WorldWideScience

Sample records for attitude flight dynamics

  1. Flight and attitude dynamics measurements of an instrumented Frisbee

    Science.gov (United States)

    Lorenz, Ralph D.

    2005-03-01

    In-flight measurements are made of the translational accelerations and attitude motion of a hand-thrown flying disc using miniaturized accelerometers and other sensors and a microcontroller data acquisition system. The experiments explore the capabilities and limitations of sensors on a rapidly rotating platform moving in air, and illustrate several of the complex gyrodynamic aspects of Frisbee flight. The data give insight into the biomechanics of Frisbee launch, and indicate lift, drag and pitch moment coefficients consistent with previous wind-tunnel measurements. The experiments constitute an instructive exercise in aerospace vehicle systems integration and in attitude reconstruction, and open the way to guided disc wings using control surfaces actuated during specific spin phases determined by onboard sensors.

  2. Magnetospheric Multiscale Mission Attitude Dynamics: Observations from Flight Data

    Science.gov (United States)

    Williams, Trevor; Shulman, Seth; Sedlak, Joseph E.; Ottenstein, Neil; Lounsbury, Brian

    2016-01-01

    The NASA Magnetospheric Multiscale mission, launched on Mar. 12, 2015, is flying four spinning spacecraft in highly elliptical orbits to study the magnetosphere of the Earth. Extensive attitude data is being collected, including spin rate, spin axis orientation, and nutation rate. The paper will discuss the various environmental disturbance torques that act on the spacecraft, and will describe the observed results of these torques. In addition, a slow decay in spin rate has been observed for all four spacecraft in the extended periods between maneuvers. It is shown that this despin is consistent with the effects of an additional disturbance mechanism, namely that produced by the Active Spacecraft Potential Control devices. Finally, attitude dynamics data is used to analyze a micrometeoroid/orbital debris impact event with MMS4 that occurred on Feb. 2, 2016.

  3. Flight Dynamics Analysis Branch 2005 Technical Highlights

    Science.gov (United States)

    2005-01-01

    This report summarizes the major activities and accomplishments carried out by the Flight Dynamics Analysis Branch (FDAB), Code 595, in support of flight projects and technology development initiatives in Fiscal Year (FY) 2005. The report is intended to serve as a summary of the type of support carried out by the FDAB, as well as a concise reference of key accomplishments and mission experience derived from the various mission support roles. The primary focus of the FDAB is to provide expertise in the disciplines of flight dynamics including spacecraft navigation (autonomous and ground based); spacecraft trajectory design and maneuver planning; attitude analysis; attitude determination and sensor calibration; and attitude control subsystem (ACS) analysis and design. The FDAB currently provides support for missions and technology development projects involving NASA, other government agencies, academia, and private industry.

  4. UAV Flight Dynamics

    OpenAIRE

    Philip Scott Blackwelder

    2015-01-01

    In the interest of promoting the integration of hybrid-electric power train into the aviation industry, research is being conducted by North Carolina State University to establish the feasibility of electrified power train in a small scale unmanned aerial vehicle (UAV). To accomplish this, it is first necessary to understand dynamics of the system to calculate the required power associated with each portions of the aircraft’s mission. Though research that has been conducted...

  5. Dynamic flight stability of a bumblebee in forward flight

    Institute of Scientific and Technical Information of China (English)

    Yan Xiong; Mao Sun

    2008-01-01

    The longitudinal dynamic flight stability of a bumblebee in forward flight is studied.The method of computational fluid dynamics is used to compute the aerodynamic derivatives and the techniques of eigenvalue and eigenvector analysis are employed for solving the equations of motion.The primary findings are as the following.The forward flight of the bumblebee is not dynamically stable due to the existence of one(or two)unstable or approximately neutrally stable natural modes of motion.At hovering to medium flight speed[flight speed ue=(0-3.5)m s-1;advance ratio J=0-0.44],the flight is weakly unstable or approximately neutrally stable;at high speed(ue=4.5 m s-1;J=0.57),the flight becomes strongly unstable(initial disturbance double its value in only 3.5 wingbeats).

  6. Robust Aerial Object Tracking in High Dynamic Flight Maneuvers

    Science.gov (United States)

    Nussberger, A.; Grabner, H.; van Gool, L.

    2015-08-01

    Integrating drones into the civil airspace is one of the biggest challenges for civil aviation, responsible authorities and involved com- panies around the world in the upcoming years. For a full integration into non-segregated airspace such a system has to provide the capability to automatically detect and avoid other airspace users. Electro-optical cameras have proven to be an adequate sensor to detect all types of aerial objects, especially for smaller ones such as gliders or paragliders. Robust detection and tracking of approaching traffic on a potential collision course is the key component for a successful avoidance maneuver. In this paper we focus on the aerial object tracking during dynamic flight maneuvers of the own-ship where accurate attitude information corresponding to the camera images is essential. Because the 'detect and avoid' functionality typically extends existing autopilot systems the received attitude measurements have unknown delays and dynamics. We present an efficient method to calculate the angular rates from a multi camera rig which we fuse with the delayed attitude measurements. This allows for estimating accurate absolute attitude angles for every camera frame. The proposed method is further integrated into an aerial object tracking framework. A detailed evaluation of the pipeline on real collision encounter scenarios shows that the multi camera rig based attitude estimation enables the correct tracking of approaching traffic during dynamic flight, at which the tracking framework previously failed.

  7. Cassini Attitude Control Flight Software: from Development to In-Flight Operation

    Science.gov (United States)

    Brown, Jay

    2008-01-01

    The Cassini Attitude and Articulation Control Subsystem (AACS) Flight Software (FSW) has achieved its intended design goals by successfully guiding and controlling the Cassini-Huygens planetary mission to Saturn and its moons. This paper describes an overview of AACS FSW details from early design, development, implementation, and test to its fruition of operating and maintaining spacecraft control over an eleven year prime mission. Starting from phases of FSW development, topics expand to FSW development methodology, achievements utilizing in-flight autonomy, and summarize lessons learned during flight operations which can be useful to FSW in current and future spacecraft missions.

  8. Attitude Determination Using a MEMS-Based Flight Information Measurement Unit

    Directory of Open Access Journals (Sweden)

    Yu-Heng Lin

    2011-12-01

    Full Text Available Obtaining precise attitude information is essential for aircraft navigation and control. This paper presents the results of the attitude determination using an in-house designed low-cost MEMS-based flight information measurement unit. This study proposes a quaternion-based extended Kalman filter to integrate the traditional quaternion and gravitational force decomposition methods for attitude determination algorithm. The proposed extended Kalman filter utilizes the evolution of the four elements in the quaternion method for attitude determination as the dynamic model, with the four elements as the states of the filter. The attitude angles obtained from the gravity computations and from the electronic magnetic sensors are regarded as the measurement of the filter. The immeasurable gravity accelerations are deduced from the outputs of the three axes accelerometers, the relative accelerations, and the accelerations due to body rotation. The constraint of the four elements of the quaternion method is treated as a perfect measurement and is integrated into the filter computation. Approximations of the time-varying noise variances of the measured signals are discussed and presented with details through Taylor series expansions. The algorithm is intuitive, easy to implement, and reliable for long-term high dynamic maneuvers. Moreover, a set of flight test data is utilized to demonstrate the success and practicality of the proposed algorithm and the filter design.

  9. Flight Dynamics and Controls Discipline Overview

    Science.gov (United States)

    Theodore, Colin R.

    2012-01-01

    This presentation will touch topics, including but not limited to, the objectives and challenges of flight dynamics and controls that deal with the pilot and the cockpit's technology, the flight dynamics and controls discipline tasks, and the full envelope of flight dynamics modeling. In addition, the LCTR 7x10-ft wind tunnel test will also be included along with the optimal trajectories for noise abatement and its investigations on handling quality. Furthermore, previous experiments and their complying results will also be discussed.

  10. The determination of the attitude and attitude dynamics of TeamSat

    DEFF Research Database (Denmark)

    Betto, Maurizio; Jørgensen, John Leif; Riis, Troels;

    1999-01-01

    The second qualification flight of Ariane 5 was launched from the European Space Port in French Guiana on October 30, 1997. It carried on board a small technology demonstration satellite dubbed TeamSat into which five experiments, proposed by various universities and research institutions, were...... integrated. Among them, the Autonomous Vision System, AVS, a fully autonomous star tracker and vision system. This paper gives a short overview of the TeamSat satellite design, implementation and mission objectives. The AVS is described in more details. The main science objectives of the AVS were to verify...... determined the attitude and attitude dynamics of TeamSat....

  11. Analysis of Dynamic Flight Loads

    OpenAIRE

    Jansson, Natascha

    2012-01-01

    This thesis deals with the determination of loads on an aircraft struc- ture during flight. The focus is on flight conditions where the loads are significantly time-dependent. Analysis of flight loads is primarily motivated to ensure that structural failure is avoided. The ability to ac- curately determine the resulting structural loads which can occur during operation allows for a reduction of the safety margins in the structural design. Consequently it is then possible to decrease the aircr...

  12. Chaos in attitude dynamics of spacecraft

    CERN Document Server

    Liu, Yanzhu

    2013-01-01

    Attitude dynamics is the theoretical basis of attitude control of spacecrafts in aerospace engineering. With the development of nonlinear dynamics, chaos in spacecraft attitude dynamics has drawn great attention since the 1990's. The problem of the predictability and controllability of the chaotic attitude motion of a spacecraft has a practical significance in astronautic science. This book aims to summarize basic concepts, main approaches, and recent progress in this area. It focuses on the research work of the author and other Chinese scientists in this field, providing new methods and viewpoints in the investigation of spacecraft attitude motion, as well as new mathematical models, with definite engineering backgrounds, for further analysis. Professor Yanzhu Liu was the Director of the Institute of Engineering Mechanics, Shanghai Jiao Tong University, China. Dr. Liqun Chen is a Professor at the Department of Mechanics, Shanghai University, China.

  13. Flight Vehicle Attitude Determination Using the Modified Rodrigues Parameters

    Institute of Scientific and Technical Information of China (English)

    Chen Jizheng; Yuan Jianping; Fang Qun

    2008-01-01

    There are two attitude estimation algorithms based on the different representations of attitude errors when modified Rodrigues parameters are applied to attitude estimation. The first is multiplicative error attitude estimator (MEAE), whose attitude error is expressed by the modified Rodrigues parameters representing the rotation from the estimated to the true attitude. The second is subtractive error attitude estimator (SEAE), whose attitude error is expressed by the arithmetic difference between the true and the estimated attitudes. It is proved that the two algorithms are equivalent in the case of small attitude errors. It is possible to describe rotation without encountering singularity by switching between the modified Rodrigues parameters and their shadow parameters. The attitude parameter switching does not bring disturbance to MEAE, but it does to SEAE. This article introduces a modification to eliminate the disturbance on SEAE,and simulation results demonstrate the efficacy of the presented algorithm.

  14. Space station configuration and flight dynamics identification

    Science.gov (United States)

    Metter, E.; Milman, M. H.

    1985-01-01

    The Space Station will be assembled in low earth orbit by a combination of deployable and space erectable modules that are progressively integrated during successive flights of the Shuttle. The crew assisted space construction will result in a configuration which is a large scale composite of structural elements having connectivity with a wide range of possible end conditions and imprecisely known dynamic characteristics. The generic applications of Flight Dynamics Identification to the candidate Space Station configurations currently under consideration are described. Identification functions are categorized, and the various methods for extracting parameter estimates are correlated with the sensing of parameter estimates are correlated with the sensing of specific characteristics of interest to both engineering subsystems and users of the Station's commercial and scientific facilities. Onboard implementation architecture and constraints are discussed from the viewpoint of maximizing integration of the Identification process with the flight subsystem's data and signal flow.

  15. Development of helicopter attitude axes controlled hover flight without pilot assistance and vehicle crashes

    Science.gov (United States)

    Simon, Miguel

    In this work, we show how to computerize a helicopter to fly attitude axes controlled hover flight without the assistance of a pilot and without ever crashing. We start by developing a helicopter research test bed system including all hardware, software, and means for testing and training the helicopter to fly by computer. We select a Remote Controlled helicopter with a 5 ft. diameter rotor and 2.2 hp engine. We equip the helicopter with a payload of sensors, computers, navigation and telemetry equipment, and batteries. We develop a differential GPS system with cm accuracy and a ground computerized navigation system for six degrees of freedom (6-DoF) free flight while tracking navigation commands. We design feedback control loops with yet-to-be-determined gains for the five control "knobs" available to a flying radio-controlled (RC) miniature helicopter: engine throttle, main rotor collective pitch, longitudinal cyclic pitch, lateral cyclic pitch, and tail rotor collective pitch. We develop helicopter flight equations using fundamental dynamics, helicopter momentum theory and blade element theory. The helicopter flight equations include helicopter rotor equations of motions, helicopter rotor forces and moments, helicopter trim equations, helicopter stability derivatives, and a coupled fuselage-rotor helicopter 6-DoF model. The helicopter simulation also includes helicopter engine control equations, a helicopter aerodynamic model, and finally helicopter stability and control equations. The derivation of a set of non-linear equations of motion for the main rotor is a contribution of this thesis work. We design and build two special test stands for training and testing the helicopter to fly attitude axes controlled hover flight, starting with one axis at a time and progressing to multiple axes. The first test stand is built for teaching and testing controlled flight of elevation and yaw (i.e., directional control). The second test stand is built for teaching and

  16. Automated Flight Routing Using Stochastic Dynamic Programming

    Science.gov (United States)

    Ng, Hok K.; Morando, Alex; Grabbe, Shon

    2010-01-01

    Airspace capacity reduction due to convective weather impedes air traffic flows and causes traffic congestion. This study presents an algorithm that reroutes flights in the presence of winds, enroute convective weather, and congested airspace based on stochastic dynamic programming. A stochastic disturbance model incorporates into the reroute design process the capacity uncertainty. A trajectory-based airspace demand model is employed for calculating current and future airspace demand. The optimal routes minimize the total expected traveling time, weather incursion, and induced congestion costs. They are compared to weather-avoidance routes calculated using deterministic dynamic programming. The stochastic reroutes have smaller deviation probability than the deterministic counterpart when both reroutes have similar total flight distance. The stochastic rerouting algorithm takes into account all convective weather fields with all severity levels while the deterministic algorithm only accounts for convective weather systems exceeding a specified level of severity. When the stochastic reroutes are compared to the actual flight routes, they have similar total flight time, and both have about 1% of travel time crossing congested enroute sectors on average. The actual flight routes induce slightly less traffic congestion than the stochastic reroutes but intercept more severe convective weather.

  17. Modeling and Flight Data Analysis of Spacecraft Dynamics with a Large Solar Array Paddle

    Science.gov (United States)

    Iwata, Takanori; Maeda, Ken; Hoshino, Hiroki

    2007-01-01

    The Advanced Land Observing Satellite (ALOS) was launched on January 24 2006 and has been operated successfully since then. This satellite has the attitude dynamics characterized by three large flexible structures, four large moving components, and stringent attitude/pointing stability requirements. In particular, it has one of the largest solar array paddles. Presented in this paper are flight data analyses and modeling of spacecraft attitude motion induced by the large solar array paddle. On orbit attitude dynamics was first characterized and summarized. These characteristic motions associated with the solar array paddle were identified and assessed. These motions are thermally induced motion, the pitch excitation by the paddle drive, and the role excitation. The thermally induced motion and the pitch excitation by the paddle drive were modeled and simulated to verify the mechanics of the motions. The control law updates implemented to mitigate the attitude vibrations are also reported.

  18. Cross-cultural attitudes of flight crew regarding CRM

    Science.gov (United States)

    Merritt, Ashleigh

    1993-01-01

    This study asks if the Cockpit Management Attitude Questionnaire (CMAQ) can detect differences across countries, and/or across occupations. And if so, can those differences be interpreted? Research has shown that the CMAQ is sensitive to attitude differences between and within organizations, thereby demonstrating its effectiveness with American populations. But the CMAQ was originally designed by American researchers and psychometrically refined for American pilots. The items in the questionnaire, though general in nature, still reflect the ubiquitous Western bias, because the items were written by researchers from and for the one culture. Recognizing this constraint, this study is nonetheless interested in attitudes toward crew behavior, and how those attitudes may vary across country and occupation.

  19. Automation Framework for Flight Dynamics Products Generation

    Science.gov (United States)

    Wiegand, Robert E.; Esposito, Timothy C.; Watson, John S.; Jun, Linda; Shoan, Wendy; Matusow, Carla

    2010-01-01

    XFDS provides an easily adaptable automation platform. To date it has been used to support flight dynamics operations. It coordinates the execution of other applications such as Satellite TookKit, FreeFlyer, MATLAB, and Perl code. It provides a mechanism for passing messages among a collection of XFDS processes, and allows sending and receiving of GMSEC messages. A unified and consistent graphical user interface (GUI) is used for the various tools. Its automation configuration is stored in text files, and can be edited either directly or using the GUI.

  20. The results of flight tests of an attitude control system for the Chibis-M microsatellite

    Science.gov (United States)

    Ivanov, D. S.; Ivlev, N. A.; Karpenko, S. O.; Ovchinnikov, M. Yu.; Roldugin, D. S.; Tkachev, S. S.

    2014-05-01

    The attitude control system of the Chibis-M microsatellite is described. Results of flight experiments on damping the initial angular velocity (made using magnetorquers) are considered, as well as stabilization in the orbital referece frame, and orientation of solar arrays toward the Sun using reaction wheels. The operation of algorithms of satellite attitude determination on sunlit and shadow segments of the orbit is also under study. The general logic of operation of the attitude control system in automatic mode is presented and discussed.

  1. New one-axis one-sensor magnetic attitude control theoretical and in-flight performance

    Science.gov (United States)

    Ovchinnikov, M. Yu.; Roldugin, D. S.; Tkachev, S. S.; Karpenko, S. O.

    2014-12-01

    New one-axis magnetic attitude control is proposed. Only one attitude sensor providing any inertial direction measurements is necessary, magnetometer is not used. The control may be used as a backup capability in case main actuators or some attitude sensors fail. Sun pointing is achievable using only three-axis Sun sensor, so the control may be used to lower the power consumption during battery charging. Asymptotic stability of different equilibria depending on the satellite inertia tensor is summarized. In-flight results from "Chibis-M" microsatellite are provided proving general control performance.

  2. System identification approach for determining flight dynamical characteristics of an airship from flight data

    OpenAIRE

    Kornienko, Andrei

    2006-01-01

    The knowledge of dynamical characteristics of a flight vehicle is necessary for the control system design and realization of high fidelity flight simulators. The development of a flight mechanical model and determination of its basic components, as for example mass properties and the major aerodynamic terms, addresses a complex process involving various analytical, numerical and experimental techniques. The objective of this dissertation is a determination of the basic dynamical character...

  3. Using Automatic Code Generation in the Attitude Control Flight Software Engineering Process

    Science.gov (United States)

    McComas, David; O'Donnell, James R., Jr.; Andrews, Stephen F.

    1999-01-01

    This paper presents an overview of the attitude control subsystem flight software development process, identifies how the process has changed due to automatic code generation, analyzes each software development phase in detail, and concludes with a summary of our lessons learned.

  4. Unsteady aerodynamics modeling for flight dynamics application

    Science.gov (United States)

    Wang, Qing; He, Kai-Feng; Qian, Wei-Qi; Zhang, Tian-Jiao; Cheng, Yan-Qing; Wu, Kai-Yuan

    2012-02-01

    In view of engineering application, it is practicable to decompose the aerodynamics into three components: the static aerodynamics, the aerodynamic increment due to steady rotations, and the aerodynamic increment due to unsteady separated and vortical flow. The first and the second components can be presented in conventional forms, while the third is described using a one-order differential equation and a radial-basis-function (RBF) network. For an aircraft configuration, the mathematical models of 6-component aerodynamic coefficients are set up from the wind tunnel test data of pitch, yaw, roll, and coupled yawroll large-amplitude oscillations. The flight dynamics of an aircraft is studied by the bifurcation analysis technique in the case of quasi-steady aerodynamics and unsteady aerodynamics, respectively. The results show that: (1) unsteady aerodynamics has no effect upon the existence of trim points, but affects their stability; (2) unsteady aerodynamics has great effects upon the existence, stability, and amplitudes of periodic solutions; and (3) unsteady aerodynamics changes the stable regions of trim points obviously. Furthermore, the dynamic responses of the aircraft to elevator deflections are inspected. It is shown that the unsteady aerodynamics is beneficial to dynamic stability for the present aircraft. Finally, the effects of unsteady aerodynamics on the post-stall maneuverability are analyzed by numerical simulation.

  5. Unsteady aerodynamics modeling for flight dynamics application

    Institute of Scientific and Technical Information of China (English)

    Qing Wang; Kai-Feng He; Wei-Qi Qian; Tian-Jiao Zhang; Yan-Qing Cheng; Kai-Yuan Wu

    2012-01-01

    In view of engineering application,it is practicable to decompose the aerodynamics into three components:the static aerodynamics,the aerodynamic increment due to steady rotations,and the aerodynamic increment due to unsteady separated and vortical flow.The first and the second components can be presented in conventional forms,while the third is described using a one-order differential equation and a radial-basis-function (RBF) network. For an aircraft configuration,the mathematical models of 6-component aerodynamic coefficients are set up from the wind tunnel test data of pitch,yaw,roll,and coupled yawroll large-amplitude oscillations.The flight dynamics of an aircraft is studied by the bifurcation analysis technique in the case of quasi-steady aerodynamics and unsteady aerodynamics,respectively.The results show that:(1) unsteady aerodynamics has no effect upon the existence of trim points,but affects their stability; (2) unsteady aerodynamics has great effects upon the existence,stability,and amplitudes of periodic solutions; and (3) unsteady aerodynamics changes the stable regions of trim points obviously.Furthermore,the dynamic responses of the aircraft to elevator deflections are inspected.It is shown that the unsteady aerodynamics is beneficial to dynamic stability for the present aircraft.Finally,the effects of unsteady aerodynamics on the post-stall maneuverability are analyzed by numerical simulation.

  6. Dynamic flight stability of hovering insects

    Institute of Scientific and Technical Information of China (English)

    Mao Sun; Jikang Wang; Yan Xiong

    2007-01-01

    The equations of motion of an insect with flapping wings are derived and then simplified to that of a flying body using the "rigid body" assumption. On the basis of the simplified equations of motion, the longitudinal dynamic flight stability of four insects (hoverfly, cranefly, dronefly and hawkmoth) in hovering flight is studied (the mass of the insects ranging from 11 to 1,648 mg and wingbeat frequency from 26 to 157Hz). The method of computational fluid dynamics is used to compute the aerodynamic derivatives and the techniques of eigenvalue and eigenvector analysis are used to solve the equations of motion. The validity of the "rigid body" assumption is tested and how differencesin size and wing kinematics influence the applicability of the "rigid body" assumption is investigated. The primary findings are: (1) For insects considered in the present study and those with relatively high wingbeat frequency (hover-fly, drone fly and bumblebee), the "rigid body" assumptionis reasonable, and for those with relatively low wingbeatfrequency (cranefly and howkmoth), the applicability of the"rigid body" assumption is questionable. (2) The same three natural modes of motion as those reported recently for a bumblebee are identified, i.e., one unstable oscillatory mode,one stable fast subsidence mode and one stable slow subsidence mode. (3) Approximate analytical expressions of the eigenvalues, which give physical insight into the genesis of the natural modes of motion, are derived. The expressions identify the speed derivative Mu (pitching moment produced by unit horizontal speed) as the primary source of the unstable oscillatory mode and the stable fast subsidence mode and Zw (vertical force produced by unit vertical speed) as the primary source of the stable slow subsidence mode.

  7. The dynamics of CRM attitude change: Attitude stability

    Science.gov (United States)

    Gregorich, Steven E.

    1993-01-01

    Special training seminars in cockpit resource management (CRM) are designed to enhance crew effectiveness in multicrew air-transport cockpits. In terms of CRM, crew effectiveness is defined by teamwork rather than technical proficiency. These seminars are designed to promote factual learning, alter aviator attitudes, and motivate aviators to make use of what they have learned. However, measures of attitude change resulting from CRM seminars have been the most common seminar evaluation technique. The current investigation explores a broader range of attitude change parameters with specific emphasis on the stability of change between recurrent visits to the training center. This allows for a comparison of training program strengths in terms of seminar ability to effect lasting change.

  8. Flight dynamics and control of evasive maneuvers: the fruit fly's takeoff.

    Science.gov (United States)

    Zabala, Francisco A; Card, Gwyneth M; Fontaine, Ebraheem I; Dickinson, Michael H; Murray, Richard M

    2009-09-01

    We have approached the problem of reverse-engineering the flight control mechanism of the fruit fly by studying the dynamics of the responses to a visual stimulus during takeoff. Building upon a prior framework [G. Card and M. Dickinson, J. Exp. Biol., vol. 211, pp. 341-353, 2008], we seek to understand the strategies employed by the animal to stabilize attitude and orientation during these evasive, highly dynamical maneuvers. As a first step, we consider the dynamics from a gray-box perspective: examining lumped forces produced by the insect's legs and wings. The reconstruction of the flight initiation dynamics, based on the unconstrained motion formulation for a rigid body, allows us to assess the fly's responses to a variety of initial conditions induced by its jump. Such assessment permits refinement by using a visual tracking algorithm to extract the kinematic envelope of the wings [E. I. Fontaine, F. Zabala, M. Dickinson, and J. Burdick, "Wing and body motion during flight initiation in Drosophila revealed by automated visual tracking," submitted for publication] in order to estimate lift and drag forces [F. Zabala, M. Dickinson, and R. Murray, "Control and stability of insect flight during highly dynamical maneuvers," submitted for publication], and recording actual leg-joint kinematics and using them to estimate jump forces [F. Zabala, "A bio-inspired model for directionality control of flight initiation," to be published.]. In this paper, we present the details of our approach in a comprehensive manner, including the salient results. PMID:19643699

  9. Flight Dynamic Simulation with Nonlinear Aeroelastic Interaction using the ROM-ROM Procedure Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ZONA Technology, Inc. proposes to develop an integrated flight dynamics simulation capability with nonlinear aeroelastic interactions by combining a flight dynamics...

  10. Existence of oscillatory solutions in longitudinal flight dynamics

    OpenAIRE

    Kaslik, Eva; Balint, Stefan

    2010-01-01

    Abstract By means of coincidence degree theory and Mawhin?s continuation theorem, a theoretical proof is given for the existence of oscillatory solutions of the simplified dynamical system which governs the motion around the center of mass in a longitudinal flight with constant forward velocity of a rigid aircraft, when the automatic flight control system is decoupled.

  11. Product assurance policies and procedures for flight dynamics software development

    Science.gov (United States)

    Perry, Sandra; Jordan, Leon; Decker, William; Page, Gerald; Mcgarry, Frank E.; Valett, Jon

    1987-01-01

    The product assurance policies and procedures necessary to support flight dynamics software development projects for Goddard Space Flight Center are presented. The quality assurance and configuration management methods and tools for each phase of the software development life cycles are described, from requirements analysis through acceptance testing; maintenance and operation are not addressed.

  12. In-flight measurement of upwind dynamic soaring in albatrosses

    Science.gov (United States)

    Sachs, Gottfried

    2016-03-01

    In-flight measurement results on upwind flight of albatrosses using dynamic soaring are presented. It is shown how the birds manage to make progress against the wind on the basis of small-scale dynamic soaring maneuvers. For this purpose, trajectory features, motion quantities and mechanical energy relationships as well as force characteristics are analyzed. The movement on a large-scale basis consists of a tacking type flight technique which is composed of dynamic soaring cycle sequences with alternating orientation to the left and right. It is shown how this is performed by the birds so that they can achieve a net upwind flight without a transversal large-scale movement and how this compares with downwind or across wind flight. Results on upwind dynamic soaring are presented for low and high wind speed cases. It is quantified how much the tacking trajectory length is increased when compared with the beeline distance. The presented results which are based on in-flight measurements of free flying albatrosses were achieved with an in-house developed GPS-signal tracking method yielding the required high precision for the small-scale dynamic soaring flight maneuvers.

  13. Unified Nonlinear Flight Dynamics and Aeroelastic Simulator Tool Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ZONA Technology, Inc. (ZONA) proposes a R&D effort to develop a Unified Nonlinear Flight Dynamics and Aeroelastic Simulator (UNFDAS) Tool that will combine...

  14. The results of the in-flight attitude sensor calibration for the Arthur Holly Compton Gamma Ray Observatory

    Science.gov (United States)

    Davis, W. S.; Eudell, A. H.; Kulp, L. S.; Lindrose, L. A.; Harman, R. R.

    1993-02-01

    The Arthur Holly Compton Gamma Ray Observatory (GRO) was launched by the shuttle Atlantis in April 1991. This paper presents the results of the attitude sensor calibration that was performed during the early mission. The GSFC Flight Dynamics Facility (FDF) performed an alignment calibration of the two fixed-head star trackers (FHST's) and two fine Sun sensors (FSS's) on board Compton GRO. The results show a 27-arcsecond shift between the bore sights of the FHST's with respect to prelaunch measurements. The alignments of the two FSS's shifted by 0.20 and 0.05 degree. During the same time period, the Compton GRO science teams performed an alignment calibration of the science instruments with respect to the attitude reported by the on board computer (OBC). In order to preserve these science alignments, FDF adjusted the overall alignments of the FHST's and FSS's, obtained by the FDF calibration, such that when up linked to the OBC, the shift in the OBC-determined attitude is minimized. FDF also calibrated the inertial reference unit (IRU), which consists of three dual-axis gyroscopes. The observed gyro bias matched the bias that was solved for by the OBC. This bias drifted during the first 6 days after release. The results of the FDF calibration of scale factor and alignment shifts showed changes that were of the same order as their uncertainties.

  15. Cassini Attitude Control Operations Flight Rules and How They are Enforced

    Science.gov (United States)

    Burk, Thomas; Bates, David

    2008-01-01

    The Cassini spacecraft was launched on October 15, 1997 and arrived at Saturn on June 30, 2004. It has performed detailed observations and remote sensing of Saturn, its rings, and its satellites since that time. Cassini deployed the European-built Huygens probe which descended through the Titan atmosphere and landed on its surface on January 14, 2005. Operating the Cassini spacecraft is a complex scientific, engineering, and management job. In order to safely operate the spacecraft, a large number of flight rules were developed. These flight rules must be enforced throughout the lifetime of the Cassini spacecraft. Flight rules are defined as any operational limitation imposed by the spacecraft system design, hardware, and software, violation of which would result in spacecraft damage, loss of consumables, loss of mission objectives, loss and/or degradation of science, and less than optimal performance. Flight rules require clear description and rationale. Detailed automated methods have been developed to insure the spacecraft is continuously operated within these flight rules. An overview of all the flight rules allocated to the Cassini Attitude Control and Articulation Subsystem and how they are enforced is presented in this paper.

  16. Flight Dynamics Mission Support and Quality Assurance Process

    Science.gov (United States)

    Oh, InHwan

    1996-01-01

    This paper summarizes the method of the Computer Sciences Corporation Flight Dynamics Operation (FDO) quality assurance approach to support the National Aeronautics and Space Administration Goddard Space Flight Center Flight Dynamics Support Branch. Historically, a strong need has existed for developing systematic quality assurance using methods that account for the unique nature and environment of satellite Flight Dynamics mission support. Over the past few years FDO has developed and implemented proactive quality assurance processes applied to each of the six phases of the Flight Dynamics mission support life cycle: systems and operations concept, system requirements and specifications, software development support, operations planing and training, launch support, and on-orbit mission operations. Rather than performing quality assurance as a final step after work is completed, quality assurance has been built in as work progresses in the form of process assurance. Process assurance activities occur throughout the Flight Dynamics mission support life cycle. The FDO Product Assurance Office developed process checklists for prephase process reviews, mission team orientations, in-progress reviews, and end-of-phase audits. This paper will outline the evolving history of FDO quality assurance approaches, discuss the tailoring of Computer Science Corporations's process assurance cycle procedures, describe some of the quality assurance approaches that have been or are being developed, and present some of the successful results.

  17. A Dynamic Attitude Measurement System Based on LINS

    Directory of Open Access Journals (Sweden)

    Hanzhou Li

    2014-08-01

    Full Text Available A dynamic attitude measurement system (DAMS is developed based on a laser inertial navigation system (LINS. Three factors of the dynamic attitude measurement error using LINS are analyzed: dynamic error, time synchronization and phase lag. An optimal coning errors compensation algorithm is used to reduce coning errors, and two-axis wobbling verification experiments are presented in the paper. The tests indicate that the attitude accuracy is improved 2-fold by the algorithm. In order to decrease coning errors further, the attitude updating frequency is improved from 200 Hz to 2000 Hz. At the same time, a novel finite impulse response (FIR filter with three notches is designed to filter the dither frequency of the ring laser gyro (RLG. The comparison tests suggest that the new filter is five times more effective than the old one. The paper indicates that phase-frequency characteristics of FIR filter and first-order holder of navigation computer constitute the main sources of phase lag in LINS. A formula to calculate the LINS attitude phase lag is introduced in the paper. The expressions of dynamic attitude errors induced by phase lag are derived. The paper proposes a novel synchronization mechanism that is able to simultaneously solve the problems of dynamic test synchronization and phase compensation. A single-axis turntable and a laser interferometer are applied to verify the synchronization mechanism. The experiments results show that the theoretically calculated values of phase lag and attitude error induced by phase lag can both match perfectly with testing data. The block diagram of DAMS and physical photos are presented in the paper. The final experiments demonstrate that the real-time attitude measurement accuracy of DAMS can reach up to 20″ (1σ and the synchronization error is less than 0.2 ms on the condition of three axes wobbling for 10 min.

  18. Quasi-satellite dynamics in formation flight

    CERN Document Server

    Mikkola, Seppo

    2016-01-01

    The quasi-satellite (QS) phenomenon makes two celestial bodies to fly near each other (Mikkola et al. 2006) and that effect can be used also to make artificial satellites move in tandem. We consider formation flight of two or three satellites in low eccentricity near Earth orbits. With the help of weak ion thrusters it is possible to accomplish tandem flight. With ion thrusters it is also possible to mimic many kinds of mutual force laws between the satellites. We found that both a constant repulsive force or an attractive force that decreases with the distance are able to preserve the formation in which the eccentricities cause the actual relative motion and the weak thrusters keep the mean longitude difference small. Initial values are important for the formation flight but very exact adjustment of orbital elements is not important. Simplicity is one of our goals in this study and this result is achieved at least in the way that, when constant force thrusters are used, the satellites only need to detect the...

  19. Analytical and flight investigation of the influence of rotor and other high-order dynamics on helicopter flight-control system bandwidth

    Science.gov (United States)

    Chen, R. T. N.; Hindson, W. S.

    1985-01-01

    The increasing use of highly augmented digital flight-control systems in modern military helicopters prompted an examination of the influence of rotor dynamics and other high-order dynamics on control-system performance. A study was conducted at NASA Ames Research Center to correlate theoretical predictions of feedback gain limits in the roll axis with experimental test data obtained from a variable-stability research helicopter. Feedback gains, the break frequency of the presampling sensor filter, and the computational frame time of the flight computer were systematically varied. The results, which showed excellent theoretical and experimental correlation, indicate that the rotor-dynamics, sensor-filter, and digital-data processing delays can severely limit the usable values of the roll-rate and roll-attitude feedback gains.

  20. Spacecraft Dynamics Should be Considered in Kalman Filter Attitude Estimation

    Science.gov (United States)

    Yang, Yaguang; Zhou, Zhiqiang

    2016-01-01

    Kalman filter based spacecraft attitude estimation has been used in some high-profile missions and has been widely discussed in literature. While some models in spacecraft attitude estimation include spacecraft dynamics, most do not. To our best knowledge, there is no comparison on which model is a better choice. In this paper, we discuss the reasons why spacecraft dynamics should be considered in the Kalman filter based spacecraft attitude estimation problem. We also propose a reduced quaternion spacecraft dynamics model which admits additive noise. Geometry of the reduced quaternion model and the additive noise are discussed. This treatment is more elegant in mathematics and easier in computation. We use some simulation example to verify our claims.

  1. Dynamic Modeling from Flight Data with Unknown Time Skews

    Science.gov (United States)

    Morelli, Eugene A.

    2016-01-01

    A method for estimating dynamic model parameters from flight data with unknown time skews is described and demonstrated. The method combines data reconstruction, nonlinear optimization, and equation-error parameter estimation in the frequency domain to accurately estimate both dynamic model parameters and the relative time skews in the data. Data from a nonlinear F-16 aircraft simulation with realistic noise, instrumentation errors, and arbitrary time skews were used to demonstrate the approach. The approach was further evaluated using flight data from a subscale jet transport aircraft, where the measured data were known to have relative time skews. Comparison of modeling results obtained from time-skewed and time-synchronized data showed that the method accurately estimates both dynamic model parameters and relative time skew parameters from flight data with unknown time skews.

  2. Progress Toward a Format Standard for Flight Dynamics Models

    Science.gov (United States)

    Jackson, E. Bruce; Hildreth, Bruce L.

    2006-01-01

    In the beginning, there was FORTRAN, and it was... not so good. But it was universal, and all flight simulator equations of motion were coded with it. Then came ACSL, C, Ada, C++, C#, Java, FORTRAN-90, Matlab/Simulink, and a number of other programming languages. Since the halcyon punch card days of 1968, models of aircraft flight dynamics have proliferated in training devices, desktop engineering and development computers, and control design textbooks. With the rise of industry teaming and increased reliance on simulation for procurement decisions, aircraft and missile simulation models are created, updated, and exchanged with increasing frequency. However, there is no real lingua franca to facilitate the exchange of models from one simulation user to another. The current state-of-the-art is such that several staff-months if not staff-years are required to 'rehost' each release of a flight dynamics model from one simulation environment to another one. If a standard data package or exchange format were to be universally adopted, the cost and time of sharing and updating aerodynamics, control laws, mass and inertia, and other flight dynamic components of the equations of motion of an aircraft or spacecraft simulation could be drastically reduced. A 2002 paper estimated over $ 6 million in savings could be realized for one military aircraft type alone. This paper describes the efforts of the American Institute of Aeronautics and Astronautics (AIAA) to develop a standard flight dynamic model exchange standard based on XML and HDF-5 data formats.

  3. Flight Dynamic Simulation with Nonlinear Aeroelastic Interaction using the ROM-ROM Procedure Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ZONA Technology, Inc. (ZONA) proposes to develop an integrated flight dynamics simulation capability with nonlinear aeroelastic interactions by combining a flight...

  4. Adaptive integral dynamic surface control of a hypersonic flight vehicle

    Science.gov (United States)

    Aslam Butt, Waseem; Yan, Lin; Amezquita S., Kendrick

    2015-07-01

    In this article, non-linear adaptive dynamic surface air speed and flight path angle control designs are presented for the longitudinal dynamics of a flexible hypersonic flight vehicle. The tracking performance of the control design is enhanced by introducing a novel integral term that caters to avoiding a large initial control signal. To ensure feasibility, the design scheme incorporates magnitude and rate constraints on the actuator commands. The uncertain non-linear functions are approximated by an efficient use of the neural networks to reduce the computational load. A detailed stability analysis shows that all closed-loop signals are uniformly ultimately bounded and the ? tracking performance is guaranteed. The robustness of the design scheme is verified through numerical simulations of the flexible flight vehicle model.

  5. Parallel dynamic programming for on-line flight path optimization

    Science.gov (United States)

    Slater, G. L.; Hu, K.

    1989-01-01

    Parallel systolic algorithms for dynamic programming(DP) and their respective hardware implementations are presented for a problem in on-line trajectory optimization. The method is applied to a model for helicopter flight path optimization through a complex constraint region. This problem has application to an air traffic control problem and also to a terrain following/threat avoidance problem.

  6. Flight dynamics - a bridge for the Agency's worldwide cooperative endeavours.

    Science.gov (United States)

    Münch, R. E.

    ESA, itself a multi-national European endeavour, cooperates with a number of other space interested bodies around the World on a variety of space projects and programmes. Distant countries participate in this international cooperation. These joint ventures often involve sophisticated satellite control scenarios and thereby provide challenging tasks for ESOC's Flight Dynamics Team.

  7. Vertical Wind Tunnel for Prediction of Rocket Flight Dynamics

    Directory of Open Access Journals (Sweden)

    Hoani Bryson

    2016-03-01

    Full Text Available A customized vertical wind tunnel has been built by the University of Canterbury Rocketry group (UC Rocketry. This wind tunnel has been critical for the success of UC Rocketry as it allows the optimization of avionics and control systems before flight. This paper outlines the construction of the wind tunnel and includes an analysis of flow quality including swirl. A minimal modelling methodology for roll dynamics is developed that can extrapolate wind tunnel behavior at low wind speeds to much higher velocities encountered during flight. The models were shown to capture the roll flight dynamics in two rocket launches with mean roll angle errors varying from 0.26° to 1.5° across the flight data. The identified model parameters showed consistent and predictable variations over both wind tunnel tests and flight, including canard–fin interaction behavior. These results demonstrate that the vertical wind tunnel is an important tool for the modelling and control of sounding rockets.

  8. NanoSail - D Orbital and Attitude Dynamics

    Science.gov (United States)

    Heaton, Andrew F.; Faller, Brent F.; Katan, Chelsea K.

    2013-01-01

    NanoSail-D unfurled January 20th, 2011 and successfully demonstrated the deployment and deorbit capability of a solar sail in low Earth orbit. The orbit was strongly perturbed by solar radiation pressure, aerodynamic drag, and oblate gravity which were modeled using STK HPOP. A comparison of the ballistic coefficient history to the orbit parameters exhibits a strong relationship between orbital lighting, the decay rate of the mean semi-major axis and mean eccentricity. A similar comparison of mean solar area using the STK HPOP solar radiation pressure model exhibits a strong correlation of solar radiation pressure to mean eccentricity and mean argument of perigee. NanoSail-D was not actively controlled and had no capability on-board for attitude or orbit determination. To estimate attitude dynamics we created a 3-DOF attitude dynamics simulation that incorporated highly realistic estimates of perturbing forces into NanoSail-D torque models. By comparing the results of this simulation to the orbital behavior and ground observations of NanoSail-D, we conclude that there is a coupling between the orbit and attitude dynamics as well as establish approximate limits on the location of the NanoSail-D solar center of pressure. Both of these observations contribute valuable data for future solar sail designs and missions.

  9. Dynamical continuous time random Lévy flights

    Science.gov (United States)

    Liu, Jian; Chen, Xiaosong

    2016-03-01

    The Lévy flights' diffusive behavior is studied within the framework of the dynamical continuous time random walk (DCTRW) method, while the nonlinear friction is introduced in each step. Through the DCTRW method, Lévy random walker in each step flies by obeying the Newton's Second Law while the nonlinear friction f(v) = - γ0v - γ2v3 being considered instead of Stokes friction. It is shown that after introducing the nonlinear friction, the superdiffusive Lévy flights converges, behaves localization phenomenon with long time limit, but for the Lévy index μ = 2 case, it is still Brownian motion.

  10. Identification of Helicopter Rigid Body Dynamics from Flight Data.

    Directory of Open Access Journals (Sweden)

    Jatinder Singh

    1998-01-01

    Full Text Available This paper discusses helicopter modelling and identification related aspects. By applying thesystem identification methodology, longitudinal and lateral-directional rigid body helicopter dynamics are identified from flight data. Aerodynamic parameters from single input excitation as wellas multimanoeuver evaluation are estimated utilising output-error approach. The formulatedmathematical models yield adequate fit to measured time histories. Results obtained from the proof-of-match for model validation indicate that the identified derivatives can satisfactorily predictlongitudinal dynamics to a given arbitrary input. It is further demonstrated for the present study thatlateral body dynamics can be adequately predicted by including cross-coupling terms in the estimation model.

  11. Flight Dynamic Model Exchange using XML

    Science.gov (United States)

    Jackson, E. Bruce; Hildreth, Bruce L.

    2002-01-01

    The AIAA Modeling and Simulation Technical Committee has worked for several years to develop a standard by which the information needed to develop physics-based models of aircraft can be specified. The purpose of this standard is to provide a well-defined set of information, definitions, data tables and axis systems so that cooperating organizations can transfer a model from one simulation facility to another with maximum efficiency. This paper proposes using an application of the eXtensible Markup Language (XML) to implement the AIAA simulation standard. The motivation and justification for using a standard such as XML is discussed. Necessary data elements to be supported are outlined. An example of an aerodynamic model as an XML file is given. This example includes definition of independent and dependent variables for function tables, definition of key variables used to define the model, and axis systems used. The final steps necessary for implementation of the standard are presented. Software to take an XML-defined model and import/export it to/from a given simulation facility is discussed, but not demonstrated. That would be the next step in final implementation of standards for physics-based aircraft dynamic models.

  12. Estimation of Gravitation Parameters of Saturnian Moons Using Cassini Attitude Control Flight Data

    Science.gov (United States)

    Krening, Samantha C.

    2013-01-01

    A major science objective of the Cassini mission is to study Saturnian satellites. The gravitational properties of each Saturnian moon is of interest not only to scientists but also to attitude control engineers. When the Cassini spacecraft flies close to a moon, a gravity gradient torque is exerted on the spacecraft due to the mass of the moon. The gravity gradient torque will alter the spin rates of the reaction wheels (RWA). The change of each reaction wheel's spin rate might lead to overspeed issues or operating the wheel bearings in an undesirable boundary lubrication condition. Hence, it is imperative to understand how the gravity gradient torque caused by a moon will affect the reaction wheels in order to protect the health of the hardware. The attitude control telemetry from low-altitude flybys of Saturn's moons can be used to estimate the gravitational parameter of the moon or the distance between the centers of mass of Cassini and the moon. Flight data from several low altitude flybys of three Saturnian moons, Dione, Rhea, and Enceladus, were used to estimate the gravitational parameters of these moons. Results are compared with values given in the literature.

  13. Multiagent Flight Control in Dynamic Environments with Cooperative Coevolutionary Algorithms

    Science.gov (United States)

    Knudson, Matthew D.; Colby, Mitchell; Tumer, Kagan

    2014-01-01

    Dynamic flight environments in which objectives and environmental features change with respect to time pose a difficult problem with regards to planning optimal flight paths. Path planning methods are typically computationally expensive, and are often difficult to implement in real time if system objectives are changed. This computational problem is compounded when multiple agents are present in the system, as the state and action space grows exponentially. In this work, we use cooperative coevolutionary algorithms in order to develop policies which control agent motion in a dynamic multiagent unmanned aerial system environment such that goals and perceptions change, while ensuring safety constraints are not violated. Rather than replanning new paths when the environment changes, we develop a policy which can map the new environmental features to a trajectory for the agent while ensuring safe and reliable operation, while providing 92% of the theoretically optimal performance

  14. Effect of wing flexibility on aircraft flight dynamics

    OpenAIRE

    Qiao, Yuqing

    2012-01-01

    The purpose of this thesis is to give a preliminary investigation into the effect of wing deformation on flight dynamics. The candidate vehicle is FW-11 which is a flying wing configuration aircraft with high altitude and long endurance characteristics. The aeroelastic effect may be significant for this type of configuration. Two cases, the effect of flexible wing on lift distribution and on roll effectiveness during the cruise condition with different inertial parameters are investigated. ...

  15. Pattern Recognition for a Flight Dynamics Monte Carlo Simulation

    Science.gov (United States)

    Restrepo, Carolina; Hurtado, John E.

    2011-01-01

    The design, analysis, and verification and validation of a spacecraft relies heavily on Monte Carlo simulations. Modern computational techniques are able to generate large amounts of Monte Carlo data but flight dynamics engineers lack the time and resources to analyze it all. The growing amounts of data combined with the diminished available time of engineers motivates the need to automate the analysis process. Pattern recognition algorithms are an innovative way of analyzing flight dynamics data efficiently. They can search large data sets for specific patterns and highlight critical variables so analysts can focus their analysis efforts. This work combines a few tractable pattern recognition algorithms with basic flight dynamics concepts to build a practical analysis tool for Monte Carlo simulations. Current results show that this tool can quickly and automatically identify individual design parameters, and most importantly, specific combinations of parameters that should be avoided in order to prevent specific system failures. The current version uses a kernel density estimation algorithm and a sequential feature selection algorithm combined with a k-nearest neighbor classifier to find and rank important design parameters. This provides an increased level of confidence in the analysis and saves a significant amount of time.

  16. Simulation of Attitude and Trajectory Dynamics and Control of Multiple Spacecraft

    Science.gov (United States)

    Stoneking, Eric T.

    2009-01-01

    Agora software is a simulation of spacecraft attitude and orbit dynamics. It supports spacecraft models composed of multiple rigid bodies or flexible structural models. Agora simulates multiple spacecraft simultaneously, supporting rendezvous, proximity operations, and precision formation flying studies. The Agora environment includes ephemerides for all planets and major moons in the solar system, supporting design studies for deep space as well as geocentric missions. The environment also contains standard models for gravity, atmospheric density, and magnetic fields. Disturbance force and torque models include aerodynamic, gravity-gradient, solar radiation pressure, and third-body gravitation. In addition to the dynamic and environmental models, Agora supports geometrical visualization through an OpenGL interface. Prototype models are provided for common sensors, actuators, and control laws. A clean interface accommodates linking in actual flight code in place of the prototype control laws. The same simulation may be used for rapid feasibility studies, and then used for flight software validation as the design matures. Agora is open-source and portable across computing platforms, making it customizable and extensible. It is written to support the entire GNC (guidance, navigation, and control) design cycle, from rapid prototyping and design analysis, to high-fidelity flight code verification. As a top-down design, Agora is intended to accommodate a large range of missions, anywhere in the solar system. Both two-body and three-body flight regimes are supported, as well as seamless transition between them. Multiple spacecraft may be simultaneously simulated, enabling simulation of rendezvous scenarios, as well as formation flying. Built-in reference frames and orbit perturbation dynamics provide accurate modeling of precision formation control.

  17. Low Density Supersonic Decelerator (LDSD) Supersonic Flight Dynamics Test (SFDT) Plume Induced Environment Modelling

    Science.gov (United States)

    Mobley, B. L.; Smith, S. D.; Van Norman, J. W.; Muppidi, S.; Clark, I

    2016-01-01

    Provide plume induced heating (radiation & convection) predictions in support of the LDSD thermal design (pre-flight SFDT-1) Predict plume induced aerodynamics in support of flight dynamics, to achieve targeted freestream conditions to test supersonic deceleration technologies (post-flight SFDT-1, pre-flight SFDT-2)

  18. Geometric Tracking Control of the Attitude Dynamics of a Rigid Body on SO(3)

    OpenAIRE

    Lee, Taeyoung

    2010-01-01

    This paper provides new results for a tracking control of the attitude dynamics of a rigid body. Both of the attitude dynamics and the proposed control system are globally expressed on the special orthogonal group, to avoid complexities and ambiguities associated with other attitude representations such as Euler angles or quaternions. By selecting an attitude error function carefully, we show that the proposed control system guarantees a desirable tracking performance uniformly for nontrivial...

  19. Coupled nonlinear aeroelasticity and flight dynamics of fully flexible aircraft

    Science.gov (United States)

    Su, Weihua

    This dissertation introduces an approach to effectively model and analyze the coupled nonlinear aeroelasticity and flight dynamics of highly flexible aircraft. A reduced-order, nonlinear, strain-based finite element framework is used, which is capable of assessing the fundamental impact of structural nonlinear effects in preliminary vehicle design and control synthesis. The cross-sectional stiffness and inertia properties of the wings are calculated along the wing span, and then incorporated into the one-dimensional nonlinear beam formulation. Finite-state unsteady subsonic aerodynamics is used to compute airloads along lifting surfaces. Flight dynamic equations are then introduced to complete the aeroelastic/flight dynamic system equations of motion. Instead of merely considering the flexibility of the wings, the current work allows all members of the vehicle to be flexible. Due to their characteristics of being slender structures, the wings, tail, and fuselage of highly flexible aircraft can be modeled as beams undergoing three dimensional displacements and rotations. New kinematic relationships are developed to handle the split beam systems, such that fully flexible vehicles can be effectively modeled within the existing framework. Different aircraft configurations are modeled and studied, including Single-Wing, Joined-Wing, Blended-Wing-Body, and Flying-Wing configurations. The Lagrange Multiplier Method is applied to model the nodal displacement constraints at the joint locations. Based on the proposed models, roll response and stability studies are conducted on fully flexible and rigidized models. The impacts of the flexibility of different vehicle members on flutter with rigid body motion constraints, flutter in free flight condition, and roll maneuver performance are presented. Also, the static stability of the compressive member of the Joined-Wing configuration is studied. A spatially-distributed discrete gust model is incorporated into the time simulation

  20. Flexible Dynamics and Attitude Control of a Square Solar Sail

    Science.gov (United States)

    Choi, Mirue

    This thesis presents a comprehensive analysis of attitude and structural dynamics of a square solar sail. In particular, this research examines the use of corner-attached reflective vanes to control the attitude of the spacecraft. An introduction to known solar sail designs is given, then the mathematics involved in calculating solar radiation pressure forces are presented. A detailed derivation and implementation of the unconstrained nonlinear flexible structural dynamics with Finite Element Method (FEM) models are explored, with several sample simulations of published large deflection experiments used as verification measures. To simulate the inability of a thin membrane to resist compression, the sail membrane elements are augmented with a method that approximates the wrinkling and the slacking dynamics, which is followed by a simulation of another well-known experiment as a verification measure. Once the structural dynamics are established, the usage of the tip vanes is explored. Specifically, a control allocation problem formed by having two degrees of freedom for each tip vane is defined and an efficient solution to this problem is presented, allowing desired control torques to be converted to appropriate vane angles. A randomized testing mechanism is implemented to show the efficacy of this algorithm. The sail shadowing problem is explored as well, where a component of the spacecraft casts shadow upon the sail and prevents solar radiation pressure force from being produced. A method to calculate the region of shadow is presented, and two different shadowing examples are examined --- due to the spacecraft bus, and due to the sail itself. Combining all of the above, an attitude control simulation of the sail model is presented. A simple PD controller combined with the control allocation scheme is used to provide the control torque for the sail, with which the spacecraft must orient towards a number of pre-specified attitude targets. Several attitude

  1. Dynamic Echo Information Guides Flight in the Big Brown Bat.

    Science.gov (United States)

    Warnecke, Michaela; Lee, Wu-Jung; Krishnan, Anand; Moss, Cynthia F

    2016-01-01

    Animals rely on sensory feedback from their environment to guide locomotion. For instance, visually guided animals use patterns of optic flow to control their velocity and to estimate their distance to objects (e.g., Srinivasan et al., 1991, 1996). In this study, we investigated how acoustic information guides locomotion of animals that use hearing as a primary sensory modality to orient and navigate in the dark, where visual information is unavailable. We studied flight and echolocation behaviors of big brown bats as they flew under infrared illumination through a corridor with walls constructed from a series of individual vertical wooden poles. The spacing between poles on opposite walls of the corridor was experimentally manipulated to create dense/sparse and balanced/imbalanced spatial structure. The bats' flight trajectories and echolocation signals were recorded with high-speed infrared motion-capture cameras and ultrasound microphones, respectively. As bats flew through the corridor, successive biosonar emissions returned cascades of echoes from the walls of the corridor. The bats flew through the center of the corridor when the pole spacing on opposite walls was balanced and closer to the side with wider pole spacing when opposite walls had an imbalanced density. Moreover, bats produced shorter duration echolocation calls when they flew through corridors with smaller spacing between poles, suggesting that clutter density influences features of the bat's sonar signals. Flight speed and echolocation call rate did not, however, vary with dense and sparse spacing between the poles forming the corridor walls. Overall, these data demonstrate that bats adapt their flight and echolocation behavior dynamically when flying through acoustically complex environments. PMID:27199690

  2. Dynamic echo information guides flight in the big brown bat

    Directory of Open Access Journals (Sweden)

    Michaela Warnecke

    2016-04-01

    Full Text Available Animals rely on sensory feedback from their environment to guide locomotion. For instance, visually guided animals use patterns of optic flow to control their velocity and to estimate their distance to objects (e.g. Srinivasan et al. 1991, 1996. In this study, we investigated how acoustic information guides locomotion of animals that use hearing as a primary sensory modality to orient and navigate in the dark, where visual information is unavailable. We studied flight and echolocation behaviors of big brown bats as they flew under infrared illumination through a corridor with walls constructed from a series of individual vertical wooden poles. The spacing between poles on opposite walls of the corridor was experimentally manipulated to create dense/sparse and balanced/imbalanced spatial structure. The bats’ flight trajectories and echolocation signals were recorded with high-speed infrared motion-capture cameras and ultrasound microphones, respectively. As bats flew through the corridor, successive biosonar emissions returned cascades of echoes from the walls of the corridor. The bats flew through the center of the corridor when the pole spacing on opposite walls was balanced and closer to the side with wider pole spacing when opposite walls had an imbalanced density. Moreover, bats produced shorter duration echolocation calls when they flew through corridors with smaller spacing between poles, suggesting that clutter density influences features of the bat’s sonar signals. Flight speed and echolocation call rate did not, however, vary with dense and sparse spacing between the poles forming the corridor walls. Overall, these data demonstrate that bats adapt their flight and echolocation behavior dynamically when flying through acoustically complex environments.

  3. Evolution and Reengineering of NASA's Flight Dynamics Facility (FDF)

    Science.gov (United States)

    Stengle, Thomas; Hoge, Susan

    2008-01-01

    The NASA Goddard Space Flight Center's Flight Dynamics Facility (FDF) is a multimission support facility that performs ground navigation and spacecraft trajectory design services for a wide range of scientific satellites. The FDF also supports the NASA Space Network by providing orbit determination and tracking data evaluation services for the Tracking Data Relay Satellite System (TDRSS). The FDF traces its history to early NASA missions in the 1960's, including navigation support to the Apollo lunar missions. Over its 40 year history, the FDF has undergone many changes in its architecture, services offered, missions supported, management approach, and business operation. As a fully reimbursable facility (users now pay 100% of all costs for FDF operations and sustaining engineering activities), the FDF has faced significant challenges in recent years in providing mission critical products and services at minimal cost while defining and implementing upgrades necessary to meet future mission demands. This paper traces the history of the FDF and discusses significant events in the past that impacted the FDF infrastructure and/or business model, and the events today that are shaping the plans for the FDF in the next decade. Today's drivers for change include new mission requirements, the availability of new technology for spacecraft navigation, and continued pressures for cost reduction from FDF users. Recently, the FDF completed an architecture study based on these drivers that defines significant changes planned for the facility. This paper discusses the results of this study and a proposed implementation plan. As a case study in how flight dynamics operations have evolved and will continue to evolve, this paper focuses on two periods of time (1992 and the present) in order to contrast the dramatic changes that have taken place in the FDF. This paper offers observations and plans for the evolution of the FDF over the next ten years. Finally, this paper defines the

  4. Lift Enhancement by Dynamically Changing Wingspan in Forward Flapping Flight

    CERN Document Server

    Wang, Shizhao; He, Guowei; Liu, Tianshu

    2013-01-01

    Stretching and retracting wingspan has been widely observed in the flight of birds and bats, and its effects on the aerodynamic performance particularly lift generation are intriguing. The rectangular flat-plate flapping wing with a sinusoidally stretching and retracting wingspan is proposed as a simple model of biologically-inspired dynamic morphing wings. Direct numerical simulations of the low-Reynolds-number flows around the flapping morphing wing in a parametric space are conducted by using immersed boundary method. It is found that the instantaneous and time-averaged lift coefficients of the wing can be significantly enhanced by dynamically changing wingspan in a flapping cycle. The lift enhancement is caused not only by changing the lifting surface area, but also manipulating the flow structures that are responsible to the generation of the vortex lift. The physical mechanisms behind the lift enhancement are explored by examining the three-dimensional flow structures around the flapping wing.

  5. Solar and Heliospheric Observatory (SOHO) Flight Dynamics Simulations Using MATLAB (R)

    Science.gov (United States)

    Headrick, R. D.; Rowe, J. N.

    1996-01-01

    This paper describes a study to verify onboard attitude control laws in the coarse Sun-pointing (CSP) mode by simulation and to develop procedures for operational support for the Solar and Heliospheric Observatory (SOHO) mission. SOHO was launched on December 2, 1995, and the predictions of the simulation were verified with the flight data. This study used a commercial off the shelf product MATLAB(tm) to do the following: Develop procedures for computing the parasitic torques for orbital maneuvers; Simulate onboard attitude control of roll, pitch, and yaw during orbital maneuvers; Develop procedures for predicting firing time for both on- and off-modulated thrusters during orbital maneuvers; Investigate the use of feed forward or pre-bias torques to reduce the attitude handoff during orbit maneuvers - in particular, determine how to use the flight data to improve the feed forward torque estimates for use on future maneuvers. The study verified the stability of the attitude control during orbital maneuvers and the proposed use of feed forward torques to compensate for the attitude handoff. Comparison of the simulations with flight data showed: Parasitic torques provided a good estimate of the on- and off-modulation for attitude control; The feed forward torque compensation scheme worked well to reduce attitude handoff during the orbital maneuvers. The work has been extended to prototype calibration of thrusters from observed firing time and observed reaction wheel speed changes.

  6. Satellite Attitude Control System Design considering the Fuel Slosh Dynamics

    Directory of Open Access Journals (Sweden)

    Luiz Carlos Gadelha de Souza

    2014-01-01

    Full Text Available The design of the satellite attitude control system (ACS becomes more complex when the satellite structure has different type of components like, flexible solar panels, antennas, mechanical manipulators, and tanks with fuel. A crucial interaction can occur between the fuel slosh motion and the satellite rigid motion during translational and/or rotational manoeuvre since these interactions can change the satellite centre of mass position damaging the ACS pointing accuracy. Although, a well-designed controller can suppress such disturbances quickly, the controller error pointing may be limited by the minimum time necessary to suppress such disturbances thus affecting the satellite attitude acquisition. As a result, the design of the satellite controller needs to explore the limits between the conflicting requirements of performance and robustness. This paper investigates the effects of the interaction between the liquid motion (slosh and the satellite dynamics in order to predict what the damage to the controller performance and robustness is. The fuel slosh dynamics is modelled by a pendulum which parameters are identified using the Kalman filter technique. This information is used to design the satellite controller by the linear quadratic regulator (LQR and linear quadratic Gaussian (LQG methods to perform a planar manoeuvre assuming thrusters are actuators.

  7. Micro air vehicle-motivated computational biomechanics in bio-flights: aerodynamics, flight dynamics and maneuvering stability

    Science.gov (United States)

    Liu, Hao; Nakata, Toshiyuki; Gao, Na; Maeda, Masateru; Aono, Hikaru; Shyy, Wei

    2010-12-01

    Aiming at developing an effective tool to unveil key mechanisms in bio-flight as well as to provide guidelines for bio-inspired micro air vehicles (MAVs) design, we propose a comprehensive computational framework, which integrates aerodynamics, flight dynamics, vehicle stability and maneuverability. This framework consists of (1) a Navier-Stokes unsteady aerodynamic model; (2) a linear finite element model for structural dynamics; (3) a fluid-structure interaction (FSI) model for coupled flexible wing aerodynamics aeroelasticity; (4) a free-flying rigid body dynamic (RBD) model utilizing the Newtonian-Euler equations of 6DoF motion; and (5) flight simulator accounting for realistic wing-body morphology, flapping-wing and body kinematics, and a coupling model accounting for the nonlinear 6DoF flight dynamics and stability of insect flapping flight. Results are presented based on hovering aerodynamics with rigid and flexible wings of hawkmoth and fruitfly. The present approach can support systematic analyses of bio- and bio-inspired flight.

  8. Reentry Vehicle Flight Controls Design Guidelines: Dynamic Inversion

    Science.gov (United States)

    Ito, Daigoro; Georgie, Jennifer; Valasek, John; Ward, Donald T.

    2002-01-01

    This report addresses issues in developing a flight control design for vehicles operating across a broad flight regime and with highly nonlinear physical descriptions of motion. Specifically it addresses the need for reentry vehicles that could operate through reentry from space to controlled touchdown on Earth. The latter part of controlled descent is achieved by parachute or paraglider - or by all automatic or a human-controlled landing similar to that of the Orbiter. Since this report addresses the specific needs of human-carrying (not necessarily piloted) reentry vehicles, it deals with highly nonlinear equations of motion, and then-generated control systems must be robust across a very wide range of physics. Thus, this report deals almost exclusively with some form of dynamic inversion (DI). Two vital aspects of control theory - noninteracting control laws and the transformation of nonlinear systems into equivalent linear systems - are embodied in DI. Though there is no doubt that the mathematical tools and underlying theory are widely available, there are open issues as to the practicality of using DI as the only or primary design approach for reentry articles. This report provides a set of guidelines that can be used to determine the practical usefulness of the technique.

  9. Approximations for inclusion of rotor lag dynamics in helicopter flight dynamics models

    Science.gov (United States)

    Mckillip, Robert, Jr.; Curtiss, Howard C., Jr.

    1991-01-01

    Approximate forms are suggested for augmenting linear rotor/body response models to include rotor lag dynamics. Use of an analytically linearized rotor/body model has shown that the primary effect comes from the additional angular rate contributions of the lag inertial response. Addition of lag dynamics may be made assuming these dynamics are represented by an isolated rotor with no shaft motion. Implications of such an approximation are indicated through comparison with flight test data and sensitivity of stability levels with body rate feedback.

  10. Nonlinear time-periodic models of the longitudinal flight dynamics of desert locusts Schistocerca gregaria

    OpenAIRE

    Taylor, Graham K.; Żbikowski, Rafał

    2005-01-01

    Previous studies of insect flight control have been statistical in approach, simply correlating wing kinematics with body kinematics or force production. Kinematics and forces are linked by Newtonian mechanics, so adopting a dynamics-based approach is necessary if we are to place the study of insect flight on its proper physical footing. Here we develop semi-empirical models of the longitudinal flight dynamics of desert locusts Schistocerca gregaria. We use instantaneous force–moment measurem...

  11. Attitude Control Flight Experience: Coping with Solar Radiation and Ion Engines Leak Thrust in Hayabusa (MUSES-C)

    Science.gov (United States)

    Kawaguchi, Jun'ichiro; Kominato, Takashi; Shirakawa, Ken'ichi

    2007-01-01

    The paper presents the attitude reorientation taking the advantage of solar radiation pressure without use of any fuel aboard. The strategy had been adopted to make Hayabusa spacecraft keep pointed toward the Sun for several months, while spinning. The paper adds the above mentioned results reported in Sedona this February showing another challenge of combining ion engines propulsion tactically balanced with the solar radiation torque with no spin motion. The operation has been performed since this March for a half year successfully. The flight results are presented with the estimated solar array panel diffusion coefficient and the ion engine's swirl torque.

  12. Clear Skies and Grey Areas: Flight Attendants’ Secondhand Smoke Exposure and Attitudes toward Smoke-Free Policy 25 Years since Smoking was Banned on Airplanes

    Directory of Open Access Journals (Sweden)

    Frances A. Stillman

    2015-06-01

    Full Text Available Our objective was to provide descriptive data on flight attendant secondhand smoke (SHS exposure in the work environment, and to examine attitudes toward SHS exposure, personal health, and smoke-free policy in the workplace and public places. Flight attendants completed a web-based survey of self-reported SHS exposure and air quality in the work environment. We assessed the frequency and duration of SHS exposure in distinct areas of the workplace, attitudes toward SHS exposure and its health effects, and attitudes toward smoke-free policy in the workplace as well as general public places. A total of 723 flight attendants participated in the survey, and 591 responded to all survey questions. The mean level of exposure per flight attendant over the past month was 249 min. The majority of participants reported being exposed to SHS always/often in outdoor areas of an airport (57.7%. Participants who worked before the in-flight smoking ban (n = 240 were more likely to support further smoking policies in airports compared to participants who were employed after the ban (n = 346 (76.7% versus 60.4%, p-value < 0.01. Flight attendants are still being exposed to SHS in the workplace, sometimes at concerning levels during the non-flight portions of their travel. Flight attendants favor smoke-free policies and want to see further restrictions in airports and public places.

  13. Interaction of feel system and flight control system dynamics on lateral flying qualities

    Science.gov (United States)

    Bailey, R. E.; Knotts, L. H.

    1990-01-01

    An experimental investigation of the influence of lateral feel system characteristics on fighter aircraft roll flying qualities was conducted using the variable stability USAF NT-33. Forty-two evaluation flights were flown by three engineering test pilots. The investigation utilized the power approach, visual landing task and up-and-away tasks including formation, gun tracking, and computer-generated compensatory attitude tracking tasks displayed on the Head-Up Display. Experimental variations included the feel system frequency, force-deflection gradient, control system command type (force or position input command), aircraft roll mode time constant, control system prefilter frequency, and control system time delay. The primary data were task performance records and evaluation pilot comments and ratings using the Cooper-Harper scale. The data highlight the unique and powerful effect of the feel system of flying qualities. The data show that the feel system is not 'equivalent' in flying qualities influence to analogous control system elements. A lower limit of allowable feel system frequency appears warranted to ensure good lateral flying qualities. Flying qualities criteria should most properly treat the feel system dynamic influence separately from the control system, since the input and output of this dynamic element is apparent to the pilot and thus, does not produce a 'hidden' effect.

  14. Dynamically multiplexed ion mobility time-of-flight mass spectrometry.

    Science.gov (United States)

    Belov, Mikhail E; Clowers, Brian H; Prior, David C; Danielson, William F; Liyu, Andrei V; Petritis, Brianne O; Smith, Richard D

    2008-08-01

    Ion mobility spectrometry-time-of-flight mass spectrometry (IMS-TOFMS) has been increasingly used in analysis of complex biological samples. A major challenge is to transform IMS-TOFMS to a high-sensitivity, high-throughput platform, for example, for proteomics applications. In this work, we have developed and integrated three advanced technologies, including efficient ion accumulation in an ion funnel trap prior to IMS separation, multiplexing (MP) of ion packet introduction into the IMS drift tube, and signal detection with an analog-to-digital converter, into the IMS-TOFMS system for the high-throughput analysis of highly complex proteolytic digests of, for example, blood plasma. To better address variable sample complexity, we have developed and rigorously evaluated a novel dynamic MP approach that ensures correlation of the analyzer performance with an ion source function and provides the improved dynamic range and sensitivity throughout the experiment. The MP IMS-TOFMS instrument has been shown to reliably detect peptides at a concentration of 1 nM in the presence of a highly complex matrix, as well as to provide a 3 orders of magnitude dynamic range and a mass measurement accuracy of better than 5 ppm. When matched against human blood plasma database, the detected IMS-TOF features were found to yield approximately 700 unique peptide identifications at a false discovery rate (FDR) of approximately 7.5%. Accounting for IMS information gave rise to a projected FDR of approximately 4%. Signal reproducibility was found to be greater than 80%, while the variations in the number of unique peptide identifications were <15%. A single sample analysis was completed in 15 min that constitutes almost 1 order of magnitude improvement compared to a more conventional LC-MS approach. PMID:18582088

  15. In-flight attitude perturbances estimation: application to PLEIADES-HR satellites

    Science.gov (United States)

    Amberg, V.; Dechoz, C.; Bernard, L.; Greslou, D.; de Lussy, F.; Lebegue, L.

    2013-09-01

    This paper deals with the problem of retrieving attitude perturbances in the framework of the PLEIADES-HR optical satellites. Thus, two complementary methods are compared. The first one uses the high agility capacity of satellites to acquire stars in an inertial steering mode. The second method exploits the fact that multispectral CCD arrays are shifted in the telescope focal plane in the velocity direction: for a same ground point, the resulting images are not affected by the same attitude perturbances. The resulting misregistrations can be exploited to deduce information about the attitude platform. Both methods have been applied to PLEIADES-HR satellites, during commissioning period.

  16. Program of research in flight dynamics in the JIAFS at NASA-Langley Research Center

    Science.gov (United States)

    1992-01-01

    The program objectives are fully defined in the original proposal entitled 'Program of Research in Flight Dynamics in the Joint Institute for the Advancement of Flight Sciences (JIAFS) at NASA-Langley Research Center,' which was originated March 20, 1975 and in the renewal of the research program dated December 1, 1991. The program includes four major topics: (1) the improvement of existing methods and development of new methods for flight test data analysis; (2) the application of these methods to real flight test data obtained from advanced airplanes; (3) the correlation of flight results with wind tunnel measurements; and (4) the modeling, and control of aircraft, space structures, and spacecraft.

  17. Field Flight Dynamics of Hummingbirds during Territory Encroachment and Defense.

    Directory of Open Access Journals (Sweden)

    Katherine M Sholtis

    Full Text Available Hummingbirds are known to defend food resources such as nectar sources from encroachment by competitors (including conspecifics. These competitive intraspecific interactions provide an opportunity to quantify the biomechanics of hummingbird flight performance during ecologically relevant natural behavior. We recorded the three-dimensional flight trajectories of Ruby-throated Hummingbirds defending, being chased from and freely departing from a feeder. These trajectories allowed us to compare natural flight performance to earlier laboratory measurements of maximum flight speed, aerodynamic force generation and power estimates. During field observation, hummingbirds rarely approached the maximal flight speeds previously reported from wind tunnel tests and never did so during level flight. However, the accelerations and rates of change in kinetic and potential energy we recorded indicate that these hummingbirds likely operated near the maximum of their flight force and metabolic power capabilities during these competitive interactions. Furthermore, although birds departing from the feeder while chased did so faster than freely-departing birds, these speed gains were accomplished by modulating kinetic and potential energy gains (or losses rather than increasing overall power output, essentially trading altitude for speed during their evasive maneuver. Finally, the trajectories of defending birds were directed toward the position of the encroaching bird rather than the feeder.

  18. Field Flight Dynamics of Hummingbirds during Territory Encroachment and Defense.

    Science.gov (United States)

    Sholtis, Katherine M; Shelton, Ryan M; Hedrick, Tyson L

    2015-01-01

    Hummingbirds are known to defend food resources such as nectar sources from encroachment by competitors (including conspecifics). These competitive intraspecific interactions provide an opportunity to quantify the biomechanics of hummingbird flight performance during ecologically relevant natural behavior. We recorded the three-dimensional flight trajectories of Ruby-throated Hummingbirds defending, being chased from and freely departing from a feeder. These trajectories allowed us to compare natural flight performance to earlier laboratory measurements of maximum flight speed, aerodynamic force generation and power estimates. During field observation, hummingbirds rarely approached the maximal flight speeds previously reported from wind tunnel tests and never did so during level flight. However, the accelerations and rates of change in kinetic and potential energy we recorded indicate that these hummingbirds likely operated near the maximum of their flight force and metabolic power capabilities during these competitive interactions. Furthermore, although birds departing from the feeder while chased did so faster than freely-departing birds, these speed gains were accomplished by modulating kinetic and potential energy gains (or losses) rather than increasing overall power output, essentially trading altitude for speed during their evasive maneuver. Finally, the trajectories of defending birds were directed toward the position of the encroaching bird rather than the feeder. PMID:26039101

  19. Optimal Attitude Estimation and Filtering Without Using Local Coordinates Part I: Uncontrolled and Deterministic Attitude Dynamics

    OpenAIRE

    Sanyal, Amit K.

    2005-01-01

    There are several attitude estimation algorithms in existence, all of which use local coordinate representations for the group of rigid body orientations. All local coordinate representations of the group of orientations have associated problems. While minimal coordinate representations exhibit kinematic singularities for large rotations, the quaternion representation requires satisfaction of an extra constraint. This paper treats the attitude estimation and filtering problem as an optimizati...

  20. Flight Dynamics of Flexible Aircraft with Aeroelastic and Inertial Force Interactions

    Science.gov (United States)

    Nguyen, Nhan T.; Tuzcu, Ilhan

    2009-01-01

    This paper presents an integrated flight dynamic modeling method for flexible aircraft that captures coupled physics effects due to inertial forces, aeroelasticity, and propulsive forces that are normally present in flight. The present approach formulates the coupled flight dynamics using a structural dynamic modeling method that describes the elasticity of a flexible, twisted, swept wing using an equivalent beam-rod model. The structural dynamic model allows for three types of wing elastic motion: flapwise bending, chordwise bending, and torsion. Inertial force coupling with the wing elasticity is formulated to account for aircraft acceleration. The structural deflections create an effective aeroelastic angle of attack that affects the rigid-body motion of flexible aircraft. The aeroelastic effect contributes to aerodynamic damping forces that can influence aerodynamic stability. For wing-mounted engines, wing flexibility can cause the propulsive forces and moments to couple with the wing elastic motion. The integrated flight dynamics for a flexible aircraft are formulated by including generalized coordinate variables associated with the aeroelastic-propulsive forces and moments in the standard state-space form for six degree-of-freedom flight dynamics. A computational structural model for a generic transport aircraft has been created. The eigenvalue analysis is performed to compute aeroelastic frequencies and aerodynamic damping. The results will be used to construct an integrated flight dynamic model of a flexible generic transport aircraft.

  1. Bifurcation Tools for Flight Dynamics Analysis and Control System Design Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Modern bifurcation analysis methods have been proposed for investigating flight dynamics and control system design in highly nonlinear regimes and also for the...

  2. Frequency-Domain Identification of XV-15 Tilt-Rotor Aircraft Dynamics in Hovering Flight

    Science.gov (United States)

    Tischler, Mark B.; Leung, Joseph G. M.; Dugan, Daniel C.

    1985-01-01

    Frequency-domain methods are used to identify the open-loop dynamics of the XV-15 tilt-rotor aircraft from flight tests. Piloting and data analysis techniques are presented to determine frequency response plots and equivalent transfer function models. The open-loop pitch and roll dynamics for the hover flight condition exhibit unstable low-frequency oscillations, whereas the dynamics in the remaining degrees of freedom are lightly damped and generally decoupled. Comparisons of XV-15 flight-test and simulator data are more favorable for high-frequency inputs (omega greater than 1.0 rad/sec) than low-frequency inputs. Time-domain comparisons of the extracted transfer functions with step response flight data are very favorable, even for large amplitude motions. The results presented in this paper demonstrate the utility of the frequency-domain techniques for dynamics identification and simulator fidelity studies.

  3. Field Flight Dynamics of Hummingbirds during Territory Encroachment and Defense

    OpenAIRE

    Sholtis, Katherine M.; Shelton, Ryan M.; Hedrick, Tyson L.

    2015-01-01

    Hummingbirds are known to defend food resources such as nectar sources from encroachment by competitors (including conspecifics). These competitive intraspecific interactions provide an opportunity to quantify the biomechanics of hummingbird flight performance during ecologically relevant natural behavior. We recorded the three-dimensional flight trajectories of Ruby-throated Hummingbirds defending, being chased from and freely departing from a feeder. These trajectories allowed us to compare...

  4. Program of Research in Flight Dynamics, The George Washington University at NASA Langley Research Center

    Science.gov (United States)

    Murphy, Patrick C. (Technical Monitor); Klein, Vladislav

    2005-01-01

    The program objectives are fully defined in the original proposal entitled Program of Research in Flight Dynamics in GW at NASA Langley Research Center, which was originated March 20, 1975, and in the renewals of the research program from January 1, 2003 to September 30, 2005. The program in its present form includes three major topics: 1. the improvement of existing methods and development of new methods for wind tunnel and flight data analysis, 2. the application of these methods to wind tunnel and flight test data obtained from advanced airplanes, 3. the correlation of flight results with wind tunnel measurements, and theoretical predictions.

  5. Blowfly flight and optic flow I. Thorax kinematics and flight dynamics

    NARCIS (Netherlands)

    Schilstra, C; Van Hateren, JH

    1999-01-01

    The motion of the thorax of the blowfly Calliphora vicina was measured during cruising flight inside a cage measuring 40 cmx40 cmx40 cm, Sensor coils mounted on the thorax picked up externally generated magnetic fields and yielded measurements of the position and orientation of the thorax with a res

  6. Blowfly Flight and Optic Flow. I. Thorax Kinematics and Flight Dynamics

    NARCIS (Netherlands)

    Schilstra, C.; Hateren, J.H. van

    1999-01-01

    The motion of the thorax of the blowfly Calliphora vicina was measured during cruising flight inside a cage measuring 40cm×40cm×40 cm. Sensor coils mounted on the thorax picked up externally generated magnetic fields and yielded measurements of the position and orientation of the thorax with a resol

  7. Development of an Autonomous Flight Control System for Small Size Unmanned Helicopter Based on Dynamical Model

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    It is devoted to the development of an autonomous flight control system for small size unmanned helicopter based on dynamical model. At first, the mathematical model of a small size helicopter is described. After that simple but effective MTCV control algorithm was proposed. The whole flight control algorithm is composed of two parts:orientation controller based on the model for rotation dynamics and a robust position controller for a double integrator. The MTCV block is also used to achieve translation velocity control. To demonstrate the performance of the presented algorithm, simulation results and results achieved in real flight experiments were presented.

  8. In-flight Quality and Accuracy of Attitude Measurements from the CHAMP Advanced Stellar Compass

    DEFF Research Database (Denmark)

    Jørgensen, Peter Siegbjørn; Jørgensen, John Leif; Denver, Troelz;

    2005-01-01

    The German geo-observations satellite CHAMP carries highly accurate vector instruments. The orientation of these relative to the inertial reference frame is obtained using star trackers. These advanced stellar compasses (ASC) are fully autonomous units, which provide, in real time, the absolute...... with modeling external noise sources often arise. The special CHAMP configuration with two star tracker cameras mounted fixed together provides an excellent opportunity to determine the AIA in-flight using the inter boresight angle....

  9. A computer simulation of Skylab dynamics and attitude control for performance verification and operational support

    Science.gov (United States)

    Buchanan, H.; Nixon, D.; Joyce, R.

    1974-01-01

    A simulation of the Skylab attitude and pointing control system (APCS) is outlined and discussed. Implementation is via a large hybrid computer and includes those factors affecting system momentum management, propellant consumption, and overall vehicle performance. The important features of the flight system are discussed; the mathematical models necessary for this treatment are outlined; and the decisions involved in implementation are discussed. A brief summary of the goals and capabilities of this tool is also included.

  10. Orbital dynamics and equilibrium points around an asteroid with gravitational orbit-attitude coupling perturbation

    Science.gov (United States)

    Wang, Yue; Xu, Shijie

    2016-07-01

    The strongly perturbed dynamical environment near asteroids has been a great challenge for the mission design. Besides the non-spherical gravity, solar radiation pressure, and solar tide, the orbital motion actually suffers from another perturbation caused by the gravitational orbit-attitude coupling of the spacecraft. This gravitational orbit-attitude coupling perturbation (GOACP) has its origin in the fact that the gravity acting on a non-spherical extended body, the real case of the spacecraft, is actually different from that acting on a point mass, the approximation of the spacecraft in the orbital dynamics. We intend to take into account GOACP besides the non-spherical gravity to improve the previous close-proximity orbital dynamics. GOACP depends on the spacecraft attitude, which is assumed to be controlled ideally with respect to the asteroid in this study. Then, we focus on the orbital motion perturbed by the non-spherical gravity and GOACP with the given attitude. This new orbital model can be called the attitude-restricted orbital dynamics, where restricted means that the orbital motion is studied as a restricted problem at a given attitude. In the present paper, equilibrium points of the attitude-restricted orbital dynamics in the second degree and order gravity field of a uniformly rotating asteroid are investigated. Two kinds of equilibria are obtained: on and off the asteroid equatorial principal axis. These equilibria are different from and more diverse than those in the classical orbital dynamics without GOACP. In the case of a large spacecraft, the off-axis equilibrium points can exist at an arbitrary longitude in the equatorial plane. These results are useful for close-proximity operations, such as the asteroid body-fixed hovering.

  11. The determination of the attitude and attitude dynamics of TeamSat

    DEFF Research Database (Denmark)

    Betto, Maurizio; Jørgensen, John Leif; Riis, Troels; Thuesen, Gøsta

    1999-01-01

    The second qualification flight of Ariane 5 was launched from the European Space Port in French Guiana on October 30, 1997. It carried on board a small technology demonstration satellite dubbed TeamSat into which five experiments, proposed by various universities and research institutions, were...

  12. Cassini Spacecraft In-Flight Swap to Backup Attitude Control Thrusters

    Science.gov (United States)

    Bates, David M.

    2010-01-01

    NASA's Cassini Spacecraft, launched on October 15th, 1997 and arrived at Saturn on June 30th, 2004, is the largest and most ambitious interplanetary spacecraft in history. In order to meet the challenging attitude control and navigation requirements of the orbit profile at Saturn, Cassini is equipped with a monopropellant thruster based Reaction Control System (RCS), a bipropellant Main Engine Assembly (MEA) and a Reaction Wheel Assembly (RWA). In 2008, after 11 years of reliable service, several RCS thrusters began to show signs of end of life degradation, which led the operations team to successfully perform the swap to the backup RCS system, the details and challenges of which are described in this paper. With some modifications, it is hoped that similar techniques and design strategies could be used to benefit other spacecraft.

  13. Coupled orbit-attitude dynamics and relative state estimation of spacecraft near small Solar System bodies

    Science.gov (United States)

    Misra, Gaurav; Izadi, Maziar; Sanyal, Amit; Scheeres, Daniel

    2016-04-01

    The effects of dynamical coupling between the rotational (attitude) and translational (orbital) motion of spacecraft near small Solar System bodies is investigated. This coupling arises due to the weak gravity of these bodies, as well as solar radiation pressure. The traditional approach assumes a point-mass spacecraft model to describe the translational motion of the spacecraft, while the attitude motion is considered to be completely decoupled from the translational motion. The model used here to describe the rigid-body spacecraft dynamics includes the non-uniform rotating gravity field of the small body up to second degree and order along with the attitude dependent terms, solar tide, and solar radiation pressure. This model shows that the second degree and order gravity terms due to the small body affect the dynamics of the spacecraft to the same extent as the orbit-attitude coupling due to the primary gravity (zeroth order) term. Variational integrators are used to simulate the dynamics of both the rigid spacecraft and the point mass. The small bodies considered here are modeled after Near-Earth Objects (NEO) 101955 Bennu, and 25143 Itokawa, and are assumed to be triaxial ellipsoids with uniform density. Differences in the numerically obtained trajectories of a rigid spacecraft and a point mass are then compared, to illustrate the impact of the orbit-attitude coupling on spacecraft dynamics in proximity of small bodies. Possible implications on the performance of model-based spacecraft control and on the station-keeping budget, if the orbit-attitude coupling is not accounted for in the model of the dynamics, are also discussed. An almost globally asymptotically stable motion estimation scheme based solely on visual/optical feedback that estimates the relative motion of the asteroid with respect to the spacecraft is also obtained. This estimation scheme does not require a model of the dynamics of the asteroid, which makes it perfectly suited for asteroids whose

  14. An investigation into the flight dynamics of airships with application to the YEZ-2A

    OpenAIRE

    Gomes, S. B. V.

    1990-01-01

    In order to construct a flight dynamics computer simulation model of airship flight with a high degree of fidelity in the aerodynamic modelling, extensive wind tunnel testing was carried out. This was aimed at, first developing some specific airship wind tunnel testing techniques and then to obtain aerodynamic data for the YEZ-2A project airship being designed and built by Airship Industries for the US Navy. The wind tunnel testing techniques so developed insured a good matching between wind ...

  15. Flight Dynamics Performances of the MetOp A Satellite during the First Months of Operations

    Science.gov (United States)

    Righetti, Pier Luigi; Meixner, Hilda; Sancho, Francisco; Damiano, Antimo; Lazaro, David

    2007-01-01

    The 19th of October 2006 at 16:28 UTC the first MetOp satellite (MetOp A) was successfully launched from the Baykonur cosmodrome by a Soyuz/Fregat launcher. After only three days of LEOP operations, performed by ESOC, the satellite was handed over to EUMETSAT, who is since then taking care of all satellite operations. MetOp A is the first European operational satellite for meteorology flying in a Low Earth Orbit (LEO), all previous satellites operated by EUMETSAT, belonging to the METEOSAT family, being located in the Geo-stationary orbit. To ensure safe operations for a LEO satellite accurate and continuous commanding from ground of the on-board AOCS is required. That makes the operational transition at the end of the LEOP quite challenging, as the continuity of the Flight Dynamics operations is to be maintained. That means that the main functions of the Flight Dynamics have to be fully validated on-flight during the LEOP, before taking over the operational responsibility on the spacecraft, and continuously monitored during the entire mission. Due to the nature of a meteorological operational mission, very stringent requirements in terms of overall service availability (99 % of the collected data), timeliness of processing of the observation data (3 hours after sensing) and accuracy of the geo-location of the meteorological products (1 km) are to be fulfilled. That translates in tight requirements imposed to the Flight Dynamics facility (FDF) in terms of accuracy, timeliness and availability of the generated orbit and clock solutions; a detailed monitoring of the quality of these products is thus mandatory. Besides, being the accuracy of the image geo-location strongly related with the pointing performance of the platform and with the on-board timing stability, monitoring from ground of the behaviour of the on-board sensors and clock is needed. This paper presents an overview of the Flight Dynamics operations performed during the different phases of the MetOp A

  16. Investigating On-Orbit Attitude Determination Anomalies for the Solar Dynamics Observatory Mission

    Science.gov (United States)

    Vess, Melissa F.; Starin, Scott R.; Chia-Kuo, Alice Liu

    2011-01-01

    The Solar Dynamics Observatory (SDO) was launched on February 11, 2010 from Kennedy Space Center on an Atlas V launch vehicle into a geosynchronous transfer orbit. SDO carries a suite of three scientific instruments, whose observations are intended to promote a more complete understanding of the Sun and its effects on the Earth's environment. After a successful launch, separation, and initial Sun acquisition, the launch and flight operations teams dove into a commissioning campaign that included, among other things, checkout and calibration of the fine attitude sensors and checkout of the Kalman filter (KF) and the spacecraft s inertial pointing and science control modes. In addition, initial calibration of the science instruments was also accomplished. During that process of KF and controller checkout, several interesting observations were noticed and investigated. The SDO fine attitude sensors consist of one Adcole Digital Sun Sensor (DSS), two Galileo Avionica (GA) quaternion-output Star Trackers (STs), and three Kearfott Two-Axis Rate Assemblies (hereafter called inertial reference units, or IRUs). Initial checkout of the fine attitude sensors indicated that all sensors appeared to be functioning properly. Initial calibration maneuvers were planned and executed to update scale factors, drift rate biases, and alignments of the IRUs. After updating the IRU parameters, the KF was initialized and quickly reached convergence. Over the next few hours, it became apparent that there was an oscillation in the sensor residuals and the KF estimation of the IRU bias. A concentrated investigation ensued to determine the cause of the oscillations, their effect on mission requirements, and how to mitigate them. The ensuing analysis determined that the oscillations seen were, in fact, due to an oscillation in the IRU biases. The low frequencies of the oscillations passed through the KF, were well within the controller bandwidth, and therefore the spacecraft was actually

  17. Dynamic Modeling of Micro-Satellite Spartnik's Attitude

    OpenAIRE

    Menges, Brian; Guadiamos, Carlos; Pernicka, Henry

    1997-01-01

    Spartnik is a micro-satellite under construction at San Jose State University. In order to control the satellite and ensure payloads and antenna are oriented properly a passive attitude control system has been developed. Like some other micro-satellites, Spartnik will combine spin stabilization with magnetic stabilization. Thus, Spartnik will "spin" due to solar radiation pressure and perform a controlled "tumble" due to the permanent magnets aligning with the magnetic field of the Earth. Con...

  18. Identification method for helicopter flight dynamics modeling with rotor degrees of freedom

    Directory of Open Access Journals (Sweden)

    Wu Wei

    2014-12-01

    Full Text Available A comprehensive method based on system identification theory for helicopter flight dynamics modeling with rotor degrees of freedom is developed. A fully parameterized rotor flapping equation for identification purpose is derived without using any theoretical model, so the confidence of the identified model is increased, and then the 6 degrees of freedom rigid body model is extended to 9 degrees of freedom high-order model. Bode sensitivity function is derived to increase the accuracy of frequency spectra calculation which influences the accuracy of model parameter identification. Then a frequency domain identification algorithm is established. Acceleration technique is developed furthermore to increase calculation efficiency, and the total identification time is reduced by more than 50% using this technique. A comprehensive two-step method is established for helicopter high-order flight dynamics model identification which increases the numerical stability of model identification compared with single step algorithm. Application of the developed method to identify the flight dynamics model of BO 105 helicopter based on flight test data is implemented. A comparative study between the high-order model and rigid body model is performed at last. The results show that the developed method can be used for helicopter high-order flight dynamics model identification with high accuracy as well as efficiency, and the advantage of identified high-order model is very obvious compared with low-order model.

  19. Calibration and Validation of a 6-DOF Laser Propelled Lightcraft Flight Dynamics Model vs. Experimental Data

    International Nuclear Information System (INIS)

    A detailed description is provided of the flight dynamics model and development, as well as the procedures used and results obtained in the verification, validation, and calibration of a further refined, flight dynamics system model for a laser lightcraft. The full system model is composed of individual aerodynamic, engine, laser beam, variable vehicle inertial, and 6 DOF dynamics models which have been integrated to represent all major phenomena in a consistent framework. The resulting system level model and associated code was then validated and calibrated using experimental flight information from a 16 flight trajectory data base. This model and code are being developed for the purpose of providing a physics-based predictive tool, which may be used to evaluate the performance of proposed future lightcraft vehicle concepts, engine systems, beam shapes, and active control strategies, thereby aiding in the development of the next generation of laser propelled lightcraft. This paper describes the methods used for isolating the effects of individual component models (e.g. beam, engine, dynamics, etc.) so that the performance of each of these key components could be assessed and adjusted as necessary. As the individual component models were validated, a protocol was developed which permitted the investigators to focus on individual aspects of the system and thereby identify phenomena which explain system behavior, and account for observed deviations between portions of the simulation predictions from experimental flights. These protocols are provided herein, along with physics-based explanations for deviations observed

  20. Changing attitudes toward immigration in Europe, 2002-2007: a dynamic group conflict theory approach.

    Science.gov (United States)

    Meuleman, Bart; Davidov, Eldad; Billiet, Jaak

    2009-06-01

    Anti-immigration attitudes and its origins have been investigated quite extensively. Research that focuses on the evolution of attitudes toward immigration, however, is far more scarce. In this paper, we use data from the first three rounds of the European Social Survey (ESS) to study the trend of anti-immigration attitudes between 2002 and 2007 in 17 European countries. In the first part of the paper, we discuss the critical legitimacy for comparing latent variable means over countries and time. A Multiple-Group Multiple Indicator Structural Equation Modeling (MGSEM) approach is used to test the cross-country and cross-time equivalence of the variables under study. In a second step, we try to offer an explanation for the observed trends using a dynamic version of group conflict theory. The country-specific evolutions in attitudes toward immigration are shown to coincide with national context factors, such as immigration flows and changes in unemployment rates. PMID:19827179

  1. Aperiodic dynamics in a deterministic model of attitude formation in social groups

    CERN Document Server

    Ward, Jonathan

    2013-01-01

    Homophily and social influence are the fundamental mechanisms that drive the evolution of attitudes, beliefs and behaviour within social groups. Homophily relates the similarity between pairs of individuals' attitudinal states to their frequency of interaction, and hence structural tie strength, while social influence causes the convergence of individuals' states during interaction. Building on these basic elements, we propose a new mathematical modelling framework to describe the evolution of attitudes within a group of interacting agents. Specifically, our model describes sub-conscious attitudes that have an activator-inhibitor relationship. We consider a homogeneous population using a deterministic, continuous-time dynamical system. Surprisingly, the combined effects of homophily and social influence do not necessarily lead to group consensus or global monoculture. We observe that sub-group formation and polarisation-like effects may be transient, the long-time dynamics being quasi-periodic with sensitive ...

  2. Flight Dynamics of an Aeroshell Using an Attached Inflatable Aerodynamic Decelerator

    Science.gov (United States)

    Cruz, Juan R.; Schoenenberger, Mark; Axdahl, Erik; Wilhite, Alan

    2009-01-01

    An aeroelastic analysis of the behavior of an entry vehicle utilizing an attached inflatable aerodynamic decelerator during supersonic flight is presented. The analysis consists of a planar, four degree of freedom simulation. The aeroshell and the IAD are assumed to be separate, rigid bodies connected with a spring-damper at an interface point constraining the relative motion of the two bodies. Aerodynamic forces and moments are modeled using modified Newtonian aerodynamics. The analysis includes the contribution of static aerodynamic forces and moments as well as pitch damping. Two cases are considered in the analysis: constant velocity flight and planar free flight. For the constant velocity and free flight cases with neutral pitch damping, configurations with highly-stiff interfaces exhibit statically stable but dynamically unstable aeroshell angle of attack. Moderately stiff interfaces exhibit static and dynamic stability of aeroshell angle of attack due to damping induced by the pitch angle rate lag between the aeroshell and IAD. For the free-flight case, low values of both the interface stiffness and damping cause divergence of the aeroshell angle of attack due to the offset of the IAD drag force with respect to the aeroshell center of mass. The presence of dynamic aerodynamic moments was found to influence the stability characteristics of the vehicle. The effect of gravity on the aeroshell angle of attack stability characteristics was determined to be negligible for the cases investigated.

  3. Computational Fluid Dynamics-Icing: a Predictive Tool for In-Flight Icing Risk Management

    Science.gov (United States)

    Zeppetelli, Danial

    In-flight icing is a hazard that continues to afflict the aviation industry, despite all the research and efforts to mitigate the risks. The recurrence of these types of accidents has given renewed impetus to the development of advanced analytical predictive tools to study both the accretion of ice on aircraft components in flight, and the aerodynamic consequences of such ice accumulations. In this work, an in-depth analysis of the occurrence of in-flight icing accidents and incidents was conducted to identify high-risk flight conditions. To investigate these conditions more thoroughly, a computational fluid dynamics model of a representative airfoil was developed to recreate experiments from the icing wind tunnel that occurred in controlled flight conditions. The ice accumulations and resulting aerodynamic performance degradations of the airfoil were computed for a range or pitch angles and flight speeds. These simulations revealed substantial performance losses such as reduced maximum lift, and decreased stall angle. From these results, an icing hazard analysis tool was developed, using risk management principles, to evaluate the dangers of in-flight icing for a specific aircraft based on the atmospheric conditions it is expected to encounter, as well as the effectiveness of aircraft certification procedures. This method is then demonstrated through the simulation of in-flight icing scenarios based on real flight data from accidents and incidents. The risk management methodology is applied to the results of the simulations and the predicted performance degradation is compared to recorded aircraft performance characteristics at the time of the occurrence. The aircraft performance predictions and resulting risk assessment are found to correspond strongly to the pilot's comments as well as to the severity of the incident.

  4. Non-linear Flight Dynamics at High Angles of Attack

    DEFF Research Database (Denmark)

    Granasy, P.; Sørensen, C.B.; Mosekilde, Erik; Thomasson, P.G.

    1998-01-01

    The methods of nonlinear dynamics are applied to the longitudinal motion of a vectored thrust aircraft, in particular the behavior at high angles of attack. Our model contains analytic nonlinear aerodynamical coefficients based on NASA windtunnel experiments on the F-18 high-alpha research vehicle...

  5. Non-linear Flight Dynamics at High Angles of Attack

    DEFF Research Database (Denmark)

    Granasy, P.; Sørensen, C.B.; Mosekilde, Erik;

    1998-01-01

    The methods of nonlinear dynamics are applied to the longitudinal motion of a vectored thrust aircraft, in particular the behavior at high angles of attack. Our model contains analytic nonlinear aerodynamical coefficients based on NASA windtunnel experiments on the F-18 high-alpha research vehicl...

  6. A wake bending unsteady dynamic inflow model of tiltrotor in conversion flight of tiltrotor aircraft

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The aerodynamics, dynamic responses and aeroelasticity of tiltrotor aircraft in the tilting of rotor i.e. in conversion flight are extraordinarily complicated. The traditional quasi-steady assumption model can not reflect the unsteady aerodynamic problems in the tilting of rotor. The CFD method based on the vortex theory can get better results, but it consumes a lot of computing resources. In this paper, a wake bending dynamic inflow model of tilting rotor was established firstly based on the Peters-He dynamic inflow model used in helicopter. Then combining with the ONERA unsteady aerodynamic model, a wake bending unsteady dynamic inflow model of tilting rotor in conversion flight of tiltrotor aircraft was established. The wake bending unsteady dynamic inflow model of tilting rotor was verified by using the experimental data of an isolated rotor model in large angle pitching up maneuver and was used to calculate the dynamic responses of tilting rotor in conversion flight of a tiltrotor aircraft model. The calculated results were analyzed to be physically reasonable.

  7. Estimation of dynamic stability parameters from drop model flight tests

    Science.gov (United States)

    Chambers, J. R.; Iliff, K. W.

    1981-01-01

    The overall remotely piloted drop model operation, descriptions, instrumentation, launch and recovery operations, piloting concept, and parameter identification methods are discussed. Static and dynamic stability derivatives were obtained for an angle attack range from -20 deg to 53 deg. It is indicated that the variations of the estimates with angle of attack are consistent for most of the static derivatives, and the effects of configuration modifications to the model were apparent in the static derivative estimates.

  8. Mechanics of Flapping Flight: Analytical Formulations of Unsteady Aerodynamics, Kinematic Optimization, Flight Dynamics, and Control

    Science.gov (United States)

    Taneja, Jayant Kumar

    Electricity is an indispensable commodity to modern society, yet it is delivered via a grid architecture that remains largely unchanged over the past century. A host of factors are conspiring to topple this dated yet venerated design: developments in renewable electricity generation technology, policies to reduce greenhouse gas emissions, and advances in information technology for managing energy systems. Modern electric grids are emerging as complex distributed systems in which a portfolio of power generation resources, often incorporating fluctuating renewable resources such as wind and solar, must be managed dynamically to meet uncontrolled, time-varying demand. Uncertainty in both supply and demand makes control of modern electric grids fundamentally more challenging, and growing portfolios of renewables exacerbate the challenge. We study three electricity grids: the state of California, the province of Ontario, and the country of Germany. To understand the effects of increasing renewables, we develop a methodology to scale renewables penetration. Analyzing these grids yields key insights about rigid limits to renewables penetration and their implications in meeting long-term emissions targets. We argue that to achieve deep penetration of renewables, the operational model of the grid must be inverted, changing the paradigm from load-following supplies to supply-following loads. To alleviate the challenge of supply-demand matching on deeply renewable grids, we first examine well-known techniques, including altering management of existing supply resources, employing utility-scale energy storage, targeting energy efficiency improvements, and exercising basic demand-side management. Then, we create several instantiations of supply-following loads -- including refrigerators, heating and cooling systems, and laptop computers -- by employing a combination of sensor networks, advanced control techniques, and enhanced energy storage. We examine the capacity of each load

  9. Using MathWorks' Simulink® and Real-Time Workshop® Code Generator to Produce Attitude Control Test and Flight Code

    OpenAIRE

    Salada, Mark; Dellinger, Wayne

    1998-01-01

    This paper describes the use of a commercial product, MathWorks' RealTime Workshop® (RTW), to generate actual flight code for NASA's Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics (TIMED) mission. The Johns Hopkins University Applied Physics Laboratory is handling the design and construction of this satellite for NASA. As TIMED is scheduled to launch in May of the year 2000, software development for both ground and flight systems are well on their way. However, based on experien...

  10. Attitude Dynamics of a Spinning Rocket with Internal Fluid Whirling Motion

    Directory of Open Access Journals (Sweden)

    Marius Ionut MARMUREANU

    2014-06-01

    Full Text Available This paper evaluates the impact that helical motion of fluid products of combustion within the combustion chamber of a rocket can have on the attitude dynamics of rocket systems. By developing the study presented by Sookgaew (2004, we determined the configuration of the Coriolis moment components, which catch the impact of the combustion product’s whirling motion, for the radial and centripetal propellant burn pattern specific to S-5M and S-5K solid rocket motors. We continue the investigation of the effects of internal whirling motion of fluid products of combustion on the attitude behavior of variable mass systems of the rocket type by examining the spin motion and transverse attitude motion of such systems. The results obtained show that internal fluid whirling motion can cause appreciable deviations in spin rate predictions, and also affects the frequencies of the transverse angular velocity components.

  11. Attitude dynamics and control of spacecraft using geomagnetic Lorentz force

    International Nuclear Information System (INIS)

    Attitude stabilization of a charged rigid spacecraft in Low Earth Orbit using torques due to Lorentz force in pitch and roll directions is considered. A spacecraft that generates an electrostatic charge on its surface in the Earth's magnetic field will be subject to perturbations from the Lorentz force. The Lorentz force acting on an electrostatically charged spacecraft may provide a useful thrust for controlling a spacecraft's orientation. We assume that the spacecraft is moving in the Earth's magnetic field in an elliptical orbit under the effects of gravitational, geomagnetic and Lorentz torques. The magnetic field of the Earth is modeled as a non-tilted dipole. A model incorporating all Lorentz torques as a function of orbital elements has been developed on the basis of electric and magnetic fields. The stability of the spacecraft orientation is investigated both analytically and numerically. The existence and stability of equilibrium positions is investigated for different values of the charge to mass ratio (α*). Stable orbits are identified for various values of α*. The main parameters for stabilization of the spacecraft are α* and the difference between the components of the moment of inertia for the spacecraft. (research papers)

  12. Spinning Flight Dynamics of Frisbees, Boomerangs, Samaras, and Skipping Stones

    CERN Document Server

    Lorenz, Ralph D

    2006-01-01

    More frisbees are sold each year than baseballs, basketballs, and footballs combined. Yet these familiar flying objects have subtle and clever aerodynamic and gyrodynamic properties which are only recently being documented by wind tunnel and other studies. In common with other rotating bodies discussed in this readily accessible book, they are typically not treated in textbooks of aeronautics and the literature is scattered in a variety of places. This book develops the theme of disc-wings and spinning aerospace vehicles in parallel. Many readers will have enjoyed these vehicles and their dynamics in recreational settings, so this book will be of wide interest. In addition to spinning objects of various shapes, several exotic manned aircraft with disc platforms have been proposed and prototypes built - these include a Nazi ‘secret weapon’ and the De Havilland Avrocar, also discussed in the book. Boomerangs represent another category of spinning aerodynamic body whose behavior can only be understood by cou...

  13. Robust Adaptive Geometric Tracking Controls on SO(3) with an Application to the Attitude Dynamics of a Quadrotor UAV

    CERN Document Server

    Lee, Taeyoung

    2011-01-01

    This paper provides new results for a robust adaptive tracking control of the attitude dynamics of a rigid body. Both of the attitude dynamics and the proposed control system are globally expressed on the special orthogonal group, to avoid complexities and ambiguities associated with other attitude representations such as Euler angles or quaternions. By designing an adaptive law for the inertia matrix of a rigid body, the proposed control system can asymptotically follow an attitude command without the knowledge of the inertia matrix, and it is extended to guarantee boundedness of tracking errors in the presence of unstructured disturbances. These are illustrated by numerical examples and experiments for the attitude dynamics of a quadrotor UAV.

  14. Suited Occupant Injury Potential During Dynamic Spacecraft Flight Phases

    Science.gov (United States)

    Dub, Mark O.; McFarland, Shane M.

    2010-01-01

    In support of the Constellation Space Suit Element [CSSE], a new space-suit architecture will be created for support of Launch, Entry, Abort, Microgravity Extra- Vehicular Activity [EVA], and post-landing crew operations, safety and, under emergency conditions, survival. The space suit is unique in comparison to previous launch, entry, and abort [LEA] suit architectures in that it utilizes rigid mobility elements in the scye (i.e., shoulder) and the upper arm regions. The suit architecture also utilizes rigid thigh disconnect elements to create a quick disconnect approximately located above the knee. This feature allows commonality of the lower portion of the suit (from the thigh disconnect down), making the lower legs common across two suit configurations. This suit must interface with the Orion vehicle seat subsystem, which includes seat components, lateral supports, and restraints. Due to the unique configuration of spacesuit mobility elements, combined with the need to provide occupant protection during dynamic vehicle events, risks have been identified with potential injury due to the suit characteristics described above. To address the risk concerns, a test series has been developed in coordination with the Injury Biomechanics Research Laboratory [IBRL] to evaluate the likelihood and consequences of these potential issues. Testing includes use of Anthropomorphic Test Devices [ATDs; vernacularly referred to as "crash test dummies"], Post Mortem Human Subjects [PMHS], and representative seat/suit hardware in combination with high linear acceleration events. The ensuing treatment focuses on test purpose and objectives; test hardware, facility, and setup; and preliminary results.

  15. Advanced Modeling and Uncertainty Quantification for Flight Dynamics; Interim Results and Challenges

    Science.gov (United States)

    Hyde, David C.; Shweyk, Kamal M.; Brown, Frank; Shah, Gautam

    2014-01-01

    As part of the NASA Vehicle Systems Safety Technologies (VSST), Assuring Safe and Effective Aircraft Control Under Hazardous Conditions (Technical Challenge #3), an effort is underway within Boeing Research and Technology (BR&T) to address Advanced Modeling and Uncertainty Quantification for Flight Dynamics (VSST1-7). The scope of the effort is to develop and evaluate advanced multidisciplinary flight dynamics modeling techniques, including integrated uncertainties, to facilitate higher fidelity response characterization of current and future aircraft configurations approaching and during loss-of-control conditions. This approach is to incorporate multiple flight dynamics modeling methods for aerodynamics, structures, and propulsion, including experimental, computational, and analytical. Also to be included are techniques for data integration and uncertainty characterization and quantification. This research shall introduce new and updated multidisciplinary modeling and simulation technologies designed to improve the ability to characterize airplane response in off-nominal flight conditions. The research shall also introduce new techniques for uncertainty modeling that will provide a unified database model comprised of multiple sources, as well as an uncertainty bounds database for each data source such that a full vehicle uncertainty analysis is possible even when approaching or beyond Loss of Control boundaries. Methodologies developed as part of this research shall be instrumental in predicting and mitigating loss of control precursors and events directly linked to causal and contributing factors, such as stall, failures, damage, or icing. The tasks will include utilizing the BR&T Water Tunnel to collect static and dynamic data to be compared to the GTM extended WT database, characterizing flight dynamics in off-nominal conditions, developing tools for structural load estimation under dynamic conditions, devising methods for integrating various modeling elements

  16. Rhythm is it: Effects of Dynamic Body Feedback on Affect, Attitudes and Cognition

    Directory of Open Access Journals (Sweden)

    SabineCKoch

    2014-06-01

    Full Text Available This paper investigates effects of dynamic body feedback on affect, attitudes, and cognition, focusing on the impact of movement rhythms with smooth vs. sharp reversals as one basic category of movement qualities. It investigates how those qualities relate to already explored effects of approach vs. avoidance motor behavior as one basic category of movement shaping. Studies 1 and 2 tested the effects of one of two basic movement qualities (smooth vs. sharp rhythms on affect and cognition. The third study tested those movement qualities in combination with movement shaping (approach vs. avoidance motor behavior and the effects of those combinations on attitudes toward initially valence-free stimuli and affect. Results suggest that movement rhythms influence affect (studies 1 and 2, and attitudes (study 3, and moderate the impact of approach and avoidance motor behavior on attitudes (study 3. Extending static body feedback research with a dynamic account, findings indicate that movement rhythms can moderate and go beyond effects of approach and avoidance motor behavior.

  17. Wing wear reduces bumblebee flight performance in a dynamic obstacle course.

    Science.gov (United States)

    Mountcastle, Andrew M; Alexander, Teressa M; Switzer, Callin M; Combes, Stacey A

    2016-06-01

    Previous work has shown that wing wear increases mortality in bumblebees. Although a proximate mechanism for this phenomenon has remained elusive, a leading hypothesis is that wing wear increases predation risk by reducing flight manoeuvrability. We tested the effects of simulated wing wear on flight manoeuvrability in Bombus impatiens bumblebees using a dynamic obstacle course designed to push bees towards their performance limits. We found that removing 22% wing area from the tips of both forewings (symmetric wear) caused a 9% reduction in peak acceleration during manoeuvring flight, while performing the same manipulation on only one wing (asymmetric wear) did not significantly reduce maximum acceleration. The rate at which bees collided with obstacles was correlated with body length across all treatments, but wing wear did not increase collision rate, possibly because shorter wingspans allow more room for bees to manoeuvre. This study presents a novel method for exploring extreme flight manoeuvres in flying insects, eliciting peak accelerations that exceed those measured during flight through a stationary obstacle course. If escape from aerial predation is constrained by acceleration capacity, then our results offer a potential explanation for the observed increase in bumblebee mortality with wing wear. PMID:27303054

  18. Simulation, flight performance and control of Dynamics Explorers-A and -B spacecraft

    Science.gov (United States)

    Sellappan, R. G.; Sen, S.

    1982-01-01

    This paper presents the results obtained from a study conducted to evaluate the dynamic behavior of Dynamics Explorers-A and -B spacecraft. The effects of environmental torques on the spacecraft motion, momentum buildup due to these torques, and the long appendages on the main body motion are studied using numerical simulations. The numerical results are compared with flight data and are found to be in good agreement. A control philosophy for DE-B to minimize the pitch axis drift is developed. The performance of DE-B in inverted mode and during the inversion maneuver as well as in the normal mode are studied. The spin ripple effect on DE-A due to the long appendages is analyzed and the results are correlated with flight data.

  19. Real-Time Dynamic Modeling - Data Information Requirements and Flight Test Results

    Science.gov (United States)

    Morelli, Eugene A.; Smith, Mark S.

    2010-01-01

    Practical aspects of identifying dynamic models for aircraft in real time were studied. Topics include formulation of an equation-error method in the frequency domain to estimate non-dimensional stability and control derivatives in real time, data information content for accurate modeling results, and data information management techniques such as data forgetting, incorporating prior information, and optimized excitation. Real-time dynamic modeling was applied to simulation data and flight test data from a modified F-15B fighter aircraft, and to operational flight data from a subscale jet transport aircraft. Estimated parameter standard errors, prediction cases, and comparisons with results from a batch output-error method in the time domain were used to demonstrate the accuracy of the identified real-time models.

  20. Development of a simulation tool for flight dynamics and control investigations of articulated vtol unmanned aircraft

    OpenAIRE

    Saghafi, F.

    1996-01-01

    A simulation tool for flight dynamics and control investigations of three different Vertical Take Off and Landing (VTOL) unmanned aircraft configurations has been developed. A control concept has been proposed in order to take advantage of the fast response characteristics of the ordinary small engine/propeller propulsion systems in such aircraft, as well as replacing the complex rotors used previously in VTOL concepts for small unmanned aircraft. The simulation model has been ...

  1. Critical comparison of control techniques for a flight dynamics controller / Gustav Otto

    OpenAIRE

    Otto, Gustav

    2011-01-01

    This dissertation covers the process of modelling and subsequently developing a flight dynamics controller for a quad–rotor unmanned aerial vehicle. It is a theoretical study that focusses on the selection of a controller type by first analysing the problem on a system level and then on a technical level. The craft is modelled using the Newton– Euler model, accounting for multiple reference frames to account for the interpretation of orientation as seen by on–board sensors. The...

  2. Rotorcraft flight control design using quantitative feedback theory and dynamic crossfeeds

    Science.gov (United States)

    Cheng, Rendy P.

    1995-01-01

    A multi-input, multi-output controls design with robust crossfeeds is presented for a rotorcraft in near-hovering flight using quantitative feedback theory (QFT). Decoupling criteria are developed for dynamic crossfeed design and implementation. Frequency dependent performance metrics focusing on piloted flight are developed and tested on 23 flight configurations. The metrics show that the resulting design is superior to alternative control system designs using conventional fixed-gain crossfeeds and to feedback-only designs which rely on high gains to suppress undesired off-axis responses. The use of dynamic, robust crossfeeds prior to the QFT design reduces the magnitude of required feedback gain and results in performance that meets current handling qualities specifications relative to the decoupling of off-axis responses. The combined effect of the QFT feedback design following the implementation of low-order, dynamic crossfeed compensator successfully decouples ten of twelve off-axis channels. For the other two channels it was not possible to find a single, low-order crossfeed that was effective.

  3. A multibody approach for 6-DOF flight dynamics and stability analysis of the hawkmoth Manduca sexta

    International Nuclear Information System (INIS)

    This paper investigates the six degrees of freedom (6-DOF) flight dynamics and stability of the hawkmoth Manduca sexta using a multibody dynamics approach that encompasses the effects of the time varying inertia tensor of all the body segments including two wings. The quasi-steady translational and unsteady rotational aerodynamics of the flapping wings are modeled with the blade element theory with aerodynamic coefficients derived from relevant experimental studies. The aerodynamics is given instantaneously at each integration time step without wingbeat-cycle-averaging. With the multibody dynamic model and the aerodynamic model for the hawkmoth, a direct time integration of the fully coupled 6-DOF nonlinear multibody dynamics equations of motion is performed. First, the passive damping magnitude of each single DOF is quantitatively examined with the measure of the time taken to half the initial velocity (thalf). The results show that the sideslip translation is less damped approximately three times than the other two translational DOFs, and the pitch rotation is less damped approximately five times than the other two rotational DOFs; each DOF has the value of (unit in wingbeat strokes): thalf,forward/backward = 7.10, thalf,sideslip = 17.95, thalf,ascending = 7.13, thalf,descending = 5.77, thalf,roll = 0.68, thalf,pitch = 2.39, and thalf,yaw = 0.25. Second, the natural modes of motion, with the hovering flight as a reference equilibrium condition, are examined by analyzing fully coupled 6-DOF dynamic responses induced by multiple sets of force and moment disturbance combinations. The given disturbance combinations are set to excite the dynamic modes identified in relevant eigenmode analysis studies. The 6-DOF dynamic responses obtained from this study are compared with eigenmode analysis results in the relevant studies. The longitudinal modes of motion showed dynamic modal characteristics similar to the eigenmode analysis results from the relevant literature

  4. A multibody approach for 6-DOF flight dynamics and stability analysis of the hawkmoth Manduca sexta.

    Science.gov (United States)

    Kim, Joong-Kwan; Han, Jae-Hung

    2014-03-01

    This paper investigates the six degrees of freedom (6-DOF) flight dynamics and stability of the hawkmoth Manduca sexta using a multibody dynamics approach that encompasses the effects of the time varying inertia tensor of all the body segments including two wings. The quasi-steady translational and unsteady rotational aerodynamics of the flapping wings are modeled with the blade element theory with aerodynamic coefficients derived from relevant experimental studies. The aerodynamics is given instantaneously at each integration time step without wingbeat-cycle-averaging. With the multibody dynamic model and the aerodynamic model for the hawkmoth, a direct time integration of the fully coupled 6-DOF nonlinear multibody dynamics equations of motion is performed. First, the passive damping magnitude of each single DOF is quantitatively examined with the measure of the time taken to half the initial velocity (thalf). The results show that the sideslip translation is less damped approximately three times than the other two translational DOFs, and the pitch rotation is less damped approximately five times than the other two rotational DOFs; each DOF has the value of (unit in wingbeat strokes): thalf,forward/backward = 7.10, thalf,sideslip = 17.95, thalf,ascending = 7.13, thalf,descending = 5.77, thalf,roll = 0.68, thalf,pitch = 2.39, and thalf,yaw = 0.25. Second, the natural modes of motion, with the hovering flight as a reference equilibrium condition, are examined by analyzing fully coupled 6-DOF dynamic responses induced by multiple sets of force and moment disturbance combinations. The given disturbance combinations are set to excite the dynamic modes identified in relevant eigenmode analysis studies. The 6-DOF dynamic responses obtained from this study are compared with eigenmode analysis results in the relevant studies. The longitudinal modes of motion showed dynamic modal characteristics similar to the eigenmode analysis results from the relevant literature

  5. Computational Fluid Dynamics Analysis Success Stories of X-Plane Design to Flight Test

    Science.gov (United States)

    Cosentino, Gary B.

    2008-01-01

    Examples of the design and flight test of three true X-planes are described, particularly X-plane design techniques that relied heavily on computational fluid dynamics(CFD) analysis. Three examples are presented: the X-36 Tailless Fighter Agility Research Aircraft, the X-45A Unmanned Combat Air Vehicle, and the X-48B Blended Wing Body Demonstrator Aircraft. An overview is presented of the uses of CFD analysis, comparison and contrast with wind tunnel testing, and information derived from CFD analysis that directly related to successful flight test. Lessons learned on the proper and improper application of CFD analysis are presented. Highlights of the flight-test results of the three example X-planes are presented. This report discusses developing an aircraft shape from early concept and three-dimensional modeling through CFD analysis, wind tunnel testing, further refined CFD analysis, and, finally, flight. An overview of the areas in which CFD analysis does and does not perform well during this process is presented. How wind tunnel testing complements, calibrates, and verifies CFD analysis is discussed. Lessons learned revealing circumstances under which CFD analysis results can be misleading are given. Strengths and weaknesses of the various flow solvers, including panel methods, Euler, and Navier-Stokes techniques, are discussed.

  6. Lateral dynamic flight stability of a model hoverfly in normal and inclined stroke-plane hovering

    International Nuclear Information System (INIS)

    Many insects hover with their wings beating in a horizontal plane (‘normal hovering’), while some insects, e.g., hoverflies and dragonflies, hover with inclined stroke-planes. Here, we investigate the lateral dynamic flight stability of a hovering model hoverfly. The aerodynamic derivatives are computed using the method of computational fluid dynamics, and the equations of motion are solved by the techniques of eigenvalue and eigenvector analysis. The following is shown: The flight of the insect is unstable at normal hovering (stroke-plane angle equals 0) and the instability becomes weaker as the stroke-plane angle increases; the flight becomes stable at a relatively large stroke-plane angle (larger than about 24°). As previously shown, the instability at normal hovering is due to a positive roll-moment/side-velocity derivative produced by the ‘changing-LEV-axial-velocity’ effect. When the stroke-plane angle increases, the wings bend toward the back of the body, and the ‘changing-LEV-axial-velocity’ effect decreases; in addition, another effect, called the ‘changing-relative-velocity’ effect (the ‘lateral wind’, which is due to the side motion of the insect, changes the relative velocity of its wings), becomes increasingly stronger. This causes the roll-moment/side-velocity derivative to first decrease and then become negative, resulting in the above change in stability as a function of the stroke-plane angle. (paper)

  7. Comparison of Controller and Flight Deck Algorithm Performance During Interval Management with Dynamic Arrival Trees (STARS)

    Science.gov (United States)

    Battiste, Vernol; Lawton, George; Lachter, Joel; Brandt, Summer; Koteskey, Robert; Dao, Arik-Quang; Kraut, Josh; Ligda, Sarah; Johnson, Walter W.

    2012-01-01

    Managing the interval between arrival aircraft is a major part of the en route and TRACON controller s job. In an effort to reduce controller workload and low altitude vectoring, algorithms have been developed to allow pilots to take responsibility for, achieve and maintain proper spacing. Additionally, algorithms have been developed to create dynamic weather-free arrival routes in the presence of convective weather. In a recent study we examined an algorithm to handle dynamic re-routing in the presence of convective weather and two distinct spacing algorithms. The spacing algorithms originated from different core algorithms; both were enhanced with trajectory intent data for the study. These two algorithms were used simultaneously in a human-in-the-loop (HITL) simulation where pilots performed weather-impacted arrival operations into Louisville International Airport while also performing interval management (IM) on some trials. The controllers retained responsibility for separation and for managing the en route airspace and some trials managing IM. The goal was a stress test of dynamic arrival algorithms with ground and airborne spacing concepts. The flight deck spacing algorithms or controller managed spacing not only had to be robust to the dynamic nature of aircraft re-routing around weather but also had to be compatible with two alternative algorithms for achieving the spacing goal. Flight deck interval management spacing in this simulation provided a clear reduction in controller workload relative to when controllers were responsible for spacing the aircraft. At the same time, spacing was much less variable with the flight deck automated spacing. Even though the approaches taken by the two spacing algorithms to achieve the interval management goals were slightly different they seem to be simpatico in achieving the interval management goal of 130 sec by the TRACON boundary.

  8. Species-specific flight styles of flies are reflected in the response dynamics of a homologue motion sensitive neuron

    Directory of Open Access Journals (Sweden)

    Bart eGeurten

    2012-03-01

    Full Text Available Hoverflies and blowflies have distinctly different flight styles. Yet, both species have been shown to structure their flight behaviour in a way that facilitates extraction of 3D information from the image flow on the retina (optic flow. Neuronal candidates to analyse the optic flow are the tangential cells in the third optical ganglion – the lobula complex. These neurons are directionally selective and integrate the optic flow over large parts of the visual field. Homologue tangential cells in hoverflies and blowflies have a similar morphology. Because blowflies and hoverflies have similar neuronal layout but distinctly different flight behaviours, they are an ideal substrate to pinpoint potential neuronal adaptations to the different flight styles.In this article we describe the relationship between locomotion behaviour and motion vision on three different levels:1.We compare the different flight styles based on the categorisation of flight behaviour into prototypical movements.2.We measure the species specific dynamics of the optic flow under naturalistic flight conditions. We found the translational optic flow of both species to be very different.3.We describe possible adaptations of a homologue motion sensitive neuron. We stimulate this cell in blowflies (Calliphora and hoverflies (Eristalis with naturalistic optic flow generated by both species during free flight. The characterized hoverfly tangential cell responds faster to transient changes in the optic flow than its blowfly homologue. It is discussed whether and how the different dynamical response properties aid optic flow analysis.

  9. 微小卫星低可观测外形飞行姿态规划%Flight Attitude Planning for Low Observable Micro-satellite Shields

    Institute of Scientific and Technical Information of China (English)

    苏抗; 周建江

    2011-01-01

    为提高在轨微小卫星的使用效能及生存能力,提出一种微小卫星低可观测外形飞行姿态规划算法.根据微小卫星雷达散射截面(RCS)、轨道及雷达威胁特性,建立了可进行长时间内最佳飞行姿态规划的数学模型,设计了低计算复杂度的链表式个体结构及进化规划策略,并实现了算法对高威胁区优化规划的能力.同时,算法低迭代步长下的快速收敛特性以及进化中规划精度及计算量可变的设计,也使其可灵活应用于不同的规划任务.仿真结果表明,算法可有效降低S波段及甚高频(VHF)波段雷达对微小卫星的威胁性,满足微小卫星低可观测外形飞行姿态规划的需求.%A flight attitude planning algorithm is developed for Iow observable micro-satellite shields to enhance the on-orbit satellite's survivability and operational effectiveness.According to the micro-satellite's radar cross section (RCS), its orbit and radar threat characteristics, a planning mathematical model is established to find the optimal flight attitude in a long planning period of time.A novel linked-list individual structure and an evolutionary planning strategy are defined to reduce the planning computational complexity, and a special planning method is designed to enhance the planning performance when the micro-satellite travels through a high threat zone.At the same time, the algorithm converges quickly with limited iterative steps, and the planning precision and computational load can be adaptively controlled during the planning.These features make the planning algorithm available for different applications.In the simulation, the algorithm reduces the micro-satellite' s S-band and very high frequency (VHF)-band radar threat level obviously, and meets the needs of the low observable micro-satellite shield flight attitude planning.

  10. Results From F-18B Stability and Control Parameter Estimation Flight Tests at High Dynamic Pressures

    Science.gov (United States)

    Moes, Timothy R.; Noffz, Gregory K.; Iliff, Kenneth W.

    2000-01-01

    A maximum-likelihood output-error parameter estimation technique has been used to obtain stability and control derivatives for the NASA F-18B Systems Research Aircraft. This work has been performed to support flight testing of the active aeroelastic wing (AAW) F-18A project. The goal of this research is to obtain baseline F-18 stability and control derivatives that will form the foundation of the aerodynamic model for the AAW aircraft configuration. Flight data have been obtained at Mach numbers between 0.85 and 1.30 and at dynamic pressures ranging between 600 and 1500 lbf/sq ft. At each test condition, longitudinal and lateral-directional doublets have been performed using an automated onboard excitation system. The doublet maneuver consists of a series of single-surface inputs so that individual control-surface motions cannot be correlated with other control-surface motions. Flight test results have shown that several stability and control derivatives are significantly different than prescribed by the F-18B aerodynamic model. This report defines the parameter estimation technique used, presents stability and control derivative results, compares the results with predictions based on the current F-18B aerodynamic model, and shows improvements to the nonlinear simulation using updated derivatives from this research.

  11. Flight dynamics of some Lepidoptera species of sugar beet and possibilities their control (Transylvania-Romania

    Directory of Open Access Journals (Sweden)

    Muresanu Felicia

    2006-01-01

    Full Text Available In this paper, the authors present the obtained results regarding the flight dynamics of some Lepidoptera species in sugar beet crops in Transylvania (the central part of Romania. In order to limit the appearance of mentioned pests to the economic threshold, Trichogramma spp. were obtained in laboratory conditions at ARDS Turda and SBRDS Brasov. The experiments were conducted in production areas on 0,5 ha minimum for each variant. The variants included four Trichogramma species: T. dendrolimi, T. evanescens, T. maidis, T. buesi that were manually released three times: the first release, 10.000 individuals/ha, the second, 120.000 individuals/ha and the third, 150.000 individuals/ha. The first release was performed at the beginning of the Lepidoptera flight, the second at the maximum flight and the third 5 days after the second. The efficiency of T. maidis was between 75-90%, of T. evanescens, it was between 73-88%, of T. dendrolimi, it was between 85-92% and of T. buesi 79-82%. Among the Trichogramma species utilized, T. dendrolimi and T. evanescens were very efficient in the reduction of mentioned pests. Root production was significantly higher compared to the untreated variant, 4,0-4,7 t/ha more were recorded after the application of biological treatments with T. evanescens and T. dendrolimi.

  12. Aperiodic dynamics in a deterministic adaptive network model of attitude formation in social groups

    Science.gov (United States)

    Ward, Jonathan A.; Grindrod, Peter

    2014-07-01

    Adaptive network models, in which node states and network topology coevolve, arise naturally in models of social dynamics that incorporate homophily and social influence. Homophily relates the similarity between pairs of nodes' states to their network coupling strength, whilst social influence causes coupled nodes' states to convergence. In this paper we propose a deterministic adaptive network model of attitude formation in social groups that includes these effects, and in which the attitudinal dynamics are represented by an activato-inhibitor process. We illustrate that consensus, corresponding to all nodes adopting the same attitudinal state and being fully connected, may destabilise via Turing instability, giving rise to aperiodic dynamics with sensitive dependence on initial conditions. These aperiodic dynamics correspond to the formation and dissolution of sub-groups that adopt contrasting attitudes. We discuss our findings in the context of cultural polarisation phenomena. Social influence. This reflects the fact that people tend to modify their behaviour and attitudes in response to the opinions of others [22-26]. We model social influence via diffusion: agents adjust their state according to a weighted sum (dictated by the evolving network) of the differences between their state and the states of their neighbours. Homophily. This relates the similarity of individuals' states to their frequency and strength of interaction [27]. Thus in our model, homophily drives the evolution of the weighted ‘social' network. A precise formulation of our model is given in Section 2. Social influence and homophily underpin models of social dynamics [21], which cover a wide range of sociological phenomena, including the diffusion of innovations [28-32], complex contagions [33-36], collective action [37-39], opinion dynamics [19,20,40,10,11,13,15,41,16], the emergence of social norms [42-44], group stability [45], social differentiation [46] and, of particular relevance

  13. Flight validated high-order models of UAV helicopter dynamics in hover and forward flight using analytical and parameter identification techniques

    Science.gov (United States)

    Bhandari, Subodh

    There has been a significant growth in the use of UAV helicopters for a multitude of military and civilian applications over the last few years. Due to these numerous applications, from crop dusting to remote sensing, UAV helicopters are now a major topic of interest within the aerospace community. The main research focus is on the development of automatic flight control systems (AFCS). The design of AFCS for these vehicles requires a mathematical model representing the dynamics of the vehicle. The mathematical model is developed either from first-principles, using the equations of motion of the vehicle, or from the flight data, using parameter identification techniques. The traditional six-degrees-of-freedom (6-DoF) dynamics model is not suitable for high-bandwidth control system design. Such models are valid only within the low- to mid-frequency range. The agility and high maneuverability of small-scale helicopters require a high-bandwidth control system for full authority autonomous performance. The design of a high-bandwidth control system in turn requires a high-fidelity simulation model that is able to capture the key dynamics of the helicopter. These dynamics include the rotor dynamics. This dissertation presents the development of a 14-degrees-of-freedom (14-DoF) state-space linear model for the KU Thunder Tiger Raptor 50 UAV helicopter from first-principles and from flight test data using a parameter identification technique for the hovering and forward flight conditions. The model includes rigid body, rotor regressive, rotor inflow, stabilizer bar, and rotor coning dynamics. The model is implemented within The MathWork's MATLAB/Simulink environment. The simulation results show that the high-order model is able to predict the helicopter's dynamics up to the frequency of 30 rad/sec. The main contributions of this dissertation are the development of a high-order simulation model for a small UAV helicopter from first-principles and the identification of a

  14. Rotor dynamic state and parameter identification from simulated forward flight transients, part 1

    Science.gov (United States)

    Hohenemser, K. H.; Banerjee, D.; Yin, S. K.

    1976-01-01

    State and parameter identifications from simulated forward flight blade flapping measurements are presented. The transients were excited by progressing cyclic pitch stirring or by hub stirring with constant stirring acceleration. Rotor dynamic inflow models of varying degree of sophistication were used from a one parameter inflow model (equivalent Lock number) to an eight parameter inflow model. The maximum likelihood method with assumed fixed measurement error covariance matrix was applied. The rotor system equations for both fixed hub and tilting hub are given. The identified models were verified by comparing true responses with predicted responses. An optimum utilization of the simulated measurement data can be defined. From the numerical results it can be anticipated that brief periods of either accelerated cyclic pitch stirring or of hub stirring are sufficient to extract with adequate accuracy up to 8 rotor dynamic inflow parameters plus the blade Lock number from the transients.

  15. Optical Feather and Foil for Shape and Dynamic Load Sensing of Critical Flight Surfaces Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Future flight vehicles may comprise complex flight surfaces requiring coordinated in-situ sensing and actuation. Inspired by the complexity of the flight surfaces...

  16. Dynamics of energy substrates in the haemolymph of Locusta migratoria during flight

    OpenAIRE

    Van der Horst, D J; Houben, N.M.D.; Beenakkers, A.M.Th.

    1980-01-01

    In the two-fuel system for flight of the migratory locust, the haemolymph carbohydrate concentration falls during flight periods of up to 1 hr, the decrease being greater in case the pre-flight carbohydrate level is higher. The increase in the lipid concentration from the onset of flight is virtually independent of the initial lipid concentration. Flight intensity affects these changes in substrate concentrations: the carbohydrate level decreases more rapidly if flight speed is higher, wherea...

  17. Spacecraft attitude control systems with dynamic methods and structures for processing star tracker signals

    Science.gov (United States)

    Liu, Yong (Inventor); Wu, Yeong-Wei Andy (Inventor); Li, Rongsheng (Inventor)

    2001-01-01

    Methods are provided for dynamically processing successively-generated star tracker data frames and associated valid flags to generate processed star tracker signals that have reduced noise and a probability greater than a selected probability P.sub.slctd of being valid. These methods maintain accurate spacecraft attitude control in the presence of spurious inputs (e.g., impinging protons) that corrupt collected charges in spacecraft star trackers. The methods of the invention enhance the probability of generating valid star tracker signals because they respond to a current frame probability P.sub.frm by dynamically selecting the largest valid frame combination whose combination probability P.sub.cmb satisfies a selected probability P.sub.slctd. Noise is thus reduced while the probability of finding a valid frame combination is enhanced. Spacecraft structures are also provided for practicing the methods of the invention.

  18. Dynamics of energy substrates in the haemolymph of Locusta migratoria during flight

    NARCIS (Netherlands)

    Horst, D.J. van der; Houben, N.M.D.; Beenakkers, A.M.Th.

    1980-01-01

    In the two-fuel system for flight of the migratory locust, the haemolymph carbohydrate concentration falls during flight periods of up to 1 hr, the decrease being greater in case the pre-flight carbohydrate level is higher. The increase in the lipid concentration from the onset of flight is virtuall

  19. An exploratory investigation of the flight dynamics effects of rotor rpm variations and rotor state feedback in hover

    Science.gov (United States)

    Chen, Robert T. N.

    1992-01-01

    This paper presents the results of an analytical study conducted to investigate airframe/engine interface dynamics, and the influence of rotor speed variations on the flight dynamics of the helicopter in hover, and to explore the potential benefits of using rotor states as additional feedback signals in the flight control system. The analytical investigation required the development of a parametric high-order helicopter hover model, which included heave/yaw body motion, the rotor speed degree of freedom, rotor blade motion in flapping and lead-lag, inflow dynamics, a drive train model with a flexible rotor shaft, and an engine/rpm governor. First, the model was used to gain insight into the engine/drive train/rotor system dynamics and to obtain an improved simple formula for easy estimation of the dominant first torsional mode, which is important in the dynamic integration of the engine and airframe system. Then, a linearized version of the model was used to investigate the effects of rotor speed variations and rotor state feedback on helicopter flight dynamics. Results show that, by including rotor speed variations, the effective vertical damping decreases significantly from that calculated with a constant speed assumption, thereby providing a better correlation with flight test data. Higher closed-loop bandwidths appear to be more readily achievable with rotor state feedback. The results also indicate that both aircraft and rotor flapping responses to gust disturbance are significantly attenuated when rotor state feedback is used.

  20. Nonlinear Dynamics in a Cournot Duopoly with Different Attitudes towards Strategic Uncertainty

    Directory of Open Access Journals (Sweden)

    Luciano Fanti

    2013-01-01

    Full Text Available This paper analyses the dynamics of a duopoly with quantity-setting firms and different attitudes towards strategic uncertainty. By following the recent literature on decision making under uncertainty, where the Choquet expected utility theory is adopted to allow firms to plan their strategies, we investigate the effects of the interaction between pessimistic and optimistic firms on economic dynamics described by a two-dimensional map. In particular, the study of the local and global behaviour of the map is performed under three assumptions: (1 both firms have complete information on the market demand and adjust production over time depending on past behaviours (static expectations—“best reply” dynamics; (2 both firms have incomplete information and production is adjusted over time by following a mechanism based on marginal profits; and (3 one firm has incomplete information on the market demand and production decisions are based on the behaviour of marginal profits, and the rival has complete information on the market demand and static expectations. In cases 2 and 3 it is shown that complex dynamics and coexistence of attractors may arise. The analysis is carried forward through numerical simulations and the critical lines technique.

  1. Encrypted Three-dimensional Dynamic Imaging using Snapshot Time-of-flight Compressed Ultrafast Photography

    Science.gov (United States)

    Liang, Jinyang; Gao, Liang; Hai, Pengfei; Li, Chiye; Wang, Lihong V.

    2015-10-01

    Compressed ultrafast photography (CUP), a computational imaging technique, is synchronized with short-pulsed laser illumination to enable dynamic three-dimensional (3D) imaging. By leveraging the time-of-flight (ToF) information of pulsed light backscattered by the object, ToF-CUP can reconstruct a volumetric image from a single camera snapshot. In addition, the approach unites the encryption of depth data with the compressed acquisition of 3D data in a single snapshot measurement, thereby allowing efficient and secure data storage and transmission. We demonstrated high-speed 3D videography of moving objects at up to 75 volumes per second. The ToF-CUP camera was applied to track the 3D position of a live comet goldfish. We have also imaged a moving object obscured by a scattering medium.

  2. Model Structures and Algorithms for Identification of Aerodynamic Models for Flight Dynamics Applications

    Science.gov (United States)

    Prasanth, Ravi K.; Klein, Vladislav; Murphy, Patrick C.; Mehra, Raman K.

    2005-01-01

    This paper describes model structures and parameter estimation algorithms suitable for the identification of unsteady aerodynamic models from input-output data. The model structures presented are state space models and include linear time-invariant (LTI) models and linear parameter-varying (LPV) models. They cover a wide range of local and parameter dependent identification problems arising in unsteady aerodynamics and nonlinear flight dynamics. We present a residue algorithm for estimating model parameters from data. The algorithm can incorporate apriori information and is described in detail. The algorithms are evaluated on the F-16XL wind-tunnel test data from NAS Langley Research Center. Results of numerical evaluation are presented. The paper concludes with a discussion major issues and directions for future work.

  3. Encrypted Three-dimensional Dynamic Imaging using Snapshot Time-of-flight Compressed Ultrafast Photography.

    Science.gov (United States)

    Liang, Jinyang; Gao, Liang; Hai, Pengfei; Li, Chiye; Wang, Lihong V

    2015-01-01

    Compressed ultrafast photography (CUP), a computational imaging technique, is synchronized with short-pulsed laser illumination to enable dynamic three-dimensional (3D) imaging. By leveraging the time-of-flight (ToF) information of pulsed light backscattered by the object, ToF-CUP can reconstruct a volumetric image from a single camera snapshot. In addition, the approach unites the encryption of depth data with the compressed acquisition of 3D data in a single snapshot measurement, thereby allowing efficient and secure data storage and transmission. We demonstrated high-speed 3D videography of moving objects at up to 75 volumes per second. The ToF-CUP camera was applied to track the 3D position of a live comet goldfish. We have also imaged a moving object obscured by a scattering medium. PMID:26503834

  4. Identification of Rotorcraft Structural Dynamics from Flight and Wind Tunnel Data

    Science.gov (United States)

    McKillip, Robert M., Jr.

    1997-01-01

    Excessive vibration remains one one of the most difficult problems that faces the helicopter industry today, affecting all production helicopters at some phase of their development. Vibrations in rotating structures may arise from external periodic dynamic airloads whose frequencies are are close to the natural frequencies of the rotating system itself. The goal for the structures engineer would thus be to design a structure as free from resonance effects as possible. In the case of a helicopter rotor blade these dynamic loads are a consequence of asymmetric airload distribution on the rotor blade in forward flight, leading to a rich collection of higher harmonic airloads that force rotor and airframe response. Accurate prediction of the dynamic characteristics of a helicopter rotor blade will provide the opportunity to affect in a positive manner noise intensity, vibration level, durability, reliability and operating costs by reducing objectionable frequencies or moving them to a different frequency range and thus providing us with a lower vibration rotor. In fact, the dynamic characteristics tend to define the operating limits of a rotorcraft. As computing power has increased greatly over the last decade, researchers and engineers have turned to analyzing the vibrational characteristics of aerospace structures at the design and development stage of the production of an aircraft. Modern rotor blade construction methods lead to products with low mass and low inherent damping so careful design and analysis is required to avoid resonance and an undesirable dynamic performance. In addition, accurate modal analysis is necessary for several current approaches in elastic system identification and active control.

  5. Design and Preparation of a Particle Dynamics Space Flight Experiment, SHIVA

    Science.gov (United States)

    Trolinger, James; L'Esperance, Drew; Rangel, Roger; Coimbra, Carlos; Wiltherow, William

    2003-01-01

    ABSTRACT This paper describes the flight experiment, supporting ground science, and the design rationale for project SHIVA (Spaceflight Holography Investigation in a Virtual Apparatus). SHIVA is a fundamental study of particle dynamics in fluids in microgravity. Gravity often dominates the equations of motion of a particle in a fluid, so microgravity provides an ideal environment to study the other forces, such as the pressure and viscous drag and especially the Basset history force. We have developed diagnostic recording methods using holography to save all of the particle field optical characteristics, essentially allowing the experiment to be transferred from space back to earth in what we call the "virtual apparatus" for on-earth microgravity experimentation. We can quantify precisely the three-dimensional motion of sets of particles, allowing us to test and apply new analytical solutions developed by members of the team as reported in the 2001 Conference (Banff, Canada). In addition to employing microgravity to augment the fundamental study of these forces, the resulting data will allow us to quantify and understand the ISS environment with great accuracy. This paper shows how we used both experiment and theory to identify and resolve critical issues and produce an optimal the study. We examined the response of particles of specific gravity from 0.1 to 20, with radii from 0.2 to 2mm. to fluid oscillation at frequencies up to 80 Hz with amplitudes up to 200 microns. To observe some of the interesting effects predicted by the new solutions requires the precise location of the position of a particle in three dimensions. To this end we have developed digital holography algorithms that enable particle position location to a small fraction of a pixel in a CCD array. The spaceflight system will record holograms both on film and electronically. The electronic holograms can be downlinked providing real time data, essentially acting like a remote window into the ISS

  6. Space Satellite Dynamics with Applications to Sunlight Pressure Attitude Control. Ph.D. Thesis

    Science.gov (United States)

    Stuck, B. W.

    1972-01-01

    A research program into three aspects of space satellite dynamics was carried out. First, a four-dimensional space-time formulation of Newtonian mechanics is developed. This theory allows a new physical interpretation of the conservation theorems of mechanics first derived rigorously by Noether. Second, a new concept for estimating the three angles which specify the orientation in space of a rigid body is presented. Two separate methods for implementing this concept are discussed, one based on direction cosines, the other on quaternions. Two examples are discussed: constant orientation in space, and constant rate of change of the three angles with time. Third, two synchronous equatorial orbit communication satellite designs which use sunlight pressure to control their attitude are analyzed. Each design is equipped with large reflecting surfaces, called solar sails, which can be canted in different directions to generate torques to correct pointing errors.

  7. Enhancing the Learning Achievements and Attitudes of Taiwan Vocational School Students in Accounting with the Dynamic Assessment System

    Science.gov (United States)

    Shih, Ju-Ling; Ku, David Tawei; Hung, Su-Huan

    2013-01-01

    We investigate how the computerized dynamic assessment system improves the learning achievements of vocational high school students studying accounting. Our experiment was conducted under the one-group pretest-posttest design of 34 junior students. The questionnaire results were analyzed to determine student-learning attitudes and reactions toward…

  8. Hovering and forward flight of the hawkmoth Manduca sexta: trim search and 6-DOF dynamic stability characterization.

    Science.gov (United States)

    Kim, Joong-Kwan; Han, Jong-Seob; Lee, Jun-Seong; Han, Jae-Hung

    2015-10-01

    We show that the forward flight speed affects the stability characteristics of the longitudinal and lateral dynamics of a flying hawkmoth; dynamic modal structures of both the planes of motion are altered due to variations in the stability derivatives. The forward flight speed u e is changed from 0.00 to 1.00 m s(-1) with an increment of 0.25 m s(-1). (The equivalent advance ratio is 0.00 to 0.38; the advance ratio is the ratio of the forward flight speed to the average wing tip speed.) As the flight speed increases, for the longitudinal dynamics, an unstable oscillatory mode becomes more unstable. Also, we show that the up/down (w(b)) dynamics become more significant at a faster flight speed due to the prominent increase in the stability derivative Z(u) (up/down force due to the forward/backward velocity). For the lateral dynamics, the decrease in the stability derivative L(v) (roll moment due to side slip velocity) at a faster flight speed affects a slightly damped stable oscillatory mode, causing it to become more stable; however, the t(half) (the time taken to reach half the amplitude) of this slightly damped stable oscillatory mode remains relatively long (∼12T at u(e) = 1 m s(-1); T is wingbeat period) compared to the other modes of motion, meaning that this mode represents the most vulnerable dynamics among the lateral dynamics at all flight speeds. To obtain the stability derivatives, trim conditions for linearization are numerically searched to find the exact trim trajectory and wing kinematics using an algorithm that uses the gradient information of a control effectiveness matrix and fully coupled six-degrees of freedom nonlinear multibody equations of motion. With this algorithm, trim conditions that consider the coupling between the dynamics and aerodynamics can be obtained. The body and wing morphology, and the wing kinematics used in this study are based on actual measurement data from the relevant literature. The aerodynamic model of the flapping

  9. A Near-Hover Adaptive Attitude Control Strategy of a Ducted Fan Micro Aerial Vehicle with Actuator Dynamics

    OpenAIRE

    Shouzhao Sheng; Chenwu Sun

    2015-01-01

    The aerodynamic parameters of ducted fan micro aerial vehicles (MAVs) are difficult and expensive to precisely measure and are, therefore, not available in most cases. Furthermore, the actuator dynamics with risks of potentially destabilizing the overall system are important but often neglected consideration factors in the control system design of ducted fan MAVs. This paper presents a near-hover adaptive attitude control strategy of a prototype ducted fan MAV with actuator dynamics and witho...

  10. Attitude Design for the LADEE Mission

    Science.gov (United States)

    Galal, Ken; Nickel, Craig; Sherman, Ryan

    2015-01-01

    The Lunar Atmosphere and Dust Environment Explorer (LADEE) satellite successfully completed its 148-day science investigation in a low-altitude, near-equatorial lunar orbit on April 18, 2014. The LADEE spacecraft was built, managed and operated by NASA's Ames Research Center (ARC). The Mission Operations Center (MOC) was located at Ames and was responsible for activity planning, command sequencing, trajectory and attitude design, orbit determination, and spacecraft operations. The Science Operations Center (SOC) was located at Goddard Space Flight Center and was responsible for science planning, data archiving and distribution. This paper details attitude design and operations support for the LADEE mission. LADEE's attitude design was shaped by a wide range of instrument pointing requirements that necessitated regular excursions from the baseline one revolution per orbit "Ram" attitude. Such attitude excursions were constrained by a number of flight rules levied to protect instruments from the Sun, avoid geometries that would result in simultaneous occlusion of LADEE's two star tracker heads, and maintain the spacecraft within its thermal and power operating limits. To satisfy LADEE's many attitude requirements and constraints, a set of rules and conventions was adopted to manage the complexity of this design challenge and facilitate the automation of ground software that generated pointing commands spanning multiple days of operations at a time. The resulting LADEE Flight Dynamics System (FDS) that was developed used Visual Basic scripts that generated instructions to AGI's Satellite Tool Kit (STK) in order to derive quaternion commands at regular intervals that satisfied LADEE's pointing requirements. These scripts relied heavily on the powerful "align and constrain" capability of STK's attitude module to construct LADEE's attitude profiles and the slews to get there. A description of the scripts and the attitude modeling they embodied is provided. One particular

  11. NASA/Army Rotorcraft Technology. Volume 2: Materials and Structures, Propulsion and Drive Systems, Flight Dynamics and Control, and Acoustics

    Science.gov (United States)

    1988-01-01

    The Conference Proceedings is a compilation of over 30 technical papers presented which report on the advances in rotorcraft technical knowledge resulting from NASA, Army, and industry research programs over the last 5 to 10 years. Topics addressed in this volume include: materials and structures; propulsion and drive systems; flight dynamics and control; and acoustics.

  12. Attitude Dynamics and Tracking Control of Spacecraft in the Presence of Gravity Oblateness Perturbations

    Directory of Open Access Journals (Sweden)

    Achim IONITA

    2016-03-01

    Full Text Available The orbital docking represents a problem of great importance in aerospace engineering. The paper aims to perform an analysis of docking maneuvers between a chaser vehicle and a target vehicle in permanent LEO (low earth orbit. The work begins with a study of the attitude dynamics modeling intended to define the strategy that facilitates the chaser movement toward a docking part of the target. An LQR (linear quadratic regulator approach presents an optimal control design that provides linearized closed-loop error dynamics for tracking a desired quaternion. The control law formulation is combined with the control architecture based on SDRE (State Dependent Riccati equation technique for rotational maneuvers, including the Earth oblateness perturbation. The chaser body-fixed frame must coincide with the target body-fixed frame at the docking moment. Then the implementation of the control architecture based on LQR technique using the computational tool MATLAB is carried out. In simulation of the docking strategy V-R bar operations are analyzed and the minimum accelerations needs the control of chaser vehicle. The simulation analysis of those maneuvers considered for a chaser vehicle and a target vehicle in LEO orbit is validated in a case study.

  13. Modeling Flight: The Role of Dynamically Scaled Free-Flight Models in Support of NASA's Aerospace Programs

    Science.gov (United States)

    Chambers, Joseph

    2010-01-01

    The state of the art in aeronautical engineering has been continually accelerated by the development of advanced analysis and design tools. Used in the early design stages for aircraft and spacecraft, these methods have provided a fundamental understanding of physical phenomena and enabled designers to predict and analyze critical characteristics of new vehicles, including the capability to control or modify unsatisfactory behavior. For example, the relatively recent emergence and routine use of extremely powerful digital computer hardware and software has had a major impact on design capabilities and procedures. Sophisticated new airflow measurement and visualization systems permit the analyst to conduct micro- and macro-studies of properties within flow fields on and off the surfaces of models in advanced wind tunnels. Trade studies of the most efficient geometrical shapes for aircraft can be conducted with blazing speed within a broad scope of integrated technical disciplines, and the use of sophisticated piloted simulators in the vehicle development process permits the most important segment of operations the human pilot to make early assessments of the acceptability of the vehicle for its intended mission. Knowledgeable applications of these tools of the trade dramatically reduce risk and redesign, and increase the marketability and safety of new aerospace vehicles. Arguably, one of the more viable and valuable design tools since the advent of flight has been testing of subscale models. As used herein, the term "model" refers to a physical article used in experimental analyses of a larger full-scale vehicle. The reader is probably aware that many other forms of mathematical and computer-based models are also used in aerospace design; however, such topics are beyond the intended scope of this document. Model aircraft have always been a source of fascination, inspiration, and recreation for humans since the earliest days of flight. Within the scientific

  14. Rosetta lander Philae: Flight Dynamics analyses for landing site selection and post-landing operations

    Science.gov (United States)

    Jurado, Eric; Martin, Thierry; Canalias, Elisabet; Blazquez, Alejandro; Garmier, Romain; Ceolin, Thierry; Gaudon, Philippe; Delmas, Cedric; Biele, Jens; Ulamec, Stephan; Remetean, Emile; Torres, Alex; Laurent-Varin, Julien; Dolives, Benoit; Herique, Alain; Rogez, Yves; Kofman, Wlodek; Jorda, Laurent; Zakharov, Vladimir; Crifo, Jean-François; Rodionov, Alexander; Heinish, P.; Vincent, Jean-Baptiste

    2016-08-01

    On the 12th of November 2014, The Rosetta Lander Philae became the first spacecraft to softly land on a comet nucleus. Due to the double failure of the cold gas hold-down thruster and the anchoring harpoons that should have fixed Philae to the surface, it spent approximately two hours bouncing over the comet surface to finally come at rest one km away from its target site. Nevertheless it was operated during the 57 h of its First Science Sequence. The FSS, performed with the two batteries, should have been followed by the Long Term Science Sequence but Philae was in a place not well illuminated and fell into hibernation. Yet, thanks to reducing distance to the Sun and to seasonal effect, it woke up at end of April and on 13th of June it contacted Rosetta again. To achieve this successful landing, an intense preparation work had been carried out mainly between August and November 2014 to select the targeted landing site and define the final landing trajectory. After the landing, the data collected during on-comet operations have been used to assess the final position and orientation of Philae, and to prepare the wake-up. This paper addresses the Flight Dynamics studies done in the scope of this landing preparation from Lander side, in close cooperation with the team at ESA, responsible for Rosetta, as well as for the reconstruction of the bouncing trajectory and orientation of the Lander after touchdown.

  15. The Impact of Ada and Object-Oriented Design in NASA Goddard's Flight Dynamics Division

    Science.gov (United States)

    Waligora, Sharon; Bailey, John; Stark, Mike

    1996-01-01

    This paper presents the highlights and key findings of 10 years of use and study of Ada and object-oriented design in NASA Goddard's Flight Dynamics Division (FDD). In 1985, the Software Engineering Laboratory (SEL) began investigating how the Ada language might apply to FDD software development projects. Although they began cautiously using Ada on only a few pilot projects, they expected that, if the Ada pilots showed promising results, the FDD would fully transition its entire development organization from FORTRAN to Ada within 10 years. However, 10 years later, the FDD still produced 80 percent of its software in FORTRAN and had begun using C and C++, despite positive results on Ada projects. This paper presents the final results of a SEL study to quantify the impact of Ada in the FDD, to determine why Ada has not flourished, and to recommend future directions regarding Ada. Project trends in both languages are examined as are external factors and cultural issues that affected the infusion of this technology. The detailed results of this study were published in a formal study report in March of 1995. This paper supersedes the preliminary results of this study that were presented at the Eighteenth Annual Software Engineering Workshop in 1993.

  16. Variable Attitude Test Stand

    Data.gov (United States)

    Federal Laboratory Consortium — The Variable Attitude Test Stand designed and built for testing of the V-22 tilt rotor aircraft propulsion system, is used to evaluate the effect of aircraft flight...

  17. Program of Research in Flight Dynamics in the JIAFS, George Washington University at NASA Langley Research Center

    Science.gov (United States)

    Klein, Vladislav

    2002-01-01

    The program objectives are fully defined in the original proposal entitled 'Program of Research in Flight Dynamics in GW at NASA Langley Research Center,' which was originated March 20, 1975, and in the renewals of the research program from December 1, 2000 to November 30, 2001. The program in its present form includes three major topics: 1) the improvement of existing methods and development of new methods for wind tunnel and flight test data analysis, 2) the application of these methods to wind tunnel and flight test data obtained from advanced airplanes, 3) the correlation of flight results with wind tunnel measurements, and theoretical predictions. The Principal Investigator of the program is Dr. Vladislav Klein. Three Graduate Research Scholar Assistants (K. G. Mas, M. M. Eissa and N. M. Szyba) also participated in the program. Specific developments in the program during the period Dec. 1, 2001 through Nov. 30, 2002 included: 1) Data analysis of highly swept delta wing aircraft from wind and water tunnel data, and 2) Aerodynamic characteristics of the radio control aircraft from flight test.

  18. Strategies for the stabilization of longitudinal forward flapping flight revealed using a dynamically-scaled robotic fly.

    Science.gov (United States)

    Elzinga, Michael J; van Breugel, Floris; Dickinson, Michael H

    2014-06-01

    The ability to regulate forward speed is an essential requirement for flying animals. Here, we use a dynamically-scaled robot to study how flapping insects adjust their wing kinematics to regulate and stabilize forward flight. The results suggest that the steady-state lift and thrust requirements at different speeds may be accomplished with quite subtle changes in hovering kinematics, and that these adjustments act primarily by altering the pitch moment. This finding is consistent with prior hypotheses regarding the relationship between body pitch and flight speed in fruit flies. Adjusting the mean stroke position of the wings is a likely mechanism for trimming the pitch moment at all speeds, whereas changes in the mean angle of attack may be required at higher speeds. To ensure stability, the flapping system requires additional pitch damping that increases in magnitude with flight speed. A compensatory reflex driven by fast feedback of pitch rate from the halteres could provide such damping, and would automatically exhibit gain scheduling with flight speed if pitch torque was regulated via changes in stroke deviation. Such a control scheme would provide an elegant solution for stabilization across a wide range of forward flight speeds. PMID:24855029

  19. Strategies for the stabilization of longitudinal forward flapping flight revealed using a dynamically-scaled robotic fly

    International Nuclear Information System (INIS)

    The ability to regulate forward speed is an essential requirement for flying animals. Here, we use a dynamically-scaled robot to study how flapping insects adjust their wing kinematics to regulate and stabilize forward flight. The results suggest that the steady-state lift and thrust requirements at different speeds may be accomplished with quite subtle changes in hovering kinematics, and that these adjustments act primarily by altering the pitch moment. This finding is consistent with prior hypotheses regarding the relationship between body pitch and flight speed in fruit flies. Adjusting the mean stroke position of the wings is a likely mechanism for trimming the pitch moment at all speeds, whereas changes in the mean angle of attack may be required at higher speeds. To ensure stability, the flapping system requires additional pitch damping that increases in magnitude with flight speed. A compensatory reflex driven by fast feedback of pitch rate from the halteres could provide such damping, and would automatically exhibit gain scheduling with flight speed if pitch torque was regulated via changes in stroke deviation. Such a control scheme would provide an elegant solution for stabilization across a wide range of forward flight speeds. (paper)

  20. Satellite Attitude Control System Design Taking into Account the Fuel Slosh and Flexible Dynamics

    Directory of Open Access Journals (Sweden)

    Alain G. de Souza

    2014-01-01

    Full Text Available The design of the spacecraft Attitude Control System (ACS becomes more complex when the spacecraft has different type of components like, flexible solar panels, antennas, mechanical manipulators and tanks with fuel. The interaction between the fuel slosh motion, the panel’s flexible motion and the satellite rigid motion during translational and/or rotational manoeuvre can change the spacecraft center of mass position damaging the ACS pointing accuracy. This type of problem can be considered as a Fluid-Structure Interaction (FSI where some movable or deformable structure interacts with an internal fluid. This paper develops a mathematical model for a rigid-flexible satellite with tank with fuel. The slosh dynamics is modelled using a common pendulum model and it is considered to be unactuated. The control inputs are defined by a transverse body fixed force and a moment about the centre of mass. A comparative investigation designing the satellite ACS by the Linear Quadratic Regulator (LQR and Linear Quadratic Gaussian (LQG methods is done. One has obtained a significant improvement in the satellite ACS performance and robustness of what has been done previously, since it controls the rigid-flexible satellite and the fuel slosh motion, simultaneously.

  1. Dynamics and cultural specifics of information needs under conditions of long-term space flight

    Science.gov (United States)

    Feichtinger, Elena; Shved, Dmitry; Gushin, Vadim

    Life in conditions of space flight or chamber study with prolonged isolation is associated with lack of familiar stimuli (sensory deprivation), monotony, significant limitation of communication, and deficit of information and media content (Myasnikov V.I., Stepanova S.I. et al., 2000). Fulfillment of a simulation experiment or flight schedule implies necessity of performance of sophisticated tasks and decision making with limited means of external support. On the other hand, the “stream” of information from the Mission Control (MC) and PI’s (reminders about different procedures to be performed, requests of reports, etc.) is often inadequate to communication needs of crewmembers. According to the theory of “information stress” (Khananashvili M.M., 1984), a distress condition could be formed if: a) it’s necessary to process large amounts of information and make decisions under time pressure; b) there is a prolonged deficit of necessary (e.g. for decision making) information. Thus, we suppose that one of the important goals of psychological support of space or space simulation crews should be forming of favorable conditions of information environment. For that purpose, means of crew-MC information exchange (quantitative characteristics and, if possible, content of radiograms, text and video messages, etc.) should be studied, as well as peculiarities of the crewmembers’ needs in different information and media content, and their reactions to incoming information. In the space simulation experiment with 520-day isolation, communication of international crew with external parties had been studied. Dynamics of quantitative and content characteristics of the crew’s messages was related to the experiment’s stage, presence of “key” events in the schedule (periods of high autonomy, simulated “planetary landing”, etc.), as well as to events not related to the experiment (holidays, news, etc.). It was shown that characteristics of information exchange

  2. Exploring flight crew behaviour

    Science.gov (United States)

    Helmreich, R. L.

    1987-01-01

    A programme of research into the determinants of flight crew performance in commercial and military aviation is described, along with limitations and advantages associated with the conduct of research in such settings. Preliminary results indicate significant relationships among personality factors, attitudes regarding flight operations, and crew performance. The potential theoretical and applied utility of the research and directions for further research are discussed.

  3. Space flight visual simulation.

    Science.gov (United States)

    Xu, L

    1985-01-01

    In this paper, based on the scenes of stars seen by astronauts in their orbital flights, we have studied the mathematical model which must be constructed for CGI system to realize the space flight visual simulation. Considering such factors as the revolution and rotation of the Earth, exact date, time and site of orbital injection of the spacecraft, as well as its orbital flight and attitude motion, etc., we first defined all the instantaneous lines of sight and visual fields of astronauts in space. Then, through a series of coordinate transforms, the pictures of the scenes of stars changing with time-space were photographed one by one mathematically. In the procedure, we have designed a method of three-times "mathematical cutting." Finally, we obtained each instantaneous picture of the scenes of stars observed by astronauts through the window of the cockpit. Also, the dynamic conditions shaded by the Earth in the varying pictures of scenes of stars could be displayed. PMID:11542842

  4. Max Launch Abort System (MLAS) Pad Abort Test Vehicle (PATV) II Attitude Control System (ACS) Integration and Pressurization Subsystem Dynamic Random Vibration Analysis

    Science.gov (United States)

    Ekrami, Yasamin; Cook, Joseph S.

    2011-01-01

    In order to mitigate catastrophic failures on future generation space vehicles, engineers at the National Aeronautics and Space Administration have begun to integrate a novel crew abort systems that could pull a crew module away in case of an emergency at the launch pad or during ascent. The Max Launch Abort System (MLAS) is a recent test vehicle that was designed as an alternative to the baseline Orion Launch Abort System (LAS) to demonstrate the performance of a "tower-less" LAS configuration under abort conditions. The MLAS II test vehicle will execute a propulsive coast stabilization maneuver during abort to control the vehicles trajectory and thrust. To accomplish this, the spacecraft will integrate an Attitude Control System (ACS) with eight hypergolic monomethyl hydrazine liquid propulsion engines that are capable of operating in a quick pulsing mode. Two main elements of the ACS include a propellant distribution subsystem and a pressurization subsystem to regulate the flow of pressurized gas to the propellant tanks and the engines. The CAD assembly of the Attitude Control System (ACS) was configured and integrated into the Launch Abort Vehicle (LAV) design. A dynamic random vibration analysis was conducted on the Main Propulsion System (MPS) helium pressurization panels to assess the response of the panel and its components under increased gravitational acceleration loads during flight. The results indicated that the panels fundamental and natural frequencies were farther from the maximum Acceleration Spectral Density (ASD) vibrations which were in the range of 150-300 Hz. These values will direct how the components will be packaged in the vehicle to reduce the effects high gravitational loads.

  5. Dynamics of animal movement in an ecological context: dragonfly wing damage reduces flight performance and predation success

    OpenAIRE

    Combes, S. A.; Crall, J. D.; Mukherjee, S

    2010-01-01

    Much of our understanding of the control and dynamics of animal movement derives from controlled laboratory experiments. While many aspects of animal movement can be probed only in these settings, a more complete understanding of animal locomotion may be gained by linking experiments on relatively simple motions in the laboratory to studies of more complex behaviours in natural settings. To demonstrate the utility of this approach, we examined the effects of wing damage on dragonfly flight pe...

  6. Cooperative Quantum-Behaved Particle Swarm Optimization with Dynamic Varying Search Areas and Lévy Flight Disturbance

    OpenAIRE

    2014-01-01

    This paper proposes a novel variant of cooperative quantum-behaved particle swarm optimization (CQPSO) algorithm with two mechanisms to reduce the search space and avoid the stagnation, called CQPSO-DVSA-LFD. One mechanism is called Dynamic Varying Search Area (DVSA), which takes charge of limiting the ranges of particles’ activity into a reduced area. On the other hand, in order to escape the local optima, Lévy flights are used to generate the stochastic disturbance in the movement of partic...

  7. RHAGOLETIS COMPLETA (DIPTERA; TEPHRITIDAE DISTRIBUTION, FLIGHT DYNAMICS AND INFLUENCE ON WALNUT KERNEL QUALITY IN THE CONTINENTAL CROATIA

    Directory of Open Access Journals (Sweden)

    Božena Barić

    2015-06-01

    Full Text Available Walnut husk fly (WHF, Rhagoletis completa Cresson 1929 is an invasive species spreading quickly and damaging walnuts in Croatia and neighbouring countries. We researched distribution of this pest in the continental part of Croatia, flight dynamics in Međimurje County and its influence on quality of walnut kernels. CSALOMON®PALz traps were used for monitoring the spread and flight dynamics of R. completa. Weight and the protein content of kernels and the presence of mycotoxin contamination were measured. Walnut husk fly was found in six counties (Istria County: pest reconfirmation, Zagreb County, The City of Zagreb, Varaždin County, Međimurje County and Koprivnica-Križevci County. The presence of the fly was not confirmed on one site in Koprivnica-Križevci County (locality Ferdinandovac and in the eastern part of Croatia (Vukovar-Srijem County: Vinkovci locality. The flight dynamics showed rapid increase in number of adults only a year after the introduction into new area. The weight of infested kernels was 5.81% lower compared to not infested. Protein content was 14.04% in infested kernels and 17.31% in not infested kernels. There was no difference in mycotoxins levels. Additional researches on mycotoxin levels in stored nuts, ovipositional preferences of walnut husk fly and protection measures against this pest are suggested.

  8. 旋翼结冰对直升机飞行动力学特性的影响%Effect of Rotor Icing on Helicopter Flight Dynamic Characteristics

    Institute of Scientific and Technical Information of China (English)

    李国知; 曹义华

    2011-01-01

    基于旋翼冰风洞试验数据,考虑桨叶表面附着冰脱落及桨叶表面局部温度对结冰的影响,提出了旋翼结冰的工程模型,建立了直升机旋翼结冰后的飞行动力学模型,以UH-60A为样机,研究了直升机旋翼结冰后的平衡特性,分析了结冰对直升机稳定性的影响.根据有人驾驶垂直/短距起落飞机军用品质规范(MIL-F-83300)与军用旋翼飞行器驾驶品质要求(ADS-33E-PRF),分析了结冰时间、环境温度、液态水含量以及平均水滴直径对旋翼结冰后的直升机开环状态下的操纵特性、姿态敏捷性、轴间耦合特性以及垂直轴操纵功效的影响.计算结果的对比分析显示,旋翼结冰模型合理,直升机飞行动力学模型计算精度高,能够用来研究直升机旋翼结冰后的飞行动力学问题.%Based on the rotor icing tunnel data, and considering the effect of rotor blade ice shedding and local temperature variation on the rotor blade icing, an engineering rotor icing model is advanced. Then a flight dynamics modal is built of a single rotor helicopter due to icing. The trim characteristics and stability of a UH-60A helicopter in icing conditions at the hover and in the forward flight are studied in detail. Using the military specification flying qualities of piloted V/STOL aircraft (MIL-F-83300) and the handling qualities requirements for military helicopters (ADS-33E-PRF), the effect of icing on the controllability, attitude quickness, interaxis coupling, and vertical axis control power of the helicopter open-loop system are analyzed in terms of icing time, atmospheric temperature, liquid water content, and median volumetric diameter. Calculation results indicate that the rotor icing model and the iced helicopter dynamics model are feasible and effective, and that they can be used to investigate issues in helicopter dynamics in rotor icing conditions.

  9. The prediction of nonlinear dynamic loads on helicopters from flight variables using artificial neural networks

    Science.gov (United States)

    Cook, A. B.; Fuller, C. R.; O'Brien, W. F.; Cabell, R. H.

    1992-01-01

    A method of indirectly monitoring component loads through common flight variables is proposed which requires an accurate model of the underlying nonlinear relationships. An artificial neural network (ANN) model learns relationships through exposure to a database of flight variable records and corresponding load histories from an instrumented military helicopter undergoing standard maneuvers. The ANN model, utilizing eight standard flight variables as inputs, is trained to predict normalized time-varying mean and oscillatory loads on two critical components over a range of seven maneuvers. Both interpolative and extrapolative capabilities are demonstrated with agreement between predicted and measured loads on the order of 90 percent to 95 percent. This work justifies pursuing the ANN method of predicting loads from flight variables.

  10. Bifurcation Tools for Flight Dynamics Analysis and Control System Design Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of the project is the development of a computational package for bifurcation analysis and advanced flight control of aircraft. The development of...

  11. Evolution of the 'Trick' Dynamic Software Executive and Model Libraries for Reusable Flight Software Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In response to a need for cost-effective small satellite missions, Odyssey Space Research is proposing the development of a common flight software executive and a...

  12. Dynamically Scaled Modular Aircraft for Flight-Based Aviation Safety Research Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Area-I, Incorporated personnel have led the design, fabrication, and flight testing of twelve unmanned aircraft and one manned aircraft. Partnered with NASA and...

  13. Analysis of the dynamics of a delay system modeling a longitudinal flight

    Science.gov (United States)

    Safta, C. A.; Halanay, A.; Ionita, A.

    2012-11-01

    The paper is devoted to the study of PIO (pilot induced oscillations) in a longitudinal flight. The phenomenon of PIO is the interaction between aircraft's motion and the pilot. PIO are present more often in terminal flight conditions. Using the qualitative theory of delay differential equations, a conventional time-delay model is considered and the stability of the equilibrium is analyzed. A limit cycle is shown to appear by a Hopf bifurcation.

  14. Attitude Dynamics of a Liquid—filled Spacecraft with a manipulator

    Institute of Scientific and Technical Information of China (English)

    JunfengLI; ZhaolinWANG

    1997-01-01

    This paper studies the influence of manipulators motion on spacecraft's attitutde,discusses how to regulate liquid-filled spacecraft's attitutde using manipulators and how to coordinate relations between the operation of manipulators and attitude stbility of spacecraft.The results show that the factors offecting the attitude of liquid-filled spacecraft are not only path of manipulator's motion,but also time and law of manipulator's motion,and viscosity,mass,inertial tensor of liquied in the spacecraft.Among these factors,influence of time of manipulator's motion is remarkable.The slower the movement of manipulators the stronger its influence on the attitude of spacecraft.Selecting law of joint angles and operation time of manipulators may perform the coordinate manipulators operation and attitude stability of spacecraft.

  15. Associations between Psycho-Educational Determinants and Dynamic Career Attitudes among undergradutes students

    OpenAIRE

    Karavdic, Senad; Karathanasi, Chrysoula; Le Bihan, Etienne; Baumann, Michèle

    2014-01-01

    Monitoring and assessment of career attitudes are critical for the student’s preparation for an adapted university-to-work transition. This problem remains partially addressed though optimal services proposed by universities which may enhance students’ generic career capabilities. Our study explored the relationships between the psycho-educational and socio-demographic factors, and the perception of their career attitudes. Bachelor students in social sciences, engineering, applied management ...

  16. Coupled rotor/fuselage dynamic analysis of the AH-1G helicopter and correlation with flight vibrations data

    Science.gov (United States)

    Corrigan, J. C.; Cronkhite, J. D.; Dompka, R. V.; Perry, K. S.; Rogers, J. P.; Sadler, S. G.

    1989-01-01

    Under a research program designated Design Analysis Methods for VIBrationS (DAMVIBS), existing analytical methods are used for calculating coupled rotor-fuselage vibrations of the AH-1G helicopter for correlation with flight test data from an AH-1G Operational Load Survey (OLS) test program. The analytical representation of the fuselage structure is based on a NASTRAN finite element model (FEM), which has been developed, extensively documented, and correlated with ground vibration test. One procedure that was used for predicting coupled rotor-fuselage vibrations using the advanced Rotorcraft Flight Simulation Program C81 and NASTRAN is summarized. Detailed descriptions of the analytical formulation of rotor dynamics equations, fuselage dynamic equations, coupling between the rotor and fuselage, and solutions to the total system of equations in C81 are included. Analytical predictions of hub shears for main rotor harmonics 2p, 4p, and 6p generated by C81 are used in conjunction with 2p OLS measured control loads and a 2p lateral tail rotor gearbox force, representing downwash impingement on the vertical fin, to excite the NASTRAN model. NASTRAN is then used to correlate with measured OLS flight test vibrations. Blade load comparisons predicted by C81 showed good agreement. In general, the fuselage vibration correlations show good agreement between anslysis and test in vibration response through 15 to 20 Hz.

  17. Comparison of TOPEX/Poseidon orbit determination solutions obtained by the Goddard Space Flight Center Flight Dynamics Division and Precision Orbit Determination Teams

    Science.gov (United States)

    Doll, C.; Mistretta, G.; Hart, R.; Oza, D.; Cox, C.; Nemesure, M.; Bolvin, D.; Samii, Mina V.

    1993-01-01

    Orbit determination results are obtained by the Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) using the Goddard Trajectory Determination System (GTDS) and a real-time extended Kalman filter estimation system to process Tracking Data and Relay Satellite (TDRS) System (TDRSS) measurements in support of the Ocean Topography Experiment (TOPEX)/Poseidon spacecraft navigation and health and safety operations. GTDS is the operational orbit determination system used by the FDD, and the extended Kalman fliter was implemented in an analysis prototype system, the Real-Time Orbit Determination System/Enhanced (RTOD/E). The Precision Orbit Determination (POD) team within the GSFC Space Geodesy Branch generates an independent set of high-accuracy trajectories to support the TOPEX/Poseidon scientific data. These latter solutions use the Geodynamics (GEODYN) orbit determination system with laser ranging tracking data. The TOPEX/Poseidon trajectories were estimated for the October 22 - November 1, 1992, timeframe, for which the latest preliminary POD results were available. Independent assessments were made of the consistencies of solutions produced by the batch and sequential methods. The batch cases were assessed using overlap comparisons, while the sequential cases were assessed with covariances and the first measurement residuals. The batch least-squares and forward-filtered RTOD/E orbit solutions were compared with the definitive POD orbit solutions. The solution differences were generally less than 10 meters (m) for the batch least squares and less than 18 m for the sequential estimation solutions. The differences among the POD, GTDS, and RTOD/E solutions can be traced to differences in modeling and tracking data types, which are being analyzed in detail.

  18. A Light Weight, Mini Inertial Measurement System for Position and Attitude Estimation on Dynamic Platforms Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Impact Technologies, LLC in collaboration with the Rochester Institute of Technology, proposes to develop and demonstrate a flight-worthy hardware prototype of a...

  19. Attitude Control Enhancement Using Distributed Wing Load Sensing for Dynamic Servoelastic Control Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Strain sensor information is used in nature to achieve robust flight, good rejection of wind disturbances, and stable head motion. Similar man-made sensing devices...

  20. Software Design on Dynamic Simulation of Flight for a Certain UAV%某型无人机飞行动力学仿真软件设计

    Institute of Scientific and Technical Information of China (English)

    路引; 璟陈睿; 王道波

    2015-01-01

    无人机飞行动力学仿真是无人机飞行控制系统半实物仿真系统的重要组成部分。为了开发一种实用型的无人机飞行动力学仿真软件,考虑无人机飞行动力学仿真的实时性和精度问题,基于四阶龙格-库塔算法,对无人机飞行动力学非线性模型的实时仿真进行研究,设计和开发了无人机飞行动力学实时仿真软件,并成功应用于某型无人机飞行控制系统的半物理仿真试验。试验和测试结果表明:该动力学仿真软件设计合理并满足飞行仿真要求,具有一定的工程应用价值。%Software design on dynamic simulation of flight is an important part of hardware-in-loop simulation of flight control system for UAV. In order to develop a practical flight dynamic simulation software for UAV, considering the real-time and precision of flight dynamic simulation for UAV, real-time simulation of flight dynamic nonlinear model for UAV is studied based on four order Runge-Kutta algorithm. A kind of practical flight dynamic simulation software for UAV is designed and developed and applied to hardware-in-loop simulation experiment of flight control system for UAV successfully. The testing results show that the software design on dynamic simulation is reasonable and satisfied with the requirements of flight simulation quality, with further engineering applications.

  1. Modeling Attitude Dynamics in Simulink: A Study of the Rotational and Translational Motion of a Spacecraft Given Torques and Impulses Generated by RMS Hand Controllers

    Science.gov (United States)

    Mauldin, Rebecca H.

    2010-01-01

    In order to study and control the attitude of a spacecraft, it is necessary to understand the natural motion of a body in orbit. Assuming a spacecraft to be a rigid body, dynamics describes the complete motion of the vehicle by the translational and rotational motion of the body. The Simulink Attitude Analysis Model applies the equations of rigid body motion to the study of a spacecraft?s attitude in orbit. Using a TCP/IP connection, Matlab reads the values of the Remote Manipulator System (RMS) hand controllers and passes them to Simulink as specified torque and impulse profiles. Simulink then uses the governing kinematic and dynamic equations of a rigid body in low earth orbit (LE0) to plot the attitude response of a spacecraft for five seconds given known applied torques and impulses, and constant principal moments of inertia.

  2. Precision Integrated Power and Attitude Control System (IPACS) in the Presence of Dynamic Uncertainty

    Science.gov (United States)

    Kim, D.; MacKunis, W.; Fitz-Coy, N.; Dixon, W. E.

    2011-01-01

    An adaptive robust integrated power and attitude control system (IPACS) is presented for a variable speed control moment gyroscope (VSCMG)-actuated satellite. The developed IPACS method is capable of achieving precision attitude control while simultaneously achieving asymptotic power tracking for a rigid-body satellite in the presence of uncertain friction in the VSCMG gimbals and wheels. In addition, the developed controller compensates for the effects of uncertain, time-varying satellite inertia properties. Some challenges encountered in the control design are that the control input is premultiplied by a nonsquare, time-varying, nonlinear, uncertain matrix and is embedded in a discontinuous nonlinear. Globally uniformly ultimately bounded attitude tracking and asymptotic power tracking results are proven via Lyapunov stability analyses, and simulation results are provided to demonstrate the performance of the controller.

  3. Coupled Orbit-Attitude Dynamics of High Area-to-Mass Ratio (HAMR) Objects: Influence of Solar Radiation Pressure, Earth's Shadow and the Visibility in Light Curves

    CERN Document Server

    Frueh, Carolin; Kelecy, Thomas

    2013-01-01

    The orbital and attitude dynamics of uncontrolled Earth orbiting objects are perturbed by a variety of sources. In research, emphasis has been put on operational space vehicles. Operational satellites typically have a relatively compact shape, and hence, a low area-to-mass ratio (AMR), and are in most cases actively or passively attitude stabilized. This enables one to treat the orbit and attitude propagation as decoupled problems, and in many cases the attitude dynamics can be neglected completely. The situation is different for space debris objects, which are in an uncontrolled attitude state. Furthermore, the assumption that a steady-state attitude motion can be averaged over data reduction intervals may no longer be valid. Additionally, a subset of the debris objects have significantly high area-to-mass ratio values, resulting in highly perturbed orbits, e.g. by solar radiation pressure, even if a stable AMR value is assumed. This assumption implies a steady-state attitude such that the average cross-sect...

  4. Procedural guide for modeling and analyzing the flight dynamics of the SH-60B helicopter using Flightlab

    OpenAIRE

    Wagner, Roy C.

    1995-01-01

    This thesis uses Flightlab to model and analyze the flight dynamics of the SH-6OB Seahawk helicopter. Flightlab runs on computers utilizing the UNIX operating system and is used for design, analysis and testing of an aircraft using non-linear modeling techniques. It is capable of modeling conventional main rotor-tail rotor and tandem rotor helicopters and tilt rotor aircraft. A procedural guide for modeling and analyzing a single main rotor helicopter is presented using the SH-60B. The non-li...

  5. Gas Dynamics, Characterization, and Calibration of Fast Flow Flight Cascade Impactor Quartz Crystal Microbalances (QCM) for Aerosol Measurements

    Science.gov (United States)

    Grant, J.R.; Thorpe, A. N.; James, C.; Michael, A.; Ware, M.; Senftle, F.; Smith, S.

    1997-01-01

    During recent high altitude flights, we have tested the aerosol section of the fast flow flight cascade impactor quartz crystal microbalance (QCM) on loan to Howard University from NASA. The aerosol mass collected during these flights was disappointingly small. Increasing the flow through the QCM did not correct the problem. It was clear that the instrument was not being operated under proper conditions for aerosol collect ion primarily because the gas dynamics is not well understood. A laboratory study was therefore undertaken using two different fast flow QCM's in an attempt to establish the gas flow characteristics of the aerosol sections and its effect on particle collection, Some tests were made at low temperatures but most of the work reported here was carried out at room temperature. The QCM is a cascade type impactor originally designed by May (1945) and later modified by Anderson (1966) and Mercer et al (1970) for chemical gas analysis. The QCM has been used extensively for collecting and sizing stratospheric aerosol particles. In this paper all flow rates are given or corrected and referred to in terms of air at STP. All of the flow meters were kept at STP. Although there have been several calibration and evaluation studies of moderate flow cascade impactors of less than or equal to 1 L/rein., there is little experimental information on the gas flow characteristics for fast flow rates greater than 1 L/rein.

  6. An Improved Method for Dynamic Measurement of Deflections of the Vertical Based on the Maintenance of Attitude Reference

    Directory of Open Access Journals (Sweden)

    Dongkai Dai

    2014-09-01

    Full Text Available A new method for dynamic measurement of deflections of the vertical (DOV is proposed in this paper. The integration of an inertial navigation system (INS and global navigation satellite system (GNSS is constructed to measure the body’s attitude with respect to the astronomical coordinates. Simultaneously, the attitude with respect to the geodetic coordinates is initially measured by a star sensor under quasi-static condition and then maintained by the laser gyroscope unit (LGU, which is composed of three gyroscopes in the INS, when the vehicle travels along survey lines. Deflections of the vertical are calculated by using the difference between the attitudes with respect to the geodetic coordinates and astronomical coordinates. Moreover, an algorithm for removing the trend error of the vertical deflections is developed with the aid of Earth Gravitational Model 2008 (EGM2008. In comparison with traditional methods, the new method required less accurate GNSS, because the dynamic acceleration calculation is avoided. The errors of inertial sensors are well resolved in the INS/GNSS integration, which is implemented by a Rauch–Tung–Striebel (RTS smoother. In addition, a single-axis indexed INS is adopted to improve the observability of the system errors and to restrain the inertial sensor errors. The proposed method is validated by Monte Carlo simulations. The results show that deflections of the vertical can achieve a precision of better than 1″ for a single survey line. The proposed method can be applied to a gravimetry system based on a ground vehicle or ship with a speed lower than 25 m/s.

  7. Microscopic observation of carrier-transport dynamics in quantum-structure solar cells using a time-of-flight technique

    International Nuclear Information System (INIS)

    In this study, we propose a carrier time-of-flight technique to evaluate the carrier transport time across a quantum structure in an active region of solar cells. By observing the time-resolved photoluminescence signal with a quantum-well probe inserted under the quantum structure at forward bias, the carrier transport time can be efficiently determined at room temperature. The averaged drift velocity shows linear dependence on the internal field, allowing us to estimate the quantum structure as a quasi-bulk material with low effective mobility containing the information of carrier dynamics. We show that this direct and real-time observation is more sensitive to carrier transport than other conventional techniques, providing better insights into microscopic carrier transport dynamics to overcome a device design difficulty

  8. Microscopic observation of carrier-transport dynamics in quantum-structure solar cells using a time-of-flight technique

    Energy Technology Data Exchange (ETDEWEB)

    Toprasertpong, Kasidit; Fujii, Hiromasa; Sugiyama, Masakazu; Nakano, Yoshiaki [School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032 (Japan); Kasamatsu, Naofumi; Kada, Tomoyuki; Asahi, Shigeo; Kita, Takashi [Graduate School of Engineering, Kobe University, Nada-ku, Kobe 657-8501 (Japan); Wang, Yunpeng; Watanabe, Kentaroh [Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo 153-8904 (Japan)

    2015-07-27

    In this study, we propose a carrier time-of-flight technique to evaluate the carrier transport time across a quantum structure in an active region of solar cells. By observing the time-resolved photoluminescence signal with a quantum-well probe inserted under the quantum structure at forward bias, the carrier transport time can be efficiently determined at room temperature. The averaged drift velocity shows linear dependence on the internal field, allowing us to estimate the quantum structure as a quasi-bulk material with low effective mobility containing the information of carrier dynamics. We show that this direct and real-time observation is more sensitive to carrier transport than other conventional techniques, providing better insights into microscopic carrier transport dynamics to overcome a device design difficulty.

  9. Method and system for detecting a failure or performance degradation in a dynamic system such as a flight vehicle

    Science.gov (United States)

    Miller, Robert H. (Inventor); Ribbens, William B. (Inventor)

    2003-01-01

    A method and system for detecting a failure or performance degradation in a dynamic system having sensors for measuring state variables and providing corresponding output signals in response to one or more system input signals are provided. The method includes calculating estimated gains of a filter and selecting an appropriate linear model for processing the output signals based on the input signals. The step of calculating utilizes one or more models of the dynamic system to obtain estimated signals. The method further includes calculating output error residuals based on the output signals and the estimated signals. The method also includes detecting one or more hypothesized failures or performance degradations of a component or subsystem of the dynamic system based on the error residuals. The step of calculating the estimated values is performed optimally with respect to one or more of: noise, uncertainty of parameters of the models and un-modeled dynamics of the dynamic system which may be a flight vehicle or financial market or modeled financial system.

  10. A Near-Hover Adaptive Attitude Control Strategy of a Ducted Fan Micro Aerial Vehicle with Actuator Dynamics

    Directory of Open Access Journals (Sweden)

    Shouzhao Sheng

    2015-09-01

    Full Text Available The aerodynamic parameters of ducted fan micro aerial vehicles (MAVs are difficult and expensive to precisely measure and are, therefore, not available in most cases. Furthermore, the actuator dynamics with risks of potentially destabilizing the overall system are important but often neglected consideration factors in the control system design of ducted fan MAVs. This paper presents a near-hover adaptive attitude control strategy of a prototype ducted fan MAV with actuator dynamics and without any prior information about the behavior of the MAV. The proposed strategy consists of an online parameter estimation algorithm and an adaptive gain scheduling algorithm, with the former accommodating parametric uncertainties, and the latter approximately eliminating the coupling among axes and guaranteeing the control quality of the MAV. The effectiveness of the proposed strategy is verified numerically and experimentally.

  11. Nonlinear Dynamics of Aircraft Controller Characteristics Outside the Standard Flight Envelope

    OpenAIRE

    Gill, Stephen J; Lowenberg, Mark H.; Neild, Simon A.; CRESPO, Luis; Krauskopf, Bernd; Puyou, Guilhem

    2015-01-01

    In this paper, the influence of the flight control system over the off nominal behavior of a remotely operated air vehicle is evaluated. Of particular interest is the departure/upset characteristics of the closed-loop system near and beyond stall. The study vehicle is the NASA Generic Transport Model, and both fixed-gain and gain-scheduled versions of a linear quadratic regulator controller with proportional and integral components are evaluated. Bifurcation analysis is used to characterize s...

  12. Flight selection at United Airlines

    Science.gov (United States)

    Traub, W.

    1980-01-01

    Airline pilot selection proceedures are discussed including psychogical and personality tests, psychomotor performance requirements, and flight skills evaluation. Necessary attitude and personality traits are described and an outline of computer selection, testing, and training techniques is given.

  13. Discrete Neural Altitude Control for Hypersonic Vehicle Via Flight Path Angle Tracking

    Directory of Open Access Journals (Sweden)

    Shixing Wang

    2012-09-01

    Full Text Available In this study, the altitude control is analyzed for the longitudinal dynamics of a generic Hypersonic Flight Vehicle (HFV. By transforming altitude command into the tracking of flight path angle with fast dynamics, the system design is focusing on the control of the attitude subsystem. The virtual control is designed with nominal feedback and Neural Network (NN approximation via back-stepping. Under the proposed controller, the Semiglobal Uniform Ultimate Boundedness (SGUUB stability is guaranteed. The slow dynamics are transformed into the parameter estimation problem and the update law is designed. The simulation is presented to show the effectiveness of the proposed control approach.

  14. Continuation Methods and Non-Linear/Non-Gaussian Estimation for Flight Dynamics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose herein to augment current NASA spaceflight dynamics programs with algorithms and software from three domains. First, we use parameter continuation...

  15. Quasi-dynamic mode of nanomembranes for time-of-flight mass spectrometry of proteins.

    Science.gov (United States)

    Park, Jonghoo; Kim, Hyunseok; Blick, Robert H

    2012-04-21

    Mechanical resonators realized on the nano-scale by now offer applications in mass-sensing of biomolecules with extraordinary sensitivity. The general idea is that perfect mechanical biosensors should be of extremely small size to achieve zeptogram sensitivity in weighing single molecules similar to a balance. However, the small scale and long response time of weighing biomolecules with a cantilever restrict their usefulness as a high-throughput method. Commercial mass spectrometry (MS) such as electro-spray ionization (ESI)-MS and matrix-assisted laser desorption/ionization (MALDI)-time of flight (TOF)-MS are the gold standards to which nanomechanical resonators have to live up to. These two methods rely on the ionization and acceleration of biomolecules and the following ion detection after a mass selection step, such as time-of-flight (TOF). Hence, the spectrum is typically represented in m/z, i.e. the mass to ionization charge ratio. Here, we describe the feasibility and mass range of detection of a new mechanical approach for ion detection in time-of-flight mass spectrometry, the principle of which is that the impinging ion packets excite mechanical oscillations in a silicon nitride nanomembrane. These mechanical oscillations are henceforth detected via field emission of electrons from the nanomembrane. Ion detection is demonstrated in MALDI-TOF analysis over a broad range with angiotensin, bovine serum albumin (BSA), and an equimolar protein mixture of insulin, BSA, and immunoglobulin G (IgG). We find an unprecedented mass range of operation of the nanomembrane detector. PMID:22378023

  16. Computational Model of Human and System Dynamics in Free Flight: Studies in Distributed Control Technologies

    Science.gov (United States)

    Corker, Kevin M.; Pisanich, Gregory; Lebacqz, J. Victor (Technical Monitor)

    1998-01-01

    This paper presents a set of studies in full mission simulation and the development of a predictive computational model of human performance in control of complex airspace operations. NASA and the FAA have initiated programs of research and development to provide flight crew, airline operations and air traffic managers with automation aids to increase capacity in en route and terminal area to support the goals of safe, flexible, predictable and efficient operations. In support of these developments, we present a computational model to aid design that includes representation of multiple cognitive agents (both human operators and intelligent aiding systems). The demands of air traffic management require representation of many intelligent agents sharing world-models, coordinating action/intention, and scheduling goals and actions in a potentially unpredictable world of operations. The operator-model structure includes attention functions, action priority, and situation assessment. The cognitive model has been expanded to include working memory operations including retrieval from long-term store, and interference. The operator's activity structures have been developed to provide for anticipation (knowledge of the intention and action of remote operators), and to respond to failures of the system and other operators in the system in situation-specific paradigms. System stability and operator actions can be predicted by using the model. The model's predictive accuracy was verified using the full-mission simulation data of commercial flight deck operations with advanced air traffic management techniques.

  17. Household-level dynamics of food waste production and related beliefs, attitudes, and behaviours in Guelph, Ontario.

    Science.gov (United States)

    Parizeau, Kate; von Massow, Mike; Martin, Ralph

    2015-01-01

    It has been estimated that Canadians waste $27 billion of food annually, and that half of that waste occurs at the household level (Gooch et al., 2010). There are social, environmental, and economic implications for this scale of food waste, and source separation of organic waste is an increasingly common municipal intervention. There is relatively little research that assesses the dynamics of household food waste (particularly in Canada). The purpose of this study is to combine observations of organic, recyclable, and garbage waste production rates to survey results of food waste-related beliefs, attitudes, and behaviours at the household level in the mid-sized municipality of Guelph, Ontario. Waste weights and surveys were obtained from 68 households in the summer of 2013. The results of this study indicate multiple relationships between food waste production and household shopping practices, food preparation behaviours, household waste management practices, and food-related attitudes, beliefs, and lifestyles. Notably, we observed that food awareness, waste awareness, family lifestyles, and convenience lifestyles were related to food waste production. We conclude that it is important to understand the diversity of factors that can influence food wasting behaviours at the household level in order to design waste management systems and policies to reduce food waste. PMID:25445261

  18. Structural dynamics and attitude control study of early manned capability space station configurations

    Science.gov (United States)

    Ayers, J. Kirk; Cirillo, William M.; Giesy, Daniel P.; Hitchcock, Jay C.; Kaszubowski, Martin J.; Raney, J. Philip

    1987-01-01

    A study was performed to determine the vibration and attitude control characteristics of critical space station configurations featuring early manned capability during buildup from initial user support through the operations capability reference station. Five configurations were selected and were examined thus determining the changes that are likely to occur in the characteristics of the system as the station progresses from a single boom structure to a mature, dual keel, operations capability reference station. Both 9 foot and 5 meter truss bay sizes were investigated. All configurations analyzed were stable; however, the 5 meter truss bay size structure exhibited superior stability characteristics.

  19. Continuation Methods and Non-Linear/Non-Gaussian Estimation for Flight Dynamics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose herein to augment current NASA spaceflight dynamics programs with algorithms and software from two domains. First, we propose to use numerical parameter...

  20. Analyses of Magnetic Resonance Imaging of Cerebrospinal Fluid Dynamics Pre and Post Short and Long-Duration Space Flights

    Science.gov (United States)

    Alperin, Noam; Barr, Yael; Lee, Sang H.; Mason,Sara; Bagci, Ahmet M.

    2015-01-01

    Preliminary results are based on analyses of data from 17 crewmembers. The initial analysis compares pre to post-flight changes in total cerebral blood flow (CBF) and craniospinal CSF flow volume. Total CBF is obtained by summation of the mean flow rates through the 4 blood vessels supplying the brain (right and left internal carotid and vertebral arteries). Volumetric flow rates were obtained using an automated lumen segmentation technique shown to have 3-4-fold improved reproducibility and accuracy over manual lumen segmentation (6). Two cohorts, 5 short-duration and 8 long-duration crewmembers, who were scanned within 3 to 8 days post landing were included (4 short-duration crewmembers with MRI scans occurring beyond 10 days post flight were excluded). The VIIP Clinical Practice Guideline (CPG) classification is being used initially as a measure for VIIP syndrome severity. Median CPG scores of the short and long-duration cohorts were similar, 2. Mean preflight total CBF for the short and long-duration cohorts were similar, 863+/-144 and 747+/-119 mL/min, respectively. Percentage CBF changes for all short duration crewmembers were 11% or lower, within the range of normal physiological fluctuations in healthy individuals. In contrast, in 4 of the 8 long-duration crewmembers, the change in CBF exceeded the range of normal physiological fluctuation. In 3 of the 4 subjects an increase in CBF was measured. Large pre to post-flight changes in the craniospinal CSF flow volume were found in 6 of the 8 long-duration crewmembers. Box-Whisker plots of the CPG and the percent CBF and CSF flow changes for the two cohorts are shown in Figure 4. Examples of CSF flow waveforms for a short and two long-duration (CPG 0 and 3) are shown in Figure 5. Changes in CBF and CSF flow dynamics larger than normal physiological fluctuations were observed in the long-duration crewmembers. Changes in CSF flow were more pronounced than changes in CBF. Decreased CSF flow dynamics were observed

  1. Autonomous Attitude Sensor Calibration (ASCAL)

    Science.gov (United States)

    Peterson, Chariya; Rowe, John; Mueller, Karl; Ziyad, Nigel

    1998-01-01

    In this paper, an approach to increase the degree of autonomy of flight software is proposed. We describe an enhancement of the Attitude Determination and Control System by augmenting it with self-calibration capability. Conventional attitude estimation and control algorithms are combined with higher level decision making and machine learning algorithms in order to deal with the uncertainty and complexity of the problem.

  2. The Direction of Fluid Dynamics for Liquid Propulsion at NASA Marshall Space Flight Center

    Science.gov (United States)

    Griffin, Lisa W.

    2012-01-01

    The Fluid Dynamics Branch's (ER42) at MSFC mission is to support NASA and other customers with discipline expertise to enable successful accomplishment of program/project goals. The branch is responsible for all aspects of the discipline of fluid dynamics, analysis and testing, applied to propulsion or propulsion-induced loads and environments, which includes the propellant delivery system, combustion devices, coupled systems, and launch and separation events. ER42 supports projects from design through development, and into anomaly and failure investigations. ER42 is committed to continually improving the state-of-its-practice to provide accurate, effective, and timely fluid dynamics assessments and in extending the state-of-the-art of the discipline.

  3. Attitudes and attitude change

    DEFF Research Database (Denmark)

    Scholderer, Joachim

    2010-01-01

    attitude theory. Why is this important? Attitudinal concepts can be found in every area of marketing. Concepts like ad liking, brand attitude, quality perception, product preference, perceived benefit, perceived risk, perceived value, and customer satisfaction can all be understood as particular types of...... attitudes. This is the reason why a thorough understanding of attitudes is one of the most important skills a marketer can have. That same is true in related areas such as communications research: concepts like public opinion, corporate reputation, and corporate image are nothing more than particular types...

  4. Fluid dynamics of flapping aquatic flight in the bird wrasse: three-dimensional unsteady computations with fin deformation.

    Science.gov (United States)

    Ramamurti, Ravi; Sandberg, William C; Löhner, Rainald; Walker, Jeffrey A; Westneat, Mark W

    2002-10-01

    Many fishes that swim with the paired pectoral fins use fin-stroke parameters that produce thrust force from lift in a mechanism of underwater flight. These locomotor mechanisms are of interest to behavioral biologists, biomechanics researchers and engineers. In the present study, we performed the first three-dimensional unsteady computations of fish swimming with oscillating and deforming fins. The objective of these computations was to investigate the fluid dynamics of force production associated with the flapping aquatic flight of the bird wrasse Gomphosus varius. For this computational work, we used the geometry of the wrasse and its pectoral fin, and previously measured fin kinematics, as the starting points for computational investigation of three-dimensional (3-D) unsteady fluid dynamics. We performed a 3-D steady computation and a complete set of 3-D quasisteady computations for a range of pectoral fin positions and surface velocities. An unstructured, grid-based, unsteady Navier-Stokes solver with automatic adaptive remeshing was then used to compute the unsteady flow about the wrasse through several complete cycles of pectoral fin oscillation. The shape deformation of the pectoral fin throughout the oscillation was taken from the experimental kinematics. The pressure distribution on the body of the bird wrasse and its pectoral fins was computed and integrated to give body and fin forces which were decomposed into lift and thrust. The velocity field variation on the surface of the wrasse body, on the pectoral fins and in the near-wake was computed throughout the swimming cycle. We compared our computational results for the steady, quasi-steady and unsteady cases with the experimental data on axial and vertical acceleration obtained from the pectoral fin kinematics experiments. These comparisons show that steady state computations are incapable of describing the fluid dynamics of flapping fins. Quasi-steady state computations, with correct incorporation of

  5. A dynamical systems approach to the surface search for debris associated with the disappearance of flight MH370

    Science.gov (United States)

    García-Garrido, V. J.; Mancho, A. M.; Wiggins, S.; Mendoza, C.

    2015-11-01

    The disappearance of Malaysia Airlines flight MH370 on the morning of 8 March 2014 is one of the great mysteries of our time. Perhaps the most relevant aspect of this mystery is that not a single piece of debris from the aircraft was found during the intensive surface search carried out for roughly 2 months following the crash. Difficulties in the search efforts, due to the uncertainty of the plane's final impact point and the time that had passed since the accident, bring the question on how the debris scattered in an always moving ocean, for which there are multiple data sets that do not uniquely determine its state. Our approach to this problem is based on the use of Lagrangian descriptors (LD), a novel mathematical tool coming from dynamical systems theory that identifies dynamic barriers and coherent structures governing transport. By combining publicly available information supplied by different ocean data sources with these mathematical techniques, we are able to assess the spatio-temporal state of the ocean in the priority search area at the time of impact and the following weeks. Using this information we propose a revised search strategy by showing why one might not have expected to find debris in some large search areas targeted by the Australian Maritime Safety Authority (AMSA), and determining regions where one might have expected impact debris to be located, which were not subjected to any exploration.

  6. A dynamical systems perspective on the absence of debris associated with the disappearance of flight MH370

    Science.gov (United States)

    García-Garrido, V. J.; Mancho, A. M.; Wiggins, S.; Mendoza, C.

    2015-07-01

    The disappearance of Malaysia Airlines flight MH370 on the morning of the 8 March 2014 is one of the great mysteries of our time. Perhaps the most relevant aspect of this mystery is that not a single piece of debris from the aircraft has been found. Difficulties in the search efforts, due to the uncertainty in the plane's final impact point and the time that has passed since the accident, bring the question on how the debris has scattered in an always moving ocean, for which there are multiple data sets that do not uniquely determine its state. Our approach to this problem is based on the use of Lagrangian Descriptors (LD), a novel mathematical tool coming from dynamical systems theory that identifies dynamic barriers and coherent structures governing transport. By combining publicly available information supplied by different ocean data sources with these mathematical techniques, we are able to assess the spatio-temporal state of the ocean in the priority search area at the time of impact and the following weeks. Using this information we propose a revised search strategy by showing why one might not have expected to find debris in some large search areas targeted by the Australian Maritime Safety Authority (AMSA), and determining regions where one might have expected impact debris to be located and that have not been subjected to any exploration.

  7. Two-Aircraft Dynamic System on Approach. Flight Path and noise Optimization

    OpenAIRE

    Nahayo, F.; Khardi, S.; Haddou, M.

    2012-01-01

    The aim of this paper is to present and to solve a mathematical model of two-aircraft optimal control problem reducing noise during the approach. This is a non-convex optimal control problem governed by ordinary non-linear differential equations. A Symplectic Partitioned Runge-Kutta discretization and the Pontryaguin maximum principle are used. Discretization scheme provides a sufficiently high order requiring a computation of the partial derivatives of the aircraft dynamic parameters. The no...

  8. Dynamic boundaries in flowing fluids, from erosion sculptures to flapping wing flight

    OpenAIRE

    Ristroph, Leif

    2014-01-01

    Textbook fluid mechanics addresses steady flows past fixed, rigid objects. However, Nature rarely obeys such restrictions and instead offers many fascinating situations involving the mutual influence of dynamic structures and unsteady flows. Such problems are complex because changes in shape affect flow, which in turn alters shape, and so on. Drawing inspiration from biological and geophysical flows, our Applied Math Lab attacks such fluid–structure interaction problems through tabletop exper...

  9. Weak and Dynamic GNSS Signal Tracking Strategies for Flight Missions in the Space Service Volume

    Directory of Open Access Journals (Sweden)

    Shuai Jing

    2016-09-01

    Full Text Available Weak-signal and high-dynamics are of two primary concerns of space navigation using GNSS (Global Navigation Satellite System in the space service volume (SSV. The paper firstly defines a reference assumption third-order phase-locked loop (PLL as the baseline of an onboard GNSS receiver, and proves the incompetence of this conventional architecture. Then an adaptive four-state Kalman filter (KF-based algorithm is introduced to realize the optimization of loop noise bandwidth, which can adaptively regulate its filter gain according to the received signal power and line-of-sight (LOS dynamics. To overcome the matter of losing lock in weak-signal and high-dynamic environments, an open loop tracking strategy aided by an inertial navigation system (INS is recommended, and the traditional maximum likelihood estimation (MLE method is modified in a non-coherent way by reconstructing the likelihood cost function. Furthermore, a typical mission with combined orbital maneuvering and non-maneuvering arcs is taken as a destination object to test the two proposed strategies. Finally, the experiment based on computer simulation identifies the effectiveness of an adaptive four-state KF-based strategy under non-maneuvering conditions and the virtue of INS-assisted methods under maneuvering conditions.

  10. Weak and Dynamic GNSS Signal Tracking Strategies for Flight Missions in the Space Service Volume.

    Science.gov (United States)

    Jing, Shuai; Zhan, Xingqun; Liu, Baoyu; Chen, Maolin

    2016-01-01

    Weak-signal and high-dynamics are of two primary concerns of space navigation using GNSS (Global Navigation Satellite System) in the space service volume (SSV). The paper firstly defines a reference assumption third-order phase-locked loop (PLL) as the baseline of an onboard GNSS receiver, and proves the incompetence of this conventional architecture. Then an adaptive four-state Kalman filter (KF)-based algorithm is introduced to realize the optimization of loop noise bandwidth, which can adaptively regulate its filter gain according to the received signal power and line-of-sight (LOS) dynamics. To overcome the matter of losing lock in weak-signal and high-dynamic environments, an open loop tracking strategy aided by an inertial navigation system (INS) is recommended, and the traditional maximum likelihood estimation (MLE) method is modified in a non-coherent way by reconstructing the likelihood cost function. Furthermore, a typical mission with combined orbital maneuvering and non-maneuvering arcs is taken as a destination object to test the two proposed strategies. Finally, the experiment based on computer simulation identifies the effectiveness of an adaptive four-state KF-based strategy under non-maneuvering conditions and the virtue of INS-assisted methods under maneuvering conditions. PMID:27598164

  11. Nonlinear Dynamic Inversion Baseline Control Law: Flight-Test Results for the Full-scale Advanced Systems Testbed F/A-18 Airplane

    Science.gov (United States)

    Miller, Christopher J.

    2011-01-01

    A model reference nonlinear dynamic inversion control law has been developed to provide a baseline controller for research into simple adaptive elements for advanced flight control laws. This controller has been implemented and tested in a hardware-in-the-loop simulation and in flight. The flight results agree well with the simulation predictions and show good handling qualities throughout the tested flight envelope with some noteworthy deficiencies highlighted both by handling qualities metrics and pilot comments. Many design choices and implementation details reflect the requirements placed on the system by the nonlinear flight environment and the desire to keep the system as simple as possible to easily allow the addition of the adaptive elements. The flight-test results and how they compare to the simulation predictions are discussed, along with a discussion about how each element affected pilot opinions. Additionally, aspects of the design that performed better than expected are presented, as well as some simple improvements that will be suggested for follow-on work.

  12. Household-level dynamics of food waste production and related beliefs, attitudes, and behaviours in Guelph, Ontario

    International Nuclear Information System (INIS)

    Highlights: • We combined household waste stream weights with survey data. • We examine relationships between waste and food-related practices and beliefs. • Families and large households produced more total waste, but less waste per capita. • Food awareness and waste awareness were related to reduced food waste. • Convenience lifestyles were differentially associated with food waste. - Abstract: It has been estimated that Canadians waste $27 billion of food annually, and that half of that waste occurs at the household level (Gooch et al., 2010). There are social, environmental, and economic implications for this scale of food waste, and source separation of organic waste is an increasingly common municipal intervention. There is relatively little research that assesses the dynamics of household food waste (particularly in Canada). The purpose of this study is to combine observations of organic, recyclable, and garbage waste production rates to survey results of food waste-related beliefs, attitudes, and behaviours at the household level in the mid-sized municipality of Guelph, Ontario. Waste weights and surveys were obtained from 68 households in the summer of 2013. The results of this study indicate multiple relationships between food waste production and household shopping practices, food preparation behaviours, household waste management practices, and food-related attitudes, beliefs, and lifestyles. Notably, we observed that food awareness, waste awareness, family lifestyles, and convenience lifestyles were related to food waste production. We conclude that it is important to understand the diversity of factors that can influence food wasting behaviours at the household level in order to design waste management systems and policies to reduce food waste

  13. Household-level dynamics of food waste production and related beliefs, attitudes, and behaviours in Guelph, Ontario

    Energy Technology Data Exchange (ETDEWEB)

    Parizeau, Kate, E-mail: kate.parizeau@uoguelph.ca [Department of Geography, University of Guelph, Guelph, ON (Canada); Massow, Mike von [School of Hospitality, Food, and Tourism Management, University of Guelph, Guelph, ON (Canada); Martin, Ralph [Plant Agriculture Department, University of Guelph, Guelph, ON (Canada)

    2015-01-15

    Highlights: • We combined household waste stream weights with survey data. • We examine relationships between waste and food-related practices and beliefs. • Families and large households produced more total waste, but less waste per capita. • Food awareness and waste awareness were related to reduced food waste. • Convenience lifestyles were differentially associated with food waste. - Abstract: It has been estimated that Canadians waste $27 billion of food annually, and that half of that waste occurs at the household level (Gooch et al., 2010). There are social, environmental, and economic implications for this scale of food waste, and source separation of organic waste is an increasingly common municipal intervention. There is relatively little research that assesses the dynamics of household food waste (particularly in Canada). The purpose of this study is to combine observations of organic, recyclable, and garbage waste production rates to survey results of food waste-related beliefs, attitudes, and behaviours at the household level in the mid-sized municipality of Guelph, Ontario. Waste weights and surveys were obtained from 68 households in the summer of 2013. The results of this study indicate multiple relationships between food waste production and household shopping practices, food preparation behaviours, household waste management practices, and food-related attitudes, beliefs, and lifestyles. Notably, we observed that food awareness, waste awareness, family lifestyles, and convenience lifestyles were related to food waste production. We conclude that it is important to understand the diversity of factors that can influence food wasting behaviours at the household level in order to design waste management systems and policies to reduce food waste.

  14. Dynamics of knowledge and attitudes about AIDS among the educated in southern India.

    Science.gov (United States)

    Ambati, B K; Ambati, J; Rao, A M

    1997-06-01

    AIDS awareness and attitudes among an educated segment of the Indian population were assessed. The study population was a total of 433 students and faculty in colleges and universities, and research & technical staff of the Public Health Service. While most knew that sexual intercourse (96%) & injection drug use (85%) could transmit HIV, and that shaking hands (95%) & mosquitoes (86%) could not, 63% did not know that breastfeeding was a mode of transmission and 71% falsely believed that they could acquire HIV by donating blood. The only variable to correlate positively with knowledge was education. Knowledge about true and false modes of transmission constituted three distinct dimensions as determined by factor analysis. An overwhelming majority (90%) harboured at least one hostile view towards persons with AIDS. Knowledge and education independently correlated with decreased hostility. There was great concern about the impact of the disease: 85% believed that AIDS is a very serious problem in India and 93% favoured increased government spending on AIDS education. These results display high levels of knowledge (with some gaps), and widespread support for increased action. PMID:9290837

  15. Gliding flight in snakes: non-equilibrium trajectory dynamics and kinematics

    Science.gov (United States)

    Socha, Jake; Miklasz, Kevin; Jafari, Farid; Vlachos, Pavlos

    2010-11-01

    For animal gliders that live in trees, a glide trajectory begins in free fall and, given sufficient space, transitions to equilibrium gliding with no net forces on the body. However, the dynamics of non-equilibrium gliding are not well understood. Of any terrestrial animal glider, snakes may exhibit the most complicated glide patterns resulting from their highly active undulatory behavior. Our aim was to determine the characteristics of snake gliding during the transition to equilibrium. We launched "flying" snakes (Chrysopelea paradisi) from a 15 m tower and recorded the mid-to-end portion of trajectories with four videocameras to reconstruct the snake's 3D body position. Additionally, we developed a simple analytical model of gliding assuming only steady-state forces of lift, drag and weight acting on the body and used it to explore effects of wing loading, lift-to-drag ratio, and initial velocity on trajectory dynamics. Despite the vertical space provided to transition to steady-state gliding, snakes did not exhibit equilibrium gliding and in fact displayed a net positive acceleration in the vertical axis.

  16. ADAPTIVE FLIGHT CONTROL SYSTEM OF ARMED HELICOPTER USING WAVELET NEURAL NETWORK METHOD

    Institute of Scientific and Technical Information of China (English)

    ZHURong-gang; JIANGChangsheng; FENGBin

    2004-01-01

    A discussion is devoted to the design of an adaptive flight control system of the armed helicopter using wavelet neural network method. Firstly, the control loop of the attitude angle is designed with a dynamic inversion scheme in a quick loop and a slow loop. respectively. Then, in order to compensate the error caused by dynamic inversion, the adaptive flight control system of the armed helicopter using wavelet neural network method is put forward, so the BP wavelet neural network and the Lyapunov stable wavelet neural network are used to design the helicopter flight control system. Finally, the typical maneuver flight is simulated to demonstrate its validity and effectiveness. Result proves that the wavelet neural network has an engineering practical value and the effect of WNN is good.

  17. Global Attitude Estimation using Single Direction Measurements

    OpenAIRE

    Lee, Taeyoung; Leok, Melvin; McClamroch, N. Harris; Sanyal, Amit K.

    2006-01-01

    A deterministic attitude estimator for a rigid body under an attitude dependent potential is studied. This estimator requires only a single direction measurement to a known reference point at each measurement instant. The measurement cannot completely determine the attitude, but an attitude estimation scheme based on this measurement is developed; a feasible set compatible with the measurement is described and it is combined with an attitude dynamics model to obtain an attitude estimate. The ...

  18. Polyculturalism and Sexist Attitudes: Believing Cultures are Dynamic Relates to Lower Sexism

    OpenAIRE

    Rosenthal, Lisa; Levy, Sheri R.; Militano, Maria

    2014-01-01

    In cultural contexts in which sexist beliefs are considered traditional, shifts toward gender equality represent an example of cultural change. Polyculturalism is defined as the belief that cultures change constantly through different racial and ethnic groups’ interactions, influences, and exchanges with each other and, therefore, are dynamic and socially constructed rather than static. Thus, polyculturalism may involve openness to cultural change and, thereby, would be expected to be associa...

  19. A flight-dynamic helicopter mathematical model with a single flap-lag-torsion main rotor

    Science.gov (United States)

    Takahashi, Marc D.

    1990-01-01

    A mathematical model of a helicopter system with a single main rotor that includes rigid, hinge-restrained rotor blades with flap, lag, and torsion degrees of freedom is described. The model allows several hinge sequences and two offsets in the hinges. Quasi-steady Greenberg theory is used to calculate the blade-section aerodynamic forces, and inflow effects are accounted for by using three-state nonlinear dynamic inflow model. The motion of the rigid fuselage is defined by six degrees of freedom, and an optional rotor rpm degree of freedom is available. Empennage surfaces and the tail rotor are modeled, and the effect of main-rotor downwash on these elements is included. Model trim linearization, and time-integration operations are described and can be applied to a subset of the model in the rotating or nonrotating coordinate frame. A preliminary validation of the model is made by comparing its results with those of other analytical and experimental studies. This publication presents the results of research compiled in November 1989.

  20. The effect of removing the N-terminal extension of the Drosophila myosin regulatory light chain upon flight ability and the contractile dynamics of indirect flight muscle.

    OpenAIRE

    Moore, J R; Dickinson, M H; Vigoreaux, J O; Maughan, D W

    2000-01-01

    The Drosophila myosin regulatory light chain (DMLC2) is homologous to MLC2s of vertebrate organisms, except for the presence of a unique 46-amino acid N-terminal extension. To study the role of the DMLC2 N-terminal extension in Drosophila flight muscle, we constructed a truncated form of the Dmlc2 gene lacking amino acids 2-46 (Dmlc2(Delta2-46)). The mutant gene was expressed in vivo, with no wild-type Dmlc2 gene expression, via P-element-mediated germline transformation. Expression of the tr...

  1. Design, dynamics and control of an Adaptive Singularity-Free Control Moment Gyroscope actuator for microspacecraft Attitude Determination and Control System

    Science.gov (United States)

    Viswanathan, Sasi Prabhakaran

    Design, dynamics, control and implementation of a novel spacecraft attitude control actuator called the "Adaptive Singularity-free Control Moment Gyroscope" (ASCMG) is presented in this dissertation. In order to construct a comprehensive attitude dynamics model of a spacecraft with internal actuators, the dynamics of a spacecraft with an ASCMG, is obtained in the framework of geometric mechanics using the principles of variational mechanics. The resulting dynamics is general and complete model, as it relaxes the simplifying assumptions made in prior literature on Control Moment Gyroscopes (CMGs) and it also addresses the adaptive parameters in the dynamics formulation. The simplifying assumptions include perfect axisymmetry of the rotor and gimbal structures, perfect alignment of the centers of mass of the gimbal and the rotor etc. These set of simplifying assumptions imposed on the design and dynamics of CMGs leads to adverse effects on their performance and results in high manufacturing cost. The dynamics so obtained shows the complex nonlinear coupling between the internal degrees of freedom associated with an ASCMG and the spacecraft bus's attitude motion. By default, the general ASCMG cluster can function as a Variable Speed Control Moment Gyroscope, and reduced to function in CMG mode by spinning the rotor at constant speed, and it is shown that even when operated in CMG mode, the cluster can be free from kinematic singularities. This dynamics model is then extended to include the effects of multiple ASCMGs placed in the spacecraft bus, and sufficient conditions for non-singular ASCMG cluster configurations are obtained to operate the cluster both in VSCMG and CMG modes. The general dynamics model of the ASCMG is then reduced to that of conventional VSCMGs and CMGs by imposing the standard set of simplifying assumptions used in prior literature. The adverse effects of the simplifying assumptions that lead to the complexities in conventional CMG design, and

  2. Design of a Parallel Robot with a Large Workspace for the Functional Evaluation of Aircraft Dynamics beyond the Nominal Flight Envelope

    Directory of Open Access Journals (Sweden)

    Umar Asif

    2012-08-01

    Full Text Available This paper summarizes the development of a robotic system for the analysis of aircraft dynamics within and beyond the nominal flight envelope. The paper proposes the development of a parallel robot and its motion cueing algorithm to attain a reasonable workspace with adequate motion capabilities to facilitate the testing of aircraft stall and fault manoeuvrability scenarios. The proposed design combines two parallel mechanisms and aims to provide six degrees of freedom motion with a much larger motion envelope than the conventional hexapods in order to realize the manoeuvrability matching of aircraft dynamics near and beyond the upset flight envelopes. Finally the paper draws a comparative evaluation of motion capabilities between the proposed motion platform and a conventional hexapod based on Stewart configuration in order to emphasize the significance of the design proposed herein.

  3. Design of a Parallel Robot with a Large Workspace for the Functional Evaluation of Aircraft Dynamics beyond the Nominal Flight Envelope

    OpenAIRE

    Umar Asif

    2012-01-01

    This paper summarizes the development of a robotic system for the analysis of aircraft dynamics within and beyond the nominal flight envelope. The paper proposes the development of a parallel robot and its motion cueing algorithm to attain a reasonable workspace with adequate motion capabilities to facilitate the testing of aircraft stall and fault manoeuvrability scenarios. The proposed design combines two parallel mechanisms and aims to provide six degrees of freedom motion with a much larg...

  4. The Brain Is Faster than the Hand in Split-Second Intentions to Respond to an Impending Hazard: A Simulation of Neuroadaptive Automation to Speed Recovery to Perturbation in Flight Attitude

    Science.gov (United States)

    Callan, Daniel E.; Terzibas, Cengiz; Cassel, Daniel B.; Sato, Masa-aki; Parasuraman, Raja

    2016-01-01

    The goal of this research is to test the potential for neuroadaptive automation to improve response speed to a hazardous event by using a brain-computer interface (BCI) to decode perceptual-motor intention. Seven participants underwent four experimental sessions while measuring brain activity with magnetoencephalograpy. The first three sessions were of a simple constrained task in which the participant was to pull back on the control stick to recover from a perturbation in attitude in one condition and to passively observe the perturbation in the other condition. The fourth session consisted of having to recover from a perturbation in attitude while piloting the plane through the Grand Canyon constantly maneuvering to track over the river below. Independent component analysis was used on the first two sessions to extract artifacts and find an event related component associated with the onset of the perturbation. These two sessions were used to train a decoder to classify trials in which the participant recovered from the perturbation (motor intention) vs. just passively viewing the perturbation. The BCI-decoder was tested on the third session of the same simple task and found to be able to significantly distinguish motor intention trials from passive viewing trials (mean = 69.8%). The same BCI-decoder was then used to test the fourth session on the complex task. The BCI-decoder significantly classified perturbation from no perturbation trials (73.3%) with a significant time savings of 72.3 ms (Original response time of 425.0–352.7 ms for BCI-decoder). The BCI-decoder model of the best subject was shown to generalize for both performance and time savings to the other subjects. The results of our off-line open loop simulation demonstrate that BCI based neuroadaptive automation has the potential to decode motor intention faster than manual control in response to a hazardous perturbation in flight attitude while ignoring ongoing motor and visual induced activity

  5. Reconfigurable Flight Control Design for Combat Flying Wing with Multiple Control Surfaces

    Institute of Scientific and Technical Information of China (English)

    WANG Lei; WANG Lixin

    2012-01-01

    With control using redundant multiple control surface arrangement and large-deflection drag rudders,a combat flying wing has a higher probability for control surface failures.Therefore,its flight control system must be able to reconfigure after such failures.Considering three types of typical control surface failures (lock-in-place (LIP),loss-of-effectiveness (LOE) and float),flight control reconfiguration characteristic and capability of such aircraft types are analyzed.Because of the control surface redundancy,the aircraft using the dynamic inversion flight control law already has a control allocation block.In this paper,its flight control configuration during the above failures is achieved by modifying this block.It is shown that such a reconfigurable flight control design is valid,through numerical simulations of flight attitude control task.Results indicate that,in the circumstances of control surface failures with limited degree and the degradation of the flying quality level,a combat flying wing adopting this flight control reconfiguration approach based on control allocation could guarantee its flight safety and perform some flight combat missions.

  6. Dynamics in γ-Fe2O3 nanoparticles studied by time-of-flight polarized neutron scattering

    DEFF Research Database (Denmark)

    Kuhn, L.T.; Lefmann, K.; Klausen, S.N.; Rønnow, H.M.; Murani, A.; Stewart, R.

    The inelastic neutron-scattering signal from magnetic nanoparticles contains information on magnetic dynamics like superparamagnetic relaxation and collective magnetic excitations. Often another, very broad quasi-elastic component is observed in addition. We have studied this quasi-elastic neutron...... signal from 4 nm ferrimagnetic maghemite (gamma-Fe(2)O(3)) particles, and by means of time-of-flight polarised neutron scattering we have identified the source of (most of) this signal to be water adsorbed at the surface of the nanoparticles. A minor part of the signal has its origin in dynamics of...

  7. Flight Planning in the Cloud

    Science.gov (United States)

    Flores, Sarah L.; Chapman, Bruce D.; Tung, Waye W.; Zheng, Yang

    2011-01-01

    This new interface will enable Principal Investigators (PIs), as well as UAVSAR (Uninhabited Aerial Vehicle Synthetic Aperture Radar) members to do their own flight planning and time estimation without having to request flight lines through the science coordinator. It uses an all-in-one Google Maps interface, a JPL hosted database, and PI flight requirements to design an airborne flight plan. The application will enable users to see their own flight plan being constructed interactively through a map interface, and then the flight planning software will generate all the files necessary for the flight. Afterward, the UAVSAR team can then complete the flight request, including calendaring and supplying requisite flight request files in the expected format for processing by NASA s airborne science program. Some of the main features of the interface include drawing flight lines on the map, nudging them, adding them to the current flight plan, and reordering them. The user can also search and select takeoff, landing, and intermediate airports. As the flight plan is constructed, all of its components are constantly being saved to the database, and the estimated flight times are updated. Another feature is the ability to import flight lines from previously saved flight plans. One of the main motivations was to make this Web application as simple and intuitive as possible, while also being dynamic and robust. This Web application can easily be extended to support other airborne instruments.

  8. Attitude Representations for Kalman Filtering

    Science.gov (United States)

    Markley, F. Landis; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    The four-component quaternion has the lowest dimensionality possible for a globally nonsingular attitude representation, it represents the attitude matrix as a homogeneous quadratic function, and its dynamic propagation equation is bilinear in the quaternion and the angular velocity. The quaternion is required to obey a unit norm constraint, though, so Kalman filters often employ a quaternion for the global attitude estimate and a three-component representation for small errors about the estimate. We consider these mixed attitude representations for both a first-order Extended Kalman filter and a second-order filter, as well for quaternion-norm-preserving attitude propagation.

  9. Integrated inertial stellar attitude sensor

    Science.gov (United States)

    Brady, Tye M. (Inventor); Kourepenis, Anthony S. (Inventor); Wyman, Jr., William F. (Inventor)

    2007-01-01

    An integrated inertial stellar attitude sensor for an aerospace vehicle includes a star camera system, a gyroscope system, a controller system for synchronously integrating an output of said star camera system and an output of said gyroscope system into a stream of data, and a flight computer responsive to said stream of data for determining from the star camera system output and the gyroscope system output the attitude of the aerospace vehicle.

  10. ASCAL: Autonomous Attitude Sensor Calibration

    Science.gov (United States)

    Peterson, Chariya; Rowe, John; Mueller, Karl; Ziyad, Nigel

    1999-01-01

    Abstract In this paper, an approach to increase the degree of autonomy of flight software is proposed. We describe an enhancement of the Attitude Determination and Control System by augmenting it with self-calibration capability. Conventional attitude estimation and control algorithms are combined with higher level decision making and machine learning algorithms in order to deal with the uncertainty and complexity of the problem.

  11. Attitude determination for balloon-borne experiments

    CERN Document Server

    Gandilo, N N; Amiri, M; Angile, F E; Benton, S J; Bock, J J; Bond, J R; Bryan, S A; Chiang, H C; Contaldi, C R; Crill, B P; Devlin, M J; Dober, B; Dore, O P; Farhang, M; Filippini, J P; Fissel, L M; Fraisse, A A; Fukui, Y; Galitzki, N; Gambrel, A E; Golwala, S; Gudmundsson, J E; Halpern, M; Hasselfield, M; Hilton, G C; Holmes, W A; Hristov, V V; Irwin, K D; Jones, W C; Kermish, Z D; Klein, J; Korotkov, A L; Kuo, C L; MacTavish, C J; Mason, P V; Matthews, T G; Megerian, K G; Moncelsi, L; Morford, T A; Mroczkowski, T K; Nagy, J M; Netterfield, C B; Novak, G; Nutter, D; O'Brient, R; Pascale, E; Poidevin, F; Rahlin, A S; Reintsema, C D; Ruhl, J E; Runyan, M C; Savini, G; Scott, D; Shariff, J A; Soler, J D; Thomas, N E; Trangsrud, A; Truch, M D; Tucker, C E; Tucker, G S; Tucker, R S; Turner, A D; Ward-Thompson, D; Weber, A C; Wiebe, D V; Young, E Y

    2014-01-01

    An attitude determination system for balloon-borne experiments is presented. The system provides pointing information in azimuth and elevation for instruments flying on stratospheric balloons over Antarctica. In-flight attitude is given by the real-time combination of readings from star cameras, a magnetometer, sun sensors, GPS, gyroscopes, tilt sensors and an elevation encoder. Post-flight attitude reconstruction is determined from star camera solutions, interpolated by the gyroscopes using an extended Kalman Filter. The multi-sensor system was employed by the Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol), an experiment that measures polarized thermal emission from interstellar dust clouds. A similar system was designed for the upcoming flight of SPIDER, a Cosmic Microwave Background polarization experiment. The pointing requirements for these experiments are discussed, as well as the challenges in designing attitude reconstruction systems for high altitude balloon flights. ...

  12. Consumers’ Attitude towards Advertising

    OpenAIRE

    Uchenna Cyril Eze; Chai Har Lee

    2012-01-01

    Advertising is a growing business and with advances in the Internet technology, the dynamics and landscape ofthe business has changed as well. Prior findings on consumers’ attitude towards advertising are mixed. Thispaper is an attempt to examine young adults’ attitude towards advertising. We conceptualized a framework toexamine the influence of six independent variables namely consumer manipulation, product information,hedonic/pleasure, economic condition, social integration, and materialism...

  13. Attitude control and stabilization technology discipline

    Science.gov (United States)

    Sunkel, John W.

    1990-01-01

    Viewgraphs on attitude control and stabilization technology discipline for the Space Station Freedom are presented. Topics covered include: attitude control technologies for multi-user accommodation; flexible dynamics and control; computational control techniques; and automatic proximity operations.

  14. New Insights into the Molecular Dynamics of P3HT:PCBM Bulk Heterojunction: A Time-of-Flight Quasi-Elastic Neutron Scattering Study.

    Science.gov (United States)

    Guilbert, Anne A Y; Zbiri, Mohamed; Jenart, Maud V C; Nielsen, Christian B; Nelson, Jenny

    2016-06-16

    The molecular dynamics of organic semiconductor blend layers are likely to affect the optoelectronic properties and the performance of devices such as solar cells. We study the dynamics (5-50 ps) of the poly(3-hexylthiophene) (P3HT): phenyl-C61-butyric acid methyl ester (PCBM) blend by time-of-flight quasi-elastic neutron scattering, at temperatures in the range 250-360 K, thus spanning the glass transition temperature region of the polymer and the operation temperature of an OPV device. The behavior of the QENS signal provides evidence for the vitrification of P3HT upon blending, especially above the glass transition temperature, and the plasticization of PCBM by P3HT, both dynamics occurring on the picosecond time scale. PMID:27192930

  15. Solid Launcher Dynamical Analysis and Autopilot Design

    Directory of Open Access Journals (Sweden)

    Ping Sun

    2011-02-01

    Full Text Available The dynamics of a small solid launch vehicle has been investigated. This launcher consists of a liquid upper stage and three fundamental solid rocket boosters aligned in series. During the ascent flight phase, lateral jets and grid fins are adopted by the flight control system to stable the attitude of the launcher. The launcher is a slender and aerodynamically unstable vehicle with sloshing tanks. A complete set of six-degrees-of-freedom dynamic models of the launcher, incorporation its rigid body, aerodynamics, gravity, sloshing, mass change, actuator, and elastic body, is developed. Dynamic analysis results of the structural modes and the bifurcation locus are calculated on the basis of the presented models. This complete set of dynamic models is used in flight control system design. A methodology for employing numerical optimization to develop the attitude filters is presented. The design objectives include attitude tracking accuracy and robust stability with respect to rigid body dynamics, propellant slosh, and flex. Later a control approach is presented for flight control system of the launcher using both State Dependent Riccati Equation (SDRE method and Fast Output Sampling (FOS technique. The dynamics and kinematics for attitude stable problem are of typical nonlinear character. SDRE technique has been well applied to this kind of highly nonlinear control problems. But in practice the system states needed in the SDRE method are sometimes difficult to obtain. FOS method, which makes use of only the output samples, is combined with SDRE to accommodate the incomplete system state information. Thus, the control approach is more practical and easy to implement. The resulting autopilot can provide stable control systems for the vehicle.

  16. Attitude Control of a Six-Legged Robot in Consideration of Actuator Dynamics by Optimal Servo Control System

    OpenAIRE

    Uchida, H.; Nonami, K.

    2007-01-01

    In the present study, we examined the attitude control method considering the delay of the hydraulic actuator whereby the mine detection six-legged robot can realize stable walking on irregular terrain without to make an orbit of the foot for irregular terrain. The following results were obtained. (1) As an attitude control method considering the delay of the actuator of the thigh links, we derive a mathematical model in which the inputs are the driving torque of the thigh links in the suppor...

  17. Two-dimensional and three-dimensional dynamic imaging of live biofilms in a microchannel by time-of-flight secondary ion mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Xin; Marshall, Matthew J.; Xiong, Yijia; Ma, Xiang; Zhou, Yufan; Tucker, Abigail E.; Zhu, Zihua; Liu, Songqin; Yu, Xiao-Ying

    2015-05-01

    A vacuum compatible microfluidic reactor, SALVI (System for Analysis at the Liquid Vacuum Interface) was employed for in situ chemical imaging of live biofilms using time-of-flight secondary ion mass spectrometry (ToF-SIMS). Depth profiling by sputtering materials in sequential layers resulted in live biofilm spatial chemical mapping. 2D images were reconstructed to report the first 3D images of hydrated biofilm elucidating spatial and chemical heterogeneity. 2D image principal component analysis (PCA) was conducted among biofilms at different locations in the microchannel. Our approach directly visualized spatial and chemical heterogeneity within the living biofilm by dynamic liquid ToF-SIMS.

  18. Adaptive Augmenting Control Flight Characterization Experiment on an F/A-18

    Science.gov (United States)

    VanZwieten, Tannen S.; Orr, Jeb S.; Wall, John H.; Gilligan, Eric T.

    2014-01-01

    This paper summarizes the Adaptive Augmenting Control (AAC) flight characterization experiments performed using an F/A-18 (TN 853). AAC was designed and developed specifically for launch vehicles, and is currently part of the baseline autopilot design for NASA's Space Launch System (SLS). The scope covered here includes a brief overview of the algorithm (covered in more detail elsewhere), motivation and benefits of flight testing, top-level SLS flight test objectives, applicability of the F/A-18 as a platform for testing a launch vehicle control design, test cases designed to fully vet the AAC algorithm, flight test results, and conclusions regarding the functionality of AAC. The AAC algorithm developed at Marshall Space Flight Center is a forward loop gain multiplicative adaptive algorithm that modifies the total attitude control system gain in response to sensed model errors or undesirable parasitic mode resonances. The AAC algorithm provides the capability to improve or decrease performance by balancing attitude tracking with the mitigation of parasitic dynamics, such as control-structure interaction or servo-actuator limit cycles. In the case of the latter, if unmodeled or mismodeled parasitic dynamics are present that would otherwise result in a closed-loop instability or near instability, the adaptive controller decreases the total loop gain to reduce the interaction between these dynamics and the controller. This is in contrast to traditional adaptive control logic, which focuses on improving performance by increasing gain. The computationally simple AAC attitude control algorithm has stability properties that are reconcilable in the context of classical frequency-domain criteria (i.e., gain and phase margin). The algorithm assumes that the baseline attitude control design is well-tuned for a nominal trajectory and is designed to adapt only when necessary. Furthermore, the adaptation is attracted to the nominal design and adapts only on an as-needed basis

  19. Effective Assessments of Integrated Animations--Exploring Dynamic Physics Instruction for College Students' Learning and Attitudes

    Science.gov (United States)

    Su, King-Dow; Yeh, Shih-Chuan

    2014-01-01

    The purpose of this study was to give effective assessments of three major physics animations to upgrade college students' learning achievements and attitudes. All college participants were taken from mechanical and civil engineering departments who joined this physics course during the 2011 academic year. Three prime objectives of physics…

  20. Aerodynamic Reconstruction Applied to Parachute Test Vehicle Flight Data Analysis

    Science.gov (United States)

    Cassady, Leonard D.; Ray, Eric S.; Truong, Tuan H.

    2013-01-01

    The aerodynamics, both static and dynamic, of a test vehicle are critical to determining the performance of the parachute cluster in a drop test and for conducting a successful test. The Capsule Parachute Assembly System (CPAS) project is conducting tests of NASA's Orion Multi-Purpose Crew Vehicle (MPCV) parachutes at the Army Yuma Proving Ground utilizing the Parachute Test Vehicle (PTV). The PTV shape is based on the MPCV, but the height has been reduced in order to fit within the C-17 aircraft for extraction. Therefore, the aerodynamics of the PTV are similar, but not the same as, the MPCV. A small series of wind tunnel tests and computational fluid dynamics cases were run to modify the MPCV aerodynamic database for the PTV, but aerodynamic reconstruction of the flights has proven an effective source for further improvements to the database. The acceleration and rotational rates measured during free flight, before parachute inflation but during deployment, were used to con rm vehicle static aerodynamics. A multibody simulation is utilized to reconstruct the parachute portions of the flight. Aerodynamic or parachute parameters are adjusted in the simulation until the prediction reasonably matches the flight trajectory. Knowledge of the static aerodynamics is critical in the CPAS project because the parachute riser load measurements are scaled based on forebody drag. PTV dynamic damping is critical because the vehicle has no reaction control system to maintain attitude - the vehicle dynamics must be understood and modeled correctly before flight. It will be shown here that aerodynamic reconstruction has successfully contributed to the CPAS project.

  1. Orion Launch Abort System Performance During Exploration Flight Test 1

    Science.gov (United States)

    McCauley, Rachel; Davidson, John; Gonzalez, Guillo

    2015-01-01

    The Orion Launch Abort System Office is taking part in flight testing to enable certification that the system is capable of delivering the astronauts aboard the Orion Crew Module to a safe environment during both nominal and abort conditions. Orion is a NASA program, Exploration Flight Test 1 is managed and led by the Orion prime contractor, Lockheed Martin, and launched on a United Launch Alliance Delta IV Heavy rocket. Although the Launch Abort System Office has tested the critical systems to the Launch Abort System jettison event on the ground, the launch environment cannot be replicated completely on Earth. During Exploration Flight Test 1, the Launch Abort System was to verify the function of the jettison motor to separate the Launch Abort System from the crew module so it can continue on with the mission. Exploration Flight Test 1 was successfully flown on December 5, 2014 from Cape Canaveral Air Force Station's Space Launch Complex 37. This was the first flight test of the Launch Abort System preforming Orion nominal flight mission critical objectives. The abort motor and attitude control motors were inert for Exploration Flight Test 1, since the mission did not require abort capabilities. Exploration Flight Test 1 provides critical data that enable engineering to improve Orion's design and reduce risk for the astronauts it will protect as NASA continues to move forward on its human journey to Mars. The Exploration Flight Test 1 separation event occurred at six minutes and twenty seconds after liftoff. The separation of the Launch Abort System jettison occurs once Orion is safely through the most dynamic portion of the launch. This paper will present a brief overview of the objectives of the Launch Abort System during a nominal Orion flight. Secondly, the paper will present the performance of the Launch Abort System at it fulfilled those objectives. The lessons learned from Exploration Flight Test 1 and the other Flight Test Vehicles will certainly

  2. Calibration of 5-hole Probe for Flow Angles from Advanced Technologies Testing Aircraft System Flight Data

    Directory of Open Access Journals (Sweden)

    Y. Parameswaran

    2004-04-01

    Full Text Available This paper describes the investigations carried out to calibrate the 5-hole probe for flow angles from advanced technologies testing aircraft system flight data. The flight tests were carriedout with gear up and at nominal mid-centre of gravity location for two landing flap positions, Of= IN and 14°. Dynamic manoeuvres were executed to excite the short period and Dutch roll mode of the aircraft. In addition, pull up, push down and steady sideslip manoeuvres were also carried out. The data compatibility check on the recorded flight data has been carried out using maximum likelihood output error algorithm to estimate the bias, scale factor, and time delay in the pressure measurements from the 5-hole probe mounted on a noseboom in front of aircraft nose . Through a way of kinematic consistency checking, flight-validated scale factors, biases, and time delays are determined for the differential pressure measurements for both angle of attack and angle of sideslip. Also, the dynamic pressure measurement is found to have time delays. Based on the earlier investigations, it is once again confirmed that the measurements of attitude angles, obtained from the inertial platform, clearly indicate time delays referred to the other signals like linear accelerations and angular rates which are measured with the dedicated flight instrumentation package.The identified time delays in attitude angles agreed well with the inertial platform specifications. The estimates of sensitivity coefficients and scale factors from the flight data analysis correlates reasonably well with the manufacturer Rosemount calibration curves for the tested Mach range 0.23-0.53 . The flight data analysis at Mach number of about 0.59 indicateMach dependency for the angle of attack.

  3. Essays on Political Actors and Attitudes: Do They Constitute Distributed Reflexivity? Part 2: A Dynamical Typology of Rationality

    OpenAIRE

    Neumann, Martin; Srbljinović, Armano

    2013-01-01

    What is the relationship between the logic that guides political attitudes of constituencies and the logic of political actors, whose legitimacy is rooted in electoral choice of the constituencies? Classical approaches, such as the median voter theorem, view political actors as passively mirroring voters’ preferences. An alternative approach, that we suggested in the first part of this series of essays, assumes that how constituencies see the competences of political actors, is crucial, in th...

  4. Attitude of Student Teachers towards Teaching Profession

    Science.gov (United States)

    Bhargava, Anupama; Pathy, M. K.

    2014-01-01

    Teaching being a dynamic activity requires a favourable attitude and certain specific competencies from its practitioners. Teachers' proficiency depends on the attitude she possesses for the profession. The positive attitude helps teacher to develop a conductive learner friendly environment in the classroom. This also casts a fruitful effect…

  5. Bird Flight as a Model for a Course in Unsteady Aerodynamics

    Science.gov (United States)

    Jacob, Jamey; Mitchell, Jonathan; Puopolo, Michael

    2014-11-01

    Traditional unsteady aerodynamics courses at the graduate level focus on theoretical formulations of oscillating airfoil behavior. Aerodynamics students with a vision for understanding bird-flight and small unmanned aircraft dynamics desire to move beyond traditional flow models towards new and creative ways of appreciating the motion of agile flight systems. High-speed videos are used to record kinematics of bird flight, particularly barred owls and red-shouldered hawks during perching maneuvers, and compared with model aircraft performing similar maneuvers. Development of a perching glider and associated control laws to model the dynamics are used as a class project. Observations are used to determine what different species and sizes of birds share in their methods to approach a perch under similar conditions. Using fundamental flight dynamics, simplified models capable of predicting position, attitude, and velocity of the flier are developed and compared with the observations. By comparing the measured data from the videos and predicted and measured motions from the glider models, it is hoped that the students gain a better understanding of the complexity of unsteady aerodynamics and aeronautics and an appreciation for the beauty of avian flight.

  6. The Simple Science of Flight

    Science.gov (United States)

    Tennekes, Henk

    1997-05-01

    From the smallest gnat to the largest aircraft, all things that fly obey the same aerodynamic principles. The Simple Science of Flight offers a leisurely introduction to the mechanics of flight and, beyond that, to the scientific attitude that finds wonder in simple calculations, forging connections between, say, the energy efficiency of a peanut butter sandwich and that of the kerosene that fuels a jumbo jet. It is the product of a lifetime of watching and investigating the way flight happens. The hero of the book is the Boeing 747, which Tennekes sees as the current pinnacle of human ingenuity in mastering the science of flight. Also covered are paper airplanes, kites, gliders, and human-powered flying machines as well as birds and insects. Tennekes explains concepts like lift, drag, wing loading, and cruising speed through many fascinating comparisons, anecdotes, and examples.

  7. Attitude Of Student Teachers Towards Teaching Profession

    OpenAIRE

    BHARGAVA, Anupama; MK PATHY

    2014-01-01

    Teaching being a dynamic activity requires a favourable attitude and certain specific competencies from its practitioners. Teachers’ proficiency depends on the attitude she possesses for the profession. The positive attitude helps teacher to develop a conductive learner friendly environment in the classroom. This also casts a fruitful effect on learning of the students. Attitude being a social construct is influenced by many factors like gender social strata ,age, stream o...

  8. Minisatellite Attitude Guidance Using Reaction Wheels

    OpenAIRE

    Ion STROE; Dan N. Dumitriu

    2015-01-01

    In a previous paper [2], the active torques needed for the minisatellite attitude guidance from one fixed attitude posture to another fixed attitude posture were determined using an inverse dynamics method. But when considering reaction/momentum wheels, instead of this active torques computation, the purpose is to compute the angular velocities of the three reaction wheels which ensure the minisatellite to rotate from the initial to the final attitude. This paper presents this computation of ...

  9. Dynamics of frustrated magnetic moments in antiferromagnetically ordered TbNiAl probed by neutron time-of-flight and spin-echo spectroscopy

    International Nuclear Information System (INIS)

    We have studied the dynamics of Tb spins in the intermetallic compound TbNiAl in the paramagnetic (pm) and ordered antiferromagnetic (afm) phases by means of neutron time-of-flight and spin-echo spectroscopy. It is a remarkable and very unusual characteristic of TbNiAl that its afm phase (below TN=47 K) contains regular long-range ordered spins as well as frustrated spins. The latter are identified by a strongly reduced moment measured by neutron diffraction. The new quasielastic measurements show that the frustrated moments relax on a time scale of 0.01 ns to 0.1 ns. Their autocorrelation function I(q,t) is q independent and exponential in time. While in the pm phase the spin relaxation is complete, i.e., I(q,t) goes to zero in the time range of the measurement, in the afm phase I(q,t) stays above zero

  10. Time-of-flight study of photoinduced dynamics of copper and manganese phthalocyanine thin films on Si(111)

    Science.gov (United States)

    Ramonova, A. G.; Butkhuzi, T. G.; Abaeva, V. V.; Tvauri, I. V.; Khubezhov, S. A.; Turiev, A. M.; Tsidaeva, N. I.; Magkoev, T. T.

    2013-11-01

    Photoinduced fragmentation and desorption of species from copper phthalocyanine (CuPc) and manganese phthalocyanine 80 nm thick films deposited on Si(111) have been studied by means of atomic force microscopy and time-of-flight mass spectroscopy in an ultra-high vacuum chamber. The main fragments formed under the effect of low-fluence (1-3 mJ cm-2) nanosecond laser light with photon energies of 2.34 and 1.17 eV are the entire phthalocyanine molecule, molecular fragments, atomic Cu and Mn and a Si-substituted CuPc. The latter is presumably due to migration of the Si atom of the underlying support to the vacancy formed after photoejection of the metallic atom out of the phthalocyanine molecule. The mechanism of photofragmentation and desorption is essentially non-thermal involving the metal atom as a key factor.

  11. 火箭弹大动态单轴平台惯导系统姿态算法%Attitude algorithm of high dynamic range single-axis platform INS on rocket projectile

    Institute of Scientific and Technical Information of China (English)

    王晨; 董景新; 高宗耀; 杨栓虎; 陈静

    2012-01-01

    火箭弹在飞行中常采用滚转稳定的控制方式,其滚转角速度的动态范围很大,因此实时、准确地测量滚转角速度和滚转姿态角成为制导火箭弹控制的关键问题.大动态单轴平台惯导系统将IMU安装在沿滚转方向的稳定平台上,通过伺服电机驱动单轴平台相对于弹体反旋,隔离滚转方向的大动态角速度,为IMU提供平稳的测试环境.介绍了大动态单轴平台惯导系统的组成和功能,搭建了样机,推导了惯导姿态解算的数学模型,经过120s半实物仿真试验,系统俯仰姿态角误差<4°,偏航姿态角误差<3°,滚转姿态角误差<25°,结果验证了整体方案的可行性和姿态解算模型的正确性.为进一步提高姿态解算精度,搭建单轴平台组合导航系统,实现全部导航信息的高精度测量打下了基础.%Rocket projectile often uses control mode of rolling in flight, so the dynamic range of roll rates is very high. Accurate real-time measurements of roll rates and roll angles become a key problem of rocket projectile control. High dynamic range single-axis platform INS installs IMU on the platform, drives the platform reversely spinning to the projectile body to isolate high dynamic roll rates by using servo motor, and provides stabilized environment for IMU. The composition and function of the system are introduced, the prototype is set up, and the attitude algorithm of INS is derived. The semi-physical simulation results show that the errors of pitch, heading and roll angle are less than 4 deg, 3 deg, and 25 deg respectively within 120 s. Through simulation, the feasibility of this solution and the attitude algorithm of INS are verified. It lays solid foundations for further building single-axis platform integrated navigation system and the high accurate measurements of whole navigation information.

  12. Attitude Determination for MAVs Using a Kalman Filter

    Institute of Scientific and Technical Information of China (English)

    LIU Cheng; ZHOU Zhaoying; FU Xu

    2008-01-01

    This paper presents a Kalman filter to effectively and economically determine the Euler angles for micro aerial vehicles(MAVs),whose size and payload are severely limited.The filter uses data from a series of micro-electro mechanical system sensors to determine the selected 3 vanables of the direction cosine matrix and the bias of the rata gyro sensors as state elements in a dynamic model,with the gravitational acceleration to build a measurement model.For high speed maneuvers,rigid motion equations are used to correct the measurements of the gravitational acceleration.The filter is designed to automatically tune its gain based on the dynamic system state.Simulations indicate that the Euler angles can be determined with standard deviations less than 3.The algorithm was successfully implemented in a miniature attitude measurement system suitable for MAVs.Aerobatic flights show that the attitude determination algorithm works effectively.The attitude determination algorithm is effective and economical,and can also be applied to bionic rebofishs and land vehicles,whose size and payload are also greatly limited.

  13. Understanding Flight

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, David

    2001-01-31

    Through the years the explanation of flight has become mired in misconceptions that have become dogma. Wolfgang Langewiesche, the author of 'Stick and Rudder' (1944) got it right when he wrote: 'Forget Bernoulli's Theorem'. A wing develops lift by diverting (from above) a lot of air. This is the same way that a propeller produces thrust and a helicopter produces lift. Newton's three laws and a phenomenon called the Coanda effect explain most of it. With an understanding of the real physics of flight, many things become clear. Inverted flight, symmetric wings, and the flight of insects are obvious. It is easy to understand the power curve, high-speed stalls, and the effect of load and altitude on the power requirements for lift. The contribution of wing aspect ratio on the efficiency of a wing, and the true explanation of ground effect will also be discussed.

  14. Impact of time-of-flight on indirect 3D and direct 4D parametric image reconstruction in the presence of inconsistent dynamic PET data.

    Science.gov (United States)

    Kotasidis, F A; Mehranian, A; Zaidi, H

    2016-05-01

    Kinetic parameter estimation in dynamic PET suffers from reduced accuracy and precision when parametric maps are estimated using kinetic modelling following image reconstruction of the dynamic data. Direct approaches to parameter estimation attempt to directly estimate the kinetic parameters from the measured dynamic data within a unified framework. Such image reconstruction methods have been shown to generate parametric maps of improved precision and accuracy in dynamic PET. However, due to the interleaving between the tomographic and kinetic modelling steps, any tomographic or kinetic modelling errors in certain regions or frames, tend to spatially or temporally propagate. This results in biased kinetic parameters and thus limits the benefits of such direct methods. Kinetic modelling errors originate from the inability to construct a common single kinetic model for the entire field-of-view, and such errors in erroneously modelled regions could spatially propagate. Adaptive models have been used within 4D image reconstruction to mitigate the problem, though they are complex and difficult to optimize. Tomographic errors in dynamic imaging on the other hand, can originate from involuntary patient motion between dynamic frames, as well as from emission/transmission mismatch. Motion correction schemes can be used, however, if residual errors exist or motion correction is not included in the study protocol, errors in the affected dynamic frames could potentially propagate either temporally, to other frames during the kinetic modelling step or spatially, during the tomographic step. In this work, we demonstrate a new strategy to minimize such error propagation in direct 4D image reconstruction, focusing on the tomographic step rather than the kinetic modelling step, by incorporating time-of-flight (TOF) within a direct 4D reconstruction framework. Using ever improving TOF resolutions (580 ps, 440 ps, 300 ps and 160 ps), we demonstrate that direct 4D TOF image

  15. Impact of time-of-flight on indirect 3D and direct 4D parametric image reconstruction in the presence of inconsistent dynamic PET data

    Science.gov (United States)

    Kotasidis, F. A.; Mehranian, A.; Zaidi, H.

    2016-05-01

    Kinetic parameter estimation in dynamic PET suffers from reduced accuracy and precision when parametric maps are estimated using kinetic modelling following image reconstruction of the dynamic data. Direct approaches to parameter estimation attempt to directly estimate the kinetic parameters from the measured dynamic data within a unified framework. Such image reconstruction methods have been shown to generate parametric maps of improved precision and accuracy in dynamic PET. However, due to the interleaving between the tomographic and kinetic modelling steps, any tomographic or kinetic modelling errors in certain regions or frames, tend to spatially or temporally propagate. This results in biased kinetic parameters and thus limits the benefits of such direct methods. Kinetic modelling errors originate from the inability to construct a common single kinetic model for the entire field-of-view, and such errors in erroneously modelled regions could spatially propagate. Adaptive models have been used within 4D image reconstruction to mitigate the problem, though they are complex and difficult to optimize. Tomographic errors in dynamic imaging on the other hand, can originate from involuntary patient motion between dynamic frames, as well as from emission/transmission mismatch. Motion correction schemes can be used, however, if residual errors exist or motion correction is not included in the study protocol, errors in the affected dynamic frames could potentially propagate either temporally, to other frames during the kinetic modelling step or spatially, during the tomographic step. In this work, we demonstrate a new strategy to minimize such error propagation in direct 4D image reconstruction, focusing on the tomographic step rather than the kinetic modelling step, by incorporating time-of-flight (TOF) within a direct 4D reconstruction framework. Using ever improving TOF resolutions (580 ps, 440 ps, 300 ps and 160 ps), we demonstrate that direct 4D TOF image

  16. The IBEX Flight Segment

    Science.gov (United States)

    Scherrer, J.; Carrico, J.; Crock, J.; Cross, W.; Delossantos, A.; Dunn, A.; Dunn, G.; Epperly, M.; Fields, B.; Fowler, E.; Gaio, T.; Gerhardus, J.; Grossman, W.; Hanley, J.; Hautamaki, B.; Hawes, D.; Holemans, W.; Kinaman, S.; Kirn, S.; Loeffler, C.; McComas, D. J.; Osovets, A.; Perry, T.; Peterson, M.; Phillips, M.; Pope, S.; Rahal, G.; Tapley, M.; Tyler, R.; Ungar, B.; Walter, E.; Wesley, S.; Wiegand, T.

    2009-08-01

    IBEX provides the observations needed for detailed modeling and in-depth understanding of the interstellar interaction (McComas et al. in Physics of the Outer Heliosphere, Third Annual IGPP Conference, pp. 162-181, 2004; Space Sci. Rev., 2009a, this issue). From mission design to launch and acquisition, this goal drove all flight system development. This paper describes the management, design, testing and integration of IBEX’s flight system, which successfully launched from Kwajalein Atoll on October 19, 2008. The payload is supported by a simple, Sun-pointing, spin-stabilized spacecraft with no deployables. The spacecraft bus consists of the following subsystems: attitude control, command and data handling, electrical power, hydrazine propulsion, RF, thermal, and structures. A novel 3-step orbit approach was employed to put IBEX in its highly elliptical, 8-day final orbit using a Solid Rocket Motor, which provided large delta-V after IBEX separated from the Pegasus launch vehicle; an adapter cone, which interfaced between the SRM and Pegasus; Motorized Lightbands, which performed separation from the Pegasus, ejection of the adapter cone, and separation of the spent SRM from the spacecraft; a ShockRing isolation system to lower expected launch loads; and the onboard Hydrazine Propulsion System. After orbit raising, IBEX transitioned from commissioning to nominal operations and science acquisition. At every phase of development, the Systems Engineering and Mission Assurance teams supervised the design, testing and integration of all IBEX flight elements.

  17. Electrochemical-acoustic time of flight: in operando correlation of physical dynamics with battery charge and health

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, AG; Bhadra, S; Hertzberg, BJ; Gjeltema, PJ; Goy, A; Fleischer, JW; Steingart, DA

    2015-01-01

    We demonstrate that a simple acoustic time-of-flight experiment can measure the state of charge and state of health of almost any closed battery. An acoustic conservation law model describing the state of charge of a standard battery is proposed, and experimental acoustic results verify the simulated trends; furthermore, a framework relating changes in sound speed, via density and modulus changes, to state of charge and state of health within a battery is discussed. Regardless of the chemistry, the distribution of density within a battery must change as a function of state of charge and, along with density, the bulk moduli of the anode and cathode changes as well. The shifts in density and modulus also change the acoustic attenuation in a battery. Experimental results indicating both state-of-charge determination and irreversible physical changes are presented for two of the most ubiquitous batteries in the world, the lithium-ion 18650 and the alkaline LR6 (AA). Overall, a one-or two-point acoustic measurement can be related to the interaction of a pressure wave at multiple discrete interfaces within a battery, which in turn provides insights into state of charge, state of health, and mechanical evolution/degradation.

  18. Dynamic subnanosecond time-of-flight detection for ultra-precise diffusion monitoring and optimization of biomarker preservation

    Science.gov (United States)

    Bauer, Daniel R.; Stevens, Benjamin; Taft, Jefferson; Chafin, David; Petre, Vinnie; Theiss, Abbey P.; Otter, Michael

    2014-03-01

    Recently, it has been demonstrated that the preservation of cancer biomarkers, such as phosphorylated protein epitopes, in formalin-fixed paraffin-embedded tissue is highly dependent on the localized concentration of the crosslinking agent. This study details a real-time diffusion monitoring system based on the acoustic time-of-flight (TOF) between pairs of 4 MHz focused transducers. Diffusion affects TOF because of the distinct acoustic velocities of formalin and interstitial fluid. Tissue is placed between the transducers and vertically translated to obtain TOF values at multiple locations with a spatial resolution of approximately 1 mm. Imaging is repeated for several hours until osmotic equilibrium is reached. A post-processing technique, analogous to digital acoustic interferometry, enables detection of subnanosecond TOF differences. Reference subtraction is used to compensate for environmental effects. Diffusion measurements with TOF monitoring ex vivo human tonsil tissue are well-correlated with a single exponential curve (R2>0.98) with a magnitude of up to 50 ns, depending on the tissue size (2-6 mm). The average exponential decay constant of 2 and 6 mm diameter samples are 20 and 315 minutes, respectively, although times varied significantly throughout the tissue (σmax=174 min). This technique can precisely monitor diffusion progression and could be used to mitigate effects from tissue heterogeneity and intersample variability, enabling improved preservation of cancer biomarkers distinctly sensitive to degradation during preanalytical tissue processing.

  19. Lattice dynamics approach to determine the dependence of the time-of-flight of transversal polarized acoustic waves on external stress

    Science.gov (United States)

    Tarar, K. S.; Pluta, M.; Amjad, U.; Grill, W.

    2011-04-01

    Based on the lattice dynamics approach the dependence of the time-of-flight (TOF) on stress has been modeled for transversal polarized acoustic waves. The relevant dispersion relation is derived from the appropriate mass-spring model together with the dependencies on the restoring forces including the effect of externally applied stress. The lattice dynamics approach can also be interpreted as a discrete and strictly periodic lumped circuit. In that case the modeling represents a finite element approach. In both cases the properties relevant for wavelengths large with respect to the periodic structure can be derived from the respective limit relating also to low frequencies. The model representing a linear chain with stiffness to shear and additional stiffness introduced by extensional stress is presented and compared to existing models, which so far represent each only one of the effects treated here in combination. For a string this effect is well known from musical instruments. The counteracting effects are discussed and compared to experimental results.

  20. Miracle Flights for Kids

    Science.gov (United States)

    ... today Saving Lives One Flight At A Time Miracle Flights provides free flights to distant specialized care and valuable second opinions. Miracle Flights Through June 2016 Flights Coordinated: 101,862 ...

  1. A Raspberry Pi-Based Attitude Sensor

    CERN Document Server

    Sreejith, A G; Sarpotdar, Mayuresh; Mohan, Rekhesh; Nayak, Akshata; Safonova, Margarita; Murthy, Jayant

    2014-01-01

    We have developed a lightweight low-cost attitude sensor, based on a Raspberry Pi, built with readily available commercial components. It can be used in experiments where weight and power are constrained, such as in high- altitude lightweight balloon flights. This attitude sensor will be used as a major building block in a closed-loop control system with driver motors to stabilize and point cameras and telescopes for astronomical observations from a balloon-borne payload.

  2. A Raspberry Pi-Based Attitude Sensor

    Science.gov (United States)

    Sreejith, A. G.; Mathew, Joice; Sarpotdar, Mayuresh; Mohan, Rekhesh; Nayak, Akshata; Safonova, Margarita; Murthy, Jayant

    We have developed a lightweight low-cost attitude sensor, based on a Raspberry Pi, built with readily available commercial components. It can be used in experiments where weight and power are constrained, such as in high-altitude lightweight balloon flights. This attitude sensor will be used as a major building block in a closed-loop control system with driver motors to stabilize and point cameras and telescopes for astronomical observations from a balloon-borne payload.

  3. Design of the Heat Receiver for the U.S./Russia Solar Dynamic Power Joint Flight Demonstration

    Science.gov (United States)

    Strumpf, Hal J.; Krystkowiak, Christopher; Klucher, Beth A.

    1996-01-01

    A joint U.S./Russia program is being conducted to develop, fabricate, launch, and operate a solar dynamic demonstration system on Space Station Mir. The goal of the program is to demonstrate and confirm that solar dynamic power systems are viable for future space applications such as the International Space Station Alpha The major components of the system include a heat receiver, a closed Brayton cycle power conversion unit, a power conditioning and control unit, a concentrator, a radiator, a thermal control system, and a Space Shuttle Carrier. This paper discusses the design of the heat receiver component. The receiver comprises a cylindrical cavity, the walls of which are lined with a series of tubes running the length of the cavity. The engine working fluid, a mixture of xenon and helium, is heated by the concentrated sunlight incident on these tubes. The receiver incorporates integral thermal storage, using a eutectic mixture of lithium fluoride and calcium difluoride as the thermal storage solid-to-liquid phase change materiaL This thermal storage is required to enable power production during eclipse. The phase change material is contained in a series of individual containment canisters.

  4. Propagation of Uncertainty in Rigid Body Attitude Flows

    OpenAIRE

    Lee, Taeyoung; Chaturvedi, Nalin A.; Sanyal, Amit K.; Leok, Melvin; McClamroch, N. Harris

    2007-01-01

    Motivated by attitude control and attitude estimation problems for a rigid body, computational methods are proposed to propagate uncertainties in the angular velocity and the attitude. The nonlinear attitude flow is determined by Euler-Poincar\\'e equations that describe the rotational dynamics of the rigid body acting under the influence of an attitude dependent potential and by a reconstruction equation that describes the kinematics expressed in terms of an orthogonal matrix representing the...

  5. Beam dynamics study and design of 348° compression magnet for neutron time of flight (n-TOF) facility

    International Nuclear Information System (INIS)

    A n-TOF experiment requires 1 nsec duration pulses to get better energy resolution. The paper presents the design of a compression magnet that can compress a 10 nsec electron pulse to ∼ 1 nsec having energy variation from 18–30 MeV. A zero gradient, 5-sector magnet that will bend the beam through 348° is designed for the same. The beam dynamics to calculate energy spread, design of sector magnet and the simulation results of CST particle studio are presented. A combination of magnetic fields 0.1 T, 0.05 T and 0.02 T in different sectors of the magnet give the compressed pulse width of ∼ 1.3 nsec

  6. Flight Test of an Intelligent Flight-Control System

    Science.gov (United States)

    Davidson, Ron; Bosworth, John T.; Jacobson, Steven R.; Thomson, Michael Pl; Jorgensen, Charles C.

    2003-01-01

    The F-15 Advanced Controls Technology for Integrated Vehicles (ACTIVE) airplane (see figure) was the test bed for a flight test of an intelligent flight control system (IFCS). This IFCS utilizes a neural network to determine critical stability and control derivatives for a control law, the real-time gains of which are computed by an algorithm that solves the Riccati equation. These derivatives are also used to identify the parameters of a dynamic model of the airplane. The model is used in a model-following portion of the control law, in order to provide specific vehicle handling characteristics. The flight test of the IFCS marks the initiation of the Intelligent Flight Control System Advanced Concept Program (IFCS ACP), which is a collaboration between NASA and Boeing Phantom Works. The goals of the IFCS ACP are to (1) develop the concept of a flight-control system that uses neural-network technology to identify aircraft characteristics to provide optimal aircraft performance, (2) develop a self-training neural network to update estimates of aircraft properties in flight, and (3) demonstrate the aforementioned concepts on the F-15 ACTIVE airplane in flight. The activities of the initial IFCS ACP were divided into three Phases, each devoted to the attainment of a different objective. The objective of Phase I was to develop a pre-trained neural network to store and recall the wind-tunnel-based stability and control derivatives of the vehicle. The objective of Phase II was to develop a neural network that can learn how to adjust the stability and control derivatives to account for failures or modeling deficiencies. The objective of Phase III was to develop a flight control system that uses the neural network outputs as a basis for controlling the aircraft. The flight test of the IFCS was performed in stages. In the first stage, the Phase I version of the pre-trained neural network was flown in a passive mode. The neural network software was running using flight data

  7. Vision based flight procedure stereo display system

    Science.gov (United States)

    Shen, Xiaoyun; Wan, Di; Ma, Lan; He, Yuncheng

    2008-03-01

    A virtual reality flight procedure vision system is introduced in this paper. The digital flight map database is established based on the Geographic Information System (GIS) and high definitions satellite remote sensing photos. The flight approaching area database is established through computer 3D modeling system and GIS. The area texture is generated from the remote sensing photos and aerial photographs in various level of detail. According to the flight approaching procedure, the flight navigation information is linked to the database. The flight approaching area vision can be dynamic displayed according to the designed flight procedure. The flight approaching area images are rendered in 2 channels, one for left eye images and the others for right eye images. Through the polarized stereoscopic projection system, the pilots and aircrew can get the vivid 3D vision of the flight destination approaching area. Take the use of this system in pilots preflight preparation procedure, the aircrew can get more vivid information along the flight destination approaching area. This system can improve the aviator's self-confidence before he carries out the flight mission, accordingly, the flight safety is improved. This system is also useful in validate the visual flight procedure design, and it helps to the flight procedure design.

  8. Flight and Stability of a Laser Inertial Fusion Energy Target in the Drift Region between Injection and the Reaction Chamber with Computational Fluid Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Mitori, T. [California Polytechnic State Univ. (CalPoly), San Luis Obispo, CA (United States)

    2013-12-01

    A Laser Inertial Fusion Energy (LIFE) target’s flight through a low Reynolds number and high Mach number regime was analyzed with computational fluid dynamics software. This regime consisted of xenon gas at 1,050 K and approximately 6,670 Pa. Simulations with similar flow conditions were performed with a sphere and compared with experimental data and published correlations for validation purposes. Transient considerations of the developing flow around the target were explored. Simulations of the target at different velocities were used to determine correlations for the drag coefficient and Nusselt number as functions of the Reynolds number. Simulations with different angles of attack were used to determine the aerodynamic coefficients of drag, lift, Magnus moment, and overturning moment as well as target stability. The drag force, lift force, and overturning moment changed minimally with spin. Above an angle of attack of 15°, the overturning moment would be destabilizing. At low angles of attack (less than 15°), the overturning moment would tend to decrease the target’s angle of attack, indicating the lack of a need for spin for stability at small angles. This stabilizing moment would cause the target to move in a mildly damped oscillation about the axis parallel to the free-stream velocity vector through the target’s center of gravity.

  9. Venus radar mapper attitude reference quaternion

    Science.gov (United States)

    Lyons, D. T.

    1986-01-01

    Polynomial functions of time are used to specify the components of the quaternion which represents the nominal attitude of the Venus Radar mapper spacecraft during mapping. The following constraints must be satisfied in order to obtain acceptable synthetic array radar data: the nominal attitude function must have a large dynamic range, the sensor orientation must be known very accurately, the attitude reference function must use as little memory as possible, and the spacecraft must operate autonomously. Fitting polynomials to the components of the desired quaternion function is a straightforward method for providing a very dynamic nominal attitude using a minimum amount of on-board computer resources. Although the attitude from the polynomials may not be exactly the one requested by the radar designers, the polynomial coefficients are known, so they do not contribute to the attitude uncertainty. Frequent coefficient updates are not required, so the spacecraft can operate autonomously.

  10. The insertion of human dynamics models in the flight control loops of V/STOL research aircraft. Appendix 2: The optimal control model of a pilot in V/STOL aircraft control loops

    Science.gov (United States)

    Zipf, Mark E.

    1989-01-01

    An overview is presented of research work focussed on the design and insertion of classical models of human pilot dynamics within the flight control loops of V/STOL aircraft. The pilots were designed and configured for use in integrated control system research and design. The models of human behavior that were considered are: McRuer-Krendel (a single variable transfer function model); and Optimal Control Model (a multi-variable approach based on optimal control and stochastic estimation theory). These models attempt to predict human control response characteristics when confronted with compensatory tracking and state regulation tasks. An overview, mathematical description, and discussion of predictive limitations of the pilot models is presented. Design strategies and closed loop insertion configurations are introduced and considered for various flight control scenarios. Models of aircraft dynamics (both transfer function and state space based) are developed and discussed for their use in pilot design and application. Pilot design and insertion are illustrated for various flight control objectives. Results of pilot insertion within the control loops of two V/STOL research aricraft (Sikorski Black Hawk UH-60A, McDonnell Douglas Harrier II AV-8B) are presented and compared against actual pilot flight data. Conclusions are reached on the ability of the pilot models to adequately predict human behavior when confronted with similar control objectives.

  11. Dynamics Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Dynamics Lab replicates vibration environments for every Navy platform. Testing performed includes: Flight Clearance, Component Improvement, Qualification, Life...

  12. FLIGHT INFORMATION

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Check in With Singapore Airlines, Check out With Paypal Singapore Airlines customers in the United States, Singapore and five other Asia Pacific countries and territories can now pay for their flights with PayPal on singaporeair.com. This facility will progressively be made available to the airline’s customers in up to 17 countries, making this the largest collaboration between PayPal and an Asian carrier to date.

  13. AttSim, Attitude Simulation with Control Software in the Loop

    OpenAIRE

    Koenigsmann, Hans; Gurevich, Gwynne

    1999-01-01

    AttSim is a spacecraft attitude simulator that has been specifically developed to design and verify attitude control concepts and flight software architectures and algorithms. Its primary goal is to provide a generic approach to small satellite attitude control development by allowing scalable performance. AttSim specifically allows the user to develop software modules that can be used as flight code, and to verify control logic, controller gains, and other mission-critical elements. The code...

  14. Formal semantics for propositional attitudes

    Directory of Open Access Journals (Sweden)

    Daniel Vanderveken

    2011-06-01

    Full Text Available Contemporary logic is confined to a few paradigmatic attitudes such as belief, knowledge, desire and intention. My purpose is to present a general model-theoretical semantics of propositional attitudes of any cognitive or volitive mode. In my view, one can recursively define the set of all psychological modes of attitudes. As Descartes anticipated, the two primitive modes are those of belief and desire. Complex modes are obtained by adding to primitive modes special cognitive and volitive ways or special propositional content or preparatory conditions. According to standard logic of attitudes (Hintikka, human agents are either perfectly rational or totally irrational. I will proceed to a finer analysis of propositional attitudes that accounts for our imperfect but minimal rationality. For that purpose I will use a non standard predicative logic according to which propositions with the same truth conditions can have different cognitive values and I will explicate subjective in addition to objective possibilities. Next I will enumerate valid laws of my general logic of propositional attitudes. At the end I will state principles according to which minimally rational agents dynamically revise attitudes of any mode.

  15. Computational space flight mechanics

    CERN Document Server

    Weiland, Claus

    2010-01-01

    Computational Space Flight Mechanics presents numerical solutions for topics and problems within space flight mechanics. Topics include orbit determination, Lagrange's perturbation equations for disturbed Earth's orbits, the flight of a mass point in flight path coordinates, and more.

  16. Integrated Flight Performance Analysis of a Launch Abort System Concept

    Science.gov (United States)

    Tartabini, Paul V.

    2007-01-01

    This paper describes initial flight performance analyses conducted early in the Orion Project to support concept feasibility studies for the Crew Exploration Vehicle s Launch Abort System (LAS). Key performance requirements that significantly affect abort capability are presented. These requirements have implications on sizing the Abort Motor, tailoring its thrust profile to meet escape requirements for both launch pad and high drag/high dynamic pressure ascent aborts. Additional performance considerations are provided for the Attitude Control Motor, a key element of the Orion LAS design that eliminates the need for ballast and provides performance robustness over a passive control approach. Finally, performance of the LAS jettison function is discussed, along with implications on Jettison Motor sizing and the timing of the jettison event during a nominal mission. These studies provide an initial understanding of LAS performance that will continue to evolve as the Orion design is matured.

  17. Orion Exploration Flight Test-1 Post-Flight Navigation Performance Assessment Relative to the Best Estimated Trajectory

    Science.gov (United States)

    Gay, Robert S.; Holt, Greg N.; Zanetti, Renato

    2016-01-01

    This paper details the post-flight navigation performance assessment of the Orion Exploration Flight Test-1 (EFT-1). Results of each flight phase are presented: Ground Align, Ascent, Orbit, and Entry Descent and Landing. This study examines the on-board Kalman Filter uncertainty along with state deviations relative to the Best Estimated Trajectory (BET). Overall the results show that the Orion Navigation System performed as well or better than expected. Specifically, the Global Positioning System (GPS) measurement availability was significantly better than anticipated at high altitudes. In addition, attitude estimation via processing GPS measurements along with Inertial Measurement Unit (IMU) data performed very well and maintained good attitude throughout the mission.

  18. Attitudes and perceptions regarding metabolomics research on HIV and AIDS: Towards a dynamic model relating basic beliefs, technology and behaviour

    Directory of Open Access Journals (Sweden)

    Henk Jochemsen

    2014-07-01

    Full Text Available The human immunodeficiency virus (HIV and acquired immunodeficiency syndrome (AIDS pandemic are hitting hard in Africa, not the least in South Africa. In addition to preventative measures, better ways of treatment and delaying the onset of symptoms are still urgently required. Recent developments in biomedicine in South Africa, notably genomics and metabolomics, could well contribute to more effective treatments and diets. However, these technologies are rooted in modern Western culture and may embody concepts and values that are foreign to people with a different culture and worldview in semi-urban communities in South Africa. How can those technologies be introduced into such communities in an ethically acceptable and effective way? To begin answering this question, we conducted qualitative research amongst representatives of such a community near Potchefstroom, South Africa. The results indicate that the worldview, belief system and cultural customs of these people significantly influence the interpretation of HIV and AIDS and their treatment. The results led us to expand an earlier theoretical version of a qualitative model relating cultural factors and worldview to individual behaviour into an empirically informed, dynamic model that envisages possible influences of the introduction of new technologies on the belief and behavioural system of the community.

  19. Rotor-state feedback in the design of flight control laws for a hovering helicopter

    Science.gov (United States)

    Takahashi, Marc D.

    1994-01-01

    The use of rigid-body and rotor-state feedback gains in the design of helicopter flight control laws was investigated analytically on a blade element, articulated rotor, helicopter model. The study was conducted while designing a control law to meet an existing military rotorcraft handling qualities design specification (ADS-33C) in low-speed flight. A systematic approach to meet this specification was developed along with an assessment of the function of these gains in the feedback loops. Using the results of this assessment, the pitch and roll crossover behavior was easily modified by adjusting the body attitude and rotor-flap feedback gains. Critical to understanding the feedback gains is that the roll and pitch rate dynamics each have second-order behavior, not the classic first-order behavior, which arises from a quasi-static rotor, six degree-of-freedom model.

  20. Magnetometer-only attitude and angular velocity filtering estimation for attitude changing spacecraft

    Science.gov (United States)

    Ma, Hongliang; Xu, Shijie

    2014-09-01

    This paper presents an improved real-time sequential filter (IRTSF) for magnetometer-only attitude and angular velocity estimation of spacecraft during its attitude changing (including fast and large angular attitude maneuver, rapidly spinning or uncontrolled tumble). In this new magnetometer-only attitude determination technique, both attitude dynamics equation and first time derivative of measured magnetic field vector are directly leaded into filtering equations based on the traditional single vector attitude determination method of gyroless and real-time sequential filter (RTSF) of magnetometer-only attitude estimation. The process noise model of IRTSF includes attitude kinematics and dynamics equations, and its measurement model consists of magnetic field vector and its first time derivative. The observability of IRTSF for small or large angular velocity changing spacecraft is evaluated by an improved Lie-Differentiation, and the degrees of observability of IRTSF for different initial estimation errors are analyzed by the condition number and a solved covariance matrix. Numerical simulation results indicate that: (1) the attitude and angular velocity of spacecraft can be estimated with sufficient accuracy using IRTSF from magnetometer-only data; (2) compared with that of RTSF, the estimation accuracies and observability degrees of attitude and angular velocity using IRTSF from magnetometer-only data are both improved; and (3) universality: the IRTSF of magnetometer-only attitude and angular velocity estimation is observable for any different initial state estimation error vector.

  1. BeppoSAX attitude operations for GRB follow up

    International Nuclear Information System (INIS)

    This poster describes the attitude dynamics software, Attitude and Orbit Control Ground Support System (AOCGSS), which was developed by TELESPAZIO and integrated in the Operations Control Centre (OCC), in order to support the on ground operations of the Attitude and Orbit Control Subsystem (AOCS). In particular its involvement during the operations performed to carry out the Gamma Ray Burst (GRB) Follow Up is described

  2. Flight Test Maneuvers for Efficient Aerodynamic Modeling

    Science.gov (United States)

    Morelli, Eugene A.

    2011-01-01

    Novel flight test maneuvers for efficient aerodynamic modeling were developed and demonstrated in flight. Orthogonal optimized multi-sine inputs were applied to aircraft control surfaces to excite aircraft dynamic response in all six degrees of freedom simultaneously while keeping the aircraft close to chosen reference flight conditions. Each maneuver was designed for a specific modeling task that cannot be adequately or efficiently accomplished using conventional flight test maneuvers. All of the new maneuvers were first described and explained, then demonstrated on a subscale jet transport aircraft in flight. Real-time and post-flight modeling results obtained using equation-error parameter estimation in the frequency domain were used to show the effectiveness and efficiency of the new maneuvers, as well as the quality of the aerodynamic models that can be identified from the resultant flight data.

  3. Development of Methods for Improved Data Integrity and Efficient Testing of Wind Tunnel Models for Dynamic Test Conditions in Unsteady and Nonlinear Flight Regimes

    OpenAIRE

    Heim, Eugene Henry DeWendt

    2003-01-01

    Todayâ s high performance aircraft are operating in expanded flight envelopes, often maneuvering at high angular rates at high angles-of-attack, even above maximum lift. Current aerodynamic models are inadequate in predicting flight characteristics in the expanded envelope, such as rapid aircraft departures and other unusual motions. Unsteady flows of aircraft are of real concern. The ability to accurately measure aerodynamic loads directly impacts the ability to accurately model and predict...

  4. Wind-Tunnel/Flight Correlation, 1981

    Science.gov (United States)

    Mckinney, L. W. (Editor); Baals, D. D. (Editor)

    1982-01-01

    Wind-tunnel/flight correlation activities are reviewed to assure maximum effectiveness of the early experimental programs of the National Transonic Facility (NTF). Topics included a status report of the NTF, the role of tunnel-to-tunnel correlation, a review of past flight correlation research and the resulting data base, the correlation potential of future flight vehicles, and an assessment of the role of computational fluid dynamics.

  5. Modelling Research on Consumer Attitude Toward Car Brands

    OpenAIRE

    Vlad (Uta) Daniela Steluta

    2014-01-01

    A quantitative research of consumer behaviour usually takes under consideration the following processes: perception, information/ learning, motivation, attitude and actual behaviour. From all this dynamic processes that define consumer behaviour, attitude is the one process relatively stable in time, with a very strong affective and cognitive component. In attempt to model attitude research one need to take under consideration external factors that influence attitude formation as well as this...

  6. Recent Flight Results of the TRMM Kalman Filter

    Science.gov (United States)

    Andrews, Stephen F.; Bilanow, Stephen; Bauer, Frank (Technical Monitor)

    2002-01-01

    The Tropical Rainfall Measuring Mission (TRMM) spacecraft is a nadir pointing spacecraft that nominally controls the roll and pitch attitude based on the Earth Sensor Assembly (ESA) output. TRMM's nominal orbit altitude was 350 km, until raised to 402 km to prolong mission life. During the boost, the ESA experienced a decreasing signal to noise ratio, until sun interference at 393 km altitude made the ESA data unreliable for attitude determination. At that point, the backup attitude determination algorithm, an extended Kalman filter, was enabled. After the boost finished, TRMM reacquired its nadir-pointing attitude, and continued its mission. This paper will briefly discuss the boost and the decision to turn on the backup attitude determination algorithm. A description of the extended Kalman filter algorithm will be given. In addition, flight results from analyzing attitude data and the results of software changes made onboard TRMM will be discussed. Some lessons learned are presented.

  7. Attitudes, social representations and social attitudes

    OpenAIRE

    Farr, Robert

    1994-01-01

    This paper plays the role of the devil's advocate in relation to Colin Fraser's paper "attitudes, social representations and widespread beliefs". It argues for the alternative perspective which Colin identifies that social representations and social attitudes are epistemologically incompatible theories.

  8. Hierarchical structured robust adaptive attitude controller design for reusable launch vehicles

    Institute of Scientific and Technical Information of China (English)

    Guangxue Yu; Huifeng Li

    2015-01-01

    Reentry attitude control for reusable launch vehicles (RLVs) is chal enging due to the characters of fast nonlinear dy-namics and large flight envelop. A hierarchical structured attitude control system for an RLV is proposed and an unpowered RLV con-trol model is developed. Then, the hierarchical structured control frame consisting of attitude control er, compound control strategy and control al ocation is presented. At the core of the design is a robust adaptive control (RAC) law based on dual loop time-scale separation. A radial basis function neural network (RBFNN) is implemented for compensation of uncertain model dynamics and external disturbances in the inner loop. And then the robust op-timization is applied in the outer loop to guarantee performance robustness. The overal control design frame retains the simplicity in design while simultaneously assuring the adaptive and robust performance. The hierarchical structured robust adaptive con-trol er (HSRAC) incorporates flexibility into the design with regard to control er versatility to various reentry mission requirements. Simulation results show that the improved tracking performance is achieved by means of RAC.

  9. Rover Attitude and Pointing System Simulation Testbed

    Science.gov (United States)

    Vanelli, Charles A.; Grinblat, Jonathan F.; Sirlin, Samuel W.; Pfister, Sam

    2009-01-01

    The MER (Mars Exploration Rover) Attitude and Pointing System Simulation Testbed Environment (RAPSSTER) provides a simulation platform used for the development and test of GNC (guidance, navigation, and control) flight algorithm designs for the Mars rovers, which was specifically tailored to the MERs, but has since been used in the development of rover algorithms for the Mars Science Laboratory (MSL) as well. The software provides an integrated simulation and software testbed environment for the development of Mars rover attitude and pointing flight software. It provides an environment that is able to run the MER GNC flight software directly (as opposed to running an algorithmic model of the MER GNC flight code). This improves simulation fidelity and confidence in the results. Further more, the simulation environment allows the user to single step through its execution, pausing, and restarting at will. The system also provides for the introduction of simulated faults specific to Mars rover environments that cannot be replicated in other testbed platforms, to stress test the GNC flight algorithms under examination. The software provides facilities to do these stress tests in ways that cannot be done in the real-time flight system testbeds, such as time-jumping (both forwards and backwards), and introduction of simulated actuator faults that would be difficult, expensive, and/or destructive to implement in the real-time testbeds. Actual flight-quality codes can be incorporated back into the development-test suite of GNC developers, closing the loop between the GNC developers and the flight software developers. The software provides fully automated scripting, allowing multiple tests to be run with varying parameters, without human supervision.

  10. Estimating the Backup Reaction Wheel Orientation Using Reaction Wheel Spin Rates Flight Telemetry from a Spacecraft

    Science.gov (United States)

    Rizvi, Farheen

    2013-01-01

    A report describes a model that estimates the orientation of the backup reaction wheel using the reaction wheel spin rates telemetry from a spacecraft. Attitude control via the reaction wheel assembly (RWA) onboard a spacecraft uses three reaction wheels (one wheel per axis) and a backup to accommodate any wheel degradation throughout the course of the mission. The spacecraft dynamics prediction depends upon the correct knowledge of the reaction wheel orientations. Thus, it is vital to determine the actual orientation of the reaction wheels such that the correct spacecraft dynamics can be predicted. The conservation of angular momentum is used to estimate the orientation of the backup reaction wheel from the prime and backup reaction wheel spin rates data. The method is applied in estimating the orientation of the backup wheel onboard the Cassini spacecraft. The flight telemetry from the March 2011 prime and backup RWA swap activity on Cassini is used to obtain the best estimate for the backup reaction wheel orientation.

  11. Video Guidance Sensor Flight Experiment Results

    Science.gov (United States)

    Howard, Richard T.; Bryan, Thomas C.; Book, Michael L.

    1998-01-01

    NASA's Marshall Space Flight Center flew on the STS-87 mission an active sensor system, the Video Guidance Sensor (VGS), to demonstrate its functioning in space and to collect performance data. The VGS was designed to provide near-range sensor data as part of an automatic rendezvous and docking system. The sensor determines the relative positions and attitudes between the active sensor and the passive target. The VGS uses laser diodes to illuminate retro-reflectors in the target, a solid-state camera to detect the return from the target, and a frame grabber and digital signal processor to convert the video information into the relative positions and attitudes. The system is designed to operate with the target within a relative azimuth of +/- 9.5 degrees and a relative elevation of +/- 7.5 degrees. The system will acquire and track the target within that field-of-view anywhere from 1.5 meters to 110 meters range, and is designed to acquire at relative attitudes of +/- 10 degrees in pitch and yaw and at any roll angle. The data is output from the sensor at 5 Hz, and the target and sensor software have been designed to permit two independent sensors to operate simultaneously (in order to allow for redundancy). The data from the flight experiment includes raw video data from the VGS camera, relative position and attitude measurements from the VGS to the target, independent hand-held laser ranges from the Shuttle Aft Flight Deck to the target, and Remote Manipulator System position data to correlate with the VGS data. The experiment was quite successful and returned much useful information. The experience gained from the design and flight of this experiment will lead to improved video sensors in the future.

  12. Selected Flight Test Results for Online Learning Neural Network-Based Flight Control System

    Science.gov (United States)

    Williams-Hayes, Peggy S.

    2004-01-01

    The NASA F-15 Intelligent Flight Control System project team developed a series of flight control concepts designed to demonstrate neural network-based adaptive controller benefits, with the objective to develop and flight-test control systems using neural network technology to optimize aircraft performance under nominal conditions and stabilize the aircraft under failure conditions. This report presents flight-test results for an adaptive controller using stability and control derivative values from an online learning neural network. A dynamic cell structure neural network is used in conjunction with a real-time parameter identification algorithm to estimate aerodynamic stability and control derivative increments to baseline aerodynamic derivatives in flight. This open-loop flight test set was performed in preparation for a future phase in which the learning neural network and parameter identification algorithm output would provide the flight controller with aerodynamic stability and control derivative updates in near real time. Two flight maneuvers are analyzed - pitch frequency sweep and automated flight-test maneuver designed to optimally excite the parameter identification algorithm in all axes. Frequency responses generated from flight data are compared to those obtained from nonlinear simulation runs. Flight data examination shows that addition of flight-identified aerodynamic derivative increments into the simulation improved aircraft pitch handling qualities.

  13. Impact of high-alpha aerodynamics on dynamic stability parameters of aircraft and missiles

    Science.gov (United States)

    Malcolm, G. N.

    1981-01-01

    The aerodynamic phenomena associated with high angles of attack and their effects on the dynamic stability characteristics of airplane and missile configurations are examined. Information on dynamic effects is limited. Steady flow phenomena and their effects on the forces and moments are reviewed. The effects of asymmetric vortices and of vortex bursting on the dynamic response of flight vehicles are reviewed with respect to their influence on: (1) nonlinearity of aerodynamic coefficients with attitude, rates, and accelerations; (2) cross coupling between longitudinal and lateral directional models of motion; (3) time dependence and hysteresis effects; (4) configuration dependencey; and (5) mathematical modeling of the aerodynamics.

  14. Post-Flight Analysis of GPSR Performance During Orion Exploration Flight Test 1

    Science.gov (United States)

    Barker, Lee; Mamich, Harvey; McGregor, John

    2016-01-01

    On 5 December 2014, the first test flight of the Orion Multi-Purpose Crew Vehicle executed a unique and challenging flight profile including an elevated re-entry velocity and steeper flight path angle to envelope lunar re-entry conditions. A new navigation system including a single frequency (L1) GPS receiver was evaluated for use as part of the redundant navigation system required for human space flight. The single frequency receiver was challenged by a highly dynamic flight environment including flight above low Earth orbit, as well as single frequency operation with ionospheric delay present. This paper presents a brief description of the GPS navigation system, an independent analysis of flight telemetry data, and evaluation of the GPSR performance, including evaluation of the ionospheric model employed to supplement the single frequency receiver. Lessons learned and potential improvements will be discussed.

  15. Kalman Filter for Spinning Spacecraft Attitude Estimation

    Science.gov (United States)

    Markley, F. Landis; Sedlak, Joseph E.

    2008-01-01

    This paper presents a Kalman filter using a seven-component attitude state vector comprising the angular momentum components in an inertial reference frame, the angular momentum components in the body frame, and a rotation angle. The relatively slow variation of these parameters makes this parameterization advantageous for spinning spacecraft attitude estimation. The filter accounts for the constraint that the magnitude of the angular momentum vector is the same in the inertial and body frames by employing a reduced six-component error state. Four variants of the filter, defined by different choices for the reduced error state, are tested against a quaternion-based filter using simulated data for the THEMIS mission. Three of these variants choose three of the components of the error state to be the infinitesimal attitude error angles, facilitating the computation of measurement sensitivity matrices and causing the usual 3x3 attitude covariance matrix to be a submatrix of the 6x6 covariance of the error state. These variants differ in their choice for the other three components of the error state. The variant employing the infinitesimal attitude error angles and the angular momentum components in an inertial reference frame as the error state shows the best combination of robustness and efficiency in the simulations. Attitude estimation results using THEMIS flight data are also presented.

  16. Study on Calculation and Plotting of Dynamic Noise Contour of Single Flight Based on Equivalent Point Swing%单航班噪声动态等值线的绘制算法

    Institute of Scientific and Technical Information of China (English)

    计文斌; 王建东; 杨国庆

    2013-01-01

    机场噪声的可视化是机场范围内环境评价的重要方面,通过机场噪声的等值线分布图可以分析各个时段和地区的噪声大小,并据此调整航班计划和飞行航迹减少受影响地区的噪声强度。基于单飞行事件研究飞机噪声的动态分布情况,利用曲线分段拟合噪声值的变化规律并在此基础上预测实时的噪声值。为了避免常规的等值线绘制中遍历次数多、等值线计算复杂等缺陷,提出一种基于等值点摇摆的等值线网格队列算法,满足了动态绘制对时间复杂度的要求。%Airport noise visualization plays an important role in environmental evaluation of airport region. Through the airport noise contour map, the noise level anytime and anyplace can be analyzed, and the flight plan and flight path can be adjusted to reduce noise intensity in the affected region. In this paper, based on the analysis of aircraft noise dynamic distribution for single flight event, the curve’s piecewise fitting of the noise value was carried out. On this basis the real-time noise value was forecasted. In order to avoid the multiple plotting and the complicated contour computation in the conventional contour computing method, a method of contour grid queue algorithm based on equivalent point swing was proposed. The requirement of time complexity in the dynamic drawing was satisfied.

  17. In-Flight Self-Alignment Method Aided by Geomagnetism for Moving Basement of Guided Munitions

    Directory of Open Access Journals (Sweden)

    Shuang-biao Zhang

    2015-01-01

    Full Text Available Due to power-after-launch mode of guided munitions of high rolling speed, initial attitude of munitions cannot be determined accurately, and this makes it difficult for navigation and control system to work effectively and validly. An in-flight self-alignment method aided by geomagnetism that includes a fast in-flight coarse alignment method and an in-flight alignment model based on Kalman theory is proposed in this paper. Firstly a fast in-flight coarse alignment method is developed by using gyros, magnetic sensors, and trajectory angles. Then, an in-flight alignment model is derived by investigation of the measurement errors and attitude errors, which regards attitude errors as state variables and geomagnetic components in navigation frame as observed variables. Finally, fight data of a spinning projectile is used to verify the performance of the in-flight self-alignment method. The satisfying results show that (1 the precision of coarse alignment can attain below 5°; (2 the attitude errors by in-flight alignment model converge to 24′ at early of the latter half of the flight; (3 the in-flight alignment model based on Kalman theory has better adaptability, and show satisfying performance.

  18. Analytical investigation of the dynamics of tethered constellations in Earth orbit, phase 2

    Science.gov (United States)

    Lorenzini, Enrico C.; Gullahorn, Gordon E.; Cosmo, Mario L.; Estes, Robert D.; Grossi, Mario D.

    1994-01-01

    This final report covers nine years of research on future tether applications and on the actual flights of the Small Expendable Deployment System (SEDS). Topics covered include: (1) a description of numerical codes used to simulate the orbital and attitude dynamics of tethered systems during station keeping and deployment maneuvers; (2) a comparison of various tethered system simulators; (3) dynamics analysis, conceptual design, potential applications and propagation of disturbances and isolation from noise of a variable gravity/microgravity laboratory tethered to the Space Station; (4) stability of a tethered space centrifuge; (5) various proposed two-dimensional tethered structures for low Earth orbit for use as planar array antennas; (6) tethered high gain antennas; (7) numerical calculation of the electromagnetic wave field on the Earth's surface on an electrodynamically tethered satellite; (8) reentry of tethered capsules; (9) deployment dynamics of SEDS-1; (10) analysis of SEDS-1 flight data; and (11) dynamics and control of SEDS-2.

  19. The Submillimeter Wave Astronomy Satellite Attitude Control Software Design

    OpenAIRE

    Anderson, Mark; Wennersten, Miriam; Bonnett, Joseph; Hill, Adrian

    1995-01-01

    The Submilimeter Wave Astronomy Satellite (SWAS) was selected for flight by NASA in 1989 as a part of the Small Explorer (SMEX) program. SWAS's primary science objective is to conduct high spectral resolution surveys of galactic molecular clouds. The SWAS Attitude Control System (ACS) is three-axis controlled, zero momentum stabilized, and is capable of performing subarcminute pointing. This paper will discuss the design of the software components which comprise the Attitude Control System So...

  20. Analysis of RAE-B attitude data

    Science.gov (United States)

    Hedland, D. A.; Degonia, P. K.

    1975-01-01

    Attempts made to obtain a description of the in-orbit dynamic behavior of the RAE-B spacecraft and account for the discrepancies between predicted and actual in-orbit performance are reported. In particular, attitude dynamics during the final despin operations in lunar orbit, throughout all deployment operations, and into the final steady state mission mode were investigated. Attempts made to match computer simulation results to the observed equilibrium data are discussed. Due to a damaged antenna boom and the unavailability of sufficient attitude and dynamics data, most of the objectives were not realized.

  1. The FLP microsatellite platform flight operations manual

    CERN Document Server

    2016-01-01

    This book represents the Flight Operations Manual for a reusable microsatellite platform – the “Future Low-cost Platform” (FLP), developed at the University of Stuttgart, Germany. It provides a basic insight on the onboard software functions, the core data handling system and on the power, communications, attitude control and thermal subsystem of the platform. Onboard failure detection, isolation and recovery functions are treated in detail. The platform is suited for satellites in the 50-150 kg class and is baseline of the microsatellite “Flying Laptop” from the University. The book covers the essential information for ground operators to controls an FLP-based satellite applying international command and control standards (CCSDS and ECSS PUS). Furthermore it provides an overview on the Flight Control Center in Stuttgart and on the link to the German Space Agency DLR Ground Station which is used for early mission phases. Flight procedure and mission planning chapters complement the book. .

  2. Flight of the dragonflies and damselflies.

    Science.gov (United States)

    Bomphrey, Richard J; Nakata, Toshiyuki; Henningsson, Per; Lin, Huai-Ti

    2016-09-26

    This work is a synthesis of our current understanding of the mechanics, aerodynamics and visually mediated control of dragonfly and damselfly flight, with the addition of new experimental and computational data in several key areas. These are: the diversity of dragonfly wing morphologies, the aerodynamics of gliding flight, force generation in flapping flight, aerodynamic efficiency, comparative flight performance and pursuit strategies during predatory and territorial flights. New data are set in context by brief reviews covering anatomy at several scales, insect aerodynamics, neuromechanics and behaviour. We achieve a new perspective by means of a diverse range of techniques, including laser-line mapping of wing topographies, computational fluid dynamics simulations of finely detailed wing geometries, quantitative imaging using particle image velocimetry of on-wing and wake flow patterns, classical aerodynamic theory, photography in the field, infrared motion capture and multi-camera optical tracking of free flight trajectories in laboratory environments. Our comprehensive approach enables a novel synthesis of datasets and subfields that integrates many aspects of flight from the neurobiology of the compound eye, through the aeromechanical interface with the surrounding fluid, to flight performance under cruising and higher-energy behavioural modes.This article is part of the themed issue 'Moving in a moving medium: new perspectives on flight'. PMID:27528779

  3. Efficient Global Aerodynamic Modeling from Flight Data

    Science.gov (United States)

    Morelli, Eugene A.

    2012-01-01

    A method for identifying global aerodynamic models from flight data in an efficient manner is explained and demonstrated. A novel experiment design technique was used to obtain dynamic flight data over a range of flight conditions with a single flight maneuver. Multivariate polynomials and polynomial splines were used with orthogonalization techniques and statistical modeling metrics to synthesize global nonlinear aerodynamic models directly and completely from flight data alone. Simulation data and flight data from a subscale twin-engine jet transport aircraft were used to demonstrate the techniques. Results showed that global multivariate nonlinear aerodynamic dependencies could be accurately identified using flight data from a single maneuver. Flight-derived global aerodynamic model structures, model parameter estimates, and associated uncertainties were provided for all six nondimensional force and moment coefficients for the test aircraft. These models were combined with a propulsion model identified from engine ground test data to produce a high-fidelity nonlinear flight simulation very efficiently. Prediction testing using a multi-axis maneuver showed that the identified global model accurately predicted aircraft responses.

  4. Integrative Model of Drosophila Flight

    OpenAIRE

    Dickson, William B.; Andrew D Straw; Dickinson, Michael H

    2008-01-01

    This paper presents a framework for simulating the flight dynamics and control strategies of the fruit fly Drosophila melanogaster. The framework consists of five main components: an articulated rigid-body simulation, a model of the aerodynamic forces and moments, a sensory systems model, a control model, and an environment model. In the rigid-body simulation the fly is represented by a system of three rigid bodies connected by a pair of actuated ball joints. At each instant of th...

  5. Low Speed Avian Maneuvering Flight

    OpenAIRE

    Ros, Ivo

    2013-01-01

    Low speed avian maneuvering flight is an ecologically crucial behavior that has contributed to the explosive diversification of several avian taxa by allowing access to complex spatial environments. Negotiating a sharp aerial turn requires finely tuned interactions between an animal's sensory-motor system and its environment. My thesis work focuses on how aerodynamic forces, wing and body dynamics, and sensory feedback interact during aerial turning in the pigeon (Columba livea).

  6. Flight Test Engineering

    Science.gov (United States)

    Pavlock, Kate Maureen

    2013-01-01

    Although the scope of flight test engineering efforts may vary among organizations, all point to a common theme: flight test engineering is an interdisciplinary effort to test an asset in its operational flight environment. Upfront planning where design, implementation, and test efforts are clearly aligned with the flight test objective are keys to success. This chapter provides a top level perspective of flight test engineering for the non-expert. Additional research and reading on the topic is encouraged to develop a deeper understanding of specific considerations involved in each phase of flight test engineering.

  7. Studies of social group dynamics under isolated conditions. Objective summary of the literature as it relates to potential problems of long duration space flight

    Science.gov (United States)

    Vinograd, S. P.

    1974-01-01

    Scientific literature which deals with the study of human behavior and crew interaction in situations simulating long term space flight is summarized and organized. A bibliography of all the pertinent U.S. literature available is included, along with definitions of the behavioral characteristics terms employed. The summarized studies are analyzed according to behavioral factors and environmental conditions. The analysis consist of two matrices. (1) The matrix of factors studied correlates each research study area and individual study with the behavioral factors that were investigated in the study. (2) The matrix of conclusions identifies those studies whose investigators appeared to draw specific conclusions concerning questions of importance to NASA.

  8. Flight instructors’ perceptions of pilot behaviour related to gender

    Directory of Open Access Journals (Sweden)

    Leopold P. Vermeulen

    2009-04-01

    Full Text Available This study investigated flight instructors’ perceptions with regard to gender-related pilot behaviour. The subjects fell into two sample groups. The first sample consisted of 93 flight instructors and the second sample was a control group of 93 commercial pilots. The Aviation Gender Attitude Questionnaire (AGAQ was administered to measure the perceptions that both groups held about female pilots’ flying proficiency and safety orientation. Statistical analysis revealed that flight instructors and commercial pilots differed significantly in their perceptions of female pilots’ flying proficiency but that the two groups did not differ in their perceptions of female pilots’ safety orientation.

  9. Magnetospheric Multiscale (MMS) Mission Attitude Ground System Design

    Science.gov (United States)

    Sedlak, Joseph E.; Superfin, Emil; Raymond, Juan C.

    2011-01-01

    This paper presents an overview of the attitude ground system (AGS) currently under development for the Magnetospheric Multiscale (MMS) mission. The primary responsibilities for the MMS AGS are definitive attitude determination, validation of the onboard attitude filter, and computation of certain parameters needed to improve maneuver performance. For these purposes, the ground support utilities include attitude and rate estimation for validation of the onboard estimates, sensor calibration, inertia tensor calibration, accelerometer bias estimation, center of mass estimation, and production of a definitive attitude history for use by the science teams. Much of the AGS functionality already exists in utilities used at NASA's Goddard Space Flight Center with support heritage from many other missions, but new utilities are being created specifically for the MMS mission, such as for the inertia tensor, accelerometer bias, and center of mass estimation. Algorithms and test results for all the major AGS subsystems are presented here.

  10. Control Of Flexible Structures-2 (COFS-2) flight control, structure and gimbal system interaction study

    Science.gov (United States)

    Fay, Stanley; Gates, Stephen; Henderson, Timothy; Sackett, Lester; Kirchwey, Kim; Stoddard, Isaac; Storch, Joel

    1988-01-01

    The second Control Of Flexible Structures Flight Experiment (COFS-2) includes a long mast as in the first flight experiment, but with the Langley 15-m hoop column antenna attached via a gimbal system to the top of the mast. The mast is to be mounted in the Space Shuttle cargo bay. The servo-driven gimbal system could be used to point the antenna relative to the mast. The dynamic interaction of the Shuttle Orbiter/COFS-2 system with the Orbiter on-orbit Flight Control System (FCS) and the gimbal pointing control system has been studied using analysis and simulation. The Orbiter pointing requirements have been assessed for their impact on allowable free drift time for COFS experiments. Three fixed antenna configurations were investigated. Also simulated was Orbiter attitude control behavior with active vernier jets during antenna slewing. The effect of experiment mast dampers was included. Control system stability and performance and loads on various portions of the COFS-2 structure were investigated. The study indicates possible undesirable interaction between the Orbiter FCS and the flexible, articulated COFS-2 mast/antenna system, even when restricted to vernier reaction jets.

  11. Satellite Attitude Control System Simulator

    Directory of Open Access Journals (Sweden)

    G.T. Conti

    2008-01-01

    Full Text Available Future space missions will involve satellites with great autonomy and stringent pointing precision, requiring of the Attitude Control Systems (ACS with better performance than before, which is function of the control algorithms implemented on board computers. The difficulties for developing experimental ACS test is to obtain zero gravity and torque free conditions similar to the SCA operate in space. However, prototypes for control algorithms experimental verification are fundamental for space mission success. This paper presents the parameters estimation such as inertia matrix and position of mass centre of a Satellite Attitude Control System Simulator (SACSS, using algorithms based on least square regression and least square recursive methods. Simulations have shown that both methods have estimated the system parameters with small error. However, the least square recursive methods have performance more adequate for the SACSS objectives. The SACSS platform model will be used to do experimental verification of fundamental aspects of the satellite attitude dynamics and design of different attitude control algorithm.

  12. 14 CFR 91.109 - Flight instruction; Simulated instrument flight and certain flight tests.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Flight instruction; Simulated instrument flight and certain flight tests. 91.109 Section 91.109 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Flight Rules General § 91.109 Flight instruction; Simulated instrument flight...

  13. Manned Flight Simulator (MFS)

    Data.gov (United States)

    Federal Laboratory Consortium — The Aircraft Simulation Division, home to the Manned Flight Simulator (MFS), provides real-time, high fidelity, hardware-in-the-loop flight simulation capabilities...

  14. Astronautics:the physics of space flight

    OpenAIRE

    McClintock, P. V. E.

    2012-01-01

    Space flight provides beautiful examples of the Newtonian dynamics that teachers of physics have always wanted to demonstrate for their students – the consequences of Newton’s Laws and gravitation writ large, and with the effect of dissipation also coming in at the launch of the spacecraft and (especially) duringmits re-entry into the Earth’s atmosphere. For physicists, the basic principles of space flight are self-evident, but how best to apply them is far less obvious.

  15. In Flight, Online

    Science.gov (United States)

    Lucking, Robert A.; Wighting, Mervyn J.; Christmann, Edwin P.

    2005-01-01

    The concept of flight for human beings has always been closely tied to imagination. To fly like a bird requires a mind that also soars. Therefore, good teachers who want to teach the scientific principles of flight recognize that it is helpful to share stories of their search for the keys to flight. The authors share some of these with the reader,…

  16. Attitude Controller-Observer Design for the NTNU Test Satellite

    OpenAIRE

    Alvenes, Fredrik

    2013-01-01

    This report presents the results from the development and design of an Attitude Controller-Observer for the NTNU Test Satellite (NUTS). It gives an insight to mathematical modeling of satellite attitude dynamics for 3 degrees of freedom. By the different limitations of how the NUTS operates, these models are adjusted accordingly.A strategy for controlling the attitude is presented. Through an explanation of the magnetic actuators, the control laws are also adapted to work with the NUTS satell...

  17. White flight or flight from poverty?

    CERN Document Server

    Jego, C; Jego, Charles; Roehner, Bertrand M.

    2006-01-01

    The phenomenon of White flight is often illustrated by the case of Detroit whose population dropped from 1.80 million to 0.95 million between 1950 and 2000 while at the same time its Black and Hispanic component grew from 30 percent to 85 percent. But is this case really representative? The present paper shows that the phenomenon of White flight is in fact essentially a flight from poverty. As a confirmation, we show that the changes in White or Black populations are highly correlated which means that White flight is always paralleled by Black flight (and Hispanic flight as well). This broader interpretation of White flight accounts not only for the case of northern cities such as Cincinnati, Cleveland or Detroit, but for all population changes at county level, provided the population density is higher than a threshold of about 50 per square-kilometer which corresponds to moderately urbanized areas (as can be found in states like Indiana or Virginia for instance).

  18. Merging Autopilot/Flight Control and Navigation-Flight Management Systems

    Directory of Open Access Journals (Sweden)

    Khaleel Qutbodin

    2010-01-01

    Full Text Available In this abstract the following commercial aircraft 3 avionics systems will be merged together: (1 Autopilot Flight Director System (APFDS, (2 Flight Control System (FCS and (3 Flight Management Systems (FMS. Problem statement: These systems perform functions that are dependant and related to each other, also they consists of similar hardware components. Each of these systems consists of at least one computer, control panel and displays that place on view the selection and aircraft response. They receive several similar sensor inputs, or outputs of one system are fed as input to the other system. By combining the three systems, repeated and related functions are reduced. Since these systems perform related functions, designers and programmers verify that conflict between these systems is not present. Combining the three systems will eliminate such possibility. Also used space, weight, wires and connections are decreased, consequently electrical consumption is reduced. To keep redundancy, the new system can be made of multiple channels. Approach: The new system (called Autopilot Navigation Management System, APNMS is more efficient and resolves the above mention drawbacks. Results: The APFDS system functions (as attitude-hold or heading-hold are merged with the FCS system main function which is controlling flight control surfaces as well as other functions as flight protection, Turn coordination and flight stability augmentation. Also the Flight Management system functions (as flight planning, aircraft flight performance/engine thrust management are merged in the new system. All this is done through combining all 3 systems logic software’s. Conclusion/Recommendations: The new APNMS system can be installed and tested on prototype aircraft in order to verify its benefits and fruits to the aviation industry.

  19. Fundamentals of spacecraft attitude determination and control

    CERN Document Server

    Markley, F Landis

    2014-01-01

    This book explores topics that are central to the field of spacecraft attitude determination and control. The authors provide rigorous theoretical derivations of significant algorithms accompanied by a generous amount of qualitative discussions of the subject matter. The book documents the development of the important concepts and methods in a manner accessible to practicing engineers, graduate-level engineering students and applied mathematicians. It includes detailed examples from actual mission designs to help ease the transition from theory to practice, and also provides prototype algorithms that are readily available on the author’s website. Subject matter includes both theoretical derivations and practical implementation of spacecraft attitude determination and control systems. It provides detailed derivations for attitude kinematics and dynamics, and provides detailed description of the most widely used attitude parameterization, the quaternion. This title also provides a thorough treatise of attitu...

  20. Wind-tunnel based definition of the AFE aerothermodynamic environment. [Aeroassist Flight Experiment

    Science.gov (United States)

    Miller, Charles G.; Wells, W. L.

    1992-01-01

    The Aeroassist Flight Experiment (AFE), scheduled to be performed in 1994, will serve as a precursor for aeroassisted space transfer vehicles (ASTV's) and is representative of entry concepts being considered for missions to Mars. Rationale for the AFE is reviewed briefly as are the various experiments carried aboard the vehicle. The approach used to determine hypersonic aerodynamic and aerothermodynamic characteristics over a wide range of simulation parameters in ground-based facilities is presented. Facilities, instrumentation and test procedures employed in the establishment of the data base are discussed. Measurements illustrating the effects of hypersonic simulation parameters, particularly normal-shock density ratio (an important parameter for hypersonic blunt bodies), and attitude on aerodynamic and aerothermodynamic characteristics are presented, and predictions from computational fluid dynamic (CFD) computer codes are compared with measurement.

  1. Online Learning Flight Control for Intelligent Flight Control Systems (IFCS)

    Science.gov (United States)

    Niewoehner, Kevin R.; Carter, John (Technical Monitor)

    2001-01-01

    The research accomplishments for the cooperative agreement 'Online Learning Flight Control for Intelligent Flight Control Systems (IFCS)' include the following: (1) previous IFC program data collection and analysis; (2) IFC program support site (configured IFC systems support network, configured Tornado/VxWorks OS development system, made Configuration and Documentation Management Systems Internet accessible); (3) Airborne Research Test Systems (ARTS) II Hardware (developed hardware requirements specification, developing environmental testing requirements, hardware design, and hardware design development); (4) ARTS II software development laboratory unit (procurement of lab style hardware, configured lab style hardware, and designed interface module equivalent to ARTS II faceplate); (5) program support documentation (developed software development plan, configuration management plan, and software verification and validation plan); (6) LWR algorithm analysis (performed timing and profiling on algorithm); (7) pre-trained neural network analysis; (8) Dynamic Cell Structures (DCS) Neural Network Analysis (performing timing and profiling on algorithm); and (9) conducted technical interchange and quarterly meetings to define IFC research goals.

  2. Ares I-X Flight Test Philosophy

    Science.gov (United States)

    Davis, S. R.; Tuma, M. L.; Heitzman, K.

    2007-01-01

    In response to the Vision for Space Exploration, the National Aeronautics and Space Administration (NASA) has defined a new space exploration architecture to return humans to the Moon and prepare for human exploration of Mars. One of the first new developments will be the Ares I Crew Launch Vehicle (CLV), which will carry the Orion Crew Exploration Vehicle (CEV), into Low Earth Orbit (LEO) to support International Space Station (ISS) missions and, later, support lunar missions. As part of Ares I development, NASA will perform a series of Ares I flight tests. The tests will provide data that will inform the engineering and design process and verify the flight hardware and software. The data gained from the flight tests will be used to certify the new Ares/Orion vehicle for human space flight. The primary objectives of this first flight test (Ares I-X) are the following: Demonstrate control of a dynamically similar integrated Ares CLV/Orion CEV using Ares CLV ascent control algorithms; Perform an in-flight separation/staging event between an Ares I-similar First Stage and a representative Upper Stage; Demonstrate assembly and recovery of a new Ares CLV-like First Stage element at Kennedy Space Center (KSC); Demonstrate First Stage separation sequencing, and quantify First Stage atmospheric entry dynamics and parachute performance; and Characterize the magnitude of the integrated vehicle roll torque throughout the First Stage (powered) flight. This paper will provide an overview of the Ares I-X flight test process and details of the individual flight tests.

  3. Thermal biology of flight in a butterfly: genotype, flight metabolism, and environmental conditions.

    Science.gov (United States)

    Mattila, Anniina L K

    2015-12-01

    Knowledge of the effects of thermal conditions on animal movement and dispersal is necessary for a mechanistic understanding of the consequences of climate change and habitat fragmentation. In particular, the flight of ectothermic insects such as small butterflies is greatly influenced by ambient temperature. Here, variation in body temperature during flight is investigated in an ecological model species, the Glanville fritillary butterfly (Melitaea cinxia). Attention is paid on the effects of flight metabolism, genotypes at candidate loci, and environmental conditions. Measurements were made under a natural range of conditions using infrared thermal imaging. Heating of flight muscles by flight metabolism has been presumed to be negligible in small butterflies. However, the results demonstrate that Glanville fritillary males with high flight metabolic rate maintain elevated body temperature better during flight than males with a low rate of flight metabolism. This effect is likely to have a significant influence on the dispersal performance and fitness of butterflies and demonstrates the possible importance of intraspecific physiological variation on dispersal in other similar ectothermic insects. The results also suggest that individuals having an advantage in low ambient temperatures can be susceptible to overheating at high temperatures. Further, tolerance of high temperatures may be important for flight performance, as indicated by an association of heat-shock protein (Hsp70) genotype with flight metabolic rate and body temperature at takeoff. The dynamics of body temperature at flight and factors affecting it also differed significantly between female and male butterflies, indicating that thermal dynamics are governed by different mechanisms in the two sexes. This study contributes to knowledge about factors affecting intraspecific variation in dispersal-related thermal performance in butterflies and other insects. Such information is needed for predictive

  4. The development and demonstration of hybrid programmable attitude control electronics

    Science.gov (United States)

    Smith, L. S.; Kopf, E. H., Jr.

    1973-01-01

    In the course of extended life attitude control system (ELACS) research sponsored by NASA a hybrid programable attitude control electronics (HYPACE) concept was developed and demonstrated. The wide variety of future planetary missions demanded a new control approach to accommodate the automatic fault tolerance and long the life requirements of such missions. HYPACE provides an adaptable, analog/digital design approach that permits preflight and in-flight accommodation of mission changes, component performance variations, and spacecraft changes, through programing. This enabled broad multimission flexibility of application in a cost effective manner. Previously, flight control computers have not been not flown on planetary missions because of weight and power problems. These problems were resolved in the design of HYPACE. The HYPACE design, which was demonstrated in breadboard form on a single-axis gas-bearing spacecraft simulation, uses a single control channel to perform the attitude control functions sequentially, thus significantly reducing the number of component parts over hard-wired designs.

  5. Deploying process modeling and attitude control of a satellite with a large deployable antenna

    OpenAIRE

    Zhigang Xing; Gangtie Zheng

    2014-01-01

    Modeling and attitude control methods for a satellite with a large deployable antenna are studied in the present paper. Firstly, for reducing the model dimension, three dynamic models for the deploying process are developed, which are built with the methods of multi-rigid-body dynamics, hybrid coordinate and substructure. Then an attitude control method suitable for the deploying process is proposed, which can keep stability under any dynamical parameter variation. Subsequently, this attitude...

  6. Wavelet Applications for Flight Flutter Testing

    Science.gov (United States)

    Lind, Rick; Brenner, Marty; Freudinger, Lawrence C.

    1999-01-01

    Wavelets present a method for signal processing that may be useful for analyzing responses of dynamical systems. This paper describes several wavelet-based tools that have been developed to improve the efficiency of flight flutter testing. One of the tools uses correlation filtering to identify properties of several modes throughout a flight test for envelope expansion. Another tool uses features in time-frequency representations of responses to characterize nonlinearities in the system dynamics. A third tool uses modulus and phase information from a wavelet transform to estimate modal parameters that can be used to update a linear model and reduce conservatism in robust stability margins.

  7. Attitude and orbit control of small satellites for autonomous terrestrial target tracking

    Science.gov (United States)

    Ibrahim, Najmus S.

    Terrestrial target tracking using low Earth orbit satellites provides essential daily services and vital scientific data. In this thesis, the Attitude and Orbit Control System of such a terrestrial tracking satellite, Nanosatellite for Earth Monitoring and Observation Aerosol Monitor, is presented in detail. The satellite is a new generation Earth observation mission with the objective of detecting global atmospheric aerosol content through sub-degree pointing. The design is presented from initial hardware selection and budget development to operation definition and mission operation. The efficacy of performing precise autonomous Earth-pointing on a small satellite platform is validated through high fidelity simulations involving satellite and environmental dynamics, test-characterized hardware models and flight software-in-the-loop. The results provide practical target tracking methodologies which in the past have been publicly inaccessible to the author's best knowledge and which can be now be applied to a broad range of precise Earth-pointing satellites.

  8. Effect of Attitude of Partner on Sex Role Attitudes.

    Science.gov (United States)

    Snodgrass, Sara E.; Muneses, Tricia

    This study examined whether the expressed attitudes of a male or female companion might influence a woman to report sex-role attitudes more conforming to her companion's attitudes. Forty female college students were paired with a male or female confederate who expressed either sexist attitudes or feminist attitudes. The pairs read and discussed a…

  9. Biomechanics of bird flight.

    Science.gov (United States)

    Tobalske, Bret W

    2007-09-01

    Power output is a unifying theme for bird flight and considerable progress has been accomplished recently in measuring muscular, metabolic and aerodynamic power in birds. The primary flight muscles of birds, the pectoralis and supracoracoideus, are designed for work and power output, with large stress (force per unit cross-sectional area) and strain (relative length change) per contraction. U-shaped curves describe how mechanical power output varies with flight speed, but the specific shapes and characteristic speeds of these curves differ according to morphology and flight style. New measures of induced, profile and parasite power should help to update existing mathematical models of flight. In turn, these improved models may serve to test behavioral and ecological processes. Unlike terrestrial locomotion that is generally characterized by discrete gaits, changes in wing kinematics and aerodynamics across flight speeds are gradual. Take-off flight performance scales with body size, but fully revealing the mechanisms responsible for this pattern awaits new study. Intermittent flight appears to reduce the power cost for flight, as some species flap-glide at slow speeds and flap-bound at fast speeds. It is vital to test the metabolic costs of intermittent flight to understand why some birds use intermittent bounds during slow flight. Maneuvering and stability are critical for flying birds, and design for maneuvering may impinge upon other aspects of flight performance. The tail contributes to lift and drag; it is also integral to maneuvering and stability. Recent studies have revealed that maneuvers are typically initiated during downstroke and involve bilateral asymmetry of force production in the pectoralis. Future study of maneuvering and stability should measure inertial and aerodynamic forces. It is critical for continued progress into the biomechanics of bird flight that experimental designs are developed in an ecological and evolutionary context. PMID:17766290

  10. Attitude Control System for the Extreme Ultraviolet Explorer Satellite

    Science.gov (United States)

    Wong, E. C.

    1984-01-01

    The requirements, design, and expected performance of the Attitude Control Subsystem for the spin-stabilized Extreme Ultraviolet Explorer Satellite are presented. In the sky-mapping phase, closed-loop magnetic control keeps the spin axis pointed toward the sun. In the spectroscopy phase, the attitude control loop is closed via the ground. The satellite's attitude and spin rate are determined using periodically downlinked star data. An attitude control algorithm generates commands to be uplinked to the satellite for spin axis precession and spin rate control. Computer simulations of the satellite dynamic response, pointing error, and stability during spin axis precession are presented, and parameters that affect the pointing performance are evaluated.

  11. Engineering parameter determination from the radio astronomy explorer /RAE I/ satellite attitude data

    Science.gov (United States)

    Lawlor, E. A.; Davis, R. M.; Blanchard, D. L.

    1974-01-01

    An RAE-I satellite description is given, taking into account a dynamics experiment and the attitude sensing system. A computer program for analyzing flexible spacecraft attitude motions is considered, giving attention to the geometry of rod deformation. The characteristics of observed attitude data are discussed along with an analysis of the main boom root angle, the bending rigidity, and the damper plane angle.

  12. Flight to Egypt - The Flight of All Flights

    Czech Academy of Sciences Publication Activity Database

    Konečný, Lubomír

    Prague: The UN Refugee Agency, 2002 - (Raimanová, I.; Concolato, J.), s. 10-14 ISBN 80-238-8859-5 R&D Projects: GA AV ČR KSK9056118 Keywords : Flight to Egypt * iconography * literary sources Subject RIV: AL - Art, Architecture, Cultural Heritage

  13. Adaptive Jacobian Fuzzy Attitude Control for Flexible Spacecraft Combined Attitude and Sun Tracking System

    Science.gov (United States)

    Chak, Yew-Chung; Varatharajoo, Renuganth

    2016-07-01

    Many spacecraft attitude control systems today use reaction wheels to deliver precise torques to achieve three-axis attitude stabilization. However, irrecoverable mechanical failure of reaction wheels could potentially lead to mission interruption or total loss. The electrically-powered Solar Array Drive Assemblies (SADA) are usually installed in the pitch axis which rotate the solar arrays to track the Sun, can produce torques to compensate for the pitch-axis wheel failure. In addition, the attitude control of a flexible spacecraft poses a difficult problem. These difficulties include the strong nonlinear coupled dynamics between the rigid hub and flexible solar arrays, and the imprecisely known system parameters, such as inertia matrix, damping ratios, and flexible mode frequencies. In order to overcome these drawbacks, the adaptive Jacobian tracking fuzzy control is proposed for the combined attitude and sun-tracking control problem of a flexible spacecraft during attitude maneuvers in this work. For the adaptation of kinematic and dynamic uncertainties, the proposed scheme uses an adaptive sliding vector based on estimated attitude velocity via approximate Jacobian matrix. The unknown nonlinearities are approximated by deriving the fuzzy models with a set of linguistic If-Then rules using the idea of sector nonlinearity and local approximation in fuzzy partition spaces. The uncertain parameters of the estimated nonlinearities and the Jacobian matrix are being adjusted online by an adaptive law to realize feedback control. The attitude of the spacecraft can be directly controlled with the Jacobian feedback control when the attitude pointing trajectory is designed with respect to the spacecraft coordinate frame itself. A significant feature of this work is that the proposed adaptive Jacobian tracking scheme will result in not only the convergence of angular position and angular velocity tracking errors, but also the convergence of estimated angular velocity to

  14. Evaluation of Small Unmanned Aircraft Flight Trajectory Accuracy

    Directory of Open Access Journals (Sweden)

    Ramūnas Kikutis

    2014-12-01

    Full Text Available Today small unmanned aircraft are being more widely adapted for practical tasks. These tasks require high reliability and flight path accuracy. For such aircraft we have to deal with the chalenge how to compensate external factors and how to ensure the accuracy of the flight trajectory according to new regulations and standards. In this paper, new regulations for the flights of small unmanned aircraft in Lithuanian air space are discussed. Main factors, which affect errors of the autonomous flight path tracking, are discussed too. The emphasis is on the wind factor and the flight path of Dubbin’s trajectories. Research was performed with mathematical-dynamic model of UAV and it was compared with theoretical calculations. All calculations and experiments were accomplished for the circular part of Dubbin’s paths when the airplane was trimmed for circular trajectory flight in calm conditions. Further, for such flight the wind influence was analysed.

  15. Data Mining of NASA Boeing 737 Flight Data: Frequency Analysis of In-Flight Recorded Data

    Science.gov (United States)

    Butterfield, Ansel J.

    2001-01-01

    Data recorded during flights of the NASA Trailblazer Boeing 737 have been analyzed to ascertain the presence of aircraft structural responses from various excitations such as the engine, aerodynamic effects, wind gusts, and control system operations. The NASA Trailblazer Boeing 737 was chosen as a focus of the study because of a large quantity of its flight data records. The goal of this study was to determine if any aircraft structural characteristics could be identified from flight data collected for measuring non-structural phenomena. A number of such data were examined for spatial and frequency correlation as a means of discovering hidden knowledge of the dynamic behavior of the aircraft. Data recorded from on-board dynamic sensors over a range of flight conditions showed consistently appearing frequencies. Those frequencies were attributed to aircraft structural vibrations.

  16. ATTITUDE OF STUDENT TEACHERS TOWARDS TEACHING PROFESSION

    Directory of Open Access Journals (Sweden)

    Anupama BHARGAVA

    2014-07-01

    Full Text Available Teaching being a dynamic activity requires a favourable attitude and certain specific competencies from its practitioners. Teachers’ proficiency depends on the attitude she possesses for the profession. The positive attitude helps teacher to develop a conductive learner friendly environment in the classroom. This also casts a fruitful effect on learning of the students. Attitude being a social construct is influenced by many factors like gender social strata ,age, stream of education and previous experience of the job .what bearing the gender and stream of education has on the attitude of student teachers towards teaching profession to throw light on this a study was conducted using a readymade tool. Study of different categories like Non-tribal male and female science stream, nontribal male and female social science stream, Tribal male and female science stream, Tribal male and female social science stream was undertaken. In a sample of hundred students ninety six students responded. The mean scores were considered and ‘ t’ value was calculated to find the difference in the attitude of different categories towards teaching profession.

  17. Computer-aided design of flight control systems

    Science.gov (United States)

    Stengel, Robert F.; Sircar, Subrata

    1991-01-01

    A computer program is presented for facilitating the development and assessment of flight control systems, and application to a control design is discussed. The program is a computer-aided control-system design program based on direct digital synthesis of a proportional-integral-filter controller with scheduled linear-quadratic-Gaussian gains and command generator tracking of pilot inputs. The FlightCAD system concentrates on aircraft dynamics, flight-control systems, stability and performance, and has practical engineering applications.

  18. Flight Control Design for a Tailless Aircraft Using Eigenstructure Assignment

    OpenAIRE

    Clara Nieto-Wire; Kenneth Sobel

    2011-01-01

    We apply eigenstructure assignment to the design of a flight control system for a wind tunnel model of a tailless aircraft. The aircraft, known as the innovative control effectors (ICEs) aircraft, has unconventional control surfaces plus pitch and yaw thrust vectoring. We linearize the aircraft in straight and level flight at an altitude of 15,000 feet and Mach number 0.4. Then, we separately design flight control systems for the longitudinal and lateral dynamics. We use a control allocation ...

  19. ER-2 in flight

    Science.gov (United States)

    1996-01-01

    In this film clip, we see an ER-2 on its take off roll and climb as it departs from runway 22 at Edwards AFB, California. In 1981, NASA acquired its first ER-2 aircraft. The agency obtained a second ER-2 in 1989. These airplanes replaced two Lockheed U-2 aircraft, which NASA had used to collect scientific data since 1971. The U-2, and later the ER-2, were based at the Ames Research Center, Moffett Field, California, until 1997. In 1997, the ER-2 aircraft and their operations moved to NASA Dryden Flight Research Center, Edwards, California. Since the inaugural flight for this program, August 31, 1971, NASA U-2 and ER-2 aircraft have flown more than 4,000 data missions and test flights in support of scientific research conducted by scientists from NASA, other federal agencies, states, universities, and the private sector. NASA is currently using two ER-2 Airborne Science aircraft as flying laboratories. The aircraft, based at NASA Dryden, collect information about our surroundings, including Earth resources, celestial observations, atmospheric chemistry and dynamics, and oceanic processes. The aircraft also are used for electronic sensor research and development, satellite calibration, and satellite data validation. The ER-2 is a versatile aircraft well-suited to perform multiple mission tasks. It is 30 percent larger than the U-2 with a 20 feet longer wingspan and a considerably increased payload over the older airframe. The aircraft has four large pressurized experiment compartments and a high-capacity AC/DC electrical system, permitting it to carry a variety of payloads on a single mission. The modular design of the aircraft permits rapid installation or removal of payloads to meet changing mission requirements. The ER-2 has a range beyond 3,000 miles (4800 kilometers); is capable of long flight duration and can operate at altitudes up to 70,000 feet (21.3 kilometers) if required. Operating at an altitude of 65,000 feet (19.8 kilometers) the ER-2 acquires data

  20. IDENTIFICATION OF GYRO DRIFTS UNDER THREE AXIS ATTITUDE COUPLING

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    Optical gyros and star sensors are primary measurement hardware in an attitude control system with high accuracy.The drifts of the optical gyros, however, make an unfavorable impact on the accuracy of the attitude control system.In order for compensations to be provided, this paper presents a least-square method to identify the optical gyro drifts by using flight attitude data from the star sensors and the optical gyros.Equations for identification are formulated by quaternion.Integration of the identification equations and the data from the star sensors are utilized to form a least-square index, in which lower sampling frequency of the star sensors than that of the optical gyros is dealt with effectively.An iterative identification algorithm is presented to minimize the index.Identification procedure under three-axis attitude coupling is illustrated .Simulation results show the effectiveness of the method presented.Proper sample size and sampling frequency are also recommended.

  1. Managing Cassini Safe Mode Attitude at Saturn

    Science.gov (United States)

    Burk, Thomas A.

    2010-01-01

    The Cassini spacecraft was launched on October 15, 1997 and arrived at Saturn on June 30, 2004. It has performed detailed observations and remote sensing of Saturn, its rings, and its satellites since that time. In the event safe mode interrupts normal orbital operations, Cassini has flight software fault protection algorithms to detect, isolate, and recover to a thermally safe and commandable attitude and then wait for further instructions from the ground. But the Saturn environment is complex, and safety hazards change depending on where Cassini is in its orbital trajectory around Saturn. Selecting an appropriate safe mode attitude that insures safe operation in the Saturn environment, including keeping the star tracker field of view clear of bright bodies, while maintaining a quiescent, commandable attitude, is a significant challenge. This paper discusses the Cassini safe table management strategy and the key criteria that must be considered, especially during low altitude flybys of Titan, in deciding what spacecraft attitude should be used in the event of safe mode.

  2. Entry Atmospheric Flight Control Authority Impacts on GN and C and Trajectory Performance for Orion Exploration Flight Test 1

    Science.gov (United States)

    McNamara, Luke W.

    2012-01-01

    One of the key design objectives of NASA's Orion Exploration Flight Test 1 (EFT-1) is to execute a guided entry trajectory demonstrating GN&C capability. The focus of this paper is the ight control authority of the vehicle throughout the atmospheric entry ight to the target landing site and its impacts on GN&C, parachute deployment, and integrated performance. The vehicle's attitude control authority is obtained from thrusting 12 Re- action Control System (RCS) engines, with four engines to control yaw, four engines to control pitch, and four engines to control roll. The static and dynamic stability derivatives of the vehicle are determined to assess the inherent aerodynamic stability. The aerodynamic moments at various locations in the entry trajectory are calculated and compared to the available torque provided by the RCS system. Interaction between the vehicle's RCS engine plumes and the aerodynamic conditions are considered to assess thruster effectiveness. This document presents an assessment of Orion's ight control authority and its effectiveness in controlling the vehicle during critical events in the atmospheric entry trajectory.

  3. Resonance enhanced multiphoton ionization time-of-flight (REMPI-TOF) study of phosphorous oxychloride (POCl3) dissociation at 235 nm: Dynamics of Cl(2Pj) formation

    International Nuclear Information System (INIS)

    Highlights: ► First results on dynamics of Cl atom formation in the photodissociation of POCl3. ► Two types of Cl atom formation mechanism. ► Cl2 formation from the ground state supported by ab initio calculation. -- Abstract: In one-color REMPI-TOF experiment, the photodissociation dynamics of POCl3 has been studied by photolyzing POCl3 and probing the chlorine atom photofragments, namely, Cl(2P3/2) and Cl∗(2P1/2) using 2 + 1 REMPI scheme, in the 234–236 nm region. We have determined the centre-of-mass photofragment speed distribution, recoil anisotropy parameter, and the spin–orbit branching ratio for chlorine atom elimination channels. The anisotropy parameters for Cl and Cl∗ are the same, and characterized by a value of 0.0 ± 0.05. Two components, namely, the fast and the slow, are observed in the translational energy distributions of Cl and Cl∗. The average translational energies for the Cl and Cl∗ channels for the fast components are 12.5 ± 1.5 and 16.8 ± 1.5 kcal/mol, while, for the slow components, the average translational energies are 1.5 ± 1.0 and 2.5 ± 1.0 kcal/mol, respectively. Apart from the chlorine atom elimination channel, Cl2 elimination is also observed in the photodissociation of POCl3.

  4. Flight muscle shape reliably predicts flight muscle mass of migratory songbirds: a new tool for field ornithologists

    OpenAIRE

    Bauchinger, Ulf; McWilliams, Scott R.; Kolb, Harald; Popenko, Vladimir M.; Price, Edwin R.; Biebach, Herbert

    2011-01-01

    Abstract The pectoral muscle is the biggest organ within a passerine bird. It provides flight locomotion and is known to act as a protein source during periods with increased protein demands or decreased protein availability. The mass of the flight muscle is dynamic and changes during juvenile growth, reproduction, seasonal acclimatization, fasting and migration. Thus, a tool that accurately and non-invasively quantifies this phenotypic flexibility in flight muscle mass is of inter...

  5. Surface tension dominates insect flight on fluid interfaces.

    Science.gov (United States)

    Mukundarajan, Haripriya; Bardon, Thibaut C; Kim, Dong Hyun; Prakash, Manu

    2016-03-01

    Flight on the 2D air-water interface, with body weight supported by surface tension, is a unique locomotion strategy well adapted for the environmental niche on the surface of water. Although previously described in aquatic insects like stoneflies, the biomechanics of interfacial flight has never been analysed. Here, we report interfacial flight as an adapted behaviour in waterlily beetles (Galerucella nymphaeae) which are also dexterous airborne fliers. We present the first quantitative biomechanical model of interfacial flight in insects, uncovering an intricate interplay of capillary, aerodynamic and neuromuscular forces. We show that waterlily beetles use their tarsal claws to attach themselves to the interface, via a fluid contact line pinned at the claw. We investigate the kinematics of interfacial flight trajectories using high-speed imaging and construct a mathematical model describing the flight dynamics. Our results show that non-linear surface tension forces make interfacial flight energetically expensive compared with airborne flight at the relatively high speeds characteristic of waterlily beetles, and cause chaotic dynamics to arise naturally in these regimes. We identify the crucial roles of capillary-gravity wave drag and oscillatory surface tension forces which dominate interfacial flight, showing that the air-water interface presents a radically modified force landscape for flapping wing flight compared with air. PMID:26936640

  6. Attitudes towards suicide among adolescents

    Directory of Open Access Journals (Sweden)

    Čanković Dušan

    2013-01-01

    Full Text Available Introduction. Having a relatively high suicide rate of 19.5 per 100.000 inhabitants, the Republic of Serbia is in the first half on the list of the European countries concerning the number of suicides. However, the situation is particularly alarming in Vojvodina, which has been one of the areas with a very high population mortality rate caused by suicide for a long period of time not only in Serbia of nowadays, but also in former Yugoslavia. The number of suicides has increased by almost 50% over the last five and a half decades, and every eighth suicide was committed by a young person. The aim of this paper was to explore adolescents’ attitudes towards suicide and to find out whether the difference in age affects changes in attitudes regarding suicide. Material and Methods. The George Domino’s Suicide Opinion Questionnaire was completed by 254 adolescents divided into two age groups - 124 respondents were in the age group 13 to 15 and 130 of them in the age group 18 to 19. Results. The results of this study suggest that the attitudes of younger and older group of adolescents towards suicide mostly coincide and there is no statistically significant difference in the answers according to the analyzed clusters. Conclusion. This research shows that the attitudes of respondents of both age groups indicate a lack of awareness about suicide, its causes and dynamics of development of this public health problem. This leaves space for more intensive educational work in the mental health of the population, especially young people and for further research of the suicide problem as a basis for developing strategies.

  7. Long migration flights of birds

    International Nuclear Information System (INIS)

    The extremely long migration flights of some birds are carried out in one hop, necessitating a substantial prior build-up of fat fuel. We summarize the basic elements of bird flight physics with a simple model, and show how the fat reserves influence flight distance, flight speed and the power expended by the bird during flight. (paper)

  8. Java for flight software

    Science.gov (United States)

    Benowitz, E.; Niessner, A.

    2003-01-01

    This work involves developing representative mission-critical spacecraft software using the Real-Time Specification for Java (RTSJ). This work currently leverages actual flight software used in the design of actual flight software in the NASA's Deep Space 1 (DSI), which flew in 1998.

  9. Language Learners' Acculturation Attitudes

    Science.gov (United States)

    Rafieyan, Vahid; Orang, Maryam; Bijami, Maryam; Nejad, Maryam Sharafi; Eng, Lin Siew

    2014-01-01

    Learning a language involves knowledge of both linguistic competence and cultural competence. Optimal development of linguistic competence and cultural competence, however, requires a high level of acculturation attitude toward the target language culture. To this end, the present study explored the acculturation attitudes of 70 Iranian…

  10. Individual Attitudes Towards Trade

    DEFF Research Database (Denmark)

    Jäkel, Ina Charlotte; Smolka, Marcel

    2013-01-01

    Using the 2007 wave of the Pew Global Attitudes Project, this paper finds statistically significant and economically large Stolper-Samuelson effects in individuals’ preference formation towards trade policy. High-skilled individuals are substantially more pro-trade than low-skilled individuals......-Ohlin model in shaping free trade attitudes, relative to existing literature....

  11. Measuring Attitude Functions.

    Science.gov (United States)

    Anderson, Deborah S.; Kristiansen, Connie M.

    1990-01-01

    Discusses the Attitude Functions Inventory (AFI), which assesses the extent to which a person's attitude fulfills each of four psychological functions. Reports findings of a study, involving 249 undergraduates, that tested the construct validity of the AFI. Suggests that the AFI provides conceptually meaningful measures of the functions of…

  12. Pornography and Attitude Change

    Science.gov (United States)

    Wallace, Douglas H.; Wehmer, Gerald

    1971-01-01

    The results indicate that a voluntary three hour exposure to erotic pictures, some of which have been defined as being legally obscene," does not lead to a change in a person's attitudes toward such materials or in attitudes toward their censorship. (Author)

  13. Adolescent Attitudes about Rape.

    Science.gov (United States)

    Kershner, Ruth

    1996-01-01

    A very significant problem in society is adolescent rape victimization and the growing number of adolescent perpetrators. This paper examines adolescent attitudes about rape in order to develop curricular materials. It is found that adolescents exhibit conservative attitudes about gender roles, general rape myths, and victim issues. (Author)

  14. Hierarchical Models of Attitude.

    Science.gov (United States)

    Reddy, Srinivas K.; LaBarbera, Priscilla A.

    1985-01-01

    The application and use of hierarchical models is illustrated, using the example of the structure of attitudes toward a new product and a print advertisement. Subjects were college students who responded to seven-point bipolar scales. Hierarchical models were better than nonhierarchical models in conceptualizing attitude but not intention. (GDC)

  15. Thermal Energy Storage Flight Experiment in Microgravity

    Science.gov (United States)

    Namkoong, David

    1992-01-01

    The Thermal Energy Storage Flight Experiment was designed to characterize void shape and location in LiF-based phase change materials in different energy storage configurations representative of advanced solar dynamic systems. Experiment goals and payload design are described in outline and graphic form.

  16. Attitude Control Performance of IRVE-3

    Science.gov (United States)

    Dillman, Robert A.; Gsell, Valerie T.; Bowden, Ernest L.

    2013-01-01

    The Inflatable Reentry Vehicle Experiment 3 (IRVE-3) launched July 23, 2012, from NASA Wallops Flight Facility and successfully performed its mission, demonstrating both the survivability of a hypersonic inflatable aerodynamic decelerator in the reentry heating environment and the effect of an offset center of gravity on the aeroshell's flight L/D. The reentry vehicle separated from the launch vehicle, released and inflated its aeroshell, reoriented for atmospheric entry, and mechanically shifted its center of gravity before reaching atmospheric interface. Performance data from the entire mission was telemetered to the ground for analysis. This paper discusses the IRVE-3 mission scenario, reentry vehicle design, and as-flown performance of the attitude control system in the different phases of the mission.

  17. FSD- FLEXIBLE SPACECRAFT DYNAMICS

    Science.gov (United States)

    Fedor, J. V.

    1994-01-01

    The Flexible Spacecraft Dynamics and Control program (FSD) was developed to aid in the simulation of a large class of flexible and rigid spacecraft. FSD is extremely versatile and can be used in attitude dynamics and control analysis as well as in-orbit support of deployment and control of spacecraft. FSD has been used to analyze the in-orbit attitude performance and antenna deployment of the RAE and IMP class satellites, and the HAWKEYE, SCATHA, EXOS-B, and Dynamics Explorer flight programs. FSD is applicable to inertially-oriented spinning, earth oriented, or gravity gradient stabilized spacecraft. The spacecraft flexibility is treated in a continuous manner (instead of finite element) by employing a series of shape functions for the flexible elements. Torsion, bending, and three flexible modes can be simulated for every flexible element. FSD can handle up to ten tubular elements in an arbitrary orientation. FSD is appropriate for studies involving the active control of pointed instruments, with options for digital PID (proportional, integral, derivative) error feedback controllers and control actuators such as thrusters and momentum wheels. The input to FSD is in four parts: 1) Orbit Construction FSD calculates a Keplerian orbit with environmental effects such as drag, magnetic torque, solar pressure, thermal effects, and thruster adjustments; or the user can supply a GTDS format orbit tape for a particular satellite/time-span; 2) Control words - for options such as gravity gradient effects, control torques, and integration ranges; 3) Mathematical descriptions of spacecraft, appendages, and control systems- including element geometry, properties, attitudes, libration damping, tip mass inertia, thermal expansion, magnetic tracking, and gimbal simulation options; and 4) Desired state variables to output, i.e., geometries, bending moments, fast Fourier transform plots, gimbal rotation, filter vectors, etc. All FSD input is of free format, namelist construction. FSD

  18. Using Automation to Improve the Flight Software Testing Process

    Science.gov (United States)

    ODonnell, James R., Jr.; Morgenstern, Wendy M.; Bartholomew, Maureen O.

    2001-01-01

    One of the critical phases in the development of a spacecraft attitude control system (ACS) is the testing of its flight software. The testing (and test verification) of ACS flight software requires a mix of skills involving software, knowledge of attitude control, and attitude control hardware, data manipulation, and analysis. The process of analyzing and verifying flight software test results often creates a bottleneck which dictates the speed at which flight software verification can be conducted. In the development of the Microwave Anisotropy Probe (MAP) spacecraft ACS subsystem, an integrated design environment was used that included a MAP high fidelity (HiFi) simulation, a central database of spacecraft parameters, a script language for numeric and string processing, and plotting capability. In this integrated environment, it was possible to automate many of the steps involved in flight software testing, making the entire process more efficient and thorough than on previous missions. In this paper, we will compare the testing process used on MAP to that used on other missions. The software tools that were developed to automate testing and test verification will be discussed, including the ability to import and process test data, synchronize test data and automatically generate HiFi script files used for test verification, and an automated capability for generating comparison plots. A summary of the benefits of applying these test methods on MAP will be given. Finally, the paper will conclude with a discussion of re-use of the tools and techniques presented, and the ongoing effort to apply them to flight software testing of the Triana spacecraft ACS subsystem.

  19. Insect flight on fluid interfaces: a chaotic interfacial oscillator

    Science.gov (United States)

    Mukundarajan, Haripriya; Prakash, Manu

    2013-11-01

    Flight is critical to the dominance of insect species on our planet, with about 98 percent of insect species having wings. How complex flight control systems developed in insects is unknown, and arboreal or aquatic origins have been hypothesized. We examine the biomechanics of aquatic origins of flight. We recently reported discovery of a novel mode of ``2D flight'' in Galerucella beetles, which skim along an air-water interface using flapping wing flight. This unique flight mode is characterized by a balance between capillary forces from the interface and biomechanical forces exerted by the flapping wings. Complex interactions on the fluid interface form capillary wave trains behind the insect, and produce vertical oscillations at the surface due to non-linear forces arising from deformation of the fluid meniscus. We present both experimental observations of 2D flight kinematics and a dynamic model explaining the observed phenomena. Careful examination of this interaction predicts the chaotic nature of interfacial flight and takeoff from the interface into airborne flight. The role of wingbeat frequency, stroke plane angle and body angle in determining transition between interfacial and fully airborne flight is highlighted, shedding light on the aquatic theory of flight evolution.

  20. DRUG USE ATTITUDE OF TURKISH ARMED FORCES PILOTS

    Directory of Open Access Journals (Sweden)

    Ahmet SEN

    Full Text Available Introduction: Because of the dangers in the nature of flight, pilots have to fly in perfect medical conditions. Besides the undesirable effects of the diseases, side effects of the medications used in the treatment might also risk flight safety. In this study, we investigated the drug use attitude of Turkish Armed Forces pilots. Material-Method: In order to investigate their drug use attitude, a questionnaire was given to 408 pilots at GATA Aerospace Medical Center. Drug use attitude, drugs used by pilots and side effects were questioned. Results: 41 % of pilots reported that they used drugs during active flying. But the drug use rate of Army pilots was 57 %, which was higher than the Air Force and Navy pilots. The most common used drugs were analgesics. Conclusion: It is obvious that pilots might use drugs without informing their flight surgeon. Flight surgeons should always educate the pilots about the importance and dangers of self-medication. [TAF Prev Med Bull 2004; 3(9.000: 213-220

  1. Performance evaluation and design of flight vehicle control systems

    CERN Document Server

    Falangas, Eric T

    2015-01-01

    This book will help students, control engineers and flight dynamics analysts to model and conduct sophisticated and systemic analyses of early flight vehicle designs controlled with multiple types of effectors and to design and evaluate new vehicle concepts in terms of satisfying mission and performance goals. Performance Evaluation and Design of Flight Vehicle Control Systems begins by creating a dynamic model of a generic flight vehicle that includes a range of elements from airplanes and launch vehicles to re-entry vehicles and spacecraft. The models may include dynamic effects dealing with structural flexibility, as well as dynamic coupling between structures and actuators, propellant sloshing, and aeroelasticity, and they are typically used for control analysis and design. The book shows how to efficiently combine different types of effectors together, such as aero-surfaces, TVC, throttling engines and RCS, to operate as a system by developing a mixing logic atrix. Methods of trimming a vehicle controll...

  2. Simulation and experimental research on line throwing rocket with flight

    Directory of Open Access Journals (Sweden)

    Wen-bin Gu

    2014-06-01

    Full Text Available The finite segment method is used to model the line throwing rocket system. A dynamic model of line throwing rocket with flight motion based on Kane's method is presented by the kinematics description of the system and the consideration of the forces acting on the system. The experiment designed according to the parameters of the dynamic model is made. The simulation and experiment results, such as range, velocity and flight time, are compared and analyzed. The simulation results are basically agreed with the test data, which shows that the flight motion of the line throwing rocket can be predicted by the dynamic model. A theoretical model and guide for the further research on the disturbance of rope and the guidance, flight control of line throwing rocket are provided by the dynamic modeling.

  3. Chlorine atom formation dynamics in the dissociation of halogenated pyridines after photoexcitation at 235 nm: A resonance enhanced multiphoton ionization-time of flight (REMPI-TOF) study

    Science.gov (United States)

    Srinivas, D.; Upadhyaya, Hari P.

    2016-06-01

    The photodissociation dynamics of halogen substituted pyridines, namely, 3-chloropyridine (ClPy) and 3-chloro-2,4,5,6-tetrafluoropyridine (ClFPy), has been studied around 235 nm by detecting chlorine atoms in their spin orbit states Cl(2P3/2) and Cl∗(2P1/2) using the REMPI-TOF technique. We have determined the translational energy distribution, the recoil anisotropy parameter, β, and the spin-orbit branching ratio, for chlorine atom elimination channels. The TOF profiles for Cl and Cl∗ are found to be independent of laser polarization suggesting a zero value for β, within the experimental uncertainties. For 3-chloropyridine, the average translational energies for Cl and Cl∗ elimination channels are determined to be 3.7 ± 1.0 and 7.0 ± 1.5 kcal/mol, respectively. Similarly, for 3-chloro-2,4,5,6-tetrafluoropyridine, the average translational energies for Cl and Cl∗ elimination channels are determined to be 8.0 ± 1.5 and 9.0 ± 1.5 kcal/mol, respectively. The theoretical calculation suggests that the fluorine substitution increases the possibility of cross over to the π-σ∗ state from the initially prepared π-π∗ state.

  4. Fused Reality for Enhanced Flight Test Capabilities

    Science.gov (United States)

    Bachelder, Ed; Klyde, David

    2011-01-01

    The feasibility of using Fused Reality-based simulation technology to enhance flight test capabilities has been investigated. In terms of relevancy to piloted evaluation, there remains no substitute for actual flight tests, even when considering the fidelity and effectiveness of modern ground-based simulators. In addition to real-world cueing (vestibular, visual, aural, environmental, etc.), flight tests provide subtle but key intangibles that cannot be duplicated in a ground-based simulator. There is, however, a cost to be paid for the benefits of flight in terms of budget, mission complexity, and safety, including the need for ground and control-room personnel, additional aircraft, etc. A Fused Reality(tm) (FR) Flight system was developed that allows a virtual environment to be integrated with the test aircraft so that tasks such as aerial refueling, formation flying, or approach and landing can be accomplished without additional aircraft resources or the risk of operating in close proximity to the ground or other aircraft. Furthermore, the dynamic motions of the simulated objects can be directly correlated with the responses of the test aircraft. The FR Flight system will allow real-time observation of, and manual interaction with, the cockpit environment that serves as a frame for the virtual out-the-window scene.

  5. A computational fluid dynamics simulation of the hypersonic flight of the Pegasus(TM) vehicle using an artificial viscosity model and a nonlinear filtering method. M.S. Thesis

    Science.gov (United States)

    Mendoza, John Cadiz

    1995-01-01

    The computational fluid dynamics code, PARC3D, is tested to see if its use of non-physical artificial dissipation affects the accuracy of its results. This is accomplished by simulating a shock-laminar boundary layer interaction and several hypersonic flight conditions of the Pegasus(TM) launch vehicle using full artificial dissipation, low artificial dissipation, and the Engquist filter. Before the filter is applied to the PARC3D code, it is validated in one-dimensional and two-dimensional form in a MacCormack scheme against the Riemann and convergent duct problem. For this explicit scheme, the filter shows great improvements in accuracy and computational time as opposed to the nonfiltered solutions. However, for the implicit PARC3D code it is found that the best estimate of the Pegasus experimental heat fluxes and surface pressures is the simulation utilizing low artificial dissipation and no filter. The filter does improve accuracy over the artificially dissipative case but at a computational expense greater than that achieved by the low artificial dissipation case which has no computational time penalty and shows better results. For the shock-boundary layer simulation, the filter does well in terms of accuracy for a strong impingement shock but not as well for weaker shock strengths. Furthermore, for the latter problem the filter reduces the required computational time to convergence by 18.7 percent.

  6. A Dynamic Optimization Research of Flight Seat Inventory Control Based on the Hub and Spoke Route Network%基于轮辐式航线网络的航班舱位控制动态优化

    Institute of Scientific and Technical Information of China (English)

    高金敏; 乐美龙

    2015-01-01

    To keep the seat inventory control closer to actual passenger reservation demand , and effectively improve airline revenue , a dynamic optimization model of seat inventory control is established based on the characteristics of the hub and spoke route network , from the perspective of practical operation , considering demand uncertainty and dynamics at the same time .The random arrival passenger number of different res-ervation phases is obtained by simulation , the number of seats to protect each flight segment is obtained by using genetic algorithm , and the nested grade is obtained according to the fare value .The running results show that this method can increase the total revenue by 2 .35%compared with the method using genetic al-gorithm only .It has certain reference significance .%为使航班舱位控制更贴近旅客实际订座需求,有效提高航空公司收益,基于轮辐式航线网络结构的特点,从航班实际运行的角度出发,同时考虑需求的不确定性以及动态性,建立舱位控制动态优化模型。通过模拟仿真得到各订座阶段旅客随机到达数量,运用遗传算法求得各航班舱位等级的座位保护数,根据票价价值进行等级嵌套。结果表明,该方法与单独使用遗传算法的舱位控制方法相比较,能将总收益提高2.35%,具有一定的参考意义。

  7. Magnesium and Space Flight

    Science.gov (United States)

    Smith, Scott M.; Zwart, Sara R.

    2016-01-01

    Magnesium is an essential nutrient for muscle, cardiovascular, and bone health on Earth, and during space flight. We sought to evaluate magnesium status in astronauts before, during, and after space missions, in 43 astronauts (34 male, 9 female) on 4-6 month space flight missions. We also studied individuals participating in a ground analog of space flight, (head-down tilt bed rest, n=27, 35 +/- 7 y). We evaluated serum concentration and 24-hour urinary excretion of magnesium along with estimates of tissue magnesium status from sublingual cells. Serum magnesium increased late in flight, while urinary magnesium excretion was higher over the course of 180-d space missions. Urinary magnesium increased during flight but decreased significantly at landing. Neither serum nor urinary magnesium changed during bed rest. For flight and bed rest, significant correlations existed between the area under the curve of serum and urinary magnesium and the change in total body bone mineral content. Tissue magnesium concentration was unchanged after flight and bed rest. Increased excretion of magnesium is likely partially from bone and partially from diet, but importantly, it does not come at the expense of muscle tissue stores. While further study is needed to better understand the implications of these findings for longer space exploration missions, magnesium homeostasis and tissue status seem well maintained during 4- to 6-month space missions.

  8. UAV Flight Control System Based on an Intelligent BEL Algorithm

    Directory of Open Access Journals (Sweden)

    Huangzhong Pu

    2013-02-01

    Full Text Available A novel intelligent control strategy based on a brain emotional learning (BEL algorithm is investigated in the application of the attitude control of a small unmanned aerial vehicle (UAV in this study. The BEL model imitates the emotional learning process in the amygdala‐ orbitofrontal (A‐O system of mammalian brains. Here it is used to develop the flight control system of the UAV. The control laws of elevator, aileron and rudder manipulators adopt the forms of traditional flight control laws, and three BEL models are used in above three control loops, to on‐ line regulate the control gains of each controller. Obviously, a BEL intelligent control system is self‐learning and self‐adaptive, which is important for UAVs when flight conditions change, while traditional flight control systems remain unchanged after design. In simulation, the UAV is on a flat flight and suddenly a wind disturbs it making it depart from the equilibrium state. In order to make the UAV recover to the original equilibrium state, the BEL intelligent control system is adopted. The simulation results illustrate that the BEL‐based intelligent flight control system has characteristics of better adaptability and stronger robustness, when compared with the traditional flight control system.

  9. DOA estimation for attitude determination on communication satellites

    Institute of Scientific and Technical Information of China (English)

    Yang Bin; He Feng; Jin Jin; Xiong Huagang; Xu Guanghan

    2014-01-01

    In order to determine an appropriate attitude of three-axis stabilized communication satellites, this paper describes a novel attitude determination method using direction of arrival (DOA) estimation of a ground signal source. It differs from optical measurement, magnetic field measurement, inertial measurement, and global positioning system (GPS) attitude determination. The proposed method is characterized by taking the ground signal source as the attitude reference and acquiring attitude information from DOA estimation. Firstly, an attitude measurement equation with DOA estimation is derived in detail. Then, the error of the measurement equation is analyzed. Finally, an attitude determination algorithm is presented using a dynamic model, the attitude measurement equation, and measurement errors. A developing low Earth orbit (LEO) satellite which tests mobile communication technology with smart antennas can be stabilized in three axes by corporately using a magnetometer, reaction wheels, and three-axis magnetorquer rods. Based on the communication satellite, simulation results demonstrate the effectiveness of the method. The method could be a backup of attitude determination to prevent a system failure on the satellite. Its precision depends on the number of snapshots and the input signal-to-noise ratio (SNR) with DOA estimation.

  10. DOA estimation for attitude determination on communication satellites

    Directory of Open Access Journals (Sweden)

    Yang Bin

    2014-06-01

    Full Text Available In order to determine an appropriate attitude of three-axis stabilized communication satellites, this paper describes a novel attitude determination method using direction of arrival (DOA estimation of a ground signal source. It differs from optical measurement, magnetic field measurement, inertial measurement, and global positioning system (GPS attitude determination. The proposed method is characterized by taking the ground signal source as the attitude reference and acquiring attitude information from DOA estimation. Firstly, an attitude measurement equation with DOA estimation is derived in detail. Then, the error of the measurement equation is analyzed. Finally, an attitude determination algorithm is presented using a dynamic model, the attitude measurement equation, and measurement errors. A developing low Earth orbit (LEO satellite which tests mobile communication technology with smart antennas can be stabilized in three axes by corporately using a magnetometer, reaction wheels, and three-axis magnetorquer rods. Based on the communication satellite, simulation results demonstrate the effectiveness of the method. The method could be a backup of attitude determination to prevent a system failure on the satellite. Its precision depends on the number of snapshots and the input signal-to-noise ratio (SNR with DOA estimation.

  11. Attitude Control on the Pico Satellite Solar Cell Testbed-2

    OpenAIRE

    Janson, Siegfried; Hardy, Brian; Chin, Andrew; Rumsey, Daniel; Ehrlich, Daniel; Hinkley, David

    2012-01-01

    The Pico Satellite Solar Cell Testbed-2 (PSSCT-2) was a 5” x 5” x 10”, 3.7-kg mass nanosatellite ejected from the Space Shuttle Atlantis during the final STS-135 mission on July 20, 2011. PSSCT-2 had a three-axis attitude control system to enable firing of solid rockets for orbit raising, pointing of solar cells normal to the sun for on-orbit performance monitoring, and pointing of a GPS antenna in the anti-flight direction for radio-occultation measurements. Attitude determination and contro...

  12. Applications software supporting the Spartan Attitude Control System

    Science.gov (United States)

    Stone, R. W.

    1986-01-01

    The native software supporting a single mission for the Spartan Attitude Control System can require up to 40,000 lines of code. Most of this must be rewritten for each mission. Control system engineers use an array of Applications Software Packages residing in ground computers to write each mission's flight software. These Applications Packages are written in the 'C' programming language and run under the UNIX Operating System. This paper discusses each of the Attitude Control Applications Software Packages, and describes the purpose and design of each.

  13. Peculiarities of transformation of adaptation level of the astronaut in conditions of long-lasting flight

    Science.gov (United States)

    Padashulya, H.; Prisnyakova, L.; Prisnyakov, V.

    Prognostication of the development of adverse factors of psychological processes in the personality of the astronaut who time and again feels transformation of internal structure of his personality is one of cardinal problems of the long-lasting flight Adaptation to changing conditions of long-lasting flight is of particular importance because it has an effect on the efficiency of discharged functions and mutual relations in the team The fact of standard psychological changes emerging in the personality being in the state of structural transformations is the precondition for the possibility of prognostication Age-specific gender and temperamental differences in the personality enable to standardize these changes Examination of the process of transformation of adaptation level of the personality in the varied environment depending on the type of temperament and constituents age and gender is chief object of the report In the report it is shown that in the process of transformation of adaptation parameters - attitude to guillemotleft work guillemotright guillemotleft family guillemotright guillemotleft environment guillemotright and guillemotleft ego guillemotright - the changes can go in two directions - in the direction of increase and decline of indexes The trend of increase enables to accumulate them and form potentiality to reduce or increase the level of personality adaptation There is a hypothesis that the dynamics of the process of transformation of adaptation parameter is shown up in the orientation of increase of

  14. Flight Planning Branch Space Shuttle Lessons Learned

    Science.gov (United States)

    Price, Jennifer B.; Scott, Tracy A.; Hyde, Crystal M.

    2011-01-01

    Planning products and procedures that allow the mission flight control teams and the astronaut crews to plan, train and fly every Space Shuttle mission have been developed by the Flight Planning Branch at the NASA Johnson Space Center. As the Space Shuttle Program ends, lessons learned have been collected from each phase of the successful execution of these Shuttle missions. Specific examples of how roles and responsibilities of console positions that develop the crew and vehicle attitude timelines will be discussed, as well as techniques and methods used to solve complex spacecraft and instrument orientation problems. Additionally, the relationships and procedural hurdles experienced through international collaboration have molded operations. These facets will be explored and related to current and future operations with the International Space Station and future vehicles. Along with these important aspects, the evolution of technology and continual improvement of data transfer tools between the shuttle and ground team has also defined specific lessons used in the improving the control teams effectiveness. Methodologies to communicate and transmit messages, images, and files from Mission Control to the Orbiter evolved over several years. These lessons have been vital in shaping the effectiveness of safe and successful mission planning that have been applied to current mission planning work in addition to being incorporated into future space flight planning. The critical lessons from all aspects of previous plan, train, and fly phases of shuttle flight missions are not only documented in this paper, but are also discussed as how they pertain to changes in process and consideration for future space flight planning.

  15. Insect flight muscle metabolism

    OpenAIRE

    Horst, D.J. van der; Beenakkers, A.M.Th.; Marrewijk, W.J.A. van

    1984-01-01

    The flight of an insect is of a very complicated and extremely energy-demanding nature. Wingbeat frequency may differ between various species but values up to 1000 Hz have been measured. Consequently metabolic activity may be very high during flight and the transition from rest to flight is accompanied by an increase of 50-100-fold in metabolic rate. Small mammals running at maximal speed and flying birds achieve metabolic rates exceeding resting levels by only 7-14-fold. The exaggerated meta...

  16. Solar Sail Attitude Control Performance Comparison

    Science.gov (United States)

    Bladt, Jeff J.; Lawrence, Dale A.

    2005-01-01

    Performance of two solar sail attitude control implementations is evaluated. One implementation employs four articulated reflective vanes located at the periphery of the sail assembly to generate control torque about all three axes. A second attitude control configuration uses mass on a gimbaled boom to alter the center-of-mass location relative to the center-of-pressure producing roll and pitch torque along with a pair of articulated control vanes for yaw control. Command generation algorithms employ linearized dynamics with a feedback inversion loop to map desired vehicle attitude control torque into vane and/or gimbal articulation angle commands. We investigate the impact on actuator deflection angle behavior due to variations in how the Jacobian matrix is incorporated into the feedback inversion loop. Additionally, we compare how well each implementation tracks a commanded thrust profile, which has been generated to follow an orbit trajectory from the sun-earth L1 point to a sub-L1 station.

  17. Analysis of shadowing effects on MIR photovoltaic and solar dynamic power systems

    Science.gov (United States)

    Fincannon, James

    1995-01-01

    The NASA Lewis Research Center is currently working with RSC-Energia, the Russian Space Agency, and Allied Signal in developing a flight demonstration solar dynamic power system. This type of power system is dependent upon solar flux that is reflected and concentrated into a thermal storage system to provide the thermal energy input to a closed-cycle Brayton heat engine. The solar dynamic unit will be flown on the Russian Mir space station in anticipation of use on the International Space Station Alpha. By the time the power system is launched, the Mir will be a spatially complex configuration which will have, in addition to the three-gimbaled solar dynamic unit, eleven solar array wings that are either fixed or track the Sun along one axis and a variety or repositionable habitation and experiment modules. The proximity of arrays to modules creates a situation which makes it highly probable that there will be varying solar flux due to shadowing on the solar dynamic unit and some of the arrays throughout the orbit. Shadowing causes fluctuations in the power output from the arrays and the solar dynamic power system, thus reducing the energy capabilities of the spacecraft. An assessment of the capabilities of the power system under these conditions is an important part in influencing the design and operations of the spacecraft and predicting its energy performance. This paper describes the results obtained from using the Orbiting Spacecraft Shadowing Analysis Station program that was integrated into the Station Power Analysis for Capability Evaluation (SPACE) electrical power system computer program. OSSA allows one to consider the numerous complex factors for analyzing the shadowing effects on the electrical power system including the variety of spacecraft hardware geometric configurations, yearly and daily orbital variations in the vehicle attitude and orbital maneuvers (for communications coverage, payload pointing requirements and rendezvous/docking with other

  18. Attitudes Towards Immigration

    DEFF Research Database (Denmark)

    Malchow-Møller, Nikolaj; Roland Munch, Jakob; Schroll, Sanne;

    2006-01-01

    In this paper, we re-examine the role of economic self-interest in shaping people's attitudes towards immigration, using data from the European Social Survey 2002/2003. Compared to the existing literature, there are two main contributions of the present paper. First, we develop a more powerful test...... of the hypothesis that a positive relationship between education and attitudes towards immigration reflects economic self-interest in the labour market. Second, we develop an alternativeand more direct test of whether economic self-interest mattersfor people's attitudes towards immigration. We find...

  19. Attitudes Towards Immigration

    DEFF Research Database (Denmark)

    Malchow-Møller, Nikolaj; Munch, Jakob Roland; Schroll, Sanne;

    In this paper, we re-examine the role of economic self-interest in shaping people’s attitudes towards immigration, using data from the European Social Survey 2002/2003. Compared to the existing literature, there are two main contributions of the present paper. First, we develop a more powerful test...... of the hypothesis that a positive relationship between education and attitudes towards immigration reflects economic self-interest in the labour market. Second, we develop an alternative and more direct test of whether economic self-interest matters for people’s attitudes towards immigration. We find...

  20. Guidance and navigation for electromagnetic formation flight orbit modification

    OpenAIRE

    Fabacher, Emilien; Lizy-Destrez, Stéphanie; Alazard, Daniel; Ankersen, Finn

    2015-01-01

    Electromagnetic formation flight (EMFF) is a recent concept, aiming to control relative motions of formation flying satellites using magnetic interactions. Each satellite is equipped with a magnetic dipole. The formation degree of cooperation,depending on the ability of each spacecraft to control its dipole and its attitude, has a great impact on the methods used to perform the formation GNC. This paper describes results obtained in the case of semi-cooperative EMFF composed of a chaser...

  1. Flight Systems Monitor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I project will develop the Flight System Monitor which will use non-intrusive electrical monitoring (NEMO). The electronic system health of...

  2. Acquisition of a Biomedical Database of Acute Responses to Space Flight during Commercial Personal Suborbital Flights

    Science.gov (United States)

    Charles, John B.; Richard, Elizabeth E.

    2010-01-01

    There is currently too little reproducible data for a scientifically valid understanding of the initial responses of a diverse human population to weightlessness and other space flight factors. Astronauts on orbital space flights to date have been extremely healthy and fit, unlike the general human population. Data collection opportunities during the earliest phases of space flights to date, when the most dynamic responses may occur in response to abrupt transitions in acceleration loads, have been limited by operational restrictions on our ability to encumber the astronauts with even minimal monitoring instrumentation. The era of commercial personal suborbital space flights promises the availability of a large (perhaps hundreds per year), diverse population of potential participants with a vested interest in their own responses to space flight factors, and a number of flight providers interested in documenting and demonstrating the attractiveness and safety of the experience they are offering. Voluntary participation by even a fraction of the flying population in a uniform set of unobtrusive biomedical data collections would provide a database enabling statistical analyses of a variety of acute responses to a standardized space flight environment. This will benefit both the space life sciences discipline and the general state of human knowledge.

  3. INSECT FLIGHT - BIOACOUSTICAL APPROACH

    OpenAIRE

    Gopala Krishna, G.; Krishna Shankar, B.; Ahmad, A.

    1990-01-01

    Insect aerodynamics is drawing the attention of a number of researchers belonging to different disciplines with a view to understand its aerodynamic capabilities so as to revolutionise the aircraft technology. It is possible to understand, to some extent, the insect aerodynamics by experimentally determining the frequency of wing beat in its fethered state of flight by using flight sound technique and computing rate of mass flow, velocity, acceleration and mass of air induced in downward dire...

  4. Electronic flight instrument system

    OpenAIRE

    Hauptman, Luka

    2009-01-01

    This thesis describes basic concepts in research and development of a simple electronic flight instrument system, which displays piston engine data to the pilot. The main purpose is to build a functional prototype and acquire knowledge, which will enable us to further develop the system. The second chapter presents fundamentals of electronic flight instrument systems used in large commercial aircrafts. A detailed description of basic approaches to system implementation used by two of the b...

  5. Adaptive structures flight experiments

    Science.gov (United States)

    Martin, Maurice

    The topics are presented in viewgraph form and include the following: adaptive structures flight experiments; enhanced resolution using active vibration suppression; Advanced Controls Technology Experiment (ACTEX); ACTEX program status; ACTEX-2; ACTEX-2 program status; modular control patch; STRV-1b Cryocooler Vibration Suppression Experiment; STRV-1b program status; Precision Optical Bench Experiment (PROBE); Clementine Spacecraft Configuration; TECHSAT all-composite spacecraft; Inexpensive Structures and Materials Flight Experiment (INFLEX); and INFLEX program status.

  6. Flight Crew Scheduling

    OpenAIRE

    Graves, Glenn W.; Richard D. McBride; Ira Gershkoff; Diane Anderson; Deepa Mahidhara

    1993-01-01

    A new crew scheduling optimization system has been developed for United Airlines. The system was developed to permit quick response to schedule changes and to reduce crew scheduling costs. It was designed to work efficiently for both the medium sized problems (300 flights daily) and the very large problems (1,700 flights daily) that United must solve. The system has two main components, a generator and an optimizer. The generator creates pairings (candidate crew trips) which are fed as variab...

  7. A Few Questions on Flight Control System Research and Design of Near Space Vehicle%关于近空间飞行器飞行控制系统研究设计的几个问题

    Institute of Scientific and Technical Information of China (English)

    姜长生

    2015-01-01

    Several problems on the flight control system design of Near Space Vehicle ( NSV ) are discussed. Firstly, the recent developments and the importance of NSV research are introduced. Then, several important problems for the NSV flight control are discussed, including:1 ) modeling of NSV flight motion control;2 ) robustness of NSV flight attitude control;3 ) integrated coordination control between flight attitude and centre-of-gravity motion;4 ) integrated coordination control between flight and engine control;and 5 ) anti-disturbance of flight control. The corresponding view is given and methods are proposed for solution of the problems. At last, the author’s viewpoints on design principles of NSV flight control system are presented, and the significance of applying integrated coordination control idea in NSV flight control system design is pointed out.

  8. Random flights in confining interfacial systems

    International Nuclear Information System (INIS)

    Porous materials, concentrated colloidal suspensions are examples of confining systems developing large specific surface and presenting a rich variety of shapes. Such an interfacial confinement strongly influences the molecular dynamics of embedded fluids and the diffusive motion of entrapped Brownian particles. An individual trajectory near the interface can be described as an alternate succession of adsorption steps and random flights in the bulk. Statistical properties of these random flights in various interfacial confining systems are needed as prerequisites in order to understand the full transport process. Related to first passage processes, these properties play a central role in numerous problems such as the mean first exit time in a bounded domain, heterogeneous catalytic reactivity and nuclear magnetic relaxation in complex and biological fluids. In the present work, we first consider the various possibilities of connecting two points of a smooth interface by a random flight in the bulk. Second, we analyse from the theoretical and experimental points of view a way to probe Brownian flight statistics. From the experimental point of view, we investigate the slow fluid dynamics near some colloidal interfaces by field-cycling NMR relaxometry. This is a way to follow slow dynamical correlations from 1 ns to 10 μs. This spectroscopy appears to be a good choice, considering that the algebraic nature of the probability of the first return to a surface builds a long-time memory. The experimental part confirms that the embedded fluid dynamics is sensitive to possible morphologic crossover and provides information about interface geometry. We also believe that such an approach can be used to probe interfacial dynamics by itself, for example in the case of a colloidal system undergoing a phase transition (dynamical arrest, rotational blockage,...)

  9. Interprofessional Flight Camp.

    Science.gov (United States)

    Alfes, Celeste M; Rowe, Amanda S

    2016-01-01

    The Dorothy Ebersbach Academic Center for Flight Nursing in Cleveland, OH, holds an annual flight camp designed for master's degree nursing students in the acute care nurse practitioner program, subspecializing in flight nursing at the Frances Payne Bolton School of Nursing at Case Western Reserve University. The weeklong interprofessional training is also open to any health care provider working in an acute care setting and focuses on critical care updates, trauma, and emergency care within the critical care transport environment. This year, 29 graduate nursing students enrolled in a master's degree program from Puerto Rico attended. Although the emergency department in Puerto Rico sees and cares for trauma patients, there is no formal trauma training program. Furthermore, the country only has 1 rotor wing air medical transport service located at the Puerto Rico Medical Center in San Juan. Flight faculty and graduate teaching assistants spent approximately 9 months planning for their participation in our 13th annual flight camp. Students from Puerto Rico were extremely pleased with the learning experiences at camp and expressed particular interest in having more training time within the helicopter flight simulator. PMID:27021671

  10. Magnesium and Space Flight

    Directory of Open Access Journals (Sweden)

    Scott M. Smith

    2015-12-01

    Full Text Available Magnesium is an essential nutrient for muscle, cardiovascular, and bone health on Earth, and during space flight. We sought to evaluate magnesium status in 43 astronauts (34 male, 9 female; 47 ± 5 years old, mean ± SD before, during, and after 4–6-month space missions. We also studied individuals participating in a ground analog of space flight (head-down-tilt bed rest; n = 27 (17 male, 10 female, 35 ± 7 years old. We evaluated serum concentration and 24-h urinary excretion of magnesium, along with estimates of tissue magnesium status from sublingual cells. Serum magnesium increased late in flight, while urinary magnesium excretion was higher over the course of 180-day space missions. Urinary magnesium increased during flight but decreased significantly at landing. Neither serum nor urinary magnesium changed during bed rest. For flight and bed rest, significant correlations existed between the area under the curve of serum and urinary magnesium and the change in total body bone mineral content. Tissue magnesium concentration was unchanged after flight and bed rest. Increased excretion of magnesium is likely partially from bone and partially from diet, but importantly, it does not come at the expense of muscle tissue stores. While further study is needed to better understand the implications of these findings for longer space exploration missions, magnesium homeostasis and tissue status seem well maintained during 4–6-month space missions.

  11. Attitudes to audit

    OpenAIRE

    Waters, W. H. R.; Kelly, J.; Lunn, J E

    1983-01-01

    An exercise in audit was arranged jointly by the Local Medical Committee and the Royal College of General Practitioners in the Doncaster area. This was followed up by a questionnaire enquiring about attitudes to the audit.

  12. Dynamics

    CERN Document Server

    Goodman, Lawrence E

    2001-01-01

    Beginning text presents complete theoretical treatment of mechanical model systems and deals with technological applications. Topics include introduction to calculus of vectors, particle motion, dynamics of particle systems and plane rigid bodies, technical applications in plane motions, theory of mechanical vibrations, and more. Exercises and answers appear in each chapter.

  13. Attitudes and Beliefs in Advertising

    OpenAIRE

    Pohořelá, Denisa

    2011-01-01

    Bachelor thesis of name „Attitudes and Belief in Advertising“ considers determination of general attitude towards advertising and testing of factors which effect advertising message´s consignee. Belief in advertising has character of general attitude or attitude towards brand. My bachelor abstract recognizes particulary these general attitudes. Working factors in advertising are: relation, politics, sex, symbolism, family. For this purpose questionnaire research was chosen. A part ...

  14. Consumers' attitudes towards sonic logos

    OpenAIRE

    Shi, Qichao

    2012-01-01

    Sonic logos are increasingly being used as a way of sonic branding in marketing activities. Scholars have acknowledged the benefits of sonic logos, such as communicating brand attributes to consumers. However, studies about consumers’ attitudes towards sonic logos are scarce. This paper examined consumers’ attitudes towards sonic logos, particularly how cognitive and affective elements correlated with such attitudes, whether such attitudes had correlations with consumers’ attitudes towards th...

  15. Attitudes Toward Single Parenthood

    OpenAIRE

    Pećnik, Ninoslava; Raboteg-Šarić, Zora

    2010-01-01

    Changes in the family structure produce different social reactions, and the negative attitude of society towards single parent families can generate social vulnerability of this group. (The lack of) understanding of the environment influences not only the behaviour of other persons toward single parents and their children, but also their attitudes and personal experience of single parenthood. In order to improve the insight into the experience of new forms of family in our society, a survey o...

  16. Student attitudes to entrepreneurship

    OpenAIRE

    Christine K. VOLKMANN; Kim Oliver TOKARSKI

    2009-01-01

    This study on Student Attitudes to Entrepreneurship investigates the image which university students have of entrepreneurs and entrepreneurship. It is an initial exploratory/empirical study, which looks at the situation in Germany, Romania, Latvia, Italy and Austria. The study, based on questionnaires, shows that there are significant differences but also common features to the image of entrepreneurship and attitudes to it in the five countries. It is interesting to note that the students pol...

  17. Attitudes towards documentary soundstracks

    DEFF Research Database (Denmark)

    Have, Iben

    2010-01-01

    Musical experience is often related to an emotional and imaginative engagement of the listener. Discourses of journalistic documentaries relate primarily to inferential knowledge systems in which the uses of background music as a communicative device become an object of epistemological critique....... By listening to different voices - primarily from four focus group interviews - the article will discuss attitudes towards musical soundtracks in documentaries, attitudes being negotiated between emotional immersion and critical reflection, with the concept of manipulation as an underlying theme. In the end...

  18. Attitudes towards immigration

    DEFF Research Database (Denmark)

    Malchow-Møller, Nikolaj; Munch, Jakob Roland; Skaksen, Jan Rose;

    2008-01-01

    Using the European Social Survey 2002/3, we develop a new test of whether economic self-interest influences people's attitudes towards immigration, exploiting that people have widely different perceptions of the consequences of immigration......Using the European Social Survey 2002/3, we develop a new test of whether economic self-interest influences people's attitudes towards immigration, exploiting that people have widely different perceptions of the consequences of immigration...

  19. Minisatellite Attitude Guidance Using Reaction Wheels

    Directory of Open Access Journals (Sweden)

    Ion STROE

    2015-06-01

    Full Text Available In a previous paper [2], the active torques needed for the minisatellite attitude guidance from one fixed attitude posture to another fixed attitude posture were determined using an inverse dynamics method. But when considering reaction/momentum wheels, instead of this active torques computation, the purpose is to compute the angular velocities of the three reaction wheels which ensure the minisatellite to rotate from the initial to the final attitude. This paper presents this computation of reaction wheels angular velocities using a similar inverse dynamics method based on inverting Euler’s equations of motion for a rigid body with one fixed point, written in the framework of the x-y-z sequence of rotations parameterization. For the particular case A=B not equal C of an axisymmetric minisatellite, the two computations are compared: the active torques computation versus the computation of reaction wheels angular velocities ̇x , ̇y and ̇z. An interesting observation comes out from this numerical study: if the three reaction wheels are identical (with Iw the moment of inertia of one reaction wheel with respect to its central axis, then the evolutions in time of the products between Iw and the derivatives of the reaction wheels angular velocities, i.e. ̇ , ̇ and ̇ remain the same and do not depend on the moment of inertia Iw.

  20. Real-Time Single-Frequency GPS/MEMS-IMU Attitude Determination of Lightweight UAVs

    Directory of Open Access Journals (Sweden)

    Christian Eling

    2015-10-01

    Full Text Available In this paper, a newly-developed direct georeferencing system for the guidance, navigation and control of lightweight unmanned aerial vehicles (UAVs, having a weight limit of 5 kg and a size limit of 1.5 m, and for UAV-based surveying and remote sensing applications is presented. The system is intended to provide highly accurate positions and attitudes (better than 5 cm and 0.5° in real time, using lightweight components. The main focus of this paper is on the attitude determination with the system. This attitude determination is based on an onboard single-frequency GPS baseline, MEMS (micro-electro-mechanical systems inertial sensor readings, magnetic field observations and a 3D position measurement. All of this information is integrated in a sixteen-state error space Kalman filter. Special attention in the algorithm development is paid to the carrier phase ambiguity resolution of the single-frequency GPS baseline observations. We aim at a reliable and instantaneous ambiguity resolution, since the system is used in urban areas, where frequent losses of the GPS signal lock occur and the GPS measurement conditions are challenging. Flight tests and a comparison to a navigation-grade inertial navigation system illustrate the performance of the developed system in dynamic situations. Evaluations show that the accuracies of the system are 0.05° for the roll and the pitch angle and 0.2° for the yaw angle. The ambiguities of the single-frequency GPS baseline can be resolved instantaneously in more than 90% of the cases.

  1. Real-time single-frequency GPS/MEMS-IMU attitude determination of lightweight UAVs.

    Science.gov (United States)

    Eling, Christian; Klingbeil, Lasse; Kuhlmann, Heiner

    2015-01-01

    In this paper, a newly-developed direct georeferencing system for the guidance, navigation and control of lightweight unmanned aerial vehicles (UAVs), having a weight limit of 5 kg and a size limit of 1.5 m, and for UAV-based surveying and remote sensing applications is presented. The system is intended to provide highly accurate positions and attitudes (better than 5 cm and 0.5°) in real time, using lightweight components. The main focus of this paper is on the attitude determination with the system. This attitude determination is based on an onboard single-frequency GPS baseline, MEMS (micro-electro-mechanical systems) inertial sensor readings, magnetic field observations and a 3D position measurement. All of this information is integrated in a sixteen-state error space Kalman filter. Special attention in the algorithm development is paid to the carrier phase ambiguity resolution of the single-frequency GPS baseline observations. We aim at a reliable and instantaneous ambiguity resolution, since the system is used in urban areas, where frequent losses of the GPS signal lock occur and the GPS measurement conditions are challenging. Flight tests and a comparison to a navigation-grade inertial navigation system illustrate the performance of the developed system in dynamic situations. Evaluations show that the accuracies of the system are 0.05° for the roll and the pitch angle and 0.2° for the yaw angle. The ambiguities of the single-frequency GPS baseline can be resolved instantaneously in more than 90% of the cases. PMID:26501281

  2. Attitude Control and Orbital Dynamics Challenges of Removing the First 3-Axis Stabilized Tracking and Data Relay Satellite from the Geosynchronous ARC

    Science.gov (United States)

    Benet, Charles A.; Hofman, Henry; Williams, Thomas E.; Olney, Dave; Zaleski, Ronald

    2011-01-01

    Launched on April 4, 1983 onboard STS 6 (Space Shuttle Challenger), the First Tracking and Data Relay Satellite (TDRS 1) was retired above the Geosynchronous Orbit (GEO) on June 27, 2010 after having provided real-time communications with a variety of low-orbiting spacecraft over a 26-year period. To meet NASA requirements limiting orbital debris 1, a team of experts was assembled to conduct an End-Of-Mission (EOM) procedure to raise the satellite 350 km above the GEO orbit. Following the orbit raising via conventional station change maneuvers, the team was confronted with having to deplete the remaining propellant and passivate all energy storage or generation sources. To accomplish these tasks within the time window, communications (telemetry and control links), electrical power, propulsion, and thermal constraints, a spacecraft originally designed as a three-axis stabilized satellite was turned into a spinner. This paper (a companion paper to Innovative Approach Enabled the Retirement of TDRS 1, paper # 1699, IEEE 2011 Aerospace Conference, March 5-12, 2011 sup 2) focuses on the challenges of maintaining an acceptable spinning dynamics, while repetitively firing thrusters. Also addressed are the effects of thruster firings on the orbit characteristics and how they were mitigated by a careful scheduling of the fuel depletion operations. Periodic thruster firings for spin rate adjustment, nutation damping, and precession of the momentum vector were also required in order to maintain effective communications with the satellite. All operations were thoroughly rehearsed and supported by simulations thus lending a high level of confidence in meeting the NASA EOM goals.

  3. X-2 in flight

    Science.gov (United States)

    1956-01-01

    This inflight photograph of the X-2 (46-674) shows the twin set of shock-diamonds, characteristic of supersonic conditions in the exhaust plume from the two-chamber rocket engine. The Curtiss-Wright XLR-25 rocket engine caused one of several problems that delayed flight of the X-2. At one point, people in the project suggested its replacement. It was the first 'man-rated' (in the terminology of the day) rocket engine that was throttleable, and the technology was not yet mature. Other problems included the X-2's landing gear and the replacement of the planned electronic flight controls with a conventional hydromechanical system like that used in the F-86. The X-2 was a swept-wing, rocket-powered aircraft designed to fly faster than Mach 3 (three times the speed of sound). It was built for the U.S. Air Force by the Bell Aircraft Company, Buffalo, New York. The X-2 was flown to investigate the problems of aerodynamic heating as well as stability and control effectiveness at high altitudes and high speeds (in excess of Mach 3). Bell aircraft built two X-2 aircraft. These were constructed of K-monel (a copper and nickel alloy) for the fuselage and stainless steel for the swept wings and control surfaces. The aircraft had ejectable nose capsules instead of ejection seats because the development of ejection seats had not reached maturity at the time the X-2 was conceived. The X-2 ejection canopy was successfully tested using a German V-2 rocket. The X-2 used a skid-type landing gear to make room for more fuel. The airplane was air launched from a modified Boeing B-50 Superfortress Bomber. X-2 Number 1 made its first unpowered glide flight on Aug. 5, 1954, and made a total of 17 (4 glide and 13 powered) flights before it was lost Sept. 27, 1956. The pilot on Flight 17, Capt. Milburn Apt, had flown the aircraft to a record speed of Mach 3.2 (2,094 mph), thus becoming the first person to exceed Mach 3. During that last flight, inertial coupling occurred and the pilot was

  4. MODEL OF CENTRIFUGAL EFFECT AND ATTITUDE MANEUVER STABILITY OF A COUPLED RIGID-FLEXIBLE SYSTEM

    Institute of Scientific and Technical Information of China (English)

    LI Zhi-bin; WANG Zhao-lin; WANG Tian-shu; LIU Ning

    2005-01-01

    The influences of nonlinear centrifugal force to large overall attitude motion of coupled rigid-flexible system was investigated. First the nonlinear model of the coupled rigidflexible system was deduced from the idea of "cenlrifugal potential field", and then the dynamic effects of the nonlinear centrifugal force to system attitude motion were analyzed by approximate calculation; At last, the Lyapunov function based on energy norm was selected,in the condition that only the measured values of attitude and attitude speed are available,and it is proved that the PD feedback control law can ensure the attitude stability during large angle maneuver.

  5. 14 CFR Appendix F to Part 135 - Airplane Flight Recorder Specification

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplane Flight Recorder Specification F.... F Appendix F to Part 135—Airplane Flight Recorder Specification The recorded values must meet the....125 0.004g 6. Pitch Attitude ±75% ±2° 1 or 0.25 for airplanes operated under § 135.152(j) 0.5°...

  6. Exploiting environmental torques for attitude control and determination of spin stabilized satellites

    Science.gov (United States)

    Gluck, R.

    1974-01-01

    Design techniques are presented which exploit environmental torques for attitude control and determination of spin stabilized satellites. The techniques are applicable to satellite missions where the dominant environmental torques are well understood and lend themselves to accurate analytical modeling. The techniques were applied to the Particles and Fields subsatellites of the Apollo 15 and 16 spacecraft and the flight results show good agreement with the attitude determination estimates obtained.

  7. Dynamics of Variable Mass Systems

    Science.gov (United States)

    Eke, Fidelis O.

    1998-01-01

    This report presents the results of an investigation of the effects of mass loss on the attitude behavior of spinning bodies in flight. The principal goal is to determine whether there are circumstances under which the motion of variable mass systems can become unstable in the sense that their transverse angular velocities become unbounded. Obviously, results from a study of this kind would find immediate application in the aerospace field. The first part of this study features a complete and mathematically rigorous derivation of a set of equations that govern both the translational and rotational motions of general variable mass systems. The remainder of the study is then devoted to the application of the equations obtained to a systematic investigation of the effect of various mass loss scenarios on the dynamics of increasingly complex models of variable mass systems. It is found that mass loss can have a major impact on the dynamics of mechanical systems, including a possible change in the systems stability picture. Factors such as nozzle geometry, combustion chamber geometry, propellant's initial shape, size and relative mass, and propellant location can all have important influences on the system's dynamic behavior. The relative importance of these parameters on-system motion are quantified in a way that is useful for design purposes.

  8. DAST in Flight

    Science.gov (United States)

    1980-01-01

    The modified BQM-34 Firebee II drone with Aeroelastic Research Wing (ARW-1), a supercritical airfoil, during a 1980 research flight. The remotely-piloted vehicle, which was air launched from NASA's NB-52B mothership, participated in the Drones for Aerodynamic and Structural Testing (DAST) program which ran from 1977 to 1983. The DAST 1 aircraft (Serial #72-1557), pictured, crashed on 12 June 1980 after its right wing ripped off during a test flight near Cuddeback Dry Lake, California. The crash occurred on the modified drone's third free flight. These are the image contact sheets for each image resolution of the NASA Dryden Drones for Aerodynamic and Structural Testing (DAST) Photo Gallery. From 1977 to 1983, the Dryden Flight Research Center, Edwards, California, (under two different names) conducted the DAST Program as a high-risk flight experiment using a ground-controlled, pilotless aircraft. Described by NASA engineers as a 'wind tunnel in the sky,' the DAST was a specially modified Teledyne-Ryan BQM-34E/F Firebee II supersonic target drone that was flown to validate theoretical predictions under actual flight conditions in a joint project with the Langley Research Center, Hampton, Virginia. The DAST Program merged advances in electronic remote control systems with advances in airplane design. Drones (remotely controlled, missile-like vehicles initially developed to serve as gunnery targets) had been deployed successfully during the Vietnamese conflict as reconnaissance aircraft. After the war, the energy crisis of the 1970s led NASA to seek new ways to cut fuel use and improve airplane efficiency. The DAST Program's drones provided an economical, fuel-conscious method for conducting in-flight experiments from a remote ground site. DAST explored the technology required to build wing structures with less than normal stiffness. This was done because stiffness requires structural weight but ensures freedom from flutter-an uncontrolled, divergent oscillation of

  9. 14 CFR 121.493 - Flight time limitations: Flight engineers and flight navigators.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight time limitations: Flight engineers and flight navigators. 121.493 Section 121.493 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight...

  10. Lessons from dragonfly flight

    Science.gov (United States)

    Wang, Z. Jane

    2005-11-01

    I will describe two lessons we learned from analyzing dragonfly flight using computers and table-top experiments. Part I: The role of drag in insect flight. Airplanes and helicopters are airborne via aerodynamic lift, not drag. However, it is not a priori clear that insects use only lift to fly. We find that dragonfly uses mainly drag to hover, which explains an anomalous factor of four in previous estimates of dragonfly lift coefficients, where drag was assumed to be negligible. Moreover, we show that the use of drag for flight is efficient at insect size. This suggests a re-consideration of the hovering efficiency of flapping flight, which is no longer described by the lift to drag ratio. Part II. Fore-hind wing interaction in dragonfly flight. A distinctive feature of dragonflies is their use of two pairs of wings which are driven by separate direct muscles. Dragonflies can actively modulate the phase delay between fore-hind wings during different maneuver. We compute the Navier-Stokes equation around two wings following the motion measured from our tethered dragonfly experiments, and find an explanation of the advantage of counter-stroking during hovering.

  11. Aerodynamics of bird flight

    Directory of Open Access Journals (Sweden)

    Dvořák Rudolf

    2016-01-01

    Full Text Available Unlike airplanes birds must have either flapping or oscillating wings (the hummingbird. Only such wings can produce both lift and thrust – two sine qua non attributes of flying.The bird wings have several possibilities how to obtain the same functions as airplane wings. All are realized by the system of flight feathers. Birds have also the capabilities of adjusting the shape of the wing according to what the immediate flight situation demands, as well as of responding almost immediately to conditions the flow environment dictates, such as wind gusts, object avoidance, target tracking, etc. In bird aerodynamics also the tail plays an important role. To fly, wings impart downward momentum to the surrounding air and obtain lift by reaction. How this is achieved under various flight situations (cruise flight, hovering, landing, etc., and what the role is of the wing-generated vortices in producing lift and thrust is discussed.The issue of studying bird flight experimentally from in vivo or in vitro experiments is also briefly discussed.

  12. Aerodynamics of bird flight

    Science.gov (United States)

    Dvořák, Rudolf

    2016-03-01

    Unlike airplanes birds must have either flapping or oscillating wings (the hummingbird). Only such wings can produce both lift and thrust - two sine qua non attributes of flying.The bird wings have several possibilities how to obtain the same functions as airplane wings. All are realized by the system of flight feathers. Birds have also the capabilities of adjusting the shape of the wing according to what the immediate flight situation demands, as well as of responding almost immediately to conditions the flow environment dictates, such as wind gusts, object avoidance, target tracking, etc. In bird aerodynamics also the tail plays an important role. To fly, wings impart downward momentum to the surrounding air and obtain lift by reaction. How this is achieved under various flight situations (cruise flight, hovering, landing, etc.), and what the role is of the wing-generated vortices in producing lift and thrust is discussed.The issue of studying bird flight experimentally from in vivo or in vitro experiments is also briefly discussed.

  13. A new flocking model through body attitude coordination

    OpenAIRE

    Degond, Pierre; Frouvelle, Amic; Merino-Aceituno, Sara

    2016-01-01

    We present a new model for multi-agent dynamics where each agent is described by its position and body attitude: agents travel at a constant speed in a given direction and their body can rotate around it adopting different configurations. In this manner, the body attitude is described by three orthonormal axes giving an element in $SO(3)$ (rotation matrix). Agents try to coordinate their body attitudes with the ones of their neighbours. In the present paper, we give the Individual Based Model...

  14. Orion Launch Abort System Performance on Exploration Flight Test 1

    Science.gov (United States)

    McCauley, R.; Davidson, J.; Gonzalez, Guillermo

    2015-01-01

    This paper will present an overview of the flight test objectives and performance of the Orion Launch Abort System during Exploration Flight Test-1. Exploration Flight Test-1, the first flight test of the Orion spacecraft, was managed and led by the Orion prime contractor, Lockheed Martin, and launched atop a United Launch Alliance Delta IV Heavy rocket. This flight test was a two-orbit, high-apogee, high-energy entry, low-inclination test mission used to validate and test systems critical to crew safety. This test included the first flight test of the Launch Abort System preforming Orion nominal flight mission critical objectives. NASA is currently designing and testing the Orion Multi-Purpose Crew Vehicle (MPCV). Orion will serve as NASA's new exploration vehicle to carry astronauts to deep space destinations and safely return them to earth. The Orion spacecraft is composed of four main elements: the Launch Abort System, the Crew Module, the Service Module, and the Spacecraft Adapter (Fig. 1). The Launch Abort System (LAS) provides two functions; during nominal launches, the LAS provides protection for the Crew Module from atmospheric loads and heating during first stage flight and during emergencies provides a reliable abort capability for aborts that occur within the atmosphere. The Orion Launch Abort System (LAS) consists of an Abort Motor to provide the abort separation from the Launch Vehicle, an Attitude Control Motor to provide attitude and rate control, and a Jettison Motor for crew module to LAS separation (Fig. 2). The jettison motor is used during a nominal launch to separate the LAS from the Launch Vehicle (LV) early in the flight of the second stage when it is no longer needed for aborts and at the end of an LAS abort sequence to enable deployment of the crew module's Landing Recovery System. The LAS also provides a Boost Protective Cover fairing that shields the crew module from debris and the aero-thermal environment during ascent. Although the

  15. Effects of yaw and pitch motion on model attitude measurements

    Science.gov (United States)

    Tcheng, Ping; Tripp, John S.; Finley, Tom D.

    1995-01-01

    This report presents a theoretical analysis of the dynamic effects of angular motion in yaw and pitch on model attitude measurements in which inertial sensors were used during wind tunnel tests. A technique is developed to reduce the error caused by these effects. The analysis shows that a 20-to-1 reduction in model attitude measurement error caused by angular motion is possible with this technique.

  16. Flight calls and orientation

    DEFF Research Database (Denmark)

    Larsen, Ole Næsbye; Andersen, Bent Bach; Kropp, Wibke;

    2008-01-01

      In a pilot experiment a European Robin, Erithacus rubecula, expressing migratory restlessness with a stable orientation, was video filmed in the dark with an infrared camera and its directional migratory activity was recorded. The flight overhead of migrating conspecifics uttering nocturnal...... flight calls was simulated by sequential computer controlled activation of five loudspeakers placed in a linear array perpendicular to the bird's migration course. The bird responded to this stimulation by changing its migratory course in the direction of that of the ‘flying conspecifics' but after about...... 30 minutes it drifted back to its original migration course. The results suggest that songbirds migrating alone at night can use the flight calls from conspecifics as additional cues for orientation and that they may compare this information with other cues to decide what course to keep....

  17. Measuring Attitudes Toward Inclusion

    Directory of Open Access Journals (Sweden)

    André Kunz

    2010-12-01

    Full Text Available The considerable worldwide demand for an inclusive education system has driven Switzerland to reconsider the approach of segregated schooling for children with Special Educational Needs (SEN. Recently, an agreement was signed among the states with the intention to adopt a more inclusive practice in school. There is evidence suggesting that an inclusive practice established at policy level is not enough, as many times it becomes teacher’s effort to translate the policies in classroom setting. The effectiveness of inclusive practices can be tightly related to the attitude of teachers, parents and students to inclusion of children with SEN in mainstreaming classes. Attitude towards inclusion is an observable construct but it presents difficulties in terms of measurement. For this purpose, in order to evaluate the attitude to inclusion of teachers, parents and students, an American Scale, the 11-items Parent Attitude to Inclusion (Palmer et al., 1998a, 1998b, 2001 and the version for teachers (Stanley, Grimbeek, Bryer, Beamisch, 2003; Bryer, Grimbeek, Beamish, Stanley, 2004, has been slightly modified and translated into German language. The resulting scales have been used to collect data in Switzerland in two regions. Results show that the German version of the scale can be potentially used for reliable measurement of attitudes toward inclusion in German speaking countries.

  18. Integrated Flight Path Planning System and Flight Control System for Unmanned Helicopters

    Directory of Open Access Journals (Sweden)

    Yu-Hsiang Lin

    2011-07-01

    Full Text Available This paper focuses on the design of an integrated navigation and guidance system for unmanned helicopters. The integrated navigation system comprises two systems: the Flight Path Planning System (FPPS and the Flight Control System (FCS. The FPPS finds the shortest flight path by the A-Star (A* algorithm in an adaptive manner for different flight conditions, and the FPPS can add a forbidden zone to stop the unmanned helicopter from crossing over into dangerous areas. In this paper, the FPPS computation time is reduced by the multi-resolution scheme, and the flight path quality is improved by the path smoothing methods. Meanwhile, the FCS includes the fuzzy inference systems (FISs based on the fuzzy logic. By using expert knowledge and experience to train the FIS, the controller can operate the unmanned helicopter without dynamic models. The integrated system of the FPPS and the FCS is aimed at providing navigation and guidance to the mission destination and it is implemented by coupling the flight simulation software, X-Plane, and the computing software, MATLAB. Simulations are performed and shown in real time three-dimensional animations. Finally, the integrated system is demonstrated to work successfully in controlling the unmanned helicopter to operate in various terrains of a digital elevation model (DEM.

  19. Nature and operation of attitudes.

    Science.gov (United States)

    Ajzen, I

    2001-01-01

    This survey of attitude theory and research published between 1996 and 1999 covers the conceptualization of attitude, attitude formation and activation, attitude structure and function, and the attitude-behavior relation. Research regarding the expectancy-value model of attitude is considered, as are the roles of accessible beliefs and affective versus cognitive processes in the formation of attitudes. The survey reviews research on attitude strength and its antecedents and consequences, and covers progress made on the assessment of attitudinal ambivalence and its effects. Also considered is research on automatic attitude activation, attitude functions, and the relation of attitudes to broader values. A large number of studies dealt with the relation between attitudes and behavior. Research revealing additional moderators of this relation is reviewed, as are theory and research on the link between intentions and actions. Most work in this context was devoted to issues raised by the theories of reasoned action and planned behavior. The present review highlights the nature of perceived behavioral control, the relative importance of attitudes and subjective norms, the utility of adding more predictors, and the roles of prior behavior and habit. PMID:11148298

  20. Communication skills training in undergraduate medicine: attitudes and attitude change.

    OpenAIRE

    Doherty, Eva M; McGee, Hannah; O'Boyle, Ciaran; Shannon, William; Bury, Gerard; Williams, A.

    1992-01-01

    The importance of communication skills training in undergraduate medical education is now widely accepted. However little is known about student attitudes towards their own communication skills and whether their attitudes changes as a result of participating in communication skills courses. The aim of the present study was to identify these attitudes prior to commencing such a course and to further evaluate changes in these attitudes on completion of the course. Results demonstrated an improv...

  1. Attitudes of the selfless

    DEFF Research Database (Denmark)

    Zettler, Ingo; Hilbig, B.E.

    2010-01-01

    Previous research on political orientations, which can be understood as one's left- versus right-wing attitude, has shown that some personality factors yield explanatory power. In the current work, we consider the role of altruism - a personality construct which does not exclusively map onto one of...... the broad personality dimensions typically studied. Altruism was predicted to relate to left-wing attitudes due to an overlap regarding concerns for social equality, and a discrepancy between well-known attributes of right-wingers and altruistic individuals, respectively. Moreover, altruism was...... positive association between altruism and left-wing attitudes, and altruism was found to account for substantial variance in political orientation after controlling for the HEXACO factors of personality. We conclude that altruism is an important construct which deserves attention whenever political...

  2. AIRSHIP ATTITUDE TRACKING SYSTEM

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-liang; SHAN Xue-xiong

    2006-01-01

    The attitude tracking control problem for an airship with parameter uncertainties and external disturbances was considered in this paper. The mathematical model of the airship attitude is a multi-input/multi-output uncertain nonlinear system. Based on the characteristics of this system, a design method of robust output tracking controllers was adopted based on the upper-bounds of the uncertainties. Using the input/output feedback linearization approach and Liapunov method, a control law was designed, which guarantees that the system output exponentially tracks the given desired output. The controller is easy to compute and complement. Simulation results show that, in the closed-loop system, precise attitude control is accomplished in spite of the uncertainties and external disturbances in the system.

  3. An Application of UAV Attitude Estimation Using a Low-Cost Inertial Navigation System

    Science.gov (United States)

    Eure, Kenneth W.; Quach, Cuong Chi; Vazquez, Sixto L.; Hogge, Edward F.; Hill, Boyd L.

    2013-01-01

    Unmanned Aerial Vehicles (UAV) are playing an increasing role in aviation. Various methods exist for the computation of UAV attitude based on low cost microelectromechanical systems (MEMS) and Global Positioning System (GPS) receivers. There has been a recent increase in UAV autonomy as sensors are becoming more compact and onboard processing power has increased significantly. Correct UAV attitude estimation will play a critical role in navigation and separation assurance as UAVs share airspace with civil air traffic. This paper describes attitude estimation derived by post-processing data from a small low cost Inertial Navigation System (INS) recorded during the flight of a subscale commercial off the shelf (COTS) UAV. Two discrete time attitude estimation schemes are presented here in detail. The first is an adaptation of the Kalman Filter to accommodate nonlinear systems, the Extended Kalman Filter (EKF). The EKF returns quaternion estimates of the UAV attitude based on MEMS gyro, magnetometer, accelerometer, and pitot tube inputs. The second scheme is the complementary filter which is a simpler algorithm that splits the sensor frequency spectrum based on noise characteristics. The necessity to correct both filters for gravity measurement errors during turning maneuvers is demonstrated. It is shown that the proposed algorithms may be used to estimate UAV attitude. The effects of vibration on sensor measurements are discussed. Heuristic tuning comments pertaining to sensor filtering and gain selection to achieve acceptable performance during flight are given. Comparisons of attitude estimation performance are made between the EKF and the complementary filter.

  4. Combinators for Paraconsistent Attitudes

    DEFF Research Database (Denmark)

    Villadsen, Jørgen

    2001-01-01

    In order to analyse the semantics of natural language sentences a translation into a partial type logic using lexical and logical combinators is presented. The sentences cover a fragment of English with propositional attitudes like knowledge, belief and assertion. A combinator is a closed term of...... only used for embedded sentences expressing propositional attitudes, thereby allowing for inconsistency without explosion (also called paraconsistency), and is based on a few key equalities for the connectives giving four truth values (truth, falsehood, and undefinedness with negative and positive...

  5. Attitude that Matters

    OpenAIRE

    Tiina Purhonen

    2007-01-01

    In this article, I compare the operativity of radical avant-garde and new dialogical art forms from one selected viewpoint. I discuss the issue of the artist's attitude as a significance-producing element in the artwork. For decades, artist-issued interpretation of art has been problematic. Thus it is interesting to question the significance of the strong definition of the artist's attitude, inherent in the theories of the new dialogical art. New dialogical art-forms are for example new genre...

  6. Pegasus hypersonic flight research

    Science.gov (United States)

    Curry, Robert E.; Meyer, Robert R., Jr.; Budd, Gerald D.

    1992-01-01

    Hypersonic aeronautics research using the Pegasus air-launched space booster is described. Two areas are discussed in the paper: previously obtained results from Pegasus flights 1 and 2, and plans for future programs. Proposed future research includes boundary-layer transition studies on the airplane-like first stage and also use of the complete Pegasus launch system to boost a research vehicle to hypersonic speeds. Pegasus flight 1 and 2 measurements were used to evaluate the results of several analytical aerodynamic design tools applied during the development of the vehicle as well as to develop hypersonic flight-test techniques. These data indicated that the aerodynamic design approach for Pegasus was adequate and showed that acceptable margins were available. Additionally, the correlations provide insight into the capabilities of these analytical tools for more complex vehicles in which design margins may be more stringent. Near-term plans to conduct hypersonic boundary-layer transition studies are discussed. These plans involve the use of a smooth metallic glove at about the mid-span of the wing. Longer-term opportunities are proposed which identify advantages of the Pegasus launch system to boost large-scale research vehicles to the real-gas hypersonic flight regime.

  7. Overbooking Airline Flights.

    Science.gov (United States)

    Austin, Joe Dan

    1982-01-01

    The problems involved in making reservations for airline flights is discussed in creating a mathematical model designed to maximize an airline's income. One issue not considered in the model is any public relations problem the airline may have. The model does take into account the issue of denied boarding compensation. (MP)

  8. The use of real-time, hardware-in-the-loop simulation in the design and development of the new Hughes HS601 spacecraft attitude control system

    Science.gov (United States)

    Slafer, Loren I.

    1989-01-01

    Realtime simulation and hardware-in-the-loop testing is being used extensively in all phases of the design, development, and testing of the attitude control system (ACS) for the new Hughes HS601 satellite bus. Realtime, hardware-in-the-loop simulation, integrated with traditional analysis and pure simulation activities is shown to provide a highly efficient and productive overall development program. Implementation of high fidelity simulations of the satellite dynamics and control system algorithms, capable of real-time execution (using applied Dynamics International's System 100), provides a tool which is capable of being integrated with the critical flight microprocessor to create a mixed simulation test (MST). The MST creates a highly accurate, detailed simulated on-orbit test environment, capable of open and closed loop ACS testing, in which the ACS design can be validated. The MST is shown to provide a valuable extension of traditional test methods. A description of the MST configuration is presented, including the spacecraft dynamics simulation model, sensor and actuator emulators, and the test support system. Overall system performance parameters are presented. MST applications are discussed; supporting ACS design, developing on-orbit system performance predictions, flight software development and qualification testing (augmenting the traditional software-based testing), mission planning, and a cost-effective subsystem-level acceptance test. The MST is shown to provide an ideal tool in which the ACS designer can fly the spacecraft on the ground.

  9. Wages, Amenities and Negative Attitudes

    OpenAIRE

    Waisman, Gisela; Larsen, Birthe

    2012-01-01

    We exploit the regional variation in negative attitudes towards immigrants to Sweden in order to analyse the consequences of the attitudes on immigrants welfare. We find that attitudes towards immigrants are of importance: they both affect their labour market outcomes and their quality of life. We interpret the negative effect on wages as evidence of labour market discrimination. We estimate the welfare effects of negative attitudes, through their wage and local amenities, for immigrants with...

  10. Attitudes toward gambling among adolescents

    OpenAIRE

    Hanss, Daniel; Mentzoni, Rune Aune; Delfabbro, Paul; Myrseth, Helga; Pallesen, Ståle

    2014-01-01

    It is well documented that attitudes toward gambling are a good predictor of problem gambling during adolescence. However, so far, little is known about what factors are associated with adolescents' gambling attitudes. This study used cross-sectional data (N = 2055, response rate 70.4%) from a representative sample of 17-year-olds in Norway to investigate the relationship between demographic, personality, motivational and social variables and gambling attitudes. Overall, adolescents' attitude...

  11. Star trackers for attitude determination

    OpenAIRE

    Liebe, Carl Christian

    1995-01-01

    One problem comes to all spacecrafts using vector information. That is the problem of determining the attitude. This paper describes how the area of attitude determination instruments has evolved from simple pointing devices into the latest technology, which determines the attitude by utilizing a CCD camera and a powerful microcomputer. The instruments are called star trackers and they are capable of determining the attitude with an accuracy better than 1 arcsecond. The concept of the star tr...

  12. 14 CFR Appendix M to Part 121 - Airplane Flight Recorder Specifications

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplane Flight Recorder Specifications M... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Pt. 121, App. M Appendix M to Part 121—Airplane... airplanes operated under § 121.344(f) 0.5° A sampling rate of 0.25 is recommended. 7. Roll attitude 2...

  13. Income, Amenities and Negative Attitudes

    DEFF Research Database (Denmark)

    Waisman, Gisela; Larsen, Birthe

    2016-01-01

    We exploit the regional variation in negative attitudes towards immigrants to Sweden in order to analyse the consequences of negative attitudes on refugees’ utility from labour income and amenities. We find that attitudes towards immigrants are important: while they affect mainly the refugees...

  14. New experimental approaches to the biology of flight control systems.

    Science.gov (United States)

    Taylor, Graham K; Bacic, Marko; Bomphrey, Richard J; Carruthers, Anna C; Gillies, James; Walker, Simon M; Thomas, Adrian L R

    2008-01-01

    Here we consider how new experimental approaches in biomechanics can be used to attain a systems-level understanding of the dynamics of animal flight control. Our aim in this paper is not to provide detailed results and analysis, but rather to tackle several conceptual and methodological issues that have stood in the way of experimentalists in achieving this goal, and to offer tools for overcoming these. We begin by discussing the interplay between analytical and empirical methods, emphasizing that the structure of the models we use to analyse flight control dictates the empirical measurements we must make in order to parameterize them. We then provide a conceptual overview of tethered-flight paradigms, comparing classical ;open-loop' and ;closed-loop' setups, and describe a flight simulator that we have recently developed for making flight dynamics measurements on tethered insects. Next, we provide a conceptual overview of free-flight paradigms, focusing on the need to use system identification techniques in order to analyse the data they provide, and describe two new techniques that we have developed for making flight dynamics measurements on freely flying birds. First, we describe a technique for obtaining inertial measurements of the orientation, angular velocity and acceleration of a steppe eagle Aquila nipalensis in wide-ranging free flight, together with synchronized measurements of wing and tail kinematics using onboard instrumentation and video cameras. Second, we describe a photogrammetric method to measure the 3D wing kinematics of the eagle during take-off and landing. In each case, we provide demonstration data to illustrate the kinds of information available from each method. We conclude by discussing the prospects for systems-level analyses of flight control using these techniques and others like them. PMID:18165253

  15. Evolution of avian flight: muscles and constraints on performance.

    Science.gov (United States)

    Tobalske, Bret W

    2016-09-26

    Competing hypotheses about evolutionary origins of flight are the 'fundamental wing-stroke' and 'directed aerial descent' hypotheses. Support for the fundamental wing-stroke hypothesis is that extant birds use flapping of their wings to climb even before they are able to fly; there are no reported examples of incrementally increasing use of wing movements in gliding transitioning to flapping. An open question is whether locomotor styles must evolve initially for efficiency or if they might instead arrive due to efficacy. The proximal muscles of the avian wing output work and power for flight, and new research is exploring functions of the distal muscles in relation to dynamic changes in wing shape. It will be useful to test the relative contributions of the muscles of the forearm compared with inertial and aerodynamic loading of the wing upon dynamic morphing. Body size has dramatic effects upon flight performance. New research has revealed that mass-specific muscle power declines with increasing body mass among species. This explains the constraints associated with being large. Hummingbirds are the only species that can sustain hovering. Their ability to generate force, work and power appears to be limited by time for activation and deactivation within their wingbeats of high frequency. Most small birds use flap-bounding flight, and this flight style may offer an energetic advantage over continuous flapping during fast flight or during flight into a headwind. The use of flap-bounding during slow flight remains enigmatic. Flap-bounding birds do not appear to be constrained to use their primary flight muscles in a fixed manner. To improve understanding of the functional significance of flap-bounding, the energetic costs and the relative use of alternative styles by a given species in nature merit study.This article is part of the themed issue 'Moving in a moving medium: new perspectives on flight'. PMID:27528773

  16. Boeing flight deck design philosophy

    Science.gov (United States)

    Stoll, Harty

    1990-01-01

    Information relative to Boeing flight deck design philosophy is given in viewgraph form. Flight deck design rules, design considerations, functions allocated to the crew, redundancy and automation concerns, and examples of accident data that were reviewed are listed.

  17. Magion - 3 spacecraft attitude from dynamics measurement

    Czech Academy of Sciences Publication Activity Database

    Comisel, H.; Georgescu, E.; Ciobanu, M.; Förster, M.; Vojta, Jaroslav

    1998-01-01

    Roč. 6, č. 1 (1998), s. 59-64. ISSN 1301-8329. [General Conference of Balkan Physics Letters /3./. Cluj - Napoca, 00.00.1997] Institutional research plan: CEZ:AV0Z3042911 Subject RIV: JV - Space Technology

  18. Attitudes of Success.

    Science.gov (United States)

    Pendarvis, Faye

    This document investigates the attitudes of successful individuals, citing the achievement of established goals as the criteria for success. After offering various definitions of success, the paper focuses on the importance of self-esteem to success and considers ways by which the self-esteem of students can be improved. Theories of human behavior…

  19. Attitudes to nuclear waste

    International Nuclear Information System (INIS)

    This is a study of risk perception and attitudes with regard to nuclear waste. Two data sets are reported. In the first set, data were obtained from a survey of the general population, using an extensive questionnaire. The second set constituted a follow-up 7 years later, with a limited number of questions. The data showed that people considered the topic of nuclear waste risks to be very important and that they were not convinced that the technological problems had been solved. Experts associated with government agencies were moderately trusted, while those employed by the nuclear industry were much distrusted by some respondents, and very much trusted by others. Moral obligations to future generations were stressed. A large portion (more than 50 per cent) of the variances in risk perception could be explained by attitude to nuclear power, general risk sensitivity and trust in expertise. Most background variables, except gender, had little influence on risk perception and attitudes. The follow-up study showed that the attitude to nuclear power had become more positive over time, but that people still doubted that the problems of nuclear waste disposal had been solved. 49 refs

  20. Attitudes toward Rape.

    Science.gov (United States)

    Larsen, Knud S.; Long, Ed

    While the perception of rape has been studied intensely in recent years, most scales focus on rape myths as the content domain. The need exists for a more general instrument which would include items from a variety of sources, e.g., attitudes toward rape awareness, sexual history, age, virginity, community support, etc., in addition to the myth of…

  1. Robustness and Actuator Bandwidth of MRP-Based Sliding Mode Control for Spacecraft Attitude Control Problems

    Science.gov (United States)

    Keum, Jung-Hoon; Ra, Sung-Woong

    2009-12-01

    Nonlinear sliding surface design in variable structure systems for spacecraft attitude control problems is studied. A robustness analysis is performed for regular form of system, and calculation of actuator bandwidth is presented by reviewing sliding surface dynamics. To achieve non-singular attitude description and minimal parameterization, spacecraft attitude control problems are considered based on modified Rodrigues parameters (MRP). It is shown that the derived controller ensures the sliding motion in pre-determined region irrespective of unmodeled effects and disturbances.

  2. On-Ground Attitude and Torque Reconstruction tor the Gaia Mission

    OpenAIRE

    Samaan, Malak; Theil, Stephan

    2008-01-01

    The work presented in this paper concerns the accurate On-Ground Attitude (OGA) reconstruction for the astrometry spacecraft Gaia in the presence of disturbance and control torques acting on the spacecraft. The reconstruction of the expected environmental torques which influence the spacecraft dynamics will be also investigated. The telemetry data from the spacecraft will include the on-board real time attitude which is of order of several arcsec. This raw attitude is the starting point...

  3. Flight Simulation for Tomorrow's Aviation

    OpenAIRE

    Durak, Umut

    2016-01-01

    Flight simulators have been operated within the aeronautics community for human factor studies and flight systems development for the last half century. They are virtual test beds, to evaluate concepts, conduct pilot-in-the-loop experiments and collect valuable user experience data. The German Aerospace Center (DLR) Institute of Flight Systems is involved in developing and employing research flight simulators for more than 40 years. The first generation ground based simulator of DLR was built...

  4. Cardiovascular physiology in space flight

    Science.gov (United States)

    Charles, John B.; Bungo, Michael W.

    1991-01-01

    The effects of space flight on the cardiovascular system have been studied since the first manned flights. In several instances, the results from these investigations have directly contradicted the predictions based on established models. Results suggest associations between space flight's effects on other organ systems and those on the cardiovascular system. Such findings provide new insights into normal human physiology. They must also be considered when planning for the safety and efficiency of space flight crewmembers.

  5. Improvement of flight simulator feeling using adaptive fuzzy backlash compensation

    OpenAIRE

    Amara, Zied; Bordeneuve-Guibé, Joël

    2007-01-01

    In this paper we addressed the problem of improving the control of DC motors used for the specific application of a 3 degrees of freedom moving base flight simulator. Indeed the presence of backlash in DC motors gearboxes induces shocks and naturally limits the flight feeling. In this paper, dynamic inversion with Fuzzy Logic is used to design an adaptive backlash compensator. The classification property of fuzzy logic techniques makes them a natural candidate for the rejection of errors indu...

  6. Recent Developments in the Remote Radio Control of Insect Flight

    Directory of Open Access Journals (Sweden)

    Hirotaka Sato

    2010-12-01

    Full Text Available The continuing miniaturization of digital circuits and the development of low power radio systems coupled with continuing studies into the neurophysiology and dynamics of insect flight are enabling a new class of implantable interfaces capable of controlling insects in free flight for extended periods. We provide context for these developments, review the state-of-the-art and discuss future directions in this field.

  7. Deterioration of Damselfly Flight Performance due to Wing Damage

    CERN Document Server

    Ren, Yan; Gai, Kuo; Li, Chengyu; Zeyghami, Samane; Dong, Haibo

    2011-01-01

    In this video, effect of chordwise damage on a damselfly (American Rubyspot)'s wings is investigated. High speed photogrammetry was used to collect the data of damselflies' flight with intact and damaged wings along the wing chord. Different level of deterioration of flight performance can be observed. Further investigation will be on the dynamic and aerodynamic roles of each wing with and without damage.

  8. Bisphosphonate ISS Flight Experiment

    Science.gov (United States)

    LeBlanc, Adrian; Matsumoto, Toshio; Jones, Jeffrey; Shapiro, Jay; Lang, Thomas; Shackleford, Linda; Smith, Scott M.; Evans, Harlan; Spector, Elizabeth; Ploutz-Snyder, Robert; Sibonga, Jean; Keyak, Joyce; Nakamura, Toshitaka; Kohri, Kenjiro; Ohshima, Hiroshi; Moralez, Gilbert

    2014-01-01

    The bisphosphonate study is a collaborative effort between the NASA and JAXA space agencies to investigate the potential for antiresorptive drugs to mitigate bone changes associated with long-duration spaceflight. Elevated bone resorption is a hallmark of human spaceflight and bed rest (common zero-G analog). We tested whether an antiresorptive drug in combination with in-flight exercise would ameliorate bone loss and hypercalcuria during longduration spaceflight. Measurements include DXA, QCT, pQCT, and urine and blood biomarkers. We have completed analysis of 7 crewmembers treated with alendronate during flight and the immediate postflight (R+<2 week) data collection in 5 of 10 controls without treatment. Both groups used the advanced resistive exercise device (ARED) during their missions. We previously reported the pre/postflight results of crew taking alendronate during flight (Osteoporosis Int. 24:2105-2114, 2013). The purpose of this report is to present the 12-month follow-up data in the treated astronauts and to compare these results with preliminary data from untreated crewmembers exercising with ARED (ARED control) or without ARED (Pre-ARED control). Results: the table presents DXA and QCT BMD expressed as percentage change from preflight in the control astronauts (18 Pre-ARED and the current 5 ARED-1-year data not yet available) and the 7 treated subjects. As shown previously the combination of exercise plus antiresorptive is effective in preventing bone loss during flight. Bone measures for treated subjects, 1 year after return from space remain at or near baseline values. Except in one region, the treated group maintained or gained bone 1 year after flight. Biomarker data are not currently available for either control group and therefore not presented. However, data from other studies with or without ARED show elevated bone resorption and urinary Ca excretion while bisphosphonate treated subjects show decreases during flight. Comparing the two control

  9. MARS Flight Engineering Status

    Energy Technology Data Exchange (ETDEWEB)

    Fast, James E.; Dorow, Kevin E.; Morris, Scott J.; Thompson, Robert C.; Willett, Jesse A.

    2010-04-06

    The Multi-sensor Airborne Radiation Survey Flight Engineering project (MARS FE) has designed a high purity germanium (HPGe) crystal array for conducting a wide range of field measurements. In addition to the HPGe detector system, a platform-specific shock and vibration isolation system and environmental housing have been designed to support demonstration activities in a maritime environment on an Unmanned Surface Vehicle (USV). This report describes the status of the equipment as of the end of FY09.

  10. Ordos Takes Flight

    Institute of Scientific and Technical Information of China (English)

    YAN WEI

    2010-01-01

    @@ China's vast hinterland has long conjured up images of rugged mountains and countrysides dotted by villages all but untouched by the hands of time. But after a recent one-hour flight west from Beijing,Anna Chennault,Chair of the Council for International Cooperation (CIC),a Washington,D.C.-based non-profit organization that helps promote development in China,found something altogether different-a city called Ordos.

  11. The Flight from Maturity

    OpenAIRE

    Gary B. Gorton; Andrew Metrick; Lei Xie

    2014-01-01

    Why did the failure of Lehman Brothers make the financial crisis dramatically worse? The financial crisis was a process of a build-up of risk during the crisis prior to the Lehman failure. Market participants tried to preserve an option or exit by shortening maturities - the "flight from maturity". With increasingly short maturities, lenders created the possibility of fast exit. The failure of Lehman Brothers was the tipping point of this build-up of systemic fragility. We produce a chronolog...

  12. Flight Crew Health Maintenance

    Science.gov (United States)

    Gullett, C. C.

    1970-01-01

    The health maintenance program for commercial flight crew personnel includes diet, weight control, and exercise to prevent heart disease development and disability grounding. The very high correlation between hypertension and overweight in cardiovascular diseases significantly influences the prognosis for a coronary prone individual and results in a high rejection rate of active military pilots applying for civilian jobs. In addition to physical fitness the major items stressed in pilot selection are: emotional maturity, glucose tolerance, and family health history.

  13. Flight Software Math Library

    Science.gov (United States)

    McComas, David

    2013-01-01

    The flight software (FSW) math library is a collection of reusable math components that provides typical math utilities required by spacecraft flight software. These utilities are intended to increase flight software quality reusability and maintainability by providing a set of consistent, well-documented, and tested math utilities. This library only has dependencies on ANSI C, so it is easily ported. Prior to this library, each mission typically created its own math utilities using ideas/code from previous missions. Part of the reason for this is that math libraries can be written with different strategies in areas like error handling, parameters orders, naming conventions, etc. Changing the utilities for each mission introduces risks and costs. The obvious risks and costs are that the utilities must be coded and revalidated. The hidden risks and costs arise in miscommunication between engineers. These utilities must be understood by both the flight software engineers and other subsystem engineers (primarily guidance navigation and control). The FSW math library is part of a larger goal to produce a library of reusable Guidance Navigation and Control (GN&C) FSW components. A GN&C FSW library cannot be created unless a standardized math basis is created. This library solves the standardization problem by defining a common feature set and establishing policies for the library s design. This allows the libraries to be maintained with the same strategy used in its initial development, which supports a library of reusable GN&C FSW components. The FSW math library is written for an embedded software environment in C. This places restrictions on the language features that can be used by the library. Another advantage of the FSW math library is that it can be used in the FSW as well as other environments like the GN&C analyst s simulators. This helps communication between the teams because they can use the same utilities with the same feature set and syntax.

  14. Atmospheric radiation flight dose rates

    Science.gov (United States)

    Tobiska, W. K.

    2015-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the domains that are affected by space weather, the coupling between the solar and galactic high-energy particles, the magnetosphere, and atmospheric regions can significantly affect humans and our technology as a result of radiation exposure. Space Environment Technologies (SET) has been conducting space weather observations of the atmospheric radiation environment at aviation altitudes that will eventually be transitioned into air traffic management operations. The Automated Radiation Measurements for Aerospace Safety (ARMAS) system and Upper-atmospheric Space and Earth Weather eXperiment (USEWX) both are providing dose rate measurements. Both activities are under the ARMAS goal of providing the "weather" of the radiation environment to improve aircraft crew and passenger safety. Over 5-dozen ARMAS and USEWX flights have successfully demonstrated the operation of a micro dosimeter on commercial aviation altitude aircraft that captures the real-time radiation environment resulting from Galactic Cosmic Rays and Solar Energetic Particles. The real-time radiation exposure is computed as an effective dose rate (body-averaged over the radiative-sensitive organs and tissues in units of microsieverts per hour); total ionizing dose is captured on the aircraft, downlinked in real-time, processed on the ground into effective dose rates, compared with NASA's Langley Research Center (LaRC) most recent Nowcast of Atmospheric Ionizing Radiation System (NAIRAS) global radiation climatology model runs, and then made available to end users via the web and smart phone apps. Flight altitudes now exceed 60,000 ft. and extend above commercial aviation altitudes into the stratosphere. In this presentation we describe recent ARMAS and USEWX results.

  15. Spacecraft attitude control momentum requirements analysis

    Science.gov (United States)

    Robertson, Brent P.; Heck, Michael L.

    1987-01-01

    The relationship between attitude and angular momentum control requirements is derived for a fixed attitude, Earth orbiting spacecraft with large area articulating appendages. Environmental effects such as gravity gradient, solar radiation pressure, and aerodynamic forces arising from a dynamic, rotating atmosphere are examined. It is shown that, in general, each environmental effect contributes to both cyclic and secular momentum requirements both within and perpendicular to the orbit plane. The gyroscopic contribution to the angular momentum control requirements resulting from a rotating, Earth oriented spacecraft is also discussed. Special conditions are described where one or more components of the angular momentum can be made to vanish, or become purely cyclical. Computer generated plots for a candidate space station configuration are presented to supplement the analytically derived results.

  16. Spacecraft Dynamic Characteristics While Deploying Flexible Beams

    Institute of Scientific and Technical Information of China (English)

    程绪铎; 李俊峰; 樊勇; 王照林

    2002-01-01

    The attitude dynamic equations of a spacecraft while deploying two flexible beams and the beam equations were developed from momentum theory. The dynamic equations were solved numerically using the Runge-Kutta method to calculate the vibration amplitudes of the flexible beams and the attitude angular velocity. The results show that the vibration amplitudes increase as the beam length increases or as the initial attitude angular velocity increases. The results also show that the vibration amplitudes decrease as the deployment velocity increases.

  17. Aerodynamic flight performance in flap-gliding birds and bats.

    Science.gov (United States)

    Muijres, Florian T; Henningsson, Per; Stuiver, Melanie; Hedenström, Anders

    2012-08-01

    Many birds use a flight mode called undulating or flap-gliding flight, where they alternate between flapping and gliding phases, while only a few bats make use of such a flight mode. Among birds, flap-gliding is commonly used by medium to large species, where it is regarded to have a lower energetic cost than continuously flapping flight. Here, we introduce a novel model for estimating the energetic flight economy of flap-gliding animals, by determining the lift-to-drag ratio for flap-gliding based on empirical lift-to-drag ratio estimates for continuous flapping flight and for continuous gliding flight, respectively. We apply the model to flight performance data of the common swift (Apus apus) and of the lesser long-nosed bat (Leptonycteris yerbabuenae). The common swift is a typical flap-glider while-to the best of our knowledge-the lesser long-nosed bat does not use flap-gliding. The results show that, according to the model, the flap-gliding common swift saves up to 15% energy compared to a continuous flapping swift, and that this is primarily due to the exceptionally high lift-to-drag ratio in gliding flight relative to that in flapping flight for common swifts. The lesser long-nosed bat, on the other hand, seems not to be able to reduce energetic costs by flap-gliding. The difference in relative costs of flap-gliding flight between the common swift and the lesser long-nosed bat can be explained by differences in morphology, flight style and wake dynamics. The model presented here proves to be a valuable tool for estimating energetic flight economy in flap-gliding animals. The results show that flap-gliding flight that is naturally used by common swifts is indeed the most economic one of the two flight modes, while this is not the case for the non-flap-gliding lesser long-nosed bat. PMID:22726811

  18. "El Euskera a Mi Me Gusta": Parental Attitudes of Basque Country Immigrants

    Science.gov (United States)

    Torres-Guzman, Maria E.; Etxeberria-Sagastume, Felipa; Intxausti Intxausti, Nahia

    2011-01-01

    Within this study, we examine the nexus of immigrant parents' language attitudes and motivations towards a lesser-spoken, endangered language and the revitalization efforts in the Basque Country, Spain. Attitudes and motivations are conceptualized as multileveled, relational, and dynamically constructed within their immediate and broader…

  19. Experience from the in-flight calibration of the Extreme Ultraviolet Explorer (EUVE) and Upper Atmosphere Research Satellite (UARS) fixed head star trackers (FHSTs)

    Science.gov (United States)

    Lee, Michael

    1995-01-01

    Since the original post-launch calibration of the FHSTs (Fixed Head Star Trackers) on EUVE (Extreme Ultraviolet Explorer) and UARS (Upper Atmosphere Research Satellite), the Flight Dynamics task has continued to analyze the FHST performance. The algorithm used for inflight alignment of spacecraft sensors is described and the equations for the errors in the relative alignment for the simple 2 star tracker case are shown. Simulated data and real data are used to compute the covariance of the relative alignment errors. Several methods for correcting the alignment are compared and results analyzed. The specific problems seen on orbit with UARS and EUVE are then discussed. UARS has experienced anomalous tracker performance on an FHST resulting in continuous variation in apparent tracker alignment. On EUVE, the FHST residuals from the attitude determination algorithm showed a dependence on the direction of roll during survey mode. This dependence is traced back to time tagging errors and the original post launch alignment is found to be in error due to the impact of the time tagging errors on the alignment algorithm. The methods used by the FDF (Flight Dynamics Facility) to correct for these problems is described.

  20. Attitudes towards Immigration

    DEFF Research Database (Denmark)

    Dinesen, Peter Thisted; Klemmensen, Robert; Nørgaard, Asbjørn Sonne

    2016-01-01

    immigration: scoring higher on this trait implies a greater willingness to admit immigrants. Moreover, individuals react differently to economic threat depending on their score on the traits Agreeableness and Conscientiousness. Specifically, individuals scoring low on Agreeableness and individuals scoring...... high on Conscientiousness are more sensitive to the skill level of immigrants. The results imply that personality is important for attitudes toward immigration, and in the conclusion, we further discuss how the observed conditional and unconditional effects of personality make sense theoretically....

  1. Attitudes towards wind power

    International Nuclear Information System (INIS)

    Planning permission for the construction of a small 'farm' of wind turbines at Delabole (Deli windfarm) had been obtained and it was intended to use this source of renewable energy by generating electricity and selling it to the electrical power companies for distribution through the National Grid. It was important, therefore, to establish just what the attitudes of local residents were to the proposed development. A programme of research was discussed with the developer and it was agreed that an attitude survey would be conducted in the local area in the summer of 1990, before the turbines were erected, and before the tourist season was completely spent in order to obtain the views of visitors as well. A similar survey would then be done one year later, when the Deli windfarm was established and running. In addition, control samples would be taken at these two times in Exeter to give baseline information on attitudes toward this topic. This proposal was put to the developer and agreement was reached with him and the UK Department of Energy who were providing financial support for the research. The results of the research are reported. (author)

  2. Biologically Inspired Micro-Flight Research

    Science.gov (United States)

    Raney, David L.; Waszak, Martin R.

    2003-01-01

    Natural fliers demonstrate a diverse array of flight capabilities, many of which are poorly understood. NASA has established a research project to explore and exploit flight technologies inspired by biological systems. One part of this project focuses on dynamic modeling and control of micro aerial vehicles that incorporate flexible wing structures inspired by natural fliers such as insects, hummingbirds and bats. With a vast number of potential civil and military applications, micro aerial vehicles represent an emerging sector of the aerospace market. This paper describes an ongoing research activity in which mechanization and control concepts for biologically inspired micro aerial vehicles are being explored. Research activities focusing on a flexible fixed- wing micro aerial vehicle design and a flapping-based micro aerial vehicle concept are presented.

  3. THE IMPACT OF CONSUMERS ATTITUDE TOWARD ADVERTISING ON PRODUCT ATTITUDE

    OpenAIRE

    Comiati Raluca; Plaias Ioan

    2010-01-01

    In the paste decades, marketing researchers tried to understand and determine the impact of advertising on consumers’ attitude toward products or brands. The starting point into the analysis was that the favorable or unfavorable evaluation of advertisement is transferred or associated with the promoted product or brand. This paper is aimed to highlight the manner and the grade in which the consumers’ attitude toward advertising is influencing the attitude toward the advertised product. More t...

  4. Gain-Scheduled Higher Harmonic Control for Full Flight Envelope Vibration Reduction

    OpenAIRE

    Fan, Frank H.; Hall, Steven

    2014-01-01

    This paper investigates the dynamics of the SMART rotor, and presents a method to design a gain-scheduled controller to reduce the harmonic vibration throughout the flight envelope. The dynamics of the SMART rotor was examined at various flight conditions through nonlinear simulation. The simulation results showed that the dynamics is strongly dependent on the advance ratio, but only weakly dependent on the blade loading and the rotor shaft angle. To reduce the higher harmonic vibration throu...

  5. Flight Qualified Micro Sun Sensor

    Science.gov (United States)

    Liebe, Carl Christian; Mobasser, Sohrab; Wrigley, Chris; Schroeder, Jeffrey; Bae, Youngsam; Naegle, James; Katanyoutanant, Sunant; Jerebets, Sergei; Schatzel, Donald; Lee, Choonsup

    2007-01-01

    A prototype small, lightweight micro Sun sensor (MSS) has been flight qualified as part of the attitude-determination system of a spacecraft or for Mars surface operations. The MSS has previously been reported at a very early stage of development in NASA Tech Briefs, Vol. 28, No. 1 (January 2004). An MSS is essentially a miniature multiple-pinhole electronic camera combined with digital processing electronics that functions analogously to a sundial. A micromachined mask containing a number of microscopic pinholes is mounted in front of an active-pixel sensor (APS). Electronic circuits for controlling the operation of the APS, readout from the pixel photodetectors, and analog-to-digital conversion are all integrated onto the same chip along with the APS. The digital processing includes computation of the centroids of the pinhole Sun images on the APS. The spacecraft computer has the task of converting the Sun centroids into Sun angles utilizing a calibration polynomial. The micromachined mask comprises a 500-micron-thick silicon wafer, onto which is deposited a 57-nm-thick chromium adhesion- promotion layer followed by a 200-nm-thick gold light-absorption layer. The pinholes, 50 microns in diameter, are formed in the gold layer by photolithography. The chromium layer is thin enough to be penetrable by an amount of Sunlight adequate to form measurable pinhole images. A spacer frame between the mask and the APS maintains a gap of .1 mm between the pinhole plane and the photodetector plane of the APS. To minimize data volume, mass, and power consumption, the digital processing of the APS readouts takes place in a single field-programmable gate array (FPGA). The particular FPGA is a radiation- tolerant unit that contains .32,000 gates. No external memory is used so the FPGA calculates the centroids in real time as pixels are read off the APS with minimal internal memory. To enable the MSS to fit into a small package, the APS, the FPGA, and other components are mounted

  6. Advanced Free Flight Planner and Dispatcher's Workstation: Preliminary Design Specification

    Science.gov (United States)

    Wilson, J.; Wright, C.; Couluris, G. J.

    1997-01-01

    The National Aeronautics and Space Administration (NASA) has implemented the Advanced Air Transportation Technology (AATT) program to investigate future improvements to the national and international air traffic management systems. This research, as part of the AATT program, developed preliminary design requirements for an advanced Airline Operations Control (AOC) dispatcher's workstation, with emphasis on flight planning. This design will support the implementation of an experimental workstation in NASA laboratories that would emulate AOC dispatch operations. The work developed an airline flight plan data base and specified requirements for: a computer tool for generation and evaluation of free flight, user preferred trajectories (UPT); the kernel of an advanced flight planning system to be incorporated into the UPT-generation tool; and an AOC workstation to house the UPT-generation tool and to provide a real-time testing environment. A prototype for the advanced flight plan optimization kernel was developed and demonstrated. The flight planner uses dynamic programming to search a four-dimensional wind and temperature grid to identify the optimal route, altitude and speed for successive segments of a flight. An iterative process is employed in which a series of trajectories are successively refined until the LTPT is identified. The flight planner is designed to function in the current operational environment as well as in free flight. The free flight environment would enable greater flexibility in UPT selection based on alleviation of current procedural constraints. The prototype also takes advantage of advanced computer processing capabilities to implement more powerful optimization routines than would be possible with older computer systems.

  7. Orion Pad Abort 1 Flight Test - Ground and Flight Operations

    Science.gov (United States)

    Hackenbergy, Davis L.; Hicks, Wayne

    2011-01-01

    This paper discusses the ground and flight operations aspects to the Pad Abort 1 launch. The paper details the processes used to plan all operations. The paper then discussions the difficulties of integration and testing, while detailing some of the lessons learned throughout the entire launch campaign. Flight operational aspects of the launc are covered in order to provide the listener with the full suite of operational issues encountered in preparation for the first flight test of the Orion Launch Abort System.

  8. The Impact of Airline Flight Schedules on Flight Delays

    OpenAIRE

    Vinayak Deshpande; Mazhar Arıkan

    2012-01-01

    Airline flight delays have come under increased scrutiny lately in the popular press, with the Federal Aviation Administration data revealing that airline on-time performance was at its worst level in 13 years in 2007. Flight delays have been attributed to several causes such as weather conditions, airport congestion, airspace congestion, use of smaller aircraft by airlines, etc. In this paper, we examine the impact of the scheduled block time allocated for a flight, a factor controlled by ai...

  9. Flight to America

    OpenAIRE

    Güneli Gün

    2011-01-01

    Güneli Gün’s memoir piece truly combines the excitement of the young traveler with the humor of the mature narrator. Born in Izmir, Turkey, she breaks her engagement to a young but conservative Turkish architect and overcomes her father’s concerns to eventually study at Hollins College, Virginia. Addressing topics such as breaking out of a traditional society, being torn between the home country and the imagined new home, and finding comfort in the arts, “Flight to America” compellingly refle...

  10. Rocket Flight Path

    OpenAIRE

    Jamie Waters

    2014-01-01

    This project uses Newton’s Second Law of Motion, Euler’s method, basic physics, and basic calculus to model the flight path of a rocket. From this, one can find the height and velocity at any point from launch to the maximum altitude, or apogee. This can then be compared to the actual values to see if the method of estimation is a plausible. The rocket used for this project is modeled after Bullistic-1 which was launched by the Society of Aeronautics and Rocketry at the University of South Fl...

  11. Rocket Flight Path

    Directory of Open Access Journals (Sweden)

    Jamie Waters

    2014-09-01

    Full Text Available This project uses Newton’s Second Law of Motion, Euler’s method, basic physics, and basic calculus to model the flight path of a rocket. From this, one can find the height and velocity at any point from launch to the maximum altitude, or apogee. This can then be compared to the actual values to see if the method of estimation is a plausible. The rocket used for this project is modeled after Bullistic-1 which was launched by the Society of Aeronautics and Rocketry at the University of South Florida.

  12. Flight Mechanics Project

    Science.gov (United States)

    Steck, Daniel

    2009-01-01

    This report documents the generation of an outbound Earth to Moon transfer preliminary database consisting of four cases calculated twice a day for a 19 year period. The database was desired as the first step in order for NASA to rapidly generate Earth to Moon trajectories for the Constellation Program using the Mission Assessment Post Processor. The completed database was created running a flight trajectory and optimization program, called Copernicus, in batch mode with the use of newly created Matlab functions. The database is accurate and has high data resolution. The techniques and scripts developed to generate the trajectory information will also be directly used in generating a comprehensive database.

  13. RURAL CONSUMERS’ ATTITUDE TOWARDS KHADI PRODUCTS

    OpenAIRE

    Mrs.Padmasani; S. Muruganandan; M. Yazhini

    2011-01-01

    In this study the consumers‟ attitude towards khadi products is reviewedthrough Fishbein‟s attitude model. The influence of personal characteristics and purchasepreference factors on the attitude as well as the association between attitude andconsumer‟s satisfaction are examined. This study shows that, overall, the consumers havepositive attitude towards khadi product and also that the consumers who have higherattitude get more satisfaction.

  14. Digital flight control design for a tandem-rotor helicopter

    Science.gov (United States)

    Stengel, R. F.; Broussard, J. R.; Berry, P. W.

    1977-01-01

    Methods and results in the continuing development of a digital flight control system (DFCS) for the CH-47B helicopter are examined. The helicopter is the research vehicle for the NASA VTOL Approach and Landing Technology (VALT) Program. It is equipped with comprehensive equipment for the investigation of navigation, guidance, and control requirements for future VTOL aircraft. Two control modes (attitude-command and velocity-command) are implemented, and each mode provides 'Type 1' response to guidance commands. DFCS design is based upon optimal estimation and control methods, which are found to provide flexible and efficient means for defining practical digital control systems.

  15. STUDENTS ATTITUDE TO INTERDISCIPLINARY RESEARCH

    OpenAIRE

    Ahrens, Andreas; Zaščerinska, Jeļena

    2015-01-01

    Interdisciplinary research helps to turn bi-modal nature of phenomenon into success as interdisciplinary research ensures the synergy between two contrasting modes or forms. However, students’ attitude to interdisciplinary research has not been analysed. The purpose of the contribution is to analyse students’ attitude to interdisciplinary research underpinning elaboration of a hypothesis on ensuring students’ positive attitude to interdisciplinary research within university studies. The meani...

  16. Counseling Students’ Attitudes toward Statistics

    OpenAIRE

    José Antonio García-Martínez; Manuel Arturo Fallas-Vargas; Adriana Romero-Hernández

    2015-01-01

    This paper presents the findings of a study aimed at analyzing the attitudes toward Statistics of a sample of 223 Counseling students, as well as identifying possible attitude differences by socio-demographic characteristics and prior training in Statistics.  Based on a cross-sectional design, data was collected using SATS (Survey of Attitudes toward Statistics), which includes four components (affective, cognitive competence, value and difficulty), as well as several questions on the partici...

  17. Attitudes towards child sexual abuse

    OpenAIRE

    Tennfjord, Oddfrid Skorpe

    2008-01-01

    The main purpose of the present thesis was to develop a measurement instrument aimed to reveal attitudes towards child sexual abuse, and to measure attitudes and associating personal, social and cultural factors among three different samples of Norwegian adults. Additional aims were to explore the relation between participants’ knowledge-seeking on the one hand, their experiences, attitudes and actual knowledge about abuse on the other hand.Three studies are presented based on the same data m...

  18. Attitude of teenagers towards biology

    OpenAIRE

    Lavtižar, Teja

    2016-01-01

    ROSE project is a comprehensive study in which students' attitudes towards Science and Technology affected by many factors have been examined. In our study, only some aspects have been focused due to a narrower field of biology which has been interested in, and the direction of the attitude between Biology to elementary school students has been checked. The purpose of the master's work has been to determine the attitude of the teenagers to Biology as science and Biology as a school subjec...

  19. Stability and control issues associated with lightly loaded rotors autorotating in high advance ratio flight

    Science.gov (United States)

    Rigsby, James Michael

    sensitivities with advance ratio, and advance ratio dependent control cross coupling. Hub moment response to rotor disturbances results in transients where rotor damping is reduced due to low Lock number blades and reduced rotor angular velocity. Experimentally identified frequency response shows dominant low frequency modes with advance ratio dependent damping and the frequencies are on the order of typical airframe modes. Rotor speed response to swashplate control perturbations from trim results in non-linear behavior that is advance ratio dependent, and which stems from cyclic flapping behavior at high advance ratio. Rotor control strategies were developed including the use of variable shaft incidence to achieve rotor speed control with hub moment suppression achieved through cyclic control. Flight dynamics characteristics resulting from the coupling of the rotor and airframe were predicted in flight using a baseline airframe with conventional fixed-wing controls, representative of the current interest in the concept vehicle. Results predicted by linearization of the non-linear models were compared with system identification results using the non-linear simulation as surrogate flight test data. Low frequency rotor response is shown to couple with the vehicle motion for short period and roll mode response to airframe control inputs. The rotor speed mode is shown to couple with short period and long period vehicle modes as the rotor torque balance is sensitive to vehicle speed and attitude changes.

  20. An Autonomous Flight Safety System

    Science.gov (United States)

    Bull, James B.; Lanzi, Raymond J.

    2007-01-01

    The Autonomous Flight Safety System (AFSS) being developed by NASA s Goddard Space Flight Center s Wallops Flight Facility and Kennedy Space Center has completed two successful developmental flights and is preparing for a third. AFSS has been demonstrated to be a viable architecture for implementation of a completely vehicle based system capable of protecting life and property in event of an errant vehicle by terminating the flight or initiating other actions. It is capable of replacing current human-in-the-loop systems or acting in parallel with them. AFSS is configured prior to flight in accordance with a specific rule set agreed upon by the range safety authority and the user to protect the public and assure mission success. This paper discusses the motivation for the project, describes the method of development, and presents an overview of the evolving architecture and the current status.

  1. Flight Test Performance of a High Precision Navigation Doppler Lidar

    Science.gov (United States)

    Pierrottet, Diego; Amzajerdian, Farzin; Petway, Larry; Barnes, Bruce; Lockard, George

    2009-01-01

    A navigation Doppler Lidar (DL) was developed at NASA Langley Research Center (LaRC) for high precision velocity measurements from a lunar or planetary landing vehicle in support of the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project. A unique feature of this DL is that it has the capability to provide a precision velocity vector which can be easily separated into horizontal and vertical velocity components and high accuracy line of sight (LOS) range measurements. This dual mode of operation can provide useful information, such as vehicle orientation relative to the direction of travel, and vehicle attitude relative to the sensor footprint on the ground. System performance was evaluated in a series of helicopter flight tests over the California desert. This paper provides a description of the DL system and presents results obtained from these flight tests.

  2. Biomechanics and biomimetics in insect-inspired flight systems.

    Science.gov (United States)

    Liu, Hao; Ravi, Sridhar; Kolomenskiy, Dmitry; Tanaka, Hiroto

    2016-09-26

    Insect- and bird-size drones-micro air vehicles (MAV) that can perform autonomous flight in natural and man-made environments are now an active and well-integrated research area. MAVs normally operate at a low speed in a Reynolds number regime of 10(4)-10(5) or lower, in which most flying animals of insects, birds and bats fly, and encounter unconventional challenges in generating sufficient aerodynamic forces to stay airborne and in controlling flight autonomy to achieve complex manoeuvres. Flying insects that power and control flight by flapping wings are capable of sophisticated aerodynamic force production and precise, agile manoeuvring, through an integrated system consisting of wings to generate aerodynamic force, muscles to move the wings and a control system to modulate power output from the muscles. In this article, we give a selective review on the state of the art of biomechanics in bioinspired flight systems in terms of flapping and flexible wing aerodynamics, flight dynamics and stability, passive and active mechanisms in stabilization and control, as well as flapping flight in unsteady environments. We further highlight recent advances in biomimetics of flapping-wing MAVs with a specific focus on insect-inspired wing design and fabrication, as well as sensing systems.This article is part of the themed issue 'Moving in a moving medium: new perspectives on flight'. PMID:27528780

  3. NASA - Human Space Flight

    Science.gov (United States)

    Davis, Jeffrey R.

    2006-01-01

    The presentation covers five main topical areas. The first is a description of how things work in the microgravity environment such as convection and sedimentation. The second part describes the effects of microgravity on human physiology. This is followed by a description of the hazards of space flight including the environment, the space craft, and the mission. An overview of biomedical research in space, both on shuttle and ISS is the fourth section of the presentation. The presentation concludes with a history of space flight from Ham to ISS. At CART students (11th and 12th graders from Fresno Unified and Clovis Unified) are actively involved in their education. They work in teams to research real world problems and discover original solutions. Students work on projects guided by academic instructors and business partners. They will have access to the latest technology and will be expected to expand their learning environment to include the community. They will focus their studies around a career area (Professional Sciences, Advanced Communications, Engineering and Product Development, or Global Issues).

  4. New Theory of Flight

    Science.gov (United States)

    Hoffman, Johan; Jansson, Johan; Johnson, Claes

    2016-06-01

    We present a new mathematical theory explaining the fluid mechanics of subsonic flight, which is fundamentally different from the existing boundary layer-circulation theory by Prandtl-Kutta-Zhukovsky formed 100 year ago. The new theory is based on our new resolution of d'Alembert's paradox showing that slightly viscous bluff body flow can be viewed as zero-drag/lift potential flow modified by 3d rotational slip separation arising from a specific separation instability of potential flow, into turbulent flow with nonzero drag/lift. For a wing this separation mechanism maintains the large lift of potential flow generated at the leading edge at the price of small drag, resulting in a lift to drag quotient of size 15-20 for a small propeller plane at cruising speed with Reynolds number {Re≈ 107} and a jumbojet at take-off and landing with {Re≈ 108} , which allows flight at affordable power. The new mathematical theory is supported by computed turbulent solutions of the Navier-Stokes equations with a slip boundary condition as a model of observed small skin friction of a turbulent boundary layer always arising for {Re > 106} , in close accordance with experimental observations over the entire range of angle of attacks including stall using a few millions of mesh points for a full wing-body configuration.

  5. Negative Attitudes, Network and Education

    DEFF Research Database (Denmark)

    Bennett, Patrick; la Cour, Lisbeth; Larsen, Birthe;

    that more negative attitudes against immigrants has a positive impact on education in one case and a negative impact in the other and has no impact on natives. Immigration improves employment perspectives for immigrants and thereby increases immigrant education whereas endogenous negative attitudes......We consider the impact of negative attitudes against immigrants and immigration on educational choice in a search and wage bargaining model including networking. We consider two cases in terms of the importance of negative attitudes againts immigrants for high and low educated individuals and find...

  6. Wages, Amenities and Negative Attitudes

    DEFF Research Database (Denmark)

    Waisman, Gisela; Larsen, Birthe

    interpret the negative effect on wages as evidence of labour market discrimination. We estimate the welfare effects of negative attitudes, through their wage and local amenities, for immigrants with different levels of skills, origin, gender and age.......We exploit the regional variation in negative attitudes towards immigrants to Sweden in order to analyse the consequences of the attitudes on immigrants welfare. We find that attitudes towards immigrants are of importance: they both affect their labour market outcomes and their quality of life. We...

  7. Neural Networks for Flight Control

    Science.gov (United States)

    Jorgensen, Charles C.

    1996-01-01

    Neural networks are being developed at NASA Ames Research Center to permit real-time adaptive control of time varying nonlinear systems, enhance the fault-tolerance of mission hardware, and permit online system reconfiguration. In general, the problem of controlling time varying nonlinear systems with unknown structures has not been solved. Adaptive neural control techniques show considerable promise and are being applied to technical challenges including automated docking of spacecraft, dynamic balancing of the space station centrifuge, online reconfiguration of damaged aircraft, and reducing cost of new air and spacecraft designs. Our experiences have shown that neural network algorithms solved certain problems that conventional control methods have been unable to effectively address. These include damage mitigation in nonlinear reconfiguration flight control, early performance estimation of new aircraft designs, compensation for damaged planetary mission hardware by using redundant manipulator capability, and space sensor platform stabilization. This presentation explored these developments in the context of neural network control theory. The discussion began with an overview of why neural control has proven attractive for NASA application domains. The more important issues in control system development were then discussed with references to significant technical advances in the literature. Examples of how these methods have been applied were given, followed by projections of emerging application needs and directions.

  8. Space flight requires nuclear energy

    International Nuclear Information System (INIS)

    To be able to solve its future tasks, space flight needs nuclear energy: manned space flight to the Mars is almost unthinkable without nuclear propulsion, and orbital nuclear power plants will be required for the power supply of high-capacity satellites or large space stations. Nuclear energy needs space flight: a nuclear power plant on the moon does not bother man because of the high natural radiation exposure existing there, and could contribute to terrestrial power supply. (orig./HSCH)

  9. PSYCHOLOGY OF FLIGHT ATTENDANT'S PROFESSION

    OpenAIRE

    Tatyana V. Filipieva

    2012-01-01

    The profession of a flight attendant appeared in aviation in the 1920s. Professional community of flight attendants is constantly growing with the growth of complexity of aviation technology, professional standards of passenger service and safety. The psychological scientific research was carried out by a psychologist who worked as a flight attendant. The study revealed the psychological content, demands, peculiarities in cabin crews' labor. A job description was accomplished. Temporal and sp...

  10. Getting started with Twitter Flight

    CERN Document Server

    Hamshere, Tom

    2013-01-01

    Getting Started with Twitter Flight is written with the intention to educate the readers, helping them learn how to build modular powerful applications with Flight, Twitter's cutting-edge JavaScript framework.This book is for anyone with a foundation in JavaScript who wants to build web applications. Flight is quick and easy to learn, built on technologies you already understand such as the DOM, events, and jQuery.

  11. Stabilization control of a bumblebee in hovering and forward flight

    Institute of Scientific and Technical Information of China (English)

    Yan Xiong; Mao Sun

    2009-01-01

    Our previous study shows that the hovering and forward flight of a bumblebee do not have inherent stabil-ity (passive stability). But the bumblebees are observed to fly stably. Stabilization control must have been applied. In this study, we investigate the longitudinal stabilization con-trol of the bumblebee. The method of computational fluid dynamics is used to compute the control derivatives and the techniques of eigenvalue and eigenvector analysis and modal decomposition are used for solving the equations of motion. Controllability analysis shows that at all flight speeds consid-ered, although inherently unstable, the flight is controllable. By feedbacking the state variables, i.e. vertical and horizon-tal velocities, pitching rate and pitch angle (which can be measured by the sensory system of the insect), to produce changes in stroke angle and angle of attack of the wings, the flight can be stabilized, explaining why the bumblebees can fly stably even if they are passively unstable.

  12. Controlled flight of a biologically inspired, insect-scale robot.

    Science.gov (United States)

    Ma, Kevin Y; Chirarattananon, Pakpong; Fuller, Sawyer B; Wood, Robert J

    2013-05-01

    Flies are among the most agile flying creatures on Earth. To mimic this aerial prowess in a similarly sized robot requires tiny, high-efficiency mechanical components that pose miniaturization challenges governed by force-scaling laws, suggesting unconventional solutions for propulsion, actuation, and manufacturing. To this end, we developed high-power-density piezoelectric flight muscles and a manufacturing methodology capable of rapidly prototyping articulated, flexure-based sub-millimeter mechanisms. We built an 80-milligram, insect-scale, flapping-wing robot modeled loosely on the morphology of flies. Using a modular approach to flight control that relies on limited information about the robot's dynamics, we demonstrated tethered but unconstrained stable hovering and basic controlled flight maneuvers. The result validates a sufficient suite of innovations for achieving artificial, insect-like flight. PMID:23641114

  13. Navigation systems requirement analysis for the Aeroassist Flight Experiment (AFE)

    Science.gov (United States)

    Huang, K. H.; Chang, Ho-Pen; Wells, Eugene M.

    1990-01-01

    Navigation requirements for Aeroassist Flight Experiment (AFE) spacecraft passing through the earth's atmosphere have been studied using a 6-DOF dynamics model, an Inertial Measurement Unit model, a baseline AFE aeropass flight guidance logic, and a baseline AFE aeropass control model. The goal of this study is to determine, in a statistical sense, how much flight path angle error can be tolerated at Entry Interface (EI) and still have acceptable delta-V requirements at exit to position the AFE spacecraft for recovery. Assuming there is fuel available to produce 370 ft/sec of delta-V at atmospheric exit, a 3-sigma standard deviation in flight path angle error of 0.04 degree at EI would result in a 98 percent probability of mission success. In addition to the required delta-V at exit, other aeropass parameters such as maximum aeroheating rate, fuel consumption, and the science requirements affecting mission success are also investigated.

  14. Flight Research and Validation Formerly Experimental Capabilities Supersonic Project

    Science.gov (United States)

    Banks, Daniel

    2009-01-01

    This slide presentation reviews the work of the Experimental Capabilities Supersonic project, that is being reorganized into Flight Research and Validation. The work of Experimental Capabilities Project in FY '09 is reviewed, and the specific centers that is assigned to do the work is given. The portfolio of the newly formed Flight Research and Validation (FRV) group is also reviewed. The various projects for FY '10 for the FRV are detailed. These projects include: Eagle Probe, Channeled Centerbody Inlet Experiment (CCIE), Supersonic Boundary layer Transition test (SBLT), Aero-elastic Test Wing-2 (ATW-2), G-V External Vision Systems (G5 XVS), Air-to-Air Schlieren (A2A), In Flight Background Oriented Schlieren (BOS), Dynamic Inertia Measurement Technique (DIM), and Advanced In-Flight IR Thermography (AIR-T).

  15. Two-dimensional Insect Flight on an Air-Water Interface is a Chaotic Oscillator

    CERN Document Server

    Mukundarajan, Haripriya; Prakash, Manu

    2014-01-01

    Two-dimensional flapping wing insect flight on an air-water interface provides a successful foraging strategy to explore an ecological niche on the surface of a pond. However, the complex interplay of surface tension, aerodynamic forces, biomechanics and neural control that enables two-dimensional flight is unknown. Here we report the discovery of two-dimensional flight in the waterlily beetle Galerucella nymphaeae, which is the fastest reported propulsion mode for an insect on a fluid interface. Using kinematics derived from high-speed videography coupled with analytical models, we demonstrate that two-dimensional flight is a chaotic interfacial oscillator, thus significantly constraining the possible range of flight parameters. Discovery of this complex dynamics in two-dimensional flight on time scales similar to neural responses indicates the challenge of evolving active flight control on a fluid interface.

  16. Towards a different attitude to uncertainty

    Directory of Open Access Journals (Sweden)

    Guy Pe'er

    2014-10-01

    Full Text Available The ecological literature deals with uncertainty primarily from the perspective of how to reduce it to acceptable levels. However, the current rapid and ubiquitous environmental changes, as well as anticipated rates of change, pose novel conditions and complex dynamics due to which many sources of uncertainty are difficult or even impossible to reduce. These include both uncertainty in knowledge (epistemic uncertainty and societal responses to it. Under these conditions, an increasing number of studies ask how one can deal with uncertainty as it is. Here, we explore the question how to adopt an overall alternative attitude to uncertainty, which accepts or even embraces it. First, we show that seeking to reduce uncertainty may be counterproductive under some circumstances. It may yield overconfidence, ignoring early warning signs, policy- and societal stagnation, or irresponsible behaviour if personal certainty is offered by externalization of environmental costs. We then demonstrate that uncertainty can have positive impacts by driving improvements in knowledge, promoting cautious action, contributing to keeping societies flexible and adaptable, enhancing awareness, support and involvement of the public in nature conservation, and enhancing cooperation and communication. We discuss the risks of employing a certainty paradigm on uncertain knowledge, the potential benefits of adopting an alternative attitude to uncertainty, and the need to implement such an attitude across scales – from adaptive management at the local scale, to the evolving Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES at the global level.

  17. The Space Technology-7 Disturbance Reduction System Precision Control Flight Validation Experiment Control System Design

    Science.gov (United States)

    O'Donnell, James R.; Hsu, Oscar C.; Maghami, Peirman G.; Markley, F. Landis

    2006-01-01

    As originally proposed, the Space Technology-7 Disturbance Reduction System (DRS) project, managed out of the Jet Propulsion Laboratory, was designed to validate technologies required for future missions such as the Laser Interferometer Space Antenna (LISA). The two technologies to be demonstrated by DRS were Gravitational Reference Sensors (GRSs) and Colloidal MicroNewton Thrusters (CMNTs). Control algorithms being designed by the Dynamic Control System (DCS) team at the Goddard Space Flight Center would control the spacecraft so that it flew about a freely-floating GRS test mass, keeping it centered within its housing. For programmatic reasons, the GRSs were descoped from DRS. The primary goals of the new mission are to validate the performance of the CMNTs and to demonstrate precise spacecraft position control. DRS will fly as a part of the European Space Agency (ESA) LISA Pathfinder (LPF) spacecraft along with a similar ESA experiment, the LISA Technology Package (LTP). With no GRS, the DCS attitude and drag-free control systems make use of the sensor being developed by ESA as a part of the LTP. The control system is designed to maintain the spacecraft s position with respect to the test mass, to within 10 nm/the square root of Hz over the DRS science frequency band of 1 to 30 mHz.

  18. Integration, calibration, and testing of resistor array dynamic infrared scene projector on the outer axis of a five-axis flight motion simulator for real-time hardware-in-the-loop simulations

    Science.gov (United States)

    Goldsmith, George C., II; Amick, Mary Amenda; Jones, Lawrence E.

    1996-05-01

    The Air Force Development Test Center's (AFDTC) Guided Weapons Evaluation Facility (GWEF), is designed to test guided munitions performance using Hardware-In-the-Loop simulations. Evaluation of imaging infrared guided munitions requires the generation and projection of complex infrared (IR) `fly-in' scenes to the unit under test which is mounted to a flight motion simulator. Members of AFDTC's 46 Test Wing and Avionics Systems Command's Wright Labs have teamed to develop and integrate this capability within the GWEF and Wright Lab's Kinetic Kill Hardware-In-the-Loop Simulation (KHILS) facility. The major Hardware-In-the-Loop (HIL) components for the GWEF include an IR scene generator, an IR projector, a five axis flight motion simulator (FMS), a 6 degree of freedom missile flight simulation, and the opto- mechanical interface to mount the projector onto the 5 axis FMS. GWEF's unique HIL solution is utilizing the 512 X 512 resistor array technology developed by KHILS, and off- the-shelf state-of-the-art scene generation computer, FMS, and optics. Details on this in-house development effort include acquisition and configuration/integration issues, thermal information to radiance bandpass output validation, IR scene generation and frame latency, generated IR scene input to projected output calibration, and simulation guidance from launch to impact verification. This capability has been successfully integrated into the GWEF, meeting a March 1996 HIL test.

  19. Stereotypes and Welfare Attitudes

    DEFF Research Database (Denmark)

    Hedegaard, Troels Fage

    2014-01-01

    What is the impact of a predominantly negative debate about social assistance on public and individual support for the social benefit? Over the course of a year the public debate about social assistance flared up twice in Denmark. The debates drew on classic stereotypes of the social assistance...... recipients lacking both the financial incentives and the will to work. According to theories of the impact of media on welfare attitudes, this had the potential to undermine public support. A two-wave panel survey, however, showed only a small drop in public support for spending on social assistance...

  20. Optimal magnetic attitude control

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Markley, F.L.

    1999-01-01

    Magnetic torquing is attractive as means of control for small satellites. The actuation principle is to use the interaction between the earth's magnetic field and a magnetic field generated by a coil set in the satellite. This control principle is inherently time-varying, and difficult to use...... because control torques can only be generated perpendicular to the local geomagnetic field vector. This has been a serious obstacle for using magnetorquer based control for three-axis stabilization of a low earth orbit satellite. The problem of controlling the spacecraft attitude using only magnetic...