WorldWideScience

Sample records for attitude flight dynamics

  1. The attitude accuracy consequences of on-orbit calibration of the Extreme Ultraviolet Explorer attitude sensors by the Flight Dynamics Facility at Goddard Space Flight Center

    Science.gov (United States)

    Hashmall, J.; Davis, W.; Harman, R.

    1993-01-01

    The science mission of the Extreme Ultraviolet Explorer (EUVE) requires attitude solutions with uncertainties of 27, 16.7, 16.7 arcseconds (3 sigma) around the roll, pitch, and yaw axes, respectively. The primary input to the attitude determination process is provided by two NASA standard fixed-head star trackers (FHSTs) and a Teledyne dry rotor inertial reference unit (DRIRU) 2. The attitude determination requirements approach the limits attainable with the FHSTs and DRIRU. The Flight Dynamics Facility (FDF) at Goddard Space Flight Center (GSFC) designed and executed calibration procedures that far exceeded the extent and the data volume of any other FDF-supported mission. The techniques and results of this attempt to obtain attitude accuracies at the limit of sensor capability and the results of analysis of the factors that limit the attitude accuracy are the primary subjects of this paper. The success of the calibration effort is judged by the resulting measurement residuals and comparisons between ground- and onboard-determined attitudes. The FHST star position residuals have been reduced to less tha 4 arcsec per axis -- a value that appears to be limited by the sensor capabilities. The FDF ground system uses a batch least-squares estimator to determine attitude. The EUVE onboard computer (OBC) uses an extended Kalman filter. Currently, there are systematic differences between the two attitude solutions that occasionally exceed the mission requirements for 3 sigma attitude uncertainty. Attempts to understand and reduce these differences are continuing.

  2. Flight Dynamics Analysis Branch

    Science.gov (United States)

    Stengle, Tom; Flores-Amaya, Felipe

    2000-01-01

    This report summarizes the major activities and accomplishments carried out by the Flight Dynamics Analysis Branch (FDAB), Code 572, in support of flight projects and technology development initiatives in fiscal year 2000. The report is intended to serve as a summary of the type of support carried out by the FDAB, as well as a concise reference of key accomplishments and mission experience derived from the various mission support roles. The primary focus of the FDAB is to provide expertise in the disciplines of flight dynamics, spacecraft trajectory, attitude analysis, and attitude determination and control. The FDAB currently provides support for missions and technology development projects involving NASA, government, university, and private industry.

  3. Flight Dynamics Analysis Branch 2005 Technical Highlights

    Science.gov (United States)

    2005-01-01

    This report summarizes the major activities and accomplishments carried out by the Flight Dynamics Analysis Branch (FDAB), Code 595, in support of flight projects and technology development initiatives in Fiscal Year (FY) 2005. The report is intended to serve as a summary of the type of support carried out by the FDAB, as well as a concise reference of key accomplishments and mission experience derived from the various mission support roles. The primary focus of the FDAB is to provide expertise in the disciplines of flight dynamics including spacecraft navigation (autonomous and ground based); spacecraft trajectory design and maneuver planning; attitude analysis; attitude determination and sensor calibration; and attitude control subsystem (ACS) analysis and design. The FDAB currently provides support for missions and technology development projects involving NASA, other government agencies, academia, and private industry.

  4. The dynamics of parabolic flight: Flight characteristics and passenger percepts

    Science.gov (United States)

    Karmali, Faisal; Shelhamer, Mark

    2008-09-01

    Flying a parabolic trajectory in an aircraft is one of the few ways to create freefall on Earth, which is important for astronaut training and scientific research. Here we review the physics underlying parabolic flight, explain the resulting flight dynamics, and describe several counterintuitive findings, which we corroborate using experimental data. Typically, the aircraft flies parabolic arcs that produce approximately 25 s of freefall (0 g) followed by 40 s of enhanced force (1.8 g), repeated 30-60 times. Although passengers perceive gravity to be zero, in actuality acceleration, and not gravity, has changed, and thus we caution against the terms "microgravity" and "zero gravity." Despite the aircraft trajectory including large (45°) pitch-up and pitch-down attitudes, the occupants experience a net force perpendicular to the floor of the aircraft. This is because the aircraft generates appropriate lift and thrust to produce the desired vertical and longitudinal accelerations, respectively, although we measured moderate (0.2 g) aft-ward accelerations during certain parts of these trajectories. Aircraft pitch rotation (average 3°/s) is barely detectable by the vestibular system, but could influence some physics experiments. Investigators should consider such details in the planning, analysis, and interpretation of parabolic-flight experiments.

  5. Exchange of Standardized Flight Dynamics Data

    Science.gov (United States)

    Martin-Mur, Tomas J.; Berry, David; Flores-Amaya, Felipe; Folliard, J.; Kiehling, R.; Ogawa, M.; Pallaschke, S.

    2004-01-01

    Spacecraft operations require the knowledge of the vehicle trajectory and attitude and also that of other spacecraft or natural bodies. This knowledge is normally provided by the Flight Dynamics teams of the different space organizations and, as very often spacecraft operations involve more than one organization, this information needs to be exchanged between Agencies. This is why the Navigation Working Group within the CCSDS (Consultative Committee for Space Data Systems), has been instituted with the task of establishing standards for the exchange of Flight Dynamics data. This exchange encompasses trajectory data, attitude data, and tracking data. The Navigation Working Group includes regular members and observers representing the participating Space Agencies. Currently the group includes representatives from CNES, DLR, ESA, NASA and JAXA. This Working Group meets twice per year in order to devise standardized language, methods, and formats for the description and exchange of Navigation data. Early versions of some of these standards have been used to support mutual tracking of ESA and NASA interplanetary spacecraft, especially during the arrival of the 2003 missions to Mars. This paper provides a summary of the activities carried out by the group, briefly outlines the current and envisioned standards, describes the tests and operational activities that have been performed using the standards, and lists and discusses the lessons learned from these activities.

  6. Flight Dynamics Analysis Branch End of Fiscal Year 2004 Report

    Science.gov (United States)

    DeLion, Anne (Editor); Stengle, Thomas

    2005-01-01

    This report summarizes the major activities and accomplishments carried out by the Flight Dynamics Analysis Branch (FDAB), Code 595, in support of flight projects and technology development initiatives in Fiscal Year (FY) 2004. The report is intended to serve as a summary of the type of support carried out by the FDAB, as well as a concise reference of key accomplishments and mission experience derived from the various mission support roles. The primary focus of the FDAB is to provide expertise in the disciplines of flight dynamics including spacecraft navigation (autonomous and ground based); spacecraft trajectory design and maneuver planning; attitude analysis; attitude determination and sensor calibration; and attitude control subsystem (ACS) analysis and design. The FDAB currently provides support for missions and technology development projects involving NASA, other government agencies, academia, and private industry.

  7. Flight Dynamics Analysis Branch End of Fiscal Year 2005 Report

    Science.gov (United States)

    2006-01-01

    This report summarizes the major activities and accomplishments carried out by the Flight Dynamics Analysis Branch (FDAB), Code 595, in support of flight projects and technology development initiatives in Fiscal Year (FY) 2005. The report is intended to serve as a summary of the type of support carried out by the FDAB, as well as a concise reference of key accomplishments and mission experience derived from the various mission support roles. The primary focus of the FDAB is to provide expertise in the disciplines of flight dynamics including spacecraft navigation (autonomous and ground based), spacecraft trajectory design and maneuver planning, attitude analysis, attitude determination and sensor calibration, and attitude control subsystem (ACS) analysis and design. The FDAB currently provides support for missions and technology development projects involving NASA, other government agencies, academia, and private industry.

  8. Reconstruction of the flight and attitude of Rosetta's lander Philae

    Science.gov (United States)

    Heinisch, Philip; Auster, Hans-Ulrich; Plettemeier, Dirk; Kofman, Wlodek; Herique, Alain; Statz, Christoph; Hahnel, Ronny; Rogez, Yves; Richter, Ingo; Hilchenbach, Martin; Jurado, Eric; Garmier, Romain; Martin, Thierry; Finke, Felix; Güttler, Carsten; Sierks, Holger; Glassmeier, Karl-Heinz

    2017-11-01

    Since Rosetta's lander Philae touched down on comet 67P/Churyumov-Gerasimenko on November 12, 2014, many tools have been applied to reconstruct Philae's flight path and attitude between separation, the touchdowns, collision and the final landing at Abydos. In addition to images from the cameras onboard both orbiter and lander (;OSIRIS;, ;CIVA; and ;ROLIS;), radio tracking results, solar array and radio data link housekeeping data, one of the major sources for timing and attitude information were two point magnetic field measurements by the magnetometers ;ROMAP; and ;RPC-MAG; aboard Philae and Rosetta. In this study all the different results are combined to determine in further detail what happened to Philae during its travel above the surface of 67P/Churyumov-Gerasimenko. In addition to a description of the descent dynamics and the attitude during rebound, the approximate coordinates for the collision at 16:20 UTC with the rim of the Hatmehit crater and the second touchdown are estimated. It is also shown, that Philae did not change attitude between the end of the first-science sequence and September 2, 2016.

  9. Flight Dynamics Analysis Branch End of Fiscal Year 1999 Report

    Science.gov (United States)

    Stengle, T.; Flores-Amaya, F.

    2000-01-01

    This report summarizes the major activities and accomplishments carried out by the Flight Dynamics Analysis Branch (FDAB), Code 572, in support of flight projects and technology development initiatives in Fiscal Year (FY) 1999. The report is intended to serve as a summary of the type of support carried out by the FDAB, as well as a concise reference of key analysis results and mission experience derived from the various mission support roles. The primary focus of the FDAB is to provide expertise in the discipline of flight dynamics, which involves spacecraft trajectory (orbit) and attitude analysis, as well as orbit and attitude determination and control. The FDAB currently provides support for missions involving NASA, government, university, and commercial space missions, at various stages in the mission life cycle.

  10. Dynamic Flight Envelope Assessment with Flight Safety Applications

    Science.gov (United States)

    Pandita, Rohit

    Aircraft have a manufacturer prescribed operating flight envelope for safe operation, exceeding these limits can result in unrecoverable departures or even structural failure. Numerous commercial aircraft accidents in the past have been attributed to loss-of-control (LOC) resulting from exceeding the safe operating flight envelope. Hence, real-time knowledge of the safe operating flight envelope is essential for safe flight operation, a problem known as dynamic flight envelope assessment. This dissertation explores dynamic flight envelope assessment from a control theoretic perspective. Two notions of the flight envelope, namely, the reachable sets and the region-of-attraction analysis are investigated. The NASA generic transport model (GTM) aircraft dynamics is used as an application problem. Linear and nonlinear techniques for flight envelope assessment are formulated in the linear matrix inequality (LMI) and sum-of-squares (SOS) framework, respectively. LMI and SOS problems are computationally tractable convex optimization problems for which many semi-definite programming solvers are available. This thesis also investigated fault detection and isolation strategies. Commercial jet transport aircrafts make extensive use of active controls. Faults or failures in the flight control system (FCS) elements like sensors or control effectors can lead to catastrophic failure. Model-based fault detection and isolation (FDI) filters can provide analytical redundancy by reliably detecting such faults in the system. Practical application of model-based FDI filters is limited so far due to poor performance, false alarms and missed detection arising out of uncertain dynamics of the aircraft, effect of nonlinearities in the system and the influence of closed-loop controllers. An application of closed-loop metrics to assess worst case FDI filter performance in the presence of a controller and uncertain dynamics is presented. Longitudinal GTM dynamics are considered. An Hinfinity

  11. Cassini Attitude Control Flight Software: from Development to In-Flight Operation

    Science.gov (United States)

    Brown, Jay

    2008-01-01

    The Cassini Attitude and Articulation Control Subsystem (AACS) Flight Software (FSW) has achieved its intended design goals by successfully guiding and controlling the Cassini-Huygens planetary mission to Saturn and its moons. This paper describes an overview of AACS FSW details from early design, development, implementation, and test to its fruition of operating and maintaining spacecraft control over an eleven year prime mission. Starting from phases of FSW development, topics expand to FSW development methodology, achievements utilizing in-flight autonomy, and summarize lessons learned during flight operations which can be useful to FSW in current and future spacecraft missions.

  12. Recent Goddard Space Flight Center (GSFC) experience with on-orbit calibration of attitude sensors

    Science.gov (United States)

    Davis, W.; Hashmall, J.; Harman, R.

    1992-01-01

    The results of on-orbit calibration for several satellites by the flight Dynamics Facility (FDF) at GSFC are reviewed. The examples discussed include attitude calibrations for sensors, including fixed-head star trackers, fine sun sensors, three-axis magnetometers, and inertial reference units taken from recent experience with the Compton Gamma Ray observatory, the Upper Atmosphere Research Satellite, and the Extreme Ultraviolet Explorer calibration. The methods used and the results of calibration are discussed, as are the improvements attained from in-flight calibration.

  13. Space station dynamics, attitude control and momentum management

    Science.gov (United States)

    Sunkel, John W.; Singh, Ramen P.; Vengopal, Ravi

    1989-01-01

    The Space Station Attitude Control System software test-bed provides a rigorous environment for the design, development and functional verification of GN and C algorithms and software. The approach taken for the simulation of the vehicle dynamics and environmental models using a computationally efficient algorithm is discussed. The simulation includes capabilities for docking/berthing dynamics, prescribed motion dynamics associated with the Mobile Remote Manipulator System (MRMS) and microgravity disturbances. The vehicle dynamics module interfaces with the test-bed through the central Communicator facility which is in turn driven by the Station Control Simulator (SCS) Executive. The Communicator addresses issues such as the interface between the discrete flight software and the continuous vehicle dynamics, and multi-programming aspects such as the complex flow of control in real-time programs. Combined with the flight software and redundancy management modules, the facility provides a flexible, user-oriented simulation platform.

  14. Flapping Wing Flight Dynamic Modeling

    Science.gov (United States)

    2011-08-22

    future ight dynamic models. Acknowledgments I would like to thank Dr. Patil and Dr. Woolsey for giving me the opportunity to work on my thesis here...In general the results pointed towards unstable or slightly unstable eigenvalues necessitating active control but also providing opportunities for...Stream, Tech. Rep. 1326, NACA, June 1947. [22] Wagner, H., Uber die Entstehung des Dynamischen Auftriebs von Tragugeln, Bd. 5, ZAMM, Feb 1925. [23

  15. Automated Flight Routing Using Stochastic Dynamic Programming

    Science.gov (United States)

    Ng, Hok K.; Morando, Alex; Grabbe, Shon

    2010-01-01

    Airspace capacity reduction due to convective weather impedes air traffic flows and causes traffic congestion. This study presents an algorithm that reroutes flights in the presence of winds, enroute convective weather, and congested airspace based on stochastic dynamic programming. A stochastic disturbance model incorporates into the reroute design process the capacity uncertainty. A trajectory-based airspace demand model is employed for calculating current and future airspace demand. The optimal routes minimize the total expected traveling time, weather incursion, and induced congestion costs. They are compared to weather-avoidance routes calculated using deterministic dynamic programming. The stochastic reroutes have smaller deviation probability than the deterministic counterpart when both reroutes have similar total flight distance. The stochastic rerouting algorithm takes into account all convective weather fields with all severity levels while the deterministic algorithm only accounts for convective weather systems exceeding a specified level of severity. When the stochastic reroutes are compared to the actual flight routes, they have similar total flight time, and both have about 1% of travel time crossing congested enroute sectors on average. The actual flight routes induce slightly less traffic congestion than the stochastic reroutes but intercept more severe convective weather.

  16. Automation Framework for Flight Dynamics Products Generation

    Science.gov (United States)

    Wiegand, Robert E.; Esposito, Timothy C.; Watson, John S.; Jun, Linda; Shoan, Wendy; Matusow, Carla

    2010-01-01

    XFDS provides an easily adaptable automation platform. To date it has been used to support flight dynamics operations. It coordinates the execution of other applications such as Satellite TookKit, FreeFlyer, MATLAB, and Perl code. It provides a mechanism for passing messages among a collection of XFDS processes, and allows sending and receiving of GMSEC messages. A unified and consistent graphical user interface (GUI) is used for the various tools. Its automation configuration is stored in text files, and can be edited either directly or using the GUI.

  17. Supersonic Flight Dynamics Test 1 - Post-Flight Assessment of Simulation Performance

    Science.gov (United States)

    Dutta, Soumyo; Bowes, Angela L.; Striepe, Scott A.; Davis, Jody L.; Queen, Eric M.; Blood, Eric M.; Ivanov, Mark C.

    2015-01-01

    NASA's Low Density Supersonic Decelerator (LDSD) project conducted its first Supersonic Flight Dynamics Test (SFDT-1) on June 28, 2014. Program to Optimize Simulated Trajectories II (POST2) was one of the flight dynamics codes used to simulate and predict the flight performance and Monte Carlo analysis was used to characterize the potential flight conditions experienced by the test vehicle. This paper compares the simulation predictions with the reconstructed trajectory of SFDT-1. Additionally, off-nominal conditions seen during flight are modeled in post-flight simulations to find the primary contributors that reconcile the simulation with flight data. The results of these analyses are beneficial for the pre-flight simulation and targeting of the follow-on SFDT flights currently scheduled for summer 2015.

  18. The effects of Crew Resource Management (CRM) training on flight attendants' safety attitudes.

    Science.gov (United States)

    Ford, Jane; Henderson, Robert; O'Hare, David

    2014-02-01

    A number of well-known incidents and accidents had led the aviation industry to introduce Crew Resource Management (CRM) training designed specifically for flight attendants, and joint (pilot and flight attendant) CRM training as a way to improve teamwork and communication. The development of these new CRM training programs during the 1990s highlighted the growing need for programs to be evaluated using research tools that had been validated for the flight attendant population. The FSAQ (Flight Safety Attitudes Questionnaire-Flight Attendants) was designed specifically to obtain safety attitude data from flight attendants working for an Asia-Pacific airline. Flight attendants volunteered to participate in a study before receiving CRM training (N=563) and again (N=526) after CRM training. Almost half (13) of the items from the 36-item FSAQ showed highly significant changes following CRM training. Years of experience, crew position, seniority, leadership roles, flight attendant crew size, and length of route flown were all predictive of safety attitudes. CRM training for flight attendants is a valuable tool for increasing positive teamwork behaviors between the flight attendant and pilot sub-groups. Joint training sessions, where flight attendants and pilots work together to find solutions to in-flight emergency scenarios, provide a particularly useful strategy in breaking down communication barriers between the two sub-groups. Copyright © 2013 National Safety Council and Elsevier Ltd. All rights reserved.

  19. Development of helicopter attitude axes controlled hover flight without pilot assistance and vehicle crashes

    Science.gov (United States)

    Simon, Miguel

    In this work, we show how to computerize a helicopter to fly attitude axes controlled hover flight without the assistance of a pilot and without ever crashing. We start by developing a helicopter research test bed system including all hardware, software, and means for testing and training the helicopter to fly by computer. We select a Remote Controlled helicopter with a 5 ft. diameter rotor and 2.2 hp engine. We equip the helicopter with a payload of sensors, computers, navigation and telemetry equipment, and batteries. We develop a differential GPS system with cm accuracy and a ground computerized navigation system for six degrees of freedom (6-DoF) free flight while tracking navigation commands. We design feedback control loops with yet-to-be-determined gains for the five control "knobs" available to a flying radio-controlled (RC) miniature helicopter: engine throttle, main rotor collective pitch, longitudinal cyclic pitch, lateral cyclic pitch, and tail rotor collective pitch. We develop helicopter flight equations using fundamental dynamics, helicopter momentum theory and blade element theory. The helicopter flight equations include helicopter rotor equations of motions, helicopter rotor forces and moments, helicopter trim equations, helicopter stability derivatives, and a coupled fuselage-rotor helicopter 6-DoF model. The helicopter simulation also includes helicopter engine control equations, a helicopter aerodynamic model, and finally helicopter stability and control equations. The derivation of a set of non-linear equations of motion for the main rotor is a contribution of this thesis work. We design and build two special test stands for training and testing the helicopter to fly attitude axes controlled hover flight, starting with one axis at a time and progressing to multiple axes. The first test stand is built for teaching and testing controlled flight of elevation and yaw (i.e., directional control). The second test stand is built for teaching and

  20. Production and quality assurance automation in the Goddard Space Flight Center Flight Dynamics Facility

    Science.gov (United States)

    Chapman, K. B.; Cox, C. M.; Thomas, C. W.; Cuevas, O. O.; Beckman, R. M.

    1994-01-01

    The Flight Dynamics Facility (FDF) at the NASA Goddard Space Flight Center (GSFC) generates numerous products for NASA-supported spacecraft, including the Tracking and Data Relay Satellites (TDRS's), the Hubble Space Telescope (HST), the Extreme Ultraviolet Explorer (EUVE), and the space shuttle. These products include orbit determination data, acquisition data, event scheduling data, and attitude data. In most cases, product generation involves repetitive execution of many programs. The increasing number of missions supported by the FDF has necessitated the use of automated systems to schedule, execute, and quality assure these products. This automation allows the delivery of accurate products in a timely and cost-efficient manner. To be effective, these systems must automate as many repetitive operations as possible and must be flexible enough to meet changing support requirements. The FDF Orbit Determination Task (ODT) has implemented several systems that automate product generation and quality assurance (QA). These systems include the Orbit Production Automation System (OPAS), the New Enhanced Operations Log (NEOLOG), and the Quality Assurance Automation Software (QA Tool). Implementation of these systems has resulted in a significant reduction in required manpower, elimination of shift work and most weekend support, and improved support quality, while incurring minimal development cost. This paper will present an overview of the concepts used and experiences gained from the implementation of these automation systems.

  1. Flight Path Angle Dynamics of Air-Breathing Hypersonic Vehicles

    Science.gov (United States)

    2005-12-01

    Journal of Guidance, Control, and Dynamics, Vol. 22, No. 1, Jan./Feb. 1999, pp. 181–183. [7] Roskam , J., Airplane Flight Dynamics and Automatic Flight...Control , Vol. I, Roskam Aviation and Engineering Corp., Lawrence, KS, 1982, pp. 607–615. [8] Heffley, R. and Jewell, W., “Aircraft Handling Qualities

  2. Impact of Vehicle Flexibility on IRVE-II Flight Dynamics

    Science.gov (United States)

    Bose, David M.; Toniolo, Matthew D.; Cheatwood, F. M.; Hughes, Stephen J.; Dillman, Robert A.

    2011-01-01

    The Inflatable Re-entry Vehicle Experiment II (IRVE-II) successfully launched from Wallops Flight Facility (WFF) on August 17, 2009. The primary objectives of this flight test were to demonstrate inflation and re-entry survivability, assess the thermal and drag performance of the reentry vehicle, and to collect flight data for refining pre-flight design and analysis tools. Post-flight analysis including trajectory reconstruction outlined in O Keefe3 demonstrated that the IRVE-II Research Vehicle (RV) met mission objectives but also identified a few anomalies of interest to flight dynamics engineers. Most notable of these anomalies was high normal acceleration during the re-entry pressure pulse. Deflection of the inflatable aeroshell during the pressure pulse was evident in flight video and identified as the likely cause of the anomaly. This paper provides a summary of further post-flight analysis with particular attention to the impact of aeroshell flexibility on flight dynamics and the reconciliation of flight performance with pre-flight models. Independent methods for estimating the magnitude of the deflection of the aeroshell experienced on IRVE-II are discussed. The use of the results to refine models for pre-flight prediction of vehicle performance is then described.

  3. Synthetic Vision System Commercial Aircraft Flight Deck Display Technologies for Unusual Attitude Recovery

    Science.gov (United States)

    Prinzel, Lawrence J., III; Ellis, Kyle E.; Arthur, Jarvis J.; Nicholas, Stephanie N.; Kiggins, Daniel

    2017-01-01

    A Commercial Aviation Safety Team (CAST) study of 18 worldwide loss-of-control accidents and incidents determined that the lack of external visual references was associated with a flight crew's loss of attitude awareness or energy state awareness in 17 of these events. Therefore, CAST recommended development and implementation of virtual day-Visual Meteorological Condition (VMC) display systems, such as synthetic vision systems, which can promote flight crew attitude awareness similar to a day-VMC environment. This paper describes the results of a high-fidelity, large transport aircraft simulation experiment that evaluated virtual day-VMC displays and a "background attitude indicator" concept as an aid to pilots in recovery from unusual attitudes. Twelve commercial airline pilots performed multiple unusual attitude recoveries and both quantitative and qualitative dependent measures were collected. Experimental results and future research directions under this CAST initiative and the NASA "Technologies for Airplane State Awareness" research project are described.

  4. Flight Dynamic Simulation with Nonlinear Aeroelastic Interaction using the ROM-ROM Procedure Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ZONA Technology, Inc. proposes to develop an integrated flight dynamics simulation capability with nonlinear aeroelastic interactions by combining a flight dynamics...

  5. Product assurance policies and procedures for flight dynamics software development

    Science.gov (United States)

    Perry, Sandra; Jordan, Leon; Decker, William; Page, Gerald; Mcgarry, Frank E.; Valett, Jon

    1987-01-01

    The product assurance policies and procedures necessary to support flight dynamics software development projects for Goddard Space Flight Center are presented. The quality assurance and configuration management methods and tools for each phase of the software development life cycles are described, from requirements analysis through acceptance testing; maintenance and operation are not addressed.

  6. Unified Nonlinear Flight Dynamics and Aeroelastic Simulator Tool Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ZONA Technology, Inc. (ZONA) proposes a R&D effort to develop a Unified Nonlinear Flight Dynamics and Aeroelastic Simulator (UNFDAS) Tool that will combine...

  7. Cross-cultural attitudes of flight crew regarding CRM

    Science.gov (United States)

    Merritt, Ashleigh

    1993-01-01

    This study asks if the Cockpit Management Attitude Questionnaire (CMAQ) can detect differences across countries, and/or across occupations. And if so, can those differences be interpreted? Research has shown that the CMAQ is sensitive to attitude differences between and within organizations, thereby demonstrating its effectiveness with American populations. But the CMAQ was originally designed by American researchers and psychometrically refined for American pilots. The items in the questionnaire, though general in nature, still reflect the ubiquitous Western bias, because the items were written by researchers from and for the one culture. Recognizing this constraint, this study is nonetheless interested in attitudes toward crew behavior, and how those attitudes may vary across country and occupation.

  8. Initial virtual flight test for a dynamically similar aircraft model with control augmentation system

    Directory of Open Access Journals (Sweden)

    Linliang Guo

    2017-04-01

    Full Text Available To satisfy the validation requirements of flight control law for advanced aircraft, a wind tunnel based virtual flight testing has been implemented in a low speed wind tunnel. A 3-degree-of-freedom gimbal, ventrally installed in the model, was used in conjunction with an actively controlled dynamically similar model of aircraft, which was equipped with the inertial measurement unit, attitude and heading reference system, embedded computer and servo-actuators. The model, which could be rotated around its center of gravity freely by the aerodynamic moments, together with the flow field, operator and real time control system made up the closed-loop testing circuit. The model is statically unstable in longitudinal direction, and it can fly stably in wind tunnel with the function of control augmentation of the flight control laws. The experimental results indicate that the model responds well to the operator’s instructions. The response of the model in the tests shows reasonable agreement with the simulation results. The difference of response of angle of attack is less than 0.5°. The effect of stability augmentation and attitude control law was validated in the test, meanwhile the feasibility of virtual flight test technique treated as preliminary evaluation tool for advanced flight vehicle configuration research was also verified.

  9. A Flight Dynamics Perspective of the Orion Pad Abort One Flight Test

    Science.gov (United States)

    Idicula, Jinu; Williams-Hayes, Peggy S.; Stillwater, Ryan; Yates, Max

    2009-01-01

    The Orion Crew Exploration Vehicle is America s next generation of human rated spacecraft. The Orion Launch Abort System will take the astronauts away from the exploration vehicle in the event of an aborted launch. The pad abort mode of the Launch Abort System will be flight-tested in 2009 from the White Sands Missile Range in New Mexico. This paper examines some of the efforts currently underway at the NASA Dryden Flight Research Center by the Controls & Dynamics group in preparation for the flight test. The concept of operation for the pad abort flight is presented along with an overview of the guidance, control and navigation systems. Preparations for the flight test, such as hardware testing and development of the real-time displays, are examined. The results from the validation and verification efforts for the aerodynamic and atmospheric models are shown along with Monte Carlo analysis results.

  10. On the modelling of gyroplane flight dynamics

    Science.gov (United States)

    Houston, Stewart; Thomson, Douglas

    2017-01-01

    The study of the gyroplane, with a few exceptions, is largely neglected in the literature which is indicative of a niche configuration limited to the sport and recreational market where resources are limited. However the contemporary needs of an informed population of owners and constructors, as well as the possibility of a wider application of such low-cost rotorcraft in other roles, suggests that an examination of the mathematical modelling requirements for the study of gyroplane flight mechanics is timely. Rotorcraft mathematical modelling has become stratified in three levels, each one defining the inclusion of various layers of complexity added to embrace specific modelling features as well as an attempt to improve fidelity. This paper examines the modelling of gyroplane flight mechanics in the context of this complexity, and shows that relatively simple formulations are adequate for capturing most aspects of gyroplane trim, stability and control characteristics. In particular the conventional 6 degree-of-freedom model structure is suitable for the synthesis of models from flight test data as well as being the framework for reducing the order of the higher levels of modelling. However, a high level of modelling can be required to mimic some aspects of behaviour observed in data gathered from flight experiments and even then can fail to capture other details. These limitations are addressed in the paper. It is concluded that the mathematical modelling of gyroplanes for the simulation and analysis of trim, stability and control presents no special difficulty and the conventional techniques, methods and formulations familiar to the rotary-wing community are directly applicable.

  11. Analysis of helicopter flight dynamics through modeling and simulation of primary flight control actuation system

    Science.gov (United States)

    Nelson, Hunter Barton

    A simplified second-order transfer function actuator model used in most flight dynamics applications cannot easily capture the effects of different actuator parameters. The present work integrates a nonlinear actuator model into a nonlinear state space rotorcraft model to determine the effect of actuator parameters on key flight dynamics. The completed actuator model was integrated with a swashplate kinematics where step responses were generated over a range of key hydraulic parameters. The actuator-swashplate system was then introduced into a nonlinear state space rotorcraft simulation where flight dynamics quantities such as bandwidth and phase delay analyzed. Frequency sweeps were simulated for unique actuator configurations using the coupled nonlinear actuator-rotorcraft system. The software package CIFER was used for system identification and compared directly to the linearized models. As the actuator became rate saturated, the effects on bandwidth and phase delay were apparent on the predicted handling qualities specifications.

  12. Using Automatic Code Generation in the Attitude Control Flight Software Engineering Process

    Science.gov (United States)

    McComas, David; O'Donnell, James R., Jr.; Andrews, Stephen F.

    1999-01-01

    This paper presents an overview of the attitude control subsystem flight software development process, identifies how the process has changed due to automatic code generation, analyzes each software development phase in detail, and concludes with a summary of our lessons learned.

  13. Supersonic Flight Dynamics Test 2: Trajectory, Atmosphere, and Aerodynamics Reconstruction

    Science.gov (United States)

    Karlgaard, Christopher D.; O'Farrell, Clara; Ginn, Jason M.; Van Norman, John W.

    2016-01-01

    The Supersonic Flight Dynamics Test is a full-scale flight test of aerodynamic decelerator technologies developed by the Low Density Supersonic Decelerator technology demonstration project. The purpose of the project is to develop and mature aerodynamic decelerator technologies for landing large-mass payloads on the surface of Mars. The technologies include a Supersonic Inflatable Aerodynamic Decelerator and supersonic parachutes. The first Supersonic Flight Dynamics Test occurred on June 28th, 2014 at the Pacific Missile Range Facility. The purpose of this test was to validate the test architecture for future tests. The flight was a success and, in addition, was able to acquire data on the aerodynamic performance of the supersonic inflatable decelerator. The Supersonic Disksail parachute developed a tear during deployment. The second flight test occurred on June 8th, 2015, and incorporated a Supersonic Ringsail parachute which was redesigned based on data from the first flight. Again, the inflatable decelerator functioned as predicted but the parachute was damaged during deployment. This paper describes the instrumentation, analysis techniques, and acquired flight test data utilized to reconstruct the vehicle trajectory, main motor thrust, atmosphere, and aerodynamics.

  14. Supersonic Flight Dynamics Test: Trajectory, Atmosphere, and Aerodynamics Reconstruction

    Science.gov (United States)

    Kutty, Prasad; Karlgaard, Christopher D.; Blood, Eric M.; O'Farrell, Clara; Ginn, Jason M.; Shoenenberger, Mark; Dutta, Soumyo

    2015-01-01

    The Supersonic Flight Dynamics Test is a full-scale flight test of a Supersonic Inflatable Aerodynamic Decelerator, which is part of the Low Density Supersonic Decelerator technology development project. The purpose of the project is to develop and mature aerodynamic decelerator technologies for landing large mass payloads on the surface of Mars. The technologies include a Supersonic Inflatable Aerodynamic Decelerator and Supersonic Parachutes. The first Supersonic Flight Dynamics Test occurred on June 28th, 2014 at the Pacific Missile Range Facility. This test was used to validate the test architecture for future missions. The flight was a success and, in addition, was able to acquire data on the aerodynamic performance of the supersonic inflatable decelerator. This paper describes the instrumentation, analysis techniques, and acquired flight test data utilized to reconstruct the vehicle trajectory, atmosphere, and aerodynamics. The results of the reconstruction show significantly higher lofting of the trajectory, which can partially be explained by off-nominal booster motor performance. The reconstructed vehicle force and moment coefficients fall well within pre-flight predictions. A parameter identification analysis indicates that the vehicle displayed greater aerodynamic static stability than seen in pre-flight computational predictions and ballistic range tests.

  15. The dynamics of CRM attitude change: Attitude stability

    Science.gov (United States)

    Gregorich, Steven E.

    1993-01-01

    Special training seminars in cockpit resource management (CRM) are designed to enhance crew effectiveness in multicrew air-transport cockpits. In terms of CRM, crew effectiveness is defined by teamwork rather than technical proficiency. These seminars are designed to promote factual learning, alter aviator attitudes, and motivate aviators to make use of what they have learned. However, measures of attitude change resulting from CRM seminars have been the most common seminar evaluation technique. The current investigation explores a broader range of attitude change parameters with specific emphasis on the stability of change between recurrent visits to the training center. This allows for a comparison of training program strengths in terms of seminar ability to effect lasting change.

  16. Flight Dynamic Simulation with Nonlinear Aeroelastic Interaction using the ROM-ROM Procedure Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ZONA Technology, Inc. (ZONA) proposes to develop an integrated flight dynamics simulation capability with nonlinear aeroelastic interactions by combining a flight...

  17. Coupled attitude-orbit dynamics and control for an electric sail in a heliocentric transfer mission.

    Directory of Open Access Journals (Sweden)

    Mingying Huo

    Full Text Available The paper discusses the coupled attitude-orbit dynamics and control of an electric-sail-based spacecraft in a heliocentric transfer mission. The mathematical model characterizing the propulsive thrust is first described as a function of the orbital radius and the sail angle. Since the solar wind dynamic pressure acceleration is induced by the sail attitude, the orbital and attitude dynamics of electric sails are coupled, and are discussed together. Based on the coupled equations, the flight control is investigated, wherein the orbital control is studied in an optimal framework via a hybrid optimization method and the attitude controller is designed based on feedback linearization control. To verify the effectiveness of the proposed control strategy, a transfer problem from Earth to Mars is considered. The numerical results show that the proposed strategy can control the coupled system very well, and a small control torque can control both the attitude and orbit. The study in this paper will contribute to the theory study and application of electric sail.

  18. Coupled attitude-orbit dynamics and control for an electric sail in a heliocentric transfer mission.

    Science.gov (United States)

    Huo, Mingying; Zhao, Jun; Xie, Shaobiao; Qi, Naiming

    2015-01-01

    The paper discusses the coupled attitude-orbit dynamics and control of an electric-sail-based spacecraft in a heliocentric transfer mission. The mathematical model characterizing the propulsive thrust is first described as a function of the orbital radius and the sail angle. Since the solar wind dynamic pressure acceleration is induced by the sail attitude, the orbital and attitude dynamics of electric sails are coupled, and are discussed together. Based on the coupled equations, the flight control is investigated, wherein the orbital control is studied in an optimal framework via a hybrid optimization method and the attitude controller is designed based on feedback linearization control. To verify the effectiveness of the proposed control strategy, a transfer problem from Earth to Mars is considered. The numerical results show that the proposed strategy can control the coupled system very well, and a small control torque can control both the attitude and orbit. The study in this paper will contribute to the theory study and application of electric sail.

  19. Dynamical continuous time random Lévy flights

    Science.gov (United States)

    Liu, Jian; Chen, Xiaosong

    2016-03-01

    The Lévy flights' diffusive behavior is studied within the framework of the dynamical continuous time random walk (DCTRW) method, while the nonlinear friction is introduced in each step. Through the DCTRW method, Lévy random walker in each step flies by obeying the Newton's Second Law while the nonlinear friction f(v) = - γ0v - γ2v3 being considered instead of Stokes friction. It is shown that after introducing the nonlinear friction, the superdiffusive Lévy flights converges, behaves localization phenomenon with long time limit, but for the Lévy index μ = 2 case, it is still Brownian motion.

  20. Operational computer graphics in the flight dynamics environment

    Science.gov (United States)

    Jeletic, James F.

    1989-01-01

    Over the past five years, the Flight Dynamics Division of the National Aeronautics and Space Administration's (NASA's) Goddard Space Flight Center has incorporated computer graphics technology into its operational environment. In an attempt to increase the effectiveness and productivity of the Division, computer graphics software systems have been developed that display spacecraft tracking and telemetry data in 2-d and 3-d graphic formats that are more comprehensible than the alphanumeric tables of the past. These systems vary in functionality from real-time mission monitoring system, to mission planning utilities, to system development tools. Here, the capabilities and architecture of these systems are discussed.

  1. Flight Dynamic Model Exchange using XML

    Science.gov (United States)

    Jackson, E. Bruce; Hildreth, Bruce L.

    2002-01-01

    The AIAA Modeling and Simulation Technical Committee has worked for several years to develop a standard by which the information needed to develop physics-based models of aircraft can be specified. The purpose of this standard is to provide a well-defined set of information, definitions, data tables and axis systems so that cooperating organizations can transfer a model from one simulation facility to another with maximum efficiency. This paper proposes using an application of the eXtensible Markup Language (XML) to implement the AIAA simulation standard. The motivation and justification for using a standard such as XML is discussed. Necessary data elements to be supported are outlined. An example of an aerodynamic model as an XML file is given. This example includes definition of independent and dependent variables for function tables, definition of key variables used to define the model, and axis systems used. The final steps necessary for implementation of the standard are presented. Software to take an XML-defined model and import/export it to/from a given simulation facility is discussed, but not demonstrated. That would be the next step in final implementation of standards for physics-based aircraft dynamic models.

  2. A Dynamic Attitude Measurement System Based on LINS

    Directory of Open Access Journals (Sweden)

    Hanzhou Li

    2014-08-01

    Full Text Available A dynamic attitude measurement system (DAMS is developed based on a laser inertial navigation system (LINS. Three factors of the dynamic attitude measurement error using LINS are analyzed: dynamic error, time synchronization and phase lag. An optimal coning errors compensation algorithm is used to reduce coning errors, and two-axis wobbling verification experiments are presented in the paper. The tests indicate that the attitude accuracy is improved 2-fold by the algorithm. In order to decrease coning errors further, the attitude updating frequency is improved from 200 Hz to 2000 Hz. At the same time, a novel finite impulse response (FIR filter with three notches is designed to filter the dither frequency of the ring laser gyro (RLG. The comparison tests suggest that the new filter is five times more effective than the old one. The paper indicates that phase-frequency characteristics of FIR filter and first-order holder of navigation computer constitute the main sources of phase lag in LINS. A formula to calculate the LINS attitude phase lag is introduced in the paper. The expressions of dynamic attitude errors induced by phase lag are derived. The paper proposes a novel synchronization mechanism that is able to simultaneously solve the problems of dynamic test synchronization and phase compensation. A single-axis turntable and a laser interferometer are applied to verify the synchronization mechanism. The experiments results show that the theoretically calculated values of phase lag and attitude error induced by phase lag can both match perfectly with testing data. The block diagram of DAMS and physical photos are presented in the paper. The final experiments demonstrate that the real-time attitude measurement accuracy of DAMS can reach up to 20″ (1σ and the synchronization error is less than 0.2 ms on the condition of three axes wobbling for 10 min.

  3. Pattern Recognition for a Flight Dynamics Monte Carlo Simulation

    Science.gov (United States)

    Restrepo, Carolina; Hurtado, John E.

    2011-01-01

    The design, analysis, and verification and validation of a spacecraft relies heavily on Monte Carlo simulations. Modern computational techniques are able to generate large amounts of Monte Carlo data but flight dynamics engineers lack the time and resources to analyze it all. The growing amounts of data combined with the diminished available time of engineers motivates the need to automate the analysis process. Pattern recognition algorithms are an innovative way of analyzing flight dynamics data efficiently. They can search large data sets for specific patterns and highlight critical variables so analysts can focus their analysis efforts. This work combines a few tractable pattern recognition algorithms with basic flight dynamics concepts to build a practical analysis tool for Monte Carlo simulations. Current results show that this tool can quickly and automatically identify individual design parameters, and most importantly, specific combinations of parameters that should be avoided in order to prevent specific system failures. The current version uses a kernel density estimation algorithm and a sequential feature selection algorithm combined with a k-nearest neighbor classifier to find and rank important design parameters. This provides an increased level of confidence in the analysis and saves a significant amount of time.

  4. Attitude Dynamics and Control of Solar Sails

    Science.gov (United States)

    Sperber, Evan

    Solar sails are space vehicles that rely on solar radiation pressure in order to generate forces for thrust and attitude control torques. They exhibit characteristics such as large moments of inertia, fragility of various system components, and long mission durations that make attitude control a particularly difficult engineering problem. Thrust vector control (TVC) is a family of sailcraft attitude control techniques that is on a short list of strategies thought to be suitable for the primary attitude control of solar sails. Every sailcraft TVC device functions by manipulating the relative locations of the composite mass center (cm) of the sailcraft and the center of pressure (cp) of at least one of its reflectors. Relative displacement of these two points results in body torques that can be used to steer the sailcraft. This dissertation presents a strategy for the large-angle reorientation of a sailcraft using TVC. Two forms of TVC, namely the panel and ballast mass translation methods are well represented in the literature, while rigorous studies regarding a third form, gimballed mass rotation, are conspicuously absent. The gimballed mass method is physically realized by placing a ballast mass, commonly the sailcraft's scientific payload, at the tip of a gimballed boom that has its base fixed at some point on the sailcraft. A TVC algorithm will then strategically manipulate the payload boom's gimbal angles, thereby changing the projection of the sailcraft cm in the plane of the sail. This research demonstrates effective three-axis attitude control of a model sailcraft using numerical simulation of its nonlinear equations of motion. The particular TVC algorithm developed herein involves two phases---the first phase selects appropriate gimbal rates with the objective that the sailcraft be placed in the neighborhood of its target orientation. It was discovered, however that concomitantly minimizing attitude error as well as residual body rate was not possible using

  5. Aircraft Landing and Attitude Control Using Dynamic Matrix Control

    Directory of Open Access Journals (Sweden)

    George Cristian Calugaru

    2017-06-01

    Full Text Available This paper proposes a method for an efficient control of the aircraft landing and attitude through Dynamic Matrix Control. The idea of MPC structures used in aircraft control has been well established during the last few years, but some aspects require further investigation. With this in mind, the paper proposes structures for aircraft landing and aircraft attitude control by using single DMC controllers for landing and respectively one DMC controller for each of the attitude axis (pitch attitude hold, bank angle hold and heading hold. The model used for analysis of the aircraft landing structure is based on the last phase of landing. Also, the model used to illustrate the attitude control is that of a pitch attitude hold system of a N250-100 aircraft. Simulations are performed for a variety of control and prediction horizons, taking into account the possibility of adding a weighting factor for the control actions. Apart from separate studies on step reference variations, for some use cases, a generic reference trajectory is provided as a control purpose of the system. Results show a better performance of the proposed method in terms of control surface transition and protection of the actuators involved and a better time response in stabilizing the aircraft attitude. Overall, the aspects shown ensure an improved aircraft attitude control and landing stabilization.

  6. Flight Dynamics and Control of Elastic Hypersonic Vehicles Uncertainty Modeling

    Science.gov (United States)

    Chavez, Frank R.; Schmidt, David K.

    1994-01-01

    It has been shown previously that hypersonic air-breathing aircraft exhibit strong aeroelastic/aeropropulsive dynamic interactions. To investigate these, especially from the perspective of the vehicle dynamics and control, analytical expressions for key stability derivatives were derived, and an analysis of the dynamics was performed. In this paper, the important issue of model uncertainty, and the appropriate forms for representing this uncertainty, is addressed. It is shown that the methods suggested in the literature for analyzing the robustness of multivariable feedback systems, which as a prerequisite to their application assume particular forms of model uncertainty, can be difficult to apply on real atmospheric flight vehicles. Also, the extent to which available methods are conservative is demonstrated for this class of vehicle dynamics.

  7. Spacecraft Dynamics Should be Considered in Kalman Filter Attitude Estimation

    Science.gov (United States)

    Yang, Yaguang; Zhou, Zhiqiang

    2016-01-01

    Kalman filter based spacecraft attitude estimation has been used in some high-profile missions and has been widely discussed in literature. While some models in spacecraft attitude estimation include spacecraft dynamics, most do not. To our best knowledge, there is no comparison on which model is a better choice. In this paper, we discuss the reasons why spacecraft dynamics should be considered in the Kalman filter based spacecraft attitude estimation problem. We also propose a reduced quaternion spacecraft dynamics model which admits additive noise. Geometry of the reduced quaternion model and the additive noise are discussed. This treatment is more elegant in mathematics and easier in computation. We use some simulation example to verify our claims.

  8. Verification Challenges of Dynamic Testing of Space Flight Hardware

    Science.gov (United States)

    Winnitoy, Susan

    2010-01-01

    The Six Degree-of-Freedom Dynamic Test System (SDTS) is a test facility at the National Aeronautics and Space Administration (NASA) Johnson Space Center in Houston, Texas for performing dynamic verification of space structures and hardware. Some examples of past and current tests include the verification of on-orbit robotic inspection systems, space vehicle assembly procedures and docking/berthing systems. The facility is able to integrate a dynamic simulation of on-orbit spacecraft mating or demating using flight-like mechanical interface hardware. A force moment sensor is utilized for input to the simulation during the contact phase, thus simulating the contact dynamics. While the verification of flight hardware presents many unique challenges, one particular area of interest is with respect to the use of external measurement systems to ensure accurate feedback of dynamic contact. There are many commercial off-the-shelf (COTS) measurement systems available on the market, and the test facility measurement systems have evolved over time to include two separate COTS systems. The first system incorporates infra-red sensing cameras, while the second system employs a laser interferometer to determine position and orientation data. The specific technical challenges with the measurement systems in a large dynamic environment include changing thermal and humidity levels, operational area and measurement volume, dynamic tracking, and data synchronization. The facility is located in an expansive high-bay area that is occasionally exposed to outside temperature when large retractable doors at each end of the building are opened. The laser interferometer system, in particular, is vulnerable to the environmental changes in the building. The operational area of the test facility itself is sizeable, ranging from seven meters wide and five meters deep to as much as seven meters high. Both facility measurement systems have desirable measurement volumes and the accuracies vary

  9. Low Density Supersonic Decelerator Flight Dynamics Test-1 Flight Design and Targeting

    Science.gov (United States)

    Ivanov, Mark

    2015-01-01

    NASA's Low Density Supersonic Decelerator (LDSD) program was established to identify, develop, and eventually qualify to Test [i.e. Technology] Readiness Level (TRL) - 6 aerodynamic decelerators for eventual use on Mars. Through comprehensive Mars application studies, two distinct Supersonic Inflatable Aerodynamic Decelerator (SIAD) designs were chosen that afforded the optimum balance of benefit, cost, and development risk. In addition, a Supersonic Disk Sail (SSDS) parachute design was chosen that satisfied the same criteria. The final phase of the multi-tiered qualification process involves Earth Supersonic Flight Dynamics Tests (SFDTs) within environmental conditions similar to those that would be experienced during a Mars Entry, Descent, and Landing (EDL) mission. The first of these flight tests (i.e. SFDT-1) was completed on June 28, 2014 with two more tests scheduled for the summer of 2015 and 2016, respectively. The basic flight design for all the SFDT flights is for the SFDT test vehicle to be ferried to a float altitude of 120 kilo-feet by a 34 thousand cubic feet (Mcf) heavy lift helium balloon. Once float altitude is reached, the test vehicle is released from the balloon, spun-up for stability, and accelerated to supersonic speeds using a Star48 solid rocket motor. After burnout of the Star48 motor the vehicle decelerates to pre-flight selected test conditions for the deployment of the SIAD system. After further deceleration with the SIAD deployed, the SSDS parachute is then deployed stressing the performance of the parachute in the wake of the SIAD augmented blunt body. The test vehicle/SIAD/parachute system then descends to splashdown in the Pacific Ocean for eventual recovery. This paper will discuss the development of both the test vehicle and the trajectory sequence including design trade-offs resulting from the interaction of both engineering efforts. In addition, the SFDT-1 nominal trajectory design and associated sensitivities will be discussed

  10. Low Density Supersonic Decelerator (LDSD) Supersonic Flight Dynamics Test (SFDT) Plume Induced Environment Modelling

    Science.gov (United States)

    Mobley, B. L.; Smith, S. D.; Van Norman, J. W.; Muppidi, S.; Clark, I

    2016-01-01

    Provide plume induced heating (radiation & convection) predictions in support of the LDSD thermal design (pre-flight SFDT-1) Predict plume induced aerodynamics in support of flight dynamics, to achieve targeted freestream conditions to test supersonic deceleration technologies (post-flight SFDT-1, pre-flight SFDT-2)

  11. A mathematical perspective on flight dynamics and control

    CERN Document Server

    L'Afflitto, Andrea

    2017-01-01

    This brief presents several aspects of flight dynamics, which are usually omitted or briefly mentioned in textbooks, in a concise, self-contained, and rigorous manner. The kinematic and dynamic equations of an aircraft are derived starting from the notion of the derivative of a vector and then thoroughly analysed, interpreting their deep meaning from a mathematical standpoint and without relying on physical intuition. Moreover, some classic and advanced control design techniques are presented and illustrated with meaningful examples. Distinguishing features that characterize this brief include a definition of angular velocity, which leaves no room for ambiguities, an improvement on traditional definitions based on infinitesimal variations. Quaternion algebra, Euler parameters, and their role in capturing the dynamics of an aircraft are discussed in great detail. After having analyzed the longitudinal- and lateral-directional modes of an aircraft, the linear-quadratic regulator, the linear-quadratic Gaussian r...

  12. Lift enhancement by dynamically changing wingspan in forward flapping flight

    Science.gov (United States)

    Wang, Shizhao; Zhang, Xing; He, Guowei; Liu, Tianshu

    2014-06-01

    Dynamically stretching and retracting wingspan has been widely observed in the flight of birds and bats, and its effects on the aerodynamic performance particularly lift generation are intriguing. The rectangular flat-plate flapping wing with a sinusoidally stretching and retracting wingspan is proposed as a simple model for biologically inspired dynamic morphing wings. Numerical simulations of the low-Reynolds-number flows around the flapping morphing wing are conducted in a parametric space by using the immersed boundary method. It is found that the instantaneous and time-averaged lift coefficients of the wing can be significantly enhanced by dynamically changing wingspan in a flapping cycle. The lift enhancement is caused by both changing the lifting surface area and manipulating the flow structures responsible to the vortex lift generation. The physical mechanisms behind the lift enhancement are explored by examining the three-dimensional flow structures around the flapping wing.

  13. Dynamic flight stability of a hovering model insect: lateral motion

    Science.gov (United States)

    Zhang, Yanlai; Sun, Mao

    2010-05-01

    The lateral dynamic flight stability of a hovering model insect (dronefly) was studied using the method of computational fluid dynamics to compute the stability derivatives and the techniques of eigenvalue and eigenvector analysis for solving the equations of motion. The main results are as following. (i) Three natural modes of motion were identified: one unstable slow divergence mode (mode 1), one stable slow oscillatory mode (mode 2), and one stable fast subsidence mode (mode 3). Modes 1 and 2 mainly consist of a rotation about the horizontal longitudinal axis ( x-axis) and a side translation; mode 3 mainly consists of a rotation about the x-axis and a rotation about the vertical axis. (ii) Approximate analytical expressions of the eigenvalues are derived, which give physical insight into the genesis of the natural modes of motion. (iii) For the unstable divergence mode, t d, the time for initial disturbances to double, is about 9 times the wingbeat period (the longitudinal motion of the model insect was shown to be also unstable and t d of the longitudinal unstable mode is about 14 times the wingbeat period). Thus, although the flight is not dynamically stable, the instability does not grow very fast and the insect has enough time to control its wing motion to suppress the disturbances.

  14. Adaptive Estimation and Heuristic Optimization of Nonlinear Spacecraft Attitude Dynamics

    Science.gov (United States)

    2016-09-15

    NONLINEAR SPACECRAFT ATTITUDE DYNAMICS DISSERTATION Presented to the Faculty Graduate School of Engineering and Management Air Force Institute of...PhD Dean, Graduate School of Engineering and Management AFIT-ENY-DS-16-S-061 Abstract For spacecraft conducting on-orbit operations, changes to the...dynamics and typically require estimation. For systems with time-varying inertia parameters, multiple model adaptive estimation (MMAE) routines can be

  15. Cumulative Measurement Errors for Dynamic Testing of Space Flight Hardware

    Science.gov (United States)

    Winnitoy, Susan

    2012-01-01

    Located at the NASA Johnson Space Center in Houston, TX, the Six-Degree-of-Freedom Dynamic Test System (SDTS) is a real-time, six degree-of-freedom, short range motion base simulator originally designed to simulate the relative dynamics of two bodies in space mating together (i.e., docking or berthing). The SDTS has the capability to test full scale docking and berthing systems utilizing a two body dynamic docking simulation for docking operations and a Space Station Remote Manipulator System (SSRMS) simulation for berthing operations. The SDTS can also be used for nonmating applications such as sensors and instruments evaluations requiring proximity or short range motion operations. The motion base is a hydraulic powered Stewart platform, capable of supporting a 3,500 lb payload with a positional accuracy of 0.03 inches. The SDTS is currently being used for the NASA Docking System testing and has been also used by other government agencies. The SDTS is also under consideration for use by commercial companies. Examples of tests include the verification of on-orbit robotic inspection systems, space vehicle assembly procedures and docking/berthing systems. The facility integrates a dynamic simulation of on-orbit spacecraft mating or de-mating using flight-like mechanical interface hardware. A force moment sensor is used for input during the contact phase, thus simulating the contact dynamics. While the verification of flight hardware presents unique challenges, one particular area of interest involves the use of external measurement systems to ensure accurate feedback of dynamic contact. The measurement systems for the test facility have two separate functions. The first is to take static measurements of facility and test hardware to determine both the static and moving frames used in the simulation and control system. The test hardware must be measured after each configuration change to determine both sets of reference frames. The second function is to take dynamic

  16. Robust flight control using incremental nonlinear dynamic inversion and angular acceleration prediction

    NARCIS (Netherlands)

    Sieberling, S.; Chu, Q.P.; Mulder, J.A.

    2010-01-01

    This paper presents a flight control strategy based on nonlinear dynamic inversion. The approach presented, called incremental nonlinear dynamic inversion, uses properties of general mechanical systems and nonlinear dynamic inversion by feeding back angular accelerations. Theoretically, feedback of

  17. Basic Coandă MAV Fluid Dynamics and Flight Mechanics

    Science.gov (United States)

    Djojodihardjo, H.; Ahmed, RI

    2017-04-01

    Capitalizing on the basic fundamental principles, the Fluid Dynamics and Flight Mechanics of a semi-spherical Coandă MAV configurations are revisited and analyzed as a baseline. A mathematical model for a spherical Coandă MAV in hover and translatory motion is developed and analyzed from first physical principles. To gain further insight into the prevailing flow field around a Coandă MAV, as well as to verify the theoretical prediction presented in the work, a computational fluid dynamic CFD simulations for a Coandă MAV generic model are elaborated. The mathematical model and derived performance measures are shown to be capable in describing the physical phenomena of the flow field of the semi-spherical Coandă MAV. The relationships between the relevant parameters of the mathematical model of the Coandă MAV to the forces acting on it are elaborated subsequently.

  18. Experimental study on the flight dynamics of a bioinspired ornithopter: free flight testing and wind tunnel testing

    Science.gov (United States)

    Lee, Jun-Seong; Han, Jae-Hung

    2012-09-01

    This study experimentally shows the flight dynamics of a bioinspired ornithopter using two different types of approach: (1) free flight testing, and (2) wind tunnel testing. An ornithopter is flown in straight and level flight with a fixed wingbeat frequency and tail elevation angle. A three-dimensional visual tracking system is applied to follow the retro-reflective markers on the ornithopter and record the flight trajectories. The unique oscillatory behavior of the body in the longitudinal plane is observed in the free flight testing and the detailed wing and tail deformations are also obtained. Based on the trim flight data, a specially devised tether device is designed and employed to emulate the free flight conditions in the wind tunnel. The tether device provides minimal mechanical interference and longitudinal flight dynamic characteristics similar to those of free flight. On introducing a pitching moment disturbance to the body, the oscillation recovered to the original trajectory turns out to be a stable limit-cycle oscillation (LCO). During the wind tunnel testing, the magnitude of LCO is effectively suppressed by active tail motion.

  19. Autocoded Stellar Dynamic Attitude Estimation Filter for DEMETER

    Science.gov (United States)

    Pontet, B.; Pittet, C.; Fallet, C.; Penet, R.

    2009-05-01

    This paper demonstrates how CNES enhanced AOCS (Attitude and Orbit Control System) software development and validation by using automatic code generation. We are using Matlab/Simulink® for the development and validation of a new attitude estimation filter to fly on board the Demeter satellite. After a presentation of the Demeter satellite and Myriade micro satellite series, this paper shortly describes the new stellar dynamic attitude estimation filter we are implementing. Then we review the several steps followed in order to develop this filter. Next we discuss the validation process, focussing on what we used to do, what we are doing now and what we propose to do in the future. And finally this paper shows a synthesis on the performances. In conclusion, automatic code generation enhances the quality of AOCS software.

  20. Prediction of Projectile Performance, Stability, and Free-Flight Motion Using Computational Fluid Dynamics

    National Research Council Canada - National Science Library

    Weinacht, Paul

    2003-01-01

    ... that are derived solely from computational fluid dynamics (CFD). As a demonstration of the capability, this report presents results for a family of axisymmetric projectiles in supersonic flight...

  1. Parachute-Payload System Flight Dynamics and Trajectory Simulation

    Directory of Open Access Journals (Sweden)

    Giorgio Guglieri

    2012-01-01

    Full Text Available The work traces a general procedure for the design of a flight simulation tool still representative of the major flight physics of a parachute-payload system along decelerated trajectories. An example of limited complexity simulation models for a payload decelerated by one or more parachutes is given, including details and implementation features usually omitted as the focus of the research in this field is typically on the investigation of mission design issues, rather than addressing general implementation guidelines for the development of a reconfigurable simulation tool. The dynamics of the system are modeled through a simple multibody model that represents the expected behavior of an entry vehicle during the terminal deceleration phase. The simulators are designed according to a comprehensive vision that enforces the simplification of the coupling mechanism between the payload and the parachute, with an adequate level of physical insight still available. The results presented for a realistic case study define the sensitivity of the simulation outputs to the functional complexity of the mathematical model. Far from being an absolute address for the software designer, this paper tries to contribute to the area of interest with some technical considerations and clarifications.

  2. In-flight dynamics of volcanic ballistic projectiles

    Science.gov (United States)

    Taddeucci, J.; Alatorre-Ibargüengoitia, M. A.; Cruz-Vázquez, O.; Del Bello, E.; Scarlato, P.; Ricci, T.

    2017-09-01

    Centimeter to meter-sized volcanic ballistic projectiles from explosive eruptions jeopardize people and properties kilometers from the volcano, but they also provide information about the past eruptions. Traditionally, projectile trajectory is modeled using simplified ballistic theory, accounting for gravity and drag forces only and assuming simply shaped projectiles free moving through air. Recently, collisions between projectiles and interactions with plumes are starting to be considered. Besides theory, experimental studies and field mapping have so far dominated volcanic projectile research, with only limited observations. High-speed, high-definition imaging now offers a new spatial and temporal scale of observation that we use to illuminate projectile dynamics. In-flight collisions commonly affect the size, shape, trajectory, and rotation of projectiles according to both projectile nature (ductile bomb versus brittle block) and the location and timing of collisions. These, in turn, are controlled by ejection pulses occurring at the vent. In-flight tearing and fragmentation characterize large bombs, which often break on landing, both factors concurring to decrease the average grain size of the resulting deposits. Complex rotation and spinning are ubiquitous features of projectiles, and the related Magnus effect may deviate projectile trajectory by tens of degrees. A new relationship is derived, linking projectile velocity and size with the size of the resulting impact crater. Finally, apparent drag coefficient values, obtained for selected projectiles, mostly range from 1 to 7, higher than expected, reflecting complex projectile dynamics. These new perspectives will impact projectile hazard mitigation and the interpretation of projectile deposits from past eruptions, both on Earth and on other planets.

  3. Estimation of Gravitation Parameters of Saturnian Moons Using Cassini Attitude Control Flight Data

    Science.gov (United States)

    Krening, Samantha C.

    2013-01-01

    A major science objective of the Cassini mission is to study Saturnian satellites. The gravitational properties of each Saturnian moon is of interest not only to scientists but also to attitude control engineers. When the Cassini spacecraft flies close to a moon, a gravity gradient torque is exerted on the spacecraft due to the mass of the moon. The gravity gradient torque will alter the spin rates of the reaction wheels (RWA). The change of each reaction wheel's spin rate might lead to overspeed issues or operating the wheel bearings in an undesirable boundary lubrication condition. Hence, it is imperative to understand how the gravity gradient torque caused by a moon will affect the reaction wheels in order to protect the health of the hardware. The attitude control telemetry from low-altitude flybys of Saturn's moons can be used to estimate the gravitational parameter of the moon or the distance between the centers of mass of Cassini and the moon. Flight data from several low altitude flybys of three Saturnian moons, Dione, Rhea, and Enceladus, were used to estimate the gravitational parameters of these moons. Results are compared with values given in the literature.

  4. Solar and Heliospheric Observatory (SOHO) Flight Dynamics Simulations Using MATLAB (R)

    Science.gov (United States)

    Headrick, R. D.; Rowe, J. N.

    1996-01-01

    This paper describes a study to verify onboard attitude control laws in the coarse Sun-pointing (CSP) mode by simulation and to develop procedures for operational support for the Solar and Heliospheric Observatory (SOHO) mission. SOHO was launched on December 2, 1995, and the predictions of the simulation were verified with the flight data. This study used a commercial off the shelf product MATLAB(tm) to do the following: Develop procedures for computing the parasitic torques for orbital maneuvers; Simulate onboard attitude control of roll, pitch, and yaw during orbital maneuvers; Develop procedures for predicting firing time for both on- and off-modulated thrusters during orbital maneuvers; Investigate the use of feed forward or pre-bias torques to reduce the attitude handoff during orbit maneuvers - in particular, determine how to use the flight data to improve the feed forward torque estimates for use on future maneuvers. The study verified the stability of the attitude control during orbital maneuvers and the proposed use of feed forward torques to compensate for the attitude handoff. Comparison of the simulations with flight data showed: Parasitic torques provided a good estimate of the on- and off-modulation for attitude control; The feed forward torque compensation scheme worked well to reduce attitude handoff during the orbital maneuvers. The work has been extended to prototype calibration of thrusters from observed firing time and observed reaction wheel speed changes.

  5. Dynamically multiplexed ion mobility time-of-flight mass spectrometry.

    Science.gov (United States)

    Belov, Mikhail E; Clowers, Brian H; Prior, David C; Danielson, William F; Liyu, Andrei V; Petritis, Brianne O; Smith, Richard D

    2008-08-01

    Ion mobility spectrometry-time-of-flight mass spectrometry (IMS-TOFMS) has been increasingly used in analysis of complex biological samples. A major challenge is to transform IMS-TOFMS to a high-sensitivity, high-throughput platform, for example, for proteomics applications. In this work, we have developed and integrated three advanced technologies, including efficient ion accumulation in an ion funnel trap prior to IMS separation, multiplexing (MP) of ion packet introduction into the IMS drift tube, and signal detection with an analog-to-digital converter, into the IMS-TOFMS system for the high-throughput analysis of highly complex proteolytic digests of, for example, blood plasma. To better address variable sample complexity, we have developed and rigorously evaluated a novel dynamic MP approach that ensures correlation of the analyzer performance with an ion source function and provides the improved dynamic range and sensitivity throughout the experiment. The MP IMS-TOFMS instrument has been shown to reliably detect peptides at a concentration of 1 nM in the presence of a highly complex matrix, as well as to provide a 3 orders of magnitude dynamic range and a mass measurement accuracy of better than 5 ppm. When matched against human blood plasma database, the detected IMS-TOF features were found to yield approximately 700 unique peptide identifications at a false discovery rate (FDR) of approximately 7.5%. Accounting for IMS information gave rise to a projected FDR of approximately 4%. Signal reproducibility was found to be greater than 80%, while the variations in the number of unique peptide identifications were <15%. A single sample analysis was completed in 15 min that constitutes almost 1 order of magnitude improvement compared to a more conventional LC-MS approach.

  6. Goddard Space Flight Center's Structural Dynamics Data Acquisition System

    Science.gov (United States)

    McLeod, Christopher

    2004-01-01

    Turnkey Commercial Off The Shelf (COTS) data acquisition systems typically perform well and meet most of the objectives of the manufacturer. The problem is that they seldom meet most of the objectives of the end user. The analysis software, if any, is unlikely to be tailored to the end users specific application; and there is seldom the chance of incorporating preferred algorithms to solve unique problems. Purchasing a customized system allows the end user to get a system tailored to the actual application, but the cost can be prohibitive. Once the system has been accepted, future changes come with a cost and response time that's often not workable. When it came time to replace the primary digital data acquisition system used in the Goddard Space Flight Center's Structural Dynamics Test Section, the decision was made to use a combination of COTS hardware and in-house developed software. The COTS hardware used is the DataMAX II Instrumentation Recorder built by R.C. Electronics Inc. and a desktop Pentium 4 computer system. The in-house software was developed using MATLAF3 from The Mathworks. This paper will describe the design and development of the new data acquisition and analysis system.

  7. Attitude Dynamics and Stability of a Simple Solar Photon Thruster

    Directory of Open Access Journals (Sweden)

    Anna D. Guerman

    2013-01-01

    Full Text Available This paper is dedicated to the development of a model of the attitude dynamics for a nonideal Simple Solar Photon Thruster (SSPT and to the analysis of sailcraft motions with respect to their centre of mass. Derivation of the expressions for force and torque due to solar radiation that is valid for the case, when there is a misalignment of the SSPT axis with the sun direction, is followed by study of sailcraft dynamics and stability properties. Analysis of stability shows that an ideally reflecting sail is unstable, while for a sailcraft with nonideal collector, the symmetry axis is stable with respect to the Sun direction for large variety of system parameters. The motion around symmetry axis is always unstable and requires an active stabilizer.

  8. Satellite Attitude Control System Design considering the Fuel Slosh Dynamics

    Directory of Open Access Journals (Sweden)

    Luiz Carlos Gadelha de Souza

    2014-01-01

    Full Text Available The design of the satellite attitude control system (ACS becomes more complex when the satellite structure has different type of components like, flexible solar panels, antennas, mechanical manipulators, and tanks with fuel. A crucial interaction can occur between the fuel slosh motion and the satellite rigid motion during translational and/or rotational manoeuvre since these interactions can change the satellite centre of mass position damaging the ACS pointing accuracy. Although, a well-designed controller can suppress such disturbances quickly, the controller error pointing may be limited by the minimum time necessary to suppress such disturbances thus affecting the satellite attitude acquisition. As a result, the design of the satellite controller needs to explore the limits between the conflicting requirements of performance and robustness. This paper investigates the effects of the interaction between the liquid motion (slosh and the satellite dynamics in order to predict what the damage to the controller performance and robustness is. The fuel slosh dynamics is modelled by a pendulum which parameters are identified using the Kalman filter technique. This information is used to design the satellite controller by the linear quadratic regulator (LQR and linear quadratic Gaussian (LQG methods to perform a planar manoeuvre assuming thrusters are actuators.

  9. Aerodynamic Models for the Low Density Supersonic Declerator (LDSD) Supersonic Flight Dynamics Test (SFDT)

    Science.gov (United States)

    Van Norman, John W.; Dyakonov, Artem; Schoenenberger, Mark; Davis, Jody; Muppidi, Suman; Tang, Chun; Bose, Deepak; Mobley, Brandon; Clark, Ian

    2015-01-01

    An overview of pre-flight aerodynamic models for the Low Density Supersonic Decelerator (LDSD) Supersonic Flight Dynamics Test (SFDT) campaign is presented, with comparisons to reconstructed flight data and discussion of model updates. The SFDT campaign objective is to test Supersonic Inflatable Aerodynamic Decelerator (SIAD) and large supersonic parachute technologies at high altitude Earth conditions relevant to entry, descent, and landing (EDL) at Mars. Nominal SIAD test conditions are attained by lifting a test vehicle (TV) to 36 km altitude with a large helium balloon, then accelerating the TV to Mach 4 and and 53 km altitude with a solid rocket motor. The first flight test (SFDT-1) delivered a 6 meter diameter robotic mission class decelerator (SIAD-R) to several seconds of flight on June 28, 2014, and was successful in demonstrating the SFDT flight system concept and SIAD-R. The trajectory was off-nominal, however, lofting to over 8 km higher than predicted in flight simulations. Comparisons between reconstructed flight data and aerodynamic models show that SIAD-R aerodynamic performance was in good agreement with pre-flight predictions. Similar comparisons of powered ascent phase aerodynamics show that the pre-flight model overpredicted TV pitch stability, leading to underprediction of trajectory peak altitude. Comparisons between pre-flight aerodynamic models and reconstructed flight data are shown, and changes to aerodynamic models using improved fidelity and knowledge gained from SFDT-1 are discussed.

  10. Optical feather and foil for shape and dynamic load sensing of critical flight surfaces

    Science.gov (United States)

    Black, Richard J.; Costa, Joannes M.; Faridian, Fereydoun; Moslehi, Behzad; Pakmehr, Mehrdad; Schlavin, Jon; Sotoudeh, Vahid; Zagrai, Andrei

    2014-04-01

    Future flight vehicles may comprise complex flight surfaces requiring coordinated in-situ sensing and actuation. Inspired by the complexity of the flight surfaces on the wings and tail of a bird, it is argued that increasing the number of interdependent flight surfaces from just a few, as is normal in an airplane, to many, as in the feathers of a bird, can significantly enlarge the flight envelope. To enable elements of an eco-inspired Dynamic Servo-Elastic (DSE) flight control system, IFOS is developing a multiple functionality-sensing element analogous to a feather, consisting of a very thin tube with optical fiber based strain sensors and algorithms for deducing the shape of the "feather" by measuring strain at multiple points. It is envisaged that the "feather" will act as a unit of sensing and/or actuation for establishing shape, position, static and dynamic loads on flight surfaces and in critical parts. Advanced sensing hardware and software control algorithms will enable the proposed DSE flight control concept. The hardware development involves an array of optical fiber based sensorized needle tubes for attachment to key parts for dynamic flight surface measurement. Once installed the optical fiber sensors, which can be interrogated over a wide frequency range, also allow damage detection and structural health monitoring.

  11. Field Flight Dynamics of Hummingbirds during Territory Encroachment and Defense.

    Directory of Open Access Journals (Sweden)

    Katherine M Sholtis

    Full Text Available Hummingbirds are known to defend food resources such as nectar sources from encroachment by competitors (including conspecifics. These competitive intraspecific interactions provide an opportunity to quantify the biomechanics of hummingbird flight performance during ecologically relevant natural behavior. We recorded the three-dimensional flight trajectories of Ruby-throated Hummingbirds defending, being chased from and freely departing from a feeder. These trajectories allowed us to compare natural flight performance to earlier laboratory measurements of maximum flight speed, aerodynamic force generation and power estimates. During field observation, hummingbirds rarely approached the maximal flight speeds previously reported from wind tunnel tests and never did so during level flight. However, the accelerations and rates of change in kinetic and potential energy we recorded indicate that these hummingbirds likely operated near the maximum of their flight force and metabolic power capabilities during these competitive interactions. Furthermore, although birds departing from the feeder while chased did so faster than freely-departing birds, these speed gains were accomplished by modulating kinetic and potential energy gains (or losses rather than increasing overall power output, essentially trading altitude for speed during their evasive maneuver. Finally, the trajectories of defending birds were directed toward the position of the encroaching bird rather than the feeder.

  12. Flight Dynamics of Flexible Aircraft with Aeroelastic and Inertial Force Interactions

    Science.gov (United States)

    Nguyen, Nhan T.; Tuzcu, Ilhan

    2009-01-01

    This paper presents an integrated flight dynamic modeling method for flexible aircraft that captures coupled physics effects due to inertial forces, aeroelasticity, and propulsive forces that are normally present in flight. The present approach formulates the coupled flight dynamics using a structural dynamic modeling method that describes the elasticity of a flexible, twisted, swept wing using an equivalent beam-rod model. The structural dynamic model allows for three types of wing elastic motion: flapwise bending, chordwise bending, and torsion. Inertial force coupling with the wing elasticity is formulated to account for aircraft acceleration. The structural deflections create an effective aeroelastic angle of attack that affects the rigid-body motion of flexible aircraft. The aeroelastic effect contributes to aerodynamic damping forces that can influence aerodynamic stability. For wing-mounted engines, wing flexibility can cause the propulsive forces and moments to couple with the wing elastic motion. The integrated flight dynamics for a flexible aircraft are formulated by including generalized coordinate variables associated with the aeroelastic-propulsive forces and moments in the standard state-space form for six degree-of-freedom flight dynamics. A computational structural model for a generic transport aircraft has been created. The eigenvalue analysis is performed to compute aeroelastic frequencies and aerodynamic damping. The results will be used to construct an integrated flight dynamic model of a flexible generic transport aircraft.

  13. Bifurcation Tools for Flight Dynamics Analysis and Control System Design Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Modern bifurcation analysis methods have been proposed for investigating flight dynamics and control system design in highly nonlinear regimes and also for the...

  14. Aerodynamic and Flight Dynamic Characteristics of 5.56-mm Ammunition: M855

    Science.gov (United States)

    2010-05-01

    Aerodynamic and Flight Dynamic Characteristics of 5.56-mm Ammunition: M855 by Sidra I. Silton and Bradley E. Howell ARL-TR-5182 May...Aerodynamic and Flight Dynamic Characteristics of 5.56-mm Ammunition: M855 Sidra I. Silton Weapons and Materials Research Directorate, ARL...Ammunition: M855 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Sidra I. Silton and Bradley E. Howell* 5d. PROJECT

  15. Attitude Dynamics, Stability, and Control of a Heliogyro Solar Sail

    Science.gov (United States)

    Pimienta-Penalver, Adonis Reinier

    A heliogyro solar sail concept, dubbed `HELIOS', is proposed as an alternative to deep space missions without the need for on-board propellant. Although this type of solar sail has existed in concept for several decades, and some previous studies have investigated certain aspects of its operation, a significant amount of research is still needed to analyze the dynamic and control characteristics of the structure under the projected range of orbital conditions. This work presents an improvement upon the existing discrete-mass models of the heliogyro blade, and the extension of its application from a single membrane blade to a fully-coupled approximation of the dynamics of the HELIOS system with multiple spinning membrane blades around a central hub. The incorporation of structural stiffness and external forcing effects into the model is demonstrated to add a further degree of fidelity in simulating the stability properties of the system. Additionally, the approximated dynamics of multiple-blade heliogyro structures are examined under the effect of solar radiation pressure. Lastly, this study evaluates a control algorithm at each blade root to impose structural integrity and attitude control by coordinating well-known helicopter blade pitching profiles.

  16. Blowfly flight and optic flow I. Thorax kinematics and flight dynamics

    NARCIS (Netherlands)

    Schilstra, C; Van Hateren, JH

    The motion of the thorax of the blowfly Calliphora vicina was measured during cruising flight inside a cage measuring 40 cmx40 cmx40 cm, Sensor coils mounted on the thorax picked up externally generated magnetic fields and yielded measurements of the position and orientation of the thorax with a

  17. Clear Skies and Grey Areas: Flight Attendants’ Secondhand Smoke Exposure and Attitudes toward Smoke-Free Policy 25 Years since Smoking was Banned on Airplanes

    Science.gov (United States)

    Stillman, Frances A.; Soong, Andrea; Zheng, Laura Y.; Navas-Acien, Ana

    2015-01-01

    Our objective was to provide descriptive data on flight attendant secondhand smoke (SHS) exposure in the work environment, and to examine attitudes toward SHS exposure, personal health, and smoke-free policy in the workplace and public places. Flight attendants completed a web-based survey of self-reported SHS exposure and air quality in the work environment. We assessed the frequency and duration of SHS exposure in distinct areas of the workplace, attitudes toward SHS exposure and its health effects, and attitudes toward smoke-free policy in the workplace as well as general public places. A total of 723 flight attendants participated in the survey, and 591 responded to all survey questions. The mean level of exposure per flight attendant over the past month was 249 min. The majority of participants reported being exposed to SHS always/often in outdoor areas of an airport (57.7%). Participants who worked before the in-flight smoking ban (n = 240) were more likely to support further smoking policies in airports compared to participants who were employed after the ban (n = 346) (76.7% versus 60.4%, p-value < 0.01). Flight attendants are still being exposed to SHS in the workplace, sometimes at concerning levels during the non-flight portions of their travel. Flight attendants favor smoke-free policies and want to see further restrictions in airports and public places. PMID:26053296

  18. Clear Skies and Grey Areas: Flight Attendants' Secondhand Smoke Exposure and Attitudes toward Smoke-Free Policy 25 Years since Smoking was Banned on Airplanes.

    Science.gov (United States)

    Stillman, Frances A; Soong, Andrea; Zheng, Laura Y; Navas-Acien, Ana

    2015-06-04

    Our objective was to provide descriptive data on flight attendant secondhand smoke (SHS) exposure in the work environment, and to examine attitudes toward SHS exposure, personal health, and smoke-free policy in the workplace and public places. Flight attendants completed a web-based survey of self-reported SHS exposure and air quality in the work environment. We assessed the frequency and duration of SHS exposure in distinct areas of the workplace, attitudes toward SHS exposure and its health effects, and attitudes toward smoke-free policy in the workplace as well as general public places. A total of 723 flight attendants participated in the survey, and 591 responded to all survey questions. The mean level of exposure per flight attendant over the past month was 249 min. The majority of participants reported being exposed to SHS always/often in outdoor areas of an airport (57.7%). Participants who worked before the in-flight smoking ban (n=240) were more likely to support further smoking policies in airports compared to participants who were employed after the ban (n=346) (76.7% versus 60.4%, p-valueFlight attendants are still being exposed to SHS in the workplace, sometimes at concerning levels during the non-flight portions of their travel. Flight attendants favor smoke-free policies and want to see further restrictions in airports and public places.

  19. Verification of the Solar Dynamics Observatory High Gain Antenna Pointing Algorithm Using Flight Data

    Science.gov (United States)

    Bourkland, Kristin L.; Liu, Kuo-Chia

    2011-01-01

    The Solar Dynamics Observatory (SDO) is a NASA spacecraft designed to study the Sun. It was launched on February 11, 2010 into a geosynchronous orbit, and uses a suite of attitude sensors and actuators to finely point the spacecraft at the Sun. SDO has three science instruments: the Atmospheric Imaging Assembly (AIA), the Helioseismic and Magnetic Imager (HMI), and the Extreme Ultraviolet Variability Experiment (EVE). SDO uses two High Gain Antennas (HGAs) to send science data to a dedicated ground station in White Sands, New Mexico. In order to meet the science data capture budget, the HGAs must be able to transmit data to the ground for a very large percentage of the time. Each HGA is a dual-axis antenna driven by stepper motors. Both antennas transmit data at all times, but only a single antenna is required in order to meet the transmission rate requirement. For portions of the year, one antenna or the other has an unobstructed view of the White Sands ground station. During other periods, however, the view from both antennas to the Earth is blocked for different portions of the day. During these times of blockage, the two HGAs take turns pointing to White Sands, with the other antenna pointing out to space. The HGAs handover White Sands transmission responsibilities to the unblocked antenna. There are two handover seasons per year, each lasting about 72 days, where the antennas hand off control every twelve hours. The non-tracking antenna slews back to the ground station by following a ground commanded trajectory and arrives approximately 5 minutes before the formerly tracking antenna slews away to point out into space. The SDO Attitude Control System (ACS) runs at 5 Hz, and the HGA Gimbal Control Electronics (GCE) run at 200 Hz. There are 40 opportunities for the gimbals to step each ACS cycle, with a hardware limitation of no more than one step every three GCE cycles. The ACS calculates the desired gimbal motion for tracking the ground station or for slewing

  20. A study of altitude and flight path angle dynamics for a singularly perturbed fuel optimization problem

    Science.gov (United States)

    Price, D. B.; Gracey, C.

    1983-01-01

    This short paper will demonstrate that the separation of altitude and flight path angle dynamics using singular perturbation techniques for a transport fuel optimization problem results in an unacceptable oscillation in altitude. A technique for damping this oscillation by adding a penalty term to the cost function for the optimization problem will be discussed. This technique will be compared with a different approach that linearizes the altitude and flight path angle boundary layers.

  1. The Effects of Dynamic Graphing Utilities on Student Attitudes and Conceptual Understanding in College Algebra

    Science.gov (United States)

    Thomas, Ryan Vail

    2016-01-01

    The goal of this study is to explore and characterize the effects of using a dynamic graphing utility (DGU) on conceptual understanding and attitudes toward mathematics, measured by the responses of college algebra students to an attitude survey and concepts assessment. Two sections of college algebra taught by the primary researcher are included…

  2. The dynamics of political identity and issue attitudes in adolescence and early adulthood

    NARCIS (Netherlands)

    Rekker, Roderik; Keijsers, L.G.M.T.; Branje, Susan; Meeus, W.H.J.

    This cohort-sequential longitudinal study among 1302 Dutch youths examined the dynamics of political identity (e.g., Democrat or Rightist) and issue attitudes between age 12 and 30. Some theories propose that voters form an identity early in life that subsequently determines attitudes. Other

  3. Stability and control modelling. [helicopters in near hovering flight

    Science.gov (United States)

    Curtiss, H. C., Jr.

    1986-01-01

    This paper discusses the influence of rotor dynamics and dynamic inflow on the stability and control characteristics of single rotor helicopters in near hovering flight. Body attitude and rate feedback gain limitations which arise due to rotor dynamics and dynamic inflow are discussed. It is shown that attitude feedback gain is limited primarily by body-flap coupling and rate gain is limited by the lag degrees of freedom. Dynamic inflow is shown to produce significant changes in the modes of motion.

  4. Identification method for helicopter flight dynamics modeling with rotor degrees of freedom

    Directory of Open Access Journals (Sweden)

    Wu Wei

    2014-12-01

    Full Text Available A comprehensive method based on system identification theory for helicopter flight dynamics modeling with rotor degrees of freedom is developed. A fully parameterized rotor flapping equation for identification purpose is derived without using any theoretical model, so the confidence of the identified model is increased, and then the 6 degrees of freedom rigid body model is extended to 9 degrees of freedom high-order model. Bode sensitivity function is derived to increase the accuracy of frequency spectra calculation which influences the accuracy of model parameter identification. Then a frequency domain identification algorithm is established. Acceleration technique is developed furthermore to increase calculation efficiency, and the total identification time is reduced by more than 50% using this technique. A comprehensive two-step method is established for helicopter high-order flight dynamics model identification which increases the numerical stability of model identification compared with single step algorithm. Application of the developed method to identify the flight dynamics model of BO 105 helicopter based on flight test data is implemented. A comparative study between the high-order model and rigid body model is performed at last. The results show that the developed method can be used for helicopter high-order flight dynamics model identification with high accuracy as well as efficiency, and the advantage of identified high-order model is very obvious compared with low-order model.

  5. Effect of body aerodynamics on the dynamic flight stability of the hawkmoth Manduca sexta.

    Science.gov (United States)

    Nguyen, Anh Tuan; Han, Jong-Seob; Han, Jae-Hung

    2016-12-14

    This study explores the effects of the body aerodynamics on the dynamic flight stability of an insect at various different forward flight speeds. The insect model, whose morphological parameters are based on measurement data from the hawkmoth Manduca sexta, is treated as an open-loop six-degree-of-freedom dynamic system. The aerodynamic forces and moments acting on the insect are computed by an aerodynamic model that combines the unsteady panel method and the extended unsteady vortex-lattice method. The aerodynamic model is then coupled to a multi-body dynamic code to solve the system of motion equations. First, the trimmed flight conditions of insect models with and without consideration of the body aerodynamics are obtained using a trim search algorithm. Subsequently, the effects of the body aerodynamics on the dynamic flight stability are analysed through modal structures, i.e., eigenvalues and eigenvectors in this case, which are based on linearized equations of motion. The solutions from the nonlinear and linearized equations of motion due to gust disturbances are obtained, and the effects of the body aerodynamics are also investigated through these solutions. The results showed the important effect of the body aerodynamics at high-speed forward flight (in this paper at 4.0 and 5.0 m s -1 ) and the movement trends of eigenvalues when the body aerodynamics is included.

  6. Flight Path Angle Dynamics of Air-Breathing Hypersonic Vehicles

    National Research Council Canada - National Science Library

    Bolender, Michael A; Doman, David B

    2005-01-01

    .... This is not the case, however, with air-breathing hypersonic aircraft. This class of aircraft is characterized by unstable longitudinal dynamics, strong loop interactions, and the presence of non-minimum phase transmission zeros...

  7. Development of an Integrated Nonlinear Aeroservoelastic Flight Dynamic Model of the NASA Generic Transport Model

    Science.gov (United States)

    Nguyen, Nhan; Ting, Eric

    2018-01-01

    This paper describes a recent development of an integrated fully coupled aeroservoelastic flight dynamic model of the NASA Generic Transport Model (GTM). The integrated model couples nonlinear flight dynamics to a nonlinear aeroelastic model of the GTM. The nonlinearity includes the coupling of the rigid-body aircraft states in the partial derivatives of the aeroelastic angle of attack. Aeroservoelastic modeling of the control surfaces which are modeled by the Variable Camber Continuous Trailing Edge Flap is also conducted. The R.T. Jones' method is implemented to approximate unsteady aerodynamics. Simulations of the GTM are conducted with simulated continuous and discrete gust loads..

  8. Flight dynamic investigations of flying wing with winglet configured unmanned aerial vehicle

    Science.gov (United States)

    Ro, Kapseong

    2006-05-01

    A swept wing tailless vehicle platform is well known in the radio control (RC) and sailing aircraft community for excellent spiral stability during soaring or thermaling, while exhibiting no Dutch roll behavior at high speed. When an unmanned aerial vehicle (UAV) is subjected to fly a mission in a rugged mountainous terrain where air current or thermal up-drift is frequently present, this is great aerodynamic benefit over the conventional cross-tailed aircraft which requires careful balance between lateral and directional stability. Such dynamic characteristics can be studied through vehicle dynamic modeling and simulation, but it requires configuration aerodynamic data through wind tunnel experiments. Obtaining such data is very costly and time consuming, and it is not feasible especially for low cost and dispensable UAVs. On the other hand, the vehicle autonomy is quite demanding which requires substantial understanding of aircraft dynamic characteristics. In this study, flight dynamics of an UAV platform based on flying wing with a large winglet was investigated through analytical modeling and numerical simulation. Flight dynamic modeling software and experimental formulae were used to obtain essential configuration aerodynamic characteristics, and linear flight dynamic analysis was carried out to understand the effect of wing sweep angle and winglet size on the vehicle dynamic characteristics.

  9. Error compensation of single-antenna attitude determination using GNSS for Low-dynamic applications

    Science.gov (United States)

    Chen, Wen; Yu, Chao; Cai, Miaomiao

    2017-04-01

    GNSS-based single-antenna pseudo-attitude determination method has attracted more and more attention from the field of high-dynamic navigation due to its low cost, low system complexity, and no temporal accumulated errors. Related researches indicate that this method can be an important complement or even an alternative to the traditional sensors for general accuracy requirement (such as small UAV navigation). The application of single-antenna attitude determining method to low-dynamic carrier has just started. Different from the traditional multi-antenna attitude measurement technique, the pseudo-attitude attitude determination method calculates the rotation angle of the carrier trajectory relative to the earth. Thus it inevitably contains some deviations comparing with the real attitude angle. In low-dynamic application, these deviations are particularly noticeable, which may not be ignored. The causes of the deviations can be roughly classified into three categories, including the measurement error, the offset error, and the lateral error. Empirical correction strategies for the formal two errors have been promoted in previous study, but lack of theoretical support. In this paper, we will provide quantitative description of the three type of errors and discuss the related error compensation methods. Vehicle and shipborne experiments were carried out to verify the feasibility of the proposed correction methods. Keywords: Error compensation; Single-antenna; GNSS; Attitude determination; Low-dynamic

  10. Non-linear Flight Dynamics at High Angles of Attack

    DEFF Research Database (Denmark)

    Granasy, P.; Sørensen, C.B.; Mosekilde, Erik

    1998-01-01

    The methods of nonlinear dynamics are applied to the longitudinal motion of a vectored thrust aircraft, in particular the behavior at high angles of attack. Our model contains analytic nonlinear aerodynamical coefficients based on NASA windtunnel experiments on the F-18 high-alpha research vehicle...

  11. [EEG-correlates of pilots' functional condition in simulated flight dynamics].

    Science.gov (United States)

    Kiroy, V N; Aslanyan, E V; Bakhtin, O M; Minyaeva, N R; Lazurenko, D M

    2015-01-01

    The spectral characteristics of the EEG recorded on two professional pilots in the simulator TU-154 aircraft in flight dynamics, including takeoff, landing and horizontal flight (in particular during difficult conditions) were analyzed. EEG recording was made with frequency band 0.1-70 Hz continuously from 15 electrodes. The EEG recordings were evaluated using analysis of variance and discriminant analysis. Statistical significant of the identified differences and the influence of the main factors and their interactions were evaluated using Greenhouse - Gaiser corrections. It was shown that the spectral characteristics of the EEG are highly informative features of the state of the pilots, reflecting the different flight phases. High validity ofthe differences including individual characteristic, indicates their non-random nature and the possibility of constructing a system of pilots' state control during all phases of flight, based on EEG features.

  12. Vibrotactile and visual threat cueing with high g threat intercept in dynamic flight simulation

    NARCIS (Netherlands)

    Eriksson, L.; Erp, J.B.F. van; Carlander, O.; Levin, B.; Veen, H.A.H.C. van; Veltman, J.E.

    2006-01-01

    In a TNO and FOI joint study, nine fighter pilots participated in a threat detection and intercept experiment in the Swedish Dynamic Flight Simulator. Visual threat cueing with a simulated Gripen aircraft head-up display (HUD) symbology was compared with combined visual and vibrotactile threat

  13. Conflict probability evaluation taking into account the dynamics and correlation of aircraft flight process

    Directory of Open Access Journals (Sweden)

    В.М. Васильєв

    2004-04-01

    Full Text Available  The probability method of conflict detection for collision avoidance systems is offered enabling to take into account the features of stochastic dynamics of aircraft flight process and correlation of a trajectory with time. The general approach to a solution of a problem is presented and the analytical solution on a concrete example is demonstrated.

  14. Evolution of Ada technology in the flight dynamics area: Implementation/testing phase analysis

    Science.gov (United States)

    Quimby, Kelvin L.; Esker, Linda; Miller, John; Smith, Laurie; Stark, Mike; Mcgarry, Frank

    1989-01-01

    An analysis is presented of the software engineering issues related to the use of Ada for the implementation and system testing phases of four Ada projects developed in the flight dynamics area. These projects reflect an evolving understanding of more effective use of Ada features. In addition, the testing methodology used on these projects has changed substantially from that used on previous FORTRAN projects.

  15. Tether dynamics and control results for tethered satellite system's initial flight

    Science.gov (United States)

    Chapel, Jim D.; Flanders, Howard

    The recent Tethered Satellite System-1 (TSS-1) mission has provided a wealth of data concerning the dynamics of tethered systems in space and has demonstrated the effectiveness of operational techniques designed to control these dynamics. In this paper, we review control techniques developed for managing tether dynamics, and discuss the results of using these techniques for the Tethered Satellite System's maiden flight on STS-46. In particular, the flight results of controlling libration dynamics, string dynamics, and slack tether are presented. These results show that tether dynamics can be safely managed. The overall stability of the system was found to be surprisingly good even at relatively short tether lengths. In fact, the system operated in passive mode at a tether length of 256 meters for over 9 hours. Only monitoring of the system was required during this time. Although flight anomalies prevented the planned deployment to 20 km, the extended operations at shorter tether lengths have proven the viability of using tethers in space. These results should prove invaluable in preparing for future missions with tethered objects in space.

  16. Flight Mechanics/Estimation Theory Symposium. [with application to autonomous navigation and attitude/orbit determination

    Science.gov (United States)

    Fuchs, A. J. (Editor)

    1979-01-01

    Onboard and real time image processing to enhance geometric correction of the data is discussed with application to autonomous navigation and attitude and orbit determination. Specific topics covered include: (1) LANDSAT landmark data; (2) star sensing and pattern recognition; (3) filtering algorithms for Global Positioning System; and (4) determining orbital elements for geostationary satellites.

  17. Pilot dynamics for instrument approach tasks: Full panel multiloop and flight director operations

    Science.gov (United States)

    Weir, D. H.; Mcruer, D. T.

    1972-01-01

    Measurements and interpretations of single and mutiloop pilot response properties during simulated instrument approach are presented. Pilot subjects flew Category 2-like ILS approaches in a fixed base DC-8 simulaton. A conventional instrument panel and controls were used, with simulated vertical gust and glide slope beam bend forcing functions. Reduced and interpreted pilot describing functions and remmant are given for pitch attitude, flight director, and multiloop (longitudinal) control tasks. The response data are correlated with simultaneously recorded eye scanning statistics, previously reported in NASA CR-1535. The resulting combined response and scanning data and their interpretations provide a basis for validating and extending the theory of manual control displays.

  18. Spinning Flight Dynamics of Frisbees, Boomerangs, Samaras, and Skipping Stones

    CERN Document Server

    Lorenz, Ralph D

    2006-01-01

    More frisbees are sold each year than baseballs, basketballs, and footballs combined. Yet these familiar flying objects have subtle and clever aerodynamic and gyrodynamic properties which are only recently being documented by wind tunnel and other studies. In common with other rotating bodies discussed in this readily accessible book, they are typically not treated in textbooks of aeronautics and the literature is scattered in a variety of places. This book develops the theme of disc-wings and spinning aerospace vehicles in parallel. Many readers will have enjoyed these vehicles and their dynamics in recreational settings, so this book will be of wide interest. In addition to spinning objects of various shapes, several exotic manned aircraft with disc platforms have been proposed and prototypes built - these include a Nazi ‘secret weapon’ and the De Havilland Avrocar, also discussed in the book. Boomerangs represent another category of spinning aerodynamic body whose behavior can only be understood by cou...

  19. Mechanics of Flapping Flight: Analytical Formulations of Unsteady Aerodynamics, Kinematic Optimization, Flight Dynamics, and Control

    Science.gov (United States)

    Taneja, Jayant Kumar

    Electricity is an indispensable commodity to modern society, yet it is delivered via a grid architecture that remains largely unchanged over the past century. A host of factors are conspiring to topple this dated yet venerated design: developments in renewable electricity generation technology, policies to reduce greenhouse gas emissions, and advances in information technology for managing energy systems. Modern electric grids are emerging as complex distributed systems in which a portfolio of power generation resources, often incorporating fluctuating renewable resources such as wind and solar, must be managed dynamically to meet uncontrolled, time-varying demand. Uncertainty in both supply and demand makes control of modern electric grids fundamentally more challenging, and growing portfolios of renewables exacerbate the challenge. We study three electricity grids: the state of California, the province of Ontario, and the country of Germany. To understand the effects of increasing renewables, we develop a methodology to scale renewables penetration. Analyzing these grids yields key insights about rigid limits to renewables penetration and their implications in meeting long-term emissions targets. We argue that to achieve deep penetration of renewables, the operational model of the grid must be inverted, changing the paradigm from load-following supplies to supply-following loads. To alleviate the challenge of supply-demand matching on deeply renewable grids, we first examine well-known techniques, including altering management of existing supply resources, employing utility-scale energy storage, targeting energy efficiency improvements, and exercising basic demand-side management. Then, we create several instantiations of supply-following loads -- including refrigerators, heating and cooling systems, and laptop computers -- by employing a combination of sensor networks, advanced control techniques, and enhanced energy storage. We examine the capacity of each load

  20. In-flight Quality and Accuracy of Attitude Measurements from the CHAMP Advanced Stellar Compass

    DEFF Research Database (Denmark)

    Jørgensen, Peter Siegbjørn; Jørgensen, John Leif; Denver, Troelz

    2005-01-01

    The German geo-observations satellite CHAMP carries highly accurate vector instruments. The orientation of these relative to the inertial reference frame is obtained using star trackers. These advanced stellar compasses (ASC) are fully autonomous units, which provide, in real time, the absolute...... with modeling external noise sources often arise. The special CHAMP configuration with two star tracker cameras mounted fixed together provides an excellent opportunity to determine the AIA in-flight using the inter boresight angle....

  1. Flight Loads Prediction of High Aspect Ratio Wing Aircraft Using Multibody Dynamics

    Directory of Open Access Journals (Sweden)

    Michele Castellani

    2016-01-01

    Full Text Available A framework based on multibody dynamics has been developed for the static and dynamic aeroelastic analyses of flexible high aspect ratio wing aircraft subject to structural geometric nonlinearities. Multibody dynamics allows kinematic nonlinearities and nonlinear relationships in the forces definition and is an efficient and promising methodology to model high aspect ratio wings, which are known to be prone to structural nonlinear effects because of the high deflections in flight. The multibody dynamics framework developed employs quasi-steady aerodynamics strip theory and discretizes the wing as a series of rigid bodies interconnected by beam elements, representative of the stiffness distribution, which can undergo arbitrarily large displacements and rotations. The method is applied to a flexible high aspect ratio wing commercial aircraft and both trim and gust response analyses are performed in order to calculate flight loads. These results are then compared to those obtained with the standard linear aeroelastic approach provided by the Finite Element Solver Nastran. Nonlinear effects come into play mainly because of the need of taking into account the large deflections of the wing for flight loads computation and of considering the aerodynamic forces as follower forces.

  2. The determination of the attitude and attitude dynamics of TeamSat

    DEFF Research Database (Denmark)

    Betto, Maurizio; Jørgensen, John Leif; Riis, Troels

    1999-01-01

    The second qualification flight of Ariane 5 was launched from the European Space Port in French Guiana on October 30, 1997. It carried on board a small technology demonstration satellite dubbed TeamSat into which five experiments, proposed by various universities and research institutions, were i...

  3. Wing wear reduces bumblebee flight performance in a dynamic obstacle course.

    Science.gov (United States)

    Mountcastle, Andrew M; Alexander, Teressa M; Switzer, Callin M; Combes, Stacey A

    2016-06-01

    Previous work has shown that wing wear increases mortality in bumblebees. Although a proximate mechanism for this phenomenon has remained elusive, a leading hypothesis is that wing wear increases predation risk by reducing flight manoeuvrability. We tested the effects of simulated wing wear on flight manoeuvrability in Bombus impatiens bumblebees using a dynamic obstacle course designed to push bees towards their performance limits. We found that removing 22% wing area from the tips of both forewings (symmetric wear) caused a 9% reduction in peak acceleration during manoeuvring flight, while performing the same manipulation on only one wing (asymmetric wear) did not significantly reduce maximum acceleration. The rate at which bees collided with obstacles was correlated with body length across all treatments, but wing wear did not increase collision rate, possibly because shorter wingspans allow more room for bees to manoeuvre. This study presents a novel method for exploring extreme flight manoeuvres in flying insects, eliciting peak accelerations that exceed those measured during flight through a stationary obstacle course. If escape from aerial predation is constrained by acceleration capacity, then our results offer a potential explanation for the observed increase in bumblebee mortality with wing wear. © 2016 The Author(s).

  4. Influence of wing tip morphology on vortex dynamics of flapping flight

    Science.gov (United States)

    Krishna, Swathi; Mulleners, Karen

    2013-11-01

    The mechanism of flapping wing flight provides insects with extraordinary flight capabilities. The uniquely shaped wing tips give insects an edge in flight performance and the interaction between the leading edge vortices and wing tip vortices enhance their propelling efficiencies and manoeuvrability. These are qualities that are sought after in current-day Micro Air Vehicles. A detailed understanding of the vortex dynamics of flapping flight and the influence of the wing tip planform is imperative for technical application. An experimental study is conducted to investigate the effects of different wing tip planforms on the formation, evolution and interaction of vortical structures. We thereby focus on the interaction between the coherent structures evolving from the leading edge and the wing tip during pitching and flapping motions.The spatial and temporal evolution of the three-dimensional flow structures are determined using Scanning (Stereo) Particle Image Velocimetry and an in-depth coherent structure analysis. By comparing the vortex dynamics, the aerodynamic performance of various wing tip planforms are evaluated.

  5. Investigating On-Orbit Attitude Determination Anomalies for the Solar Dynamics Observatory Mission

    Science.gov (United States)

    Vess, Melissa F.; Starin, Scott R.; Chia-Kuo, Alice Liu

    2011-01-01

    The Solar Dynamics Observatory (SDO) was launched on February 11, 2010 from Kennedy Space Center on an Atlas V launch vehicle into a geosynchronous transfer orbit. SDO carries a suite of three scientific instruments, whose observations are intended to promote a more complete understanding of the Sun and its effects on the Earth's environment. After a successful launch, separation, and initial Sun acquisition, the launch and flight operations teams dove into a commissioning campaign that included, among other things, checkout and calibration of the fine attitude sensors and checkout of the Kalman filter (KF) and the spacecraft s inertial pointing and science control modes. In addition, initial calibration of the science instruments was also accomplished. During that process of KF and controller checkout, several interesting observations were noticed and investigated. The SDO fine attitude sensors consist of one Adcole Digital Sun Sensor (DSS), two Galileo Avionica (GA) quaternion-output Star Trackers (STs), and three Kearfott Two-Axis Rate Assemblies (hereafter called inertial reference units, or IRUs). Initial checkout of the fine attitude sensors indicated that all sensors appeared to be functioning properly. Initial calibration maneuvers were planned and executed to update scale factors, drift rate biases, and alignments of the IRUs. After updating the IRU parameters, the KF was initialized and quickly reached convergence. Over the next few hours, it became apparent that there was an oscillation in the sensor residuals and the KF estimation of the IRU bias. A concentrated investigation ensued to determine the cause of the oscillations, their effect on mission requirements, and how to mitigate them. The ensuing analysis determined that the oscillations seen were, in fact, due to an oscillation in the IRU biases. The low frequencies of the oscillations passed through the KF, were well within the controller bandwidth, and therefore the spacecraft was actually

  6. FLIGHT DYNAMICS MODEL OF ONE CLASS OF AIRCRAFT WITH A VIEW OF ELASTIC CONSTRUCTION

    OpenAIRE

    2016-01-01

    It remains urgent problem of damping of elastic vibrations occurring aircraft structure means the automatic control systems on board. In solving this problem the aircraft elastic model is the basis for the synthesis of control laws and analysis of closed-loop system "control object - the regulator." In general, the problem of mathematical modeling of flight dynamics of the elastic aircraft breaks for at least another two objectives, one of which - direct simulation of the behavior of elastic ...

  7. On the internal stability of non-linear dynamic inversion: application to flight control

    Czech Academy of Sciences Publication Activity Database

    Alam, M.; Čelikovský, Sergej

    2017-01-01

    Roč. 11, č. 12 (2017), s. 1849-1861 ISSN 1751-8644 R&D Projects: GA ČR(CZ) GA17-04682S Institutional support: RVO:67985556 Keywords : flight control * non-linear dynamic inversion * stability Subject RIV: BC - Control Systems Theory Impact factor: 2.536, year: 2016 http:// library .utia.cas.cz/separaty/2017/TR/celikovsky-0476150.pdf

  8. Position Estimation for Projectiles Using Low-cost Sensors and Flight Dynamics

    Science.gov (United States)

    2012-04-01

    339. 16. Habibi, S.; Cooper, S. J.; Stauffer, J. M. Gun Hard Inertial Measurement Unit Based on MEMS Capacitive Accelerometer and Rate Sensor. In...target. For example, accelerometers and gyroscopes located off the center of gravity of the rigid body can be compensated for in order to obtain...environment using low-cost measurement devices and projectile flight dynamics. An extended Kalman filter (EKF) was developed to blend accelerometer

  9. New Insights on Insect's Silent Flight. Part I: Vortex Dynamics and Wing Morphing

    Science.gov (United States)

    Ren, Yan; Liu, Geng; Dong, Haibo; Geng, Biao; Zheng, Xudong; Xue, Qian

    2016-11-01

    Insects are capable of conducting silent flights. This is attributed to its specially designed wing material properties for the control of vibration and surface morphing during the flapping flight. In current work, we focus on the roles of dynamic wing morphing on the unsteady vortex dynamics of a cicada in steady flight. A 3D image-based surface reconstruction method is used to obtain kinematical and morphological data of cicada wings from high-quality high-speed videos. The observed morphing wing kinematics is highly complex and a singular value decomposition method is used to decompose the wing motion to several dominant modes with distinct motion features. A high-fidelity immersed-boundary-based flow solver is then used to study the vortex dynamics in details. The results show that vortical structures closely relate to the morphing mode, which plays key role in the development and attachment of leading-edge vortex (LEV), thus helps the silent flapping of the cicada wings. This work is supported by AFOSR FA9550-12-1-0071 and NSF CBET-1313217.

  10. Dynamic Exposure to Alcohol Advertising in a Sports Context Influences Implicit Attitudes.

    Science.gov (United States)

    Zerhouni, Oulmann; Bègue, Laurent; Duke, Aaron A; Flaudias, Valentin

    2016-02-01

    Experimental studies investigating the impact of advertising with ecological stimuli on alcohol-related cognition are scarce. This research investigated the cognitive processes involved in learning implicit attitudes toward alcohol after incidental exposure to alcohol advertisements presented in a dynamic context. We hypothesized that incidental exposure to a specific alcohol brand would lead to heightened positive implicit attitudes toward alcohol due to a mere exposure effect. In total, 108 participants were randomly exposed to dynamic sporting events excerpts with and without advertising for a specific brand of alcohol, after completing self-reported measures of alcohol-related expectancies, alcohol consumption, and attitudes toward sport. Participants then completed a lexical decision task and an affective priming task. We showed that participants were faster to detect brand name after being exposed to advertising during a sports game, and that implicit attitudes of participants toward the brand were more positive after they were exposed to advertising, even when alcohol usage patterns were controlled for. Incidental exposure to alcohol sponsorship in sport events impacts implicit attitudes toward the advertised brand and alcohol in general. The effect of incidental advertising on implicit attitudes is also likely to be due to a mere exposure effect. However, further studies should address this point specifically. Copyright © 2016 by the Research Society on Alcoholism.

  11. Post-Flight Analysis of Dynamic Data Acquired During the ATV-2 Johannes Kepler Launch

    Science.gov (United States)

    Meitzner, R.; Abdoly, K.; Newerla, A.

    2012-07-01

    An in-flight data acquisition system called TeleMesure Autonome (TMA) has been implemented on ATV-1 Jules Verne (launched in March 2008) and ATV-2 Johannes Kepler (launched in February 2011). The TMA served the main objective to measure dynamic responses on the ATV spacecraft for comparison with coupled load analysis predictions and to verify that the ATV mechanical flight environment has been sufficiently covered by the respective ATV design specifications. The acquired flight data included low frequency sinusoidal, random vibration and shock measurements. Whereas the TMA on ATV-1 Jules Verne failed to properly work after 17 seconds after liftoff the improved TMA on ATV-2 Johannes Kepler performed its tasks successfully for all flight phases. The flight data have been subsequently evaluated by the ATV prime contractor Astrium. As first step of the performed analyses a correction of the acquired data was necessary to remove any artificial content (spikes, mean truncation, offset correction) followed by a visual inspection of the corrected data to ensure data quality. Then standard post processing methods were applied to the data consisting of generating equivalent sinusoidal responses and transfer functions for the low frequency data, power spectral densities for the random data and shock responses for the high frequency shock data. Although it was noted that the quality of the data was limited by the available transmission bandwidth and the amplitude resolution of the data acquisition system the implementation of the TMA on ATV-2 Johannes Kepler has nevertheless turned out successful and valuable data have been acquired for all relevant flight phases.

  12. Applications of the unsteady vortex-lattice method in aircraft aeroelasticity and flight dynamics

    Science.gov (United States)

    Murua, Joseba; Palacios, Rafael; Graham, J. Michael R.

    2012-11-01

    The unsteady vortex-lattice method provides a medium-fidelity tool for the prediction of non-stationary aerodynamic loads in low-speed, but high-Reynolds-number, attached flow conditions. Despite a proven track record in applications where free-wake modelling is critical, other less-computationally expensive potential-flow models, such as the doublet-lattice method and strip theory, have long been favoured in fixed-wing aircraft aeroelasticity and flight dynamics. This paper presents how the unsteady vortex-lattice method can be implemented as an enhanced alternative to those techniques for diverse situations that arise in flexible-aircraft dynamics. A historical review of the methodology is included, with latest developments and practical applications. Different formulations of the aerodynamic equations are outlined, and they are integrated with a nonlinear beam model for the full description of the dynamics of a free-flying flexible vehicle. Nonlinear time-marching solutions capture large wing excursions and wake roll-up, and the linearisation of the equations lends itself to a seamless, monolithic state-space assembly, particularly convenient for stability analysis and flight control system design. The numerical studies emphasise scenarios where the unsteady vortex-lattice method can provide an advantage over other state-of-the-art approaches. Examples of this include unsteady aerodynamics in vehicles with coupled aeroelasticity and flight dynamics, and in lifting surfaces undergoing complex kinematics, large deformations, or in-plane motions. Geometric nonlinearities are shown to play an instrumental, and often counter-intuitive, role in the aircraft dynamics. The unsteady vortex-lattice method is unveiled as a remarkable tool that can successfully incorporate all those effects in the unsteady aerodynamics modelling.

  13. Attitude dynamics and control of a spacecraft using shifting mass distribution

    Science.gov (United States)

    Ahn, Young Tae

    Spacecraft need specific attitude control methods that depend on the mission type or special tasks. The dynamics and the attitude control of a spacecraft with a shifting mass distribution within the system are examined. The behavior and use of conventional attitude control actuators are widely developed and performing at the present time. However, the advantage of a shifting mass distribution concept can complement spacecraft attitude control, save mass, and extend a satellite's life. This can be adopted in practice by moving mass from one tank to another, similar to what an airplane does to balance weight. Using this shifting mass distribution concept, in conjunction with other attitude control devices, can augment the three-axis attitude control process. Shifting mass involves changing the center-of-mass of the system, and/or changing the moments of inertia of the system, which then ultimately can change the attitude behavior of the system. This dissertation consists of two parts. First, the equations of motion for the shifting mass concept (also known as morphing) are developed. They are tested for their effects on attitude control by showing how shifting the mass changes the spacecraft's attitude behavior. Second, a method for optimal mass redistribution is shown using a combinatorial optimization theory under constraints. It closes with a simple example demonstrating an optimal reconfiguration. The procedure of optimal reconfiguration from one mass distribution to another to accomplish attitude control has been demonstrated for several simple examples. Mass shifting could work as an attitude controller for fine-tuning attitude behavior in small satellites. Various constraints can be applied for different situations, such as no mass shift between two tanks connected by a failed pipe or total amount of shifted mass per pipe being set for the time optimum solution. Euler angle changes influenced by the mass reconfiguration are accomplished while stability

  14. Structural dynamic model obtained from flight use with piloted simulation and handling qualities analysis

    Science.gov (United States)

    Powers, Bruce G.

    1996-01-01

    The ability to use flight data to determine an aircraft model with structural dynamic effects suitable for piloted simulation. and handling qualities analysis has been developed. This technique was demonstrated using SR-71 flight test data. For the SR-71 aircraft, the most significant structural response is the longitudinal first-bending mode. This mode was modeled as a second-order system, and the other higher order modes were modeled as a time delay. The distribution of the modal response at various fuselage locations was developed using a uniform beam solution, which can be calibrated using flight data. This approach was compared to the mode shape obtained from the ground vibration test, and the general form of the uniform beam solution was found to be a good representation of the mode shape in the areas of interest. To calibrate the solution, pitch-rate and normal-acceleration instrumentation is required for at least two locations. With the resulting structural model incorporated into the simulation, a good representation of the flight characteristics was provided for handling qualities analysis and piloted simulation.

  15. Computational Fluid Dynamics Analysis Success Stories of X-Plane Design to Flight Test

    Science.gov (United States)

    Cosentino, Gary B.

    2008-01-01

    Examples of the design and flight test of three true X-planes are described, particularly X-plane design techniques that relied heavily on computational fluid dynamics(CFD) analysis. Three examples are presented: the X-36 Tailless Fighter Agility Research Aircraft, the X-45A Unmanned Combat Air Vehicle, and the X-48B Blended Wing Body Demonstrator Aircraft. An overview is presented of the uses of CFD analysis, comparison and contrast with wind tunnel testing, and information derived from CFD analysis that directly related to successful flight test. Lessons learned on the proper and improper application of CFD analysis are presented. Highlights of the flight-test results of the three example X-planes are presented. This report discusses developing an aircraft shape from early concept and three-dimensional modeling through CFD analysis, wind tunnel testing, further refined CFD analysis, and, finally, flight. An overview of the areas in which CFD analysis does and does not perform well during this process is presented. How wind tunnel testing complements, calibrates, and verifies CFD analysis is discussed. Lessons learned revealing circumstances under which CFD analysis results can be misleading are given. Strengths and weaknesses of the various flow solvers, including panel methods, Euler, and Navier-Stokes techniques, are discussed.

  16. Flight Behaviors of a Complex Projectile Using a Coupled Computational Fluid Dynamics (CFD)-based Simulation Technique: Free Motion

    Science.gov (United States)

    2015-09-01

    Projectile Using a Coupled Computational Fluid Dynamics (CFD)-based Simulation Technique: Free Motion 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...38 vi Preface The paper “Flight Behaviors of a Complex Projectile using a Coupled CFD-based Simulation Technique: Free Motion ” was...involves coupling of CFD and rigid body dynamics (RBD) codes for the simulation of projectile free flight motion in a time-accurate manner. This

  17. The Effects of Using Dynamic Geometry on Eighth Grade Students' Achievement and Attitude towards Triangles

    Science.gov (United States)

    Turk, Halime Samur; Akyuz, Didem

    2016-01-01

    This study investigates the effects of dynamic geometry based computer instruction on eighth grade students' achievement in geometry and their attitudes toward geometry and technology compared to traditional instruction. Central to the study was a controlled experiment, which contained experimental and control groups both instructed by the same…

  18. Strategic flight assignment approach based on multi-objective parallel evolution algorithm with dynamic migration interval

    Directory of Open Access Journals (Sweden)

    Zhang Xuejun

    2015-04-01

    Full Text Available The continuous growth of air traffic has led to acute airspace congestion and severe delays, which threatens operation safety and cause enormous economic loss. Flight assignment is an economical and effective strategic plan to reduce the flight delay and airspace congestion by reasonably regulating the air traffic flow of China. However, it is a large-scale combinatorial optimization problem which is difficult to solve. In order to improve the quality of solutions, an effective multi-objective parallel evolution algorithm (MPEA framework with dynamic migration interval strategy is presented in this work. Firstly, multiple evolution populations are constructed to solve the problem simultaneously to enhance the optimization capability. Then a new strategy is proposed to dynamically change the migration interval among different evolution populations to improve the efficiency of the cooperation of populations. Finally, the cooperative co-evolution (CC algorithm combined with non-dominated sorting genetic algorithm II (NSGA-II is introduced for each population. Empirical studies using the real air traffic data of the Chinese air route network and daily flight plans show that our method outperforms the existing approaches, multi-objective genetic algorithm (MOGA, multi-objective evolutionary algorithm based on decomposition (MOEA/D, CC-based multi-objective algorithm (CCMA as well as other two MPEAs with different migration interval strategies.

  19. Comparison of Controller and Flight Deck Algorithm Performance During Interval Management with Dynamic Arrival Trees (STARS)

    Science.gov (United States)

    Battiste, Vernol; Lawton, George; Lachter, Joel; Brandt, Summer; Koteskey, Robert; Dao, Arik-Quang; Kraut, Josh; Ligda, Sarah; Johnson, Walter W.

    2012-01-01

    Managing the interval between arrival aircraft is a major part of the en route and TRACON controller s job. In an effort to reduce controller workload and low altitude vectoring, algorithms have been developed to allow pilots to take responsibility for, achieve and maintain proper spacing. Additionally, algorithms have been developed to create dynamic weather-free arrival routes in the presence of convective weather. In a recent study we examined an algorithm to handle dynamic re-routing in the presence of convective weather and two distinct spacing algorithms. The spacing algorithms originated from different core algorithms; both were enhanced with trajectory intent data for the study. These two algorithms were used simultaneously in a human-in-the-loop (HITL) simulation where pilots performed weather-impacted arrival operations into Louisville International Airport while also performing interval management (IM) on some trials. The controllers retained responsibility for separation and for managing the en route airspace and some trials managing IM. The goal was a stress test of dynamic arrival algorithms with ground and airborne spacing concepts. The flight deck spacing algorithms or controller managed spacing not only had to be robust to the dynamic nature of aircraft re-routing around weather but also had to be compatible with two alternative algorithms for achieving the spacing goal. Flight deck interval management spacing in this simulation provided a clear reduction in controller workload relative to when controllers were responsible for spacing the aircraft. At the same time, spacing was much less variable with the flight deck automated spacing. Even though the approaches taken by the two spacing algorithms to achieve the interval management goals were slightly different they seem to be simpatico in achieving the interval management goal of 130 sec by the TRACON boundary.

  20. Captive Flight Testing in a Wind Tunnel for Identification of Dynamic Characteristics of a Small-Sized UAV

    Science.gov (United States)

    Fukami, Koji; Higashino, Shin-Ichiro; Sakurai, Akira

    This paper presents the concept of dynamic wind tunnel testing using captive flight method, in which the airplane is supported by three elastic lines mainly in the vertical direction, and given oscillatory motions by an external actuator. This experimental method is designed for the aerodynamic parameter estimation. Longitudinal and lateral dynamic tests are carried out sweeping driving frequency, and every mode except surging motion, of which damping is weak, was excited. Aerodynamic parameters estimated from flight data showed good accordance with reference data. This experimental method has the advantages of the experimental simplicity, quite small aerodynamic interference, stable flight and the capability of the excitation of motion necessary for the estimation.

  1. A dynamic model for GPS based attitude determination and testing using a serial robotic manipulator

    Directory of Open Access Journals (Sweden)

    Almat Raskaliyev

    2017-07-01

    Full Text Available A computational algorithm is developed for estimating accurately the attitude of a robotic arm which moves along a predetermined path. This algorithm requires preliminary input data obtained in the static mode to yield phase observables for the precise, 3-axis attitude determination of a swinging manipulator in the dynamic mode. Measurements are recorded simultaneously by three GPS L1 receivers and then processed in several steps to accomplish this task. First, artkconv batch executable converts GPS receiver readings into RINEX format to generate GPS observables and ephemeris for multiple satellites. Then baseline vectors determination is carried out by baseline constrained Least-Squares Ambiguity Decorrelation (LAMBDA method that uses double difference carrier phase estimates as input to calculate integer solution for each baseline. Finally, attitude determination is made by employing alternatively Least-squares attitude determination (LSAD in the static mode and extended Kalman filter in the dynamic mode. The algorithm presented in this paper is applied to recorded data on Mitsubishi RV-M1 robotic arm in order to produce attitude estimates. These results are confirmed by another set of Euler angles independently evaluated from robotic arm postures obtained along the predefined trajectory.

  2. Preliminary performance of a vertical-attitude takeoff and landing, supersonic cruise aircraft concept having thrust vectoring integrated into the flight control system

    Science.gov (United States)

    Robins, A. W.; Beissner, F. L., Jr.; Domack, C. S.; Swanson, E. E.

    1985-01-01

    A performance study was made of a vertical attitude takeoff and landing (VATOL), supersonic cruise aircraft concept having thrust vectoring integrated into the flight control system. Those characteristics considered were aerodynamics, weight, balance, and performance. Preliminary results indicate that high levels of supersonic aerodynamic performance can be achieved. Further, with the assumption of an advanced (1985 technology readiness) low bypass ratio turbofan engine and advanced structures, excellent mission performance capability is indicated.

  3. Polyculturalism and Sexist Attitudes: Believing Cultures are Dynamic Relates to Lower Sexism.

    Science.gov (United States)

    Rosenthal, Lisa; Levy, Sheri R; Militano, Maria

    2014-12-01

    In cultural contexts in which sexist beliefs are considered traditional, shifts toward gender equality represent an example of cultural change. Polyculturalism is defined as the belief that cultures change constantly through different racial and ethnic groups' interactions, influences, and exchanges with each other and, therefore, are dynamic and socially constructed rather than static. Thus, polyculturalism may involve openness to cultural change and, thereby, would be expected to be associated with lower sexist attitudes. Four studies (both cross-sectional and longitudinal) with undergraduate and community samples in the Northeastern United States tested whether endorsement of polyculturalism is inversely associated with sexism, above and beyond potentially confounding belief systems. Across studies, for both women and men, endorsement of polyculturalism was associated with lower sexist attitudes for two classes of sexism measures: (a) attitudes toward the rights and roles of women and (b) ambivalent sexist attitudes toward women. Associations remained significant while controlling for potentially confounding variables (colorblindness, conservatism, egalitarianism, gender and ethnic identity, gender and race essentialism, multiculturalism, right-wing authoritarianism, and social dominance orientation). Greater openness to criticizing one's culture mediated polyculturalism's association with attitudes toward the rights and roles of women but not with ambivalent sexist attitudes toward women. Studying polyculturalism may provide unique insights into sexism, and more work is needed to understand the mechanisms involved.

  4. Polyculturalism and Sexist Attitudes: Believing Cultures are Dynamic Relates to Lower Sexism

    Science.gov (United States)

    Rosenthal, Lisa; Levy, Sheri R.; Militano, Maria

    2014-01-01

    In cultural contexts in which sexist beliefs are considered traditional, shifts toward gender equality represent an example of cultural change. Polyculturalism is defined as the belief that cultures change constantly through different racial and ethnic groups’ interactions, influences, and exchanges with each other and, therefore, are dynamic and socially constructed rather than static. Thus, polyculturalism may involve openness to cultural change and, thereby, would be expected to be associated with lower sexist attitudes. Four studies (both cross-sectional and longitudinal) with undergraduate and community samples in the Northeastern United States tested whether endorsement of polyculturalism is inversely associated with sexism, above and beyond potentially confounding belief systems. Across studies, for both women and men, endorsement of polyculturalism was associated with lower sexist attitudes for two classes of sexism measures: (a) attitudes toward the rights and roles of women and (b) ambivalent sexist attitudes toward women. Associations remained significant while controlling for potentially confounding variables (colorblindness, conservatism, egalitarianism, gender and ethnic identity, gender and race essentialism, multiculturalism, right-wing authoritarianism, and social dominance orientation). Greater openness to criticizing one’s culture mediated polyculturalism’s association with attitudes toward the rights and roles of women but not with ambivalent sexist attitudes toward women. Studying polyculturalism may provide unique insights into sexism, and more work is needed to understand the mechanisms involved. PMID:25530662

  5. The Coupled Orbit-Attitude Dynamics and Control of Electric Sail in Displaced Solar Orbits

    Directory of Open Access Journals (Sweden)

    Mingying Huo

    2017-01-01

    Full Text Available Displaced solar orbits for spacecraft propelled by electric sails are investigated. Since the propulsive thrust is induced by the sail attitude, the orbital and attitude dynamics of electric-sail-based spacecraft are coupled and required to be investigated together. However, the coupled dynamics and control of electric sails have not been discussed in most published literatures. In this paper, the equilibrium point of the coupled dynamical system in displaced orbit is obtained, and its stability is analyzed through a linearization. The results of stability analysis show that only some of the orbits are marginally stable. For unstable displaced orbits, linear quadratic regulator is employed to control the coupled attitude-orbit system. Numerical simulations show that the proposed strategy can control the coupled system and a small torque can stabilize both the attitude and orbit. In order to generate the control force and torque, the voltage distribution problem is studied in an optimal framework. The numerical results show that the control force and torque of electric sail can be realized by adjusting the voltage distribution of charged tethers.

  6. Investigation of the Effectiveness of Dynamic Seat in a Black Hawk Flight Simulation

    Science.gov (United States)

    Chung, William W. Y.; Bengford, Norm; Perry, Chuck; Nicholson, Bob; Wilkinson, Colin

    2001-01-01

    Low cost alternatives have been sought to provide motion cues in ground-based flight simulators to meet mission objectives. The ability to provide high frequency vibrations makes the dynamic seat attractive to helicopter training applications. Previous studies have found that dynamic seat does enhance the realism of the cockpit and affect pilots' workload. This investigation, conducted under the auspices of the Joint Shipboard Helicopter Integration Process (JSHIP), is using a three degree-of-freedom dynamic seat, i.e., heave, surge, and sway, with limited travels in a research simulator configured as a UH-60 Black Hawk at NASA Ames Research Center. The seat's effectiveness is studied using hover, landing, pirouette, bob-up/bob-down, sidestep, and acceleration/deceleration maneuvers. Seat commands consist of constant vibrations in heave and sway which provide the fundamental vibratory cues. Pilot station accelerations and collective controls provide onset and sustained commands. In addition, transient effects due to translational-lift, collective; and normal acceleration are produced by regulating the magnitude and frequency that depend on the rotor rpm. Results are compared to flight test data and two other ground-based motion systems configurations, i.e., a motion condition with very large motion travels and a motion condition that is comparable with commercial simulator travels. Both subjective and objective data will be analyzed to determine the significance of the motion cueing effect in each system for selected maneuvers.

  7. Homoclinic solutions and motion chaotization in attitude dynamics of a multi-spin spacecraft

    Science.gov (United States)

    Doroshin, Anton V.

    2014-07-01

    The attitude dynamics of the multi-spin spacecraft (MSSC) and the torque-free angular motion of the multi-rotor system are considered. Some types of homoclinic and general solutions are obtained in hyperbolic and elliptic functions. The local homoclinic chaos in the MSSC angular motion is investigated under the influence of polyharmonic perturbations. Some possible applications of the multi-rotor system are indicated, including gyrostat-satellites, dual-spin spacecraft, roll-walking robots, and also the inertialess method of the spacecraft attitude (angular) reorientation/control.

  8. Using MathWorks' Simulink® and Real-Time Workshop® Code Generator to Produce Attitude Control Test and Flight Code

    OpenAIRE

    Salada, Mark; Dellinger, Wayne

    1998-01-01

    This paper describes the use of a commercial product, MathWorks' RealTime Workshop® (RTW), to generate actual flight code for NASA's Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics (TIMED) mission. The Johns Hopkins University Applied Physics Laboratory is handling the design and construction of this satellite for NASA. As TIMED is scheduled to launch in May of the year 2000, software development for both ground and flight systems are well on their way. However, based on experien...

  9. Species-specific flight styles of flies are reflected in the response dynamics of a homologue motion sensitive neuron

    Directory of Open Access Journals (Sweden)

    Bart eGeurten

    2012-03-01

    Full Text Available Hoverflies and blowflies have distinctly different flight styles. Yet, both species have been shown to structure their flight behaviour in a way that facilitates extraction of 3D information from the image flow on the retina (optic flow. Neuronal candidates to analyse the optic flow are the tangential cells in the third optical ganglion – the lobula complex. These neurons are directionally selective and integrate the optic flow over large parts of the visual field. Homologue tangential cells in hoverflies and blowflies have a similar morphology. Because blowflies and hoverflies have similar neuronal layout but distinctly different flight behaviours, they are an ideal substrate to pinpoint potential neuronal adaptations to the different flight styles.In this article we describe the relationship between locomotion behaviour and motion vision on three different levels:1.We compare the different flight styles based on the categorisation of flight behaviour into prototypical movements.2.We measure the species specific dynamics of the optic flow under naturalistic flight conditions. We found the translational optic flow of both species to be very different.3.We describe possible adaptations of a homologue motion sensitive neuron. We stimulate this cell in blowflies (Calliphora and hoverflies (Eristalis with naturalistic optic flow generated by both species during free flight. The characterized hoverfly tangential cell responds faster to transient changes in the optic flow than its blowfly homologue. It is discussed whether and how the different dynamical response properties aid optic flow analysis.

  10. Design and Evaluation of a Dynamic Programming Flight Routing Algorithm Using the Convective Weather Avoidance Model

    Science.gov (United States)

    Ng, Hok K.; Grabbe, Shon; Mukherjee, Avijit

    2010-01-01

    The optimization of traffic flows in congested airspace with varying convective weather is a challenging problem. One approach is to generate shortest routes between origins and destinations while meeting airspace capacity constraint in the presence of uncertainties, such as weather and airspace demand. This study focuses on development of an optimal flight path search algorithm that optimizes national airspace system throughput and efficiency in the presence of uncertainties. The algorithm is based on dynamic programming and utilizes the predicted probability that an aircraft will deviate around convective weather. It is shown that the running time of the algorithm increases linearly with the total number of links between all stages. The optimal routes minimize a combination of fuel cost and expected cost of route deviation due to convective weather. They are considered as alternatives to the set of coded departure routes which are predefined by FAA to reroute pre-departure flights around weather or air traffic constraints. A formula, which calculates predicted probability of deviation from a given flight path, is also derived. The predicted probability of deviation is calculated for all path candidates. Routes with the best probability are selected as optimal. The predicted probability of deviation serves as a computable measure of reliability in pre-departure rerouting. The algorithm can also be extended to automatically adjust its design parameters to satisfy the desired level of reliability.

  11. Flight dynamics of some Lepidoptera species of sugar beet and possibilities their control (Transylvania-Romania

    Directory of Open Access Journals (Sweden)

    Muresanu Felicia

    2006-01-01

    Full Text Available In this paper, the authors present the obtained results regarding the flight dynamics of some Lepidoptera species in sugar beet crops in Transylvania (the central part of Romania. In order to limit the appearance of mentioned pests to the economic threshold, Trichogramma spp. were obtained in laboratory conditions at ARDS Turda and SBRDS Brasov. The experiments were conducted in production areas on 0,5 ha minimum for each variant. The variants included four Trichogramma species: T. dendrolimi, T. evanescens, T. maidis, T. buesi that were manually released three times: the first release, 10.000 individuals/ha, the second, 120.000 individuals/ha and the third, 150.000 individuals/ha. The first release was performed at the beginning of the Lepidoptera flight, the second at the maximum flight and the third 5 days after the second. The efficiency of T. maidis was between 75-90%, of T. evanescens, it was between 73-88%, of T. dendrolimi, it was between 85-92% and of T. buesi 79-82%. Among the Trichogramma species utilized, T. dendrolimi and T. evanescens were very efficient in the reduction of mentioned pests. Root production was significantly higher compared to the untreated variant, 4,0-4,7 t/ha more were recorded after the application of biological treatments with T. evanescens and T. dendrolimi.

  12. A Numerical Approach to Determine Attitude Dynamics of Floating Bodies with Irregular Configurations

    Directory of Open Access Journals (Sweden)

    Jiann-Lin Chen

    2014-07-01

    Full Text Available This study acquires the attitude dynamics of floating bodies with irregular configurations using an effective computational model, which has been validated theoretically and verified by experiments. By comparison a correlation formula was described to predict inclinations for the floating slender body imitating an excise torpedo. Thereafter a computational model was developed to account for bodies with attitudes in more general situations. For demonstration, a submersible was simulated to reveal that the inclinations vary abruptly around certain longitudinal locations of center of gravity. The property variations during water ingress assumption were presented. Similar to the virtue tank, an innovative concept of building the numerical data base for a specific floating body has been proposed, by which the position of its center of gravity can be obtained by interpolation from attitude data in tables as determined by the present computational model.

  13. Attitude Dynamics of a Spinning Rocket with Internal Fluid Whirling Motion

    Directory of Open Access Journals (Sweden)

    Marius Ionut MARMUREANU

    2014-06-01

    Full Text Available This paper evaluates the impact that helical motion of fluid products of combustion within the combustion chamber of a rocket can have on the attitude dynamics of rocket systems. By developing the study presented by Sookgaew (2004, we determined the configuration of the Coriolis moment components, which catch the impact of the combustion product’s whirling motion, for the radial and centripetal propellant burn pattern specific to S-5M and S-5K solid rocket motors. We continue the investigation of the effects of internal whirling motion of fluid products of combustion on the attitude behavior of variable mass systems of the rocket type by examining the spin motion and transverse attitude motion of such systems. The results obtained show that internal fluid whirling motion can cause appreciable deviations in spin rate predictions, and also affects the frequencies of the transverse angular velocity components.

  14. Overview of Fluid Dynamics Activities at the Marshall Space Flight Center

    Science.gov (United States)

    Garcia, Roberto; Griffin, Lisa W.; Wang, Ten-See

    1999-01-01

    Since its inception 40 years ago, Marshall Space Flight Center (MSFC) has had the need to maintain and advance state-of-the-art flow analysis and cold-flow testing capability to support its roles and missions. This overview discusses the recent organizational changes that have occurred at MSFC with emphasis on the resulting three groups that form the core of fluid dynamics expertise at MSFC: the Fluid Physics and Dynamics Group, the Applied Fluid Dynamics Analysis Group, and the Experimental Fluid Dynamics Group. Recently completed activities discussed include the analysis and flow testing in support of the Fastrac engine design, the X-33 vehicle design, and the X34 propulsion system design. Ongoing activities include support of the RLV vehicle design, Liquid Fly Back Booster aerodynamic configuration definition, and RLV focused technologies development. Other ongoing activities discussed are efforts sponsored by the Center Director's Discretionary Fund (CDDF) to develop an advanced incompressible flow code and to develop optimization techniques. Recently initiated programs and their anticipated required fluid dynamics support are discussed. Based on recent experiences and on the anticipated program needs, required analytical and experimental technique improvements are presented. Due to anticipated budgetary constraints, there is a strong need to leverage activities and to pursue teaming arrangements in order to advance the state-of-the-art and to adequately support concept development. Throughout this overview there is discussion of the lessons learned and of the capabilities demonstrated and established in support of the hardware development programs.

  15. Calculated hovering helicopter flight dynamics with a circulation-controlled rotor

    Science.gov (United States)

    Johnson, W.; Chopra, I.

    1979-01-01

    The flight dynamics of a hovering helicopter with a circulation-controlled rotor are analyzed. The influence of the rotor blowing coefficient on the calculated eigenvalues of the helicopter motion is examined for a range of values of the rotor lift and the blade flap frequency. The control characteristics of a helicopter with a circulation-controlled rotor are discussed. The principal effect of the blowing is a reduction in the rotor speed stability derivative. Above a critical level of blowing coefficient, which depends on the flap frequency and rotor lift, negative speed stability is produced and the dynamic characteristics of the helicopter are radically altered. The handling qualities of a helicopter with negative speed stability are probably unacceptable without a stability augmentation system.

  16. Flight validated high-order models of UAV helicopter dynamics in hover and forward flight using analytical and parameter identification techniques

    Science.gov (United States)

    Bhandari, Subodh

    There has been a significant growth in the use of UAV helicopters for a multitude of military and civilian applications over the last few years. Due to these numerous applications, from crop dusting to remote sensing, UAV helicopters are now a major topic of interest within the aerospace community. The main research focus is on the development of automatic flight control systems (AFCS). The design of AFCS for these vehicles requires a mathematical model representing the dynamics of the vehicle. The mathematical model is developed either from first-principles, using the equations of motion of the vehicle, or from the flight data, using parameter identification techniques. The traditional six-degrees-of-freedom (6-DoF) dynamics model is not suitable for high-bandwidth control system design. Such models are valid only within the low- to mid-frequency range. The agility and high maneuverability of small-scale helicopters require a high-bandwidth control system for full authority autonomous performance. The design of a high-bandwidth control system in turn requires a high-fidelity simulation model that is able to capture the key dynamics of the helicopter. These dynamics include the rotor dynamics. This dissertation presents the development of a 14-degrees-of-freedom (14-DoF) state-space linear model for the KU Thunder Tiger Raptor 50 UAV helicopter from first-principles and from flight test data using a parameter identification technique for the hovering and forward flight conditions. The model includes rigid body, rotor regressive, rotor inflow, stabilizer bar, and rotor coning dynamics. The model is implemented within The MathWork's MATLAB/Simulink environment. The simulation results show that the high-order model is able to predict the helicopter's dynamics up to the frequency of 30 rad/sec. The main contributions of this dissertation are the development of a high-order simulation model for a small UAV helicopter from first-principles and the identification of a

  17. Rhythm is it: Effects of Dynamic Body Feedback on Affect, Attitudes and Cognition

    Directory of Open Access Journals (Sweden)

    Sabine C Koch

    2014-06-01

    Full Text Available This paper investigates effects of dynamic body feedback on affect, attitudes, and cognition, focusing on the impact of movement rhythms with smooth vs. sharp reversals as one basic category of movement qualities. It investigates how those qualities relate to already explored effects of approach vs. avoidance motor behavior as one basic category of movement shaping. Studies 1 and 2 tested the effects of one of two basic movement qualities (smooth vs. sharp rhythms on affect and cognition. The third study tested those movement qualities in combination with movement shaping (approach vs. avoidance motor behavior and the effects of those combinations on attitudes toward initially valence-free stimuli and affect. Results suggest that movement rhythms influence affect (studies 1 and 2, and attitudes (study 3, and moderate the impact of approach and avoidance motor behavior on attitudes (study 3. Extending static body feedback research with a dynamic account, findings indicate that movement rhythms can moderate and go beyond effects of approach and avoidance motor behavior.

  18. Dynamical modeling of collective behavior from pigeon flight data: flock cohesion and dispersion.

    Science.gov (United States)

    Dieck Kattas, Graciano; Xu, Xiao-Ke; Small, Michael

    2012-01-01

    Several models of flocking have been promoted based on simulations with qualitatively naturalistic behavior. In this paper we provide the first direct application of computational modeling methods to infer flocking behavior from experimental field data. We show that this approach is able to infer general rules for interaction, or lack of interaction, among members of a flock or, more generally, any community. Using experimental field measurements of homing pigeons in flight we demonstrate the existence of a basic distance dependent attraction/repulsion relationship and show that this rule is sufficient to explain collective behavior observed in nature. Positional data of individuals over time are used as input data to a computational algorithm capable of building complex nonlinear functions that can represent the system behavior. Topological nearest neighbor interactions are considered to characterize the components within this model. The efficacy of this method is demonstrated with simulated noisy data generated from the classical (two dimensional) Vicsek model. When applied to experimental data from homing pigeon flights we show that the more complex three dimensional models are capable of simulating trajectories, as well as exhibiting realistic collective dynamics. The simulations of the reconstructed models are used to extract properties of the collective behavior in pigeons, and how it is affected by changing the initial conditions of the system. Our results demonstrate that this approach may be applied to construct models capable of simulating trajectories and collective dynamics using experimental field measurements of herd movement. From these models, the behavior of the individual agents (animals) may be inferred.

  19. Impact of aeroelasticity on propulsion and longitudinal flight dynamics of an air-breathing hypersonic vehicle

    Science.gov (United States)

    Raney, David L.; Mcminn, John D.; Pototzky, Anthony S.; Wooley, Christine L.

    1993-01-01

    Many air-breathing hypersonic aerospacecraft design concepts incorporate an elongated fuselage forebody acting as the aerodynamic compression surface for a hypersonic combustion module, or scram jet. This highly integrated design approach creates the potential for an unprecedented form of aero-propulsive-elastic interaction in which deflections of the vehicle fuselage give rise to propulsion transients, producing force and moment variations that may adversely impact the rigid body flight dynamics and/or further excite the fuselage bending modes. To investigate the potential for such interactions, a math model was developed which included the longitudinal flight dynamics, propulsion system, and first seven elastic modes of a hypersonic air-breathing vehicle. Perturbation time histories from a simulation incorporating this math model are presented that quantify the propulsive force and moment variations resulting from aeroelastic vehicle deflections. Root locus plots are presented to illustrate the effect of feeding the propulsive perturbations back into the aeroelastic model. A concluding section summarizes the implications of the observed effects for highly integrated hypersonic air-breathing vehicle concepts.

  20. Optical Feather and Foil for Shape and Dynamic Load Sensing of Critical Flight Surfaces Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Future flight vehicles may comprise complex flight surfaces requiring coordinated in-situ sensing and actuation. Inspired by the complexity of the flight surfaces on...

  1. Performance quantification of heliogyro solar sails using structural, attitude, and orbital dynamics and control analysis

    Science.gov (United States)

    Guerrant, Daniel Vernon

    Solar sails enable or enhance exploration of a variety of destinations both within and without the solar system. The heliogyro solar sail architecture divides the sail into blades spun about a central hub and centrifugally stiffened. The resulting structural mass savings can often double acceleration verses kite-type square sails of the same mass. Pitching the blades collectively and cyclically, similar to a helicopter, creates attitude control moments and vectors thrust. The principal hurdle preventing heliogyros' implementation is the uncertainty in their dynamics. This thesis investigates attitude, orbital and structural control using a combination of analytical studies and simulations. Furthermore, it quantifies the heliogyro's ability to create attitude control moments, change the thrust direction, and stably actuate blade pitch. This provides engineers a toolbox from which to estimate the heliogyro's performance and perform trades during preliminary mission design. It is shown that heliogyros can create an attitude control moment in any direction from any orientation. While their large angular momentum limits attitude slewing to only a few degrees per hour, cyclic blade pitching can slew the thrust vector within a few minutes. This approach is only 13% less efficient than slewing a square sail during Earth escape, so it does not offset the overall acceleration benefits of heliogyros. Lastly, a root pitch motor should be able to settle torsional disturbances within a few rotations and achieve thrust performance comparable to that of flat blades. This work found no significant dynamic hurdles for heliogyros, and it provides key insight into their practical capabilities and limitations for future mission designers.

  2. Dynamics of energy substrates in the haemolymph of Locusta migratoria during flight

    NARCIS (Netherlands)

    Horst, D.J. van der; Houben, N.M.D.; Beenakkers, A.M.Th.

    1980-01-01

    In the two-fuel system for flight of the migratory locust, the haemolymph carbohydrate concentration falls during flight periods of up to 1 hr, the decrease being greater in case the pre-flight carbohydrate level is higher. The increase in the lipid concentration from the onset of flight is

  3. Coupled Attitude and Orbit Dynamics and Control in Formation Flying Systems

    Science.gov (United States)

    Xu, Yun-Jun; Fitz-Coy, Norman; Mason, Paul

    2003-01-01

    Formation flying systems can range from global constellations offering extended service coverage to clusters of highly coordinated vehicles that perform distributed sensing. Recently, the use of groups of micro-satellites in the areas of near Earth explorations, deep space explorations, and military applications has received considerable attention by researchers and practitioners. To date, most proposed control strategies are based on linear models (e.g., Hill-Clohessy-Wiltshire equations) or nonlinear models that are restricted to circular reference orbits. Also, all models in the literature are uncoupled between relative position and relative attitude. In this paper, a generalized dynamic model is proposed. The reference orbit is not restricted to the circular case. In this formulation, the leader or follower satellite can be in either a circular or an elliptic orbit. In addition to maintaining a specified relative position, the satellites are also required to maintain specified relative attitudes. Thus the model presented couples vehicle attitude and orbit requirements. Orbit perturbations are also included. In particular, the J(sub 2) effects are accounted in the model. Finally, a sliding mode controller is developed and used to control the relative attitude of the formation and the simulation results are presented.

  4. Methodology to Support Dynamic Function Allocation Policies Between Humans and Flight Deck Automation

    Science.gov (United States)

    Johnson, Eric N.

    2012-01-01

    Function allocation assigns work functions to all agents in a team, both human and automation. Efforts to guide function allocation systematically have been studied in many fields such as engineering, human factors, team and organization design, management science, cognitive systems engineering. Each field focuses on certain aspects of function allocation, but not all; thus, an independent discussion of each does not address all necessary aspects of function allocation. Four distinctive perspectives have emerged from this comprehensive review of literature on those fields: the technology-centered, human-centered, team-oriented, and work-oriented perspectives. Each perspective focuses on different aspects of function allocation: capabilities and characteristics of agents (automation or human), structure and strategy of a team, and work structure and environment. This report offers eight issues with function allocation that can be used to assess the extent to which each of issues exist on a given function allocation. A modeling framework using formal models and simulation was developed to model work as described by the environment, agents, their inherent dynamics, and relationships among them. Finally, to validate the framework and metrics, a case study modeled four different function allocations between a pilot and flight deck automation during the arrival and approach phases of flight.

  5. Multidisciplinary Investigation of Unsteady Aerodynamics and Flight Dynamics in Rapidly Maneuvering Micro Air Vehicles: Theory, Laboratory and Flight Experiments

    Science.gov (United States)

    2013-11-13

    2.22]. These experiments were simulated by the IMDV as well. Numerical time histories for drag and lift coefficients [2.20] were found to be in a...effective operation in cluttered environments and even indoors . Stealthy “low-and-slow” flight capability makes ornithopters ideal for discreet...flying, walking, crawling, swimming, hopping, jumping, climbing , etc.) and may fold-up or wrap-up their wings when not in use, like birds and bats

  6. Flight dynamics of a pterosaur-inspired aircraft utilizing a variable-placement vertical tail.

    Science.gov (United States)

    Roberts, Brian; Lind, Rick; Chatterjee, Sankar

    2011-06-01

    Mission performance for small aircraft is often dependent on the turn radius. Various biologically inspired concepts have demonstrated that performance can be improved by morphing the wings in a manner similar to birds and bats; however, the morphing of the vertical tail has received less attention since neither birds nor bats have an appreciable vertical tail. This paper investigates a design that incorporates the morphing of the vertical tail based on the cranial crest of a pterosaur. The aerodynamics demonstrate a reduction in the turn radius of 14% when placing the tail over the nose in comparison to a traditional aft-placed vertical tail. The flight dynamics associated with this configuration has unique characteristics such as a Dutch-roll mode with excessive roll motion and a skid divergence that replaces the roll convergence.

  7. Flight dynamics of a pterosaur-inspired aircraft utilizing a variable-placement vertical tail

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Brian; Lind, Rick [Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611 (United States); Chatterjee, Sankar, E-mail: ricklind@ufl.edu [Department of Geology and Paleontology Museum, Texas Tech University, Lubbock, TX 79409 (United States)

    2011-06-15

    Mission performance for small aircraft is often dependent on the turn radius. Various biologically inspired concepts have demonstrated that performance can be improved by morphing the wings in a manner similar to birds and bats; however, the morphing of the vertical tail has received less attention since neither birds nor bats have an appreciable vertical tail. This paper investigates a design that incorporates the morphing of the vertical tail based on the cranial crest of a pterosaur. The aerodynamics demonstrate a reduction in the turn radius of 14% when placing the tail over the nose in comparison to a traditional aft-placed vertical tail. The flight dynamics associated with this configuration has unique characteristics such as a Dutch-roll mode with excessive roll motion and a skid divergence that replaces the roll convergence.

  8. A Flight Dynamics Model for a Multi-Actuated Flexible Rocket Vehicle

    Science.gov (United States)

    Orr, Jeb S.

    2011-01-01

    A comprehensive set of motion equations for a multi-actuated flight vehicle is presented. The dynamics are derived from a vector approach that generalizes the classical linear perturbation equations for flexible launch vehicles into a coupled three-dimensional model. The effects of nozzle and aerosurface inertial coupling, sloshing propellant, and elasticity are incorporated without restrictions on the position, orientation, or number of model elements. The present formulation is well suited to matrix implementation for large-scale linear stability and sensitivity analysis and is also shown to be extensible to nonlinear time-domain simulation through the application of a special form of Lagrange s equations in quasi-coordinates. The model is validated through frequency-domain response comparison with a high-fidelity planar implementation.

  9. Encrypted Three-dimensional Dynamic Imaging using Snapshot Time-of-flight Compressed Ultrafast Photography.

    Science.gov (United States)

    Liang, Jinyang; Gao, Liang; Hai, Pengfei; Li, Chiye; Wang, Lihong V

    2015-10-27

    Compressed ultrafast photography (CUP), a computational imaging technique, is synchronized with short-pulsed laser illumination to enable dynamic three-dimensional (3D) imaging. By leveraging the time-of-flight (ToF) information of pulsed light backscattered by the object, ToF-CUP can reconstruct a volumetric image from a single camera snapshot. In addition, the approach unites the encryption of depth data with the compressed acquisition of 3D data in a single snapshot measurement, thereby allowing efficient and secure data storage and transmission. We demonstrated high-speed 3D videography of moving objects at up to 75 volumes per second. The ToF-CUP camera was applied to track the 3D position of a live comet goldfish. We have also imaged a moving object obscured by a scattering medium.

  10. Dynamical modeling of collective behavior from pigeon flight data: flock cohesion and dispersion.

    Directory of Open Access Journals (Sweden)

    Graciano Dieck Kattas

    Full Text Available Several models of flocking have been promoted based on simulations with qualitatively naturalistic behavior. In this paper we provide the first direct application of computational modeling methods to infer flocking behavior from experimental field data. We show that this approach is able to infer general rules for interaction, or lack of interaction, among members of a flock or, more generally, any community. Using experimental field measurements of homing pigeons in flight we demonstrate the existence of a basic distance dependent attraction/repulsion relationship and show that this rule is sufficient to explain collective behavior observed in nature. Positional data of individuals over time are used as input data to a computational algorithm capable of building complex nonlinear functions that can represent the system behavior. Topological nearest neighbor interactions are considered to characterize the components within this model. The efficacy of this method is demonstrated with simulated noisy data generated from the classical (two dimensional Vicsek model. When applied to experimental data from homing pigeon flights we show that the more complex three dimensional models are capable of simulating trajectories, as well as exhibiting realistic collective dynamics. The simulations of the reconstructed models are used to extract properties of the collective behavior in pigeons, and how it is affected by changing the initial conditions of the system. Our results demonstrate that this approach may be applied to construct models capable of simulating trajectories and collective dynamics using experimental field measurements of herd movement. From these models, the behavior of the individual agents (animals may be inferred.

  11. The Direction of Fluid Dynamics for Liquid Propulsion at NASA Marshall Space Flight Center

    Science.gov (United States)

    Griffin, Lisa W.

    2012-01-01

    Marshall Space Flight Center (MSFC) is the National Aeronautics and Space Administration (NASA)-designated center for the development of space launch systems. MSFC is particularly known for propulsion system development. Many engineering skills and technical disciplines are needed to accomplish this mission. This presentation will focus on the work of the Fluid Dynamics Branch (ER42). ER42 resides in the Propulsion Systems Department at MSFC. The branch is responsible for all aspects of the discipline of fluid dynamics applied to propulsion or propulsion-induced loads and environments. This work begins with design trades and parametric studies, and continues through development, risk assessment, anomaly investigation and resolution, and failure investigations. Applications include the propellant delivery system including the main propulsion system (MPS) and turbomachinery; combustion devices for liquid engines and solid rocket motors; coupled systems; and launch environments. An advantage of the branch is that it is neither analysis nor test centric, but discipline centric. Fluid dynamics assessments are made by analysis, from lumped parameter modeling through unsteady computational fluid dynamics (CFD); testing, which can be cold flow or hot fire; or a combination of analysis and testing. Integration of all discipline methods into one branch enables efficient and accurate support to the projects. To accomplish this work, the branch currently employs approximately fifty engineers divided into four teams -- Propellant Delivery CFD, Combustion Driven Flows CFD, Unsteady and Experimental Flows, and Acoustics and Stability. This discussion will highlight some of the work performed in the branch and the direction in which the branch is headed.

  12. Hovering and forward flight of the hawkmoth Manduca sexta: trim search and 6-DOF dynamic stability characterization.

    Science.gov (United States)

    Kim, Joong-Kwan; Han, Jong-Seob; Lee, Jun-Seong; Han, Jae-Hung

    2015-09-28

    We show that the forward flight speed affects the stability characteristics of the longitudinal and lateral dynamics of a flying hawkmoth; dynamic modal structures of both the planes of motion are altered due to variations in the stability derivatives. The forward flight speed u e is changed from 0.00 to 1.00 m s(-1) with an increment of 0.25 m s(-1). (The equivalent advance ratio is 0.00 to 0.38; the advance ratio is the ratio of the forward flight speed to the average wing tip speed.) As the flight speed increases, for the longitudinal dynamics, an unstable oscillatory mode becomes more unstable. Also, we show that the up/down (w(b)) dynamics become more significant at a faster flight speed due to the prominent increase in the stability derivative Z(u) (up/down force due to the forward/backward velocity). For the lateral dynamics, the decrease in the stability derivative L(v) (roll moment due to side slip velocity) at a faster flight speed affects a slightly damped stable oscillatory mode, causing it to become more stable; however, the t(half) (the time taken to reach half the amplitude) of this slightly damped stable oscillatory mode remains relatively long (∼12T at u(e) = 1 m s(-1); T is wingbeat period) compared to the other modes of motion, meaning that this mode represents the most vulnerable dynamics among the lateral dynamics at all flight speeds. To obtain the stability derivatives, trim conditions for linearization are numerically searched to find the exact trim trajectory and wing kinematics using an algorithm that uses the gradient information of a control effectiveness matrix and fully coupled six-degrees of freedom nonlinear multibody equations of motion. With this algorithm, trim conditions that consider the coupling between the dynamics and aerodynamics can be obtained. The body and wing morphology, and the wing kinematics used in this study are based on actual measurement data from the relevant literature. The aerodynamic model of the flapping

  13. Fault Detection and Correction for the Solar Dynamics Observatory Attitude Control System

    Science.gov (United States)

    Starin, Scott R.; Vess, Melissa F.; Kenney, Thomas M.; Maldonado, Manuel D.; Morgenstern, Wendy M.

    2007-01-01

    The Solar Dynamics Observatory is an Explorer-class mission that will launch in early 2009. The spacecraft will operate in a geosynchronous orbit, sending data 24 hours a day to a devoted ground station in White Sands, New Mexico. It will carry a suite of instruments designed to observe the Sun in multiple wavelengths at unprecedented resolution. The Atmospheric Imaging Assembly includes four telescopes with focal plane CCDs that can image the full solar disk in four different visible wavelengths. The Extreme-ultraviolet Variability Experiment will collect time-correlated data on the activity of the Sun's corona. The Helioseismic and Magnetic Imager will enable study of pressure waves moving through the body of the Sun. The attitude control system on Solar Dynamics Observatory is responsible for four main phases of activity. The physical safety of the spacecraft after separation must be guaranteed. Fine attitude determination and control must be sufficient for instrument calibration maneuvers. The mission science mode requires 2-arcsecond control according to error signals provided by guide telescopes on the Atmospheric Imaging Assembly, one of the three instruments to be carried. Lastly, accurate execution of linear and angular momentum changes to the spacecraft must be provided for momentum management and orbit maintenance. In thsp aper, single-fault tolerant fault detection and correction of the Solar Dynamics Observatory attitude control system is described. The attitude control hardware suite for the mission is catalogued, with special attention to redundancy at the hardware level. Four reaction wheels are used where any three are satisfactory. Four pairs of redundant thrusters are employed for orbit change maneuvers and momentum management. Three two-axis gyroscopes provide full redundancy for rate sensing. A digital Sun sensor and two autonomous star trackers provide two-out-of-three redundancy for fine attitude determination. The use of software to maximize

  14. Fractional dynamics on networks: Emergence of anomalous diffusion and Lévy flights

    Science.gov (United States)

    Riascos, A. P.; Mateos, José L.

    2014-09-01

    We introduce a formalism of fractional diffusion on networks based on a fractional Laplacian matrix that can be constructed directly from the eigenvalues and eigenvectors of the Laplacian matrix. This fractional approach allows random walks with long-range dynamics providing a general framework for anomalous diffusion and navigation, and inducing dynamically the small-world property on any network. We obtained exact results for the stationary probability distribution, the average fractional return probability, and a global time, showing that the efficiency to navigate the network is greater if we use a fractional random walk in comparison to a normal random walk. For the case of a ring, we obtain exact analytical results showing that the fractional transition and return probabilities follow a long-range power-law decay, leading to the emergence of Lévy flights on networks. Our general fractional diffusion formalism applies to regular, random, and complex networks and can be implemented from the spectral properties of the Laplacian matrix, providing an important tool to analyze anomalous diffusion on networks.

  15. Fractional dynamics on networks: emergence of anomalous diffusion and Lévy flights.

    Science.gov (United States)

    Riascos, A P; Mateos, José L

    2014-09-01

    We introduce a formalism of fractional diffusion on networks based on a fractional Laplacian matrix that can be constructed directly from the eigenvalues and eigenvectors of the Laplacian matrix. This fractional approach allows random walks with long-range dynamics providing a general framework for anomalous diffusion and navigation, and inducing dynamically the small-world property on any network. We obtained exact results for the stationary probability distribution, the average fractional return probability, and a global time, showing that the efficiency to navigate the network is greater if we use a fractional random walk in comparison to a normal random walk. For the case of a ring, we obtain exact analytical results showing that the fractional transition and return probabilities follow a long-range power-law decay, leading to the emergence of Lévy flights on networks. Our general fractional diffusion formalism applies to regular, random, and complex networks and can be implemented from the spectral properties of the Laplacian matrix, providing an important tool to analyze anomalous diffusion on networks.

  16. An Adaptive Dynamic Surface Controller for Ultralow Altitude Airdrop Flight Path Angle with Actuator Input Nonlinearity

    Directory of Open Access Journals (Sweden)

    Mao-long Lv

    2016-01-01

    Full Text Available In the process of ultralow altitude airdrop, many factors such as actuator input dead-zone, backlash, uncertain external atmospheric disturbance, and model unknown nonlinearity affect the precision of trajectory tracking. In response, a robust adaptive neural network dynamic surface controller is developed. As a result, the aircraft longitudinal dynamics with actuator input nonlinearity is derived; the unknown nonlinear model functions are approximated by means of the RBF neural network. Also, an adaption strategy is used to achieve robustness against model uncertainties. Finally, it has been proved that all the signals in the closed-loop system are bounded and the tracking error converges to a small residual set asymptotically. Simulation results demonstrate the perfect tracking performance and strong robustness of the proposed method, which is not only applicable to the actuator with input dead-zone but also suitable for the backlash nonlinearity. At the same time, it can effectively overcome the effects of dead-zone and the atmospheric disturbance on the system and ensure the fast track of the desired flight path angle instruction, which overthrows the assumption that system functions must be known.

  17. High-Fidelity Multi-Rotor Unmanned Aircraft System Simulation Development for Trajectory Prediction Under Off-Nominal Flight Dynamics

    Science.gov (United States)

    Foster, John V.; Hartman, David C.

    2017-01-01

    The NASA Unmanned Aircraft System (UAS) Traffic Management (UTM) project is conducting research to enable civilian low-altitude airspace and UAS operations. A goal of this project is to develop probabilistic methods to quantify risk during failures and off nominal flight conditions. An important part of this effort is the reliable prediction of feasible trajectories during off-nominal events such as control failure, atmospheric upsets, or navigation anomalies that can cause large deviations from the intended flight path or extreme vehicle upsets beyond the normal flight envelope. Few examples of high-fidelity modeling and prediction of off-nominal behavior for small UAS (sUAS) vehicles exist, and modeling requirements for accurately predicting flight dynamics for out-of-envelope or failure conditions are essentially undefined. In addition, the broad range of sUAS aircraft configurations already being fielded presents a significant modeling challenge, as these vehicles are often very different from one another and are likely to possess dramatically different flight dynamics and resultant trajectories and may require different modeling approaches to capture off-nominal behavior. NASA has undertaken an extensive research effort to define sUAS flight dynamics modeling requirements and develop preliminary high fidelity six degree-of-freedom (6-DOF) simulations capable of more closely predicting off-nominal flight dynamics and trajectories. This research has included a literature review of existing sUAS modeling and simulation work as well as development of experimental testing methods to measure and model key components of propulsion, airframe and control characteristics. The ultimate objective of these efforts is to develop tools to support UTM risk analyses and for the real-time prediction of off-nominal trajectories for use in the UTM Risk Assessment Framework (URAF). This paper focuses on modeling and simulation efforts for a generic quad-rotor configuration typical

  18. Aperiodic dynamics in a deterministic adaptive network model of attitude formation in social groups

    Science.gov (United States)

    Ward, Jonathan A.; Grindrod, Peter

    2014-07-01

    Adaptive network models, in which node states and network topology coevolve, arise naturally in models of social dynamics that incorporate homophily and social influence. Homophily relates the similarity between pairs of nodes' states to their network coupling strength, whilst social influence causes coupled nodes' states to convergence. In this paper we propose a deterministic adaptive network model of attitude formation in social groups that includes these effects, and in which the attitudinal dynamics are represented by an activato-inhibitor process. We illustrate that consensus, corresponding to all nodes adopting the same attitudinal state and being fully connected, may destabilise via Turing instability, giving rise to aperiodic dynamics with sensitive dependence on initial conditions. These aperiodic dynamics correspond to the formation and dissolution of sub-groups that adopt contrasting attitudes. We discuss our findings in the context of cultural polarisation phenomena. Social influence. This reflects the fact that people tend to modify their behaviour and attitudes in response to the opinions of others [22-26]. We model social influence via diffusion: agents adjust their state according to a weighted sum (dictated by the evolving network) of the differences between their state and the states of their neighbours. Homophily. This relates the similarity of individuals' states to their frequency and strength of interaction [27]. Thus in our model, homophily drives the evolution of the weighted ‘social' network. A precise formulation of our model is given in Section 2. Social influence and homophily underpin models of social dynamics [21], which cover a wide range of sociological phenomena, including the diffusion of innovations [28-32], complex contagions [33-36], collective action [37-39], opinion dynamics [19,20,40,10,11,13,15,41,16], the emergence of social norms [42-44], group stability [45], social differentiation [46] and, of particular relevance

  19. Population dynamics and flight phenology model of codling moth differ between commercial and abandoned apple orchard ecosystems

    Directory of Open Access Journals (Sweden)

    Neelendra K Joshi

    2016-09-01

    Full Text Available Apple orchard management practices may affect development and phenology of arthropod pests, such as the codling moth (CM, Cydia pomonella (L. (Lepidoptera: Tortricidae, which is a serious internal fruit-feeding pest of apples worldwide. Estimating population dynamics and accurately predicting the timing of CM development and phenology events (for instance, adult flight and egg-hatch allows growers to understand and control local populations of CM. Studies were conducted to compare the CM flight phenology in commercial and abandoned apple orchard ecosystems using a logistic function model based on degree-days accumulation. The flight models for these orchards were derived from the cumulative percent moth capture using two types of commercially available CM lure baited traps. Models from both types of orchards were also compared to another model known as PETE (prediction extension timing estimator that was developed in 1970s to predict life cycle events for many fruit pests including CM across different fruit growing regions of the United States. We found that the flight phenology of CM was significantly different in commercial and abandoned orchards. CM male flight patterns for first and second generations as predicted by the constrained and unconstrained PCM (Pennsylvania Codling Moth models in commercial and abandoned orchards were different than the flight patterns predicted by the currently used CM model (i.e.,1970’s model. In commercial orchards, during the first and second generations, the PCM unconstrained model predicted delays in moth emergence compared to current model. In addition, the flight patterns of females were different between commercial and abandoned orchards. Such differences in CM flight phenology between commercial and abandoned orchard ecosystems suggest potential impact of orchard environment and crop management practices on CM biology.

  20. Understanding attitudes toward adolescent vaccination and the decision-making dynamic among adolescents, parents and providers.

    Science.gov (United States)

    Gowda, Charitha; Schaffer, Sarah E; Dombkowski, Kevin J; Dempsey, Amanda F

    2012-07-07

    With several new vaccine recommendations specifically targeting adolescents, improving adolescent vaccination rates has become a major health priority. Vaccination attitudes are an important, modifiable target for new interventions. Prior research has examined primarily the attitudes and beliefs of adolescents, parents or healthcare providers separately without exploring the decision-making dynamic among these stakeholders. We sought to identify potentially modifiable barriers in the vaccine decision process among adolescents, parents and healthcare providers that could be addressed through interventions implemented within the adolescent's medical home. We conducted a qualitative study of adolescents, their parents and healthcare providers, recruited from four primary care practices in Michigan. For each practice, three separate focus group discussions (adolescents, parents and healthcare providers, for a total of 12 focus groups) were conducted to explore vaccination attitudes, possible interventions to improve vaccine uptake and access to and use of technology for vaccination interventions. Themes that emerged from the focus group discussions were categorized using an inductive, iterative process, and analysis focused on highlighting similarities and differences among the three perspectives. Participants included 32 adolescents, 33 parents and 28 providers. The majority of parents and adolescents were female. Lack of knowledge about recommended adolescent vaccinations was universally recognized among the three groups and was perceived to be the underlying driver of low immunization rates. Notably, each group did not appear to fully appreciate the challenges faced by the other stakeholders with respect to adolescent vaccination. Adolescents were seen as having a greater role in the vaccine decision-making dynamic than previously suggested. Provider-based interventions such as educational tools and reminder-recall notices were identified as important components of

  1. Modeling Flight: The Role of Dynamically Scaled Free-Flight Models in Support of NASA's Aerospace Programs

    Science.gov (United States)

    Chambers, Joseph

    2010-01-01

    The state of the art in aeronautical engineering has been continually accelerated by the development of advanced analysis and design tools. Used in the early design stages for aircraft and spacecraft, these methods have provided a fundamental understanding of physical phenomena and enabled designers to predict and analyze critical characteristics of new vehicles, including the capability to control or modify unsatisfactory behavior. For example, the relatively recent emergence and routine use of extremely powerful digital computer hardware and software has had a major impact on design capabilities and procedures. Sophisticated new airflow measurement and visualization systems permit the analyst to conduct micro- and macro-studies of properties within flow fields on and off the surfaces of models in advanced wind tunnels. Trade studies of the most efficient geometrical shapes for aircraft can be conducted with blazing speed within a broad scope of integrated technical disciplines, and the use of sophisticated piloted simulators in the vehicle development process permits the most important segment of operations the human pilot to make early assessments of the acceptability of the vehicle for its intended mission. Knowledgeable applications of these tools of the trade dramatically reduce risk and redesign, and increase the marketability and safety of new aerospace vehicles. Arguably, one of the more viable and valuable design tools since the advent of flight has been testing of subscale models. As used herein, the term "model" refers to a physical article used in experimental analyses of a larger full-scale vehicle. The reader is probably aware that many other forms of mathematical and computer-based models are also used in aerospace design; however, such topics are beyond the intended scope of this document. Model aircraft have always been a source of fascination, inspiration, and recreation for humans since the earliest days of flight. Within the scientific

  2. Assessment of the Draft AIAA S-119 Flight Dynamic Model Exchange Standard

    Science.gov (United States)

    Jackson, E. Bruce; Murri, Daniel G.; Hill, Melissa A.; Jessick, Matthew V.; Penn, John M.; Hasan, David A.; Crues, Edwin Z.; Falck, Robert D.; McCarthy, Thomas G.; Vuong, Nghia; hide

    2011-01-01

    An assessment of a draft AIAA standard for flight dynamics model exchange, ANSI/AIAA S-119-2011, was conducted on behalf of NASA by a team from the NASA Engineering and Safety Center. The assessment included adding the capability of importing standard models into real-time simulation facilities at several NASA Centers as well as into analysis simulation tools. All participants were successful at importing two example models into their respective simulation frameworks by using existing software libraries or by writing new import tools. Deficiencies in the libraries and format documentation were identified and fixed; suggestions for improvements to the standard were provided to the AIAA. An innovative tool to generate C code directly from such a model was developed. Performance of the software libraries compared favorably with compiled code. As a result of this assessment, several NASA Centers can now import standard models directly into their simulations. NASA is considering adopting the now-published S-119 standard as an internal recommended practice.

  3. FLIGHT DYNAMICS MODEL OF ONE CLASS OF AIRCRAFT WITH A VIEW OF ELASTIC CONSTRUCTION

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available It remains urgent problem of damping of elastic vibrations occurring aircraft structure means the automatic control systems on board. In solving this problem the aircraft elastic model is the basis for the synthesis of control laws and analysis of closed-loop system "control object - the regulator." In general, the problem of mathematical modeling of flight dynamics of the elastic aircraft breaks for at least another two objectives, one of which - direct simulation of the behavior of elastic aircraft defined interacting forces, and the other - the account of the changes operating aerogidrodynamic forces and moments caused by the deformation elastic aircraft and work control systems. This paper discusses the theoretical basis of the approach to the solution of this problem, based on the replacement of the actual design of aircraft by equivalent circuit and its implementation for the missiles, the most simple in terms of schematic, class of aircraft. At the same time accounting for changes in aerodynamic forces and moments caused by the elastic deformation of the aircraft, it was performed by help of stationary hypothesis

  4. An Experimental Approach to Determine the Flight Dynamics of NASA’s Mars Science Lab Capsule

    Science.gov (United States)

    2014-01-01

    Transducer Module ( PTM ) packages and performed the free-flight experiments at ARL’s Transonic Experimental Facility at Aberdeen Proving Ground, MD...trajectory of the MSL capsule with instrumented MSL- PTM models, and recording flight data used for subsequent trajectory reconstruction. The method...tracking radar for lifting MSL-6 flight body. ...........................11 Figure 14. MSL- PTM CAD model assembly shown in exploded view

  5. Nonlinear Dynamics in a Cournot Duopoly with Different Attitudes towards Strategic Uncertainty

    Directory of Open Access Journals (Sweden)

    Luciano Fanti

    2013-01-01

    Full Text Available This paper analyses the dynamics of a duopoly with quantity-setting firms and different attitudes towards strategic uncertainty. By following the recent literature on decision making under uncertainty, where the Choquet expected utility theory is adopted to allow firms to plan their strategies, we investigate the effects of the interaction between pessimistic and optimistic firms on economic dynamics described by a two-dimensional map. In particular, the study of the local and global behaviour of the map is performed under three assumptions: (1 both firms have complete information on the market demand and adjust production over time depending on past behaviours (static expectations—“best reply” dynamics; (2 both firms have incomplete information and production is adjusted over time by following a mechanism based on marginal profits; and (3 one firm has incomplete information on the market demand and production decisions are based on the behaviour of marginal profits, and the rival has complete information on the market demand and static expectations. In cases 2 and 3 it is shown that complex dynamics and coexistence of attractors may arise. The analysis is carried forward through numerical simulations and the critical lines technique.

  6. Dynamics and cultural specifics of information needs under conditions of long-term space flight

    Science.gov (United States)

    Feichtinger, Elena; Shved, Dmitry; Gushin, Vadim

    Life in conditions of space flight or chamber study with prolonged isolation is associated with lack of familiar stimuli (sensory deprivation), monotony, significant limitation of communication, and deficit of information and media content (Myasnikov V.I., Stepanova S.I. et al., 2000). Fulfillment of a simulation experiment or flight schedule implies necessity of performance of sophisticated tasks and decision making with limited means of external support. On the other hand, the “stream” of information from the Mission Control (MC) and PI’s (reminders about different procedures to be performed, requests of reports, etc.) is often inadequate to communication needs of crewmembers. According to the theory of “information stress” (Khananashvili M.M., 1984), a distress condition could be formed if: a) it’s necessary to process large amounts of information and make decisions under time pressure; b) there is a prolonged deficit of necessary (e.g. for decision making) information. Thus, we suppose that one of the important goals of psychological support of space or space simulation crews should be forming of favorable conditions of information environment. For that purpose, means of crew-MC information exchange (quantitative characteristics and, if possible, content of radiograms, text and video messages, etc.) should be studied, as well as peculiarities of the crewmembers’ needs in different information and media content, and their reactions to incoming information. In the space simulation experiment with 520-day isolation, communication of international crew with external parties had been studied. Dynamics of quantitative and content characteristics of the crew’s messages was related to the experiment’s stage, presence of “key” events in the schedule (periods of high autonomy, simulated “planetary landing”, etc.), as well as to events not related to the experiment (holidays, news, etc.). It was shown that characteristics of information exchange

  7. Dynamics stability derivatives of space shuttle orbiter obtained from wind-tunnel and approach and landing flight tests

    Science.gov (United States)

    Freeman, D. C., Jr.

    1980-01-01

    A comparison was made between ground facility measurements, the aerodynamic design data book values, and the dynamic damping derivatives extracted from the space shuttle orbiter approach and landing flight tests. The comparison covers an angle of attack range from 2 deg to 10 deg at subsonic Mach numbers. The parameters of pitch, yaw, and roll damping, as well as the yawing moment due to rolling velocity and rolling moment due to yawing velocity are compared.

  8. RHAGOLETIS COMPLETA (DIPTERA; TEPHRITIDAE DISTRIBUTION, FLIGHT DYNAMICS AND INFLUENCE ON WALNUT KERNEL QUALITY IN THE CONTINENTAL CROATIA

    Directory of Open Access Journals (Sweden)

    Božena Barić

    2015-06-01

    Full Text Available Walnut husk fly (WHF, Rhagoletis completa Cresson 1929 is an invasive species spreading quickly and damaging walnuts in Croatia and neighbouring countries. We researched distribution of this pest in the continental part of Croatia, flight dynamics in Međimurje County and its influence on quality of walnut kernels. CSALOMON®PALz traps were used for monitoring the spread and flight dynamics of R. completa. Weight and the protein content of kernels and the presence of mycotoxin contamination were measured. Walnut husk fly was found in six counties (Istria County: pest reconfirmation, Zagreb County, The City of Zagreb, Varaždin County, Međimurje County and Koprivnica-Križevci County. The presence of the fly was not confirmed on one site in Koprivnica-Križevci County (locality Ferdinandovac and in the eastern part of Croatia (Vukovar-Srijem County: Vinkovci locality. The flight dynamics showed rapid increase in number of adults only a year after the introduction into new area. The weight of infested kernels was 5.81% lower compared to not infested. Protein content was 14.04% in infested kernels and 17.31% in not infested kernels. There was no difference in mycotoxins levels. Additional researches on mycotoxin levels in stored nuts, ovipositional preferences of walnut husk fly and protection measures against this pest are suggested.

  9. Flight control of fruit flies: dynamic response to optic flow and headwind.

    Science.gov (United States)

    Lawson, Kiaran K K; Srinivasan, Mandyam V

    2017-06-01

    Insects are magnificent fliers that are capable of performing many complex tasks such as speed regulation, smooth landings and collision avoidance, even though their computational abilities are limited by their small brain. To investigate how flying insects respond to changes in wind speed and surrounding optic flow, the open-loop sensorimotor response of female Queensland fruit flies ( Bactrocera tryoni ) was examined. A total of 136 flies were exposed to stimuli comprising sinusoidally varying optic flow and air flow (simulating forward movement) under tethered conditions in a virtual reality arena. Two responses were measured: the thrust and the abdomen pitch. The dynamics of the responses to optic flow and air flow were measured at various frequencies, and modelled as a multicompartment linear system, which accurately captured the behavioural responses of the fruit flies. The results indicate that these two behavioural responses are concurrently sensitive to changes of optic flow as well as wind. The abdomen pitch showed a streamlining response, where the abdomen was raised higher as the magnitude of either stimulus was increased. The thrust, in contrast, exhibited a counter-phase response where maximum thrust occurred when the optic flow or wind flow was at a minimum, indicating that the flies were attempting to maintain an ideal flight speed. When the changes in the wind and optic flow were in phase (i.e. did not contradict each other), the net responses (thrust and abdomen pitch) were well approximated by an equally weighted sum of the responses to the individual stimuli. However, when the optic flow and wind stimuli were presented in counterphase, the flies seemed to respond to only one stimulus or the other, demonstrating a form of 'selective attention'. © 2017. Published by The Company of Biologists Ltd.

  10. Integrated 6-DOF Orbit-Attitude Dynamical Modeling and Control Using Geometric Mechanics

    Directory of Open Access Journals (Sweden)

    Ling Jiang

    2017-01-01

    Full Text Available The integrated 6-DOF orbit-attitude dynamical modeling and control have shown great importance in various missions, for example, formation flying and proximity operations. The integrated approach yields better performances than the separate one in terms of accuracy, efficiency, and agility. One challenge in the integrated approach is to find a unified representation for the 6-DOF motion with configuration space SE(3. Recently, exponential coordinates of SE(3 have been used in dynamics and control of the 6-DOF motion, however, only on the kinematical level. In this paper, we will improve the current method by adopting exponential coordinates on the dynamical level, by giving the relation between the second-order derivative of exponential coordinates and spacecraft’s accelerations. In this way, the 6-DOF motion in terms of exponential coordinates can be written as a second-order system with a quite compact form, to which a broader range of control theories, such as higher-order sliding modes, can be applied. For a demonstration purpose, a simple asymptotic tracking control law with almost global convergence is designed. Finally, the integrated modeling and control are applied to the body-fixed hovering over an asteroid and verified by a simulation, in which absolute motions of the spacecraft and asteroid are simulated separately.

  11. Space Satellite Dynamics with Applications to Sunlight Pressure Attitude Control. Ph.D. Thesis

    Science.gov (United States)

    Stuck, B. W.

    1972-01-01

    A research program into three aspects of space satellite dynamics was carried out. First, a four-dimensional space-time formulation of Newtonian mechanics is developed. This theory allows a new physical interpretation of the conservation theorems of mechanics first derived rigorously by Noether. Second, a new concept for estimating the three angles which specify the orientation in space of a rigid body is presented. Two separate methods for implementing this concept are discussed, one based on direction cosines, the other on quaternions. Two examples are discussed: constant orientation in space, and constant rate of change of the three angles with time. Third, two synchronous equatorial orbit communication satellite designs which use sunlight pressure to control their attitude are analyzed. Each design is equipped with large reflecting surfaces, called solar sails, which can be canted in different directions to generate torques to correct pointing errors.

  12. Evolution of the 'Trick' Dynamic Software Executive and Model Libraries for Reusable Flight Software Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In response to a need for cost-effective small satellite missions, Odyssey Space Research is proposing the development of a common flight software executive and a...

  13. Dynamically Scaled Modular Aircraft for Flight-Based Aviation Safety Research Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Area-I, Incorporated personnel have led the design, fabrication, and flight testing of twelve unmanned aircraft and one manned aircraft. Partnered with NASA and...

  14. Bifurcation Tools for Flight Dynamics Analysis and Control System Design Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of the project is the development of a computational package for bifurcation analysis and advanced flight control of aircraft. The development of...

  15. Model of Dynamic Pricing for Two Parallels Flights with Multiple Fare Classes Based on Passenger Choice Behavior

    Directory of Open Access Journals (Sweden)

    Ahmad Rusdiansyah

    2010-01-01

    Full Text Available Airline revenue management (ARM is one of emerging topics in transportation logistics areas. This paper discusses a problem in ARM which is dynamic pricing for two parallel flights owned by the same airline. We extended the existing model on Joint Pricing Model for Parallel Flights under passenger choice behavior in the literature. We generalized the model to consider multiple full-fare class instead of only single full-fare class. Consequently, we have to define the seat allocation for each fare class beforehand. We have combined the joint pricing model and the model of nested Expected Marginal Seat Revenue (EMSR model. To solve this hybrid model, we have developed a dynamic programming-based algorithm. We also have conducted numerical experiments to show the behavior of our model. Our experiment results have showed that the expected revenue of both flights significantly induced by the proportion of the time flexible passengers and the number of allocated seat in each full-fare class. As managerial insights, our model has proved that there is a closed relationship between demand management, which is represented by the price of each fare class, and total expected revenue considering the passenger choice behavior.

  16. A manned maneuvering unit proximity operations planning and flight guidance display and control system

    Science.gov (United States)

    Gershzohn, Gary R.; Sirko, Robert J.; Zimmerman, K.; Jones, A. D.

    1990-01-01

    This task concerns the design, development, testing, and evaluation of a new proximity operations planning and flight guidance display and control system for manned space operations. A forecast, derivative manned maneuvering unit (MMU) was identified as a candidate for the application of a color, highway-in-the-sky display format for the presentation of flight guidance information. A silicon graphics 4D/20-based simulation is being developed to design and test display formats and operations concepts. The simulation includes the following: (1) real-time color graphics generation to provide realistic, dynamic flight guidance displays and control characteristics; (2) real-time graphics generation of spacecraft trajectories; (3) MMU flight dynamics and control characteristics; (4) control algorithms for rotational and translational hand controllers; (5) orbital mechanics effects for rendezvous and chase spacecraft; (6) inclusion of appropriate navigation aids; and (7) measurement of subject performance. The flight planning system under development provides for: (1) selection of appropriate operational modes, including minimum cost, optimum cost, minimum time, and specified ETA; (2) automatic calculation of rendezvous trajectories, en route times, and fuel requirements; (3) and provisions for manual override. Man/machine function allocations in planning and en route flight segments are being evaluated. Planning and en route data are presented on one screen composed of two windows: (1) a map display presenting a view perpendicular to the orbital plane, depicting flight planning trajectory and time data attitude display presenting attitude and course data for use en route; and (2) an attitude display presenting local vertical-local horizontal attitude data superimposed on a highway-in-the-sky or flight channel representation of the flight planned course. Both display formats are presented while the MMU is en route. In addition to these displays, several original display

  17. Team dynamics, decision making, and attitudes toward multidisciplinary cancer meetings: health professionals' perspectives.

    Science.gov (United States)

    Devitt, Bianca; Philip, Jennifer; McLachlan, Sue-Anne

    2010-11-01

    Multidisciplinary cancer care is a standard feature of high quality care. In many centers, the multidisciplinary meeting (MDM) is an integral component. A qualitative study was performed to explore health professionals' attitudes towards this model of care, the decision making processes, and dynamics among team members. A series of focus groups was conducted with health professionals who attend MDMs at our institution. Focus groups followed a semistructured format with open-ended questions. A thematic analysis was performed. Four focus groups were held, attended by 23 participants including allied health professionals, specialist nurses, medical oncologists, and surgeons. All participants believed the primary objective of the MDM was to develop an individualized treatment plan. Several other key themes emerged. The MDM provided opportunities to improve communication, efficiency, and education as well as enhance professional relationships. Medical information was prioritized ahead of psychosocial details, with allied health professionals describing difficulty contributing to MDM discussion. Patient attendance at MDMs was opposed by health professionals because of concerns about the patient's ability to cope with the information discussed and the effect their presence would have on the dynamics of the decision-making process. Health professionals endorse MDMs as a useful tool in treating patients with cancer. Within this forum, both opportunities and constrains exist, with many benefits extending beyond the meeting itself into other clinical areas. Further study is warranted to establish an evidence base to ensure that both the possibilities and the limitations of this model of care are fully understood.

  18. Attitude Dynamics and Tracking Control of Spacecraft in the Presence of Gravity Oblateness Perturbations

    Directory of Open Access Journals (Sweden)

    Achim IONITA

    2016-03-01

    Full Text Available The orbital docking represents a problem of great importance in aerospace engineering. The paper aims to perform an analysis of docking maneuvers between a chaser vehicle and a target vehicle in permanent LEO (low earth orbit. The work begins with a study of the attitude dynamics modeling intended to define the strategy that facilitates the chaser movement toward a docking part of the target. An LQR (linear quadratic regulator approach presents an optimal control design that provides linearized closed-loop error dynamics for tracking a desired quaternion. The control law formulation is combined with the control architecture based on SDRE (State Dependent Riccati equation technique for rotational maneuvers, including the Earth oblateness perturbation. The chaser body-fixed frame must coincide with the target body-fixed frame at the docking moment. Then the implementation of the control architecture based on LQR technique using the computational tool MATLAB is carried out. In simulation of the docking strategy V-R bar operations are analyzed and the minimum accelerations needs the control of chaser vehicle. The simulation analysis of those maneuvers considered for a chaser vehicle and a target vehicle in LEO orbit is validated in a case study.

  19. Attitude dynamics and control of a spacecraft like a robotic manipulator when implementing on-orbit servicing

    Science.gov (United States)

    Da Fonseca, Ijar M.; Goes, Luiz C. S.; Seito, Narumi; da Silva Duarte, Mayara K.; de Oliveira, Élcio Jeronimo

    2017-08-01

    In space the manipulators working space is characterized by the microgravity environment. In this environment the spacecraft floats and its rotational/translational motion may be excited by any internal and external disturbances. The complete system, i.e., the spacecraft and the associated robotic manipulator, floats and is sensitive to any reaction force and torque related to the manipulator's operation. In this sense the effort done by the robot may result in torque about the system center of mass and also in forces changing its translational motion. This paper analyzes the impact of the robot manipulator dynamics on the attitude motion and the associated control effort to keep the attitude stable during the manipulator's operation. The dynamics analysis is performed in the close proximity phase of rendezvous docking/berthing operation. In such scenario the linear system equations for the translation and attitude relative motions are appropriate. The computer simulations are implemented for the relative translational and rotational motion. The equations of motion have been simulated through computer by using the MatLab software. The LQR and the PID control laws are used for linear and nonlinear control, respectively, aiming to keep the attitude stable while the robot is in and out of service. The gravity-gradient and the residual magnetic torque are considered as external disturbances. The control efforts are analyzed for the manipulator in and out of service. The control laws allow the system stabilization and good performance when the manipulator is in service.

  20. Method and system for detecting a failure or performance degradation in a dynamic system such as a flight vehicle

    Science.gov (United States)

    Miller, Robert H. (Inventor); Ribbens, William B. (Inventor)

    2003-01-01

    A method and system for detecting a failure or performance degradation in a dynamic system having sensors for measuring state variables and providing corresponding output signals in response to one or more system input signals are provided. The method includes calculating estimated gains of a filter and selecting an appropriate linear model for processing the output signals based on the input signals. The step of calculating utilizes one or more models of the dynamic system to obtain estimated signals. The method further includes calculating output error residuals based on the output signals and the estimated signals. The method also includes detecting one or more hypothesized failures or performance degradations of a component or subsystem of the dynamic system based on the error residuals. The step of calculating the estimated values is performed optimally with respect to one or more of: noise, uncertainty of parameters of the models and un-modeled dynamics of the dynamic system which may be a flight vehicle or financial market or modeled financial system.

  1. A dynamic human water and electrolyte balance model for verification and optimization of life support systems in space flight applications

    Science.gov (United States)

    Hager, P.; Czupalla, M.; Walter, U.

    2010-11-01

    In this paper we report on the development of a dynamic MATLAB SIMULINK® model for the water and electrolyte balance inside the human body. This model is part of an environmentally sensitive dynamic human model for the optimization and verification of environmental control and life support systems (ECLSS) in space flight applications. An ECLSS provides all vital supplies for supporting human life on board a spacecraft. As human space flight today focuses on medium- to long-term missions, the strategy in ECLSS is shifting to closed loop systems. For these systems the dynamic stability and function over long duration are essential. However, the only evaluation and rating methods for ECLSS up to now are either expensive trial and error breadboarding strategies or static and semi-dynamic simulations. In order to overcome this mismatch the Exploration Group at Technische Universität München (TUM) is developing a dynamic environmental simulation, the "Virtual Habitat" (V-HAB). The central element of this simulation is the dynamic and environmentally sensitive human model. The water subsystem simulation of the human model discussed in this paper is of vital importance for the efficiency of possible ECLSS optimizations, as an over- or under-scaled water subsystem would have an adverse effect on the overall mass budget. On the other hand water has a pivotal role in the human organism. Water accounts for about 60% of the total body mass and is educt and product of numerous metabolic reactions. It is a transport medium for solutes and, due to its high evaporation enthalpy, provides the most potent medium for heat load dissipation. In a system engineering approach the human water balance was worked out by simulating the human body's subsystems and their interactions. The body fluids were assumed to reside in three compartments: blood plasma, interstitial fluid and intracellular fluid. In addition, the active and passive transport of water and solutes between those

  2. Global neural dynamic surface tracking control of strict-feedback systems with application to hypersonic flight vehicle.

    Science.gov (United States)

    Xu, Bin; Yang, Chenguang; Pan, Yongping

    2015-10-01

    This paper studies both indirect and direct global neural control of strict-feedback systems in the presence of unknown dynamics, using the dynamic surface control (DSC) technique in a novel manner. A new switching mechanism is designed to combine an adaptive neural controller in the neural approximation domain, together with the robust controller that pulls the transient states back into the neural approximation domain from the outside. In comparison with the conventional control techniques, which could only achieve semiglobally uniformly ultimately bounded stability, the proposed control scheme guarantees all the signals in the closed-loop system are globally uniformly ultimately bounded, such that the conventional constraints on initial conditions of the neural control system can be relaxed. The simulation studies of hypersonic flight vehicle (HFV) are performed to demonstrate the effectiveness of the proposed global neural DSC design.

  3. Microscopic observation of carrier-transport dynamics in quantum-structure solar cells using a time-of-flight technique

    Energy Technology Data Exchange (ETDEWEB)

    Toprasertpong, Kasidit; Fujii, Hiromasa; Sugiyama, Masakazu; Nakano, Yoshiaki [School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032 (Japan); Kasamatsu, Naofumi; Kada, Tomoyuki; Asahi, Shigeo; Kita, Takashi [Graduate School of Engineering, Kobe University, Nada-ku, Kobe 657-8501 (Japan); Wang, Yunpeng; Watanabe, Kentaroh [Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo 153-8904 (Japan)

    2015-07-27

    In this study, we propose a carrier time-of-flight technique to evaluate the carrier transport time across a quantum structure in an active region of solar cells. By observing the time-resolved photoluminescence signal with a quantum-well probe inserted under the quantum structure at forward bias, the carrier transport time can be efficiently determined at room temperature. The averaged drift velocity shows linear dependence on the internal field, allowing us to estimate the quantum structure as a quasi-bulk material with low effective mobility containing the information of carrier dynamics. We show that this direct and real-time observation is more sensitive to carrier transport than other conventional techniques, providing better insights into microscopic carrier transport dynamics to overcome a device design difficulty.

  4. Preparing for the crewed Mars journey: microbiota dynamics in the confined Mars500 habitat during simulated Mars flight and landing.

    Science.gov (United States)

    Schwendner, Petra; Mahnert, Alexander; Koskinen, Kaisa; Moissl-Eichinger, Christine; Barczyk, Simon; Wirth, Reinhard; Berg, Gabriele; Rettberg, Petra

    2017-10-04

    The Mars500 project was conceived as the first full duration simulation of a crewed return flight to Mars. For 520 days, six crew members lived confined in a specifically designed spacecraft mock-up. The herein described "MIcrobial ecology of Confined Habitats and humAn health" (MICHA) experiment was implemented to acquire comprehensive microbiota data from this unique, confined manned habitat, to retrieve important information on the occurring microbiota dynamics, the microbial load and diversity in the air and on various surfaces. In total, 360 samples from 20 (9 air, 11 surface) locations were taken at 18 time-points and processed by extensive cultivation, PhyloChip and next generation sequencing (NGS) of 16S rRNA gene amplicons. Cultivation assays revealed a Staphylococcus and Bacillus-dominated microbial community on various surfaces, with an average microbial load that did not exceed the allowed limits for ISS in-flight requirements indicating adequate maintenance of the facility. Areas with high human activity were identified as hotspots for microbial accumulation. Despite substantial fluctuation with respect to microbial diversity and abundance throughout the experiment, the location within the facility and the confinement duration were identified as factors significantly shaping the microbial diversity and composition, with the crew representing the main source for microbial dispersal. Opportunistic pathogens, stress-tolerant or potentially mobile element-bearing microorganisms were predicted to be prevalent throughout the confinement, while the overall microbial diversity dropped significantly over time. Our findings clearly indicate that under confined conditions, the community structure remains a highly dynamic system which adapts to the prevailing habitat and micro-conditions. Since a sterile environment is not achievable, these dynamics need to be monitored to avoid spreading of highly resistant or potentially pathogenic microorganisms and a

  5. Flight Dynamics and Control of a Morphing UAV: Bio inspired by Natural Fliers

    Science.gov (United States)

    2017-02-17

    filler was used to create a smooth aerodynamic finish. The gap reduction module was 3D printed out of ABS plastic to allow complex internal geometry...maintenance. The spars were then bonded into the gap reduction module and wingtip section to form the final component. Plastic covers were secured onto the...Aircraft Engineer weekly, vol. 65. Flight and Aircraft Engi- neer, January 1954. [2] Advisory Council for Aviation Research and Innovation in Europe

  6. Empirical and Analytic Studies Human/Automation Dynamics in Airspace Management for Free Flight

    Science.gov (United States)

    Corker, Kevin M.; Planich, G.; Bunzo, M.; Labacqz, J. Victor (Technical Monitor)

    1997-01-01

    NASA and the FAA have initiated programs of research and development to provide flight crew, airline operations and air traffic managers with automation aids to increase capacity in en route and terminal area to support the goals of free flight for safe, flexible, predictable, and efficient operations. To support the development of those aiding systems human performance in automated aiding has been examined in empirical and computationally analytic studies. This paper presents a set of those studies in full mission simulation and the development of a predictive computational model of human performance. We have found that the combination of methodologies provide a powerful design-aiding process. We will describe three research programs in support of Free Flight Operations from the perspective of human performance requirements. We have examined procedures and communications in the use of voice and data-link operation at the transition between unconstrained (enroute) and constrained (terminal) airspace operations. We have examined the timing and form of Center TRACON Automation System (CTAS) advisories in descent. We have investigated the shape and dimensions of an 'alert zone' for air-based separation in unconstrained operations. Finally, we have examined the interaction of a ground-based conflict detection/resolution aiding system, as it interacts with a cockpit-based conflict alerting mechanism. Additional information is contained in the original extended abstract.

  7. Online attitude determination of a passively magnetically stabilized spacecraft

    Science.gov (United States)

    Burton, R.; Rock, S.; Springmann, J.; Cutler, J.

    2017-04-01

    An online attitude determination filter is developed for a nano satellite that has no onboard attitude sensors or gyros. Specifically, the attitude of NASA Ames Research Center's O/OREOS, a passively magnetically stabilized 3U CubeSat, is determined using only an estimate of the solar vector obtained from solar panel currents. The filter is based upon the existing multiplicative extended Kalman filter (MEKF) but instead of relying on gyros to drive the motion model, the filter instead incorporates a model of the spacecraft's attitude dynamics in the motion model. An attitude determination accuracy of five degrees is demonstrated, a performance verified using flight data from the University of Michigan's RAX-1. Although the filter was designed for the specific problem of a satellite without gyros or attitude determination it could also be used to provide smoothing of noisy gyro signals or to provide a backup in the event of gyro failures.

  8. Max Launch Abort System (MLAS) Pad Abort Test Vehicle (PATV) II Attitude Control System (ACS) Integration and Pressurization Subsystem Dynamic Random Vibration Analysis

    Science.gov (United States)

    Ekrami, Yasamin; Cook, Joseph S.

    2011-01-01

    In order to mitigate catastrophic failures on future generation space vehicles, engineers at the National Aeronautics and Space Administration have begun to integrate a novel crew abort systems that could pull a crew module away in case of an emergency at the launch pad or during ascent. The Max Launch Abort System (MLAS) is a recent test vehicle that was designed as an alternative to the baseline Orion Launch Abort System (LAS) to demonstrate the performance of a "tower-less" LAS configuration under abort conditions. The MLAS II test vehicle will execute a propulsive coast stabilization maneuver during abort to control the vehicles trajectory and thrust. To accomplish this, the spacecraft will integrate an Attitude Control System (ACS) with eight hypergolic monomethyl hydrazine liquid propulsion engines that are capable of operating in a quick pulsing mode. Two main elements of the ACS include a propellant distribution subsystem and a pressurization subsystem to regulate the flow of pressurized gas to the propellant tanks and the engines. The CAD assembly of the Attitude Control System (ACS) was configured and integrated into the Launch Abort Vehicle (LAV) design. A dynamic random vibration analysis was conducted on the Main Propulsion System (MPS) helium pressurization panels to assess the response of the panel and its components under increased gravitational acceleration loads during flight. The results indicated that the panels fundamental and natural frequencies were farther from the maximum Acceleration Spectral Density (ASD) vibrations which were in the range of 150-300 Hz. These values will direct how the components will be packaged in the vehicle to reduce the effects high gravitational loads.

  9. On the Fate of Debris Associated with the Disappearance of Flight MH370: a Dynamical System Perspective

    Science.gov (United States)

    Mancho, A. M.; Garcia-Garrido, V. J.; Wiggins, S.; Mendoza, C.

    2015-12-01

    The disappearance of Malaysia Airlines flight MH370 on the morning of the 8th of March 2014 is one of the great mysteries of our time. One relevant aspect of this mystery is that not a single piece of debris from the aircraft was found during the intensive surface search carried out in the months following the crash. Difficulties in the search efforts were due to the uncertainty in the plane's final impact point and the time passed since the accident and rise the question on how the debris was scattered in an always moving ocean, for which there exist multiple datasets that do not uniquely determine its state. Our approach to this problem is based on dynamical systems tools that identify dynamic barriers and coherent structures governing transport. By combining publicly available information supplied by different ocean data sources with these mathematical techniques, we are able to assess the spatio-temporal state of the ocean in the priority search area at the time of impact and the following weeks. Using this information we propose a revised search strategy by showing why one might not have expected to find debris in some large search areas targeted by the search services and determining regions where one might have expected impact debris to be located and that were not subjected to any exploration. This research has been supported by MINECO under grants MTM2014-56392-R and ICMAT Severo Ochoa project SEV-2011-0087 and ONR grant No. N00014- 01-1-0769. Computational support from CESGA is acknowledged. References [1] V. J. García-Garrido, A. M. Mancho, S. Wiggins, and C. Mendoza. A dynamical systems perspective on the absence of debris associated with the disappearance of flight MH370. Nonlin. Processes Geophys. Discuss., 2,1197-1225, doi:10.5194/npgd-2-1197-2015, 2015

  10. Open-Loop Pitch Table Optimization for the Maximum Dynamic Pressure Orion Abort Flight Test

    Science.gov (United States)

    Stillwater, Ryan A.

    2009-01-01

    NASA has scheduled the retirement of the space shuttle orbiter fleet at the end of 2010. The Constellation program was created to develop the next generation of human spaceflight vehicles and launch vehicles, known as Orion and Ares respectively. The Orion vehicle is a return to the capsule configuration that was used in the Mercury, Gemini, and Apollo programs. This configuration allows for the inclusion of an abort system that safely removes the capsule from the booster in the event of a failure on launch. The Flight Test Office at NASA's Dryden Flight Research Center has been tasked with the flight testing of the abort system to ensure proper functionality and safety. The abort system will be tested in various scenarios to approximate the conditions encountered during an actual Orion launch. Every abort will have a closed-loop controller with an open-loop backup that will direct the vehicle during the abort. In order to provide the best fit for the desired total angle of attack profile with the open-loop pitch table, the table is tuned using simulated abort trajectories. A pitch table optimization program was created to tune the trajectories in an automated fashion. The program development was divided into three phases. Phase 1 used only the simulated nominal run to tune the open-loop pitch table. Phase 2 used the simulated nominal and three simulated off nominal runs to tune the open-loop pitch table. Phase 3 used the simulated nominal and sixteen simulated off nominal runs to tune the open-loop pitch table. The optimization program allowed for a quicker and more accurate fit to the desired profile as well as allowing for expanded resolution of the pitch table.

  11. Quasi-dynamic mode of nanomembranes for time-of-flight mass spectrometry of proteins.

    Science.gov (United States)

    Park, Jonghoo; Kim, Hyunseok; Blick, Robert H

    2012-04-21

    Mechanical resonators realized on the nano-scale by now offer applications in mass-sensing of biomolecules with extraordinary sensitivity. The general idea is that perfect mechanical biosensors should be of extremely small size to achieve zeptogram sensitivity in weighing single molecules similar to a balance. However, the small scale and long response time of weighing biomolecules with a cantilever restrict their usefulness as a high-throughput method. Commercial mass spectrometry (MS) such as electro-spray ionization (ESI)-MS and matrix-assisted laser desorption/ionization (MALDI)-time of flight (TOF)-MS are the gold standards to which nanomechanical resonators have to live up to. These two methods rely on the ionization and acceleration of biomolecules and the following ion detection after a mass selection step, such as time-of-flight (TOF). Hence, the spectrum is typically represented in m/z, i.e. the mass to ionization charge ratio. Here, we describe the feasibility and mass range of detection of a new mechanical approach for ion detection in time-of-flight mass spectrometry, the principle of which is that the impinging ion packets excite mechanical oscillations in a silicon nitride nanomembrane. These mechanical oscillations are henceforth detected via field emission of electrons from the nanomembrane. Ion detection is demonstrated in MALDI-TOF analysis over a broad range with angiotensin, bovine serum albumin (BSA), and an equimolar protein mixture of insulin, BSA, and immunoglobulin G (IgG). We find an unprecedented mass range of operation of the nanomembrane detector.

  12. Preliminary Planar Formation-Flight Dynamics Near Sun-Earth L2 Point

    Science.gov (United States)

    Segerman, Alan M.; Zedd, Michael F.; Bauer, Frank H. (Technical Monitor)

    2002-01-01

    A few space agencies are planning missions to the vicinity of the Sun-Earth L(sub 2) point, some involving a distributed space system of telescope spacecraft, configured in a plane about a hub. An improved understanding is developed of the relative motion of such objects in formation flight. The telescope equations of motion are written relative to the hub, in terms of the hub s distance from L(sub 2), and an analytical solution is developed, useful for performing orbit control analysis. A halo telescope orbit is investigated, with initial conditions selected to avoid resonance excitation. An example case of the resulting solution is presented.

  13. Application of Computational Fluid Dynamics (CFD) in transonic wind-tunnel/flight-test correlation

    Science.gov (United States)

    Murman, E. M.

    1982-01-01

    The capability for calculating transonic flows for realistic configurations and conditions is discussed. Various phenomena which were modeled are shown to have the same order of magnitude on the influence of predicted results. It is concluded that CFD can make the following contributions to the task of correlating wind tunnel and flight test data: some effects of geometry differences and aeroelastic distortion can be predicted; tunnel wall effects can be assessed and corrected for; and the effects of model support systems and free stream nonuniformities can be modeled.

  14. Continuation Methods and Non-Linear/Non-Gaussian Estimation for Flight Dynamics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose herein to augment current NASA spaceflight dynamics programs with algorithms and software from three domains. First, we use parameter continuation methods...

  15. Continuation Methods and Non-Linear/Non-Gaussian Estimation for Flight Dynamics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose herein to augment current NASA spaceflight dynamics programs with algorithms and software from two domains. First, we propose to use numerical parameter...

  16. Computational Model of Human and System Dynamics in Free Flight: Studies in Distributed Control Technologies

    Science.gov (United States)

    Corker, Kevin M.; Pisanich, Gregory; Lebacqz, J. Victor (Technical Monitor)

    1998-01-01

    This paper presents a set of studies in full mission simulation and the development of a predictive computational model of human performance in control of complex airspace operations. NASA and the FAA have initiated programs of research and development to provide flight crew, airline operations and air traffic managers with automation aids to increase capacity in en route and terminal area to support the goals of safe, flexible, predictable and efficient operations. In support of these developments, we present a computational model to aid design that includes representation of multiple cognitive agents (both human operators and intelligent aiding systems). The demands of air traffic management require representation of many intelligent agents sharing world-models, coordinating action/intention, and scheduling goals and actions in a potentially unpredictable world of operations. The operator-model structure includes attention functions, action priority, and situation assessment. The cognitive model has been expanded to include working memory operations including retrieval from long-term store, and interference. The operator's activity structures have been developed to provide for anticipation (knowledge of the intention and action of remote operators), and to respond to failures of the system and other operators in the system in situation-specific paradigms. System stability and operator actions can be predicted by using the model. The model's predictive accuracy was verified using the full-mission simulation data of commercial flight deck operations with advanced air traffic management techniques.

  17. Front dynamics in a two-species competition model driven by Lévy flights.

    Science.gov (United States)

    Hanert, Emmanuel

    2012-05-07

    A number of recent studies suggest that many biological species follow a Lévy random walk in their search for food. Such a strategy has been shown to be more efficient than classical Brownian motion when resources are scarce. However, current diffusion-reaction models used to describe many ecological systems do not account for the superdiffusive spread of populations due to Lévy flights. We have developed a model to simulate the spatial spread of two species competing for the same resources and driven by Lévy flights. The model is based on the Lotka-Volterra equations and has been obtained by replacing the second-order diffusion operator by a fractional-order one. Consistent with previous known results, theoretical developments and numerical simulations show that fractional-order diffusion leads to an exponential acceleration of the population fronts and a power-law decay of the fronts' leading tail. Depending on the skewness of the fractional derivative, we derive catch-up conditions for different types of fronts. Our results indicate that second-order diffusion-reaction models are not well-suited to simulate the spatial spread of biological species that follow a Lévy random walk as they are inclined to underestimate the speed at which these species propagate. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Interactions between Flight Dynamics and Propulsion Systems of Air-Breathing Hypersonic Vehicles

    Science.gov (United States)

    Dalle, Derek J.

    The development and application of a first-principles-derived reduced-order model called MASIV (Michigan/AFRL Scramjet In Vehicle) for an air-breathing hypersonic vehicle is discussed. Several significant and previously unreported aspects of hypersonic flight are investigated. A fortunate coupling between increasing Mach number and decreasing angle of attack is shown to extend the range of operating conditions for a class of supersonic inlets. Detailed maps of isolator unstart and ram-to-scram transition are shown on the flight corridor map for the first time. In scram mode the airflow remains supersonic throughout the engine, while in ram mode there is a region of subsonic flow. Accurately predicting the transition between these two modes requires models for complex shock interactions, finite-rate chemistry, fuel-air mixing, pre-combustion shock trains, and thermal choking, which are incorporated into a unified framework here. Isolator unstart occurs when the pre-combustion shock train is longer than the isolator, which blocks airflow from entering the engine. Finally, cooptimization of the vehicle design and trajectory is discussed. An optimal control technique is introduced that greatly reduces the number of computations required to optimize the simulated trajectory.

  19. A flight control through unstable flapping flight

    Science.gov (United States)

    Iima, Makoto; Yokoyama, Naoto; Hirai, Norio; Senda, Kei

    2012-11-01

    We have studied a flight control in a two-dimensional flapping flight model for insects. In this model, the model of center-of-mass can move in both horizontal and vertical directions according to the hydrodynamic force generated by flapping. Under steady flapping, the model converges to steady flight states depending on initial conditions. We demonstrate that simple changes in flapping motion, a finite-time stop of flapping, results in changes in the vortex structures, and the separation of two steady flight state by a quasi-steady flight. The model's flight finally converges to one of the final states by way of the quasi-steady state, which is not observed as a (stable) steady flight. The flight dynamic has been also analyzed. KAKENHI (23540433, 22360105, 21340019) and CREST No. PJ74100011.

  20. Fractional dynamics on networks: Emergence of anomalous diffusion and L\\'evy flights

    OpenAIRE

    Riascos, A. P.; Mateos, José L.

    2015-01-01

    We introduce a formalism of fractional diffusion on networks based on a fractional Laplacian matrix that can be constructed directly from the eigenvalues and eigenvectors of the Laplacian matrix. This fractional approach allows random walks with long-range dynamics providing a general framework for anomalous diffusion and navigation, and inducing dynamically the small-world property on any network. We obtained exact results for the stationary probability distribution, the average fractional r...

  1. Dynamic pressure maps for wings and tails of pigeons in slow, flapping flight, and their energetic implications.

    Science.gov (United States)

    Usherwood, James R; Hedrick, Tyson L; McGowan, Craig P; Biewener, Andrew A

    2005-01-01

    Differential pressure measurements offer a new approach for studying the aerodynamics of bird flight. Measurements from differential pressure sensors are combined to form a dynamic pressure map for eight sites along and across the wings, and for two sites across the tail, of pigeons flying between two perches. The confounding influence of acceleration on the pressure signals is shown to be small for both wings and tail. The mean differential pressure for the tail during steady, level flight was 25.6 Pa, which, given an angle of attack for the tail of 47.6 degrees , suggests the tail contributes 7.91% of the force required for weight support, and requires a muscle-mass specific power of 19.3 W kg(-1) for flight to overcome its drag at 4.46 m s(-1). Differential pressures during downstroke increase along the wing length, to 300-400 Pa during take-off and landing for distal sites. Taking the signals obtained from five sensors sited along the wing at feather bases as representative of the mean pressure for five spanwise elements at each point in time, and assuming aerodynamic forces act within the x-z plane (i.e. no forces in the direction of travel) and perpendicular to the wing during downstroke, we calculate that 74.5% of the force required to support weight was provided by the wings, and that the aerodynamic muscle-mass specific power required to flap the wings was 272.7 W kg(-1).

  2. Ornithopter flight stabilization

    Science.gov (United States)

    Dietl, John M.; Garcia, Ephrahim

    2007-04-01

    The quasi-steady aerodynamics model and the vehicle dynamics model of ornithopter flight are explained, and numerical methods are described to capture limit cycle behavior in ornithopter flight. The Floquet method is used to determine stability in forward flight, and a linear discrete-time state-space model is developed. This is used to calculate stabilizing and disturbance-rejecting controllers.

  3. The Coupled Orbit-Attitude Dynamics and Control of Electric Sail in Displaced Solar Orbits

    National Research Council Canada - National Science Library

    Mingying Huo; He Liao; Yanfang Liu; Naiming Qi

    2017-01-01

    .... The results of stability analysis show that only some of the orbits are marginally stable. For unstable displaced orbits, linear quadratic regulator is employed to control the coupled attitude-orbit...

  4. Demonstration of the Dynamic Flowgraph Methodology using the Titan 2 Space Launch Vehicle Digital Flight Control System

    Science.gov (United States)

    Yau, M.; Guarro, S.; Apostolakis, G.

    1993-01-01

    Dynamic Flowgraph Methodology (DFM) is a new approach developed to integrate the modeling and analysis of the hardware and software components of an embedded system. The objective is to complement the traditional approaches which generally follow the philosophy of separating out the hardware and software portions of the assurance analysis. In this paper, the DFM approach is demonstrated using the Titan 2 Space Launch Vehicle Digital Flight Control System. The hardware and software portions of this embedded system are modeled in an integrated framework. In addition, the time dependent behavior and the switching logic can be captured by this DFM model. In the modeling process, it is found that constructing decision tables for software subroutines is very time consuming. A possible solution is suggested. This approach makes use of a well-known numerical method, the Newton-Raphson method, to solve the equations implemented in the subroutines in reverse. Convergence can be achieved in a few steps.

  5. Locomotion Dynamics for Bio-inspired Robots with Soft Appendages: Application to Flapping Flight and Passive Swimming

    Science.gov (United States)

    Boyer, Frédéric; Porez, Mathieu; Morsli, Ferhat; Morel, Yannick

    2017-08-01

    In animal locomotion, either in fish or flying insects, the use of flexible terminal organs or appendages greatly improves the performance of locomotion (thrust and lift). In this article, we propose a general unified framework for modeling and simulating the (bio-inspired) locomotion of robots using soft organs. The proposed approach is based on the model of Mobile Multibody Systems (MMS). The distributed flexibilities are modeled according to two major approaches: the Floating Frame Approach (FFA) and the Geometrically Exact Approach (GEA). Encompassing these two approaches in the Newton-Euler modeling formalism of robotics, this article proposes a unique modeling framework suited to the fast numerical integration of the dynamics of a MMS in both the FFA and the GEA. This general framework is applied on two illustrative examples drawn from bio-inspired locomotion: the passive swimming in von Karman Vortex Street, and the hovering flight with flexible flapping wings.

  6. Precision Neutron Time-of-Flight Detectors Provide Insight into NIF Implosion Dynamics

    Science.gov (United States)

    Schlossberg, David; Eckart, M. J.; Grim, G. P.; Hartouni, E. P.; Hatarik, R.; Moore, A. S.; Waltz, C. S.

    2017-10-01

    During inertial confinement fusion, higher-order moments of neutron time-of-flight (nToF) spectra can provide essential information for optimizing implosions. The nToF diagnostic suite at the National Ignition Facility (NIF) was recently upgraded to include novel, quartz Cherenkov detectors. These detectors exploit the rapid Cherenkov radiation process, in contrast with conventional scintillator decay times, to provide high temporal-precision measurements that support higher-order moment analyses. Preliminary measurements have been made on the NIF during several implosions and initial results are presented here. Measured line-of-sight asymmetries, for example in ion temperatures, will be discussed. Finally, advanced detector optimization is shown to advance accessible physics, with possibilities for energy discrimination, gamma source identification, and further reduction in quartz response times. Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.

  7. Non-Linear Beam Dynamics in High Resolution Multi-Pass Time of Flight Mass Separator

    CERN Document Server

    Shchepunov, Viatcheslav A

    2005-01-01

    A multi-pass time-of-flight (MTOF) mass separator is under development by the UNIRIB collaboration. The MTOF consists of two coaxial electrostatic mirrors, focusing lenses and auxiliary injection, extraction and separation elements. The injected ions having almost the same energy but different masses undergo hundreds or thousands of reflections between the mirrors. In the course of this periodic motion, the ions of different masses and hence velocities are spatially separated in longitudinal direction. The periodic motion in the MTOF has been investigated with a recently developed ray tracing program utilizing the canonical integration technique. Results of the performed numerical simulations are discussed. The simulations displayed nonlinear character of the ion’s behavior both in transverse and longitudinal phase spaces. The ion’s transverse stability and longitudinal isochronicity were the matters of primary attention. It is shown in particular that at transverse tunes of around q=0.75 ...

  8. Dynamics of hypersonic flight vehicles exhibiting significant aeroelastic and aeropropulsive interactions

    Science.gov (United States)

    Chavez, Frank R.; Schmidt, David K.

    1993-01-01

    With analytic expressions previously developed for the forces and moments acting on a generic hypersonic vehicle, it is of interest to investigate the relative importance of the aerodynamic and propulsive effects on the vehicle dynamics. It is shown that the vehicle's aerodynamics and propulsive forces are both very significant in the evaluation of key stability derivatives which dictate the vehicle's dynamic characteristics. It is also shown that the vehicle model selected is unstable in pitch and exhibits strong airframe/engine/elastic coupling. With the use of literal expressions for both the systems poles and zeros, as well as the stability derivatives, key vehicle dynamic characteristics are investigated. For small errors, or uncertainties, in either the aerodynamic or propulsive forces, significant errors in the frequency and damping of the dominant modes and zero locations will arise.

  9. Attitude Control Enhancement Using Distributed Wing Load Sensing for Dynamic Servoelastic Control Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Strain sensor information is used in nature to achieve robust flight, good rejection of wind disturbances, and stable head motion. Similar man-made sensing devices...

  10. A Light Weight, Mini Inertial Measurement System for Position and Attitude Estimation on Dynamic Platforms Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Impact Technologies, LLC in collaboration with the Rochester Institute of Technology, proposes to develop and demonstrate a flight-worthy hardware prototype of a...

  11. Analyses of Magnetic Resonance Imaging of Cerebrospinal Fluid Dynamics Pre and Post Short and Long-Duration Space Flights

    Science.gov (United States)

    Alperin, Noam; Barr, Yael; Lee, Sang H.; Mason,Sara; Bagci, Ahmet M.

    2015-01-01

    Preliminary results are based on analyses of data from 17 crewmembers. The initial analysis compares pre to post-flight changes in total cerebral blood flow (CBF) and craniospinal CSF flow volume. Total CBF is obtained by summation of the mean flow rates through the 4 blood vessels supplying the brain (right and left internal carotid and vertebral arteries). Volumetric flow rates were obtained using an automated lumen segmentation technique shown to have 3-4-fold improved reproducibility and accuracy over manual lumen segmentation (6). Two cohorts, 5 short-duration and 8 long-duration crewmembers, who were scanned within 3 to 8 days post landing were included (4 short-duration crewmembers with MRI scans occurring beyond 10 days post flight were excluded). The VIIP Clinical Practice Guideline (CPG) classification is being used initially as a measure for VIIP syndrome severity. Median CPG scores of the short and long-duration cohorts were similar, 2. Mean preflight total CBF for the short and long-duration cohorts were similar, 863+/-144 and 747+/-119 mL/min, respectively. Percentage CBF changes for all short duration crewmembers were 11% or lower, within the range of normal physiological fluctuations in healthy individuals. In contrast, in 4 of the 8 long-duration crewmembers, the change in CBF exceeded the range of normal physiological fluctuation. In 3 of the 4 subjects an increase in CBF was measured. Large pre to post-flight changes in the craniospinal CSF flow volume were found in 6 of the 8 long-duration crewmembers. Box-Whisker plots of the CPG and the percent CBF and CSF flow changes for the two cohorts are shown in Figure 4. Examples of CSF flow waveforms for a short and two long-duration (CPG 0 and 3) are shown in Figure 5. Changes in CBF and CSF flow dynamics larger than normal physiological fluctuations were observed in the long-duration crewmembers. Changes in CSF flow were more pronounced than changes in CBF. Decreased CSF flow dynamics were observed

  12. Nonlinear robust control of hypersonic aircrafts with interactions between flight dynamics and propulsion systems.

    Science.gov (United States)

    Li, Zhaoying; Zhou, Wenjie; Liu, Hao

    2016-09-01

    This paper addresses the nonlinear robust tracking controller design problem for hypersonic vehicles. This problem is challenging due to strong coupling between the aerodynamics and the propulsion system, and the uncertainties involved in the vehicle dynamics including parametric uncertainties, unmodeled model uncertainties, and external disturbances. By utilizing the feedback linearization technique, a linear tracking error system is established with prescribed references. For the linear model, a robust controller is proposed based on the signal compensation theory to guarantee that the tracking error dynamics is robustly stable. Numerical simulation results are given to show the advantages of the proposed nonlinear robust control method, compared to the robust loop-shaping control approach. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Sallimus and the dynamics of sarcomere assembly in Drosophila flight muscles.

    Science.gov (United States)

    Orfanos, Zacharias; Leonard, Kevin; Elliott, Chris; Katzemich, Anja; Bullard, Belinda; Sparrow, John

    2015-06-19

    The Drosophila indirect flight muscles (IFM) can be used as a model for the study of sarcomere assembly. Here we use a transgenic line with a green fluorescent protein (GFP) exon inserted into the Z-disc-proximal portion of sallimus (Sls), also known as Drosophila titin, to observe sarcomere assembly during IFM development. Firstly, we confirm that Sls-GFP can be used in the heterozygote state without an obvious phenotype in IFM and other muscles. We then use Sls-GFP in the IFM to show that sarcomeres grow individually and uniformly throughout the fibre, growing linearly in length and in diameter. Finally, we show that limiting the amounts of Sls in the IFM using RNAi leads to sarcomeres with smaller Z-discs in their core, whilst the thick/thin filament lattice can form peripherally without a Z-disc. Thick filament preparations from those muscles show that although the Z-disc-containing core has thick filaments of a regular length, filaments from the peripheral lattice are longer and asymmetrical around the bare zone. Therefore, the Z-disc and Sls are required for thick filament length specification but not for the assembly of the thin/thick filament lattice. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Dynamic Routing for Delay-Tolerant Networking in Space Flight Operations

    Science.gov (United States)

    Burleigh, Scott

    2008-01-01

    Computational self-sufficiency - the making of communication decisions on the basis of locally available information that is already in place, rather than on the basis of information residing at other entities - is a fundamental principle of Delay-Tolerant Networking. Contact Graph Routing is an attempt to apply this principle to the problem of dynamic routing in an interplanetary DTN. Testing continues, but preliminary results are promising.

  15. Weak and Dynamic GNSS Signal Tracking Strategies for Flight Missions in the Space Service Volume.

    Science.gov (United States)

    Jing, Shuai; Zhan, Xingqun; Liu, Baoyu; Chen, Maolin

    2016-09-02

    Weak-signal and high-dynamics are of two primary concerns of space navigation using GNSS (Global Navigation Satellite System) in the space service volume (SSV). The paper firstly defines a reference assumption third-order phase-locked loop (PLL) as the baseline of an onboard GNSS receiver, and proves the incompetence of this conventional architecture. Then an adaptive four-state Kalman filter (KF)-based algorithm is introduced to realize the optimization of loop noise bandwidth, which can adaptively regulate its filter gain according to the received signal power and line-of-sight (LOS) dynamics. To overcome the matter of losing lock in weak-signal and high-dynamic environments, an open loop tracking strategy aided by an inertial navigation system (INS) is recommended, and the traditional maximum likelihood estimation (MLE) method is modified in a non-coherent way by reconstructing the likelihood cost function. Furthermore, a typical mission with combined orbital maneuvering and non-maneuvering arcs is taken as a destination object to test the two proposed strategies. Finally, the experiment based on computer simulation identifies the effectiveness of an adaptive four-state KF-based strategy under non-maneuvering conditions and the virtue of INS-assisted methods under maneuvering conditions.

  16. Weak and Dynamic GNSS Signal Tracking Strategies for Flight Missions in the Space Service Volume

    Directory of Open Access Journals (Sweden)

    Shuai Jing

    2016-09-01

    Full Text Available Weak-signal and high-dynamics are of two primary concerns of space navigation using GNSS (Global Navigation Satellite System in the space service volume (SSV. The paper firstly defines a reference assumption third-order phase-locked loop (PLL as the baseline of an onboard GNSS receiver, and proves the incompetence of this conventional architecture. Then an adaptive four-state Kalman filter (KF-based algorithm is introduced to realize the optimization of loop noise bandwidth, which can adaptively regulate its filter gain according to the received signal power and line-of-sight (LOS dynamics. To overcome the matter of losing lock in weak-signal and high-dynamic environments, an open loop tracking strategy aided by an inertial navigation system (INS is recommended, and the traditional maximum likelihood estimation (MLE method is modified in a non-coherent way by reconstructing the likelihood cost function. Furthermore, a typical mission with combined orbital maneuvering and non-maneuvering arcs is taken as a destination object to test the two proposed strategies. Finally, the experiment based on computer simulation identifies the effectiveness of an adaptive four-state KF-based strategy under non-maneuvering conditions and the virtue of INS-assisted methods under maneuvering conditions.

  17. Variable Attitude Test Stand

    Data.gov (United States)

    Federal Laboratory Consortium — The Variable Attitude Test Stand designed and built for testing of the V-22 tilt rotor aircraft propulsion system, is used to evaluate the effect of aircraft flight...

  18. Dynamic ultrasound-assisted extraction of environmental pollutants from marine sediments for comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometric detection

    NARCIS (Netherlands)

    Morales-Munoz, S.; Vreuls, R.J.J.; Castro, M.G.

    2005-01-01

    A dynamic ultrasound-assisted extraction (UAE) of marine sediments has been optimized using experimental design methodology. Comprehensive two-dimensional gas chromatography (GC × GC) using a cryogenic modulator, and time-of-flight-mass spectrometry (TOF-MS) were used to separate and identify

  19. A dynamical systems approach to the surface search for debris associated with the disappearance of flight MH370

    Science.gov (United States)

    García-Garrido, V. J.; Mancho, A. M.; Wiggins, S.; Mendoza, C.

    2015-11-01

    The disappearance of Malaysia Airlines flight MH370 on the morning of 8 March 2014 is one of the great mysteries of our time. Perhaps the most relevant aspect of this mystery is that not a single piece of debris from the aircraft was found during the intensive surface search carried out for roughly 2 months following the crash. Difficulties in the search efforts, due to the uncertainty of the plane's final impact point and the time that had passed since the accident, bring the question on how the debris scattered in an always moving ocean, for which there are multiple data sets that do not uniquely determine its state. Our approach to this problem is based on the use of Lagrangian descriptors (LD), a novel mathematical tool coming from dynamical systems theory that identifies dynamic barriers and coherent structures governing transport. By combining publicly available information supplied by different ocean data sources with these mathematical techniques, we are able to assess the spatio-temporal state of the ocean in the priority search area at the time of impact and the following weeks. Using this information we propose a revised search strategy by showing why one might not have expected to find debris in some large search areas targeted by the Australian Maritime Safety Authority (AMSA), and determining regions where one might have expected impact debris to be located, which were not subjected to any exploration.

  20. A dynamical systems perspective on the absence of debris associated with the disappearance of flight MH370

    Science.gov (United States)

    García-Garrido, V. J.; Mancho, A. M.; Wiggins, S.; Mendoza, C.

    2015-07-01

    The disappearance of Malaysia Airlines flight MH370 on the morning of the 8 March 2014 is one of the great mysteries of our time. Perhaps the most relevant aspect of this mystery is that not a single piece of debris from the aircraft has been found. Difficulties in the search efforts, due to the uncertainty in the plane's final impact point and the time that has passed since the accident, bring the question on how the debris has scattered in an always moving ocean, for which there are multiple data sets that do not uniquely determine its state. Our approach to this problem is based on the use of Lagrangian Descriptors (LD), a novel mathematical tool coming from dynamical systems theory that identifies dynamic barriers and coherent structures governing transport. By combining publicly available information supplied by different ocean data sources with these mathematical techniques, we are able to assess the spatio-temporal state of the ocean in the priority search area at the time of impact and the following weeks. Using this information we propose a revised search strategy by showing why one might not have expected to find debris in some large search areas targeted by the Australian Maritime Safety Authority (AMSA), and determining regions where one might have expected impact debris to be located and that have not been subjected to any exploration.

  1. Mapping dynamical mechanical properties of osteonal bone by scanning acoustic microscopy in time-of-flight mode.

    Science.gov (United States)

    Blouin, Stéphane; Puchegger, Stephan; Roschger, Andreas; Berzlanovich, Andrea; Fratzl, Peter; Klaushofer, Klaus; Roschger, Paul

    2014-06-01

    An important determinant of mechanical properties of bone is Young's modulus and its variation in individual osteons of cortical bone tissue. Its mechanical behavior also depends on deformation rate owing to its visco- or poroelastic properties. We developed a method to measure dynamical mechanical properties of bulk bone tissue at osteonal level based on scanning acoustic microscopy (SAM) using time-of-flight (TOF) measurements in combination with quantitative backscattered electron imaging (qBEI). SAM-TOF yields local sound velocities and qBEI corresponding material densities together providing elastic properties. Osteons (n=55) were measured in three human femoral diaphyseal ground bone sections (∼ 30 µm in thickness). In addition, subchondral bone and mineralized articular cartilage were investigated. The mean mineral contents, the mean sound velocities, and the mean elastic modulus of the osteons ranged from 20 to 26 wt%, from 3,819 to 5,260 m/s, and from 21 to 44 GPa, respectively. There was a strong positive correlation between material density and sound velocity (Pearson's r=0.701; pSound velocities between cartilage and bone was similar, though material density was higher in cartilage (+4.46%, p<0.0001). These results demonstrate the power of SAM-TOF to estimate dynamic mechanical properties of the bone materials at the osteonal level.

  2. Dynamic of professionally important qualities’ changes in cadets of higher flight establishments

    Directory of Open Access Journals (Sweden)

    V.N. Kyrpenko

    2015-06-01

    Full Text Available Purpose: determination of dynamic of professionally important qualities changes in cadets- flighters in the course of study. Material: The research convered 223 cadets during 4 years’ study with the help of complex of prognosis-informational psychological methods. Testing was fulfilled at devices RKN and PPV-2. Results: it was found that at the end of studying temp of development of such qualities as quickness of psycho-motor skills’ mastering, ability to operate space images, distribution and re-switching of attention increase noticeably. Indicators of emotional stability, re-construction of psycho-motor skills, resistance to obstacles substantially reduce. Scope of attention, reproductive thinking, operative memory, coordination of movements, ability to work in forced temp change in negligible limits. As per prognosis stabilizing of most of professionally important qualities that is connected with over-tension of organism’s physiological reserves is envisaged. Conclusions: We have found steady positive dynamic of cognitive psychic processes’ development, reduction of some psycho-physiological and psycho-motor qualities’ development in last period of studying.

  3. A Near-Hover Adaptive Attitude Control Strategy of a Ducted Fan Micro Aerial Vehicle with Actuator Dynamics

    Directory of Open Access Journals (Sweden)

    Shouzhao Sheng

    2015-09-01

    Full Text Available The aerodynamic parameters of ducted fan micro aerial vehicles (MAVs are difficult and expensive to precisely measure and are, therefore, not available in most cases. Furthermore, the actuator dynamics with risks of potentially destabilizing the overall system are important but often neglected consideration factors in the control system design of ducted fan MAVs. This paper presents a near-hover adaptive attitude control strategy of a prototype ducted fan MAV with actuator dynamics and without any prior information about the behavior of the MAV. The proposed strategy consists of an online parameter estimation algorithm and an adaptive gain scheduling algorithm, with the former accommodating parametric uncertainties, and the latter approximately eliminating the coupling among axes and guaranteeing the control quality of the MAV. The effectiveness of the proposed strategy is verified numerically and experimentally.

  4. An Improved Method for Dynamic Measurement of Deflections of the Vertical Based on the Maintenance of Attitude Reference

    Directory of Open Access Journals (Sweden)

    Dongkai Dai

    2014-09-01

    Full Text Available A new method for dynamic measurement of deflections of the vertical (DOV is proposed in this paper. The integration of an inertial navigation system (INS and global navigation satellite system (GNSS is constructed to measure the body’s attitude with respect to the astronomical coordinates. Simultaneously, the attitude with respect to the geodetic coordinates is initially measured by a star sensor under quasi-static condition and then maintained by the laser gyroscope unit (LGU, which is composed of three gyroscopes in the INS, when the vehicle travels along survey lines. Deflections of the vertical are calculated by using the difference between the attitudes with respect to the geodetic coordinates and astronomical coordinates. Moreover, an algorithm for removing the trend error of the vertical deflections is developed with the aid of Earth Gravitational Model 2008 (EGM2008. In comparison with traditional methods, the new method required less accurate GNSS, because the dynamic acceleration calculation is avoided. The errors of inertial sensors are well resolved in the INS/GNSS integration, which is implemented by a Rauch–Tung–Striebel (RTS smoother. In addition, a single-axis indexed INS is adopted to improve the observability of the system errors and to restrain the inertial sensor errors. The proposed method is validated by Monte Carlo simulations. The results show that deflections of the vertical can achieve a precision of better than 1″ for a single survey line. The proposed method can be applied to a gravimetry system based on a ground vehicle or ship with a speed lower than 25 m/s.

  5. Nonlinear Dynamic Inversion Baseline Control Law: Flight-Test Results for the Full-scale Advanced Systems Testbed F/A-18 Airplane

    Science.gov (United States)

    Miller, Christopher J.

    2011-01-01

    A model reference nonlinear dynamic inversion control law has been developed to provide a baseline controller for research into simple adaptive elements for advanced flight control laws. This controller has been implemented and tested in a hardware-in-the-loop simulation and in flight. The flight results agree well with the simulation predictions and show good handling qualities throughout the tested flight envelope with some noteworthy deficiencies highlighted both by handling qualities metrics and pilot comments. Many design choices and implementation details reflect the requirements placed on the system by the nonlinear flight environment and the desire to keep the system as simple as possible to easily allow the addition of the adaptive elements. The flight-test results and how they compare to the simulation predictions are discussed, along with a discussion about how each element affected pilot opinions. Additionally, aspects of the design that performed better than expected are presented, as well as some simple improvements that will be suggested for follow-on work.

  6. Coupled Vortex-Lattice Flight Dynamic Model with Aeroelastic Finite-Element Model of Flexible Wing Transport Aircraft with Variable Camber Continuous Trailing Edge Flap for Drag Reduction

    Science.gov (United States)

    Nguyen, Nhan; Ting, Eric; Nguyen, Daniel; Dao, Tung; Trinh, Khanh

    2013-01-01

    This paper presents a coupled vortex-lattice flight dynamic model with an aeroelastic finite-element model to predict dynamic characteristics of a flexible wing transport aircraft. The aircraft model is based on NASA Generic Transport Model (GTM) with representative mass and stiffness properties to achieve a wing tip deflection about twice that of a conventional transport aircraft (10% versus 5%). This flexible wing transport aircraft is referred to as an Elastically Shaped Aircraft Concept (ESAC) which is equipped with a Variable Camber Continuous Trailing Edge Flap (VCCTEF) system for active wing shaping control for drag reduction. A vortex-lattice aerodynamic model of the ESAC is developed and is coupled with an aeroelastic finite-element model via an automated geometry modeler. This coupled model is used to compute static and dynamic aeroelastic solutions. The deflection information from the finite-element model and the vortex-lattice model is used to compute unsteady contributions to the aerodynamic force and moment coefficients. A coupled aeroelastic-longitudinal flight dynamic model is developed by coupling the finite-element model with the rigid-body flight dynamic model of the GTM.

  7. Low-Speed Flight Dynamic Tests and Analysis of the Orion Crew Module Drogue Parachute System

    Science.gov (United States)

    Hahne, David E.; Fremaux, C. Michael

    2008-01-01

    A test of a dynamically scaled model of the NASA Orion Crew Module (CM) with drogue parachutes was conducted in the NASA-Langley 20-Foot Vertical Spin Tunnel. The primary test objective was to assess the ability of the Orion Crew Module drogue parachute system to adequately stabilize the CM and reduce angular rates at low subsonic Mach numbers. Two attachment locations were tested: the current design nominal and an alternate. Experimental results indicated that the alternate attachment location showed a somewhat greater tendency to attenuate initial roll rate and reduce roll rate oscillations than the nominal location. Comparison of the experimental data to a Program To Optimize Simulated Trajectories (POST II) simulation of the experiment yielded results for the nominal attachment point that indicate differences between the low-speed pitch and yaw damping derivatives in the aerodynamic database and the physical model. Comparisons for the alternate attachment location indicate that riser twist plays a significant role in determining roll rate attenuation characteristics. Reevaluating the impact of the alternate attachment points using a simulation modified to account for these results showed significantly reduced roll rate attenuation tendencies when compared to the original simulation. Based on this modified simulation the alternate attachment point does not appear to offer a significant increase in allowable roll rate over the nominal configuration.

  8. Thermal Design and Analysis of the Supersonic Flight Dynamics Test Vehicle for the Low Density Supersonic Decelerator Project

    Science.gov (United States)

    Mastropietro, A. J.; Pauken, Michael; Sunada, Eric; Gray, Sandria

    2013-01-01

    The thermal design and analysis of the experimental Supersonic Flight Dynamics Test (SFDT) vehicle is presented. The SFDT vehicle is currently being designed as a platform to help demonstrate key technologies for NASA's Low Density Supersonic Decelerator (LDSD) project. The LDSD project is charged by NASA's Office of the Chief Technologist (OCT) with the task of advancing the state of the art in Mars Entry, Descent, and Landing (EDL) systems by developing and testing three new technologies required for landing heavier payloads on Mars. The enabling technologies under development consist of a large 33.5 meter diameter Supersonic Ringsail (SSRS) parachute and two different types of Supersonic Inflatable Aerodynamic Decelerator (SIAD) devices - a robotic class, SIAD-R, that inflates to a 6 meter diameter torus, and an exploration class, SIAD-E, that inflates to an 8 meter diameter isotensoid. As part of the technology development effort, the various elements of the new supersonic decelerator system must be tested in a Mars-like environment. This is currently planned to be accomplished by sending a series of SFDT vehicles into Earth's stratosphere. Each SFDT vehicle will be lifted to a stable float altitude by a large helium carrier balloon. Once at altitude, the SFDT vehicles will be released from their carrier balloon and spun up via spin motors to provide trajectory stability. An onboard third stage solid rocket motor will propel each test vehicle to supersonic flight in the upper atmosphere. After main engine burnout, each vehicle will be despun and testing of the deceleration system will begin: first an inflatable decelerator will be deployed around the aeroshell to increase the drag surface area, and then the large parachute will be deployed to continue the deceleration and return the vehicle back to the Earth's surface. The SFDT vehicle thermal system must passively protect the vehicle structure and its components from cold temperatures experienced during the

  9. Household-level dynamics of food waste production and related beliefs, attitudes, and behaviours in Guelph, Ontario.

    Science.gov (United States)

    Parizeau, Kate; von Massow, Mike; Martin, Ralph

    2015-01-01

    It has been estimated that Canadians waste $27 billion of food annually, and that half of that waste occurs at the household level (Gooch et al., 2010). There are social, environmental, and economic implications for this scale of food waste, and source separation of organic waste is an increasingly common municipal intervention. There is relatively little research that assesses the dynamics of household food waste (particularly in Canada). The purpose of this study is to combine observations of organic, recyclable, and garbage waste production rates to survey results of food waste-related beliefs, attitudes, and behaviours at the household level in the mid-sized municipality of Guelph, Ontario. Waste weights and surveys were obtained from 68 households in the summer of 2013. The results of this study indicate multiple relationships between food waste production and household shopping practices, food preparation behaviours, household waste management practices, and food-related attitudes, beliefs, and lifestyles. Notably, we observed that food awareness, waste awareness, family lifestyles, and convenience lifestyles were related to food waste production. We conclude that it is important to understand the diversity of factors that can influence food wasting behaviours at the household level in order to design waste management systems and policies to reduce food waste. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Design of a Parallel Robot with a Large Workspace for the Functional Evaluation of Aircraft Dynamics beyond the Nominal Flight Envelope

    Directory of Open Access Journals (Sweden)

    Umar Asif

    2012-08-01

    Full Text Available This paper summarizes the development of a robotic system for the analysis of aircraft dynamics within and beyond the nominal flight envelope. The paper proposes the development of a parallel robot and its motion cueing algorithm to attain a reasonable workspace with adequate motion capabilities to facilitate the testing of aircraft stall and fault manoeuvrability scenarios. The proposed design combines two parallel mechanisms and aims to provide six degrees of freedom motion with a much larger motion envelope than the conventional hexapods in order to realize the manoeuvrability matching of aircraft dynamics near and beyond the upset flight envelopes. Finally the paper draws a comparative evaluation of motion capabilities between the proposed motion platform and a conventional hexapod based on Stewart configuration in order to emphasize the significance of the design proposed herein.

  11. Dynamics in γ-Fe2O3 nanoparticles studied by time-of-flight polarized neutron scattering

    DEFF Research Database (Denmark)

    Kuhn, L.T.; Lefmann, K.; Klausen, S.N.

    2004-01-01

    The inelastic neutron-scattering signal from magnetic nanoparticles contains information on magnetic dynamics like superparamagnetic relaxation and collective magnetic excitations. Often another, very broad quasi-elastic component is observed in addition. We have studied this quasi-elastic neutron...... signal from 4 nm ferrimagnetic maghemite (gamma-Fe(2)O(3)) particles, and by means of time-of-flight polarised neutron scattering we have identified the source of (most of) this signal to be water adsorbed at the surface of the nanoparticles. A minor part of the signal has its origin in dynamics...

  12. Robust Flight Controllers.

    Science.gov (United States)

    1983-12-01

    Institute of Technology, Wright-Patterson Air force Base, Ohio, December, 1982. 31. Roskam , J. Airplane Flight Dynamics and Automatic Flight Controls...Lawrence, Kansas: Roskam Aviation and Engineering, 1979. 171 " APPENDIX A: Generic Controller Format Al. Introduction In Chapter II, the idea of a

  13. Design and Analysis of Morpheus Lander Flight Control System

    Science.gov (United States)

    Jang, Jiann-Woei; Yang, Lee; Fritz, Mathew; Nguyen, Louis H.; Johnson, Wyatt R.; Hart, Jeremy J.

    2014-01-01

    The Morpheus Lander is a vertical takeoff and landing test bed vehicle developed to demonstrate the system performance of the Guidance, Navigation and Control (GN&C) system capability for the integrated autonomous landing and hazard avoidance system hardware and software. The Morpheus flight control system design must be robust to various mission profiles. This paper presents a design methodology for employing numerical optimization to develop the Morpheus flight control system. The design objectives include attitude tracking accuracy and robust stability with respect to rigid body dynamics and propellant slosh. Under the assumption that the Morpheus time-varying dynamics and control system can be frozen over a short period of time, the flight controllers are designed to stabilize all selected frozen-time control systems in the presence of parametric uncertainty. Both control gains in the inner attitude control loop and guidance gains in the outer position control loop are designed to maximize the vehicle performance while ensuring robustness. The flight control system designs provided herein have been demonstrated to provide stable control systems in both Draper Ares Stability Analysis Tool (ASAT) and the NASA/JSC Trick-based Morpheus time domain simulation.

  14. 14 CFR 29.1303 - Flight and navigation instruments.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flight and navigation instruments. 29.1303... navigation instruments. The following are required flight and navigational instruments: (a) An airspeed... on rotorcraft with a third attitude instrument system that— (1) Is usable through flight attitudes of...

  15. A method of testing attitude control systems during the development phase

    Science.gov (United States)

    Besonis, A.; Dougherty, H.; Levinthal, J.; Meadows, P.

    1981-01-01

    A technique, utilized on the Space Telescope Program, and used for testing satellite attitude pointing and control systems during the engineering and development phases is presented. The technique verifies the hardware models used in design phase computer simulations, verifies the interface between the flight hardware and flight software, and uncovers hardware/software switching or mode logic problems. The testing is accomplished in two phases: a dynamic hardware simulator phase using hardware electronic simulators and an electronic vehicle motion simulator; and a second real hardware phase utilizing engineering model gyros and reaction wheels on an airbearing table. Both phases use an engineering model of the flight computer, flight algorithms and software, and a breadboard data management and computer hardware interface for timing simulations. The purpose of each test and the test phases are described, and examples of closed loop test results for both attitude hold and maneuvering models are given.

  16. Household-level dynamics of food waste production and related beliefs, attitudes, and behaviours in Guelph, Ontario

    Energy Technology Data Exchange (ETDEWEB)

    Parizeau, Kate, E-mail: kate.parizeau@uoguelph.ca [Department of Geography, University of Guelph, Guelph, ON (Canada); Massow, Mike von [School of Hospitality, Food, and Tourism Management, University of Guelph, Guelph, ON (Canada); Martin, Ralph [Plant Agriculture Department, University of Guelph, Guelph, ON (Canada)

    2015-01-15

    Highlights: • We combined household waste stream weights with survey data. • We examine relationships between waste and food-related practices and beliefs. • Families and large households produced more total waste, but less waste per capita. • Food awareness and waste awareness were related to reduced food waste. • Convenience lifestyles were differentially associated with food waste. - Abstract: It has been estimated that Canadians waste $27 billion of food annually, and that half of that waste occurs at the household level (Gooch et al., 2010). There are social, environmental, and economic implications for this scale of food waste, and source separation of organic waste is an increasingly common municipal intervention. There is relatively little research that assesses the dynamics of household food waste (particularly in Canada). The purpose of this study is to combine observations of organic, recyclable, and garbage waste production rates to survey results of food waste-related beliefs, attitudes, and behaviours at the household level in the mid-sized municipality of Guelph, Ontario. Waste weights and surveys were obtained from 68 households in the summer of 2013. The results of this study indicate multiple relationships between food waste production and household shopping practices, food preparation behaviours, household waste management practices, and food-related attitudes, beliefs, and lifestyles. Notably, we observed that food awareness, waste awareness, family lifestyles, and convenience lifestyles were related to food waste production. We conclude that it is important to understand the diversity of factors that can influence food wasting behaviours at the household level in order to design waste management systems and policies to reduce food waste.

  17. Dynamics of knowledge and attitudes about AIDS among the educated in southern India.

    Science.gov (United States)

    Ambati, B K; Ambati, J; Rao, A M

    1997-06-01

    AIDS awareness and attitudes among an educated segment of the Indian population were assessed. The study population was a total of 433 students and faculty in colleges and universities, and research & technical staff of the Public Health Service. While most knew that sexual intercourse (96%) & injection drug use (85%) could transmit HIV, and that shaking hands (95%) & mosquitoes (86%) could not, 63% did not know that breastfeeding was a mode of transmission and 71% falsely believed that they could acquire HIV by donating blood. The only variable to correlate positively with knowledge was education. Knowledge about true and false modes of transmission constituted three distinct dimensions as determined by factor analysis. An overwhelming majority (90%) harboured at least one hostile view towards persons with AIDS. Knowledge and education independently correlated with decreased hostility. There was great concern about the impact of the disease: 85% believed that AIDS is a very serious problem in India and 93% favoured increased government spending on AIDS education. These results display high levels of knowledge (with some gaps), and widespread support for increased action.

  18. Decision Model of Flight Safety Based on Flight Event

    Science.gov (United States)

    Xiao-yu, Zhang; Jiu-sheng, Chen

    To improve the management of flight safety for airline company, the hierarchy model is established about the evaluation of flight safety by flight event. Flight safety is evaluated by improved analytical hierarchy process (AHP). The method to rectify the consistency judgment matrix is given to improve the AHP. Then the weight can be given directly without consistency judgment matrix. It ensures absolute consistent of judgment matrix. By statistic of flight event incidence history data, the flight safety analysis is processed by means of static evaluation and dynamic evaluation. The hierarchy structure model is implemented based on .NET, and the simulation result proves the validity of the method.

  19. Two-dimensional and three-dimensional dynamic imaging of live biofilms in a microchannel by time-of-flight secondary ion mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Xin; Marshall, Matthew J.; Xiong, Yijia; Ma, Xiang; Zhou, Yufan; Tucker, Abigail E.; Zhu, Zihua; Liu, Songqin; Yu, Xiao-Ying

    2015-05-01

    A vacuum compatible microfluidic reactor, SALVI (System for Analysis at the Liquid Vacuum Interface) was employed for in situ chemical imaging of live biofilms using time-of-flight secondary ion mass spectrometry (ToF-SIMS). Depth profiling by sputtering materials in sequential layers resulted in live biofilm spatial chemical mapping. 2D images were reconstructed to report the first 3D images of hydrated biofilm elucidating spatial and chemical heterogeneity. 2D image principal component analysis (PCA) was conducted among biofilms at different locations in the microchannel. Our approach directly visualized spatial and chemical heterogeneity within the living biofilm by dynamic liquid ToF-SIMS.

  20. Design, dynamics and control of an Adaptive Singularity-Free Control Moment Gyroscope actuator for microspacecraft Attitude Determination and Control System

    Science.gov (United States)

    Viswanathan, Sasi Prabhakaran

    Design, dynamics, control and implementation of a novel spacecraft attitude control actuator called the "Adaptive Singularity-free Control Moment Gyroscope" (ASCMG) is presented in this dissertation. In order to construct a comprehensive attitude dynamics model of a spacecraft with internal actuators, the dynamics of a spacecraft with an ASCMG, is obtained in the framework of geometric mechanics using the principles of variational mechanics. The resulting dynamics is general and complete model, as it relaxes the simplifying assumptions made in prior literature on Control Moment Gyroscopes (CMGs) and it also addresses the adaptive parameters in the dynamics formulation. The simplifying assumptions include perfect axisymmetry of the rotor and gimbal structures, perfect alignment of the centers of mass of the gimbal and the rotor etc. These set of simplifying assumptions imposed on the design and dynamics of CMGs leads to adverse effects on their performance and results in high manufacturing cost. The dynamics so obtained shows the complex nonlinear coupling between the internal degrees of freedom associated with an ASCMG and the spacecraft bus's attitude motion. By default, the general ASCMG cluster can function as a Variable Speed Control Moment Gyroscope, and reduced to function in CMG mode by spinning the rotor at constant speed, and it is shown that even when operated in CMG mode, the cluster can be free from kinematic singularities. This dynamics model is then extended to include the effects of multiple ASCMGs placed in the spacecraft bus, and sufficient conditions for non-singular ASCMG cluster configurations are obtained to operate the cluster both in VSCMG and CMG modes. The general dynamics model of the ASCMG is then reduced to that of conventional VSCMGs and CMGs by imposing the standard set of simplifying assumptions used in prior literature. The adverse effects of the simplifying assumptions that lead to the complexities in conventional CMG design, and

  1. Flight Planning in the Cloud

    Science.gov (United States)

    Flores, Sarah L.; Chapman, Bruce D.; Tung, Waye W.; Zheng, Yang

    2011-01-01

    This new interface will enable Principal Investigators (PIs), as well as UAVSAR (Uninhabited Aerial Vehicle Synthetic Aperture Radar) members to do their own flight planning and time estimation without having to request flight lines through the science coordinator. It uses an all-in-one Google Maps interface, a JPL hosted database, and PI flight requirements to design an airborne flight plan. The application will enable users to see their own flight plan being constructed interactively through a map interface, and then the flight planning software will generate all the files necessary for the flight. Afterward, the UAVSAR team can then complete the flight request, including calendaring and supplying requisite flight request files in the expected format for processing by NASA s airborne science program. Some of the main features of the interface include drawing flight lines on the map, nudging them, adding them to the current flight plan, and reordering them. The user can also search and select takeoff, landing, and intermediate airports. As the flight plan is constructed, all of its components are constantly being saved to the database, and the estimated flight times are updated. Another feature is the ability to import flight lines from previously saved flight plans. One of the main motivations was to make this Web application as simple and intuitive as possible, while also being dynamic and robust. This Web application can easily be extended to support other airborne instruments.

  2. A unified flight control methodology for a compound rotorcraft in fundamental and aerobatic maneuvering flight

    Science.gov (United States)

    Thorsen, Adam

    regime. An energy management system was developed in order to manage performance limits (namely power required) to promote carefree maneuvering and alleviate pilot workload. This system features limits on pilot commands and has additional logic for preserving control margins and limiting maximum speed in a dive. Nonlinear dynamic inversion (NLDI) is the framework of the unified controller, which incorporates primary and redundant controls. The inner loop of the NLDI controller regulates bank angle, pitch attitude, and yaw rate, while the outer loop command structure is varied (three modes). One version uses an outer loop that commands velocities in the longitudinal and vertical axes (velocity mode), another commands longitudinal acceleration and vertical speed (acceleration mode), and the third commands longitudinal acceleration and transitions from velocity to acceleration command in the vertical axis (aerobatic mode). The flight envelope is discretized into low, cruise, and high speed flight regimes. The unified outer loop primary control effectors for the longitudinal and vertical axes (collective pitch, pitch attitude, and propeller pitch) vary depending on flight regime. A weighted pseudoinverse is used to phase either the collective or propeller pitch in/out of a redundant control role. The controllers were evaluated in Penn State's Rotorcraft Flight Simulator retaining the cyclic stick for vertical and lateral axis control along with pedal inceptors for yaw axis control. A throttle inceptor was used in place of the pilot's traditional left hand inceptor for longitudinal axis control. Ultimately, a simple rigid body model of the aircraft was sufficient enough to design a controller with favorable performance and stability characteristics. This unified flight control system promoted a low enough pilot workload so that an untrained pilot (the author) was able to pilot maneuvers of varying complexity with ease. The framework of this unified system is generalized

  3. Solar thermal rocket engine (STRE) thrust characteristics at the change of engine operation mode and of the flight vehicle attitude in the solar system

    Science.gov (United States)

    Kudrin, O. I.

    1993-10-01

    Relationships are presented which describe changes in the thrust and specific impulse of a solar thermal rocket engine due to a change in the flow rate of the working fluid (hydrogen). Expressions are also presented which describe the variation of the STRE thrust and specific impulse with the distance between the flight vehicle and the sun. Results of calculations are presented for an STRE with afterburning of the working fluid (hydrogen + oxygen) using hydrogen heating by solar energy to a temperature of 2360 K.

  4. Quantifying time-of-flight-resolved optical field dynamics in turbid media with interferometric near-infrared spectroscopy (iNIRS) (Conference Presentation)

    Science.gov (United States)

    Borycki, Dawid; Kholiqov, Oybek; Zhou, Wenjun; Srinivasan, Vivek J.

    2017-03-01

    Sensing and imaging methods based on the dynamic scattering of coherent light, including laser speckle, laser Doppler, and diffuse correlation spectroscopy quantify scatterer motion using light intensity (speckle) fluctuations. The underlying optical field autocorrelation (OFA), rather than being measured directly, is typically inferred from the intensity autocorrelation (IA) through the Siegert relationship, by assuming that the scattered field obeys Gaussian statistics. In this work, we demonstrate interferometric near-infrared spectroscopy (iNIRS) for measurement of time-of-flight (TOF) resolved field and intensity autocorrelations in fluid tissue phantoms and in vivo. In phantoms, we find a breakdown of the Siegert relationship for short times-of-flight due to a contribution from static paths whose optical field does not decorrelate over experimental time scales, and demonstrate that eliminating such paths by polarization gating restores the validity of the Siegert relationship. Inspired by these results, we developed a method, called correlation gating, for separating the OFA into static and dynamic components. Correlation gating enables more precise quantification of tissue dynamics. To prove this, we show that iNIRS and correlation gating can be applied to measure cerebral hemodynamics of the nude mouse in vivo using dynamically scattered (ergodic) paths and not static (non-ergodic) paths, which may not be impacted by blood. More generally, correlation gating, in conjunction with TOF resolution, enables more precise separation of diffuse and non-diffusive contributions to OFA than is possible with TOF resolution alone. Finally, we show that direct measurements of OFA are statistically more efficient than indirect measurements based on IA.

  5. The flight robotics laboratory

    Science.gov (United States)

    Tobbe, Patrick A.; Williamson, Marlin J.; Glaese, John R.

    1988-01-01

    The Flight Robotics Laboratory of the Marshall Space Flight Center is described in detail. This facility, containing an eight degree of freedom manipulator, precision air bearing floor, teleoperated motion base, reconfigurable operator's console, and VAX 11/750 computer system, provides simulation capability to study human/system interactions of remote systems. The facility hardware, software and subsequent integration of these components into a real time man-in-the-loop simulation for the evaluation of spacecraft contact proximity and dynamics are described.

  6. DYNAMICS OF SOCIAL INFLUENCE.

    Science.gov (United States)

    SOCIAL PSYCHOLOGY , ATTITUDES( PSYCHOLOGY )), (*ATTITUDES( PSYCHOLOGY ), SOCIAL PSYCHOLOGY ), GROUP DYNAMICS, BEHAVIOR, PERFORMANCE(HUMAN), SOCIAL...COMMUNICATION, BIBLIOGRAPHIES, MALES, FEMALES, PERFORMANCE(HUMAN), SOCIOMETRICS, PSYCHOLOGICAL TESTS

  7. MinXSS-1 CubeSat On-Orbit Pointing and Power Performance: The First Flight of the Blue Canyon Technologies XACT 3-axis Attitude Determination and Control System

    Science.gov (United States)

    Mason, James Paul; Baumgart, Matt; Rogler, Bryan; Downs, Chloe; Williams, Margaret; Woods, Thomas N.; Palo, Scott; Chamberlin, Phillip C.; Solomon, Stanley; Jones, Andrew; Li, Xinlin; Kohnert, Rick; Caspi, Amir

    2017-12-01

    The Miniature X-ray Solar Spectrometer (MinXSS) is a three-unit (3U) CubeSat designed for a three-month mission to study solar soft X-ray spectral irradiance. The first of the two flight models was deployed from the International Space Station in May 2016, and operated for one year before its natural deorbiting. This was the first flight of the Blue Canyon Technologies XACT 3-axis attitude determination and control system - a commercially available, high-precision pointing system. The performance of the pointing system on orbit was characterized, including performance at low altitudes where drag torque builds up. It was found that the pointing accuracy was 0.0042° - 0.0117° (15" - 42", 3σ, axis dependent) consistently from 190 km - 410 km, slightly better than the specification sheet states. Peak-to-peak jitter was estimated to be 0.0073° (10 s^-1) - 0.0183° (10 s^-1) (26" (10 s^-1) - 66" (10 s^-1), 3σ). The system was capable of dumping mome ntum until an altitude of 185 km. Small amounts of sensor degradation were found in the star tracker and coarse sun sensor. The mission profile did not require high-agility maneuvers, so it was not possible to characterize this metric. Without a GPS receiver, it was necessary to periodically upload ephemeris information to update the orbit propagation model and maintain pointing. At 400 km, these uploads were required once every other week; at ˜270 km, they were required every day. The power performance of the electric power system was also characterized, including use of a novel pseudo-peak power tracker - a resistor that limited the current draw from the battery on the solar panels. With 19 30% efficient solar cells and an 8 W system load, the power balance had 65% of margin on orbit. The current paper presents several recommendations to other CubeSat programs throughout.

  8. A dynamical systems perspective on the absence of debris associated with the disappearance of flight MH370

    OpenAIRE

    García-Garrido, V. J.; Mancho, A. M.; Wiggins, S.; Mendoza, C.

    2015-01-01

    The disappearance of Malaysia Airlines flight MH370 on the morning of the 8 March 2014 is one of the great mysteries of our time. Perhaps the most relevant aspect of this mystery is that not a single piece of debris from the aircraft has been found. Difficulties in the search efforts, due to the uncertainty in the plane's final impact point and the time that has passed since the accident, bring the question on how the debris has scattered in an always moving ocean, for which...

  9. A dynamical systems approach to the surface search for debris associated with the disappearance of flight MH370

    OpenAIRE

    García-Garrido, V. J.; Mancho, A. M.; Wiggins, S.; Mendoza, C.

    2015-01-01

    The disappearance of Malaysia Airlines flight MH370 on the morning of 8 March 2014 is one of the great mysteries of our time. Perhaps the most relevant aspect of this mystery is that not a single piece of debris from the aircraft was found during the intensive surface search carried out for roughly 2 months following the crash. Difficulties in the search efforts, due to the uncertainty of the plane's final impact point and the time that had passed since the accident, bring t...

  10. The Brain is Faster than the Hand in Split-Second Intentions to Respond to an Impending Hazard: A Simulation of Neuroadaptive Automation to Speed Recovery to Perturbation in Flight Attitude

    Directory of Open Access Journals (Sweden)

    Daniel E. Callan

    2016-04-01

    Full Text Available The goal of this research is to test the potential for neuroadaptive automation to improve response speed to a hazardous event by using a brain-computer interface (BCI to decode perceptual-motor intention. Seven participants underwent four experimental sessions while measuring brain activity with magnetoencephalograpy. The first three sessions were of a simple constrained task in which the participant was to pull back on the control stick to recover from a perturbation in attitude in one condition and to passively observe the perturbation in the other condition. The fourth session consisted of having to recover from a perturbation in attitude while piloting the plane through the Grand Canyon constantly maneuvering to track over the river below. Independent component analysis was used on the first two sessions to extract artifacts and find an event related component associated with the onset of the perturbation. These two sessions were used to train a decoder to classify trials in which the participant recovered from the perturbation (motor intention versus just passively viewing the perturbation. The BCI-decoder was tested on the third session of the same simple task and found to be able to significantly distinguish motor intention trials from passive viewing trials (mean = 69.8%. The same BCI-decoder was then used to test the fourth session on the complex task. The BCI-decoder significantly classified perturbation from no perturbation trials (73.3% with a significant time savings of 72.3ms (Original response time of 425.0ms to 352.7ms for BCI-decoder. The BCI-decoder model of the best subject was shown to generalize for both performance and time savings to the other subjects. The results of our off-line open loop simulation demonstrate that BCI based neuroadaptive automation has the potential to decode motor intention faster than manual control in response to a hazardous perturbation in flight attitude while ignoring ongoing motor and visual

  11. The theory of canonical perturbations applied to attitude dynamics and to the Earth rotation. Osculating and nonosculating Andoyer variables

    Science.gov (United States)

    Efroimsky, Michael,; Escapa, Alberto

    2007-08-01

    In the method of variation of parameters we express the Cartesian coordinates or the Euler angles as functions of the time and six constants. If, under disturbance, we endow the “constants” with time dependence, the perturbed orbital or angular velocity will consist of a partial time derivative and a convective term that includes time derivatives of the “constants”. The Lagrange constraint, often imposed for convenience, nullifies the convective term and thereby guarantees that the functional dependence of the velocity on the time and “constants” stays unaltered under disturbance. “Constants” satisfying this constraint are called osculating elements. Otherwise, they are simply termed orbital or rotational elements. When the equations for the elements are required to be canonical, it is normally the Delaunay variables that are chosen to be the orbital elements, and it is the Andoyer variables that are typically chosen to play the role of rotational elements. (Since some of the Andoyer elements are time-dependent even in the unperturbed setting, the role of “constants” is actually played by their initial values.) The Delaunay and Andoyer sets of variables share a subtle peculiarity: under certain circumstances the standard equations render the elements nonosculating. In the theory of orbits, the planetary equations yield nonosculating elements when perturbations depend on velocities. To keep the elements osculating, the equations must be amended with extra terms that are not parts of the disturbing function [Efroimsky, M., Goldreich, P.: J. Math. Phys. 44, 5958 5977 (2003); Astron. Astrophys. 415, 1187 1199 (2004); Efroimsky, M.: Celest. Mech. Dyn. Astron. 91, 75 108 (2005); Ann. New York Acad. Sci. 1065, 346 374 (2006)]. It complicates both the Lagrange- and Delaunay-type planetary equations and makes the Delaunay equations noncanonical. In attitude dynamics, whenever a perturbation depends upon the angular velocity (like a switch to a

  12. X-33 Attitude Control Using the XRS-2200 Linear Aerospike Engine

    Science.gov (United States)

    Hall, Charles E.; Panossian, Hagop V.

    1999-01-01

    The Vehicle Control Systems Team at Marshall Space Flight Center, Structures and Dynamics Laboratory, Guidance and Control Systems Division is designing, under a cooperative agreement with Lockheed Martin Skunkworks, the Ascent, Transition, and Entry flight attitude control systems for the X-33 experimental vehicle. Test flights, while suborbital, will achieve sufficient altitudes and Mach numbers to test Single Stage To Orbit, Reusable Launch Vehicle technologies. Ascent flight control phase, the focus of this paper, begins at liftoff and ends at linear aerospike main engine cutoff (MECO). The X-33 attitude control system design is confronted by a myriad of design challenges: a short design cycle, the X-33 incremental test philosophy, the concurrent design philosophy chosen for the X-33 program, and the fact that the attitude control system design is, as usual, closely linked to many other subsystems and must deal with constraints and requirements from these subsystems. Additionally, however, and of special interest, the use of the linear aerospike engine is a departure from the gimbaled engines traditionally used for thrust vector control (TVC) in launch vehicles and poses certain design challenges. This paper discusses the unique problem of designing the X-33 attitude control system with the linear aerospike engine, requirements development, modeling and analyses that verify the design.

  13. Orion Launch Abort System Performance During Exploration Flight Test 1

    Science.gov (United States)

    McCauley, Rachel; Davidson, John; Gonzalez, Guillo

    2015-01-01

    The Orion Launch Abort System Office is taking part in flight testing to enable certification that the system is capable of delivering the astronauts aboard the Orion Crew Module to a safe environment during both nominal and abort conditions. Orion is a NASA program, Exploration Flight Test 1 is managed and led by the Orion prime contractor, Lockheed Martin, and launched on a United Launch Alliance Delta IV Heavy rocket. Although the Launch Abort System Office has tested the critical systems to the Launch Abort System jettison event on the ground, the launch environment cannot be replicated completely on Earth. During Exploration Flight Test 1, the Launch Abort System was to verify the function of the jettison motor to separate the Launch Abort System from the crew module so it can continue on with the mission. Exploration Flight Test 1 was successfully flown on December 5, 2014 from Cape Canaveral Air Force Station's Space Launch Complex 37. This was the first flight test of the Launch Abort System preforming Orion nominal flight mission critical objectives. The abort motor and attitude control motors were inert for Exploration Flight Test 1, since the mission did not require abort capabilities. Exploration Flight Test 1 provides critical data that enable engineering to improve Orion's design and reduce risk for the astronauts it will protect as NASA continues to move forward on its human journey to Mars. The Exploration Flight Test 1 separation event occurred at six minutes and twenty seconds after liftoff. The separation of the Launch Abort System jettison occurs once Orion is safely through the most dynamic portion of the launch. This paper will present a brief overview of the objectives of the Launch Abort System during a nominal Orion flight. Secondly, the paper will present the performance of the Launch Abort System at it fulfilled those objectives. The lessons learned from Exploration Flight Test 1 and the other Flight Test Vehicles will certainly

  14. Velocity-Aided Attitude Estimation for Helicopter Aircraft Using Microelectromechanical System Inertial-Measurement Units

    Directory of Open Access Journals (Sweden)

    Sang Cheol Lee

    2016-12-01

    Full Text Available This paper presents an algorithm for velocity-aided attitude estimation for helicopter aircraft using a microelectromechanical system inertial-measurement unit. In general, high- performance gyroscopes are used for estimating the attitude of a helicopter, but this type of sensor is very expensive. When designing a cost-effective attitude system, attitude can be estimated by fusing a low cost accelerometer and a gyro, but the disadvantage of this method is its relatively low accuracy. The accelerometer output includes a component that occurs primarily as the aircraft turns, as well as the gravitational acceleration. When estimating attitude, the accelerometer measurement terms other than gravitational ones can be considered as disturbances. Therefore, errors increase in accordance with the flight dynamics. The proposed algorithm is designed for using velocity as an aid for high accuracy at low cost. It effectively eliminates the disturbances of accelerometer measurements using the airspeed. The algorithm was verified using helicopter experimental data. The algorithm performance was confirmed through a comparison with an attitude estimate obtained from an attitude heading reference system based on a high accuracy optic gyro, which was employed as core attitude equipment in the helicopter.

  15. Velocity-Aided Attitude Estimation for Helicopter Aircraft Using Microelectromechanical System Inertial-Measurement Units.

    Science.gov (United States)

    Lee, Sang Cheol; Hong, Sung Kyung

    2016-12-11

    This paper presents an algorithm for velocity-aided attitude estimation for helicopter aircraft using a microelectromechanical system inertial-measurement unit. In general, high- performance gyroscopes are used for estimating the attitude of a helicopter, but this type of sensor is very expensive. When designing a cost-effective attitude system, attitude can be estimated by fusing a low cost accelerometer and a gyro, but the disadvantage of this method is its relatively low accuracy. The accelerometer output includes a component that occurs primarily as the aircraft turns, as well as the gravitational acceleration. When estimating attitude, the accelerometer measurement terms other than gravitational ones can be considered as disturbances. Therefore, errors increase in accordance with the flight dynamics. The proposed algorithm is designed for using velocity as an aid for high accuracy at low cost. It effectively eliminates the disturbances of accelerometer measurements using the airspeed. The algorithm was verified using helicopter experimental data. The algorithm performance was confirmed through a comparison with an attitude estimate obtained from an attitude heading reference system based on a high accuracy optic gyro, which was employed as core attitude equipment in the helicopter.

  16. Lattice dynamics approach to determine the dependence of the time-of-flight of transversal polarized acoustic waves on external stress

    Science.gov (United States)

    Tarar, K. S.; Pluta, M.; Amjad, U.; Grill, W.

    2011-04-01

    Based on the lattice dynamics approach the dependence of the time-of-flight (TOF) on stress has been modeled for transversal polarized acoustic waves. The relevant dispersion relation is derived from the appropriate mass-spring model together with the dependencies on the restoring forces including the effect of externally applied stress. The lattice dynamics approach can also be interpreted as a discrete and strictly periodic lumped circuit. In that case the modeling represents a finite element approach. In both cases the properties relevant for wavelengths large with respect to the periodic structure can be derived from the respective limit relating also to low frequencies. The model representing a linear chain with stiffness to shear and additional stiffness introduced by extensional stress is presented and compared to existing models, which so far represent each only one of the effects treated here in combination. For a string this effect is well known from musical instruments. The counteracting effects are discussed and compared to experimental results.

  17. Zero, minimum and maximum relative radial acceleration for planar formation flight dynamics near triangular libration points in the Earth-Moon system

    Science.gov (United States)

    Salazar, F. J. T.; Masdemont, J. J.; Gómez, G.; Macau, E. E.; Winter, O. C.

    2014-11-01

    Assume a constellation of satellites is flying near a given nominal trajectory around L4 or L5 in the Earth-Moon system in such a way that there is some freedom in the selection of the geometry of the constellation. We are interested in avoiding large variations of the mutual distances between spacecraft. In this case, the existence of regions of zero and minimum relative radial acceleration with respect to the nominal trajectory will prevent from the expansion or contraction of the constellation. In the other case, the existence of regions of maximum relative radial acceleration with respect to the nominal trajectory will produce a larger expansion and contraction of the constellation. The goal of this paper is to study these regions in the scenario of the Circular Restricted Three Body Problem by means of a linearization of the equations of motion relative to the periodic orbits around L4 or L5. This study corresponds to a preliminar planar formation flight dynamics about triangular libration points in the Earth-Moon system. Additionally, the cost estimate to maintain the constellation in the regions of zero and minimum relative radial acceleration or keeping a rigid configuration is computed with the use of the residual acceleration concept. At the end, the results are compared with the dynamical behavior of the deviation of the constellation from a periodic orbit.

  18. Dynamics and Control of Attitude, Power, and Momentum for a Spacecraft Using Flywheels and Control Moment Gyroscopes

    Science.gov (United States)

    Roithmayr, Carlos M.; Karlgaard, Christopher D.; Kumar, Renjith R.; Seywald, Hans; Bose, David M.

    2003-01-01

    Several laws are designed for simultaneous control of the orientation of an Earth-pointing spacecraft, the energy stored by counter-rotating flywheels, and the angular momentum of the flywheels and control moment gyroscopes used together as an integrated set of actuators for attitude control. General, nonlinear equations of motion are presented in vector-dyadic form, and used to obtain approximate expressions which are then linearized in preparation for design of control laws that include feedback of flywheel kinetic energy error as a means of compensating for damping exerted by rotor bearings. Two flywheel steering laws are developed such that torque commanded by an attitude control law is achieved while energy is stored or discharged at the required rate. Using the International Space Station as an example, numerical simulations are performed to demonstrate control about a torque equilibrium attitude, and illustrate the benefits of kinetic energy error feedback. Control laws for attitude hold are also developed, and used to show the amount of propellant that can be saved when flywheels assist the CMGs. Nonlinear control laws for large-angle slew maneuvers perform well, but excessive momentum is required to reorient a vehicle like the International Space Station.

  19. Attitudes Toward Lesbian, Gay, and Bisexual College Students: The Contribution of Pluralistic Ignorance, Dynamic Social Impact, and Contact Theories.

    Science.gov (United States)

    Bowen, Anne M.; Bourgeois, Martin J.

    2001-01-01

    Surveyed college dormitory residents regarding their personal comfort with lesbian, gay, and bisexual (LGB) students. Results highlighted widespread pluralistic ignorance. Students typically rated themselves as less anti-gay than other students. Building of residence significantly predicted students' attitudes. Perceiving that one or two LGB…

  20. Pre-flight transient dynamic analysis of B-52 carrying Space Shuttle solid rocket booster drop-test vehicle

    Science.gov (United States)

    Ko, W. L.; Schuster, L. S.

    1983-01-01

    This paper concerns the transient dynamic analysis of the B-52 aircraft carrying the Space Shuttle solid-rocket booster drop-test vehicle (SRB/DTV). The NASA structural analysis (NASTRAN) finite-element computer program was used in the analysis. The B-52 operating conditions considered for analysis were (1) landing and (2) braking on aborted takeoff runs. The transient loads for the B-52 pylon front and rear hooks were calculated. The results can be used to establish the safe maneuver envelopes for the B-52 carrying the SRB/DTV in landings and brakings.

  1. Got an Attitude Problem?

    Science.gov (United States)

    1999-01-01

    Through a Small Business Innovation Research grant from NASA's Goddard Space Flight Center, Servo Corporation of America, Inc. built its Mini-Dual Sensor to provide attitude control for Earth-orbiting unmanned satellites. The sensor is an Earth horizon sensor that provides higher accuracy through the use of pyroelectric arrays and a patented radiance compensation scheme.This sensor gathers data with two pairs of lithium tantalate pyroelectric arrays that are positioned 90 degrees apart in the imaging plane. The Mini-Dual Earth Sensor is a high-accuracy sensor that could be used for attitude determination in future space missions.

  2. Dynamics Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Dynamics Lab replicates vibration environments for every Navy platform. Testing performed includes: Flight Clearance, Component Improvement, Qualification, Life...

  3. A Novel Attitude Determination System Aided by Polarization Sensor

    Directory of Open Access Journals (Sweden)

    Wei Zhi

    2018-01-01

    Full Text Available This paper aims to develop a novel attitude determination system aided by polarization sensor. An improved heading angle function is derived using the perpendicular relationship between directions of E-vector of linearly polarized light and solar vector in the atmospheric polarization distribution model. The Extended Kalman filter (EKF with quaternion differential equation as a dynamic model is applied to fuse the data from sensors. The covariance functions of filter process and measurement noises are deduced in detail. The indoor and outdoor tests are conducted to verify the validity and feasibility of proposed attitude determination system. The test results showed that polarization sensor is not affected by magnetic field, thus the proposed system can work properly in environments containing the magnetic interference. The results also showed that proposed system has higher measurement accuracy than common attitude determination system and can provide precise parameters for Unmanned Aerial Vehicle (UAV flight control. The main contribution of this paper is implementation of the EKF for incorporating the self-developed polarization sensor into the conventional attitude determination system. The real-world experiment with the quad-rotor proved that proposed system can work in a magnetic interference environment and provide sufficient accuracy in attitude determination for autonomous navigation of vehicle.

  4. Flight and Stability of a Laser Inertial Fusion Energy Target in the Drift Region between Injection and the Reaction Chamber with Computational Fluid Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Mitori, T. [California Polytechnic State Univ. (CalPoly), San Luis Obispo, CA (United States)

    2013-12-01

    A Laser Inertial Fusion Energy (LIFE) target’s flight through a low Reynolds number and high Mach number regime was analyzed with computational fluid dynamics software. This regime consisted of xenon gas at 1,050 K and approximately 6,670 Pa. Simulations with similar flow conditions were performed with a sphere and compared with experimental data and published correlations for validation purposes. Transient considerations of the developing flow around the target were explored. Simulations of the target at different velocities were used to determine correlations for the drag coefficient and Nusselt number as functions of the Reynolds number. Simulations with different angles of attack were used to determine the aerodynamic coefficients of drag, lift, Magnus moment, and overturning moment as well as target stability. The drag force, lift force, and overturning moment changed minimally with spin. Above an angle of attack of 15°, the overturning moment would be destabilizing. At low angles of attack (less than 15°), the overturning moment would tend to decrease the target’s angle of attack, indicating the lack of a need for spin for stability at small angles. This stabilizing moment would cause the target to move in a mildly damped oscillation about the axis parallel to the free-stream velocity vector through the target’s center of gravity.

  5. Accuracy of dynamic patient surface monitoring using a time-of-flight camera and B-spline modeling for respiratory motion characterization.

    Science.gov (United States)

    Wentz, T; Fayad, H; Bert, J; Pradier, O; Clement, J F; Vourch, S; Boussion, N; Visvikis, D

    2012-07-07

    Time-of-flight (ToF) camera technology provides a real-time depth map of a scene with adequate frequency for the monitoring of physiological patient motion. However, dynamic surface motion estimation using a ToF camera is limited by issues such as the raw measurement accuracy and the absence of fixed anatomical landmarks. In this work we propose to overcome these limitations using surface modeling through B-splines. This approach was assessed in terms of both motion estimation accuracy and associated variability improvements using acquisitions of an anthropomorphic surface phantom for a range of observation distances (0.6-1.4 m). In addition, feasibility was demonstrated on patient acquisitions. Using the proposed B-spline modeling, the mean motion estimation error and associated repeatability with respect to the raw measurements decreased by a factor of 3. Significant correlation was found between patients' surfaces motion extracted using the proposed B-spline approach applied to the ToF data and the one extracted from synchronized 4D-CT acquisitions as the ground truth. ToF cameras represent a promising alternative for contact-less patient surface monitoring for respiratory motion synchronization or modeling in imaging and/or radiotherapy applications.

  6. A model of scientific attitudes assessment by observation in physics learning based scientific approach: case study of dynamic fluid topic in high school

    Science.gov (United States)

    Yusliana Ekawati, Elvin

    2017-01-01

    This study aimed to produce a model of scientific attitude assessment in terms of the observations for physics learning based scientific approach (case study of dynamic fluid topic in high school). Development of instruments in this study adaptation of the Plomp model, the procedure includes the initial investigation, design, construction, testing, evaluation and revision. The test is done in Surakarta, so that the data obtained are analyzed using Aiken formula to determine the validity of the content of the instrument, Cronbach’s alpha to determine the reliability of the instrument, and construct validity using confirmatory factor analysis with LISREL 8.50 program. The results of this research were conceptual models, instruments and guidelines on scientific attitudes assessment by observation. The construct assessment instruments include components of curiosity, objectivity, suspended judgment, open-mindedness, honesty and perseverance. The construct validity of instruments has been qualified (rated load factor > 0.3). The reliability of the model is quite good with the Alpha value 0.899 (> 0.7). The test showed that the model fits the theoretical models are supported by empirical data, namely p-value 0.315 (≥ 0.05), RMSEA 0.027 (≤ 0.08)

  7. Dynamic Assessment of Reading Difficulties: Predictive and Incremental Validity on Attitude toward Reading and the Use of Dialogue/Participation Strategies in Classroom Activities.

    Science.gov (United States)

    Navarro, Juan-José; Lara, Laura

    2017-01-01

    Dynamic Assessment (DA) has been shown to have more predictive value than conventional tests for academic performance. However, in relation to reading difficulties, further research is needed to determine the predictive validity of DA for specific aspects of the different processes involved in reading and the differential validity of DA for different subgroups of students with an academic disadvantage. This paper analyzes the implementation of a DA device that evaluates processes involved in reading (EDPL) among 60 students with reading comprehension difficulties between 9 and 16 years of age, of whom 20 have intellectual disabilities, 24 have reading-related learning disabilities, and 16 have socio-cultural disadvantages. We specifically analyze the predictive validity of the EDPL device over attitude toward reading, and the use of dialogue/participation strategies in reading activities in the classroom during the implementation stage. We also analyze if the EDPL device provides additional information to that obtained with a conventionally applied personal-social adjustment scale (APSL). Results showed that dynamic scores, obtained from the implementation of the EDPL device, significantly predict the studied variables. Moreover, dynamic scores showed a significant incremental validity in relation to predictions based on an APSL scale. In relation to differential validity, the results indicated the superior predictive validity for DA for students with intellectual disabilities and reading disabilities than for students with socio-cultural disadvantages. Furthermore, the role of metacognition and its relation to the processes of personal-social adjustment in explaining the results is discussed.

  8. Free Flight Ground Testing of ADEPT in Advance of the Sounding Rocket One Flight Experiment

    Science.gov (United States)

    Smith, B. P.; Dutta, S.

    2017-01-01

    The Adaptable Deployable Entry and Placement Technology (ADEPT) project will be conducting the first flight test of ADEPT, titled Sounding Rocket One (SR-1), in just two months. The need for this flight test stems from the fact that ADEPT's supersonic dynamic stability has not yet been characterized. The SR-1 flight test will provide critical data describing the flight mechanics of ADEPT in ballistic flight. These data will feed decision making on future ADEPT mission designs. This presentation will describe the SR-1 scientific data products, possible flight test outcomes, and the implications of those outcomes on future ADEPT development. In addition, this presentation will describe free-flight ground testing performed in advance of the flight test. A subsonic flight dynamics test conducted at the Vertical Spin Tunnel located at NASA Langley Research Center provided subsonic flight dynamics data at high and low altitudes for multiple center of mass (CoM) locations. A ballistic range test at the Hypervelocity Free Flight Aerodynamics Facility (HFFAF) located at NASA Ames Research Center provided supersonic flight dynamics data at low supersonic Mach numbers. Execution and outcomes of these tests will be discussed. Finally, a hypothesized trajectory estimate for the SR-1 flight will be presented.

  9. Long duration flights management

    Science.gov (United States)

    Sosa-Sesma, Sergio; Letrenne, Gérard; Spel, Martin; Charbonnier, Jean-Marc

    Long duration flights (LDF) require a special management to take the best decisions in terms of ballast consumption and instant of separation. As a contrast to short duration flights, where meteorological conditions are relatively well known, for LDF we need to include the meteorological model accuracy in trajectory simulations. Dispersions on the fields of model (wind, temperature and IR fluxes) could make the mission incompatible with safety rules, authorized zones and others flight requirements. Last CNES developments for LDF act on three main axes: 1. Although ECMWF-NCEP forecast allows generating simulations from a 4D point (altitude, latitude, longitude and UT time), result is not statistical, it is determinist. To take into account model dispersion a meteorological NCEP data base was analyzed. A comparison between Analysis (AN) and Forecast (FC) for the same time frame had been done. Result obtained from this work allows implementing wind and temperature dispersions on balloon flight simulator. 2. For IR fluxes, NCEP does not provide ascending IR fluxes in AN mode but only in FC mode. To obtain the IR fluxes for each time frame, satellite images are used. A comparison between FC and satellites measurements had been done. Results obtained from this work allow implementing flux dispersions on balloon flight simulator. 3. An improved cartography containing a vast data base had been included in balloon flight simulator. Mixing these three points with balloon flight dynamics we have obtained two new tools for observing balloon evolution and risk, one of them is called ASTERISK (Statistic Tool for Evaluation of Risk) for calculations and the other one is called OBERISK (Observing Balloon Evolution and Risk) for visualization. Depending on the balloon type (super pressure, zero pressure or MIR) relevant information for the flight manager is different. The goal is to take the best decision according to the global situation to obtain the largest flight duration with

  10. A feasibility study regarding the addition of a fifth control to a rotorcraft in-flight simulator

    Science.gov (United States)

    Turner, Simon; Andrisani, Dominick, II

    1992-01-01

    The addition of a large movable horizontal tail surface to the control system of a rotorcraft in-flight simulator being developed from a Sikorsky UH-60A Black Hawk Helicopter is evaluated. The capabilities of the control surface as a trim control and as an active control are explored. The helicopter dynamics are modeled using the Generic Helicopter simulation program developed by Sikorsky Aircraft. The effect of the horizontal tail on the helicopter trim envelope is examined by plotting trim maps of the aircraft attitude and controls as a function of the flight speed and horizontal tail incidence. The control power of the tail surface relative to that of the other controls is examined by comparing control derivatives extracted from the simulation program over the flight speed envelope. The horizontal tail's contribution as an active control is evaluated using an explicit model following control synthesis involving a linear model of the helicopter in steady, level flight at a flight speed of eighty knots. The horizontal tail is found to provide additional control flexibility in the longitudinal axis. As a trim control, it provides effective control of the trim pitch attitude at mid to high forward speeds. As an active control, the horizontal tail provides useful pitching moment generating capabilities at mid to high forward speeds.

  11. Revisiting group-based technology adoption as a dynamic process: The role of changing attitude-rationale configurations

    NARCIS (Netherlands)

    P.S. Bayerl (Saskia); K. Lauche (Kristina); Axtell, C. (Carolyn)

    2016-01-01

    textabstractIn this study, we set out to better understand the dynamics behind group-based technology adoption by investigating the underlying mechanisms of changes in collective adoption decisions over time. Using a longitudinal multi-case study of production teams in the British oil and gas

  12. Revisiting group-based technology adoption as a dynamic process: The role of changing attitude-rationale configurations.

    NARCIS (Netherlands)

    Bayerl, P.S.; Lauche, K.; Axtell, C.

    2016-01-01

    In this study, we set out to better understand the dynamics behind group-based technology adoption by nvestigating the underlying mechanisms of changes in collective adoption decisions over time. Using a longitudinal multi-case study of production teams in the British oil and gas industry, we

  13. Stability in hovering ornithopter flight

    Science.gov (United States)

    Dietl, John M.; Garcia, Ephrahim

    2008-03-01

    The quasi-steady aerodynamics model is coupled to a dynamic model of ornithopter flight. Previously, the combined model has been used to calculate forward flight trajectories, each a limit cycle in the vehicle's states. The limit cycle results from the periodic wing beat, producing a periodic force while on the cycle's trajectory. This was accomplished using a multiple shooting algorithm and numerical integration in MATLAB. An analysis of hover, a crucial element to vertical takeoff and landing in adverse conditions, follows. A method to calculate plausible wing flapping motions and control surface deflections for hover is developed, employing the above flight dynamics model. Once a hovering limit cycle trajectory is found, it can be linearized in discrete time and analyzed for stability (by calculating the trajectory's Floquet multipliers a type of discrete-time eigenvalue) are calculated. The dynamic mode shapes are discussed.

  14. Precision tethered satellite attitude control. Ph.D. Thesis

    Science.gov (United States)

    Kline-Schoder, Robert J.

    1990-01-01

    Tethered spacecraft possess unique dynamic characteristics which make them advantageous for certain classes of experiments. One use for which tethers are particularly well suited is to provide an isolated platform for spaceborne observatories. The advantages of tethering a pointing platform 1 or 2 km from a space shuttle or space station are that, compared to placing the observatory on the parent spacecraft, vibrational disturbances are attenuated and contamination is eliminated. In practice, all satellites have some requirement on the attitude control of the spacecraft, and tethered satellites are no exception. It has previously been shown that conventional means of performing attitude control for tethered satellites are insufficient for any mission with pointing requirements more stringent than about 1 deg. This is due mainly to the relatively large force applied by the tether to the spacecraft. A particularly effective method of implementing attitude control for tethered satellites is to use this tether tension force to generate control torques by moving the tether attach point relative to the subsatellite center of mass. A demonstration of this attitude control technique on an astrophysical pointing platform has been proposed for a space shuttle flight test project and is referred to as the Kinetic Isolation Tether Experiment (KITE).

  15. The theory of canonical perturbations applied to attitude dynamics and to the Earth rotation. Osculating and nonosculating Andoyer variables

    OpenAIRE

    Efroimsky, Michael; Escapa, Alberto

    2005-01-01

    The Hamiltonian theory of Earth rotation, known as the Kinoshita-Souchay theory, operates with nonosculating Andoyer elements. This situation parallels a similar phenomenon that often happens (but seldom gets noticed) in orbital dynamics, when the standard Lagrange-type or Delaunay-type planetary equations unexpectedly render nonosculating orbital elements. In orbital mechanics, osculation loss happens when a velocity-dependent perturbation is plugged into the standard planetary equations. In...

  16. Parent attitudes, family dynamics and adolescent drinking: qualitative study of the Australian parenting guidelines for adolescent alcohol use

    Science.gov (United States)

    2012-01-01

    Background Parents play a critical role in their children’s introduction to alcohol. A range of parenting factors have been associated with the progression to risky drinking among adolescents, and have recently formed the basis of the Australian ‘Parenting Guidelines for Adolescent Alcohol Use’ designed to help parents delay or reduce their adolescents’ alcohol use. Methods This study aimed to explore the experiences and attitudes of parents of adolescents to gain insight into: (1) the extent to which the behaviours of parents follow the recommendations made in the guidelines; and (2) approaches to reduce hazardous drinking among adolescents. Thirty-two telephone and face-to-face interviews were conducted with parents, and the content of discussions was examined using thematic analysis. Results Parents used approaches they thought would minimise harm and promote healthy development in their children. The guidelines address key areas of concern for parents but their adherence to these approaches is low in certain areas. Many parents provided some alcohol to their adolescents and often cited the social norm of drinking among their adolescents’ peers as a source of pressure to supply. Conclusions Further dissemination of the guidelines may be the first step in a public health strategy, but it is likely that parents will require support to effectively adopt the recommendations. Understanding the influences on parents’ beliefs about their children’s drinking and the functions of social networks in the creation of behavioural norms relating to alcohol consumption and supply may be necessary to address adolescent risky drinking. PMID:22747699

  17. A Proposed Ascent Abort Flight Test for the Max Launch Abort System

    Science.gov (United States)

    Tartabini, Paul V.; Gilbert, Michael G.; Starr, Brett R.

    2016-01-01

    The NASA Engineering and Safety Center initiated the Max Launch Abort System (MLAS) Project to investigate alternate crew escape system concepts that eliminate the conventional launch escape tower by integrating the escape system into an aerodynamic fairing that fully encapsulates the crew capsule and smoothly integrates with the launch vehicle. This paper proposes an ascent abort flight test for an all-propulsive towerless escape system concept that is actively controlled and sized to accommodate the Orion Crew Module. The goal of the flight test is to demonstrate a high dynamic pressure escape and to characterize jet interaction effects during operation of the attitude control thrusters at transonic and supersonic conditions. The flight-test vehicle is delivered to the required test conditions by a booster configuration selected to meet cost, manufacturability, and operability objectives. Data return is augmented through judicious design of the boost trajectory, which is optimized to obtain data at a range of relevant points, rather than just a single flight condition. Secondary flight objectives are included after the escape to obtain aerodynamic damping data for the crew module and to perform a high-altitude contingency deployment of the drogue parachutes. Both 3- and 6-degree-of-freedom trajectory simulation results are presented that establish concept feasibility, and a Monte Carlo uncertainty assessment is performed to provide confidence that test objectives can be met.

  18. Design Considerations for Attitude State Awareness and Prevention of Entry into Unusual Attitudes

    Science.gov (United States)

    Ellis, Kyle K. E.; Prinzel, Lawrence J., III; Arthur, Jarvis J.; Nicholas, Stephanie N.; Kiggins, Daniel; Verstynen, Harry; Hubbs, Clay; Wilkerson, James

    2017-01-01

    Loss of control - inflight (LOC-I) has historically represented the largest category of commercial aviation fatal accidents. A review of the worldwide transport airplane accidents (2001-2010) evinced that loss of attitude or energy state awareness was responsible for a large majority of the LOC-I events. A Commercial Aviation Safety Team (CAST) study of 18 worldwide loss-of-control accidents and incidents determined that flight crew loss of attitude awareness or energy state awareness due to lack of external visual reference cues was a significant causal factor in 17 of the 18 reviewed flights. CAST recommended that "Virtual Day-Visual Meteorological Condition" (Virtual Day-VMC) displays be developed to provide the visual cues necessary to prevent loss-of-control resulting from flight crew spatial disorientation and loss of energy state awareness. Synthetic vision or equivalent systems (SVS) were identified for a design "safety enhancement" (SE-200). Part of this SE involves the conduct of research for developing minimum aviation system performance standards (MASPS) for these flight deck display technologies to aid flight crew attitude and energy state awareness similar to that of a virtual day-VMC-like environment. This paper will describe a novel experimental approach to evaluating a flight crew's ability to maintain attitude awareness and to prevent entry into unusual attitudes across several SVS optical flow design considerations. Flight crews were subjected to compound-event scenarios designed to elicit channelized attention and startle/surprise within the crew. These high-fidelity scenarios, designed from real-world events, enable evaluation of the efficacy of SVS at improving flight crew attitude awareness to reduce the occurrence of LOC-I incidents in commercial flight operations.

  19. Job attitudes.

    Science.gov (United States)

    Judge, Timothy A; Kammeyer-Mueller, John D

    2012-01-01

    Job attitudes research is arguably the most venerable and popular topic in organizational psychology. This article surveys the field as it has been constituted in the past several years. Definitional issues are addressed first, in an attempt to clarify the nature, scope, and structure of job attitudes. The distinction between cognitive and affective bases of job attitudes has been an issue of debate, and recent research using within-persons designs has done much to inform this discussion. Recent research has also begun to reformulate the question of dispositional or situational influences on employee attitudes by addressing how these factors might work together to influence attitudes. Finally, there has also been a continual growth in research investigating how employee attitudes are related to a variety of behaviors at both the individual and aggregated level of analysis.

  20. Free flight wind tunnel tests for parameter identification

    OpenAIRE

    Nowack, Jan; Alles, Wolfgang

    2009-01-01

    The Chair of Flight Dynamics at the RWTH Aachen University is conducting research on a method for identification of flight mechanical characteristics on free flying models in a wind tunnel. The main goal is to create a eproducible free flight environment for cost effective identification of important values even in an early design stage. The method will combine the advantages of free flight with wind tunnel techniques as it takes the free flight into a reproducible environment under laborator...

  1. Applying data mining techniques to detect abnormal flight characteristics

    Science.gov (United States)

    Aslaner, H. E.; Unal, Cagri; Iyigun, Cem

    2016-05-01

    This paper targets to highlight flight safety issues by applying data mining techniques to recorded flight data and proactively detecting abnormalities in certain flight phases. For this purpose, a result oriented method is offered which facilitates the process of post flight data analysis. In the first part of the study, a common time period of flight is defined and critical flight parameters are selected to be analyzed. Then the similarities of the flight parameters in time series basis are calculated for each flight by using Dynamic Time Warping (DTW) method. In the second part, hierarchical clustering technique is applied to the aggregate data matrix which is comprised of all the flights to be studied in terms of similarities among chosen parameters. Consequently, proximity levels among flight phases are determined. In the final part, an algorithm is constructed to distinguish outliers from clusters and classify them as suspicious flights.

  2. Adaptive Augmenting Control Flight Characterization Experiment on an F/A-18

    Science.gov (United States)

    VanZwieten, Tannen S.; Orr, Jeb S.; Wall, John H.; Gilligan, Eric T.

    2014-01-01

    This paper summarizes the Adaptive Augmenting Control (AAC) flight characterization experiments performed using an F/A-18 (TN 853). AAC was designed and developed specifically for launch vehicles, and is currently part of the baseline autopilot design for NASA's Space Launch System (SLS). The scope covered here includes a brief overview of the algorithm (covered in more detail elsewhere), motivation and benefits of flight testing, top-level SLS flight test objectives, applicability of the F/A-18 as a platform for testing a launch vehicle control design, test cases designed to fully vet the AAC algorithm, flight test results, and conclusions regarding the functionality of AAC. The AAC algorithm developed at Marshall Space Flight Center is a forward loop gain multiplicative adaptive algorithm that modifies the total attitude control system gain in response to sensed model errors or undesirable parasitic mode resonances. The AAC algorithm provides the capability to improve or decrease performance by balancing attitude tracking with the mitigation of parasitic dynamics, such as control-structure interaction or servo-actuator limit cycles. In the case of the latter, if unmodeled or mismodeled parasitic dynamics are present that would otherwise result in a closed-loop instability or near instability, the adaptive controller decreases the total loop gain to reduce the interaction between these dynamics and the controller. This is in contrast to traditional adaptive control logic, which focuses on improving performance by increasing gain. The computationally simple AAC attitude control algorithm has stability properties that are reconcilable in the context of classical frequency-domain criteria (i.e., gain and phase margin). The algorithm assumes that the baseline attitude control design is well-tuned for a nominal trajectory and is designed to adapt only when necessary. Furthermore, the adaptation is attracted to the nominal design and adapts only on an as-needed basis

  3. Attitudes and perceptions regarding metabolomics research on HIV and AIDS: Towards a dynamic model relating basic beliefs, technology and behaviour

    Directory of Open Access Journals (Sweden)

    Henk Jochemsen

    2014-07-01

    Full Text Available The human immunodeficiency virus (HIV and acquired immunodeficiency syndrome (AIDS pandemic are hitting hard in Africa, not the least in South Africa. In addition to preventative measures, better ways of treatment and delaying the onset of symptoms are still urgently required. Recent developments in biomedicine in South Africa, notably genomics and metabolomics, could well contribute to more effective treatments and diets. However, these technologies are rooted in modern Western culture and may embody concepts and values that are foreign to people with a different culture and worldview in semi-urban communities in South Africa. How can those technologies be introduced into such communities in an ethically acceptable and effective way? To begin answering this question, we conducted qualitative research amongst representatives of such a community near Potchefstroom, South Africa. The results indicate that the worldview, belief system and cultural customs of these people significantly influence the interpretation of HIV and AIDS and their treatment. The results led us to expand an earlier theoretical version of a qualitative model relating cultural factors and worldview to individual behaviour into an empirically informed, dynamic model that envisages possible influences of the introduction of new technologies on the belief and behavioural system of the community.

  4. DASMAT-Delft University Aircraft Simulation Model and Analysis Tool : A Matlab/Simulink Environment for Flight Dynamics and Control Analysis

    NARCIS (Netherlands)

    Van der Linden, C.A.A.M.

    1998-01-01

    Computer Assisted Design (CAD) environments have become important devices for the design and evaluation of flight control systems. For general use, different aircraft and operational conditions should be easily implemented in such a CAD environment and it should be equipped with a set of simulation

  5. Modeling and Simulation Technology A New Vector for Flight-Test

    Science.gov (United States)

    1998-06-01

    Note 48 Cashman, 10. 49 Jan Roskam , Airplane Flight Dynamics and Automatic Flight Controls (Lawrence KS: Design, analysis, and Research Corporation...Arnold AFB, TN. February 1994. Roskam , Jan , Airplane Flight Dynamics and Automatic Flight Controls. Lawrence KS: Design, Analysis, and Research Corp

  6. Orion Exploration Flight Test-1 Post-Flight Navigation Performance Assessment Relative to the Best Estimated Trajectory

    Science.gov (United States)

    Gay, Robert S.; Holt, Greg N.; Zanetti, Renato

    2016-01-01

    This paper details the post-flight navigation performance assessment of the Orion Exploration Flight Test-1 (EFT-1). Results of each flight phase are presented: Ground Align, Ascent, Orbit, and Entry Descent and Landing. This study examines the on-board Kalman Filter uncertainty along with state deviations relative to the Best Estimated Trajectory (BET). Overall the results show that the Orion Navigation System performed as well or better than expected. Specifically, the Global Positioning System (GPS) measurement availability was significantly better than anticipated at high altitudes. In addition, attitude estimation via processing GPS measurements along with Inertial Measurement Unit (IMU) data performed very well and maintained good attitude throughout the mission.

  7. Proceedings of the Workshop on Flight Testing to Identify Pilot Workload and Pilot Dynamics Held at the Edwards AFB, California on 19-21 January 1982

    Science.gov (United States)

    1982-05-01

    posed to a more stressful physical environst2nt. Pilot aIIl ( c,, a reclined seat, antigravity suit, and side.rti.L @-i , K )veopced to counter this...automated blood pressure measurements during both bicycle and treadmill stress testing. 4. Antigravity Suit Evaluation Instrumentation A third system, the... antigravity suit in-flight evaluation instrument- ation, developed by SRI for use by NASA on the Space Shuttle, combines the cassette data recorder and

  8. A Raspberry Pi-Based Attitude Sensor

    Science.gov (United States)

    Sreejith, A. G.; Mathew, Joice; Sarpotdar, Mayuresh; Mohan, Rekhesh; Nayak, Akshata; Safonova, Margarita; Murthy, Jayant

    We have developed a lightweight low-cost attitude sensor, based on a Raspberry Pi, built with readily available commercial components. It can be used in experiments where weight and power are constrained, such as in high-altitude lightweight balloon flights. This attitude sensor will be used as a major building block in a closed-loop control system with driver motors to stabilize and point cameras and telescopes for astronomical observations from a balloon-borne payload.

  9. Impact of high-alpha aerodynamics on dynamic stability parameters of aircraft and missiles

    Science.gov (United States)

    Malcolm, G. N.

    1981-01-01

    The aerodynamic phenomena associated with high angles of attack and their effects on the dynamic stability characteristics of airplane and missile configurations are examined. Information on dynamic effects is limited. Steady flow phenomena and their effects on the forces and moments are reviewed. The effects of asymmetric vortices and of vortex bursting on the dynamic response of flight vehicles are reviewed with respect to their influence on: (1) nonlinearity of aerodynamic coefficients with attitude, rates, and accelerations; (2) cross coupling between longitudinal and lateral directional models of motion; (3) time dependence and hysteresis effects; (4) configuration dependencey; and (5) mathematical modeling of the aerodynamics.

  10. Optimization of the vertical flight profile on the flight management system for green aircraft

    Science.gov (United States)

    Felix Patron, Roberto Salvador

    To reduce aircraft's fuel consumption, a new method to calculate flight trajectories to be implemented in commercial Flight Management Systems has been developed. The aircraft's model was obtained from a flight performance database, which included experimental flight data. The optimized trajectories for three different commercial aircraft have been analyzed and developed in this thesis. To obtain the optimal flight trajectory that reduces the global flight cost, the vertical and the LNAV profiles have been studied and analyzed to find the aircraft's available speeds, possible flight altitudes and alternative horizontal trajectories that could reduce the global fuel consumption. A dynamic weather model has been implemented to improve the precision of the algorithm. This weather model calculates the speed and direction of wind, and the outside air temperature from a public weather database. To reduce the calculation time, different time-optimization algorithms have been implemented, such as the Golden Section search method, and different types of genetic algorithms. The optimization algorithm calculates the aircraft trajectory considering the departure and arrival airport coordinates, the aircraft parameters, the in-flight restrictions such as speeds, altitudes and WPs. The final output is given in terms of the flight time, fuel consumption and global flight cost of the complete flight. To validate the optimization algorithm results, the software FlightSIM RTM has been used. This software considers a complete aircraft aerodynamic model for its simulations, giving results that are accurate and very close to reality.

  11. Selected Flight Test Results for Online Learning Neural Network-Based Flight Control System

    Science.gov (United States)

    Williams-Hayes, Peggy S.

    2004-01-01

    The NASA F-15 Intelligent Flight Control System project team developed a series of flight control concepts designed to demonstrate neural network-based adaptive controller benefits, with the objective to develop and flight-test control systems using neural network technology to optimize aircraft performance under nominal conditions and stabilize the aircraft under failure conditions. This report presents flight-test results for an adaptive controller using stability and control derivative values from an online learning neural network. A dynamic cell structure neural network is used in conjunction with a real-time parameter identification algorithm to estimate aerodynamic stability and control derivative increments to baseline aerodynamic derivatives in flight. This open-loop flight test set was performed in preparation for a future phase in which the learning neural network and parameter identification algorithm output would provide the flight controller with aerodynamic stability and control derivative updates in near real time. Two flight maneuvers are analyzed - pitch frequency sweep and automated flight-test maneuver designed to optimally excite the parameter identification algorithm in all axes. Frequency responses generated from flight data are compared to those obtained from nonlinear simulation runs. Flight data examination shows that addition of flight-identified aerodynamic derivative increments into the simulation improved aircraft pitch handling qualities.

  12. A Review of Wind Tunnel Based Virtual Flight Testing Techniques for Evaluation of Flight Control Systems

    Directory of Open Access Journals (Sweden)

    Min Huang

    2015-01-01

    Full Text Available Wind tunnel based Virtual Flight Testing (VFT is a dynamic wind tunnel test for evaluating flight control systems (FCS proposed in recent decades. It integrates aerodynamics, flight dynamics, and FCS as a whole and is a more realistic and reliable method for FCS evaluation than traditional ground evaluation methods, such as Hardware-in-the-Loop Simulation (HILS. With FCS evaluated by VFT before flight test, the risk of flight test will be further reduced. In this paper, the background, progress, and prospects of VFT are systematically summarized. Specifically, the differences among VFT, traditional dynamic wind tunnel methods, and traditional FCS evaluation methods are introduced in order to address the advantages of evaluating FCS with VFT. Secondly, the progress of VFT is reviewed in detail. Then, the test system and key technologies of VFT for FCS evaluation are analyzed. Lastly, the prospects of VFT for evaluating FCS are described.

  13. Studies of social group dynamics under isolated conditions. Objective summary of the literature as it relates to potential problems of long duration space flight

    Science.gov (United States)

    Vinograd, S. P.

    1974-01-01

    Scientific literature which deals with the study of human behavior and crew interaction in situations simulating long term space flight is summarized and organized. A bibliography of all the pertinent U.S. literature available is included, along with definitions of the behavioral characteristics terms employed. The summarized studies are analyzed according to behavioral factors and environmental conditions. The analysis consist of two matrices. (1) The matrix of factors studied correlates each research study area and individual study with the behavioral factors that were investigated in the study. (2) The matrix of conclusions identifies those studies whose investigators appeared to draw specific conclusions concerning questions of importance to NASA.

  14. Venus radar mapper attitude reference quaternion

    Science.gov (United States)

    Lyons, D. T.

    1986-01-01

    Polynomial functions of time are used to specify the components of the quaternion which represents the nominal attitude of the Venus Radar mapper spacecraft during mapping. The following constraints must be satisfied in order to obtain acceptable synthetic array radar data: the nominal attitude function must have a large dynamic range, the sensor orientation must be known very accurately, the attitude reference function must use as little memory as possible, and the spacecraft must operate autonomously. Fitting polynomials to the components of the desired quaternion function is a straightforward method for providing a very dynamic nominal attitude using a minimum amount of on-board computer resources. Although the attitude from the polynomials may not be exactly the one requested by the radar designers, the polynomial coefficients are known, so they do not contribute to the attitude uncertainty. Frequent coefficient updates are not required, so the spacecraft can operate autonomously.

  15. Manned space flight - The effects of Shuttle perturbations on orbital trajectory

    Science.gov (United States)

    Barrett, Charles P.; Propst, Carolyn A.

    1991-01-01

    Orbit determination and trajectory prediction for the National Space Transportation System program is complicated by trajectory perturbations that are unique to the Shuttle. Orbital energy changes are seen during extended hold periods as well as during unmodeled attitude maneuvers. While a portion of these changes are due to dynamical mismodeling, the majority of the changes are due to dynamics that are unique to the Shuttle. The ability to take these previously unmodeled effects into account will allow a more accurate preflight and real-time prediction of the orbital trajectory to support payload requirements. This paper deals with the determination of the databases used to determine preflight and real-time energy growth and the results of using the databases to accurately predict energy growth for future flights.

  16. Estimating the Backup Reaction Wheel Orientation Using Reaction Wheel Spin Rates Flight Telemetry from a Spacecraft

    Science.gov (United States)

    Rizvi, Farheen

    2013-01-01

    A report describes a model that estimates the orientation of the backup reaction wheel using the reaction wheel spin rates telemetry from a spacecraft. Attitude control via the reaction wheel assembly (RWA) onboard a spacecraft uses three reaction wheels (one wheel per axis) and a backup to accommodate any wheel degradation throughout the course of the mission. The spacecraft dynamics prediction depends upon the correct knowledge of the reaction wheel orientations. Thus, it is vital to determine the actual orientation of the reaction wheels such that the correct spacecraft dynamics can be predicted. The conservation of angular momentum is used to estimate the orientation of the backup reaction wheel from the prime and backup reaction wheel spin rates data. The method is applied in estimating the orientation of the backup wheel onboard the Cassini spacecraft. The flight telemetry from the March 2011 prime and backup RWA swap activity on Cassini is used to obtain the best estimate for the backup reaction wheel orientation.

  17. Flight Dynamics and Abundance of Ips sexdentatus (Coleoptera: Curculionidae: Scolytinae in Different Sawmills from Northern Spain: Differences between Local Pinus radiata (Pinales: Pinaceae and Southern France Incoming P. pinaster Timber

    Directory of Open Access Journals (Sweden)

    Sergio López

    2012-01-01

    Full Text Available In January 2009, the windstorm “Klaus” struck the southern part of France, affecting 37.9 million m3 of maritime pine Pinus pinaster Aiton (Pinales: Pinaceae. This breeding plant material favored the outbreak of Ips sexdentatus (Börner (Coleoptera: Curculionidae: Scolytinae. As much of this timber is imported to the Basque Country (northern Spain, a potential risk to conifer stands is generated, due to the emergence of the incoming beetles. Thus, flight dynamics and beetle abundance were compared in different sawmills, according to the timber species (either local P. radiata D. Don or imported P. pinaster. A maximum flight peak of I. sexdentatus was observed in mid-June in P. pinaster importing sawmills, whereas a second lighter peak occurred in September. In contrast, only a maximum peak in mid-June was observed in P. radiata inhabiting beetles, being significantly smaller than in local P. pinaster trading sawmills. In addition, significant differences were found between imported P. pinaster and P. radiata regarding the number of insects beneath the bark. The development of IPM strategies for controlling I. sexdentatus populations is recommended, due to the insect abundance found in P. pinaster imported timber.

  18. Introduction to Aerial Vehicle Flight Mechanics, Stability and Control

    OpenAIRE

    Knowles, K.

    2010-01-01

    This article provides an introduction to Section 5.1 on flight mechanics and dynamics, stability and control, and navigation. It introduces some basic concepts of flight control, and static and dynamic stability. Some particular features of vertical or short take-off and landing (V/STOL) aircraft flight control, not covered elsewhere in this Section, are discussed briefly. The other articles in this Section are introduced.

  19. Formal semantics for propositional attitudes

    Directory of Open Access Journals (Sweden)

    Daniel Vanderveken

    2011-06-01

    Full Text Available Contemporary logic is confined to a few paradigmatic attitudes such as belief, knowledge, desire and intention. My purpose is to present a general model-theoretical semantics of propositional attitudes of any cognitive or volitive mode. In my view, one can recursively define the set of all psychological modes of attitudes. As Descartes anticipated, the two primitive modes are those of belief and desire. Complex modes are obtained by adding to primitive modes special cognitive and volitive ways or special propositional content or preparatory conditions. According to standard logic of attitudes (Hintikka, human agents are either perfectly rational or totally irrational. I will proceed to a finer analysis of propositional attitudes that accounts for our imperfect but minimal rationality. For that purpose I will use a non standard predicative logic according to which propositions with the same truth conditions can have different cognitive values and I will explicate subjective in addition to objective possibilities. Next I will enumerate valid laws of my general logic of propositional attitudes. At the end I will state principles according to which minimally rational agents dynamically revise attitudes of any mode.

  20. Flight of the dragonflies and damselflies.

    Science.gov (United States)

    Bomphrey, Richard J; Nakata, Toshiyuki; Henningsson, Per; Lin, Huai-Ti

    2016-09-26

    This work is a synthesis of our current understanding of the mechanics, aerodynamics and visually mediated control of dragonfly and damselfly flight, with the addition of new experimental and computational data in several key areas. These are: the diversity of dragonfly wing morphologies, the aerodynamics of gliding flight, force generation in flapping flight, aerodynamic efficiency, comparative flight performance and pursuit strategies during predatory and territorial flights. New data are set in context by brief reviews covering anatomy at several scales, insect aerodynamics, neuromechanics and behaviour. We achieve a new perspective by means of a diverse range of techniques, including laser-line mapping of wing topographies, computational fluid dynamics simulations of finely detailed wing geometries, quantitative imaging using particle image velocimetry of on-wing and wake flow patterns, classical aerodynamic theory, photography in the field, infrared motion capture and multi-camera optical tracking of free flight trajectories in laboratory environments. Our comprehensive approach enables a novel synthesis of datasets and subfields that integrates many aspects of flight from the neurobiology of the compound eye, through the aeromechanical interface with the surrounding fluid, to flight performance under cruising and higher-energy behavioural modes.This article is part of the themed issue 'Moving in a moving medium: new perspectives on flight'. © 2016 The Authors.

  1. Abort Flight Test Project Overview

    Science.gov (United States)

    Sitz, Joel

    2007-01-01

    A general overview of the Orion abort flight test is presented. The contents include: 1) Abort Flight Test Project Overview; 2) DFRC Exploration Mission Directorate; 3) Abort Flight Test; 4) Flight Test Configurations; 5) Flight Test Vehicle Engineering Office; 6) DFRC FTA Scope; 7) Flight Test Operations; 8) DFRC Ops Support; 9) Launch Facilities; and 10) Scope of Launch Abort Flight Test

  2. The FLP microsatellite platform flight operations manual

    CERN Document Server

    2016-01-01

    This book represents the Flight Operations Manual for a reusable microsatellite platform – the “Future Low-cost Platform” (FLP), developed at the University of Stuttgart, Germany. It provides a basic insight on the onboard software functions, the core data handling system and on the power, communications, attitude control and thermal subsystem of the platform. Onboard failure detection, isolation and recovery functions are treated in detail. The platform is suited for satellites in the 50-150 kg class and is baseline of the microsatellite “Flying Laptop” from the University. The book covers the essential information for ground operators to controls an FLP-based satellite applying international command and control standards (CCSDS and ECSS PUS). Furthermore it provides an overview on the Flight Control Center in Stuttgart and on the link to the German Space Agency DLR Ground Station which is used for early mission phases. Flight procedure and mission planning chapters complement the book. .

  3. Dynamics

    CERN Document Server

    Goodman, Lawrence E

    2001-01-01

    Beginning text presents complete theoretical treatment of mechanical model systems and deals with technological applications. Topics include introduction to calculus of vectors, particle motion, dynamics of particle systems and plane rigid bodies, technical applications in plane motions, theory of mechanical vibrations, and more. Exercises and answers appear in each chapter.

  4. Manned Flight Simulator (MFS)

    Data.gov (United States)

    Federal Laboratory Consortium — The Aircraft Simulation Division, home to the Manned Flight Simulator (MFS), provides real-time, high fidelity, hardware-in-the-loop flight simulation capabilities...

  5. In-Flight Self-Alignment Method Aided by Geomagnetism for Moving Basement of Guided Munitions

    Directory of Open Access Journals (Sweden)

    Shuang-biao Zhang

    2015-01-01

    Full Text Available Due to power-after-launch mode of guided munitions of high rolling speed, initial attitude of munitions cannot be determined accurately, and this makes it difficult for navigation and control system to work effectively and validly. An in-flight self-alignment method aided by geomagnetism that includes a fast in-flight coarse alignment method and an in-flight alignment model based on Kalman theory is proposed in this paper. Firstly a fast in-flight coarse alignment method is developed by using gyros, magnetic sensors, and trajectory angles. Then, an in-flight alignment model is derived by investigation of the measurement errors and attitude errors, which regards attitude errors as state variables and geomagnetic components in navigation frame as observed variables. Finally, fight data of a spinning projectile is used to verify the performance of the in-flight self-alignment method. The satisfying results show that (1 the precision of coarse alignment can attain below 5°; (2 the attitude errors by in-flight alignment model converge to 24′ at early of the latter half of the flight; (3 the in-flight alignment model based on Kalman theory has better adaptability, and show satisfying performance.

  6. Modelling Research on Consumer Attitude Toward Car Brands

    OpenAIRE

    Vlad (Uta) Daniela Steluta

    2014-01-01

    A quantitative research of consumer behaviour usually takes under consideration the following processes: perception, information/ learning, motivation, attitude and actual behaviour. From all this dynamic processes that define consumer behaviour, attitude is the one process relatively stable in time, with a very strong affective and cognitive component. In attempt to model attitude research one need to take under consideration external factors that influence attitude formation as well as this...

  7. Colloid Microthruster Flight Performance Results from Space Technology 7 Disturbance Reduction System

    Science.gov (United States)

    Ziemer, John; Marrese-Reading, Colleen; Dunn, Charley; Romero-Wolf, Andrew; Cutler, Curt; Javidnia, Shahram; Li, Thanh; Li, Irena; Franklin, Garth; Barela, Phil; hide

    2017-01-01

    Space Technology 7 Disturbance Reduction System (ST7-DRS) is a NASA technology demonstration payload as part of the ESA LISA Pathfinder (LPF) mission, which launched on December 3, 2015. The ST7-DRS payload includes colloid microthrusters as part of a drag-free dynamic control system (DCS) hosted on an integrated avionics unit (IAU) with spacecraft attitude and test mass position provided by the LPF spacecraft computer and the highly sensitive gravitational reference sensor (GRS) as part of the LISA Technology Package (LTP). The objective of the DRS was to validate two technologies: colloid micro-Newton thrusters (CMNT) to provide low-noise control capability of the spacecraft, and drag-free flight control. The CMNT were developed by Busek Co., Inc., in a partnership with NASA Jet Propulsion Laboratory (JPL), and the DCS algorithms and flight software were developed at NASA Goddard Space Flight Center (GSFC). ST7-DRS demonstrated drag-free operation with 10nmHz level precision spacecraft position control along the primary axis of the LTP using eight CMNTs that provided 5-30 N each with 0.1 N precision. The DCS and CMNTs performed as required and as expected from ground test results, meeting all Level 1 requirements based on on-orbit data and analysis. DRS microthrusters operated for 2400 hours in flight during commissioning activities, a 90-day experiment and the extended mission. This mission represents the first validated demonstration of electrospray thrusters in space, providing precision spacecraft control and drag-free operation in a flight environment with applications to future gravitational wave observatories like LISA.

  8. Dynamic response and control of a jet-transport aircraft encountering a single-axis vortex

    Science.gov (United States)

    Spilman, Darin R.

    1993-01-01

    The dynamic responses of a jet-transport aircraft to two types of single-axis wind vortex encounters are studied. Aircraft attitude, flight path angle, and aerodynamic angle excursions are analyzed and dominating dynamic forcing effects are identified for each encounter. A simple departure-preventing LQR controller is designed to demonstrate the benefits of using automatic control to reduce the wind vortex hazard. A Proportional-Integral-Filter controller structure successfully regulates the critical parameters, roll angle, phi, and sideslip angle, beta, for the two different vortex encounters considered in this study.

  9. Online Learning Flight Control for Intelligent Flight Control Systems (IFCS)

    Science.gov (United States)

    Niewoehner, Kevin R.; Carter, John (Technical Monitor)

    2001-01-01

    The research accomplishments for the cooperative agreement 'Online Learning Flight Control for Intelligent Flight Control Systems (IFCS)' include the following: (1) previous IFC program data collection and analysis; (2) IFC program support site (configured IFC systems support network, configured Tornado/VxWorks OS development system, made Configuration and Documentation Management Systems Internet accessible); (3) Airborne Research Test Systems (ARTS) II Hardware (developed hardware requirements specification, developing environmental testing requirements, hardware design, and hardware design development); (4) ARTS II software development laboratory unit (procurement of lab style hardware, configured lab style hardware, and designed interface module equivalent to ARTS II faceplate); (5) program support documentation (developed software development plan, configuration management plan, and software verification and validation plan); (6) LWR algorithm analysis (performed timing and profiling on algorithm); (7) pre-trained neural network analysis; (8) Dynamic Cell Structures (DCS) Neural Network Analysis (performing timing and profiling on algorithm); and (9) conducted technical interchange and quarterly meetings to define IFC research goals.

  10. Flight instructors’ perceptions of pilot behaviour related to gender

    Directory of Open Access Journals (Sweden)

    Leopold P. Vermeulen

    2009-04-01

    Full Text Available This study investigated flight instructors’ perceptions with regard to gender-related pilot behaviour. The subjects fell into two sample groups. The first sample consisted of 93 flight instructors and the second sample was a control group of 93 commercial pilots. The Aviation Gender Attitude Questionnaire (AGAQ was administered to measure the perceptions that both groups held about female pilots’ flying proficiency and safety orientation. Statistical analysis revealed that flight instructors and commercial pilots differed significantly in their perceptions of female pilots’ flying proficiency but that the two groups did not differ in their perceptions of female pilots’ safety orientation.

  11. Thermal biology of flight in a butterfly: genotype, flight metabolism, and environmental conditions.

    Science.gov (United States)

    Mattila, Anniina L K

    2015-12-01

    Knowledge of the effects of thermal conditions on animal movement and dispersal is necessary for a mechanistic understanding of the consequences of climate change and habitat fragmentation. In particular, the flight of ectothermic insects such as small butterflies is greatly influenced by ambient temperature. Here, variation in body temperature during flight is investigated in an ecological model species, the Glanville fritillary butterfly (Melitaea cinxia). Attention is paid on the effects of flight metabolism, genotypes at candidate loci, and environmental conditions. Measurements were made under a natural range of conditions using infrared thermal imaging. Heating of flight muscles by flight metabolism has been presumed to be negligible in small butterflies. However, the results demonstrate that Glanville fritillary males with high flight metabolic rate maintain elevated body temperature better during flight than males with a low rate of flight metabolism. This effect is likely to have a significant influence on the dispersal performance and fitness of butterflies and demonstrates the possible importance of intraspecific physiological variation on dispersal in other similar ectothermic insects. The results also suggest that individuals having an advantage in low ambient temperatures can be susceptible to overheating at high temperatures. Further, tolerance of high temperatures may be important for flight performance, as indicated by an association of heat-shock protein (Hsp70) genotype with flight metabolic rate and body temperature at takeoff. The dynamics of body temperature at flight and factors affecting it also differed significantly between female and male butterflies, indicating that thermal dynamics are governed by different mechanisms in the two sexes. This study contributes to knowledge about factors affecting intraspecific variation in dispersal-related thermal performance in butterflies and other insects. Such information is needed for predictive

  12. Biomechanics of bird flight.

    Science.gov (United States)

    Tobalske, Bret W

    2007-09-01

    Power output is a unifying theme for bird flight and considerable progress has been accomplished recently in measuring muscular, metabolic and aerodynamic power in birds. The primary flight muscles of birds, the pectoralis and supracoracoideus, are designed for work and power output, with large stress (force per unit cross-sectional area) and strain (relative length change) per contraction. U-shaped curves describe how mechanical power output varies with flight speed, but the specific shapes and characteristic speeds of these curves differ according to morphology and flight style. New measures of induced, profile and parasite power should help to update existing mathematical models of flight. In turn, these improved models may serve to test behavioral and ecological processes. Unlike terrestrial locomotion that is generally characterized by discrete gaits, changes in wing kinematics and aerodynamics across flight speeds are gradual. Take-off flight performance scales with body size, but fully revealing the mechanisms responsible for this pattern awaits new study. Intermittent flight appears to reduce the power cost for flight, as some species flap-glide at slow speeds and flap-bound at fast speeds. It is vital to test the metabolic costs of intermittent flight to understand why some birds use intermittent bounds during slow flight. Maneuvering and stability are critical for flying birds, and design for maneuvering may impinge upon other aspects of flight performance. The tail contributes to lift and drag; it is also integral to maneuvering and stability. Recent studies have revealed that maneuvers are typically initiated during downstroke and involve bilateral asymmetry of force production in the pectoralis. Future study of maneuvering and stability should measure inertial and aerodynamic forces. It is critical for continued progress into the biomechanics of bird flight that experimental designs are developed in an ecological and evolutionary context.

  13. Writing executable assertions to test flight software

    Science.gov (United States)

    Mahmood, A.; Andrews, D. M.; Mccluskey, E. J.

    1984-01-01

    An executable assertion is a logical statement about the variables or a block of code. If there is no error during execution, the assertion statement results in a true value. Executable assertions can be used for dynamic testing of software. They can be employed for validation during the design phase, and exception and error detection during the operation phase. The present investigation is concerned with the problem of writing executable assertions, taking into account the use of assertions for testing flight software. They can be employed for validation during the design phase, and for exception handling and error detection during the operation phase The digital flight control system and the flight control software are discussed. The considered system provides autopilot and flight director modes of operation for automatic and manual control of the aircraft during all phases of flight. Attention is given to techniques for writing and using assertions to test flight software, an experimental setup to test flight software, and language features to support efficient use of assertions.

  14. FSD- FLEXIBLE SPACECRAFT DYNAMICS

    Science.gov (United States)

    Fedor, J. V.

    1994-01-01

    The Flexible Spacecraft Dynamics and Control program (FSD) was developed to aid in the simulation of a large class of flexible and rigid spacecraft. FSD is extremely versatile and can be used in attitude dynamics and control analysis as well as in-orbit support of deployment and control of spacecraft. FSD has been used to analyze the in-orbit attitude performance and antenna deployment of the RAE and IMP class satellites, and the HAWKEYE, SCATHA, EXOS-B, and Dynamics Explorer flight programs. FSD is applicable to inertially-oriented spinning, earth oriented, or gravity gradient stabilized spacecraft. The spacecraft flexibility is treated in a continuous manner (instead of finite element) by employing a series of shape functions for the flexible elements. Torsion, bending, and three flexible modes can be simulated for every flexible element. FSD can handle up to ten tubular elements in an arbitrary orientation. FSD is appropriate for studies involving the active control of pointed instruments, with options for digital PID (proportional, integral, derivative) error feedback controllers and control actuators such as thrusters and momentum wheels. The input to FSD is in four parts: 1) Orbit Construction FSD calculates a Keplerian orbit with environmental effects such as drag, magnetic torque, solar pressure, thermal effects, and thruster adjustments; or the user can supply a GTDS format orbit tape for a particular satellite/time-span; 2) Control words - for options such as gravity gradient effects, control torques, and integration ranges; 3) Mathematical descriptions of spacecraft, appendages, and control systems- including element geometry, properties, attitudes, libration damping, tip mass inertia, thermal expansion, magnetic tracking, and gimbal simulation options; and 4) Desired state variables to output, i.e., geometries, bending moments, fast Fourier transform plots, gimbal rotation, filter vectors, etc. All FSD input is of free format, namelist construction. FSD

  15. High-dynamic-range neutron time-of-flight detector used to infer the D(t,n)(4)He and D(d,n)(3)He reaction yield and ion temperature on OMEGA.

    Science.gov (United States)

    Forrest, C J; Glebov, V Yu; Goncharov, V N; Knauer, J P; Radha, P B; Regan, S P; Romanofsky, M H; Sangster, T C; Shoup, M J; Stoeckl, C

    2016-11-01

    Upgraded microchannel-plate-based photomultiplier tubes (MCP-PMT's) with increased stability to signal-shape linearity have been implemented on the 13.4-m neutron time-of-flight (nTOF) detector at the Omega Laser Facility. This diagnostic uses oxygenated xylene doped with diphenyloxazole C15H11NO + p-bis-(o-methylstyryl)-benzene (PPO + bis-MSB) wavelength shifting dyes and is coupled through four viewing ports to fast-gating MCP-PMT's, each with a different gain to allow one to measure the light output over a dynamic range of 1 × 10(6). With these enhancements, the 13.4-m nTOF can measure the D(t,n)(4)He and D(d,n)(3)He reaction yields and average ion temperatures in a single line of sight. Once calibrated for absolute neutron sensitivity, the nTOF detectors can be used to measure the neutron yield from 1 × 10(9) to 1 × 10(14) and the ion temperature with an accuracy approaching 5% for both the D(t,n)(4)He and D(d,n)(3)He reactions.

  16. High-dynamic-range neutron time-of-flight detector used to infer the D(t,n)4He and D(d,n)3He reaction yield and ion temperature on OMEGA

    Science.gov (United States)

    Forrest, C. J.; Glebov, V. Yu.; Goncharov, V. N.; Knauer, J. P.; Radha, P. B.; Regan, S. P.; Romanofsky, M. H.; Sangster, T. C.; Shoup, M. J.; Stoeckl, C.

    2016-11-01

    Upgraded microchannel-plate-based photomultiplier tubes (MCP-PMT's) with increased stability to signal-shape linearity have been implemented on the 13.4-m neutron time-of-flight (nTOF) detector at the Omega Laser Facility. This diagnostic uses oxygenated xylene doped with diphenyloxazole C15H11NO + p-bis-(o-methylstyryl)-benzene (PPO + bis-MSB) wavelength shifting dyes and is coupled through four viewing ports to fast-gating MCP-PMT's, each with a different gain to allow one to measure the light output over a dynamic range of 1 × 106. With these enhancements, the 13.4-m nTOF can measure the D(t,n)4He and D(d,n)3He reaction yields and average ion temperatures in a single line of sight. Once calibrated for absolute neutron sensitivity, the nTOF detectors can be used to measure the neutron yield from 1 × 109 to 1 × 1014 and the ion temperature with an accuracy approaching 5% for both the D(t,n)4He and D(d,n)3He reactions.

  17. High-dynamic-range neutron time-of-flight detector used to infer the D(t,n){sup 4}He and D(d,n){sup 3}He reaction yield and ion temperature on OMEGA

    Energy Technology Data Exchange (ETDEWEB)

    Forrest, C. J., E-mail: cforrest@lle.rochester.edu; Glebov, V. Yu.; Goncharov, V. N.; Knauer, J. P.; Radha, P. B.; Regan, S. P.; Romanofsky, M. H.; Sangster, T. C.; Shoup, M. J.; Stoeckl, C. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299 (United States)

    2016-11-15

    Upgraded microchannel-plate–based photomultiplier tubes (MCP-PMT’s) with increased stability to signal-shape linearity have been implemented on the 13.4-m neutron time-of-flight (nTOF) detector at the Omega Laser Facility. This diagnostic uses oxygenated xylene doped with diphenyloxazole C{sub 15}H{sub 11}NO + p-bis-(o-methylstyryl)-benzene (PPO + bis-MSB) wavelength shifting dyes and is coupled through four viewing ports to fast-gating MCP-PMT’s, each with a different gain to allow one to measure the light output over a dynamic range of 1 × 10{sup 6}. With these enhancements, the 13.4-m nTOF can measure the D(t,n){sup 4}He and D(d,n){sup 3}He reaction yields and average ion temperatures in a single line of sight. Once calibrated for absolute neutron sensitivity, the nTOF detectors can be used to measure the neutron yield from 1 × 10{sup 9} to 1 × 10{sup 14} and the ion temperature with an accuracy approaching 5% for both the D(t,n){sup 4}He and D(d,n){sup 3}He reactions.

  18. Bat flight: aerodynamics, kinematics and flight morphology.

    Science.gov (United States)

    Hedenström, Anders; Johansson, L Christoffer

    2015-03-01

    Bats evolved the ability of powered flight more than 50 million years ago. The modern bat is an efficient flyer and recent research on bat flight has revealed many intriguing facts. By using particle image velocimetry to visualize wake vortices, both the magnitude and time-history of aerodynamic forces can be estimated. At most speeds the downstroke generates both lift and thrust, whereas the function of the upstroke changes with forward flight speed. At hovering and slow speed bats use a leading edge vortex to enhance the lift beyond that allowed by steady aerodynamics and an inverted wing during the upstroke to further aid weight support. The bat wing and its skeleton exhibit many features and control mechanisms that are presumed to improve flight performance. Whereas bats appear aerodynamically less efficient than birds when it comes to cruising flight, they have the edge over birds when it comes to manoeuvring. There is a direct relationship between kinematics and the aerodynamic performance, but there is still a lack of knowledge about how (and if) the bat controls the movements and shape (planform and camber) of the wing. Considering the relatively few bat species whose aerodynamic tracks have been characterized, there is scope for new discoveries and a need to study species representing more extreme positions in the bat morphospace. © 2015. Published by The Company of Biologists Ltd.

  19. Flight Attendant Fatigue

    Science.gov (United States)

    2007-07-01

    Seattle to Helsinki) on the salivary melatonin and cortisol levels in 35 female flight atten- dants has shown that the resynchronization rate of these...in both summer and winter. Salivary melatonin and cortisol levels were measured at two-hour intervals for five days before, during, and after the 4...The effect of four-day round trip flights over 10 time zones on the circadian variation of salivary melatonin and cortisol in airline flight at

  20. Metagenomic Analysis of the Dynamic Changes in the Gut Microbiome of the Participants of the MARS-500 Experiment, Simulating Long Term Space Flight.

    Science.gov (United States)

    Mardanov, A V; Babykin, M M; Beletsky, A V; Grigoriev, A I; Zinchenko, V V; Kadnikov, V V; Kirpichnikov, M P; Mazur, A M; Nedoluzhko, A V; Novikova, N D; Prokhortchouk, E B; Ravin, N V; Skryabin, K G; Shestakov, S V

    2013-07-01

    A metagenomic analysis of the dynamic changes of the composition of the intestinal microbiome of five participants of the MARS-500 experiment was performed. DNA samples were isolated from the feces of the participants taken just before the experiment, upon 14, 30, 210, 363 and 510 days of isolation in the experimental module, and two weeks upon completion of the experiment. The taxonomic composition of the microbiome was analyzed by pyrosequencing of 16S rRNA gene fragments. Both the taxonomic and functional gene content of the microbiome of one participant were analyzed by whole metagenome sequencing using the SOLiD technique. Each participant had a specific microbiome that could be assigned to one of three recognized enterotypes. Two participants had enterotype I microbiomes characterized by the prevalence of Bacteroides, while the microbiomes of two others, assigned to type II, were dominated by Prevotella. One participant had a microbiome of mixed type. It was found that (1) changes in the taxonimic composition of the microbiomes occurred in the course of the experiment, but the enterotypes remained the same; (2) significant changes in the compositions of the microbiomes occurred just 14-30 days after the beginning of the experiment, presumably indicating the influence of stress factors in the first stage of the experiment; (3) a tendency toward a reversion of the microbiomes to their initial composition was observed two weeks after the end of the experiment, but complete recovery was not achieved. The metagenomic analysis of the microbiome of one of the participants showed that in spite of variations in the taxonomic compositions of microbiomes, the "functional" genetic composition was much more stable for most of the functional gene categories. Probably in the course of the experiment the taxonomic composition of the gut microbiome was adaptively changed to reflect the individual response to the experimental conditions. A new, balanced taxonomic composition

  1. Flight Standards Automation System -

    Data.gov (United States)

    Department of Transportation — FAVSIS supports Flight Standards Service (AFS) by maintaining their information on entities such as air carriers, air agencies, designated airmen, and check airmen....

  2. Aviation Flight Regulations

    National Research Council Canada - National Science Library

    2006-01-01

    .... This regulation covers aircraft operations, crew requirements and flight rules. It also covers Army aviation general provisions, training, standardization, and management of aviation resources...

  3. Initial Satellite Formation Flight Results from the Magnetospheric Multiscale Mission

    Science.gov (United States)

    Williams, Trevor; Ottenstein, Neil; Palmer, Eric; Farahmand, Mitra

    2016-01-01

    This paper will describe the results that have been obtained to date concerning MMS formation flying. The MMS spacecraft spin at a rate of 3.1 RPM, with spin axis roughly aligned with Ecliptic North. Several booms are used to deploy instruments: two 5 m magnetometer booms in the spin plane, two rigid booms of length 12.5 m along the positive and negative spin axes, and four flexible wire booms of length 60 m in the spin plane. Minimizing flexible motion of the wire booms requires that reorientation of the spacecraft spin axis be kept to a minimum: this is limited to attitude maneuvers to counteract the effects of gravity-gradient and apparent solar motion. Orbital maneuvers must therefore be carried out in essentially the nominal science attitude. These burns make use of a set of monopropellant hydrazine thrusters: two (of thrust 4.5 N) along the spin axis in each direction, and eight (of thrust 18 N) in the spin plane; the latter are pulsed at the spin rate to produce a net delta-v. An on-board accelerometer-based controller is used to accurately generate a commanded delta-v. Navigation makes use of a weak-signal GPS-based system: this allows signals to be received even when MMS is flying above the GPS orbits, producing a highly accurate determination of the four MMS orbits. This data is downlinked to the MMS Mission Operations Center (MOC) and used by the MOC Flight Dynamics Operations Area (FDOA) for maneuver design. These commands are then uplinked to the spacecraft and executed autonomously using the controller, with the ground monitoring the burns in real time.

  4. Flights of Imagination. An Introduction to Aerodynamics.

    Science.gov (United States)

    Hosking, Wayne

    The study and use of kites have contributed to science through the development of aeronautics. This document traces some of the history of kites and provides teachers and students with basic information about kite components and flight dynamics. The major portion of the book provides students with 18 projects which deal with: (1) shapes that will…

  5. Surface tension dominates insect flight on fluid interfaces.

    Science.gov (United States)

    Mukundarajan, Haripriya; Bardon, Thibaut C; Kim, Dong Hyun; Prakash, Manu

    2016-03-01

    Flight on the 2D air-water interface, with body weight supported by surface tension, is a unique locomotion strategy well adapted for the environmental niche on the surface of water. Although previously described in aquatic insects like stoneflies, the biomechanics of interfacial flight has never been analysed. Here, we report interfacial flight as an adapted behaviour in waterlily beetles (Galerucella nymphaeae) which are also dexterous airborne fliers. We present the first quantitative biomechanical model of interfacial flight in insects, uncovering an intricate interplay of capillary, aerodynamic and neuromuscular forces. We show that waterlily beetles use their tarsal claws to attach themselves to the interface, via a fluid contact line pinned at the claw. We investigate the kinematics of interfacial flight trajectories using high-speed imaging and construct a mathematical model describing the flight dynamics. Our results show that non-linear surface tension forces make interfacial flight energetically expensive compared with airborne flight at the relatively high speeds characteristic of waterlily beetles, and cause chaotic dynamics to arise naturally in these regimes. We identify the crucial roles of capillary-gravity wave drag and oscillatory surface tension forces which dominate interfacial flight, showing that the air-water interface presents a radically modified force landscape for flapping wing flight compared with air. © 2016. Published by The Company of Biologists Ltd.

  6. An Introduction to Multivariable Flight Control System Design

    Science.gov (United States)

    1992-10-01

    Sparks Siva S. Banda CONTROL DYNAMICS BRANCH FLIGHT CONTROL DIVISION FINAL REPORT FOP, PERIGD JAN 92 - OCT 92 APPROVED FOR PUBLIC RELEASE...and Aatomnatic Flight Controls, Part 1, Roskam Aviation and Engineering Corporation, Ottawa, KA, 1982. [2.4] "Miliitary Specification - Flying Qualities

  7. A flight investigation of static stability, control augmentation, and flight director influences on helicopter IFR handling qualities

    Science.gov (United States)

    Lebacqz, J. V.; Weber, J. M.; Corliss, L. D.

    1981-01-01

    A flight experiment was conducted using the NASA-Army V/STOLAND UH-1H variable-stability helicopter to investigate the influence of several longitudinal-static-stability, control-augmentation, and flight-director parameters on helicopter flying qualities during terminal area operations in instrument conditions. This experiment, which was part of a joint NASA/FAA program pertaining to helicopter IFR airworthiness, was designed to corroborate and extend previous ground simulation results obtained in this program. Variations examined included stable and neutral longitudinal control position gradients, rate-damping and attitude-command augmentation, and raw data versus flight-director displays. Pilot rating results agreed excellently with the ground simulation data, indicating an adequate instrument capability with rate-damping augmentation and neutral statics and the need for pitch-roll attitude augmentation to achieve a satisfactory system.

  8. On-orbit experience with the HEAO attitude control subsystem

    Science.gov (United States)

    Hoffman, D. P.; Berkery, E. A.

    1978-01-01

    The first satellite (HEAO-1) in the High Energy Astronomy Observatory Program series was launched successfully on Aug. 12, 1977. To date it has completed over nine months of orbital operation in a science data gathering mode. During this period all attitude control modes have been exercised and all primary mission objectives have been achieved. This paper highlights the characteristics of the attitude control subsystem design and compares the predicted performance with the actual flight operations experience. Environmental disturbance modeling, component hardware/software characteristics, and overall attitude control performance are reviewed and are found to compare very well with the prelaunch analytical predictions. Brief comments are also included regarding the operations aspects of the attitude control subsystem. The experience in this regard demonstrates the effectiveness of the design flexibility afforded by the presence of a general purpose digital processor in the subsystem flight hardware implementation.

  9. Performance evaluation and design of flight vehicle control systems

    CERN Document Server

    Falangas, Eric T

    2015-01-01

    This book will help students, control engineers and flight dynamics analysts to model and conduct sophisticated and systemic analyses of early flight vehicle designs controlled with multiple types of effectors and to design and evaluate new vehicle concepts in terms of satisfying mission and performance goals. Performance Evaluation and Design of Flight Vehicle Control Systems begins by creating a dynamic model of a generic flight vehicle that includes a range of elements from airplanes and launch vehicles to re-entry vehicles and spacecraft. The models may include dynamic effects dealing with structural flexibility, as well as dynamic coupling between structures and actuators, propellant sloshing, and aeroelasticity, and they are typically used for control analysis and design. The book shows how to efficiently combine different types of effectors together, such as aero-surfaces, TVC, throttling engines and RCS, to operate as a system by developing a mixing logic atrix. Methods of trimming a vehicle controll...

  10. Simulation and experimental research on line throwing rocket with flight

    Directory of Open Access Journals (Sweden)

    Wen-bin Gu

    2014-06-01

    Full Text Available The finite segment method is used to model the line throwing rocket system. A dynamic model of line throwing rocket with flight motion based on Kane's method is presented by the kinematics description of the system and the consideration of the forces acting on the system. The experiment designed according to the parameters of the dynamic model is made. The simulation and experiment results, such as range, velocity and flight time, are compared and analyzed. The simulation results are basically agreed with the test data, which shows that the flight motion of the line throwing rocket can be predicted by the dynamic model. A theoretical model and guide for the further research on the disturbance of rope and the guidance, flight control of line throwing rocket are provided by the dynamic modeling.

  11. Basics of space flight.

    Science.gov (United States)

    Celnikier, L. M.

    Space flight can be approached as an exercise in applied physics. "With his physicist's eye view" the author shows how well known and relatively elementary laws constrain what can and what cannot be done. This book will be of interest to anyone wishing to understand the real, rather than the imagined, limits of space flight.

  12. Voyager flight engineering preparations for Neptune encounter

    Science.gov (United States)

    Miller, L. J.; Savary, K. E.

    1988-01-01

    Voyager 2 will make the first close observations of the planet Neptune, during the period from June 1 to October 1,1989. A number of flight engineering activities are being conducted in preparation for the encounter. This paper discusses the most significant of these activities: new image motion compensation techniques, attitude control system changes, new exposure capabilities, new data handling capabilities, radiation protection measures, and new navigation methods. In addition, the process of performing late sequence updates is discussed. An overview of the Neptune mission is also presented.

  13. Attitudes toward emotions.

    Science.gov (United States)

    Harmon-Jones, Eddie; Harmon-Jones, Cindy; Amodio, David M; Gable, Philip A

    2011-12-01

    The present work outlines a theory of attitudes toward emotions, provides a measure of attitudes toward emotions, and then tests several predictions concerning relationships between attitudes toward specific emotions and emotional situation selection, emotional traits, emotional reactivity, and emotion regulation. The present conceptualization of individual differences in attitudes toward emotions focuses on specific emotions and presents data indicating that 5 emotions (anger, sadness, joy, fear, and disgust) load on 5 separate attitude factors (Study 1). Attitudes toward emotions predicted emotional situation selection (Study 2). Moreover, attitudes toward approach emotions (e.g., anger, joy) correlated directly with the associated trait emotions, whereas attitudes toward withdrawal emotions (fear, disgust) correlated inversely with associated trait emotions (Study 3). Similar results occurred when attitudes toward emotions were used to predict state emotional reactivity (Study 4). Finally, attitudes toward emotions predicted specific forms of emotion regulation (Study 5).

  14. E-Psychology: Consumers' Attitude

    Science.gov (United States)

    Jordanova, Malina; Vasileva, Lidia; Rasheva, Maximka; Bojinova, Rumiana

    Securing psychological supervision, consultations and help during long lasting flights is vital condition for success. That's why, knowing in details consumers (clients) attitude toward virtual psychology services is essential. Knowledge gained during nowadays studies on Earth will definitely help in the preparation for the future. The presentation focuses on results of a longitudinal survey assessing clients' attitudes toward e-psychology service. The first part of the survey was performed in spring 2006, while the second - in 2008. The study is part of an ongoing project OHN 1514/2005, funded by National Science Fund, Bulgaria. Project's strategic goal is to develop and offer a virtual high quality psychological service to people from remotes areas that have no contact with licensed psychologist. The project enables experts to communicate directly with clients and perform remote consultations, supervision, etc. The objective of this presentation is to report changes and trends in clients' attitude towards innovative virtual psychology care. Both parts of the survey involved men and women between 19 and 70 year, who defend various opinions on the application of virtual technologies for healthcare. The sample is stratifies for age, gender, education level.

  15. Orion Flight Performance Design Trades

    Science.gov (United States)

    Jackson, Mark C.; Straube, Timothy

    2010-01-01

    A significant portion of the Orion pre-PDR design effort has focused on balancing mass with performance. High level performance metrics include abort success rates, lunar surface coverage, landing accuracy and touchdown loads. These metrics may be converted to parameters that affect mass, such as ballast for stabilizing the abort vehicle, propellant to achieve increased lunar coverage or extended missions, or ballast to increase the lift-to-drag ratio to improve entry and landing performance. The Orion Flight Dynamics team was tasked to perform analyses to evaluate many of these trades. These analyses not only provide insight into the physics of each particular trade but, in aggregate, they illustrate the processes used by Orion to balance performance and mass margins, and thereby make design decisions. Lessons learned can be gleaned from a review of these studies which will be useful to other spacecraft system designers. These lessons fall into several categories, including: appropriate application of Monte Carlo analysis in design trades, managing margin in a highly mass-constrained environment, and the use of requirements to balance margin between subsystems and components. This paper provides a review of some of the trades and analyses conducted by the Flight Dynamics team, as well as systems engineering lessons learned.

  16. Kalman Filter for Spinning Spacecraft Attitude Estimation

    Science.gov (United States)

    Markley, F. Landis; Sedlak, Joseph E.

    2008-01-01

    This paper presents a Kalman filter using a seven-component attitude state vector comprising the angular momentum components in an inertial reference frame, the angular momentum components in the body frame, and a rotation angle. The relatively slow variation of these parameters makes this parameterization advantageous for spinning spacecraft attitude estimation. The filter accounts for the constraint that the magnitude of the angular momentum vector is the same in the inertial and body frames by employing a reduced six-component error state. Four variants of the filter, defined by different choices for the reduced error state, are tested against a quaternion-based filter using simulated data for the THEMIS mission. Three of these variants choose three of the components of the error state to be the infinitesimal attitude error angles, facilitating the computation of measurement sensitivity matrices and causing the usual 3x3 attitude covariance matrix to be a submatrix of the 6x6 covariance of the error state. These variants differ in their choice for the other three components of the error state. The variant employing the infinitesimal attitude error angles and the angular momentum components in an inertial reference frame as the error state shows the best combination of robustness and efficiency in the simulations. Attitude estimation results using THEMIS flight data are also presented.

  17. A Flight-Calibrated Methodology for Determination of Cassini Thruster On-Times for Reaction Wheel Biases

    Science.gov (United States)

    Sarani, Siamak

    2010-01-01

    This paper describes a methodology for accurate and flight-calibrated determination of the on-times of the Cassini spacecraft Reaction Control System (RCS) thrusters, without any form of dynamic simulation, for the reaction wheel biases. The hydrazine usage and the delta V vector in body frame are also computed from the respective thruster on-times. The Cassini spacecraft, the largest and most complex interplanetary spacecraft ever built, continues to undertake ambitious and unique scientific observations of planet Saturn, Titan, Enceladus, and other moons of Saturn. In order to maintain a stable attitude during the course of its mission, this three-axis stabilized spacecraft uses two different control systems: the RCS and the reaction wheel assembly control system. The RCS is used to execute a commanded spacecraft slew, to maintain three-axis attitude control, control spacecraft's attitude while performing science observations with coarse pointing requirements, e.g. during targeted low-altitude Titan and Enceladus flybys, bias the momentum of reaction wheels, and to perform RCS-based orbit trim maneuvers. The use of RCS often imparts undesired delta V on the spacecraft. The Cassini navigation team requires accurate predictions of the delta V in spacecraft coordinates and inertial frame resulting from slews using RCS thrusters and more importantly from reaction wheel bias events. It is crucial for the Cassini spacecraft attitude control and navigation teams to be able to, quickly but accurately, predict the hydrazine usage and delta V for various reaction wheel bias events without actually having to spend time and resources simulating the event in flight software-based dynamic simulation or hardware-in-the-loop simulation environments. The methodology described in this paper, and the ground software developed thereof, are designed to provide just that. This methodology assumes a priori knowledge of thrust magnitudes and thruster pulse rise and tail-off time

  18. Vibration Characteristics of Squeeze Film Damper during Maneuver Flight

    Science.gov (United States)

    Wang, Siji; Liao, Mingfu; Li, Wei

    2015-05-01

    The rotor systems of an aero engine will endure additional centrifugal force and gyroscopic moment during maneuver flight. A maneuver fly mechanical simulator is designed and experimental investigations on dynamics of squeeze film damper (SFD) under the different additional centrifugal force and gyroscopic moment are carried out. The results show that the maneuver flight weaken effectiveness of the SFD, the additional centrifugal force and gyroscopic moment caused by maneuver flight will change film damping, film stiffness. And the influence of maneuver flight can be effective relieved by increasing the film clearance.

  19. Fused Reality for Enhanced Flight Test Capabilities

    Science.gov (United States)

    Bachelder, Ed; Klyde, David

    2011-01-01

    The feasibility of using Fused Reality-based simulation technology to enhance flight test capabilities has been investigated. In terms of relevancy to piloted evaluation, there remains no substitute for actual flight tests, even when considering the fidelity and effectiveness of modern ground-based simulators. In addition to real-world cueing (vestibular, visual, aural, environmental, etc.), flight tests provide subtle but key intangibles that cannot be duplicated in a ground-based simulator. There is, however, a cost to be paid for the benefits of flight in terms of budget, mission complexity, and safety, including the need for ground and control-room personnel, additional aircraft, etc. A Fused Reality(tm) (FR) Flight system was developed that allows a virtual environment to be integrated with the test aircraft so that tasks such as aerial refueling, formation flying, or approach and landing can be accomplished without additional aircraft resources or the risk of operating in close proximity to the ground or other aircraft. Furthermore, the dynamic motions of the simulated objects can be directly correlated with the responses of the test aircraft. The FR Flight system will allow real-time observation of, and manual interaction with, the cockpit environment that serves as a frame for the virtual out-the-window scene.

  20. A SIMULINK environment for flight dynamics and control analysis: Application to the DHC-2 Beaver. Part 1: Implementation of a model library in SIMULINK. Part 2: Nonlinear analysis of the Beaver autopilot

    Science.gov (United States)

    Rauw, Marc O.

    1993-01-01

    The design of advanced Automatic Aircraft Control Systems (AACS's) can be improved upon considerably if the designer can access all models and tools required for control system design and analysis through a graphical user interface, from within one software environment. This MSc-thesis presents the first step in the development of such an environment, which is currently being done at the Section for Stability and Control of Delft University of Technology, Faculty of Aerospace Engineering. The environment is implemented within the commercially available software package MATLAB/SIMULINK. The report consists of two parts. Part 1 gives a detailed description of the AACS design environment. The heart of this environment is formed by the SIMULINK implementation of a nonlinear aircraft model in block-diagram format. The model has been worked out for the old laboratory aircraft of the Faculty, the DeHavilland DHC-2 'Beaver', but due to its modular structure, it can easily be adapted for other aircraft. Part 1 also describes MATLAB programs which can be applied for finding steady-state trimmed-flight conditions and for linearization of the aircraft model, and it shows how the built-in simulation routines of SIMULINK have been used for open-loop analysis of the aircraft dynamics. Apart from the implementation of the models and tools, a thorough treatment of the theoretical backgrounds is presented. Part 2 of this report presents a part of an autopilot design process for the 'Beaver' aircraft, which clearly demonstrates the power and flexibility of the AACS design environment from part 1. Evaluations of all longitudinal and lateral control laws by means of nonlinear simulations are treated in detail. A floppy disk containing all relevant MATLAB programs and SIMULINK models is provided as a supplement.

  1. Development of a flight software testing methodology

    Science.gov (United States)

    Mccluskey, E. J.; Andrews, D. M.

    1985-01-01

    The research to develop a testing methodology for flight software is described. An experiment was conducted in using assertions to dynamically test digital flight control software. The experiment showed that 87% of typical errors introduced into the program would be detected by assertions. Detailed analysis of the test data showed that the number of assertions needed to detect those errors could be reduced to a minimal set. The analysis also revealed that the most effective assertions tested program parameters that provided greater indirect (collateral) testing of other parameters. In addition, a prototype watchdog task system was built to evaluate the effectiveness of executing assertions in parallel by using the multitasking features of Ada.

  2. New drag laws for flapping flight

    Science.gov (United States)

    Agre, Natalie; Zhang, Jun; Ristroph, Leif

    2014-11-01

    Classical aerodynamic theory predicts that a steadily-moving wing experiences fluid forces proportional to the square of its speed. For bird and insect flight, however, there is currently no model for how drag is affected by flapping motions of the wings. By considering simple wings driven to oscillate while progressing through the air, we discover that flapping significantly changes the magnitude of drag and fundamentally alters its scaling with speed. These measurements motivate a new aerodynamic force law that could help to understand the free-flight dynamics, control, and stability of insects and flapping-wing robots.

  3. Analysis of shadowing effects on MIR photovoltaic and solar dynamic power systems

    Science.gov (United States)

    Fincannon, James

    1995-01-01

    The NASA Lewis Research Center is currently working with RSC-Energia, the Russian Space Agency, and Allied Signal in developing a flight demonstration solar dynamic power system. This type of power system is dependent upon solar flux that is reflected and concentrated into a thermal storage system to provide the thermal energy input to a closed-cycle Brayton heat engine. The solar dynamic unit will be flown on the Russian Mir space station in anticipation of use on the International Space Station Alpha. By the time the power system is launched, the Mir will be a spatially complex configuration which will have, in addition to the three-gimbaled solar dynamic unit, eleven solar array wings that are either fixed or track the Sun along one axis and a variety or repositionable habitation and experiment modules. The proximity of arrays to modules creates a situation which makes it highly probable that there will be varying solar flux due to shadowing on the solar dynamic unit and some of the arrays throughout the orbit. Shadowing causes fluctuations in the power output from the arrays and the solar dynamic power system, thus reducing the energy capabilities of the spacecraft. An assessment of the capabilities of the power system under these conditions is an important part in influencing the design and operations of the spacecraft and predicting its energy performance. This paper describes the results obtained from using the Orbiting Spacecraft Shadowing Analysis Station program that was integrated into the Station Power Analysis for Capability Evaluation (SPACE) electrical power system computer program. OSSA allows one to consider the numerous complex factors for analyzing the shadowing effects on the electrical power system including the variety of spacecraft hardware geometric configurations, yearly and daily orbital variations in the vehicle attitude and orbital maneuvers (for communications coverage, payload pointing requirements and rendezvous/docking with other

  4. Acquisition of a Biomedical Database of Acute Responses to Space Flight during Commercial Personal Suborbital Flights

    Science.gov (United States)

    Charles, John B.; Richard, Elizabeth E.

    2010-01-01

    There is currently too little reproducible data for a scientifically valid understanding of the initial responses of a diverse human population to weightlessness and other space flight factors. Astronauts on orbital space flights to date have been extremely healthy and fit, unlike the general human population. Data collection opportunities during the earliest phases of space flights to date, when the most dynamic responses may occur in response to abrupt transitions in acceleration loads, have been limited by operational restrictions on our ability to encumber the astronauts with even minimal monitoring instrumentation. The era of commercial personal suborbital space flights promises the availability of a large (perhaps hundreds per year), diverse population of potential participants with a vested interest in their own responses to space flight factors, and a number of flight providers interested in documenting and demonstrating the attractiveness and safety of the experience they are offering. Voluntary participation by even a fraction of the flying population in a uniform set of unobtrusive biomedical data collections would provide a database enabling statistical analyses of a variety of acute responses to a standardized space flight environment. This will benefit both the space life sciences discipline and the general state of human knowledge.

  5. Flight Research Building (Hangar)

    Data.gov (United States)

    Federal Laboratory Consortium — The NASA Glenn Flight Research Building is located at the NASA Glenn Research Center with aircraft access to Cleveland Hopkins International Airport. The facility is...

  6. Flight Systems Monitor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I project will develop the Flight System Monitor which will use non-intrusive electrical monitoring (NEMO). The electronic system health of...

  7. Robust Optimal Attitude Controller for MIMO Uncertain Hexarotor MAVs: Disturbance Observer-Based

    Directory of Open Access Journals (Sweden)

    Nurul Dayana Salim

    2016-01-01

    Full Text Available This paper proposes a robust optimal attitude control design for multiple-input, multiple-output (MIMO uncertain hexarotor micro aerial vehicles (MAVs in the presence of parametric uncertainties, external time-varying disturbances, nonlinear dynamics, and coupling. The parametric uncertainties, external time-varying disturbances, nonlinear dynamics, and coupling are treated as the total disturbance in the proposed design. The proposed controller is achieved in two simple steps. First, an optimal linear-quadratic regulator (LQR controller is designed to guarantee that the nominal closed-loop system is asymptotically stable without considering the total disturbance. After that, a disturbance observer is integrated into the closed-loop system to estimate the total disturbance acting on the system. The total disturbance is compensated by a compensation input based on the estimated total disturbance. Robust properties analysis is given to prove that the state is ultimately bounded in specified boundaries. Simulation results illustrate the robustness of the disturbance observer-based optimal attitude control design for hovering and aggressive flight missions in the presence of the total disturbance.

  8. MERCATOR: Methods and Realization for Control of the Attitude and the Orbit of spacecraft

    Science.gov (United States)

    Tavernier, Gilles; Campan, Genevieve

    1993-01-01

    Since 1974, CNES has been involved in geostationary positioning. Among different entities participating in operations and their preparation, the Flight Dynamics Center (FDC) is in charge of performing the following tasks: orbit determination; attitude determination; computation, monitoring, and calibration of orbit maneuvers; computation, monitoring, and calibration of attitude maneuvers; and operational predictions. In order to fulfill this mission, the FDC receives telemetry from the satellite and localization measurements from ground stations (e.g., CNES, NASA, INTELSAT). These data are processed by space dynamics programs integrated in the MERCATOR system which is run on SUN workstations (UNIX O.S.). The main features of MERCATOR are redundancy, modularity, and flexibility: efficient, flexible, and user friendly man-machine interface; and four identical SUN stations redundantly linked in an Ethernet network. Each workstation can perform all the tasks from data acquisition to computation results dissemination through a video network. A team of four engineers can handle the space mechanics aspects of a complete geostationary positioning from the injection into a transfer orbit to the final maneuvers in the station-keeping window. MERCATOR has been or is to be used for operations related to more than ten geostationary positionings. Initially developed for geostationary satellites, MERCATOR's methodology was also used for satellite control centers and can be applied to a wide range of satellites and to future manned missions.

  9. Orion Abort Flight Test

    Science.gov (United States)

    Hayes, Peggy Sue

    2010-01-01

    The purpose of NASA's Constellation project is to create the new generation of spacecraft for human flight to the International Space Station in low-earth orbit, the lunar surface, as well as for use in future deep-space exploration. One portion of the Constellation program was the development of the Orion crew exploration vehicle (CEV) to be used in spaceflight. The Orion spacecraft consists of a crew module, service module, space adapter and launch abort system. The crew module was designed to hold as many as six crew members. The Orion crew exploration vehicle is similar in design to the Apollo space capsules, although larger and more massive. The Flight Test Office is the responsible flight test organization for the launch abort system on the Orion crew exploration vehicle. The Flight Test Office originally proposed six tests that would demonstrate the use of the launch abort system. These flight tests were to be performed at the White Sands Missile Range in New Mexico and were similar in nature to the Apollo Little Joe II tests performed in the 1960s. The first flight test of the launch abort system was a pad abort (PA-1), that took place on 6 May 2010 at the White Sands Missile Range in New Mexico. Primary flight test objectives were to demonstrate the capability of the launch abort system to propel the crew module a safe distance away from a launch vehicle during a pad abort, to demonstrate the stability and control characteristics of the vehicle, and to determine the performance of the motors contained within the launch abort system. The focus of the PA-1 flight test was engineering development and data acquisition, not certification. In this presentation, a high level overview of the PA-1 vehicle is given, along with an overview of the Mobile Operations Facility and information on the White Sands tracking sites for radar & optics. Several lessons learned are presented, including detailed information on the lessons learned in the development of wind

  10. Aerodynamics of Bird Flight

    OpenAIRE

    Dvořák Rudolf

    2014-01-01

    Unlike airplanes birds must have either flapping or oscillating wings (the hummingbird). Only such wings can produce both lift and thrust – two sine qua non attributes of flying.The bird wings have several possibilities how to obtain the same functions as airplane wings. All are realized by the system of flight feathers. Birds have also the capabilities of adjusting the shape of the wing according to what the immediate flight situation demands, as well as of responding almost immediately to c...

  11. Flight Test Techniques

    Science.gov (United States)

    1989-01-01

    PARTICULARITES ET INNOVATIONS par G.Guyot 4 THE EXPERIMENTAL AIRCRAFT FLIGHT TEST PIOGRAMME by R.A.Hartley 5 REAL-TIME LGHT TEST ANALYSIS AND DISPLAY TECNIQUES ...the surface with a paint brush approximately 30 min prior to takeoff. Documentation was obtained from chase aircraft photographs. A dark curved line...also exhibited numerous teething difficulties caused by its radical flight control system. That these problems were worked out (particularly those

  12. Adaptive structures flight experiments

    Science.gov (United States)

    Martin, Maurice

    The topics are presented in viewgraph form and include the following: adaptive structures flight experiments; enhanced resolution using active vibration suppression; Advanced Controls Technology Experiment (ACTEX); ACTEX program status; ACTEX-2; ACTEX-2 program status; modular control patch; STRV-1b Cryocooler Vibration Suppression Experiment; STRV-1b program status; Precision Optical Bench Experiment (PROBE); Clementine Spacecraft Configuration; TECHSAT all-composite spacecraft; Inexpensive Structures and Materials Flight Experiment (INFLEX); and INFLEX program status.

  13. Satellite Attitude Control System Simulator

    Directory of Open Access Journals (Sweden)

    G.T. Conti

    2008-01-01

    Full Text Available Future space missions will involve satellites with great autonomy and stringent pointing precision, requiring of the Attitude Control Systems (ACS with better performance than before, which is function of the control algorithms implemented on board computers. The difficulties for developing experimental ACS test is to obtain zero gravity and torque free conditions similar to the SCA operate in space. However, prototypes for control algorithms experimental verification are fundamental for space mission success. This paper presents the parameters estimation such as inertia matrix and position of mass centre of a Satellite Attitude Control System Simulator (SACSS, using algorithms based on least square regression and least square recursive methods. Simulations have shown that both methods have estimated the system parameters with small error. However, the least square recursive methods have performance more adequate for the SACSS objectives. The SACSS platform model will be used to do experimental verification of fundamental aspects of the satellite attitude dynamics and design of different attitude control algorithm.

  14. Magnesium and Space Flight

    Science.gov (United States)

    Smith, Scott M.; Zwart, Sara R.

    2015-01-01

    Magnesium is an essential nutrient for muscle, cardiovascular, and bone health on Earth, and during space flight. We sought to evaluate magnesium status in 43 astronauts (34 male, 9 female; 47 ± 5 years old, mean ± SD) before, during, and after 4–6-month space missions. We also studied individuals participating in a ground analog of space flight (head-down-tilt bed rest; n = 27 (17 male, 10 female), 35 ± 7 years old). We evaluated serum concentration and 24-h urinary excretion of magnesium, along with estimates of tissue magnesium status from sublingual cells. Serum magnesium increased late in flight, while urinary magnesium excretion was higher over the course of 180-day space missions. Urinary magnesium increased during flight but decreased significantly at landing. Neither serum nor urinary magnesium changed during bed rest. For flight and bed rest, significant correlations existed between the area under the curve of serum and urinary magnesium and the change in total body bone mineral content. Tissue magnesium concentration was unchanged after flight and bed rest. Increased excretion of magnesium is likely partially from bone and partially from diet, but importantly, it does not come at the expense of muscle tissue stores. While further study is needed to better understand the implications of these findings for longer space exploration missions, magnesium homeostasis and tissue status seem well maintained during 4–6-month space missions. PMID:26670248

  15. Magnesium and Space Flight

    Directory of Open Access Journals (Sweden)

    Scott M. Smith

    2015-12-01

    Full Text Available Magnesium is an essential nutrient for muscle, cardiovascular, and bone health on Earth, and during space flight. We sought to evaluate magnesium status in 43 astronauts (34 male, 9 female; 47 ± 5 years old, mean ± SD before, during, and after 4–6-month space missions. We also studied individuals participating in a ground analog of space flight (head-down-tilt bed rest; n = 27 (17 male, 10 female, 35 ± 7 years old. We evaluated serum concentration and 24-h urinary excretion of magnesium, along with estimates of tissue magnesium status from sublingual cells. Serum magnesium increased late in flight, while urinary magnesium excretion was higher over the course of 180-day space missions. Urinary magnesium increased during flight but decreased significantly at landing. Neither serum nor urinary magnesium changed during bed rest. For flight and bed rest, significant correlations existed between the area under the curve of serum and urinary magnesium and the change in total body bone mineral content. Tissue magnesium concentration was unchanged after flight and bed rest. Increased excretion of magnesium is likely partially from bone and partially from diet, but importantly, it does not come at the expense of muscle tissue stores. While further study is needed to better understand the implications of these findings for longer space exploration missions, magnesium homeostasis and tissue status seem well maintained during 4–6-month space missions.

  16. Generation of the pitch moment during the controlled flight after takeoff of fruitflies.

    Directory of Open Access Journals (Sweden)

    Mao Wei Chen

    Full Text Available In the present paper, the controlled flight of fruitflies after voluntary takeoff is studied. Wing and body kinematics of the insects after takeoff are measured using high-speed video techniques, and the aerodynamic force and moment are calculated by the computational fluid dynamics method based on the measured data. How the control moments are generated is analyzed by correlating the computed moments with the wing kinematics. A fruit-fly has a large pitch-up angular velocity owing to the takeoff jump and the fly controls its body attitude by producing pitching moments. It is found that the pitching moment is produced by changes in both the aerodynamic force and the moment arm. The change in the aerodynamic force is mainly due to the change in angle of attack. The change in the moment arm is mainly due to the change in the mean stroke angle and deviation angle, and the deviation angle plays a more important role than the mean stroke angle in changing the moment arm (note that change in deviation angle implies variation in the position of the aerodynamic stroke plane with respect to the anatomical stroke plane. This is unlike the case of fruitflies correcting pitch perturbations in steady free flight, where they produce pitching moment mainly by changes in mean stroke angle.

  17. Peculiarities of transformation of adaptation level of the astronaut in conditions of long-lasting flight

    Science.gov (United States)

    Padashulya, H.; Prisnyakova, L.; Prisnyakov, V.

    Prognostication of the development of adverse factors of psychological processes in the personality of the astronaut who time and again feels transformation of internal structure of his personality is one of cardinal problems of the long-lasting flight Adaptation to changing conditions of long-lasting flight is of particular importance because it has an effect on the efficiency of discharged functions and mutual relations in the team The fact of standard psychological changes emerging in the personality being in the state of structural transformations is the precondition for the possibility of prognostication Age-specific gender and temperamental differences in the personality enable to standardize these changes Examination of the process of transformation of adaptation level of the personality in the varied environment depending on the type of temperament and constituents age and gender is chief object of the report In the report it is shown that in the process of transformation of adaptation parameters - attitude to guillemotleft work guillemotright guillemotleft family guillemotright guillemotleft environment guillemotright and guillemotleft ego guillemotright - the changes can go in two directions - in the direction of increase and decline of indexes The trend of increase enables to accumulate them and form potentiality to reduce or increase the level of personality adaptation There is a hypothesis that the dynamics of the process of transformation of adaptation parameter is shown up in the orientation of increase of

  18. Paresev in flight with pilot Milt Thompson

    Science.gov (United States)

    1964-01-01

    This movie clip runs 37 seconds in length and begins with a shot from the chase plane of NASA Dryden test pilot Milt Thompson at the controls of the Paresev, then the onboard view from the pilot's seat and finally bringing the Paresev in for a landing on the dry lakebed at Edwards AFB. The Paresev (Paraglider Rescue Vehicle) was an indirect outgrowth of kite-parachute studies by NACA Langley engineer Francis M. Rogallo. In early 1960's the 'Rogallo wing' seemed an excellent means of returning a spacecraft to Earth. The delta wing design was patented by Mr. Rogallo. In May 1961, Robert R. Gilruth, director of the NASA Space Task Group, requested studies of an inflatable Rogallo-type 'Parawing' for spacecraft. Several companies responded; North American Aviation, Downey, California, produced the most acceptable concept and development was contracted to that company. In November 1961 NASA Headquarters launched a paraglider development program, with Langley doing wind tunnel studies and the NASA Flight Research Center supporting the North American test program. The North American concept was a capsule-type vehicle with a stowed 'parawing' that could be deployed and controlled from within for a landing more like an airplane instead of a 'splash down' in the ocean. The logistics became enormous and the price exorbitant, plus NASA pilots and engineers felt some baseline experience like building a vehicle and flying a Parawing should be accomplished first. The Paresev (Paraglider Research Vehicle) was used to gain in-flight experience with four different membranes (wings), and was not used to develop the more complicated inflatable deployment system. The Paresev was designed by Charles Richard, of the Flight Research Center Vehicle and System Dynamics Branch, with the rest of the team being: engineers, Richard Klein, Gary Layton, John Orahood, and Joe Wilson; from the Maintenance and Manufacturing Branch: Frank Fedor, LeRoy Barto; Victor Horton as Project Manager, with

  19. In-flight data acquisition and flight testing for system identification of flapping-wing MAVs

    NARCIS (Netherlands)

    Caetano, J. V.; Armanini, S.F.; Karasek, M.

    2017-01-01

    Although flapping-wing micro aerial vehicles have become a hot topic in academia, the knowledge we have of these systems, their force generation mechanisms and dynamics is still limited. Recent technological advances have allowed for the development of free flight test setups using on-board

  20. Validation of the Automation Attitude Questionnaire for Airline Pilots ...

    African Journals Online (AJOL)

    The Cronbach's alpha coefficients and the mean inter-item correlation of each factor were highly satisfactory and confirmed the homogeneity and unidimensionality of the five-factor solution for the AAQ. Keywords: Aviation, Automation Attitude Questionnaire, Factor Analysis, Human Factors, Flight Deck, Psychometric ...

  1. DAST in Flight

    Science.gov (United States)

    1980-01-01

    The modified BQM-34 Firebee II drone with Aeroelastic Research Wing (ARW-1), a supercritical airfoil, during a 1980 research flight. The remotely-piloted vehicle, which was air launched from NASA's NB-52B mothership, participated in the Drones for Aerodynamic and Structural Testing (DAST) program which ran from 1977 to 1983. The DAST 1 aircraft (Serial #72-1557), pictured, crashed on 12 June 1980 after its right wing ripped off during a test flight near Cuddeback Dry Lake, California. The crash occurred on the modified drone's third free flight. These are the image contact sheets for each image resolution of the NASA Dryden Drones for Aerodynamic and Structural Testing (DAST) Photo Gallery. From 1977 to 1983, the Dryden Flight Research Center, Edwards, California, (under two different names) conducted the DAST Program as a high-risk flight experiment using a ground-controlled, pilotless aircraft. Described by NASA engineers as a 'wind tunnel in the sky,' the DAST was a specially modified Teledyne-Ryan BQM-34E/F Firebee II supersonic target drone that was flown to validate theoretical predictions under actual flight conditions in a joint project with the Langley Research Center, Hampton, Virginia. The DAST Program merged advances in electronic remote control systems with advances in airplane design. Drones (remotely controlled, missile-like vehicles initially developed to serve as gunnery targets) had been deployed successfully during the Vietnamese conflict as reconnaissance aircraft. After the war, the energy crisis of the 1970s led NASA to seek new ways to cut fuel use and improve airplane efficiency. The DAST Program's drones provided an economical, fuel-conscious method for conducting in-flight experiments from a remote ground site. DAST explored the technology required to build wing structures with less than normal stiffness. This was done because stiffness requires structural weight but ensures freedom from flutter-an uncontrolled, divergent oscillation of

  2. Perseus Post-flight

    Science.gov (United States)

    1991-01-01

    Crew members check out the Perseus proof-of-concept vehicle on Rogers Dry Lake, adjacent to the Dryden Flight Research Center, Edwards, California, after a test flight in 1991. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA) program, which later evolved

  3. Aerodynamics of bird flight

    Directory of Open Access Journals (Sweden)

    Dvořák Rudolf

    2016-01-01

    Full Text Available Unlike airplanes birds must have either flapping or oscillating wings (the hummingbird. Only such wings can produce both lift and thrust – two sine qua non attributes of flying.The bird wings have several possibilities how to obtain the same functions as airplane wings. All are realized by the system of flight feathers. Birds have also the capabilities of adjusting the shape of the wing according to what the immediate flight situation demands, as well as of responding almost immediately to conditions the flow environment dictates, such as wind gusts, object avoidance, target tracking, etc. In bird aerodynamics also the tail plays an important role. To fly, wings impart downward momentum to the surrounding air and obtain lift by reaction. How this is achieved under various flight situations (cruise flight, hovering, landing, etc., and what the role is of the wing-generated vortices in producing lift and thrust is discussed.The issue of studying bird flight experimentally from in vivo or in vitro experiments is also briefly discussed.

  4. 14 CFR 121.493 - Flight time limitations: Flight engineers and flight navigators.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight time limitations: Flight engineers and flight navigators. 121.493 Section 121.493 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time...

  5. Flight calls and orientation

    DEFF Research Database (Denmark)

    Larsen, Ole Næsbye; Andersen, Bent Bach; Kropp, Wibke

    2008-01-01

    flight calls was simulated by sequential computer controlled activation of five loudspeakers placed in a linear array perpendicular to the bird's migration course. The bird responded to this stimulation by changing its migratory course in the direction of that of the ‘flying conspecifics' but after about...... 30 minutes it drifted back to its original migration course. The results suggest that songbirds migrating alone at night can use the flight calls from conspecifics as additional cues for orientation and that they may compare this information with other cues to decide what course to keep.......  In a pilot experiment a European Robin, Erithacus rubecula, expressing migratory restlessness with a stable orientation, was video filmed in the dark with an infrared camera and its directional migratory activity was recorded. The flight overhead of migrating conspecifics uttering nocturnal...

  6. IRAC Full-Scale Flight Testbed Capabilities

    Science.gov (United States)

    Lee, James A.; Pahle, Joseph; Cogan, Bruce R.; Hanson, Curtis E.; Bosworth, John T.

    2009-01-01

    Overview: Provide validation of adaptive control law concepts through full scale flight evaluation in a representative avionics architecture. Develop an understanding of aircraft dynamics of current vehicles in damaged and upset conditions Real-world conditions include: a) Turbulence, sensor noise, feedback biases; and b) Coupling between pilot and adaptive system. Simulated damage includes 1) "B" matrix (surface) failures; and 2) "A" matrix failures. Evaluate robustness of control systems to anticipated and unanticipated failures.

  7. A Low Cost Approach to Simultaneous Orbit, Attitude, and Rate Estimation Using an Extended Kalman Filter

    Science.gov (United States)

    Deutschmann, Julie; Harman, Rick; Bar-Itzhack, Itzhack

    1998-01-01

    An innovative approach to autonomous attitude and trajectory estimation is available using only magnetic field data and rate data. The estimation is performed simultaneously using an Extended Kalman Filter, a well known algorithm used extensively in onboard applications. The magnetic field is measured on a satellite by a magnetometer, an inexpensive and reliable sensor flown on virtually all satellites in low earth orbit. Rate data is provided by a gyro, which can be costly. This system has been developed and successfully tested in a post-processing mode using magnetometer and gyro data from 4 satellites supported by the Flight Dynamics Division at Goddard. In order for this system to be truly low cost, an alternative source for rate data must be utilized. An independent system which estimate spacecraft rate has been successfully developed and tested using only magnetometer data or a combination of magnetometer data and sun sensor data, which is less costly than a gyro. This system also uses an Extended Kalman Filter. Merging the two systems will provide an extremely low cost, autonomous approach to attitude and trajectory estimation. In this work we provide the theoretical background of the combined system. The measurement matrix is developed by combining the measurement matrix of the orbit and attitude estimation EKF with the measurement matrix of the rate estimation EKF, which is composed of a pseudo-measurement which makes the effective measurement a function of the angular velocity. Associated with this is the development of the noise covariance matrix associated with the original measurement combined with the new pseudo-measurement. In addition, the combination of the dynamics from the two systems is presented along with preliminary test results.

  8. Integrated Flight Path Planning System and Flight Control System for Unmanned Helicopters

    Directory of Open Access Journals (Sweden)

    Yu-Hsiang Lin

    2011-07-01

    Full Text Available This paper focuses on the design of an integrated navigation and guidance system for unmanned helicopters. The integrated navigation system comprises two systems: the Flight Path Planning System (FPPS and the Flight Control System (FCS. The FPPS finds the shortest flight path by the A-Star (A* algorithm in an adaptive manner for different flight conditions, and the FPPS can add a forbidden zone to stop the unmanned helicopter from crossing over into dangerous areas. In this paper, the FPPS computation time is reduced by the multi-resolution scheme, and the flight path quality is improved by the path smoothing methods. Meanwhile, the FCS includes the fuzzy inference systems (FISs based on the fuzzy logic. By using expert knowledge and experience to train the FIS, the controller can operate the unmanned helicopter without dynamic models. The integrated system of the FPPS and the FCS is aimed at providing navigation and guidance to the mission destination and it is implemented by coupling the flight simulation software, X-Plane, and the computing software, MATLAB. Simulations are performed and shown in real time three-dimensional animations. Finally, the integrated system is demonstrated to work successfully in controlling the unmanned helicopter to operate in various terrains of a digital elevation model (DEM.

  9. Adaptive Jacobian Fuzzy Attitude Control for Flexible Spacecraft Combined Attitude and Sun Tracking System

    Science.gov (United States)

    Chak, Yew-Chung; Varatharajoo, Renuganth

    2016-07-01

    Many spacecraft attitude control systems today use reaction wheels to deliver precise torques to achieve three-axis attitude stabilization. However, irrecoverable mechanical failure of reaction wheels could potentially lead to mission interruption or total loss. The electrically-powered Solar Array Drive Assemblies (SADA) are usually installed in the pitch axis which rotate the solar arrays to track the Sun, can produce torques to compensate for the pitch-axis wheel failure. In addition, the attitude control of a flexible spacecraft poses a difficult problem. These difficulties include the strong nonlinear coupled dynamics between the rigid hub and flexible solar arrays, and the imprecisely known system parameters, such as inertia matrix, damping ratios, and flexible mode frequencies. In order to overcome these drawbacks, the adaptive Jacobian tracking fuzzy control is proposed for the combined attitude and sun-tracking control problem of a flexible spacecraft during attitude maneuvers in this work. For the adaptation of kinematic and dynamic uncertainties, the proposed scheme uses an adaptive sliding vector based on estimated attitude velocity via approximate Jacobian matrix. The unknown nonlinearities are approximated by deriving the fuzzy models with a set of linguistic If-Then rules using the idea of sector nonlinearity and local approximation in fuzzy partition spaces. The uncertain parameters of the estimated nonlinearities and the Jacobian matrix are being adjusted online by an adaptive law to realize feedback control. The attitude of the spacecraft can be directly controlled with the Jacobian feedback control when the attitude pointing trajectory is designed with respect to the spacecraft coordinate frame itself. A significant feature of this work is that the proposed adaptive Jacobian tracking scheme will result in not only the convergence of angular position and angular velocity tracking errors, but also the convergence of estimated angular velocity to

  10. F-104 in flight

    Science.gov (United States)

    1993-01-01

    F-104G N826NA during a 1993 flight over the Mojave desert, outfitted with an experiment pylon under the center fuselage and wing racks. The F-104 was originally designed by Kelly Johnson of the Lockheed Skunk Works as a day fighter. The aircraft soon proved ideal for both research and training. For instance, a modified F-104 tested the reaction control jets for the X-15. The F-104's short wings and low lift to drag ratio made it ideal to simulate the X-15 landing profile, which the F-104s often undertook before X-15 flights in order to acquaint pilots with the rocket plane's landing characteristics. This training role continued with the lifting bodies. NASA F-104s were also used for high-speed research after the X-1E was retired. Finally, the F-104s were also used as chase planes for research missions. The F-104G was a late model designed as a fighter bomber for low-level strike missions. It was built for use by the West German Air Force and other foreign governments. N826NA accomplished a wide-range of research activities, including tests of the Space Shuttle's Thermal Protection System (TPS) tiles. The aircraft made 1,415 flights before being retired. It is now on display at the Dryden Flight Research Center.

  11. Flight deck task management

    Science.gov (United States)

    2016-12-21

    This report documents the work undertaken in support of Volpe Task Order No. T0026, Flight Deck Task Management. The objectives of this work effort were to: : 1) Develop a specific and standard definition of task management (TM) : 2) Conduct a ...

  12. Orion Launch Abort System Performance on Exploration Flight Test 1

    Science.gov (United States)

    McCauley, R.; Davidson, J.; Gonzalez, Guillermo

    2015-01-01

    This paper will present an overview of the flight test objectives and performance of the Orion Launch Abort System during Exploration Flight Test-1. Exploration Flight Test-1, the first flight test of the Orion spacecraft, was managed and led by the Orion prime contractor, Lockheed Martin, and launched atop a United Launch Alliance Delta IV Heavy rocket. This flight test was a two-orbit, high-apogee, high-energy entry, low-inclination test mission used to validate and test systems critical to crew safety. This test included the first flight test of the Launch Abort System preforming Orion nominal flight mission critical objectives. NASA is currently designing and testing the Orion Multi-Purpose Crew Vehicle (MPCV). Orion will serve as NASA's new exploration vehicle to carry astronauts to deep space destinations and safely return them to earth. The Orion spacecraft is composed of four main elements: the Launch Abort System, the Crew Module, the Service Module, and the Spacecraft Adapter (Fig. 1). The Launch Abort System (LAS) provides two functions; during nominal launches, the LAS provides protection for the Crew Module from atmospheric loads and heating during first stage flight and during emergencies provides a reliable abort capability for aborts that occur within the atmosphere. The Orion Launch Abort System (LAS) consists of an Abort Motor to provide the abort separation from the Launch Vehicle, an Attitude Control Motor to provide attitude and rate control, and a Jettison Motor for crew module to LAS separation (Fig. 2). The jettison motor is used during a nominal launch to separate the LAS from the Launch Vehicle (LV) early in the flight of the second stage when it is no longer needed for aborts and at the end of an LAS abort sequence to enable deployment of the crew module's Landing Recovery System. The LAS also provides a Boost Protective Cover fairing that shields the crew module from debris and the aero-thermal environment during ascent. Although the

  13. Light airplane crash tests at three flight-path angles

    Science.gov (United States)

    Castle, C. B.; Alfaro-Bou, E.

    1978-01-01

    Three similar twin engine general aviation airplane specimens were crash tested at Langley impact dynamics research facility at 27 m/sec and at flight-path angles of -15 deg, -30 deg, and -45 deg. Other flight parameters were held constant. The test facility, instrumentation, test specimens, and test method are briefly described. Structural damage and accelerometer data for each of the three impact conditions are presented and discussed.

  14. ATTITUDE OF STUDENT TEACHERS TOWARDS TEACHING PROFESSION

    Directory of Open Access Journals (Sweden)

    Anupama BHARGAVA

    2014-07-01

    Full Text Available Teaching being a dynamic activity requires a favourable attitude and certain specific competencies from its practitioners. Teachers’ proficiency depends on the attitude she possesses for the profession. The positive attitude helps teacher to develop a conductive learner friendly environment in the classroom. This also casts a fruitful effect on learning of the students. Attitude being a social construct is influenced by many factors like gender social strata ,age, stream of education and previous experience of the job .what bearing the gender and stream of education has on the attitude of student teachers towards teaching profession to throw light on this a study was conducted using a readymade tool. Study of different categories like Non-tribal male and female science stream, nontribal male and female social science stream, Tribal male and female science stream, Tribal male and female social science stream was undertaken. In a sample of hundred students ninety six students responded. The mean scores were considered and ‘ t’ value was calculated to find the difference in the attitude of different categories towards teaching profession.

  15. Improved methods in neural network-based adaptive output feedback control, with applications to flight control

    Science.gov (United States)

    Kim, Nakwan

    Utilizing the universal approximation property of neural networks, we develop several novel approaches to neural network-based adaptive output feedback control of nonlinear systems, and illustrate these approaches for several flight control applications. In particular, we address the problem of non-affine systems and eliminate the fixed point assumption present in earlier work. All of the stability proofs are carried out in a form that eliminates an algebraic loop in the neural network implementation. An approximate input/output feedback linearizing controller is augmented with a neural network using input/output sequences of the uncertain system. These approaches permit adaptation to both parametric uncertainty and unmodeled dynamics. All physical systems also have control position and rate limits, which may either deteriorate performance or cause instability for a sufficiently high control bandwidth. Here we apply a method for protecting an adaptive process from the effects of input saturation and time delays, known as "pseudo control hedging". This method was originally developed for the state feedback case, and we provide a stability analysis that extends its domain of applicability to the case of output feedback. The approach is illustrated by the design of a pitch-attitude flight control system for a linearized model of an R-50 experimental helicopter, and by the design of a pitch-rate control system for a 58-state model of a flexible aircraft consisting of rigid body dynamics coupled with actuator and flexible modes. A new approach to augmentation of an existing linear controller is introduced. It is especially useful when there is limited information concerning the plant model, and the existing controller. The approach is applied to the design of an adaptive autopilot for a guided munition. Design of a neural network adaptive control that ensures asymptotically stable tracking performance is also addressed.

  16. TRMM On Orbit Attitude Control System Performance

    Science.gov (United States)

    Robertson, Brent; Placanica, Sam; Morgenstern, Wendy

    1999-01-01

    This paper presents an overview of the Tropical Rainfall Measuring Mission (TRMM) Attitude Control System (ACS) along with detailed in-flight performance results for each operational mode. The TRMM spacecraft is an Earth-pointed, zero momentum bias satellite launched on November 27, 1997 from Tanegashima Space Center, Japan. TRMM is a joint mission between NASA and the National Space Development Agency (NASDA) of Japan designed to monitor and study tropical rainfall and the associated release of energy. Launched to provide a validation for poorly known rainfall data sets generated by global climate models, TRMM has demonstrated its utility by reducing uncertainties in global rainfall measurements by a factor of two. The ACS is comprised of Attitude Control Electronics (ACE), an Earth Sensor Assembly (ESA), Digital Sun Sensors (DSS), Inertial Reference Units (IRU), Three Axis Magnetometers (TAM), Coarse Sun Sensors (CSS), Magnetic Torquer Bars (MTB), Reaction Wheel Assemblies (RWA), Engine Valve Drivers (EVD) and thrusters. While in Mission Mode, the ESA provides roll and pitch axis attitude error measurements and the DSS provide yaw updates twice per orbit. In addition, the TAM in combination with the IRU and DSS can be used to provide pointing in a contingency attitude determination mode which does not rely on the ESA. Although the ACS performance to date has been highly successful, lessons were learned during checkout and initial on-orbit operation. This paper describes the design, on-orbit checkout, performance and lessons learned for the TRMM ACS.

  17. Managing Cassini Safe Mode Attitude at Saturn

    Science.gov (United States)

    Burk, Thomas A.

    2010-01-01

    The Cassini spacecraft was launched on October 15, 1997 and arrived at Saturn on June 30, 2004. It has performed detailed observations and remote sensing of Saturn, its rings, and its satellites since that time. In the event safe mode interrupts normal orbital operations, Cassini has flight software fault protection algorithms to detect, isolate, and recover to a thermally safe and commandable attitude and then wait for further instructions from the ground. But the Saturn environment is complex, and safety hazards change depending on where Cassini is in its orbital trajectory around Saturn. Selecting an appropriate safe mode attitude that insures safe operation in the Saturn environment, including keeping the star tracker field of view clear of bright bodies, while maintaining a quiescent, commandable attitude, is a significant challenge. This paper discusses the Cassini safe table management strategy and the key criteria that must be considered, especially during low altitude flybys of Titan, in deciding what spacecraft attitude should be used in the event of safe mode.

  18. Cockpit management attitudes

    Science.gov (United States)

    Helmreich, R. L.

    1984-01-01

    Distinctions are drawn between personality traits and attitudes. The stability of the personality and the malleability of attitudes are stressed. These concepts are related to pilot performance, especially in the areas of crew coordination and cockpit resource management. Airline pilots were administered a Cockpit Management Attitudes questionnaire; empirical data from that survey are reported and implications of the data for training in crew coordination are discussed.

  19. Orbit-attitude coupled motion around small bodies: Sun-synchronous orbits with Sun-tracking attitude motion

    Science.gov (United States)

    Kikuchi, Shota; Howell, Kathleen C.; Tsuda, Yuichi; Kawaguchi, Jun'ichiro

    2017-11-01

    The motion of a spacecraft in proximity to a small body is significantly perturbed due to its irregular gravity field and solar radiation pressure. In such a strongly perturbed environment, the coupling effect of the orbital and attitude motions exerts a large influence that cannot be neglected. However, natural orbit-attitude coupled dynamics around small bodies that are stationary in both orbital and attitude motions have yet to be observed. The present study therefore investigates natural coupled motion that involves both a Sun-synchronous orbit and Sun-tracking attitude motion. This orbit-attitude coupled motion enables a spacecraft to maintain its orbital geometry and attitude state with respect to the Sun without requiring active control. Therefore, the proposed method can reduce the use of an orbit and attitude control system. This paper first presents analytical conditions to achieve Sun-synchronous orbits and Sun-tracking attitude motion. These analytical solutions are then numerically propagated based on non-linear coupled orbit-attitude equations of motion. Consequently, the possibility of implementing Sun-synchronous orbits with Sun-tracking attitude motion is demonstrated.

  20. Atmospheric radiation flight dose rates

    Science.gov (United States)

    Tobiska, W. K.

    2015-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the domains that are affected by space weather, the coupling between the solar and galactic high-energy particles, the magnetosphere, and atmospheric regions can significantly affect humans and our technology as a result of radiation exposure. Space Environment Technologies (SET) has been conducting space weather observations of the atmospheric radiation environment at aviation altitudes that will eventually be transitioned into air traffic management operations. The Automated Radiation Measurements for Aerospace Safety (ARMAS) system and Upper-atmospheric Space and Earth Weather eXperiment (USEWX) both are providing dose rate measurements. Both activities are under the ARMAS goal of providing the "weather" of the radiation environment to improve aircraft crew and passenger safety. Over 5-dozen ARMAS and USEWX flights have successfully demonstrated the operation of a micro dosimeter on commercial aviation altitude aircraft that captures the real-time radiation environment resulting from Galactic Cosmic Rays and Solar Energetic Particles. The real-time radiation exposure is computed as an effective dose rate (body-averaged over the radiative-sensitive organs and tissues in units of microsieverts per hour); total ionizing dose is captured on the aircraft, downlinked in real-time, processed on the ground into effective dose rates, compared with NASA's Langley Research Center (LaRC) most recent Nowcast of Atmospheric Ionizing Radiation System (NAIRAS) global radiation climatology model runs, and then made available to end users via the web and smart phone apps. Flight altitudes now exceed 60,000 ft. and extend above commercial aviation altitudes into the stratosphere. In this presentation we describe recent ARMAS and USEWX results.

  1. UAVSAR Flight-Planning System

    Science.gov (United States)

    2008-01-01

    A system of software partly automates planning of a flight of the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) -- a polarimetric synthetic-aperture radar system aboard an unpiloted or minimally piloted airplane. The software constructs a flight plan that specifies not only the intended flight path but also the setup of the radar system at each point along the path.

  2. Global fast dynamic terminal sliding mode control for a quadrotor UAV.

    Science.gov (United States)

    Xiong, Jing-Jing; Zhang, Guo-Bao

    2017-01-01

    A control method based on global fast dynamic terminal sliding mode control (TSMC) technique is proposed to design the flight controller for performing the finite-time position and attitude tracking control of a small quadrotor UAV. Firstly, the dynamic model of the quadrotor is divided into two subsystems, i.e., a fully actuated subsystem and an underactuated subsystem. Secondly, the dynamic flight controllers of the quadrotor are formulated based on global fast dynamic TSMC, which is able to guarantee that the position and velocity tracking errors of all system state variables converge to zero in finite-time. Moreover, the global fast dynamic TSMC is also able to eliminate the chattering phenomenon caused by the switching control action and realize the high precision performance. In addition, the stabilities of two subsystems are demonstrated by Lyapunov theory, respectively. Lastly, the simulation results are given to illustrate the effectiveness and robustness of the proposed control method in the presence of external disturbances. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Time, Attitude, and User Participation

    DEFF Research Database (Denmark)

    Pries-Heje, Lene

    2008-01-01

    Assimilation of a standard ERP system to an organization is difficult. User involvement seems to be the crux of the matter. However, even the best intentions for user involvement may come to nothing. A case study of a five-year ERP implementation process reveals that a main reason may...... be that the perception of usefulness of the system in any given phase of the implementation is heavily dependent on preceding events—the process. A process model analysis identifies eight episodes and nine encounters in the case showing that the user’s attitude towards the ERP system changes between acceptance......, equivocation, resistance and rejection depending on three things: (1) the dynamic between user and consultants, (2) the dynamic between different user groups, and (3) the understanding of technical, organizational and socio-technical options. When relating the empirical findings to existing theory on user...

  4. DRUG USE ATTITUDE OF TURKISH ARMED FORCES PILOTS

    Directory of Open Access Journals (Sweden)

    Ahmet SEN

    Full Text Available Introduction: Because of the dangers in the nature of flight, pilots have to fly in perfect medical conditions. Besides the undesirable effects of the diseases, side effects of the medications used in the treatment might also risk flight safety. In this study, we investigated the drug use attitude of Turkish Armed Forces pilots. Material-Method: In order to investigate their drug use attitude, a questionnaire was given to 408 pilots at GATA Aerospace Medical Center. Drug use attitude, drugs used by pilots and side effects were questioned. Results: 41 % of pilots reported that they used drugs during active flying. But the drug use rate of Army pilots was 57 %, which was higher than the Air Force and Navy pilots. The most common used drugs were analgesics. Conclusion: It is obvious that pilots might use drugs without informing their flight surgeon. Flight surgeons should always educate the pilots about the importance and dangers of self-medication. [TAF Prev Med Bull 2004; 3(9.000: 213-220

  5. Infrared Thermography Flight Experimentation

    Science.gov (United States)

    Blanchard, Robert C.; Carter, Matthew L.; Kirsch, Michael

    2003-01-01

    Analysis was done on IR data collected by DFRC on May 8, 2002. This includes the generation of a movie to initially examine the IR flight data. The production of the movie was challenged by the volume of data that needed to be processed, namely 40,500 images with each image (256 x 252) containing over 264 million points (pixel depth 4096). It was also observed during the initial analysis that the RTD surface coating has a different emissivity than the surroundings. This fact added unexpected complexity in obtaining a correlation between RTD data and IR data. A scheme was devised to generate IR data near the RTD location which is not affected by the surface coating This scheme is valid as long as the surface temperature as measured does not change too much over a few pixel distances from the RTD location. After obtaining IR data near the RTD location, it is possible to make a direct comparison with the temperature as measured during the flight after adjusting for the camera s auto scaling. The IR data seems to correlate well to the flight temperature data at three of the four RID locations. The maximum count intensity occurs closely to the maximum temperature as measured during flight. At one location (RTD #3), there is poor correlation and this must be investigated before any further progress is possible. However, with successful comparisons at three locations, it seems there is great potential to be able to find a calibration curve for the data. Moreover, as such it will be possible to measure temperature directly from the IR data in the near future.

  6. Flight Software Math Library

    Science.gov (United States)

    McComas, David

    2013-01-01

    The flight software (FSW) math library is a collection of reusable math components that provides typical math utilities required by spacecraft flight software. These utilities are intended to increase flight software quality reusability and maintainability by providing a set of consistent, well-documented, and tested math utilities. This library only has dependencies on ANSI C, so it is easily ported. Prior to this library, each mission typically created its own math utilities using ideas/code from previous missions. Part of the reason for this is that math libraries can be written with different strategies in areas like error handling, parameters orders, naming conventions, etc. Changing the utilities for each mission introduces risks and costs. The obvious risks and costs are that the utilities must be coded and revalidated. The hidden risks and costs arise in miscommunication between engineers. These utilities must be understood by both the flight software engineers and other subsystem engineers (primarily guidance navigation and control). The FSW math library is part of a larger goal to produce a library of reusable Guidance Navigation and Control (GN&C) FSW components. A GN&C FSW library cannot be created unless a standardized math basis is created. This library solves the standardization problem by defining a common feature set and establishing policies for the library s design. This allows the libraries to be maintained with the same strategy used in its initial development, which supports a library of reusable GN&C FSW components. The FSW math library is written for an embedded software environment in C. This places restrictions on the language features that can be used by the library. Another advantage of the FSW math library is that it can be used in the FSW as well as other environments like the GN&C analyst s simulators. This helps communication between the teams because they can use the same utilities with the same feature set and syntax.

  7. The aerodynamics of flight in an insect flight-mill.

    Directory of Open Access Journals (Sweden)

    Gal Ribak

    Full Text Available Predicting the dispersal of pest insects is important for pest management schemes. Flight-mills provide a simple way to evaluate the flight potential of insects, but there are several complications in relating tethered-flight to natural flight. We used high-speed video to evaluate the effect of flight-mill design on flight of the red palm weevil (Rynchophorous ferruginneus in four variants of a flight-mill. Two variants had the rotating radial arm pivoted on the main shaft of the rotation axis, allowing freedom to elevate the arm as the insect applied lift force. Two other variants had the pivot point fixed, restricting the radial arm to horizontal motion. Beetles were tethered with their lateral axis horizontal or rotated by 40°, as in a banked turn. Flight-mill type did not affect flight speed or wing-beat frequency, but did affect flapping kinematics. The wingtip internal to the circular trajectory was always moved faster relative to air, suggesting that the beetles were attempting to steer in the opposite direction to the curved trajectory forced by the flight-mill. However, banked beetles had lower flapping asymmetry, generated higher lift forces and lost more of their body mass per time and distance flown during prolonged flight compared to beetles flying level. The results indicate, that flapping asymmetry and low lift can be rectified by tethering the beetle in a banked orientation, but the flight still does not correspond directly to free-flight. This should be recognized and taken into account when designing flight-mills and interoperating their data.

  8. The aerodynamics of flight in an insect flight-mill.

    Science.gov (United States)

    Ribak, Gal; Barkan, Shay; Soroker, Victoria

    2017-01-01

    Predicting the dispersal of pest insects is important for pest management schemes. Flight-mills provide a simple way to evaluate the flight potential of insects, but there are several complications in relating tethered-flight to natural flight. We used high-speed video to evaluate the effect of flight-mill design on flight of the red palm weevil (Rynchophorous ferruginneus) in four variants of a flight-mill. Two variants had the rotating radial arm pivoted on the main shaft of the rotation axis, allowing freedom to elevate the arm as the insect applied lift force. Two other variants had the pivot point fixed, restricting the radial arm to horizontal motion. Beetles were tethered with their lateral axis horizontal or rotated by 40°, as in a banked turn. Flight-mill type did not affect flight speed or wing-beat frequency, but did affect flapping kinematics. The wingtip internal to the circular trajectory was always moved faster relative to air, suggesting that the beetles were attempting to steer in the opposite direction to the curved trajectory forced by the flight-mill. However, banked beetles had lower flapping asymmetry, generated higher lift forces and lost more of their body mass per time and distance flown during prolonged flight compared to beetles flying level. The results indicate, that flapping asymmetry and low lift can be rectified by tethering the beetle in a banked orientation, but the flight still does not correspond directly to free-flight. This should be recognized and taken into account when designing flight-mills and interoperating their data.

  9. An Assessment of Ares I-X Aeroacoustic Measurements with Comparisons to Pre-Flight Wind Tunnel Test Results

    Science.gov (United States)

    Nance, Donald K.; Reed, Darren K.

    2011-01-01

    During the recent successful launch of the Ares I-X Flight Test Vehicle, aeroacoustic data was gathered at fifty-seven locations along the vehicle as part of the Developmental Flight Instrumentation. Several of the Ares I-X aeroacoustic measurements were placed to duplicate measurement locations prescribed in pre-flight, sub-scale wind tunnel tests. For these duplicated measurement locations, comparisons have been made between aeroacoustic data gathered during the ascent phase of the Ares I-X flight test and wind tunnel test data. These comparisons have been made at closely matching flight conditions (Mach number and vehicle attitude) in order to preserve a one-to-one relationship between the flight and wind tunnel data. These comparisons and the current wind tunnel to flight scaling methodology are presented and discussed. The implications of using wind tunnel test data scaled under the current methodology to predict conceptual launch vehicle aeroacoustic environments are also discussed.

  10. Optimizing the Attitude Control of Small Satellite Constellations for Rapid Response Imaging

    Science.gov (United States)

    Nag, S.; Li, A.

    2016-12-01

    Distributed Space Missions (DSMs) such as formation flight and constellations, are being recognized as important solutions to increase measurement samples over space and time. Given the increasingly accurate attitude control systems emerging in the commercial market, small spacecraft now have the ability to slew and point within few minutes of notice. In spite of hardware development in CubeSats at the payload (e.g. NASA InVEST) and subsystems (e.g. Blue Canyon Technologies), software development for tradespace analysis in constellation design (e.g. Goddard's TAT-C), planning and scheduling development in single spacecraft (e.g. GEO-CAPE) and aerial flight path optimizations for UAVs (e.g. NASA Sensor Web), there is a gap in open-source, open-access software tools for planning and scheduling distributed satellite operations in terms of pointing and observing targets. This paper will demonstrate results from a tool being developed for scheduling pointing operations of narrow field-of-view (FOV) sensors over mission lifetime to maximize metrics such as global coverage and revisit statistics. Past research has shown the need for at least fourteen satellites to cover the Earth globally everyday using a LandSat-like sensor. Increasing the FOV three times reduces the need to four satellites, however adds image distortion and BRDF complexities to the observed reflectance. If narrow FOV sensors on a small satellite constellation were commanded using robust algorithms to slew their sensor dynamically, they would be able to coordinately cover the global landmass much faster without compensating for spatial resolution or BRDF effects. Our algorithm to optimize constellation satellite pointing is based on a dynamic programming approach under the constraints of orbital mechanics and existing attitude control systems for small satellites. As a case study for our algorithm, we minimize the time required to cover the 17000 Landsat images with maximum signal to noise ratio fall

  11. Free flight force estimation of a 23.5 g flapping wing MAV using an on-board IMU

    NARCIS (Netherlands)

    Karasek, M.; Koopmans, J.A.; Armanini, S.F.; Remes, B.D.W.; de Croon, G.C.H.E.

    2016-01-01

    Despite an intensive research on flapping flight and flapping wing MAVs in recent years, there are still no accurate models of flapping flight dynamics. This is partly due to lack of free flight data, in particular during manoeuvres. In this work, we present, for the first time, a comparison of free

  12. 14 CFR 91.109 - Flight instruction; Simulated instrument flight and certain flight tests.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Flight instruction; Simulated instrument flight and certain flight tests. 91.109 Section 91.109 Aeronautics and Space FEDERAL AVIATION... throwover control wheel in place of fixed, dual controls of the elevator and ailerons when— (1) The...

  13. Homophobia and attitudes about AIDS.

    Science.gov (United States)

    Dupras, A; Levy, J; Samson, J M; Tessier, D

    1989-02-01

    A random sample of 407 French Canadian adults responded to a questionnaire about perception of AIDS. Negative attitudes about AIDS are better predicted by homophobia than other measures as are attitudes about extramarital relations and attitudes abut adolescent heterosexuality.

  14. The aerodynamics of free-flight maneuvers in Drosophila.

    Science.gov (United States)

    Fry, Steven N; Sayaman, Rosalyn; Dickinson, Michael H

    2003-04-18

    Using three-dimensional infrared high-speed video, we captured the wing and body kinematics of free-flying fruit flies as they performed rapid flight maneuvers. We then "replayed" the wing kinematics on a dynamically scaled robotic model to measure the aerodynamic forces produced by the wings. The results show that a fly generates rapid turns with surprisingly subtle modifications in wing motion, which nonetheless generate sufficient torque for the fly to rotate its body through each turn. The magnitude and time course of the torque and body motion during rapid turns indicate that inertia, not friction, dominates the flight dynamics of insects.

  15. Dynamic Control System Mode Performance of the Space Technology-7 Disturbance Reduction System

    Science.gov (United States)

    O'Donnell, James R., Jr.; Hsu, Oscar; Maghami, Peiman

    2017-01-01

    The Space Technology-7 (ST-7) Disturbance Reduction System (DRS) is an experiment package aboard the European Space Agency (ESA) LISA Pathfinder spacecraft, launched on December 3, 2015. DRS consists of three primary components: Colloidal MicroNewton Thrusters (CMNTs), an Integrated Avionics Unit (IAU), and flight-software implementing the Command and Data Handling (C&DH) and Dynamic Control System (DCS) algorithms. The CMNTs were designed to provide thrust from 5 to 30 micro Newton, with thrust controllability and resolution of 0.1 micro Newton and thrust noise of 0.1 micro Newton/(square root of (Hz)) in the measurement band from 1-30 mHz. The IAU hosts the C&DH and DCS flight software, as well as interfaces with both the CMNT electronics and the LISA Pathfinder spacecraft. When in control, the DCS uses star tracker attitude data and capacitive or optically-measured position and attitude information from LISA Pathfinder and the LISA Technology Package (LTP) to control the attitude and position of the spacecraft and the two test masses inside the LTP. After completion of the nominal ESA LISA Pathfinder mission, the DRS experiment was commissioned followed by its nominal mission. DRS operations extended over the next five months, interspersed with station keeping, anomaly resolution, and periods where control was handed back to LISA Pathfinder for them to conduct further experiments. The primary DRS mission ended on December 6, 2016, with the experiment meeting all of its Level 1 requirements. The DCS, developed at the NASA Goddard Space Flight Center, consists of five spacecraft control modes and six test mass control modes, combined into six 'DRS Mission Modes'. Attitude Control and Zero-G were primarily used to control the spacecraft during initial handover and during many of the CMNT characterization experiments. The other Mission Modes, Drag Free Low Force, 18-DOF Transitional, and 18-DOF, were used to provide drag-free control of the spacecraft about the test

  16. Pornography and Attitude Change

    Science.gov (United States)

    Wallace, Douglas H.; Wehmer, Gerald

    1971-01-01

    The results indicate that a voluntary three hour exposure to erotic pictures, some of which have been defined as being legally obscene," does not lead to a change in a person's attitudes toward such materials or in attitudes toward their censorship. (Author)

  17. Language Learners' Acculturation Attitudes

    Science.gov (United States)

    Rafieyan, Vahid; Orang, Maryam; Bijami, Maryam; Nejad, Maryam Sharafi; Eng, Lin Siew

    2014-01-01

    Learning a language involves knowledge of both linguistic competence and cultural competence. Optimal development of linguistic competence and cultural competence, however, requires a high level of acculturation attitude toward the target language culture. To this end, the present study explored the acculturation attitudes of 70 Iranian…

  18. Asymmetrical international attitudes

    NARCIS (Netherlands)

    Van Oudenhoven, JP; Askevis-Leherpeux, F; Hannover, B; Jaarsma, R; Dardenne, B

    2002-01-01

    In general, attitudes towards nations have a fair amount of reciprocity: nations either like each other are relatively indifferent to each other or dislike each other Sometimes, however international attitudes are asymmetrical. In this study, we use social identity theory in order to explain

  19. Individual Attitudes Towards Trade

    DEFF Research Database (Denmark)

    Jäkel, Ina Charlotte; Smolka, Marcel

    2013-01-01

    Using the 2007 wave of the Pew Global Attitudes Project, this paper finds statistically significant and economically large Stolper-Samuelson effects in individuals’ preference formation towards trade policy. High-skilled individuals are substantially more pro-trade than low-skilled individuals......-Ohlin model in shaping free trade attitudes, relative to existing literature....

  20. Balancing Training Techniques for Flight Controller Certification

    Science.gov (United States)

    Gosling, Christina

    2011-01-01

    Training of ground control teams has been a difficult task in space operations. There are several intangible skills that must be learned to become the steely eyed men and women of mission control who respond to spacecraft failures that can lead to loss of vehicle or crew if handled improperly. And as difficult as training is, it can also be costly. Every day, month or year an operator is in training, is a day that not only they are being trained without direct benefit to the organization, but potentially an instructor or mentor is also being paid for hours spent assisting them. Therefore, optimization of the training flow is highly desired. Recently the Expedition Division (DI) at Johnson Space Flight Center has recreated their training flows for the purpose of both moving to an operator/specialist/instructor hierarchy and to address past inefficiencies in the training flow. This paper will discuss the types of training DI is utilizing in their new flows, and the balance that has been struck between the ideal learning environments and realistic constraints. Specifically, the past training flow for the ISS Attitude Determination and Control Officer will be presented, including drawbacks that were encountered. Then the new training flow will be discussed and how a new approach utilizes more training methods and teaching techniques. We will look at how DI has integrated classes, workshops, checkouts, module reviews, scenarios, OJT, paper sims, Mini Sims, and finally Integrated Sims to balance the cost and timing of training a new flight controller.

  1. Free-flight experiments in LISA Pathfinder

    CERN Document Server

    Armano, M; Auger, G; Baird, J; Binetruy, P; Born, M; Bortoluzzi, D; Brandt, N; Bursi, A; Caleno, M; Cavalleri, A; Cesarini, A; Cruise, M; Cutler, C; Danzmann, K; Diepholz, I; Dolesi, R; Dunbar, N; Ferraioli, L; Ferroni, V; Fitzsimons, E; Freschi, M; Gallegos, J; Marirrodriga, C Garcia; Gerndt, R; Gesa, LI; Gibert, F; Giardini, D; Giusteri, R; Grimani, C; Harrison, I; Heinzel, G; Hewitson, M; Hollington, D; Hueller, M; Huesler, J; Inchauspe, H; Jennrich, O; Jetzer, P; Johlander, B; Karnesis, N; Kaune, B; Korsakova, N; Killow, C; Lloro, I; Maarschalkerweerd, R; Madden, S; Maghami, P; Mance, D; Martin, V; Martin-Porqueras, F; Mateos, I; McNamara, P; Mendes, J; Mendes, L; Moroni, A; Nofrarias, M; Paczkowski, S; Perreur-Lloyd, M; Petiteau, A; Pivato, P; Plagnol, E; Prat, P; Ragnit, U; Ramos-Castro, J; Reiche, J; Perez, J A Romera; Robertson, D; Rozemeijer, H; Russano, G; Sarra, P; Schleicher, A; Slutsky, J; Sopuerta, C F; Sumner, T; Texier, D; Thorpe, J; Trenkel, C; Tu, H B; Vetrugno, D; Vitale, S; Wanner, G; Ward, H; Waschke, S; Wass, P; Wealthy, D; Wen, S; Weber, W; Wittchen, A; Zanoni, C; Ziegler, T; Zweifel, P

    2014-01-01

    The LISA Pathfinder mission will demonstrate the technology of drag-free test masses for use as inertial references in future space-based gravitational wave detectors. To accomplish this, the Pathfinder spacecraft will perform drag-free flight about a test mass while measuring the acceleration of this primary test mass relative to a second reference test mass. Because the reference test mass is contained within the same spacecraft, it is necessary to apply forces on it to maintain its position and attitude relative to the spacecraft. These forces are a potential source of acceleration noise in the LISA Pathfinder system that are not present in the full LISA configuration. While LISA Pathfinder has been designed to meet it's primary mission requirements in the presence of this noise, recent estimates suggest that the on-orbit performance may be limited by this `suspension noise'. The drift-mode or free-flight experiments provide an opportunity to mitigate this noise source and further characterize the underlyi...

  2. Free-Flight Experiments in LISA Pathfinder

    Science.gov (United States)

    Thorpe, J. I.; Cutler, C. J.; Hewitson, M.; Jennrich, O.; Maghami, P.; Paczkowski, S.; Russano, G.; Vitale, S.; Weber, W. J.

    2014-01-01

    The LISA Pathfinder mission will demonstrate the technology of drag-free test masses for use as inertial references in future space-based gravitational wave detectors. To accomplish this, the Pathfinder spacecraft will perform drag-free flight about a test mass while measuring the acceleration of this primary test mass relative to a second reference test mass. Because the reference test mass is contained within the same spacecraft, it is necessary to apply forces on it to maintain its position and attitude relative to the spacecraft. These forces are a potential source of acceleration noise in the LISA Pathfinder system that are not present in the full LISA configuration. While LISA Pathfinder has been designed to meet it's primary mission requirements in the presence of this noise, recent estimates suggest that the on-orbit performance may be limited by this 'suspension noise'. The drift-mode or free-flight experiments provide an opportunity to mitigate this noise source and further characterize the underlying disturbances that are of interest to the designers of LISA-like instruments. This article provides a high-level overview of these experiments and the methods under development to analyze the resulting data.

  3. Real-time flight test analysis and display techniques for the X-29A aircraft

    Science.gov (United States)

    Hicks, John W.; Petersen, Kevin L.

    1989-01-01

    The X-29A advanced technology demonstrator flight envelope expansion program and the subsequent flight research phase gave impetus to the development of several innovative real-time analysis and display techniques. These new techniques produced significant improvements in flight test productivity, flight research capabilities, and flight safety. These techniques include real-time measurement and display of in-flight structural loads, dynamic structural mode frequency and damping, flight control system dynamic stability and control response, aeroperformance drag polars, and aircraft specific excess power. Several of these analysis techniques also provided for direct comparisons of flight-measured results with analytical predictions. The aeroperformance technique was made possible by the concurrent development of a new simplified in-flight net thrust computation method. To achieve these levels of on-line flight test analysis, integration of ground and airborne systems was required. The capability of NASA Ames Research Center, Dryden Flight Research Facility's Western Aeronautical Test Range was a key factor to enable implementation of these methods.

  4. DOA estimation for attitude determination on communication satellites

    Directory of Open Access Journals (Sweden)

    Yang Bin

    2014-06-01

    Full Text Available In order to determine an appropriate attitude of three-axis stabilized communication satellites, this paper describes a novel attitude determination method using direction of arrival (DOA estimation of a ground signal source. It differs from optical measurement, magnetic field measurement, inertial measurement, and global positioning system (GPS attitude determination. The proposed method is characterized by taking the ground signal source as the attitude reference and acquiring attitude information from DOA estimation. Firstly, an attitude measurement equation with DOA estimation is derived in detail. Then, the error of the measurement equation is analyzed. Finally, an attitude determination algorithm is presented using a dynamic model, the attitude measurement equation, and measurement errors. A developing low Earth orbit (LEO satellite which tests mobile communication technology with smart antennas can be stabilized in three axes by corporately using a magnetometer, reaction wheels, and three-axis magnetorquer rods. Based on the communication satellite, simulation results demonstrate the effectiveness of the method. The method could be a backup of attitude determination to prevent a system failure on the satellite. Its precision depends on the number of snapshots and the input signal-to-noise ratio (SNR with DOA estimation.

  5. Real-time single-frequency GPS/MEMS-IMU attitude determination of lightweight UAVs.

    Science.gov (United States)

    Eling, Christian; Klingbeil, Lasse; Kuhlmann, Heiner

    2015-10-16

    In this paper, a newly-developed direct georeferencing system for the guidance, navigation and control of lightweight unmanned aerial vehicles (UAVs), having a weight limit of 5 kg and a size limit of 1.5 m, and for UAV-based surveying and remote sensing applications is presented. The system is intended to provide highly accurate positions and attitudes (better than 5 cm and 0.5°) in real time, using lightweight components. The main focus of this paper is on the attitude determination with the system. This attitude determination is based on an onboard single-frequency GPS baseline, MEMS (micro-electro-mechanical systems) inertial sensor readings, magnetic field observations and a 3D position measurement. All of this information is integrated in a sixteen-state error space Kalman filter. Special attention in the algorithm development is paid to the carrier phase ambiguity resolution of the single-frequency GPS baseline observations. We aim at a reliable and instantaneous ambiguity resolution, since the system is used in urban areas, where frequent losses of the GPS signal lock occur and the GPS measurement conditions are challenging. Flight tests and a comparison to a navigation-grade inertial navigation system illustrate the performance of the developed system in dynamic situations. Evaluations show that the accuracies of the system are 0.05° for the roll and the pitch angle and 0.2° for the yaw angle. The ambiguities of the single-frequency GPS baseline can be resolved instantaneously in more than 90% of the cases.

  6. Inverted flight of the aircraft with high maneuverability

    Directory of Open Access Journals (Sweden)

    Stanisław Danilecki

    2015-12-01

    Full Text Available The paper presents major issues associated with maneuvering of the aircraft inverted flight (acrobatic. It was presented mathematical description for longitudinal balance of the airplane for inverted flight, in particular, the pitching moment coefficient plane without power for horizontal rudder (Cmbu, as well as the same force on the rudder horizontal (PHo. An analysis was conducted for gusts acting on the plane flying in an inverted position in relation to the flight envelope. It has also been analysed the horizontal tail load, acting on the inverted fly and caused by both gusts and brutal control. In conclusions, the comments on the aerodynamics of wing in flight inverted for the selected airfoil are presented. The focus is on static analysis of longitudinal balance of the airplane under normal inverted flight. Dynamic considerations, taking into account the impact of inertia on the load structure, were not carried out. Dynamic issues will be given in a separate publication.[b]Keywords[/b]: aviation, aircraft, inverted flight

  7. Rocket Flight Path

    Directory of Open Access Journals (Sweden)

    Jamie Waters

    2014-09-01

    Full Text Available This project uses Newton’s Second Law of Motion, Euler’s method, basic physics, and basic calculus to model the flight path of a rocket. From this, one can find the height and velocity at any point from launch to the maximum altitude, or apogee. This can then be compared to the actual values to see if the method of estimation is a plausible. The rocket used for this project is modeled after Bullistic-1 which was launched by the Society of Aeronautics and Rocketry at the University of South Florida.

  8. Pregnant Guppy in Flight

    Science.gov (United States)

    1960-01-01

    The Pregnant Guppy is a modified Boeing B-377 Stratocruiser used to transport the S-IV (second) stage for the Saturn I launch vehicle between manufacturing facilities on the West coast, and testing and launch facilities in the Southeast. The fuselage of the B-377 was lengthened to accommodate the S-IV stage and the plane's cabin section was enlarged to approximately double its normal volume. The idea was originated by John M. Conroy of Aero Spaceliners, Incorporated, in Van Nuys, California. The former Stratocruiser became a B-377 PG: the Pregnant Guppy. This photograph depicts the Pregnant Guppy in flight.

  9. Flight Mechanics Project

    Science.gov (United States)

    Steck, Daniel

    2009-01-01

    This report documents the generation of an outbound Earth to Moon transfer preliminary database consisting of four cases calculated twice a day for a 19 year period. The database was desired as the first step in order for NASA to rapidly generate Earth to Moon trajectories for the Constellation Program using the Mission Assessment Post Processor. The completed database was created running a flight trajectory and optimization program, called Copernicus, in batch mode with the use of newly created Matlab functions. The database is accurate and has high data resolution. The techniques and scripts developed to generate the trajectory information will also be directly used in generating a comprehensive database.

  10. Orion Pad Abort 1 Flight Test - Ground and Flight Operations

    Science.gov (United States)

    Hackenbergy, Davis L.; Hicks, Wayne

    2011-01-01

    This paper discusses the ground and flight operations aspects to the Pad Abort 1 launch. The paper details the processes used to plan all operations. The paper then discussions the difficulties of integration and testing, while detailing some of the lessons learned throughout the entire launch campaign. Flight operational aspects of the launc are covered in order to provide the listener with the full suite of operational issues encountered in preparation for the first flight test of the Orion Launch Abort System.

  11. Interaction of the Space Shuttle on-orbit autopilot with tether dynamics

    Science.gov (United States)

    Bergmann, Edward V.

    1988-01-01

    The effect of Orbiter flight control on tether dynamics is studied by simulation. Open-loop effects of Orbiter jet firing on tether dynamics are shown, and the potential for closed-loop interaction between tether dynamics and Orbiter flight control is determined. The significance of these effects on Orbiter flight control and tether control is assessed.

  12. Minisatellite Attitude Guidance Using Reaction Wheels

    Directory of Open Access Journals (Sweden)

    Ion STROE

    2015-06-01

    Full Text Available In a previous paper [2], the active torques needed for the minisatellite attitude guidance from one fixed attitude posture to another fixed attitude posture were determined using an inverse dynamics method. But when considering reaction/momentum wheels, instead of this active torques computation, the purpose is to compute the angular velocities of the three reaction wheels which ensure the minisatellite to rotate from the initial to the final attitude. This paper presents this computation of reaction wheels angular velocities using a similar inverse dynamics method based on inverting Euler’s equations of motion for a rigid body with one fixed point, written in the framework of the x-y-z sequence of rotations parameterization. For the particular case A=B not equal C of an axisymmetric minisatellite, the two computations are compared: the active torques computation versus the computation of reaction wheels angular velocities ̇x , ̇y and ̇z. An interesting observation comes out from this numerical study: if the three reaction wheels are identical (with Iw the moment of inertia of one reaction wheel with respect to its central axis, then the evolutions in time of the products between Iw and the derivatives of the reaction wheels angular velocities, i.e. ̇ , ̇ and ̇ remain the same and do not depend on the moment of inertia Iw.

  13. Biomechanics and biomimetics in insect-inspired flight systems.

    Science.gov (United States)

    Liu, Hao; Ravi, Sridhar; Kolomenskiy, Dmitry; Tanaka, Hiroto

    2016-09-26

    Insect- and bird-size drones-micro air vehicles (MAV) that can perform autonomous flight in natural and man-made environments are now an active and well-integrated research area. MAVs normally operate at a low speed in a Reynolds number regime of 10(4)-10(5) or lower, in which most flying animals of insects, birds and bats fly, and encounter unconventional challenges in generating sufficient aerodynamic forces to stay airborne and in controlling flight autonomy to achieve complex manoeuvres. Flying insects that power and control flight by flapping wings are capable of sophisticated aerodynamic force production and precise, agile manoeuvring, through an integrated system consisting of wings to generate aerodynamic force, muscles to move the wings and a control system to modulate power output from the muscles. In this article, we give a selective review on the state of the art of biomechanics in bioinspired flight systems in terms of flapping and flexible wing aerodynamics, flight dynamics and stability, passive and active mechanisms in stabilization and control, as well as flapping flight in unsteady environments. We further highlight recent advances in biomimetics of flapping-wing MAVs with a specific focus on insect-inspired wing design and fabrication, as well as sensing systems.This article is part of the themed issue 'Moving in a moving medium: new perspectives on flight'. © 2016 The Author(s).

  14. Propulsion Flight Research at NASA Dryden From 1967 to 1997

    Science.gov (United States)

    Burcham, Frank W., Jr.; Ray, Ronald J.; Conners, Timothy R.; Walsh, Kevin R.

    1997-01-01

    From 1967 to 1997, pioneering propulsion flight research activities have been conceived and conducted at the NASA Dryden Flight Research Center. Many of these programs have been flown jointly with the United States Department of Defense, industry, or the Federal Aviation Administration. Propulsion research has been conducted on the XB-70, F-111 A, F-111E, YF-12, JetStar, B-720, MD-11, F-15, F- 104, Highly Maneuverable Aircraft Technology, F-14, F/A-18, SR-71, and the hypersonic X-15 airplanes. Research studies have included inlet dynamics and control, in-flight thrust computation, integrated propulsion controls, inlet and boattail drag, wind tunnel-to-flight comparisons, digital engine controls, advanced engine control optimization algorithms, acoustics, antimisting kerosene, in-flight lift and drag, throttle response criteria, and thrust-vectoring vanes. A computer-controlled thrust system has been developed to land the F-15 and MD-11 airplanes without using any of the normal flight controls. An F-15 airplane has flown tests of axisymmetric thrust-vectoring nozzles. A linear aerospike rocket experiment has been developed and tested on the SR-71 airplane. This paper discusses some of the more unique flight programs, the results, lessons learned, and their impact on current technology.

  15. Controlled flight of a biologically inspired, insect-scale robot.

    Science.gov (United States)

    Ma, Kevin Y; Chirarattananon, Pakpong; Fuller, Sawyer B; Wood, Robert J

    2013-05-03

    Flies are among the most agile flying creatures on Earth. To mimic this aerial prowess in a similarly sized robot requires tiny, high-efficiency mechanical components that pose miniaturization challenges governed by force-scaling laws, suggesting unconventional solutions for propulsion, actuation, and manufacturing. To this end, we developed high-power-density piezoelectric flight muscles and a manufacturing methodology capable of rapidly prototyping articulated, flexure-based sub-millimeter mechanisms. We built an 80-milligram, insect-scale, flapping-wing robot modeled loosely on the morphology of flies. Using a modular approach to flight control that relies on limited information about the robot's dynamics, we demonstrated tethered but unconstrained stable hovering and basic controlled flight maneuvers. The result validates a sufficient suite of innovations for achieving artificial, insect-like flight.

  16. Optimal nonlinear estimation for aircraft flight control in wind shear

    Science.gov (United States)

    Mulgund, Sandeep S.

    1994-01-01

    The most recent results in an ongoing research effort at Princeton in the area of flight dynamics in wind shear are described. The first undertaking in this project was a trajectory optimization study. The flight path of a medium-haul twin-jet transport aircraft was optimized during microburst encounters on final approach. The assumed goal was to track a reference climb rate during an aborted landing, subject to a minimum airspeed constraint. The results demonstrated that the energy loss through the microburst significantly affected the qualitative nature of the optimal flight path. In microbursts of light to moderate strength, the aircraft was able to track the reference climb rate successfully. In severe microbursts, the minimum airspeed constraint in the optimization forced the aircraft to settle on a climb rate smaller than the target. A tradeoff was forced between the objectives of flight path tracking and stall prevention.

  17. New Theory of Flight

    Science.gov (United States)

    Hoffman, Johan; Jansson, Johan; Johnson, Claes

    2016-06-01

    We present a new mathematical theory explaining the fluid mechanics of subsonic flight, which is fundamentally different from the existing boundary layer-circulation theory by Prandtl-Kutta-Zhukovsky formed 100 year ago. The new theory is based on our new resolution of d'Alembert's paradox showing that slightly viscous bluff body flow can be viewed as zero-drag/lift potential flow modified by 3d rotational slip separation arising from a specific separation instability of potential flow, into turbulent flow with nonzero drag/lift. For a wing this separation mechanism maintains the large lift of potential flow generated at the leading edge at the price of small drag, resulting in a lift to drag quotient of size 15-20 for a small propeller plane at cruising speed with Reynolds number {Re≈ 107} and a jumbojet at take-off and landing with {Re≈ 108} , which allows flight at affordable power. The new mathematical theory is supported by computed turbulent solutions of the Navier-Stokes equations with a slip boundary condition as a model of observed small skin friction of a turbulent boundary layer always arising for {Re > 106} , in close accordance with experimental observations over the entire range of angle of attacks including stall using a few millions of mesh points for a full wing-body configuration.

  18. NASA - Human Space Flight

    Science.gov (United States)

    Davis, Jeffrey R.

    2006-01-01

    The presentation covers five main topical areas. The first is a description of how things work in the microgravity environment such as convection and sedimentation. The second part describes the effects of microgravity on human physiology. This is followed by a description of the hazards of space flight including the environment, the space craft, and the mission. An overview of biomedical research in space, both on shuttle and ISS is the fourth section of the presentation. The presentation concludes with a history of space flight from Ham to ISS. At CART students (11th and 12th graders from Fresno Unified and Clovis Unified) are actively involved in their education. They work in teams to research real world problems and discover original solutions. Students work on projects guided by academic instructors and business partners. They will have access to the latest technology and will be expected to expand their learning environment to include the community. They will focus their studies around a career area (Professional Sciences, Advanced Communications, Engineering and Product Development, or Global Issues).

  19. Human Space Flight

    Science.gov (United States)

    Woolford, Barbara

    2006-01-01

    The performance of complex tasks on the International Space Station (ISS) requires significant preflight crew training commitments and frequent skill and knowledge refreshment. This report documents a recently developed just-in-time training methodology, which integrates preflight hardware familiarization and procedure training with an on-orbit CD-ROM-based skill enhancement. This just-in-time concept was used to support real-time remote expert guidance to complete medical examinations using the ISS Human Research Facility (HRF). An American md Russian ISS crewmember received 2-hours of hands on ultrasound training 8 months prior to the on-orbit ultrasound exam. A CD-ROM-based Onboard Proficiency Enhancement (OPE) interactive multimedia program consisting of memory enhancing tutorials, and skill testing exercises, was completed by the crewmember six days prior to the on-orbit ultrasound exam. The crewmember was then remotely guided through a thoracic, vascular, and echocardiographic examination by ultrasound imaging experts. Results of the CD ROM based OPE session were used to modify the instructions during a complete 35 minute real-time thoracic, cardiac, and carotid/jugular ultrasound study. Following commands from the ground-based expert, the crewmember acquired all target views and images without difficulty. The anatomical content and fidelity of ultrasound video were excellent and adequate for clinical decision-making. Complex ultrasound experiments with expert guidance were performed with high accuracy following limited pre-flight training and CD-ROM-based in-flight review, despite a 2-second communication latency.

  20. Two-dimensional Insect Flight on an Air-Water Interface is a Chaotic Oscillator

    CERN Document Server

    Mukundarajan, Haripriya; Prakash, Manu

    2014-01-01

    Two-dimensional flapping wing insect flight on an air-water interface provides a successful foraging strategy to explore an ecological niche on the surface of a pond. However, the complex interplay of surface tension, aerodynamic forces, biomechanics and neural control that enables two-dimensional flight is unknown. Here we report the discovery of two-dimensional flight in the waterlily beetle Galerucella nymphaeae, which is the fastest reported propulsion mode for an insect on a fluid interface. Using kinematics derived from high-speed videography coupled with analytical models, we demonstrate that two-dimensional flight is a chaotic interfacial oscillator, thus significantly constraining the possible range of flight parameters. Discovery of this complex dynamics in two-dimensional flight on time scales similar to neural responses indicates the challenge of evolving active flight control on a fluid interface.

  1. Attitudes Towards Immigration

    DEFF Research Database (Denmark)

    Malchow-Møller, Nikolaj; Munch, Jakob Roland; Schroll, Sanne

    In this paper, we re-examine the role of economic self-interest in shaping people’s attitudes towards immigration, using data from the European Social Survey 2002/2003. Compared to the existing literature, there are two main contributions of the present paper. First, we develop a more powerful test...... of the hypothesis that a positive relationship between education and attitudes towards immigration reflects economic self-interest in the labour market. Second, we develop an alternative and more direct test of whether economic self-interest matters for people’s attitudes towards immigration. We find that while...

  2. Attitudes Towards Immigration

    DEFF Research Database (Denmark)

    Malchow-Møller, Nikolaj; Roland Munch, Jakob; Schroll, Sanne

    2006-01-01

    In this paper, we re-examine the role of economic self-interest in shaping people's attitudes towards immigration, using data from the European Social Survey 2002/2003. Compared to the existing literature, there are two main contributions of the present paper. First, we develop a more powerful test...... of the hypothesis that a positive relationship between education and attitudes towards immigration reflects economic self-interest in the labour market. Second, we develop an alternativeand more direct test of whether economic self-interest mattersfor people's attitudes towards immigration. We find that whilethe...

  3. MABEL Iceland 2012 Flight Report

    Science.gov (United States)

    Cook, William B.; Brunt, Kelly M.; De Marco, Eugenia L.; Reed, Daniel L.; Neumann, Thomas A.; Markus, Thorsten

    2017-01-01

    In March and April 2012, NASA conducted an airborne lidar campaign based out of Keflavik, Iceland, in support of Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) algorithm development. The survey targeted the Greenland Ice Sheet, Iceland ice caps, and sea ice in the Arctic Ocean during the winter season. Ultimately, the mission, MABEL Iceland 2012, including checkout and transit flights, conducted 14 science flights, for a total of over 80 flight hours over glaciers, icefields, and sea ice.

  4. In-flight Medical Emergencies

    OpenAIRE

    Amit Chandra; Shauna Conry

    2013-01-01

    Introduction: Research and data regarding in-flight medical emergencies during commercial air travel are lacking. Although volunteer medical professionals are often called upon to assist, there are no guidelines or best practices to guide their actions. This paper reviews the literature quantifying and categorizing in-flight medical incidents, discusses the unique challenges posed by the in-flight environment, evaluates the legal aspects of volunteering to provide care, and suggests an approa...

  5. Getting started with Twitter Flight

    CERN Document Server

    Hamshere, Tom

    2013-01-01

    Getting Started with Twitter Flight is written with the intention to educate the readers, helping them learn how to build modular powerful applications with Flight, Twitter's cutting-edge JavaScript framework.This book is for anyone with a foundation in JavaScript who wants to build web applications. Flight is quick and easy to learn, built on technologies you already understand such as the DOM, events, and jQuery.

  6. On the generalization of attitude accessibility after repeated attitude expression

    OpenAIRE

    Descheemaeker, Mathilde; Spruyt, Adriaan; Fazio, Russell H.; Hermans, Dirk

    2017-01-01

    Abstract The more accessible an attitude is, the stronger is its influence on information processing and behavior. Accessibility can be increased through attitude rehearsal, but it remains unknown whether attitude rehearsal also affects the accessibility of related attitudes. To investigate this hypothesis, participants in an experimental condition repeatedly expressed their attitudes towards exemplars of several semantic categories during an evaluative categorization task. Participants in a ...

  7. Stability and control issues associated with lightly loaded rotors autorotating in high advance ratio flight

    Science.gov (United States)

    Rigsby, James Michael

    sensitivities with advance ratio, and advance ratio dependent control cross coupling. Hub moment response to rotor disturbances results in transients where rotor damping is reduced due to low Lock number blades and reduced rotor angular velocity. Experimentally identified frequency response shows dominant low frequency modes with advance ratio dependent damping and the frequencies are on the order of typical airframe modes. Rotor speed response to swashplate control perturbations from trim results in non-linear behavior that is advance ratio dependent, and which stems from cyclic flapping behavior at high advance ratio. Rotor control strategies were developed including the use of variable shaft incidence to achieve rotor speed control with hub moment suppression achieved through cyclic control. Flight dynamics characteristics resulting from the coupling of the rotor and airframe were predicted in flight using a baseline airframe with conventional fixed-wing controls, representative of the current interest in the concept vehicle. Results predicted by linearization of the non-linear models were compared with system identification results using the non-linear simulation as surrogate flight test data. Low frequency rotor response is shown to couple with the vehicle motion for short period and roll mode response to airframe control inputs. The rotor speed mode is shown to couple with short period and long period vehicle modes as the rotor torque balance is sensitive to vehicle speed and attitude changes.

  8. Cibola flight experiment satellite

    Science.gov (United States)

    Davies, P.; Liddle, Doug; Paffett, John; Sweeting, Martin; Curiel, A.; Sun, Wei; Eves, Stuart

    2004-11-01

    In order to achieve an "economy of scale" with respect to payload capacity the major trend in telecommunications satellites is for larger and larger platforms. With these large platforms the level of integration between platform and payload is increasing leading to longer delivery schedules. The typical lifecycle for procurement of these large telecommunications satellites is now 3-6 years depending on the level of non-recurring engineering needed. Surrey Satellite Technology Ltd (SSTL) has designed a low-cost platform aimed at telecommunications and navigation applications. SSTL's Geostationary Minisatellite Platform (GMP) is a new entrant addressing the lower end of the market with payloads up to 250kg requiring less than 1.5 kW power. The British National Space Centre through the MOSAIC Small Satellite Initiative supported the development of GMP. The main design goals for GMP are low-cost for the complete mission including launch and operations and a platform allowing flexible payload accommodation. GMP is specifically designed to allow rapid development and deployment with schedules typically between 1 and 2 years from contract signature to flight readiness. GMP achieves these aims by a modular design where the level of integration between the platform and payload is low. The modular design decomposes the satellite into three major components - the propulsion bay, the avionics bay and the payload module. Both the propulsion and avionics bays are reusable, largely unchanged, and independent of the payload configuration. Such a design means that SSTL or a 3rd party manufacturer can manufacture the payload in parallel to the platform with integration taking place quite late in the schedule. In July 2003 SSTL signed a contract for ESA's first Galileo navigation satellite known as GSTBV2/A. The satellite is based on GMP and ESA plan to launch it into a MEO orbit late in 2005. The second flight of GMP is likely to be in 2006 carrying a geostationary payload

  9. STRAP V - Higher accuracy, lower drift attitude control system. [Stellar Tracking Rocket Attitude Positioning

    Science.gov (United States)

    Budney, T. J.; Collinson, T. W.; Stone, R. W.

    1982-01-01

    The STRAP V system was developed to provide higher accuracy and lower limit cycle fine pointing (+ or - 7 arcseconds) in all three axes at targets which cannot be tracked by startrackers or solar trackers. The system provides an increase in pointing performance over that obtainable with the STRAP IV (1) Attitude Control System (ACS). The STRAP IV concept of third axis updates is utilized to reduce pointing errors, using the flight-proven STRAP III (2) system as a first stage. Flight aspect photographs and telemetry records show that the STRAP V objectives have been met. The STRAP IV major error contributors have been significantly reduced and the tracking flexibility has been increased with only minor error contributions. Attention is given to the basic STRAP III control modes, major STRAP IV system error sources, tuned restrained inertial gyros (TRIGs), the programmable sequence timer, the STRAP V control box, third axis update, system gyro alignments, and STRAP V operational capabilities.

  10. Robust flight-to-gate assignment using flight presence probabilities

    NARCIS (Netherlands)

    van Schaijk, Oscar R.P.; Visser, H.G.

    2017-01-01

    In this paper we present a novel method to improve the robustness of solutions to the Flight-to-Gate Assignment Problem (FGAP), with the aim to reduce the need for gate re-planning due to unpredicted flight schedule disturbances in the daily operations at an airport. We propose an approach in

  11. Flight home, flight abroad, and international credit cycles

    NARCIS (Netherlands)

    Giannetti, M.; Laeven, L.

    2012-01-01

    This paper shows that banks exhibit a weaker (stronger) home bias in the extension of new loans when funding conditions in their home country improve (deteriorate). We refer to these changes in home bias as flight abroad and flight home effects, respectively, and show that they are unrelated to the

  12. Walt Disney visited Marshall Space Flight Center (MSFC)

    Science.gov (United States)

    1965-01-01

    Walt Disney toured the West Test Area during his visit to the Marshall Space Flight Center on April 13, 1965. The three in center foreground are Karl Heimburg, Director, Test Division; Dr. von Braun, Director, MSFC; and Walt Disney. The Dynamic Test Stand with the S-1C stage being installed is in the background.

  13. Attitudes towards recreational hunting

    DEFF Research Database (Denmark)

    Gamborg, Christian; Jensen, Frank Søndergaard

    2017-01-01

    a negative attitude to recreational hunting. Older respondents and rural residents had more positive attitudes towards hunting than younger and urban residents. Some of the conditions under which hunting occurs affected attitudes negatively, especially the hunting of farm-reared and released game birds...... to the commercial aspect of hunting and this could result in tighter regulation with further effects on management practices. Management Implications The public opinions and public preferences concerning recreational hunting are complex. However, this study revealed some factors relevant for regulatory...... and managerial development in relation to outdoor recreation: age (younger respondents were least supportive of hunting), urbanisation (living in an urban environment enhanced negative attitudes), compatibility of recreational hunting with other outdoor leisure activities....

  14. Spacecraft Attitude Determination

    DEFF Research Database (Denmark)

    Bak, Thomas

    determination based on simple, reliable sensors. Meeting these objectives with a single vector magnetometer is difficult and requires temporal fusion of data in order to avoid local observability problems. In order to guaranteed globally nonsingular solutions, quaternions are generally the preferred attitude......This thesis describes the development of an attitude determination system for spacecraft based only on magnetic field measurements. The need for such system is motivated by the increased demands for inexpensive, lightweight solutions for small spacecraft. These spacecraft demands full attitude...... is a detailed study of the influence of approximations in the modeling of the system. The quantitative effects of errors in the process and noise statistics are discussed in detail. The third contribution is the introduction of these methods to the attitude determination on-board the Ørsted satellite...

  15. Practical Application of a Subscale Transport Aircraft for Flight Research in Control Upset and Failure Conditions

    Science.gov (United States)

    Cunningham, Kevin; Foster, John V.; Morelli, Eugene A.; Murch, Austin M.

    2008-01-01

    Over the past decade, the goal of reducing the fatal accident rate of large transport aircraft has resulted in research aimed at the problem of aircraft loss-of-control. Starting in 1999, the NASA Aviation Safety Program initiated research that included vehicle dynamics modeling, system health monitoring, and reconfigurable control systems focused on flight regimes beyond the normal flight envelope. In recent years, there has been an increased emphasis on adaptive control technologies for recovery from control upsets or failures including damage scenarios. As part of these efforts, NASA has developed the Airborne Subscale Transport Aircraft Research (AirSTAR) flight facility to allow flight research and validation, and system testing for flight regimes that are considered too risky for full-scale manned transport airplane testing. The AirSTAR facility utilizes dynamically-scaled vehicles that enable the application of subscale flight test results to full scale vehicles. This paper describes the modeling and simulation approach used for AirSTAR vehicles that supports the goals of efficient, low-cost and safe flight research in abnormal flight conditions. Modeling of aerodynamics, controls, and propulsion will be discussed as well as the application of simulation to flight control system development, test planning, risk mitigation, and flight research.

  16. Use of the Pseudo-Inverse for Design of a Reconfigurable Flight Control System.

    Science.gov (United States)

    1981-12-01

    Control Laws for the A-7D, Digitac II Aircraft, Master’s Thesis, Air Force Institute of Technology, Wright-Patterson AFB OH, December 1980. 3. Roskam , Jan...Airplane Flight Dynamics and Automatic Flight Controls, Part I. Lawrence KS: Roskam Aviation and Engineering Corporation, 1979. 4. Jane’s All The

  17. Development of an Air-to-Air Refueling Automatic Flight Control System Using Quantitative Feedback Theory

    Science.gov (United States)

    1993-06-01

    Rosrm, Jan . Airplane Flight Dynamics and Automatic Flight Controls, Part I. Roskam Aviation and Engineering Corp., 1982. 11. Military Specification...udchn o j’ mc°n and yea’, if available (e.g. 1 limitations or special markings in all capitals (e.g Jan 88). Must (,e a, least the yea, NOFORN, REL

  18. The Importance of Food Onboard: Attitudes Amongst Air Travellers In North-East Asia

    OpenAIRE

    Lee, Samuel; Jones, Peter

    2004-01-01

    This report investigates passenger attitudes towards on-board catering in North East Asia. The study is based upon a stratified sample of 374 respondents interviewed at Incheon International Airport (ICN) in Seoul, Korea and assesses the level of importance of in-flight food products in the context of short haul international flights. The data collected through these questionnaires showed that factors such as ticket price, destination and various passenger demographics had an effect on...

  19. The Cibola flight experiment

    Energy Technology Data Exchange (ETDEWEB)

    Caffrey, Michael Paul [Los Alamos National Laboratory; Nelson, Anthony [Los Alamos National Laboratory; Salazar, Anthony [Los Alamos National Laboratory; Roussel - Dupre, Diane [Los Alamos National Laboratory; Katko, Kim [Los Alamos National Laboratory; Palmer, Joseph [ISE-3; Robinson, Scott [Los Alamos National Laboratory; Wirthlin, Michael [BRIGHAM YOUNG UNIV; Howes, William [BRIGHAM YOUNG UNIV; Richins, Daniel [BRIGHAM YOUNG UNIV

    2009-01-01

    The Cibola Flight Experiment (CFE) is an experimental small satellite carrying a reconfigurable processing instrument developed at the Los Alamos National Laboratory that demonstrates the feasibility of using FPGA-based high-performance computing for sensor processing in the space environment. The CFE satellite was launched on March 8, 2007 in low-earth orbit and has operated extremely well since its deployment. The nine Xilinx Virtex FPGAs used in the payload have been used for several high-throughput sensor processing applications and for single-event upset (SEU) monitoring and mitigation. This paper will describe the CFE system and summarize its operational results. In addition, this paper will describe the results from several SEU detection circuits that were performed on the spacecraft.

  20. Digital flight control systems

    Science.gov (United States)

    Caglayan, A. K.; Vanlandingham, H. F.

    1977-01-01

    The design of stable feedback control laws for sampled-data systems with variable rate sampling was investigated. These types of sampled-data systems arise naturally in digital flight control systems which use digital actuators where it is desirable to decrease the number of control computer output commands in order to save wear and tear of the associated equipment. The design of aircraft control systems which are optimally tolerant of sensor and actuator failures was also studied. Detection of the failed sensor or actuator must be resolved and if the estimate of the state is used in the control law, then it is also desirable to have an estimator which will give the optimal state estimate even under the failed conditions.

  1. X-38 - First Flight

    Science.gov (United States)

    1997-01-01

    Reminiscent of the lifting body research flights conducted more than 30 years earlier, NASA's B-52 mothership lifts off carrying a new generation of lifting body research vehicle--the X-38. The X-38 was designed to help develop an emergency crew return vehicle for the International Space Station. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket booster casings. It also

  2. Attitudes towards immigration

    DEFF Research Database (Denmark)

    Malchow-Møller, Nikolaj; Munch, Jakob Roland; Skaksen, Jan Rose

    2008-01-01

    Using the European Social Survey 2002/3, we develop a new test of whether economic self-interest influences people's attitudes towards immigration, exploiting that people have widely different perceptions of the consequences of immigration......Using the European Social Survey 2002/3, we develop a new test of whether economic self-interest influences people's attitudes towards immigration, exploiting that people have widely different perceptions of the consequences of immigration...

  3. Consumers' attitudes towards sonic logos

    OpenAIRE

    Shi, Qichao

    2012-01-01

    Sonic logos are increasingly being used as a way of sonic branding in marketing activities. Scholars have acknowledged the benefits of sonic logos, such as communicating brand attributes to consumers. However, studies about consumers’ attitudes towards sonic logos are scarce. This paper examined consumers’ attitudes towards sonic logos, particularly how cognitive and affective elements correlated with such attitudes, whether such attitudes had correlations with consumers’ attitudes towards th...

  4. Flight Test Results for the F-16XL With a Digital Flight Control System

    Science.gov (United States)

    Stachowiak, Susan J.; Bosworth, John T.

    2004-01-01

    In the early 1980s, two F-16 airplanes were modified to extend the fuselage length and incorporate a large area delta wing planform. These two airplanes, designated the F-16XL, were designed by the General Dynamics Corporation (now Lockheed Martin Tactical Aircraft Systems) (Fort Worth, Texas) and were prototypes for a derivative fighter evaluation program conducted by the United States Air Force. Although the concept was never put into production, the F-16XL prototypes provided a unique planform for testing concepts in support of future high-speed supersonic transport aircraft. To extend the capabilities of this testbed vehicle the F-16XL ship 1 aircraft was upgraded with a digital flight control system. The added flexibility of a digital flight control system increases the versatility of this airplane as a testbed for aerodynamic research and investigation of advanced technologies. This report presents the handling qualities flight test results covering the envelope expansion of the F-16XL with the digital flight control system.

  5. Aircraft automatic-flight-control system with inversion of the model in the feed-forward path using a Newton-Raphson technique for the inversion

    Science.gov (United States)

    Smith, G. A.; Meyer, G.; Nordstrom, M.

    1986-01-01

    A new automatic flight control system concept suitable for aircraft with highly nonlinear aerodynamic and propulsion characteristics and which must operate over a wide flight envelope was investigated. This exact model follower inverts a complete nonlinear model of the aircraft as part of the feed-forward path. The inversion is accomplished by a Newton-Raphson trim of the model at each digital computer cycle time of 0.05 seconds. The combination of the inverse model and the actual aircraft in the feed-forward path alloys the translational and rotational regulators in the feedback path to be easily designed by linear methods. An explanation of the model inversion procedure is presented. An extensive set of simulation data for essentially the full flight envelope for a vertical attitude takeoff and landing aircraft (VATOL) is presented. These data demonstrate the successful, smooth, and precise control that can be achieved with this concept. The trajectory includes conventional flight from 200 to 900 ft/sec with path accelerations and decelerations, altitude changes of over 6000 ft and 2g and 3g turns. Vertical attitude maneuvering as a tail sitter along all axes is demonstrated. A transition trajectory from 200 ft/sec in conventional flight to stationary hover in the vertical attitude includes satisfactory operation through lift-cure slope reversal as attitude goes from horizontal to vertical at constant altitude. A vertical attitude takeoff from stationary hover to conventional flight is also demonstrated.

  6. Touchless attitude correction for satellite with constant magnetic moment

    Science.gov (United States)

    Ao, Hou-jun; Yang, Le-ping; Zhu, Yan-wei; Zhang, Yuan-wen; Huang, Huan

    2017-09-01

    Rescue of satellite with attitude fault is of great value. Satellite with improper injection attitude may lose contact with ground as the antenna points to the wrong direction, or encounter energy problems as solar arrays are not facing the sun. Improper uploaded command may set the attitude out of control, exemplified by Japanese Hitomi spacecraft. In engineering practice, traditional physical contact approaches have been applied, yet with a potential risk of collision and a lack of versatility since the mechanical systems are mission-specific. This paper puts forward a touchless attitude correction approach, in which three satellites are considered, one having constant dipole and two having magnetic coils to control attitude of the first. Particular correction configurations are designed and analyzed to maintain the target's orbit during the attitude correction process. A reference coordinate system is introduced to simplify the control process and avoid the singular value problem of Euler angles. Based on the spherical triangle basic relations, the accurate varying geomagnetic field is considered in the attitude dynamic mode. Sliding mode control method is utilized to design the correction law. Finally, numerical simulation is conducted to verify the theoretical derivation. It can be safely concluded that the no-contact attitude correction approach for the satellite with uniaxial constant magnetic moment is feasible and potentially applicable to on-orbit operations.

  7. Aerodynamics and Mechanics of Robust Flight in Bats: Animal Flight and Physical Model Experiments for Flapping MAV Applications

    Science.gov (United States)

    During the past three years, we have begun pioneering investigations of the basis of the aerodynamically and mechanically highlyrobust flight ofbats...a robotic flapper, and we have developed new theoretical models, specifically dynamical models of flying bats.We have usedthese models to analyses

  8. Design and simulation of flight control system for man-portable micro reconnaissance quadcopter

    Science.gov (United States)

    Yin, Xinfan; Zhang, Daibing; Fang, Qiang; Shen, Lincheng

    2017-10-01

    The quadcopter has been widely used in the field of aerial photography and environmental detection, because of its advantages of VTOL, simple structure, and easy-control. In the field of urban anti-terrorism or special operations, micro reconnaissance quadcpter has its unique advantages such as all-weather taking off and landing, small noise and so on, and it is very popular with special forces and riot police. This paper aims at the flight control problem of the micro quadcopter, for the purposes of attitude stabilization control and trajectory tracking control of the micro quadcopter, first, the modeling of the micro quadcopter is presented. And using the MATLAB/SIMULINK toolbox to build the flight controller of the micro quadcopter, and then simulation analysis and real flight test are given. The results of the experiment show that the designed PID controller can correct the flight attitude shift effectively and track the planned tracks well, and can achieve the goal of stable and reliable flight of the quadcopter. It can be a useful reference for the flight control system design of future special operations micro UAV.

  9. Extended Bright Bodies - Flight and Ground Software Challenges on the Cassini Mission at Saturn

    Science.gov (United States)

    Sung, Tina S.; Burk, Thomas A.

    2016-01-01

    Extended bright bodies in the Saturn environment such as Saturn's rings, the planet itself, and Saturn's satellites near the Cassini spacecraft may interfere with the star tracker's ability to find stars. These interferences can create faulty spacecraft attitude knowledge, which would decrease the pointing accuracy or even trip a fault protection response on board the spacecraft. The effects of the extended bright body interference were observed in December of 2000 when Cassini flew by Jupiter. Based on this flight experience and expected star tracker behavior at Saturn, the Cassini AACS operations team defined flight rules to suspend the star tracker during predicted interference windows. The flight rules are also implemented in the existing ground software called Kinematic Predictor Tool to create star identification suspend commands to be uplinked to the spacecraft for future predicted interferences. This paper discusses the details of how extended bright bodies impact Cassini's acquisition of attitude knowledge, how the observed data helped the ground engineers in developing flight rules, and how automated methods are used in the flight and ground software to ensure the spacecraft is continuously operated within these flight rules. This paper also discusses how these established procedures will continue to be used to overcome new bright body challenges that Cassini will encounter during its dips inside the rings of Saturn for its final orbits of a remarkable 20-year mission at Saturn.

  10. On the generalization of attitude accessibility after repeated attitude expression.

    Science.gov (United States)

    Descheemaeker, Mathilde; Spruyt, Adriaan; Fazio, Russell H; Hermans, Dirk

    2017-02-01

    The more accessible an attitude is, the stronger is its influence on information processing and behavior. Accessibility can be increased through attitude rehearsal, but it remains unknown whether attitude rehearsal also affects the accessibility of related attitudes. To investigate this hypothesis, participants in an experimental condition repeatedly expressed their attitudes towards exemplars of several semantic categories during an evaluative categorization task. Participants in a control condition performed a non-evaluative task with the same exemplars and evaluated unrelated attitude objects. After a 30-minute interval, participants in the experimental condition were faster than controls to evaluate not only the original exemplars but also novel exemplars of the same categories. This finding suggests that the effect of attitude rehearsal on accessibility generalizes to attitudes towards untrained but semantically related attitude objects. © 2016 The Authors. European Journal of Social Psychology published by John Wiley & Sons, Ltd.

  11. An All Electronic, Adaptive, Focusing Schlieren System for Flight Research Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This is a proposal to develop an electronic, focusing schlieren system for flight research based on electronic cameras and spatial light modulators as dynamic...

  12. Flight Control of Flexible Aircraft

    Science.gov (United States)

    Nguyen, Nhan T.

    2017-01-01

    This presentation presents an overview of flight control research for flexible high aspect wing aircraft in support of the NASA ARMD Advanced Air Transport Technology (AATT) project. It summarizes multi-objective flight control technology being developed for drag optimization, flutter suppression, and maneuver and gust load alleviation.

  13. Revitalization of Nuclear Powered Flight

    Science.gov (United States)

    2016-05-01

    developing a response in the event a nuclear aircraft crashed . For this, marines would fly in a chase plane, and in the event of a crash would...September 17, 1955 the first of 47 test flights were made. These test flight never used the nuclear reactor to propel the aircraft , but tested the...2 Nuclear Powered Aircraft History

  14. Capital flight and political risk

    NARCIS (Netherlands)

    Lensink, R; Hermes, N; Murinde, [No Value

    This paper provides the first serious attempt to examine the relationship between political risk and capital flight for a large set of developing countries. The outcomes of the analysis show that in most cases political risk variables do have a statistically robust relationship to capital flight

  15. Passengers waste production during flights.

    Science.gov (United States)

    Tofalli, Niki; Loizia, Pantelitsa; Zorpas, Antonis A

    2017-12-20

    We assume that during flights the amount of waste that is produced is limited. However, daily, approximately 8000 commercial airplanes fly above Europe's airspace while at the same time, more than 17,000 commercial flights exist in the entire world. Using primary data from airlines, which use the Larnaca's International Airport (LIA) in Cyprus, we have tried to understand why wastes are produced during a typical flight such as food waste, paper, and plastics, as well as how passengers affect the production of those wastes. The compositional analysis took place on 27 flights of 4 different airlines which used LIA as final destination. The evaluation indicated that the passenger's habits and ethics, and the policy of each airline produced different kinds of waste during the flights and especially food waste (FW). Furthermore, it was observed that the only waste management strategy that exists in place in the airport is the collection and the transportation of all those wastes from aircrafts and from the airport in the central unit for further treatment. Hence, this research indicated extremely difficulties to implement any specific waste minimization, or prevention practice or other sorting methods during the flights due to the limited time of the most flights (less than 3 h), the limited available space within the aircrafts, and the strictly safety roles that exist during the flights.

  16. The aerodynamics of hovering flight in Drosophila.

    Science.gov (United States)

    Fry, Steven N; Sayaman, Rosalyn; Dickinson, Michael H

    2005-06-01

    Using 3D infrared high-speed video, we captured the continuous wing and body kinematics of free-flying fruit flies, Drosophila melanogaster, during hovering and slow forward flight. We then 'replayed' the wing kinematics on a dynamically scaled robotic model to measure the aerodynamic forces produced by the wings. Hovering animals generate a U-shaped wing trajectory, in which large drag forces during a downward plunge at the start of each stroke create peak vertical forces. Quasi-steady mechanisms could account for nearly all of the mean measured force required to hover, although temporal discrepancies between instantaneous measured forces and model predictions indicate that unsteady mechanisms also play a significant role. We analyzed the requirements for hovering from an analysis of the time history of forces and moments in all six degrees of freedom. The wing kinematics necessary to generate sufficient lift are highly constrained by the requirement to balance thrust and pitch torque over the stroke cycle. We also compare the wing motion and aerodynamic forces of free and tethered flies. Tethering causes a strong distortion of the stroke pattern that results in a reduction of translational forces and a prominent nose-down pitch moment. The stereotyped distortion under tethered conditions is most likely due to a disruption of sensory feedback. Finally, we calculated flight power based directly on the measurements of wing motion and aerodynamic forces, which yielded a higher estimate of muscle power during free hovering flight than prior estimates based on time-averaged parameters. This discrepancy is mostly due to a two- to threefold underestimate of the mean profile drag coefficient in prior studies. We also compared our values with the predictions of the same time-averaged models using more accurate kinematic and aerodynamic input parameters based on our high-speed videography measurements. In this case, the time-averaged models tended to overestimate flight

  17. 49 CFR 1552.3 - Flight training.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Flight training. 1552.3 Section 1552.3..., DEPARTMENT OF HOMELAND SECURITY CIVIL AVIATION SECURITY FLIGHT SCHOOLS Flight Training for Aliens and Other Designated Individuals § 1552.3 Flight training. This section describes the procedures a flight school must...

  18. 14 CFR 61.187 - Flight proficiency.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Flight proficiency. 61.187 Section 61.187... CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Flight Instructors Other than Flight Instructors With a Sport Pilot Rating § 61.187 Flight proficiency. (a) General. A person who is applying for a...

  19. Flight Test Performance of a High Precision Navigation Doppler Lidar

    Science.gov (United States)

    Pierrottet, Diego; Amzajerdian, Farzin; Petway, Larry; Barnes, Bruce; Lockard, George

    2009-01-01

    A navigation Doppler Lidar (DL) was developed at NASA Langley Research Center (LaRC) for high precision velocity measurements from a lunar or planetary landing vehicle in support of the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project. A unique feature of this DL is that it has the capability to provide a precision velocity vector which can be easily separated into horizontal and vertical velocity components and high accuracy line of sight (LOS) range measurements. This dual mode of operation can provide useful information, such as vehicle orientation relative to the direction of travel, and vehicle attitude relative to the sensor footprint on the ground. System performance was evaluated in a series of helicopter flight tests over the California desert. This paper provides a description of the DL system and presents results obtained from these flight tests.

  20. Applications of Payload Directed Flight

    Science.gov (United States)

    Ippolito, Corey; Fladeland, Matthew M.; Yeh, Yoo Hsiu

    2009-01-01

    Next generation aviation flight control concepts require autonomous and intelligent control system architectures that close control loops directly around payload sensors in manner more integrated and cohesive that in traditional autopilot designs. Research into payload directed flight control at NASA Ames Research Center is investigating new and novel architectures that can satisfy the requirements for next generation control and automation concepts for aviation. Tighter integration between sensor and machine requires definition of specific sensor-directed control modes to tie the sensor data directly into a vehicle control structures throughout the entire control architecture, from low-level stability- and control loops, to higher level mission planning and scheduling reasoning systems. Payload directed flight systems can thus provide guidance, navigation, and control for vehicle platforms hosting a suite of onboard payload sensors. This paper outlines related research into the field of payload directed flight; and outlines requirements and operating concepts for payload directed flight systems based on identified needs from the scientific literature.'

  1. Effects of Increased Flight on the Energetics and Life History of the Butterfly Speyeria mormonia.

    Directory of Open Access Journals (Sweden)

    Kristjan Niitepõld

    Full Text Available Movement uses resources that may otherwise be allocated to somatic maintenance or reproduction. How does increased energy expenditure affect resource allocation? Using the butterfly Speyeria mormonia, we tested whether experimentally increased flight affects fecundity, lifespan or flight capacity. We measured body mass (storage, resting metabolic rate and lifespan (repair and maintenance, flight metabolic rate (flight capacity, egg number and composition (reproduction, and food intake across the adult lifespan. The flight treatment did not affect body mass or lifespan. Food intake increased sufficiently to offset the increased energy expenditure. Total egg number did not change, but flown females had higher early-life fecundity and higher egg dry mass than control females. Egg dry mass decreased with age in both treatments. Egg protein, triglyceride or glycogen content did not change with flight or age, but some components tracked egg dry mass. Flight elevated resting metabolic rate, indicating increased maintenance costs. Flight metabolism decreased with age, with a steeper slope for flown females. This may reflect accelerated metabolic senescence from detrimental effects of flight. These effects of a drawdown of nutrients via flight contrast with studies restricting adult nutrient input. There, fecundity was reduced, but flight capacity and lifespan were unchanged. The current study showed that when food resources were abundant, wing-monomorphic butterflies living in a continuous meadow landscape resisted flight-induced stress, exhibiting no evidence of a flight-fecundity or flight-longevity trade-off. Instead, flight changed the dynamics of energy use and reproduction as butterflies adopted a faster lifestyle in early life. High investment in early reproduction may have positive fitness effects in the wild, as long as food is available. Our results help to predict the effect of stressful conditions on the life history of insects living in a

  2. Effects of Increased Flight on the Energetics and Life History of the Butterfly Speyeria mormonia.

    Science.gov (United States)

    Niitepõld, Kristjan; Boggs, Carol L

    2015-01-01

    Movement uses resources that may otherwise be allocated to somatic maintenance or reproduction. How does increased energy expenditure affect resource allocation? Using the butterfly Speyeria mormonia, we tested whether experimentally increased flight affects fecundity, lifespan or flight capacity. We measured body mass (storage), resting metabolic rate and lifespan (repair and maintenance), flight metabolic rate (flight capacity), egg number and composition (reproduction), and food intake across the adult lifespan. The flight treatment did not affect body mass or lifespan. Food intake increased sufficiently to offset the increased energy expenditure. Total egg number did not change, but flown females had higher early-life fecundity and higher egg dry mass than control females. Egg dry mass decreased with age in both treatments. Egg protein, triglyceride or glycogen content did not change with flight or age, but some components tracked egg dry mass. Flight elevated resting metabolic rate, indicating increased maintenance costs. Flight metabolism decreased with age, with a steeper slope for flown females. This may reflect accelerated metabolic senescence from detrimental effects of flight. These effects of a drawdown of nutrients via flight contrast with studies restricting adult nutrient input. There, fecundity was reduced, but flight capacity and lifespan were unchanged. The current study showed that when food resources were abundant, wing-monomorphic butterflies living in a continuous meadow landscape resisted flight-induced stress, exhibiting no evidence of a flight-fecundity or flight-longevity trade-off. Instead, flight changed the dynamics of energy use and reproduction as butterflies adopted a faster lifestyle in early life. High investment in early reproduction may have positive fitness effects in the wild, as long as food is available. Our results help to predict the effect of stressful conditions on the life history of insects living in a changing world.

  3. A role of abdomen in butterfly's flapping flight

    Science.gov (United States)

    Jayakumar, Jeeva; Senda, Kei; Yokoyama, Naoto

    2017-11-01

    Butterfly's forward flight with periodic flapping motion is longitudinally unstable, and control of the thoracic pitching angle is essential to stabilize the flight. This study aims to comprehend roles which the abdominal motion play in the pitching stability of butterfly's flapping flight by using a two-dimensional model. The control of the thoracic pitching angle by the abdominal motion is an underactuated problem because of the limit on the abdominal angle. The control input of the thorax-abdomen joint torque is obtained by the hierarchical sliding mode control in this study. Numerical simulations reveal that the control by the abdominal motion provides short-term pitching stabilization in the butterfly's flight. Moreover, the control input due to a large thorax-abdomen joint torque can counteract a quite large perturbation, and can return the pitching attitude to the periodic trajectory with a short recovery time. These observations are consistent with biologists' view that living butterflies use their abdomens as rudders. On the other hand, the abdominal control mostly fails in long-term pitching stabilization, because it cannot directly alter the aerodynamic forces. The control for the long-term pitching stabilization will also be discussed.

  4. Digital flight control software design requirements. [for space shuttle orbiter

    Science.gov (United States)

    1973-01-01

    The objective of the integrated digital flight control system is to provide rotational and translational control of the space shuttle orbiter in all phases of flight: from launch ascent through orbit to entry and touchdown, and during powered horizontal flights. The program provides a versatile control system structure while maintaining uniform communications with other programs, sensors, and control effects by using an executive routine/function subroutine format. The program reads all external variables at a single point, copies them into its dedicated storage, and then calls the required subroutines in the proper sequence. As a result, the flight control program is largely independent of other programs in the GN and C computer complex and is equally insensitive to the characteristics of the processor configuration. The integrated structure of the control system and the DFCS executive routine which embodies that structure are described. The specific estimation and control algorithms used in the various mission phases are shown. Attitude maneuver routines that interface with the DFCS are also described.

  5. Hybrid Adaptive Flight Control with Model Inversion Adaptation

    Science.gov (United States)

    Nguyen, Nhan

    2011-01-01

    This study investigates a hybrid adaptive flight control method as a design possibility for a flight control system that can enable an effective adaptation strategy to deal with off-nominal flight conditions. The hybrid adaptive control blends both direct and indirect adaptive control in a model inversion flight control architecture. The blending of both direct and indirect adaptive control provides a much more flexible and effective adaptive flight control architecture than that with either direct or indirect adaptive control alone. The indirect adaptive control is used to update the model inversion controller by an on-line parameter estimation of uncertain plant dynamics based on two methods. The first parameter estimation method is an indirect adaptive law based on the Lyapunov theory, and the second method is a recursive least-squares indirect adaptive law. The model inversion controller is therefore made to adapt to changes in the plant dynamics due to uncertainty. As a result, the modeling error is reduced that directly leads to a decrease in the tracking error. In conjunction with the indirect adaptive control that updates the model inversion controller, a direct adaptive control is implemented as an augmented command to further reduce any residual tracking error that is not entirely eliminated by the indirect adaptive control.

  6. IVGEN Post Flight Analysis

    Science.gov (United States)

    Mcquillen, John; Brown, Dan; Hussey, Sam; Zoldak, John

    2014-01-01

    The Intravenous Fluid Generation (IVGEN) Experiment was a technology demonstration experiment that purified ISS potable water, mixed it with salt, and transferred it through a sterilizing filter. On-orbit performance was verified as appropriate and two 1.5 l bags of normal saline solution were returned to earth for post-flight testing by a FDA certified laboratory for compliance with United States Pharmacopiea (USP) standards. Salt concentration deviated from required values and an analysis identified probable causes. Current efforts are focused on Total Organic Content (TOC) testing, and shelf life.The Intravenous Fluid Generation (IVGEN) Experiment demonstrated the purification of ISS potable water, the mixing of the purified water with sodium chloride, and sterilization of the solution via membrane filtration. On-orbit performance was monitored where feasible and two 1.5-liter bags of normal saline solution were returned to earth for post-flight testing by a FDA-registered laboratory for compliance with United States Pharmacopeia (USP)standards [1]. Current efforts have been focused on challenge testing with identified [2] impurities (total organic-carbon), and shelf life testing. The challenge testing flowed known concentrations of contaminants through the IVGEN deionizing cartridge and membrane filters to test their effectiveness. One finding was that the filters and DI-resin themselves contribute to the contaminant load during initial startup, suggesting that the first 100 ml of fluid be discarded. Shelf life testing is ongoing and involves periodic testing of stored DI cartridges and membrane filters that are capped and sealed in hermetic packages. The testing is conducted at six month intervals measuring conductivity and endotoxins in the effluent. Currently, the packaging technique has been successfully demonstrated for one year of storage testing. The USP standards specifies that the TOC be conducted at point of generation as opposed to point of

  7. Robust intelligent flight control for hypersonic vehicles. Ph.D. Thesis - Massachusetts Inst. of Technology

    Science.gov (United States)

    Chamitoff, Gregory Errol

    1992-01-01

    Intelligent optimization methods are applied to the problem of real-time flight control for a class of airbreathing hypersonic vehicles (AHSV). The extreme flight conditions that will be encountered by single-stage-to-orbit vehicles, such as the National Aerospace Plane, present a tremendous challenge to the entire spectrum of aerospace technologies. Flight control for these vehicles is particularly difficult due to the combination of nonlinear dynamics, complex constraints, and parametric uncertainty. An approach that utilizes all available a priori and in-flight information to perform robust, real time, short-term trajectory planning is presented.

  8. Adaptive Position/Attitude Tracking Control of Aerial Robot With Unknown Inertial Matrix Based on a New Robust Neural Identifier.

    Science.gov (United States)

    Lai, Guanyu; Liu, Zhi; Zhang, Yun; Chen, C L Philip

    2016-01-01

    This paper presents a novel adaptive controller for controlling an autonomous helicopter with unknown inertial matrix to asymptotically track the desired trajectory. To identify the unknown inertial matrix included in the attitude dynamic model, this paper proposes a new structural identifier that differs from those previously proposed in that it additionally contains a neural networks (NNs) mechanism and a robust adaptive mechanism, respectively. Using the NNs to compensate the unknown aerodynamic forces online and the robust adaptive mechanism to cancel the combination of the overlarge NNs compensation error and the external disturbances, the new robust neural identifier exhibits a better identification performance in the complex flight environment. Moreover, an optimized algorithm is included in the NNs mechanism to alleviate the burdensome online computation. By the strict Lyapunov argument, the asymptotic convergence of the inertial matrix identification error, position tracking error, and attitude tracking error to arbitrarily small neighborhood of the origin is proved. The simulation and implementation results are provided to evaluate the performance of the proposed controller.

  9. Formation Flight of Multiple UAVs via Onboard Sensor Information Sharing.

    Science.gov (United States)

    Park, Chulwoo; Cho, Namhoon; Lee, Kyunghyun; Kim, Youdan

    2015-07-17

    To monitor large areas or simultaneously measure multiple points, multiple unmanned aerial vehicles (UAVs) must be flown in formation. To perform such flights, sensor information generated by each UAV should be shared via communications. Although a variety of studies have focused on the algorithms for formation flight, these studies have mainly demonstrated the performance of formation flight using numerical simulations or ground robots, which do not reflect the dynamic characteristics of UAVs. In this study, an onboard sensor information sharing system and formation flight algorithms for multiple UAVs are proposed. The communication delays of radiofrequency (RF) telemetry are analyzed to enable the implementation of the onboard sensor information sharing system. Using the sensor information sharing, the formation guidance law for multiple UAVs, which includes both a circular and close formation, is designed. The hardware system, which includes avionics and an airframe, is constructed for the proposed multi-UAV platform. A numerical simulation is performed to demonstrate the performance of the formation flight guidance and control system for multiple UAVs. Finally, a flight test is conducted to verify the proposed algorithm for the multi-UAV system.

  10. Formation Flight of Multiple UAVs via Onboard Sensor Information Sharing

    Directory of Open Access Journals (Sweden)

    Chulwoo Park

    2015-07-01

    Full Text Available To monitor large areas or simultaneously measure multiple points, multiple unmanned aerial vehicles (UAVs must be flown in formation. To perform such flights, sensor information generated by each UAV should be shared via communications. Although a variety of studies have focused on the algorithms for formation flight, these studies have mainly demonstrated the performance of formation flight using numerical simulations or ground robots, which do not reflect the dynamic characteristics of UAVs. In this study, an onboard sensor information sharing system and formation flight algorithms for multiple UAVs are proposed. The communication delays of radiofrequency (RF telemetry are analyzed to enable the implementation of the onboard sensor information sharing system. Using the sensor information sharing, the formation guidance law for multiple UAVs, which includes both a circular and close formation, is designed. The hardware system, which includes avionics and an airframe, is constructed for the proposed multi-UAV platform. A numerical simulation is performed to demonstrate the performance of the formation flight guidance and control system for multiple UAVs. Finally, a flight test is conducted to verify the proposed algorithm for the multi-UAV system.

  11. An Application of UAV Attitude Estimation Using a Low-Cost Inertial Navigation System

    Science.gov (United States)

    Eure, Kenneth W.; Quach, Cuong Chi; Vazquez, Sixto L.; Hogge, Edward F.; Hill, Boyd L.

    2013-01-01

    Unmanned Aerial Vehicles (UAV) are playing an increasing role in aviation. Various methods exist for the computation of UAV attitude based on low cost microelectromechanical systems (MEMS) and Global Positioning System (GPS) receivers. There has been a recent increase in UAV autonomy as sensors are becoming more compact and onboard processing power has increased significantly. Correct UAV attitude estimation will play a critical role in navigation and separation assurance as UAVs share airspace with civil air traffic. This paper describes attitude estimation derived by post-processing data from a small low cost Inertial Navigation System (INS) recorded during the flight of a subscale commercial off the shelf (COTS) UAV. Two discrete time attitude estimation schemes are presented here in detail. The first is an adaptation of the Kalman Filter to accommodate nonlinear systems, the Extended Kalman Filter (EKF). The EKF returns quaternion estimates of the UAV attitude based on MEMS gyro, magnetometer, accelerometer, and pitot tube inputs. The second scheme is the complementary filter which is a simpler algorithm that splits the sensor frequency spectrum based on noise characteristics. The necessity to correct both filters for gravity measurement errors during turning maneuvers is demonstrated. It is shown that the proposed algorithms may be used to estimate UAV attitude. The effects of vibration on sensor measurements are discussed. Heuristic tuning comments pertaining to sensor filtering and gain selection to achieve acceptable performance during flight are given. Comparisons of attitude estimation performance are made between the EKF and the complementary filter.

  12. Robustness and Actuator Bandwidth of MRP-Based Sliding Mode Control for Spacecraft Attitude Control Problems

    Science.gov (United States)

    Keum, Jung-Hoon; Ra, Sung-Woong

    2009-12-01

    Nonlinear sliding surface design in variable structure systems for spacecraft attitude control problems is studied. A robustness analysis is performed for regular form of system, and calculation of actuator bandwidth is presented by reviewing sliding surface dynamics. To achieve non-singular attitude description and minimal parameterization, spacecraft attitude control problems are considered based on modified Rodrigues parameters (MRP). It is shown that the derived controller ensures the sliding motion in pre-determined region irrespective of unmodeled effects and disturbances.

  13. Morphing Flight Control Surface for Advanced Flight Performance Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this SBIR project, a new Morphing Flight Control Surface (MFCS) will be developed. The distinction of the research effort is that the SenAnTech team will employ...

  14. Enclosure enhancement of flight performance

    KAUST Repository

    Ghommem, Mehdi

    2014-08-19

    We use a potential flow solver to investigate the aerodynamic aspects of flapping flights in enclosed spaces. The enclosure effects are simulated by the method of images. Our study complements previous aerodynamic analyses which considered only the near-ground flight. The present results show that flying in the proximity of an enclosure affects the aerodynamic performance of flapping wings in terms of lift and thrust generation and power consumption. It leads to higher flight efficiency and more than 5% increase of the generation of lift and thrust.

  15. Immune responses in space flight

    Science.gov (United States)

    Sonnenfeld, G.

    1998-01-01

    Space flight has been shown to have profound effects on immunological parameters of humans, monkeys and rodents. These studies have been carried out by a number of different laboratories. Among the parameters affected are leukocyte blastogenesis, natural killer cell activity, leukocyte subset distribution, cytokine production - including interferons and interleukins, and macrophage maturation and activity. These changes start to occur only after a few days space flight, and some changes continue throughout long-term space flight. Antibody responses have received only very limited study, and total antibody levels have been shown to be increased after long-term space flight. Several factors could be involved in inducing these changes. These factors could include microgravity, lack of load-bearing, stress, acceleration forces, and radiation. The mechanism(s) for space flight-induced changes in immune responses remain(s) to be established. Certainly, there can be direct effects of microgravity, or other factors, on cells that play a fundamental role in immune responses. However, it is now clear that there are interactions between the immune system and other physiological systems that could play a major role. For example, changes occurring in calcium use in the musculoskeletal system induced by microgravity or lack of use could have great impact on the immune system. Most of the changes in immune responses have been observed using samples taken immediately after return from space flight. However, there have been two recent studies that have used in-flight testing. Delayed-type hypersensitivity responses to common recall antigens of astronauts and cosmonauts have been shown to be decreased when tested during space flights. Additionally, natural killer cell and blastogenic activities are inhibited in samples taken from rats during space flight. Therefore, it is now clear that events occurring during space flight itself can affect immune responses. The biological

  16. Enclosure enhancement of flight performance

    Directory of Open Access Journals (Sweden)

    Mehdi Ghommem

    2014-01-01

    Full Text Available We use a potential flow solver to investigate the aerodynamic aspects of flapping flights in enclosed spaces. The enclosure effects are simulated by the method of images. Our study complements previous aerodynamic analyses which considered only the near-ground flight. The present results show that flying in the proximity of an enclosure affects the aerodynamic performance of flapping wings in terms of lift and thrust generation and power consumption. It leads to higher flight efficiency and more than 5% increase of the generation of lift and thrust.

  17. Attitudes towards poverty

    Directory of Open Access Journals (Sweden)

    Andrzej Derdziuk

    2015-04-01

    Full Text Available Poverty, perceived as a lack of basic consumer goods, gives rise to a whole range of outcomes which affect not only the material dimension of human existence, but also influence social relations and references to spiritual values. Attitudes which could be associated with involuntary and unacceptable poverty include: doubt in the Divine Providence, bitterness, jealousy and envy, blaming others, lack of gratitude and in perceiving good, laziness, lack of initiative, escalating demands, gluttony and greed as well as meanness. However, joy, peace, freedom and solidarity with the poor, as well as work and enterprise, are symptoms of evangelical attitudes of the poor in spirit. Attitudes to poverty point to a wide range of human behaviours towards possessions and in effect, reveal an individual’s sense of value.

  18. Love attitudes and attachment

    Directory of Open Access Journals (Sweden)

    María Elena Brenlla

    2016-02-01

    Full Text Available Love styles described by Lee are Eros (passionate love, Ludus (game-pla- ying love, Storge (friendship love, Mania (possessive, dependent love, Pragma (logical, “shopping list” love and Agape (all-giving, selfless love. Based on those types, Hendrick and Hendrick developed a 42-ítem rating questionnaire with 7 items measuring each love style (Love Attitudes Scale. Beside, inform about frequency in love relationships and attachment style. The purpose of this study was analyze the reliability and factor structure of the Love Attitudes Scale and to investigate the association between love attitudes and the attachment style. The results (N=280 participants indicate adequate internal consistency (alfa = 0,73. The items were intercorrelated and factored. The best solution extracted six factors using varimax rotation and all six factors accounted 41% of the total variance. Secure attachment was related positively to eros. 

  19. Attitudes towards Immigration

    DEFF Research Database (Denmark)

    Dinesen, Peter Thisted; Klemmensen, Robert; Nørgaard, Asbjørn Sonne

    2016-01-01

    This article examines if deep-seated psychological differences add to the explanation of attitudes toward immigration. We explore whether the Big Five personality traits matter for immigration attitudes beyond the traditional situational factors of economic and cultural threat and analyze how...... individuals with different personalities react when confronted with the same situational triggers. Using a Danish survey experiment, we show that different personality traits have different effects on opposition toward immigration. We find that Openness has an unconditional effect on attitudes toward...... immigration: scoring higher on this trait implies a greater willingness to admit immigrants. Moreover, individuals react differently to economic threat depending on their score on the traits Agreeableness and Conscientiousness. Specifically, individuals scoring low on Agreeableness and individuals scoring...

  20. Examining Perceptions and Attitudes.

    Science.gov (United States)

    Ho, Grace W K

    2017-05-01

    The purpose of this article is to compare and discuss the use of Likert-type scales and Q-methodology to examine perceptions and attitudes in nursing research. This article provides a brief review of each approach, and how they have been used to advance our knowledge in health-related perceptions and attitudes. Although Likert-type scales are economical, efficient, and easy to analyze, the results can be difficult to interpret or translate into meaningful practice. In contrast, Q-methodology yields holistic and in-depth information on what the prevailing perceptions and attitudes are, but its conduct is logistically challenging and the results' generalizability can be limited. The appropriate uses of either or both approaches to answer different research questions will be discussed. Nurse scientists are called upon to continue our exploration, utilization, and expansion of unique methodologies that directly speak to a meaningful examination of these important constructs in nursing research.

  1. Modified shuffled frog leaping algorithm optimized control for air-breathing hypersonic flight vehicle

    Directory of Open Access Journals (Sweden)

    Bingbing Liang

    2016-11-01

    Full Text Available This article addresses the flight control problem of air-breathing hypersonic vehicles and proposes a novel intelligent algorithm optimized control method. To achieve the climbing, cruising and descending flight control of the air-breathing hypersonic vehicle, an engineering-oriented flight control system based on a Proportional Integral Derivative (PID method is designed for the hypersonic vehicle, which including the height loop, the pitch angle loop and the velocity loop. Moreover, as a variant of nature-inspired algorithm, modified shuffled frog leaping algorithm is presented to optimize the flight control parameters and is characterized by better exploration and exploitation than the standard shuffled frog leaping algorithm. A nonlinear model of air-breathing hypersonic vehicle is used to verify the dynamic characteristics achieved by the intelligent flight control system. Simulation results demonstrate that the proposed swarm intelligence optimized PID controllers are effective in achieving better flight trajectory and velocity control performance than the traditional controllers.

  2. Design and flight performance of hybrid underwater glider with controllable wings

    Directory of Open Access Journals (Sweden)

    Yanhui Wang

    2017-05-01

    Full Text Available Hybrid underwater glider combines motion modes of traditional autonomous underwater glider and those of autonomous underwater vehicles. Different motion modes need different flight performance, including flight efficiency, static stability, and maneuverability. Conventional hybrid underwater glider with fixed wings can’t achieve optimal flight performance in one flight mission demanding various motion modes. In this article, controllable wings for hybrid underwater glider Petrel II are designed. Angle of attack, sweep angle, and aspect ratio of controllable wings can be changed to adapt to different motion modes. Kinematics and dynamics models of Petrel II are established based on multibody theory. Motion simulations of Petrel II with different wing configurations are conducted in three motion modes, including glide motion, spiral motion, and horizontal turning motion. The simulation results show the impact of wing parameters on flight performance. Field trials demonstrate that the controllable wings can improve the flight performance.

  3. Post-Flight Aerodynamic and Aerothermal Model Validation of a Supersonic Inflatable Aerodynamic Decelerator

    Science.gov (United States)

    Tang, Chun; Muppidi, Suman; Bose, Deepak; Van Norman, John W.; Tanimoto, Rebekah; Clark, Ian

    2015-01-01

    NASA's Low Density Supersonic Decelerator Program is developing new technologies that will enable the landing of heavier payloads in low density environments, such as Mars. A recent flight experiment conducted high above the Hawaiian Islands has demonstrated the performance of several decelerator technologies. In particular, the deployment of the Robotic class Supersonic Inflatable Aerodynamic Decelerator (SIAD-R) was highly successful, and valuable data were collected during the test flight. This paper outlines the Computational Fluid Dynamics (CFD) analysis used to estimate the aerodynamic and aerothermal characteristics of the SIAD-R. Pre-flight and post-flight predictions are compared with the flight data, and a very good agreement in aerodynamic force and moment coefficients is observed between the CFD solutions and the reconstructed flight data.

  4. Attitudes towards documentary soundstracks

    DEFF Research Database (Denmark)

    Have, Iben

    2010-01-01

    Musical experience is often related to an emotional and imaginative engagement of the listener. Discourses of journalistic documentaries relate primarily to inferential knowledge systems in which the uses of background music as a communicative device become an object of epistemological critique....... By listening to different voices - primarily from four focus group interviews - the article will discuss attitudes towards musical soundtracks in documentaries, attitudes being negotiated between emotional immersion and critical reflection, with the concept of manipulation as an underlying theme. In the end......, the article will argue for the need for an acoustemological approach (Feld, 1996) to study the epistemological potential of sound in audiovisual media....

  5. Can Public Relations Pros Predict Attitudes?

    Science.gov (United States)

    Judd, Larry R.

    1986-01-01

    Describes a study comparing public attitudes with attitudes of public relations practitioners and measuring accuracy of practitioners' predictions of public attitudes. Provides limited support for the thesis that PR pros can perceive and predict public attitude with modest accuracy. (MS)

  6. [Beauticians' eating attitudes and body attitudes].

    Science.gov (United States)

    Lukács-Márton, Réka; Szabó, Pál

    2013-01-01

    Some professional groups (models, actresses, ballet dancers, jockeys and athletes) are considered as risk populations for eating disorders and body image disorders. Beauticians may be a possible risk group, as their work is closely related to beauty and fashion. Eating disorders were assessed using the Eating Attitudes Test and the Eating Behaviour Severity Scale, body image measures included the Human Figure Drawings Test, the Body Dissatisfaction Subscale of the Eating Disorders Inventory, the Body Attitudes Test, and the Body Investment Scale. Questionnaire data of 276 subjects were analysed. The study sample comprised 128 beauticians from Transylvania (5 males, 123 females). This group was compared with a control group consisting of 148 subjects (25 males, 123 females). Such weight reducing methods as dieting, exercise, the use of appetite suppressants and diuretics were significantly more prevalent in the beautician group. Mean total score and the scores of the Dieting subscale of the Eating Disorders Inventory were significantly (p eating disorders (2.4% subclinical bulimia nervosa and 1.6% subclinical anorexia nervosa) was significantly higher in the beautician group. Beauticians invest significantly (p body care. The above results suggest that working in the beauty industry may represent an increased risk of developing eating disorders.

  7. Hybrid adaptive ascent flight control for a flexible launch vehicle

    Science.gov (United States)

    Lefevre, Brian D.

    For the purpose of maintaining dynamic stability and improving guidance command tracking performance under off-nominal flight conditions, a hybrid adaptive control scheme is selected and modified for use as a launch vehicle flight controller. This architecture merges a model reference adaptive approach, which utilizes both direct and indirect adaptive elements, with a classical dynamic inversion controller. This structure is chosen for a number of reasons: the properties of the reference model can be easily adjusted to tune the desired handling qualities of the spacecraft, the indirect adaptive element (which consists of an online parameter identification algorithm) continually refines the estimates of the evolving characteristic parameters utilized in the dynamic inversion, and the direct adaptive element (which consists of a neural network) augments the linear feedback signal to compensate for any nonlinearities in the vehicle dynamics. The combination of these elements enables the control system to retain the nonlinear capabilities of an adaptive network while relying heavily on the linear portion of the feedback signal to dictate the dynamic response under most operating conditions. To begin the analysis, the ascent dynamics of a launch vehicle with a single 1st stage rocket motor (typical of the Ares 1 spacecraft) are characterized. The dynamics are then linearized with assumptions that are appropriate for a launch vehicle, so that the resulting equations may be inverted by the flight controller in order to compute the control signals necessary to generate the desired response from the vehicle. Next, the development of the hybrid adaptive launch vehicle ascent flight control architecture is discussed in detail. Alterations of the generic hybrid adaptive control architecture include the incorporation of a command conversion operation which transforms guidance input from quaternion form (as provided by NASA) to the body-fixed angular rate commands needed by the

  8. Paarpakani: Take Flight

    Directory of Open Access Journals (Sweden)

    Tjanpi Desert Weavers

    2015-05-01

    Full Text Available Tjanpi Desert Weavers is the dynamic social enterprise of the Ngaanyatjarra, Pitjantjatjara, Yankunytjatjara (NPY Women’s Council.  Tjanpi (meaning locally harvested wild grasses began in 1995 as a series of basket-making workshops facilitated by NPY Women’s Council in the Ngaanyatjarra Lands of Western Australia. Women wanted meaningful and culturally appropriate employment on their homelands to better provide for their families. Building upon a long history of using natural fibres to make objects for ceremonial and daily use, women took quickly to coiled basketry and were soon sharing their newly found skills with relatives and friends on neighbouring communities.

  9. Flight Data For Tail 669

    Data.gov (United States)

    National Aeronautics and Space Administration — The following zip files contain individual flight recorded data in Matlab file format. There are 186 parameters each with a data structure that contains the...

  10. Flight Data For Tail 658

    Data.gov (United States)

    National Aeronautics and Space Administration — The following zip files contain individual flight recorded data in Matlab file format. There are 186 parameters each with a data structure that contains the...

  11. Flight Data For Tail 680

    Data.gov (United States)

    National Aeronautics and Space Administration — The following zip files contain individual flight recorded data in Matlab file format. There are 186 parameters each with a data structure that contains the...

  12. Flight Data For Tail 667

    Data.gov (United States)

    National Aeronautics and Space Administration — The following zip files contain individual flight recorded data in Matlab file format. There are 186 parameters each with a data structure that contains the...

  13. Flight Data For Tail 663

    Data.gov (United States)

    National Aeronautics and Space Administration — The following zip files contain individual flight recorded data in Matlab file format. There are 186 parameters each with a data structure that contains the...

  14. Flight Data For Tail 657

    Data.gov (United States)

    National Aeronautics and Space Administration — The following zip files contain individual flight recorded data in Matlab file format. There are 186 parameters each with a data structure that contains the...

  15. Flight Data For Tail 662

    Data.gov (United States)

    National Aeronautics and Space Administration — The following zip files contain individual flight recorded data in Matlab file format. There are 186 parameters each with a data structure that contains the...

  16. Flight Data For Tail 686

    Data.gov (United States)

    National Aeronautics and Space Administration — The following zip files contain individual flight recorded data in Matlab file format. There are 186 parameters each with a data structure that contains the...

  17. Flight Data For Tail 674

    Data.gov (United States)

    National Aeronautics and Space Administration — The following zip files contain individual flight recorded data in Matlab file format. There are 186 parameters each with a data structure that contains the...

  18. Flight tracks, Northern California TRACON

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset contains the records of all the flights in the Northern California TRACON. The data was provided by the aircraft noise abatement office...

  19. Flight Data For Tail 682

    Data.gov (United States)

    National Aeronautics and Space Administration — The following zip files contain individual flight recorded data in Matlab file format. There are 186 parameters each with a data structure that contains the...

  20. "Space flight is utter bilge"

    Science.gov (United States)

    Yeomans, Donald

    2004-01-01

    Despite skepticism and ridicule from scientists and the public alike, a small handful of dreamers kept faith in their vision of space flight and planned for the day when humanity would break loose from Earth.