WorldWideScience

Sample records for attitude control system

  1. Satellite Attitude Control System Simulator

    Directory of Open Access Journals (Sweden)

    G.T. Conti

    2008-01-01

    Full Text Available Future space missions will involve satellites with great autonomy and stringent pointing precision, requiring of the Attitude Control Systems (ACS with better performance than before, which is function of the control algorithms implemented on board computers. The difficulties for developing experimental ACS test is to obtain zero gravity and torque free conditions similar to the SCA operate in space. However, prototypes for control algorithms experimental verification are fundamental for space mission success. This paper presents the parameters estimation such as inertia matrix and position of mass centre of a Satellite Attitude Control System Simulator (SACSS, using algorithms based on least square regression and least square recursive methods. Simulations have shown that both methods have estimated the system parameters with small error. However, the least square recursive methods have performance more adequate for the SACSS objectives. The SACSS platform model will be used to do experimental verification of fundamental aspects of the satellite attitude dynamics and design of different attitude control algorithm.

  2. Attitude Determination and Control Systems

    Science.gov (United States)

    Starin, Scott R.; Eterno, John

    2011-01-01

    designing and operating spacecraft pointing (i.e. attitude) systems.

  3. Design of a Control Moment Gyroscope Attitude Actuation System for the Attitude Control Subsystem Proving Ground

    Science.gov (United States)

    2013-03-01

    AAS Astrodynamice Specialist Conference, 2006. 33. Katsuhiko Ogata . Modern Control Engineering. Prentice-Hall, New Jersey, 4th edition, 2002. 109 34...DESIGN OF A CONTROL MOMENT GYROSCOPE ATTITUDE ACTUATION SYSTEM FOR THE ATTITUDE CONTROL SUBSYSTEM PROVING GROUND THESIS Samuel C. Johnson, 2Lt, USAF...the U.S. Government and is not subject to copyright protection in the United States. AFIT-ENY-13-M-19 DESIGN OF A CONTROL MOMENT GYROSCOPE ATTITUDE

  4. Architecture for Combined Energy and Attitude Control System

    OpenAIRE

    Ibrahim M. Mehedi; Renuganth Varatharajoo; Harlisya Harun; Mohd N. Filipski

    2005-01-01

    Combining the energy and attitude control system is a feasible technology for small satellites to improve the space missions. In this Combined Energy and Attitude Control System (CEACS) a double rotating flywheel is used to replace the conventional battery for energy storage as well as to control the attitude of an earth oriented satellite. Each flywheel is to be controlled in the torque mode. The energy and attitude inputs for the flywheels' control architecture are also ...

  5. MAP Attitude Control System Design and Analysis

    Science.gov (United States)

    Andrews, S. F.; Campbell, C. E.; Ericsson-Jackson, A. J.; Markley, F. L.; ODonnell, J. R., Jr.

    1997-01-01

    The Microwave Anisotropy Probe (MAP) is a follow-on to the Differential Microwave Radiometer (DMR) instrument on the Cosmic Background Explorer (COBE) spacecraft. The MAP spacecraft will perform its mission in a Lissajous orbit around the Earth-Sun L(sub 2) Lagrange point to suppress potential instrument disturbances. To make a full-sky map of cosmic microwave background fluctuations, a combination fast spin and slow precession motion will be used. MAP requires a propulsion system to reach L(sub 2), to unload system momentum, and to perform stationkeeping maneuvers once at L(sub 2). A minimum hardware, power and thermal safe control mode must also be provided. Sufficient attitude knowledge must be provided to yield instrument pointing to a standard deviation of 1.8 arc-minutes. The short development time and tight budgets require a new way of designing, simulating, and analyzing the Attitude Control System (ACS). This paper presents the design and analysis of the control system to meet these requirements.

  6. The Spartan attitude control system - Control electronics assembly

    Science.gov (United States)

    Stone, R. W.

    1986-01-01

    The Spartan attitude control system (ACS) represents an evolutionary development of the previous STRAP-5 ACS through the use of state-of-the-art microprocessors and hardware. Despite a gyro rate signal noise problem that caused the early depletion of argon gas, the Spartan 101 experiment was able to collect several hours of data from two targets. Attention is presently given to the ACS sequencer module, sensor interface box, valve driver box, control electronics software, jam tables, and sequencer programs.

  7. Architecture for Combined Energy and Attitude Control System

    Directory of Open Access Journals (Sweden)

    Ibrahim M. Mehedi

    2005-01-01

    Full Text Available Combining the energy and attitude control system is a feasible technology for small satellites to improve the space missions. In this Combined Energy and Attitude Control System (CEACS a double rotating flywheel is used to replace the conventional battery for energy storage as well as to control the attitude of an earth oriented satellite. Each flywheel is to be controlled in the torque mode. The energy and attitude inputs for the flywheels' control architecture are also in the torque mode. All related mathematical representation along with the relevant transfer functions and the required numerical calculation are developed. The goals are to analyze the attitude performance with respect to the ideal and non-ideal test cases for a chosen reference mission.

  8. Verification of Spin Magnetic Attitude Control System using air-bearing-based attitude control simulator

    Science.gov (United States)

    Ousaloo, H. S.; Nodeh, M. T.; Mehrabian, R.

    2016-09-01

    This paper accomplishes one goal and it was to verify and to validate a Spin Magnetic Attitude Control System (SMACS) program and to perform Hardware-In-the-Loop (HIL) air-bearing experiments. A study of a closed-loop magnetic spin controller is presented using only magnetic rods as actuators. The magnetic spin rate control approach is able to perform spin rate control and it is verified with an Attitude Control System (ACS) air-bearing MATLAB® SIMULINK® model and a hardware-embedded LABVIEW® algorithm that controls the spin rate of the test platform on a spherical air bearing table. The SIMULINK® model includes dynamic model of air-bearing, its disturbances, actuator emulation and the time delays caused by on-board calculations. The air-bearing simulator is employed to develop, improve, and carry out objective tests of magnetic torque rods and spin rate control algorithm in the experimental framework and to provide a more realistic demonstration of expected performance of attitude control as compared with software-based architectures. Six sets of two torque rods are used as actuators for the SMACS. It is implemented and simulated to fulfill mission requirement including spin the satellite up to 12 degs-1 around the z-axis. These techniques are documented for the full nonlinear equations of motion of the system and the performances of these techniques are compared in several simulations.

  9. The SAS-3 attitude control system

    Science.gov (United States)

    Mobley, F. F.; Konigsberg, R.; Fountain, G. H.

    1975-01-01

    SAS-3 uses a reaction wheel to provide torque to control the spin rate. If the wheel speed becomes too great or too small, it must be restored to its nominal rate by momentum dumping which is done by magnetic torquing against the earth's magnetic field by the satellite's magnetic coils. A small rate-integrating gyro is used to sense the spin rate so that closed loop control of the spin rate can be achieved. These various systems are described in detail including the reaction wheel system, the gyro system, along with control modes (spin rate control and the star lock mode).

  10. Advanced Integrated Power and Attitude Control System (IPACS) study

    Science.gov (United States)

    Oglevie, R. E.; Eisenhaure, D. B.

    1985-01-01

    Integrated Power and Attitude Control System (IPACS) studies performed over a decade ago established the feasibility of simultaneously satisfying the demands of energy storage and attitude control through the use of rotating flywheels. It was demonstrated that, for a wide spectrum of applications, such a system possessed many advantages over contemporary energy storage and attitude control approaches. More recent technology advances in composite material rotors, magnetic suspension systems, and power control electronics have triggered new optimism regarding the applicability and merits of this concept. This study is undertaken to define an advanced IPACS and to evaluate its merits for a space station application. System and component designs are developed to establish the performance of this concept and system trade studies conducted to examine the viability of this approach relative to conventional candidate systems. It is clearly demonstrated that an advanced IPACS concept is not only feasible, but also offers substantial savings in mass and life-cycle cost for the space station mission.

  11. Two Axis Pointing System (TAPS) attitude acquisition, determination, and control

    Science.gov (United States)

    Azzolini, John D.; McGlew, David E.

    1990-12-01

    The Two Axis Pointing System (TAPS) is a 2 axis gimbal system designed to provide fine pointing of Space Transportation System (STS) borne instruments. It features center-of-mass instrument mounting and will accommodate instruments of up to 1134 kg (2500 pounds) which fit within a 1.0 by 1.0 by 4.2 meter (40 by 40 by 166 inch) envelope. The TAPS system is controlled by a microcomputer based Control Electronics Assembly (CEA), a Power Distribution Unit (PDU), and a Servo Control Unit (SCU). A DRIRU-II inertial reference unit is used to provide incremental angles for attitude propagation. A Ball Brothers STRAP star tracker is used for attitude acquisition and update. The theory of the TAPS attitude determination and error computation for the Broad Band X-ray Telescope (BBXRT) are described. The attitude acquisition is based upon a 2 star geometric solution. The acquisition theory and quaternion algebra are presented. The attitude control combines classical position, integral and derivative (PID) control with techniques to compensate for coulomb friction (bias torque) and the cable harness crossing the gimbals (spring torque). Also presented is a technique for an adaptive bias torque compensation which adjusts to an ever changing frictional torque environment. The control stability margins are detailed, with the predicted pointing performance, based upon simulation studies. The TAPS user interface, which provides high level operations commands to facilitate science observations, is outlined.

  12. Adaptive Jacobian Fuzzy Attitude Control for Flexible Spacecraft Combined Attitude and Sun Tracking System

    Science.gov (United States)

    Chak, Yew-Chung; Varatharajoo, Renuganth

    2016-07-01

    Many spacecraft attitude control systems today use reaction wheels to deliver precise torques to achieve three-axis attitude stabilization. However, irrecoverable mechanical failure of reaction wheels could potentially lead to mission interruption or total loss. The electrically-powered Solar Array Drive Assemblies (SADA) are usually installed in the pitch axis which rotate the solar arrays to track the Sun, can produce torques to compensate for the pitch-axis wheel failure. In addition, the attitude control of a flexible spacecraft poses a difficult problem. These difficulties include the strong nonlinear coupled dynamics between the rigid hub and flexible solar arrays, and the imprecisely known system parameters, such as inertia matrix, damping ratios, and flexible mode frequencies. In order to overcome these drawbacks, the adaptive Jacobian tracking fuzzy control is proposed for the combined attitude and sun-tracking control problem of a flexible spacecraft during attitude maneuvers in this work. For the adaptation of kinematic and dynamic uncertainties, the proposed scheme uses an adaptive sliding vector based on estimated attitude velocity via approximate Jacobian matrix. The unknown nonlinearities are approximated by deriving the fuzzy models with a set of linguistic If-Then rules using the idea of sector nonlinearity and local approximation in fuzzy partition spaces. The uncertain parameters of the estimated nonlinearities and the Jacobian matrix are being adjusted online by an adaptive law to realize feedback control. The attitude of the spacecraft can be directly controlled with the Jacobian feedback control when the attitude pointing trajectory is designed with respect to the spacecraft coordinate frame itself. A significant feature of this work is that the proposed adaptive Jacobian tracking scheme will result in not only the convergence of angular position and angular velocity tracking errors, but also the convergence of estimated angular velocity to

  13. An Artificial Neural Network Control System for Spacecraft Attitude Stabilization

    Science.gov (United States)

    1990-06-01

    NAVAL POSTGRADUATE SCHOOL Monterey, California ’-DTIC 0 ELECT f NMARO 5 191 N S, U, THESIS B . AN ARTIFICIAL NEURAL NETWORK CONTROL SYSTEM FOR...NO. NO. NO ACCESSION NO 11. TITLE (Include Security Classification) AN ARTIFICIAL NEURAL NETWORK CONTROL SYSTEM FOR SPACECRAFT ATTITUDE STABILIZATION...obsolete a U.S. G v pi.. iim n P.. oiice! toog-eo.5s43 i Approved for public release; distribution is unlimited. AN ARTIFICIAL NEURAL NETWORK CONTROL

  14. The Spartan attitude control system - Ground support computer

    Science.gov (United States)

    Schnurr, R. G., Jr.

    1986-01-01

    The Spartan Attitude Control System (ACS) contains a command and control computer. This computer is optimized for the activities of the flight and contains very little human interface hardware and software. The computer system provides the technicians testing of Spartan ACS with a convenient command-oriented interface to the flight ACS computer. The system also decodes and time tags data automatically sent out by the flight computer as key events occur. The duration and magnitude of all system maneuvers is also derived and displayed by this system. The Ground Support Computer is also the primary Ground Support Equipment for the flight sequencer which controls all payload maneuvers, and long term program timing.

  15. Framework of Combined Adaptive and Non-adaptive Attitude Control System for a Helicopter Experimental System

    Institute of Scientific and Technical Information of China (English)

    Akira Inoue; Ming-Cong Deng

    2006-01-01

    This paper presents a framework of a combined adaptive and non-adaptive attitude control system for a helicopter experimental system. The design method is based on a combination of adaptive nonlinear control and non-adaptive nonlinear control. With regard to detailed attitude control system design, two schemes are shown for different application cases.

  16. Integrated Power and Attitude Control Systems for Space Station

    Science.gov (United States)

    Oglevie, R. E.; Eisenhaure, D. B.

    1985-01-01

    Integrated Power and Attitude Control Systems (IPACS) studies performed over a decade ago established the feasibility of simultaneously storing electrical energy in wheels and utilizing the resulting momentum for spacecraft attitude control. It was shown that such a system possessed many advantages over other contemporary energy storage and attitude control systems in many applications. More recent technology advances in composite rotors, magnetic bearings, and power control electronics have triggered new optimism regarding the feasibility and merits of such a system. The paper presents the results of a recent study whose focus was to define an advanced IPACS and to evaluate its merits for the Space Station application. A system and component design concept is developed to establish the system performance capability. A system level trade study, including life-cycle costing, is performed to define the merits of the system relative to two other candidate systems. It is concluded that an advanced IPACS concept is not only feasible, but offers substantial savings in mass, and life-cycle cost.

  17. Autonomous Attitude Determination and Control System for the Ørsted Satellite

    DEFF Research Database (Denmark)

    Bak, Thomas; Wisniewski, Rafal; Blanke, M.

    1996-01-01

    The Ørsted Satellite mission imposes comparatively high requirements on autonomy of the attitude control system.......The Ørsted Satellite mission imposes comparatively high requirements on autonomy of the attitude control system....

  18. Design and Stability of an On-Orbit Attitude Control System Using Reaction Control Thrusters

    Science.gov (United States)

    Hall, Robert A.; Hough, Steven; Orphee, Carolina; Clements, Keith

    2016-01-01

    NASA is providing preliminary design and requirements for the Space Launch System Exploration Upper Stage (EUS). The EUS will provide upper stage capability for vehicle ascent as well as on-orbit control capability. Requirements include performance of on-orbit burn to provide Orion vehicle with escape velocity. On-orbit attitude control is accommodated by a on-off Reaction Control System (RCS). Paper provides overview of approaches for design and stability of an attitude control system using a RCS.

  19. Passive Magnetic Attitude Control System for the Munin Nanosatellite

    Science.gov (United States)

    Ovchinnikov, M. Yu.; Penkov, V. I.

    2002-03-01

    The instrumental and applied problems related to the design of a passive magnetic attitude control system for the Munin nanosatellite are considered. The system is constructed from a strong permanent magnet and a set of hysteresis rods. These rods are made of magnetically soft material using a special technology, and they allow us to support the satellite orientation with respect to the local magnetic field vector with a given accuracy and time response. By using asymptotic and numerical methods, we investigate the satellite dynamics for different models of hysteresis. The issues concerning the arrangement of the rods and their interaction with the fields of permanent magnets mounted onboard the satellite are discussed.

  20. Integrated power and single axis attitude control system with two flywheels

    Science.gov (United States)

    Han, Bangcheng

    2012-05-01

    The existing research of the integrated power and attitude control system (IPACS) in satellites mainly focuses on the IPACS concept, which aims at solving the coupled problem between the attitude control and power tracking. In the IPACS, the configuration design of IPACS is usually not considered, and the coupled problem between two flywheels during the attitude control and energy storage has not been resolved. In this paper, an integrated power and single axis attitude control system using two counter rotating magnetically suspended flywheels mounted to an air table is designed. The control method of power and attitude control using flywheel is investigated and the coupling problem between energy storage and attitude control is resolved. A computer simulation of an integrated power and single axis attitude control system with two flywheels is performed, which consists of two counter rotating magnetically suspended flywheels mounted to an air rotary table. Both DC bus and a single axis attitude are the regulation goals. An attitude & DC bus coordinator is put forward to separate DC bus regulation and attitude control problems. The simulation results of DC bus regulation and attitude control are presented respectively with a DC bus regulator and a simple PD attitude controller. The simulation results demonstrate that it is possible to integrate power and attitude control simultaneously for satellite using flywheels. The proposed research provides theory basis for design of the IPACS.

  1. Satellite Attitude Control System Design considering the Fuel Slosh Dynamics

    Directory of Open Access Journals (Sweden)

    Luiz Carlos Gadelha de Souza

    2014-01-01

    Full Text Available The design of the satellite attitude control system (ACS becomes more complex when the satellite structure has different type of components like, flexible solar panels, antennas, mechanical manipulators, and tanks with fuel. A crucial interaction can occur between the fuel slosh motion and the satellite rigid motion during translational and/or rotational manoeuvre since these interactions can change the satellite centre of mass position damaging the ACS pointing accuracy. Although, a well-designed controller can suppress such disturbances quickly, the controller error pointing may be limited by the minimum time necessary to suppress such disturbances thus affecting the satellite attitude acquisition. As a result, the design of the satellite controller needs to explore the limits between the conflicting requirements of performance and robustness. This paper investigates the effects of the interaction between the liquid motion (slosh and the satellite dynamics in order to predict what the damage to the controller performance and robustness is. The fuel slosh dynamics is modelled by a pendulum which parameters are identified using the Kalman filter technique. This information is used to design the satellite controller by the linear quadratic regulator (LQR and linear quadratic Gaussian (LQG methods to perform a planar manoeuvre assuming thrusters are actuators.

  2. Colloid Thruster for Attitude Control Systems (ACS) and Tip-off Control Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop and test key technologies needed for an integrated, high thrust colloid thruster system with no moving parts, for spacecraft attitude control...

  3. An active attitude control system for a drag sail satellite

    Science.gov (United States)

    Steyn, Willem Herman; Jordaan, Hendrik Willem

    2016-11-01

    The paper describes the development and simulation results of a full ADCS subsystem for the deOrbitSail drag sail mission. The deOrbitSail satellite was developed as part of an European FP7 collaboration research project. The satellite was launched and commissioning started on 10th July 2015. Various new actuators and sensors designed for this mission will be presented. The deOrbitSail satellite is a 3U CubeSat to deploy a 4 by 4 m drag sail from an initial 650 km circular polar low earth orbit. With an active attitude control system it will be shown that by maximising the drag force, the expected de-orbiting period from the initial altitude will be less than 50 days. A future application of this technology will be the use of small drag sails as low-cost devices to de-orbit LEO satellites, when they have reached their end of life, without having to use expensive propulsion systems. Simulation and Hardware-in-Loop experiments proved the feasibility of the proposed attitude control system. A magnetic-only control approach using a Y-Thomson spin, is used to detumble the 3U Cubesat with stowed sail and subsequently to 3-axis stabilise the satellite to be ready for the final deployment phase. Minituarised torquer rods, a nano-sized momentum wheel, attitude sensor hardware (magnetometer, sun, earth) developed for this phase will be presented. The final phase will be to deploy and 3-axis stabilise the drag sail normal to the satellite's velocity vector, using a combined Y-momentum wheel and magnetic controller. The design and performance improvements when using a 2-axis translation stage to adjust the sail centre-of-pressure to satellite centre-of-mass offset, will also be discussed, although for launch risk reasons this stage was not included in the final flight configuration. To accurately determine the drag sail's attitude during the sunlit part of the orbit, an accurate wide field of view dual sensor to measure both the sun and nadir vector direction was developed for

  4. Small unmanned helicopter's attitude controller by an on-line adaptive fuzzy control system

    Institute of Scientific and Technical Information of China (English)

    GAO Tong-yue; RAO Jin-jun; GONG Zhen-bang; LUO Jun

    2009-01-01

    Since small unmanned helicopter flight attitude control process has strong time-varying characteristics and there are random disturbances, the conventional control methods with unchanged parameters are often unworkable. An on-line adaptive fuzzy control system (AFCS) was designed, in a way that does not depend on a process model of the plant or its approximation in the form of a Jacobian matrix. Neither is it necessary to know the desired response at each instant of time. AFCS implement a simultaneous on-line tuning of fuzzy rules and output scale of fuzzy control system. The two cascade controller design with an inner (attitude controller) and outer controller (navigation controller) of the small unmanned helicopter was proposed. At last, an attitude controller based on AFCS was implemented. The flight experiment showed that the proposed fuzzy logic controller provides quicker response, smaller overshoot, higher precision, robustness and adaptive ability. It satisfies the needs of autonomous flight.

  5. A comparing design of satellite attitude control system based on reaction wheel

    Institute of Scientific and Technical Information of China (English)

    CHENG Hao; GE Sheng-min; SHEN Yi

    2008-01-01

    The disturbance caused by the reaction wheel with a current controller greatly influences the accuracy and stability of the satellite attitude control system.To solve this problem,the idea of speed feedback compensation control reaction wheel is put forward.This paper introduces the comparison on design and performance of two satellite attitude control systems,which are separately based on the current control reaction wheel and the speed feedback compensation control reaction wheel.Analysis shows that the speed feedback compensation control flywheel system may effectively suppress the torque fluctuation.Simulation results indicate that the satellite attitude control system with the speed feedback compensation control flywheel has improved performance.

  6. Singularity-free integral-augmented sliding mode control for combined energy and attitude control system

    Science.gov (United States)

    Eshghi, Samira; Varatharajoo, Renuganth

    2017-01-01

    A combined energy and attitude control system (CEACS) is a synergized system in which flywheels are used as attitude control actuators and simultaneously as a power storage system. This paper, a subsequent to previous research on CEACS, addresses the attitude-tracking problem. Integral Augmented Sliding Mode Control with Boundary-Layer (IASMC-BL), a locally asymptotically stable controller, is developed to provide a robust and accurate solution for the CEACS's attitude-tracking problem. The controller alleviates the chattering phenomenon associated with the sliding mode using a boundary-layer technique. Simultaneously, it reduces the steady-state error using an integral action. This paper highlights the uncertainty of inertia matrix as a contributing factor to singularity problem. The inversion of the uncertain inertia matrix in simulation of a spacecraft dynamics is also identified as a leading factor to a singular situation. Therefore, an avoidance strategy is proposed in this paper to guarantee a singular-free dynamics behavior in faces of the uncertainties. This maiden work attempts to employ the singularity-free Integral Augmented Sliding Mode Control with Boundary-Layer (IASMC-BL) to provide a robust, accurate and nonsingular attitude-tracking solution for CEACS.

  7. X-33 Attitude Control System Design for Ascent, Transition, and Entry Flight Regimes

    Science.gov (United States)

    Hall, Charles E.; Gallaher, Michael W.; Hendrix, Neal D.

    1998-01-01

    The Vehicle Control Systems Team at Marshall Space Flight Center, Systems Dynamics Laboratory, Guidance and Control Systems Division is designing under a cooperative agreement with Lockheed Martin Skunkworks, the Ascent, Transition, and Entry flight attitude control system for the X-33 experimental vehicle. Ascent flight control begins at liftoff and ends at linear aerospike main engine cutoff (NECO) while Transition and Entry flight control begins at MECO and concludes at the terminal area energy management (TAEM) interface. TAEM occurs at approximately Mach 3.0. This task includes not only the design of the vehicle attitude control systems but also the development of requirements for attitude control system components and subsystems. The X-33 attitude control system design is challenged by a short design cycle, the design environment (Mach 0 to about Mach 15), and the X-33 incremental test philosophy. The X-33 design-to-launch cycle of less than 3 years requires a concurrent design approach while the test philosophy requires design adaptation to vehicle variations that are a function of Mach number and mission profile. The flight attitude control system must deal with the mixing of aerosurfaces, reaction control thrusters, and linear aerospike engine control effectors and handle parasitic effects such as vehicle flexibility and propellant sloshing from the uniquely shaped propellant tanks. The attitude control system design is, as usual, closely linked to many other subsystems and must deal with constraints and requirements from these subsystems.

  8. Control synthesis for polynomial nonlinear systems and application in attitude control

    Institute of Scientific and Technical Information of China (English)

    Chang-fei TONG; Hui ZHANG; You-xian SUN

    2008-01-01

    A method for positive polynomial validation based on polynomial decomposition is proposed to deal with control synthesis problems. Detailed algorithms for decomposition are given which mainly consider how to convert coefficients of a polynomial to a matrix with free variables. Then, the positivity of a polynomial is checked by the decomposed matrix with semidefinite programming solvers. A nonlinear control law is presented for single input polynomial systems based on the Lyapunov stability theorem. The control synthesis method is advanced to multi-input systems further. An application in attitude control is finally presented. The proposed control law achieves effective performance as illustrated by the numerical example.

  9. Disturbance observer-based fuzzy control for flexible spacecraft combined attitude & sun tracking system

    Science.gov (United States)

    Chak, Yew-Chung; Varatharajoo, Renuganth; Razoumny, Yury

    2017-04-01

    This paper investigates the combined attitude and sun-tracking control problem in the presence of external disturbances and internal disturbances, caused by flexible appendages. A new method based on Pythagorean trigonometric identity is proposed to drive the solar arrays. Using the control input and attitude output, a disturbance observer is developed to estimate the lumped disturbances consisting of the external and internal disturbances, and then compensated by the disturbance observer-based controller via a feed-forward control. The stability analysis demonstrates that the desired attitude trajectories are followed even in the presence of external disturbance and internal flexible modes. The main features of the proposed control scheme are that it can be designed separately and incorporated into the baseline controller to form the observer-based control system, and the combined attitude and sun-tracking control is achieved without the conventional attitude actuators. The attitude and sun-tracking performance using the proposed strategy is evaluated and validated through numerical simulations. The proposed control solution can serve as a fail-safe measure in case of failure of the conventional attitude actuator, which triggered by automatic reconfiguration of the attitude control components.

  10. High Accuracy Attitude Control System Design for Satellite with Flexible Appendages

    Directory of Open Access Journals (Sweden)

    Wenya Zhou

    2014-01-01

    Full Text Available In order to realize the high accuracy attitude control of satellite with flexible appendages, attitude control system consisting of the controller and structural filter was designed. When the low order vibration frequency of flexible appendages is approximating the bandwidth of attitude control system, the vibration signal will enter the control system through measurement device to bring impact on the accuracy or even the stability. In order to reduce the impact of vibration of appendages on the attitude control system, the structural filter is designed in terms of rejecting the vibration of flexible appendages. Considering the potential problem of in-orbit frequency variation of the flexible appendages, the design method for the adaptive notch filter is proposed based on the in-orbit identification technology. Finally, the simulation results are given to demonstrate the feasibility and effectiveness of the proposed design techniques.

  11. Adaptive fuzzy logic controller with direct action type structures for InnoSAT attitude control system

    Science.gov (United States)

    Bakri, F. A.; Mashor, M. Y.; Sharun, S. M.; Bibi Sarpinah, S. N.; Abu Bakar, Z.

    2016-10-01

    This study proposes an adaptive fuzzy controller for attitude control system (ACS) of Innovative Satellite (InnoSAT) based on direct action type structure. In order to study new methods used in satellite attitude control, this paper presents three structures of controllers: Fuzzy PI, Fuzzy PD and conventional Fuzzy PID. The objective of this work is to compare the time response and tracking performance among the three different structures of controllers. The parameters of controller were tuned on-line by adjustment mechanism, which was an approach similar to a PID error that could minimize errors between actual and model reference output. This paper also presents a Model References Adaptive Control (MRAC) as a control scheme to control time varying systems where the performance specifications were given in terms of the reference model. All the controllers were tested using InnoSAT system under some operating conditions such as disturbance, varying gain, measurement noise and time delay. In conclusion, among all considered DA-type structures, AFPID controller was observed as the best structure since it outperformed other controllers in most conditions.

  12. Plug-and-Play Compatibility for CubeSat Attitude Determination and Control Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The development of Plug-and-play Compatibility for CubeSat Attitude Determination and Control Systems (ADACS) is proposed. Existing Maryland Aerospace (MAI) ADACS...

  13. Design and simulation of satellite attitude control system based on Simulink and VR

    Science.gov (United States)

    Zhang, Yang; Gan, Qingbo; Kang, Jingshu

    2016-01-01

    In order to research satellite attitude control system design and visual simulation, the simulation framework of satellite dynamics and attitude control using Simulink were established. The design of satellite earth-oriented control system based on quaternion feedback was completed. The 3D scene based on VR was created and models in the scene were driven by simulation data of Simulink. By coordinate transformation. successful observing the scene in inertial coordinate system, orbit coordinate system and body coordinate system. The result shows that application of simulation method of Simulink combined with VR in the design of satellite attitude control system field, has the advantages of high confidence level, hard real-time property, multi-perspective and multi-coordinate system observing the scene, and improves the comprehensibility and accuracy of the design.

  14. AIRSHIP ATTITUDE TRACKING SYSTEM

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-liang; SHAN Xue-xiong

    2006-01-01

    The attitude tracking control problem for an airship with parameter uncertainties and external disturbances was considered in this paper. The mathematical model of the airship attitude is a multi-input/multi-output uncertain nonlinear system. Based on the characteristics of this system, a design method of robust output tracking controllers was adopted based on the upper-bounds of the uncertainties. Using the input/output feedback linearization approach and Liapunov method, a control law was designed, which guarantees that the system output exponentially tracks the given desired output. The controller is easy to compute and complement. Simulation results show that, in the closed-loop system, precise attitude control is accomplished in spite of the uncertainties and external disturbances in the system.

  15. Reusable Reentry Satellite (RRS) system design study. Phase B, appendix E: Attitude control system study

    Science.gov (United States)

    1991-01-01

    A study which consisted of a series of design analyses for an Attitude Control System (ACS) to be incorporated into the Re-usable Re-entry Satellite (RRS) was performed. The main thrust of the study was associated with defining the control laws and estimating the mass and power requirements of the ACS needed to meet the specified performance goals. The analyses concentrated on the different on-orbit control modes which start immediately after the separation of the RRS from the launch vehicle. The three distinct on-orbit modes considered for these analyses are as follows: (1) Mode 1 - A Gravity Gradient (GG) three-axis stabilized spacecraft with active magnetic control; (2) Mode 2 - A GG stabilized mode with a controlled yaw rotation rate ('rotisserie') using three-axis magnetic control and also incorporating a 10 N-m-s momentum wheel along the (Z) yaw axis; and (3) Mode 3 - A spin stabilized mode of operation with the spin about the pitch (Y) axis, incorporating a 20 N-m-s momentum wheel along the pitch (Y) axis and attitude control via thrusters. To investigate the capabilities of the different controllers in these various operational modes, a series of computer simulations and trade-off analyses have been made to evaluate the achievable performance levels, and the necessary mass and power requirements.

  16. Direct Self-Repairing Control for Quadrotor Helicopter Attitude Systems

    Directory of Open Access Journals (Sweden)

    Huiliao Yang

    2014-01-01

    Full Text Available A quadrotor helicopter with uncertain actuator faults, such as loss of effectiveness and lock-in-place, is studied in this paper. An adaptive fuzzy sliding mode controller based on direct self-repairing control is designed for such nonlinear system to track the desired output signal, when any actuator of this quadrotor helicopter is loss of effectiveness or stuck at some place. Moreover, using the Lyapunov stability theory, the stability of the whole system and the convergence of the tracking error can be guaranteed. Finally, the availability of the proposed method is verified by simulation on 3-DOF hover to ensure that the system performance under faulty conditions can be quickly recovered to its normal level. And this proposed method is also proved to be better than that of LQR through simulation.

  17. Attitude Control of Quad-rotor by Improving the Reliability of Multi-Sensor System

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Dong Hyeon; Chong, Kil To [Chon-bok National University, Jeonju (Korea, Republic of); Park, Jong Ho [Seonam University, Namwon (Korea, Republic of); Ryu, Ji Hyoung [ETRI, Daejeon (Korea, Republic of)

    2015-05-15

    This paper presents the results of study for improving the reliability of quadrotor attitude control by applying a multi-sensor along with a data fusion algorithm. First, a mathematical model of the quadrotor dynamics was developed. Then, using the quadrotor mathematical model, simulations were performed using the improved reliability multi-sensor data as the inputs. From the simulation results, we designed a Gimbal-equipped quadrotor system. With the quadrotor in a hover state, we performed experiments according to the angle change of the user's specifications . We then calculated the attitude control data from the actual experimental data. Furthermore, with additional simulations, we verified the performance of the designed quadrotor attitude control system with multiple sensors.

  18. Design of a high density cold gas attitude control system

    Science.gov (United States)

    Hall, Sarah E.; Lewis, Mark J.; Akin, David L.

    1993-01-01

    A comparison of the experimental results of a nitrous oxide cold gas thruster with the predicted performance from a numerical simulation of nozzle operations is discussed. Tests were conducted in a vacuum chamber to verify analytical predictions of both nitrogen and nitrous oxide. Preliminary results indicate an Isp for N2O of 61, and an Isp of 69 for N2. Based on the results of this research, parameters are presented for a nitrous oxide-based reaction control system for a small spacecraft currently under development.

  19. Thrust distribution for attitude control in a variable thrust propulsion system with four ACS nozzles

    Science.gov (United States)

    Lim, Yeerang; Lee, Wonsuk; Bang, Hyochoong; Lee, Hosung

    2017-04-01

    A thrust distribution approach is proposed in this paper for a variable thrust solid propulsion system with an attitude control system (ACS) that uses a reduced number of nozzles for a three-axis attitude maneuver. Although a conventional variable thrust solid propulsion system needs six ACS nozzles, this paper proposes a thrust system with four ACS nozzles to reduce the complexity and mass of the system. The performance of the new system was analyzed with numerical simulations, and the results show that the performance of the system with four ACS nozzles was similar to the original system while the mass of the whole system was simultaneously reduced. Moreover, a feasibility analysis was performed to determine whether a thrust system with three ACS nozzles is possible.

  20. Increasing Slew Performance of Reaction Wheel Attitude Control Systems

    Science.gov (United States)

    2013-09-01

    based software package for solving optimal control problems [21]. A huge advantage of DIDO is that the optimal control problem from Equation (153...Beginner’s Guide to DIDO: A MATLAB Application Package for Solving Optimal Control Problems .” V7.3, Doc. TR-711, Monterey, CA: Elissar, 2007. [22] N. S

  1. Development of a Simple Attitude Control System for Newly Constructed Balloon-Borne Experiments

    Science.gov (United States)

    Saito, Yoshitaka; Iijima, Issei; Nonaka, Naoki; Yamada, Kazuhiko; Ishikawa, Yuji; Kan'no, Makoto; Kishimoto, Yuji; Gunji, Shuichi; Sato, Tetsuya; Mihara, Tatehiro; Anabuki, Naohisa; Ohta, Yukihiro; Yamauchi, Manabu; Hayashida, Kiyoshi

    A simple attitude control system for a balloon experiment has been developed. This system aims to achieve an accuracy of 0.1 deg in azimuth for a small payload with a diameter of 1.5 m and a moment of inertia of 100 kg·m2. It will be first flown with the Polarimetry for High ENErgy X-rays (PHENEX) experiment, which is to observe the polarization of astronomical objects in the hard X-ray energy region. The system is composed of the attitude sensors (sun sensors, geomagnetic aspect sensors, and an optical fiber gyro), read-out modules, CPU, output modules (PC104 based boards), and actuators (a torsion relief motor and a reaction wheel motor with their drivers). In this paper, after introducing these modules, the properties of the sensors and the control system based on the ground will be reviewed.

  2. Investigation of the dynamics of angular motion and construction of algorithms for controlling the angular momentum of spacecraft using a magnetic attitude control system

    Science.gov (United States)

    Egorov, Yu. G.; Kulkov, V. M.; Terentyev, V. V.; Firsyuk, S. O.; Shemyakov, A. O.

    2016-11-01

    The problem of controlling the angular momentum of spacecraft using magnetic attitude control systems interacting with the Earth's magnetic field is considered. A mathematical model for the angular motion dynamics of a spacecraft has been constructed. An approach to determining the parameters of the control law for a spacecraft attitude control and stabilization system that ensures angular momentum dissipation is proposed.

  3. Optimal magnetic attitude control

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Markley, F.L.

    1999-01-01

    because control torques can only be generated perpendicular to the local geomagnetic field vector. This has been a serious obstacle for using magnetorquer based control for three-axis stabilization of a low earth orbit satellite. The problem of controlling the spacecraft attitude using only magnetic...

  4. Coupled Attitude and Orbit Dynamics and Control in Formation Flying Systems

    Science.gov (United States)

    Xu, Yun-Jun; Fitz-Coy, Norman; Mason, Paul

    2003-01-01

    Formation flying systems can range from global constellations offering extended service coverage to clusters of highly coordinated vehicles that perform distributed sensing. Recently, the use of groups of micro-satellites in the areas of near Earth explorations, deep space explorations, and military applications has received considerable attention by researchers and practitioners. To date, most proposed control strategies are based on linear models (e.g., Hill-Clohessy-Wiltshire equations) or nonlinear models that are restricted to circular reference orbits. Also, all models in the literature are uncoupled between relative position and relative attitude. In this paper, a generalized dynamic model is proposed. The reference orbit is not restricted to the circular case. In this formulation, the leader or follower satellite can be in either a circular or an elliptic orbit. In addition to maintaining a specified relative position, the satellites are also required to maintain specified relative attitudes. Thus the model presented couples vehicle attitude and orbit requirements. Orbit perturbations are also included. In particular, the J(sub 2) effects are accounted in the model. Finally, a sliding mode controller is developed and used to control the relative attitude of the formation and the simulation results are presented.

  5. Sliding Mode Implementation of an Attitude Command Flight Control System for a Helicopter in Hover

    Directory of Open Access Journals (Sweden)

    D. J. McGeoch

    2005-01-01

    Full Text Available This paper presents an investigation into the design of a flight control system, using a decoupled non-linear sliding mode control structure, designed using a linearised, 9th order representation of the dynamics of a PUMA helicopter in hover. The controllers are then tested upon a higher order, non-linear helicopter model, called RASCAL. This design approach is used for attitude command flight control implementation and the control performance is assessed in the terms of handling qualities through the Aeronautical Design Standards for Rotorcraft (ADS-33. In this context a linearised approximation of the helicopter system is used to design an SMC control scheme. These controllers have been found to yield a system that satisfies the Level 1 handling qualities set out by ADS-33. 

  6. The Gravity Probe B Drag-free and Attitude Control System

    Science.gov (United States)

    Adams, Michael; Debra, Daniel

    2007-04-01

    The Gravity Probe B is first space vehicle provide active control of the vehicle's six degrees of freedom (DOF), three in translation and three in attitude. The Attitude and Translation Control (ATC) uses helium boil-off gas from the cryogenic system as a propellant for 16 proportional cold gas thrusters. Differential thruster operation provides forces and torques on the vehicle, common mode operation controls the net flow rate from the dewar that is used in turn to control the liquid helium bath temperature. The pointing system controls the pointing of the guide star tracking telescope to 30 marc-sec at the space vehicle roll period (77.5) and maintained roll phase to 40 arc-sec. The translation control system used acceleration measurements from one science gyroscope's suspension system to null out the effects of external forces from the on-orbit environment (solar wind, radiation pressure, etc). In this way, the vehicle was controlled to fly in a near-perfect gravitational orbit; transverse accelerations on the science gyroscopes were reduced to the 5x10-12 g level. The precise pointing and orbital geometry are essential for minimizing disturbances to the science gyroscopes, and the dewar control is important in maximizing the length of the data collection period..

  7. On the Elastic Vibration Model for High Length-Diameter Ratio Rocket with Attitude Control System

    Institute of Scientific and Technical Information of China (English)

    朱伯立; 杨树兴

    2003-01-01

    An elastic vibration model for high length-diameter ratio spinning rocket with attitude control system which can be used for trajectory simulation is established. The basic theory of elastic dynamics and vibration dynamics were both used to set up the elastic vibration model of rocket body. In order to study the problem more conveniently, the rocket's body was simplified to be an even beam with two free ends. The model was validated by simulation results and the test data.

  8. Platform attitude data acquisition system

    Digital Repository Service at National Institute of Oceanography (India)

    Afzulpurkar, S.

    A system for automatic acquisition of underwater platform attitude data has been designed, developed and tested in the laboratory. This is a micro controller based system interfacing dual axis inclinometer, high-resolution digital compass...

  9. Optimality of incompletely measurable active and passive attitude control systems. [for satellites

    Science.gov (United States)

    Schiehlen, W.; Popp, K.

    1973-01-01

    Passive attitude control systems and active systems with incomplete state measurements are only suboptimal systems in the sense of optimal control theory, since optimal systems require complete state measurements or state estimations. An optimal system, then, requires additional hardware (especially in the case of flexible spacecraft) which results in higher costs. Therefore, it is a real engineering problem to determine how much an optimal system exceeds the suboptimal system, or in other words, what is the suboptimal system's degree of optimality. The problem will be treated in three steps: (1) definition of the degree of optimality for linear, time-invariant systems; (2) a computation method using the quadratic cost functional; (3) application to a gravity-gradient stabilized three-body satellite and a spinning flexible satellite.

  10. Development and test of the ASAT Bipropellant Attitude Control System (ACS) engine

    Science.gov (United States)

    Hodge, K. F.; Allen, K. A.; Hemmings, B.

    1993-06-01

    The recent Kinetic Energy Anti-Satellite (KE ASAT) Bipropellant Attitude Control System (ACS) Engine testing demonstrated and characterized performance and operational durability. Within the ASAT mission, the bipropellant engines are used to despin the missile after shroud deployment and to provide attitude control of the Kill Vehicle (KV) during all phases of the KV free flight. These engines provide all attitude control thrust from booster separation until target intercept. The ASAT ACS engine is unique both in the amount of on-time that the engine sees during a tactical mission scenario and the high thermal loads which result from performing two diametrically opposed missions with a single thruster - long steady state burns and very short response time pulse mode operations. Two flightweight ASAT ACS Bipropellant engines were individually tested in a developmental test program. Testing was conducted at ambient conditions. Hot-fire testing consisted of steady-state, mission duty cycle (MDC), Chamber Pressure (Pc) excursion, mixture ratio excursion, and pulse performance. Testing was conducted by Rockwell's Rocketdyne Division at the Santa Susana Field Laboratory (SSFL), Systems Test Laboratory IV (STL IV), Cell 37A. Two additional engine tests are planned and will include altitude testing. This paper will summarize engine development, component development testing, valve orificing and cold flow calibration, and engine hot-fire testing approach and results.

  11. Hardware-in-Loop-Simulator for InnoSAT Attitude Control System

    Directory of Open Access Journals (Sweden)

    S. M. Sharun

    2016-10-01

    Full Text Available After launching, the initial condition of satellite is unknown and tends to be in a tumbling state. At this moment, the satellite needs to reduce the tumbling rate so that the satellite can enter a stable and unruffled state. The satellite also must maintain a certain attitude while orbiting in order to allow precise pointing of the antenna toward the earth. In[D1]  this study, a hardware-in-loop-simulator was devised for the purpose of improving the design and verifying attitude control concepts for Innovative Satellite (InnoSAT system. A new software architecture and algorithm was developed based on the controller, InnoSAT plant, actuator and sensor. Firstly, the controller, actuator and sensor was modelled in the MATLAB program together with InnoSAT plant. The actuator and sensor were assumed to be ideal. However, some properties of the actuator and sensor were simulated in the software simulator. If the software simulation performed satisfactorily, the control algorithm will be embedded into Rabbit Micro Controller (RCM4100 using Dynamic C language. This is the part where the hardware simulation is developed which is creating hardware-in-loop-simulation technique for verification of InnoSAT Attitude Control System (ACS performance. [D2] The satellite simulator was tested using simulated data in order to observe the performances of the controller in real time simulation. The results show that the InnoSAT ACS simulator can produce as good result as a MATLAB simulation for the InnoSAT plants. From the results, it is adequate to verify that the developed protocol working satisfyingly and seems to be possible to be implemented on the actual flight.[D3]  [D1]1 sentence on problem statement would be better.. [D2]Need to rewrite…. [D3]Need to rewrite…..

  12. Finite-time sliding mode attitude control for a reentry vehicle with blended aerodynamic surfaces and a reaction control system

    Institute of Scientific and Technical Information of China (English)

    Geng Jie; Sheng Yongzhi; Liu Xiangdong

    2014-01-01

    This paper proposes a finite-time robust flight controller, targeting for a reentry vehicle with blended aerodynamic surfaces and a reaction control system (RCS). Firstly, a novel finite-time attitude controller is pointed out with the introduction of a nonsingular finite-time sliding mode manifold. The attitude tracking errors are mathematically proved to converge to zero within finite time which can be estimated. In order to improve the performance, a second-order finite-time slid-ing mode controller is further developed to effectively alleviate chattering without any deterioration of robustness and accuracy. Moreover, an optimization control allocation algorithm, using linear programming and a pulse-width pulse-frequency (PWPF) modulator, is designed to allocate torque commands for all the aerodynamic surface deflections and on-off switching-states of RCS thrusters. Simulations are provided for the reentry vehicle considering uncertain parameters and external disturbances for practical purposes, and the results demonstrate the effectiveness and robustness of the attitude control system.

  13. Simultaneous state and actuator fault estimation for satellite attitude control systems

    Institute of Scientific and Technical Information of China (English)

    Cheng Yao; Wang Rixin; Xu Minqiang; Li Yuqing

    2016-01-01

    In this paper, a new nonlinear augmented observer is proposed and applied to satellite attitude control systems. The observer can estimate system state and actuator fault simultaneously. It can enhance the performances of rapidly-varying faults estimation. Only original system matrices are adopted in the parameter design. The considered faults can be unbounded, and the proposed augmented observer can estimate a large class of faults. Systems without disturbances and the fault whose finite times derivatives are zero piecewise are initially considered, followed by a discussion of a general situation where the system is subject to disturbances and the finite times derivatives of the faults are not null but bounded. For the considered nonlinear system, convergence conditions of the observer are provided and the stability analysis is performed using Lyapunov direct method. Then a feasible algorithm is explored to compute the observer parameters using linear matrix inequalities (LMIs). Finally, the effectiveness of the proposed approach is illustrated by considering an example of a closed-loop satellite attitude control system. The simulation results show satisfactory perfor-mance in estimating states and actuator faults. It also shows that multiple faults can be estimated successfully.

  14. Enceladus Plume Density Modeling and Reconstruction for Cassini Attitude Control System

    Science.gov (United States)

    Sarani, Siamak

    2010-01-01

    In 2005, Cassini detected jets composed mostly of water, spouting from a set of nearly parallel rifts in the crust of Enceladus, an icy moon of Saturn. During an Enceladus flyby, either reaction wheels or attitude control thrusters on the Cassini spacecraft are used to overcome the external torque imparted on Cassini due to Enceladus plume or jets, as well as to slew the spacecraft in order to meet the pointing needs of the on-board science instruments. If the estimated imparted torque is larger than it can be controlled by the reaction wheel control system, thrusters are used to control the spacecraft. Having an engineering model that can predict and simulate the external torque imparted on Cassini spacecraft due to the plume density during all projected low-altitude Enceladus flybys is important. Equally important is being able to reconstruct the plume density after each flyby in order to calibrate the model. This paper describes an engineering model of the Enceladus plume density, as a function of the flyby altitude, developed for the Cassini Attitude and Articulation Control Subsystem, and novel methodologies that use guidance, navigation, and control data to estimate the external torque imparted on the spacecraft due to the Enceladus plume and jets. The plume density is determined accordingly. The methodologies described have already been used to reconstruct the plume density for three low-altitude Enceladus flybys of Cassini in 2008 and will continue to be used on all remaining low-altitude Enceladus flybys in Cassini's extended missions.

  15. Control of nonlinear systems with applications to constrained robots and spacecraft attitude stabilization

    Science.gov (United States)

    Krishnan, Hariharan

    1993-01-01

    This thesis is organized in two parts. In Part 1, control systems described by a class of nonlinear differential and algebraic equations are introduced. A procedure for local stabilization based on a local state realization is developed. An alternative approach to local stabilization is developed based on a classical linearization of the nonlinear differential-algebraic equations. A theoretical framework is established for solving a tracking problem associated with the differential-algebraic system. First, a simple procedure is developed for the design of a feedback control law which ensures, at least locally, that the tracking error in the closed loop system lies within any given bound if the reference inputs are sufficiently slowly varying. Next, by imposing additional assumptions, a procedure is developed for the design of a feedback control law which ensures that the tracking error in the closed loop system approaches zero exponentially for reference inputs which are not necessarily slowly varying. The control design methodologies are used for simultaneous force and position control in constrained robot systems. The differential-algebraic equations are shown to characterize the slow dynamics of a certain nonlinear control system in nonstandard singularly perturbed form. In Part 2, the attitude stabilization (reorientation) of a rigid spacecraft using only two control torques is considered. First, the case of momentum wheel actuators is considered. The complete spacecraft dynamics are not controllable. However, the spacecraft dynamics are small time locally controllable in a reduced sense. The reduced spacecraft dynamics cannot be asymptotically stabilized using continuous feedback, but a discontinuous feedback control strategy is constructed. Next, the case of gas jet actuators is considered. If the uncontrolled principal axis is not an axis of symmetry, the complete spacecraft dynamics are small time locally controllable. However, the spacecraft attitude

  16. Solar Sail Attitude Control System for the NASA Near Earth Asteroid Scout Mission

    Science.gov (United States)

    Orphee, Juan; Diedrich, Ben; Stiltner, Brandon; Becker, Chris; Heaton, Andrew

    2017-01-01

    An Attitude Control System (ACS) has been developed for the NASA Near Earth Asteroid (NEA) Scout mission. The NEA Scout spacecraft is a 6U cubesat with an eighty-six square meter solar sail for primary propulsion that will launch as a secondary payload on the Space Launch System (SLS) Exploration Mission 1 (EM-1) and rendezvous with a target asteroid after a two year journey, and will conduct science imagery. The spacecraft ACS consists of three major actuating subsystems: a Reaction Wheel (RW) control system, a Reaction Control System (RCS), and an Active Mass Translator (AMT) system. The reaction wheels allow fine pointing and higher rates with low mass actuators to meet the science, communication, and trajectory guidance requirements. The Momentum Management System (MMS) keeps the speed of the wheels within their operating margins using a combination of solar torque and the RCS. The AMT is used to adjust the sign and magnitude of the solar torque to manage pitch and yaw momentum. The RCS is used for initial de-tumble, performing a Trajectory Correction Maneuver (TCM), and performing momentum management about the roll axis. The NEA Scout ACS is able to meet all mission requirements including attitude hold, slews, pointing for optical navigation and pointing for science with margin and including flexible body effects. Here we discuss the challenges and solutions of meeting NEA Scout mission requirements for the ACS design, and present a novel implementation of managing the spacecraft Center of Mass (CM) to trim the solar sail disturbance torque. The ACS we have developed has an applicability to a range of potential missions and does so in a much smaller volume than is traditional for deep space missions beyond Earth.

  17. Integration of a Motion Capture System into a Spacecraft Simulator for Real-Time Attitude Control

    Science.gov (United States)

    2016-08-16

    Attitude Control* Benjamin L. Reifler University at Buffalo, Buffalo, New York 1st Lt Dylan R. Penn Air Force Research Laboratory, Kirtland Air Force...on a low-friction spherical air bearing. It is designed to test the behavior of integrated hardware and software for at- titude determination and...sensors and to validate attitude estimation performance. This paper describes the suite of software programs that has been developed to transmit

  18. Application of the concept of dynamic trim control and nonlinear system inverses to automatic control of a vertical attitude takeoff and landing aircraft

    Science.gov (United States)

    Smith, G. A.; Meyer, G.

    1981-01-01

    A full envelope automatic flight control system based on nonlinear inverse systems concepts has been applied to a vertical attitude takeoff and landing (VATOL) fighter aircraft. A new method for using an airborne digital aircraft model to perform the inversion of a nonlinear aircraft model is presented together with the results of a simulation study of the nonlinear inverse system concept for the vertical-attitude hover mode. The system response to maneuver commands in the vertical attitude was found to be excellent; and recovery from large initial offsets and large disturbances was found to be very satisfactory.

  19. Integrated Power/Attitude Control System (IPACS) study. Volume 1: Feasibility studies. [application of flywheels for power storage and generation

    Science.gov (United States)

    Notti, J. E.; Cormack, A., III; Schmill, W. C.

    1974-01-01

    An Integrated Power/Attitude Control System (IPACS) concept consisting of an array of spinning flywheels, with or without gimbals, capable of performing the dual function of power storage and generation, as well as attitude control has been investigated. This system provides attitude control through momentum storage, and replaces the storage batteries onboard the spacecraft. The results of the investigation are presented in two volumes. The trade-off studies performed to establish the feasibility, cost effectiveness, required level of development, and boundaries of application of IPACS to a wide variety of spacecraft are discussed. The conceptual designs for a free-flying research application module (RAM), and for a tracking and data relay satellite (TDRS) are presented. Results from dynamic analyses and simulations of the IPACS conceptual designs are included.

  20. Spacecraft attitude dynamics and control

    Science.gov (United States)

    Chobotov, Vladimir A.

    This overview of spacecraft dynamics encompasses the fundamentals of kinematics, rigid-body dynamics, linear control theory, orbital environmental effects, and the stability of motion. The theoretical treatment of each issue is complemented by specific references to spacecraft control systems based on spin, dual-spin, three-axis-active, and reaction-wheel methodologies. Also examined are control-moment-gyro, gravity-gradient, and magnetic control systems with attention given to key issues such as nutation damping, separation dynamics of spinning bodies, and tethers. Environmental effects that impinge on the application of spacecraft-attitude dynamics are shown to be important, and consideration is given to gravitation, solar radiation, aerodynamics, and geomagnetics. The publication gives analytical methods for examining the practical implementation of the control techniques as they apply to spacecraft.

  1. Integrated Orbit, Attitude, and Structural Control Systems Design for Space Solar Power Satellites

    Science.gov (United States)

    Wie, Bong; Roithmayr, Carlos M.

    2001-01-01

    The major objective of this study is to develop an integrated orbit, attitude, and structural control systems architecture for very large Space Solar Power Satellites (SSPS) in geosynchronous orbit. This study focuses on the 1.2-GW Abacus SSPS concept characterized by a 3.2 x 3.2 km solar-array platform, a 500-m diameter microwave beam transmitting antenna, and a 500 x 700 m earth-tracking reflector. For this baseline Abacus SSPS configuration, we derive and analyze a complete set of mathematical models, including external disturbances such as solar radiation pressure, microwave radiation, gravity-gradient torque, and other orbit perturbation effects. The proposed control systems architecture utilizes a minimum of 500 1-N electric thrusters to counter, simultaneously, the cyclic pitch gravity-gradient torque, the secular roll torque caused by an offset of the center-of-mass and center-of-pressure, the cyclic roll/yaw microwave radiation torque, and the solar radiation pressure force whose average value is about 60 N.

  2. Adaptive Hierarchical Sliding Mode Control with Input Saturation for Attitude Regulation of Multi-satellite Tethered System

    Science.gov (United States)

    Ma, Zhiqiang; Sun, Guanghui

    2016-11-01

    This paper proposes a novel adaptive hierarchical sliding mode control for the attitude regulation of the multi-satellite inline tethered system, where the input saturation is taken into account. The governing equations for the attitude dynamics of the three-satellite inline tethered system are derived firstly by utilizing Lagrangian mechanics theory. Considering the fact that the attitude of the central satellite can be adjusted by using the simple exponential stabilization scheme, the decoupling of the central satellite and the terminal ones is presented, and in addition, the new adaptive sliding mode control law is applied to stabilize the attitude dynamics of the two terminal satellites based on the synchronization and partial contraction theory. In the adaptive hierarchical sliding mode control design, the input is modeled as saturated input due to the fact that the flywheel torque is bounded, and meanwhile, an adaptive update rate is introduced to eliminate the effect of the saturated input and the external perturbation. The proposed control scheme can be applied on the two-satellite system to achieve fixed-point rotation. Numerical results validate the effectiveness of the proposed method.

  3. Design, dynamics and control of an Adaptive Singularity-Free Control Moment Gyroscope actuator for microspacecraft Attitude Determination and Control System

    Science.gov (United States)

    Viswanathan, Sasi Prabhakaran

    how they lead to CMG singularities, are described. General ideas on control of the angular momentum of the spacecraft using changes in the momentum variables of a finite number of ASCMGs, are provided. Control schemes for agile and precise attitude maneuvers using ASCMG cluster in the absence of external torques and when the total angular momentum of the spacecraft is zero, is presented for both constant speed and variable speed modes. A Geometric Variational Integrator (GVI) that preserves the geometry of the state space and the conserved norm of the total angular momentum is constructed for numerical simulation and microcontroller implementation of the control scheme. The GVI is obtained by discretizing the Lagrangian of the rnultibody systems, in which the rigid body attitude is globally represented on the Lie group of rigid body rotations. Hardware and software architecture of a novel spacecraft Attitude Determination and Control System (ADCS) based on commercial smartphones and a bare minimum hardware prototype of an ASCMG using low cost COTS components is also described. A lightweight, dynamics model-free Variational Attitude Estimator (VAE) suitable for smartphone implementation is employed for attitude determination and the attitude control is performed by ASCMG actuators. The VAE scheme presented here is implemented and validated onboard an Unmanned Aerial Vehicle (UAV) platform and the real time performance is analyzed. On-board sensing, data acquisition, data uplink/downlink, state estimation and real-time feedback control objectives can be performed using this novel spacecraft ADCS. The mechatronics realization of the attitude determination through variational attitude estimation scheme and control implementation using ASCMG actuators are presented here. Experimental results of the attitude estimation (filtering) scheme using smartphone sensors as an Inertial Measurement Unit (IMU) on the Hardware In the Loop (HIL) simulator testbed are given. These

  4. Integration and Testing of the Lunar Reconnaissance Orbiter Attitude Control System

    Science.gov (United States)

    Simpson, Jim; Badgley, Jason; McCaughey, Ken; Brown, Kristen; Calhoun, Philip; Davis, Edward; Garrick, Joseph; Gill, Nathaniel; Hsu, Oscar; Jones, Noble; Oritz-Cruz, Gerardo; Raymond, Juan; Roder, Russell; Shah, Neerav; Wilson, John

    2010-01-01

    Throughout the Lunar Reconnaissance Orbiter (LRO) Integration and Testing (I&T) phase of the project, the Attitude Control System (ACS) team completed numerous tests on each hardware component in ever more flight like environments. The ACS utilizes a select group of attitude sensors and actuators. This paper chronicles the evolutionary steps taken to verify each component was constantly ready for flight as well as providing invaluable trending experience with the actual hardware. The paper includes a discussion of each ACS hardware component, lessons learned of the various stages of I&T, a discussion of the challenges that are unique to the LRO project, as well as a discussion of work for future missions to consider as part of their I&T plan. LRO ACS sensors were carefully installed, tested, and maintained over the 18 month I&T and prelaunch timeline. Care was taken with the optics of the Adcole Coarse Sun Sensors (CSS) to ensure their critical role in the Safe Hold mode was fulfilled. The use of new CSS stimulators provided the means of testing each CSS sensor independently, in ambient and vacuum conditions as well as over a wide range of thermal temperatures. Extreme bright light sources were also used to test the CSS in ambient conditions. The integration of the two SELEX Galileo Star Trackers was carefully planned and executed. Optical ground support equipment was designed and used often to check the performance of the star trackers throughout I&T in ambient and thermal/vacuum conditions. A late discovery of potential contamination of the star tracker light shades is discussed in this paper. This paper reviews how each time the spacecraft was at a new location and orientation, the Honeywell Miniature Inertial Measurement Unit (MIMU) was checked for data output validity. This gyro compassing test was performed at several key testing points in the timeline as well as several times while LRO was on the launch pad. Sensor alignment tests were completed several

  5. Adaptive Control of Space Robot System with an Attitude Controlled Base

    Science.gov (United States)

    1991-08-01

    linearly on these parameters, research on adaptive robot control can now take full consideration of the nonlinear, time-varying and coupled robot dynamics . As...Khatib, J.J. Craig, and T. Lozano-Perez. The robotics review. MIT Press, 1989. [8] P. Khosla and T. Kanade. Parameter identification of robot dynamics . In...and W. Li. Applied nonlinear control. New Jersey: Printice Hall, 1991. [13] M.W. Spong and M. Vidyasagar. Robot dynamics and control. John Wiley

  6. Flexible Satellite Attitude Control via Adaptive Fuzzy Linearization

    Institute of Scientific and Technical Information of China (English)

    GUAN Ping; LIU Xiang-dong; CHEN Jia-bin; LIU Xiao-he

    2005-01-01

    The adaptive fuzzy control is combined with input-output linearization control to constitute the hybrid controller. The control method is then applied to the attitude maneuver control of the flexible satellite.The basic control structure is given. The rules of the controller parameter selection, which guarantee the attitude stabilization of the satellite with parameter uncertainties, have been analyzed. Simulation results show that the precise attitude control is accomplished in spite of the uncertainty in the system.

  7. Adaptive Fuzzy Attitude Control of Flexible Satellite

    Institute of Scientific and Technical Information of China (English)

    GUAN Ping; LIU Xiang-dong; CHEN Jia-bin

    2005-01-01

    The adaptive fuzzy control is applied in the attitude stabilization of flexible satellite. The detailed design procedure of the adaptive fuzzy control system is presented. Two T-S models are used as both controller and identifier. The parameters of the controller could be modified according to the information of the identifier. Simulation results show that the method can effectively cope with the uncertainty of flexible satellite by on-line learning and thus posses the good robustness. With the proposed method, the precise attitude control is accomplished.

  8. Colloid Thruster for Attitude Control Systems (ACS) and Tip-off Control Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Busek proposes to develop and deliver a complete engineering model colloid thruster system, capable of thrust levels and lifetimes required for spacecraft...

  9. Auto Code Generation for Simulink-Based Attitude Determination Control System

    Science.gov (United States)

    MolinaFraticelli, Jose Carlos

    2012-01-01

    This paper details the work done to auto generate C code from a Simulink-Based Attitude Determination Control System (ADCS) to be used in target platforms. NASA Marshall Engineers have developed an ADCS Simulink simulation to be used as a component for the flight software of a satellite. This generated code can be used for carrying out Hardware in the loop testing of components for a satellite in a convenient manner with easily tunable parameters. Due to the nature of the embedded hardware components such as microcontrollers, this simulation code cannot be used directly, as it is, on the target platform and must first be converted into C code; this process is known as auto code generation. In order to generate C code from this simulation; it must be modified to follow specific standards set in place by the auto code generation process. Some of these modifications include changing certain simulation models into their atomic representations which can bring new complications into the simulation. The execution order of these models can change based on these modifications. Great care must be taken in order to maintain a working simulation that can also be used for auto code generation. After modifying the ADCS simulation for the auto code generation process, it is shown that the difference between the output data of the former and that of the latter is between acceptable bounds. Thus, it can be said that the process is a success since all the output requirements are met. Based on these results, it can be argued that this generated C code can be effectively used by any desired platform as long as it follows the specific memory requirements established in the Simulink Model.

  10. Acoustic-Modal Testing of the Ares I Launch Abort System Attitude Control Motor Valve

    Science.gov (United States)

    Davis, R. Benjamin; Fischbach, Sean R.

    2010-01-01

    The Attitude Control Motor (ACM) is being developed for use in the Launch Abort System (LAS) of NASA's Ares I launch vehicle. The ACM consists of a small solid rocket motor and eight actuated pintle valves that directionally allocate.thrust_- 1t.has-been- predicted-that significant unsteady. pressure.fluctuations.will.exist. inside the-valves during operation. The dominant frequencies of these oscillations correspond to the lowest several acoustic natural frequencies of the individual valves. An acoustic finite element model of the fluid volume inside the valve has been critical to the prediction of these frequencies and their associated mode shapes. This work describes an effort to experimentally validate the acoustic finite model of the valve with an acoustic modal test. The modal test involved instrumenting a flight-like valve with six microphones and then exciting the enclosed air with a loudspeaker. The loudspeaker was configured to deliver broadband noise at relatively high sound pressure levels. The aquired microphone signals were post-processed and compared to results generated from the acoustic finite element model. Initial comparisons between the test data and the model results revealed that additional model refinement was necessary. Specifically, the model was updated to implement a complex impedance boundary condition at the entrance to the valve supply tube. This boundary condition models the frequency-dependent impedance that an acoustic wave will encounter as it reaches the end of the supply tube. Upon invoking this boundary condition, significantly improved agreement between the test data and the model was realized.

  11. Fundamentals of spacecraft attitude determination and control

    CERN Document Server

    Markley, F Landis

    2014-01-01

    This book explores topics that are central to the field of spacecraft attitude determination and control. The authors provide rigorous theoretical derivations of significant algorithms accompanied by a generous amount of qualitative discussions of the subject matter. The book documents the development of the important concepts and methods in a manner accessible to practicing engineers, graduate-level engineering students and applied mathematicians. It includes detailed examples from actual mission designs to help ease the transition from theory to practice, and also provides prototype algorithms that are readily available on the author’s website. Subject matter includes both theoretical derivations and practical implementation of spacecraft attitude determination and control systems. It provides detailed derivations for attitude kinematics and dynamics, and provides detailed description of the most widely used attitude parameterization, the quaternion. This title also provides a thorough treatise of attitu...

  12. Spacecraft Attitude Control in Hamiltonian Framework

    DEFF Research Database (Denmark)

    Wisniewski, Rafal

    2000-01-01

    The objective of this paper is to give a design scheme for attitude control algorithms of a generic spacecraft. Along with the system model formulated in the Hamilton's canonical form the algorithm uses information about a required potential energy and a dissipative term. The control action...

  13. A summary of the mechanical design, testing and performance of the IMP-H and J attitude control systems

    Science.gov (United States)

    Metzger, J. R.

    1974-01-01

    The main aspects of the attitude control system used on both the IMP-H and J spacecraft are presented. The mechanical configuration is described. Information on all the specific components comprising the flight system is provided. The acceptance and qualification testing of both individual components and the installed system are summarized. Functional information regarding the operation and performance in relation to the orbiting spacecraft and its mission is included. Related topics which are discussed are: (1) safety requirements, (2) servicing procedures, (3) anomalous behavior, and (4) pyrotechnic devices.

  14. Satellite Attitude Control Using Only Electromagnetic Actuation

    DEFF Research Database (Denmark)

    Wisniewski, Rafal

    when a satellite is on a throughout this thesis. Confined computer capacity and a limit on electrical power supply were separate obstacles.They demanded computational simplicity and power optimality from the attitude control system. The design of quasi optimal controllers for a real-time implementation...... to provide four stable equilibria, one of which was the desired orientation. It was explained how the equilibria depended on the ratio of the satellite's moments of inertia. It was further investigated how to control the attitude, such that the satellite was globally asymptotically stable in the desired...

  15. Onboard Supervisor for the Ørsted Satellite Attitude Control System

    DEFF Research Database (Denmark)

    Bøgh, S.A.; Izadi-Zamanabadi, Roozbeh; Blanke, M.

    1995-01-01

    The increasing operational requirements for onboard autonomy in satellite control systems necessitates structural methods that support the design of a complete and reliable supervisory system.......The increasing operational requirements for onboard autonomy in satellite control systems necessitates structural methods that support the design of a complete and reliable supervisory system....

  16. Observer-based Satellite Attitude Control and Simulation Researches

    Institute of Scientific and Technical Information of China (English)

    王子才; 马克茂

    2002-01-01

    Observer design method is applied to the realization of satellite attitude control law baaed on simplified control model. Exact mathematical model of the satellite attitude control system is also constructed, together with the observer-based control law, to conduct simulation research. The simulation results justify the effectiveness andfeasibility of the observer-based control method.

  17. Spacecraft attitude control systems with dynamic methods and structures for processing star tracker signals

    Science.gov (United States)

    Liu, Yong (Inventor); Wu, Yeong-Wei Andy (Inventor); Li, Rongsheng (Inventor)

    2001-01-01

    Methods are provided for dynamically processing successively-generated star tracker data frames and associated valid flags to generate processed star tracker signals that have reduced noise and a probability greater than a selected probability P.sub.slctd of being valid. These methods maintain accurate spacecraft attitude control in the presence of spurious inputs (e.g., impinging protons) that corrupt collected charges in spacecraft star trackers. The methods of the invention enhance the probability of generating valid star tracker signals because they respond to a current frame probability P.sub.frm by dynamically selecting the largest valid frame combination whose combination probability P.sub.cmb satisfies a selected probability P.sub.slctd. Noise is thus reduced while the probability of finding a valid frame combination is enhanced. Spacecraft structures are also provided for practicing the methods of the invention.

  18. Nonlinear Robust Control for Spacecraft Attitude

    Directory of Open Access Journals (Sweden)

    Wang Lina

    2013-07-01

    Full Text Available Nonlinear robust control of the spacecraft attitude with the existence of external disturbances is considered. A robust attitude controller is designed based on the passivity approach the quaternion representation, which introduces the suppression vector of external disturbance into the control law and does not need angular velocity measurement. Stability conditions of the robust attitude controller are given. And the numerical simulation results show the effectiveness of the attitude controller.

  19. Chaotic satellite attitude control by adaptive approach

    Science.gov (United States)

    Wei, Wei; Wang, Jing; Zuo, Min; Liu, Zaiwen; Du, Junping

    2014-06-01

    In this article, chaos control of satellite attitude motion is considered. Adaptive control based on dynamic compensation is utilised to suppress the chaotic behaviour. Control approaches with three control inputs and with only one control input are proposed. Since the adaptive control employed is based on dynamic compensation, faithful model of the system is of no necessity. Sinusoidal disturbance and parameter uncertainties are considered to evaluate the robustness of the closed-loop system. Both of the approaches are confirmed by theoretical and numerical results.

  20. Design and Test of an Attitude Determination and Control System for a 6U CubeSat using AFIT’s CubeSat Testbed

    Science.gov (United States)

    2015-03-01

    DESIGN AND TEST OF AN ATTITUDE DETERMINATION AND CONTROL SYSTEM FOR A 6U CUBESAT USING AFIT’S CUBESAT TESTBED THESIS Michael L. Tibbs, 2nd Lieutenant...work of the U.S. Government and is not subject to copyright protection in the United States. AFIT-ENY-MS-15-M-240 DESIGN AND TEST OF AN ATTITUDE ...DISTRIBUTION STATEMENT A APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. AFIT-ENY-MS-15-M-240 DESIGN AND TEST OF AN ATTITUDE DETERMINATION AND CONTROL

  1. Optimal Sliding Mode Controllers for Attitude Stabilization of Flexible Spacecraft

    Directory of Open Access Journals (Sweden)

    Chutiphon Pukdeboon

    2011-01-01

    Full Text Available The robust optimal attitude control problem for a flexible spacecraft is considered. Two optimal sliding mode control laws that ensure the exponential convergence of the attitude control system are developed. Integral sliding mode control (ISMC is applied to combine the first-order sliding mode with optimal control and is used to control quaternion-based spacecraft attitude manoeuvres with external disturbances and an uncertainty inertia matrix. For the optimal control part the state-dependent Riccati equation (SDRE and optimal Lyapunov techniques are employed to solve the infinite-time nonlinear optimal control problem. The second method of Lyapunov is used to guarantee the stability of the attitude control system under the action of the proposed control laws. An example of multiaxial attitude manoeuvres is presented and simulation results are included to verify the usefulness of the developed controllers.

  2. Directional and Attitude Stability Control Kit

    Science.gov (United States)

    2014-07-01

    and Attitude Stability Control Kit Final Progress Report This report outlines progress on the DARPA M3 Program, project “Directional and Attitude ...2 ABSTRACT Number of Papers published in peer-reviewed journals: Number of Papers published in non peer-reviewed journals: Directional and Attitude ...Stability Control Kit Final Progress Report Report Title This report outlines progress on the DARPA M3 Program, project “Directional and Attitude

  3. Models of complex attitude systems

    DEFF Research Database (Denmark)

    Sørensen, Bjarne Taulo

    Existing research on public attitudes towards agricultural production systems is largely descriptive, abstracting from the processes through which members of the general public generate their evaluations of such systems. The present paper adopts a systems perspective on such evaluations, understa......Existing research on public attitudes towards agricultural production systems is largely descriptive, abstracting from the processes through which members of the general public generate their evaluations of such systems. The present paper adopts a systems perspective on such evaluations......, understanding them as embedded into a wider attitude system that consists of attitudes towards objects of different abstraction levels, ranging from personal value orientations over general socio-political attitudes to evaluations of specific characteristics of agricultural production systems. It is assumed...... that evaluative affect propagates through the system in such a way that the system becomes evaluatively consistent and operates as a schema for the generation of evaluative judgments. In the empirical part of the paper, the causal structure of an attitude system from which people derive their evaluations of pork...

  4. Satellite cascade attitude control via fuzzy PD controller with active force control under momentum dumping

    Science.gov (United States)

    Ismail, Z.; Varatharajoo, R.

    2016-10-01

    In this paper, fuzzy proportional-derivative (PD) controller with active force control (AFC) scheme is studied and employed in the satellite attitude control system equipped with reaction wheels. The momentum dumping is enabled via proportional integral (PI) controller as the system is impractical without momentum dumping control. The attitude controllers are developed together with their governing equations and evaluated through numerical treatment with respect to a reference satellite mission. From the results, it is evident that the three axis attitudes accuracies can be improved up to ±0.001 degree through the fuzzy PD controller with AFC scheme for the attitude control. In addition, the three-axis wheel angular momentums are well maintained during the attitude control tasks.

  5. Some optimal considerations in attitude control systems. [evaluation of value of relative weighting between time and fuel for relay control law

    Science.gov (United States)

    Boland, J. S., III

    1973-01-01

    The conventional six-engine reaction control jet relay attitude control law with deadband is shown to be a good linear approximation to a weighted time-fuel optimal control law. Techniques for evaluating the value of the relative weighting between time and fuel for a particular relay control law is studied along with techniques to interrelate other parameters for the two control laws. Vehicle attitude control laws employing control moment gyros are then investigated. Steering laws obtained from the expression for the reaction torque of the gyro configuration are compared to a total optimal attitude control law that is derived from optimal linear regulator theory. This total optimal attitude control law has computational disadvantages in the solving of the matrix Riccati equation. Several computational algorithms for solving the matrix Riccati equation are investigated with respect to accuracy, computational storage requirements, and computational speed.

  6. Small Satellite Passive Magnetic Attitude Control

    Science.gov (United States)

    Gerhardt, David T.

    Passive Magnetic Attitude Control (PMAC) is capable of aligning a satellite within 5 degrees of the local magnetic field at low resource cost, making it ideal for a small satellite. However, simulation attempts to date have not been able to predict the attitude dynamics at a level sufficient for mission design. Also, some satellites have suffered from degraded performance due to an incomplete understanding of PMAC system design. This dissertation alleviates these issues by discussing the design, inputs, and validation of PMAC systems for small satellites. Design rules for a PMAC system are defined using the Colorado Student Space Weather Experiment (CSSWE) CubeSat as an example. A Multiplicative Extended Kalman Filter (MEKF) is defined for the attitude determination of a PMAC satellite without a rate gyro. After on-orbit calibration of the off-the-shelf magnetometer and photodiodes and an on-orbit fit to the satellite magnetic moment, the MEKF regularly achieves a three sigma attitude uncertainty of 4 degrees or less. CSSWE is found to settle to the magnetic field in seven days, verifying its attitude design requirement. A Helmholtz cage is constructed and used to characterize the CSSWE bar magnet and hysteresis rods both individually and in the flight configuration. Fitted parameters which govern the magnetic material behavior are used as input to a PMAC dynamics simulation. All components of this simulation are described and defined. Simulation-based dynamics analysis shows that certain initial conditions result in abnormally decreased settling times; these cases may be identified by their dynamic response. The simulation output is compared to the MEKF output; the true dynamics are well modeled and the predicted settling time is found to possess a 20 percent error, a significant improvement over prior simulation.

  7. Lorentz Force Based Satellite Attitude Control

    Science.gov (United States)

    Giri, Dipak Kumar; Sinha, Manoranjan

    2016-07-01

    Since the inception of attitude control of a satellite, various active and passive control strategies have been developed. These include using thrusters, momentum wheels, control moment gyros and magnetic torquers. In this present work, a new technique named Lorentz force based Coulombic actuators for the active control is proposed. This method uses electrostatic charged shells, which interact with the time varying earth's magnetic field to establish a full three axes control of the satellite. It is shown that the proposed actuation mechanism is similar to a satellite actuated by magnetic coils except that the resultant magnetic moment vanishes under two different conditions. The equation for the required charges on the the Coulomb shells attached to the satellite body axes is derived, which is in turn used to find the available control torque for actuating the satellite along the orbit. Stability of the proposed system for very high initial angular velocity and exponential stability about the origin are proved for a proportional-differential control input. Simulations are carried out to show the efficacy of the proposed system for the attitude control of the earth-pointing satellite.

  8. Attitude Control of a Single Tilt Tri-Rotor UAV System: Dynamic Modeling and Each Channel's Nonlinear Controllers Design

    Directory of Open Access Journals (Sweden)

    Juing-Shian Chiou

    2013-01-01

    Full Text Available This paper has implemented nonlinear control strategy for the single tilt tri-rotor aerial robot. Based on Newton-Euler’s laws, the linear and nonlinear mathematical models of tri-rotor UAVs are obtained. A numerical analysis using Newton-Raphson method is chosen for finding hovering equilibrium point. Back-stepping nonlinear controller design is based on constructing Lyapunov candidate function for closed-loop system. By imitating the linguistic logic of human thought, fuzzy logic controllers (FLCs are designed based on control rules and membership functions, which are much less rigid than the calculations computers generally perform. Effectiveness of the controllers design scheme is shown through nonlinear simulation model on each channel.

  9. Robustness and Actuator Bandwidth of MRP-Based Sliding Mode Control for Spacecraft Attitude Control Problems

    Science.gov (United States)

    Keum, Jung-Hoon; Ra, Sung-Woong

    2009-12-01

    Nonlinear sliding surface design in variable structure systems for spacecraft attitude control problems is studied. A robustness analysis is performed for regular form of system, and calculation of actuator bandwidth is presented by reviewing sliding surface dynamics. To achieve non-singular attitude description and minimal parameterization, spacecraft attitude control problems are considered based on modified Rodrigues parameters (MRP). It is shown that the derived controller ensures the sliding motion in pre-determined region irrespective of unmodeled effects and disturbances.

  10. Attitude control system synthesis for the Hoop/Column antenna using the LQG/LTR method. [loop transfer recovery

    Science.gov (United States)

    Sundararajan, N.; Joshi, S. M.; Armstrong, E. S.

    1986-01-01

    This paper investigates the application of the linear-quadratic-Gaussian (LQG)/loop transfer recovery (LTR) method to the problem of synthesizing a fine-pointing control system for a large flexible space anenna. The study is based on an antenna, which consists of three rigid-body rotational modes and the first ten elastic modes. A robust compensator design for achieving the required pointing performance in the presence of modeling uncertainties is obtained using the LQG/LTR method. For the Hoop/Column antenna, a satisfactory controller design meeting a desired bandwidth of .1 rad/sec and ensuring stability with unmodelled high frequency modes is obtained using only a collocated pair of 3-axis attitude sensors and torque actuators. This study also indicates that to achieve the desired performance bandwidth of 0.1 rad/sec. and to ensure stability in the presence of higher frequency elastic modes, the design model should include at least the first three flexible modes together with the rigid body modes.

  11. Spacecraft Attitude Control in Hamiltonian Framework

    DEFF Research Database (Denmark)

    Wisniewski, Rafal

    2000-01-01

    The objective of this paper is to give a design scheme for attitude control algorithms of a generic spacecraft. Along with the system model formulated in the Hamilton's canonical form the algorithm uses information about a required potential energy and a dissipative term. The control action...... is the sum of the gradient of the potential energy and the dissipative force. It is shown that this control law makes the system uniformly asymptotically stable to the desired reference point. Three problems were addressed in the paper: spacecraft stabilization in the inertial frame, libration damping...... with the use of electromagnetic coils and a slew maneuver with an additional objective of avoiding undesirable regions e.g. causing blindness of optical sensors...

  12. Variable structure attitude maneuver and vibration control of flexible spacecraft

    Institute of Scientific and Technical Information of China (English)

    HU Qing-lei; MA Cuang-fu

    2008-01-01

    A dual-stage control system design method is presented for the three-axis-rotational maneuver and vibration stabilization of a spacecraft with flexible appendages embedded with piezoceramics as sensor and actuator.In this design approach,the attitude control and the vibration suppression sub-systems ale designed separately using the lower order model.The design of attitude controller is based on the variable structure control (VSC)theory leading to a discontinuous control law.This controller accomplishes asymptotic attitude maneuvering in the closed-loop system and is insensitive to the interaction of elastic modes and uncertainty in the system.To actively suppress the flexible vibrations,the modal velocity feedback control method is presented by using piezoelectric materials as additional sensor and actuator bonded on the surface of the flexible appendages.In addition,a special configuration of actuators for three-axis attitude control is also investigated:the pitch attitude controlled by a momentum wheel,and the roll/yaw control achieved by on-off thrustem.which is modulated by pulse width pulse frequency modulation technique to construct the proper control torque history.Numerical simulations performed show that the rotational maneuver and vibration suppression ale accomplished in spite of the presence of disturbance torque and parameter uncertainty.

  13. Max Launch Abort System (MLAS) Pad Abort Test Vehicle (PATV) II Attitude Control System (ACS) Integration and Pressurization Subsystem Dynamic Random Vibration Analysis

    Science.gov (United States)

    Ekrami, Yasamin; Cook, Joseph S.

    2011-01-01

    In order to mitigate catastrophic failures on future generation space vehicles, engineers at the National Aeronautics and Space Administration have begun to integrate a novel crew abort systems that could pull a crew module away in case of an emergency at the launch pad or during ascent. The Max Launch Abort System (MLAS) is a recent test vehicle that was designed as an alternative to the baseline Orion Launch Abort System (LAS) to demonstrate the performance of a "tower-less" LAS configuration under abort conditions. The MLAS II test vehicle will execute a propulsive coast stabilization maneuver during abort to control the vehicles trajectory and thrust. To accomplish this, the spacecraft will integrate an Attitude Control System (ACS) with eight hypergolic monomethyl hydrazine liquid propulsion engines that are capable of operating in a quick pulsing mode. Two main elements of the ACS include a propellant distribution subsystem and a pressurization subsystem to regulate the flow of pressurized gas to the propellant tanks and the engines. The CAD assembly of the Attitude Control System (ACS) was configured and integrated into the Launch Abort Vehicle (LAV) design. A dynamic random vibration analysis was conducted on the Main Propulsion System (MPS) helium pressurization panels to assess the response of the panel and its components under increased gravitational acceleration loads during flight. The results indicated that the panels fundamental and natural frequencies were farther from the maximum Acceleration Spectral Density (ASD) vibrations which were in the range of 150-300 Hz. These values will direct how the components will be packaged in the vehicle to reduce the effects high gravitational loads.

  14. ISS Contingency Attitude Control Recovery Method for Loss of Automatic Thruster Control

    Science.gov (United States)

    Bedrossian, Nazareth; Bhatt, Sagar; Alaniz, Abran; McCants, Edward; Nguyen, Louis; Chamitoff, Greg

    2008-01-01

    In this paper, the attitude control issues associated with International Space Station (ISS) loss of automatic thruster control capability are discussed and methods for attitude control recovery are presented. This scenario was experienced recently during Shuttle mission STS-117 and ISS Stage 13A in June 2007 when the Russian GN&C computers, which command the ISS thrusters, failed. Without automatic propulsive attitude control, the ISS would not be able to regain attitude control after the Orbiter undocked. The core issues associated with recovering long-term attitude control using CMGs are described as well as the systems engineering analysis to identify recovery options. It is shown that the recovery method can be separated into a procedure for rate damping to a safe harbor gravity gradient stable orientation and a capability to maneuver the vehicle to the necessary initial conditions for long term attitude hold. A manual control option using Soyuz and Progress vehicle thrusters is investigated for rate damping and maneuvers. The issues with implementing such an option are presented and the key issue of closed-loop stability is addressed. A new non-propulsive alternative to thruster control, Zero Propellant Maneuver (ZPM) attitude control method is introduced and its rate damping and maneuver performance evaluated. It is shown that ZPM can meet the tight attitude and rate error tolerances needed for long term attitude control. A combination of manual thruster rate damping to a safe harbor attitude followed by a ZPM to Stage long term attitude control orientation was selected by the Anomaly Resolution Team as the alternate attitude control method for such a contingency.

  15. Attitude Control Performance of IRVE-3

    Science.gov (United States)

    Dillman, Robert A.; Gsell, Valerie T.; Bowden, Ernest L.

    2013-01-01

    The Inflatable Reentry Vehicle Experiment 3 (IRVE-3) launched July 23, 2012, from NASA Wallops Flight Facility and successfully performed its mission, demonstrating both the survivability of a hypersonic inflatable aerodynamic decelerator in the reentry heating environment and the effect of an offset center of gravity on the aeroshell's flight L/D. The reentry vehicle separated from the launch vehicle, released and inflated its aeroshell, reoriented for atmospheric entry, and mechanically shifted its center of gravity before reaching atmospheric interface. Performance data from the entire mission was telemetered to the ground for analysis. This paper discusses the IRVE-3 mission scenario, reentry vehicle design, and as-flown performance of the attitude control system in the different phases of the mission.

  16. Development of a Hardware-in-the-Loop Simulator for Control Moment Gyroscope-Based Attitude Control Systems

    Science.gov (United States)

    2015-12-01

    Leon, Linear Algebra with Applications, 5th ed., Upper Saddle River, NJ: Prentice Hall, 2009. [25] Controller Area Network (CAN) Tutorial, National...as an elementary rotation when it is about a single principal axis in the reference frame. When successive rotations are implemented, a numerical...axis). The DCMs for elementary rotations are as follows [4]:  1 1 1 1 1 1 1 0 0 0 cos sin 0 sin cos C             (8)   22 122

  17. High Accuracy Attitude Control of a Spacecraft Using Feedback Linearization

    Science.gov (United States)

    1992-05-01

    and Spacecraft Body from Gyro Measurements ......... .................................. 119 D.2 An Approximation to Exact Linearization using IPSRU...31 2-4 Attitude Determination and Control System Architecture ................. 33 3-1 Exact Linearization Using Nonlinear Feedback...though basic techniques were adapted from recent references on the use of exact linearization (such as [8] and [27]), the specific control approach

  18. Aircraft Pitch Attitude Control using Backstepping

    OpenAIRE

    Härkegård, Ola; Glad, Torkel

    2000-01-01

    A nonlinear approach to the automatic pitch attitude control problem for a generic fighter aircraft is presented. A nonlinear model describing the longitudinal equations of motion in strict feedback form is derived. Backstepping is utilized for the construction of a globally stabilizing controller with a number of free design parameters. Two tuning schemes are proposed based on the desired locally linear controller properties. The controller is evaluated using the HIRM fighter aircraft model.

  19. NASA Workshop on Hybrid (Mixed-Actuator) Spacecraft Attitude Control

    Science.gov (United States)

    Dennehy, Cornelius J.; Kunz, Nans

    2014-01-01

    At the request of the Science Mission Directorate Chief Engineer, the NASA Technical Fellow for Guidance, Navigation & Control assembled and facilitated a workshop on Spacecraft Hybrid Attitude Control. This multi-Center, academic, and industry workshop, sponsored by the NASA Engineering and Safety Center (NESC), was held in April 2013 to unite nationwide experts to present and discuss the various innovative solutions, techniques, and lessons learned regarding the development and implementation of the various hybrid attitude control system solutions investigated or implemented. This report attempts to document these key lessons learned with the 16 findings and 9 NESC recommendations.

  20. Precision Attitude Control for the BETTII Balloon-Borne Interferometer

    Science.gov (United States)

    Benford, Dominic J.; Fixsen, Dale J.; Rinehart. Stephen

    2012-01-01

    The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) is an 8-meter baseline far-infrared interferometer to fly on a high altitude balloon. Operating at wavelengths of 30-90 microns, BETTII will obtain spatial and spectral information on science targets at angular resolutions down to less than half an arcsecond, a capability unmatched by other far-infrared facilities. This requires attitude control at a level ofless than a tenth of an arcsecond, a great challenge for a lightweight balloon-borne system. We have designed a precision attitude determination system to provide gondola attitude knowledge at a level of 2 milliarcseconds at rates up to 100Hz, with accurate absolute attitude determination at the half arcsecond level at rates of up to 10Hz. A mUlti-stage control system involving rigid body motion and tip-tilt-piston correction provides precision pointing stability to the level required for the far-infrared instrument to perform its spatial/spectral interferometry in an open-loop control. We present key aspects of the design of the attitude determination and control and its development status.

  1. Neural adaptive attitude tracking controller for flexible spacecraft

    Institute of Scientific and Technical Information of China (English)

    XIAO Bing; HU Qing-lei; MA Guang-fu

    2010-01-01

    In this paper,a neural network adaptive controller is proposed for attitude tracking of flexible spacecraft in presence of unknown inertial matrix and external disturbance.In this approach,neural network technique is employed to approximate the unknown system dynamics with finite combinations of some basis functions,and a robust controller is also designed to attenuate the effect of approximation error,more specially,the knowledge of angular velocity is not required.In the closed-loop system,Lyapunov stability analysis shows that the attitude trajectories asymptotically follow the reference output trajectories.Finally,simulation results are presented for the attitude tracking of a flexible spacecraft to show the excellent performance of the proposed controller and illustrate its robustness in face of external disturbances and unknown dynamics.

  2. Advanced Attitude Control af Pico Sized Satellites

    DEFF Research Database (Denmark)

    Larsen, Jesper A.; Amini, Rouzbeh; Izadi-Zamanabadi, Roozbeh

    2005-01-01

    accuracy of better than 5 degrees. Cost, size, weight and power requirements, on the other hand, impose selecting relative simple sensors and actuators which leads to an attitude control requirement of less than 1 degree. This precision is obtained by a combination of magnetorquers and momentum wheels...

  3. System and method for correcting attitude estimation

    Science.gov (United States)

    Josselson, Robert H. (Inventor)

    2010-01-01

    A system includes an angular rate sensor disposed in a vehicle for providing angular rates of the vehicle, and an instrument disposed in the vehicle for providing line-of-sight control with respect to a line-of-sight reference. The instrument includes an integrator which is configured to integrate the angular rates of the vehicle to form non-compensated attitudes. Also included is a compensator coupled across the integrator, in a feed-forward loop, for receiving the angular rates of the vehicle and outputting compensated angular rates of the vehicle. A summer combines the non-compensated attitudes and the compensated angular rates of the to vehicle to form estimated vehicle attitudes for controlling the instrument with respect to the line-of-sight reference. The compensator is configured to provide error compensation to the instrument free-of any feedback loop that uses an error signal. The compensator may include a transfer function providing a fixed gain to the received angular rates of the vehicle. The compensator may, alternatively, include a is transfer function providing a variable gain as a function of frequency to operate on the received angular rates of the vehicle.

  4. SDRE Based Attitude Control Using Modified Rodriguez Parameters

    CERN Document Server

    Doruk, R Ozgur

    2011-01-01

    The purpose of this paper is to present an application of the State Dependent Riccati Equation (SDRE) method to satellite attitude control where the satellite kinematics is modeled by Modified Rodriguez Parameters (MRP). The SDRE methodology is applicable on special forms of nonlinear systems where satellite model is one of the candidates. It is not easy to find an analytical solution from the SDRE. Thus point wise solutions are interpolated with respect to the operating conditions. The point wise solutions are obtained from the MATLAB algorithms which are derived from the positive definite solutions of the SDRE. The global stability analysis is difficult due to the nature of the methodology. The resultant attitude controllers outside the breakpoints (the selected operating conditions for interpolation) are suboptimal. The performance of the designs is examined by simulations on MATLAB - Simulink environment. The simulation results show that, the designed attitude controllers are working satisfactorily even i...

  5. ROBUST ATTITUDE CONTROL OF A 3DOF HELICOPTER WITH MULTI-OPERATION POINTS

    Institute of Scientific and Technical Information of China (English)

    Yao YU; Yisheng ZHONG

    2009-01-01

    A 3DOF (three degrees of freedom) helicopter attitude control system with multi-operation points is described as a MIMO time-varying uncertain nonlinear system with unknown constant param-eters, bounded disturbance and nonlinear uncertainty, and a robust output feedback control method based on signal compensation is proposed. A controller designed by this method consists of a nominal controller and a robust compensator. The controller is linear time-invariant and can be realized easily. Robust attitude tracking property of closed-loop system is proven and experimental results show that the designed control system can guarantee high precision robust attitude control under multi-operation points.

  6. 挠性飞行器飞轮姿态控制系统设计%Flexible Spacecraft Attitude Control System Design Using Wheels

    Institute of Scientific and Technical Information of China (English)

    耿云海; 崔祜涛; 崔海英; 杨涤

    2001-01-01

    针对带有大型太阳帆板的挠性空间飞行器动力学特性十分复杂的特点,通过合理的假设,采用单轴解耦分析姿态控制系统稳定性问题。采用极点配置法,按照刚体卫星设计系统PID参数,利用根轨迹,确定按刚体卫星参数设计的系统能使挠性空间飞行器控制系统具有渐近稳定性的充分条件;推导系统参数间的关系式,分析挠性空间飞行器主轴姿态控制系统稳定性问题。最后,通过仿真验证了系统的性能。%Because the dynamics' property of the flexible spacecraft with large solar panels is very complex, decoupling method is adopted to study the stability of the attitude control system for single axis through suitable assumption. The system PID parameters are designed using polar assignment according to rigid satellite. Then with root locus method, the sufficient condition is determined that the system designed by rigid satellite parameter ensures the stability of flexible spacecraft control system. The relation among parameters is derived and the stability of single axis flexible spacecraft attitude control system is studied. At last, the system performance is verified by simulation.

  7. Attitude Estimation in Fractionated Spacecraft Cluster Systems

    Science.gov (United States)

    Hadaegh, Fred Y.; Blackmore, James C.

    2011-01-01

    An attitude estimation was examined in fractioned free-flying spacecraft. Instead of a single, monolithic spacecraft, a fractionated free-flying spacecraft uses multiple spacecraft modules. These modules are connected only through wireless communication links and, potentially, wireless power links. The key advantage of this concept is the ability to respond to uncertainty. For example, if a single spacecraft module in the cluster fails, a new one can be launched at a lower cost and risk than would be incurred with onorbit servicing or replacement of the monolithic spacecraft. In order to create such a system, however, it is essential to know what the navigation capabilities of the fractionated system are as a function of the capabilities of the individual modules, and to have an algorithm that can perform estimation of the attitudes and relative positions of the modules with fractionated sensing capabilities. Looking specifically at fractionated attitude estimation with startrackers and optical relative attitude sensors, a set of mathematical tools has been developed that specify the set of sensors necessary to ensure that the attitude of the entire cluster ( cluster attitude ) can be observed. Also developed was a navigation filter that can estimate the cluster attitude if these conditions are satisfied. Each module in the cluster may have either a startracker, a relative attitude sensor, or both. An extended Kalman filter can be used to estimate the attitude of all modules. A range of estimation performances can be achieved depending on the sensors used and the topology of the sensing network.

  8. Attitude control system design and on-orbit performance analysis of nano-satellite--‘‘Tian Tuo 1’’

    Institute of Scientific and Technical Information of China (English)

    Ran Dechao; Sheng Tao; Cao Lu; Chen Xiaoqian; Zhao Yong

    2014-01-01

    ‘‘Tian Tuo 1’’ (TT-1) nano-satellite is the first single-board nano-satellite that was suc-cessfully launched in China. The main objective of TT-1 is technology demonstration and scientific measurements. The satellite carries out the significant exploration of single-board architecture fea-sibility validation, and it is tailored to the low-cost philosophy by adopting numerous commercial-off-the-shelf (COTS) components. The satellite is featured with three-axis stabilization control capability. A pitch bias momentum wheel and three magnetic coils are adopted as control actuators. The sun sensors, magnetometers and a three-axis gyro are employed as the measurement sensors. The quaternion estimator (QUEST) and unscented Kalman filter (UKF) method are adopted for the nano-satellite attitude determination. On-orbit data received by ground station is conducted to analysis the performance of attitude determination and control system (ADCS). The results show that the design of ADCS for TT-1 is suitable, robust and feasible.

  9. Attitude stabilization of a rigid spacecraft using two control torques: A nonlinear control approach based on the spacecraft attitude dynamics

    Science.gov (United States)

    Krishnan, Hariharan; Reyhanoglu, Mahmut; McClamroch, Harris

    1994-06-01

    The attitude stabilization problem of a rigid spacecraft using control torques supplied by gas jet actuators about only two of its principal axes is considered. If the uncontrolled principal axis of the spacecraft is not an axis of symmetry, then the complete spacecraft dynamics are small time locally controllable. However, the spacecraft cannot be asymptotically stabilized to any equilibrium attitude using time-invariant continuous feedback. A discontinuous stabilizing feedback control strategy is constructed which stabilizes the spacecraft to any equilibrium attitude. If the uncontrolled principal axis of the spacecraft is an axis of symmetry, the complete spacecraft dynamics are not even assessible. However, the spacecraft dynamics are strongly accessible and small time locally controllable in a reduced sense. The reduced spacecraft dynamics cannot be asymptotically stabilized to any equilibrium attitude using time-invariant continuous feedback, but again a discontinuous stabilizing feedback control strategy is constructed. In both cases, the discontinuous feedback controllers are constructed by switching between several feedback functions which are selected to accomplish a sequence of spacecraft maneuvers. The results of the paper show that although standard nonlinear control techniques are not applicable, it is possible to construct a nonlinear discontinuous control law based on the dynamics of the particular physical system.

  10. Coordinated Multiple Spacecraft Attitude Control with Communication Time Delays and Uncertainties

    Institute of Scientific and Technical Information of China (English)

    LI Guiming; LIU Liangdong

    2012-01-01

    In this paper,we consider the coordinated attitude control problem of spacecraft formation with communication delays,model and disturbance uncertainties,and propose novel synchronized control schemes.Since the attitude motion is essential in non-Euclidean space,thus,unlike the existing designs which describe the delayed relative attitude via linear algorithm,we treat the attitude error and the local relative attitude on the nonlinear manifold-Lie group,and attempt to obtain coupling attitude information by the natural quatemion multiplication.Our main focus is to address two problems:1) Propose a coordinated attitude controller to achieve the synchronized attitude maneuver,i.e.,synchronize multiple spacecraft attitudes and track a time-varying desired attitude; 2) With known model information,we achieve the synchronized attitude maneuver with disturbances under angular velocity constraints.Especially,if the formation does not have any uncertainties,the designer can simply set the controller via an appropriate choice of control gains to avoid system actuator saturation.Our controllers are proposed based on the Lyapunov-Krasovskii method and simulation of a spacecraft formation is conducted to demonstrate the effectiveness of theoretical results.

  11. Feedforward attitude control for a TDRS with mobile antennas

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In this paper, feedforward attitude control law for a Tracking and Data Relay Satellite (TDRS) with mobile antennas is proposed. To track or point the target spacecraft with median/law orbit, the large mobile antennas have to move in a wide range. The movement of such mobile antennas disturbs the satellite attitude consequently. Conventionally, the main body of the satellite and the mobile antennas are controlled independently.The proposed controller first estimates the angular momentum which the mobile antennas will produce based on the momentum conservation equation. Next, it computes the desired velocity of reaction wheels to compensate the disturbance due to the antenna motion. It then adds the error of the wheels' velocity between a desired one and a current value as a feedforward signal to the control system. The proposed controller is demonstrated using a mathematical simulation, of which these results coincide well with analytical results.

  12. Application of matrix singular value properties for evaluating gain and phase margins of multiloop systems. [stability margins for wing flutter suppression and drone lateral attitude control

    Science.gov (United States)

    Mukhopadhyay, V.; Newsom, J. R.

    1982-01-01

    A stability margin evaluation method in terms of simultaneous gain and phase changes in all loops of a multiloop system is presented. A universal gain-phase margin evaluation diagram is constructed by generalizing an existing method using matrix singular value properties. Using this diagram and computing the minimum singular value of the system return difference matrix over the operating frequency range, regions of guaranteed stability margins can be obtained. Singular values are computed for a wing flutter suppression and a drone lateral attitude control problem. The numerical results indicate that this method predicts quite conservative stability margins. In the second example if the eigenvalue magnitude is used instead of the singular value, as a measure of nearness to singularity, more realistic stability margins are obtained. However, this relaxed measure generally cannot guarantee global stability.

  13. Local controllability and stabilization of spacecraft attitude by two single-gimbal control moment gyros

    Institute of Scientific and Technical Information of China (English)

    Gui Haichao; Jin Lei; Xu Shijie

    2013-01-01

    The attitude control problem of a spacecraft underactuated by two single-gimbal control moment gyros (SGCMGs) is investigated. Small-time local controllability (STLC) of the attitude dynamics of the spacecraft-SGCMGs system is analyzed via nonlinear controllability theory. The conditions that guarantee STLC of the spacecraft attitude by two non-coaxial SGCMGs are obtained with the momentum of the SGCMGs as inputs, implying that the spacecraft attitude is STLC when the total angular momentum of the whole system is zero. Moreover, our results indi-cate that under the zero-momentum restriction, full attitude stabilization is possible for a spacecraft using two non-coaxial SGCMGs. For the case of two coaxial SGCMGs, the STLC property of the spacecraft cannot be determined. In this case, an improvement to the previous full attitude stabiliz-ing control law, which requires zero-momentum presumption, is proposed to account for the singu-larity of SGCMGs and enhance the steady state performance. Numerical simulation results demonstrate the effectiveness and advantages of the new control law.

  14. Attitude Control of a Satellite by using Digital Signal Processing

    Directory of Open Access Journals (Sweden)

    Adirelle C. Santana

    2012-03-01

    Full Text Available This article has discussed the development of a three-axis attitude digital controller for an artificial satellite using a digital signal processor. The main motivation of this study is the attitude control system of the satellite Multi-Mission Platform, developed by the Brazilian National Institute for Space Research for application in different sort of missions. The controller design was based on the theory of the Linear Quadratic Gaussian Regulator, synthesized from the linearized model of the motion of the satellite, i.e., the kinematics and dynamics of attitude. The attitude actuators considered in this study are pairs of cold gas jets powered by a pulse width/pulse frequency modulator. In the first stage of the project development, a system controller for continuous time was studied with the aim of testing the adequacy of the adopted control. The next steps had included an analysis of discretization techniques, the setting time of sampling rate, and the testing of the digital version of the Linear Quadratic Gaussian Regulator controller in the MATLAB/SIMULINK. To fulfill the study, the controller was implemented in a digital signal processor, specifically the Blackfin BF537 from Analog Devices, along with the pulse width/pulse frequency modulator. The validation tests used a scheme of co-simulation, where the model of the satellite was simulated in MATLAB/SIMULINK, while the controller and modulator were processed in the digital signal processor with a tool called Processor-In-the-Loop, which acted as a data communication link between both environments.function and required time to achieve a given mission accuracy are determined, and results are provided as illustration.

  15. Robust Adaptive Attitude Control for Airbreathing Hypersonic Vehicle with Attitude Constraints and Propulsive Disturbance

    Directory of Open Access Journals (Sweden)

    Jian Fu

    2015-01-01

    Full Text Available A robust adaptive backstepping attitude control scheme, combined with invariant-set-based sliding mode control and fast-nonlinear disturbance observer, is proposed for the airbreathing hypersonic vehicle with attitude constraints and propulsive disturbance. Based on the positive invariant set and backstepping method, an innovative sliding surface is firstly developed for the attitude constraints. And the propulsive disturbance of airbreathing hypersonic vehicle is described as a differential equation which is motivated by attitude angles in this paper. Then, an adaptive fast-nonlinear disturbance observer for the proposed sliding surface is designed to estimate this kind of disturbance. The convergence of all closed-loop signals is rigorously proved via Lyapunov analysis method under the developed robust attitude control scheme. Finally, simulation results are given to illustrate the effectiveness of the proposed attitude control scheme.

  16. Mechanism of Attitude Control Device for Floating Object

    OpenAIRE

    辻, 俊明; 大西, 公平

    2003-01-01

    This paper describes the new mechanism on attitude control device for unfixed objects. Flywheel is a common attitude control device on spacecraft that provides precise control at an easy rate. However, rapid response is hardly achieved since low reaction torque is available applying flywheel. The purpose in this paper is to improve the response of attitude control device with flywheel. Brake equipment is mounted on the flywheel in order to raise the maximum torque. Maximum torque is raised dr...

  17. Attitude-Control Algorithm for Minimizing Maneuver Execution Errors

    Science.gov (United States)

    Acikmese, Behcet

    2008-01-01

    A G-RAC attitude-control algorithm is used to minimize maneuver execution error in a spacecraft with a flexible appendage when said spacecraft must induce translational momentum by firing (in open loop) large thrusters along a desired direction for a given period of time. The controller is dynamic with two integrators and requires measurement of only the angular position and velocity of the spacecraft. The global stability of the closed-loop system is guaranteed without having access to the states describing the dynamics of the appendage and with severe saturation in the available torque. Spacecraft apply open-loop thruster firings to induce a desired translational momentum with an extended appendage. This control algorithm will assist this maneuver by stabilizing the attitude dynamics around a desired orientation, and consequently minimize the maneuver execution errors.

  18. Design of Four Axis Spacecraft Attitude Control System%四轴飞行器姿态控制系统设计

    Institute of Scientific and Technical Information of China (English)

    常敏; 崔永进; 何蓓薇; 张学典; 钱研华; 王戈

    2015-01-01

    On the basis of the full study structural characteristics and dynamic characteristics of four axis spacecraft, this paper designed a flight control system with STM32F303 MCU and MPU6050 IMU sensor,the software running on the flight control system which is based on ChibiOS RTOS and the software running on handset which is based on Android OS. At the end of the paper,the designed flight control system has carried on the real machine test flights and debugging,the flight test show that the design of attitude control system for four axis spacecraft can control the unmanned aerial vehicles (UAV)flight smoothly.%文章在充分研究四轴飞行器的结构特点和动力学特性的基础上,设计并实现了以 STM32F303微控制器为核心,MPU6050为惯性测量单元的飞行控制系统硬件,基于 ChibiOS 实时操作系统的飞行控制软件,以及基于 Android 操作系统的手持端软件。最后对本文所设计的飞行器控制系统进行了真机飞行试验和调试,飞行试验表明,所设计的四轴飞行器姿态控制系统,能够很好的控制四轴飞行器实现半自主平稳飞行。

  19. Fault tolerant programmable digital attitude control electronics study

    Science.gov (United States)

    Sorensen, A. A.

    1974-01-01

    The attitude control electronics mechanization study to develop a fault tolerant autonomous concept for a three axis system is reported. Programmable digital electronics are compared to general purpose digital computers. The requirements, constraints, and tradeoffs are discussed. It is concluded that: (1) general fault tolerance can be achieved relatively economically, (2) recovery times of less than one second can be obtained, (3) the number of faulty behavior patterns must be limited, and (4) adjoined processes are the best indicators of faulty operation.

  20. Rover Attitude and Pointing System Simulation Testbed

    Science.gov (United States)

    Vanelli, Charles A.; Grinblat, Jonathan F.; Sirlin, Samuel W.; Pfister, Sam

    2009-01-01

    The MER (Mars Exploration Rover) Attitude and Pointing System Simulation Testbed Environment (RAPSSTER) provides a simulation platform used for the development and test of GNC (guidance, navigation, and control) flight algorithm designs for the Mars rovers, which was specifically tailored to the MERs, but has since been used in the development of rover algorithms for the Mars Science Laboratory (MSL) as well. The software provides an integrated simulation and software testbed environment for the development of Mars rover attitude and pointing flight software. It provides an environment that is able to run the MER GNC flight software directly (as opposed to running an algorithmic model of the MER GNC flight code). This improves simulation fidelity and confidence in the results. Further more, the simulation environment allows the user to single step through its execution, pausing, and restarting at will. The system also provides for the introduction of simulated faults specific to Mars rover environments that cannot be replicated in other testbed platforms, to stress test the GNC flight algorithms under examination. The software provides facilities to do these stress tests in ways that cannot be done in the real-time flight system testbeds, such as time-jumping (both forwards and backwards), and introduction of simulated actuator faults that would be difficult, expensive, and/or destructive to implement in the real-time testbeds. Actual flight-quality codes can be incorporated back into the development-test suite of GNC developers, closing the loop between the GNC developers and the flight software developers. The software provides fully automated scripting, allowing multiple tests to be run with varying parameters, without human supervision.

  1. MODEL OF CENTRIFUGAL EFFECT AND ATTITUDE MANEUVER STABILITY OF A COUPLED RIGID-FLEXIBLE SYSTEM

    Institute of Scientific and Technical Information of China (English)

    LI Zhi-bin; WANG Zhao-lin; WANG Tian-shu; LIU Ning

    2005-01-01

    The influences of nonlinear centrifugal force to large overall attitude motion of coupled rigid-flexible system was investigated. First the nonlinear model of the coupled rigidflexible system was deduced from the idea of "cenlrifugal potential field", and then the dynamic effects of the nonlinear centrifugal force to system attitude motion were analyzed by approximate calculation; At last, the Lyapunov function based on energy norm was selected,in the condition that only the measured values of attitude and attitude speed are available,and it is proved that the PD feedback control law can ensure the attitude stability during large angle maneuver.

  2. Construction of attitude stability controller preferential evaluation system%姿态稳定控制器择优评价体系构建

    Institute of Scientific and Technical Information of China (English)

    殷春武; 侯明善; 李明翔

    2016-01-01

    An attitude controller preferential evaluation system based on group decision making is construc-ted to deal with the controller selection problem in the process of spacecraft overall design,and a reliability in-dex is defined to measure the reliability of the evaluation result.An evaluation index system is constructed, which includes the robustness of controller,controlling torque,sensitivity to parameter,complexity of control-ler and rate of convergence,determine the weights of indexes with the combination weighting method based on the OWA operator,and an interval group decision making method is provided to select the optimal controller,a quantitative description index of evaluation result’s reliability based on interval analysis is defined.The attitude stability controller preferential evaluation process in the process of spacecraft overall design is analyzed,the ef-fectiveness of the controller preferential evaluation system and the high reliability of the evaluation results are verified,which enriches the theory of decision-making,and enhance the policymakers’confidence.%针对航天器总体设计过程中姿态稳定控制器的选择问题,构建了一套基于群决策的姿态控制器择优评价体系,并给出度量评价结果可靠性的可靠度指标。构建了基于控制器鲁棒性、控制力矩、参数敏感性、控制器复杂度和收敛速度的姿态控制器择优评价指标体系,采用同时融合多种赋权法优势的有序加权(ordered weighted averaging,OWA)组合赋权法确定指标权重,给出一种群组专家参与的区间型姿态稳定控制器择优评价方法,并定义了基于区间分析的评价结果可靠度定量描述指标。实例分析了航天器总体设计过程中的姿态稳定控制器择优评价过程,验证了控制器择优评价体系的有效性和评价结果的高可靠度,丰富了决策理论,增强了决策者信心。

  3. Attitude dynamics and control of a spacecraft using shifting mass distribution

    Science.gov (United States)

    Ahn, Young Tae

    Spacecraft need specific attitude control methods that depend on the mission type or special tasks. The dynamics and the attitude control of a spacecraft with a shifting mass distribution within the system are examined. The behavior and use of conventional attitude control actuators are widely developed and performing at the present time. However, the advantage of a shifting mass distribution concept can complement spacecraft attitude control, save mass, and extend a satellite's life. This can be adopted in practice by moving mass from one tank to another, similar to what an airplane does to balance weight. Using this shifting mass distribution concept, in conjunction with other attitude control devices, can augment the three-axis attitude control process. Shifting mass involves changing the center-of-mass of the system, and/or changing the moments of inertia of the system, which then ultimately can change the attitude behavior of the system. This dissertation consists of two parts. First, the equations of motion for the shifting mass concept (also known as morphing) are developed. They are tested for their effects on attitude control by showing how shifting the mass changes the spacecraft's attitude behavior. Second, a method for optimal mass redistribution is shown using a combinatorial optimization theory under constraints. It closes with a simple example demonstrating an optimal reconfiguration. The procedure of optimal reconfiguration from one mass distribution to another to accomplish attitude control has been demonstrated for several simple examples. Mass shifting could work as an attitude controller for fine-tuning attitude behavior in small satellites. Various constraints can be applied for different situations, such as no mass shift between two tanks connected by a failed pipe or total amount of shifted mass per pipe being set for the time optimum solution. Euler angle changes influenced by the mass reconfiguration are accomplished while stability

  4. Observer Based Sliding Mode Attitude Control: Theoretical and Experimental Results

    Directory of Open Access Journals (Sweden)

    U. Jørgensen

    2011-07-01

    Full Text Available In this paper we present the design of a sliding mode controller for attitude control of spacecraft actuated by three orthogonal reaction wheels. The equilibrium of the closed loop system is proved to be asymptotically stable in the sense of Lyapunov. Due to cases where spacecraft do not have angular velocity measurements, an estimator for the generalized velocity is derived and asymptotic stability is proven for the observer. The approach is tested on an experimental platform with a sphere shaped Autonomous Underwater Vehicle SATellite: AUVSAT, developed at the Norwegian University of Science and Technology.

  5. Attitude Stabilization Control of a Quadrotor UAV by Using Backstepping Approach

    Directory of Open Access Journals (Sweden)

    Xing Huo

    2014-01-01

    Full Text Available The modeling and attitude stabilization control problems of a four-rotor vertical takeoff and landing unmanned air vehicle (UAV known as the quadrotor are investigated. The quadrotor’s attitude is represented by the unit quaternion rather than Euler angles to avoid singularity problem. Taking dynamical behavior of motors into consideration and ignoring aerodynamic effect, a nonlinear controller is developed to stabilize the attitude. The control design is accomplished by using backstepping control technique. The proposed control law is based on the compensation for the Coriolis and gyroscope torques. Applying Lyapunov stability analysis proves that the closed-loop attitude system is asymptotic stable. Moreover, the controller can guarantee that all the states of the system are uniformly ultimately bounded in the presence of external disturbance torque. The effectiveness of the proposed control approach is analytically authenticated and also validated via simulation study.

  6. Locus of Control, Attitudes toward Education, and Teaching Behaviors.

    Science.gov (United States)

    Kremer, Lya

    1982-01-01

    Tests 191 elementary school teachers in northern Israel for the relationships among locus of control, traditional and progressive educational attitudes, and related teaching behaviors. Finds external and internal locus of control explain the variance in traditional and progressive attitudes, respectively, and teaching behaviors. (Author/LC)

  7. Algorithm of Attitude Control and Its Simulation of Free-Flying Space Robot

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Reaction wheel or reaction thruster is employed to maintain the attitude of the base of space robot fixed in attitude control of free-flying space robot.However, in this method, a large amount of fuel will be consumed, and it will shorten the on-orbit life span of space robot, it also vibrate the system and make the system unsteady.The restricted minimum disturbance map (RMDM) based algorithm of attitude control is presented to keep the attitude of the base fixed during the movement of the manipulator.In this method it is realized by planning motion trajectory of the end-effector of manipulator without using reaction wheel or reaction thruster.In order to verify the feasibility and effectiveness of the algorithm attitude control presented in this paper, computer simulation experiments have been made and the experimental results demonstrate that this algorithm is feasible.

  8. New attitude penalty functions for spacecraft optimal control problems

    Energy Technology Data Exchange (ETDEWEB)

    Schaub, H.; Junkins, J.L. [Texas A and M Univ., College Station, TX (United States). Dept. of Aerospace Engineering; Robinett, R.D. [Sandia National Labs., Albuquerque, NM (United States)

    1996-03-01

    A solution of a spacecraft optimal control problem, whose cost function relies on an attitude description, usually depends on the choice of attitude coordinates used. A problem could be solved using 3-2-1 Euler angles or using classical Rodriguez parameters and yield two different ``optimal`` solutions, unless the performance index in invariant with respect to the attitude coordinate choice. Another problem arising with many attitude coordinates is that they have no sense of when a body has tumbled beyond 180{degrees} from the reference attitude. In many such cases it would be easier (i.e. cost less) to let the body complete the revolution than to force it to reverse the rotation and return to the desired attitude. This paper develops a universal attitude penalty function g() whose value is independent of the attitude coordinates chosen to represent it. Furthermore, this function will achieve its maximum value only when a principal rotation of {plus_minus}180{degrees} from the target state is performed. This will implicitly permit the g() function to sense the shortest rotational distance back to the reference state. An attitude penalty function which depends on the Modified Rodriguez Parameters (MRP) will also be presented. These recently discovered MRPs are a non-singular three-parameter set which can describe any three-attitude. This MRP penalty function is simpler than the attitude coordinate independent g() function, but retains the useful property of avoiding lengthy principal rotations of more than {plus_minus}180{degrees}.

  9. General Attitude Control Algorithm for Spacecraft Equipped with Star Camera and Reaction Wheels

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Kulczycki, P.

    A configuration consisting of a star camera, four reaction wheels and magnetorquers for momentum unloading has become standard for many spacecraft missions. This popularity has motivated numerous agencies and private companies to initiate work on the design of an imbedded attitude control system...... realized on an integrated circuit. This paper considers two issues: slew maneuver with a feature of avoiding direct exposure of the camera's CCD chip to the Sun %, three-axis attitude control and optimal control torque distribution in a reaction wheel assembly. The attitude controller is synthesized...

  10. Attitude towards Responsibility and Teacher Locus of Control: Predicting Teacher Stress and Attitudes. Research Paper ERU-2-88.

    Science.gov (United States)

    Soh, Kay-cheng

    The relationships between teachers' attitudes toward responsibility and locus of control and other characteristics such as stress, educational attitudes, and attitudes toward change were studied in 54 (35 female and 19 male) experienced primary and secondary school teachers taking a course on classroom-based research. Attitude toward…

  11. Advanced numerical study of the three-axis magnetic attitude control and determination with uncertainties

    Science.gov (United States)

    Ivanov, D. S.; Ovchinnikov, M. Yu.; Penkov, V. I.; Roldugin, D. S.; Doronin, D. M.; Ovchinnikov, A. V.

    2017-03-01

    Attitude motion of a satellite equipped with magnetic control system is considered. System comprises of three magnetorquers and one three-axis magnetometer. Satellite is stabilized in orbital reference frame using PD controller and extended Kalman filter. Three-axis attitude is analyzed numerically with advanced assumptions: inertia tensor uncertainty, disturbances of unknown nature, magnetometer errors are taken into account. Stabilization and determination accuracy dependence on orbit inclination is studied.

  12. Fault Diagnosis Based on RO-NUIO/LMI for Flexible Satellite Attitude Control Systems during Orbit Control%基于RO-NUIO/LMI的挠性卫星轨控期间姿控系统故障诊断

    Institute of Scientific and Technical Information of China (English)

    侯倩; 程月华; 姜斌; 陆宁云

    2011-01-01

    During satellite orbit maneuver, the orbit control force causes disturbing torque and affects attitude of a satellite if the control force does not pass through the mass center of the satellite. In this paper, a set of reduced order nonlinear unknown input observers (RO-NUIO) are designed to detect and isolate faults. During the design process, the system is divided into three sub-systems to ensure that some states are not affected by the disturbance. Observers are designed by using the observable information. Meanwhile, some parameters of the observers can be obtained by using the LMI approach to reduce effects of nonlinear part on observers. The existence conditions of the observer proposed in this paper only depend on the inherent feature of the system. Combination of the reduced order idea and the LMI method make the structure of observers easy to be applied to nonlinear satellite attitude control systems. Numerical simulation is carried out to demonstrate the efficiency of the proposed fault diagnosis scheme for satellite attitude control systems.%卫星轨控期间,由于推力偏心,会产生较大的干扰力矩,直接影响卫星姿态.针对轨道控制期间的挠性卫星姿态控制系统,设计了干扰解耦的降阶非线性未知输入观测器(RO-NUIO),用于故障检测与故障隔离.在设计过程中,首先通过坐标变换,使得不可观的状态及部分可观状态不受干扰影响,然后针对不可观的子系统利用可观状态的信息设计观测器,观测器中的部分参数利用LMI方法获得,可以弱化非线性部分对观测器的影响.所设计观测器的存在条件仅依赖于系统本身特性,无需在线验证.观测器采用降阶设计,同时借助LMI思想,结构简单,适合于非线性卫星姿态控制系统.仿真结果验证了降阶非线性未知输入观测器实现卫星姿态控制故障诊断的可行性与有效性.

  13. Periodic H-2 Synthesis for Spacecraft Attitude Control with Magnetometers

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Stoustrup, Jakob

    2004-01-01

    between the Earth´s magnetic field and an artificial magnetic field generated by the coils produces a control torque. The magnetic attitude control is intrinsically periodic due to cyclic variation of the geomagnetic field in orbit. The control performance is specified by the generalized H2 operator norm....... A linear matrix inequality-based algorithm is proposed for attitude control synthesis. Simulation results are provided, showing the prospect of the concept for onboard implementation....

  14. A Nonlinear Attitude Estimator for Attitude and Heading Reference Systems Based on MEMS Sensors

    DEFF Research Database (Denmark)

    Wang, Yunlong; Soltani, Mohsen; Hussain, Dil muhammed Akbar

    2016-01-01

    In this paper, a nonlinear attitude estimator is designed for an Attitude Heading and Reference System (AHRS) based on Micro Electro-Mechanical Systems (MEMS) sensors. The design process of the attitude estimator is stated with detail, and the equilibrium point of the estimator error model...... the problems in previous research works. Moreover, the estimation of MEMS gyroscope bias is also inclueded in this estimator. The designed nonlinear attitude estimator is firstly tested in simulation environment and then implemented in an AHRS hardware for further experiments. Finally, the attitude estimation...

  15. Semi-active Attitude Control and Off-line Attitude Determination for the SSETI-Express Student Micro-satellite

    DEFF Research Database (Denmark)

    Alminde, Lars

    2005-01-01

    This paper concerns the development of the Attitude Determination and Control System (ADCS) for the SSETI-Express micro-satellite mission. The mission is an educational project involving 14 universities and the European Space Agency (ESA). The satellite has been designed and built, by students...

  16. Semi-active Attitude Control and Off-line Attitude Determination for the SEETI-Express Student Micro-satellite

    DEFF Research Database (Denmark)

    Alminde, Lars

    This paper concerns the development of the Attitude Determination and Control System (ADCS) for the SSETI-Express micro-satellite mission. The mission is an educational project involving 14 universities and the European Space Agency (ESA). The satellite has been designed and built, by students...

  17. Modeling of spacecraft attitude systems with single gimbal control moment gyros and controllability analysis%具有单框架控制力矩陀螺航天器的建模及可控性分析

    Institute of Scientific and Technical Information of China (English)

    张佳为; 马克茂; 孟桂芝

    2012-01-01

    针对具有单框架控制力矩陀螺的航天器姿态控制问题,将航天器与控制力矩陀螺看作整体系统,应用Lagrangian方程与Hamiltonian方程建立系统在重力场中的数学模型.在考虑航天器短时间内大角度机动前提下,将系统在Lagrangian形式下的状态方程简化成仿射非线性形式,以控制力矩陀螺框架角速度为输入变量,回避控制力矩陀螺在奇异情况下对系统的影响.随后应用系统Hamiltonian形式的保体积性与非线性系统可控性定理证明该系统可控,且系统可控性不受单框架控制力矩陀螺群个数、构型、奇异问题的影响.系统在重力场中的数学模型与可控性结论为以后进一步研究航天器姿态控制方法,航天器系统稳定性问题提供了理论依据.%For a spacecraft using single gimbal control moment gyros (SGCMGs) as actuators, taking the spacecraft and SGCMGs as a whole system, the model of the attitude control system is constructed in the gravitational field by using Lagrangian and Hamilton equations. In the case of large-angle maneuvers of the spacecraft in short time, the state equation of the system in Lagrangian form is simplified as an affine nonlinear equation, with the angular velocity of SGCMG gimbals as an input variables, which avoids the singularity problem arising in conventional treatment. Finally, the controllability of the system is analyzed by using the preservation of the system volume in Hamiltonian form. The controllability property holds in spite of the number of the SGCMGs, their configuration and the presence of singularity. The model and the controllability of the attitude control system provide a theoretical basis of the further investigation on the control and stability analysis of the spacecraft system.

  18. Consumer Attitudes Towards Domestic Solar Power Systems

    OpenAIRE

    Faiers, Adam; Neame, Charles

    2006-01-01

    The success of the UK policy to reduce carbon emissions is partly dependent on the ability to persuade householders to become more energy efficient, and to encourage installation of domestic solar systems. Solar power is an innovation in the UK but the current policy of stimulating the market with grants is not resulting in widespread adoption. This case study, using householders in central England, investigates householder attitudes towards characteristics of solar systems and identifies som...

  19. Effects of the implementation of the web-based patient support system on staff's attitudes towards computers and IT use: a randomised controlled trial.

    Science.gov (United States)

    Koivunen, Marita; Välimäki, Maritta; Patel, Anita; Knapp, Martin; Hätönen, Heli; Kuosmanen, Lauri; Pitkänen, Anneli; Anttila, Minna; Katajisto, Jouko

    2010-09-01

    Utilisation of information technology (IT) in the treatment of people with severe mental health problems is an unknown area in Europe. Use of IT and guiding patients to relevant sources of health information requires that nursing staff have positive attitudes toward computers and accept IT use as a part of daily practises. The aim of the study was to assess the effects of the implementation of a web-based patient support system on staff's attitudes towards computers and IT use on psychiatric wards. Hundred and forty-nine nurses in two psychiatric hospitals in Finland were randomised to two groups to deliver patient education for patients with schizophrenia and psychosis with a web-based system (n = 76) or leaflets (n = 73). After baseline nurses were followed-up for 18 months after the introduction of the system. The primary outcome was nurses' motivation to utilise computers, and the secondary outcomes were nurses' beliefs in and satisfaction with computers, and use of computer and internet. There were no statistically significant differences between study groups in attitudes towards computers (motivation p = 0.936, beliefs p = 0.270, satisfaction p = 0.462) and internet use (p = 0.276). However, nurses' general computer use (p = 0.029) increased more in the leaflet group than in the IT intervention group. We can conclude that IT has promise as an alternative method in patient education, as the implementation of the web-based patient support system in daily basis did not have a negative effect on nurses' attitudes towards IT.

  20. Farmer and Public Attitudes Toward Lamb Finishing Systems.

    Science.gov (United States)

    Coleman, Grahame; Jongman, Ellen; Greenfield, L; Hemsworth, Paul

    2016-01-01

    To develop research and policy on the welfare of lambs in intensive finishing systems, it is important to understand public and sheep farmers' attitudes. The aim of this research was to identify and compare farmer and community attitudes relevant to the intensification of lamb finishing. The majority of respondents in the community sample expressed concern about all listed welfare issues, but particularly about feedlotting of lambs and the associated confinement. These attitudes correlated with community views on the importance of welfare issues including social contact and freedom to roam. Farmers expressed much lower levels of concern than did the general public except with regard to the health of lambs, disease control, access to shade, and lack of access to clean water.

  1. Motor Control of Two Flywheels Enabling Combined Attitude Control and Bus Regulation

    Science.gov (United States)

    Kenny, Barbara H.

    2004-01-01

    This presentation discussed the flywheel technology development work that is ongoing at NASA GRC with a particular emphasis on the flywheel system control. The "field orientation" motor/generator control algorithm was discussed and explained. The position-sensorless angle and speed estimation algorithm was presented. The motor current response to a step change in command at low (10 kRPM) and high (60 kRPM) was discussed. The flywheel DC bus regulation control was explained and experimental results presented. Finally, the combined attitude control and energy storage algorithm that controls two flywheels simultaneously was presented. Experimental results were shown that verified the operational capability of the algorithm. shows high speed flywheel energy storage (60,000 RPM) and the successful implementation of an algorithm to simultaneously control both energy storage and a single axis of attitude with two flywheels. Overall, the presentation demonstrated that GRC has an operational facility that

  2. Predictive Sliding Mode Control for Attitude Tracking of Hypersonic Vehicles Using Fuzzy Disturbance Observer

    Directory of Open Access Journals (Sweden)

    Xianlei Cheng

    2015-01-01

    Full Text Available We propose a predictive sliding mode control (PSMC scheme for attitude control of hypersonic vehicle (HV with system uncertainties and external disturbances based on an improved fuzzy disturbance observer (IFDO. First, for a class of uncertain affine nonlinear systems with system uncertainties and external disturbances, we propose a predictive sliding mode control based on fuzzy disturbance observer (FDO-PSMC, which is used to estimate the composite disturbances containing system uncertainties and external disturbances. Afterward, to enhance the composite disturbances rejection performance, an improved FDO-PSMC (IFDO-PSMC is proposed by incorporating a hyperbolic tangent function with FDO to compensate for the approximate error of FDO. Finally, considering the actuator dynamics, the proposed IFDO-PSMC is applied to attitude control system design for HV to track the guidance commands with high precision and strong robustness. Simulation results demonstrate the effectiveness and robustness of the proposed attitude control scheme.

  3. Reaction Wheel Installation Deviation Compensation for Overactuated Spacecraft with Finite-Time Attitude Control

    Directory of Open Access Journals (Sweden)

    Aihua Zhang

    2013-01-01

    Full Text Available A novel attitude tracking control scheme is presented for overactuated spacecraft to address the attitude stabilization problem in presence of reaction wheel installation deviation, external disturbance and uncertain mass of moment inertia. An adaptive sliding mode control technique is proposed to track the uncertainty. A Lyapunov-based analysis shows that the compensation control law can guarantee that the desired attitude trajectories are followed in finite-time. The key feature of the proposed control strategy is that it globally asymptotically stabilizes the system, even in the presence of reaction wheel installation deviation, external disturbances, and uncertain mass of moment inertia. The attitude track performance using the proposed finite-time compensation control is evaluated through a numerical example.

  4. Pulsed Electrogasdynamic Thruster for Attitude Control and Orbit Maneuver Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In the Phase I program we successfully demonstrated the feasibility of the Pulsed ElectroGasdynamic (PEG) thruster for attitude control and orbital maneuvering. In...

  5. Pulsed Electrogasdynamic Thruster for Attitude Control and Orbit Maneuver Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A new pulsed electric thruster, named "pulsed electrogasdynamic thruster," for attitude control and orbit maneuver is proposed. In this thruster, propellant gas is...

  6. Improved optimal steering law for SGCMG and adaptive attitude control of flexible spacecraft

    Institute of Scientific and Technical Information of China (English)

    Lu Wang; Yu Guo; Liping Wu; Qingwei Chen

    2015-01-01

    The issue of attitude maneuver of a flexible spacecraft is investigated with single gimbaled control moment gyroscopes (SGCMGs) as an actuator. To solve the inertia uncertainty of the system, an adaptive attitude control algorithm is designed by ap-plying a radial basis function (RBF) neural network. An improved steering law for SGCMGs is proposed to achieve the optimal out-put torque. It enables the SGCMGs not only to avoid singularity, but also to output more precise torque. In addition, global, uniform, ultimate bounded stability of the attitude control system is proved via the Lyapunov technique. Simulation results demonstrate the effectiveness of the new steering law and the algorithm of attitude maneuver of the flexible spacecraft.

  7. Finite-Time Control for Attitude Tracking Maneuver of Rigid Satellite

    Directory of Open Access Journals (Sweden)

    Mingyi Huo

    2014-01-01

    Full Text Available The problem of finite-time control for attitude tracking maneuver of a rigid spacecraft is investigated. External disturbance, unknown inertia parameters are addressed. As stepping stone, a sliding mode controller is designed. It requires the upper bound of the lumped uncertainty including disturbance and inertia matrix. However, this upper bound may not be easily obtained. Therefore, an adaptive sliding mode control law is then proposed to release that drawback. Adaptive technique is applied to estimate that bound. It is proved that the closed-loop attitude tracking system is finite-time stable. The tracking errors of the attitude and the angular velocity are asymptotically stabilized. Moreover, the upper bound on the lumped uncertainty can be exactly estimated in finite time. The attitude tracking performance with application of the control scheme is evaluated through a numerical example.

  8. Nonlinear Attitude Control of Planar Structures in Space Using Only Internal Controls

    Science.gov (United States)

    Reyhanoglu, Mahmut; Mcclamroch, N. Harris

    1993-01-01

    An attitude control strategy for maneuvers of an interconnection of planar bodies in space is developed. It is assumed that there are no exogeneous torques and that torques generated by joint motors are used as means of control so that the total angular momentum of the multibody system is a constant, assumed to be zero. The control strategy utilizes the nonintegrability of the expression for the angular momentum. Large angle maneuvers can be designed to achieve an arbitrary reorientation of the multibody system with respect to an inertial frame. The theoretical background for carrying out the required maneuvers is summarized.

  9. Sliding Mode Attitude Control for Magnetic Actuated Satellite

    DEFF Research Database (Denmark)

    Wisniewski, Rafal

    1998-01-01

    control torques can only be generated perpendicular to the local geomagnetic field vector. This has been a serious obstacle for using magnetorquer based control for three-axis attitude control. This paper deals with three-axis stabilization of a low earth orbit satellite. The problem of controlling...... the spacecraft attitude using only magnetic torquing is realized in the form of the sliding mode control. A three dimensional sliding manifold is proposed, and it is shown that the satellite motion on the sliding manifold is asymptotically stable...

  10. Inverse optimal sliding mode control of spacecraft with coupled translation and attitude dynamics

    Science.gov (United States)

    Pukdeboon, Chutiphon

    2015-10-01

    This paper proposes two robust inverse optimal control schemes for spacecraft with coupled translation and attitude dynamics in the presence of external disturbances. For the first controller, an inverse optimal control law is designed based on Sontag-type formula and the control Lyapunov function. Then a robust inverse optimal position and attitude controller is designed by using a new second-order integral sliding mode control method to combine a sliding mode control with the derived inverse optimal control. The global asymptotic stability of the proposed control law is proved by using the second method of Lyapunov. For the other control law, a nonlinear H∞ inverse optimal controller for spacecraft position and attitude tracking motion is developed to achieve the design conditions of controller gains that the control law becomes suboptimal H∞ state feedback control. The ultimate boundedness of system state is proved by using the Lyapunov stability theory. Both developed robust inverse optimal controllers can minimise a performance index and ensure the stability of the closed-loop system and external disturbance attenuation. An example of position and attitude tracking manoeuvres is presented and simulation results are included to show the performance of the proposed controllers.

  11. Quaternion-based adaptive output feedback attitude control of spacecraft using Chebyshev neural networks.

    Science.gov (United States)

    Zou, An-Min; Dev Kumar, Krishna; Hou, Zeng-Guang

    2010-09-01

    This paper investigates the problem of output feedback attitude control of an uncertain spacecraft. Two robust adaptive output feedback controllers based on Chebyshev neural networks (CNN) termed adaptive neural networks (NN) controller-I and adaptive NN controller-II are proposed for the attitude tracking control of spacecraft. The four-parameter representations (quaternion) are employed to describe the spacecraft attitude for global representation without singularities. The nonlinear reduced-order observer is used to estimate the derivative of the spacecraft output, and the CNN is introduced to further improve the control performance through approximating the spacecraft attitude motion. The implementation of the basis functions of the CNN used in the proposed controllers depends only on the desired signals, and the smooth robust compensator using the hyperbolic tangent function is employed to counteract the CNN approximation errors and external disturbances. The adaptive NN controller-II can efficiently avoid the over-estimation problem (i.e., the bound of the CNNs output is much larger than that of the approximated unknown function, and hence, the control input may be very large) existing in the adaptive NN controller-I. Both adaptive output feedback controllers using CNN can guarantee that all signals in the resulting closed-loop system are uniformly ultimately bounded. For performance comparisons, the standard adaptive controller using the linear parameterization of spacecraft attitude motion is also developed. Simulation studies are presented to show the advantages of the proposed CNN-based output feedback approach over the standard adaptive output feedback approach.

  12. Crew exploration vehicle (CEV) attitude control using a neural-immunology/memory network

    Science.gov (United States)

    Weng, Liguo; Xia, Min; Wang, Wei; Liu, Qingshan

    2015-01-01

    This paper addresses the problem of the crew exploration vehicle (CEV) attitude control. CEVs are NASA's next-generation human spaceflight vehicles, and they use reaction control system (RCS) jet engines for attitude adjustment, which calls for control algorithms for firing the small propulsion engines mounted on vehicles. In this work, the resultant CEV dynamics combines both actuation and attitude dynamics. Therefore, it is highly nonlinear and even coupled with significant uncertainties. To cope with this situation, a neural-immunology/memory network is proposed. It is inspired by the human memory and immune systems. The control network does not rely on precise system dynamics information. Furthermore, the overall control scheme has a simple structure and demands much less computation as compared with most existing methods, making it attractive for real-time implementation. The effectiveness of this approach is also verified via simulation.

  13. Demonstration of Single Axis Combined Attitude Control and Energy Storage Using Two Flywheels

    Science.gov (United States)

    Kenny, Barbara H.; Jansen, Ralph; Kascak, Peter; Dever, Timothy; Santiago, Walter

    2004-01-01

    The energy storage and attitude control subsystems of the typical satellite are presently distinct and separate. Energy storage is conventionally provided by batteries, either NiCd or NiH, and active attitude control is accomplished with control moment gyros (CMGs) or reaction wheels. An overall system mass savings can be realized if these two subsystems are combined using multiple flywheels for simultaneous kinetic energy storage and momentum transfer. Several authors have studied the control of the flywheels to accomplish this and have published simulation results showing the feasibility and performance. This paper presents the first experimental results showing combined energy storage and momentum control about a single axis using two flywheels.

  14. Spacecraft momentum control systems

    CERN Document Server

    Leve, Frederick A; Peck, Mason A

    2015-01-01

    The goal of this book is to serve both as a practical technical reference and a resource for gaining a fuller understanding of the state of the art of spacecraft momentum control systems, specifically looking at control moment gyroscopes (CMGs). As a result, the subject matter includes theory, technology, and systems engineering. The authors combine material on system-level architecture of spacecraft that feature momentum-control systems with material about the momentum-control hardware and software. This also encompasses material on the theoretical and algorithmic approaches to the control of space vehicles with CMGs. In essence, CMGs are the attitude-control actuators that make contemporary highly agile spacecraft possible. The rise of commercial Earth imaging, the advances in privately built spacecraft (including small satellites), and the growing popularity of the subject matter in academic circles over the past decade argues that now is the time for an in-depth treatment of the topic. CMGs are augmented ...

  15. Adaptive variable structure control based on backstepping for spacecraft with reaction wheels during attitude maneuver

    Institute of Scientific and Technical Information of China (English)

    SONG Bin; MA Guang-fu; LI Chuan-jiang

    2009-01-01

    An adaptive variable structure control method based on backstepping is proposed for the attitude maneuver problem of rigid spacecraft with reaction wheel dynamics in the presence of uncertain inertia matrix and external disturbances. The proposed control approach is a combination of the backstepping and the adaptive variable structure control. The cascaded structure of the attitude maneuver control system with reaction wheel dynamics gives the advantage for applying the backstepping method to construct Lyapunov functions. The robust stability to external disturbances and parametric uncertainty is guaranteed by the adaptive variable structure control. To validate the proposed control algorithm, numerical simulations using the proposed approach are performed for the attitude maneuver mission of rigid spacecraft with a configuration consisting of four reaction wheels for actuator and three magnetorquers for momentum unloading. Simulation results verify the effectiveness of the proposed control algorithm.

  16. STABILIZED CONTROLLER DESIGN FOR ATTITUDE AND ALTITUDE CONTROLLING OF QUAD-ROTOR UNDER DISTURBANCE AND NOISY CONDITIONS

    Directory of Open Access Journals (Sweden)

    M. Hassan Tanveer

    2013-01-01

    Full Text Available This article presents a control approach to obtain the better stabilization in attitude and altitude of quad-rotor under different disturbance conditions. In the standard Quad-rotor rotor type UAV, controlling of attitude and altitude is one of the most critical tasks and appropriate controller for stabilization of UAV is essential and necessary. These two controls under various conditions of disturbances was a field of research stimulating for the researchers. The controller proposed is contingent on the PID feedback structure with Extended Kalman Filter (EKF. From Lyapunov Stability Theorem, it is proved that quad-rotor proposed altitude control system is asymptotic as well exponentially stability. Extended Kalman Filter (EKF is used to filter out the sensors and system noises. Finally, the simulations carried out on MATLAB and the result proved the effectiveness of proposed recommended method for stabilization of attitude and altitude of quad-rotor.

  17. A computed torque method based attitude control with optimal force distribution for articulated body mobile robots

    Energy Technology Data Exchange (ETDEWEB)

    Fukushima, Edwardo F.; Hirose, Shigeo [Tokyo Inst. of Tech. (Japan)

    2000-05-01

    This paper introduces an attitude control scheme based in optimal force distribution using quadratic programming which minimizes joint energy consumption. This method shares similarities with force distribution for multifingered hands, multiple coordinated manipulators and legged walking robots. In particular, an attitude control scheme was introduced inside the force distribution problem, and successfully implemented for control of the articulated body mobile robot KR-II. This is an actual mobile robot composed of cylindrical segments linked in series by prismatic joints and has a long snake-like appearance. These prismatic joints are force controlled so that each segment's vertical motion can automatically follow the terrain irregularities. An attitude control is necessary because this system acts like a system of wheeled inverted pendulum carts connected in series, being unstable by nature. The validity and effectiveness of the proposed method is verified by computer simulation and experiments with the robot KR-II. (author)

  18. Attitude Determination Error Analysis System (ADEAS) mathematical specifications document

    Science.gov (United States)

    Nicholson, Mark; Markley, F.; Seidewitz, E.

    1988-01-01

    The mathematical specifications of Release 4.0 of the Attitude Determination Error Analysis System (ADEAS), which provides a general-purpose linear error analysis capability for various spacecraft attitude geometries and determination processes, are presented. The analytical basis of the system is presented. The analytical basis of the system is presented, and detailed equations are provided for both three-axis-stabilized and spin-stabilized attitude sensor models.

  19. Longitudinal Attitude control System Design and Simulation of Agricultural Unmanned Aerial Vehicle%农用无人机纵向姿态控制系统设计及仿真

    Institute of Scientific and Technical Information of China (English)

    刘超; 张长利; 王树文; 王润涛; 张伶鳦; 吕涛; 栾吉玲; 周雅楠

    2016-01-01

    针对农用无人机的作业特点和应用领域,设计了一种基于经典 PID 控制方法的纵向姿态控制系统。首先,利用MatLab 软件建立了无人机在配平点处的纵向运动数学模型,分析了无人机的纵向运动规律。在此基础上,采用经典PID理论对无人机纵向运动的俯仰角控制回路和高度控制回路进行设计。通过 Simulink 软件进行仿真实验,结果表明:该飞行姿态控制系统控制效果良好,可以满足农用无人机的技术要求。%This Longitudinal attitude control system is designed on the basis of Classic PID control method .It’ s also spe-cific to the character of how Agricultural unmanned aerial vehicle operates and its application field .The system firstly uses Matlab to build a Longitudinal motion mathematical model at the trim point of the vehicle ,which can analyze the Longitu-dinal motion of itself .Secondly , the system applies the Classic PID theory to the design of the Pitch and Height attitude control loop of the vehicle .The result shows that the attitude control system effects well during flight and can meet the technical requirement of Agricultural unmanned aerial vehicle .

  20. Fuzzy robust attitude controller design for hydrofoil catamaran

    Institute of Scientific and Technical Information of China (English)

    Ren Junsheng; Yang Yansheng

    2005-01-01

    A robust attitude controller for hydrofoil catamaran throughout its operating envelope is proposed, based on Tagaki-Sugeno (T-S) fuzzy model. Firstly, T-S fuzzy model and robust attitude control strategy for hydrofoil catamaran is presented by use of linear matrix inequality (LMI) techniques. Secondly, a nonlinear mathematical model of hydrofoil catamaran is established, acting as the platform for further researches. The specialty in interpolation of T-S fuzzy model guarantees that feedback gain can be obtained smoothly, while boat's speed is shifting over the operating envelope. The external disturbances are also attenuated to achieve H∞ control performance, meanwhile. Finally, based on such a boat,HC200B-A1, simulation researches demonstrate the design procedures and the effectiveness of fuzzy robust attitude controller.

  1. Coupled attitude-orbit dynamics and control for an electric sail in a heliocentric transfer mission.

    Directory of Open Access Journals (Sweden)

    Mingying Huo

    Full Text Available The paper discusses the coupled attitude-orbit dynamics and control of an electric-sail-based spacecraft in a heliocentric transfer mission. The mathematical model characterizing the propulsive thrust is first described as a function of the orbital radius and the sail angle. Since the solar wind dynamic pressure acceleration is induced by the sail attitude, the orbital and attitude dynamics of electric sails are coupled, and are discussed together. Based on the coupled equations, the flight control is investigated, wherein the orbital control is studied in an optimal framework via a hybrid optimization method and the attitude controller is designed based on feedback linearization control. To verify the effectiveness of the proposed control strategy, a transfer problem from Earth to Mars is considered. The numerical results show that the proposed strategy can control the coupled system very well, and a small control torque can control both the attitude and orbit. The study in this paper will contribute to the theory study and application of electric sail.

  2. Coupled attitude-orbit dynamics and control for an electric sail in a heliocentric transfer mission.

    Science.gov (United States)

    Huo, Mingying; Zhao, Jun; Xie, Shaobiao; Qi, Naiming

    2015-01-01

    The paper discusses the coupled attitude-orbit dynamics and control of an electric-sail-based spacecraft in a heliocentric transfer mission. The mathematical model characterizing the propulsive thrust is first described as a function of the orbital radius and the sail angle. Since the solar wind dynamic pressure acceleration is induced by the sail attitude, the orbital and attitude dynamics of electric sails are coupled, and are discussed together. Based on the coupled equations, the flight control is investigated, wherein the orbital control is studied in an optimal framework via a hybrid optimization method and the attitude controller is designed based on feedback linearization control. To verify the effectiveness of the proposed control strategy, a transfer problem from Earth to Mars is considered. The numerical results show that the proposed strategy can control the coupled system very well, and a small control torque can control both the attitude and orbit. The study in this paper will contribute to the theory study and application of electric sail.

  3. GPS IIF yaw attitude control during eclipse season

    Science.gov (United States)

    Dilssner, F.; Springer, T.; Enderle, W.

    2011-12-01

    On May 27, 2010, the first satellite of the Block II "follow-on" (Block IIF) series, the fourth generation of Global Positioning System (GPS) spacecraft, has been successfully placed into orbit. GPS IIF-1, also referred to as space vehicle number (SVN) 62, has been injected into orbital plane B, slot position 2 of the GPS constellation. After completing three months of comprehensive in-orbit testing, the satellite entered service for the US Air Force (USAF) on August 26, 2010. A little over a year after the inaugural launch of GPS IIF-1, the USAF has now launched the second spacecraft of the IIF series (SVN-63). The IIF series includes a total of 12 satellites: SVN-62 through SVN-73. Despite having many technical advances over their predecessors such as enhanced rubidium frequency standards, more precise and powerful signals and an extended design life, the three-axis stabilized Block IIF satellites follow a completely different yaw attitude scheme, when passing through the Earth's shadow, to the Block IIA and IIR spacecraft. We will describe how high-rate carrier phase and pseudo-range measurements from a global GPS tracking network can be exploited to precisely monitor the yaw attitude behavior of SVN-62 and SVN-63 during their solar eclipse phases. The insights gained from this study have led to the development of a new GPS Block IIF yaw attitude model. We will show that the yaw rate of a Block IIF space vehicle is kept constant to the value needed to get the satellite back to near its nominal attitude when leaving the Earth's shadow and that a IIF satellite being in deep eclipse therefore needs to yaw significantly faster than an eclipsing IIF space vehicle passing only partly through the Earth's shadow. How the satellites' attitude control system (ACS) exactly computes this dynamical yaw rate parameter will be discussed here as well. Moreover, we will report on yaw attitude anomalies occurring when the GPS Block IIF satellites are shaded from the Sun by the

  4. Propellantless Attitude Control of Solar Sail Technology Utilizing Reflective Control Devices

    Science.gov (United States)

    Munday, Jeremy

    2016-01-01

    Solar sails offer an opportunity for a CubeSatscale, propellant-free spacecraft technology that enables long-term and long-distance missions not possible with traditional methods. Solar sails operate using the transfer of linear momentum from photons of sunlight reflected from the surface of the sail. To propel the spacecraft, no mechanically moving parts, thrusters, or propellant are needed. However, attitude control, or orientation, is still performed using traditional methods involving reaction wheels and propellant ejection, which severely limit mission lifetime. For example, the current state of the art solutions employed by upcoming missions couple solar sails with a state of the art propellant ejection gas system. Here, the use of the gas thruster has limited the lifetime of the mission. To solve the limited mission lifetime problem, the Propellantless Attitude Control of Solar Sail Technology Utilizing Reflective Control Devices project team is working on propellantless attitude control using thin layers of material, an optical film, electrically switchable from transparent to reflective. The technology is based on a polymer-dispersed liquid crystal (PDLC), which allows this switch upon application of a voltage. This technology removes the need for propellant, which reduces weight and cost while improving performance and lifetime.

  5. Passification based simple adaptive control of quadrotor attitude: Algorithms and testbed results

    Science.gov (United States)

    Tomashevich, Stanislav; Belyavskyi, Andrey; Andrievsky, Boris

    2017-01-01

    In the paper, the results of the Passification Method with the Implicit Reference Model (IRM) approach are applied for designing the simple adaptive controller for quadrotor attitude. The IRM design technique makes it possible to relax the matching condition, known for habitual MRAC systems, and leads to simple adaptive controllers, ensuring fast tuning the controller gains, high robustness with respect to nonlinearities in the control loop, to the external disturbances and the unmodeled plant dynamics. For experimental evaluation of the adaptive systems performance, the 2DOF laboratory setup has been created. The testbed allows to safely test new control algorithms in the laboratory area with a small space and promptly make changes in cases of failure. The testing results of simple adaptive control of quadrotor attitude are presented, demonstrating efficacy of the applied simple adaptive control method. The experiments demonstrate good performance quality and high adaptation rate of the simple adaptive control system.

  6. Autonomous attitude coordinated control for spacecraft formation with input constraint, model uncertainties, and external disturbances

    Institute of Scientific and Technical Information of China (English)

    Zheng Zhong; Song Shenmin

    2014-01-01

    To synchronize the attitude of a spacecraft formation flying system, three novel auton-omous control schemes are proposed to deal with the issue in this paper. The first one is an ideal autonomous attitude coordinated controller, which is applied to address the case with certain mod-els and no disturbance. The second one is a robust adaptive attitude coordinated controller, which aims to tackle the case with external disturbances and model uncertainties. The last one is a filtered robust adaptive attitude coordinated controller, which is used to overcome the case with input con-straint, model uncertainties, and external disturbances. The above three controllers do not need any external tracking signal and only require angular velocity and relative orientation between a space-craft and its neighbors. Besides, the relative information is represented in the body frame of each spacecraft. The controllers are proved to be able to result in asymptotical stability almost every-where. Numerical simulation results show that the proposed three approaches are effective for atti-tude coordination in a spacecraft formation flying system.

  7. Decentralized attitude synchronization tracking control for multiple spacecraft under directed communication topology

    Institute of Scientific and Technical Information of China (English)

    Zheng Zhong; Xu Ying; Zhang Lisong; Song Shenmin

    2016-01-01

    This paper studies the attitude synchronization tracking control of spacecraft formation flying with a directed communication topology and presents three different controllers. By introduc-ing a novel error variable associated with rotation matrix, a decentralized attitude synchronization controller, which could obtain almost global asymptotical stability of the closed-loop system, is developed. Then, considering model uncertainties and unknown external disturbances, we propose a robust adaptive attitude synchronization controller by designing adaptive laws to estimate the unknown parameters. After that, the third controller is proposed by extending this method to the case of time-varying communication delays via Lyapunov–Krasovskii analysis. The distinctive feature of this work is to address attitude coordinated control with model uncertainties, unknown disturbances and time-varying delays in a decentralized framework, with a strongly connected direc-ted information flow. It is shown that tracking and synchronization of an arbitrary desired attitude can be achieved when the stability condition is satisfied. Simulation results are provided to demon-strate the effectiveness of the proposed control schemes.

  8. Youth Attitudes towards Tobacco Control Laws: The Influence of Smoking Status and Grade in School

    Science.gov (United States)

    Williams, Terrinieka T.; Jason, Leonard A.; Pokorny, Steven B.

    2008-01-01

    This study examined adolescent attitudes towards tobacco control laws. An exploratory factor analysis, using surveys from over 9,000 students, identified the following three factors: (1) youth attitudes towards the efficacy of tobacco control laws, (2) youth attitudes towards tobacco possession laws and (3) youth attitudes towards tobacco sales…

  9. Orbit and Attitude Control of Asymmetric Satellites in Polar Near-Circular Orbit

    Directory of Open Access Journals (Sweden)

    Wei Zhao

    2009-10-01

    Full Text Available In this paper, the general problem about the orbit and attitude dynamic model is discussed. A feedback linearization control method is introduced for this model. Due to the asymmetric structure, the orbital properties of such satellites are the same as traditional symmetric ones, but the attitude properties are greatly different from the symmetric counterparts. With perturbations accumulate with time, the attitude angles increase periodically with time, but the orbital elements change much slower than the attitude angles. In the attitude dynamic model, chaos could appear. Traditional linear controllers can not compensate enough for asymmetric satellite when the mission is complex, especially in maneuver missions. Thus nonlinear control method is required to solve such problem in large scale. A feedback linearization method, one robust nonlinear control method, is introduced and applied to the asymmetric satellite in this paper. Some simulations are also given and the results show that feedback linearization controller not only stabilizes the system, but also exempt the chaos in the system.

  10. Robust attitude control for rapid multi-target tracking in spacecraft formation flying

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A robust attitude tracking control scheme for spacecraft formation flying is presented.The leader spacecraft with a.rapid mobile antenna and a camera is modeled.While the camera is tracking the ground target,the antenna is tracking the follower spacecraft.By an angular velocity constraint and an angular constraint,two methods are proposed to compute the reference attitude profiles of the camera and antenna,respectively.To simplify the control design problem,this paper first derives the desired inverse system (DIS),which can convert the attitude tracking problem of 3D space into the regulator problem.Based on DIS and sliding mode control (SMC),a robust attitude tracking controller is developed in the presence of mass parameter uncertainties and external disturbance.By Lyapunov stability theory,the closed loop system stability can be achieved.The numerical simulations show that the proposed robust control scheme exhibits significant advantages for the multi-target attitude tracking of a two-spacecraft formation.

  11. Rigid Body Attitude Control Based on a Manifold Representation of Direction Cosine Matrices

    Science.gov (United States)

    Nakath, David; Clemens, Joachim; Rachuy, Carsten

    2017-01-01

    Autonomous systems typically actively observe certain aspects of their surroundings, which makes them dependent on a suitable controller. However, building an attitude controller for three degrees of freedom is a challenging task, mainly due to singularities in the different parametrizations of the three dimensional rotation group SO(3). Thus, we propose an attitude controller based on a manifold representation of direction cosine matrices: In state space, the attitude is globally and uniquely represented as a direction cosine matrix R ∈ SO(3). However, differences in the state space, i.e., the attitude errors, are exposed to the controller in the vector space ℝ3. This is achieved by an operator, which integrates the matrix logarithm mapping from SO(3) to so(3) and the map from so(3) to ℝ3. Based on this representation, we derive a proportional and derivative feedback controller, whose output has an upper bound to prevent actuator saturation. Additionally, the feedback is preprocessed by a particle filter to account for measurement and state transition noise. We evaluate our approach in a simulator in three different spacecraft maneuver scenarios: (i) stabilizing, (ii) rest-to-rest, and (iii) nadir-pointing. The controller exhibits stable behavior from initial attitudes near and far from the setpoint. Furthermore, it is able to stabilize a spacecraft and can be used for nadir-pointing maneuvers.

  12. Chinese consumers' attitude towards different pig production systems

    DEFF Research Database (Denmark)

    de Barcellos, Marcia Dutra; Grunert, Klaus G.; Yanfeng, Z.;

    2008-01-01

    This study investigates Chinese consumers' attitude towards different pig production systems by means of a conjoint analysis. While there has been a range of studies on western consumers' attitudes to various forms of food production, little is known about such attitudes in other cultural context...... to food safety which furthermore can provide lean meat with consistent quality are also preferred compared to farms that have less focus on food safety. Chinese consumers also rejected imported pig breeds and tasty but variable meat....

  13. Attitude Estimation and Position Control of VTOL UAVs using IMU and GPS Measurements

    CERN Document Server

    Roberts, Andrew

    2011-01-01

    We address two fundamental problems associated with the control of vertical take-off and landing (VTOL) unmanned airborne vehicles (UAVs): attitude estimation and position control. We propose two velocity-aided attitude observers which utilize a global-positioning system (GPS) in addition to an inertial measurement unit (IMU). The `velocity-aided' class of observer uses an accelerometer to measure the system \\emph{apparent acceleration} (instead of the gravity vector), and is therefore better suited for applications where the rigid-body (aircraft) is subjected to significant linear accelerations (which is to be expected for VTOL UAVs). We also propose a position controller which utilizes the accelerometer in a similar fashion. More precisely, rather than using the system orientation (as is usually done in the existing position controllers), we use the vector measurements (accelerometer and magnetometer measurements) directly in the position control law. Consequently, the proposed position controller does not ...

  14. Time-varying Sliding Mode Controls in Rigid Spacecraft Attitude Tracking

    Institute of Scientific and Technical Information of China (English)

    Jin Yongqiang; Liu Xiangdong; Qiu Wei; Hou Chaozhen

    2008-01-01

    To solve the problem of attitude tracking of a rigid spacecraft with an either known or measurable desired attitude trajectory, three types of time-varying sliding mode controls are introduced under consideration of control input constraints. The sliding surfaces of the three types initially pass arbitrary initial values of the system, and then shift or rotate to reach predetermined ones. This way, the system trajectories are always on the sliding surfaces, and the system work is guaranteed to have robustness against paramour uncertainty and external disturbances all the time. The controller parameters are optimized by means of genetic algorithm to minimize the index consisting of the weighted index of squared error (ISE) of the system and the weighted penalty term of violation of control input constraint. The stability is verified with Lyapunov method. Compared with the conventional sliding mode control, simulation results show the proposed algorithm having better robustness against inertia matrix uncertainty and external disturbance torques.

  15. Stabilization of rotational motion with application to spacecraft attitude control

    DEFF Research Database (Denmark)

    Wisniewski, Rafal

    2000-01-01

    on a Riemannian manifold. The Lyapnov stability theory is adapted and reformulated to fit to the new framework of Riemannian manifolds. Toillustrate the results a spacecraft attitude control problem is considered. Firstly, a global canonical representation for the spacecraft motion is found, then three spacecraft...

  16. Cassini at Saturn Proximal Orbits - Attitude Control Challenges

    Science.gov (United States)

    Burk, Thomas A.

    2013-01-01

    The Cassini mission at Saturn will come to an end in the spring and summer of 2017 with a series of 22 orbits that will dip inside the rings of Saturn. These are called proximal orbits and will conclude with spacecraft disposal into the atmosphere of the ringed world on September 15, 2017. These unique orbits that cross the ring plane only a few thousand kilometers above the cloud tops of the planet present new attitude control challenges for the Cassini operations team. Crossing the ring plane so close to the inner edge of the rings means that the Cassini orientation during the crossing will be tailored to protect the sensitive electronics bus of the spacecraft. This orientation will put the sun sensors at some extra risk so this paper discusses how the team prepares for dust hazards. Periapsis is so close to the planet that spacecraft controllability with RCS thrusters needs to be evaluated because of the predicted atmospheric torque near closest approach to Saturn. Radiation during the ring plane crossings will likely trigger single event transients in some attitude control sensors. This paper discusses how the attitude control team deals with radiation hazards. The angular size and unique geometry of the rings and Saturn near periapsis means that star identification will be interrupted and this paper discusses how the safe mode attitude is selected to best deal with these large bright bodies during the proximal orbits.

  17. Orion Launch Abort Vehicle Attitude Control Motor Testing

    Science.gov (United States)

    Murphy, Kelly J.; Brauckmann, Gregory J.; Paschal, Keith B.; Chan, David T.; Walker, Eric L.; Foley, Robert; Mayfield, David; Cross, Jared

    2011-01-01

    Current Orion Launch Abort Vehicle (LAV) configurations use an eight-jet, solid-fueled Attitude Control Motor (ACM) to provide required vehicle control for all proposed abort trajectories. Due to the forward position of the ACM on the LAV, it is necessary to assess the effects of jet-interactions (JI) between the various ACM nozzle plumes and the external flow along the outside surfaces of the vehicle. These JI-induced changes in flight control characteristics must be accounted for in developing ACM operations and LAV flight characteristics. A test program to generate jet interaction aerodynamic increment data for multiple LAV configurations was conducted in the NASA Ames and NASA Langley Unitary Plan Wind Tunnels from August 2007 through December 2009. Using cold air as the simulant gas, powered subscale models were used to generate interaction data at subsonic, transonic, and supersonic test conditions. This paper presents an overview of the complete ACM JI experimental test program for Orion LAV configurations, highlighting ACM system modeling, nozzle scaling assumptions, experimental test techniques, and data reduction methodologies. Lessons learned are discussed, and sample jet interaction data are shown. These data, in conjunction with computational predictions, were used to create the ACM JI increments for all relevant flight databases.

  18. Orbit and attitude control of spacecraft formation flying

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhi-guo; LI Jun-feng

    2008-01-01

    Formation flying is a novel concept of distributing the flmctionality of large spacecraft among several smaller, less expensive, cooperative satellites. Some applica-tions require that a controllable satellite keeps relative position and attitude to observe a specific surface of another satellite among the cluster. Specially, the target space vehi- cle is malfunctioning. The present paper focuses on the problem that how to control a chaser satellite to fly around an out-of-work target satellite closely in earth orbit and to track a specific surface. Relative attitude and first approximate relative orbital dynamics equations are presented. Control strategy is derived based on feedback linearization and Lyapunov theory of stability. Further, considering the uncertainty of inertia, an adaptive control method is developed to obtain the correct inertial ratio. The numerical simulation is given to verify the validity of proposed control scheme.

  19. Adaptive-Gain Second-Order Sliding Mode Control of Attitude Tracking of Flexible Spacecraft

    Directory of Open Access Journals (Sweden)

    Chutiphon Pukdeboon

    2014-01-01

    finite-time second-order sliding mode control algorithms are presented to solve this problem. For the first controller, a novel second-order sliding mode control scheme is developed to achieve high-precision tracking performance. For the second control law, an adaptive-gain second-order sliding mode control algorithm combing an adaptive law with second-order sliding mode control strategy is designed to relax the requirement of prior knowledge of the bound of the system uncertainties. The rigorous proofs show that the proposed controllers provide finite-time convergence of the attitude and angular velocity tracking errors. Numerical simulations on attitude tracking control are presented to demonstrate the performance of the developed controllers.

  20. Robust Adaptive Geometric Tracking Controls on SO(3) with an Application to the Attitude Dynamics of a Quadrotor UAV

    CERN Document Server

    Lee, Taeyoung

    2011-01-01

    This paper provides new results for a robust adaptive tracking control of the attitude dynamics of a rigid body. Both of the attitude dynamics and the proposed control system are globally expressed on the special orthogonal group, to avoid complexities and ambiguities associated with other attitude representations such as Euler angles or quaternions. By designing an adaptive law for the inertia matrix of a rigid body, the proposed control system can asymptotically follow an attitude command without the knowledge of the inertia matrix, and it is extended to guarantee boundedness of tracking errors in the presence of unstructured disturbances. These are illustrated by numerical examples and experiments for the attitude dynamics of a quadrotor UAV.

  1. Small satellite attitude control for sun-oriented operations utilizing a momentum bias with magnetic actuators

    Science.gov (United States)

    Wolfe, Scott M.

    1995-03-01

    The feasibility of using a three axis control, momentum bias system with magnetic actuators for sun-oriented operations is explored. Relevant equations of motion are developed for a sun-oriented coordinate system and control laws are developed for initial spacecraft capture after launch vehicle separation; reorientation from Earth oriented to a sun oriented operations mode; sun-oriented attitude control; and momentum wheel control. Simulations demonstrating the stability and time responsiveness of the system are performed. Sensor noise input tests are performed to investigate the systems susceptibility to imperfect conditions. Cross product of inertia effects are also input to test for system instability.

  2. Development of a Hardware-in-the-loop Simulator for Spacecraft Attitude Control Using Thrusters

    Science.gov (United States)

    Koh, Dong-Wook; Park, Sang-Young; Kim, Do-Hee; Choi, Kyu-Hong

    2009-03-01

    In this study, a Hardware-In-the-Loop (HIL) simulator using thrusters is developed to validate the spacecraft attitude system. To control the attitude of the simulator, eight cold gas thrusters are aligned with roll, pitch and yaw axis. Also linear actuators are applied to the HIL simulator for automatic mass balancing to compensate the center of mass offset from the center of rotation. The HIL simulator consists of an embedded computer (Onboard PC) for simulator system control, a wireless adapter for wireless network, a rate gyro sensor to measure 3-axis attitude of the simulator, an inclinometer to measure horizontal attitude, and a battery set to supply power for the simulator independently. For the performance test of the HIL simulator, a bang-bang controller and Pulse-Width Pulse-Frequency (PWPF) modulator are evaluated successfully. The maneuver of 68 deg. in yaw axis is tested for the comparison of the both controllers. The settling time of the bang-bang controller is faster than that of the PWPF modulator by six seconds in the experiment. The required fuel of the PWPF modulator is used as much as 51% of bang-bang controller in the experiment. Overall, the HIL simulator is appropriately developed to validate the control algorithms using thrusters.

  3. International Space Station Attitude Control and Energy Storage Experiment: Effects of Flywheel Torque

    Science.gov (United States)

    Roithmayr, Carlos M.

    1999-01-01

    The Attitude Control and Energy Storage Experiment is currently under development for the International Space Station; two counter-rotating flywheels will be levitated with magnetic bearings and placed in vacuum housings. The primary objective of the experiment is to store and discharge energy, in combination with existing batteries, into the electrical power system. The secondary objective is to use the flywheels to exert torque on the Station; a simple torque profile has been designed so that the Station's Control Moment Gyroscopes will be assisted in maintaining torque equilibrium attitude. Two energy storage contingencies could result in the inadvertent application of torque by the flywheels to the Station: an emergency shutdown of one flywheel rotor while the other remains spinning, and energy storage with only one rotor instead of the counterrotating pair. Analysis of these two contingencies shows that attitude control and the microgravity environment will not be adversely affected.

  4. Finite-Time Reentry Attitude Control Using Time-Varying Sliding Mode and Disturbance Observer

    Directory of Open Access Journals (Sweden)

    Xuzhong Wu

    2015-01-01

    Full Text Available This paper presents the finite-time attitude control problem for reentry vehicle with redundant actuators in consideration of planet uncertainties and external disturbances. Firstly, feedback linearization technique is used to cancel the nonlinearities of equations of motion to construct a basic mode for attitude controller. Secondly, two kinds of time-varying sliding mode control methods with disturbance observer are integrated with the basic mode in order to enhance the control performance and system robustness. One method is designed based on boundary layer technique and the other is a novel second-order sliding model control method. The finite-time stability analyses of both resultant closed-loop systems are carried out. Furthermore, after attitude controller produces the torque commands, an optimization control allocation approach is introduced to allocate them into aerodynamic surface deflections and on-off reaction control system thrusts. Finally, the numerical simulation results demonstrate that both of the time-varying sliding mode control methods are robust to uncertainties and disturbances without chattering phenomenon. Moreover, the proposed second-order sliding mode control method possesses better control accuracy.

  5. Stabilization of rotational motion with application to spacecraft attitude control

    DEFF Research Database (Denmark)

    Wisniewski, Rafal

    2001-01-01

    on a Riemannian manifold. The Lyapnov stability theory is adapted and reformulated to fit to the new framework of Riemannian manifolds. Toillustrate the results a spacecraft attitude control problem is considered. Firstly, a global canonical representation for the spacecraft motion is found, then three spacecraft...... control problems are addressed: stabilization in the inertial frame, magnetic libration damping for the gravity gradient stabilization and a slew maneuver with obstacle avoidance...

  6. Mixed H2/H∞ State Feedback Attitude Control of Microsatellite Based on Extended LMI Method

    Institute of Scientific and Technical Information of China (English)

    Keke Shi; Chuang Liu; Feng Wang∗; Zhaowei Sun

    2016-01-01

    For the appearance of the additive perturbation of controller gain when the controller parameter has minute adjustment at the initial running stage of system, to avoid the adverse effects, this paper investigates the mixed H2/H∞ state feedback attitude control problem of microsatellite based on extended LMI method. Firstly, the microsatellite attitude control system is established and transformed into corresponding state space form. Then, without the equivalence restriction of the two Lyapunov variables of H2 and H∞ performance, this paper introduces additional variables to design the mixed H2/H∞ control method based on LMI which can also reduce the conservatives. Finally, numerical simulations are analyzed to show that the proposed method can make the satellite stable within 20 s whether there is additive perturbation of the controller gain or not. The comparative analysis of the simulation results between extended LMI method and traditional LMI method also demonstrates the effectiveness and feasibility of the proposed method in this paper.

  7. Locus of Control and Computer Attitude: The Effect of User Involvement.

    Science.gov (United States)

    Hawk, Stephen R.

    1989-01-01

    Describes study that was conducted to investigate the relationship between locus of control and user attitude toward computer based information systems (CBIS) used at work. The impact of user involvement is examined, the hypotheses tested are described, and implications for introducing CBIS into organizations are discussed. (14 references) (LRW)

  8. Guidance and adaptive-robust attitude & orbit control of a small information satellite

    Science.gov (United States)

    Somov, Ye.; Butyrin, S.; Somov, S.; Somova, T.; Testoyedov, N.; Rayevsky, V.; Titov, G.; Yakimov, Ye.; Ovchinnikov, A.; Mathylenko, M.

    2017-01-01

    We consider a small information satellite which may be placed on an orbit with altitude from 600 up to 1000 km. The satellite attitude and orbit control system contains a strap-down inertial navigation system, cluster of four reaction wheels, magnetic driver and a correcting engine unit with eight electro-reaction engines. We study problems on design of algorithms for spatial guidance, in-flight identification and adaptive-robust control of the satellite motion on sun-synchronous orbit.

  9. Federated nonlinear predictive filtering for the gyroless attitude determination system

    Science.gov (United States)

    Zhang, Lijun; Qian, Shan; Zhang, Shifeng; Cai, Hong

    2016-11-01

    This paper presents a federated nonlinear predictive filter (NPF) for the gyroless attitude determination system with star sensor and Global Positioning System (GPS) sensor. This approach combines the good qualities of both the NPF and federated filter. In order to combine them, the equivalence relationship between the NPF and classical Kalman filter (KF) is demonstrated from algorithm structure and estimation criterion. The main features of this approach include a nonlinear predictive filtering algorithm to estimate uncertain model errors and determine the spacecraft attitude by using attitude kinematics and dynamics, and a federated filtering algorithm to process measurement data from multiple attitude sensors. Moreover, a fault detection and isolation algorithm is applied to the proposed federated NPF to improve the estimation accuracy even when one sensor fails. Numerical examples are given to verify the navigation performance and fault-tolerant performance of the proposed federated nonlinear predictive attitude determination algorithm.

  10. Finite-Time Anti-Disturbance Inverse Optimal Attitude Tracking Control of Flexible Spacecraft

    Directory of Open Access Journals (Sweden)

    Chutiphon Pukdeboon

    2013-01-01

    Full Text Available We propose a new robust optimal control strategy for flexible spacecraft attitude tracking maneuvers in the presence of external disturbances. An inverse optimal control law is designed based on a Sontag-type formula and a control Lyapunov function. An adapted extended state observer is used to compensate for the total disturbances. The proposed controller can be expressed as the sum of an inverse optimal control and an adapted extended state observer. It is shown that the developed controller can minimize a cost functional and ensure the finite-time stability of a closed-loop system without solving the associated Hamilton-Jacobi-Bellman equation directly. For an adapted extended state observer, the finite-time convergence of estimation error dynamics is proven using a strict Lyapunov function. An example of multiaxial attitude tracking maneuvers is presented and simulation results are included to show the performance of the developed controller.

  11. Adaptive finite-time backstepping control for attitude tracking of spacecraft based on rotation matrix

    Directory of Open Access Journals (Sweden)

    Guo Yong

    2014-04-01

    Full Text Available This paper investigates two finite-time controllers for attitude control of spacecraft based on rotation matrix by an adaptive backstepping method. Rotation matrix can overcome the drawbacks of unwinding which makes a spacecraft perform a large-angle maneuver when a small-angle maneuver in the opposite rotational direction is sufficient to achieve the objective. With the use of adaptive control, the first robust finite-time controller is continuous without a chattering phenomenon. The second robust finite-time controller can compensate external disturbances with unknown bounds. Theoretical analysis shows that both controllers can make a spacecraft following a time-varying reference attitude signal in finite time and guarantee the stability of the overall closed-loop system. Numerical simulations are presented to demonstrate the effectiveness of the proposed control schemes.

  12. A simple attitude control of quadrotor helicopter based on Ziegler-Nichols rules for tuning PD parameters.

    Science.gov (United States)

    He, ZeFang; Zhao, Long

    2014-01-01

    An attitude control strategy based on Ziegler-Nichols rules for tuning PD (proportional-derivative) parameters of quadrotor helicopters is presented to solve the problem that quadrotor tends to be instable. This problem is caused by the narrow definition domain of attitude angles of quadrotor helicopters. The proposed controller is nonlinear and consists of a linear part and a nonlinear part. The linear part is a PD controller with PD parameters tuned by Ziegler-Nichols rules and acts on the quadrotor decoupled linear system after feedback linearization; the nonlinear part is a feedback linearization item which converts a nonlinear system into a linear system. It can be seen from the simulation results that the attitude controller proposed in this paper is highly robust, and its control effect is better than the other two nonlinear controllers. The nonlinear parts of the other two nonlinear controllers are the same as the attitude controller proposed in this paper. The linear part involves a PID (proportional-integral-derivative) controller with the PID controller parameters tuned by Ziegler-Nichols rules and a PD controller with the PD controller parameters tuned by GA (genetic algorithms). Moreover, this attitude controller is simple and easy to implement.

  13. Simulation of 3-Axis Stable Satellite Attitude Control System Based on Modularization%基于模块化的三轴稳定卫星姿控系统仿真

    Institute of Scientific and Technical Information of China (English)

    梁骁俊

    2012-01-01

    研究卫星姿控系统快速建模问题,根据姿态控制原理以及控制系统的基本结构,遵循“开放性”、“集成性”和“模块化”等原则,提出建立了三轴稳定卫星姿态控制系统仿真通用模块库,并通过一个仿真算例验证了模块库的有效性.该库划分为执行机构、代数法姿态确定、常用模块、控制器、动力学与运动学、敏感器、空间环境和状态估计姿态确定等八大类功能模块,可嵌入到MATLAB平台中,使用方便,而且可以对模块库不断扩展改进,为三轴稳定卫星姿态控制系统设计与仿真验证提供了一个快速有效方法.%According to the principle and the structure of 3 梐xis stable satellite attitude control system, a unitized MATLAB/Simulink modules library for 3-axis stable satellite attitude control system was build to resolve the problem of fleetly modeling. It was designed following three rules: openness, integration and modularization, then its validity was proved by a simulation example. The library can be embedded into the platform of MATLAB/Simulink, which includes eight blocks; Actuators, Algebra AD Blocks, Commonly Used Blocks, Controllers, Dynamics and Kinematics, Sensor Models, Space Environment Blocks and State Estimation Blocks. So it is easy to use and can be serially improved. This method will be helpful for 3-axis stable satellite attitude control system design and simulation.

  14. A novel microsatellite control system

    Energy Technology Data Exchange (ETDEWEB)

    Moore, K.R.; Frigo, J.R.; Tilden, M.W.

    1998-02-01

    The authors are researching extremely simple yet quite capable analog pulse-coded neural networks for ``smaller-faster-cheaper`` spacecraft attitude and control systems. The will demonstrate a prototype microsatellite that uses their novel control method to autonomously stabilize itself in the ambient magnetic field and point itself at the brightest available light source. Though still in design infancy, the ``Nervous Net`` controllers described could allow for space missions not currently possible given conventional satellite hardware. Result, prospects and details are presented.

  15. School teachers' attitude toward population control.

    Science.gov (United States)

    Vaswani, N V; Kapoor, I

    1977-01-01

    A report on a study of 412 school teachers in the Bombay area of India. 82 of the teachers were tested initially, and found to have unclear ideas about the meaning of "population control." As a result, the definition of the term adopted by UNESCO in 1970 was incorporated into the questionnaire, and translated into Hindi/Marathi and Gujarti. The 1st 82 teachers were considered as a pretest group, and the remaining teachers were given a 3-part questionnaire. This included identification data, questions on their opinions and reactions toward teaching population education, and their own views on age of marriage and family size. Tables break down the results in several ways. The main conclusions are that a majority of the teachers responding were still unclear about the meaning of population education, and felt that they were unqualified to teach the subject, while they believed in its importance.

  16. A study of interceptor attitude control based on adaptive wavelet neural networks

    Science.gov (United States)

    Li, Da; Wang, Qing-chao

    2005-12-01

    This paper engages to study the 3-DOF attitude control problem of the kinetic interceptor. When the kinetic interceptor enters into terminal guidance it has to maneuver with large angles. The characteristic of interceptor attitude system is nonlinearity, strong-coupling and MIMO. A kind of inverse control approach based on adaptive wavelet neural networks was proposed in this paper. Instead of using one complex neural network as the controller, the nonlinear dynamics of the interceptor can be approximated by three independent subsystems applying exact feedback-linearization firstly, and then controllers for each subsystem are designed using adaptive wavelet neural networks respectively. This method avoids computing a large amount of the weights and bias in one massive neural network and the control parameters can be adaptive changed online. Simulation results betray that the proposed controller performs remarkably well.

  17. Systems of attitudes towards production in the pork industry

    DEFF Research Database (Denmark)

    Sørensen, Bjarne Taulo; Dutra de Barcellos, Marcia; Veflen Olsen, Nina

    2012-01-01

    search algorithms and structural equation models. The results suggest that evaluative judgments of the importance of pork production system attributes are generated in a schematic manner, driven by personal value orientations. The effect of personal value orientations was strong and largely unmediated......, understanding them as embedded into a wider attitude system that consists of attitudes towards objects of different abstraction levels, ranging from personal value orientations over general socio-political attitudes to evaluations of specific characteristics of agricultural production systems. It is assumed...... production systems was modelled. The analysis was based on data from a cross-national survey involving 1931 participants from Belgium, Denmark, Germany and Poland. The survey questionnaire contained measures of personal value orientations and attitudes towards environment and nature, industrial food...

  18. Attitude and Translation Control of a Solar Sail Vehicle

    Science.gov (United States)

    Singh, Gurkirpal

    2008-01-01

    A report discusses the ability to control the attitude and translation degrees-of-freedom of a solar sail vehicle by changing its center of gravity. A movement of the spacecraft s center of mass causes solar-pressure force to apply a torque to the vehicle. At the compact core of the solar-sail vehicle lies the spacecraft bus which is a large fraction of the total vehicle mass. In this concept, the bus is attached to the spacecraft by two single degree-of-freedom linear tracks. This allows relative movement of the bus in the sail plane. At the null position, the resulting solar pressure applies no torque to the vehicle. But any deviation of the bus from the null creates an offset between the spacecraft center of mass and center of solar radiation pressure, resulting in a solar-pressure torque on the vehicle which changes the vehicle attitude. Two of the three vehicle degrees of freedom can be actively controlled in this manner. The third, the roll about the sunline, requires a low-authority vane/propulsive subsystem. Translation control of the vehicle is achieved by directing the solar-pressure-induced force in the proper inertial direction. This requires attitude control. Attitude and translation degrees-of-freedom are therefore coupled. A guidance law is proposed, which allows the vehicle to stationkeep at an appropriate point on the inertially-rotating Sun-Earth line. Power requirements for moving the bus are minimal. Extensive software simulations have been performed to demonstrate the feasibility of this concept.

  19. Fixed-Star Tracking Attitude Control of Spacecraft Using Single-Gimbal Control Moment Gyros

    Directory of Open Access Journals (Sweden)

    Sangwon Kwon

    2010-01-01

    Full Text Available Problem statement: A cluster of small-sized Single-Gimbal Control Moment Gyros (SGCMGs is proposed as an attitude control actuator for high-speed maneuver of small satellites. There exists a singularity problem what is peculiar to the CMG system. Approach: This study presented a simple singularity avoidance steering law using the Singular Value Decomposition (SVD algorithm. Results: Capability of the present steering method in singularity avoidance was demonstrated with numerical simulations for fixed-star tracking control of a small satellite using four SGCMGs. Conclusion: The proposed steering law utilizes the singular value decomposition to obtain singular vectors and generates the command gimbal rate that keeps the command torque in the direction orthogonal to the singular direction with a maximum gain.

  20. CHAOTIC ATTITUDE MOTION OF A MAGNETIC RIGID SPACECRAFT IN AN ELLIPTIC ORBIT AND ITS CONTROL

    Institute of Scientific and Technical Information of China (English)

    刘延柱; 陈立群

    2003-01-01

    This paper deals with the chaotic attitude motion of a magnetic rigid spacecraft with internal damping in an elliptic orbit. The dynamical model of the spacecraft is established. The Melnikov analysis is carried out to prove the existence of a complicated nonwandering Cantor set. The dynamical behaviors are numerically investigated by means of time history, Poincare map, Lyapunov exponents and power spectrum. Numerical simulations demonstrate the chaotic motion of the system.The input-output feedback linearization method and its modified version are applied, respectively, to control the chaotic attitude motions to the given fixed point or periodic motion.

  1. Position and attitude tracking control for a quadrotor UAV.

    Science.gov (United States)

    Xiong, Jing-Jing; Zheng, En-Hui

    2014-05-01

    A synthesis control method is proposed to perform the position and attitude tracking control of the dynamical model of a small quadrotor unmanned aerial vehicle (UAV), where the dynamical model is underactuated, highly-coupled and nonlinear. Firstly, the dynamical model is divided into a fully actuated subsystem and an underactuated subsystem. Secondly, a controller of the fully actuated subsystem is designed through a novel robust terminal sliding mode control (TSMC) algorithm, which is utilized to guarantee all state variables converge to their desired values in short time, the convergence time is so small that the state variables are acted as time invariants in the underactuated subsystem, and, a controller of the underactuated subsystem is designed via sliding mode control (SMC), in addition, the stabilities of the subsystems are demonstrated by Lyapunov theory, respectively. Lastly, in order to demonstrate the robustness of the proposed control method, the aerodynamic forces and moments and air drag taken as external disturbances are taken into account, the obtained simulation results show that the synthesis control method has good performance in terms of position and attitude tracking when faced with external disturbances.

  2. Integrated power and attitude control of a rigid satellite with onboard magnetic bearing suspended rigid flywheels

    Science.gov (United States)

    Kim, Yeonkyu

    2003-10-01

    A system of differential equations governing the translational and rotational motion of a system model consisting of a rigid satellite and multiple MB suspended rigid flywheels in general configuration is developed. Flywheel modules are contained in a housing rigidly mounted on the satellite and floated by an active MB suspension system, therefore each flywheel module has six degrees of freedom (DOF) as well as the satellite module. Equations of motion for the satellite and flywheels are naturally coupled and the satellite rotational motion and translational motion are coupled. A nonlinear state feedback tracking control law, which is globally asymptotically stable, is developed following a Lyapunov stability theory for integrated power and attitude control using the MB suspended flywheels. The stability, robustness, and tracking and disturbance rejection performance of the present control law with respect to initial attitude error, system modeling error, an imbalance disturbance, is demonstrated by case studies. The satellite departure motion equation derived from the definition of the angular velocity error and the system dynamics equations is presented. Application study of existing power tracking algorithm with this control law shows perfect power tracking for both power charging from and power delivery to the satellite operations and the power tracking can be performed simultaneously with and independent of the attitude control function.

  3. Attitude Control Considering Variable Input Saturation Limit for a Spacecraft Equipped with Flywheels

    Institute of Scientific and Technical Information of China (English)

    TIAN Lin; XU Shijie

    2012-01-01

    A new attitude controller is proposed for spacecraft whose actuator has variable input saturation limit.There are three identical flywheels orthogonally mounted on board.Each rotor is driven by a brushless DC motor (BLDCM).Models of spacecraft attitude dynamics and flywheel rotor driving motor electromechanics are discussed in detail.The controller design is similar to saturation limit linear assignment.An auxiliary parameter and a boundary coefficient are imported into the controller to guarantee system stability and improve control performance.A time-varying and state-dependent flywheel output torque saturation limit model is established.Stability of the closed-loop control system and asymptotic convergence of system states are proved via Lyapunov methods and LaSalle invarianee principle.Boundedness of the auxiliary parameter ensures that the control objective can be achieved,while the boundary parameter's value makes a balance between system control performance and flywheel utilization efficiency.Compared with existing controllers,the newly developed controller with variable torque saturation limit can bring smoother control and faster system response.Numerical simulations validate the effectiveness of the controller.

  4. Adaptive Integral-type Sliding Mode Control for Spacecraft Attitude Maneuvering Under Actuator Stuck Failures

    Institute of Scientific and Technical Information of China (English)

    HU Qinglei; ZHANG Youmin; HUO Xing; XIAO Bing

    2011-01-01

    A fault tolerant control (FTC) design technique against actuator stuck faults is investigated using integral-type sliding mode control (ISMC) with application to spacecraft attitude maneuvering control system. The principle of the proposed FTC scheme is to design an integral-type sliding mode attitude controller using on-line parameter adaptive updating law to compensate for the effects of stuck actuators. This adaptive law also provides both the estimates of the system parameters and external disturbances such that a prior knowledge of the spacecraft inertia or boundedness of disturbances is not required. Moreover, by including the integral feedback term, the designed controller can not only tolerate actuator stuck faults, but also compensate the disturbances with constant components. For the synthesis of controller, the fault time, patterns and values are unknown in advance, as motivated from a practical spacecraft control application. Complete stability and performance analysis are presented and illustrative simulation results of application to a spacecraft show that high precise attitude control with zero steady-error is successfully achieved using various scenarios of stuck failures in actuators.

  5. Information Fusion-Based Optimal Attitude Control for an Alterable Thrust Direction Unmanned Aerial Vehicle

    Directory of Open Access Journals (Sweden)

    Ziyang Zhen

    2013-01-01

    Full Text Available Attitude control is the inner‐loop and the most important part of the automatic flight control system of an unmanned aerial vehicle (UAV. The information fusion‐based optimal control method is applied in a UAV flight control system in this work. Firstly, a nonlinear model of alterable thrust direction UAV (ATD‐UAV is established and linearized for controller design. The longitudinal controller and lateral controller are respectively designed based on information fusion‐based optimal control, and then the information fusion flight control system is built up. Finally, the simulation of a nonlinear model described as ATD‐UAV is carried out, the results of which show the superiority of the information fusion‐based control strategy when compared to the single‐loop design method. We also show that the ATD technique improves the anti‐disturbance capacity of the UAV.

  6. Solar sail attitude control including active nutation damping in a fixed-momentum wheel satellite

    Science.gov (United States)

    Azor, Ruth

    1992-02-01

    In the geostationary cruise of a momentum biased satellite, it is necessary to stabilize the roll/yaw attitude due to disturbances caused by solar radiation pressure. This work presents a roll/yaw control system with a horizon sensor for roll measurement. Roll/yaw control is obtained by the use of solar arrays and fixed flaps as actuators. The design also includes an active nutation damping method.

  7. Appendage modal coordinate truncation criteria in hybrid coordinate dynamic analysis. [for spacecraft attitude control

    Science.gov (United States)

    Likins, P.; Ohkami, Y.; Wong, C.

    1976-01-01

    The paper examines the validity of the assumption that certain appendage-distributed (modal) coordinates can be truncated from a system model without unacceptable degradation of fidelity in hybrid coordinate dynamic analysis for attitude control of spacecraft with flexible appendages. Alternative truncation criteria are proposed and their interrelationships defined. Particular attention is given to truncation criteria based on eigenvalues, eigenvectors, and controllability and observability. No definitive resolution of the problem is advanced, and exhaustive study is required to obtain ultimate truncation criteria.

  8. Fractional order nonsingular terminal sliding mode control for flexible spacecraft attitude tracking

    Institute of Scientific and Technical Information of China (English)

    GAO; Junshan; DENG; Liwei; SONG; Shenmin

    2016-01-01

    This paper investigates a fractional terminal sliding mode control for flexible spacecraft attitude tracking in the presence of inertia uncertainties and external disturbances. The controller is based on the fractional calculus and nonsingular terminal sliding mode control technique,and it guarantees the convergence of attitude tracking error in finite time rather than in the asymptotic sense. With respect to the controller,a fractional order sliding surface is given,the corresponding control scheme is proposed based on Lyapunov stability theory to guarantee the sliding condition,and the finite time stability of the whole close loop system is also proven. Finally,numerical simulations are presented to illustrate the performance of the proposed scheme.

  9. Adaptive backstepping finite-time sliding mode control of spacecraft attitude tracking

    Institute of Scientific and Technical Information of China (English)

    Chutiphon Pukdeboon

    2015-01-01

    This paper investigates the finite-time attitude tracking problem for rigid spacecraft. Two backstepping finite-time slid-ing mode control laws are proposed to solve this problem in the presence of inertia uncertainties and external disturbances. The first control scheme is developed by combining sliding mode con-trol with a backstepping technique to achieve fast and accurate tracking responses. To obtain higher tracking precision and relax the requirement of the upper bounds on the uncertainties, a se-cond control law is also designed by combining the second or-der sliding mode control and an adaptive backstepping technique. This control law provides complete compensation of uncertainty and disturbances. Although it assumes that the uncertainty and disturbances are bounded, the proposed control law does not require information about the bounds on the uncertainties and disturbances. Finite-time convergence of attitude tracking errors and the stability of the closed-loop system are ensured by the Lya-punov approach. Numerical simulations on attitude tracking control of spacecraft are provided to demonstrate the performance of the proposed control ers.

  10. Fuzzy attitude control for a nanosatellite in leo orbit

    Science.gov (United States)

    Calvo, Daniel; Laverón-Simavilla, Ana; Lapuerta, Victoria; Aviles, Taisir

    Fuzzy logic controllers are flexible and simple, suitable for small satellites Attitude Determination and Control Subsystems (ADCS). In this work, a tailored fuzzy controller is designed for a nanosatellite and is compared with a traditional Proportional Integrative Derivative (PID) controller. Both control methodologies are compared within the same specific mission. The orbit height varies along the mission from injection at around 380 km down to a 200 km height orbit, and the mission requires pointing accuracy over the whole time. Due to both the requirements imposed by such a low orbit, and the limitations in the power available for the attitude control, a robust and efficient ADCS is required. For these reasons a fuzzy logic controller is implemented as the brain of the ADCS and its performance and efficiency are compared to a traditional PID. The fuzzy controller is designed in three separated controllers, each one acting on one of the Euler angles of the satellite in an orbital frame. The fuzzy memberships are constructed taking into account the mission requirements, the physical properties of the satellite and the expected performances. Both methodologies, fuzzy and PID, are fine-tuned using an automated procedure to grant maximum efficiency with fixed performances. Finally both methods are probed in different environments to test their characteristics. The simulations show that the fuzzy controller is much more efficient (up to 65% less power required) in single maneuvers, achieving similar, or even better, precision than the PID. The accuracy and efficiency improvement of the fuzzy controller increase with orbit height because the environmental disturbances decrease, approaching the ideal scenario. A brief mission description is depicted as well as the design process of both ADCS controllers. Finally the validation process and the results obtained during the simulations are described. Those results show that the fuzzy logic methodology is valid for small

  11. Attitude Control of Satellite With Pulse-Width Pulse- Frequency (PWPF Modulator Using Generalized Incremental Predictive Control

    Directory of Open Access Journals (Sweden)

    Ehsan Chegeni

    2014-09-01

    Full Text Available In this paper, we use generalized incremental predictive control (GIPC to stabilize attitude of satellite. We compare Generalized Predictive Control (GPC with GIPC algorithm and present that GIPC has better performance. The three-axis attitude control systems are activated in pulse mode. Consequently, a modulation of the torque command is compelling in order to avoid high non-linear control action. This work considers the Pulse-Width Pulse-Frequency modulator (PWPF is composed of a Schmitt trigger, a first order filter, and a feedback loop. PWPF modulator has several advantages over classical bang-bang controllers such as close to linear operation, high accuracy, and reduced propellant consumption

  12. Engines-only flight control system

    Science.gov (United States)

    Burcham, Frank W. (Inventor); Gilyard, Glenn B (Inventor); Conley, Joseph L. (Inventor); Stewart, James F. (Inventor); Fullerton, Charles G. (Inventor)

    1994-01-01

    A backup flight control system for controlling the flightpath of a multi-engine airplane using the main drive engines is introduced. The backup flight control system comprises an input device for generating a control command indicative of a desired flightpath, a feedback sensor for generating a feedback signal indicative of at least one of pitch rate, pitch attitude, roll rate and roll attitude, and a control device for changing the output power of at least one of the main drive engines on each side of the airplane in response to the control command and the feedback signal.

  13. Anti-disturbance inverse optimal control for spacecraft position and attitude maneuvers with input saturation

    Directory of Open Access Journals (Sweden)

    Chutiphon Pukdeboon

    2016-05-01

    Full Text Available In this article, a new anti-disturbance inverse optimal translation and rotation control scheme for a rigid spacecraft with external disturbances and actuator constraint is presented. An inverse optimal controller with input saturations is designed to achieve asymptotic convergence to the desired translation and attitude and avoid the unwinding phenomenon. The derived optimal control law can minimize a given cost functional and guarantee the stability of the closed-loop system. Later, a new sliding mode disturbance observer is also proposed to compensate for the total disturbances. A rigorous Lyapunov analysis is employed to ensure the finite-time convergence of observer error dynamics. A numerical simulation of position and attitude maneuvers is given to verify the performance of the developed controller.

  14. Attitudes towards self-control with urinalysis in juvenile diabetes.

    Science.gov (United States)

    Ludvigsson, J; Svensson, P G

    1980-01-01

    Urinary glucose excretion reflects the blood glucose levels and is therefore recommended and used as a relevant and practical method for self-control in juvenile diabetes. The purpose of this study was to estimate the attitudes of of diabetic children and their parents towards such daily urinalysis. In 1975 69 juvenile diabetics 6-18 years old and their parents were studied and three years later another 69 patients were added. Still a year later 31 of the children were studied again. Standardized interviews, questionnaires and a special attitude test were used. The results indicate that a great majority of the patients and the parents accept the self-testing method and regard it as a valuable tool in the management of the disease. Almost nobody experienced the urine tests as a psychological problem. As urinalysis has become established as a self-evident part of the treatment, the attitudes have become even more positive among a growing number of patients. Parallel to this feeling of usefulness the patients are honest and the urine tests thus give reliable information.

  15. Attitudes of Brazilian citizens towards pig production systems

    DEFF Research Database (Denmark)

    de Barcellos, Marcia Dutra; Kügler, Jens Oliver; Saab, Maria Stella Melo

    The objective of this study is to map Brazilian citizen attitudes towards pig meat production systems and to investigate whether these attitudes associate with pork and pork product consumption. A conjoint experiment was carried out with empirical data collected from 475 respondents interviewed...... in southern and central-western states of Brazil. The experiment was based on the following pig farming characteristics: farm size, floor type, efforts to protect soil, air and water, fat content, and pork quality. The results of the conjoint analysis were used for a subsequent cluster analysis in order...... were identified as "average", "environmental conscious" and "tradition and animal welfare-oriented" citizens. Although attitudes towards environment and nature were indeed related to citizens' specific attitudes towards pig farming at the cluster level, the relationship between citizenship...

  16. Design of Solid-fuel Rocket Attitude Control System Based on Monte Carlo Method%基于蒙特卡罗方法的固体火箭姿态控制系统设计

    Institute of Scientific and Technical Information of China (English)

    王辰琳; 赵长见; 宋志国

    2016-01-01

    在固体火箭姿态控制系统设计过程中,为保证设计结果的可靠性,需要针对发动机性能、全箭质量及气动参数等进行拉偏仿真分析,各项偏差的大小及使用方法直接影响对固体火箭控制能力的需求。传统固体火箭姿态控制系统设计时,一般针对各项偏差进行极限拉偏组合仿真,导致设计结果较为保守。针对总体各项偏差量,建立概率模型,采用蒙特卡罗方法进行控制力分析。数学仿真结果表明,相比传统设计方法,在保证系统具有一定的可靠度情况下,大幅降低了对姿态控制系统的需求,优化了系统方案。%In the design process of solid-fuel rocket attitude control system, it is necessary to simulate based on population deviations of engine performance, whole solid-fuel rocket mass and aerodynamic parameter in order to assure the reliability of design results, because the using method of deviation factors are accounted for the demand of solid-fuel rocket control. The extreme value of population deviations are taken in the traditional design method, but it leads to more conservative design results. The probability models of population deviations are established, and then Monte Carlo methods are introduced to analysis the controlling force. The simulated results show that, compared to the traditional design method, the probability design method reduces the demand of solid-fuel rocket attitude control system and optimizes the system design scheme obviously.

  17. A Dynamic Attitude Measurement System Based on LINS

    Directory of Open Access Journals (Sweden)

    Hanzhou Li

    2014-08-01

    Full Text Available A dynamic attitude measurement system (DAMS is developed based on a laser inertial navigation system (LINS. Three factors of the dynamic attitude measurement error using LINS are analyzed: dynamic error, time synchronization and phase lag. An optimal coning errors compensation algorithm is used to reduce coning errors, and two-axis wobbling verification experiments are presented in the paper. The tests indicate that the attitude accuracy is improved 2-fold by the algorithm. In order to decrease coning errors further, the attitude updating frequency is improved from 200 Hz to 2000 Hz. At the same time, a novel finite impulse response (FIR filter with three notches is designed to filter the dither frequency of the ring laser gyro (RLG. The comparison tests suggest that the new filter is five times more effective than the old one. The paper indicates that phase-frequency characteristics of FIR filter and first-order holder of navigation computer constitute the main sources of phase lag in LINS. A formula to calculate the LINS attitude phase lag is introduced in the paper. The expressions of dynamic attitude errors induced by phase lag are derived. The paper proposes a novel synchronization mechanism that is able to simultaneously solve the problems of dynamic test synchronization and phase compensation. A single-axis turntable and a laser interferometer are applied to verify the synchronization mechanism. The experiments results show that the theoretically calculated values of phase lag and attitude error induced by phase lag can both match perfectly with testing data. The block diagram of DAMS and physical photos are presented in the paper. The final experiments demonstrate that the real-time attitude measurement accuracy of DAMS can reach up to 20″ (1σ and the synchronization error is less than 0.2 ms on the condition of three axes wobbling for 10 min.

  18. Attitude control of a small satellite using magnetic bearing momentum wheel

    OpenAIRE

    Terui, Fuyuto; Nakajima, Atsushi; 照井 冬人; 中島 厚

    1996-01-01

    An attitude controller for a 50 kg-class micro satellite which could be launched by H-2 rocket as a piggyback payload of a main satellite is considered. The survey of the proposals of the mission using a micro satellite from national institutes, universities and private companies shows that the development of a small, light and inexpensive three axis attitude controller is widely expected. One of the candidate configurations for such an attitude controller is bias momentum control using a mag...

  19. Rotating Space Debris Tracking Based on The Orbit-Attitude Coordinated Control

    Science.gov (United States)

    Wang, Shuquan; Zhu, Lingchao

    2016-07-01

    This paper investigates the rotating space debris tracking problem. Active capturing and removal of space debris are challenging because the space debris is noncoorperating. The scenario considered is that a rotating space debris is the target to be captured by a spacecraft with a robotic arm. One rough approach is to capture the space debris with a strong arm then detumble the rotation of the whole system using the attitude control system on board. In this way the arm and the spacecraft have to be strong enough to withstand the impact caused by the relative orbital and attitude motions. Another way is to at first track the motion of the characterized surface, which should be easier to capture, of the debris. Then the robotic arm is engaged to capture the debris. In this way, the impact applied on the robotic arm is greatly reduced such that the possibility of causing new debris is also reduced. The orbit-attitude coordinated controller is developed to track the motion of the space debris. The controller is assymptotically stable without considering the boundness of the control efforts. The stability in the situation of bounded control inputs is analyzed. Analytical criterion for a successful tracking is obtained in the situation that rotational motion of the space debris is percession.

  20. 轨姿控液体火箭发动机水击仿真模拟%Simulation of water hammer in liquid rocket engine of orbit and attitude control system

    Institute of Scientific and Technical Information of China (English)

    张峥岳; 康乃全

    2012-01-01

    Taking the liquid rocket engine of orbit and attitude control system as the study object, an emulator was established with AMESim according to the modular modeling idea. The simulation computation of water hammer pressure in the pipeline while the engine system was working was per- formed. The results show that the running of orbit control engine is a major factor creating high water hammer. The compared result of theoretical calculation and test data indicate that the simulation mod- els can give reasonable descriptions for generative process of water hammer. The measure to reduce the amount of water hammer is introduced.%以轨姿控液体火箭发动机为研究对象,根据模块化思想,利用AMESim建立了仿真平台,仿真计算了发动机系统工作中管路的水击压力。结果表明:轨控发动机的工作是引起大水击的主要因素。通过与理论计算和试验数据的对比表明,仿真模型较好地描述了管路水击的生成过程。介绍了减小系统水击量的措施。

  1. Attitudes toward the metric system 15 years later.

    Science.gov (United States)

    Gayton, W F; Hearns, J F; Elgee, L; Harvey, C

    2001-04-01

    This follow-up study investigated whether attitudes toward the metric system have changed over the last 15 years. 132 subjects ranging in age from 18 to 45 years participated by filling out a 7-item survey designed to measure attitudes toward the metric system. Each survey item was scored using a 5-point rating, e.g., "the change to the metric system will create more problems than it solves," 1: strongly agree and 5: strongly disagree. Scores were compared to those obtained for a similar sample in 1983. Comparisons using t tests indicated no significant differences between attitude scores from 1983 to 1998 for either men (t64 = .95) or women (t133 = .06).

  2. Attitude control of an underactuated spacecraft using quaternion feedback regulator and tube-based MPC

    Science.gov (United States)

    Mirshams, M.; Khosrojerdi, M.

    2017-03-01

    Feasibility of achieving 3-axis stabilization of an asymmetric spacecraft for cases where there is no control available in one axis (underactuated spacecraft) is explored in this paper. A novel control design methodology is presented which can stabilize the underactuated spacecraft and steer it to the origin. A passive fault tolerant control (FTC) is defined which controls and maintains the attitude of the spacecraft near the desired point in presence of uncertainties, disturbances, control constraints and actuator faults. Considering the general conditions of the underactuated spacecraft, a hybrid controller combining a quaternion feedback regulator (QFR) with a tube-based model predictive controller (MPC) is developed based on the nonlinear kinematic and dynamic equations of the spacecraft motion. The hybrid controller is composed of two control stages. At the first stage, QFR decreases the angular velocities and brings the state vector to an acceptable region for the next stage. Then, tube-based MPC solves two optimal control problems, a standard problem for the nominal system to define a central guide path, and an ancillary problem to steer the state vector towards the central path with semi-optimal control effort. Numerical simulation results obtained for the underactuated spacecraft merely indicate effectiveness of the proposed attitude control method.

  3. Health literacy and parent attitudes about weight control for children.

    Science.gov (United States)

    Liechty, Janet M; Saltzman, Jaclyn A; Musaad, Salma M

    2015-08-01

    The purpose of this study was to examine associations between parental health literacy and parent attitudes about weight control strategies for young children. Parental low health literacy has been associated with poor child health outcomes, yet little is known about its relationship to child weight control and weight-related health information-seeking preferences. Data were drawn from the STRONG Kids Study, a Midwest panel survey among parents of preschool aged children (n = 497). Parents endorsed an average of 4.3 (SD =2.8) weight loss strategies, 53% endorsed all three recommended weight loss strategies for children, and fewer than 1% of parents endorsed any unsafe strategies. Parents were most likely to seek child weight loss information from healthcare professionals but those with low (vs. adequate) health literacy were significantly less likely to use the Internet or books and more likely to use minister/clergy as sources. Poisson and logistic regressions showed that higher health literacy was associated with endorsement of more strategies overall, more recommended strategies, and greater odds of endorsing each specific recommended strategy for child weight control, after adjusting for parent age, education, race/ethnicity, income, marital status, weight concern, and child BMI percentile. Findings suggest that health literacy impacts parental views about child weight loss strategies and health information-seeking preferences. Pediatric weight loss advice to parents should include assessment of parent attitudes and prior knowledge about child weight control and facilitate parent access to reliable sources of evidence-informed child weight control information.

  4. Gaining control over responses to implicit attitude tests: Implementation intentions engender fast responses on attitude-incongruent trials.

    Science.gov (United States)

    Webb, Thomas L; Sheeran, Paschal; Pepper, John

    2012-03-01

    The present research investigated whether forming implementation intentions could promote fast responses to attitude-incongruent associations (e.g., woman-manager) and thereby modify scores on popular implicit measures of attitude. Expt 1 used the Implicit Association Test (IAT) to measure associations between gender and science versus liberal arts. Planning to associate women with science engendered fast responses to this category-attribute pairing and rendered summary scores more neutral compared to standard IAT instructions. Expt 2 demonstrated that forming egalitarian goal intentions is not sufficient to produce these effects. Expt 3 extended these findings to a different measure of implicit attitude (the Go/No-Go Association Task) and a different stereotypical association (Muslims-terrorism). In Expt 4, managers who planned to associate women with superordinate positions showed more neutral IAT scores relative to non-planners and effects were maintained 3 weeks later. In sum, implementation intentions enable people to gain control over implicit attitude responses.

  5. Nonlinear control of marine vehicles using only position and attitude measurements

    Energy Technology Data Exchange (ETDEWEB)

    Paulsen, Marit Johanne

    1996-12-31

    This thesis presents new results on the design and analysis of nonlinear output feedback controllers for auto pilots and dynamic positioning systems for ships and underwater vehicles. Only position and attitude measurements of the vehicle are used in the control design. The underlying idea of the work is to use certain structural properties of the equations of motion in the controller design and analysis. New controllers for regulation and tracking have been developed and the stability of the resulting closed-loop systems has been rigorously established. The results are supported by simulations. The following problems have been investigated covering design of passive controller for regulation, comparison of two auto pilots, nonlinear damping compensation for tracking, tracking control for nonlinear ships, and output tracking control with wave filtering for multivariable models of possibly unstable vehicles. 97 refs., 32 figs.

  6. Evaluation and modeling of autonomous attitude thrust control for the Geostation Operational Environmental Satellite (GOES)-8 orbit determination

    Science.gov (United States)

    Forcey, W.; Minnie, C. R.; Defazio, R. L.

    1995-01-01

    The Geostationary Operational Environmental Satellite (GOES)-8 experienced a series of orbital perturbations from autonomous attitude control thrusting before perigee raising maneuvers. These perturbations influenced differential correction orbital state solutions determined by the Goddard Space Flight Center (GSFC) Goddard Trajectory Determination System (GTDS). The maneuvers induced significant variations in the converged state vector for solutions using increasingly longer tracking data spans. These solutions were used for planning perigee maneuvers as well as initial estimates for orbit solutions used to evaluate the effectiveness of the perigee raising maneuvers. This paper discusses models for the incorporation of attitude thrust effects into the orbit determination process. Results from definitive attitude solutions are modeled as impulsive thrusts in orbit determination solutions created for GOES-8 mission support. Due to the attitude orientation of GOES-8, analysis results are presented that attempt to absorb the effects of attitude thrusting by including a solution for the coefficient of reflectivity, C(R). Models to represent the attitude maneuvers are tested against orbit determination solutions generated during real-time support of the GOES-8 mission. The modeling techniques discussed in this investigation offer benefits to the remaining missions in the GOES NEXT series. Similar missions with large autonomous attitude control thrusting, such as the Solar and Heliospheric Observatory (SOHO) spacecraft and the INTELSAT series, may also benefit from these results.

  7. Neural network-based distributed attitude coordination control for spacecraft formation flying with input saturation.

    Science.gov (United States)

    Zou, An-Min; Kumar, Krishna Dev

    2012-07-01

    This brief considers the attitude coordination control problem for spacecraft formation flying when only a subset of the group members has access to the common reference attitude. A quaternion-based distributed attitude coordination control scheme is proposed with consideration of the input saturation and with the aid of the sliding-mode observer, separation principle theorem, Chebyshev neural networks, smooth projection algorithm, and robust control technique. Using graph theory and a Lyapunov-based approach, it is shown that the distributed controller can guarantee the attitude of all spacecraft to converge to a common time-varying reference attitude when the reference attitude is available only to a portion of the group of spacecraft. Numerical simulations are presented to demonstrate the performance of the proposed distributed controller.

  8. Attitude tracking control for spacecraft formation with time-varying delays and switching topology

    Science.gov (United States)

    Yang, Hongjiu; You, Xiu; Hua, Changchun

    2016-09-01

    This paper investigates attitude dynamic tracking control for spacecraft formation in the presence of unmeasurable velocity information with time-varying delays and switching topology. Based on an extended state observer, a nonlinear attitude tracking control approach is developed for spacecraft attitude model formulated by Euler-Lagrangian equations. The attitude tracking controller allows for external disturbances and absence of angular velocity information. Both auto-stable region techniques and a Lyapunov function approach are developed to prove ultimately bounded tracking. Simulation results demonstrate effectiveness of the nonlinear control techniques proposed in this paper.

  9. Model-free Adaptive Control for Spacecraft Attitude

    Institute of Scientific and Technical Information of China (English)

    Ran Xie; Ting Song; Peng Shi; Yushan Zhao

    2016-01-01

    A model⁃free adaptive control method is proposed for the spacecrafts whose dynamical parameters change over time and cannot be acquired accurately. The algorithm is based on full form dynamic linearization. A dimension reduction matrix is introduced to construct an augmented system with the same dimension input and output. The design of the controller depends on the system input and output data rather than the knowledge of the controlled plant. The numerical simulation results show that the improved controller can deal with different models with the same set of controller parameters, and the controller performance is better than that of PD controller for the time⁃varying system with disturbance.

  10. Control of antenna-feed attitude and reflector vibrations in large spaceborne antennas by mechanical decoupling and movable dampers

    Science.gov (United States)

    Wang, P. K. C.; Hong, E. C.; Sarina, J. S.

    1983-07-01

    Simple, practical methods for damping reflector vibrations and designing antenna-feed attitude control systems in large deployable spaceborne antennas are proposed. The former involves a movable damper which is positioned so that the rate-of-change of total vibrational energy is minimized. The latter introduces a mechanical decoupler between the flexible boom and the antenna-feed, whereby the feed-attitude control system can be designed independent of boom dynamics. The validity of these approaches are substantiated by analytical studies, computer simulation, and experimental studies.

  11. Attitude control of an object commonly held by multiple robot arms - A Lyapunov approach

    Science.gov (United States)

    Kreutz, Kenneth; Wen, John T.

    1988-01-01

    Multiple robot arms moving a commonly held object can be viewed as complex actuators whose purpose is to provide net forces and moments to the object. These forces and moments can be used to control the orientation, or attitude, of the object via the Euler equation describing attitude evolution in response to applied moments at the mass center. In contrast to the common approach that feedback-linearizes the attitude dynamics to a double integrator form with respect to some three-parameter local representation of orientation, the authors control the object using a globally nonsingular representation. Using an energy-motivated Liapunov function, globally stable control of attitude is shown.

  12. Exploring Individual Differences in Attitudes toward Audience Response Systems

    Science.gov (United States)

    Kay, Robin H.; Knaack, Liesel

    2009-01-01

    The purpose of this study was to examine individual differences in attitudes toward Audience Response Systems (ARSs) in secondary school classrooms. Specifically, the impact of gender, grade, subject area, computer comfort level, participation level, and type of use were examined in 659 students. Males had significantly more positive attitudes…

  13. Attitude dynamics and control of spacecraft using geomagnetic Lorentz force

    CERN Document Server

    Abdel-Aziz, Yehia A

    2014-01-01

    The attitude stabilization of a charged rigid spacecraft in Low Earth Orbit (LEO) using torques due to Lorentz force in pitch and roll directions is considered. A spacecraft that generates an electrostatic charge on its surface in the Earth magnetic field will be subject to perturbations from Lorentz force. The Lorentz force acting on an electrostatically charged spacecraft may provide a useful thrust for controlling a spacecraft's orientation. We assume that the spacecraft is moving in the Earth's magnetic field in an elliptical orbit under the effects of the gravitational, geomagnetic and Lorentz torques. The magnetic field of the Earth is modeled as a non-tilted dipole. A model incorporating all Lorentz torques as a function of orbital elements has been developed on the basis of electric and magnetic fields. The stability of the spacecraft orientation is investigated both analytically and numerically. The existence and stability of equilibrium positions is investigated for different values of the charge to...

  14. Docking Offset Between the Space Shuttle and the International Space Station and Resulting Impacts to the Transfer of Attitude Reference and Control

    Science.gov (United States)

    Helms, W. Jason; Pohlkamp, Kara M.

    2011-01-01

    The Space Shuttle does not dock at an exact 90 degrees to the International Space Station (ISS) x-body axis. This offset from 90 degrees, along with error sources within their respective attitude knowledge, causes the two vehicles to never completely agree on their attitude, even though they operate as a single, mated stack while docked. The docking offset can be measured in flight when both vehicles have good attitude reference and is a critical component in calculations to transfer attitude reference from one vehicle to another. This paper will describe how the docking offset and attitude reference errors between both vehicles are measured and how this information would be used to recover Shuttle attitude reference from ISS in the event of multiple failures. During STS-117, ISS on-board Guidance, Navigation and Control (GNC) computers began having problems and after several continuous restarts, the systems failed. The failure took the ability for ISS to maintain attitude knowledge. This paper will also demonstrate how with knowledge of the docking offset, the contingency procedure to recover Shuttle attitude reference from ISS was reversed in order to provide ISS an attitude reference from Shuttle. Finally, this paper will show how knowledge of the docking offset can be used to speed up attitude control handovers from Shuttle to ISS momentum management. By taking into account the docking offset, Shuttle can be commanded to hold a more precise attitude which better agrees with the ISS commanded attitude such that start up transients with the ISS momentum management controllers are reduced. By reducing start-up transients, attitude control can be transferred from Shuttle to ISS without the use of ISS thrusters saving precious on-board propellant, crew time and minimizing loads placed upon the mated stack.

  15. Motion coordination for VTOL unmanned aerial vehicles attitude synchronisation and formation control

    CERN Document Server

    Abdessameud, Abdelkader

    2013-01-01

    Motion Coordination for VTOL Unmanned Aerial Vehicles develops new control design techniques for the distributed coordination of a team of autonomous unmanned aerial vehicles. In particular, it provides new control design approaches for the attitude synchronization of a formation of rigid body systems. In addition, by integrating new control design techniques with some concepts from nonlinear control theory and multi-agent systems, it presents  a new theoretical framework for the formation control of a class of under-actuated aerial vehicles capable of vertical take-off and landing. Several practical problems related to the systems’ inputs, states measurements, and  restrictions on the interconnection  topology  between the aerial vehicles in the team  are addressed. Worked examples with sufficient details and simulation results are provided to illustrate the applicability and effectiveness of the theoretical results discussed in the book. The material presented is primarily intended for researchers an...

  16. Dynamic attitude command and control of the TOPEX/Poseidon spacecraft

    Science.gov (United States)

    Zimbelman, D. F.; Lee, B. B.; Welch, R. V.

    1991-01-01

    The dynamic control laws utilized by the TOPEX/Poseidon (T/P) spacecraft attitude determination and control subsystem to command and maneuver the satellite during normal mission mode (NMM) laws are described. Results show that the vehicle is able to respond to the dynamic attitude commands while at the same time providing ample disturbance rejection capability.

  17. Nitrous Oxide Liquid Injection Thrust Vector Control System Testing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A Nitrous Oxide-fed Liquid Thrust Vector Control system is proposed as an efficient method for vehicle attitude control during powered flight. Pulled from a N2O main...

  18. Research on Instantaneous Thrust Measurement for Attitude-control Solid Rocket Motor

    Institute of Scientific and Technical Information of China (English)

    OUYANG Hua-bing; WANG Jian-ping; LIN Feng; XU Wen-gan

    2008-01-01

    In order to measure the instantaneous thrust of a certain attitude-control solid rocket motor, based on the analysis of the measurement principles, the difference between the instantaneous thrust and steady thrust measurements is pointed out. According to the measurement characteristics, a dynamic digital filter compensation method is presented. Combined the identification-modeling, dynamic compensation and simulation, the system's dynamic mathematic model is established. And then, a compensation digital filter is also designed. Thus, the dynamic response of the system is improved and the instantaneous thrust measurement can be implemented. The measurement results for the rocket motor show that the digital filter compensation is effective in the instantaneous thrust measurement.

  19. Dynamic modeling and optimal control of spacecraft with flexible structures undergoing general attitude maneuvers

    Science.gov (United States)

    Lin, Yiing-Yuh; Lin, Gern-Liang

    1992-08-01

    In this research, the dynamics and control of a rigid spacecraft with flexible structures were studied for the case of optimal simultaneous multiaxis reorientation. A model spacecraft consisting of a rigid hub in the middle and two solid bodies symmetrically connected to either side of the hub through uniformly distributed flexible beams is considered for the dynamic analysis and control simulation. To optimally reorienting the spacecraft, an optimal nominal control trajectory is found first through an iterative procedure. Linear flexural deformations are assumed for the beam structures and the assumed modes method is applied to find the vibration control law of the beams. The system overall optimal attitude control is achieved by following the open loop optimal reference control trajectory with an stabilizing guidance law.

  20. Attitude angular measurement system based on MEMS accelerometer

    Science.gov (United States)

    Luo, Lei

    2014-09-01

    For the purpose of monitoring the attitude of aircraft, an angular measurement system using a MEMS heat convection accelerometer is presented in this study. A double layers conditioning circuit that center around the single chip processor is designed and built. Professional display software with the RS232 standard is used to communicate between the sensor and the computer. Calibration experiments were carried out to characterize the measuring system with the range of - 90°to +90°. The curves keep good linearity with the practical angle. The maximum deviation occurs at the 90°where the value is 2.8°.The maximum error is 1.6% and the repeatability is measured to be 2.1%. Experiments proved that the developed measurement system is capable of measuring attitude angle.

  1. Flight results of a low-cost attitude determination system

    Science.gov (United States)

    Springmann, John C.; Cutler, James W.

    2014-06-01

    This paper presents flight results of the attitude determination system (ADS) flown on the Radio Aurora Explorer (RAX) satellites, RAX-1 and RAX-2, which are CubeSats developed to study space weather. The ADS sensors include commercial-off-the-shelf magnetometers, coarse sun sensors (photodiodes), and a MEMs rate gyroscope. A multiplicative extended Kalman filter is used for attitude estimation. On-orbit calibration was developed and applied to compensate for sensor and alignment errors, and attitude determination accuracies of 0.5° 1-σ have been demonstrated on-orbit. The approach of using low-cost sensors in conjunction with on-orbit calibration, which mitigates the need for pre-flight calibration and high-tolerance alignment during spacecraft assembly, reduces the time and cost associated with the subsystem development, and provides a low-cost solution for modest attitude determination requirements. Although the flight results presented in this paper are from a specific mission, the methods used and lessons learned can be used to maximize the performance of the ADS of any vehicle while minimizing the pre-flight calibration and alignment requirements.

  2. Finite-Time Reentry Attitude Control Using Time-Varying Sliding Mode and Disturbance Observer

    OpenAIRE

    Xuzhong Wu; Shengjing Tang; Jie Guo; Yao Zhang

    2015-01-01

    This paper presents the finite-time attitude control problem for reentry vehicle with redundant actuators in consideration of planet uncertainties and external disturbances. Firstly, feedback linearization technique is used to cancel the nonlinearities of equations of motion to construct a basic mode for attitude controller. Secondly, two kinds of time-varying sliding mode control methods with disturbance observer are integrated with the basic mode in order to enhance the control performance ...

  3. 76 FR 50810 - Seventh Meeting: RTCA Special Committee 219: Attitude and Heading Reference System

    Science.gov (United States)

    2011-08-16

    ... Committee 219 meeting: Attitude and Heading Reference System. SUMMARY: The FAA is issuing this notice to advise the public of a meeting of RTCA Special Committee 219: Attitude and Heading Reference System... Federal Aviation Administration Seventh Meeting: RTCA Special Committee 219: Attitude and...

  4. An Estimator for Attitude and Heading Reference Systems Based on Virtual Horizontal Reference

    DEFF Research Database (Denmark)

    Wang, Yunlong; Soltani, Mohsen; Hussain, Dil muhammed Akbar

    2016-01-01

    The output of the attitude determination systems suffers from large errors in case of accelerometer malfunctions. In this paper, an attitude estimator, based on Virtual Horizontal Reference (VHR), is designed for an Attitude Heading and Reference System (AHRS) to cope with this problem. The VHR m...

  5. System of Attitudes in Parents of Young People Having Sensory Disorders

    Science.gov (United States)

    Posokhova, Svetlana; Konovalova, Natalia; Sorokin, Victor; Demyanov, Yuri; Kolosova, Tatyana; Didenko, Elena

    2016-01-01

    The objective of the research was to identify the system of attitudes in parents of young people having sensory disorders. The survey covered parents of children aged 17 and older having hearing disorders, visual disorders, and no sensory disorders. The parents' system of attitudes united the attitude of the parents to themselves, to the child and…

  6. Changing Student Attitudes using Andes, An Intelligent Homework System

    Science.gov (United States)

    van de Sande, Brett; Vanlehn, Kurt; Treacy, Don; Shelby, Bob; Wintersgill, Mary

    2007-03-01

    The size of introductory physics lectures often inhibits personal homework assistance and timely corrective feedback. Andes, an intelligent homework help system designed for two semesters of introductory physics, can fill this need by encouraging students to use sound problem solving techniques and providing immediate feedback on each step of a solution. On request, Andes provides principles-based hints based on previous student actions. A multi-year study at the U.S. Naval Academy demonstrates that students using Andes perform better than students working the same problems as graded pencil and paper homeworks. In addition, student attitude surveys show that Andes is preferred over other homework systems. These findings have implications for student attitudes toward, and mastery of, physics. See http://www.andes.pitt.edu for more information.

  7. Consumer attitudes to different pig production systems

    DEFF Research Database (Denmark)

    de Barcellos, Marcia Dutra; Grunert, Klaus G; Zhou, Yanfeng;

    2013-01-01

    traditional pig breeds are raised, over large-scale and small family farms. Farms with maximum attention to food safety which furthermore can provide lean meat with consistent quality are also preferred. Imported pig breeds and tasty, but variable meat were rejected. A 3-cluster solution found that consumers...... farms and consistent quality. From a Chinese consumer's perspective, the industrial approach seems to represent values such as achievement, evolution, quality and safety, since pig production is moving away from low-cost, low-quality and low-safety family scale systems. A complex set of rural...... and environmental development, quality aspects and food safety measures are challenges that must be met by the stakeholders of pig production systems in China....

  8. IMU/GPS System Provides Position and Attitude Data

    Science.gov (United States)

    Lin, Ching Fang

    2006-01-01

    A special navigation system is being developed to provide high-quality information on the position and attitude of a moving platform (an aircraft or spacecraft), for use in pointing and stabilization of a hyperspectral remote-sensing system carried aboard the platform. The system also serves to enable synchronization and interpretation of readouts of all onboard sensors. The heart of the system is a commercially available unit, small enough to be held in one hand, that contains an integral combination of an inertial measurement unit (IMU) of the microelectromechanical systems (MEMS) type, Global Positioning System (GPS) receivers, a differential GPS subsystem, and ancillary data-processing subsystems. The system utilizes GPS carrier-phase measurements to generate time data plus highly accurate and continuous data on the position, attitude, rotation, and acceleration of the platform. Relative to prior navigation systems based on IMU and GPS subsystems, this system is smaller, is less expensive, and performs better. Optionally, the system can easily be connected to a laptop computer for demonstration and evaluation. In addition to airborne and spaceborne remote-sensing applications, there are numerous potential terrestrial sensing, measurement, and navigation applications in diverse endeavors that include forestry, environmental monitoring, agriculture, mining, and robotics.

  9. Attitude dynamics and control of spacecraft using geomagnetic Lorentz force

    Science.gov (United States)

    Abdel-Aziz, Yehia A.; Shoaib, Muhammad

    2015-01-01

    Attitude stabilization of a charged rigid spacecraft in Low Earth Orbit using torques due to Lorentz force in pitch and roll directions is considered. A spacecraft that generates an electrostatic charge on its surface in the Earth's magnetic field will be subject to perturbations from the Lorentz force. The Lorentz force acting on an electrostatically charged spacecraft may provide a useful thrust for controlling a spacecraft's orientation. We assume that the spacecraft is moving in the Earth's magnetic field in an elliptical orbit under the effects of gravitational, geomagnetic and Lorentz torques. The magnetic field of the Earth is modeled as a non-tilted dipole. A model incorporating all Lorentz torques as a function of orbital elements has been developed on the basis of electric and magnetic fields. The stability of the spacecraft orientation is investigated both analytically and numerically. The existence and stability of equilibrium positions is investigated for different values of the charge to mass ratio (α*). Stable orbits are identified for various values of α*. The main parameters for stabilization of the spacecraft are α* and the difference between the components of the moment of inertia for the spacecraft.

  10. Attitudes of Chinese women towards sexuality and birth control.

    Science.gov (United States)

    Ellis, D; Ho, M S

    1982-03-01

    A small survey was conducted in the Vancouver area by the authors to determine some of the current beliefs and attitudes of Chinese women toward birth control and sexuality. 10 Chinese women aged from 16-72 were interviewed. Traditional beliefs in filial piety and in the concepts of Yin (negative, female force) and Yang (positive, male force) were subscribed to by the eldest women who also perceived a lack of fairness in the double standard permitting male promiscuity while prohibiting female sexual freedom. The elder women also felt that the balance of Yin and Yang would promote sexual satisfaction and good health (homosexuality represented an imbalance and was therefore unhealthy). Only 1 woman had received sex education in the home since most sex-related topics were considered taboo. The Canadian born women had been educated in school regarding sex and felt that this experience made them more responsible in sexual matters. Strict rules about behavior during menstruation were adhered to by the eldest women: no hair-brushing, eating of hot foods, or sexual intercourse; they also viewed masturbation as acceptable in women since their Yin is a renewable resource. Masturbation in men was frowned upon since it would lead to a depletion of Yang and possibly cause infertility. The Canadian born women viewed masturbation as a normal sexual act. Contraception was seen as negative by the 1st generation women whereas the younger women valued family planning as an improvement in thier lives. Coitus before marriage was viewed as acceptable and during marriage and pregnancy as enjoyable by the younger women; the elders felt that premarital intercourse resulted in a loss of prestige whereas marital coitus was seen as a duty and intercourse during and after pregnancy as dangerous for the unborn child and the mother. The ease with which these women dealt with the conflict of adhering to their culture while assimilating into a new environment was influenced by age, language

  11. Chattering-Free Adaptive Sliding Mode Control for Attitude Tracking of Spacecraft with External Disturbance

    Directory of Open Access Journals (Sweden)

    Xuxi Zhang

    2014-01-01

    Full Text Available The attitude tracking problem of spacecraft in the presence of unknown disturbance is investigated. By using the adaptive control technique and the Lyapunov stability theory, a chattering-free adaptive sliding mode control law is proposed for the attitude tracking problem of spacecraft with unknown disturbance. Simulation results are employed to demonstrate the effectiveness of the proposed control design technique in this paper.

  12. Sliding mode attitude control with L 2-gain performance and vibration reduction of flexible spacecraft with actuator dynamics

    Science.gov (United States)

    Hu, Qinglei

    2010-09-01

    This paper presents a dual-stage control system design method for the rotational maneuver control and vibration stabilization of a flexible spacecraft. In this design approach, the sub-systems of attitude control and vibration suppression are designed separately using the low order model. Based on the sliding mode control (SMC) theory, a discontinuous attitude control law in the form of the input voltage of the reaction wheel is derived to control the orientation of the spacecraft, incorporating the L 2-gain performance criterion constraint. The resulting closed-loop system is proven to be uniformly ultimately bounded stability and the effect of the external disturbance on both attitude quaternion and angular velocity can be attenuated to the prescribed level as well. In addition, an adaptive version of the control law is designed for adapting the unknown upper bounds of the lumped disturbance such that the limitation of knowing the bound of the disturbance in advance is released. For actively suppressing the induced vibration, strain rate feedback control method is also investigated by using piezoelectric materials as additional sensors and actuators bonded on the surface of the flexible appendages. Numerical simulations are performed to show that rotational maneuver and vibration suppression are accomplished in spite of the presence of disturbance and uncertainty.

  13. Electrospray Thrusters for Attitude Control of a 1-U CubeSat

    Science.gov (United States)

    Timilsina, Navin

    With a rapid increase in the interest in use of nanosatellites in the past decade, finding a precise and low-power-consuming attitude control system for these satellites has been a real challenge. In this thesis, it is intended to design and test an electrospray thruster system that could perform the attitude control of a 1-unit CubeSat. Firstly, an experimental setup is built to calculate the conductivity of different liquids that could be used as propellants for the CubeSat. Secondly, a Time-Of-Flight experiment is performed to find out the thrust and specific impulse given by these liquids and hence selecting the optimum propellant. On the other hand, a colloidal thruster system for a 1-U CubeSat is designed in Solidworks and fabricated using Lathe and CNC Milling Machine. Afterwards, passive propellant feeding is tested in this thruster system. Finally, the electronic circuit and wireless control system necessary to remotely control the CubeSat is designed and the final testing is performed. Among the propellants studied, Ethyl ammonium nitrate (EAN) was selected as the best propellant for the CubeSat. Theoretical design and fabrication of the thruster system was performed successfully and so was the passive propellant feeding test. The satellite was assembled for the final experiment but unfortunately the microcontroller broke down during the first test and no promising results were found out. However, after proving that one thruster works with passive feeding, it could be said that the ACS testing would have worked if we had performed vacuum compatibility tests for other components beforehand.

  14. 75 FR 49550 - Fifth Meeting: RTCA Special Committee 219: Attitude and Heading Reference System (AHRS)

    Science.gov (United States)

    2010-08-13

    ...: Notice of RTCA Special Committee 219: Attitude and Heading Reference System (AHRS). SUMMARY: The FAA is issuing this notice to advise the public of a meeting of ] RTCA Special Committee 219: Attitude and... Federal Aviation Administration Fifth Meeting: RTCA Special Committee 219: Attitude and Heading...

  15. Attitude control for part actuator failure of agile small satellite

    Institute of Scientific and Technical Information of China (English)

    J. R. Zhang; A. Rachid; Y. Zhang

    2008-01-01

    The stability and singularity problem of agile small satellite (ASS) with actuator failure is discussed in this paper. Firstly, the three-axis stabilized controller of an ASS is designed, where micro control moment gyros (MCMG's) in pyramid configuration (PC) is used as the actuator. By using the same controller and steering law, the control results before and after one gyro fails are compared by simulation. The variation of singular momentum envelope before and after one gyro fails is also compared. The simulation results show that the failure intensively decreases the capacity of output torque, which leads to the emergence of more singular points and the rapid saturation of MCMG's. Finally, the parameters of system controller are changed to compare the control effect.

  16. Coupled orbit-attitude dynamics and relative state estimation of spacecraft near small Solar System bodies

    Science.gov (United States)

    Misra, Gaurav; Izadi, Maziar; Sanyal, Amit; Scheeres, Daniel

    2016-04-01

    The effects of dynamical coupling between the rotational (attitude) and translational (orbital) motion of spacecraft near small Solar System bodies is investigated. This coupling arises due to the weak gravity of these bodies, as well as solar radiation pressure. The traditional approach assumes a point-mass spacecraft model to describe the translational motion of the spacecraft, while the attitude motion is considered to be completely decoupled from the translational motion. The model used here to describe the rigid-body spacecraft dynamics includes the non-uniform rotating gravity field of the small body up to second degree and order along with the attitude dependent terms, solar tide, and solar radiation pressure. This model shows that the second degree and order gravity terms due to the small body affect the dynamics of the spacecraft to the same extent as the orbit-attitude coupling due to the primary gravity (zeroth order) term. Variational integrators are used to simulate the dynamics of both the rigid spacecraft and the point mass. The small bodies considered here are modeled after Near-Earth Objects (NEO) 101955 Bennu, and 25143 Itokawa, and are assumed to be triaxial ellipsoids with uniform density. Differences in the numerically obtained trajectories of a rigid spacecraft and a point mass are then compared, to illustrate the impact of the orbit-attitude coupling on spacecraft dynamics in proximity of small bodies. Possible implications on the performance of model-based spacecraft control and on the station-keeping budget, if the orbit-attitude coupling is not accounted for in the model of the dynamics, are also discussed. An almost globally asymptotically stable motion estimation scheme based solely on visual/optical feedback that estimates the relative motion of the asteroid with respect to the spacecraft is also obtained. This estimation scheme does not require a model of the dynamics of the asteroid, which makes it perfectly suited for asteroids whose

  17. Cassini Spacecraft In-Flight Swap to Backup Attitude Control Thrusters

    Science.gov (United States)

    Bates, David M.

    2010-01-01

    NASA's Cassini Spacecraft, launched on October 15th, 1997 and arrived at Saturn on June 30th, 2004, is the largest and most ambitious interplanetary spacecraft in history. In order to meet the challenging attitude control and navigation requirements of the orbit profile at Saturn, Cassini is equipped with a monopropellant thruster based Reaction Control System (RCS), a bipropellant Main Engine Assembly (MEA) and a Reaction Wheel Assembly (RWA). In 2008, after 11 years of reliable service, several RCS thrusters began to show signs of end of life degradation, which led the operations team to successfully perform the swap to the backup RCS system, the details and challenges of which are described in this paper. With some modifications, it is hoped that similar techniques and design strategies could be used to benefit other spacecraft.

  18. Interior and exterior ballistics coupled optimization with constraints of attitude control and mechanical-thermal conditions

    Science.gov (United States)

    Liang, Xin-xin; Zhang, Nai-min; Zhang, Yan

    2016-07-01

    For solid launch vehicle performance promotion, a modeling method of interior and exterior ballistics associated optimization with constraints of attitude control and mechanical-thermal condition is proposed. Firstly, the interior and external ballistic models of the solid launch vehicle are established, and the attitude control model of the high wind area and the stage of the separation is presented, and the load calculation model of the drag reduction device is presented, and thermal condition calculation model of flight is presented. Secondly, the optimization model is established to optimize the range, which has internal and external ballistic design parameters as variables selected by sensitivity analysis, and has attitude control and mechanical-thermal conditions as constraints. Finally, the method is applied to the optimal design of a three stage solid launch vehicle simulation with differential evolution algorithm. Simulation results are shown that range capability is improved by 10.8%, and both attitude control and mechanical-thermal conditions are satisfied.

  19. Robust Fault-Tolerant Control for Satellite Attitude Stabilization Based on Active Disturbance Rejection Approach with Artificial Bee Colony Algorithm

    OpenAIRE

    Fei Song; Shiyin Qin

    2014-01-01

    This paper proposed a robust fault-tolerant control algorithm for satellite stabilization based on active disturbance rejection approach with artificial bee colony algorithm. The actuating mechanism of attitude control system consists of three working reaction flywheels and one spare reaction flywheel. The speed measurement of reaction flywheel is adopted for fault detection. If any reaction flywheel fault is detected, the corresponding fault flywheel is isolated and the spare reaction flywhe...

  20. A summary of the Dynamics Explorer /DE/-2 spacecraft attitude control operations and dynamics

    Science.gov (United States)

    Stengle, T. H.

    1982-01-01

    A summary of attitude control operations and observed attitude dynamics for the Dynamics Explorer (DE)-2 spacecraft is presented. By performing a systematic analysis of spacecraft drift and through optimization of modeling parameters in dynamics simulators, insight is given into spacecraft dynamics, techniques for reducing drift, and methods for streamlining operational procedures. This paper discusses how attitude and momentum drift were reduced for DE-2 by changing spacecraft geometry, altering operational procedures and making timely use of the control modes available. Attempts to correlate spacecraft drift activity with known environmental variables are made with only limited success.

  1. A Lyapunov-based three-axis attitude intelligent control approach for unmanned aerial vehicle

    Institute of Scientific and Technical Information of China (English)

    A.H. Mazinan

    2015-01-01

    A novel Lyapunov-based three-axis attitude intelligent control approach via allocation scheme is considered in the proposed research to deal with kinematics and dynamics regarding the unmanned aerial vehicle systems. There is a consensus among experts of this field that the new outcomes in the present complicated systems modeling and control are highly appreciated with respect to state-of-the-art. The control scheme presented here is organized in line with a new integration of the linear-nonlinear control approaches, as long as the angular velocities in the three axes of the system are accurately dealt with in the inner closed loop control. And the corresponding rotation angles are dealt with in the outer closed loop control. It should be noted that the linear control in the present outer loop is first designed through proportional based linear quadratic regulator (PD based LQR) approach under optimum coefficients, while the nonlinear control in the corresponding inner loop is then realized through Lyapunov-based approach in the presence of uncertainties and disturbances. In order to complete the inner closed loop control, there is a pulse-width pulse-frequency (PWPF) modulator to be able to handle on-off thrusters. Furthermore, the number of these on-off thrusters may be increased with respect to the investigated control efforts to provide the overall accurate performance of the system, where the control allocation scheme is realized in the proposed strategy. It may be shown that the dynamics and kinematics of the unmanned aerial vehicle systems have to be investigated through the quaternion matrix and its corresponding vector to avoid presenting singularity of the results. At the end, the investigated outcomes are presented in comparison with a number of potential benchmarks to verify the approach performance.

  2. Line-of-sight based formation keeping and attitude control of two spacecraft

    Science.gov (United States)

    Warier, Rakesh R.; Sinha, Arpita; Sukumar, Srikant

    2016-10-01

    We consider coupled attitude and position control of two spacecraft where absolute attitudes are not available. The objective is to attain a formation requiring a desired distance between two spacecraft and alignment of attitudes along the inertial line-of-sight (LOS) direction between the center of masses of the spacecraft. A relative attitude and position control scheme is developed using LOS vectors measured in each spacecraft's body frame. The current work differs from past research in the sense that the relative positions of the two spacecraft are not assumed to be fixed and all control laws are obtained in respective body fixed frames. The state feedback laws put forth in this work guarantee almost semi-global asymptotic stability of the desired closed-loop equilibrium configuration.

  3. Attitude-Tracking Control with Path Planning for Agile Satellite Using Double-Gimbal Control Moment Gyros

    Directory of Open Access Journals (Sweden)

    Peiling Cui

    2012-01-01

    Full Text Available In view of the issue of rapid attitude maneuver control of agile satellite, this paper presents an attitude-tracking control algorithm with path planning based on the improved genetic algorithm, adaptive backstepping control as well as sliding mode control. The satellite applies double gimbal control moment gyro as actuator and is subjected to the external disturbance and uncertain inertia properties. Firstly, considering the comprehensive mathematical model of the agile satellite and the double gimbal control moment gyro, an improved genetic algorithm is proposed to solve the attitude path-planning problem. The goal is to find an energy optimal path which satisfies certain maneuverability under the constraints of the input saturation, actuator saturation, slew rate limit and singularity measurement limit. Then, the adaptive backstepping control and sliding mode control are adopted in the design of the attitude-tracking controller to track accurately the desired path comprised of the satellite attitude quaternion and velocity. Finally, simulation results indicate the robustness and good tracking performance of the derived controller as well as its ability to avert the singularity of double gimbal control moment gyro.

  4. Robust Finite-Time Control for Spacecraft with Coupled Translation and Attitude Dynamics

    Directory of Open Access Journals (Sweden)

    Guo-Qiang Wu

    2013-01-01

    Full Text Available Robust finite-time control for spacecraft with coupled translation and attitude dynamics is investigated in the paper. An error-based spacecraft motion model in six-degree-of-freedom is firstly developed. Then a finite-time controller based on nonsingular terminal sliding mode control technique is proposed to achieve translation and attitude maneuvers in the presence of model uncertainties and environmental perturbations. A finite-time observer is designed and a modified controller is then proposed to deal with uncertainties and perturbations and alleviate chattering. Numerical simulations are finally provided to illustrate the performance of the proposed controllers.

  5. Venusian atmospheric and Magellan properties from attitude control data. M.S. Thesis

    Science.gov (United States)

    Croom, Christopher A.; Tolson, Robert H.

    1994-01-01

    Results are presented of the study of the Venusian atmosphere, Magellan aerodynamic moment coefficients, moments of inertia, and solar moment coefficients. This investigation is based upon the use of attitude control data in the form of reaction wheel speeds from the Magellan spacecraft. As the spacecraft enters the upper atmosphere of Venus, measurable torques are experienced due to aerodynamic effects. Solar and gravity gradient effects also cause additional torques throughout the orbit. In order to maintain an inertially fixed attitude, the control system counteracts these torques by changing the angular rates of three reaction wheels. Model reaction wheel speeds are compared to observed Magellan reaction wheel speeds through a differential correction procedure. This method determines aerodynamic, atmospheric, solar pressure, and mass moment of inertia parameters. Atmospheric measurements include both base densities and scale heights. Atmospheric base density results confirm natural variability as measured by the standard orbital decay method. Potential inconsistencies in free molecular aerodynamic moment coefficients are identified. Moments of inertia are determined with a precision better than 1 percent of the largest principal moment of inertia.

  6. Control system design method

    Science.gov (United States)

    Wilson, David G [Tijeras, NM; Robinett, III, Rush D.

    2012-02-21

    A control system design method and concomitant control system comprising representing a physical apparatus to be controlled as a Hamiltonian system, determining elements of the Hamiltonian system representation which are power generators, power dissipators, and power storage devices, analyzing stability and performance of the Hamiltonian system based on the results of the determining step and determining necessary and sufficient conditions for stability of the Hamiltonian system, creating a stable control system based on the results of the analyzing step, and employing the resulting control system to control the physical apparatus.

  7. Testing of the on-board attitude determination and control algorithms for SAMPEX

    Science.gov (United States)

    McCullough, Jon D.; Flatley, Thomas W.; Henretty, Debra A.; Markley, F. Landis; San, Josephine K.

    1993-02-01

    Algorithms for on-board attitude determination and control of the Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX) have been expanded to include a constant gain Kalman filter for the spacecraft angular momentum, pulse width modulation for the reaction wheel command, an algorithm to avoid pointing the Heavy Ion Large Telescope (HILT) instrument boresight along the spacecraft velocity vector, and the addition of digital sun sensor (DSS) failure detection logic. These improved algorithms were tested in a closed-loop environment for three orbit geometries, one with the sun perpendicular to the orbit plane, and two with the sun near the orbit plane - at Autumnal Equinox and at Winter Solstice. The closed-loop simulator was enhanced and used as a truth model for the control systems' performance evaluation and sensor/actuator contingency analysis. The simulations were performed on a VAX 8830 using a prototype version of the on-board software.

  8. Linear Time Varying Approach to Satellite Attitude Control Using only Electromagnetic Actuation

    DEFF Research Database (Denmark)

    Wisniewski, Rafal

    2000-01-01

    and the magnetic field generated by the coils. A key challenge is the fact that the mechanical torque can only be produced in a plane perpendicular to the local geomagnetic field vector, therefore the satellite is not controllable at fixed time. Avaliability of design methods for time varying systems is limited......Recently small satellite missions have gained considerable interest due to low-cost launch opportunities and technological improvemant of micro-electronics. Required pointing accuracy of small, inexpensive satellites is often relatively loose, within a couple of degrees. Application of cheap......, lightweight, and power efficient actuators is therefore crucial and viable. This paper discusser linear attitude control strategies for a low earth orbit satellite actuated by a set of mutually perpendicular electromagnetic coils. The principle is to use the interaction between the Earth's magnetic field...

  9. Periodic H2 Synthesis for Spacecraft Attitude Determination and Control with a Vector Magnetometer and Magnetorquers

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Stoustrup, Jakob

    2001-01-01

    A control synthesis for a spacecraft equipped with a set of mutually perpendicular coils and a vector magnetometer is addressed in this paper. The interaction between the Earth's magnetic field and an artificial magnetic field generated by the coils produces a control torque. Comparison between...... the expected magnetic field vector and the true magnetometer data is used for the attitude determination. The magnetic attitude control and determination is intrinsically periodic due to periodic nature of the geomagnetic field variation in orbit. The control performance is specified by the generalized H2...... operator norm. The paper proposes an LMI solution to this problem...

  10. The onboard control system of "Navigator" platform

    Science.gov (United States)

    Syrov, A. S.; Smirnov, V. V.; Sokolov, V. N.; Iodko, G. S.; Mischikhin, V. V.; Kosobokov, V. N.; Shatskii, M. A.; Dobrynin, D. A.

    2016-12-01

    A brief description of the design concept, structure and performance of the onboard control system (AOCS) of the "Navigator" satellite platform, on the basis of which the spacecraft "Electro-L' and "Spektr-R" are designed, is presented. The test-flight results of the AOCS attitude accuracy are given. Approaches to the further development of the onboard control equipment for advanced spacecraft are determined and presented.

  11. 考虑姿态禁忌约束的航天器安全姿态跟踪控制%Spacecraft safe attitude tracking control by considering attitude forbidden constraint

    Institute of Scientific and Technical Information of China (English)

    郑重; 宋申民; 张保群

    2013-01-01

    Considering the attitude constraint problem during spacecraft attitude tracking, a control algorithm based on potential function for safe attitude maneuver is presented. Different from the case of fixed-point maneuver, error quaternion and error angular velocity are introduced to construct the spacecraft attitude tracking error model. Quaternions are used to describe the region of forbidden attitude, and a new Gauss avoidant potential function is proposed using the minimum angle allowed by the forbidden attitude. A safe attitude maneuver controller is obtained by employing the avoidant potential function and an attractive potential function, meanwhile the Lyapunov stability of the closed-loop control system is analyzed with and without disturbance torque respectively. Finally, computer numerical simulations are carried out in attitude tracking with attitude constraint. Simulation results show that the proposed control approach can not only achieve the purpose of attitude tracking, but also guarantee the spacecraft far away the region of the forbidden attitude.%针对航天器姿态跟踪过程中的姿态约束问题,提出了一种基于势函数的安全姿态机动控制算法.与姿态定点机动的姿态约束问题不同,引入误差四元数和误差角速度,建立了航天器姿态跟踪误差模型.采用四元数描述了姿态禁忌区域,并根据禁止姿态最小允许角构造了一种新的规避高斯势函数.利用规避势函数和吸引势函数得到安全姿态机动控制器,对于无扰动和有扰动的情况分别分析了闭环控制系统的Lyapunov稳定性.最后,对于有约束的姿态跟踪情况进行了计算机数值仿真.仿真结果表明,所提出的控制方法既能实现姿态跟踪的目的,又能确保航天器在机动过程中不会进入姿态禁忌区域.

  12. Direct Lyapunov-based control law design for spacecraft attitude maneuvers

    Institute of Scientific and Technical Information of China (English)

    HU Likun; ANG Qingchao

    2006-01-01

    A direct Lyapunov-based control law is presented to perform on-orbit stability for spacecraft attitude maneuvers. Spacecraft attitude kinematic equations and dynamic equations are coupled, nonlinear, multi-input multi-output(MIMO), which baffles controller design. Orbit angular rates are taken into account in kinematic equations and influence of gravity gradient moments and disturbance moments on the spacecraft attitude in dynamic equations is considered to approach the practical environment, which enhance the problem complexity to some extent. Based on attitude tracking errors and angular rates, a Lyapunov function is constructed, through which the stabilizing feedback control law is deduced via Lie derivation of the Lyapunov function. The proposed method can deal with the case that the spacecraft is subjected to mass property variations or centroidal inertia matrix variations due to fuel assumption or flexibility, and disturbance moments, which shows the proposed controller is robust for spacecraft attitude maneuvers. The unlimited controller and the limited controller are taken into account respectively in simulations. Simulation results are demonstrated to validate effectiveness and feasibility of the proposed method.

  13. Modeling Attitude Dynamics in Simulink: A Study of the Rotational and Translational Motion of a Spacecraft Given Torques and Impulses Generated by RMS Hand Controllers

    Science.gov (United States)

    Mauldin, Rebecca H.

    2010-01-01

    In order to study and control the attitude of a spacecraft, it is necessary to understand the natural motion of a body in orbit. Assuming a spacecraft to be a rigid body, dynamics describes the complete motion of the vehicle by the translational and rotational motion of the body. The Simulink Attitude Analysis Model applies the equations of rigid body motion to the study of a spacecraft?s attitude in orbit. Using a TCP/IP connection, Matlab reads the values of the Remote Manipulator System (RMS) hand controllers and passes them to Simulink as specified torque and impulse profiles. Simulink then uses the governing kinematic and dynamic equations of a rigid body in low earth orbit (LE0) to plot the attitude response of a spacecraft for five seconds given known applied torques and impulses, and constant principal moments of inertia.

  14. Controllability of Quantum Systems

    CERN Document Server

    Schirmer, S G; Solomon, A I

    2003-01-01

    An overview and synthesis of results and criteria for open-loop controllability of Hamiltonian quantum systems obtained using Lie group and Lie algebra techniques is presented. Negative results for open-loop controllability of dissipative systems are discussed, and the superiority of closed-loop (feedback) control for quantum systems is established.

  15. Nurses' Attitudes Toward the Use of the Bar-coding Medication Administration System

    NARCIS (Netherlands)

    S.D. Marini; A. Hasman; H.A.S. Huijer; H. Dimassi

    2010-01-01

    This study determines nurses' attitudes toward bar-coding medication administration system use. Some of the factors underlying the successful use of bar-coding medication administration systems that are viewed as a connotative indicator of users' attitudes were used to gather data that describe the

  16. Impacts of Personal Characteristics on Computer Attitude and Academic Users Information System Satisfaction.

    Science.gov (United States)

    Lim, Kee-Sook

    2002-01-01

    Describes a study that evaluated the effects of computer experience, gender, and academic performance on computer attitude and user information system satisfaction in a university setting. Results of an analysis of variance showed that the personal characteristics made a difference in computer attitudes but not in academic computer system user…

  17. Vision-Based Attitude and Formation Determination System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — To determine pointing and position vectors in both local and inertial coordinate frames, multi-spacecraft missions typically utilize separate attitude determination...

  18. ALTERNATION OF STANDPOINT (ATTITUDE ) IN EDUCATION SYSTEM TOWARDS A CHILD WITH SPECIAL NEEDS

    OpenAIRE

    Virbalienė, Rita

    2015-01-01

    The article represents alternation of standpoint (attitude) in reformed education system towards a child with special needs. In the theory and practice of integrated education so far is paid relatively low attention towards improvement of social interaction between disabled scholars and teachers, analysis and elimination of the reasons of prejudices, alternation of positive attitude. Very relevant issue in Lithuania, as well as throughout Europe, is slow alternation of attitude towards integr...

  19. Robust Fault-Tolerant Control for Satellite Attitude Stabilization Based on Active Disturbance Rejection Approach with Artificial Bee Colony Algorithm

    Directory of Open Access Journals (Sweden)

    Fei Song

    2014-01-01

    Full Text Available This paper proposed a robust fault-tolerant control algorithm for satellite stabilization based on active disturbance rejection approach with artificial bee colony algorithm. The actuating mechanism of attitude control system consists of three working reaction flywheels and one spare reaction flywheel. The speed measurement of reaction flywheel is adopted for fault detection. If any reaction flywheel fault is detected, the corresponding fault flywheel is isolated and the spare reaction flywheel is activated to counteract the fault effect and ensure that the satellite is working safely and reliably. The active disturbance rejection approach is employed to design the controller, which handles input information with tracking differentiator, estimates system uncertainties with extended state observer, and generates control variables by state feedback and compensation. The designed active disturbance rejection controller is robust to both internal dynamics and external disturbances. The bandwidth parameter of extended state observer is optimized by the artificial bee colony algorithm so as to improve the performance of attitude control system. A series of simulation experiment results demonstrate the performance superiorities of the proposed robust fault-tolerant control algorithm.

  20. Adaptive backstepping control for three axis microsatellite attitude pointing under actuator faults

    Science.gov (United States)

    MOHAMMED, M. A. SI; BOUSSADIA, H.; BELLAR, A.; ADNANE, A.

    2017-01-01

    This paper presents the design of Low Earth Orbit (LEO) micro-satellite attitude controller using reaction wheels, and under actuator faults. Firstly, a backstepping controller is developed when the actuator is fault-free. Then, a fault tolerant controller is designed to compensate the actuator fault. Two types of this latter are considered (additive and multiplicative faults). The presented control strategy is based on adaptive backstepping technique. The simulation results clearly demonstrate the effectiveness of the presented technique.

  1. Microsatellite Attitude Determination and Control Subsystem Design and Implementation: Software-in-the-Loop Approach

    Directory of Open Access Journals (Sweden)

    Ho-Nien Shou

    2014-01-01

    Full Text Available The paper describes the development of a microsatellite attitude determination and control subsystem (ADCS and verification of its functionality by software-in-the-loop (SIL method. The role of ADCS is to provide attitude control functions, including the de-tumbling and stabilizing the satellite angular velocity, and as well as estimating the orbit and attitude information during the satellite operation. In Taiwan, Air Force Institute of Technology (AFIT, dedicating for students to design experimental low earth orbit micro-satellite, called AFITsat. For AFITsat, the operation of the ADCS consists of three modes which are initialization mode, detumbling mode, and normal mode, respectively. During the initialization mode, ADCS collects the early orbit measurement data from various sensors so that the data can be downlinked to the ground station for further analysis. As particularly emphasized in this paper, during the detumbling mode, ADCS implements the thrusters in plus-wide modulation control method to decrease the satellite angular velocity. ADCS provides the attitude determination function for the estimation of the satellite state, during normal mode. The three modes of microsatellite adopted Kalman filter algorithm estimate microsatellite attitude. This paper will discuss using the SIL validation ADCS function and verify its feasibility.

  2. Dynamics and Control of Attitude, Power, and Momentum for a Spacecraft Using Flywheels and Control Moment Gyroscopes

    Science.gov (United States)

    Roithmayr, Carlos M.; Karlgaard, Christopher D.; Kumar, Renjith R.; Seywald, Hans; Bose, David M.

    2003-01-01

    Several laws are designed for simultaneous control of the orientation of an Earth-pointing spacecraft, the energy stored by counter-rotating flywheels, and the angular momentum of the flywheels and control moment gyroscopes used together as an integrated set of actuators for attitude control. General, nonlinear equations of motion are presented in vector-dyadic form, and used to obtain approximate expressions which are then linearized in preparation for design of control laws that include feedback of flywheel kinetic energy error as a means of compensating for damping exerted by rotor bearings. Two flywheel steering laws are developed such that torque commanded by an attitude control law is achieved while energy is stored or discharged at the required rate. Using the International Space Station as an example, numerical simulations are performed to demonstrate control about a torque equilibrium attitude, and illustrate the benefits of kinetic energy error feedback. Control laws for attitude hold are also developed, and used to show the amount of propellant that can be saved when flywheels assist the CMGs. Nonlinear control laws for large-angle slew maneuvers perform well, but excessive momentum is required to reorient a vehicle like the International Space Station.

  3. Design of Satellite Attitude Control Algorithm Based on the SDRE Method Using Gas Jets and Reaction Wheels

    Directory of Open Access Journals (Sweden)

    Luiz C. G. de Souza

    2013-01-01

    Full Text Available An experimental attitude control algorithm design using prototypes can minimize space mission costs by reducing the number of errors transmitted to the next phase of the project. The Space Mechanics and Control Division (DMC of INPE is constructing a 3D simulator to supply the conditions for implementing and testing satellite control hardware and software. Satellite large angle maneuver makes the plant highly nonlinear and if the parameters of the system are not well determined, the plant can also present some level of uncertainty. As a result, controller designed by a linear control technique can have its performance and robustness degraded. In this paper the standard LQR linear controller and the SDRE controller associated with an SDRE filter are applied to design a controller for a nonlinear plant. The plant is similar to the DMC 3D satellite simulator where the unstructured uncertainties of the system are represented by process and measurements noise. In the sequel the State-Dependent Riccati Equation (SDRE method is used to design and test an attitude control algorithm based on gas jets and reaction wheel torques to perform large angle maneuver in three axes. The SDRE controller design takes into account the effects of the plant nonlinearities and system noise which represents uncertainty. The SDRE controller performance and robustness are tested during the transition phase from angular velocity reductions to normal mode of operation with stringent pointing accuracy using a switching control algorithm based on minimum system energy. This work serves to validate the numerical simulator model and to verify the functionality of the control algorithm designed by the SDRE method.

  4. Self-control, perceived opportunity, and attitudes as predictors of academic dishonesty.

    Science.gov (United States)

    Bolin, Aaron U

    2004-03-01

    Academic dishonesty is a persistent and pervasive problem on college campuses. Researchers have suggested a variety of factors that influence academic dishonesty. The present study is an examination of the roles of self-control, attitude toward academic dishonesty, and perceived opportunity in predicting academic dishonesty. The dataset consisted of 853 survey responses from university students across the United States. The results showed that attitude toward academic dishonesty mediated the relationship between self-control and academic dishonesty and also between perceived opportunity and academic dishonesty. Implications of these findings are briefly discussed.

  5. A case study in nonlinear dynamics and control of articulated spacecraft: The Space Station Freedom with a mobile remote manipulator system

    Science.gov (United States)

    Bennett, William H.; Kwatny, Harry G.; Lavigna, Chris; Blankenship, Gilmer

    1994-06-01

    The following topics are discussed: (1) modeling of articulated spacecraft as multi-flex-body systems; (2) nonlinear attitude control by adaptive partial feedback linearizing (PFL) control; (3) attitude dynamics and control for SSF/MRMS; and (4) performance analysis results for attitude control of SSF/MRMS.

  6. The Impact of School Political Systems on Student Political Attitudes

    Science.gov (United States)

    Metzger, Devon J.; Barr, Robert D.

    1978-01-01

    Describes a study of the effects of student participation in school policy-making upon student attitudes. Data were collected from students in a comprehensive high school and a small alternative school within the comprehensive school. Students in the alternative school participated more in policy-making and also showed more positive attitudes.…

  7. Digital Optical Control System

    Science.gov (United States)

    Jordan, David H.; Tipton, Charles A.; Christmann, Charles E.; Hochhausler, Nils P.

    1988-09-01

    We describe the digital optical control system (DOGS), a state-of-the-art controller for electrical feedback in an optical system. The need for a versatile optical controller arose from a number of unique experiments being performed by the Air Force Weapons Laboratory. These experiments use similar detectors and actuator-controlled mirrors, but the control requirements vary greatly. The experiments have in common a requirement for parallel control systems. The DOGS satisfies these needs by allowing several control systems to occupy a single chassis with one master controller. The architecture was designed to allow upward compatibility with future configurations. Combinations of off-the-shelf and custom boards are configured to meet the requirements of each experiment. The configuration described here was used to control piston error to X/80 at a wavelength of 0.51 Am. A peak sample rate of 8 kHz, yielding a closed loop bandwidth of 800 Hz, was achieved.

  8. Discrete Control Systems

    CERN Document Server

    Lee, Taeyoung; McClamroch, N Harris

    2007-01-01

    Discrete control systems, as considered here, refer to the control theory of discrete-time Lagrangian or Hamiltonian systems. These discrete-time models are based on a discrete variational principle, and are part of the broader field of geometric integration. Geometric integrators are numerical integration methods that preserve geometric properties of continuous systems, such as conservation of the symplectic form, momentum, and energy. They also guarantee that the discrete flow remains on the manifold on which the continuous system evolves, an important property in the case of rigid-body dynamics. In nonlinear control, one typically relies on differential geometric and dynamical systems techniques to prove properties such as stability, controllability, and optimality. More generally, the geometric structure of such systems plays a critical role in the nonlinear analysis of the corresponding control problems. Despite the critical role of geometry and mechanics in the analysis of nonlinear control systems, non...

  9. ALFA Detector Control System

    CERN Document Server

    Oleiro Seabra, Luis Filipe; The ATLAS collaboration

    2015-01-01

    ALFA (Absolute Luminosity For ATLAS) is one of the sub-detectors of ATLAS (A Toroidal LHC Apparatus). The ALFA system is composed by four stations installed in the LHC tunnel 240 m away from the ATLAS interaction point. Each station has a vacuum and ventilation system, movement control and all the required electronics for signal processing. The Detector Control System (DCS) provides control and monitoring of several components and ensures the safe operation of the detector contributing to good Data Quality. This paper describes the ALFA DCS system including a detector overview, operation aspects and hardware control through a SCADA system, WinCC OA.

  10. ALFA Detector Control System

    CERN Document Server

    Oleiro Seabra, Luis Filipe; The ATLAS collaboration

    2015-01-01

    ALFA (Absolute Luminosity For ATLAS) is one of the sub-detectors of ATLAS/LHC. The ALFA system is composed by two stations installed in the LHC tunnel 240 m away from each side of the ATLAS interaction point. Each station has a vacuum and ventilation system, movement control and all the required electronic for signal processing. The Detector Control System (DCS) provides control and monitoring of several components and ensures the safe operation of the detector contributing to good Data Quality. This paper describes the ALFA DCS system including a detector overview, operation aspects and hardware control through a SCADA system, WinCC OA.

  11. Singularity Avoidance Strategies For Satellite Mounted Manipulators Using Attitude Control

    Science.gov (United States)

    1998-05-01

    assumed that 6c = 0. This allows a stabilizing control law using only a feedforward velocity term. If Hie assumption is not made, the control law...configuration, a reasonable first choice is to let Cavg = 0. The resulting control law is r = -K2e2 (200) This is also the stabilizing control law that

  12. 随钻井下姿态测量系统%Attitude measurement system Downhole drilling

    Institute of Scientific and Technical Information of China (English)

    贾衡天; 张程光; 高文凯; 管康; 范锦辉; 彭浩; 邓乐

    2015-01-01

    In drilling oil drilling it′s important to accurately understand the attitude information of drilling tool. By measuring the attitude information accurately it can grasp the orientation parameters of borehole.With the development of petroleum industry in recent years, it need to use precise trajectory control technology for oil drilling technology to adapt to directional wells, horizontal wells and large displacement well application.This paper designs a downhole attitude measurement system which can work in drilling conditions. By measuring the signal of three axis gyroscope, accelerometer and magnetic sensor. and doing corresponding algorithm, it can get the attitude information of underground drilling.%在随钻石油钻探时需要准确地了解钻具的姿态信息,通过对姿态信息的测量可以准确地掌握井眼的方位参数。随着近年来石油工业的发展,要求石油钻井技术采用精确的轨迹控制技术,适应定向井、水平井和大位移井等应用的需要。设计一种井下姿态测量系统,可以工作在随钻条件下,通过测量三轴陀螺仪、加速度计和磁阻传感器的信号并进行相应的算法处理,得到钻具在井下的姿态信息。

  13. Controllability in nonlinear systems

    Science.gov (United States)

    Hirschorn, R. M.

    1975-01-01

    An explicit expression for the reachable set is obtained for a class of nonlinear systems. This class is described by a chain condition on the Lie algebra of vector fields associated with each nonlinear system. These ideas are used to obtain a generalization of a controllability result for linear systems in the case where multiplicative controls are present.

  14. Attitude Controller for the Atmospheric Entry of the Mars Science Laboratory

    Science.gov (United States)

    Brugarolas, Paul B.; San Martin, A. Miguel; Wong, Edward C.

    2008-01-01

    This paper describes the attitude controller for the atmospheric entry of the Mars Science Laboratory (MSL). The controller will command 8 RCS thrusters to control the 3- axis attitude of the entry capsule. The Entry Controller is formulated as three independent channels in the control frame, which is nominally aligned with the stability frame. Each channel has a feedfoward and a feedback path. The feedforward path enables fast response to large bank commands. The feedback path stabilizes the vehicle angle of attack and sideslip around its trim position, and tracks bank commands. The feedback path has a PD/D control structure with deadbands that minimizes fuel usage. The performance of this design is demonstrated via computer simulations.

  15. 76 FR 80447 - Eighth Meeting: RTCA Special Committee 219: Attitude and Heading Reference Systems (AHRS)

    Science.gov (United States)

    2011-12-23

    ... Federal Aviation Administration Eighth Meeting: RTCA Special Committee 219: Attitude and Heading Reference...). ACTION: Notice of RTCA Special Committee 219: Attitude and Heading Reference Systems (AHRS). SUMMARY: The FAA is issuing this notice to advise the public of the eighth meeting of RTCA Special Committee...

  16. Technology Use in Rwandan Secondary Schools: An Assessment of Teachers' Attitudes towards Geographic Information Systems (GIS)

    Science.gov (United States)

    Akinyemi, Felicia O.

    2016-01-01

    Technology use is evident in all spheres of human endeavour. Focusing on technology use in education, this paper examines teachers' attitudes towards geographic information system (GIS). An assessment was made of GIS teachers in Rwandan secondary schools. Key areas covered include how GIS is implemented in schools, teachers' attitudes and…

  17. Student Conceptions of, and Attitudes toward, Specific Features of a CAI System.

    Science.gov (United States)

    Hativa, Nira

    1989-01-01

    Describes study of Israeli elementary school students that examined student attitudes toward computer-assisted instruction (CAI) designed to provide drill and practice in arithmetic. Attitudes are compared in relation to students' aptitude, gender, grade level, and socioeconomic status, and implications for the design of CAI systems are discussed.…

  18. Motion control systems

    CERN Document Server

    Sabanovic, Asif

    2011-01-01

    "Presents a unified approach to the fundamental issues in motion control, starting from the basics and moving through single degree of freedom and multi-degree of freedom systems In Motion Control Systems, Šabanovic and Ohnishi present a unified approach to very diverse issues covered in motion control systems, offering know-how accumulated through work on very diverse problems into a comprehensive, integrated approach suitable for application in high demanding high-tech products. It covers material from single degree of freedom systems to complex multi-body non-redundant and redundant systems. The discussion of the main subject is based on original research results and will give treatment of the issues in motion control in the framework of the acceleration control method with disturbance rejection technique. This allows consistent unification of different issues in motion control ranging from simple trajectory tracking to topics related to haptics and bilateral control without and with delay in the measure...

  19. Applied Control Systems Design

    CERN Document Server

    Mahmoud, Magdi S

    2012-01-01

    Applied Control System Design examines several methods for building up systems models based on real experimental data from typical industrial processes and incorporating system identification techniques. The text takes a comparative approach to the models derived in this way judging their suitability for use in different systems and under different operational circumstances. A broad spectrum of control methods including various forms of filtering, feedback and feedforward control is applied to the models and the guidelines derived from the closed-loop responses are then composed into a concrete self-tested recipe to serve as a check-list for industrial engineers or control designers. System identification and control design are given equal weight in model derivation and testing to reflect their equality of importance in the proper design and optimization of high-performance control systems. Readers’ assimilation of the material discussed is assisted by the provision of problems and examples. Most of these e...

  20. Computer program for post-flight evaluation of the control surface response for an attitude controlled missile

    Science.gov (United States)

    Knauber, R. N.

    1982-01-01

    A FORTRAN IV coded computer program is presented for post-flight analysis of a missile's control surface response. It includes preprocessing of digitized telemetry data for time lags, biases, non-linear calibration changes and filtering. Measurements include autopilot attitude rate and displacement gyro output and four control surface deflections. Simple first order lags are assumed for the pitch, yaw and roll axes of control. Each actuator is also assumed to be represented by a first order lag. Mixing of pitch, yaw and roll commands to four control surfaces is assumed. A pseudo-inverse technique is used to obtain the pitch, yaw and roll components from the four measured deflections. This program has been used for over 10 years on the NASA/SCOUT launch vehicle for post-flight analysis and was helpful in detecting incipient actuator stall due to excessive hinge moments. The program is currently set up for a CDC CYBER 175 computer system. It requires 34K words of memory and contains 675 cards. A sample problem presented herein including the optional plotting requires eleven (11) seconds of central processor time.

  1. Control systems engineering

    CERN Document Server

    Nise, Norman S

    1995-01-01

    This completely updated new edition shows how to use MATLAB to perform control-system calculations. Designed for the professional or engineering student who needs a quick and readable update on designing control systems, the text features a series of tightly focused examples that clearly illustrate each concept of designing control systems. Most chapters conclude with a detailed application from the two case studies that run throughout the book: an antenna asimuth control system and a submarine. The author also refers to many examples of design methods.

  2. Step Motor Control System

    Institute of Scientific and Technical Information of China (English)

    ZhangShuochengt; WangDan; QiaoWeimin; JingLan

    2003-01-01

    All kinds of step motors and servomotors are widely used in CSR control system, such as many vacuum valves control that set on the HIRFL-CSR; all kinds of electric switches and knobs of ECR Ion Source; equipment of CSR Beam Diagnostics and a lot of large equipment like Inside Gun Toroid and Collector Toroid of HIRFL. A typical control system include up to 32 16-I/O Control boards, and each 16-I/O Control board can control 4 motors at the same time (including 8 Limit Switches).

  3. Design for robustness using the μ-synthesis applied to launcher attitude and vibration control

    Science.gov (United States)

    Morita, Yasuhiro; Goto, Shinichi

    2008-01-01

    The M-V launch vehicle of Japan Aerospace Exploration Agency (JAXA) has successfully injected Japan's fifth X-ray space telescope "SUZAKU" into its low earth orbit in this past July. The attitude and vibration control algorithm of the M-V rocket used to be highlighted by its H∞ robust stability since its first flight conducted in 1997. Beyond this, its robustness character has been further enhanced using the μ-synthesis approach to get better robust characteristics not only in stability but in tracking performance under uncertainty of the system dynamics. The performance has been validated by the latest back-to-back successful flights of the vehicle: in May 2003 to directly inject Japan's first asteroid sample return spaceship "HAYABUSA" into the planned inter-planetary trajectory and in this past July to launch the telescope. The μ-synthesis has been applied for the first time ever for Japan's launcher control beyond the reliable H∞ design. The plant dynamics has an extremely high-order and unstable characteristics, thus the standard μ-synthesis format cannot be directly applied. The paper gives a unique methodology to apply the theory to such a real high-order complicated system.

  4. Velocity-Aided Attitude Estimation for Helicopter Aircraft Using Microelectromechanical System Inertial-Measurement Units

    Directory of Open Access Journals (Sweden)

    Sang Cheol Lee

    2016-12-01

    Full Text Available This paper presents an algorithm for velocity-aided attitude estimation for helicopter aircraft using a microelectromechanical system inertial-measurement unit. In general, high- performance gyroscopes are used for estimating the attitude of a helicopter, but this type of sensor is very expensive. When designing a cost-effective attitude system, attitude can be estimated by fusing a low cost accelerometer and a gyro, but the disadvantage of this method is its relatively low accuracy. The accelerometer output includes a component that occurs primarily as the aircraft turns, as well as the gravitational acceleration. When estimating attitude, the accelerometer measurement terms other than gravitational ones can be considered as disturbances. Therefore, errors increase in accordance with the flight dynamics. The proposed algorithm is designed for using velocity as an aid for high accuracy at low cost. It effectively eliminates the disturbances of accelerometer measurements using the airspeed. The algorithm was verified using helicopter experimental data. The algorithm performance was confirmed through a comparison with an attitude estimate obtained from an attitude heading reference system based on a high accuracy optic gyro, which was employed as core attitude equipment in the helicopter.

  5. Using Automatic Code Generation in the Attitude Control Flight Software Engineering Process

    Science.gov (United States)

    McComas, David; O'Donnell, James R., Jr.; Andrews, Stephen F.

    1999-01-01

    This paper presents an overview of the attitude control subsystem flight software development process, identifies how the process has changed due to automatic code generation, analyzes each software development phase in detail, and concludes with a summary of our lessons learned.

  6. Solar attitude control including active nutation damping in a fixed-momentum wheel satellite

    Science.gov (United States)

    Azor, Ruth

    1992-08-01

    In geostationary cruise of a momentum biased satellite, it is necessary to stabilize the roll/yaw attitude due to disturbances, caused mainly by solar pressure. This work presents a roll/yaw control, which is obtained by the use of solar arrays and fixed flaps as actuators, with a horizon sensor for roll measurement. The design also includes an active nutation damping.

  7. Solar Anomalous and Magnetospheric Particle Explorer attitude control electronics box design and performance

    Science.gov (United States)

    Chamberlin, K.; Clagett, C.; Correll, T.; Gruner, T.; Quinn, T.; Shiflett, L.; Schnurr, R.; Wennersten, M.; Frederick, M.; Fox, S. M.

    1993-01-01

    The attitude Control Electronics (ACE) Box is the center of the Attitude Control Subsystem (ACS) for the Solar Anomalous and Magnetospheric Particle Explorer (SAMPEX) satellite. This unit is the single point interface for all of the Attitude Control Subsystem (ACS) related sensors and actuators. Commands and telemetry between the SAMPEX flight computer and the ACE Box are routed via a MIL-STD-1773 bus interface, through the use of an 80C85 processor. The ACE Box consists of the flowing electronic elements: power supply, momentum wheel driver, electromagnet driver, coarse sun sensor interface, digital sun sensor interface, magnetometer interface, and satellite computer interface. In addition, the ACE Box also contains an independent Safehold electronics package capable of keeping the satellite pitch axis pointing towards the sun. The ACE Box has dimensions of 24 x 31 x 8 cm, a mass of 4.3 kg, and an average power consumption of 10.5 W. This set of electronics was completely designed, developed, integrated, and tested by personnel at NASA GSFC. SAMPEX was launched on July 3, 1992, and the initial attitude acquisition was successfully accomplished via the analog Safehold electronics in the ACE Box. This acquisition scenario removed the excess body rates via magnetic control and precessed the satellite pitch axis to within 10 deg of the sun line. The performance of the SAMPEX ACS in general and the ACE Box in particular has been quite satisfactory.

  8. Passivity Based Nonlinear Attitude Control of the Rømer Satellite

    DEFF Research Database (Denmark)

    Quottrup, Michael Melholt; Krogh-Sørensen, J.; Wisniewski, Rafal

    2001-01-01

    This paper suggests nonlinear attitude control of the Danish satellite Rømer. This satellite will be designed to fulfil two scientific objectives: The observation of stellar oscillations and the detection and localisation of gamma-ray bursts. The satellite will be equipped with a tetrahedron...

  9. Passivity based nonlinear attitude control of the Rømer satellite

    DEFF Research Database (Denmark)

    Quottrup, Michael Melholt; Krogh-Sørensen, J.; Wisniewski, Rafal

    This paper suggests nonlinear attitude control of the Danish satellite Rømer. This satellite will be designed to fulfil two scientific objectives: The observation of stellar oscillations and the detection and localisation of gamma-ray bursts. The satellite will be equipped with a tetrahedron...

  10. A Practical Method for Implementing an Attitude and Heading Reference System

    Directory of Open Access Journals (Sweden)

    Rodrigo Munguía

    2014-04-01

    Full Text Available This paper describes a practical and reliable algorithm for implementing an Attitude and Heading Reference System (AHRS. This kind of system is essential for real time vehicle navigation, guidance and control applications. When low cost sensors are used, efficient and robust algorithms are required for performance to be acceptable. The proposed method is based on an Extended Kalman Filter (EKF in a direct configuration. In this case, the filter is explicitly derived from both the kinematic and error models. The selection of this kind of EKF configuration can help in ensuring a tight integration of the method for its use in filter-based localization and mapping systems in autonomous vehicles. Experiments with real data show that the proposed method is able to maintain an accurate and drift-free attitude and heading estimation. An additional result is to show that there is no ostensible reason for preferring that the filter have an indirect configuration over a direct configuration for implementing an AHRS system.

  11. Attitude Heading Reference System Using MEMS Inertial Sensors with Dual-Axis Rotation

    Directory of Open Access Journals (Sweden)

    Li Kang

    2014-09-01

    Full Text Available This paper proposes a low cost and small size attitude and heading reference system based on MEMS inertial sensors. A dual-axis rotation structure with a proper rotary scheme according to the design principles is applied in the system to compensate for the attitude and heading drift caused by the large gyroscope biases. An optimization algorithm is applied to compensate for the installation angle error between the body frame and the rotation table’s frame. Simulations and experiments are carried out to evaluate the performance of the AHRS. The results show that the proper rotation could significantly reduce the attitude and heading drifts. Moreover, the new AHRS is not affected by magnetic interference. After the rotation, the attitude and heading are almost just oscillating in a range. The attitude error is about 3° and the heading error is less than 3° which are at least 5 times better than the non-rotation condition.

  12. Attitude heading reference system using MEMS inertial sensors with dual-axis rotation.

    Science.gov (United States)

    Kang, Li; Ye, Lingyun; Song, Kaichen; Zhou, Yang

    2014-09-29

    This paper proposes a low cost and small size attitude and heading reference system based on MEMS inertial sensors. A dual-axis rotation structure with a proper rotary scheme according to the design principles is applied in the system to compensate for the attitude and heading drift caused by the large gyroscope biases. An optimization algorithm is applied to compensate for the installation angle error between the body frame and the rotation table's frame. Simulations and experiments are carried out to evaluate the performance of the AHRS. The results show that the proper rotation could significantly reduce the attitude and heading drifts. Moreover, the new AHRS is not affected by magnetic interference. After the rotation, the attitude and heading are almost just oscillating in a range. The attitude error is about 3° and the heading error is less than 3° which are at least 5 times better than the non-rotation condition.

  13. Discrete control systems

    CERN Document Server

    Okuyama, Yoshifumi

    2014-01-01

    Discrete Control Systems establishes a basis for the analysis and design of discretized/quantized control systemsfor continuous physical systems. Beginning with the necessary mathematical foundations and system-model descriptions, the text moves on to derive a robust stability condition. To keep a practical perspective on the uncertain physical systems considered, most of the methods treated are carried out in the frequency domain. As part of the design procedure, modified Nyquist–Hall and Nichols diagrams are presented and discretized proportional–integral–derivative control schemes are reconsidered. Schemes for model-reference feedback and discrete-type observers are proposed. Although single-loop feedback systems form the core of the text, some consideration is given to multiple loops and nonlinearities. The robust control performance and stability of interval systems (with multiple uncertainties) are outlined. Finally, the monograph describes the relationship between feedback-control and discrete ev...

  14. Attitude angle anti-windup control of small size unmanned helicopter

    Science.gov (United States)

    Shao, Taizhou; Long, Haihui; Zhao, Jiankang; Xia, Xuan; Yang, Guang

    2017-01-01

    This paper researches the small-size unmanned helicopter attitude control problem with actuator saturation limit. Traditional approach for this problem is often based on an accurate dynamic model which is complicated and difficult to achieve in engineering. In this paper, we propose an anti-windup PID approach which does not rely on sophicated helicopter dynamic model. The anti-windup PID controller is established by adding a phase-lead compensator to the conventional PID controller. The performance and merits of this proposed controller are exemplified by the simulations between the conventional PID controller and the anti-windup PID controller.

  15. Control system design guide

    Energy Technology Data Exchange (ETDEWEB)

    Sellers, David; Friedman, Hannah; Haasl, Tudi; Bourassa, Norman; Piette, Mary Ann

    2003-05-01

    The ''Control System Design Guide'' (Design Guide) provides methods and recommendations for the control system design process and control point selection and installation. Control systems are often the most problematic system in a building. A good design process that takes into account maintenance, operation, and commissioning can lead to a smoothly operating and efficient building. To this end, the Design Guide provides a toolbox of templates for improving control system design and specification. HVAC designers are the primary audience for the Design Guide. The control design process it presents will help produce well-designed control systems that achieve efficient and robust operation. The spreadsheet examples for control valve schedules, damper schedules, and points lists can streamline the use of the control system design concepts set forth in the Design Guide by providing convenient starting points from which designers can build. Although each reader brings their own unique questions to the text, the Design Guide contains information that designers, commissioning providers, operators, and owners will find useful.

  16. Design of Attitude Control System Based on μ-Synthesis for Morphing Wing Cruise Missile%可变翼巡航导弹μ综合姿态控制系统设计

    Institute of Scientific and Technical Information of China (English)

    舒营恩; 郭建国; 周军

    2013-01-01

    The existing cruise missiles are applied to certain specific missions. The smart morphing cruise missile can morph configuration to adapt to different missions. As morphing wings, dynamics and control characteristics of missile become complex. In order to improve robust performance of the cruise missile, the multi-body dynamic model of morphing cruise missile based on morphing wings, parameter uncertainties and structure uncertainties can be considered by using μ—synthesis. The three—channel robust attitude control law for an example missile was designed. The simulation results show that the designed based on μ- synthesis controller has not only good dynamic performance , but also excellent robust stability and robust performance.%研究巡航导弹稳定性优化控制问题,针对面对称可变翼巡航导弹,利用μ综合方法设计了导弹的姿态控制系统.常规巡航导弹执行任务特点单一,可变翼巡航导弹可以通过改变气动外形实现多任务飞行.然而随着弹翼的变化导致导弹的动力学模型与控制特性更为复杂,为了提高可变翼巡航导弹的鲁棒性能,结合弹翼的变化策略构建可变翼导弹的多体动力学模型,综合考虑控制对象的参数不确定性和结构不确定性,采用μ综合方法设计了算例的三通道控制系统并进行了仿真.仿真结果表明,μ综合姿态控制系统不仅具有良好的动态特性,而且对参数不确定性具有良好的鲁棒稳定性.

  17. Controllability of Discontinuous Systems

    OpenAIRE

    Veliov, V. M.; Krastanov, M.

    1988-01-01

    This report presents an approach to the local controllability problem for a discontinuous system. The approach is based on a concept of tangent vector field to a generalized dynamic system, which makes possible the differential geometry tools to be applied in the discontinuous case. Sufficient controllability conditions are derived.

  18. The ST5000: An Attitude Determination System with Low-Bandwidth Digital Imaging

    Science.gov (United States)

    Percival, J. W.; Nordsieck, K. H.

    The Space Astronomy Laboratory is building an attitude determination and digital imaging system with embedded compression. The attitude determination system uses a 30-square-degree field of view and an embedded star catalog to determine the Right Ascension and Declination of its line of sight to better than 5 arcseconds. The digital imaging subsystem uses a scheme of ``progressive image transmission'' in which the image is sent out over a very-low-bandwidth channel, such as a spacecraft telemetry downlink, in such a way that it can be reconstructed ``on the fly'' and updated as more data arrive. Large (768×474) useful images can be obtained over a 4-kbit downlink in as little as 10 seconds. In addition to its use in sounding rockets and spacecraft, we are planning to use it for two ground-based applications at the Southern Africa Large Telescope (SALT). We will explore its use in generating real-time measurements of the telescope pointing, independent of the telescope control system, and we will use the low bandwidth imaging capability for public outreach.

  19. Design and application of single-antenna GPS/accelerometers attitude determination system

    Institute of Scientific and Technical Information of China (English)

    He Jie; Huang Xianlin; Wang Guofeng

    2008-01-01

    In view of the problem that the current single-antenna GPS attitude determination system can only determine the body attitude when the sideslip angle is zero and the multiantenna GPS/SINS integrated navigation system is of large volume, high cost, and complex structure, this approach is presented to determine the attitude based on vector space with single-antenna GPS and accelerometers in the micro inertial measurement unit (MIMU).It can provide real-time and accurate attitude information. Subsequently, the single-antenna GPS/SINS integrated navigation system is designed based on the combination of position, velocity, and attitude. Finally the semi-physical simulations of single-antenna GPS attitude determination system and single-antenna GPS/SINS integrated navigation system are carried out. The simulation results, based on measured data, show that the single-antenna GPS/SINS system can provide more accurate navigation information compared to the GPS/SINS system, based on the combination of position and velocity. Furthermore, the single-antenna GPS/SINS system is characteristic of lower cost and simpler structure. It provides the basis for the application of a single-antenna GPS/SINS integrated navigation system in a micro aerial vehicle (MAV).

  20. Simulation of Attitude and Trajectory Dynamics and Control of Multiple Spacecraft

    Science.gov (United States)

    Stoneking, Eric T.

    2009-01-01

    Agora software is a simulation of spacecraft attitude and orbit dynamics. It supports spacecraft models composed of multiple rigid bodies or flexible structural models. Agora simulates multiple spacecraft simultaneously, supporting rendezvous, proximity operations, and precision formation flying studies. The Agora environment includes ephemerides for all planets and major moons in the solar system, supporting design studies for deep space as well as geocentric missions. The environment also contains standard models for gravity, atmospheric density, and magnetic fields. Disturbance force and torque models include aerodynamic, gravity-gradient, solar radiation pressure, and third-body gravitation. In addition to the dynamic and environmental models, Agora supports geometrical visualization through an OpenGL interface. Prototype models are provided for common sensors, actuators, and control laws. A clean interface accommodates linking in actual flight code in place of the prototype control laws. The same simulation may be used for rapid feasibility studies, and then used for flight software validation as the design matures. Agora is open-source and portable across computing platforms, making it customizable and extensible. It is written to support the entire GNC (guidance, navigation, and control) design cycle, from rapid prototyping and design analysis, to high-fidelity flight code verification. As a top-down design, Agora is intended to accommodate a large range of missions, anywhere in the solar system. Both two-body and three-body flight regimes are supported, as well as seamless transition between them. Multiple spacecraft may be simultaneously simulated, enabling simulation of rendezvous scenarios, as well as formation flying. Built-in reference frames and orbit perturbation dynamics provide accurate modeling of precision formation control.

  1. Use of hormonal contraceptives to control menstrual bleeding: attitudes and practice of Brazilian gynecologists

    Science.gov (United States)

    Makuch, María Y; D Osis, Maria José; de Pádua, Karla Simonia; Bahamondes, Luis

    2013-01-01

    Background The purpose of this study was to assess the attitudes and prescribing practices of Brazilian obstetricians and gynecologists regarding use of contraceptive methods to interfere with menstruation and/or induce amenorrhea. Methods We undertook a nationwide survey of Brazilian obstetricians and gynecologists selected using a computer-generated randomization system. Participants completed a questionnaire on prescription of contraceptives and extended/continuous regimens of combined oral contraceptives (COCs). Results In total, 79.2% of Brazilian obstetricians and gynecologists reported that 20%–40% of their patients consulted them for menstrual-related complaints and 26%–34% of the gynecologists reported that 21%–40% of their patients consulted them for reduction in the intensity, frequency, and/or duration of menstrual bleeding. Overall, 93% stated that medically induced amenorrhea represents no risk to women’s health and 82.5% said that they prescribed contraceptives to control menstruation or induce amenorrhea. The contraceptives most commonly prescribed were extended-cycle 24/4 or 26/2 COC regimens and the levonorgestrel-releasing intrauterine system. Poisson regression analysis showed that Brazilian obstetricians and gynecologists prescribing contraceptives to control menstruation or induce amenorrhea consider extended-use or continuous-use COC regimens to be effective for both indications (prevalence ratio 1.23 [95% confidence interval 1.09–1.40] and prevalence ratio 1.28 [95% confidence interval 1.13–1.46], respectively). They also prescribed COCs with an interval of 24/4 or 26/2 to control bleeding patterns (prevalence ratio 1.10 [95% confidence interval 1.01–1.21]). Conclusion Brazilian obstetricians and gynecologists were favorably disposed toward prescribing extended-use or continuous-use COC regimens for control of menstrual bleeding or to induce amenorrhea on patient demand. PMID:24399887

  2. Knowledge, Attitude and Performance of Shiraz General Dentists about Infection Control Principles during Preparing Intraoral Radiographies

    Directory of Open Access Journals (Sweden)

    Abdolaziz Hagh Negahdar

    2017-02-01

    Full Text Available Background & Objective: Infection control in dental centers is affected by the persons’ attitude and knowledge about mechanisms of infection transmission. This study was designed to evaluate the knowledge and the attitude of Shiraz dentists about infection control during intraoral radiographies preparation. Materials & Methods: In this cross-sectional, and analytical research, the attitude and the knowledge of 45 male and 25 female, randomly selected dentists, were obtained through completion of a researcher- planed questioner which its validity and reliability had been confirmed. Data were analyzed using Cronbach`s alpha, one-way ANOVA, student’s t-test, and Pearson’s correlation coefficient in SPSS (V.21. Results: The average of the dentists’ age was 40.59±10.72 and their average occupational experience was 13.49±9.75 years. The mean score obtained for knowledge about infection control during intraoral radiographic procedures was less than fifty percent of total obtainable score, and was assessed as weak knowledge. There was no significant difference in the level of knowledge between studied male and female dentists (P>0.05. In addition, no significant relationship was detected between level, age/experience, and the university of education (P>0.05. The attitude of the dentists about infection control during intraoral radiography preparation assessed as moderate to good level. Conclusions: The results showed that the main reason for the present problems is insufficient knowledge of the dentists in related subjects. Therefore, the solution, which is recommended among dentists, is to raise their awareness and to change their attitudes and culture in order to improve their performance.

  3. Inertia-independent generalized dynamic inversion feedback control of spacecraft attitude maneuvers

    Science.gov (United States)

    Bajodah, Abdulrahman H.

    2011-06-01

    The generalized dynamic inversion control methodology is applied to the spacecraft attitude trajectory tracking problem. It is shown that the structure of the skew symmetric cross product matrix alleviates the need to include the inertia matrix in the control law. Accordingly, the proposed control law depends solely on attitude and angular velocity measurements, and it neither requires knowledge of the spacecraft's inertia parameters nor it works towards estimating these parameters. A linear time-varying attitude deviation dynamics in the multiplicative error quaternion is inverted for the control variables using the generalized inversion-based Greville formula. The resulting control law is composed of auxiliary and particular parts acting on two orthogonally complement subspaces of the three dimensional Euclidean space. The particular part drives the attitude variables to their desired trajectories. The auxiliary part is affine in a free null-control vector, and is designed by utilizing a semidefinite control Lyapunov function that exploits the geometric structure of the control law to provide closed loop stability. The generalized inversion singularity avoidance is made by augmenting the generalized inverse with an asymptotically stable fast mode that is driven by angular velocity error's norm from reference angular velocity. Asymptotic tracking is achieved for detumbling maneuvers as the stable augmented mode subdues singularity. If the steady state desired quaternion trajectories are time varying, then asymptotic tracking is lost in favor of close ultimately bounded tracking because the stable augmented mode continues to be excited during steady state phase of response. A rest-to-rest slew and a trajectory tracking maneuver examples are provided to illustrate the methodology.

  4. Common Control System Vulnerability

    Energy Technology Data Exchange (ETDEWEB)

    Trent Nelson

    2005-12-01

    The Control Systems Security Program and other programs within the Idaho National Laboratory have discovered a vulnerability common to control systems in all sectors that allows an attacker to penetrate most control systems, spoof the operator, and gain full control of targeted system elements. This vulnerability has been identified on several systems that have been evaluated at INL, and in each case a 100% success rate of completing the attack paths that lead to full system compromise was observed. Since these systems are employed in multiple critical infrastructure sectors, this vulnerability is deemed common to control systems in all sectors. Modern control systems architectures can be considered analogous to today's information networks, and as such are usually approached by attackers using a common attack methodology to penetrate deeper and deeper into the network. This approach often is composed of several phases, including gaining access to the control network, reconnaissance, profiling of vulnerabilities, launching attacks, escalating privilege, maintaining access, and obscuring or removing information that indicates that an intruder was on the system. With irrefutable proof that an external attack can lead to a compromise of a computing resource on the organization's business local area network (LAN), access to the control network is usually considered the first phase in the attack plan. Once the attacker gains access to the control network through direct connections and/or the business LAN, the second phase of reconnaissance begins with traffic analysis within the control domain. Thus, the communications between the workstations and the field device controllers can be monitored and evaluated, allowing an attacker to capture, analyze, and evaluate the commands sent among the control equipment. Through manipulation of the communication protocols of control systems (a process generally referred to as ''reverse engineering''), an

  5. An Application of UAV Attitude Estimation Using a Low-Cost Inertial Navigation System

    Science.gov (United States)

    Eure, Kenneth W.; Quach, Cuong Chi; Vazquez, Sixto L.; Hogge, Edward F.; Hill, Boyd L.

    2013-01-01

    Unmanned Aerial Vehicles (UAV) are playing an increasing role in aviation. Various methods exist for the computation of UAV attitude based on low cost microelectromechanical systems (MEMS) and Global Positioning System (GPS) receivers. There has been a recent increase in UAV autonomy as sensors are becoming more compact and onboard processing power has increased significantly. Correct UAV attitude estimation will play a critical role in navigation and separation assurance as UAVs share airspace with civil air traffic. This paper describes attitude estimation derived by post-processing data from a small low cost Inertial Navigation System (INS) recorded during the flight of a subscale commercial off the shelf (COTS) UAV. Two discrete time attitude estimation schemes are presented here in detail. The first is an adaptation of the Kalman Filter to accommodate nonlinear systems, the Extended Kalman Filter (EKF). The EKF returns quaternion estimates of the UAV attitude based on MEMS gyro, magnetometer, accelerometer, and pitot tube inputs. The second scheme is the complementary filter which is a simpler algorithm that splits the sensor frequency spectrum based on noise characteristics. The necessity to correct both filters for gravity measurement errors during turning maneuvers is demonstrated. It is shown that the proposed algorithms may be used to estimate UAV attitude. The effects of vibration on sensor measurements are discussed. Heuristic tuning comments pertaining to sensor filtering and gain selection to achieve acceptable performance during flight are given. Comparisons of attitude estimation performance are made between the EKF and the complementary filter.

  6. Drone Control System

    Science.gov (United States)

    1983-01-01

    Drones, subscale vehicles like the Firebees, and full scale retired military aircraft are used to test air defense missile systems. The DFCS (Drone Formation Control System) computer, developed by IBM (International Business Machines) Federal Systems Division, can track ten drones at once. A program called ORACLS is used to generate software to track and control Drones. It was originally developed by Langley and supplied by COSMIC (Computer Software Management and Information Center). The program saved the company both time and money.

  7. HYBRID VEHICLE CONTROL SYSTEM

    Directory of Open Access Journals (Sweden)

    V. Dvadnenko

    2016-06-01

    Full Text Available The hybrid vehicle control system includes a start–stop system for an internal combustion engine. The system works in a hybrid mode and normal vehicle operation. To simplify the start–stop system, there were user new possibilities of a hybrid car, which appeared after the conversion. Results of the circuit design of the proposed system of basic blocks are analyzed.

  8. ISLAMIC ECONOMIC SYSTEMATTITUDE TOWARD INTEREST RATE

    Directory of Open Access Journals (Sweden)

    Teufik Čočić

    2012-12-01

    Full Text Available This study is focused on basic theological, theoretical and practical principles of the Islamic economic system. It points out the importance of the source (Qur’an and Sunnah on which the Islamic economic system is based; it extracts the strength of its moral and ethical values from these sources, thus creating a framework for just and fair participation and functioning of an individual in the Islamic social community. The study also points out the key properties and characteristics of the Islamic model of a man who, with his dualistic nature, participates in everyday economic life by making choices between good and evil, just and unjust, etc. The study provides analysis of justice and fairness which are constituent parts of the concept of total moral and social values that guide an individual in an effort to prevent this person from exceeding the boundaries of what is allowed according to Islam. This paper is also focused on trust, the most important element of social capital in Islam and Islamic economy, and the importance of Sharia law as the fundamental Islamic law based on the concept of justice, trust and reliability. One chapter of the study is specifically focused on the prohibition of interest. It provides a historical overview and emergence of Usury and interest rate. Throughout history there have been examples of prohibition of the interest rate in monotheistic and other religions and social communities. Special attention is given to prohibition of interest (Riba in Islam, and the reasons for the existence of the conventional interest rate are compared with attitudes that Islam has toward these elements.

  9. Digital flight control systems

    Science.gov (United States)

    Caglayan, A. K.; Vanlandingham, H. F.

    1977-01-01

    The design of stable feedback control laws for sampled-data systems with variable rate sampling was investigated. These types of sampled-data systems arise naturally in digital flight control systems which use digital actuators where it is desirable to decrease the number of control computer output commands in order to save wear and tear of the associated equipment. The design of aircraft control systems which are optimally tolerant of sensor and actuator failures was also studied. Detection of the failed sensor or actuator must be resolved and if the estimate of the state is used in the control law, then it is also desirable to have an estimator which will give the optimal state estimate even under the failed conditions.

  10. Control Oriented System Identification

    Science.gov (United States)

    1993-08-01

    The research goals for this grant were to obtain algorithms for control oriented system identification is to construct dynamical models of systems...and measured information. Algorithms for this type of nonlinear system identification have been given that produce models suitable for gain scheduled

  11. IGISOL control system modernization

    Energy Technology Data Exchange (ETDEWEB)

    Koponen, J., E-mail: jukka.ae.koponen@jyu.fi; Hakala, J.

    2016-06-01

    Since 2010, the IGISOL research facility at the Accelerator laboratory of the University of Jyväskylä has gone through major changes. Comparing the new IGISOL4 facility to the former IGISOL3 setup, the size of the facility has more than doubled, the length of the ion transport line has grown to about 50 m with several measurement setups and extension capabilities, and the accelerated ions can be fed to the facility from two different cyclotrons. The facility has evolved to a system comprising hundreds of manual, pneumatic and electronic devices. These changes have prompted the need to modernize also the facility control system taking care of monitoring and transporting the ion beams. In addition, the control system is also used for some scientific data acquisition tasks. Basic guidelines for the IGISOL control system update have been remote control, safety, usability, reliability and maintainability. Legacy components have had a major significance in the control system hardware and for the renewed control system software the Experimental Physics and Industrial Control System (EPICS) has been chosen as the architectural backbone.

  12. Load Control System Reliability

    Energy Technology Data Exchange (ETDEWEB)

    Trudnowski, Daniel [Montana Tech of the Univ. of Montana, Butte, MT (United States)

    2015-04-03

    This report summarizes the results of the Load Control System Reliability project (DOE Award DE-FC26-06NT42750). The original grant was awarded to Montana Tech April 2006. Follow-on DOE awards and expansions to the project scope occurred August 2007, January 2009, April 2011, and April 2013. In addition to the DOE monies, the project also consisted of matching funds from the states of Montana and Wyoming. Project participants included Montana Tech; the University of Wyoming; Montana State University; NorthWestern Energy, Inc., and MSE. Research focused on two areas: real-time power-system load control methodologies; and, power-system measurement-based stability-assessment operation and control tools. The majority of effort was focused on area 2. Results from the research includes: development of fundamental power-system dynamic concepts, control schemes, and signal-processing algorithms; many papers (including two prize papers) in leading journals and conferences and leadership of IEEE activities; one patent; participation in major actual-system testing in the western North American power system; prototype power-system operation and control software installed and tested at three major North American control centers; and, the incubation of a new commercial-grade operation and control software tool. Work under this grant certainly supported the DOE-OE goals in the area of “Real Time Grid Reliability Management.”

  13. A cluster analysis to investigating nurses' knowledge, attitudes, and skills regarding the clinical management system.

    Science.gov (United States)

    Chan, M F

    2007-01-01

    Nurses' knowledge, attitudes, and skills regarding the Clinical Management System are explored by identifying profiles of nurses working in Hong Kong. A total of 282 nurses from four hospitals completed a self-reported questionnaire during the period from December 2004 to May 2005. Two-step cluster analysis yielded two clusters. The first cluster (n = 159, 56.4%) was labeled "negative attitudes, less skillful, and average knowledge" group. The second cluster (n = 123, 43.6%) was labeled "positive attitudes, good knowledge, but less skillful." There was a positive correlation in cluster 1 for nurses' knowledge and attitudes (rs = 0.28) and in cluster 2 for nurses' skills and attitudes (rs = 0.25) toward computerization. The study showed that senior and more highly educated nurses generally held more positive attitudes to computerization, whereas the attitudes among younger and less well educated nurses generally were more negative. Such findings should be used to formulate strategies to encourage nurses to resolve actual problems following computer training and to increase the depth and breadth of nurses' computer knowledge and skills and improve their attitudes toward computerization.

  14. ISTTOK control system upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Ivo S., E-mail: ivoc@ipfn.ist.utl.pt; Duarte, Paulo; Fernandes, Horácio; Valcárcel, Daniel F.; Carvalho, Pedro J.; Silva, Carlos; Duarte, André S.; Neto, André; Sousa, Jorge; Batista, António J.N.; Carvalho, Bernardo B.

    2013-10-15

    Highlights: •ISTTOK fast controller. •All real-time diagnostic and actuators were integrated in the control platform. •100 μs control cycle under the MARTe framework. •The ISTTOK control system upgrade provides reliable operation with an improved operational space. -- Abstract: The ISTTOK tokamak (Ip = 4 kA, BT = 0.5 T, R = 0.46 m, a = 0.085 m) is one of the few tokamaks with regular alternate plasma current (AC) discharges scientific programme. In order to improve the discharge stability and to increase the number of AC discharge cycles a novel control system was developed. The controller acquires data from 50 analog-to-digital converter (ADC) channels of real-time diagnostics and measurements: tomography, Mirnov coils, interferometer, electric probes, sine and cosine probes, bolometer, current delivered by the power supplies, loop voltage and plasma current. The system has a control cycle of 100 μs during which it reads all the diagnostics connected to the advanced telecommunications computing architecture (ATCA) digitizers and sends the control reference to ISTTOK actuators. The controller algorithms are executed on an Intel{sup ®} Q8200 chip with 4 cores running at 2.33 GHz and connected to the I/O interfaces through an ATCA based environment. The real-time control system was programmed in C++ on top of the Multi-threaded Application Real-Time executor (MARTe). To extend the duration of the AC discharges and the plasma stability a new magnetising field power supply was commissioned and the horizontal and vertical field power supplies were also upgraded. The new system also features a user-friendly interface based on HyperText Markup Language (HTML) and Javascript to configure the controller parameters. This paper presents the ISTTOK control system and the consequent update of real-time diagnostics and actuators.

  15. Adaptive Attitude Control of the Crew Launch Vehicle

    Science.gov (United States)

    Muse, Jonathan

    2010-01-01

    An H(sub infinity)-NMA architecture for the Crew Launch Vehicle was developed in a state feedback setting. The minimal complexity adaptive law was shown to improve base line performance relative to a performance metric based on Crew Launch Vehicle design requirements for all most all of the Worst-on-Worst dispersion cases. The adaptive law was able to maintain stability for some dispersions that are unstable with the nominal control law. Due to the nature of the H(sub infinity)-NMA architecture, the augmented adaptive control signal has low bandwidth which is a great benefit for a manned launch vehicle.

  16. A Comparative Study of Actuator Configurations for Satellite Attitude Control

    Directory of Open Access Journals (Sweden)

    Raymond Kristiansen

    2005-10-01

    Full Text Available In this paper a controllability study of different actuator configurations consisting of magnetic torquers, reaction wheels and a gravity boom is presented. The theoretical analysis is performed with use of controllability gramians, and simulation results with the different configurations are presented and compared regarding settling time and power consumption to substantiate the theoretical analysis. A reference model is also introduced to show how the power consumption can he lowered to the same magnitude as when magnetic torquers are used, without degrading the satellite response significantly.

  17. Design of Attitude Control Actuators for a Simulated Spacecraft

    Science.gov (United States)

    2011-03-24

    SimSat I provided a solid platform for research, by 2007 it was beginning to show its age. To quote Roach, Rohe, and Welty : 12 SIMSAT (I) did have...Katsuhiko Ogata. Modern Control Engineering. Prentice-Hall, New Jersey, 4th edition, 2002. 172 25. Neal R. Roach, Wayne C. Rohe, and Nathan F. Welty . A

  18. Attitude toward the Patient Safety Culture in healthcare systems

    Directory of Open Access Journals (Sweden)

    Fereydoon Laal

    2016-04-01

    Full Text Available Introduction: Patient Safety Culture (PSC involves a harmonious pattern of individual and organization behaviors based on common beliefs and values. This study aimed to evaluate the attitude of healthcare providers toward PSC in the hospitals and clinics of Zabol city, Iran. Materials and Methods: This descriptive cross-sectional study was conducted in 2015. Sample population consisted of the physicians, nurses, and paraclinical staff (radiologists and laboratory experts engaged in different healthcare centers of Zabol city, Iran. Data were collected using the Hospital Survey on Patient Safety Culture (HSOPSC questionnaire. Data analysis was performed in SPSS V.22 at the significance level of 0.05. Results: In total, 231 healthcare practitioners were enrolled in this study. Participants were divided into three groups of physicians, nurses, and paraclinical staff (n=77, 33.33%. Mean of age and clinical experience was 29.94 and 6.23 years, respectively. Among the main aspects of PSC, “general understanding of patient safety” had the highest mean score (13.53, and the lowest mean score was achieved in “non-punitive response to error” (8.89. In the aspect of “manager expectations and actions promoting safety”, a significant difference was observed in the mean scores of the study groups (P=0.030. Moreover, our results showed a significant difference between the mean scores of physicians and nurses in the aspect of “openness and honesty in communication” (P=0.023. Conclusion: According to the results of this study, improvement of PSC is necessary for the efficient management of hospitals and clinics. This is attainable through collaborative and instructive workshops, developing educational programs, and designing incident reporting systems.

  19. Attitudes of European citizens towards pig production systems

    DEFF Research Database (Denmark)

    Krystallis, Athanasios; de Barcellos, Marcia Dutra; Kügler, Jens Oliver

    2009-01-01

    pork with specific fat content, and finally the preferred quality characteristics of the pork end-product. The results of the conjoint analysis were used for a subsequent cluster analysis in order to identify European citizen clusters. Respondents' socio-demographic profile, attitudes towards issues...... and the need for an environment-friendly food production were indeed related to citizens' specific attitudes towards pig farming at the cluster level. However, the relationship between citizenship and consumption behaviour was found to be weak. What people think in their role as citizens related to pig...

  20. Control systems under attack?

    CERN Document Server

    Lüders, Stefan

    2005-01-01

    The enormous growth of the Internet during the last decade offers new means to share and distribute both information and data. In Industry, this results in a rapprochement of the production facilities, i.e. their Process Control and Automation Systems, and the data warehouses. At CERN, the Internet opens the possibility to monitor and even control (parts of) the LHC and its four experiments remotely from anywhere in the world. However, the adoption of standard IT technologies to Distributed Process Control and Automation Systems exposes inherent vulnerabilities to the world. The Teststand On Control System Security at CERN (TOCSSiC) is dedicated to explore the vulnerabilities of arbitrary Commercial-Of-The-Shelf hardware devices connected to standard Ethernet. As such, TOCSSiC should discover their vulnerabilities, point out areas of lack of security, and address areas of improvement which can then be confidentially communicated to manufacturers. This paper points out risks of accessing the Control and Automa...

  1. Control and Information Systems

    Directory of Open Access Journals (Sweden)

    Jiri Zahradnik

    2003-01-01

    Full Text Available The article deals with main tends of scientific research activities of Department of Control and Information Systems at the Faculty of Electrical Engineering of University of Zilina and its perspectives in this area.

  2. A Near-Hover Adaptive Attitude Control Strategy of a Ducted Fan Micro Aerial Vehicle with Actuator Dynamics

    Directory of Open Access Journals (Sweden)

    Shouzhao Sheng

    2015-09-01

    Full Text Available The aerodynamic parameters of ducted fan micro aerial vehicles (MAVs are difficult and expensive to precisely measure and are, therefore, not available in most cases. Furthermore, the actuator dynamics with risks of potentially destabilizing the overall system are important but often neglected consideration factors in the control system design of ducted fan MAVs. This paper presents a near-hover adaptive attitude control strategy of a prototype ducted fan MAV with actuator dynamics and without any prior information about the behavior of the MAV. The proposed strategy consists of an online parameter estimation algorithm and an adaptive gain scheduling algorithm, with the former accommodating parametric uncertainties, and the latter approximately eliminating the coupling among axes and guaranteeing the control quality of the MAV. The effectiveness of the proposed strategy is verified numerically and experimentally.

  3. Reset Control Systems

    CERN Document Server

    Baños, Alfonso

    2012-01-01

    Reset Control Systems addresses the analysis for reset control treating both its basic form which requires only that the state of the controller be reinitialized to zero (the reset action) each time the tracking error crosses zero (the reset condition), and some useful variations of the reset action (partial reset with fixed or variable reset percentage) and of the reset condition (fixed or variable reset band and anticipative reset). The issues regarding reset control – concepts and motivation; analysis tools; and the application of design methodologies to real-world examples – are given comprehensive coverage. The text opens with an historical perspective which moves from the seminal work of the Clegg integrator and Horowitz FORE to more recent approaches based on impulsive/hybrid control systems and explains the motivation for reset compensation. Preliminary material dealing with notation, basic definitions and results, and with the definition of the control problem under study is also included. The fo...

  4. Tautological control systems

    CERN Document Server

    Lewis, Andrew D

    2014-01-01

    This brief presents a description of a new modelling framework for nonlinear/geometric control theory. The framework is intended to be—and shown to be—feedback-invariant. As such, Tautological Control Systems provides a platform for understanding fundamental structural problems in geometric control theory. Part of the novelty of the text stems from the variety of regularity classes, e.g., Lipschitz, finitely differentiable, smooth, real analytic, with which it deals in a comprehensive and unified manner. The treatment of the important real analytic class especially reflects recent work on real analytic topologies by the author. Applied mathematicians interested in nonlinear and geometric control theory will find this brief of interest as a starting point for work in which feedback invariance is important. Graduate students working in control theory may also find Tautological Control Systems to be a stimulating starting point for their research.

  5. Internal control system

    OpenAIRE

    Pavésková, Ivana

    2012-01-01

    Dissertation focuse on the internal control system in the enterprises, aims to map the control system by focusing on the purchasing department. I focused on the purchasing process, because with an increasing trends of outsourcing services and the increasing interconnectedness of enterprises increases the risk of fraud currently in the purchasing process. To the research was selected the sample of companies from the banking and non-banking environment, to which were sent a questionnaire focusi...

  6. Nonlinear Control Systems

    Science.gov (United States)

    2007-03-01

    IEEE Transactions on Automatic Control , AC- 48, pp. 1712-1723, (2003). [14] C.I. Byrnes, A. Isidori...Nonlinear internal models for output regulation,” IEEE Transactions on Automatic Control , AC-49, pp. 2244-2247, (2004). [15] C.I. Byrnes, F. Celani, A...approach,” IEEE Transactions on Automatic Control , 48 (Dec. 2003), 2172–2190. 2. C. I. Byrnes, “Differential Forms and Dynamical Systems,” to appear

  7. Fault Tolerant Attitude Control for spacecraft with SGCMGs under actuator partial failure and actuator saturation

    Science.gov (United States)

    Zhang, Fuzhen; Jin, Lei; Xu, Shijie

    2017-03-01

    A Fault Tolerant Attitude Control algorithm for the spacecraft using Single Gimbal Control Moment Gyros (SGCMGs) as actuator is proposed. The controller is designed using the sliding mode control theory to control the gimbal rate directly and there is no singular point in the control algorithm, which means that we don't need to design the steering laws again and the singularity problems can be avoided. Also the gimbal rate saturation is considered when designing the control method. The adaptive control algorithm is used to estimate the disturbance and the boundary of the fault and saturation, which means that no prior information of the fault is needed. Although the controller is designed based on the SGCMGs, it can also be employed when reaction wheels work as the actuator of the spacecraft. Also the complete failure of several SGCMGs is allowed. It is proved based on the Lyapunov stability theorem that the designed control algorithm can achieve the attitude asymptotic stability both on the fault or fault-free condition. The simulation results show that the proposed method has a strong robustness.

  8. Inertial attitude control of a bat-like morphing-wing air vehicle.

    Science.gov (United States)

    Colorado, J; Barrientos, A; Rossi, C; Parra, C

    2013-03-01

    This paper presents a novel bat-like unmanned aerial vehicle inspired by the morphing-wing mechanism of bats. The goal of this paper is twofold. Firstly, a modelling framework is introduced for analysing how the robot should manoeuvre by means of changing wing morphology. This allows the definition of requirements for achieving forward and turning flight according to the kinematics of the wing modulation. Secondly, an attitude controller named backstepping+DAF is proposed. Motivated by biological evidence about the influence of wing inertia on the production of body accelerations, the attitude control law incorporates wing inertia information to produce desired roll (ϕ) and pitch (θ) acceleration commands (desired angular acceleration function (DAF)). This novel control approach is aimed at incrementing net body forces (F(net)) that generate propulsion. Simulations and wind-tunnel experimental results have shown an increase of about 23% in net body force production during the wingbeat cycle when the wings are modulated using the DAF as a part of the backstepping control law. Results also confirm accurate attitude tracking in spite of high external disturbances generated by aerodynamic loads at airspeeds up to 5 ms⁻¹.

  9. FABRIC QUALITY CONTROL SYSTEMS

    Directory of Open Access Journals (Sweden)

    Özlem KISAOĞLU

    2006-02-01

    Full Text Available Woven fabric quality depends on yarn properties at first, then weaving preparation and weaving processes. Defect control of grey and finished fabric is done manually on the lighted tables or automatically. Fabrics can be controlled by the help of the image analysis method. In image system the image of fabrics can be digitized by video camera and after storing controlled by the various processing. Recently neural networks, fuzzy logic, best wavelet packet model on automatic fabric inspection are developed. In this study the advantages and disadvantages of manual and automatic, on-line fabric inspection systems are given comparatively.

  10. Controllability of delay systems with restrained controls

    Science.gov (United States)

    Chukwu, E. N.

    1979-01-01

    Using a geometric growth condition, both the function space and Euclidean controllability of a nonlinear delay system which has a compact and convex control set are characterized. This extends analogous results for ordinary differential systems, and it yields conditions under which perturbed nonlinear delay controllable systems are controllable.

  11. Analysis of Pan-European attitudes to the eradication and control of bovine viral diarrhoea.

    Science.gov (United States)

    Heffernan, C; Misturelli, F; Nielsen, L; Gunn, G J; Yu, J

    2009-02-07

    At present, national-level policies concerning the eradication and control of bovine viral diarrhoea (BVD) differ widely across Europe. Some Scandinavian countries have enacted strong regulatory frameworks to eradicate the disease, whereas other countries have few formal policies. To examine these differences, the attitudes of stakeholders and policy makers in 17 European countries were investigated. A web-based questionnaire was sent to policy makers, government and private sector veterinarians, and representatives of farmers' organisations. In total, 131 individuals responded to the questionnaire and their responses were analysed by applying a method used in sociolinguistics: frame analysis. The results showed that the different attitudes of countries that applied compulsory or voluntary frameworks were associated with different views about the attribution or blame for BVD and the roles ascribed to farmers and other stakeholders in its eradication and control.

  12. ACCESS Pointing Control System

    Science.gov (United States)

    Brugarolas, Paul; Alexander, James; Trauger, John; Moody, Dwight; Egerman, Robert; Vallone, Phillip; Elias, Jason; Hejal, Reem; Camelo, Vanessa; Bronowicki, Allen; O'Connor, David; Partrick, Richard; Orzechowski, Pawel; Spitter, Connie; Lillie, Chuck

    2010-01-01

    ACCESS (Actively-Corrected Coronograph for Exoplanet System Studies) was one of four medium-class exoplanet concepts selected for the NASA Astrophysics Strategic Mission Concept Study (ASMCS) program in 2008/2009. The ACCESS study evaluated four major coronograph concepts under a common space observatory. This paper describes the high precision pointing control system (PCS) baselined for this observatory.

  13. Cassini Attitude Control Operations Flight Rules and How They are Enforced

    Science.gov (United States)

    Burk, Thomas; Bates, David

    2008-01-01

    The Cassini spacecraft was launched on October 15, 1997 and arrived at Saturn on June 30, 2004. It has performed detailed observations and remote sensing of Saturn, its rings, and its satellites since that time. Cassini deployed the European-built Huygens probe which descended through the Titan atmosphere and landed on its surface on January 14, 2005. Operating the Cassini spacecraft is a complex scientific, engineering, and management job. In order to safely operate the spacecraft, a large number of flight rules were developed. These flight rules must be enforced throughout the lifetime of the Cassini spacecraft. Flight rules are defined as any operational limitation imposed by the spacecraft system design, hardware, and software, violation of which would result in spacecraft damage, loss of consumables, loss of mission objectives, loss and/or degradation of science, and less than optimal performance. Flight rules require clear description and rationale. Detailed automated methods have been developed to insure the spacecraft is continuously operated within these flight rules. An overview of all the flight rules allocated to the Cassini Attitude Control and Articulation Subsystem and how they are enforced is presented in this paper.

  14. MATHEMATICAL MODEL OF ATTITUDE CONTROL BUCKET‐WHEEL EXCAVATOR

    Directory of Open Access Journals (Sweden)

    Ivana ONDERKOVÁ

    2013-07-01

    Full Text Available This lecture deals with the application problems of convertibility GPS system at paddle excavator K 800. The claims of the modern operating surface mining of the excavators requires a lot of information for monitoring of mining process, capacity mining, selective extraction etc. The utilization of monitoring the excavator setting by GPS system proved to be the only one proper because the receivers are resistant to the vibration, dust, temperature divergence and weather changeable. Only the direct contact with communications satellite is required. It means that they can´t be located in a metal construction space (shadow caused by construction elements, influence of electrical high voltage cables even they can´t be located close to the paddle wheel on the paddle boom (shadow possibility caused by cuttinng edge created during lower gangplanks mining. This is the reason that GPS receivers are set uppermost on the metal construction excavator and the mathematical formulation is required for determination of paddle wheel petting. The relations for calculation of the paddle wheel coordinate were defined mathematically and after that the mathematical model was composed.

  15. The ISOLDE control system

    Science.gov (United States)

    Deloose, I.; Pace, A.

    1994-12-01

    The two CERN isotope separators named ISOLDE have been running on the new Personal Computer (PC) based control system since April 1992. The new architecture that makes heavy use of the commercial software and hardware of the PC market has been implemented on the 1700 geographically distributed control channels of the two separators and their experimental area. Eleven MSDOS Intel-based PCs with approximately 80 acquisition and control boards are used to access the equipment and are controlled from three PCs running Microsoft Windows used as consoles through a Novell Local Area Network. This paper describes the interesting solutions found and discusses the reduced programming workload and costs that have been obtained.

  16. Inertial attitude control of a bat-like morphing-wing micro air vehicle

    OpenAIRE

    2013-01-01

    This article presents a novel bat-like micro air vehicle inspired by the morphing-wing mechanism of bats. The goal of this paper is twofold. Firstly, a modelling framework is introduced for analysing how the robot should maneuver by means of changing wing morphology. This allows the definition of requirements for achieving forward and turning flight according to the kinematics of the wing modulation. Secondly, an attitude controller named backstepping+DAF is proposed. Motivated by the biologi...

  17. CNEOST Control Software System

    Science.gov (United States)

    Wang, X.; Zhao, H. B.; Xia, Y.; Lu, H.; Li, B.

    2015-03-01

    In 2013, CNEOST (China Near Earth Object Survey Telescope) adapted its hardware system for the new CCD camera. Based on the new system architecture, the control software is re-designed and implemented. The software system adopts the message passing mechanism via WebSocket protocol, and improves its flexibility, expansibility, and scalability. The user interface with responsive web design realizes the remote operating under both desktop and mobile devices. The stable operating of software system has greatly enhanced the operation efficiency while reducing the complexity, and has also made a successful attempt for the future system design of telescope and telescope cloud.

  18. Cassini Attitude Control Flight Software: from Development to In-Flight Operation

    Science.gov (United States)

    Brown, Jay

    2008-01-01

    The Cassini Attitude and Articulation Control Subsystem (AACS) Flight Software (FSW) has achieved its intended design goals by successfully guiding and controlling the Cassini-Huygens planetary mission to Saturn and its moons. This paper describes an overview of AACS FSW details from early design, development, implementation, and test to its fruition of operating and maintaining spacecraft control over an eleven year prime mission. Starting from phases of FSW development, topics expand to FSW development methodology, achievements utilizing in-flight autonomy, and summarize lessons learned during flight operations which can be useful to FSW in current and future spacecraft missions.

  19. Indirect Adaptive Attitude Control for a Ducted Fan Vertical Takeoff and Landing Microaerial Vehicle

    Directory of Open Access Journals (Sweden)

    Shouzhao Sheng

    2015-01-01

    Full Text Available The present paper addresses an attitude tracking control problem of a ducted fan microaerial vehicle. The proposed indirect adaptive controller can greatly reduce tracking error in the initial stage of the adaptive learning process by using an error compensation strategy and can achieve good capability to eliminate the adverse effect of measurement noises on the convergence of adjustable parameters. Moreover, the learning rate adaptation strategy is proposed to further minimize the adverse effect of large learning rates on the convergence of adjustable parameters. The experimental tests have illustrated the effectiveness of the proposed adaptive controller.

  20. Predicting healthcare employees' participation in an office redesign program: Attitudes, norms and behavioral control

    Directory of Open Access Journals (Sweden)

    Lukas Carol

    2008-11-01

    Full Text Available Abstract Background The study examined the extent to which components based on a modified version of the theory of planned behavior explained employee participation in a new clinical office program designed to reduce patient waiting times in primary care clinics. Methods We regressed extent of employee participation on attitudes about the program, group norms, and perceived behavioral control along with individual and clinic characteristics using a hierarchical linear mixed model. Results Perceived group norms were one of the best predictors of employee participation. Attitudes about the program were also significant, but to a lesser degree. Behavioral control, however, was not a significant predictor. Respondents with at least one year of clinic tenure, or who were team leaders, first line supervisor, or managers had greater participation rates. Analysis at the clinic level indicated clinics with scores in the highest quartile clinic scores on group norms, attitudes, and behavioral control scores were significantly higher on levels of overall participation than clinics in the lowest quartile. Conclusion Findings suggest that establishing strong norms and values may influence employee participation in a change program in a group setting. Supervisory level was also significant with greater responsibility being associated with greater participation.

  1. Purwarupa Air Data, Attitude, dan Heading Reference System untuk Unmanned Aerial Vehicle

    OpenAIRE

    Manggala, Adrianus Prima; Sumiharto, Raden; Wibowo, Setyawan Bekti

    2012-01-01

    AbstrakADAHRS  (air data, attitude, and heading reference system )merupakan gabungan dari sensor air data (AD) dan sistem referensi attitude and heading (AHRS). Sistem ini memiliki peran penting dalam memberikan data parameter-parameter penerbangan yang akan digunakan oleh modul lain dalam UAV. Parameter penerbangan yssang dibaca oleh ADAHRS adalah sudut yaw, sudut pitch, sudut roll, serta data ketinggian, kecepatan, suhu, tekanan, dan koordinat GPS yang akan digunakan sebagai referensi dalam...

  2. 航天器连续非光滑姿态控制律设计%Design of Continuous Non-Smooth Attitude Control Laws for Spacecraft

    Institute of Scientific and Technical Information of China (English)

    马克茂

    2012-01-01

    为了提高航天器姿态控制系统的鲁棒性和动态特性,应用非光滑控制方法设计了连续的姿态控制律,使闭环姿态控制系统具有齐次性,且齐次度为负,实现了姿态控制系统的有限时间稳定,以保证系统状态的动态特性.分别针对标称系统渗数不确定性和外部扰动等情形进行了仿真验证,仿真结果表明所设计的控制律在保证标称系统有限时间稳定性的同时,针对系统的不确定性和扰动具有鲁棒性.%For the attitude control system of a spacecraft, non-smooth control technique is utilized to improve the robustness and dynamic performance. A continuous attitude control law is given to ensure the homogeneity of the closed-loop attitude control system with a negative degree of homogeneity. The resulting attitude control system is finite-time stable, thus guaranteeing the dynamic performance of state variables. Simulation is carried out under the cases of the nominal system and the systems with parameter uncertainties and external disturbances, respectively. The simulation results show that, under the designed control law, the nominal system is finite-time stable, and uncertain systems are robust against uncertainties and disturbances.

  3. The Relationship between Justice and Attitudes: An Examination of Justice Effects on Event and System-Related Attitudes

    Science.gov (United States)

    Ambrose, Maureen; Hess, Ronald L.; Ganesan, Shankar

    2007-01-01

    Research in organizational justice has always been interested in the relationship between justice and attitudes. This research often examines how different types of justice affect different attitudes, with distributive justice predicted to affect attitudes about specific events (e.g., performance evaluation) and procedural justice predicted to…

  4. Space Station Control Requirements and Flywheel System Weights for Combined Momentum and Energy Storage

    Science.gov (United States)

    Elam, F. M.

    1983-01-01

    The specifications of the flywheel system for momentum storage and vehicle torquing are somewhat dependent upon the attitude control requirements of the space station in orbit. As a ground rule, the flywheel system will be sized large enough to provide all attitude maneuvers, if practical, to avoid or minimize turning on the reaction control system (RCS). The RCS, whenever used, expels expensive mass and tends to contaminate optical surfaces of the vehicle. The vehicle rate and acceleration specifications of 0.10 deg/sec and 0.01 deg/square sec are tentative, and may be reduced if lesser values are more practical for flywheel design. For local vertical attitude hold, the average attitude error should be zero, and not the classical 1 degree, since control moment gyro (CMG) gimbal angles provide an exact reference feedback for gravity gradient momentum. Docking presents a problem for docking transients and attitude alignment which will require use of the RCS.

  5. Spacecraft Attitude Control under Control Constraint with Velocity-free%控制受限航天器无角速度反馈姿态控制

    Institute of Scientific and Technical Information of China (English)

    王岩; 唐强; 陈兴林

    2011-01-01

    重点研究了控制受限和角速度不可测情况下航天器姿态快速跟踪问题.首先定义了四元数辅助系统,并设计了包含实际误差四元数和观测误差四元数的双曲正切函数的非线性控制律;然后,证明了系统的稳定性以及控制量的有界性;最后通过数字仿真与已有的方法进行比较研究,说明该方法能大大提高卫星姿态跟踪精度和响应速度.%Attitude control of rigid spacecraft without the measurement of angular velocity was proposed in the case of physical limits of actuators. First a quaternion auxiliary dynamical system was defined, and then a nonlinear feedback control law of hyperbolic tangent function with real and estimated errors of unit-quaternion was presented. The stability of the tracking error system with bounded control effort was proved. The performance of the proposed control algorithm was verified through numerical simulations. It shows that both the satellite attitude accuracy and response speed can be improved greatly compared to other methods.

  6. Aerojet - Attitude Control Engines. Chapter 3, Appendix E

    Science.gov (United States)

    Pfeifer, Gerald R.

    2009-01-01

    All the engines were both qualification and acceptance tested at Marquardt s facilities. After we won the Apollo Program contract, we went off and built two vacuum test facilities, which simulated altitude continuous firing for as long as we wanted to run an engine. They would run days and days with the same capability we had on steam ejection. We did all of the testing in both for the qualification and the acceptance test. One of them was a large ball, which was an eighteen-foot diameter sphere, evacuated again with a big steam ejector system that could be used for system testing; that s where we did the Lunar Excursion Module testing. We put the whole cluster in there and tested the entire cluster at the simulated altitude conditions. The lowest altitude we tested at - typically an acceptance test - was 105,000 feet simulated altitude. The big ball - because people were interested in what they called goop formation, which is an unburned hydrazine product migrating to cold surfaces on different parts of spacecraft - was built to address those kinds of issues. We ran long-life tests in a simulated space environment with the entire inside of the test cell around the test article, liquid nitrogen cooled, so it could act as getter for any of the exhaust products. That particular facility could pull down to about 350,000 feet (atmosphere) equivalent altitude, which was pushing pretty close to the thermodynamic triple point of the MMH. It was a good test facility. Those facilities are no longer there. When the guys at Marquardt sold the company to what eventually became part of Aerojet, all those test facilities were cut off at the roots. I think they have a movie studio there at this point. That part of it is truly not recoverable, but it did some excellent high-altitude, space-equivalent testing at the time. Surprisingly, we had very few problems while testing in the San Fernando Valley. In the early 1960s, nobody had ever seen dinitrogen tetroxide (N2O4), so that

  7. Accurate Compensation of Attitude Angle Error in a Dual-Axis Rotation Inertial Navigation System

    Science.gov (United States)

    Jiang, Rui; Yang, Gongliu; Zou, Rui; Wang, Jing; Li, Jing

    2017-01-01

    In the dual-axis rotation inertial navigation system (INS), besides the gyro error, accelerometer error, rolling misalignment angle error, and the gimbal angle error, the shaft swing angle and the axis non-orthogonal angle also affect the attitude accuracy. Through the analysis of the structure, we can see that the shaft swing angle and axis non-orthogonal angle will produce coning errors which cause the fluctuation of the attitude. According to the analysis of the rotation vector, it can be seen that the coning error will generate additional drift velocity along the rotating shaft, which can reduce the navigation precision of the system. In this paper, based on the establishment of the modulation average frame, the vector projection is carried out, and then the attitude conversion matrix and the attitude error matrix mainly including the shaft swing angle and axis non-orthogonal are obtained. Because the attitude angles are given under the static condition, the shaft swing angle and the axis non-orthogonal angle are estimated by the static Kalman filter (KF). This kind of KF method has been widely recognized as the standard optimal estimation tool for estimating the parameters such as coning angles (α1 , α2), initial phase angles (ϕ1,ϕ2), and the non-perpendicular angle (η). In order to carry out the system level verification, a dual axis rotation INS is designed. Through simulation and experiments, the results show that the amplitudes of the attitude angles’ variation are reduced by about 20%–30% when the shaft rotates. The attitude error equation is reasonably simplified and the calibration method is accurate enough. The attitude accuracy is further improved. PMID:28304354

  8. Fault Tolerant Control Systems

    DEFF Research Database (Denmark)

    Bøgh, S.A.

    and isolation, remedial action decision, and reconfiguration. The integration of these modules in software were considered. The general methodology covered the analysis, design, and implementation of fault tolerant control systems on an overall level. Two detailed studies were presented, one on fault detection......, as for example a variable being zero, low or high. Examples were given that illustrate how such models can be established by simple means, and yet provide important information when combined into a complete system. A special achievement was a method to determine how control loops behave in case of faults......This thesis considered the development of fault tolerant control systems. The focus was on the category of automated processes that do not necessarily comprise a high number of identical sensors and actuators to maintain safe operation, but still have a potential for improving immunity to component...

  9. Controllability of nonlinear systems.

    Science.gov (United States)

    Sussmann, H. J.; Jurdjevic, V.

    1972-01-01

    Discussion of the controllability of nonlinear systems described by the equation dx/dt - F(x,u). Concepts formulated by Chow (1939) and Lobry (1970) are applied to establish criteria for F and its derivatives to obtain qualitative information on sets which can be obtained from x which denotes a variable of state in an arbitrary, real, analytical manifold. It is shown that controllability implies strong accessibility for a large class of manifolds including Euclidean spaces.-

  10. Optical controlled keyboard system

    Science.gov (United States)

    Budzyński, Łukasz; Długosz, Dariusz; Niewiarowski, Bartosz; Zajkowski, Maciej

    2011-06-01

    Control systems of our computers are common devices, based on the manipulation of keys or a moving ball. Completely healthy people have no problems with the operation of such devices. Human disability makes everyday activities become a challenge and create trouble. When a man can not move his hands, the work becomes difficult or often impossible. Controlled optical keyboard is a modern device that allows to bypass the limitations of disability limbs. The use of wireless optical transmission allows to control computer using a laser beam, which cooperates with the photodetectors. The article presents the construction and operation of non-contact optical keyboard for people with disabilities.

  11. Supervisory Control of Networked Control Systems

    Science.gov (United States)

    2006-01-15

    REPORT: January 15, 2006 Problem Statement: A networked control system is a control system whose feedback path is realized over a computer...theoretical bounds derived in [Ling03a]. 6. The feedback information in a networked control system is quantized due to the digital nature of

  12. Attitude Control of a Satellite Simulator Using Reaction Wheels and a PID Controller

    Science.gov (United States)

    2010-03-01

    Rohe, and Welty in the development of AFIT’s second- generation satellite simulator, SimSat II [40]. Instead of building another dumbbell-style spherical...Nathan F. Welty . A Systems Engineering Approach to the Design of a Spacecraft Dynamics and Control Testbed. MS thesis, Air Force Institute of

  13. Use of hormonal contraceptives to control menstrual bleeding: attitudes and practice of Brazilian gynecologists

    Directory of Open Access Journals (Sweden)

    Makuch MY

    2013-11-01

    Full Text Available María Y Makuch,1 Maria José D Osis,1 Karla Simonia de Pádua,1,2 Luis Bahamondes3 1Center for Research in Reproductive Health (CEMICAMP, 2Prof Dr José Aristodemo Pinotti Women's Hospital, University of Campinas, 3Department of Obstetrics and Gynaecology, School of Medical Sciences, University of Campinas, and National Institute of Hormones and Women's Health, Campinas, São Paulo, Brazil Background: The purpose of this study was to assess the attitudes and prescribing practices of Brazilian obstetricians and gynecologists regarding use of contraceptive methods to interfere with menstruation and/or induce amenorrhea. Methods: We undertook a nationwide survey of Brazilian obstetricians and gynecologists selected using a computer-generated randomization system. Participants completed a questionnaire on prescription of contraceptives and extended/continuous regimens of combined oral contraceptives (COCs. Results: In total, 79.2% of Brazilian obstetricians and gynecologists reported that 20%–40% of their patients consulted them for menstrual-related complaints and 26%–34% of the gynecologists reported that 21%–40% of their patients consulted them for reduction in the intensity, frequency, and/or duration of menstrual bleeding. Overall, 93% stated that medically induced amenorrhea represents no risk to women's health and 82.5% said that they prescribed contraceptives to control menstruation or induce amenorrhea. The contraceptives most commonly prescribed were extended-cycle 24/4 or 26/2 COC regimens and the levonorgestrel-releasing intrauterine system. Poisson regression analysis showed that Brazilian obstetricians and gynecologists prescribing contraceptives to control menstruation or induce amenorrhea consider extended-use or continuous-use COC regimens to be effective for both indications (prevalence ratio 1.23 [95% confidence interval 1.09–1.40] and prevalence ratio 1.28 [95% confidence interval 1.13–1.46], respectively. They also

  14. Control of complex systems

    CERN Document Server

    Albertos, Pedro; Blanke, Mogens; Isidori, Alberto; Schaufelberger, Walter; Sanz, Ricardo

    2001-01-01

    The world of artificial systems is reaching complexity levels that es­ cape human understanding. Surface traffic, electricity distribution, air­ planes, mobile communications, etc. , are examples that demonstrate that we are running into problems that are beyond classical scientific or engi­ neering knowledge. There is an ongoing world-wide effort to understand these systems and develop models that can capture its behavior. The reason for this work is clear, if our lack of understanding deepens, we will lose our capability to control these systems and make they behave as we want. Researchers from many different fields are trying to understand and develop theories for complex man-made systems. This book presents re­ search from the perspective of control and systems theory. The book has grown out of activities in the research program Control of Complex Systems (COSY). The program has been sponsored by the Eu­ ropean Science Foundation (ESF) which for 25 years has been one of the leading players in stimula...

  15. Attitudes toward Placebo-Controlled Clinical Trials of Patients with Schizophrenia in Japan.

    Directory of Open Access Journals (Sweden)

    Norio Sugawara

    Full Text Available Although the use of placebo in clinical trials of schizophrenia patients is controversial because of medical and ethical concerns, placebo-controlled clinical trials are commonly used in the licensing of new drugs.The objective of this study was to assess the attitudes toward placebo-controlled clinical trials among patients with schizophrenia in Japan.Using a cross-sectional design, we recruited patients (n = 251 aged 47.7±13.2 (mean±SD with a DSM-IV diagnosis of schizophrenia or schizoaffective disorder who were admitted to six psychiatric hospitals from December 2013 to March 2014. We employed a 14-item questionnaire specifically developed to survey patients' attitudes toward placebo-controlled clinical trials.The results indicated that 33% of the patients would be willing to participate in a placebo-controlled clinical trial. Expectations for improvement of disease, a guarantee of hospital treatment continuation, and encouragement by family or friends were associated with the willingness to participate in such trials, whereas a belief of additional time required for medical examinations was associated with non-participation.Fewer than half of the respondents stated that they would be willing to participate in placebo-controlled clinical trials. Therefore, interpreting the results from placebo-controlled clinical trials could be negatively affected by selection bias.

  16. The roles of users personal characteristics and organisational support in the attitude towards using ERP systems in a Spanish public hospital.

    Science.gov (United States)

    Escobar-Rodriguez, Tomas; Bartual-Sopena, Lourdes

    2013-01-01

    Enterprise resources planning (ERP) systems enable central and integrative control over all processes throughout an organisation by ensuring one data entry point and the use of a common database. T his paper analyses the attitude of healthcare personnel towards the use of an ERP system in a Spanish public hospital, identifying influencing factors. This research is based on a regression analysis of latent variables using the optimisation technique of partial least squares. We propose a research model including possible relationships among different constructs using the technology acceptance model. Our results show that the personal characteristics of potential users are key factors in explaining attitude towards using ERP systems.

  17. Electric turbocompound control system

    Energy Technology Data Exchange (ETDEWEB)

    Algrain, Marcelo C. (Dunlap, IL)

    2007-02-13

    Turbocompound systems can be used to affect engine operation using the energy in exhaust gas that is driving the available turbocharger. A first electrical device acts as a generator in response to turbocharger rotation. A second electrical device acts as a motor to put mechanical power into the engine, typically at the crankshaft. Apparatus, systems, steps, and methods are described to control the generator and motor operations to control the amount of power being recovered. This can control engine operation closer to desirable parameters for given engine-related operating conditions compared to actual. The electrical devices can also operate in "reverse," going between motor and generator functions. This permits the electrical device associated with the crankshaft to drive the electrical device associated with the turbocharger as a motor, overcoming deficient engine operating conditions such as associated with turbocharger lag.

  18. Controllability of Complex Systems

    Science.gov (United States)

    Slotine, Jean-Jacques

    2013-03-01

    We review recent work on controllability of complex systems. We also discuss the interplay of our results with questions of synchronization, and point out key directions of future research. Work done in collaboration with Yang-Yu Liu, Center for Complex Network Research and Departments of Physics, Computer Science and Biology, Northeastern University and Center for Cancer Systems Biology, Dana-Farber Cancer Institute; and Albert-László Barabási, Center for Complex Network Research and Departments of Physics, Computer Science and Biology, Northeastern University; Center for Cancer Systems Biology, Dana-Farber Cancer Institute; and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School.

  19. Microprocessor control for standardized power control systems

    Science.gov (United States)

    Green, D. G.; Perry, E.

    1978-01-01

    The use of microcomputers in space-oriented power systems as a replacement for existing inflexible analog type controllers has been proposed. This study examines multiprocessor systems, various modularity concepts and presents a conceptualized power system incorporating a multiprocessor controller as well as preliminary results from a breadboard model of the proposed system.

  20. The ISOLDE control system

    Energy Technology Data Exchange (ETDEWEB)

    Deloose, I. (CERN, PS Division, CH-1211 Geneva 23 (Switzerland)); Pace, A. (CERN, PS Division, CH-1211 Geneva 23 (Switzerland))

    1994-12-15

    The two CERN isotope separators named ISOLDE have been running on the new Personal Computer (PC) based control system since April 1992. The new architecture that makes heavy use of the commercial software and hardware of the PC market has been implemented on the 1700 geographically distributed control channels of the two separators and their experimental area. Eleven MSDOS Intel-based PCs with approximately 80 acquisition and control boards are used to access the equipment and are controlled from three PCs running Microsoft Windows used as consoles through a Novell Local Area Network. This paper describes the interesting solutions found and discusses the reduced programming workload and costs that have been obtained. ((orig.))

  1. Cryogenic Control System

    Energy Technology Data Exchange (ETDEWEB)

    Goloborod' ko, S.; /Fermilab

    1989-02-27

    The control system (CS) for the cryogenic arrangement of the DO Liquid Argon Calorimeter consists of a Texas instruments 560/565 Programmable Logical Controller (PLC), two remote bases with Remote Base Controllers and a corresponding set of input/output (I/O) modules, and a PC AST Premium 286 (IBM AT Compatible). The PLC scans a set of inputs and provides a set of outputs based on a ladder logic program and PID control loops. The inputs are logic or analog (current, voltage) signals from equipment status switches or transducers. The outputs are logic or analog (current or voltage) signals for switching solenoids and positioning pneumatic actuators. Programming of the PLC is preformed by using the TISOFT2/560/565 package, which is installed in the PC. The PC communicates to the PLC through a serial RS232 port and provides operator interface to the cryogenic process using Xpresslink software.

  2. Design and Analysis of Morpheus Lander Flight Control System

    Science.gov (United States)

    Jang, Jiann-Woei; Yang, Lee; Fritz, Mathew; Nguyen, Louis H.; Johnson, Wyatt R.; Hart, Jeremy J.

    2014-01-01

    The Morpheus Lander is a vertical takeoff and landing test bed vehicle developed to demonstrate the system performance of the Guidance, Navigation and Control (GN&C) system capability for the integrated autonomous landing and hazard avoidance system hardware and software. The Morpheus flight control system design must be robust to various mission profiles. This paper presents a design methodology for employing numerical optimization to develop the Morpheus flight control system. The design objectives include attitude tracking accuracy and robust stability with respect to rigid body dynamics and propellant slosh. Under the assumption that the Morpheus time-varying dynamics and control system can be frozen over a short period of time, the flight controllers are designed to stabilize all selected frozen-time control systems in the presence of parametric uncertainty. Both control gains in the inner attitude control loop and guidance gains in the outer position control loop are designed to maximize the vehicle performance while ensuring robustness. The flight control system designs provided herein have been demonstrated to provide stable control systems in both Draper Ares Stability Analysis Tool (ASAT) and the NASA/JSC Trick-based Morpheus time domain simulation.

  3. Attitude stabilization of flexible spacecrafts via extended disturbance observer based controller

    Science.gov (United States)

    Yan, Ruidong; Wu, Zhong

    2017-04-01

    To achieve the high-precision attitude stabilization for the flexible spacecraft in the presence of space environmental disturbances, unmodeled dynamics, and the disturbances caused by the elastic vibration of flexible appendages, an extended disturbance observer (EDO) based controller is proposed. The proposed controller is formulated by combining EDO and a backstepping feedback controller. EDO is used to estimate the disturbance, which is modeled as an unknown high-order differentiable equation and the rth-order derivative of the disturbance is assumed to be bounded. Compared to the conventional first-order disturbance observer, the higher order EDO offers improvement in estimate accuracy, if the absolute values of poles for EDO transfer function are chosen larger than the frequency content of the disturbance. Then, the output of EDO plus the backstepping feedback controller are applied to stabilize the attitude with high precision by rejecting disturbances for the flexible spacecraft. Finally, numerical simulations have been conducted to verify the effectiveness of the proposed controller.

  4. Composite control method for stabilizing spacecraft attitude in terms of Rodrigues parameters

    Institute of Scientific and Technical Information of China (English)

    Sun Haibin; Li Shihua

    2013-01-01

    In this paper,the attitude stabilization problem of a rigid spacecraft described by Rodrigues parameters is investigated via a composite control strategy,which combines a feedback control law designed by a finite time control technique with a feedforward compensator based on a linear disturbance observer (DOB) method.By choosing a suitable coordinate transformation,the spacecraft dynamics can be divided into three second-order subsystems.Each subsystem includes a certain part and an uncertain part.By using the finite time control technique,a continuous finite time controller is designed for the certain part.The uncertain part is considered to be a lumped disturbance,which is estimated by a DOB,and a corresponding feedforward design is then implemented to compensate the disturbance.Simulation results are employed to confirm the effectiveness of the proposed approach.

  5. Analyzing Drivers' Attitude towards HUD System Using a Stated Preference Survey

    Directory of Open Access Journals (Sweden)

    Hongwei Guo

    2014-02-01

    Full Text Available It is very important for drivers to obtain driving information easily and efficiently. There are many advanced devices used for driving safety assistance. Of these assistance devices, the head-up display (HUD system can promote the reduction of driver's reaction time and improve spatial awareness. The drivers' attitude towards and preference for HUD system are crucial to design the functional framework and interface of HUD system. This study explored the relationships between drivers' attitude and HUD presentation image designs using stated preference data from questionnaire survey. The questionnaire included drivers' attitude towards the use of HUD and the preference for the information display zone and information display elements of the HUD. Contrastive analysis was adopted to examine the variations in drivers' attitude and preference for age and driving skills. According to the results, the participants have varying attitudes to HUD system, but most participants show relatively unified preference for the information display zone and information display elements. The results can also be used to customize a HUD presentation image which is in accordance with the drivers' feelings and preferences.

  6. Dynamitron control systems

    Science.gov (United States)

    Lisanti, Thomas F.

    2005-12-01

    The Dynamitron control system utilizes the latest personal computer technology in control circuitry and components. Both the DPC-2000 and newer Millennium series of control systems make use of their modular architecture in both software and hardware to keep up with customer and engineering demands. This also allows the main structure of the software to remain constant for the user while software drivers are easily changed as hardware demands are modified and improved. The system is presented as four units; the Remote I/O (Input/Output), Local Analog and Digital I/O, Operator Interface and the Main Computer. The operator is provided with a selection of many informative screen displays. The control program handles all graphic screen displays and the updating of these screens directly; it does not communicate to a display terminal. This adds to the quick response and excellent operator feedback received while operating the accelerator. The CPU also has the ability to store and record all process variable setpoints for each product that will be treated. All process parameters are printed to a report at regular intervals during a process run for record keeping.

  7. Wireless Remote Control System

    Directory of Open Access Journals (Sweden)

    Adrian Tigauan

    2012-06-01

    Full Text Available This paper presents the design of a wireless remote control system based on the ZigBee communication protocol. Gathering data from sensors or performing control tasks through wireless communication is advantageous in situations in which the use of cables is impractical. An Atmega328 microcontroller (from slave device is used for gathering data from the sensors and transmitting it to a coordinator device with the help of the XBee modules. The ZigBee standard is suitable for low-cost, low-data-rate and low-power wireless networks implementations. The XBee-PRO module, designed to meet ZigBee standards, requires minimal power for reliable data exchange between devices over a distance of up to 1600m outdoors. A key component of the ZigBee protocol is the ability to support networking and this can be used in a wireless remote control system. This system may be employed e.g. to control temperature and humidity (SHT11 sensor and light intensity (TSL230 sensor levels inside a commercial greenhouse.

  8. Knowledge, Attitudes, and Practice of Infection Control among Dental Students at Sana’a University, Yemen

    Science.gov (United States)

    Halboub, Esam Saleh; Al-Maweri, Sadeq Ali; Al-Jamaei, Aisha Ahmed; Tarakji, Bassel; Al-Soneidar, Walid Ahmed

    2015-01-01

    Background: The aim of this study was to evaluate knowledge, attitudes, and practices regarding infection control procedures among senior dental students. Materials and Methods: A questionnaire-based cross-sectional survey was conducted among 145 4th- and 5th-year dental students at the Faculty of Dentistry, Sana’a University, Yemen. The self-administered questionnaire was comprised of 20 open- and close-ended items regarding barrier techniques, vaccination status, infection control practices, and awareness. Data were analyzed with a Chi-square test. A P ≤ 0.05 was considered significant. Results: The response rate was 72% (145 out of 204 potential respondents). Overall, 71.7% of the students had been vaccinated for hepatitis B and only 9.5% were tested for post-hepatitis B virus immunization serology. While the vast majority (96.6%) reported always wearing gloves for all dental procedures, the use of face masks and eyewear were reported by only 53.8% and 14.0% of students, respectively, with no significant difference between genders and year of study (P > 0.05). A significantly higher percentage of 5th-year students (58.9%) showed positive attitudes toward the treatment of patients with infectious diseases, as compared to only 31.0% of 4th year students (P < 0.01). A great number of students (62%) reported non-sterile occupational percutaneous and mucous injuries while treating their patients. Conclusions: These unsatisfactory findings highlight the necessity of continued infection control education in order to improve knowledge, attitudes, and practices regarding infection control among dental students at Sana’a University. PMID:26028896

  9. Control of nonlinear systems with applications

    Science.gov (United States)

    Pan, Haizhou

    the efficacy of our proposed saturation control design framework. The second part of this research addresses adaptive nonlinear control designs for nonlinear systems, with application to several real-world problems. This research is motivated by the inherent nonlinear characteristics of most physical plants. Although control theory for linear systems is quite mature and has been successful in practice, it is often inadequate when dealing with nonlinear systems. In addition, inaccurately known and often unknown plant parameter/plant and unpredictable environmental changes render the nonlinear control design problems more complicated. In this research, we utilize a Lyapunov framework combined with the backstepping methodology to design adaptive full-state feedback controllers for several interesting real-world problems. First, we consider a liquid level control problem in a state-coupled water tank system. Next, we address the combined orbit and attitude modeling and adaptive control design problems for a 6 degree of freedom (DOF) spacecraft. We also consider a spacecraft formation control problem with combined orbit and attitude dynamics. For each problem, all control designs are validated via experimentation or simulation studies.

  10. Nuclotron Control System

    Science.gov (United States)

    Volkov, V.; Gorchenko, V.; Kirichenko, A.; Kovalenko, A.; Kulikov, I.; Romanov, S.; Sveshnikov, B.; Vasilishin, B.

    1997-05-01

    The superconducting synchrotron named Nuclotron based on a miniature iron-shaped field SC-magnets was put into operation at the LHE JINR in 1993.The Nuclotron Control System (NCS) project,which is still under development,started in 1992 and has provided efficient support for the machine commissioning through all its phases.This paper presents the current status of the NCS. The control system architecture is hierarc- hical in nature and consists of two physical levels. High performance workstations,together with a general purpose server computers, are used at the top level.Workstations act as an operator consoles,while the servers provide massive disk data storage,printing utilities,a common database, program library and data exchange between Nuclotron and its experiments. The front-end level comprises as industrial com- puters equipped with I/O boards and data acquisition modules, as in- telligent CAMAC crate-controllers with embedded micro-PCs. NCS is distributed system,in which subsytems geographically separated by as much as 500 m.The total number of computers presently installed is 25. An Ethernet Local Area Network,which runs IPX/SPX and TCP/IP communi- cation protocols ,connects the console computers to the front-end le- vel and physicists workstations.

  11. Cassini Attitude Control Fault Protection Design: Launch to End of Prime Mission Performance

    Science.gov (United States)

    Meakin, Peter C.

    2008-01-01

    The Cassini Attitude and Articulation Control Subsystem (AACS) Fault Protection (FP) has been successfully supporting operations for over 10 years from launch through the end of the prime mission. Cassini's AACS FP is complex, containing hundreds of error monitors and thousands of tunable parameters. Since launch there have been environmental, hardware, personnel and mission event driven changes which have required AACS FP to adapt and be robust to a variety of scenarios. This paper will discuss the process of monitoring, maintaining and updating the AACS FP during Cassini's lengthy prime mission as well as provide some insight into lessons learned during tour operations.

  12. Watching the detectives: crime programming, fear of crime, and attitudes about the criminal justice system.

    Science.gov (United States)

    Kort-Butler, Lisa A; Sittner Hartshorn, Kelley J

    2011-01-01

    Research demonstrates a complex relationship between television viewing and fear of crime. Social critics assert that media depictions perpetuate the dominant cultural ideology about crime and criminal justice. This article examines whether program type differentially affects fear of crime and perceptions of the crime rate. Next, it tests whether such programming differentially affects viewers' attitudes about the criminal justice system, and if these relationships are mediated by fear. Results indicated that fear mediated the relationship between viewing nonfictional shows and lack of support for the justice system. Viewing crime dramas predicted support for the death penalty, but this relationship was not mediated by fear. News viewership was unrelated to either fear or attitudes. The results support the idea that program type matters when it comes to understanding people's fear of crime and their attitudes about criminal justice.

  13. Farmer attitudes to vaccination and culling of badgers in controlling bovine tuberculosis.

    Science.gov (United States)

    Warren, M; Lobley, M; Winter, M

    2013-07-13

    Controversy persists in England, Wales and Northern Ireland concerning methods of controlling the transmission of bovine tuberculosis (bTB) between badgers and cattle. The National Trust, a major land-owning heritage organisation, in 2011, began a programme of vaccinating badgers against bTB on its Killerton Estate in Devon. Most of the estate is farmed by 18 tenant farmers, who thus have a strong interest in the Trust's approach, particularly as all have felt the effects of the disease. This article reports on a study of the attitudes to vaccination of badgers and to the alternative of a culling programme, using face-to-face interviews with 14 of the tenants. The results indicated first that the views of the respondents were more nuanced than the contemporary public debate about badger control would suggest. Secondly, the attitude of the interviewees to vaccination of badgers against bTB was generally one of resigned acceptance. Thirdly, most respondents would prefer a combination of an effective vaccination programme with an effective culling programme, the latter reducing population of density sufficiently (and preferably targeting the badgers most likely to be diseased) for vaccination to have a reasonable chance of success. While based on a small sample, these results will contribute to the vigorous debate concerning contrasting policy approaches to bTB control in England, Wales and Northern Ireland.

  14. Application of hybrid robust three-axis attitude control approach to overactuated spacecraft-A quaternion based model

    Institute of Scientific and Technical Information of China (English)

    A. H. Mazinan

    2016-01-01

    A novel hybrid robust three-axis attitude control approach, namely HRTAC, is considered along with the well-known developments in the area of space systems, since there is a consensus among the related experts that the new insights may be taken into account as decision points to outperform the available materials. It is to note that the traditional control approaches may generally be upgraded, as long as a number of modifications are made with respect to state-of-the-art, in order to propose high-precision outcomes. Regarding the investigated issues, the robust sliding mode finite-time control approach is first designed to handle three-axis angular rates in the inner control loop, which consists of the pulse width pulse frequency modulations in line with the control allocation scheme and the system dynamics. The main subject to employ these modulations that is realizing in association with the control allocation scheme is to be able to handle a class of overactuated systems, in particular. The proportional derivative based linear quadratic regulator approach is then designed to handle three-axis rotational angles in the outer control loop, which consists of the system kinematics that is correspondingly concentrated to deal with the quaternion based model. The utilization of the linear and its nonlinear terms, simultaneously, are taken into real consideration as the research motivation, while the performance results are of the significance as the improved version in comparison with the recent investigated outcomes. Subsequently, there is a stability analysis to verify and guarantee the closed loop system performance in coping with the whole of nominal referenced commands. At the end, the effectiveness of the approach considered here is highlighted in line with a number of potential recent benchmarks.

  15. PERSPECTIVES ON THE PERFORMANCE OF SUPPLY CHAIN SYSTEMS: THE EFFECTS OF ATTITUDE AND ASSIMILATION

    OpenAIRE

    SHUN CHUAN HO; WILLIAM YU CHUNG WANG; Pauleen, David J; PING HO TING

    2011-01-01

    The introduction of information systems into industry to enhance operational efficiency is a common business strategy. Introducing such information systems should be expected to enhance employee satisfaction if the systems work as expected. Based on previous studies of supply chain management (SCM) and using institution theory, and technology use and acceptance models, this study applies the lens of attitude and assimilation to explore employee behavior toward using SCM systems after implemen...

  16. Eating on impulse: Implicit attitudes, self-regulatory resources, and trait self-control as determinants of food consumption.

    Science.gov (United States)

    Wang, Yan; Wang, Lei; Cui, Xianghua; Fang, Yuan; Chen, Qianqiu; Wang, Ya; Qiang, Yao

    2015-12-01

    Self-regulatory resources and trait self-control have been found to moderate the impulse-behavior relationship. The current study investigated whether the interaction of self-regulatory resources and trait self-control moderates the association between implicit attitudes and food consumption. One hundred twenty female participants were randomly assigned to either a depletion condition in which their self-regulatory resources were reduced or a no-depletion condition. Participants' implicit attitudes for chocolate were measured with the Single Category Implicit Association Test and self-report measures of trait self-control were collected. The dependent variable was chocolate consumption in an ostensible taste and rate task. Implicit attitudes predicted chocolate consumption in depleted participants but not in non-depleted participants. However, this predictive power of implicit attitudes on eating in depleted condition disappeared in participants with high trait self-control. Thus, trait self-control and self-regulatory resources interact to moderate the prediction of implicit attitude on eating behavior. Results suggest that high trait self-control buffers the effect of self-regulatory depletion on impulsive eating.

  17. MIRADAS control system

    Science.gov (United States)

    Rosich Minguell, Josefina; Garzón Lopez, Francisco

    2012-09-01

    The Mid-resolution InfRAreD Astronomical Spectrograph (MIRADAS, a near-infrared multi-object echelle spectrograph operating at spectral resolution R=20,000 over the 1-2.5μm bandpass) was selected in 2010 by the Gran Telescopio Canarias (GTC) partnership as the next-generation near-infrared spectrograph for the world's largest optical/infrared telescope, and is being developed by an international consortium. The MIRADAS consortium includes the University of Florida, Universidad de Barcelona, Universidad Complutense de Madrid, Instituto de Astrofísica de Canarias, Institut de Física d'Altes Energies, Institut d'Estudis Espacials de Catalunya and Universidad Nacional Autónoma de México. This paper shows an overview of the MIRADAS control software, which follows the standards defined by the telescope to permit the integration of this software on the GTC Control System (GCS). The MIRADAS Control System is based on a distributed architecture according to a component model where every subsystem is selfcontained. The GCS is a distributed environment written in object oriented C++, which runs components in different computers, using CORBA middleware for communications. Each MIRADAS observing mode, including engineering, monitoring and calibration modes, will have its own predefined sequence, which are executed in the GCS Sequencer. These sequences will have the ability of communicating with other telescope subsystems.

  18. Dynamics of a variable mass system applied to spacecraft rocket attitude theory

    Science.gov (United States)

    Mudge, Jason Dominic

    This research project is a study of the dynamics of a variable mass system. The scope of this research project is to gain understanding as to how a variable mass system will behave. The intent is to bring the level of understanding of variable mass dynamics higher and closer to the level of constant mass dynamics in the area of spacecrafts in particular. A main contribution is the finding of a set of criteria to minimize or eliminate the deviation of the nutation angle (or cone angle or angle of attack) of spacecraft rockets passively, i.e. without active control. The motivation for this research project is the Star 48 anomaly. The Star 48 is a solid rocket motor which has propelled (boosted) communication satellites from lower earth orbit to a higher one during the 1980's. The anomaly is that when the spacecraft rocket is being propelled, the nutation angle may deviate excessively which is considered undesirable. In the first part of this research project, a variable mass system is described and defined and the governing equations are derived. The type of governing equations derived are those that are most useful for analyzing the motion of a spacecraft rocket. The method of derivation makes use of Leibnitz Theorem, Divergence Theorem and Newton's Second Law of Motion. Next, the governing equations are specialized with several assumptions which are generally accepted assumptions applied in the analysis of spacecraft rockets. With these assumptions, the form governing equations is discussed and then the equations are solved analytically for the system's angular velocity. Having solved for the angular velocity of the system, the attitude of the system is obtained using a unique method which circumvents the nonlinearities that exist using Euler Angles and their kinematical equations. The attitude is approximately found analytically and a set of criteria is discussed which will minimize or eliminate the deviation of the nutation angle of a spacecraft rocket. Finally

  19. Attitude Ground System (AGS) for the Magnetospheric Multi-Scale (MMS) Mission

    Science.gov (United States)

    Raymond, Juan C.; Sedlak, Joseph E.; Vint, Babak

    2015-01-01

    MMS Overview Recall from Conrads presentation earlier today MMS launch: March 13, 2015 on an Atlas V from Space Launch Complex 40, Cape Canaveral, Florida MMS Observatory Separation: five minute intervals spinning at 3 rpm approximately 1.5 hours after launch MMS Science Goals: study magnetospheric plasma physics and understand the processes that cause power grids, communication disruptions and Aurora formation Mission: 4 identical spacecraft in tetrahedral formation with variable size1.2 x 12 RE in Phase 1, with apogee on dayside to observe bow shock1.2 x 25 RE in Phase 2, with apogee on night side to observe magneto tail Challenges Tight attitude control box, orbit and formation maintenance requirements Maneuvers on thrusters every two weeks Delta-H Spin axis direction and spin rate maintenance Delta-V Orbit and Formation maintenance Mission phase transitions AGS support Smart targeting prediction of Spin-Axis attitude in the presence of environmental torques to stay within the science attitude Determination of the spacecraft attitude and spin rate (sensitive to knowledge of inertia tensor)Calibrations to improve attitude determination results and improve orbit maneuvers Mass properties (Center of Mass, and inertia tensor for nutation and coning) Accelerometer bias (sensitive to the accuracy of the rate estimates) Sensor alignments.

  20. Robust H∞ control for networked control systems

    Institute of Scientific and Technical Information of China (English)

    Ma Weiguo; Shao Cheng

    2008-01-01

    The robust H∞ control for networked control systems with both stochastic network-induced delay and data packet dropout is studied.When data are transmitted over network,the stochastic data packet dropout process can be described by a two-state Markov chain.The networked control systems with stochastic network-induced delay and data packet dropout are modeled as a discrete time Markov jump linear system with two operation modes.The sufficient condition of robust H∞ control for networked control systems stabilized by state feedback controller is presented in terms of linear matrix inequality.The state feedback controller can be constructed via the solution of a set of linear matrix inequalities.An example is given to verify the effectiveness of the method proposed.

  1. Attitude control and sloshing suppression for liquid-filled spacecraft in the presence of sinusoidal disturbance

    Science.gov (United States)

    Zhang, Honghua; Wang, Zeguo

    2016-11-01

    The attitude regulation for a liquid-filled spacecraft in the presence of low frequency sinusoidal disturbance is considered in this paper. The liquid-filled spacecraft is modelled as a rigid body attached with a simple pendulum. A novel control scheme is proposed, which is composed of Active Disturbance Rejection Control (ADRC), Positive Position Feedback (PPF), Extended State Observer (ESO) and Singular Spectrum Analysis (SSA). The unknown sloshing mode could be estimated from the combined ESO and SSA, and accordingly ADRC and PPF controller is designed for the stabilization of the spacecraft. Particularly, the parameters of the disturbance are not required as long as its frequency is lower than the sloshing one. The proposed approach could provide stabilization for the spacecraft, rejection for the disturbance, and active damping for the sloshing. Its effectiveness is validated by numerical simulations.

  2. Performance analysis of an integrated GPS/inertial attitude determination system. M.S. Thesis - MIT

    Science.gov (United States)

    Sullivan, Wendy I.

    1994-01-01

    The performance of an integrated GPS/inertial attitude determination system is investigated using a linear covariance analysis. The principles of GPS interferometry are reviewed, and the major error sources of both interferometers and gyroscopes are discussed and modeled. A new figure of merit, attitude dilution of precision (ADOP), is defined for two possible GPS attitude determination methods, namely single difference and double difference interferometry. Based on this figure of merit, a satellite selection scheme is proposed. The performance of the integrated GPS/inertial attitude determination system is determined using a linear covariance analysis. Based on this analysis, it is concluded that the baseline errors (i.e., knowledge of the GPS interferometer baseline relative to the vehicle coordinate system) are the limiting factor in system performance. By reducing baseline errors, it should be possible to use lower quality gyroscopes without significantly reducing performance. For the cases considered, single difference interferometry is only marginally better than double difference interferometry. Finally, the performance of the system is found to be relatively insensitive to the satellite selection technique.

  3. Racism, gun ownership and gun control: biased attitudes in US whites may influence policy decisions.

    Directory of Open Access Journals (Sweden)

    Kerry O'Brien

    Full Text Available OBJECTIVE: Racism is related to policies preferences and behaviors that adversely affect blacks and appear related to a fear of blacks (e.g., increased policing, death penalty. This study examined whether racism is also related to gun ownership and opposition to gun controls in US whites. METHOD: The most recent data from the American National Election Study, a large representative US sample, was used to test relationships between racism, gun ownership, and opposition to gun control in US whites. Explanatory variables known to be related to gun ownership and gun control opposition (i.e., age, gender, education, income, conservatism, anti-government sentiment, southern vs. other states, political identification were entered in logistic regression models, along with measures of racism, and the stereotype of blacks as violent. Outcome variables included; having a gun in the home, opposition to bans on handguns in the home, support for permits to carry concealed handguns. RESULTS: After accounting for all explanatory variables, logistic regressions found that for each 1 point increase in symbolic racism there was a 50% increase in the odds of having a gun at home. After also accounting for having a gun in the home, there was still a 28% increase in support for permits to carry concealed handguns, for each one point increase in symbolic racism. The relationship between symbolic racism and opposition to banning handguns in the home (OR1.27 CI 1.03,1.58 was reduced to non-significant after accounting for having a gun in the home (OR1.17 CI.94,1.46, which likely represents self-interest in retaining property (guns. CONCLUSIONS: Symbolic racism was related to having a gun in the home and opposition to gun control policies in US whites. The findings help explain US whites' paradoxical attitudes towards gun ownership and gun control. Such attitudes may adversely influence US gun control policy debates and decisions.

  4. Spacecraft Attitude Tracking and Maneuver Using Combined Magnetic Actuators

    Science.gov (United States)

    Zhou, Zhiqiang

    2012-01-01

    A paper describes attitude-control algorithms using the combination of magnetic actuators with reaction wheel assemblies (RWAs) or other types of actuators such as thrusters. The combination of magnetic actuators with one or two RWAs aligned with different body axis expands the two-dimensional control torque to three-dimensional. The algorithms can guarantee the spacecraft attitude and rates to track the commanded attitude precisely. A design example is presented for nadir-pointing, pitch, and yaw maneuvers. The results show that precise attitude tracking can be reached and the attitude- control accuracy is comparable with RWA-based attitude control. When there are only one or two workable RWAs due to RWA failures, the attitude-control system can switch to the control algorithms for the combined magnetic actuators with the RWAs without going to the safe mode, and the control accuracy can be maintained. The attitude-control algorithms of the combined actuators are derived, which can guarantee the spacecraft attitude and rates to track the commanded values precisely. Results show that precise attitude tracking can be reached, and the attitude-control accuracy is comparable with 3-axis wheel control.

  5. Estimation of Gravitation Parameters of Saturnian Moons Using Cassini Attitude Control Flight Data

    Science.gov (United States)

    Krening, Samantha C.

    2013-01-01

    A major science objective of the Cassini mission is to study Saturnian satellites. The gravitational properties of each Saturnian moon is of interest not only to scientists but also to attitude control engineers. When the Cassini spacecraft flies close to a moon, a gravity gradient torque is exerted on the spacecraft due to the mass of the moon. The gravity gradient torque will alter the spin rates of the reaction wheels (RWA). The change of each reaction wheel's spin rate might lead to overspeed issues or operating the wheel bearings in an undesirable boundary lubrication condition. Hence, it is imperative to understand how the gravity gradient torque caused by a moon will affect the reaction wheels in order to protect the health of the hardware. The attitude control telemetry from low-altitude flybys of Saturn's moons can be used to estimate the gravitational parameter of the moon or the distance between the centers of mass of Cassini and the moon. Flight data from several low altitude flybys of three Saturnian moons, Dione, Rhea, and Enceladus, were used to estimate the gravitational parameters of these moons. Results are compared with values given in the literature.

  6. Space Telescope precision pointing control system

    Science.gov (United States)

    Beals, G. A.; Crum, R. C.; Dougherty, H. J.; Hegel, D. K.; Kelley, J. L.

    1986-01-01

    The Hubble Space Telescope has the most stringent pointing requirements imposed on any spacecraft to date. The overall HST stability shall not exceed 0.007 arc-seconds rms. The Pointing Control System utilizes fine guidance sensors and rate gyros for attitude reference and rate information. Control torques are provided by reaction wheels. A digital computer collects the sensor data, performs the control law computations, and sends torque commands to the reaction wheels. To attain this precision pointing, improvements were made to the rate gyros to lower their noise characteristics and to the reaction wheels to reduce their emitted vibration levels. The control system design was validated in a test sequence which progressed from model verification tests on an air-bearing to operations-oriented, closed loop testing on the assembled vehicle. A test system is described which allowed the simultaneous production of test case command loads for the flight computer and plots of predicted profiles to assist in test data analysis. Workarounds were required during system test to accommodate gyro biases and noise introduced into the closed loop system. Testing and analysis indicate that the HST will provide the capability to meet the requirements for precision pointing.

  7. Attitudes of Deaf Adults Regarding Preferred Sign Language Systems Used in the Classroom with Deaf Students.

    Science.gov (United States)

    Kautzky-Bowden, Sally M.; Gonzales, B. Robert

    1987-01-01

    A questionnaire survey assessing attitudes of 50 deaf adults toward sign language systems used in schools found the majority supported American Sign Language and Manually Coded English-Pidgin with some reservations. Respondents were also concerned about needs of individual deaf children and deaf adult involvement in educational decision making for…

  8. Gender Differences in Attitudes toward Computers and Performance in the Accounting Information Systems Class

    Science.gov (United States)

    Lenard, Mary Jane; Wessels, Susan; Khanlarian, Cindi

    2010-01-01

    Using a model developed by Young (2000), this paper explores the relationship between performance in the Accounting Information Systems course, self-assessed computer skills, and attitudes toward computers. Results show that after taking the AIS course, students experience a change in perception about their use of computers. Females'…

  9. Three-axis attitude control by two-step rotations using only magnetic torquers in a low Earth orbit near the magnetic equator

    Science.gov (United States)

    Inamori, Takaya; Otsuki, Kensuke; Sugawara, Yoshiki; Saisutjarit, Phongsatorn; Nakasuka, Shinichi

    2016-11-01

    This study proposes a novel method for three-axis attitude control using only magnetic torquers (MTQs). Previously, MTQs have been utilized for attitude control in many low Earth orbit satellites. Although MTQs are useful for achieving attitude control at low cost and high reliability without the need for propellant, these electromagnetic coils cannot be used to generate an attitude control torque about the geomagnetic field vector. Thus, conventional attitude control methods using MTQs assume the magnetic field changes in an orbital period so that the satellite can generate a required attitude control torque after waiting for a change in the magnetic field direction. However, in a near magnetic equatorial orbit, the magnetic field does not change in an inertial reference frame. Thus, satellites cannot generate a required attitude control torque in a single orbital period with only MTQs. This study proposes a method for achieving a rotation about the geomagnetic field vector by generating a torque that is perpendicular to it. First, this study shows that the three-axis attitude control using only MTQs is feasible with a two-step rotation. Then, the study proposes a method for controlling the attitude with the two-step rotation using a PD controller. Finally, the proposed method is assessed by examining the results of numerical simulations.

  10. A survey of cross-infection control procedures: knowledge and attitudes of Turkish dentists

    Directory of Open Access Journals (Sweden)

    Emir Yüzbasioglu

    2009-12-01

    Full Text Available OBJECTIVES: The objective of this study was to investigate the knowledge, attitudes and behavior of Turkish dentists in Samsun City regarding cross-infection control. MATERIAL AND METHODS: A questionnaire was designed to obtain information about procedures used for the prevention of cross-infection in dental practices and determine the attitudes and perceptions of respondent dental practitioners to their procedures. The study population included all dentists in the city of Samsun, Turkey, in April 2005 (n=184. The questionnaire collected data on sociodemographic characteristics, knowledge and practice of infection control procedures, sterilization, wearing of gloves, mask, use of rubber dam, method of storing instruments and disposal methods of contaminated material, etc. Questionnaire data was entered into a computer and analyzed by SPSS statistical software. RESULTS: From the 184 dentists to whom the questionnaires were submitted, 135 participated in the study (overall response rate of 73.36%. As much as 74.10% dentists expressed concern about the risk of cross-infection from patients to themselves and their dental assistants. Forty-three percent of the participants were able to define "cross-infection" correctly. The greatest majority of the respondents (95.60% stated that all patients have to be considered as infectious and universal precautions must apply to all of them. The overall responses to the questionnaire showed that the dentists had moderate knowledge of infection control procedures. CONCLUSIONS: Improved compliance with recommended infection control procedures is required for all dentists evaluated in the present survey. Continuing education programs and short-time courses about cross-infection and infection control procedures are suitable to improve the knowledge of dentists.

  11. ESTADIUS: A High Motion "One Arcsec" Daytime Attitude Estimation System for Stratospheric Applications

    Science.gov (United States)

    Montel, J.; Andre, Y.; Mirc, F.; Etcheto, P.; Evrard, J.; Bray, N.; Saccoccio, M.; Tomasini, L.; Perot, E.

    2015-09-01

    ESTADIUS is an autonomous, accurate and daytime attitude estimation system, for stratospheric balloons that require a high level of attitude measurement and stability. The system has been developed by CNES. ESTADIUS is based on star sensor an pyrometer data fusion within an extended Kalman filter. The star sensor is composed of a 16 MPixels visible-CCD camera and a large aperture camera lens (focal length of 135mm, aperture f/1.8, 10ºx15º field of view or FOV) which provides very accurate stars measurements due to very low pixel angular size. This also allows detecting stars against a bright sky background. The pyrometer is a 0.01º/h performance class Fiber Optic Gyroscope (FOG). The system is adapted to work down to an altitude of ~25km, even under high cinematic conditions. Key elements of ESTADIUS are: daytime conditions use (as well as night time), autonomy (automatic recognition of constellations), high angular rate robustness (a few deg/s thanks to the high performance of attitude propagation), stray-light robustness (thanks to a high performance baffle), high accuracy (<1", 1σ). Four stratospheric qualification flights were very successfully performed in 2010/2011 and 2013/2014 in Kiruna (Sweden) and Timmins (Canada). ESTADIUS will allow long stratospheric flights with a unique attitude estimation system avoiding the restriction of night/day conditions at launch. The first operational flight of ESTADIUS will be in 2015 for the PILOT scientific missions (led by IRAP and CNES in France). Further balloon missions such as CIDRE will use the system ESTADIUS is probably the first autonomous, large FOV, daytime stellar attitude measurement system. This paper details the technical features and in-flight results.

  12. Psychological and Psychophysiological Research of the Attitude System of Students for Technical and Humanitarian Specialities

    Directory of Open Access Journals (Sweden)

    Natalia GORDIENKO

    2015-06-01

    Full Text Available Currently the problem of students’ professional development and the formation of their future work readiness with account for their psychological peculiarities is very actual. Our reference to the point is determined by several factors: 1 contemporary students have difficulties in their professional identity formation, and in curriculum learning; 2 the new specialities are appear; 3 technical progress influences the human potential demands changes and specialities learning; existing psychograms grow obsolete; 4 the attitude system of different educational profiles students’ is not studied sufficiently, and there not enough computer based psychodiagnostic research methods (techniques. Relevant personality attitude’s system research is still carried out introspectively, or else with the help of socio-psychological methods that significantly limit the research perspectives. The aim of this article is to analyse the results of psychological and psychophysiological research of the contents and extent of the humanitarian and technical profiles students’ attitude system. We have organized an experimental research in two stages: St-Petersburg universities students’ questionnaire; and laboratory research on the base of psychophysiological testing laboratory. We have worked out and tested psychological computer methods for different profiles students’ attitude system research: associative experiment version and the technology “Psychomotor differential”. We present here the results of the different profiles students’ attitude system research: their needs, instincts, psychological defence influencing profession learning. Besides, we have analysed differences in the temperament and students’ common and non-verbal intelligence level. With the help of authentic versions of the instrumental- computer methods we have received objective differences of the needs system and psychophysiological parameters of the motivation and emotional component

  13. Guaranteed cost control for networked control systems

    Institute of Scientific and Technical Information of China (English)

    Linbo XIE; Huajing FANG; Ying ZHENG

    2004-01-01

    The guaranteed cost control problem for networked control systems (NCSs) is addressed under communication constraints and varying sampling rate. First of all, a simple information-scheduling scheme is presented to describe the scheduling approach of system signals in NCSs. Then, based on such a scheme and given sampling method, the design procedure in dynamic output feedback manner is also derived which renders the closed loop system to be asymptotically stable and guarantees an upper bound of the LQ performance cost function.

  14. Linear Time Varying Approach to Satellite Attitude Control Using only Electromagnetic Actuation

    DEFF Research Database (Denmark)

    Wisniewski, Rafal

    1997-01-01

    and the magnetic field generated by the coils. A key challenge is the fact that the mechanical torque can only be produced in a plane perpendicular to the local geomagnetic field vector, therefore the satellite is not controllable when considered at fixed time. Availability of design methods for time varying......Recently small satellite missions have gained considerable interest due to low-cost launch opportunities and technological improvement of micro-electronics. Required pointing accuracy of small, inexpensive satellites is often relatively loose, within a couple of degrees. Application of cheap......, lightweight, and power efficient actuators is therefore crucial and viable. This paper discusses linear attitude control strategies for a low earth orbit satellite actuated by a set of mutually perpendicular electromagnetic coils. The principle is to use the interaction between the Earth's magnetic field...

  15. Investigating nurses' knowledge, attitudes, and skills patterns towards clinical management system: results of a cluster analysis.

    Science.gov (United States)

    Chan, M F

    2006-09-01

    To determine whether definable subtypes exist within a cohort of Hong Kong nurses as related to the clinical management system use in their clinical practices based on their knowledge, attitudes, skills, and background factors. Data were collected using a structured questionnaire. The sample of 242 registered nurses was recruited from three hospitals in Hong Kong. The study employs personal and demographic variables, knowledge, attitudes, and skills scale. A cluster analysis yielded two clusters. Each cluster represents a different profile of Hong Kong nurses on the clinical management system use in their clinical practices. The first group (Cluster 1) was labeled 'lower attitudes, less skilful and average knowledge' group, and represented 55.4% of the total respondents. The second group (Cluster 2) was labeled as 'positive attitudes, good knowledge but less skilful'. They comprised almost 44.6% of this nursing sample. Cluster 2 had more older nurses, the majority were educated to the baccalaureate or above level, with more than 10 years working experience, and they held a more senior ranking then Cluster 1. A clear profile of Hong Kong nurses may benefit healthcare professionals in making appropriate education or assistance to prompt the use of the clinical management system by nurses an officially recognized profession. The findings were useful in determining nurse-users' specific needs and their preferences for modification of the clinical management system. Such findings should be used to formulate strategies to encourage nurses to resolve actual problems following computer training and to increase the depth and breadth of nurses' knowledge, attitudes, and skills toward such system.

  16. Flight results of attitude matching between Space Shuttle and Inertial Upper Stage (IUS) navigation systems

    Science.gov (United States)

    Treder, Alfred J.; Meldahl, Keith L.

    The recorded histories of Shuttle/Orbiter attitude and Inertial Upper Stage (IUS) attitude have been analyzed for all joint flights of the IUS in the Orbiter. This database was studied to determine the behavior of relative alignment between the IUS and Shuttle navigation systems. It is found that the overall accuracy of physical alignment has a Shuttle Orbiter bias component less than 5 arcmin/axis and a short-term stability upper bound of 0.5 arcmin/axis, both at 1 sigma. Summaries of the experienced physical and inertial alginment offsets are shown in this paper, together with alignment variation data, illustrated with some flight histories. Also included is a table of candidate values for some error source groups in an Orbiter/IUS attitude errror model. Experience indicates that the Shuttle is much more accurate and stable as an orbiting launch platform than has so far been advertised. This information will be valuable for future Shuttle payloads, especially those (such as the Aeroassisted Flight Experiment) which carry their own inertial navigation systems, and which could update or initialize their attitude determination systems using the Shuttle as the reference.

  17. Nonlinear control for dual quaternion systems

    Science.gov (United States)

    Price, William D.

    addressed via coordinate transformation. It is shown that driftless nonlinear systems that do not meet Brockett's conditions for coordinate transformation can be augmented such that they can be transformed into the Brockett's canonical form, which is nonholonomic. It is also shown that the kinematics for quaternion systems can be represented by a nonholonomic integrator. Then, a discontinuous controller designed for nonholonomic systems is applied. Examples of various applications for dual quaternion systems are given including spacecraft attitude and position control and robotics.

  18. Attitudes and behavioral response toward key tobacco control measures from the FCTC among Chinese urban residents

    Directory of Open Access Journals (Sweden)

    Li Fuzhong

    2007-09-01

    Full Text Available Abstract Background The Chinese National People's Congress ratified the WHO Framework Convention on Tobacco Control (FCTC on 27 August 2005, signaling China's commitment to implement tobacco control policies and legislation consistent with the treaty. This study was designed to examine attitudes towards four WHO FCTC measures among Chinese urban residents. Methods In a cross-sectional design study, survey data were collected from two Chinese urban cities involving a sample of 3,003 residents aged 15 years or older. Through a face-to-face interview, respondents were asked about attitudes toward four tobacco control measures developed by the WHO FCTC. Data on the four dependent measures were analyzed using multivariate logistic regression analyses. Using descriptive statistics, potential change in smoking behavior that smokers might make in response to increasing cigarette prices is also reported. Results 81.8% of the respondents in the study sample supported banning smoking in public places, 68.8% favored increasing the cigarette tax, 85.1% supported health warnings on cigarette packages, and 85.7% favored banning tobacco advertising. The likelihood to support these measures was associated with gender, educational level, and personal income. Smokers were less likely to support these measures than non-smokers, with decreased support expressed by daily smokers compared to occasional smokers, and heavy smokers compared to light smokers. The proportion of switching to cheaper cigarette brands, decreasing smoking, and quitting smoking altogether with increased cigarette prices were 29.1%, 30.90% and 40.0% for occasional smokers, respectively; and 30.8%, 32.7% and 36.5% for daily smokers, respectively. Conclusion Results from this study indicate strong public support in key WHO FCTC measures and that increases in cigarette price may reduce tobacco consumption among Chinese urban residents. Findings from this study have implications with respect to

  19. Optically controlled welding system

    Science.gov (United States)

    Gordon, Stephen S. (Inventor)

    1989-01-01

    An optically controlled welding system (10) wherein a welding torch (12) having through-the-torch viewing capabilities is provided with an optical beam splitter (56) to create a transmitted view and a reflective view of a welding operation. These views are converted to digital signals which are then processed and utilized by a computerized robotic welder (15) to make the welding torch responsive thereto. Other features includes an actively cooled electrode holder (26) which minimizes a blocked portion of the view by virtue of being constructed of a single spoke or arm (28) and a weld pool contour detector (14) comprising a laser beam directed onto the weld pool with the position of specular radiation reflected therefrom being characteristic of a penetrated or unpenetrated condition of the weld pool.

  20. Concept and System of Personification Control System

    Institute of Scientific and Technical Information of China (English)

    Bai,Fengshuang; Yin,Yixin; Tu,Xuyan; Zhang,Ying

    2006-01-01

    This paper provides the system and conception of the Personification Control System (PCS) on the basis of Intelligent Control System based on Artificial life (ICS/AL), Artificial Emotion, Humanoid Control, and Intelligent Control System based on Field bus. According to system science and deciding of organize of biology, the Pyramid System of PCS are created. Then Pyramid System of PCS which is made up of PCS1/H, PCS1/S, PCS1/O, PCS1/C and PCS1/G is described.

  1. Knowledge, Attitude, Practice, and Status of Infection Control among Iranian Dentists and Dental Students: A Systematic Review

    Science.gov (United States)

    Moradi Khanghahi, Behnam; Jamali, Zahra; Pournaghi Azar, Fatemeh; Naghavi Behzad, Mohammad; Azami-Aghdash, Saber

    2013-01-01

    Background and aims Infection control is an important issue in dentistry, and the dentists are primarily responsible for observing the relevant procedures. Therefore, the present study evaluated knowledge, attitude, practice, and status of infection control among Iranian dentists through systematic review of published results. Materials and methods In this systematic review, the required data was collected searching for keywords including infection, infection control, behavior, performance, practice, attitude, knowledge, dent*, prevention, Iran* and their Persian equivalents in PubMed, Science Direct, Iranmedex, SID, Medlib, and Magiran databases with a time limit of 1985 to 2012. Out of 698 articles, 15 completely related articles were finally considered and the rest were excluded due to lake of relev-ance to the study goals. The required data were extracted and summarized in an Extraction Table and were analyzed ma-nually. Results Evaluating the results of studies indicated inappropriate knowledge, attitude, and practice regarding infection control among Iranian dentists and dental students. Using personal protection devices and observing measures required for infection control were not in accordance with global standards. Conclusion The knowledge, attitudes, and practice of infection control in Iranian dental settings were found to be inadequate. Therefore, dentists should be educated more on the subject and special programs should be in place to monitor the dental settings for observing infection control standards. PMID:23875081

  2. Generic device controller for accelerator control systems

    Energy Technology Data Exchange (ETDEWEB)

    Mariotti, R.; Buxton, W.; Frankel, R.; Hoff, L.

    1987-01-01

    A new distributed intelligence control system has become operational at the AGS for transport, injection, and acceleration of heavy ions. A brief description of the functionality of the physical devices making up the system is given. An attempt has been made to integrate the devices for accelerator specific interfacing into a standard microprocessor system, namely, the Universal Device Controller (UDC). The main goals for such a generic device controller are to provide: local computing power; flexibility to configure; and real time event handling. The UDC assemblies and software are described. (LEW)

  3. Coordination control of distributed systems

    CERN Document Server

    Villa, Tiziano

    2015-01-01

    This book describes how control of distributed systems can be advanced by an integration of control, communication, and computation. The global control objectives are met by judicious combinations of local and nonlocal observations taking advantage of various forms of communication exchanges between distributed controllers. Control architectures are considered according to  increasing degrees of cooperation of local controllers:  fully distributed or decentralized controlcontrol with communication between controllers,  coordination control, and multilevel control.  The book covers also topics bridging computer science, communication, and control, like communication for control of networks, average consensus for distributed systems, and modeling and verification of discrete and of hybrid systems. Examples and case studies are introduced in the first part of the text and developed throughout the book. They include: control of underwater vehicles, automated-guided vehicles on a container terminal, contro...

  4. System Design and Study on Bionic Eye of Spherical Parallel Mechanism Based on Attitude Closed-loop Control%基于姿态闭环控制的球面并联仿生眼系统设计与研究

    Institute of Scientific and Technical Information of China (English)

    李超; 谢少荣; 李恒宇; 缪金松; 徐元玉; 罗均

    2011-01-01

    An attitude feedback based method for establishing the closed-loop control system of spherical parallel mechanism (SPM) is proposed to circumvent the difficulty caused by the complex, three-dimensional, nonlinear and strongly coupled relationship between the input and output of the mechanism.SPM, then, is employed to the design of bionic eye which emulates the function of human's eye but is bigger than it in size, and incorporates the interface of thesignal of control and video.In addition, the real-time online calculation of the inverse kinematics and the scheme of the closed-loop control is conducted on DSP (digital signal processor).Finally, the experimental results substantially confirm that the improved positioning precision of the bionic eye is obtained by introducing the proposed algorithm.%提出了一种基于姿态反馈的球面并联机构闭环控制方法,有效地解决了该机构输入与输出之间复杂的3维非线性强耦合映射关系给构建闭环系统带来的问题.同时将球面并联机构应用到机器人眼设计上,制作了类似人眼运动特点、比人眼尺寸略大、具有控制和视频信号接口的仿生眼实物;基于数字信号处理器(DSP)的控制系统实现了逆解和闭环控制算法的实时在线计算.实验结果表明,姿态闭环控制算法有效提高了仿生眼的定位精度.

  5. Adaptive filter for a miniature MEMS based attitude and heading reference system

    Institute of Scientific and Technical Information of China (English)

    WANG Mei; WANG Yong-quan; ZHANG Yan-hua

    2006-01-01

    An extended Kalman filter with adaptive gain was used to build a miniature attitude and heading reference system based on a stochastic model. The adaptive filter has six states with a time variable transition matrix. When the system is in the non-acceleration mode, the accelerometer measurements of the gravity and the compass measurements of the heading have observability and yield good estimates of the states. When the system is in the high dynamic mode and the bias has converged to an accurate estimate, the attitude calculation will be maintained for a long interval of time. The adaptive filter tunes its gain automatically based on the system dynamics sensed by the accelerometers to yield optimal performance.

  6. Aircraft automatic flight control system with model inversion

    Science.gov (United States)

    Smith, G. A.; Meyer, George

    1990-01-01

    A simulator study was conducted to verify the advantages of a Newton-Raphson model-inversion technique as a design basis for an automatic trajectory control system in an aircraft with highly nonlinear characteristics. The simulation employed a detailed mathematical model of the aerodynamic and propulsion system performance characteristics of a vertical-attitude takeoff and landing tactical aircraft. The results obtained confirm satisfactory control system performance over a large portion of the flight envelope. System response to wind gusts was satisfactory for various plausible combinations of wind magnitude and direction.

  7. On Restructurable Control System Theory

    Science.gov (United States)

    Athans, M.

    1983-01-01

    The state of stochastic system and control theory as it impacts restructurable control issues is addressed. The multivariable characteristics of the control problem are addressed. The failure detection/identification problem is discussed as a multi-hypothesis testing problem. Control strategy reconfiguration, static multivariable controls, static failure hypothesis testing, dynamic multivariable controls, fault-tolerant control theory, dynamic hypothesis testing, generalized likelihood ratio (GLR) methods, and adaptive control are discussed.

  8. Division 1137 property control system

    Energy Technology Data Exchange (ETDEWEB)

    Pastor, D.J.

    1982-01-01

    An automated data processing property control system was developed by Mobile and Remote Range Division 1137. This report describes the operation of the system and examines ways of using it in operational planning and control.

  9. ATTITUDE TOWARDS THE USE OF LEARNING MANAGEMENT SYSTEM AMONG UNIVERSITY STUDENTS: A Case Study

    Directory of Open Access Journals (Sweden)

    Fuad A. A.TRAYEK

    2013-07-01

    Full Text Available Learning management system (LMS is a learning platform for both full time and distant learning students at the International Islamic University in Malaysia (IIUM. LMS becomes a tool for IIUM to disseminate information and learning resources to the students. The objectives of this study were to Ø investigate students' attitudes toward the use of LMS, Ø to verify the impact of perceived usefulness and perceived ease of use on attitude towards use of learning management system, Ø to examine the differences in attitudes toward the use of LMS between distance learning and full time students. There were 120 (70 full time and 50 distance learning students at the Institute of Education responded for the study. The collected data was analysed using descriptive statistics, t-test and Multiple Regression Analysis (MRA. The results of the study showed that perceived ease of use and perceived usefulness determine students' attitudes toward the use of LMS. However, this study did not find any significant differences between distance learning and full time students. According to the findings the study recommended that the University should continue using LMS because it is useful for both distance learning and full time students. Further suggestions are made to customize and upgrade the LMS suitable for innovative teaching and learning.

  10. Assessment of the Effects of Student Response Systems on Student Learning and Attitudes over a Broad Range of Biology Courses

    Science.gov (United States)

    Preszler, Ralph W.; Dawe, Angus; Shuster, Charles B.; Shuster, Michele

    2007-01-01

    With the advent of wireless technology, new tools are available that are intended to enhance students' learning and attitudes. To assess the effectiveness of wireless student response systems in the biology curriculum at New Mexico State University, a combined study of student attitudes and performance was undertaken. A survey of students in six…

  11. Nonlinear Feedforward Control for Spacecraft Relative Attitude Tracking%航天器相对姿态跟踪的非线性前馈控制

    Institute of Scientific and Technical Information of China (English)

    铁钰嘉; 杨伟; 岳晓奎

    2011-01-01

    The spacecraft relative attitude kinematics and dynamics based on modified rodrigues parameters(MRP) were proposed in the presence of serious nonlinear and controller design complexity during spacecraft relative attitude tracking control. A nonlinear feedforward controller was designed using Lyapunov method. The control law can not only ensure global asymptotic steady of close-loop system, but also make relative attitude tracking errors converge to zero field speedily. By using Matlab/Simulink programming, the modeling and simulation of spacecraft relative attitude tracking were discussed. Numerical simulations are exploited to verify the effectiveness of the model and control law.%针对航天器相对姿态跟踪过程中严重的非线性及控制器设计的复杂性,建立了基于修正罗德里格斯参数的航天器相对姿态运动学和动力学方程并根据Lyapunov直接法设计了非线性前馈控制律.设计的控制律不仅保证闭环系统稳定,还使得航天器相对姿态跟踪误差快速收敛到零点邻域内.通过在Matlab/Simulink环境下对航天器相对姿态跟踪进行数值仿真,验证了建立模型和设计控制律的有效性.

  12. CONTROLLABILITY OF IOTA-2-SYSTEMS

    NARCIS (Netherlands)

    FAGNANI, F; WILLEMS, JC

    1992-01-01

    This paper is devoted to an investigation of controllability and almost controllability of l2-systems. These concepts are defined in terms of the possibility of steering one system trajectory to another. It is proved that a controllable l2-system always has finite memory The main result on almost co

  13. Roles of superconducting magnetic bearings and active magnetic bearings in attitude control and energy storage flywheel

    Science.gov (United States)

    Tang, Jiqiang; Fang, Jiancheng; Ge, Shuzhi Sam

    2012-12-01

    Compared with conventional energy storage flywheel, the rotor of attitude control and energy storage flywheel (ACESF) used in space not only has high speed, but also is required to have precise and stable direction. For the presented superconducting magnetic bearing (SMB) and active magnetic bearing (AMB) suspended ACESF, the rotor model including gyroscopic couples is established originally by taking the properties of SMB and AMB into account, the forces of SMB and AMB are simplified by linearization within their own neighbors of equilibrium points. For the high-speed rigid discal rotor with large inertia, the negative effect of gyroscopic effect of rotor is prominent, the radial translation and tilting movement of rotor suspended by only SMB, SMB with equivalent PMB, or SMB together with PD controlled AMB are researched individually. These analysis results proved originally that SMB together with AMB can make the rotor be stable and make the radial amplitude of the vibration of rotor be small while the translation of rotor suspended by only SMB or SMB and PM is not stable and the amplitude of this vibration is large. For the stability of the high-speed rotor in superconducting ACESF, the AMB can suppress the nutation and precession of rotor effectively by cross-feedback control based on the separated PD type control or by other modern control methods.

  14. Attitude Dynamics and Tracking Control of Spacecraft in the Presence of Gravity Oblateness Perturbations

    Directory of Open Access Journals (Sweden)

    Achim IONITA

    2016-03-01

    Full Text Available The orbital docking represents a problem of great importance in aerospace engineering. The paper aims to perform an analysis of docking maneuvers between a chaser vehicle and a target vehicle in permanent LEO (low earth orbit. The work begins with a study of the attitude dynamics modeling intended to define the strategy that facilitates the chaser movement toward a docking part of the target. An LQR (linear quadratic regulator approach presents an optimal control design that provides linearized closed-loop error dynamics for tracking a desired quaternion. The control law formulation is combined with the control architecture based on SDRE (State Dependent Riccati equation technique for rotational maneuvers, including the Earth oblateness perturbation. The chaser body-fixed frame must coincide with the target body-fixed frame at the docking moment. Then the implementation of the control architecture based on LQR technique using the computational tool MATLAB is carried out. In simulation of the docking strategy V-R bar operations are analyzed and the minimum accelerations needs the control of chaser vehicle. The simulation analysis of those maneuvers considered for a chaser vehicle and a target vehicle in LEO orbit is validated in a case study.

  15. Networked control of microgrid system of systems

    Science.gov (United States)

    Mahmoud, Magdi S.; Rahman, Mohamed Saif Ur; AL-Sunni, Fouad M.

    2016-08-01

    The microgrid has made its mark in distributed generation and has attracted widespread research. However, microgrid is a complex system which needs to be viewed from an intelligent system of systems perspective. In this paper, a network control system of systems is designed for the islanded microgrid system consisting of three distributed generation units as three subsystems supplying a load. The controller stabilises the microgrid system in the presence of communication infractions such as packet dropouts and delays. Simulation results are included to elucidate the effectiveness of the proposed control strategy.

  16. 失效航天器的姿态机动接管控制%Takeover Control of Attitude Maneuver for Failed Spacecraft

    Institute of Scientific and Technical Information of China (English)

    黄攀峰; 王明; 常海涛; 孟中杰

    2016-01-01

    为实现失效航天器寿命延长的目的,采用接管控制技术接管失效航天器姿态控制系统。针对姿态机动接管控制中,失效卫星参数不确定和推力器构型矩阵突变的问题,提出一种基于控制系统重构的失效航天器姿态机动接管控制方法。首先采用指令滤波 backstepping 控制来重构姿态机动接管控制律,并利用 Lyapunov 方法分析系统稳定性;然后对推力器构型矩阵进行重构;最后考虑燃料消耗和控制输入受限问题,通过基于约束最优二次规划的动态控制分配算法对推力器推力进行控制重分配。采用本文方法实现了对燃料耗尽航天器和部分执行机构失效航天器的姿态机动接管控制。数值仿真证明了该方法的有效性。%To extend the operational life of the failed spacecraft,the technology of spacecraft attitude takeover control is used to take over its attitude control systems.The uncertain dynamics of failed spacecraft and the change of thruster configuration will constitute a formidable technical challenge for attitude takeover control.Therefore,a takeover control strategy based on control system reconfiguration is proposed for the failed spacecraft attitude maneuver.Firstly,a command filtering backstepping control method is used to reconstitute the control law and the stability of the system is analyzed using the Lyapunov function.Moreover,the reconfiguration of the thrusters is implemented by reconstituting the configuration matrix of the thrusters.Furthermore,considering the fuel consumption and the control inputs limitation,the thrust forces reallocation is achieved by the dynamic control allocation method based on constrained quadratic program.The method proposed in this paper achieves the takeover control of the failed spacecraft whose fuel has been exhausted or whose actuators are partially failed.Numerical simulations validate the feasibility of the proposed method.

  17. The Effects of Step-by-Step Self-regulation on Controlling Study Behavior, Attitude to Study and Academic Achievement

    Directory of Open Access Journals (Sweden)

    Gholamreza Sharifiniya

    2014-01-01

    Full Text Available Using personal potential is one of the key elements in behavior modification and the purpose of this research was to study the effects of a new method in changing human attitude and behavior in school context. Following this goal, in current research the authors have tried to examine the role of Step-by-Step Self-Regulation on studying behavior control, attitude to study and students' academic achievement. The total sample size was 120 high school male students in Hamedan. The subjects were divided into two groups: experimental group and control group. Then step-by-step self-regulation method were taught and carried out for eight sessions over the experimental group. Researcher made questionnaires were used for gathering data on study behavior control and students’ attitude to study and for evaluating students’ academic achievement their scholastic scores were used. In testing research hypotheses, a multivariate three-way ANOVA and independent and paired t tests were used. Comparing experimental and control groups data show that applying step-by-step self-regulation improves the personal ability to control study behavior while it does not have any meaningful effect on attitudes to study and students' academic achievement.

  18. Development and Testing of a High-Precision Position and Attitude Measuring System for a Space Mechanism

    Science.gov (United States)

    Khanenya, Nikolay; Paciotti, Gabriel; Forzani, Eugenio; Blecha, Luc

    2016-01-01

    This paper describes a high-precision optical metrology system - a unique ground test equipment which was designed and implemented for simultaneous precise contactless measurements of 6 degrees-of-freedom (3 translational + 3 rotational) of a space mechanism end-effector [1] in a thermally controlled ISO 5 clean environment. The developed contactless method reconstructs both position and attitude of the specimen from three cross-sections measured by 2D distance sensors [2]. The cleanliness is preserved by the hermetic test chamber filled with high purity nitrogen. The specimen's temperature is controlled by the thermostat [7]. The developed method excludes errors caused by the thermal deformations and manufacturing inaccuracies of the test jig. Tests and simulations show that the measurement accuracy of an object absolute position is of 20 micron in in-plane measurement (XY) and about 50 micron out of plane (Z). The typical absolute attitude is determined with an accuracy better than 3 arcmin in rotation around X and Y and better than 10 arcmin in Z. The metrology system is able to determine relative position and movement with an accuracy one order of magnitude lower than the absolute accuracy. Typical relative displacement measurement accuracies are better than 1 micron in X and Y and about 2 micron in Z. Finally, the relative rotation can be measured with accuracy better than 20 arcsec in any direction.

  19. System for controlling apnea

    Science.gov (United States)

    Holzrichter, John F

    2015-05-05

    An implanted stimulation device or air control device are activated by an external radar-like sensor for controlling apnea. The radar-like sensor senses the closure of the air flow cavity, and associated control circuitry signals (1) a stimulator to cause muscles to open the air passage way that is closing or closed or (2) an air control device to open the air passage way that is closing or closed.

  20. Space Shuttle flight control system

    Science.gov (United States)

    Klinar, W. J.; Kubiak, E. T.; Peters, W. H.; Saldana, R. L.; Smith, E. E., Jr.; Stegall, H. W.

    1975-01-01

    The Space Shuttle is a control stabilized vehicle with control provided by an all digital, fly-by-wire flight control system. This paper gives a description of the several modes of flight control which correspond to the Shuttle mission phases. These modes are ascent flight control (including open loop first stage steering, the use of four computers operating in parallel and inertial guidance sensors), on-orbit flight control (with a discussion of reaction control, phase plane switching logic, jet selection logic, state estimator logic and OMS thrust vector control), entry flight control and TAEM (terminal area energy management to landing). Also discussed are redundancy management and backup flight control.

  1. Knowledge, Attitude, Practice, and Status of Infection Control among Iranian Dentists and Dental Students: A Systematic Review

    OpenAIRE

    Moradi Khanghahi, Behnam; Jamali, Zahra; Pournaghi Azar, Fatemeh; Naghavi Behzad, Mohammad; Azami-Aghdash, Saber

    2013-01-01

    Background and aims Infection control is an important issue in dentistry, and the dentists are primarily responsible for observing the relevant procedures. Therefore, the present study evaluated knowledge, attitude, practice, and status of infection control among Iranian dentists through systematic review of published results. Materials and methods In this systematic review, the required data was collected searching for keywords including infection, infection control, behavior, performance, p...

  2. Optical tools and techniques for aligning solar payloads with the SPARCS control system. [Solar Pointing Aerobee Rocket Control System

    Science.gov (United States)

    Thomas, N. L.; Chisel, D. M.

    1976-01-01

    The success of a rocket-borne experiment depends not only on the pointing of the attitude control system, but on the alignment of the attitude control system to the payload. To ensure proper alignment, special optical tools and alignment techniques are required. Those that were used in the SPARCS program are described and discussed herein. These tools include theodolites, autocollimators, a 38-cm diameter solar simulator, a high-performance 1-m heliostat to provide a stable solar source during the integration of the rocket payload, a portable 75-cm sun tracker for use at the launch site, and an innovation called the Solar Alignment Prism. Using the real sun as the primary reference under field conditions, the Solar Alignment Prism facilitates the coalignment of the attitude sun sensor with the payload. The alignment techniques were developed to ensure the precise alignment of the solar payloads to the SPARCS attitude sensors during payload integration and to verify the required alignment under field conditions just prior to launch.

  3. The design of image stabilization control system

    Science.gov (United States)

    Lin, Zhe; Wu, Chunnan; Yu, Fei; Kang, Xiaojun

    2012-09-01

    For high resolution satellite remote sensing cameras, the line of sight (LOS) moving during the image exposure period will cause the modulation transfer function (MTF) degradation and image blurring. Image stabilization component is used to improve image quality by actively removing the apparent motion induced by vibration, tracking error and attitude instability. In this paper, the image stabilization component is considered as a kind of closed loop servo control system, and the image stabilization effect is converted into servo control performance for research. Firstly, the image stabilization servo loop scheme and transfer function model are constructed and the LOS jitter is considered as the output of a stochastic system derived by white-Gaussian noise. Based on the proposed model, the demand boundary of jitter rejection function is described, and the design criterion to be satisfied is obtained according to the requirement of image stabilization performance. And then, a discrete Kalman estimation algorithm is introduced into image stabilization servo loop to filter out the noise caused by pixel-shift sensor (PSS) and compensate for the delay due to the PSS measurement. Based on the given design criterion, the control law is designed by using the output of Kalman filter. The computer simulation is achieved to show that the proposed control strategy can significantly improve the image stabilization performance.

  4. Relations of Children's Effortful Control and Teacher-Child Relationship Quality to School Attitudes in a Low-Income Sample

    Science.gov (United States)

    Silva, Kassondra M.; Spinrad, Tracy L.; Eisenberg, Nancy; Sulik, Michael J.; Valiente, Carlos; Huerta, Snjezana; Edwards, Alison; Eggum, Natalie D.; Kupfer, Anne S.; Lonigan, Christopher J.; Phillips, Beth M.; Wilson, Shauna B.; Clancy-Menchetti, Jeanine; Landry, Susan H.; Swank, Paul R.; Assel, Michael A.; Taylor, Heather B.

    2011-01-01

    Research Findings: The purpose of this study was to examine the relations of children's effortful control and quality of relationships with teachers to school attitudes longitudinally in an ethnically diverse and economically disadvantaged sample. Data were collected as part of a larger intervention project during mid-fall, winter, and late spring…

  5. Performance analysis of a GPS Interferometric attitude determination system for a gravity gradient stabilized spacecraft. M.S. Thesis

    Science.gov (United States)

    Stoll, John C.

    1995-01-01

    The performance of an unaided attitude determination system based on GPS interferometry is examined using linear covariance analysis. The modelled system includes four GPS antennae onboard a gravity gradient stabilized spacecraft, specifically the Air Force's RADCAL satellite. The principal error sources are identified and modelled. The optimal system's sensitivities to these error sources are examined through an error budget and by varying system parameters. The effects of two satellite selection algorithms, Geometric and Attitude Dilution of Precision (GDOP and ADOP, respectively) are examined. The attitude performance of two optimal-suboptimal filters is also presented. Based on this analysis, the limiting factors in attitude accuracy are the knowledge of the relative antenna locations, the electrical path lengths from the antennae to the receiver, and the multipath environment. The performance of the system is found to be fairly insensitive to torque errors, orbital inclination, and the two satellite geometry figures-of-merit tested.

  6. Knowledge and attitude towards the health effects of tobacco and measures of tobacco control

    Directory of Open Access Journals (Sweden)

    Shrestha Mohan

    2014-10-01

    Full Text Available Background: Tobacco is a major public health threat the world has ever faced. It is a risk factor for six of the eight leading causes of death in the world. Without the effective implementation of tobacco regulation policy, the risk itself cannot be minimized. The aim of this study is to provide the adolescents knowledge of the health effects of active and passive smoking, and knowledge and attitudes towards tobacco control measures. Materials and Methods: A descriptive type of study was conducted in December 2013 in one of the government school of Palpa district, one of the rural areas of the Western region. Data entry and analysis was done using SPSS 17 version. Microsoft Excel 2007 is also used for the data processing. Results: There is substantial support for the government taking measure towards tobacco control (96%. Furthermore, strong supports are there regarding ban of smoking in public places and public transport (95% followed by increasing price of tobacco products (87%, banning sales of tobacco to and by minors (82% and ban of tobacco advertising, promotion and sponsorship (73%. Conclusion: The study focuses the effective implementation of the Tobacco Control and Regulation Act 2011, Nepal and health education should be provided to the adolescents with the facts and skills that will enable them to protect themselves from the harmful effects of tobacco related exposure.

  7. D0 Cryo System Control System Autodialer

    Energy Technology Data Exchange (ETDEWEB)

    Urbin, J.; /Fermilab

    1990-04-17

    The DO cryogenic system is controlled by a TI565-PLC based control system. This allows the system to be unmanned when in steady state operation. System experts will need to be contacted when system parameters exceed normal operating points and reach alarm setpoints. The labwide FIRUS system provides one alarm monitor and communication link. An autodialer provides a second and more flexible alarm monitor and communication link. The autodialer monitors contact points in the control system and after receiving indication of an alarm accesses a list of experts which it calls until it receives an acknowledgement. There are several manufacturers and distributors of autodialer systems. This EN explains the search process the DO cryo group used to fmd an autodialer system that fit the cryo system's needs and includes information and specs for the unit we chose.

  8. Optimal Attitude Control of Agile Spacecraft Using Combined Reaction Wheel and Control Moment Gyroscope Arrays

    Science.gov (United States)

    2015-12-01

    Finally, research objectives and an overview of the entire document are given. 1.1 Motivation: Satellite Tracking Mission The satellite imagery business ...has been booming and shows no trend of decline [15– 19]. As seen from the recent search for missing Malaysia Airlines Flight 370, significant amounts...to achieve the pointing accuracy and completion time in the family of the other controllers. In fact, the PID controller completes the mission 7

  9. 带VSCMGs的航天器姿态稳定及功率补偿控制%Attitude stabilization and power compensation control for spacecraft with VSCMGs

    Institute of Scientific and Technical Information of China (English)

    田林; 徐世杰

    2013-01-01

    Based on dynamics model of variable speed control moment gyroscopes ( VSCMGs) , the mixed control equation plus subsystems' decoupling constraint equation were established. The attitude and energy mixed control steering law was developed synchronously via matrix projection method. Influence of flywheel rotor's moment of inertia error on attitude control subsystem was analyzed by using Lyapunov method. A power control compensator was proposed according to the error relationship between rotor's axial moment of inertia and power output. Torque and power solutions in the mixed steering law possess same forms, while the constraint equation makes the attitude and energy control subsystems decoupled. Performance analysis of closed-loop system considering actuator's characteristic becomes more convenient. Attitude control subsystem with the rotor's inertia error can maintain its stability due to the system's output dissipative property, while output error of energy control subsystem is proportional to the rotor's inertia error. The power output after being compensated can satisfy the control requirement.%基于变速控制力矩陀螺群动力学模型建立其复合控制方程和分系统解耦约束方程,用矩阵投影方法同步设计得到航天器姿态与能量一体控制复合操纵律,利用Lyapunov 方法分析了转子轴向惯量误差对姿态控制分系统的影响.根据飞轮转子轴向惯量与功率输出之间的误差关系设计出功率控制补偿器.复合操纵律中的力矩和功率两解形式相同,约束方程使得姿态与能量控制两分系统解耦,便于进行考虑执行机构特性的闭环控制系统性能分析.考虑飞轮转子轴向惯量误差时,姿态控制分系统的输出耗散特性使其能够保持稳定,而功率控制分系统输出误差与转子轴向惯量误差成比例关系,经过补偿后功率输出能满足控制要求.

  10. Control integral systems; Sistemas integrales de control

    Energy Technology Data Exchange (ETDEWEB)

    Burgos, Estrella [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1998-12-31

    Almost two third of the electric power generation in Mexico are obtained from hydrocarbons, for that reasons Comision Federal de Electricidad (CFE) dedicated special commitment in modernizing the operation of fossil fuel central stations. In attaining this objective the control systems play a fundamental roll, from them depend a good share of the reliability and the efficiency of the electric power generation process, as well as the extension of the equipment useful life. Since 1984 the Instituto de Investigaciones Electricas (IIE) has been working, upon the request of CFE, on the development of digital control systems. To date it has designed and implemented a logic control system for gas burners, which controls 32 burners of the Unit 4 boiler of the Generation Central of Valle de Mexico and two systems for distributed control for two combined cycle central stations, which are: Dos Bocas, Veracruz Combined cycle central, and Gomez Palacio, Durango combined cycle central. With these two developments the IIE enters the World tendency of implementing distributed control systems for the fossil fuel power central update [Espanol] Casi las dos terceras partes de la generacion electrica en Mexico se obtienen a partir de hidrocarburos, es por eso que la Comision Federal de Electricidad (CFE) puso especial empeno en modernizar la operacion de las centrales termoelectricas de combustibles fosiles. En el logro de este objetivo los sistemas de control desempenan un papel fundamental, de ellos depende una buena parte la confiabilidad y la eficiencia en el proceso de generacion de energia electrica, asi como la prolongacion de la vida util de los equipos. Desde 1984 el Instituto de Investigaciones Electricas (IIE) ha trabajado, a solicitud de la CFE, en el desarrollo de sistemas digitales de control. A la fecha se han disenado e implantado un sistema de control logico de quemadores de gas, el cual controla 32 quemadores de la caldera de la unidad 4 de la central de generacion

  11. Public Attitudes to Housing Systems for Pregnant Pigs.

    Directory of Open Access Journals (Sweden)

    E B Ryan

    Full Text Available Understanding concerns about the welfare of farm animals is important for the development of socially sustainable production practices. This study used an online survey to test how views on group versus stall housing for pregnant sows varied when Canadian and US participants were provided information about these systems, including access to scientific papers, YouTube videos, Google images, and a frequently-asked-questions page (S1 Appendix. Initial responses and changes in responses after accessing the information were analyzed from Likert scores of 242 participants and from their written comments. Participants were less willing to accept the use of gestation stalls after viewing information on sow housing. For example, initially 30.4% of respondents indicated that they supported the use of gestation stalls; this declined to 17.8% after participants were provided additional information. Qualitative analysis of comments showed that supporters of gestation stalls expressed concern about the spread of disease and aggression between animals in less confined systems, whereas supporters of group housing placed more emphasis on the sow's ability to interact socially and perform natural behaviors. These results point to public opposition to the use of gestation stalls, and indicate that the more that the public learns about gestation stalls the less willing they will be to accept their use.

  12. Attitudes and attitude change.

    Science.gov (United States)

    Bohner, Gerd; Dickel, Nina

    2011-01-01

    Attitudes and attitude change remain core topics of contemporary social psychology. This selective review emphasizes work published from 2005 to 2009. It addresses constructionist and stable-entity conceptualizations of attitude, the distinction between implicit and explicit measures of attitude, and implications of the foregoing for attitude change. Associative and propositional processes in attitude change are considered at a general level and in relation to evaluative conditioning. The role of bodily states and physical perceptions in attitude change is reviewed. This is followed by an integrative perspective on processing models of persuasion and the consideration of meta-cognitions in persuasion. Finally, effects of attitudes on information processing, social memory, and behavior are highlighted. Core themes cutting across the areas reviewed are attempts at integrative theorizing bringing together formerly disparate phenomena and viewpoints.

  13. Criminal trial from a crime control perspective——mode, function and judge's attitude%犯罪控制视野下的刑事审判——模式、功能与法官的态度

    Institute of Scientific and Technical Information of China (English)

    刘广三

    2007-01-01

    Such ideas as upholding the advantages and merits of ex officio doctrine, gradually borrowing the fair factors of the adversary system, embodying a new-style concept of crime control and establishing the safeguarding rules and principles of the basic procedure for minimum justice criteria are macroscopical themes to which we must stick in the course of criminal trial. The effectiveness of a particular function in criminal trial in faith results from the choice of"degree" in the respect of crime control. The attitude of a criminal judge directly or otherwise exercises an influence on the trial of a case, and may even be decisive on some occasions. The concept of crime control is a barometer of the judge's attitude in criminal trial, and an indispensable component of the judge's rational attitude as well.

  14. Delays and networked control systems

    CERN Document Server

    Hetel, Laurentiu; Daafouz, Jamal; Johansson, Karl

    2016-01-01

    This edited monograph includes state-of-the-art contributions on continuous time dynamical networks with delays. The book is divided into four parts. The first part presents tools and methods for the analysis of time-delay systems with a particular attention on control problems of large scale or infinite-dimensional systems with delays. The second part of the book is dedicated to the use of time-delay models for the analysis and design of Networked Control Systems. The third part of the book focuses on the analysis and design of systems with asynchronous sampling intervals which occur in Networked Control Systems. The last part of the book exposes several contributions dealing with the design of cooperative control and observation laws for networked control systems. The target audience primarily comprises researchers and experts in the field of control theory, but the book may also be beneficial for graduate students. .

  15. Asynchronous control for networked systems

    CERN Document Server

    Rubio, Francisco; Bencomo, Sebastián

    2015-01-01

    This book sheds light on networked control systems; it describes different techniques for asynchronous control, moving away from the periodic actions of classical control, replacing them with state-based decisions and reducing the frequency with which communication between subsystems is required. The text focuses specially on event-based control. Split into two parts, Asynchronous Control for Networked Systems begins by addressing the problems of single-loop networked control systems, laying out various solutions which include two alternative model-based control schemes (anticipatory and predictive) and the use of H2/H∞ robust control to deal with network delays and packet losses. Results on self-triggering and send-on-delta sampling are presented to reduce the need for feedback in the loop. In Part II, the authors present solutions for distributed estimation and control. They deal first with reliable networks and then extend their results to scenarios in which delays and packet losses may occur. The novel ...

  16. Optimal Control of Mechanical Systems

    OpenAIRE

    Vadim Azhmyakov

    2007-01-01

    In the present work, we consider a class of nonlinear optimal control problems, which can be called “optimal control problems in mechanics.” We deal with control systems whose dynamics can be described by a system of Euler-Lagrange or Hamilton equations. Using the variational structure of the solution of the corresponding boundary-value problems, we reduce the initial optimal control problem to an auxiliary problem of multiobjective programming. This technique makes it possible to apply some ...

  17. ON COMPLEX DYNAMIC CONTROL SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    CHENG Daizhan

    2003-01-01

    This paper presents some recent works on the control of dynamic systems, which have certain complex properties caused by singularity of the nonlinear structures, structure-varyings, or evolution process etc. First, we consider the structure singularity of nonlinear control systems. It was revealed that the focus of researches on nonlinear control theory is shifting from regular systems to singular systems. The singularity of nonlinear systems causes certain complexity. Secondly, the switched systems are considered. For such systems the complexity is caused by the structure varying. We show that the switched systems have significant characteristics of complex systems. Finally, we investigate the evolution systems. The evolution structure makes complexity, and itself is a proper model for complex systems.

  18. Assessment of the Effects of Student Response Systems on Student Learning and Attitudes over a Broad Range of Biology Courses

    OpenAIRE

    Preszler, Ralph W.; Dawe, Angus; Shuster, Charles B.; Shuster, Michèle

    2007-01-01

    With the advent of wireless technology, new tools are available that are intended to enhance students' learning and attitudes. To assess the effectiveness of wireless student response systems in the biology curriculum at New Mexico State University, a combined study of student attitudes and performance was undertaken. A survey of students in six biology courses showed that strong majorities of students had favorable overall impressions of the use of student response systems and also thought t...

  19. The effect of family climate on risky driving of young novices: the moderating role of attitude and locus of control.

    Science.gov (United States)

    Carpentier, Aline; Brijs, Kris; Declercq, Katrien; Brijs, Tom; Daniels, Stijn; Wets, Geert

    2014-12-01

    The aim of the study was to examine the relative importance of young novice drivers' family climate on their driving behavior. A sample of young novice drivers (N=171) between the age of 17 and 24, who held their permanent (or temporary) driver's license for no longer than one year, participated. The questionnaire included items related to the participants' family climate, 3 socio-cognitive determinants (i.e., attitude, locus of control and social norm), and risky driving behaviors. We expected both family climate and the socio-cognitive determinants to exert a direct effect on risky driving. Furthermore we hypothesized that the socio-cognitive determinants would moderate the impact of family climate on risky driving. The results showed that the effect of family climate on risky driving only originated from one single factor (i.e., noncommitment). Besides that, the results confirmed the importance of the three socio-cognitive determinants to the degree that attitude, locus of control, and social norm significantly predicted the self-reported risky driving. In line of what we hypothesized, attitude moderated the relationship between noncommitment and risky driving. Lastly, we found an unexpected three-way interaction which indicated that locus of control moderated the relation between noncommitment and risky driving only when young drivers' attitude was risk-supportive. We recommend scholars and practitioners to take into account the interaction between external sources of influence (such as an individual's family climate) and more personally oriented dispositions (such as an individual's attitude, social norm and locus of control) when trying to explain and change young novices' risky driving.

  20. Microprocessor based implementation of attitude and shape control of large space structures

    Science.gov (United States)

    Reddy, A. S. S. R.

    1984-01-01

    The feasibility of off the shelf eight bit and 16 bit microprocessors to implement linear state variable feedback control laws and assessing the real time response to spacecraft dynamics is studied. The complexity of the dynamic model is described along with the appropriate software. An experimental setup of a beam, microprocessor system for implementing the control laws and the needed generalized software to implement any state variable feedback control system is included.

  1. Low-cost attitude determination system using an extended Kalman filter (EKF) algorithm

    Science.gov (United States)

    Esteves, Fernando M.; Nehmetallah, Georges; Abot, Jandro L.

    2016-05-01

    Attitude determination is one of the most important subsystems in spacecraft, satellite, or scientific balloon mission s, since it can be combined with actuators to provide rate stabilization and pointing accuracy for payloads. In this paper, a low-cost attitude determination system with a precision in the order of arc-seconds that uses low-cost commercial sensors is presented including a set of uncorrelated MEMS gyroscopes, two clinometers, and a magnetometer in a hierarchical manner. The faster and less precise sensors are updated by the slower, but more precise ones through an Extended Kalman Filter (EKF)-based data fusion algorithm. A revision of the EKF algorithm fundamentals and its implementation to the current application, are presented along with an analysis of sensors noise. Finally, the results from the data fusion algorithm implementation are discussed in detail.

  2. Approximate controllability of distributed systems by distributed controllers

    Directory of Open Access Journals (Sweden)

    Benzion Shklyar

    2005-04-01

    Full Text Available Approximate controllability problem for a linear distributed control system with possibly unbounded input operator, connected in a series to another distributed system without control is investigated. An initial state of the second distributed system is considered as a control parameter. Applications to control partial equations governed by hyperbolic controller, and to control delay systems governed by hereditary controller are considered.

  3. Attitude Dynamics and Control of Spacecraft Filled with Liquid and Attached with a Flexible Appendage%带柔性附件的充液飞行器姿态动力学与控制

    Institute of Scientific and Technical Information of China (English)

    徐建国

    2008-01-01

    研究了流-刚-弹耦合飞行器系统的姿态动力学、稳定性与控制问题,给出了组成系统的每部分控制律,证明了在此控制律下系统可达到姿态定位和受控系统指数渐近稳定.%The attitude dynamics,stability and control of the spacecraft system coupled with fluid,rigid and elastic bodies are studied in this paper. The control laws are given respectively for every part of the system. It is proved that the control laws might lead the attitude of the system to the desired position and that the controlled system is exponentially asymptotically stable.

  4. Preliminary Design of the ORION Attitude Control System.

    Science.gov (United States)

    1987-12-01

    sin3 cost C = -sinycoseD cosM’cos cos~Psin (3.4) +siny’sine sinp -cost sirW sinE) -sineD -sintcoso cosecosq The satellite orientation is related to... satellite orientation . The equations describing aerodynamic drag and gravity gradient torques can now be used in simulating their effect on satellite

  5. Linear CCD attitude measurement system based on the identification of the auxiliary array CCD

    Science.gov (United States)

    Hu, Yinghui; Yuan, Feng; Li, Kai; Wang, Yan

    2015-10-01

    Object to the high precision flying target attitude measurement issues of a large space and large field of view, comparing existing measurement methods, the idea is proposed of using two array CCD to assist in identifying the three linear CCD with multi-cooperative target attitude measurement system, and to address the existing nonlinear system errors and calibration parameters and more problems with nine linear CCD spectroscopic test system of too complicated constraints among camera position caused by excessive. The mathematical model of binocular vision and three linear CCD test system are established, co-spot composition triangle utilize three red LED position light, three points' coordinates are given in advance by Cooperate Measuring Machine, the red LED in the composition of the three sides of a triangle adds three blue LED light points as an auxiliary, so that array CCD is easier to identify three red LED light points, and linear CCD camera is installed of a red filter to filter out the blue LED light points while reducing stray light. Using array CCD to measure the spot, identifying and calculating the spatial coordinates solutions of red LED light points, while utilizing linear CCD to measure three red LED spot for solving linear CCD test system, which can be drawn from 27 solution. Measured with array CCD coordinates auxiliary linear CCD has achieved spot identification, and has solved the difficult problems of multi-objective linear CCD identification. Unique combination of linear CCD imaging features, linear CCD special cylindrical lens system is developed using telecentric optical design, the energy center of the spot position in the depth range of convergence in the direction is perpendicular to the optical axis of the small changes ensuring highprecision image quality, and the entire test system improves spatial object attitude measurement speed and precision.

  6. PID Daylight Control System

    Directory of Open Access Journals (Sweden)

    Horaţiu Ştefan Grif

    2011-06-01

    Full Text Available The paper describes the implementation and the tuning of a digital PID controller used in a daylight control application. Due to the fact that the process is unknown, an experimental method, Ziegler-Nichols, for the tuning of the PID controller was used. The obtained PID parameters do not offer a good behavior of the ALCS. To improve the performances of the ALCS, supplementary tuning of the PID parameters, via step response analysis, was made. The step response acquiring and analysis may have an expensive time cost. To avoid the time cost the present paper offers an algorithm which guide the designer to chose, in a slight manner, not only a set but a set family of the PID parameters for which the ALCS has a good behavior. Also, the algorithm presents the way how the ALCS user can set his desired ALCS speed reaction to the daylight variations.

  7. Communicating Networked Control Systems

    Science.gov (United States)

    2007-03-31

    Bahamas, pages 1010-1015. 64. Carmen Del Vecchio and I.C. Paschalidis, “Supply Contracts with Service Level Requirements”, Proceedings of the IFAC...control using Monte Carlo sensing,” Proc. IEEE International Conference on Robotics and Automation, pp. 3058-3063, 2005. 10. S.B. Andersson, A.A. Handzel, V...Analysis, Madrid Spain. 20. S. Andersson and D. Hristu-Varsakelis, “Language-based feedback control using Monte -Carlo sensing”, to be subm. To IEEE Int’l

  8. Hybrid Systems: Computation and Control.

    Science.gov (United States)

    2007-11-02

    elbow) and a pinned first joint (shoul- der) (see Figure 2); it is termed an underactuated system since it is a mechanical system with fewer...Montreal, PQ, Canada, 1998. [10] M. W. Spong. Partial feedback linearization of underactuated mechanical systems . In Proceedings, IROS󈨢, pages 314-321...control mechanism and search for optimal combinations of control variables. Besides the nonlinear and hybrid nature of powertrain systems , hardware

  9. The CARMA Control System

    Science.gov (United States)

    Gwon, C.; Beard, A. D.; Daniel, P.; Hobbs, R.; Scott, S. L.; Kraybill, J. C.; Leitch, E.; Mehringer, D. M.; Plante, R.; Amarnath, N. S.; Pound, M. W.; Rauch, K. P.; Teuben, P. J.

    2004-07-01

    The Combined Array for Research in Millimeter-wave Astronomy (CARMA) will be the combination of the BIMA, OVRO, and SZA millimeter arrays. With first light scheduled for 2005, CARMA will be the first heterogeneous millimeter array, combining antennas varying from 3.5 m to 10.4 m in diameter. The controls for CARMA involve creating a uniform interface for all antennas. The antennas are grouped into five independently-controlled sub-arrays, which will be used for scientific observations, engineering, or maintenance. The sub-arrays are controlled by two components: the Sub-array Command Processor (SCP) and the Sub-array Tracker (SAT). While each sub-array has a dedicated SCP for handling command processing, a single SAT computes and distributes slowly varying parameters to the necessary sub-arrays. The sub-array interface uses CORBA distributed objects to physically separate the user interface from the array. This allows for stability in the core engine controlling the array while enabling flexibility in the user interface implementation.

  10. Electrochemically controlled supramolecular systems

    NARCIS (Netherlands)

    Nijhuis, Christian A.; Ravoo, Bart Jan; Huskens, Jurriaan; Reinhoudt, David N.

    2007-01-01

    Large and complex molecular structures can be assembled by supramolecular chemistry and self-organization. For practical purposes it is required that the assembly and disassembly of supramolecular complexes and materials can be directed and controlled by external stimuli in order to build, for insta

  11. Geometric Collocation Method on SO(3 with Application to Optimal Attitude Control of a 3D Rotating Rigid Body

    Directory of Open Access Journals (Sweden)

    Xiaojia Xiang

    2015-01-01

    Full Text Available The collocation method is extended to the special orthogonal group SO(3 with application to optimal attitude control (OAC of a rigid body. A left-invariant rigid-body attitude dynamical model on SO(3 is established. For the left invariance of the attitude configuration equation in body-fixed frame, a geometrically exact numerical method on SO(3, referred to as the geometric collocation method, is proposed by deriving the equivalent Lie algebra equation in so(3 of the left-invariant configuration equation. When compared with the general Gauss pseudo-spectral method, the explicit RKMK, and Lie group variational integrator having the same order and stepsize in numerical tests for evolving a free-floating rigid-body attitude dynamics, the proposed method is higher in accuracy, time performance, and structural conservativeness. In addition, the numerical method is applied to solve a constrained OAC problem on SO(3. The optimal control problem is transcribed into a nonlinear programming problem, in which the equivalent Lie algebra equation is being considered as the defect constraints instead of the configuration equation. The transcription method is coordinate-free and does not need chart switching or special handling of singularities. More importantly, with the numerical advantage of the geometric collocation method, the proposed OAC method may generate satisfying convergence rate.

  12. Attitudes and attitude change

    DEFF Research Database (Denmark)

    Scholderer, Joachim

    2010-01-01

    An attitude can be defined as the evaluation of an object as positive or negative. The term "object" in this definition should be understood in a broad sense; an attitude object may be any concrete or abstract entity that is in some way represented in our thoughts and memory. In other words......, attitude objects are simply the things we like or dislike. Consumer researchers are mainly interested in attitude objects of two classes, products and services, including the attributes, issues, persons, communications, situations, and behaviours related to them. Research on consumer attitudes takes two...... perspectives: Understanding attitude structure: how is an attitude cognitively represented in a consumer's mind, including its components (intra-attitudinal structure) and its associations with other psychological variables (inter-attitudinal structure)? Understanding information processing: what...

  13. Robust power system frequency control

    CERN Document Server

    Bevrani, Hassan

    2008-01-01

    Emphasizes the physical and engineering aspects of the power system frequency control design problem while providing a conceptual understanding of frequency regulation and application of robust control techniques. This book summarizes the author's research outcomes, contributions and experiences with power system frequency regulation.

  14. Entry Vehicle Control System Design for the Mars Smart Lander

    Science.gov (United States)

    Calhoun, Philip C.; Queen, Eric M.

    2002-01-01

    The NASA Langley Research Center, in cooperation with the Jet Propulsion Laboratory, participated in a preliminary design study of the Entry, Descent and Landing phase for the Mars Smart Lander Project. This concept utilizes advances in Guidance, Navigation and Control technology to significantly reduce uncertainty in the vehicle landed location on the Mars surface. A candidate entry vehicle controller based on the Reaction Control System controller for the Apollo Lunar Excursion Module digital autopilot is proposed for use in the entry vehicle attitude control. A slight modification to the phase plane controller is used to reduce jet-firing chattering while maintaining good control response for the Martian entry probe application. The controller performance is demonstrated in a six-degree-of-freedom simulation with representative aerodynamics.

  15. Optimal Control of Mechanical Systems

    Directory of Open Access Journals (Sweden)

    Vadim Azhmyakov

    2007-01-01

    Full Text Available In the present work, we consider a class of nonlinear optimal control problems, which can be called “optimal control problems in mechanics.” We deal with control systems whose dynamics can be described by a system of Euler-Lagrange or Hamilton equations. Using the variational structure of the solution of the corresponding boundary-value problems, we reduce the initial optimal control problem to an auxiliary problem of multiobjective programming. This technique makes it possible to apply some consistent numerical approximations of a multiobjective optimization problem to the initial optimal control problem. For solving the auxiliary problem, we propose an implementable numerical algorithm.

  16. Knowledge, attitudes and practices (KAP about rabies prevention and control: a community survey in Tanzania.

    Directory of Open Access Journals (Sweden)

    Maganga Sambo

    2014-12-01

    Full Text Available Despite being entirely preventable, canine rabies still kills 55,000 people/year in developing countries. Information about local beliefs and practices can identify knowledge gaps that may affect prevention practices and lead to unnecessary deaths.We investigated knowledge, attitudes and practices related to rabies and its prevention and control amongst a cross-section of households (n = 5,141 in urban and rural areas of central, southern and northern Tanzania. Over 17% of respondents owned domestic dogs (average of 2.3 dogs/household,>95% had heard about rabies, and>80% knew that rabies is transmitted through dog bites. People who (1 had greater education, (2 originated from areas with a history of rabies interventions, (3 had experienced exposure by a suspect rabid animal, (4 were male and (5 owned dogs were more likely to have greater knowledge about the disease. Around 80% of respondents would seek hospital treatment after a suspect bite, but only 5% were aware of the need for prompt wound cleansing after a bite. Although>65% of respondents knew of dog vaccination as a means to control rabies, only 51% vaccinated their dogs. Determinants of dog vaccination included (1 being a male-headed household, (2 presence of children, (3 low economic status, (4 residing in urban areas, (5 owning livestock, (6 originating from areas with rabies interventions and (7 having purchased a dog. The majority of dog-owning respondents were willing to contribute no more than US$0.31 towards veterinary services.We identified important knowledge gaps related to, and factors influencing the prevention and control of rabies in Tanzania. Increasing knowledge regarding wound washing, seeking post-exposure prophylaxis and the need to vaccinate dogs are likely to result in more effective prevention of rabies; however, greater engagement of the veterinary and medical sectors is also needed to ensure the availability of preventative services.

  17. An Evaluation of Teachers' Attitudes and Beliefs Levels on Classroom Control in Terms of Teachers' Sense of Efficacy (The Sample of Biology Teachers in Turkey)

    Science.gov (United States)

    Kurt, Hakan

    2014-01-01

    The aim of this study is to evaluate biology teachers' attitudes and belief levels on classroom control in terms of teachers' sense of efficacy. The screening model was used in the study. The study group was comprised of 135 biology teachers. In this study, Teachers' Sense of Efficacy Scale (TSES) and The Attitudes and Beliefs on Classroom Control…

  18. Fault tolerant attitude control of flexible spacecraft during orbit control%挠性航天器轨控期间姿态容错控制

    Institute of Scientific and Technical Information of China (English)

    杨婧; 侯建文; 史小平

    2015-01-01

    轨道调控期间,轨道控制推力会对挠性航天器的质心运动与姿态运动产生影响。针对轨道控制期间挠性航天器姿态控制系统的执行机构故障问题,提出了一种基于扩张状态观测器( ex-tended state observer, ESO)的滑模容错控制算法。该算法将执行器故障,系统干扰及参数摄动量视为未知动态,通过设计相应的扩张状态观测器,能有效的实现对滑模状态量及未知动态的估计;在此基础上,利用未知动态的估计信息,设计了滑模容错控制控制律。最后,针对轨控期间反作用飞轮故障的挠性航天器姿态系统进行了仿真研究,仿真结果表明该算法能够有效处理执行器故障并使闭环系统稳定。%The orbit control force would generate disturb torque which has impacts on the centroid and at-titude motion of flexible spacecraft during spacecraft orbit maneuver. A sliding mode fault tolerant control approach was proposed based on an extended state observer ( ESO ) for the flexible spacecraft attitude control system with actuator faults during orbit control. In this approach, unknown actuator faults, inter-nal and external disturbance, and parameter perturbation are considered as unknown dynamics. Based on the ESO design approach, sliding mode and unknown dynamics were effectively estimated, and sliding mode fault tolerant control approach was designed by using the estimating information. At last, the simu-lation results of flexible spacecraft were presented to demonstrate the effective of this approach.

  19. Eating attitudes, weight control behaviors and risk factors for eating disorders among Chinese female dance students

    Directory of Open Access Journals (Sweden)

    Zhuoli Tao

    Full Text Available Background and Objectives: Along with the economic development, eating disorders begin to appear in China. In this context, we study potential risks for eating disorders. Methods: 1,199 Chinese students, aged 12-25 years, were randomly selected in spring 2006 from a survey with a series of scales (EAT-26, EDI that were used as a screening examination for eating attitudes, weight control behaviors and risk factors. Among them were 31 female Chinese dance students. The dancer students were compared with the female high risk group of eating disorders (EAT ≥ 20 and the female low risk group (EAT 0-9 according to their scores on EAT-26 and EDI. Results: There were just 3 dancers (10% with scores on the EAT-26 who were over the cut-off point of 20 for high risk of an eating disorder. The dance group also showed significantly higher scores than the low risk group (EAT 0-9 not only on the subscales Dieting, and EAT-26 total scores on the EAT-26, but also on the subscales Perfectionism and Maturity Fears on the EDI. Conclusions: Among the group of female Chinese dance students, most participants did not show a high risk for eating disorders and their high scores on some subscales on the EAT-26 and EDI could be caused by their occupation.

  20. Innovative power management, attitude determination and control tile for CubeSat standard NanoSatellites

    Science.gov (United States)

    Ali, Anwar; Mughal, M. Rizwan; Ali, Haider; Reyneri, Leonardo

    2014-03-01

    Electric power supply (EPS) and attitude determination and control subsystem (ADCS) are the most essential elements of any aerospace mission. Efficient EPS and precise ADCS are the core of any spacecraft mission. So keeping in mind their importance, they have been integrated and developed on a single tile called CubePMT module. Modular power management tiles (PMTs) are already available in the market but they are less efficient, heavier in weight, consume more power and contain less number of subsystems. Commercial of the shelf (COTS) components have been used for CubePMT implementation which are low cost and easily available from the market. CubePMT is developed on the design approach of AraMiS architecture: a project developed at Politecnico di Torino that provides low cost and higher performance space missions with dimensions larger than CubeSats. The feature of AraMiS design approach is its modularity. These modules can be reused for multiple missions which helps in significant reduction of the overall budget, development and testing time. One has just to reassemble the required subsystems to achieve the targeted specific mission.

  1. Attitude Determination and Control Subsystem (ADCS) Preparations for the EPOXI Flyby of Comet Haley 2

    Science.gov (United States)

    Luna, Michael E.; Collins, Stephen M.

    2011-01-01

    On November 4, 2010 the already "in-flight" Deep Impact spacecraft flew within 700km of comet 103P/Hartley 2 as part of its extended mission EPOXI, the 5th time to date any spacecraft visited a comet. In 2005, the spacecraft had previously imaged a probe impact comet Tempel 1. The EPOXI flyby marked the first time in history that two comets were explored with the same instruments on a re-used spacecraft-with hardware and software originally designed and optimized for a different mission. This made the function of the attitude determination and control subsystem (ADCS) critical to the successful execution of the EPOXI flyby. As part of the spacecraft team preparations, the ADCS team had to perform thorough sequence reviews, key spacecraft activities and onboard calibrations. These activities included: review of background sequences for the initial conditions vector, sun sensor coefficients, and reaction wheel assembly (RWA) de-saturations; design and execution of 10 trajectory correction maneuvers; science calibration of the two telescope instruments; a flight demonstration of the fastest turns conducted by the spacecraft between Earth and comet point; and assessment of RWA health (given RWA problems on other spacecraft).

  2. Attitude Determination and Control Subsystem (ADCS) Preparations for the EPOXI Flyby of Comet Hartley 2

    Science.gov (United States)

    Luna, Michael E.; Collins, Steven M.

    2011-01-01

    On November 4, 2010 the former "Deep Impact" spacecraft, renamed "EPOXI" for its extended mission, flew within 700km of comet 103P/Hartley 2. In July 2005, the spacecraft had previously imaged a probe impact of comet Tempel 1. The EPOXI flyby was the fifth close encounter of a spacecraft with a comet nucleus and marked the first time in history that two comet nuclei were imaged at close range with the same suite of onboard science instruments. This challenging objective made the function of the attitude determination and control subsystem (ADCS) critical to the successful execution of the EPOXI flyby.As part of the spacecraft flyby preparations, the ADCS operations team had to perform meticulous sequence reviews, implement complex spacecraft engineering and science activities and perform numerous onboard calibrations. ADCS contributions included design and execution of 10 trajectory correction maneuvers, the science calibration of the two telescopic instruments, an in-flight demonstration of high-rate turns between Earth and comet point, and an ongoing assessment of reaction wheel health. The ADCS team was also responsible for command sequences that included updates to the onboard ephemeris and sun sensor coefficients and implementation of reaction wheel assembly (RWA) de-saturations.

  3. Control principles of complex systems

    Science.gov (United States)

    Liu, Yang-Yu; Barabási, Albert-László

    2016-07-01

    A reflection of our ultimate understanding of a complex system is our ability to control its behavior. Typically, control has multiple prerequisites: it requires an accurate map of the network that governs the interactions between the system's components, a quantitative description of the dynamical laws that govern the temporal behavior of each component, and an ability to influence the state and temporal behavior of a selected subset of the components. With deep roots in dynamical systems and control theory, notions of control and controllability have taken a new life recently in the study of complex networks, inspiring several fundamental questions: What are the control principles of complex systems? How do networks organize themselves to balance control with functionality? To address these questions here recent advances on the controllability and the control of complex networks are reviewed, exploring the intricate interplay between the network topology and dynamical laws. The pertinent mathematical results are matched with empirical findings and applications. Uncovering the control principles of complex systems can help us explore and ultimately understand the fundamental laws that govern their behavior.

  4. Wave-Based Attitude Control of Spacecraft with Fuel Sloshing Dynamics

    Directory of Open Access Journals (Sweden)

    Thompson Joseph William

    2016-06-01

    Full Text Available Wave-Based Control has been previously applied successfully to simple under-actuated flexible mechanical systems. Spacecraft and rockets with structural flexibility and sloshing are examples of such systems but have added difficulties due to non-uniform structure, external disturbing forces and non-ideal actuators and sensors. The aim of this paper is to extend the application of WBC to spacecraft systems, to compare the performance of WBC to other popular controllers and to carry out experimental validation of the designed control laws. A mathematical model is developed for an upper stage accelerating rocket moving in a single plane. Fuel sloshing is represented by an equivalent mechanical pendulum model. A wave-based controller is designed for the upper stage AVUM of the European launcher Vega. In numerical simulations the controller successfully suppresses the sloshing motion. A major advantage of the strategy is that no measurement of the pendulum states (sloshing motion is required.

  5. Uzaybimer Radio Telescope Control System

    Science.gov (United States)

    Balbay, R.; Öz, G. K.; Arslan, Ö.; Özeren, F. F.; Küçük, İ.

    2016-12-01

    A 13 meters former NATO radar is being converted into a radio telescope. The radio telescope is controlled by a system which has been developed at UZAYBİMER. The Telescope Control System(TCS) has been designed using modern industrial systems. TCS has been developed in LabView platform in which works Windows embedded OS. The position feedback used on radio telescopes is an industrial EtherCAT standard. ASCOM library is used for astronomical calculations.

  6. Microprocessor control of photovoltaic systems

    Science.gov (United States)

    Millner, A. R.; Kaufman, D. L.

    1984-01-01

    The present low power CMOS microprocessor controller for photovoltaic power systems possesses three programs, which are respectively intended for (1) conventional battery-charging systems with state-of-charge estimation and sequential shedding of subarrays and loads, (2) maximum power-controlled battery-charging systems, and (3) variable speed dc motor drives. Attention is presently given to the development of this terrestrial equipment for spacecraft use.

  7. Distributed Stepping Motor Control System

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The beam diagnostic devices used at RIBLL are driven by stepper motors, which are controlled by I/O modules based on ISA-bus in an industrial computer. The disadvantages of such mode are that a large number of long cables are used and one computer to control is unsafe. We have developed a distributed stepping motor control system for the remote, local and centralized control of the stepping motors. RS-485 bus is used for the connection between the remote control unit and the local control units. The con...

  8. Aircraft control system

    Science.gov (United States)

    Lisoski, Derek L. (Inventor); Kendall, Greg T. (Inventor)

    2007-01-01

    A solar rechargeable, long-duration, span-loaded flying wing, having no fuselage or rudder. Having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing's top surface, the aircraft uses only differential thrust of its eight propellers to turn, pitch and yaw. The wing is configured to deform under flight loads to position the propellers such that the control can be achieved. Each of five segments of the wing has one or more motors and photovoltaic arrays, and produces its own lift independent of the other segments, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface.

  9. The Analysis of ATTITUDE on Speech in The Joy Luck Club--From the Perspective of APPRAISAL Systems

    Institute of Scientific and Technical Information of China (English)

    Zhao Ling

    2015-01-01

    This thesis takes advantage of the sub-category- ATTITUDE in APPRAISAL Systems to track the high- light of The Joy Luck Club written by American-Chinese novelist Amy Tan,focusing on one theme: June' s recollection on the colfflict she and her mother used to have. It mainly analyzes the interpersonal meaning of the selected speech, and different modes of speech concerning the expression of attitude.

  10. Guidance and Control of Position and Attitude for Rendezvous and Dock/Berthing with a Noncooperative/Target Spacecraft

    Directory of Open Access Journals (Sweden)

    Gilberto Arantes

    2014-01-01

    Full Text Available Noncooperative target spacecrafts are those assets in orbit that cannot convey any information about their states (position, attitude, and velocities or facilitate rendezvous and docking/berthing (RVD/B process. Designing a guidance, navigation, and control (GNC module for the chaser in a RVD/B mission with noncooperative target should be inevitably solved for on-orbit servicing technologies. The proximity operations and the guidance for achieving rendezvous problems are addressed in this paper. The out-of-plane maneuvers of proximity operations are explored with distinct subphases, including a chaser far approach in the target’s orbit to the first hold point and a closer approach to the final berthing location. Accordingly, guidance solutions are chosen for each subphase from the standard Hill based Closhessy-Willtshire (CW solution, elliptical fly-around, and Glideslope algorithms. The control is based on a linear quadratic regulator approach (LQR. At the final berthing location, attitude tracker based on a proportional derivative (PD form is tested to synchronize the chaser and target attitudes. The paper analyzes the performance of both controllers in terms of the tracking ability and the robustness. Finally, it prescribes any restrictions that may be imposed on the guidance during any subphase which can help to improve the controllers tracking ability.

  11. 基于反步法的主从航天器相对姿态控制%Backstepping-based relative-attitude control for the leader-follower spacecrafts

    Institute of Scientific and Technical Information of China (English)

    马广富; 张海博; 胡庆雷

    2012-01-01

    An attitude-control scheme based on the backstepping technique is developed for controlling the relative attitude between the leader spacecraft and the follower spacecraft, and the adaptive control law is applied to deal with the uncertainties in the follower spacecraft attitude system. According to the current relative positions between the leader and the follower, this scheme determines the required attitude of the follower to align its observation axis to the leader, and the required attitude of the follower to track the orbital coordinates of the leader. With the above-obtained results, an adaptive backstepping attitude controller is synthesized for the follower with unknown inertia matrix, based on the follower attitude-error dynamic model represented by modified Rodrigues parameters (MRP). Lyapunov stability analysis shows that the developed controller ensures the relative-attitude control system for globally asymptotical stability. Simulation results of the application to a spacecraft formation flying show the effectiveness and feasibility of the designed controller.%对主从航天器的相对姿态控制问题,考虑从航天器系统不确定因素,提出了一种基于反步法的姿态控制方法,并引入自适应控制律.该方法首先根据主从航天器的相对位置信息,解算出从航天器观测轴指向主航天器以及从航天器跟踪主航天器轨道坐标系等两种任务的期望姿态;然后基于修正罗德里格参数(MI(P)描述的从航天器姿态误差动力学模型设计了姿态控制器以及针对航天器惯量的不确定性设计了自适应控制律;并基于Lyapunov方法从理论上证明了该方法能够实现全局渐近稳定的相对姿态控制.最后将该方法应用于某编队飞行任务,仿真结果表明此控制器能够实现其编队飞行控制,具有良好的控制性能.

  12. Knowledge and attitudes of women regarding Sexually Transmitted Diseases, sexual health and preventive controls

    Directory of Open Access Journals (Sweden)

    Evaggelia Voltsi

    2014-04-01

    Full Text Available Both Greek and international literature suggest there is an increase in STDs worldwide, something that has motivated health agencies to design health promotion strategies. Aim: The aim of the present study was to assess knowledge and attitudes of women regarding STDs, as well as to correlate the findings with their sexual activity and gynecologic symptoms. Materials and Methods: Our reference population comprised of women residing in the city of Corinth. A specialized, valid and anonymous questionnaire was used, that included items concerning gynecologic diseases, STDs, prevention measures and birth control methods. Data collection took place from March to May 2013 and the SPSS 17.0 was used for the statistical analysis. Results: The majority of our sample (n=214 consisted of women aged 20 or younger (40.2%, without children (65.1%. 56.7% of the participants initiated sexual relationships at age 18 or older, while 55.2% said they always used condoms. Regarding STD history, 76.40% reported no such history. 67% thought that condoms were the safest birth control method, 64.4% said that casual relationships were the main cause for STD infections, 47.1% said that Pap tests should be done after menstruation, and 65.1% that mammograms should be a routine examination after the age of 30. Also, 65.4% of the participants said they consulted their gynecologist for anything regarding prevention examinations or gynecologic conditions. Conclusions: Despite some limitations, the present study concludes that many, mainly younger, women lack important information on such subjects and adopt high-risk behaviors. Consequently, the implementation of targeted, nation-wide sexual health programs and pre-symptomatic testing is deemed necessary.

  13. Control of Solar Energy Systems

    CERN Document Server

    Camacho, Eduardo F; Rubio, Francisco R; Martínez, Diego

    2012-01-01

    Control of Solar Energy Systems details the main solar energy systems, problems involved with their control, and how control systems can help in increasing their efficiency.  After a brief introduction to the fundamental concepts associated with the use of solar energy in both photovoltaic and thermal plants, specific issues related to control of solar systems are embarked upon. Thermal energy systems are then explored in depth, as well as  other solar energy applications such as solar furnaces and solar refrigeration systems. Problems of variable generation profile and of the contribution of many solar plants to the same grid system are considered with the necessary integrated and supervisory control solutions being discussed. The text includes material on: ·         A comparison of basic and advanced control methods for parabolic troughs from PID to nonlinear model-based control; ·         solar towers and solar tracking; ·         heliostat calibration, characterization and off...

  14. Analysis of response delay of the attitude in a single-axis rotation INS/GPS system

    Science.gov (United States)

    Zhu, Jing; Wang, Xingshu; Wang, Jun; Dai, Dongkai; Xiong, Hao

    2016-01-01

    Deflections of the vertical (DOV) are normally ignored in the gravity compensation procedure, which become one of the primary error sources in inertial navigation. In a single-axis rotation INS/GPS system, bias of the gyro and the accelerometer can be ignored, the attitude error is mainly affected by DOV. In this paper, the ideal system assumption is abandoned and the influence of DOV on the attitude is comprehensively discussed, which can be divided into two parts i.e. the direct influence and the indirect influence. The attitude error tracks the DOV along the trajectory belongs to the former. A relatively fixed delay between the attitude error and the DOV belongs to the latter. The delay is essentially induced by the weak observability of the system to the violent DOV. Factors which affect the delay are carefully analyzed. The simulation results show that the delay is mainly affected by accuracies of the inertial sensors and the GPS. It decreases with the GPS accuracy increasing, but increases with the inertial sensor accuracy increasing. The process noise covariance matrix Q plays an important role. With analysis of the characteristics of the delay, influence of the DOV on attitude is studied further, which is necessary for the attitude correction in future.

  15. 航天器姿轨耦合自适应同步控制%Improving Adaptive Synchronization Control of Coupled Spacecraft Attitude and Orbit

    Institute of Scientific and Technical Information of China (English)

    铁钰嘉; 杨伟; 岳晓奎

    2012-01-01

    航天器动力学模型的精确建立,对于成功完成空间任务来说必不可少,而单独考虑轨道或姿 态的模型无法满足任务高精度要求,因此从相对轨道动力学方程和修正罗德里格斯参数(MRP)表示的姿态运动学方程出发,建立了航天器六自由度的相对耦合动力学方程.为了给出姿轨运动的基准,分别设计了航天器理想姿态和椭圆加指数接近轨道.针对航天器参数不确定问题设计了自适应同步控制律,并通过Lyapunov直接法证明闭环系统°的全局渐近稳定性.从仿真结果可以看出,自适应同步控制算法能使轨道和姿态误差逐步趋于零.%Sections 1, 2 and 3 explain the adaptive synchronization control mentioned in the title, which we believe is an improvement over previous ones. Their core consists of; "Precise dynamic model of spacecraft is essential for space missions to be completed successfully. Nevertheless, the independent orbit or attitude dynamic models can not meet the requirements of high precision tasks. We developed a 6-DOF relative coupling dynamic model based upon the relative motion dynamics equations and attitude kinematics equations described by MRP ( Modified Ro-drigues Parameters). In order to give the benchmarks of attitude and orbit motion respectively, the ideal spacecraft attitude and the elliptical plus exponent track orbit were given. Nonlinear synchronization control law was designed for the uncertainties of spacecraft parameters, whose close-loop system was proved to be globally asymptotically stable by Lyapunov direct method. " Finally, the simulation results, presented in Figs. 3 through 5 , and their analysis illustrate preliminarily that the nonlinear synchronization control algorithm can robustly drive the orbit errors and attitude ones to converge to zero.

  16. Flex Dynamics Avoidance Control of the NEA Scout Solar Sail Spacecraft's Reaction Control System

    Science.gov (United States)

    Heaton Andrew; Stiltner, Brandon; Diedrich, Benjamin; Becker, Christopher; Orphee, Juan

    2017-01-01

    The Attitude Control System (ACS) is developed for a Near Earth Asteroid (NEA) Scout mission using a solar sail. The NEA-Scout spacecraft is a 6U cubesat with an 86 square-meter solar sail. NEA Scout will launch on Space Launch System (SLS) Exploration Mission 1 (EM-1), currently scheduled to launch in 2018. The spacecraft will rendezvous with a target asteroid after a two year journey, and will conduct science imagery. The solar sail spacecraft ACS consists of three major actuating subsystems: a Reaction Wheel (RW) control system, a Reaction Control System (RCS), and an Adjustable Mass Translator (AMT) system. The three subsystems allow for a wide range of spacecraft attitude control capabilities, needed for the different phases of the NEA-Scout mission. Because the sail is a flexible structure, care must be taken in designing a control system to avoid exciting the structural modes of the sail. This is especially true for the RCS, which uses pulse actuated, cold-gas jets to control the spacecraft's attitude. While the reaction wheels can be commanded smoothly, the RCS jets are simple on-off actuators. Long duration firing of the RCS jets - firings greater than one second - can be thought of as step inputs to the spacecraft's torque. On the other hand, short duration firings - pulses on the order of 0.1 seconds - can be thought of as impulses in the spacecraft's torque. These types of inputs will excite the structural modes of the spacecraft, causing the sail to oscillate. Sail oscillations are undesirable for many reasons. Mainly, these oscillations will feed into the spacecraft attitude sensors and pointing accuracy, and long term oscillations may be undesirable over the lifetime of the solar sail. In order to limit the sail oscillations, an RCS control scheme is being developed to minimize sail excitations. Specifically, an input shaping scheme similar to the method described in Reference 1 will be employed. A detailed description of the RCS control scheme will

  17. Control Evaluation Information System Savings

    Directory of Open Access Journals (Sweden)

    Eddy Sutedjo

    2011-05-01

    Full Text Available The purpose of this research is to evaluate the control of information system savings in the banking and to identify the weaknesses and problem happened in those saving systems. Research method used are book studies by collecting data and information needed and field studies by interview, observation, questioner, and checklist using COBIT method as a standard to assess the information system control of the company. The expected result about the evaluation result that show in the problem happened and recommendation given as the evaluation report and to give a view about the control done by the company. Conclusion took from this research that this banking company has met standards although some weaknesses still exists in the system.Index Terms - Control Information System, Savings

  18. Emission control system

    Science.gov (United States)

    Parrish, Clyde F. (Inventor); Chung, J. Landy (Inventor)

    2009-01-01

    Methods and apparatus utilizing hydrogen peroxide are useful to reduce SOx and mercury (or other heavy metal) emissions from combustion flue gas streams. The methods and apparatus may further be modified to reduce NOx emissions. Continuous concentration of hydrogen peroxide to levels approaching or exceeding propellant-grade hydrogen peroxide facilitates increased system efficiency. In this manner, combustion flue gas streams can be treated for the removal of SOx and heavy metals, while isolating useful by-products streams of sulfuric acid as well as solids for the recovery of the heavy metals. Where removal of NOx emissions is included, nitric acid may also be isolated for use in fertilizer or other industrial applications.

  19. Traction Control System for Motorcycles

    Directory of Open Access Journals (Sweden)

    Massimo Conti

    2009-01-01

    Full Text Available Traction control is a widely used control system to increase stability and safety of four wheel vehicles. Automatic stability control is used in the BMW K1200R motorcycle and in motoGP competition, but not in other motorcycles. This paper presents an algorithm and a low-cost real-time hardware implementation for motorcycles. A prototype has been developed, applied on a commercial motorcycle, and tested in a real track. The control system that can be tuned by the driver during the race has been appreciated by the test driver.

  20. Commutated automatic gain control system

    Science.gov (United States)

    Yost, S. R.

    1982-01-01

    The commutated automatic gain control (AGC) system was designed and built for the prototype Loran-C receiver is discussed. The current version of the prototype receiver, the Mini L-80, was tested initially in 1980. The receiver uses a super jolt microcomputer to control a memory aided phase loop (MAPLL). The microcomputer also controls the input/output, latitude/longitude conversion, and the recently added AGC system. The AGC control adjusts the level of each station signal, such that the early portion of each envelope rise is about at the same amplitude in the receiver envelope detector.