+ are used to study the electronic dynamical process. Spinning attosecond circular electron wave packets are created on subnanometer molecular dimensions, thus generating attosecond magnetic fields of several tens of Teslas (105 G). Simulations show that the induced magnetic field is critically dependent on the pulse wavelength λ and pulse duration nτ (n is number of cycles) as predicted by a classical model. For ultrashort few-cycle circularly polarized attosecond pulses, molecular orientation influences the generation of the induced magnetic fields as a result of preferential ionization perpendicular to the molecular axis. The nonspherical asymmetry of molecules allows for efficient attosecond-magnetic-field-pulse generation.
Attosecond quantum stroboscope.
Paulus, Gerhard G; Stania, Gernot
2009-04-14
Electron disco: A "quantum stroboscope" for capturing the electron motion on a subfemtosecond timescale for a particular class of problems is highlighted. The picture shows a diffraction pattern caused by wave packets obtained by synchronizing attosecond UV pulses to a near-IR field and ionizing rare-gas atoms. PMID:19294685
Detection of Delay Times in Interfered Body Waves and Applications
International Nuclear Information System (INIS)
Some spectral techniques which are 'auto-correlation', 'spectral nulls' and 'cepstrum' method are used for detection of the delay times tele seismic P phases and their interference. In order to compare and check power of the method we applied the technic on different synthetic models then we applied to real earthquake data
Controlling Beam Halo-Chaos via Time-Delayed Feedback
Institute of Scientific and Technical Information of China (English)
FANG Jin-Qing; WENG Jia-Qiang; ZHU Lun-Wu; LUO Xiao-Shu
2004-01-01
The study of controlling high-current proton beam halo-chaos has become a key concerned issue for many important applications. In this paper, time-delayed feedback control method is proposed for beam halo-chaos. Particle in cell simulation results show that the method is very effective and has some advantages for high-current beam experiments and engineering.
Introduction to time-delay systems analysis and control
Fridman, Emilia
2014-01-01
The beginning of the 21st century can be characterized as the ”time-delay boom” leading to numerous important results. The purpose of this book is two-fold, to familiarize the non-expert reader with time-delay systems and to provide a systematic treatment of modern ideas and techniques for experts. This book is based on the course ”Introduction to time-delay systems” for graduate students in Engineering and Applied Mathematics that the author taught in Tel Aviv University in 2011-2012 and 2012-2013 academic years. The sufficient background to follow most of the material are the undergraduate courses in mathematics and an introduction to control. The book leads the reader from some basic classical results on time-delay systems to recent developments on Lyapunov-based analysis and design with applications to the hot topics of sampled-data and network-based control. The objective is to provide useful tools that will allow the reader not only to apply the existing methods, but also to develop new ones. It...
Strong Lens Time Delay Challenge: I. Experimental Design
Dobler, Gregory; Treu, Tommaso; Marshall, Phillip J; Liao, Kai; Hojjati, Alireza; Linder, Eric; Rumbaugh, Nicholas
2013-01-01
The time delays between point-like images in gravitational lens systems can be used to measure cosmological parameters as well as probe the dark matter (sub-)structure within the lens galaxy. The number of lenses with measured time delays is growing rapidly as a result of some dedicated efforts; the upcoming Large Synoptic Survey Telescope (LSST) will monitor ~1000 lens systems consisting of a foreground elliptical galaxy producing multiple images of a background quasar. In an effort to assess the present capabilities of the community to accurately measure the time delays in strong gravitational lens systems, and to provide input to dedicated monitoring campaigns and future LSST cosmology feasibility studies, we invite the community to take part in a "Time Delay Challenge" (TDC). The challenge is organized as a set of "ladders", each containing a group of simulated datasets to be analyzed blindly by participating independent analysis teams. Each rung on a ladder consists of a set of realistic mock observed le...
Generation of attosecond electron bunches
International Nuclear Information System (INIS)
Ultra-fast science is an important new research frontier that is driving the development of novel sources for generation of extremely short x-ray and electron pulses. Recent advances in femtosecond lasers have stimulated development of femtosecond x-ray sources that allow the study of matter at the time scale shorter than period of oscillations of atoms in molecules, ∼ 100 fs. The next breakthrough would be a source of electron pulses comparable with atomic periods ω-1 ∼ 100 attosecond (10-16 s), where ω is a transition frequency between atomic levels. This will open qualitatively new class of phenomena based on the interaction of atomic electrons in the medium with a collective electric field of electron pulses and not with their individual electrons. For example, one can expect coherent ionization losses that are proportional to a square number of electrons in the microbunch, phase synchronized excitation of medium followed by its relaxation with a radiation of a single-cycled optical pulse, excitation of entanglement states in the medium of atoms with few valence electrons, and possibly other new phenomena, yet to be identified. Simple estimation of coherent ionization losses shows that a 100 MeV, 100 attosecond electron pulse containing 105 electrons will lose its total energy after propagating only ∼ 200(micro)m through liquid hydrogen. This is approximately 104 times shorter stopping range than it is for a long (on atomic scale) electron bunch
Time-dependent delayed signatures from energetic photon interrogations
International Nuclear Information System (INIS)
Pulsed photonuclear interrogation environments generated by 8-24 MeV electron linac are rich with time-dependent, material-specific, radiation signatures. Nitrogen-based explosives and nuclear materials can be detected by exploiting these signatures in different delayed-time regions. Numerical and experimental results presented in this paper show the unique time and energy dependence of these signatures. It is shown that appropriate delayed-time windows are essential to acquire material-specific signatures in pulsed photonuclear assessment environments. These developments demonstrate that pulsed, high-energy, photon-inspection environments can be exploited for time-dependent, material-specific signatures through the proper operation of specialized detectors and detection methods
Time-Dependent Delayed Signatures from Energetic Photon Interrogations
International Nuclear Information System (INIS)
Pulsed photonuclear interrogation environments generated by 8-24 MeV electron linac are rich with time-dependent, material-specific, radiation signatures. Nitrogen-based explosives and nuclear materials can be detected by exploiting these signatures in different delayed-time regions. Numerical and experimental results presented in this paper show the unique time and energy dependence of these signatures. It is shown that appropriate delayed-time windows are essential to acquire material-specific signatures in the pulsed photonuclear assessment (PPA) environments. These developments demonstrate that pulsed, high-energy, photon- inspection environments can be exploited for time-dependent, material-specific signatures through the proper operation of specialized detectors and detection methods
Bilateral Teleoperation in Cartesian Space with Time-Varying Delay
Directory of Open Access Journals (Sweden)
Zhang Chen
2012-10-01
Full Text Available The bilateral control of a teleoperator in Cartesian space with time‐varying delay is studied in this paper. Compared with the traditional joint‐space teleoperation mode, bilateral control in Cartesian space has advantages when dealing with the kinematically dissimilar (KDS teleoperation systems. A Cartesian space‐based PD‐like bilateral controller with dissipation factors is designed. Considering the fact that attitude errors derived by rotation matrix cannot be directly used for PD control, a quaternion‐based approach is adopted to calculate the attitude errors in Cartesian space. In order to overcome the instability brought about by communication delay, local damping components are employed at both ends of the teleoperator system. The variation of time delay may generate extra energy and influence the stability of the system, thus dissipation factors are introduced into the controller. The stability of the proposed bilateral controller is proved and the simulations show the effectiveness of the approach.
Dynamic Server Allocation over Time Varying Channels with Switchover Delay
Celik, Güner D; Modiano, Eytan
2012-01-01
We consider a dynamic server allocation problem over parallel queues with randomly varying connectivity and server switchover delay between the queues. At each time slot the server decides either to stay with the current queue or switch to another queue based on the current connectivity and the queue length information. Switchover delay occurs in many telecommunications applications and is a new modeling component of this problem that has not been previously addressed. We show that the simultaneous presence of randomly varying connectivity and switchover delay changes the system stability region and the structure of optimal policies. In the first part of the paper, we consider a system of two parallel queues, and develop a novel approach to explicitly characterize the stability region of the system using state-action frequencies which are stationary solutions to a Markov Decision Process (MDP) formulation. We then develop a frame-based dynamic control (FBDC) policy, based on the state-action frequencies, and ...
Use of Electron Correlation to Make Attosecond Measurements without Attosecond Pulses
International Nuclear Information System (INIS)
We describe how correlations between electrons can be used to trace the dynamics of correlated two-electron ionization with attosecond precision, without using attosecond pulses. The approach is illustrated using the example of Auger or Coster-Kronig decay triggered by photoionization with an extreme ultraviolet pulse. It requires correlated measurements of angle-resolved energy spectra of both the photo- and Auger electrons in the presence of a laser pulse. To reconstruct the dynamics, we use not only classical time and energy correlation, but also entanglement between the two electrons
Photoelectron spectrometer for attosecond spectroscopy of liquids and gases
Energy Technology Data Exchange (ETDEWEB)
Jordan, I.; Huppert, M.; Wörner, H. J., E-mail: hwoerner@ethz.ch [Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich (Switzerland); Brown, M. A. [Laboratory for Surface Science and Technology, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich (Switzerland); Bokhoven, J. A. van [Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich (Switzerland); Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, 5232 Villigen (Switzerland)
2015-12-15
A new apparatus for attosecond time-resolved photoelectron spectroscopy of liquids and gases is described. It combines a liquid microjet source with a magnetic-bottle photoelectron spectrometer and an actively stabilized attosecond beamline. The photoelectron spectrometer permits venting and pumping of the interaction chamber without affecting the low pressure in the flight tube. This pressure separation has been realized through a sliding skimmer plate, which effectively seals the flight tube in its closed position and functions as a differential pumping stage in its open position. A high-harmonic photon spectrometer, attached to the photoelectron spectrometer, exit port is used to acquire photon spectra for calibration purposes. Attosecond pulse trains have been used to record photoelectron spectra of noble gases, water in the gas and liquid states as well as solvated species. RABBIT scans demonstrate the attosecond resolution of this setup.
Photoelectron spectrometer for attosecond spectroscopy of liquids and gases
Jordan, I.; Huppert, M.; Brown, M. A.; van Bokhoven, J. A.; Wörner, H. J.
2015-12-01
A new apparatus for attosecond time-resolved photoelectron spectroscopy of liquids and gases is described. It combines a liquid microjet source with a magnetic-bottle photoelectron spectrometer and an actively stabilized attosecond beamline. The photoelectron spectrometer permits venting and pumping of the interaction chamber without affecting the low pressure in the flight tube. This pressure separation has been realized through a sliding skimmer plate, which effectively seals the flight tube in its closed position and functions as a differential pumping stage in its open position. A high-harmonic photon spectrometer, attached to the photoelectron spectrometer, exit port is used to acquire photon spectra for calibration purposes. Attosecond pulse trains have been used to record photoelectron spectra of noble gases, water in the gas and liquid states as well as solvated species. RABBIT scans demonstrate the attosecond resolution of this setup.
Measurement of time delay for a prospectively gated CT simulator.
Goharian, M; Khan, R F H
2010-04-01
For the management of mobile tumors, respiratory gating is the ideal option, both during imaging and during therapy. The major advantage of respiratory gating during imaging is that it is possible to create a single artifact-free CT data-set during a selected phase of the patient's breathing cycle. The purpose of the present work is to present a simple technique to measure the time delay during acquisition of a prospectively gated CT. The time delay of a Philips Brilliance BigBore (Philips Medical Systems, Madison, WI) scanner attached to a Varian Real-Time Position Management (RPM) system (Varian Medical Systems, Palo Alto, CA) was measured. Two methods were used to measure the CT time delay: using a motion phantom and using a recorded data file from the RPM system. In the first technique, a rotating wheel phantom was altered by placing two plastic balls on its axis and rim, respectively. For a desired gate, the relative positions of the balls were measured from the acquired CT data and converted into corresponding phases. Phase difference was calculated between the measured phases and the desired phases. Using period of motion, the phase difference was converted into time delay. The Varian RPM system provides an external breathing signal; it also records transistor-transistor logic (TTL) 'X-Ray ON' status signal from the CT scanner in a text file. The TTL 'X-Ray ON' indicates the start of CT image acquisition. Thus, knowledge of the start time of CT acquisition, combined with the real-time phase and amplitude data from the external respiratory signal, provides time-stamping of all images in an axial CT scan. The TTL signal with time-stamp was used to calculate when (during the breathing cycle) a slice was recorded. Using the two approaches, the time delay between the prospective gating signal and CT simulator has been determined to be 367 +/- 40 ms. The delay requires corrections both at image acquisition and while setting gates for the treatment delivery
Measurement of time delay for a prospectively gated CT simulator
Directory of Open Access Journals (Sweden)
Goharian M
2010-01-01
Full Text Available For the management of mobile tumors, respiratory gating is the ideal option, both during imaging and during therapy. The major advantage of respiratory gating during imaging is that it is possible to create a single artifact-free CT data-set during a selected phase of the patient′s breathing cycle. The purpose of the present work is to present a simple technique to measure the time delay during acquisition of a prospectively gated CT. The time delay of a Philips Brilliance BigBore™ (Philips Medical Systems, Madison, WI scanner attached to a Varian Real-Time Position Management™ (RPM system (Varian Medical Systems, Palo Alto, CA was measured. Two methods were used to measure the CT time delay: using a motion phantom and using a recorded data file from the RPM system. In the first technique, a rotating wheel phantom was altered by placing two plastic balls on its axis and rim, respectively. For a desired gate, the relative positions of the balls were measured from the acquired CT data and converted into corresponding phases. Phase difference was calculated between the measured phases and the desired phases. Using period of motion, the phase difference was converted into time delay. The Varian RPM system provides an external breathing signal; it also records transistor-transistor logic (TTL ′X-Ray ON′ status signal from the CT scanner in a text file. The TTL ′X-Ray ON′ indicates the start of CT image acquisition. Thus, knowledge of the start time of CT acquisition, combined with the real-time phase and amplitude data from the external respiratory signal, provides time-stamping of all images in an axial CT scan. The TTL signal with time-stamp was used to calculate when (during the breathing cycle a slice was recorded. Using the two approaches, the time delay between the prospective gating signal and CT simulator has been determined to be 367 ± 40 ms. The delay requires corrections both at image acquisition and while setting gates for
Tunable Optical True-Time Delay Devices Would Exploit EIT
Kulikov, Igor; DiDomenico, Leo; Lee, Hwang
2004-01-01
Tunable optical true-time delay devices that would exploit electromagnetically induced transparency (EIT) have been proposed. Relative to prior true-time delay devices (for example, devices based on ferroelectric and ferromagnetic materials) and electronically controlled phase shifters, the proposed devices would offer much greater bandwidths. In a typical envisioned application, an optical pulse would be modulated with an ultra-wideband radio-frequency (RF) signal that would convey the information that one seeks to communicate, and it would be required to couple differently delayed replicas of the RF signal to the radiating elements of a phased-array antenna. One or more of the proposed devices would be used to impose the delays and/or generate the delayed replicas of the RF-modulated optical pulse. The beam radiated or received by the antenna would be steered by use of a microprocessor-based control system that would adjust operational parameters of the devices to tune the delays to the required values. EIT is a nonlinear quantum optical interference effect that enables the propagation of light through an initially opaque medium. A suitable medium must have, among other properties, three quantum states (see Figure 1): an excited state (state 3), an upper ground state (state 2), and a lower ground state (state 1). These three states must form a closed system that exhibits no decays to other states in the presence of either or both of two laser beams: (1) a probe beam having the wavelength corresponding to the photon energy equal to the energy difference between states 3 and 1; and (2) a coupling beam having the wavelength corresponding to the photon energy equal to the energy difference between states 3 and 2. The probe beam is the one that is pulsed and modulated with an RF signal.
The generalized Burgers equation with and without a time delay
Directory of Open Access Journals (Sweden)
Nejib Smaoui
2004-01-01
Full Text Available We consider the generalized Burgers equation with and without a time delay when the boundary conditions are periodic with period 2π. For the generalized Burgers equation without a time delay, that is, ut=vuxx−uux+u+h(x, 0
Delay-dependent asymptotic stability of a two-neuron system with different time delays
International Nuclear Information System (INIS)
In this paper, we consider a two-neuron system with time-delayed connections between neurons. Based on the construction of Lyapunov functionals, we obtain sufficient criteria to ensure local and global asymptotic stability of the equilibrium of the neural network. The obtained conditions are shown to be less conservative and restrictive than those reported in the literature. Some examples are included to illustrate our results
Equilibrium and Disequilibrium Dynamics in Cobweb Models with Time Delays
Gori, Luca; Guerrini, Luca; Sodini, Mauro
2015-06-01
This paper aims to study price dynamics in two different continuous time cobweb models with delays close to [Hommes, 1994]. In both cases, the stationary equilibrium may be not representative of the long-term dynamics of the model, since it is possible to observe endogenous and persistent fluctuations (supercritical Hopf bifurcations) even if a deterministic context without external shocks is considered. In the model in which markets are in equilibrium every time, we show that the existence of time delays in the expectations formation mechanism may cause chaotic dynamics similar to those obtained in [Hommes, 1994] in a discrete time context. From a mathematical point of view, we apply the Poincaré-Lindstedt perturbation method to study the local dynamic properties of the models. In addition, several numerical experiments are used to investigate global properties of the systems.
Optimal control for parabolic-hyperbolic system with time delay
International Nuclear Information System (INIS)
In this paper we consider an optimal control problem for a system described by a linear partial differential equation of the parabolic-hyperbolic type with time delay in the state. The right-hand side of this equation and the initial conditions are not continuous functions usually, but they are measurable functions belonging to L2 or Lsup(infinity) spaces. Therefore, the solution of this equation is given by a certain Sobolev space. The time delay in the state is constant, but it can be also a function of time. The control time T is fixed in our problem. Making use of the Milutin-Dubovicki theorem, necessary and sufficient conditions of optimality with the quadratic performance functional and constrained control are derived for the Dirichlet problem. The flow chart of the algorithm which can be used in the numerical solving of certain optimization problems for distributed systems is also presented. (author)
Time delay of interplanetary magnetic field penetration into Earth's magnetotail
Rong, Z. J.; Lui, A. T. Y.; Wan, W. X.; Yang, Y. Y.; Shen, C.; Petrukovich, A. A.; Zhang, Y. C.; Zhang, T. L.; Wei, Y.
2015-05-01
Many previous studies have demonstrated that the interplanetary magnetic field (IMF) can control the magnetospheric dynamics. Immediate magnetospheric responses to the external IMF have been assumed for a long time. The specific processes by which IMF penetrates into magnetosphere, however, are actually unclear. Solving this issue will help to accurately interpret the time sequence of magnetospheric activities (e.g., substorm and tail plasmoids) exerted by IMF. With two carefully selected cases, we found that the penetration of IMF into magnetotail is actually delayed by 1-1.5 h, which significantly lags behind the magnetotail response to the solar wind dynamic pressure. The delayed time appears to vary with different auroral convection intensity, which may suggest that IMF penetration in the magnetotail is controlled considerably by the dayside reconnection. Several unfavorable cases demonstrate that the penetration lag time is more clearly identified when storm/substorm activities are not involved.
Real-time estimation of ionospheric delay using GPS measurements
Lin, Lao-Sheng
1997-12-01
When radio waves such as the GPS signals propagate through the ionosphere, they experience an extra time delay. The ionospheric delay can be eliminated (to the first order) through a linear combination of L1 and L2 observations from dual-frequency GPS receivers. Taking advantage of this dispersive principle, one or more dual- frequency GPS receivers can be used to determine a model of the ionospheric delay across a region of interest and, if implemented in real-time, can support single-frequency GPS positioning and navigation applications. The research objectives of this thesis were: (1) to develop algorithms to obtain accurate absolute Total Electron Content (TEC) estimates from dual-frequency GPS observables, and (2) to develop an algorithm to improve the accuracy of real-time ionosphere modelling. In order to fulfil these objectives, four algorithms have been proposed in this thesis. A 'multi-day multipath template technique' is proposed to mitigate the pseudo-range multipath effects at static GPS reference stations. This technique is based on the assumption that the multipath disturbance at a static station will be constant if the physical environment remains unchanged from day to day. The multipath template, either single-day or multi-day, can be generated from the previous days' GPS data. A 'real-time failure detection and repair algorithm' is proposed to detect and repair the GPS carrier phase 'failures', such as the occurrence of cycle slips. The proposed algorithm uses two procedures: (1) application of a statistical test on the state difference estimated from robust and conventional Kalman filters in order to detect and identify the carrier phase failure, and (2) application of a Kalman filter algorithm to repair the 'identified carrier phase failure'. A 'L1/L2 differential delay estimation algorithm' is proposed to estimate GPS satellite transmitter and receiver L1/L2 differential delays. This algorithm, based on the single-site modelling technique, is
Stability analysis of time-delayed DC motor speed control system
Ayasun, Saffet
2013-01-01
In this paper, the stability of time-delayed DC motor speed control systems is analyzed. The measurement devices and communication links used by networked control systems, cause a significant amount of time delays. The stability boundary of the system in terms of the time delay is theoretically determined and an expression is obtained to compute the delay margin in terms of system parameters. The delay margin is defined as the maximum amount of time delay for which the DC motor spee...
The elimination of prompt components in delayed coincidence time distributions
International Nuclear Information System (INIS)
In the centroid-shift analysis of a delayed coincidence time distribution, an unknown prompt component may considerably influence the result. A new procedure is proposed to quantitatively identify and eliminate the prompt component in a complex time distribution provided the shape of the experimental apparatus response function is known. The procedure uses some features of the realistic complex distribution. Practical applications to experimental data obtained in different reactions with germanium detectors are demonstrated. (orig.)
Elimination of prompt components in delayed coincidence time distributions
Energy Technology Data Exchange (ETDEWEB)
Petkov, P.; Andrejtscheff, W.; Kostov, L.K.; Kostova, L.G.
1988-09-01
In the centroid-shift analysis of a delayed coincidence time distribution, an unknown prompt component may considerably influence the result. A new procedure is proposed to quantitatively identify and eliminate the prompt component in a complex time distribution provided the shape of the experimental apparatus response function is known. The procedure uses some features of the realistic complex distribution. Practical applications to experimental data obtained in different reactions with germanium detectors are demonstrated.
Absolute Stability of Discrete-Time Systems with Delay
Directory of Open Access Journals (Sweden)
Rigoberto Medina
2008-02-01
Full Text Available We investigate the stability of nonlinear nonautonomous discrete-time systems with delaying arguments, whose linear part has slowly varying coefficients, and the nonlinear part has linear majorants. Based on the Ã¢Â€ÂœfreezingÃ¢Â€Â technique to discrete-time systems, we derive explicit conditions for the absolute stability of the zero solution of such systems.
Creation and control of single attosecond XUV pulse by few-cycle intense laser pulse
Carrera, Juan J.; Tong, X. M.; Chu, Shih-I.
2006-05-01
We present a theoretical investigation of the mechanisms responsible for the production of single atto-second pulse by using few-cycle intense laser pulses. The atto-second XUV spectral is calculated by accurately integrating the time- dependent Schr"odinger equation. The detailed mechanism for the production of the XUV pulse are also corroborated by analyzing the classical trajectories of the electron. Our study shows that the first return of the rescattering electron is responsible for the high energy atto-second pulse. Furthermore, we can optimize the production of atto-second XUV pulses by modifying the trajectory of the rescattering electron by tuning the laser field envelope.
Attosecond control of optical waveforms
International Nuclear Information System (INIS)
A new, monolithic scheme for stabilizing the phase between the carrier wave and the envelope (CE phase) in a train of few-cycle laser pulses is demonstrated. Self-phase modulation and second-harmonic generation or difference-frequency generation in a single periodically poled lithium niobate crystal, that transmits the main laser beam, allows for the CE-phase locking directly in the usable output. The monolithic scheme obviates the need for splitting off a fraction of the laser output for CE-phase control, coupling into microstructured fibre, as well as separation and recombination of spectral components. As a result, the CE-phase error integrated over the spectral range of 0.2 mHz-35 MHz is as small as 0.016 x 2π rad. This implies that the phase of the field oscillations (λ ∼ 830 nm) with respect to the pulse peak is locked to within 44 attoseconds, resulting in optical waveform control with subhundred attosecond fidelity for the first time
Bounded Delay Timing Analysis of a Class of CSP Programs
DEFF Research Database (Denmark)
Hulgaard, Henrik; Burns, Steven M.
1997-01-01
We describe an algebraic technique for performing timing analysis of a class of asynchronous circuits described as CSP programs (including Martin's probe operator) with the restrictions that there is no OR-causality and that guard selection is either completely free or mutually exclusive. Such a...... description is transformed into a safe Petri net with interval time delays specified on the places of the net. The timing analysis we perform determines the extreme separation in time between two communication actions of the CSP program for all possible timed executions of the system. We formally define this...
International Nuclear Information System (INIS)
The asymptotic stability problem for discrete-time systems with time-varying delay subject to saturation nonlinearities is addressed in this paper. In terms of linear matrix inequalities (LMIs), a delay-dependent sufficient condition is derived to ensure the asymptotic stability. A numerical example is given to demonstrate the theoretical results.
International Nuclear Information System (INIS)
The asymptotic stability problem for Takagi-Sugeno fuzzy systems with time-varying delay and parameter uncertainties is considered. Delay-dependent criterion is proposed to guarantee the asymptotic stability of the uncertain fuzzy systems. The result of [Li C, Wang H, Liao X. Delay-dependent robust stability of uncertain fuzzy systems with time-varying delays. IEE Proc Control Theory Appl 2004;151:417-21] is extended to more general case. Numerical example is provided to show that the obtained results significantly improve the allowed upper bounds of delay size over some existing ones in the literature
A Threshold Value for the Time Delay to TB Diagnosis
Uys, Pieter W.; Warren, Robin M.; van Helden, Paul D.
2007-01-01
Background In many communities where TB occurs at high incidence, the major force driving the epidemic is transmission. It is plausible that the typical long delay from the onset of infectious disease to diagnosis and commencement of treatment is almost certainly the major factor contributing to the high rate of transmission. Methodology/Principal Findings This study is confined to communities which are epidemiologically relatively isolated and which have low HIV incidence. The consequences of delays to diagnosis are analyzed and the existence of a threshold delay value is demonstrated. It is shown that unless a sufficient number of cases are detected before this threshold, the epidemic will escalate. The method used for the analysis avoids the standard computer integration of systems of differential equations since the intention is to present a line of reasoning that reveals the essential dynamics of an epidemic in an intuitively clear way that is nevertheless quantitatively realistic. Conclusions/Significance The analysis presented here shows that typical delays to diagnosis present a major obstacle to the control of a TB epidemic. Control can be achieved by optimizing the rapid identification of TB cases together with measures to increase the threshold value. A calculated and aggressive program is therefore necessary in order to bring about a reduction in the prevalence of TB in a community by decreasing the time to diagnosis in all its ramifications. Intervention strategies to increase the threshold value relative to the time to diagnosis and which thereby decrease disease incidence are discussed. PMID:17712405
Energy Technology Data Exchange (ETDEWEB)
Murnane, Margaret (University of Colorado, Boulder and NIST)
2010-03-31
Ever since the invention of the laser 50 years ago and its application in nonlinear optics, scientists have been striving to extend coherent laser beams into the x-ray region of the spectrum. Very recently however, the prospects for tabletop coherent sources at very short wavelengths, even in the hard x-ray region of the spectrum at wavelengths < 1nm, have brightened considerably. This advance is possible by taking nonlinear optics techniques to an extreme - physics that is the direct result of a new ability to manipulate electrons on the fastest, attosecond, time-scales of our natural world. Several applications have already been demonstrated, including making a movie of how electrons rearrange in a chemical bond changes shape as a molecule breaks apart, following how fast a magnetic material can flip orientation, understanding how fast heat flows in a nanocircuit, or building a microscope without lenses. Nature 460, 1088 (2009); Science 317, 775 (2007); Physical Review Letters 103, 257402 (2009); Nature Materials 9, 26 (2010); Nature 463, 214 (2010); Science 322, 1207 (2008).
Time-Dependent Delayed Signatures From Energetic Photon Interrogations
International Nuclear Information System (INIS)
A pulsed photonuclear interrogation environment is rich with time-dependent, material specific, radiation signatures. Exploitation of these signatures in the delayed time regime (>1us after the photon flash) has been explored through various detection schemes to identify both shielded nuclear material and nitrogen-based explosives. Prompt emission may also be invaluable for these detection methods. Numerical and experimental results, which utilize specially modified neutron and HpGe detectors, are presented which illustrate the efficacy of utilizing these time-dependent signatures. Optimal selection of the appropriate delayed time window is essential to these pulsed inspection systems. For explosive (ANFO surrogate) detection, both numerical models and experimental results illustrate that nearly all 14N(n,y) reactions have occurred within l00 us after the flash. In contrast, however, gamma-ray and neutron signals for nuclear material detection require a delay of several milliseconds after the photon pulse. In this case, any data collected too close to the photon flash results in a spectrum dominated by high energy signals which make it difficult to discern signatures from nuclear material. Specifically, two short-lived, high-energy fission fragments (97Ag(T1/2=5.1 s) and 94Sr(T1/2=75.2 s)) were measured and identified as indicators of the presence of fissionable material. These developments demonstrate that a photon inspection environment can be exploited for time-dependent, material specific signatures through the proper operation of specially modified detectors
Attosecond measurements without attosecond pulses: using particle correlation
International Nuclear Information System (INIS)
Full text: We describe how time and energy correlations between the electrons can be used to trace the dynamics of correlated two-electron ionization with sub-femtosecond precision, without using sub-femtosecond pulses. The approach is illustrated using the example of Auger or Coster-Kronig decay triggered by photo-ionization with an XUV pulse. It requires correlated measurements of angle-resolved energy spectra of both the photo- and Auger electrons in the presence of a laser pulse. Neither the XUV, nor the laser pulse have to be short compared to the decay time. We begin complete characterization of a process by reconstructing amplitude and phase of a correlated two-electron spectrum. Phase information is obtained in a manner similar to SPIDER reconstruction method of conventional ultrafast spectroscopy, where there is no fundamental limit to time resolution. Spectral phase is mapped onto amplitude modulation of spectral intensity by recording the interference of the original spectrum with its spectrally-shifted replica. Particle correlation also allows us to effectively solve the deconvolution problem, uncovering the fast component of the correlated process. One essential requirement, however, is temporal stability of the probe pulse relative to the pump: their relative jitter degrades time resolution. Fortunately, modem few-cycle infrared (IR) femtosecond pulses can be phase stabilized with incredible attosecond precision over very long times, naturally leading to attosecond stabilization of XUV pulses which they generate. Our approach can be used for any process resulting in the emission of two charged particles with fixed total energy. Examples are shake-off in one-photon two-electron ionization, photo-induced Auger or Coster-Kronig decay, etc. Ultrafast stages of such processes which can be time-resolved with our approach can also include Zeno and anti-Zeno stages of decay, core rearrangement, non-exponential decay due to structured continuum, etc. Ref. 1
Shahverdiev, E. M.; Shore, K. A.
2009-01-01
By studying the autocorrelation function of the optoelectronic feedback semiconductor laser output we establish that the signatures of time delays can be erased in systems incorporating modulated feedback time delays. This property is of importance for the suitability of such laser systems for secure chaos-based communication systems. We also make the first report on chaos synchronization in both unidirectionally and bidirectionally coupled multiple time delay chaotic semiconductor lasers wit...
Rates and Delay Times of Type Ia Supernovae
Ruiter, Ashley J; Fryer, Chris L
2009-01-01
We analyze the evolution of binary stars to calculate synthetic rates and delay times of the most promising Type Ia Supernovae progenitors. We present and discuss evolutionary scenarios in which a white dwarf reaches the Chandrasekhar-mass and potentially explodes in a Type Ia supernova. We consider: Double Degenerate (DDS), Single Degenerate (SDS), and AM Canum Venaticorum scenarios. The results are presented for two different star formation histories; burst (elliptical-like galaxies) and continuous (spiral-like galaxies). It is found that delay times for the DDS in our standard model (with common envelope efficiency alpha = 1) follow a power-law distribution. For the SDS we note a wide range of delay times, while AM CVn progenitors produce a short burst of SNe Ia at early times. We point out that only the rates for two merging carbon-oxygen white dwarfs, the only systems found in the DDS, are consistent with the observed rates for typical Milky Way-like spirals. We also note that DDS progenitors are the dom...
Sugitani, Yoshiki; Konishi, Keiji; Hara, Naoyuki
2015-10-01
We present a procedure to systematically design the connection parameters that will induce amplitude death in oscillator networks with time-varying delay connections. The parameters designed by the procedure are valid in oscillator networks with any network topology and with any connection delay. The validity of the design procedure is confirmed by numerical simulation. We also consider a partial time-varying delay connection, which has both time-invariant and time-varying delays. The effectiveness of the partial connection is shown theoretically and numerically. PMID:26565325
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
In this paper, using the theory of topological degree and Liapunov functional methods, the authors study the competitive neural networks with time delays and different time scales and present some criteria of global robust stability for this neural network model.
A case study for terahertz-assisted single attosecond pulse generation
Balogh, Emeric; Tosa, Valer; Varjú, Katalin
2014-01-01
We numerically investigate the use of strong THz radiation in assisting single attosecond pulse generation by few-cycle, 800 nm laser pulses. We optimize focusing conditions to generate short and powerful single attosecond pulses of high-energy photons by keeping the parameters of the THz field within the limits achieved experimentally. We show that using optimal focusing geometry isolated attosecond pulses shorter than 100 as can be obtained even in the absence of further gating or XUV compression techniques, using an 8 fs generating pulse. Furthermore, quantum path control of short- and long-trajectory components is demonstrated by varying the delay between the THz and IR pulses.
Numerical Investigation of Noise Enhanced Stability Phenomenon in a Time-Delayed Metastable System
Institute of Scientific and Technical Information of China (English)
JIA Zheng-Lin
2008-01-01
@@ The transient properties of a time-delayed metastable system subjected to the additive white noise are investigated by means of the stochastic simulation method. The noise enhanced stability phenomenon (NES) can be observed in this system and the effect of the delay time on the NES shows a critical behaviour, i.e., there is a critical value of the delay time Tc ≈ 1, above which the time delay enhances the NES effect with the delay time increasing and below which the time delay weakens the NES effect as the delay time increases.
Numerical Investigation of Noise Enhanced Stability Phenomenon in a Time-Delayed Metastable System
International Nuclear Information System (INIS)
The transient properties of a time-delayed metastable system subjected to the additive white noise are investigated by means of the stochastic simulation method. The noise enhanced stability phenomenon (NES) can be observed in this system and the effect of the delay time on the NES shows a critical behaviour, i.e., there is a critical value of the delay time τc ≈ 1, above which the time delay enhances the NES effect with the delay time increasing and below which the time delay weakens the NES effect as the delay time increases
Hopf Bifurcation in a Cobweb Model with Discrete Time Delays
Directory of Open Access Journals (Sweden)
Luca Gori
2014-01-01
Full Text Available We develop a cobweb model with discrete time delays that characterise the length of production cycle. We assume a market comprised of homogeneous producers that operate as adapters by taking the (expected profit-maximising quantity as a target to adjust production and consumers with a marginal willingness to pay captured by an isoelastic demand. The dynamics of the economy is characterised by a one-dimensional delay differential equation. In this context, we show that (1 if the elasticity of market demand is sufficiently high, the steady-state equilibrium is locally asymptotically stable and (2 if the elasticity of market demand is sufficiently low, quasiperiodic oscillations emerge when the time lag (that represents the length of production cycle is high enough.
Robust adaptive control for interval time-delay systems
Institute of Scientific and Technical Information of China (English)
Yizhong WANG; Huaguang ZHANG; Jun YANG
2006-01-01
This paper focuses on the robust adaptive control problems for a class of interval time-delay systems and a class of large-scale interconnected systems. The nonlinear uncertainties of the systems under study are bounded by high-order polynomial functions with unknown gains. Firstly, the adaptive feedback controller which can guarantee the stability of the closed-loop system in the sense of uniform ultimate boundedness is proposed. Then the proposed adaptive idea is extended to robust stabilizing designing method for a class of large-scale interconnected systems. Here, another problem we address is to design a decentralized feedback adaptive controller such that the closed-loop system is stable in the sense of uniform ultimate boundedness for all admissible uncertainties and time-delay. Finally, an illustrative example is given to show the validity of the proposed approach.
Construction of New Delay-Tolerant Space-Time Codes
Sarkiss, Mireille; Damen, Mohamed Oussama; Belfiore, Jean-Claude
2010-01-01
Perfect Space-Time Codes (STC) are optimal codes in their original construction for Multiple Input Multiple Output (MIMO) systems. Based on Cyclic Division Algebras (CDA), they are full-rate, full-diversity codes, have Non-Vanishing Determinants (NVD) and hence achieve Diversity-Multiplexing Tradeoff (DMT). In addition, these codes have led to optimal distributed space-time codes when applied in cooperative networks under the assumption of perfect synchronization between relays. However, they loose their diversity when delays are introduced and thus are not delay-tolerant. In this paper, using the cyclic division algebras of perfect codes, we construct new codes that maintain the same properties as perfect codes in the synchronous case. Moreover, these codes preserve their full-diversity in asynchronous transmission.
Time Delay Estimation in Room Acoustic Environments: An Overview
Directory of Open Access Journals (Sweden)
Benesty Jacob
2006-01-01
Full Text Available Time delay estimation has been a research topic of significant practical importance in many fields (radar, sonar, seismology, geophysics, ultrasonics, hands-free communications, etc.. It is a first stage that feeds into subsequent processing blocks for identifying, localizing, and tracking radiating sources. This area has made remarkable advances in the past few decades, and is continuing to progress, with an aim to create processors that are tolerant to both noise and reverberation. This paper presents a systematic overview of the state-of-the-art of time-delay-estimation algorithms ranging from the simple cross-correlation method to the advanced blind channel identification based techniques. We discuss the pros and cons of each individual algorithm, and outline their inherent relationships. We also provide experimental results to illustrate their performance differences in room acoustic environments where reverberation and noise are commonly encountered.
Cross section versus time delay and trapping probability
Luna-Acosta, G. A.; Fernández-Marín, A. A.; Méndez-Bermúdez, J. A.; Poli, Charles
2016-07-01
We study the behavior of the s-wave partial cross section σ (k), the Wigner-Smith time delay τ (k), and the trapping probability P (k) as function of the wave number k. The s-wave central square well is used for concreteness, simplicity, and to elucidate the controversy whether it shows true resonances. It is shown that, except for very sharp structures, the resonance part of the cross section, the trapping probability, and the time delay, reach their local maxima at different values of k. We show numerically that τ (k) > 0 at its local maxima, occurring just before the resonant part of the cross section reaches its local maxima. These results are discussed in the light of the standard definition of resonance.
Multipath time delay estimation of underwater acoustic sinusoidal signals
Institute of Scientific and Technical Information of China (English)
TONG Feng; XU Xiaomei; FANG Shiliang
2009-01-01
To overcome the performance limitation of multipath time-delay estimation posed by underwater acoustic sinusoidal signals, an approach incorporating the frequency-domain weighting of the highly oscillatory Nonlinear Least Squares (NLS) cost function with the evolutionary optimization was proposed to facilitate the accurate estimation of the multipath timedelay of sinusoidal signals. In the described method, the number of the effective multipath signals, which is included into the parameter model as well as the multipath time-delay and amplitude factor, can be estimated simultaneously thus avoiding the requirement of additional computation. The experimental results performed with numerical simulation and sea-trial data are provided, demonstrating the effectiveness and precision enhancement of the proposed algorithm.
Time Delay Systems Methods, Applications and New Trends
Vyhlídal, Tomáš; Niculescu, Silviu-Iulian; Pepe, Pierdomenico
2012-01-01
This volume is concerned with the control and dynamics of time delay systems; a research field with at least six-decade long history that has been very active especially in the past two decades. In parallel to the new challenges emerging from engineering, physics, mathematics, and economics, the volume covers several new directions including topology induced stability, large-scale interconnected systems, roles of networks in stability, and new trends in predictor-based control and consensus dynamics. The associated applications/problems are described by highly complex models, and require solving inverse problems as well as the development of new theories, mathematical tools, numerically-tractable algorithms for real-time control. The volume, which is targeted to present these developments in this rapidly evolving field, captures a careful selection of the most recent papers contributed by experts and collected under five parts: (i) Methodology: From Retarded to Neutral Continuous Delay Models, (ii) Systems, S...
Adaptive Stabilization for Nonholonomic Systems with Unknown Time Delays
Directory of Open Access Journals (Sweden)
Yuanyuan Wu
2013-01-01
Full Text Available This paper presents an adaptive control strategy for a class of nonholonomic systems in chained form with virtual control coefficients, nonlinear uncertainties, and unknown time delays. State scaling technique and backstepping recursive approach are applied to design a nonlinear state feedback controller, which can guarantee the stabilization of the closed-loop systems. The simulation results are provided to show the effectiveness of the proposed method.
Dynamic Programming and Time-Varying Delay Systems
Lincoln, Bo
2003-01-01
This thesis is divided into two separate parts. The first part is about Dynamic Programming for non-trivial optimal control problems. The second part introduces some useful tools for analysis of stability and performance of systems with time-varying delays. The two papers presented in the first part attacks optimal control problems with finite but rapidly increasing search space. In the first paper we try it reduce the complexity of the optimization by exploiting the structure of a cer...
STRONG LENS TIME DELAY CHALLENGE. I. EXPERIMENTAL DESIGN
Energy Technology Data Exchange (ETDEWEB)
Dobler, Gregory [Kavli Institute for Theoretical Physics, University of California Santa Barbara, Santa Barbara, CA 93106 (United States); Fassnacht, Christopher D.; Rumbaugh, Nicholas [Department of Physics, University of California, 1 Shields Avenue, Davis, CA 95616 (United States); Treu, Tommaso; Liao, Kai [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Marshall, Phil [Kavli Institute for Particle Astrophysics and Cosmology, P.O. Box 20450, MS29, Stanford, CA 94309 (United States); Hojjati, Alireza [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, B.C. V6T 1Z1 (Canada); Linder, Eric, E-mail: tt@astro.ucla.edu [Lawrence Berkeley National Laboratory and University of California, Berkeley, CA 94720 (United States)
2015-02-01
The time delays between point-like images in gravitational lens systems can be used to measure cosmological parameters. The number of lenses with measured time delays is growing rapidly; the upcoming Large Synoptic Survey Telescope (LSST) will monitor ∼10{sup 3} strongly lensed quasars. In an effort to assess the present capabilities of the community, to accurately measure the time delays, and to provide input to dedicated monitoring campaigns and future LSST cosmology feasibility studies, we have invited the community to take part in a ''Time Delay Challenge'' (TDC). The challenge is organized as a set of ''ladders'', each containing a group of simulated data sets to be analyzed blindly by participating teams. Each rung on a ladder consists of a set of realistic mock observed lensed quasar light curves, with the rungs' data sets increasing in complexity and realism. The initial challenge described here has two ladders, TDC0 and TDC1. TDC0 has a small number of data sets, and is designed to be used as a practice set by the participating teams. The (non-mandatory) deadline for completion of TDC0 was the TDC1 launch date, 2013 December 1. The TDC1 deadline was 2014 July 1. Here we give an overview of the challenge, we introduce a set of metrics that will be used to quantify the goodness of fit, efficiency, precision, and accuracy of the algorithms, and we present the results of TDC0. Thirteen teams participated in TDC0 using 47 different methods. Seven of those teams qualified for TDC1, which is described in the companion paper.
Fuzzy Association Degree with Delayed Time in Temporal Data Model
Institute of Scientific and Technical Information of China (English)
刘惟一; 郭陵芝; 宋宁
2001-01-01
This paper presents an expression of the semantic proximity. Based on the temporal data model, a method of the temporal approximation is given. Using these concepts, this paper provides an evaluated method of fuzzy and dynamic association degree with delayed time and a superposition method of association degrees. Particularly, by means of the fuzzy and dynamic association degree, the connection between the weather data of two regions can be discovered.
Simultaneous Estimation of Time Delays and Quasar Structure
Morgan, Christopher W.; Eyler, Michael E.; Kochanek, C. S.; Morgan, Nicholas D.; Falco, Emilio E.; Vuissoz, C.; Courbin, F.; Meylan, G.
2008-03-01
We expand our Bayesian Monte Carlo method for analyzing the light curves of gravitationally lensed quasars to simultaneously estimate time delays and the sizes of quasar continuum emission regions including their mutual uncertainties. We apply the method to HE1104-1805 and QJ0158-4325, two doubly imaged quasars with microlensing and intrinsic variability on comparable timescales. For HE1104-1805 the resulting time delay of Δ tAB = tA - tB = 162.2-5.9+6.3 days and accretion disk size estimate of log {(rs/cm) [cos (i)/0.5]1/2} = 15.7-0.5+0.4 at 0.2 μm in the rest frame and for inclination i are consistent with earlier estimates but suggest that existing methods for estimating time delays in the presence of microlensing underestimate the uncertainties. We are unable to measure a time delay for QJ0158-4325, but the accretion disk size is log {(rs/cm) [cos (i)/0.5]1/2} = 14.9 +/- 0.3 at 0.3 μm in the rest frame. Based on observations obtained with the Small and Moderate Aperture Research Telescope System (SMARTS) 1.3 m, which is operated by the SMARTS Consortium, and observations made with the NASA/ESA Hubble Space Telescope for program HST-GO-9744 of the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.
Time-Delayed Spread of Viruses in Growing Plaques
Fort, Joaquim; Méndez López, Vicenç
2002-01-01
The spread of viruses in growing plaques predicted by classical models is greater than that measured experimentally. There is a widespread belief that this discrepancy is due to biological factors. Here we show that the observed speeds can be satisfactorily predicted by a purely physical model that takes into account the delay time due to virus reproduction inside infected cells. No free or adjustable parameters are used.
Controlling spatiotemporal dynamics with time-delay feedback
Bleich, M E; Bleich, Michael E; Socolar, Joshua E S
1996-01-01
We suggest a spatially local feedback mechanism for stabilizing periodic orbits in spatially extended systems. Our method, which is based on a comparison between present and past states of the system, does not require the external generation of an ideal reference state and can suppress both absolute and convective instabilities. As an example, we analyze the complex Ginzburg-Landau equation in one dimension, showing how the time-delay feedback enlarges the stability domain for travelling waves.
A method for efficient measurement of gravitational lensing time delays
Gürkan, Gülay
2011-01-01
This thesis presents an efficient technique for measuring lensing time delays which does not require regular monitoring with a high-resolution interferometer array. This method uses asymmetric double image and long-axis quadruple radio lens systems in which the brighter component(s) varies first and dominates the total flux density. Monitoring the total flux density with low-resolution but high sensitivity radio telescopes provides the variation of the brighter image and is used to trigger hi...
Strong lensing, time delays, and the value of H$_0$
Barnacka, Anna; Dell'antonio, Ian P; Benbow, Wystan
2014-01-01
In principle, the most straightforward method of estimating the Hubble constant relies on time delays between mirage images of strongly-lensed sources. It is a puzzle, then, that the values of H$_0$ obtained with this method span a range from $\\sim 50 - 100$ km s$^{-1}$Mpc$^{-1}$. Quasars monitored to measure these time delays, are multi-component objects. The variability may arise from different components of the quasar or may even originate from a jet. Misidentifying a variable emitting region in a jet with emission from the core region may introduce an error in the Hubble constant derived from a time delay. Here, we investigate the complex structure of sources as the underlying physical explanation of the wide spread in values of the Hubble constant based on gravitational lensing. Our Monte Carlo simulations demonstrate the potentially large impact of the position of the variable emitting region on H$_0$ determination. The derived value of the Hubble constant is very sensitive to the offset between the cen...
Negative Time Delay in Strongly Naked Singularity Lensing
DeAndrea, Justin P
2014-01-01
We model the supermassive galactic center of the Milky Way galaxy as a strongly naked singularity lens described by the Janis-Newman-Winicour metric. This metric has an ordinary mass and a massless scalar charge parameters. For very accurate results, we use Virbhadra-Ellis lens equation for computations. The galactic center serving as gravitational lens gives rise to 4 images: 2 images on the same side as the source and 2 images on the opposite side of the source from the optic axis. We compute positions and time delays of these images for many values of the angular source position. The time delays of primary images decrease with increase in the angular source position and is always negative. The time delays of the other 3 images are negative for small angular source position; however, they increase with an increase in angular source position. Such observations would support strongly naked singularity interpretation of the galactic center and, if ever observed, would disprove the cosmic censorship hypothesis ...
Correlation-induced Time Delay in Atomic Photoionization
Keating, David A.; Manson, Steven T.; Deshmukh, Pranawa C.; Kheifets, Anatoli S.
2016-05-01
Interchannel coupling has been seen to result in structures in the photoionization cross sections of outer shell electrons in the vicinity of inner-shell thresholds, a result which leads us to ask if the same would be true for the time delay of outer shell electrons near inner-shell thresholds. Using the relativistic-random-phase approximation (RRPA) methodology, a theoretical study of neon, argon, krypton, and xenon were performed to search for these correlation-induced effects. Calculations were performed both with coupling and without coupling to verify that the structures found in the time delay were in fact due to interchannel coupling. Using this method to study the effects of interchannel coupling reveals how much of an impact the coupling has on the time delay, in some cases over a broad energy range. In cases where the spin-orbit doublets' respective thresholds are far enough apart, effects can be found in the j = l + 1/2channels due to interchannel coupling with the j = l-1/2 channels. These structures are purely a relativistic effect and are related to spin-obit activated interchannel coupling effects. Work supported by DOE, Office of Chemical Sciences, DST (India), and the Australian Research Council.
A Comparison of Cosmological Models Using Time Delay Lenses
Wei, Jun-Jie; Melia, Fulvio
2014-01-01
The use of time-delay gravitational lenses to examine the cosmological expansion introduces a new standard ruler with which to test theoretical models. The sample suitable for this kind of work now includes 12 lens systems, which have thus far been used solely for optimizing the parameters of $\\Lambda$CDM. In this paper, we broaden the base of support for this new, important cosmic probe by using these observations to carry out a one-on-one comparison between {\\it competing} models. The currently available sample indicates a likelihood of $\\sim 70-80%$ that the $R_{\\rm h}=ct$ Universe is the correct cosmology versus $\\sim 20-30%$ for the standard model. This possibly interesting result reinforces the need to greatly expand the sample of time-delay lenses, e.g., with the successful implementation of the Dark Energy Survey, the VST ATLAS survey, and the Large Synoptic Survey Telescope. In anticipation of a greatly expanded catalog of time-delay lenses identified with these surveys, we have produced synthetic sa...
Qiranrong Tan; Weigen Wu; Jun Li; Xing Yin
2011-01-01
This paper deals with the problem of delay-dependent stability criterion of uncertain periodic switched recurrent neural networks with time-varying delays. When uncertain discrete-time recurrent neural network is a periodic system, it is expressed as switched neural network for the finite switching state. Based on the switched quadratic Lyapunov functional approach (SQLF) and free-weighting matrix approach (FWM), some linear matrix inequality criteria are found to guarantee the delay-dependen...
Extended time-delay autosynchronization for the buck converter
Batlle, C; Olivar, G
1996-01-01
Time-delay autosynchronization (TDAS) can be used to stabilize unstable periodic orbits in dynamical systems. The technique involves continuous feedback of signals delayed by the orbit's period. One variant, ETDAS, uses information further in the past. In both cases, the feedback signal vanishes on the target periodic orbit and hence the stabilized periodic orbit is one of the original dynamical system. Furthermore, this control method only requires the knowledge of the period of the unstable orbit. The amount of feedback gain needed to achieve stabilization varies with the bifurcation parameter(s) of the system, resulting in a domain of control. In this paper we compute the domain of control of the unstable periodic orbits of the \\textit{buck} converter. We obtain a closed analytical expression for the curve $g:S^1 \\rightarrow\\C$ whose index determines the stability, and this index is then numerically computed. We run several simulations of the controlled system and discuss the results.
Extreme fluctuations in stochastic network coordination with time delays
Hunt, D.; Molnár, F.; Szymanski, B. K.; Korniss, G.
2015-12-01
We study the effects of uniform time delays on the extreme fluctuations in stochastic synchronization and coordination problems with linear couplings in complex networks. We obtain the average size of the fluctuations at the nodes from the behavior of the underlying modes of the network. We then obtain the scaling behavior of the extreme fluctuations with system size, as well as the distribution of the extremes on complex networks, and compare them to those on regular one-dimensional lattices. For large complex networks, when the delay is not too close to the critical one, fluctuations at the nodes effectively decouple, and the limit distributions converge to the Fisher-Tippett-Gumbel density. In contrast, fluctuations in low-dimensional spatial graphs are strongly correlated, and the limit distribution of the extremes is the Airy density. Finally, we also explore the effects of nonlinear couplings on the stability and on the extremes of the synchronization landscapes.
Mahmoodi Nia, Payam; Sipahi, Rifat
2013-07-01
One of the critical parameters that can deteriorate the effectiveness of active vibration control (AVC) is the delay in sensors. Especially, in remote sensing where delays are large, and in high-speed applications with even small delays, instability can be inevitable. This paper presents algebraic approaches to design controllers in order to achieve stability regardless of the amount of delays for AVC applications modeled by linear time-invariant systems with "multiple" constant delays. The approaches are based on a nonconservative framework, and can identify the regions in the controller gain space where delay-independent stability (DIS) is achievable. With these controllers, we demonstrate via simulations that vibration suppression, within certain excitation frequency bands, can be improved or be as effective as those in AVC applications without delays.
Evolving to Type Ia Supernovae with Short Delay Times
Wang, Bo; Chen, Xuefei; Meng, Xiangcun; Han, Zhanwen
2009-01-01
The single-degenerate model is currently a favourable progenitor model for Type Ia supernovae (SNe Ia). Recent investigations on the WD + He star channel of the single-degenerate model imply that this channel is noteworthy for producing SNe Ia. In this paper we studied SN Ia birthrates and delay times of this channel via a detailed binary population synthesis approach. We found that the Galactic SN Ia birthrate from the WD + He star channel is $\\sim 0.3\\times 10^{-3} {\\rm yr}^{-1}$ according ...
DISCRETE VARIABLE STRUCTURE CONTROL OF LINEAR TIME-INVARIANT SYSTEMS WITH TIME DELAY
Institute of Scientific and Technical Information of China (English)
蔡国平; 黄金枝
2002-01-01
A discrete variable structure control(DVSC) method for the linear time-invariant systems with time delay was presented. The continuous time-delay systems are first transformed into the standard discrete form which contains no time delay by augmenting the state variables. Then the switching surface is determined by using the ideal quasi-sliding mode. As it is difficult for the state trajectory to reach the switching surface exactly, the reaching condition in the form of approach law is used to design the controller. The deduced switching surface and controller contain not only the current step of state feedback but also some former steps of controls. Stability analysis with and without time-delay information is also investigated in this paper. Numerical simulation was carried out to demonstrate the effectiveness and feasibility of the presented control method.
XUV attosecond pulses: generation and measurement
International Nuclear Information System (INIS)
An overview is given of the state-of-the-art in optical attosecond pulse generation and measurements. The emission of ultrashort bursts of XUV radiation from a laser driven plasma is described and analysed in the framework of a semiclassical model that explains essential features of the emitted spectrum. While under most conditions, trains of XUV bursts, separated by the half-cycle time of the driving laser field are emitted, few-cycle laser pulses of a well-defined carrier-envelope phase can yield isolated XUV pulses of sub-femtosecond duration. A time resolving correlation technique that relies on the interaction of electrons with a strong laser light field allows the measurement of attosecond electron dynamics from systems excited by these ultrashort XUV pulses. (topical review)
Predictive active disturbance rejection control for processes with time delay.
Zheng, Qinling; Gao, Zhiqiang
2014-07-01
Active disturbance rejection control (ADRC) has been shown to be an effective tool in dealing with real world problems of dynamic uncertainties, disturbances, nonlinearities, etc. This paper addresses its existing limitations with plants that have a large transport delay. In particular, to overcome the delay, the extended state observer (ESO) in ADRC is modified to form a predictive ADRC, leading to significant improvements in the transient response and stability characteristics, as shown in extensive simulation studies and hardware-in-the-loop tests, as well as in the frequency response analysis. In this research, it is assumed that the amount of delay is approximately known, as is the approximated model of the plant. Even with such uncharacteristic assumptions for ADRC, the proposed method still exhibits significant improvements in both performance and robustness over the existing methods such as the dead-time compensator based on disturbance observer and the Filtered Smith Predictor, in the context of some well-known problems of chemical reactor and boiler control problems. PMID:24182516
Attosecond physics at a nanoscale metal tip
Directory of Open Access Journals (Sweden)
Lemell Christoph
2013-03-01
Full Text Available With few-cycle laser oscillator pulses at 800 nm we observe strong-field and attosecond physics phenomena in electron spectra recorded at a nanoscale tungsten tip. We observe the rescattering plateau as well as a strong carrier-envelope phase dependence of the spectra. We model the results with the semiclassical three-step model as well as with time-dependent density functional theory.
Dey, Rajeeb; Ghosh, Sandip; Ray, Goshaidas; Rakshit, Anjan; Balas, Valentina Emilia
2015-09-01
This paper presents improved robust delay-range-dependent stability analysis of an uncertain linear time-delay system following two different existing approaches - (i) non-delay partitioning (NDP) and (ii) delay partitioning (DP). The derived criterion (for both the approaches) proposes judicious use of integral inequality to approximate the uncertain limits of integration arising out of the time-derivative of Lyapunov-Krasovskii (LK) functionals to obtain less conservative results. Further, the present work compares both the approaches in terms of relative merits as well as highlights tradeoff for achieving higher delay bound and (or) reducing number of decision variables without losing conservatism in delay bound results. The analysis and discussion presented in the paper are validated by considering relevant numerical examples. PMID:26190503
Robust Continuous-time Generalized Predictive Control for Large Time-delay System
Institute of Scientific and Technical Information of China (English)
WEI Huan; PAN Li-deng; ZHEN Xin-ping
2008-01-01
A simple delay-predictive continuous-time generalized predictive controller with filter (F - SDCGPC) is proposed. By using modified predictive output signal and cost function, the delay compensator is incorporated in the control law with observer structure, and a filter is added for enhancing robustness. The design of filter does not affect the nominal set-point response, and it is more flexible than the design of observer polynomial. The analysis and simulation results show that the F - SDCGPC has better robustness than the observer structure without filter when large time-delay error is considered.
Effects of time delay on stochastic resonance of the stock prices in financial system
International Nuclear Information System (INIS)
The effect of time delay on stochastic resonance of the stock prices in finance system was investigated. The time delay is introduced into the Heston model driven by the extrinsic and intrinsic periodic information for stock price. The signal power amplification (SPA) was calculated by numerical simulation. The results indicate that an optimal critical value of delay time maximally enhances the reverse-resonance in the behaviors of SPA as a function of long-run variance of volatility or cross correlation coefficient between noises for both cases of intrinsic and extrinsic periodic information. Moreover, in both cases, being a critical value in the delay time, when the delay time takes value below the critical value, reverse-resonance increases with the delay time increasing, however, when the delay time takes value above the critical value, the reverse-resonance decrease with the delay time increasing. - Highlights: • The effects of delay time on stochastic resonance of the stock prices was investigated. • There is an optimal critical value of delay time maximally enhances the reverse-resonance • The reverse-resonance increases with the delay time increasing as the delay time takes value below the critical value • The reverse-resonance decrease with the delay time increasing as the delay time takes value above the critical value
STRONG LENS TIME DELAY CHALLENGE. II. RESULTS OF TDC1
International Nuclear Information System (INIS)
We present the results of the first strong lens time delay challenge. The motivation, experimental design, and entry level challenge are described in a companion paper. This paper presents the main challenge, TDC1, which consisted of analyzing thousands of simulated light curves blindly. The observational properties of the light curves cover the range in quality obtained for current targeted efforts (e.g., COSMOGRAIL) and expected from future synoptic surveys (e.g., LSST), and include simulated systematic errors. Seven teams participated in TDC1, submitting results from 78 different method variants. After describing each method, we compute and analyze basic statistics measuring accuracy (or bias) A, goodness of fit χ2, precision P, and success rate f. For some methods we identify outliers as an important issue. Other methods show that outliers can be controlled via visual inspection or conservative quality control. Several methods are competitive, i.e., give |A| < 0.03, P < 0.03, and χ2 < 1.5, with some of the methods already reaching sub-percent accuracy. The fraction of light curves yielding a time delay measurement is typically in the range f = 20%-40%. It depends strongly on the quality of the data: COSMOGRAIL-quality cadence and light curve lengths yield significantly higher f than does sparser sampling. Taking the results of TDC1 at face value, we estimate that LSST should provide around 400 robust time-delay measurements, each with P < 0.03 and |A| < 0.01, comparable to current lens modeling uncertainties. In terms of observing strategies, we find that A and f depend mostly on season length, while P depends mostly on cadence and campaign duration
Delay-dependent stability of neural networks of neutral type with time delay in the leakage term
Li, Xiaodi; Cao, Jinde
2010-07-01
This paper studies the global asymptotic stability of neural networks of neutral type with mixed delays. The mixed delays include constant delay in the leakage term (i.e. 'leakage delay'), time-varying delays and continuously distributed delays. Based on the topological degree theory, Lyapunov method and linear matrix inequality (LMI) approach, some sufficient conditions are derived ensuring the existence, uniqueness and global asymptotic stability of the equilibrium point, which are dependent on both the discrete and distributed time delays. These conditions are expressed in terms of LMI and can be easily checked by the MATLAB LMI toolbox. Even if there is no leakage delay, the obtained results are less restrictive than some recent works. It can be applied to neural networks of neutral type with activation functions without assuming their boundedness, monotonicity or differentiability. Moreover, the differentiability of the time-varying delay in the non-neutral term is removed. Finally, two numerical examples are given to show the effectiveness of the proposed method.
Senthilkumar, D V; Lakshmanan, M
2007-03-01
Existence of a new type of oscillating synchronization that oscillates between three different types of synchronizations (anticipatory, complete, and lag synchronizations) is identified in unidirectionally coupled nonlinear time-delay systems having two different time-delays, that is feedback delay with a periodic delay time modulation and a constant coupling delay. Intermittent anticipatory, intermittent lag, and complete synchronizations are shown to exist in the same system with identical delay time modulations in both the delays. The transition from anticipatory to complete synchronization and from complete to lag synchronization as a function of coupling delay with suitable stability condition is discussed. The intermittent anticipatory and lag synchronizations are characterized by the minimum of the similarity functions and the intermittent behavior is characterized by a universal asymptotic -32 power law distribution. It is also shown that the delay time carved out of the trajectories of the time-delay system with periodic delay time modulation cannot be estimated using conventional methods, thereby reducing the possibility of decoding the message by phase space reconstruction. PMID:17411248
Almost Readily Detectable Time Delays from Gravity Waves?
Fakir, Redouane
1993-01-01
When a source of gravity waves is conveniently placed between the Earth and some source of light, preferably a pulsating source, the magnitude of time delays induced by the gravity waves could, in optimal situations, be not too far out of the reach of already existing technology. Besides the odd case of near-to-perfect alignment one might be lucky enough to encounter in the Galaxy, there exists several astronomical sites where good alignment occurs naturally. A good example is when the light ...
Adaptive cluster synchronization of directed complex networks with time delays.
Directory of Open Access Journals (Sweden)
Heng Liu
Full Text Available This paper studied the cluster synchronization of directed complex networks with time delays. It is different from undirected networks, the coupling configuration matrix of directed networks cannot be assumed as symmetric or irreducible. In order to achieve cluster synchronization, this paper uses an adaptive controller on each node and an adaptive feedback strategy on the nodes which in-degree is zero. Numerical example is provided to show the effectiveness of main theory. This method is also effective when the number of clusters is unknown. Thus, it can be used in the community recognizing of directed complex networks.
Equation and test of possible delay time of Newton force
Diósi, Lajos
2014-01-01
Recently, a simple heuristic modification of the Newton potential with a non-zero delay-time $\\tau_G$ has been proposed. Our modification is largely suppressed for purely gravitational interactions, it becomes relevant under non-gravitational accelerations of the sources. We illustrate how the choice $\\tau_G\\sim1$ms may already influence the 5th digit of G determined by Cavendish experiments. Re-evaluation of old Cavendish experiments and implementing slightly modified new ones may confirm the proposal or, at least, put a stronger upper limit on $\\tau_G$.
Topology Identification of General Dynamical Network with Distributed Time Delays
Institute of Scientific and Technical Information of China (English)
WU Zhao-Yan; FU Xin-Chu
2009-01-01
General dynamical networks with distributed time delays are studied. The topology of the networks are viewed as unknown parameters, which need to be identified. Some auxiliary systems (also called the network estimators)are designed to achieve this goal. Both linear feedback control and adaptive strategy are applied in designing these network estimators. Based on linear matrix inequalities and the Lyapunov function method, the sufficient condition for the achievement of topology identification is obtained. This method can also better monitor the switching topology of dynamical networks. Illustrative examples are provided to show the effectiveness of this method.
The Hubble constant inferred from 18 time-delay lenses
Paraficz, Danuta; Hjorth, Jens
2010-01-01
We present a simultaneous analysis of 18 galaxy lenses with time delay measurements. For each lens we derive mass maps using pixelated simultaneous modeling with shared Hubble constant. We estimate the Hubble constant to be 66_{-4}^{+6} km/s/Mpc (for a flat Universe with \\Omega_m=0.3, \\Omega_\\Lambda=0.7). We have also selected a subsample of five relatively isolated early type galaxies and by simultaneous modeling with an additional constraint on isothermality of their mass profiles we get H_...
Consensus in multi-agent systems with time-delays
Zareh Eshghdoust, Mehran
2015-01-01
Different consensus problems in multi-agent systems have been addressed in this thesis. They represent improvements with respect to the state of the art. In the first part of the thesis in luding Chapters 2, 3, and 4, the state of the art of the representation and stability analysis of consensus problems, time-delay systems, and sampled-data systems have been presented. Novel contributions have been illustrated in Chapters 5-8. Particularly, in Chapter 5 we reported the results of Zareh et a...
Generalized and projective synchronization in modulated time-delayed systems
International Nuclear Information System (INIS)
In this Letter, we propose a method for generalized and projective synchronization in modulated time-delayed systems using nonlinear active control. Sufficient condition for generalized synchronization is calculated analytically by Krasovskii-Lyapunov stability theory. The validity of the proposed algorithm has been confirmed by simulation results. The proposed method helps to find the explicit form of the functional relation between the synchronized variables, for which very few formulations are known at the present moment. Both usual and lag-anticipatory cases can be treated on the same footing.
NEW DESIGN OF ROBUST OPTIMAL ARBITRARY TIME-DELAY FILTER
Institute of Scientific and Technical Information of China (English)
WANG Xiaojun; SHAO Huihe
2007-01-01
Zero placement method in the frequency domain is utilized to design robust multi-hump EI optimal arbitrary time-delay filter (OATF) by placing two or more filter zeros near the system poles. A total insensitive OATF can be also achieved if the problem of insensitivity to damping errors is considered. This design strategy is easier to derive and implement. Applications in the anti-swing control of overhead cranes verify the fine performance of this strategy. A better suppression of the load vibrations is obtained using the proposed new OATF, which is more robust to the variation of the cable length.
Yuan, Kai-Jun; Bandrauk, André D.
2012-01-01
Angular distributions of molecular above-threshold ionization (MATI) in bichromatic attosecond extreme ultraviolet (XUV) linear polarization laser pulses have been theoretically investigated. Multiphoton ionization in a prealigned molecular ion H2+ produces clear MATI spectra which show a forward-backward asymmetry in angular and momentum distributions which is critically sensitive to the carrier envelope phase (CEP) φ, the time delay Δτ between the two laser pulses, and the photoelectron kinetic energies Ee. The features of the asymmetry in MATI angular distributions are described well by multiphoton perturbative ionization models. Phase differences of continuum electron wave functions can be extracted from the CEP φ and time delay Δτ dependent ionization asymmetry ratio created by interfering multiphoton ionization pathways. At large internuclear distances MATI angular distributions exhibit more complex features due to laser-induced electron diffraction where continuum electron wavelengths are less than the internuclear distance.
Stability of Impulsive Differential Equation with any Time Delay
Directory of Open Access Journals (Sweden)
Sanjay K. Srivastava
2013-03-01
Full Text Available In this paper, the stability of general impulsive retarded functional differential equations with any time delay has been considered. Many evolution processes are characterized by the fact that at certain moments of time they experience a change of state abruptly. Consequently, it is natural to assume that these perturbations act instantaneously, that is, in the form of impulses. Impulsive differential equations, that is, differential equations involving impulse effects, are a natural description of observed evolution phenomena of several real world problems. Impulsive control which based on impulsive differential equations has attracted the interest of many researchers recently. The method of Lyapunov functions and Razumikhin technique have been widely applied to stability analysis of various delay differential equation. When Lyapunov functions are used, it becomes necessary to choose an appropriate minimal class of functionals relative to which the derivative of the Lyapunov function is estimated. This approach is known as the Lyapunov–Razumikhin technique. When Lyapunov functionals are used the corresponding derivative can be estimated without demanding minimal classes of functional. By using Lyapunov functions and analysis technique along with Razumikhin technique, some results for the uniform stability of such impulsive differential equations have been derived. The obtained results extend and generalize some results existing in the literature.
Time-delayed absorber for controlling friction-driven vibration
Chatterjee, S.; Mahata, P.
2009-04-01
The efficacy of an active absorber based on the time-delayed displacement difference feedback in controlling friction-driven vibrations is discussed. Mainly two types of absorbers are considered: the tuned absorber having the natural frequency same as that of the primary system and the high-frequency absorber with the natural frequency higher than that of the primary system. The local stability analysis clearly demonstrates that the static equilibrium can be locally stabilized by appropriately selecting the control gain and the time-delay. The regions of stability are delineated in the plane of the control parameters. The robustness analysis is performed to help select the control parameters for the best performance. A method of optimizing the robustness of the system is presented. The influences of the absorber parameters on the degree of stability and the robustness are discussed. Numerical simulations of the system demonstrate that proper choices of the control parameters can also attain the global stability of the system. Numerical simulations reveal that apart from the globally stable static equilibrium or the coexisting locally stable static equilibrium with the stationary limit cycle vibrations, unbounded motions are also possible for some parameter values. Thus, care should be exercised in selecting the absorber parameters.
Effects of Time Delay on Three Interacting Species System with Noise
Su, Yi-Jian; Mei, Dong-Cheng
2008-09-01
We study the effects of time delay in three interacting species system with noise. The time evolution and spatiotemporal pattern in the Lotka-Volterra model of three interacting species with noise and time delay were investigated by means of stochastic simulation. Our results indicate that: (i) Time delay induces the synchronously periodic oscillations of the three species densities; (ii) Time delay cause the spatiotemporal pattern to be concentrated.
Generation of short and intense attosecond pulses
Khan, Sabih Ud Din
Extremely broad bandwidth attosecond pulses (which can support 16as pulses) have been demonstrated in our lab based on spectral measurements, however, compensation of intrinsic chirp and their characterization has been a major bottleneck. In this work, we developed an attosecond streak camera using a multi-layer Mo/Si mirror (bandwidth can support ˜100as pulses) and position sensitive time-of-flight detector, and the shortest measured pulse was 107.5as using DOG, which is close to the mirror bandwidth. We also developed a PCGPA based FROG-CRAB algorithm to characterize such short pulses, however, it uses the central momentum approximation and cannot be used for ultra-broad bandwidth pulses. To facilitate the characterization of such pulses, we developed PROOF using Fourier filtering and an evolutionary algorithm. We have demonstrated the characterization of pulses with a bandwidth corresponding to ˜20as using synthetic data. We also for the first time demonstrated single attosecond pulses (SAP) generated using GDOG with a narrow gate width from a multi-cycle driving laser without CE-phase lock, which opens the possibility of scaling attosecond photon flux by extending the technique to peta-watt class lasers. Further, we generated intense attosecond pulse trains (APT) from laser ablated carbon plasmas and demonstrated ˜9.5 times more intense pulses as compared to those from argon gas and for the first time demonstrated a broad continuum from a carbon plasma using DOG. Additionally, we demonstrated ˜100 times enhancement in APT from gases by switching to 400 nm (blue) driving pulses instead of 800 nm (red) pulses. We measured the ellipticity dependence of high harmonics from blue pulses in argon, neon and helium, and developed a simple theoretical model to numerically calculate the ellipticity dependence with good agreement with experiments. Based on the ellipticity dependence, we proposed a new scheme of blue GDOG which we predict can be employed to extract
Cho, Y.; Chang, C.-C.; Wang, L. V.; Zou, J.
2016-02-01
This paper reports the development of a new 16-channel parallel acoustic delay line (PADL) array for real-time photoacoustic tomography (PAT). The PADLs were directly fabricated from single-crystalline silicon substrates using deep reactive ion etching. Compared with other acoustic delay lines (e.g., optical fibers), the micromachined silicon PADLs offer higher acoustic transmission efficiency, smaller form factor, easier assembly, and mass production capability. To demonstrate its real-time photoacoustic imaging capability, the silicon PADL array was interfaced with one single-element ultrasonic transducer followed by one channel of data acquisition electronics to receive 16 channels of photoacoustic signals simultaneously. A PAT image of an optically-absorbing target embedded in an optically-scattering phantom was reconstructed, which matched well with the actual size of the imaged target. Because the silicon PADL array allows a signal-to-channel reduction ratio of 16:1, it could significantly simplify the design and construction of ultrasonic receivers for real-time PAT.
Controlling extended systems with spatially filtered, time-delayed feedback
Bleich, M E; Moloney, J V; Socolar, J E S; Bleich, Michael E.; Hochheiser, David; Moloney, Jerome V.; Socolar, Joshua E. S.
1997-01-01
We investigate a control technique for spatially extended systems combining spatial filtering with a previously studied form of time-delay feedback. The scheme is naturally suited to real-time control of optical systems. We apply the control scheme to a model of a transversely extended semiconductor laser in which a desirable, coherent traveling wave state exists, but is a member of a nowhere stable family. Our scheme stabilizes this state, and directs the system towards it from realistic, distant and noisy initial conditions. As confirmed by numerical simulation, a linear stability analysis about the controlled state accurately predicts when the scheme is successful, and illustrates some key features of the control including the individual merit of, and interplay between, the spatial and temporal degrees of freedom in the control.
DEFF Research Database (Denmark)
Londero, Louise Skovgaard; Nørgaard, Birgitte; Houlind, Kim Christian
2014-01-01
the emergency department. It is important to identify existing problems in order to reduce time delay. The aim of this study was to collect data for patients with acute limb ischemia and to evaluate the time delay between the different events from onset of symptoms to specialist evaluation and further...... arterial thrombolysis was 5621 (1686-8376) minutes. At 30 days follow up, six patients had had the ischemic limb amputated above the ankle and four patients had died. CONCLUSIONS: We found that the largest time delay was between onset of symptoms and first contact to a medical doctor. A greater public...
Delay-Dependent Absolute Stability ofUncertain Lur′e Systems with Time-Delays1）
Institute of Scientific and Technical Information of China (English)
CHENWu-Hua; GUANZhi-Hong; LUXiao-Mei; YANGXuan-Fang
2004-01-01
This paper is concerned with delay dependent absolute stability for a class of uncertain Lur′e systems with multiple time-delays. By using a descriptor model transformation of the sys-tem and by applying a recent result on bounding of cross products of vectors, a new type of Lya-punov-Krasovskii functional is constructed. Based on the new functional, delay-dependent suffi-cient conditions for absolute stability are derived in terms of linear matrix inequalities. These con-ditions do not require any parameter tuning, and can be solved numerically using the software LMI Lab. A numerical example is presented which shows that the proposed method can substantiallyimprove the delay bound for absolute stability of Lur′e system with time-delays, compared to theexisting ones.
A flexible apparatus for attosecond photoelectron spectroscopy of solids and surfaces
Energy Technology Data Exchange (ETDEWEB)
Magerl, E.; Stanislawski, M.; Uphues, Th. [Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermann-Strasse 1, 85748 Garching (Germany); Neppl, S.; Barth, J. V.; Menzel, D.; Feulner, P. [Physik Department E20, Technische Universitaet Muenchen, James-Franck-Strasse, 85748 Garching (Germany); Cavalieri, A. L. [Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermann-Strasse 1, 85748 Garching (Germany); Max-Planck Research Department for Structural Dynamics, Universitaet Hamburg, Notkestrasse 85, 22607 Hamburg (Germany); Bothschafter, E. M.; Ernstorfer, R.; Kienberger, R. [Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermann-Strasse 1, 85748 Garching (Germany); Physik Department E11, Technische Universitaet Muenchen, James-Franck-Strasse, 85748 Garching (Germany); Hofstetter, M.; Kleineberg, U.; Krausz, F. [Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermann-Strasse 1, 85748 Garching (Germany); Ludwig-Maximilians-Universitaet Muenchen, Fakultaet fuer Physik, Am Coulombwall 1, 85748 Garching (Germany)
2011-06-15
We describe an apparatus for attosecond photoelectron spectroscopy of solids and surfaces, which combines the generation of isolated attosecond extreme-ultraviolet (XUV) laser pulses by high harmonic generation in gases with time-resolved photoelectron detection and surface science techniques in an ultrahigh vacuum environment. This versatile setup provides isolated attosecond pulses with photon energies of up to 140 eV and few-cycle near infrared pulses for studying ultrafast electron dynamics in a large variety of surfaces and interfaces. The samples can be prepared and characterized on an atomic scale in a dedicated flexible surface science end station. The extensive possibilities offered by this apparatus are demonstrated by applying attosecond XUV pulses with a central photon energy of {approx}125 eV in an attosecond streaking experiment of a xenon multilayer grown on a Re(0001) substrate.
Attosecond metrology: from electron capture to future signal processing
Krausz, Ferenc; Stockman, Mark I.
2014-03-01
The accurate measurement of time lies at the heart of experimental science, and is relevant to everyday life. Extending chronoscopy to ever shorter timescales has been the key to gaining real-time insights into microscopic phenomena, ranging from vital biological processes to the dynamics underlying high technologies. The generation of isolated attosecond pulses in 2001 allowed the fastest of all motions outside the nucleus -- electron dynamics in atomic systems -- to be captured. Attosecond metrology has provided access to several hitherto immeasurably fast electron phenomena in atoms, molecules and solids. The fundamental importance of electron processes for the physical and life sciences, technology and medicine has rendered the young field of attosecond science one of the most dynamically expanding research fields of the new millennium. Here, we review the basic concepts underlying attosecond measurement and control techniques. Among their many potential applications, we focus on the exploration of the fundamental speed limit of electronic signal processing. This endeavour relies on ultimate-speed electron metrology, as provided by attosecond technology.
Real-Time Tropospheric Delay Estimation using IGS Products
Stürze, Andrea; Liu, Sha; Söhne, Wolfgang
2014-05-01
The Federal Agency for Cartography and Geodesy (BKG) routinely provides zenith tropospheric delay (ZTD) parameter for the assimilation in numerical weather models since more than 10 years. Up to now the results flowing into the EUREF Permanent Network (EPN) or E-GVAP (EUMETNET EIG GNSS water vapour programme) analysis are based on batch processing of GPS+GLONASS observations in differential network mode. For the recently started COST Action ES1206 about "Advanced Global Navigation Satellite Systems tropospheric products for monitoring severe weather events and climate" (GNSS4SWEC), however, rapid updates in the analysis of the atmospheric state for nowcasting applications require changing the processing strategy towards real-time. In the RTCM SC104 (Radio Technical Commission for Maritime Services, Special Committee 104) a format combining the advantages of Precise Point Positioning (PPP) and Real-Time Kinematic (RTK) is under development. The so-called State Space Representation approach is defining corrections, which will be transferred in real-time to the user e.g. via NTRIP (Network Transport of RTCM via Internet Protocol). Meanwhile messages for precise orbits, satellite clocks and code biases compatible to the basic PPP mode using IGS products are defined. Consequently, the IGS Real-Time Service (RTS) was launched in 2013 in order to extend the well-known precise orbit and clock products by a real-time component. Further messages e.g. with respect to ionosphere or phase biases are foreseen. Depending on the level of refinement, so different accuracies up to the RTK level shall be reachable. In co-operation of BKG and the Technical University of Darmstadt the real-time software GEMon (GREF EUREF Monitoring) is under development. GEMon is able to process GPS and GLONASS observation and RTS product data streams in PPP mode. Furthermore, several state-of-the-art troposphere models, for example based on numerical weather prediction data, are implemented. Hence, it
Modelling biochemical networks with intrinsic time delays: a hybrid semi-parametric approach
Directory of Open Access Journals (Sweden)
Oliveira Rui
2010-09-01
Full Text Available Abstract Background This paper presents a method for modelling dynamical biochemical networks with intrinsic time delays. Since the fundamental mechanisms leading to such delays are many times unknown, non conventional modelling approaches become necessary. Herein, a hybrid semi-parametric identification methodology is proposed in which discrete time series are incorporated into fundamental material balance models. This integration results in hybrid delay differential equations which can be applied to identify unknown cellular dynamics. Results The proposed hybrid modelling methodology was evaluated using two case studies. The first of these deals with dynamic modelling of transcriptional factor A in mammalian cells. The protein transport from the cytosol to the nucleus introduced a delay that was accounted for by discrete time series formulation. The second case study focused on a simple network with distributed time delays that demonstrated that the discrete time delay formalism has broad applicability to both discrete and distributed delay problems. Conclusions Significantly better prediction qualities of the novel hybrid model were obtained when compared to dynamical structures without time delays, being the more distinctive the more significant the underlying system delay is. The identification of the system delays by studies of different discrete modelling delays was enabled by the proposed structure. Further, it was shown that the hybrid discrete delay methodology is not limited to discrete delay systems. The proposed method is a powerful tool to identify time delays in ill-defined biochemical networks.
An all-optical time-delay relay based n a bacteriorhodopsin film
Institute of Scientific and Technical Information of China (English)
Chen Gui-Ying; Xu Xu-Xu; Zhang Chun-Ping; Qi Shen-Wen; Song Qi-Wang
2008-01-01
Using a special property of dynamic complementary-suppression-modulated transmission (DCSMT) in the bacteriorhodopsin (bR) film,we have demonstrated an all-optical time-delay relay.To extend our work,the relationship between the delay time of the all-optical time-delay relay and parameters of a bR film is numerically studied.We show how the delay time changes with the product of concentration and thickness (PCT) of a bR film.Furthermore,the shortest and longest delay times are given for the relay of 'switch off'.The saturable delay time and maximum delaytime of 'switch on' are also given.How the wavelengths (632.8,568,533 and 412 nm) and intensities of the illuminating light influence the delay time is also discussed.The simulation results are useful for optimizing the design of all-optical time-delay relays.
Semi-Discretization for Time-Delay Systems
Insperger, Tamás
2011-01-01
This book presents the recently introduced and already widely referred semi-discretization method for the stability analysis of delayed dynamical systems. Delay differential equations often come up in different fields of engineering, like feedback control systems, machine tool vibrations, balancing/stabilization with reflex delay. The behavior of such systems is often counter-intuitive and closed form analytical formulas can rarely be given even for the linear stability conditions. If parametric excitation is coupled with the delay effect, then the governing equation is a delay differential eq
A novel memristive time-delay chaotic system without equilibrium points
Pham, V.-T.; Vaidyanathan, S.; Volos, C. K.; Jafari, S.; Kuznetsov, N. V.; Hoang, T. M.
2016-02-01
Memristor and time-delay are potential candidates for constructing new systems with complex dynamics and special features. A novel time-delay system with a presence of memristive device is proposed in this work. It is worth noting that this memristive time-delay system can generate chaotic attractors although it possesses no equilibrium points. In addition, a circuitry implementation of such time-delay system has been introduced to show its feasibility.
DEFF Research Database (Denmark)
Xue, Weiqi; Mørk, Jesper
We experimentally demonstrate microwave time delays in a semiconductor optical amplifier by cross gain modulation. In the counter-propagation configuration, ~10.5ps tunable true time delay over a microwave bandwidth of several tens of GHz is obtained.......We experimentally demonstrate microwave time delays in a semiconductor optical amplifier by cross gain modulation. In the counter-propagation configuration, ~10.5ps tunable true time delay over a microwave bandwidth of several tens of GHz is obtained....
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
This paper focuses on the H∞ controller design for linear systems with time-varying delays and norm bounded parameter perturbetions in the system state and control/disturbance. On the existence of delayed/undelayed full state feedback controllers, we present a sufficient condition and give a design method in the form of Riccati equation. The controller can not only stabilize the time-delay system, but also make the H∞ norm of the closed-loop system be less than a given bound. This result practically generalizes the related results in current literature.
Zhao, Song-Feng; Zhou, Xiao-Xin; Li, Peng-Cheng; Chen, Zhangjin
2008-12-01
An efficient method to generate a short attosecond pulse is presented by using intense few-cycle shaped infrared (ir) laser in combination with an ultraviolet (uv) attosecond (as) pulse. We show that high-order harmonic generation (HHG) plateau near the cutoff is enhanced by one order of magnitude compared with the shaped laser case and the HHG supercontinuum spectrum is generated by adding a uv attosecond pulse to the few-cycle shaped ir laser at a proper time. By enhancing the long quantum path and suppressing the short one corresponding to one major return, an isolated 57-as pulse with a bandwidth of 62eV is obtained directly. The time-frequency characteristics of the HHG are analyzed in detail by means of the wavelet transform of the time-dependent induced dipole acceleration. In addition, we also perform classical trajectory simulation of the strong-field electron dynamics and electron return map.
Control of high order harmonic emission using attosecond pulse trains
International Nuclear Information System (INIS)
Full text: We show that attosecond pulse trains (APTs) are a natural tool for controlling strong field processes such as high order harmonic generation. When used in combination with an intense infrared laser field, the timing of the APT with respect to the infrared (IR) laser field can be used to microscopically select a single quantum path contribution to a process that would otherwise consist of many interfering components. It is through this timing that we predict control over the release of the electron into the continuum, its excursion inside the continuum and consequently influence the yield and coherence properties of the harmonics. Since our initial calculation was based on the time-dependent Schroedinger equation, only single atom effects could be predicted. We have carried out an initial experiment in which we generate the APT from harmonic generation in a xenon fiber target, and focus the APT together with the remaining IR field with an Ag mirror into an He gas jet. The photon spectrum for a fixed time delay between APT and IR field is shown: a clear enhancement of the harmonic spectrum at the cutoff region is seen only when both the APT and the IR field are present. We have predicted control over quantum paths of electron wavepackets using a combination of APT and an IR field, manifesting in the harmonic photon spectrum as order-of-magnitude enhancement of the harmonic yield and spectral cleanup. First experimental results, for a fixed time delay, clearly confirm the enhancement and spectral control, whereas in a future experiment we plan to vary the time delay. Refs. 3 (author)
Relativistic attosecond physics
International Nuclear Information System (INIS)
Full text: Few-cycle laser pulses focused to a λ3 volume can produce relativistic intensities with only millijoules of energy. Relativistic intensity is achieved when the dimensionless field strength a0 ≥ 1, where a0 = eE0/meωc (for λ = 800 nm, a0 = 1 corresponds to I = 2x1018 W/cm2). In the relativistic λ3 regime, isolated attosecond pulses are efficiently formed through relativistic reflection, deflection, and compression. Particle-in-cell (PIC) simulations show that attosecond pulses are formed for a variety of plasma profiles, and the compressed pulse durations can scale inversely with driving field strength. The extreme spatial and temporal gradients achieved through λ3 focusing provides the strongest slopes in the plasma density, deflecting subsequent half-cycles of the driving radiation into unique non-specular directions. The same coherent motion of the critical surface that provides relativistic deflection also provides relativistic Doppler compression, generating attosecond pulses with conversion efficiency ∼ 10-1 under optimal conditions. Previously, isolated attosecond pulses have been generated using high harmonic generation in gases with conversion efficiency ∼ 10-6. Simulations indicate that the dense relativistic electron sheets can be extracted when the driving laser is incident on a sharp plasma boundary at large angles of incidence. Electrons are ejected from the plasma at locations of minimal pressure and are accelerated by the electromagnetic field. In turn, these electrons deflect and compress the radiation into a train of attosecond electromagnetic pulses. The electron bunches inherit a chirped energy structure with sub-cycle duration; -2x108 electrons per bunch are observed for specific simulation parameters. Relativistic deflection and compression is expected whenever relativistic intensity laser pulses interact with a critically dense plasma. For τ 30 fs laser pulses, we observe relativistic deflection and spectral broadening
International Nuclear Information System (INIS)
One-species competition ecosystem with noise and time delay was investigated as not driven by a periodic force. The results show that the time delay is responsible for stochastic resonance of the system as delay time is smaller than critical point of the Hopf bifurcation. (general)
EXPERIMENTAL INVESTIGATION OF TIME DELAYS DATA TRANSMISSION IN AUTOMATIC CONTROL SYSTEMS
RYABENKIY Vladimir Mikhailovich; USHKARENKO Alexander Olegovich
2015-01-01
The method of statistical analysis of time-delay transmission of information and control packets over the network in automatic control systems are considered in this article. The results of measurements of time delays, which are obtained based on the analytic dependence of the probability density allow theoretically determine the time delays for data transmission.
Optimal tracking control of a flexible hub-beam system with time delay
International Nuclear Information System (INIS)
In this paper, a new technique of time-delay compensation is proposed for active control of a flexible hub-beam system. The first-order approximation coupling (FOAC) model proposed recently for dynamics of hub-beam systems is used to verify the applicability of this technique. The FOAC model is first linearized to obtain a linearized equation. The linearized equation with time delay is then transformed into a standard form with no time delay by a particular integral transformation. The time-delay controller is designed based on this standard equation using the classical optimal tracking control theory. Since the controller is a function of modal coordinates, a modal filter is presented to estimate the modal coordinates from physical sensor measurements. The effectiveness of the proposed technique for time delay is demonstrated by numerical simulations. Simulation results indicate that a very small time delay may result in instability of the control system if it is not compensated in control design. The proposed time-delay controller is effective in controlling the system even when the maximum time delay for stability without time-delay compensation is greatly exceeded. Moreover, for the system without time delay, the proposed time-delay controller may possibly obtain much better control effectiveness than the controller without time delay
Time-Delay Discrimination Training: Replication with Different Stimuli and Different Populations.
Smeets, Paul M.; And Others
1990-01-01
Two time-delay conditions for teaching complex visual discriminations to 14 normal preschoolers, 12 with mild mental retardation, and 11 with moderate mental retardation were compared. Results indicated that for all populations and stimuli, time delay of multiple dynamic distinctive-feature prompts produced learning, while time delay of the single…
Unified ab initio treatment of attosecond photoionization and Compton scattering
International Nuclear Information System (INIS)
We present a new theoretical approach to attosecond laser-assisted photo- and Compton ionization. Attosecond x-ray absorption and scattering are described by S-circumflex(1,2)-matrices, which are coherent superpositions of 'monochromatic' S-circumflex(1,2)-matrices in a laser-modified Furry representation. Besides refining the existing theory of the soft x-ray photoelectron attosecond streak camera and spectral phase interferometry (ASC and ASPI), we formulate a theory of hard x-ray photoelectron and Compton ASC and ASPI. The resulting scheme has a simple structure and leads to closed-form expressions for ionization amplitudes. We investigate Compton electron interference in the separable Coulomb-Volkov continuum with both Coulomb and laser fields treated non-perturbatively. We find that at laser-field intensities below 1013 Wcm-2 normalized Compton lines almost coincide with the lines obtained in the laser-free regime. At higher intensities, attosecond interferences survive integration over electron momenta, and feature prominently in the Compton lines themselves. We define a regime where the electron ground-state density can be measured with controllable accuracy in an attosecond time interval. The new theory provides a firm basis for extracting photo- and Compton electron phases and atomic and molecular wavefunctions from experimental data.
Attosecond streaking in a nano-plasmonic field
Kelkensberg, F.; Koenderink, A. F.; Vrakking, M. J. J.
2012-09-01
A theoretical study of the application of attosecond streaking spectroscopy to time-resolved studies of the plasmonic fields surrounding isolated, resonantly excited spherical nanoparticles is presented. A classification of the different regimes in attosecond streaking is proposed and identified in our results that are derived from Mie calculations of plasmon fields, coupled to classical electron trajectory simulations. It is shown that in an attosecond streaking experiment, the electrons are almost exclusively sensitive to the component of the field parallel to the direction in which they are detected. This allows one to probe the different components of the field individually by resolving the angle of emission of the electrons. Finally, simulations based on fields calculated by finite-difference time-domain (FDTD) are compared with the results obtained using Mie fields. The two are found to be in good agreement with each other, supporting the notion that FDTD methods can be used to reliably investigate non-spherical structures.
Model Following Control for Nonlinear System with Time Delay
Directory of Open Access Journals (Sweden)
Shujing Wu
2012-12-01
Full Text Available In this study, designing method of Model Following Control System (MFCS for nonlinear system with time delay and disturbances is discussed. The design of the control system is constructed. The features of this design method are: Bounded property of the inner states for the control system is given and the utility of this control de because there is no necessary to make transformation of this system; It is confirmed on basis of a num sign is guaranteed; Both the physical structure of the system and the physical system variables properties can be preserved because there is no necessary to make transformation of this system; It is confirmed on basis of a numerical example that the output signal of the control system asymptotically follows the reference model signal in the case of the existence of disturbances.
Strong Lens Time Delay Challenge: II. Results of TDC1
Liao, Kai; Marshall, Phil; Fassnacht, Christopher D; Rumbaugh, Nick; Dobler, Gregory; Aghamousa, Amir; Bonvin, Vivien; Courbin, Frederic; Hojjati, Alireza; Jackson, Neal; Kashyap, Vinay; Kumar, S Rathna; Linder, Eric; Mandel, Kaisey; Meng, Xiao-Li; Meylan, Georges; Moustakas, Leonidas A; Prabhu, Tushar P; Romero-Wolf, Andrew; Shafieloo, Arman; Siemiginowska, Aneta; Stalin, Chelliah S; Tak, Hyungsuk; Tewes, Malte; van Dyk, David
2014-01-01
We present the results of the first strong lens time delay challenge. The motivation, experimental design, and entry level challenge are described in a companion paper. This paper presents the main challenge, TDC1, which consisted in analyzing thousands of simulated light curves blindly. The observational properties of the light curves cover the range in quality obtained for current targeted efforts (e.g. COSMOGRAIL) and expected from future synoptic surveys (e.g. LSST), and include "evilness" in the form of simulated systematic errors. 7 teams participated in TDC1, submitting results from 78 different method variants. After a describing each method, we compute and analyze basic statistics measuring accuracy (or bias) $A$, goodness of fit $\\chi^2$, precision $P$, and success rate $f$. For some methods we identify outliers as an important issue. Other methods show that outliers can be controlled via visual inspection or conservative quality control. Several methods are competitive, i.e. give $|A|<0.03$, $P&...
Time delayed K sup + N reactions and exotic baryon resonances
Kelkar, N G; Khemchandani, K P
2003-01-01
Evidence and hints, from both the theoretical and experimental sides, of exotic baryon resonances with B = S, have been with us for the last 30 years. The poor status of the general acceptance of these Z* resonances is partly due to the prejudice against penta-quark baryons and partly due to the opinion that a proof of the existence of exotic states must be rigorous. This can refer to the quality and amount of data gathered, and also to the analytical methods applied in the study of these resonances. It then seems mandatory that all possibilities and aspects be exploited. We do that by analysing the time delay in K sup + N scattering, encountering clear signals of the exotic Z* resonances close to the pole values found in partial wave analyses.
Time delayed K+ N reactions and exotic baryon resonances
Kelkar, N G; Khemchandani, K P
2003-01-01
Evidences and hints, both from the theoretical and experimental side, of exotic baryon resonances with B=S, have been with us for the last thirty years. The poor status of the general acceptance of these Z* resonances is partly due to the prejudice against penta-quark baryons and partly due to the opinion that a proof of the existence of exotic states must be rigorous. This can refer to the quality and amount of data gathered, and also to the analytical methods applied in the study of these resonances. It seems then mandatory that all possibilities and aspects be exploited. We do that by analyzing the time delay in K+ N scattering, encountering clear signals of the exotic Z* resonances close to the pole values found in partial wave analyses.
Lensing and time-delay contributions to galaxy correlations
Raccanelli, Alvise; Bertacca, Daniele; Maartens, Roy; Clarkson, Chris; Doré, Olivier
2016-07-01
Galaxy clustering on very large scales can be probed via the 2-point correlation function in the general case of wide and deep separations, including all the lightcone and relativistic effects. Using our recently developed formalism, we analyze the behavior of the local and integrated contributions and how these depend on redshift range, linear and angular separations and luminosity function. Relativistic corrections to the local part of the correlation can be non-negligible but they remain generally sub-dominant. On the other hand, the additional correlations arising from lensing convergence and time-delay effects can become very important and even dominate the observed total correlation function. We investigate different configurations formed by the observer and the pair of galaxies, and we find that the case of near-radial large-scale separations is where these effects will be the most important.
Time-Delay Interferometry with optical frequency comb
Tinto, Massimo
2015-01-01
Heterodyne laser phase measurements in a space-based gravitational wave interferometer are degraded by the phase fluctuations of the onboard clocks, resulting in unacceptable sensitivity performance levels of the interferometric data. In order to calibrate out the clock phase noises it has been previously suggested that additional inter-spacecraft phase measurements must be performed by modulating the laser beams. This technique, however, considerably increases system complexity and probability of subsystem failure. With the advent of self-referenced optical frequency combs, it is possible to generate the heterodyne microwave signal that is coherently referenced to the onboard laser. We show in this case that the microwave noise can be cancelled directly by applying modified second-generation Time-Delay Interferometric combinations to the heterodyne phase measurements. This approach avoids use of modulated laser beams as well as the need of additional ultra-stable oscillator clocks.
Precision cosmology with time delay lenses: high resolution imaging requirements
Meng, Xiao-Lei; Agnello, Adriano; Auger, Matthew W; Liao, Kai; Marshall, Philip J
2015-01-01
Lens time delays are a powerful probe of cosmology, provided that the gravitational potential of the main deflector can be modeled with sufficient precision. Recent work has shown that this can be achieved by detailed modeling of the host galaxies of lensed quasars, which appear as "Einstein Rings" in high resolution images. We carry out a systematic exploration of the high resolution imaging required to exploit the thousands of lensed quasars that will be discovered by current and upcoming surveys with the next decade. Specifically, we simulate realistic lens systems as imaged by the Hubble Space Telescope (HST), James Webb Space Telescope (JWST), and ground based adaptive optics images taken with Keck or the Thirty Meter Telescope (TMT). We compare the performance of these pointed observations with that of images taken by the Euclid (VIS), Wide-Field Infrared Survey Telescope (WFIRST) and Large Synoptic Survey Telescope (LSST) surveys. We use as our metric the precision with which the slope $\\gamma'$ of the...
Generation of atto-second pulses on relativistic mirror plasma
International Nuclear Information System (INIS)
When an ultra intense femtosecond laser (I > 1016 W.cm-2) with high contrast is focused on a solid target, the laser field at focus is high enough to completely ionize the target surface during the rising edge of the laser pulse and form a plasma. This plasma is so dense (the electron density is of the order of hundred times the critical density) that it completely reflects the incident laser beam in the specular direction: this is the so-called 'plasma mirror'. When laser intensity becomes very high, the non-linear response of the plasma mirror to the laser field periodically deforms the incident electric field leading to high harmonic generation in the reflected beam. In the temporal domain this harmonic spectrum is associated to a train of atto-second pulses. The goals of my work were to get a better comprehension of the properties of harmonic beams produced on plasma mirrors and design new methods to control theses properties, notably in order to produce isolated atto-second pulses instead of trains. Initially, we imagined and modeled the first realistic technique to generate isolated atto-second on plasma mirrors. This brand new approach is based on a totally new physical effect: 'the atto-second lighthouse effect'. Its principle consists in sending the atto-second pulses of the train in different directions and selects one of these pulses by putting a slit in the far field. Despite its simplicity, this technique is very general and applies to any high harmonic generation mechanism. Moreover, the atto-second lighthouse effect has many other applications (e.g in metrology). In particular, it paves the way to atto-second pump-probe experiments. Then, we studied the spatial properties of these harmonics, whose control and characterization are crucial if one wants to use this source in future application experiments. For instance, we need to control very precisely the harmonic beam divergence in order to achieve the atto-second lighthouse effect and get isolated
Discrete-time recurrent neural networks with time-varying delays: Exponential stability analysis
International Nuclear Information System (INIS)
This Letter is concerned with the analysis problem of exponential stability for a class of discrete-time recurrent neural networks (DRNNs) with time delays. The delay is of the time-varying nature, and the activation functions are assumed to be neither differentiable nor strict monotonic. Furthermore, the description of the activation functions is more general than the recently commonly used Lipschitz conditions. Under such mild conditions, we first prove the existence of the equilibrium point. Then, by employing a Lyapunov-Krasovskii functional, a unified linear matrix inequality (LMI) approach is developed to establish sufficient conditions for the DRNNs to be globally exponentially stable. It is shown that the delayed DRNNs are globally exponentially stable if a certain LMI is solvable, where the feasibility of such an LMI can be easily checked by using the numerically efficient Matlab LMI Toolbox. A simulation example is presented to show the usefulness of the derived LMI-based stability condition
Time-delay control of ionic polymer metal composite actuator
Lee, Joon Hwan; Kim, Byung Jo; Kim, Jin Seong; Song, Dae Seok; Lee, Min Gyu; Jho, Jae Young; Kim, Dong Min; Rhee, Kyehan; Lee, Soo Jin
2015-04-01
This paper presents the control of an ionic polymer metal composite (IPMC) strip, which is an electro-active polymer actuator. IPMC can produce mechanical bending motion in response to an electrical excitation. Although IPMC has many beneficial properties, such as low power consumption, large deformation, and bi-directional actuation, it is very challenging to control because of its time-varying and nonlinear properties. Time-delay control (TDC) was applied to an IPMC strip in order to obtain a robust and precise tracking performance. The TDC scheme has shown good tracking performance with exceptional robustness in many other applications, in addition to having a simple and efficient structure and design process. A first-order filter was applied to the control input to reduce the sensor noise. An anti-windup scheme was also used because of its inherent integral effect. The simulation and experimental results of an IPMC strip controlled by TDC showed good performance in the steady state and transient responses. Furthermore, the control output responses tracked the desired model even when the IPMC parameters varied in repetitive experiments. In addition, it was shown through Nyquist analysis that the stability of the IPMC strip controlled by TDC is always maintained with the time-varying parameters. These results demonstrate that the TDC law applied to a time-varying and nonlinear IPMC provides robustness in performance and stability, while yielding precise transient and steady state tracking performance.
Finite-Time Attractivity for Diagonally Dominant Systems with Off-Diagonal Delays
Directory of Open Access Journals (Sweden)
T. S. Doan
2012-01-01
Full Text Available We introduce a notion of attractivity for delay equations which are defined on bounded time intervals. Our main result shows that linear delay equations are finite-time attractive, provided that the delay is only in the coupling terms between different components, and the system is diagonally dominant. We apply this result to a nonlinear Lotka-Volterra system and show that the delay is harmless and does not destroy finite-time attractivity.
International Nuclear Information System (INIS)
The synchronization of chaotic neurons coupled with gap junction with time delays is investigated. In this paper, the coupled model is based on the nonlinear cable model of neuron. The influences of the strength of gap junction and the time delay on the synchronization are discussed in detail. The so called delay-dependent criteria for the synchronization of two coupled neurons which contain the information of the time delay and the coupling strength is given
Control of unstable steady states in neutral time-delayed systems
Blyuss, K B; Kyrychko, Y. N.; Hoevel, P.; Schoell, E.
2012-01-01
We present an analysis of time-delayed feedback control used to stabilize an unstable steady state of a neutral delay differential equation. Stability of the controlled system is addressed by studying the eigenvalue spectrum of a corresponding characteristic equation with two time delays. An analytic expression for the stabilizing control strength is derived in terms of original system parameters and the time delay of the control. Theoretical and numerical results show that the interplay betw...
Synchronization stability of general complex dynamical networks with time-varying delays
International Nuclear Information System (INIS)
The synchronization problem of some general complex dynamical networks with time-varying delays is investigated. Both time-varying delays in the network couplings and time-varying delays in the dynamical nodes are considered. The novel delay-dependent criteria in terms of linear matrix inequalities (LMI) are derived based on free-weighting matrices technique and appropriate Lyapunov functional proposed recently. Numerical examples are given to illustrate the effectiveness and advantage of the proposed synchronization criteria
International Nuclear Information System (INIS)
This paper investigates a novel stability criterion for interval time-delay chaotic systems via the evolutionary programming (EP) approach. First a delay-dependent criterion is derived for ensuring the stability of degenerate time-delay systems, and then by solving eigenvalue location optimization problems, which will be defined later, the robust stability of interval time-delay systems can be guaranteed. An example is given to verify our method that yields less conservative results than those appeared in the literature
Synchronization Criteria of Chaos Systems with Time-delay Feedback Control
Chao Ge; Hong Wang
2013-01-01
For the time-delay feedback control of chaos synchronization problem, an idea of Lyapunov functional with time-delay decomposition is presented. Some delay-dependent synchronization criteria are formulated in the form of matrix inequalities. The controller gain with maximum allowed time-delay can be achieved by solving a set of linear matrix inequalities (LMIs). A simulation example is given to illustrate the effectiveness of the design method.
Energy Technology Data Exchange (ETDEWEB)
Wang Jiang [School of Electrical and Automation Engineering, Tianjin University, 300072, Tianjin (China)], E-mail: jiangwang@tju.edu.cn; Deng Bin; Fei Xiangyang [School of Electrical and Automation Engineering, Tianjin University, 300072, Tianjin (China)
2008-02-15
The synchronization of chaotic neurons coupled with gap junction with time delays is investigated. In this paper, the coupled model is based on the nonlinear cable model of neuron. The influences of the strength of gap junction and the time delay on the synchronization are discussed in detail. The so called delay-dependent criteria for the synchronization of two coupled neurons which contain the information of the time delay and the coupling strength is given.
Warrick, Erika R; Cao, Wei; Neumark, Daniel M; Leone, Stephen R
2016-05-19
An attosecond pulse is used to create a wavepacket in molecular nitrogen composed of multiple bound and autoionizing electronic states of Rydberg and valence character between 12 and 16.7 eV. A time-delayed, few-femtosecond, near-infrared (NIR) laser pulse is used to couple individual states in the wavepacket to multiple neighboring states, resulting in time-dependent modification of the absorption spectrum and revealing both individual quantum beats of the wavepacket and the energy shifts of the excited states in the presence of the strong NIR field. The broad bandwidth of the attosecond pulse and high energy resolution of the extreme ultraviolet spectrometer allow the simultaneous observation of time-dependent dynamics for many individual vibrational levels in each electronic state. Quantum beating with periods from 1.3 to 12 fs and transient line shape changes are observed among vibrational levels of a progression of electronically autoionizing Rydberg states leading to the excited A (2)Πu N2(+) ion core. Vibrational levels in the valence b (1)Πu state exhibit 50 fs oscillation periods, revealing superpositions between individual vibrational levels within this state. Comparisons are made to previous studies of electronic wavepackets in atoms that highlight similarities to atomic behavior yet illustrate unique contributions of the diatomic molecular structure to the wavepacket, including the influence of different electronic potentials and vibrational-level-specific electronic dynamics. PMID:26862883
MSW (magnetostatic wave) variable time-delay techniques
Adams, J. D.; Bajpai, S. N.; Daniel, M. R.; Emtage, P. R.; Talisa, S. H.
1983-09-01
Studies of magnetostatic wave (MSW) propagation, in epitaxial yttrium iron garnet (YIG) aimed at the development of dispersive delay lines electronically variable delay lines for use in radar and ECM systesms are described. Techniques which show the potential for achieving the performance required for systems application of MSW delay lines have been developed. The most pressing problem area is the reduction of amplitude and phase ripple arising from reflections and higher order mode interference to acceptable levels.
Chimera and globally clustered chimera: Impact of time delay
Sheeba, Jane H.; Chandrasekar, V. K.; Lakshmanan, M.
2010-01-01
Following a short report of our preliminary results [Phys. Rev. E 79, 055203(R) (2009)], we present a more detailed study of the effects of coupling delay in diffusively coupled phase oscillator populations. We find that coupling delay induces chimera and globally clustered chimera (GCC) states in delay coupled populations. We show the existence of multi-clustered states that act as link between the chimera and the GCC states. A stable GCC state goes through a variety of GCC states, namely pe...
Du, Dongsheng; Jiang, Bin
2016-05-01
This paper investigates the problems of actuator fault estimation and accommodation for discrete-time switched systems with state delay. By using reduced-order observer method and switched Lyapunov function technique, a fault estimation algorithm is achieved for the discrete-time switched system with actuator fault and state delay. Then based on the obtained online fault estimation information, a switched dynamic output feedback controller is employed to compensate for the effect of faults by stabilizing the closed-loop systems. Finally, an example is proposed to illustrate the obtained results. PMID:26924247
International Nuclear Information System (INIS)
We study the electron localization dynamics in the dissociation of H2+ using a 1D model Hamiltonian. To this end we calculate the exact time-dependent potential energy surfaces (TDPES) both for the electron and for the nuclei. The exact electronic TDPES shows that the final electron localization is determined when the interatomic barrier becomes large and prohibits electron tunneling. The exact nuclear TDPES shows the mechanism of slowdown of the dissociation. It is found that the nuclear potential cannot be approximated by the weighted average of the quasi-static state potential energy surfaces, but can be approximated well by the transition between them. We show these two time-dependent potentials are the exact potential functionals of the time-dependent multicomponent density functional theory and can reproduce the whole phenomena of electron localization dynamics.
Electron Interference in Molecular Circular Polarization Attosecond XUV Photoionization
Directory of Open Access Journals (Sweden)
Kai-Jun Yuan
2015-01-01
Full Text Available Two-center electron interference in molecular attosecond photoionization processes is investigated from numerical solutions of time-dependent Schrödinger equations. Both symmetric H\\(_2^+\\ and nonsymmetric HHe\\(^{2+}\\ one electron diatomic systems are ionized by intense attosecond circularly polarized XUV laser pulses. Photoionization of these molecular ions shows signature of interference with double peaks (minima in molecular attosecond photoelectron energy spectra (MAPES at critical angles \\(\\vartheta_c\\ between the molecular \\(\\textbf{R}\\ axis and the photoelectron momentum \\(\\textbf{p}\\. The interferences are shown to be a function of the symmetry of electronic states and the interference patterns are sensitive to the molecular orientation and pulse polarization. Such sensitivity offers possibility for imaging of molecular structure and orbitals.
Pola, Giordano; Di Benedetto, Maria Domenica
2010-01-01
Time-delay systems are an important class of dynamical systems that provide a solid mathematical framework to deal with many application domains of interest. In this paper we focus on nonlinear control systems with unknown and time-varying delay signals and we propose one approach to the control design of such systems, which is based on the construction of symbolic models. Symbolic models are abstract descriptions of dynamical systems in which one symbolic state and one symbolic input correspond to an aggregate of states and an aggregate of inputs. We first introduce the notion of incremental input-delay-to-state stability and characterize it by means of Liapunov-Krasovskii functionals. We then derive sufficient conditions for the existence of symbolic models that are shown to be alternating approximately bisimilar to the original system. Further results are also derived which prove the computability of the proposed symbolic models in a finite number of steps.
More relaxed condition for dynamics of discrete time delayed Hopfield neural networks
Institute of Scientific and Technical Information of China (English)
Zhang Qiang
2008-01-01
The dynamics of discrete time delayed Hopfield neural networks is investigated.By using a difference inequality combining with the linear matrix inequality,a sufficient condition ensuring global exponential stability of the unique equilibrium point of the networks is found.The result obtained holds not only for constant delay but also for time-varying delays.
Precision cosmology with time delay lenses: High resolution imaging requirements
Energy Technology Data Exchange (ETDEWEB)
Meng, Xiao -Lei [Beijing Normal Univ., Beijing (China); Univ. of California, Santa Barbara, CA (United States); Treu, Tommaso [Univ. of California, Santa Barbara, CA (United States); Univ. of California, Los Angeles, CA (United States); Agnello, Adriano [Univ. of California, Santa Barbara, CA (United States); Univ. of California, Los Angeles, CA (United States); Auger, Matthew W. [Univ. of Cambridge, Cambridge (United Kingdom); Liao, Kai [Beijing Normal Univ., Beijing (China); Univ. of California, Santa Barbara, CA (United States); Univ. of California, Los Angeles, CA (United States); Marshall, Philip J. [Stanford Univ., Stanford, CA (United States)
2015-09-28
Lens time delays are a powerful probe of cosmology, provided that the gravitational potential of the main deflector can be modeled with sufficient precision. Recent work has shown that this can be achieved by detailed modeling of the host galaxies of lensed quasars, which appear as ``Einstein Rings'' in high resolution images. The distortion of these arcs and counter-arcs, as measured over a large number of pixels, provides tight constraints on the difference between the gravitational potential between the quasar image positions, and thus on cosmology in combination with the measured time delay. We carry out a systematic exploration of the high resolution imaging required to exploit the thousands of lensed quasars that will be discovered by current and upcoming surveys with the next decade. Specifically, we simulate realistic lens systems as imaged by the Hubble Space Telescope (HST), James Webb Space Telescope (JWST), and ground based adaptive optics images taken with Keck or the Thirty Meter Telescope (TMT). We compare the performance of these pointed observations with that of images taken by the Euclid (VIS), Wide-Field Infrared Survey Telescope (WFIRST) and Large Synoptic Survey Telescope (LSST) surveys. We use as our metric the precision with which the slope γ' of the total mass density profile ρ_{tot}∝ r–γ' for the main deflector can be measured. Ideally, we require that the statistical error on γ' be less than 0.02, such that it is subdominant to other sources of random and systematic uncertainties. We find that survey data will likely have sufficient depth and resolution to meet the target only for the brighter gravitational lens systems, comparable to those discovered by the SDSS survey. For fainter systems, that will be discovered by current and future surveys, targeted follow-up will be required. Furthermore, the exposure time required with upcoming facilitites such as JWST, the Keck Next Generation Adaptive
Precision cosmology with time delay lenses: high resolution imaging requirements
Meng, Xiao-Lei; Treu, Tommaso; Agnello, Adriano; Auger, Matthew W.; Liao, Kai; Marshall, Philip J.
2015-09-01
Lens time delays are a powerful probe of cosmology, provided that the gravitational potential of the main deflector can be modeled with sufficient precision. Recent work has shown that this can be achieved by detailed modeling of the host galaxies of lensed quasars, which appear as ``Einstein Rings'' in high resolution images. The distortion of these arcs and counter-arcs, as measured over a large number of pixels, provides tight constraints on the difference between the gravitational potential between the quasar image positions, and thus on cosmology in combination with the measured time delay. We carry out a systematic exploration of the high resolution imaging required to exploit the thousands of lensed quasars that will be discovered by current and upcoming surveys with the next decade. Specifically, we simulate realistic lens systems as imaged by the Hubble Space Telescope (HST), James Webb Space Telescope (JWST), and ground based adaptive optics images taken with Keck or the Thirty Meter Telescope (TMT). We compare the performance of these pointed observations with that of images taken by the Euclid (VIS), Wide-Field Infrared Survey Telescope (WFIRST) and Large Synoptic Survey Telescope (LSST) surveys. We use as our metric the precision with which the slope γ' of the total mass density profile ρtotpropto r-γ' for the main deflector can be measured. Ideally, we require that the statistical error on γ' be less than 0.02, such that it is subdominant to other sources of random and systematic uncertainties. We find that survey data will likely have sufficient depth and resolution to meet the target only for the brighter gravitational lens systems, comparable to those discovered by the SDSS survey. For fainter systems, that will be discovered by current and future surveys, targeted follow-up will be required. However, the exposure time required with upcoming facilitites such as JWST, the Keck Next Generation Adaptive Optics System, and TMT, will only be of
Incorporation of Time Delayed Measurements in a Discrete-time Kalman Filter
DEFF Research Database (Denmark)
Larsen, Thomas Dall; Andersen, Nils Axel; Ravn, Ole;
1998-01-01
In many practical systems there is a delay in some of the sensor devices, for instance vision measurements that may have a long processing time. How to fuse these measurements in a Kalman filter is not a trivial problem if the computational delay is critical. Depending on how much time there is a......In many practical systems there is a delay in some of the sensor devices, for instance vision measurements that may have a long processing time. How to fuse these measurements in a Kalman filter is not a trivial problem if the computational delay is critical. Depending on how much time...... there is at hand, the designer has to make trade offs between optimality and computational burden of the filter. In this paper various methods in the literature along with a new method proposed by the authors will be presented and compared. The new method is based on “extrapolating” the measurement to present time...... using past and present estimates of the Kalman filter and calculating an optimal gain for this extrapolated measurement...
Synchronization transitions in coupled time-delay electronic circuits with a threshold nonlinearity
Srinivasan, K.; Senthilkumar, D. V.; Murali, K.; Lakshmanan, M.; Kurths, J.
2011-06-01
Experimental observations of typical kinds of synchronization transitions are reported in unidirectionally coupled time-delay electronic circuits with a threshold nonlinearity and two time delays, namely feedback delay τ1 and coupling delay τ2. We have observed transitions from anticipatory to lag via complete synchronization and their inverse counterparts with excitatory and inhibitory couplings, respectively, as a function of the coupling delay τ2. The anticipating and lag times depend on the difference between the feedback and the coupling delays. A single stability condition for all the different types of synchronization is found to be valid as the stability condition is independent of both the delays. Further, the existence of different kinds of synchronizations observed experimentally is corroborated by numerical simulations and from the changes in the Lyapunov exponents of the coupled time-delay systems.
International Nuclear Information System (INIS)
This paper investigates the robust stability of uncertain neutral system with time-varying delay and nonlinear uncertainties. By using Lyapunov method and linear matrix inequality technology, a new delay-dependent stability criteria is obtained and formulated in terms of linear matrix inequalities (LMIs) which can be easy to check the robust stability of the considered systems. Numerical examples are given to indicate significant improvements over some existing results.
International Nuclear Information System (INIS)
This Letter presents an analysis method for a delay-independent absolute stability of time-delay Lur'e systems with sector and slope restrictions. The proposed method is based on the Lyapunov functions with quadratic form of states and nonlinear functions of the systems. Several criteria are derived in terms of linear matrix inequalities (LMIs). A numerical example is illustrated to show the effectiveness of the proposed method
On the stability of the telegraph equation with time delay
Ashyralyev, Allaberen; Agirseven, Deniz; Turk, Koray
2016-08-01
In this study, the initial value problem for telegraph equations with delay in a Hilbert space is considered. Theorem on stability estimates for the solution of this problem is established. As a test problem, one-dimensional delay telegraph equation with Dirichlet boundary conditions is considered. Numerical solutions of this problem are obtained by first and second order of accuracy difference schemes.
Probing attosecond pulse structures by XUV-induced hole dynamics
You, Jhih-An; Dahlström, Jan Marcus
2015-01-01
We investigate a two-photon ionization process in neon by an isolated attosecond pump pulse and two coherent extreme ultraviolet probe fields. The probe fields, tuned to the 2s-2p transition in the residual ion, allow for coherent control of the photoelectron via indirect interactions with the hole. We show that the photoelectron-ion coincidence signal contains an interference pattern that can be used to reconstruct the temporal structure of attosecond pump pulses. Our results are supported by simulations based on time-dependent configuration-interaction singles and lowest-order perturbation theory within second quantization.
Towards efficient generation of attosecond pulses from overdense plasma targets
International Nuclear Information System (INIS)
Theoretical studies and computer simulations predict efficient generation of attosecond electromagnetic pulses from overdense plasma targets, driven by relativistically strong laser pulses. These predictions need to be validated in time resolved experiments in order to provide a route for applications. The first available femtosecond sources for these experiments are likely to be 10 fs pulses of a few millijoules, which could provide focal intensities at about the relativistic threshold. With particle-in-cell simulations, we demonstrate that the radiation resulting from interaction of such pulses with solid targets is expected to be attosecond trains with very high conversion efficiency as relativistic effects start to act
An ultrasonic time-delay spectrometry system employing digital processing.
Gammell, Paul M; Maruvada, Subha; Harris, Gerald R
2007-05-01
Time-delay spectrometry (TDS) is a swept-frequency technique that has proven useful in several ultrasonic applications. Commercial TDS systems are available, but only in the audio frequency range. Several ultrasonic research TDS systems have been constructed, and they have been used effectively for substitution calibration of hydrophones and for measurement of attenuation and sound velocity in materials. Unfortunately these systems depend on features of commercial equipment no longer manufactured, so a new system has been designed using modern equipment and straightforward signal processing. This system requires a frequency source with a reasonably linear sweep of frequency versus time, audio frequency filters, a standard double-balanced mixer, a power splitter, a waveform digitizer capable of handling audio frequency signals, and a personal computer. An optional implementation that shifts the signal to a lower frequency for more convenient digitization and easier velocity measurements additionally requires an audio frequency oscillator and an audio-range analog multiplier. The processing steps are performed with standard signal processing software. To demonstrate the operation of the system, substitution calibration measurements of hydrophones as well as attenuation measurements on a tissue mimicking material were obtained and compared to a custom TDS system previously described by the authors. The data from these two TDS systems agree to within +/- 0.5 dB in the 1-10 MHz frequency range used. Higher frequency source transducers could be used to extend this range. PMID:17523568
Global exponential stability conditions for generalized state-space systems with time-varying delays
International Nuclear Information System (INIS)
A unified approach is proposed to deal with the exponential stability for generalized state-space systems with time-varying delays. Many systems models can be regarded as special cases of the considered systems; such as neutral time-delay systems and delayed cellular neural networks. Delay-dependent stability criteria are proposed to guarantee the global exponential stability for generalized state-space systems with two cases of uncertainties. Two numerical examples are given to show the effectiveness of our method
LONG-TIME BEHAVIOR OF A CLASS OF REACTION DIFFUSION EQUATIONS WITH TIME DELAYS
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
The present paper devotes to the long-time behavior of a class of reaction diffusion equations with delays under Dirichlet boundary conditions. The stability and global attractability for the zero solution are provided, and the existence, stability and attractability for the positive stationary solution are also obtained.
International Nuclear Information System (INIS)
In this paper, we study the phenomenon of stochastic resonance (SR) in a periodically driven bistable system with correlations between multiplicative and additive white noise terms when there are two different kinds of time delays existed in the deterministic and fluctuating forces, respectively. Using the small time delay approximation and the theory of signal-to-noise ratio (SNR) in the adiabatic limit, the expression of SNR is obtained. The effects of the delay time τ in the deterministic force, and the delay time θ in the fluctuating force on SNR are discussed. Based on the numerical computation, it is found that: (i) There appears a reentrant transition between one peak and two peaks and then to one peak again in the curve of SNR when the value of the time delay θ is increased. (ii) SR can be realized by tuning the time delay τ or θ with fixed noise, i.e., delay-induced stochastic resonance (DSR) exists. (general)
Above, around, and below threshold ionization using attosecond pulses
International Nuclear Information System (INIS)
Full text: Attosecond pulses offer a new route to produce temporally localized electron wave packets that can easily be tailored by altering the properties of the attosecond pulses. In this talk we will present three different experiments where attosecond pulses are used to inject electron wave packets into a continuum which is dressed by an infrared laser field. By tuning the central frequency of the attosecond pulses and/or changing the target gas, the initial energy of the wave packets is set to be either above, around, or below the ionization potential. To capture the motion of electron wave packets created above or around the ionization potential we have developed a quantum stroboscope to record the electron momentum distribution from a single ionization event. The quantum stroboscope is based on a sequence of identical attosecond pulses that are used to release electrons into a strong laser field exactly once per laser cycle. With this periodicity, the pulses create identical electron wave packets that add up coherently, with the result that the properties of an individual wave packet can be studied stroboscopically. We use this technique to study the coherent electron scattering of electrons that are driven back to the ion by the laser field. For electron wave packets created below the ionization potential we find that the ionization is greatly enhanced by the presence of the infrared laser field and that this enhancement strongly depends on the timing between the attosecond pulses and the laser field. We show that this effect can be attributed to interference between consecutive wave packets, which indicates that the wave packets stay in the vicinity of the ion over an extended time period. Using instead isolated attosecond pulses generated from an ultrashort, carrier-envelope- phase stabilized infrared laser with a time-dependent polarization we show that it is possible to also probe ultrafast bound electron dynamics. These attosecond pulses are broad
Li, Yongkun; Meng, Xiaofang; Xiong, Lianglin
2015-01-01
In this paper, a class of neutral type high-order Hopfield neural networks with mixed time-varying delays and leakage delays on time scales is proposed. Based on the exponential dichotomy of linear dynamic equations on time scales, Banach's fixed point theorem and the theory of calculus on time scales, some sufficient conditions are obtained for the existence and global exponential stability of pseudo almost periodic solutions for this class of neural networks. Our results are completely new....
Correlation Functions of an Autonomous Stochastic System with Nonlinear Time Delays
International Nuclear Information System (INIS)
The auto-correlation function and the cross-correlation of an autonomous stochastic system with nonlinear time-delayed feedback are investigated by using the stochastic simulation method. There are prominent differences between the roles of quadratic time-delayed feedback and cubic time-delayed feedback on the correlations of an autonomous stochastic system. Under quadratic time-delayed feedback, the nonlinear time delay fails to improve the noisy state of the autonomous stochastic system, the auto-correlation decreases monotonously to zero, and the cross-correlation increases monotonously to zero with the decay time. Under cubic time-delayed feedback, the nonlinear time delay can improve the noisy state of the autonomous stochastic system; the auto-correlation and the cross-correlation show periodical oscillation and attenuation, finally tending to zero with the decay time. Comparing the correlations of the system between with nonlinear time-delayed feedback and linear time-delayed feedback, we find that nonlinear time-delayed feedback lowers the correlation strength of the autonomous stochastic system. (general)
Femtosecond Time-Delay X-Ray Holography
International Nuclear Information System (INIS)
X-ray free-electron lasers (XFELs) will produce photon pulses with a unique and desirable combination of properties. Their short X-ray wavelengths allow penetration into materials and the ability to probe structure at and below the nanometer scale. Their ultra-short duration gives information about this structure at the fundamental time-scales of atoms and molecules. The extreme intensity of the pulses will allow this information to be acquired in a single shot, so that these studies can be carried out on non-repeatable processes or on weakly-scattering objects that will be modified by the pulse. A fourth property of XFEL pulses is their high transverse coherence, which brings the promise of decades of innovation in visible optics to the X-ray regime, such as holography, interferometry, and laser-based imaging. Making an effective use of XFEL pulses, however, will benefit from innovations that are new to both X-ray science and coherent optics. One such innovation is the new method of time-delay X-ray holography [1], recently demonstrated at the FLASH FEL at DESY in Hamburg, to measure the evolution of objects irradiated by intense pulses. One of the pressing questions about the high-resolution XFEL imaging and characterization of non-periodic or weakly-scattering objects is the effect of the intense FEL pulse on the object, during the interaction with that pulse. The method of single-particle diffraction imaging [2] requires a stream of reproducible particles (e.g. a protein complex or virus) inserted into the beam, whereby a coherent X-ray diffraction pattern is recorded. The pulse will completely destroy the object, but if the pulse is short enough the diffraction pattern will represent the undamaged object. This ultrafast flash imaging was demonstrated at the FLASH FEL using test objects that included microfabricated patterns in silicon nitride foils [3]. Those experiments showed that no damage occurred during the 30 fs duration pulse. However, in those
Directory of Open Access Journals (Sweden)
Hamid Reza Karimi
2009-01-01
Full Text Available The problem of stability analysis for a class of neutral systems with mixed time-varying neutral, discrete and distributed delays and nonlinear parameter perturbations is addressed. By introducing a novel Lyapunov-Krasovskii functional and combining the descriptor model transformation, the Leibniz-Newton formula, some free-weighting matrices, and a suitable change of variables, new sufficient conditions are established for the stability of the considered system, which are neutral-delay-dependent, discrete-delay-range-dependent, and distributed-delay-dependent. The conditions are presented in terms of linear matrix inequalities (LMIs and can be efficiently solved using convex programming techniques. Two numerical examples are given to illustrate the efficiency of the proposed method.
Complex-Vector Time-Delay Control of Power Converters
DEFF Research Database (Denmark)
Blaabjerg, Frede; Loh, P. C.; Tang, Y.;
2008-01-01
Precise controlling of current produced by power converters is an important topic that has attracted interests over the last few decades. With the recent proliferation of grid-tied converters where the control of power flow is indirectly governed by the accuracy of current tracking, motivation to...... control. Lastly, for proving its practicality, experimental testing of the scheme is performed digitally using a commercial grid converter with some informative results captured and compared with those of an existing scheme.......Precise controlling of current produced by power converters is an important topic that has attracted interests over the last few decades. With the recent proliferation of grid-tied converters where the control of power flow is indirectly governed by the accuracy of current tracking, motivation to...... develop dynamically fast and accurate current controllers is even more intensive with more features expected to be embedded within a single control module. Believing in its continual importance, this paper contributes by proposing a complex-vector time-delay control scheme that can achieve high tracking...
Robust Stabilization of Discrete-Time Systems with Time-Varying Delay: An LMI Approach
Valter J. S. Leite; Márcio F. Miranda
2008-01-01
Sufficient linear matrix inequality (LMI) conditions to verify the robust stability and to design robust state feedback gains for the class of linear discrete-time systems with time-varying delay and polytopic uncertainties are presented. The conditions are obtained through parameter-dependent Lyapunov-Krasovskii functionals and use some extra variables, which yield less conservative LMI conditions. Both problems, robust stability analysis and robust synthesis, are formulated as convex proble...
Wu, Yuanyuan; Cao, Jinde; Alofi, Abdulaziz; Al-Mazrooei, Abdullah; Elaiw, Ahmed
2015-09-01
This paper deals with the finite-time boundedness and stabilization problem for a class of switched neural networks with time-varying delay and parametric uncertainties. Based on Lyapunov-like function method and average dwell time technique, some sufficient conditions are derived to guarantee the finite-time boundedness of considered uncertain switched neural networks. Furthermore, the state feedback controller is designed to solve the finite-time stabilization problem. Moreover, the proposed sufficient conditions can be simplified into the form of linear matrix equalities for conveniently using Matlab LMI toolbox. Finally, two numerical examples are given to show the effectiveness of the main results. PMID:26103615
Stability and bifurcation of mutual system with time delay
International Nuclear Information System (INIS)
In this paper, we study the stability and bifurcation in a mutual model with a delay τ, where τ is regarded as a parameter. It is found that there are stability switches, and Hopf bifurcation occur when the delay τ passes through a sequence of critical values. A formula for determining the direction of the Hopf bifurcation and the stability of bifurcating periodic solutions in the first bifurcation value is given using the normal form method and center manifold theorem
Ticking terahertz wave generation in attoseconds
Zhang, Dongwen; Meng, Chao; Du, Xiyu; Zhou, Zhaoyan; Zhao, Zengxiu; Yuan, Jianmin
2012-01-01
We perform a joint measurement of terahertz waves and high-order harmonics generated from noble atoms driven by a fundamental laser pulse and its second harmonic. By correlating their dependence on the phase-delay of the two pulses, we determine the generation of THz waves in tens of attoseconds precision. Compared with simulations and models, we find that the laser-assisted soft-collision of the electron wave packet with the atomic core plays a key role. It is demonstrated that the rescattering process, being indispensable in HHG processes, dominant THz wave generation as well but in a more elaborate way. The new finding might be helpful for the full characterization of the rescattering dynamics.
A unified approach for impulsive lag synchronization of chaotic systems with time delay
International Nuclear Information System (INIS)
In this paper, we propose a unified approach for impulsive lag-synchronization of a class of chaotic systems with time delay by employing the stability theory of impulsive delayed differential equations. Three well-known delayed chaotic systems are presented to illustrate our results. Also, the estimates of the stable regions for these systems are given, respectively
Control of two-photon double ionization of helium with intense chirped attosecond laser pulses
Barmaki, S.; Lanteigne, P.; Laulan, S.
2014-06-01
We study the two-photon double-ionization process of the helium atom by solving numerically the nonrelativistic, time-dependent Schrödinger equation in its full dimensionality. We investigate with intense chirped attosecond laser pulses of 23.5-nm wavelength the two-photon absorption near and above the sequential threshold. We show how it is possible by adjusting the chirp parameter to control the electronic transitions inside the atom, thereby reinforcing or weakening the ionization process. Attosecond chirped laser pulses offer a promising way to probe and control the two-photon double ionization of helium when compared with attosecond transform-limited pulses.
Local Stability of AIDS Epidemic Model Through Treatment and Vertical Transmission with Time Delay
Novi W, Cascarilla; Lestari, Dwi
2016-02-01
This study aims to explain stability of the spread of AIDS through treatment and vertical transmission model. Human with HIV need a time to positively suffer AIDS. The existence of a time, human with HIV until positively suffer AIDS can be delayed for a time so that the model acquired is the model with time delay. The model form is a nonlinear differential equation with time delay, SIPTA (susceptible-infected-pre AIDS-treatment-AIDS). Based on SIPTA model analysis results the disease free equilibrium point and the endemic equilibrium point. The disease free equilibrium point with and without time delay are local asymptotically stable if the basic reproduction number is less than one. The endemic equilibrium point will be local asymptotically stable if the time delay is less than the critical value of delay, unstable if the time delay is more than the critical value of delay, and bifurcation occurs if the time delay is equal to the critical value of delay.
Passivity and passivation of interconnected time-delay models of reheat power systems
Magdi S. Mahmoud; Abdulla Ismail
2006-01-01
This paper investigates the problems of delay-dependent passivity and passivation of a class of linear interconnected time-delay systems with particular emphasis on multiarea reheat power systems. This class contains state delay in the dynamics and observation at the subsystem (local) level. A new state transformation is developed to exhibit the delay dependence in the system dynamics and a less conservative passivity-bounding inequality is incorporated. Through the analytical development, it...
Stability Tests of Positive Fractional Continuous-time Linear Systems with Delays
Directory of Open Access Journals (Sweden)
Tadeusz Kaczorek
2013-06-01
Full Text Available Necessary and sufficient conditions for the asymptotic stability of positive fractional continuous-time linear systems with many delays are established. It is shown that: 1 the asymptotic stability of the positive fractional system is independent of their delays, 2 the checking of the asymptotic stability of the positive fractional systems with delays can be reduced to checking of the asymptotic stability of positive standard linear systems without delays.
Stability criteria for uncertain neutral systems with interval time-varying delays
International Nuclear Information System (INIS)
This paper investigates asymptotic stability problem for neutral system with interval time-varying delays and two classes of uncertainties. Delay-dependent and delay-independent criteria are proposed to guarantee the asymptotic stability for our considered systems. Lyapunov-Krasovskii functional and Leibniz-Newton formula are applied to find the delay-dependent stability results. Linear matrix inequality (LMI) approach is used to solve the proposed conditions. Finally, some numerical examples are illustrated to show the improvement of this paper
Effects of time delay on symmetric two-species competition subject to noise
Nie, Linru; Mei, Dongcheng
2008-03-01
Noise and time delay act simultaneously on real ecological systems. The Lotka-Volterra model of symmetric two-species competition with noise and time delay was investigated in this paper. By means of stochastic simulation, we find that (i) the time delay induces the densities of the two species to periodically oscillate synchronously; (ii) the stationary probability distribution function of the two-species densities exhibits a transition from multiple to single stability as the delay time increases; (iii) the characteristic correlation time for the sum of the two-species densities squared exhibits a nonmonotonic behavior as a function of delay time. Our results have the implication that the combination of noise and time delay could provide an efficient tool for understanding real ecological systems.
Dispersion compensation for attosecond electron pulses
Energy Technology Data Exchange (ETDEWEB)
Hansen, Peter; Baumgarten, Cory; Batelaan, Herman; Centurion, Martin [Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, Nebraska 68588 (United States)
2012-08-20
We propose a device to compensate for the dispersion of attosecond electron pulses. The device uses only static electric and magnetic fields and therefore does not require synchronization to the pulsed electron source. Analogous to the well-known optical dispersion compensator, an electron dispersion compensator separates paths by energy in space. Magnetic fields are used as the dispersing element, while a Wien filter is used for compensation of the electron arrival times. We analyze a device with a size of centimeters, which can be applied to ultrafast electron diffraction and microscopy, and fundamental studies.
Strong-field ionization inducing multi-electron-hole coherence probed by attosecond pulses
Zhao, Jing; Zhao, Zengxiu
2015-01-01
We propose a new scenario to apply IR-pump-XUV-probe schemes to resolving strong field ionization induced and attosecond pulse driven electron-hole dynamics and coherence in real time. The coherent driving of both the infrared laser and the attoscond pulse correlates the dynamics of the core-hole and the valence-hole which leads to the otherwise forbidden absorption and emission of XUV photon. An analytical model is developed based on the strong-field approximation by taking into account of the essential multielectron configurations. The emission spectra from the core-valence transition and the core-hole recombination are found modulating strongly as functions of the time delay between the two pulses, which provides a unique insight into the instantaneous ionization and the interplay of the multi-electron-hole coherence.
Institute of Scientific and Technical Information of China (English)
Yang Dai; YunZe Cai; Xiao-Ming Xu
2009-01-01
Exponential estimates and sufficient conditions for the exponential synchronization of complex dynamical networks with bounded time-varying delays are given in terms of linear matrix inequalities (LMIs). A generalized complex networks model involving both neutral delays and retarded ones is presented. The exponential synchronization problem of the complex networks is converted equivalently into the exponential stability problem of a group of uncorrelated delay functional differential equations with mixed time-varying delays. By utilizing the free weighting matrix technique, a less conservative delay-dependent synchronization criterion is derived. An illustrative example is provided to demonstrate the effectiveness of the proposed method.
Zhang, Wei; Li, Chuandong; Huang, Tingwen; He, Xing
2015-12-01
Synchronization of an array of linearly coupled memristor-based recurrent neural networks with impulses and time-varying delays is investigated in this brief. Based on the Lyapunov function method, an extended Halanay differential inequality and a new delay impulsive differential inequality, some sufficient conditions are derived, which depend on impulsive and coupling delays to guarantee the exponential synchronization of the memristor-based recurrent neural networks. Impulses with and without delay and time-varying delay are considered for modeling the coupled neural networks simultaneously, which renders more practical significance of our current research. Finally, numerical simulations are given to verify the effectiveness of the theoretical results. PMID:26054076
A NEW SLIDING MODE CONTROL FOR A CLASS OF UNCERTAIN TIME-DELAY CHAOTIC SYSTEMS
Institute of Scientific and Technical Information of China (English)
LI LI-XIANG; PENG HAI-PENG; GUAN BAO-ZHU; XU JIN-MING
2001-01-01
We propose a new sliding mode control scheme for a class of uncertain time-delay chaotic systems. It is shown that a linear time invariant system with the desired system dynamics is used as a reference model for the output of a time-delay chaotic system to track. A sliding mode controller is then designed to drive the output of the time-delay chaotic system to track the desired linear system. On the sliding mode, the output of the controlled time-delay chaotic system can behave like the desired linear system. A simulation example is given in support of the proposed control scheme.
Spatial Patterns of a Predator-Prey System of Leslie Type with Time Delay.
Directory of Open Access Journals (Sweden)
Caiyun Wang
Full Text Available Time delay due to maturation time, capturing time or other reasons widely exists in biological systems. In this paper, a predator-prey system of Leslie type with diffusion and time delay is studied based on mathematical analysis and numerical simulations. Conditions for both delay induced and diffusion induced Turing instability are obtained by using bifurcation theory. Furthermore, a series of numerical simulations are performed to illustrate the spatial patterns, which reveal the information of density changes of both prey and predator populations. The obtained results show that the interaction between diffusion and time delay may give rise to rich dynamics in ecosystems.
Dynamical behaviors in time-delay systems with delayed feedback and digitized coupling
International Nuclear Information System (INIS)
We consider a network of delay dynamical systems connected in a ring via unidirectional positive feedback with constant delay in coupling. For the specific case of Mackey–Glass systems on the ring topology, we capture the phenomena of amplitude death, isochronous synchronization and phase-flip bifurcation as the relevant parameters are tuned. Using linear stability analysis and Master Stability Function approach, we predict the region of amplitude death and synchronized states respectively in the parameter space and study the nature of transitions between the different states. For a large number of systems in the same dynamical configuration, we observe splay states, mixed splay states and phase locked clusters. We extend the study to the case of digitized coupling and observe that these emergent states still persist. However, the sampling and quantization reduce the regions of amplitude death and induce phase-flip bifurcation
International Nuclear Information System (INIS)
This paper deals with the problem of delay-dependent robust stability for linear systems with time-varying structured uncertainties and multiple time-varying state delays. Based on Lyapunov stability theory combined with linear matrix inequalities (LMIs) techniques, some new delay-dependent stability criteria in terms of LMIs are derived by taking the relationship between the terms in the Leibniz-Newton formula into account. Since free weighting matrices are used to express this relationship and appropriate ones are selected by means of LMIs, the new improved criteria are much less conservative and more general. Numerical examples and simulation suggest that the results are effective and are an improvement over previous ones
Multi-agent consensus with time-varying delays and switching topologies
Institute of Scientific and Technical Information of China (English)
Jia Wei; and Huajing Fang
2014-01-01
The consensus problems of multi-agents with time-varying delays and switching topologies are studied. First, assume that an agent receives state information from its neighbors with fixed communication delays and processes its own state informa-tion with time-varying self-delay respectively. The state time-delay feedback is introduced into the existing consensus protocol to begenerate an improved protocol. Then a sufficient condition is derived which can make the system with time-varying self-delays achieve the consensus. On this basis, a specific form of consen-sus equilibrium influenced by the initial states of agents, time-delays and state feedback intensity is figured out. In addition, the multi-agent consensus is considered with time-varying topologies. Final y, simulations are presented to il ustrate the validity of theo-retical results.
Attosecond neutron scattering from open quantum systems
Energy Technology Data Exchange (ETDEWEB)
Dreismann, C.; Aris, C. [Institute of Chemistry, Technical University of Berlin (Germany)
2010-07-01
Neutron Compton scattering (NCS) from single nuclei of atoms in molecules, e.g. H{sub 2} (and/or single atoms, e.g. He) is effectuated in the attosecond timescale. The related scattering time is considered in detail, in relation with the Uncertainty Relations. It is shown that the entity scattering time gives a statistical measure of the length of the time interval during which an elementary neutron-nucleus collision may occur, in the same way that the spatial extent of a particle wavefunction (or wavepacket) gives a statistical measure of the extent of the region in which the particle may be found. Consequently, the elementary neutron-nucleus scattering process represents a time-interference phenomenon over the sub-femtosecond ''scattering time'' window. Moreover, the very short-range strong interaction of the neutron-nucleus collision implies that the scattering system (e.g. a proton partically dressed'' with electrons) must be considered as an open quantum system. Experimental results from H{sub 2}, D{sub 2} and HD are mentioned and their anomalous scattering property in the attosecond timescale is qualitatively discussed, also in connection with the Schulman-Gaveau effect.
Lu, Chien-Yu
2011-04-01
This paper considers the problem of delay-dependent global robust stabilization for discrete, distributed and neutral interval time-varying delayed neural networks described by nonlinear delay differential equations of the neutral type. The parameter uncertainties are norm bounded. The activation functions are assumed to be bounded and globally Lipschitz continuous. Using a Lyapunov functional approach and linear matrix inequality (LMI) techniques, the stability criteria for the uncertain neutral neural networks with interval time-varying delays are established in the form of LMIs, which can be readily verified using the standard numerical software. An important feature of the result reported is that all the stability conditions are dependent on the upper and lower bounds of the delays. Another feature of the results lies in that it involves fewer free weighting matrix strategy, and upper bounds of the inner product between two vectors are not introduced to reduce the conservatism of the criteria. Two illustrative examples are provided to demonstrate the effectiveness and the reduced conservatism of the proposed method.
Complex Dynamics of Credit Risk Contagion with Time-Delay and Correlated Noises
2014-01-01
The stochastic time-delayed system of credit risk contagion driven by correlated Gaussian white noises is investigated. Novikov’s theorem, the time-delay approximation, the path-integral approach, and first-order perturbation theory are used to derive time-delayed Fokker-Planck model and the stationary probability distribution function of the dynamical system of credit risk contagion in the financial market. Using the method of numerical simulation, the Hopf bifurcation and chaotic behaviors ...
Compensation for time-delayed feedback bang-bang control of quasi-integrable Hamiltonian systems
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
The stochastic averaging method for quasi-integrable Hamiltonian systems with time-delayed feedback bang-bang control is first introduced. Then, two time delay compensation methods, namely the method of changing control force amplitude (CFA) and the method of changing control delay time (CDT), are proposed. The conditions applicable to each compensation method are discussed. Finally, an example is worked out in detail to illustrate the application and effectiveness of the proposed methods and the two compensation methods in combination.
Travelling wave solutions for some time-delayed equations through factorizations
Energy Technology Data Exchange (ETDEWEB)
Fahmy, E.S. [King Saud University, Women Students Medical Studies and Sciences Sections, Mathematics Department, P.O. Box 22452, Riyadh 11495 (Saudi Arabia)], E-mail: esfahmy@operamail.com
2008-11-15
In this work, we use factorization method to find explicit particular travelling wave solutions for the following important nonlinear second-order partial differential equations: The generalized time-delayed Burgers-Huxley, time-delayed convective Fishers, and the generalized time-delayed Burgers-Fisher. Using the particular solutions for these equations we find the general solutions, two-parameter solution, as special cases.
Simple stability conditions of linear discrete time systems with multiple delay
Directory of Open Access Journals (Sweden)
Stojanović Sreten B.
2010-01-01
Full Text Available In this paper we have established a new Lyapunov-Krasovskii method for linear discrete time systems with multiple time delay. Based on this method, two sufficient conditions for delay-independent asymptotic stability of the linear discrete time systems with multiple delays are derived in the shape of Lyapunov inequality. Numerical examples are presented to demonstrate the applicability of the present approach.
Hanfeng Kuang; Jinbo Liu; Xi Chen; Jie Mao; Linjie He
2013-01-01
The asymptotic behavior of a class of switched stochastic cellular neural networks (CNNs) with mixed delays (discrete time-varying delays and distributed time-varying delays) is investigated in this paper. Employing the average dwell time approach (ADT), stochastic analysis technology, and linear matrix inequalities technique (LMI), some novel sufficient conditions on the issue of asymptotic behavior (the mean-square ultimate boundedness, the existence of an attractor, and the mean-square ...
Experimental Evaluation of FSM-Based Testing Cost for Time-Delay Systems
Zheng Wei; Wu Xiaoxue; Cai Lu; Hu Desheng
2014-01-01
With time-delay systems arising, time-delay system testing has attracted much attention. Additionally, evaluating the cost and effectiveness is required to make a good test strategy in practice. In this paper, we take time-delay and other five factors (state number, input number, output number, completeness degree, and accessibility degree) into account and present a timer embedded FSM (TEFSM) model to design a comparative strategy for assessing the coverage criteria and test suites generati...
Transition from winnerless competition to synchronization in time-delayed neuronal motifs
Zhang, X.; Li, P. J.; Wu, F. P.; Wu, W. J.; Jiang, M.; Chen, L.; Qi, G. X.; Huang, H. B.
2012-03-01
The dynamics of brain functional motifs are studied. It is shown that different rhythms can occur in the motifs when time delay is taken into account. These rhythms include synchronization, winnerless competition (WLC) and "two plus one" (TPO). The main discovery is that the transition from WLC to synchronization can be induced simply by time delay. It is also concluded that some medium time delay is needed to achieve WLC in the realistic case. The motifs composed of heterogeneous neurons are also considered.
Spectral Caustics in Attosecond Science
Directory of Open Access Journals (Sweden)
Dudovich N.
2013-03-01
Full Text Available A unique type of singularity common in wave phenomena, known as caustics, links processes observed in many different branches of physics [1]. We investigate the role of caustics in attosecond science and in particular the physical process behind high harmonic generation. By exploiting singularities of the three-step model that describes HHG, we can manipulate and enhance specific features in the emitted harmonic spectrum. This new level of control holds promises in both scientific and technological aspects of attosecond science, and provides a deeper insight into the basic mechanism underlying the high harmonic generation process.
Regenerative memory in time-delayed neuromorphic photonic resonators
Romeira, B.; Avó, R.; Figueiredo, José M. L.; Barland, S.; Javaloyes, J.
2016-01-01
We investigate a photonic regenerative memory based upon a neuromorphic oscillator with a delayed self-feedback (autaptic) connection. We disclose the existence of a unique temporal response characteristic of localized structures enabling an ideal support for bits in an optical buffer memory for storage and reshaping of data information. We link our experimental implementation, based upon a nanoscale nonlinear resonant tunneling diode driving a laser, to the paradigm of neuronal activity, the FitzHugh-Nagumo model with delayed feedback. This proof-of-concept photonic regenerative memory might constitute a building block for a new class of neuron-inspired photonic memories that can handle high bit-rate optical signals.
Liu, Hongjian; Wang, Zidong; Shen, Bo; Alsaadi, Fuad E.
2016-07-01
This paper deals with the robust H∞ state estimation problem for a class of memristive recurrent neural networks with stochastic time-delays. The stochastic time-delays under consideration are governed by a Bernoulli-distributed stochastic sequence. The purpose of the addressed problem is to design the robust state estimator such that the dynamics of the estimation error is exponentially stable in the mean square, and the prescribed ? performance constraint is met. By utilizing the difference inclusion theory and choosing a proper Lyapunov-Krasovskii functional, the existence condition of the desired estimator is derived. Based on it, the explicit expression of the estimator gain is given in terms of the solution to a linear matrix inequality. Finally, a numerical example is employed to demonstrate the effectiveness and applicability of the proposed estimation approach.
The Berth Allocation Problem with Service Time and Delay Time Objectives
Akio Imai; Jin-Tao Zhang; Etsuko Nishimura; Stratos Papadimitriou
2007-01-01
This study addresses a two-objective berth allocation problem: ship service quality expressed by the minimisation of delay in ships' departure and berth utilisation expressed by the minimisation of the total service time. In this problem, noninferior solutions are expected to be identified. Two heuristics, which are implemented based on two existing procedures of the subgradient optimisation and genetic algorithm, are proposed for solving this problem. Through numerical experiments, it was fo...
Programmable multiple true-time-delay elements based on a Fourier-domain optical processor.
Yi, Xiaoke; Li, Liwei; Huang, Thomas X H; Minasian, Robert A
2012-02-15
A new technique to realize an array of multiple true-time-delay elements, which can be independently and continuously tuned, is reported. It is based on a WDM parallel signal processing approach in conjunction with a diffraction-based Fourier-domain optical signal processor. Programmable linear optical phase transfer functions are realized to obtain different electrical true-time delays. The technique can scale to a large number of wideband true-time-delay lines, with continuously tunable programmable delay. Results demonstrate multiple true-time-delay elements with independent tuning control and verify the concept by tuning the free spectral range of a microwave photonic notch filter. To our best knowledge, this is the first demonstration of multiple independently controllable true-time-delay lines for microwave photonic systems. PMID:22344122
Semistability of Nonlinear Systems Having a Continuum of Equilibria and Time-Varying Delays
Hui, Qing
2010-01-01
In this paper, we develop a semistability analysis framework for nonlinear systems with time-varying delays with applications to stability analysis of multiagent dynamic networks with consensus protocols in the presence of unknown heterogeneous time-varying delays along the communication links. We show that for such a nonlinear system having a continuum of equilibria, if the system asymptotically converges to a constant time-delay system and this new system is semistable, then the original time-varying delay system is semistable, provided that the delays are just bounded, not necessarily differentiable. In proving our results, we extend the limiting equation approach to the time-varying delay systems and also develop some new convergence results for functional differential equations.