WorldWideScience

Sample records for attenuation ncq models

  1. Investigating the NCQ scaling of elliptic flow at LHC with a multiphase transport model

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Liang [Central China Normal University, Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, Wuhan (China); Central China Normal University, School of Mathematics and Statistics, Wuhan (China); Li, Hui; Shou, Qi-Ye; Yin, Zhong-Bao [Central China Normal University, Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, Wuhan (China); Qin, Hong [Central China Normal University, School of Mathematics and Statistics, Wuhan (China)

    2017-06-15

    The number of constituent quark (NCQ) scaling behavior of elliptic flow has been systematically studied at the LHC energy within the framework of a multiphase transport model (AMPT) in this work. With the variation of the fragmentation parameters, collision centrality and system energy, we find that the initial conditions of parton dynamics are more important than the final state parton cascade process for the existence of NCQ scaling when the hadronic interaction is off in Pb-Pb collisions. By turning on the hadron interaction process, the impacts of hadronic evolution are found to be responsible for a significant violation to the well established scaling structure. Our study suggests that the interpretation of NCQ scaling is not only subject to the hadronization mechanism but also to the initial conditions of parton evolution as well as the hadronic interactions especially for the LHC experiments. (orig.)

  2. Patient perspectives on continuity of care: adaption and preliminary psychometric assessment of a Norwegian version of the Nijmegen Continuity Questionnaire (NCQ-N

    Directory of Open Access Journals (Sweden)

    Øystein Hetlevik

    2017-11-01

    Full Text Available Abstract Background Continuity of care is regarded as a core quality element in healthcare. Continuity can be related to one or more specific caregivers but also applies to collaboration within a team or across boundaries of healthcare. Measuring continuity is important to identify problems and evaluate quality improvement of interventions. This study aimed to assess the feasibility and psychometric properties of a Norwegian version of the Nijmegen Continuity Questionnaire (NCQ. Methods The NCQ was developed in The Netherlands. It measures patients’ experienced continuity of care across multiple care settings and as a multidimensional concept regardless of morbidity. The NCQ comprises 28 items categorised into three subscales; two personal continuity scales, “care giver knows me” and “shows commitment”, asked regarding the patient’s general practitioner (GP and the most important specialist; and one “team/cross boundary continuity” scale, asked regarding primary care, specialised care and cooperation between GP and specialist, with a total of seven factors. The NCQ was translated and adapted to Norwegian (NCQ-N and distributed among patients referred to somatic rehabilitation (N = 984, response rate 34.5%. Confirmatory factor analyses (CFA, Cronbach’s alpha, intra-class correlation (ICC and Bland–Altman plots were used to assess psychometric properties. Results All patients (N = 375 who had responded to all parts of the NCQ-N were included in CFA. The CFA fit indices (CFI 0.941, RMSEA 0.064 (95% CI 0.059–0.070, SRMR 0.041 support a seven-factor structure in the NCQ-N based on the three subscales of the original NCQ. Cronbach’s alpha showed internal consistency (0.84–0.97, and was highest for the team/cross-boundary subscales. The NCQ-N showed overall high reliability with ICC 0.84–91 for personal continuity factors and 0.67–0.91 for team factors, with the lowest score for team continuity within primary care

  3. Precision Model for Microwave Rotary Vane Attenuator

    DEFF Research Database (Denmark)

    Guldbrandsen, Tom

    1979-01-01

    A model for a rotary vane attenuator is developed to describe the attenuator reflection and transmission coefficients in detail. All the parameters of the model can be measured in situ, i.e., without diassembling any part. The tranmission errors caused by internal reflections are calculated from ...

  4. Lg Attenuation Modeling in the Middle East

    Science.gov (United States)

    Pasyanos, M. E.; Matzel, E. M.; Walter, W. R.; Rodgers, A. J.

    2008-12-01

    We present a broadband tomographic model of Lg attenuation in the Middle East derived from source- and site-corrected amplitudes. The study region spans from Turkey through the Arabian Peninsula and Iran to Pakistan, Afghanistan, and northwest India. Absolute amplitude measurements are made on hand-selected and carefully windowed seismograms for tens of stations and thousands of crustal earthquakes resulting in excellent coverage of the region. We have modified the standard attenuation tomography technique to more explicitly define the earthquake source expression in terms of the seismic moment. This facilitates the use of the model to predict the expected amplitudes of new events, an important consideration for earthquake hazard or explosion monitoring applications. We will discuss the updated method and implications of this parameterization. A conjugate gradient method is used to tomographically invert the amplitude dataset of over 8000 paths. We solve for Q variation, as well as site and source terms, for a wide range of frequencies ranging from 0.5 -- 10 Hz. The attenuation results have a strong correlation to tectonics. Shields have low attenuation, while tectonic regions have high attenuation, with the highest attenuation at 1 Hz found in eastern Turkey. The results also compare favorably to other studies in the region made using Lg propagation efficiency, Lg/Pg amplitude ratios and two-station methods. We tomographically invert the amplitude measurements for each frequency independently. In doing so, it appears the frequency-dependence of attenuation is not compatible with the power law representation of Q(f). This research was performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under contract number DE-AC52-07NA27344. This is LLNL contribution LLNL-ABS-406761.

  5. Impact of Scattering Model on Disdrometer Derived Attenuation Scaling

    Science.gov (United States)

    Zemba, Michael; Luini, Lorenzo; Nessel, James; Riva, Carlo (Compiler)

    2016-01-01

    NASA Glenn Research Center (GRC), the Air Force Research Laboratory (AFRL), and the Politecnico di Milano (POLIMI) are currently entering the third year of a joint propagation study in Milan, Italy utilizing the 20 and 40 GHz beacons of the Alphasat TDP5 Aldo Paraboni scientific payload. The Ka- and Q-band beacon receivers were installed at the POLIMI campus in June of 2014 and provide direct measurements of signal attenuation at each frequency. Collocated weather instrumentation provides concurrent measurement of atmospheric conditions at the receiver; included among these weather instruments is a Thies Clima Laser Precipitation Monitor (optical disdrometer) which records droplet size distributions (DSD) and droplet velocity distributions (DVD) during precipitation events. This information can be used to derive the specific attenuation at frequencies of interest and thereby scale measured attenuation data from one frequency to another. Given the ability to both predict the 40 GHz attenuation from the disdrometer and the 20 GHz timeseries as well as to directly measure the 40 GHz attenuation with the beacon receiver, the Milan terminal is uniquely able to assess these scaling techniques and refine the methods used to infer attenuation from disdrometer data.In order to derive specific attenuation from the DSD, the forward scattering coefficient must be computed. In previous work, this has been done using the Mie scattering model, however, this assumes a spherical droplet shape. The primary goal of this analysis is to assess the impact of the scattering model and droplet shape on disdrometer derived attenuation predictions by comparing the use of the Mie scattering model to the use of the T-matrix method, which does not assume a spherical droplet. In particular, this paper will investigate the impact of these two scattering approaches on the error of the resulting predictions as well as on the relationship between prediction error and rain rate.

  6. Seismic Full Waveform Modeling & Imaging in Attenuating Media

    Science.gov (United States)

    Guo, Peng

    Seismic attenuation strongly affects seismic waveforms by amplitude loss and velocity dispersion. Without proper inclusion of Q parameters, errors can be introduced for seismic full waveform modeling and imaging. Three different (Carcione's, Robertsson's, and the generalized Robertsson's) isotropic viscoelastic wave equations based on the generalized standard linear solid (GSLS) are evaluated. The second-order displacement equations are derived, and used to demonstrate that, with the same stress relaxation times, these viscoelastic formulations are equivalent. By introducing separate memory variables for P and S relaxation functions, Robertsson's formulation is generalized to allow different P and S wave stress relaxation times, which improves the physical consistency of the Qp and Qs modelled in the seismograms.The three formulations have comparable computational cost. 3D seismic finite-difference forward modeling is applied to anisotropic viscoelastic media. The viscoelastic T-matrix (a dynamic effective medium theory) relates frequency-dependent anisotropic attenuation and velocity to reservoir properties in fractured HTI media, based on the meso-scale fluid flow attenuation mechanism. The seismic signatures resulting from changing viscoelastic reservoir properties are easily visible. Analysis of 3D viscoelastic seismograms suggests that anisotropic attenuation is a potential tool for reservoir characterization. To compensate the Q effects during reverse-time migration (RTM) in viscoacoustic and viscoelastic media, amplitudes need to be compensated during wave propagation; the propagation velocity of the Q-compensated wavefield needs to be the same as in the attenuating wavefield, to restore the phase information. Both amplitude and phase can be compensated when the velocity dispersion and the amplitude loss are decoupled. For wave equations based on the GSLS, because Q effects are coupled in the memory variables, Q-compensated wavefield propagates faster than

  7. Outdoor FSO Communications Under Fog: Attenuation Modeling and Performance Evaluation

    KAUST Repository

    Esmail, Maged Abdullah

    2016-07-18

    Fog is considered to be a primary challenge for free space optics (FSO) systems. It may cause attenuation that is up to hundreds of decibels per kilometer. Hence, accurate modeling of fog attenuation will help telecommunication operators to engineer and appropriately manage their networks. In this paper, we examine fog measurement data coming from several locations in Europe and the United States and derive a unified channel attenuation model. Compared with existing attenuation models, our proposed model achieves a minimum of 9 dB, which is lower than the average root-mean-square error (RMSE). Moreover, we have investigated the statistical behavior of the channel and developed a probabilistic model under stochastic fog conditions. Furthermore, we studied the performance of the FSO system addressing various performance metrics, including signal-to-noise ratio (SNR), bit-error rate (BER), and channel capacity. Our results show that in communication environments with frequent fog, FSO is typically a short-range data transmission technology. Therefore, FSO will have its preferred market segment in future wireless fifth-generation/sixth-generation (5G/6G) networks having cell sizes that are lower than a 1-km diameter. Moreover, the results of our modeling and analysis can be applied in determining the switching/thresholding conditions in highly reliable hybrid FSO/radio-frequency (RF) networks.

  8. An empirical model of diagnostic x-ray attenuation under narrow-beam geometry

    International Nuclear Information System (INIS)

    Mathieu, Kelsey B.; Kappadath, S. Cheenu; White, R. Allen; Atkinson, E. Neely; Cody, Dianna D.

    2011-01-01

    Purpose: The purpose of this study was to develop and validate a mathematical model to describe narrow-beam attenuation of kilovoltage x-ray beams for the intended applications of half-value layer (HVL) and quarter-value layer (QVL) estimations, patient organ shielding, and computer modeling. Methods: An empirical model, which uses the Lambert W function and represents a generalized Lambert-Beer law, was developed. To validate this model, transmission of diagnostic energy x-ray beams was measured over a wide range of attenuator thicknesses [0.49-33.03 mm Al on a computed tomography (CT) scanner, 0.09-1.93 mm Al on two mammography systems, and 0.1-0.45 mm Cu and 0.49-14.87 mm Al using general radiography]. Exposure measurements were acquired under narrow-beam geometry using standard methods, including the appropriate ionization chamber, for each radiographic system. Nonlinear regression was used to find the best-fit curve of the proposed Lambert W model to each measured transmission versus attenuator thickness data set. In addition to validating the Lambert W model, we also assessed the performance of two-point Lambert W interpolation compared to traditional methods for estimating the HVL and QVL [i.e., semilogarithmic (exponential) and linear interpolation]. Results: The Lambert W model was validated for modeling attenuation versus attenuator thickness with respect to the data collected in this study (R 2 > 0.99). Furthermore, Lambert W interpolation was more accurate and less sensitive to the choice of interpolation points used to estimate the HVL and/or QVL than the traditional methods of semilogarithmic and linear interpolation. Conclusions: The proposed Lambert W model accurately describes attenuation of both monoenergetic radiation and (kilovoltage) polyenergetic beams (under narrow-beam geometry).

  9. An empirical model of diagnostic x-ray attenuation under narrow-beam geometry.

    Science.gov (United States)

    Mathieu, Kelsey B; Kappadath, S Cheenu; White, R Allen; Atkinson, E Neely; Cody, Dianna D

    2011-08-01

    The purpose of this study was to develop and validate a mathematical model to describe narrow-beam attenuation of kilovoltage x-ray beams for the intended applications of half-value layer (HVL) and quarter-value layer (QVL) estimations, patient organ shielding, and computer modeling. An empirical model, which uses the Lambert W function and represents a generalized Lambert-Beer law, was developed. To validate this model, transmission of diagnostic energy x-ray beams was measured over a wide range of attenuator thicknesses [0.49-33.03 mm Al on a computed tomography (CT) scanner, 0.09-1.93 mm Al on two mammography systems, and 0.1-0.45 mm Cu and 0.49-14.87 mm Al using general radiography]. Exposure measurements were acquired under narrow-beam geometry using standard methods, including the appropriate ionization chamber, for each radiographic system. Nonlinear regression was used to find the best-fit curve of the proposed Lambert W model to each measured transmission versus attenuator thickness data set. In addition to validating the Lambert W model, we also assessed the performance of two-point Lambert W interpolation compared to traditional methods for estimating the HVL and QVL [i.e., semi-logarithmic (exponential) and linear interpolation]. The Lambert W model was validated for modeling attenuation versus attenuator thickness with respect to the data collected in this study (R2 > 0.99). Furthermore, Lambert W interpolation was more accurate and less sensitive to the choice of interpolation points used to estimate the HVL and/or QVL than the traditional methods of semilogarithmic and linear interpolation. The proposed Lambert W model accurately describes attenuation of both monoenergetic radiation and (kilovoltage) polyenergetic beams (under narrow-beam geometry).

  10. Evaluation of attenuating materials: model for the distribution of scattered radiation

    International Nuclear Information System (INIS)

    Costa, Paulo R.

    1996-01-01

    A mathematical model for the behaviour of the distribution of photon scattered by attenuating media is presented. Shielding barriers or attenuating materials used in tests of quality control in radiology are proposed. Comparative results for Lucite are reported

  11. Wave attenuation model for dephasing and measurement of ...

    Indian Academy of Sciences (India)

    An analysis of previous models to simulate inelastic scattering in such systems is presented and a relatively new model based on wave attenuation is introduced. The problem of Aharonov–Bohm (AB) oscillations in conductance of a mesoscopic ring is studied. We show that the conductance is symmetric under flux reversal ...

  12. A simple rain attenuation model for earth-space radio links operating at 10-35 GHz

    Science.gov (United States)

    Stutzman, W. L.; Yon, K. M.

    1986-01-01

    The simple attenuation model has been improved from an earlier version and now includes the effect of wave polarization. The model is for the prediction of rain attenuation statistics on earth-space communication links operating in the 10-35 GHz band. Simple calculations produce attenuation values as a function of average rain rate. These together with rain rate statistics (either measured or predicted) can be used to predict annual rain attenuation statistics. In this paper model predictions are compared to measured data from a data base of 62 experiments performed in the U.S., Europe, and Japan. Comparisons are also made to predictions from other models.

  13. Modified polarized geometrical attenuation model for bidirectional reflection distribution function based on random surface microfacet theory.

    Science.gov (United States)

    Liu, Hong; Zhu, Jingping; Wang, Kai

    2015-08-24

    The geometrical attenuation model given by Blinn was widely used in the geometrical optics bidirectional reflectance distribution function (BRDF) models. Blinn's geometrical attenuation model based on symmetrical V-groove assumption and ray scalar theory causes obvious inaccuracies in BRDF curves and negatives the effects of polarization. Aiming at these questions, a modified polarized geometrical attenuation model based on random surface microfacet theory is presented by combining of masking and shadowing effects and polarized effect. The p-polarized, s-polarized and unpolarized geometrical attenuation functions are given in their separate expressions and are validated with experimental data of two samples. It shows that the modified polarized geometrical attenuation function reaches better physical rationality, improves the precision of BRDF model, and widens the applications for different polarization.

  14. Cranking model and attenuation of Coriolis interaction

    International Nuclear Information System (INIS)

    Lyutorovich, N.A.

    1987-01-01

    Description of rotational bands of odd deformed nuclei in the self-consistent Cranking model (SCM) is given. Causes of attenuation of the Coriolis interaction in the nuclei investigated are studied, and account of bound of one-particle degrees of freedom with rotation of the Hartree-Fock-Bogolyubov (HFB) self-consistent method is introduced additionally to SCM for qualitative agreement with experimental data. Merits and shortages of SCM in comparison with the quadruparticle-rotor (QR) model are discussed. All know ways for constructing the Hamiltonian QR model (or analog of such Hamiltonian) on the basis of the microscopic theory are shown to include two more approximations besides others: quasi-particle-rotational interaction leading to pair break is taken into account in the second order of the perturbation theory; some exchange diagrams are neglected among diagrams of the second order according to this interaction. If one makes the same approximations in SCM instead of HFB method, then the dependence of level energies on spin obtained in this case is turned out to be close to the results of the QR model. Besides, the problem on renormalization of matrix elements of quasi-rotational interaction occurs in such nonself-consistent approach as in the QR model. In so far as the similar problem does not occur in SCM, one can make the conclusion that the problem of attenuation of Coriolis interaction involves the approximations given above

  15. Development of quality standards in inflammatory bowel disease management and design of an evaluation tool of nursing care.

    Science.gov (United States)

    Torrejón, Antonio; Oltra, Lorena; Hernández-Sampelayo, Paloma; Marín, Laura; García-Sánchez, Valle; Casellas, Francesc; Alfaro, Noelia; Lázaro, Pablo; Vera, María Isabel

    2013-01-01

    nursing management of inflammatory bowel disease (IBD) is highly relevant for patient care and outcomes. However, there is evidence of substantial variability in clinical practices. The objectives of this study were to develop standards of healthcare quality for nursing management of IBD and elaborate the evaluation tool "Nursing Care Quality in IBD Assessment" (NCQ-IBD) based on these standards. a 178-item healthcare quality questionnaire was developed based on a systematic review of IBD nursing management literature. The questionnaire was used to perform two 2-round Delphi studies: Delphi A included 27 IBD healthcare professionals and Delphi B involved 12 patients. The NCQ-IBD was developed from the list of items resulting from both Delphi studies combined with the Scientific Committee´s expert opinion. the final NCQ-IBD consists of 90 items, organized in13 sections measuring the following aspects of nursing management of IBD: infrastructure, services, human resources, type of organization, nursing responsibilities, nurse-provided information to the patient, nurses training, annual audits of nursing activities, and nursing research in IBD. Using the NCQ-IBD to evaluate these components allows the rating of healthcare quality for nursing management of IBD into 4 categories: A (highest quality) through D (lowest quality). the use of the NCQ-IBD tool to evaluate nursing management quality of IBD identifies areas in need of improvement and thus contribute to an enhancement of care quality and reduction in clinical practice variations.

  16. A practical MGA-ARIMA model for forecasting real-time dynamic rain-induced attenuation

    Science.gov (United States)

    Gong, Shuhong; Gao, Yifeng; Shi, Houbao; Zhao, Ge

    2013-05-01

    novel and practical modified genetic algorithm (MGA)-autoregressive integrated moving average (ARIMA) model for forecasting real-time dynamic rain-induced attenuation has been established by combining genetic algorithm ideas with the ARIMA model. It is proved that due to the introduction of MGA into the ARIMA(1,1,7) model, the MGA-ARIMA model has the potential to be conveniently applied in every country or area by creating a parameter database used by the ARIMA(1,1,7) model. The parameter database is given in this paper based on attenuation data measured in Xi'an, China. The methods to create the parameter databases in other countries or areas are offered, too. Based on the experimental results, the MGA-ARIMA model has been proved practical for forecasting dynamic rain-induced attenuation in real time. The novel model given in this paper is significant for developing adaptive fade mitigation technologies at millimeter wave bands.

  17. Attenuation Model Using the Large-N Array from the Source Physics Experiment

    Science.gov (United States)

    Atterholt, J.; Chen, T.; Snelson, C. M.; Mellors, R. J.

    2017-12-01

    The Source Physics Experiment (SPE) consists of a series of chemical explosions at the Nevada National Security Site. SPE seeks to better characterize the influence of subsurface heterogeneities on seismic wave propagation and energy dissipation from explosions. As a part of this experiment, SPE-5, a 5000 kg TNT equivalent chemical explosion, was detonated in 2016. During the SPE-5 experiment, a Large-N array of 996 geophones (half 3-component and half z-component) was deployed. This array covered an area that includes loosely consolidated alluvium (weak rock) and weathered granite (hard rock), and recorded the SPE-5 explosion as well as 53 weight drops. We use these Large-N recordings to develop an attenuation model of the area to better characterize how geologic structures influence source energy partitioning. We found a clear variation in seismic attenuation for different rock types: high attenuation (low Q) for alluvium and low attenuation (high Q) for granite. The attenuation structure correlates well with local geology, and will be incorporated into the large simulation effort of the SPE program to validate predictive models. (LA-UR-17-26382)

  18. Context discovery using attenuated Bloom codes: model description and validation

    NARCIS (Netherlands)

    Liu, F.; Heijenk, Geert

    A novel approach to performing context discovery in ad-hoc networks based on the use of attenuated Bloom filters is proposed in this report. In order to investigate the performance of this approach, a model has been developed. This document describes the model and its validation. The model has been

  19. CHROMAT trademark Version 1.1--Soil Chromium Attenuation Evaluation Model

    International Nuclear Information System (INIS)

    Felmy, A.R.; Rai, D.; Zachara, J.M.; Thapa, M.; Gold, M.

    1992-07-01

    This document is the user's manual and technical reference for the Soil Chromium Attenuation Model (CHROMAT trademark), a computer code designed to calculate both the dissolved Cr concentration and the amount of Cr attenuated in soils as a result of the geochemical reactions that occur as Cr-containing leachates migrate through porous soils. The dissolved Cr concentration and the amount of Cr attenuated are calculated using thermodynamic (mechanistic) data for aqueous complexation reactions, adsorption/ desorption reactions, and precipitation/dissolution reactions involving both CR(III) and Cr(VI) species. Use of this mechanistic approach means that CHROMAT trademark requires a minimum amount of site-specific data on leachate and soil characteristics. CHROMAT trademark is distributed in executable form for IBM and IBM-compatible personal computers through a license from the Electric Power Research Institute (EPRI). The user interacts with CHROMAT trademark using menu-driven screen displays. Interactive on-line help options are available. Output from the code can be obtained in tabular or graphic form. This manual describes the development of CHROMAT trademark, including experimental data development in support of the model and model validation studies. The thermodynamic data and computational algorithm are also described. Example problems and results are included

  20. Numerical Speadsheet Modeling of Natural Attenuation for Groundwater Contaminant Plumes

    National Research Council Canada - National Science Library

    Twesme, Troy

    1999-01-01

    .... The model was used to evaluate natural attenuation for removal of a trichloroethylene (TCE) plume from a surficial aquifer containing three regions with distinctly different processes for degradation of TCE...

  1. Overview of recent developments in attenuation models

    International Nuclear Information System (INIS)

    Riera, J.D.

    2001-01-01

    Attenuation equations predict features of the seismic motion, such as the horizontal and vertical peak ground accelerations (PGA), the peak ground velocities (PGV) and the 5% damped spectral acceleration response (SA), in terms of the earthquake magnitude and distance from source to site. Occasionally other factors, like the type of faulting, are considered in the attenuation expressions. An overview of recent developments in this field is presented in the paper, including a discussion of the applicability of various models for short source to site distances. In such a case, i.e. in the neighbourhood of the epicentral region, which is of utmost importance in Nuclear Power Plant applications, the use of two parameters to define the earthquake size is suggested, instead of the single parameter, a magnitude scale. Recent evidence of the importance in such situations of so-called directivity effects, which require a more complete description of the focal mechanism, completes the paper. (author)

  2. Modeling of the attenuation of stress waves in concrete based on the Rayleigh damping model using time-reversal and PZT transducers

    Science.gov (United States)

    Tian, Zhen; Huo, Linsheng; Gao, Weihang; Li, Hongnan; Song, Gangbing

    2017-10-01

    Wave-based concrete structural health monitoring has attracted much attention. A stress wave experiences significant attenuation in concrete, however there is a lack of a unified method for predicting the attenuation coefficient of the stress wave. In this paper, a simple and effective absorption attenuation model of stress waves in concrete is developed based on the Rayleigh damping model, which indicates that the absorption attenuation coefficient of stress waves in concrete is directly proportional to the square of the stress wave frequency when the damping ratio is small. In order to verify the theoretical model, related experiments were carried out. During the experiments, a concrete beam was designed in which the d33-model piezoelectric smart aggregates were embedded to detect the propagation of stress waves. It is difficult to distinguish direct stress waves due to the complex propagation paths and the reflection and scattering of stress waves in concrete. Hence, as another innovation of this paper, a new method for computing the absorption attenuation coefficient based on the time-reversal method is developed. Due to the self-adaptive focusing properties of the time-reversal method, the time-reversed stress wave focuses and generates a peak value. The time-reversal method eliminates the adverse effects of multipaths, reflection, and scattering. The absorption attenuation coefficient is computed by analyzing the peak value changes of the time-reversal focused signal. Finally, the experimental results are found to be in good agreement with the theoretical model.

  3. Skull's acoustic attenuation and dispersion modeling on photoacoustic signal

    Science.gov (United States)

    Mohammadi, Leila; Behnam, Hamid; Tavakkoli, Jahan; Nasiriavanaki, Mohammadreza

    2018-02-01

    Despite the promising results of the recent novel transcranial photoacoustic (PA) brain imaging technology, it has been demonstrated that the presence of the skull severely affects the performance of this imaging modality. We theoretically investigate the effects of acoustic heterogeneity induced by skull on the PA signals generated from single particles, with firstly developing a mathematical model for this phenomenon and then explore experimental validation of the results. The model takes into account the frequency dependent attenuation and dispersion effects occur with wave reflection, refraction and mode conversion at the skull surfaces. Numerical simulations based on the developed model are performed for calculating the propagation of photoacoustic waves through the skull. The results show a strong agreement between simulation and ex-vivo study. The findings are as follow: The thickness of the skull is the most PA signal deteriorating factor that affects both its amplitude (attenuation) and phase (distortion). Also we demonstrated that, when the depth of target region is low and it is comparable to the skull thickness, however, the skull-induced distortion becomes increasingly severe and the reconstructed image would be strongly distorted without correcting these effects. It is anticipated that an accurate quantification and modeling of the skull transmission effects would ultimately allow for aberration correction in transcranial PA brain imaging.

  4. Seismic attenuation in fractured porous media: insights from a hybrid numerical and analytical model

    International Nuclear Information System (INIS)

    Ekanem, A M; Li, X Y; Chapman, M; Main, I G

    2015-01-01

    Seismic attenuation in fluid-saturated porous rocks can occur by geometric spreading, wave scattering or the internal dissipation of energy, most likely due to the squirt-flow mechanism. In principle, the pattern of seismic attenuation recorded on an array of sensors contains information about the medium, in terms of material heterogeneity and anisotropy, as well as material properties such as porosity, crack density, and pore-fluid composition and mobility. In practice, this inverse problem is challenging. Here we provide some insights into the effects of internal dissipation by analysing synthetic data produced by a hybrid numerical and analytical model for seismic wave propagation in a fractured medium embedded within a layered geological structure. The model is made up of one anisotropic and three isotropic horizontal layers. The anisotropic layer consists of a porous, fluid-saturated material containing vertically aligned inclusions representing a set of fractures. This combination allows squirt-flow to occur between the pores in the matrix and the model fractures. Our results show that the fluid mobility and the associated relaxation time of the fluid-pressure gradient control the frequency range over which attenuation occurs. This induced attenuation increases with incidence angle and azimuth away from the fracture strike-direction. Azimuthal variations in the induced attenuation are elliptical allowing the fracture orientations to be obtained from the axes of the ellipse. These observations hold out the potential of using seismic attenuation as an additional diagnostic in the characterisation of rock formations for a variety of applications including hydrocarbon exploration and production, subsurface storage of CO 2 , and geothermal energy extraction. (paper)

  5. Cooperative effect of the attenuation determinants derived from poliovirus sabin 1 strain is essential for attenuation of enterovirus 71 in the NOD/SCID mouse infection model.

    Science.gov (United States)

    Arita, Minetaro; Ami, Yasushi; Wakita, Takaji; Shimizu, Hiroyuki

    2008-02-01

    Enterovirus 71 (EV71) is a causative agent of hand, foot, and mouth disease and is also associated with serious neurological disorders. An attenuated EV71 strain [EV71(S1-3')] has been established in the cynomolgus monkey infection model; this strain contains the attenuation determinants derived from the type 1 poliovirus vaccine strain, Sabin 1 [PV1(Sabin)], in the 5' nontranslated region (NTR), 3D polymerase, and 3' NTR. In this study, we analyzed the effect of the attenuation determinants of PV1(Sabin) on EV71 infection in a NOD/SCID mouse infection model. We isolated a mouse-adapted EV71 strain [EV71(NOD/SCID)] that causes paralysis of the hind limbs in 3- to 4-week-old NOD/SCID mice by adaptation of the virulent EV71(Nagoya) strain in the brains of NOD/SCID mice. A single mutation at nucleotide 2876 that caused an amino acid change in capsid protein VP1 (change of the glycine at position 145 to glutamic acid) was essential for the mouse-adapted phenotype in NOD/SCID mice. Next, we introduced attenuation determinants derived from PV1(Sabin) along with the mouse adaptation mutation into the EV71(Nagoya) genome. In 4-week-old mice, the determinants in the 3D polymerase and 3' NTR, which are the major temperature-sensitive determinants, had a strong effect on attenuation. In contrast, the effect of individual determinants was weak in 3-week-old NOD/SCID mice, and all the determinants were required for substantial attenuation. These results suggest that a cooperative effect of the attenuation determinants of PV1(Sabin) is essential for attenuated neurovirulence of EV71.

  6. Modeled Radar Attenuation Rate Profile at the Vostok 5G Ice Core Site, Antarctica, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides a modeled radar attenuation rate profile, showing the predicted contributions from pure ice and impurities to radar attenuation at the Vostok...

  7. Attenuation correction for SPECT

    International Nuclear Information System (INIS)

    Hosoba, Minoru

    1986-01-01

    Attenuation correction is required for the reconstruction of a quantitative SPECT image. A new method for detecting body contours, which are important for the correction of tissue attenuation, is presented. The effect of body contours, detected by the newly developed method, on the reconstructed images was evaluated using various techniques for attenuation correction. The count rates in the specified region of interest in the phantom image by the Radial Post Correction (RPC) method, the Weighted Back Projection (WBP) method, Chang's method were strongly affected by the accuracy of the contours, as compared to those by Sorenson's method. To evaluate the effect of non-uniform attenuators on the cardiac SPECT, computer simulation experiments were performed using two types of models, the uniform attenuator model (UAM) and the non-uniform attenuator model (NUAM). The RPC method showed the lowest relative percent error (%ERROR) in UAM (11 %). However, 20 to 30 percent increase in %ERROR was observed for NUAM reconstructed with the RPC, WBP, and Chang's methods. Introducing an average attenuation coefficient (0.12/cm for Tc-99m and 0.14/cm for Tl-201) in the RPC method decreased %ERROR to the levels for UAM. Finally, a comparison between images, which were obtained by 180 deg and 360 deg scans and reconstructed from the RPC method, showed that the degree of the distortion of the contour of the simulated ventricles in the 180 deg scan was 15 % higher than that in the 360 deg scan. (Namekawa, K.)

  8. Experimental Test of a New Precision Model for Microwave Rotary Vane Attenuators

    DEFF Research Database (Denmark)

    Guldbrandsen, Tom; Guldbrandsen, Birthe; Warner, Frank L.

    1983-01-01

    coefficients have been measured versus angle of rotation by means of a computer-corrected automatic network analyzer and, within the uncertainty, they agree with the model. From the reflection measurements, corrections to the attenuation were calculated using relations derived from the model. The corrections...

  9. Tracer attenuation in groundwater

    Science.gov (United States)

    Cvetkovic, Vladimir

    2011-12-01

    The self-purifying capacity of aquifers strongly depends on the attenuation of waterborne contaminants, i.e., irreversible loss of contaminant mass on a given scale as a result of coupled transport and transformation processes. A general formulation of tracer attenuation in groundwater is presented. Basic sensitivities of attenuation to macrodispersion and retention are illustrated for a few typical retention mechanisms. Tracer recovery is suggested as an experimental proxy for attenuation. Unique experimental data of tracer recovery in crystalline rock compare favorably with the theoretical model that is based on diffusion-controlled retention. Non-Fickian hydrodynamic transport has potentially a large impact on field-scale attenuation of dissolved contaminants.

  10. Seismic attenuation relationship with homogeneous and heterogeneous prediction-error variance models

    Science.gov (United States)

    Mu, He-Qing; Xu, Rong-Rong; Yuen, Ka-Veng

    2014-03-01

    Peak ground acceleration (PGA) estimation is an important task in earthquake engineering practice. One of the most well-known models is the Boore-Joyner-Fumal formula, which estimates the PGA using the moment magnitude, the site-to-fault distance and the site foundation properties. In the present study, the complexity for this formula and the homogeneity assumption for the prediction-error variance are investigated and an efficiency-robustness balanced formula is proposed. For this purpose, a reduced-order Monte Carlo simulation algorithm for Bayesian model class selection is presented to obtain the most suitable predictive formula and prediction-error model for the seismic attenuation relationship. In this approach, each model class (a predictive formula with a prediction-error model) is evaluated according to its plausibility given the data. The one with the highest plausibility is robust since it possesses the optimal balance between the data fitting capability and the sensitivity to noise. A database of strong ground motion records in the Tangshan region of China is obtained from the China Earthquake Data Center for the analysis. The optimal predictive formula is proposed based on this database. It is shown that the proposed formula with heterogeneous prediction-error variance is much simpler than the attenuation model suggested by Boore, Joyner and Fumal (1993).

  11. Attenuation characteristics of monolayer graphene by Pi-and T-networks modeling of multilayer microstrip line

    Institute of Scientific and Technical Information of China (English)

    Pulkit Sharma; Sumit Pratap Singh; Kamlesh Patel

    2017-01-01

    The impedances of Pi-and T-networks are obtained from the measured S-parameters of the multilayer microstrip line by modeling as an attenuator.The changes in impedances have been analyzed for the properties of various superstrates at the microwave ranges.With graphene on glass and graphene on quartz loadings,the impedances have increased and shifted towards lower frequency more in Pi-network than T-network modeling.This shift has become more prominent at higher frequency for the graphene on glass than graphene on quartz.A little increase in attenuation is found for graphene on glass or quartz than bare glass and quartz.The present study can be extended to obtain attenuation characteristic of any thin film by simple experimental method in the microwave frequencies.

  12. Maximum likelihood estimation of the attenuated ultrasound pulse

    DEFF Research Database (Denmark)

    Rasmussen, Klaus Bolding

    1994-01-01

    The attenuated ultrasound pulse is divided into two parts: a stationary basic pulse and a nonstationary attenuation pulse. A standard ARMA model is used for the basic pulse, and a nonstandard ARMA model is derived for the attenuation pulse. The maximum likelihood estimator of the attenuated...

  13. Dose attenuation by a carbon fiber linac couch and modeling with a treatment planning system

    International Nuclear Information System (INIS)

    Sanchez Galiano, P.; Garcia Sancho, J.M.; Crelgo, D.; Pamos, M.; Fernandez, J.; Vivanco, J.

    2010-01-01

    The purpose of this work is to investigate the attenuation caused by a carbon fiber linac treatment couch and the ability of a commercial radiotherapy treatment planning system to simulate it. The attenuation caused by an Exact treatment couch in a Varian Clinac 2100 C/D was characterized in detail. Both 6 MV and 18 MV photon beams were studied. The treatment couch was modeled and incorporated to Elekta XiO treatment planning system. Measured and computed attenuation values were compared. As a result we found that the attenuation caused by this complex treatment couch is strongly dependent on the incidence angle of the beam. The measured attenuation values reach 16% for 6 MV and 10% for 18 MV. The model incorporated to the treatment planning software allows reducing the differences between measured and calculated data below 2.5% and 2.0% for 6 MV and 18 MV respectively. In conclusion, it is strongly recommended accounting for the perturbation caused by this carbon fiber treatment couch when the beam intersects it. The treatment planning system studied can simulate this treatment couch accurately. Clinical implementation of the described method requires a reliable procedure to reproduce the same patient geometry in the treatment delivery and planning. (Author).

  14. Economic Game Theory to Model the Attenuation of Virulence of an Obligate Intracellular Bacterium.

    Science.gov (United States)

    Tago, Damian; Meyer, Damien F

    2016-01-01

    Diseases induced by obligate intracellular pathogens have a large burden on global human and animal health. Understanding the factors involved in the virulence and fitness of these pathogens contributes to the development of control strategies against these diseases. Based on biological observations, a theoretical model using game theory is proposed to explain how obligate intracellular bacteria interact with their host. The equilibrium in such a game shows that the virulence and fitness of the bacterium is host-triggered and by changing the host's defense system to which the bacterium is confronted, an evolutionary process leads to an attenuated strain. Although, the attenuation procedure has already been conducted in practice in order to develop an attenuated vaccine (e.g., with Ehrlichia ruminantium), there was a lack of understanding of the theoretical basis behind this process. Our work provides a model to better comprehend the existence of different phenotypes and some underlying evolutionary mechanisms for the virulence of obligate intracellular bacteria.

  15. A simple model for the estimation of rain-induced attenuation along earth-space paths at millimeter wavelengths

    Science.gov (United States)

    Stutzman, W. L.; Dishman, W. K.

    1982-01-01

    A simple attenuation model (SAM) is presented for estimating rain-induced attenuation along an earth-space path. The rain model uses an effective spatial rain distribution which is uniform for low rain rates and which has an exponentially shaped horizontal rain profile for high rain rates. When compared to other models, the SAM performed well in the important region of low percentages of time, and had the lowest percent standard deviation of all percent time values tested.

  16. Attenuation of surface waves in porous media: Shock wave experiments and modelling

    NARCIS (Netherlands)

    Chao, G.E; Smeulders, D.M.J.; Dongen, van M.E.H.

    2005-01-01

    In this project we conduct experimental and numerical investigations on the attenuation mechanisms of surface waves in poroelastic materials. Viscous dissipation effects are modelled in the framework of Biot's theory. The experiments are performed using a shock tube technique. Quantitative agreement

  17. Attenuation Factors for B(E2) in the Microscopic Description of Multiphonon States ---A Simple Model Analysis---

    Science.gov (United States)

    Matsuyanagi, K.

    1982-05-01

    With an exactly solvable O(4) model of Piepenbring, Silvestre-Brac and Szymanski, we demonstrate that the attenuation factor for the B(E2) values, derived by the lowest-order approximation of the multiphonon method, takes excellent care of the kinematical anharmonicity effects, if multiphonon states are defined in the intrinsic subspace orthogonal to the pairing rotation. It is also shown that the other attenuation effect characterizing the interacting boson model is not a dominant effect in the model analysed here.

  18. Gain attenuation of gated framing camera

    International Nuclear Information System (INIS)

    Xiao Shali; Liu Shenye; Cao Zhurong; Li Hang; Zhang Haiying; Yuan Zheng; Wang Liwei

    2009-01-01

    The theoretic model of framing camera's gain attenuation is analyzed. The exponential attenuation curve of the gain along the pulse propagation time is simulated. An experiment to measure the coefficient of gain attenuation based on the gain attenuation theory is designed. Experiment result shows that the gain follows an exponential attenuation rule with a quotient of 0.0249 nm -1 , the attenuation coefficient of the pulse is 0.00356 mm -1 . The loss of the pulse propagation along the MCP stripline is the leading reason of gain attenuation. But in the figure of a single stripline, the gain dose not follow the rule of exponential attenuation completely, instead, there is a gain increase at the stripline bottom. That is caused by the reflection of the pulse. The reflectance is about 24.2%. Combining the experiment and theory, which design of the stripline MCP can improved the gain attenuation. (authors)

  19. Estimating Rain Attenuation In Satellite Communication Links

    Science.gov (United States)

    Manning, R. M.

    1991-01-01

    Attenuation computed with help of statistical model and meteorological data. NASA Lewis Research Center Satellite Link Attenuation Model (SLAM) program QuickBASIC computer program evaluating static and dynamic statistical assessment of impact of rain attenuation on communication link established between Earth terminal and geosynchronous satellite. Application in specification, design, and assessment of satellite communication links for any terminal location in continental United States. Written in Microsoft QuickBASIC.

  20. Modeling skull's acoustic attenuation and dispersion on photoacoustic signal

    Science.gov (United States)

    Mohammadi, L.; Behnam, H.; Nasiriavanaki, M. R.

    2017-03-01

    Despite the great promising results of a recent new transcranial photoacoustic brain imaging technology, it has been shown that the presence of the skull severely affects the performance of this imaging modality. In this paper, we investigate the effect of skull on generated photoacoustic signals with a mathematical model. The developed model takes into account the frequency dependence attenuation and acoustic dispersion effects occur with the wave reflection and refraction at the skull surface. Numerical simulations based on the developed model are performed for calculating the propagation of photoacoustic waves through the skull. From the simulation results, it was found that the skull-induced distortion becomes very important and the reconstructed image would be strongly distorted without correcting these effects. In this regard, it is anticipated that an accurate quantification and modeling of the skull transmission effects would ultimately allow for skull aberration correction in transcranial photoacoustic brain imaging.

  1. A statistical rain attenuation prediction model with application to the advanced communication technology satellite project. Part 2: Theoretical development of a dynamic model and application to rain fade durations and tolerable control delays for fade countermeasures

    Science.gov (United States)

    Manning, Robert M.

    1987-01-01

    A dynamic rain attenuation prediction model is developed for use in obtaining the temporal characteristics, on time scales of minutes or hours, of satellite communication link availability. Analagous to the associated static rain attenuation model, which yields yearly attenuation predictions, this dynamic model is applicable at any location in the world that is characterized by the static rain attenuation statistics peculiar to the geometry of the satellite link and the rain statistics of the location. Such statistics are calculated by employing the formalism of Part I of this report. In fact, the dynamic model presented here is an extension of the static model and reduces to the static model in the appropriate limit. By assuming that rain attenuation is dynamically described by a first-order stochastic differential equation in time and that this random attenuation process is a Markov process, an expression for the associated transition probability is obtained by solving the related forward Kolmogorov equation. This transition probability is then used to obtain such temporal rain attenuation statistics as attenuation durations and allowable attenuation margins versus control system delay.

  2. Measurement of vascular wall attenuation: Comparison of CT angiography using model-based iterative reconstruction with standard filtered back-projection algorithm CT in vitro

    International Nuclear Information System (INIS)

    Suzuki, Shigeru; Machida, Haruhiko; Tanaka, Isao; Ueno, Eiko

    2012-01-01

    Objectives: To compare the performance of model-based iterative reconstruction (MBIR) with that of standard filtered back projection (FBP) for measuring vascular wall attenuation. Study design: After subjecting 9 vascular models (actual attenuation value of wall, 89 HU) with wall thickness of 0.5, 1.0, or 1.5 mm that we filled with contrast material of 275, 396, or 542 HU to scanning using 64-detector computed tomography (CT), we reconstructed images using MBIR and FBP (Bone, Detail kernels) and measured wall attenuation at the center of the wall for each model. We performed attenuation measurements for each model and additional supportive measurements by a differentiation curve. We analyzed statistics using analyzes of variance with repeated measures. Results: Using the Bone kernel, standard deviation of the measurement exceeded 30 HU in most conditions. In measurements at the wall center, the attenuation values obtained using MBIR were comparable to or significantly closer to the actual wall attenuation than those acquired using Detail kernel. Using differentiation curves, we could measure attenuation for models with walls of 1.0- or 1.5-mm thickness using MBIR but only those of 1.5-mm thickness using Detail kernel. We detected no significant differences among the attenuation values of the vascular walls of either thickness (MBIR, P = 0.1606) or among the 3 densities of intravascular contrast material (MBIR, P = 0.8185; Detail kernel, P = 0.0802). Conclusions: Compared with FBP, MBIR reduces both reconstruction blur and image noise simultaneously, facilitates recognition of vascular wall boundaries, and can improve accuracy in measuring wall attenuation.

  3. Mapping Pn amplitude spreading and attenuation in Asia

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaoning [Los Alamos National Laboratory; Phillips, William S [Los Alamos National Laboratory; Stead, Richard J [Los Alamos National Laboratory

    2010-12-06

    Pn travels most of its path in the mantle lid. Mapping the lateral variation of Pn amplitude attenuation sheds light on material properties and dynamics of the uppermost region of the mantle. Pn amplitude variation depends on the wavefront geometric spreading as well as material attenuation. We investigated Pn geometric spreading, which is much more complex than a traditionally assumed power-law spreading model, using both synthetic and observed amplitude data collected in Asia. We derived a new Pn spreading model based on the formulation that was proposed previously to account for the spherical shape of the Earth (Yang et. al., BSSA, 2007). New parameters derived for the spreading model provide much better correction for Pn amplitudes in terms of residual behavior. Because we used observed Pn amplitudes to construct the model, the model incorporates not only the effect of the Earth's spherical shape, but also the effect of potential upper-mantle velocity gradients in the region. Using the new spreading model, we corrected Pn amplitudes measured at 1, 2, 4 and 6 Hz and conducted attenuation tomography. The resulting Pn attenuation model correlates well with the regional geology. We see high attenuation in regions such as northern Tibetan Plateau and the western Pacific subduction zone, and low attenuation for stable blocks such as Sichuan and Tarim basins.

  4. Acoustic Velocity and Attenuation in Magnetorhelogical fluids based on an effective density fluid model

    Directory of Open Access Journals (Sweden)

    Shen Min

    2016-01-01

    Full Text Available Magnetrohelogical fluids (MRFs represent a class of smart materials whose rheological properties change in response to the magnetic field, which resulting in the drastic change of the acoustic impedance. This paper presents an acoustic propagation model that approximates a fluid-saturated porous medium as a fluid with a bulk modulus and effective density (EDFM to study the acoustic propagation in the MRF materials under magnetic field. The effective density fluid model derived from the Biot’s theory. Some minor changes to the theory had to be applied, modeling both fluid-like and solid-like state of the MRF material. The attenuation and velocity variation of the MRF are numerical calculated. The calculated results show that for the MRF material the attenuation and velocity predicted with this effective density fluid model are close agreement with the previous predictions by Biot’s theory. We demonstrate that for the MRF material acoustic prediction the effective density fluid model is an accurate alternative to full Biot’s theory and is much simpler to implement.

  5. Measurement of vascular wall attenuation: comparison of CT angiography using model-based iterative reconstruction with standard filtered back-projection algorithm CT in vitro.

    Science.gov (United States)

    Suzuki, Shigeru; Machida, Haruhiko; Tanaka, Isao; Ueno, Eiko

    2012-11-01

    To compare the performance of model-based iterative reconstruction (MBIR) with that of standard filtered back projection (FBP) for measuring vascular wall attenuation. After subjecting 9 vascular models (actual attenuation value of wall, 89 HU) with wall thickness of 0.5, 1.0, or 1.5 mm that we filled with contrast material of 275, 396, or 542 HU to scanning using 64-detector computed tomography (CT), we reconstructed images using MBIR and FBP (Bone, Detail kernels) and measured wall attenuation at the center of the wall for each model. We performed attenuation measurements for each model and additional supportive measurements by a differentiation curve. We analyzed statistics using analyzes of variance with repeated measures. Using the Bone kernel, standard deviation of the measurement exceeded 30 HU in most conditions. In measurements at the wall center, the attenuation values obtained using MBIR were comparable to or significantly closer to the actual wall attenuation than those acquired using Detail kernel. Using differentiation curves, we could measure attenuation for models with walls of 1.0- or 1.5-mm thickness using MBIR but only those of 1.5-mm thickness using Detail kernel. We detected no significant differences among the attenuation values of the vascular walls of either thickness (MBIR, P=0.1606) or among the 3 densities of intravascular contrast material (MBIR, P=0.8185; Detail kernel, P=0.0802). Compared with FBP, MBIR reduces both reconstruction blur and image noise simultaneously, facilitates recognition of vascular wall boundaries, and can improve accuracy in measuring wall attenuation. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  6. Thermoacoustic tomography for an integro-differential wave equation modeling attenuation

    Science.gov (United States)

    Acosta, Sebastián; Palacios, Benjamín

    2018-02-01

    In this article we study the inverse problem of thermoacoustic tomography (TAT) on a medium with attenuation represented by a time-convolution (or memory) term, and whose consideration is motivated by the modeling of ultrasound waves in heterogeneous tissue via fractional derivatives with spatially dependent parameters. Under the assumption of being able to measure data on the whole boundary, we prove uniqueness and stability, and propose a convergent reconstruction method for a class of smooth variable sound speeds. By a suitable modification of the time reversal technique, we obtain a Neumann series reconstruction formula.

  7. Pitfalls in urinary stone identification using CT attenuation values: Are we getting the same information on different scanner models?

    Energy Technology Data Exchange (ETDEWEB)

    Grosjean, Romain, E-mail: r.grosjean@chu-nancy.fr [IADI Laboratory, INSERM-U947, Nancy-University, Allée du Morvan, 54500 Vandoeuvre-les-Nancy (France); Daudon, Michel, E-mail: michel.daudon@tnn.aphp.fr [IADI Laboratory, INSERM-U947, Nancy-University, Allée du Morvan, 54500 Vandoeuvre-les-Nancy (France); Chammas, Mario F., E-mail: mariochammas@usp.br [University of Sao Paulo – Division of Urology, Av. Dr. Enéas de Carvalho Aguiar, 255, 7" o Andar – s. 7123, São Paulo (Brazil); Claudon, Michel, E-mail: m.claudon@chu-nancy.fr [IADI Laboratory, INSERM-U947, Nancy-University, Allée du Morvan, 54500 Vandoeuvre-les-Nancy (France); Eschwege, Pascal, E-mail: peschwege@yahoo.com [Department of Urology, Brabois Hospital, University Hospital of Nancy, Allée du Morvan, 54511 Vandoeuvre-les-Nancy (France); Felblinger, Jacques, E-mail: j.felblinger@chu-nancy.fr [IADI Laboratory, INSERM-U947, Nancy-University, Allée du Morvan, 54500 Vandoeuvre-les-Nancy (France); Hubert, Jacques, E-mail: j.hubert@chu-nancy.fr [Department of Urology, Brabois Hospital, University Hospital of Nancy, Allée du Morvan, 54511 Vandoeuvre-les-Nancy (France)

    2013-08-15

    Introduction: Evaluate the capability of different Computed Tomography scanners to determine urinary stone compositions based on CT attenuation values and to evaluate potential differences between each model. Methods: 241 human urinary stones were obtained and their biochemical composition determined. Four different CT scanners (Siemens, Philips, GEMS and Toshiba) were evaluated. Mean CT-attenuation values and the standard deviation were recorded separately and compared with a t-paired test. Results: For all tested CT scanners, when the classification of the various types of stones was arranged according to the mean CT-attenuation values and to the confidence interval, large overlappings between stone types were highlighted. The t-paired test showed that most stone types could not be identified. Some types of stones presented mean CT attenuation values significantly different from one CT scanner to another. At 80 kV, the mean CT attenuation values obtained with the Toshiba Aquilion were significantly different from those obtained with the Siemens Sensation. On the other hand, mean values obtained with the Philips Brilliance were all significantly equal to those obtained with the Siemens Sensation and with the Toshiba Aquilion. At 120 kV mean CT attenuation values of uric acid, cystine and struvite stones obtained with the Philips model are significantly different from those obtained with the Siemens and the Toshiba but equal to those obtained with the GE 64. Conclusions: According to our study, there is a great variability when different brands and models of scanners are compared directly. Furthermore, the CT scan analysis and HU evaluation appears to gather insufficient information in order to characterize and identify the composition of renal stones.

  8. Pitfalls in urinary stone identification using CT attenuation values: Are we getting the same information on different scanner models?

    International Nuclear Information System (INIS)

    Grosjean, Romain; Daudon, Michel; o Andar – s. 7123, São Paulo (Brazil))" data-affiliation=" (University of Sao Paulo – Division of Urology, Av. Dr. Enéas de Carvalho Aguiar, 255, 7o Andar – s. 7123, São Paulo (Brazil))" >Chammas, Mario F.; Claudon, Michel; Eschwege, Pascal; Felblinger, Jacques; Hubert, Jacques

    2013-01-01

    Introduction: Evaluate the capability of different Computed Tomography scanners to determine urinary stone compositions based on CT attenuation values and to evaluate potential differences between each model. Methods: 241 human urinary stones were obtained and their biochemical composition determined. Four different CT scanners (Siemens, Philips, GEMS and Toshiba) were evaluated. Mean CT-attenuation values and the standard deviation were recorded separately and compared with a t-paired test. Results: For all tested CT scanners, when the classification of the various types of stones was arranged according to the mean CT-attenuation values and to the confidence interval, large overlappings between stone types were highlighted. The t-paired test showed that most stone types could not be identified. Some types of stones presented mean CT attenuation values significantly different from one CT scanner to another. At 80 kV, the mean CT attenuation values obtained with the Toshiba Aquilion were significantly different from those obtained with the Siemens Sensation. On the other hand, mean values obtained with the Philips Brilliance were all significantly equal to those obtained with the Siemens Sensation and with the Toshiba Aquilion. At 120 kV mean CT attenuation values of uric acid, cystine and struvite stones obtained with the Philips model are significantly different from those obtained with the Siemens and the Toshiba but equal to those obtained with the GE 64. Conclusions: According to our study, there is a great variability when different brands and models of scanners are compared directly. Furthermore, the CT scan analysis and HU evaluation appears to gather insufficient information in order to characterize and identify the composition of renal stones

  9. Empirical Relations for Optical Attenuation Prediction from Liquid Water Content of Fog

    Directory of Open Access Journals (Sweden)

    M. S. Khan

    2012-09-01

    Full Text Available Simultaneous measurements of the liquid water content (LWC and optical attenuation have been analyzed to predict optical attenuation caused by fog particles. Attenuation has been measured at two different wavelengths, 830 nm and 1550 nm, across co-located links. Five months measured data have been processed to assess power-law empirical models, which estimate optical attenuation from the LWC. The proposed models are compared with other published models and are demonstrated to perform sufficiently well to predict optical attenuation if the LWC values are available.

  10. Ultrasound fields in an attenuating medium

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Gandhi,, D; O'Brien,, W.D., Jr.

    1993-01-01

    of the rectangles and sums all contributions to arrive at the spatial impulse response for the aperture and field point. This approach makes it possible to model all transducer apertures, and the program can readily calculate the emitted, pulse-echo and continuous wave field. Attenuation is included by splitting...... it into a frequency dependent part and frequency independent part. The latter results in an attenuation factor that is multiplied onto the responses from the individual elements, and the frequency dependent part is handled by attenuating the basic one-dimensional pulse. The influence on ultrasound fields from......Ultrasound fields propagating in tissue will undergo changes in shape not only due to diffraction, but also due to the frequency dependent attenuation. Linear fields can be fairly well predicted for a non-attenuating medium like water by using the Tupholme-Stepanishen method for calculating...

  11. A Unified Statistical Rain-Attenuation Model for Communication Link Fade Predictions and Optimal Stochastic Fade Control Design Using a Location-Dependent Rain-Statistic Database

    Science.gov (United States)

    Manning, Robert M.

    1990-01-01

    A static and dynamic rain-attenuation model is presented which describes the statistics of attenuation on an arbitrarily specified satellite link for any location for which there are long-term rainfall statistics. The model may be used in the design of the optimal stochastic control algorithms to mitigate the effects of attenuation and maintain link reliability. A rain-statistics data base is compiled, which makes it possible to apply the model to any location in the continental U.S. with a resolution of 0-5 degrees in latitude and longitude. The model predictions are compared with experimental observations, showing good agreement.

  12. Attenuation in Melting Layer of Precipitation

    NARCIS (Netherlands)

    Klaassen, W.

    1988-01-01

    A model of the melting layer is employed on radar measurements to simulate the attenuation of radio waves at 12, 20 and 30GHz. The attenuation in the melting layer is simulated to be slightly larger than that of rain with the same path length and precipitation intensity. The result appears to depend

  13. Macroseismic intensity attenuation in Iran

    Science.gov (United States)

    Yaghmaei-Sabegh, Saman

    2018-01-01

    Macroseismic intensity data plays an important role in the process of seismic hazard analysis as well in developing of reliable earthquake loss models. This paper presents a physical-based model to predict macroseismic intensity attenuation based on 560 intensity data obtained in Iran in the time period 1975-2013. The geometric spreading and energy absorption of seismic waves have been considered in the proposed model. The proposed easy to implement relation describes the intensity simply as a function of moment magnitude, source to site distance and focal depth. The prediction capability of the proposed model is assessed by means of residuals analysis. Prediction results have been compared with those of other intensity prediction models for Italy, Turkey, Iran and central Asia. The results indicate the higher attenuation rate for the study area in distances less than 70km.

  14. LERC-SLAM - THE NASA LEWIS RESEARCH CENTER SATELLITE LINK ATTENUATION MODEL PROGRAM (MACINTOSH VERSION)

    Science.gov (United States)

    Manning, R. M.

    1994-01-01

    The frequency and intensity of rain attenuation affecting the communication between a satellite and an earth terminal is an important consideration in planning satellite links. The NASA Lewis Research Center Satellite Link Attenuation Model Program (LeRC-SLAM) provides a static and dynamic statistical assessment of the impact of rain attenuation on a communications link established between an earth terminal and a geosynchronous satellite. The program is designed for use in the specification, design and assessment of satellite links for any terminal location in the continental United States. The basis for LeRC-SLAM is the ACTS Rain Attenuation Prediction Model, which uses a log-normal cumulative probability distribution to describe the random process of rain attenuation on satellite links. The derivation of the statistics for the rainrate process at the specified terminal location relies on long term rainfall records compiled by the U.S. Weather Service during time periods of up to 55 years in length. The theory of extreme value statistics is also utilized. The user provides 1) the longitudinal position of the satellite in geosynchronous orbit, 2) the geographical position of the earth terminal in terms of latitude and longitude, 3) the height above sea level of the terminal site, 4) the yearly average rainfall at the terminal site, and 5) the operating frequency of the communications link (within 1 to 1000 GHz, inclusive). Based on the yearly average rainfall at the terminal location, LeRC-SLAM calculates the relevant rain statistics for the site using an internal data base. The program then generates rain attenuation data for the satellite link. This data includes a description of the static (i.e., yearly) attenuation process, an evaluation of the cumulative probability distribution for attenuation effects, and an evaluation of the probability of fades below selected fade depths. In addition, LeRC-SLAM calculates the elevation and azimuth angles of the terminal

  15. Time-domain simulation of constitutive relations for nonlinear acoustics including relaxation for frequency power law attenuation media modeling

    Science.gov (United States)

    Jiménez, Noé; Camarena, Francisco; Redondo, Javier; Sánchez-Morcillo, Víctor; Konofagou, Elisa E.

    2015-10-01

    We report a numerical method for solving the constitutive relations of nonlinear acoustics, where multiple relaxation processes are included in a generalized formulation that allows the time-domain numerical solution by an explicit finite differences scheme. Thus, the proposed physical model overcomes the limitations of the one-way Khokhlov-Zabolotskaya-Kuznetsov (KZK) type models and, due to the Lagrangian density is implicitly included in the calculation, the proposed method also overcomes the limitations of Westervelt equation in complex configurations for medical ultrasound. In order to model frequency power law attenuation and dispersion, such as observed in biological media, the relaxation parameters are fitted to both exact frequency power law attenuation/dispersion media and also empirically measured attenuation of a variety of tissues that does not fit an exact power law. Finally, a computational technique based on artificial relaxation is included to correct the non-negligible numerical dispersion of the finite difference scheme, and, on the other hand, improve stability trough artificial attenuation when shock waves are present. This technique avoids the use of high-order finite-differences schemes leading to fast calculations. The present algorithm is especially suited for practical configuration where spatial discontinuities are present in the domain (e.g. axisymmetric domains or zero normal velocity boundary conditions in general). The accuracy of the method is discussed by comparing the proposed simulation solutions to one dimensional analytical and k-space numerical solutions.

  16. Shock wave attenuation in a micro-channel

    Science.gov (United States)

    Giordano, J.; Perrier, P.; Meister, L.; Brouillette, M.

    2018-05-01

    This work presents optical measurements of shock wave attenuation in a glass micro-channel. This transparent facility, with a cross section ranging from 1 mm× 150 μm to 1 mm× 500 μm, allowed for the use of high-speed schlieren videography to visualize the propagation of a shock wave within the entire micro-channel and to quantify velocity attenuation of the wave due to wall effects. In this paper, we present the experimental technique and the relevant data treatment we have used to increase the sensitivity of shock wave detection. Then, we compared our experimental results for different channel widths, lengths, and shock wave velocities with the analytical model for shock attenuation proposed by Russell (J Fluid Mech 27(2):305-314, 1967), which assumes laminar flow, and by Mirels (Attenuation in a shock tube due to unsteady-boundary-layer action, NACA Report 1333, 1957) for turbulent flow. We found that these models are inadequate to predict the observed data, owing to the presence of fully developed flow which violates the basic assumption of these models. The data are also compared with the empirical shock attenuation models proposed by Zeitoun (Phys Fluids 27(1):011701, 2015) and Deshpande and Puranik (Shock Waves 26(4):465-475, 2016), where better agreement is observed. Finally, we presented experimental data for the flow field behind the shock wave from measurements of the Mach wave angle which shows globally decreasing flow Mach numbers due to viscous wall effects.

  17. Modelling the attenuation in the ATHENA finite elements code for the ultrasonic testing of austenitic stainless steel welds.

    Science.gov (United States)

    Chassignole, B; Duwig, V; Ploix, M-A; Guy, P; El Guerjouma, R

    2009-12-01

    Multipass welds made in austenitic stainless steel, in the primary circuit of nuclear power plants with pressurized water reactors, are characterized by an anisotropic and heterogeneous structure that disturbs the ultrasonic propagation and makes ultrasonic non-destructive testing difficult. The ATHENA 2D finite element simulation code was developed to help understand the various physical phenomena at play. In this paper, we shall describe the attenuation model implemented in this code to give an account of wave scattering phenomenon through polycrystalline materials. This model is in particular based on the optimization of two tensors that characterize this material on the basis of experimental values of ultrasonic velocities attenuation coefficients. Three experimental configurations, two of which are representative of the industrial welds assessment case, are studied in view of validating the model through comparison with the simulation results. We shall thus provide a quantitative proof that taking into account the attenuation in the ATHENA code dramatically improves the results in terms of the amplitude of the echoes. The association of the code and detailed characterization of a weld's structure constitutes a remarkable breakthrough in the interpretation of the ultrasonic testing on this type of component.

  18. Bulk viscosity and ultrasonic attenuation in liquid metals

    International Nuclear Information System (INIS)

    Awasthi, O.N.; Murthy, B.V.S.

    1984-11-01

    Ultrasonic attenuation in simple liquid metals has been investigated using the thermodynamic theory of relaxation processes incorporating the concept of a two state model for the liquid near the melting point. Agreement of the results with the experimental values of the ultrasonic attenuation and bulk viscosity indicates that this might be an appropriate approach to explain the excess attenuation of ultrasonic waves in liquid metals. (author)

  19. Model testing of a 10-kg high explosive blast attenuation maze

    International Nuclear Information System (INIS)

    Bacigalupi, C.M.; Burton, W.A.

    1981-01-01

    The basement area of the proposed High Explosive Applications Facility (HEAF) at the Lawrence Livermore National Laboratory includes 10-kg HE assembly and process cells, and a 10-kg corridor for the transport of up to 10 kg of HE from the receiving dock to the cells and to the experimental firing tanks. Previous model experiments developed a process cell-maze configuration that attenuated the effects of an accidental 10-kg detonation to acceptable levels (maximum of 10 to 11 psi reflected). This document reports 1/8-scale model tests conducted to confirm the maze design and to determine the blast pressures in adjacent areas in the final HEAF building configuration. In addition, pressure/time information was obtained at selected points in the model expansion chamber to provide the architect-engineer with information for structural design

  20. Attenuation of surface waves due to monsoon rains: A model study for the north Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Vethamony, P.; Kumar, B.P.; Sarma, Y.V.B.

    The dynamic interaction of intense rain with waves based on momentum exchange is applied to a second generation wave model to predict wave attenuation during monsoon. The scheme takes into account the characteristics of rain and wave parameters...

  1. PREDICTING ATTENUATION OF VIRUSES DURING PERCOLATION IN SOILS: 2. USER'S GUIDE TO THE VIRULO 1.0 COMPUTER MODEL

    Science.gov (United States)

    In the EPA document Predicting Attenuation of Viruses During Percolation in Soils 1. Probabilistic Model the conceptual, theoretical, and mathematical foundations for a predictive screening model were presented. In this current volume we present a User's Guide for the computer mo...

  2. A new parameterization for surface ocean light attenuation in Earth System Models: assessing the impact of light absorption by colored detrital material

    OpenAIRE

    G. E. Kim; M.-A. Pradal; A. Gnanadesikan

    2015-01-01

    Light limitation can affect the distribution of biota and nutrients in the ocean. Light absorption by colored detrital material (CDM) was included in a fully coupled Earth System Model using a new parameterization for shortwave attenuation. Two model runs were conducted, with and without light attenuation by CDM. In a global average sense, greater light limitation associated with CDM increased surface chlorophyll, biomass and nutrients together. These changes can be attribut...

  3. LERC-SLAM - THE NASA LEWIS RESEARCH CENTER SATELLITE LINK ATTENUATION MODEL PROGRAM (IBM PC VERSION)

    Science.gov (United States)

    Manning, R. M.

    1994-01-01

    The frequency and intensity of rain attenuation affecting the communication between a satellite and an earth terminal is an important consideration in planning satellite links. The NASA Lewis Research Center Satellite Link Attenuation Model Program (LeRC-SLAM) provides a static and dynamic statistical assessment of the impact of rain attenuation on a communications link established between an earth terminal and a geosynchronous satellite. The program is designed for use in the specification, design and assessment of satellite links for any terminal location in the continental United States. The basis for LeRC-SLAM is the ACTS Rain Attenuation Prediction Model, which uses a log-normal cumulative probability distribution to describe the random process of rain attenuation on satellite links. The derivation of the statistics for the rainrate process at the specified terminal location relies on long term rainfall records compiled by the U.S. Weather Service during time periods of up to 55 years in length. The theory of extreme value statistics is also utilized. The user provides 1) the longitudinal position of the satellite in geosynchronous orbit, 2) the geographical position of the earth terminal in terms of latitude and longitude, 3) the height above sea level of the terminal site, 4) the yearly average rainfall at the terminal site, and 5) the operating frequency of the communications link (within 1 to 1000 GHz, inclusive). Based on the yearly average rainfall at the terminal location, LeRC-SLAM calculates the relevant rain statistics for the site using an internal data base. The program then generates rain attenuation data for the satellite link. This data includes a description of the static (i.e., yearly) attenuation process, an evaluation of the cumulative probability distribution for attenuation effects, and an evaluation of the probability of fades below selected fade depths. In addition, LeRC-SLAM calculates the elevation and azimuth angles of the terminal

  4. MRI-guided attenuation correction in whole-body PET/MR. Assessment of the effect of bone attenuation

    International Nuclear Information System (INIS)

    Akbarzadeh, A.; Ay, M.R.; Ahmadian, A.; Riahi Alam, N.; Zaidi, H.

    2013-01-01

    Hybrid positron emission tomography (PET)/MRI presents many advantages in comparison with its counterpart PET/CT in terms of improved soft-tissue contrast, decrease in radiation exposure, and truly simultaneous and multi-parametric imaging capabilities. However, the lack of well-established methodology for MR-based attenuation correction is hampering further development and wider acceptance of this technology. We assess the impact of ignoring bone attenuation and using different tissue classes for generation of the attenuation map on the accuracy of attenuation correction of PET data. This work was performed using simulation studies based on the XCAT phantom and clinical input data. For the latter, PET and CT images of patients were used as input for the analytic simulation model using realistic activity distributions where CT-based attenuation correction was utilized as reference for comparison. For both phantom and clinical studies, the reference attenuation map was classified into various numbers of tissue classes to produce three (air, soft tissue and lung), four (air, lungs, soft tissue and cortical bones) and five (air, lungs, soft tissue, cortical bones and spongeous bones) class attenuation maps. The phantom studies demonstrated that ignoring bone increases the relative error by up to 6.8% in the body and up to 31.0% for bony regions. Likewise, the simulated clinical studies showed that the mean relative error reached 15% for lesions located in the body and 30.7% for lesions located in bones, when neglecting bones. These results demonstrate an underestimation of about 30% of tracer uptake when neglecting bone, which in turn imposes substantial loss of quantitative accuracy for PET images produced by hybrid PET/MRI systems. Considering bones in the attenuation map will considerably improve the accuracy of MR-guided attenuation correction in hybrid PET/MR to enable quantitative PET imaging on hybrid PET/MR technologies. (author)

  5. Treatment of mice with fenbendazole attenuates allergic airways inflammation and Th2 cytokine production in a model of asthma.

    Science.gov (United States)

    Cai, Yeping; Zhou, Jiansheng; Webb, Dianne C

    2009-01-01

    Mouse models have provided a significant insight into the role of T-helper (Th) 2 cytokines such as IL-5 and IL-13 in regulating eosinophilia and other key features of asthma. However, the validity of these models can be compromised by inadvertent infection of experimental mouse colonies with pathogens such as oxyurid parasites (pinworms). While the benzimidazole derivative, fenbendazole (FBZ), is commonly used to treat such outbreaks, the effects of FBZ on mouse models of Th2 disease are largely unknown. In this investigation, we show that mice fed FBZ-supplemented food during the in utero and post-weaning period developed attenuated lung eosinophilia, antigen-specific IgG1 and Th2 cytokine responses in a model of asthma. Treatment of the mediastinal lymph node cells from allergic mice with FBZ in vitro attenuated cell proliferation, IL-5 and IL-13 production and expression of the early lymphocyte activation marker, CD69 on CD4(+) T cells and CD19(+) B cells. In addition, eosinophilia and Th2 responses remained attenuated after a 4-week withholding period in allergic mice treated preweaning with FBZ. Thus, FBZ modulates the amplitude of Th2 responses both in vivo and in vitro.

  6. Effects of attenuation map accuracy on attenuation-corrected micro-SPECT images

    NARCIS (Netherlands)

    Wu, C.; Gratama van Andel, H.A.; Laverman, P.; Boerman, O.C.; Beekman, F.J.

    2013-01-01

    Background In single-photon emission computed tomography (SPECT), attenuation of photon flux in tissue affects quantitative accuracy of reconstructed images. Attenuation maps derived from X-ray computed tomography (CT) can be employed for attenuation correction. The attenuation coefficients as well

  7. Attenuation of seismic waves and the universal rheological model of the Earth's mantle

    Science.gov (United States)

    Birger, B. I.

    2007-08-01

    Analysis of results of laboratory studies on creep of mantle rocks, data on seismic wave attenuation in the mantle, and rheological micromechanisms shows that the universal, i.e., relevant to all time scales, rheological model of the mantle can be represented as four rheological elements connected in series. These elements account for elasticity, diffusion rheology, high temperature dislocation rheology, and low temperature dislocation rheology. The diffusion rheology element is described in terms of a Newtonian viscous fluid. The high temperature dislocation rheology element is described by the rheological model previously proposed by the author. This model is a combination of a power-law non-Newtonian fluid model for stationary flows and the linear hereditary Andrade model for flows associated with small strains. The low temperature dislocation rheology element is described by the linear hereditary Lomnitz model.

  8. Earth-Space Link Attenuation Estimation via Ground Radar Kdp

    Science.gov (United States)

    Bolen, Steven M.; Benjamin, Andrew L.; Chandrasekar, V.

    2003-01-01

    A method of predicting attenuation on microwave Earth/spacecraft communication links, over wide areas and under various atmospheric conditions, has been developed. In the area around the ground station locations, a nearly horizontally aimed polarimetric S-band ground radar measures the specific differential phase (Kdp) along the Earth-space path. The specific attenuation along a path of interest is then computed by use of a theoretical model of the relationship between the measured S-band specific differential phase and the specific attenuation at the frequency to be used on the communication link. The model includes effects of rain, wet ice, and other forms of precipitation. The attenuation on the path of interest is then computed by integrating the specific attenuation over the length of the path. This method can be used to determine statistics of signal degradation on Earth/spacecraft communication links. It can also be used to obtain real-time estimates of attenuation along multiple Earth/spacecraft links that are parts of a communication network operating within the radar coverage area, thereby enabling better management of the network through appropriate dynamic routing along the best combination of links.

  9. SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Joel Walls; M.T. Taner; Gary Mavko; Jack Dvorkin

    2002-01-01

    In Section 1 of this first report we will describe the work we are doing to collect and analyze rock physics data for the purpose of modeling seismic attenuation from other measurable quantities such as porosity, water saturation, clay content and net stress. This work and other empirical methods to be presented later, will form the basis for ''Q pseudo-well modeling'' that is a key part of this project. In Section 2 of this report, we will show the fundamentals of a new method to extract Q, dispersion, and attenuation from field seismic data. The method is called Gabor-Morlet time-frequency decomposition. This technique has a number of advantages including greater stability and better time resolution than spectral ratio methods.

  10. Statistical modeling of optical attenuation measurements in continental fog conditions

    Science.gov (United States)

    Khan, Muhammad Saeed; Amin, Muhammad; Awan, Muhammad Saleem; Minhas, Abid Ali; Saleem, Jawad; Khan, Rahimdad

    2017-03-01

    Free-space optics is an innovative technology that uses atmosphere as a propagation medium to provide higher data rates. These links are heavily affected by atmospheric channel mainly because of fog and clouds that act to scatter and even block the modulated beam of light from reaching the receiver end, hence imposing severe attenuation. A comprehensive statistical study of the fog effects and deep physical understanding of the fog phenomena are very important for suggesting improvements (reliability and efficiency) in such communication systems. In this regard, 6-months real-time measured fog attenuation data are considered and statistically investigated. A detailed statistical analysis related to each fog event for that period is presented; the best probability density functions are selected on the basis of Akaike information criterion, while the estimates of unknown parameters are computed by maximum likelihood estimation technique. The results show that most fog attenuation events follow normal mixture distribution and some follow the Weibull distribution.

  11. A promising hybrid approach to SPECT attenuation correction

    International Nuclear Information System (INIS)

    Lewis, N.H.; Faber, T.L.; Corbett, J.R.; Stokely, E.M.

    1984-01-01

    Most methods for attenuation compensation in SPECT either rely on the assumption of uniform attenuation, or use slow iteration to achieve accuracy. However, hybrid methods that combine iteration with simple multiplicative correction can accommodate nonuniform attenuation, and such methods converge faster than other iterative techniques. The authors evaluated two such methods, which differ in use of a damping factor to control convergence. Both uniform and nonuniform attenuation were modeled, using simulated and phantom data for a rotating gamma camera. For simulations done with 360 0 data and the correct attenuation map, activity levels were reconstructed to within 5% of the correct values after one iteration. Using 180 0 data, reconstructed levels in regions representing lesion and background were within 5% of the correct values in three iterations; however, further iterations were needed to eliminate the characteristic streak artifacts. The damping factor had little effect on 360 0 reconstruction, but was needed for convergence with 180 0 data. For both cold- and hot-lesion models, image contrast was better from the hybrid methods than from the simpler geometric-mean corrector. Results from the hybrid methods were comparable to those obtained using the conjugate-gradient iterative method, but required 50-100% less reconstruction time. The relative speed of the hybrid methods, and their accuracy in reconstructing photon activity in the presence of nonuniform attenuation, make them promising tools for quantitative SPECT reconstruction

  12. Endothelin receptor antagonist attenuates oxidative stress in a neonatal sepsis piglet model.

    Science.gov (United States)

    Goto, Tatenobu; Hussein, Mohamed Hamed; Kato, Shin; Daoud, Ghada Abdel-Hamid; Kato, Takenori; Sugiura, Takahiro; Kakita, Hiroki; Nobata, Masanori; Kamei, Michi; Mizuno, Haruo; Imai, Masaki; Ito, Tetsuya; Kato, Ineko; Suzuki, Satoshi; Okada, Noriko; Togari, Hajime; Okada, Hidechika

    2012-12-01

    Oxidative stress (oxidant-antioxidant imbalance) plays an important role in the pathophysiology of neonatal sepsis. This study evaluated whether an antisense peptide endothelin receptor antagonist, ETR-P1/fl, could attenuate oxidative stress in a neonatal sepsis model. A total of 18 3-d-old piglets were anesthetized and mechanically ventilated. Six piglets received cecal ligation and perforation (CLP group) for induction of sepsis. Six piglets also received continuous infusion (0.05 mg/kg/h) of ETR-P1/fl 30 min after CLP (ETR-P1/fl group). Six piglets received a sham operation. Serum total hydroperoxide (TH), biological antioxidant potentials (BAPs), oxidative stress index (OSI, calculated as TH/BAP), interleukin (IL)-6, serum glutamic oxaloacetic transaminase (GOT), and creatinine were measured before CLP and at 1, 3, and 6 h after CLP. CLP evoked a state of shock resulting in elevated TH, OSI, and IL-6 levels. ETR-P1/fl administration after CLP resulted in lower serum TH at 1 and 3 h after CLP, OSI at 1 and 3 h after CLP, IL-6 at 1 and 3 h after CLP, and GOT at 3 and 6 h after CLP as compared with the CLP group. ETR-P1/fl treatment significantly attenuated the elevation of serum oxidative stress markers (TH and OSI), IL-6, and GOT in a progressive neonatal sepsis CLP model.

  13. Scaling of nuclear modification factors for hadrons and light nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, C.S. [Chinese Academy of Sciences, Shanghai Institute of Applied Physics, Shanghai (China); University of Chinese Academy of Sciences, Beijing (China); Ma, Y.G. [Chinese Academy of Sciences, Shanghai Institute of Applied Physics, Shanghai (China); ShanghaiTech University, Shanghai (China); Zhang, S. [Chinese Academy of Sciences, Shanghai Institute of Applied Physics, Shanghai (China)

    2016-12-15

    The number of constituent quarks (NCQ) scaling for hadrons and the number of constituent nucleons (NCN) scaling for light nuclei are proposed for nuclear modification factors (R{sub cp}) of hadrons and light nuclei, respectively, according to the experimental investigations in relativistic heavy-ion collisions. Based on the coalescence mechanism the scalings are performed for pions and protons at the quark level, and for light nuclei d(anti d) and {sup 3}He at the nucleonic level, respectively, formed in Au+Au and Pb+Pb collisions, and a nice scaling behaviour emerges. The NCQ or NCN scaling law of R{sub cp} can be, respectively, taken as a probe for the quark or nucleon coalescence mechanism for the formation of hadron or light nuclei in relativistic heavy-ion collisions. (orig.)

  14. An attenuated projector-backprojector for iterative SPECT reconstruction

    International Nuclear Information System (INIS)

    Gullberg, G.T.; Pelc, N.J.; Huesman, R.H.; Budinger, T.F.; Malko, J.A.

    1985-01-01

    A new ray-driven projector-backprojector which can easily be adapted for hardware implementation is described and simulated in software. The projector-backprojector discretely models the attenuated Radon transform of a source distributed within an attenuating medium as line integrals of discrete pixels, obtained using the standard sampling technique of averaging the emission source or attenuation distribution over small square regions. Attenuation factors are calculated for each pixel during the projection and backprojection operations instead of using precalculated values. The calculation of the factors requires a specification of the attenuation distribution, estimated either from an assumed constant distribution and an approximate body outline or from transmission measurements. The distribution of attenuation coefficients is stored in memory for efficient access during the projection and backprojection operations. The reconstruction of the source distribution is obtained by using a conjugate gradient or SIRT type iterative algorithm which requires one projection and one backprojection operation for each iteration. (author)

  15. A meta-analysis of experimental studies of attenuated Schistosoma mansoni vaccines in the mouse model

    Directory of Open Access Journals (Sweden)

    Mizuho eFukushige

    2015-02-01

    Full Text Available Schistosomiasis is a water-borne, parasitic disease of major public health importance. There has been considerable effort for several decades towards the development of a vaccine against the disease. Numerous mouse experimental studies using attenuated Schistosoma mansoni parasites for vaccination have been published since the 1960s. However, to date, there has been no systematic review or meta-analysis of these data. The aim of this study is to identify measurable experimental conditions that affect the level of protection against re-infection with S. mansoni in mice vaccinated with radiation attenuated cercariae. Following a systematic review, a total of 755 observations were extracted from 105 articles (published 1963-2007 meeting the searching criteria. Random effects meta-regression models were used to identify the influential predictors.Three predictors were found to have statistically significant effects on the level of protection from vaccination: increasing numbers of immunizing parasites had a positive effect on fraction of protection whereas increasing radiation dose and time to challenge infection had negative effects. Models showed that the irradiated cercariae vaccine has the potential to achieve protection as high as 78% with a single dose vaccination. This declines slowly over time but remains high for at least 8 months after the last immunization. These findings provide insights into the optimal delivery of attenuated parasite vaccination and into the nature and development of protective vaccine induced immunity against schistosomiasis which may inform the formulation of human vaccines and the predicted duration of protection and thus frequency of booster vaccines.

  16. Uranium ISR Mine Closure — General Concepts and Model-Based Simulation of Natural Attenuation for South-Australian Mine Sites

    Energy Technology Data Exchange (ETDEWEB)

    Jeuken, B.; Märten, H.; Woods, P., E-mail: horst.maerten@heathgate.com.au [Heathgate Resources Pty. Ltd. (Heathgate), Adelaide (Australia); Kalka, H.; Nicolai, J. [Umwelt- und Ingenieurtechnik GmbH Dresden (UIT), Dresden (Germany)

    2014-05-15

    Heathgate has demonstrated the effect of natural attenuation (NA) in post in-situ recovery (ISR) aquifer regions during the operation of the Beverley mine since 2001. Enhanced natural attenuation (ENA) has been considered as the key component of the mine closure concept for the new Beverley Four Mile (BFM) project, complemented by an extensive monitoring program. Data from batch and column tests for BFM core samples was used to calibrate a reactive transport model, whose application in conjunction with the hydrological modelling of the BFM aquifer has shown that NA will result in the restoration of the aquifer in time. ENA within a staged mine development program under the site-specific circumstances is discussed. (author)

  17. Lactobacillus rhamnosus L34 Attenuates Gut Translocation-Induced Bacterial Sepsis in Murine Models of Leaky Gut.

    Science.gov (United States)

    Panpetch, Wimonrat; Chancharoenthana, Wiwat; Bootdee, Kanthika; Nilgate, Sumanee; Finkelman, Malcolm; Tumwasorn, Somying; Leelahavanichkul, Asada

    2018-01-01

    Gastrointestinal (GI) bacterial translocation in sepsis is well known, but the role of Lactobacillus species probiotics is still controversial. We evaluated the therapeutic effects of Lactobacillus rhamnosus L34 in a new sepsis model of oral administration of pathogenic bacteria with GI leakage induced by either an antibiotic cocktail (ATB) and/or dextran sulfate sodium (DSS). GI leakage with ATB, DSS, and DSS plus ATB (DSS+ATB) was demonstrated by fluorescein isothiocyanate (FITC)-dextran translocation to the circulation. The administration of pathogenic bacteria, either Klebsiella pneumoniae or Salmonella enterica serovar Typhimurium, enhanced translocation. Bacteremia was demonstrated within 24 h in 50 to 88% of mice with GI leakage plus the administration of pathogenic bacteria but not with GI leakage induction alone or bacterial gavage alone. Salmonella bacteremia was found in only 16 to 29% and 0% of mice with Salmonella and Klebsiella administrations, respectively. Klebsiella bacteremia was demonstrated in 25 to 33% and 10 to 16% of mice with Klebsiella and Salmonella administrations, respectively. Lactobacillus rhamnosus L34 attenuated GI leakage in these models, as shown by the reductions of FITC-dextran gut translocation, serum interleukin-6 (IL-6) levels, bacteremia, and sepsis mortality. The reduction in the amount of fecal Salmonella bacteria with Lactobacillus treatment was demonstrated. In addition, an anti-inflammatory effect of the conditioned medium from Lactobacillus rhamnosus L34 was also demonstrated by the attenuation of cytokine production in colonic epithelial cells in vitro In conclusion, Lactobacillus rhamnosus L34 attenuated the severity of symptoms in a murine sepsis model induced by GI leakage and the administration of pathogenic bacteria. Copyright © 2017 American Society for Microbiology.

  18. Inferring global upper-mantle shear attenuation structure by waveform tomography using the spectral element method

    Science.gov (United States)

    Karaoǧlu, Haydar; Romanowicz, Barbara

    2018-06-01

    We present a global upper-mantle shear wave attenuation model that is built through a hybrid full-waveform inversion algorithm applied to long-period waveforms, using the spectral element method for wavefield computations. Our inversion strategy is based on an iterative approach that involves the inversion for successive updates in the attenuation parameter (δ Q^{-1}_μ) and elastic parameters (isotropic velocity VS, and radial anisotropy parameter ξ) through a Gauss-Newton-type optimization scheme that employs envelope- and waveform-type misfit functionals for the two steps, respectively. We also include source and receiver terms in the inversion steps for attenuation structure. We conducted a total of eight iterations (six for attenuation and two for elastic structure), and one inversion for updates to source parameters. The starting model included the elastic part of the relatively high-resolution 3-D whole mantle seismic velocity model, SEMUCB-WM1, which served to account for elastic focusing effects. The data set is a subset of the three-component surface waveform data set, filtered between 400 and 60 s, that contributed to the construction of the whole-mantle tomographic model SEMUCB-WM1. We applied strict selection criteria to this data set for the attenuation iteration steps, and investigated the effect of attenuation crustal structure on the retrieved mantle attenuation structure. While a constant 1-D Qμ model with a constant value of 165 throughout the upper mantle was used as starting model for attenuation inversion, we were able to recover, in depth extent and strength, the high-attenuation zone present in the depth range 80-200 km. The final 3-D model, SEMUCB-UMQ, shows strong correlation with tectonic features down to 200-250 km depth, with low attenuation beneath the cratons, stable parts of continents and regions of old oceanic crust, and high attenuation along mid-ocean ridges and backarcs. Below 250 km, we observe strong attenuation in the

  19. Modeling the photochemical attenuation of down-the-drain chemicals during river transport by stochastic methods and field measurements of pharmaceuticals and personal care products.

    Science.gov (United States)

    Hanamoto, Seiya; Nakada, Norihide; Yamashita, Naoyuki; Tanaka, Hiroaki

    2013-01-01

    Existing stochastic models for predicting concentrations of down-the-drain chemicals in aquatic environments do not account for the diurnal variation of direct photolysis by sunlight, despite its being an important factor in natural attenuation. To overcome this limitation, we developed a stochastic model incorporating temporal variations in direct photolysis. To verify the model, we measured 57 pharmaceuticals and personal care products (PPCPs) in a 7.6-km stretch of an urban river, and determined their physical and biological properties in laboratory experiments. During transport along the river, 8 PPCPs, including ketoprofen and azithromycin, were attenuated by >20%, mainly owing to direct photolysis and adsorption to sediments. The photolabile PPCPs attenuated significantly in the daytime but persisted in the nighttime. The observations were similar to the values predicted by the photolysis model for the photolabile PPCPs (i.e., ketoprofen, diclofenac and furosemide) but not by the existing model. The stochastic model developed in this study was suggested to be a novel and useful stochastic model for evaluating direct photolysis of down-the-drain chemicals, which occurs during the river transport.

  20. An acoustic eikonal equation for attenuating orthorhombic media

    KAUST Repository

    Hao, Qi

    2017-04-06

    Attenuating orthorhombic models are often used to describe the azimuthal variation of the seismic wave velocity and amplitude in finely layered hydrocarbon reservoirs with vertical fractures. In addition to the P-wave related medium parameters, shear wave parameters are also present in the complex eikonal equation needed to describe the P-wave complex-valued traveltime in an attenuating orthorhombic medium, which increases the complexity of using the P-wave traveltime to invert for the medium parameters in practice. Here, we use the acoustic assumption to derive an acoustic eikonal equation that approximately governs the complex-valued traveltime of P-waves in an attenuating orthorhombic medium. For a homogeneous attenuating orthorhombic media, we solve the eikonal equation using a combination of the perturbation method and Shanks transform. For a horizontal attenuating orthorhombic layer, both the real and imaginary part of the complex-valued reflection traveltime have nonhyperbolic behaviors in terms of the source-receiver offset. Similar to the roles of normal moveout (NMO) velocity and anellipticity, the attenuation NMO velocity and the attenuation anellipticity characterize the variation of the imaginary part of the complex-valued reflection traveltime around zero source-receiver offset.

  1. Activation of farnesoid X receptor attenuates hepatic injury in a murine model of alcoholic liver disease

    International Nuclear Information System (INIS)

    Wu, Weibin; Zhu, Bo; Peng, Xiaomin; Zhou, Meiling; Jia, Dongwei; Gu, Jianxin

    2014-01-01

    Highlights: •FXR activity was impaired by chronic ethanol ingestion in a murine model of ALD. •Activation of FXR attenuated alcohol-induced liver injury and steatosis. •Activation of FXR attenuated cholestasis and oxidative stress in mouse liver. -- Abstract: Alcoholic liver disease (ALD) is a common cause of advanced liver disease, and considered as a major risk factor of morbidity and mortality worldwide. Hepatic cholestasis is a pathophysiological feature observed in all stages of ALD. The farnesoid X receptor (FXR) is a member of the nuclear hormone receptor superfamily, and plays an essential role in the regulation of bile acid, lipid and glucose homeostasis. However, the role of FXR in the pathogenesis and progression of ALD remains largely unknown. Mice were fed Lieber-DeCarli ethanol diet or an isocaloric control diet. We used a specific agonist of FXR WAY-362450 to study the effect of pharmacological activation of FXR in alcoholic liver disease. In this study, we demonstrated that FXR activity was impaired by chronic ethanol ingestion in a murine model of ALD. Activation of FXR by specific agonist WAY-362450 protected mice from the development of ALD. We also found that WAY-362450 treatment rescued FXR activity, suppressed ethanol-induced Cyp2e1 up-regulation and attenuated oxidative stress in liver. Our results highlight a key role of FXR in the modulation of ALD development, and propose specific FXR agonists for the treatment of ALD patients

  2. Activation of farnesoid X receptor attenuates hepatic injury in a murine model of alcoholic liver disease

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Weibin [Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032 (China); Institutes of Biomedical Science, Fudan University, Shanghai 200032 (China); Zhu, Bo; Peng, Xiaomin [Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032 (China); Zhou, Meiling, E-mail: meilingzhou2012@gmail.com [Department of Radiology, Zhongshan Hospital of Fudan University and Shanghai Institute of Medical Imaging, Shanghai 200032 (China); Jia, Dongwei, E-mail: jiadongwei@fudan.edu.cn [Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032 (China); Gu, Jianxin [Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032 (China); Institutes of Biomedical Science, Fudan University, Shanghai 200032 (China)

    2014-01-03

    Highlights: •FXR activity was impaired by chronic ethanol ingestion in a murine model of ALD. •Activation of FXR attenuated alcohol-induced liver injury and steatosis. •Activation of FXR attenuated cholestasis and oxidative stress in mouse liver. -- Abstract: Alcoholic liver disease (ALD) is a common cause of advanced liver disease, and considered as a major risk factor of morbidity and mortality worldwide. Hepatic cholestasis is a pathophysiological feature observed in all stages of ALD. The farnesoid X receptor (FXR) is a member of the nuclear hormone receptor superfamily, and plays an essential role in the regulation of bile acid, lipid and glucose homeostasis. However, the role of FXR in the pathogenesis and progression of ALD remains largely unknown. Mice were fed Lieber-DeCarli ethanol diet or an isocaloric control diet. We used a specific agonist of FXR WAY-362450 to study the effect of pharmacological activation of FXR in alcoholic liver disease. In this study, we demonstrated that FXR activity was impaired by chronic ethanol ingestion in a murine model of ALD. Activation of FXR by specific agonist WAY-362450 protected mice from the development of ALD. We also found that WAY-362450 treatment rescued FXR activity, suppressed ethanol-induced Cyp2e1 up-regulation and attenuated oxidative stress in liver. Our results highlight a key role of FXR in the modulation of ALD development, and propose specific FXR agonists for the treatment of ALD patients.

  3. The attenuation of concentrations model: a new method for assessing mercury mobility in sediments

    Directory of Open Access Journals (Sweden)

    Julio C. Wasserman

    2004-02-01

    Full Text Available In this work we propose a new approach for the determination of the mobility of mercury in sediments based on spatial distribution of concentrations. We chose the Tainheiros Cove, located in the Todos os Santos Bay, Brazil, as the study area, for it has a history of mercury contamination due to a chloro-alkali plant that was active during 12 years. Twenty-six surface sediment samples were collected from the area and mercury concentrations were measured by cold vapour atomic absorption spectrophotometry. A contour map was constructed from the results, indicating that mercury accumulated in a "hot spot" where concentrations reach more than 1 µg g-1. The model is able to estimate mobility of mercury in the sediments based on the distances between iso-concentration contours that determines an attenuation of concentrations factor. Values of attenuation ranged between 0.0729 (East of the hot spot, indicating higher mobility to 0.7727 (North of the hot spot, indicating lower mobility.

  4. Lattice Boltzmann simulations of attenuation-driven acoustic streaming

    International Nuclear Information System (INIS)

    Haydock, David; Yeomans, J M

    2003-01-01

    We show that lattice Boltzmann simulations can be used to model the attenuation-driven acoustic streaming produced by a travelling wave. Comparisons are made to analytical results and to the streaming pattern produced by an imposed body force approximating the Reynolds stresses. We predict the streaming patterns around a porous material in an attenuating acoustic field

  5. Attenuation Modified by DIG and Dust as Seen in M31

    Energy Technology Data Exchange (ETDEWEB)

    Tomičić, Neven; Kreckel, Kathryn; Schinnerer, Eva [Max Planck Institute for Astronomy (MPIA), Königstuhl 17, 69117 Heidelberg (Germany); Groves, Brent [School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Sandstrom, Karin [Center for Astrophysics and Space Sciences, Department of Physics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 (United States); Kapala, Maria [Department of Astronomy, University of Cape Town, Republic of South Africa (South Africa); Blanc, Guillermo A. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Leroy, Adam, E-mail: tomicic@mpia-hd.mpg.de [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States)

    2017-08-01

    The spatial distribution of dust in galaxies affects the global attenuation, and hence inferred properties, of galaxies. We trace the spatial distribution of dust in five approximately kiloparsec fields of M31 by comparing optical attenuation with the total dust mass distribution. We measure the attenuation from the Balmer decrement using Integral Field Spectroscopy and the dust mass from Herschel far-IR observations. Our results show that M31's dust attenuation closely follows a foreground screen model, contrary to what was previously found in other nearby galaxies. By smoothing the M31 data, we find that spatial resolution is not the cause for this difference. Based on the emission-line ratios and two simple models, we conclude that previous models of dust/gas geometry need to include a weakly or non-attenuated diffuse ionized gas (DIG) component. Due to the variation of dust and DIG scale heights with galactic radius, we conclude that different locations in galaxies will have different vertical distributions of gas and dust and therefore different measured attenuation. The difference between our result in M31 with that found in other nearby galaxies can be explained by our fields in M31 lying at larger galactic radii than the previous studies that focused on the centers of galaxies.

  6. Occurrence and in-stream attenuation of wastewater-derived pharmaceuticals in Iberian rivers.

    Science.gov (United States)

    Acuña, Vicenç; von Schiller, Daniel; García-Galán, Maria Jesús; Rodríguez-Mozaz, Sara; Corominas, Lluís; Petrovic, Mira; Poch, Manel; Barceló, Damià; Sabater, Sergi

    2015-01-15

    A multitude of pharmaceuticals enter surface waters via discharges of wastewater treatment plants (WWTPs), and many raise environmental and health concerns. Chemical fate models predict their concentrations using estimates of mass loading, dilution and in-stream attenuation. However, current comprehension of the attenuation rates remains a limiting factor for predictive models. We assessed in-stream attenuation of 75 pharmaceuticals in 4 river segments, aiming to characterize in-stream attenuation variability among different pharmaceutical compounds, as well as among river segments differing in environmental conditions. Our study revealed that in-stream attenuation was highly variable among pharmaceuticals and river segments and that none of the considered pharmaceutical physicochemical and molecular properties proved to be relevant in determining the mean attenuation rates. Instead, the octanol-water partition coefficient (Kow) influenced the variability of rates among river segments, likely due to its effect on sorption to sediments and suspended particles, and therefore influencing the balance between the different attenuation mechanisms (biotransformation, photolysis, sorption, and volatilization). The magnitude of the measured attenuation rates urges scientists to consider them as important as dilution when aiming to predict concentrations in freshwater ecosystems. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Continental Fog Attenuation Empirical Relationship from Measured Visibility Data

    Directory of Open Access Journals (Sweden)

    F. Nadeem

    2010-12-01

    Full Text Available Free Space Optics (FSO has the great potential for future communication applications. However, weather influenced reduced availability had been the main cause for its restricted growth. Among different weather influences fog plays the major role. A new model generalized for all FSO wavelengths, has been proposed for the prediction of continental fog attenuation using visibility data. The performance of the proposed model has been compared with well known models for measured attenuation data of Continental fog. The comparison has been performed in terms of Root Mean Square Error (RMSE.

  8. Zn/Ga−DFO iron–chelating complex attenuates the inflammatory process in a mouse model of asthma

    Directory of Open Access Journals (Sweden)

    Haim Bibi

    2014-01-01

    Conclusion: In this mouse model of allergic asthma, Zn/Ga−DFO attenuated allergic airway inflammation. The beneficial effects of treatment were in accord with iron overload abatement in asthmatic lungs by Zn/Ga−DFO. The findings in both cellular and tissue levels supported the existence of a significant anti-inflammatory effect of Zn/Ga−DFO.

  9. Cement-based materials' characterization using ultrasonic attenuation

    Science.gov (United States)

    Punurai, Wonsiri

    The quantitative nondestructive evaluation (NDE) of cement-based materials is a critical area of research that is leading to advances in the health monitoring and condition assessment of the civil infrastructure. Ultrasonic NDE has been implemented with varying levels of success to characterize cement-based materials with complex microstructure and damage. A major issue with the application of ultrasonic techniques to characterize cement-based materials is their inherent inhomogeneity at multiple length scales. Ultrasonic waves propagating in these materials exhibit a high degree of attenuation losses, making quantitative interpretations difficult. Physically, these attenuation losses are a combination of internal friction in a viscoelastic material (ultrasonic absorption), and the scattering losses due to the material heterogeneity. The objective of this research is to use ultrasonic attenuation to characterize the microstructure of heterogeneous cement-based materials. The study considers a real, but simplified cement-based material, cement paste---a common bonding matrix of all cement-based composites. Cement paste consists of Portland cement and water but does not include aggregates. First, this research presents the findings of a theoretical study that uses a set of existing acoustics models to quantify the scattered ultrasonic wavefield from a known distribution of entrained air voids. These attenuation results are then coupled with experimental measurements to develop an inversion procedure that directly predicts the size and volume fraction of entrained air voids in a cement paste specimen. Optical studies verify the accuracy of the proposed inversion scheme. These results demonstrate the effectiveness of using attenuation to measure the average size, volume fraction of entrained air voids and the existence of additional larger entrapped air voids in hardened cement paste. Finally, coherent and diffuse ultrasonic waves are used to develop a direct

  10. Modeling the relative impact of capsular tissue effects on implanted glucose sensor time lag and signal attenuation.

    Science.gov (United States)

    Novak, Matthew T; Yuan, Fan; Reichert, William M

    2010-10-01

    Little is known mechanistically about why implanted glucose sensors lag behind blood glucose levels in both the time to peak sensor response and the magnitude of peak sensor response. A mathematical model of glucose transport from capillaries through surrounding tissue to the sensor surface was constructed to address how different aspects of the tissue affect glucose transport to an implanted sensor. Physiologically relevant values of capsule diffusion coefficient, capsule porosity, cellular glucose consumption, capsule thickness, and subcutaneous vessel density were used as inputs to create simulated sensor traces that mimic experimental instances of time lag and concentration attenuation relative to a given blood glucose profile. Using logarithmic sensitivity analysis, each parameter was analyzed to study the effect of these variables on both lag and attenuation. Results identify capsule thickness as the strongest determinant of sensor time lag, while subcutaneous vessel density and capsule porosity had the largest effects on attenuation of glucose that reaches the sensor surface. These findings provide mechanistic insight for the rational design of sensor modifications that may alleviate the deleterious consequences of tissue effects on implanted sensor performance.

  11. Factors influencing seismic wave attenuation in the lithosphere in continental rift zones

    Directory of Open Access Journals (Sweden)

    А. А. Dobrynina

    2017-01-01

    Full Text Available Attenuation of seismic waves in the crust and the upper mantle has been studied in three global rift systems: the Baikal rift system (Eurasia, the North Tanzanian divergence zone (Africa and the Basin and Range Province (North America. Using the records of direct and coda waves of regional earthquakes, the single scattering theory [Aki, Chouet, 1975], the hybrid model from [Zeng, 1991] and the approach described in [Wennerberg, 1993], we estimated the seismic quality factor (QC, frequency parameter (n, attenuation coefficient (δ, and total attenuation (QT. In addition, we evaluated the contributions of two components into total attenuation: intrinsic attenuation (Qi, and scattering attenuation (Qsc. Values of QC are strongly dependent on the frequency within the range of 0.2–16 Hz, as well as on the length of the coda processing window. The observed increase of QC with larger lengths of the coda processing window can be interpreted as a decrease in attenuation with increasing depth. Having compared the depth variations in the attenuation coefficient (δ and the frequency (n with the velocity structures of the studied regions, we conclude that seismic wave attenuation changes at the velocity boundaries in the medium. Moreover, the comparison results show that the estimated variations in the attenuation parameters with increasing depth are considerably dependent on utilized velocity models of the medium. Lateral variations in attenuation of seismic waves correlate with the geological and geophysical characteristics of the regions, and attenuation is primarily dependent on the regional seismic activity and regional heat flow. The geological inhomogeneities of the medium and the age of crust consolidation are secondary factors. Our estimations of intrinsic attenuation (Qi and scattering attenuation (Qsc show that in all the three studied regions, intrinsic attenuation is the major contributor to total attenuation. Our study shows that the

  12. THE SCENARIOS APPROACH TO ATTENUATION-BASED REMEDIES FOR INORGANIC AND RADIONUCLIDE CONTAMINANTS

    Energy Technology Data Exchange (ETDEWEB)

    Vangelas, K.; Rysz, M.; Truex, M.; Brady, P.; Newell, C.; Denham, M.

    2011-08-04

    Guidance materials based on use of conceptual model scenarios were developed to assist evaluation and implementation of attenuation-based remedies for groundwater and vadose zones contaminated with inorganic and radionuclide contaminants. The Scenarios approach is intended to complement the comprehensive information provided in the US EPA's Technical Protocol for Monitored Natural Attenuation (MNA) of Inorganic Contaminants by providing additional information on site conceptual models and extending the evaluation to consideration of Enhanced Attenuation approaches. The conceptual models incorporate the notion of reactive facies, defined as units with hydrogeochemical properties that are different from surrounding units and that react with contaminants in distinct ways. The conceptual models also incorporate consideration of biogeochemical gradients, defined as boundaries between different geochemical conditions that have been induced by waste disposal or other natural phenomena. Gradients can change over time when geochemical conditions from one area migrate into another, potentially affecting contaminant mobility. A recognition of gradients allows the attenuation-affecting conditions of a site to be projected into the future. The Scenarios approach provides a stepwise process to identify an appropriate category of conceptual model and refine it for a specific site. Scenario materials provide links to pertinent sections in the EPA technical protocol and present information about contaminant mobility and important controlling mechanism for attenuation-based remedies based on the categories of conceptual models.

  13. Statistical problems with weather-radar images, II: Attenuation detection

    International Nuclear Information System (INIS)

    Fernandez-Duran, Juan-Jose; Upton, Graham

    2003-01-01

    A procedure based on the combination of a Bayesian changepoint model and ordinary least squares is used to identify and quantify regions where a radar signal has been attenuated (i.e.diminished) as a consequence of intervening weather. A graphical polar display is introduced that illustrates the location and importance of the attenuation

  14. Contaminant Attenuation and Transport Characterization of 200-UP-1 Operable Unit Sediment Samples

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Brady D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Szecsody, James E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Qafoku, Nikolla [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McElroy, Erin M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Baum, Steven R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Snyder, Michelle MV [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lawter, Amanda R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Resch, Charles T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gartman, Brandy N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhong, Lirong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Saunders, Danielle L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Williams, Benjamin D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Horner, Jacob A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Leavy, Ian I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Christiansen, Beren B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Clayton, Ray E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnson, Kayla C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-09-27

    Contaminants disposed of at the land surface migrate through the vadose zone, forming plumes in groundwater. Processes that occur in the groundwater can attenuate contaminant concentrations during transport through the aquifer. For this reason, quantifying contaminant attenuation and contaminant transport processes in the aquifer, in support of the conceptual site model (CSM) and fate and transport modeling, are important for assessing the need for, and type of, remediation in the groundwater, including monitored natural attenuation (MNA). The framework to characterize attenuation and transport processes provided in U.S. Environmental Protection Agency (EPA) guidance documents was used to guide the laboratory effort reported herein.

  15. Evaluation of visual stress symptoms in age-matched dyslexic, Meares-Irlen syndrome and normal adults.

    Science.gov (United States)

    Alanazi, Mana A; Alanazi, Saud A; Osuagwu, Uchechukwu L

    2016-01-01

    To examine the prevalence of dyslexia and Meares-Irlen syndrome (MIS) among female students and determine their level of visual stress in comparison with normal subjects. A random sample of 450 female medical students of King Saud University Riyadh (age range, 18-30y) responded to a wide range of questions designed to accomplish the aims of this study. The detailed questionnaire consisted of 54 questions with 12 questions enquiring on ocular history and demography of participants while 42 questions were on visual symptoms. Items were categorized into critical and non-critical questions (CQ and NCQ) and were rated on four point Likert scale. Based on the responses obtained, the subjects were grouped into normal (control), dyslexic with or without MIS (Group 1) and subjects with MIS only (Group 2). Responses were analysed as averages and mean scores were calculated and compared between groups using one way analysis of variance to evaluate total visual stress score (TVSS=NCQ+CQ), critical and non-critical visual stress scores. The relationship between categorical variables such as age, handedness and condition were assessed with Chi-square test. The completion rate was 97.6% and majority of the respondents (92%) were normal readers, 2% dyslexic and 6% had MIS. They were age-matched. More than half of the participants had visited an eye care practitioner in the last 2y. About 13% were recommended eye exercises and one participant experienced pattern glare. Hand preference was not associated with any condition but Group 1 subjects (3/9, 33%) were significantly more likely to be diagnosed of lazy eye than Group 2 (2/27, 7%) and control (27/414, 7%) subjects. The mean±SD of TVSS responses were 63±14 and it was 44±9 for CQ and 19±5 for NCQ. Responses from all three variables were normally distributed but the CQ responses were on the average more positive (82%) in Group 2 and less positive (46%) in Group 1 than control. With NCQ, the responses were equally less positive

  16. Modeling of 830 nm FSO Link Attenuation in Fog or Wind Turbulence

    Czech Academy of Sciences Publication Activity Database

    Pešek, J.; Fišer, Ondřej; Svoboda, Jaroslav; Schejbal, V.

    2010-01-01

    Roč. 19, č. 2 (2010), s. 237-241 ISSN 1210-2512 R&D Projects: GA ČR GA102/08/0851; GA MŠk OC09027 Institutional research plan: CEZ:AV0Z30420517 Keywords : Free space optics propagation * fog attenuation, * wind turbulence attenuation * turbulent energy Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.503, year: 2010 http://www.radioeng.cz/fulltexts/2010/10_02_237_241.pdf

  17. Indoor signal attenuation assessment via fuzzy logic

    Directory of Open Access Journals (Sweden)

    Alexandre de Assis Mota

    2011-09-01

    Full Text Available This work focuses on the analysis of signal´s attenuation in indoor environments using a fuzzy logic approach based on the Shadowing Signal Propagation Model (SSPM. The SSPM allows the characterization of the attenuation caused by the environment through the ? parameter present in this model. In addition to this, the Fuzzy Logic provides a form of approximate reasoning that allows the treatment of problems with incomplete, vague and imprecise information. Also, it offers a simple way to obtain a possible solution for a problem using the heuristic knowledge about a particular situation. The results show that the methodology produced satisfactory results, close to the ones yielded by experimental methods.

  18. SU-F-BRE-10: Methods to Simulate and Measure the Attenuation for Modeling a Couch Top with Rails for FFF Treatment Delivery On the Varian Edge Linac

    International Nuclear Information System (INIS)

    Gulam, M; Gardner, S; Zhao, B; Snyder, K; Song, K; Li, H; Gordon, J; Wen, N; Chetty, I; Kearns, W

    2014-01-01

    Purpose: To measure attenuation for modelling of the KVue Couchtop for 6X and 10X FFF SRS/SBRT treatment Methods: Treatment planning simulation studies were done using 6X FFF beams to estimate the dosimetric impact of KVue couchtops (including the Q-Fix IGRT [carbon fiber] and Calypso [nonconductive Kevlar material]) with a structure model obtained from a research workstation (Eclipse, advanced planning interface (API) v13). Prior to installation on the Varian Edge linac, the couchtop along with (Kevlar) rails were CT scanned with the rails at various positions. An additional scan with the couchtop 15cm above the CT table top was obtained with 20cm solid water to facilitate precised/indexed data acquisition. Measurements for attenuation were obtained for field sizes of 2, 4 and 10 cm 2 at 42 gantry angles including 6 pairs of opposing fields and other angles for oblique delivery where the beams traversed the couchtop and or rails. The delivery was fully automated with xml scripts running in developer mode. The results were then used to determine an accurate structure model for AAA (Eclipse v11) planning of IMRT and RapidArc delivery. Results: The planning simulation relative dose attenuation for oblique entry was not significantly different than the Exact IGRT or BrainLab iBeam couch except that the rails added 6% additional attenuation. The relative attenuation measurements for PA, PA (rails: inner position), oblique, oblique (rails: outer position), oblique (rails: inner position) were: −2.0%, −2.5%, −15.6%, −2.5%, −5.0% for 6X FFF and −1.4%, −1.5%, −12.2%, − 2.5%, −5.0% for 10X FFF with slight decrease in attenuation versus field size. A Couch structure model (with HU values) was developed. Calculation compared to measurement showed good agreement except for oblique (rails: outer position) where differences approached a magnitude of 6%. Conclusion: A model of the couch structures has been developed accounting for attenuation for FFF beams

  19. Tylvalosin exhibits anti-inflammatory property and attenuates acute lung injury in different models possibly through suppression of NF-κB activation.

    Science.gov (United States)

    Zhao, Zhanzhong; Tang, Xiangfang; Zhao, Xinghui; Zhang, Minhong; Zhang, Weijian; Hou, Shaohua; Yuan, Weifeng; Zhang, Hongfu; Shi, Lijun; Jia, Hong; Liang, Lin; Lai, Zhi; Gao, Junfeng; Zhang, Keyu; Fu, Ling; Chen, Wei

    2014-07-01

    Tylvalosin, a new broad-spectrum, third-generation macrolides, may exert a variety of pharmacological activities. Here, we report on its anti-oxidative and anti-inflammatory activity in RAW 264.7 macrophages and mouse treated with lipopolysaccharide (LPS) as well as piglet challenged with porcine reproductive and respiratory syndrome virus (PRRSV). Tylvalosin treatment markedly decreased IL-8, IL-6, IL-1β, PGE2, TNF-α and NO levels in vitro and in vivo. LPS and PRRSV-induced reactive oxygen species (ROS) production, and the lipid peroxidation in mice lung tissues reduced after tylvalosin treatments. In mouse acute lung injury model induced by LPS, tylvalosin administration significantly attenuated tissues injury, and reduced the inflammatory cells recruitment and activation. The evaluated phospholipase A2 (PLA2) activity and the increased expressions of cPLA2-IVA, p-cPLA2-IVA and sPLA2-IVE were lowered by tylvalosin. Consistent with the mouse results, tylvalosin pretreatment attenuated piglet lung scores with improved growth performance and normal rectal temperature in piglet model induced by PRRSV. Furthermore, tylvalosin attenuated the IκBα phosphorylation and degradation, and blocked the NF-κB p65 translocation. These results indicate that in addition to its direct antimicrobial effect, tylvalosin exhibits anti-inflammatory property and attenuates acute lung injury through suppression of NF-κB activation. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Attenuation compensation for least-squares reverse time migration using the viscoacoustic-wave equation

    KAUST Repository

    Dutta, Gaurav

    2014-10-01

    Strong subsurface attenuation leads to distortion of amplitudes and phases of seismic waves propagating inside the earth. Conventional acoustic reverse time migration (RTM) and least-squares reverse time migration (LSRTM) do not account for this distortion, which can lead to defocusing of migration images in highly attenuative geologic environments. To correct for this distortion, we used a linearized inversion method, denoted as Qp-LSRTM. During the leastsquares iterations, we used a linearized viscoacoustic modeling operator for forward modeling. The adjoint equations were derived using the adjoint-state method for back propagating the residual wavefields. The merit of this approach compared with conventional RTM and LSRTM was that Qp-LSRTM compensated for the amplitude loss due to attenuation and could produce images with better balanced amplitudes and more resolution below highly attenuative layers. Numerical tests on synthetic and field data illustrated the advantages of Qp-LSRTM over RTM and LSRTM when the recorded data had strong attenuation effects. Similar to standard LSRTM, the sensitivity tests for background velocity and Qp errors revealed that the liability of this method is the requirement for smooth and accurate migration velocity and attenuation models.

  1. Attenuation compensation for least-squares reverse time migration using the viscoacoustic-wave equation

    KAUST Repository

    Dutta, Gaurav; Schuster, Gerard T.

    2014-01-01

    Strong subsurface attenuation leads to distortion of amplitudes and phases of seismic waves propagating inside the earth. Conventional acoustic reverse time migration (RTM) and least-squares reverse time migration (LSRTM) do not account for this distortion, which can lead to defocusing of migration images in highly attenuative geologic environments. To correct for this distortion, we used a linearized inversion method, denoted as Qp-LSRTM. During the leastsquares iterations, we used a linearized viscoacoustic modeling operator for forward modeling. The adjoint equations were derived using the adjoint-state method for back propagating the residual wavefields. The merit of this approach compared with conventional RTM and LSRTM was that Qp-LSRTM compensated for the amplitude loss due to attenuation and could produce images with better balanced amplitudes and more resolution below highly attenuative layers. Numerical tests on synthetic and field data illustrated the advantages of Qp-LSRTM over RTM and LSRTM when the recorded data had strong attenuation effects. Similar to standard LSRTM, the sensitivity tests for background velocity and Qp errors revealed that the liability of this method is the requirement for smooth and accurate migration velocity and attenuation models.

  2. Control algorithms for dynamic attenuators

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Scott S., E-mail: sshsieh@stanford.edu [Department of Radiology, Stanford University, Stanford, California 94305 and Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); Pelc, Norbert J. [Department of Radiology, Stanford University, Stanford California 94305 and Department of Bioengineering, Stanford University, Stanford, California 94305 (United States)

    2014-06-15

    Purpose: The authors describe algorithms to control dynamic attenuators in CT and compare their performance using simulated scans. Dynamic attenuators are prepatient beam shaping filters that modulate the distribution of x-ray fluence incident on the patient on a view-by-view basis. These attenuators can reduce dose while improving key image quality metrics such as peak or mean variance. In each view, the attenuator presents several degrees of freedom which may be individually adjusted. The total number of degrees of freedom across all views is very large, making many optimization techniques impractical. The authors develop a theory for optimally controlling these attenuators. Special attention is paid to a theoretically perfect attenuator which controls the fluence for each ray individually, but the authors also investigate and compare three other, practical attenuator designs which have been previously proposed: the piecewise-linear attenuator, the translating attenuator, and the double wedge attenuator. Methods: The authors pose and solve the optimization problems of minimizing the mean and peak variance subject to a fixed dose limit. For a perfect attenuator and mean variance minimization, this problem can be solved in simple, closed form. For other attenuator designs, the problem can be decomposed into separate problems for each view to greatly reduce the computational complexity. Peak variance minimization can be approximately solved using iterated, weighted mean variance (WMV) minimization. Also, the authors develop heuristics for the perfect and piecewise-linear attenuators which do not requirea priori knowledge of the patient anatomy. The authors compare these control algorithms on different types of dynamic attenuators using simulated raw data from forward projected DICOM files of a thorax and an abdomen. Results: The translating and double wedge attenuators reduce dose by an average of 30% relative to current techniques (bowtie filter with tube current

  3. Control algorithms for dynamic attenuators

    International Nuclear Information System (INIS)

    Hsieh, Scott S.; Pelc, Norbert J.

    2014-01-01

    Purpose: The authors describe algorithms to control dynamic attenuators in CT and compare their performance using simulated scans. Dynamic attenuators are prepatient beam shaping filters that modulate the distribution of x-ray fluence incident on the patient on a view-by-view basis. These attenuators can reduce dose while improving key image quality metrics such as peak or mean variance. In each view, the attenuator presents several degrees of freedom which may be individually adjusted. The total number of degrees of freedom across all views is very large, making many optimization techniques impractical. The authors develop a theory for optimally controlling these attenuators. Special attention is paid to a theoretically perfect attenuator which controls the fluence for each ray individually, but the authors also investigate and compare three other, practical attenuator designs which have been previously proposed: the piecewise-linear attenuator, the translating attenuator, and the double wedge attenuator. Methods: The authors pose and solve the optimization problems of minimizing the mean and peak variance subject to a fixed dose limit. For a perfect attenuator and mean variance minimization, this problem can be solved in simple, closed form. For other attenuator designs, the problem can be decomposed into separate problems for each view to greatly reduce the computational complexity. Peak variance minimization can be approximately solved using iterated, weighted mean variance (WMV) minimization. Also, the authors develop heuristics for the perfect and piecewise-linear attenuators which do not requirea priori knowledge of the patient anatomy. The authors compare these control algorithms on different types of dynamic attenuators using simulated raw data from forward projected DICOM files of a thorax and an abdomen. Results: The translating and double wedge attenuators reduce dose by an average of 30% relative to current techniques (bowtie filter with tube current

  4. Control algorithms for dynamic attenuators.

    Science.gov (United States)

    Hsieh, Scott S; Pelc, Norbert J

    2014-06-01

    The authors describe algorithms to control dynamic attenuators in CT and compare their performance using simulated scans. Dynamic attenuators are prepatient beam shaping filters that modulate the distribution of x-ray fluence incident on the patient on a view-by-view basis. These attenuators can reduce dose while improving key image quality metrics such as peak or mean variance. In each view, the attenuator presents several degrees of freedom which may be individually adjusted. The total number of degrees of freedom across all views is very large, making many optimization techniques impractical. The authors develop a theory for optimally controlling these attenuators. Special attention is paid to a theoretically perfect attenuator which controls the fluence for each ray individually, but the authors also investigate and compare three other, practical attenuator designs which have been previously proposed: the piecewise-linear attenuator, the translating attenuator, and the double wedge attenuator. The authors pose and solve the optimization problems of minimizing the mean and peak variance subject to a fixed dose limit. For a perfect attenuator and mean variance minimization, this problem can be solved in simple, closed form. For other attenuator designs, the problem can be decomposed into separate problems for each view to greatly reduce the computational complexity. Peak variance minimization can be approximately solved using iterated, weighted mean variance (WMV) minimization. Also, the authors develop heuristics for the perfect and piecewise-linear attenuators which do not require a priori knowledge of the patient anatomy. The authors compare these control algorithms on different types of dynamic attenuators using simulated raw data from forward projected DICOM files of a thorax and an abdomen. The translating and double wedge attenuators reduce dose by an average of 30% relative to current techniques (bowtie filter with tube current modulation) without

  5. A simulation of the optical attenuation of TPB coated light-guide detectors

    International Nuclear Information System (INIS)

    Jones, B J P

    2013-01-01

    This note is provided as a supplementary section to accompany the paper [1] which has been included in these proceedings. It describes some simple simulations which were performed in order to understand the attenuation behaviors of acrylic light-guides operated in air and argon, which were characterized in [2]. Whilst these simulations are only at the level of sophistication of a toy model, they illustrate interesting non-exponential light attenuation effects and the differences between operating light-guide based detectors in argon and air environments. We investigate the effects of surface absorption, surface roughness and wavelength dependence, and use a model tuned on the light-guide attenuation curve measured in air to make a prediction of the light-guide attenuation curve in argon. This curve is compared with data from a liquid argon test stand, and an improvement over a simple exponential model is observed

  6. Optimization of Power Consumption for Centrifugation Process Based on Attenuation Measurements

    Science.gov (United States)

    Salim, M. S.; Abd Malek, M. F.; Sabri, Naseer; Omar, M. Iqbal bin; Mohamed, Latifah; Juni, K. M.

    2013-04-01

    The main objective of this research is to produce a mathematical model that allows decreasing the electrical power consumption of centrifugation process based on attenuation measurements. The centrifugation time for desired separation efficiency may be measured to determine the power consumed of laboratory centrifuge device. The power consumption is one of several parameters that affect the system reliability and productivity. Attenuation measurements of wave propagated through blood sample during centrifugation process were used indirectly to measure the power consumption of device. A mathematical model for power consumption was derived and used to modify the speed profile of centrifuge controller. The power consumption model derived based on attenuation measurements has successfully save the power consumption of centrifugation process keeping high separation efficiency. 18kW.h monthly for 100 daily time device operation had been saved using the proposed model.

  7. Optimization of Power Consumption for Centrifugation Process Based on Attenuation Measurements

    International Nuclear Information System (INIS)

    Salim, M S; Iqbal bin Omar, M; Malek, M F Abd; Mohamed, Latifah; Sabri, Naseer; Juni, K M

    2013-01-01

    The main objective of this research is to produce a mathematical model that allows decreasing the electrical power consumption of centrifugation process based on attenuation measurements. The centrifugation time for desired separation efficiency may be measured to determine the power consumed of laboratory centrifuge device. The power consumption is one of several parameters that affect the system reliability and productivity. Attenuation measurements of wave propagated through blood sample during centrifugation process were used indirectly to measure the power consumption of device. A mathematical model for power consumption was derived and used to modify the speed profile of centrifuge controller. The power consumption model derived based on attenuation measurements has successfully save the power consumption of centrifugation process keeping high separation efficiency. 18kW.h monthly for 100 daily time device operation had been saved using the proposed model.

  8. Ultrasonic attenuation of CdSe at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, B.J., E-mail: braulio@ula.v [Centro de Estudios de Semiconductores, Departamento de Fisica, Facultad de Ciencias, Universidad de Los Andes Apartado de Correos No.1, La Hechicera, Merida 5251 (Venezuela, Bolivarian Republic of); Calderon, E.; Bracho, D.B. [Centro de Estudios de Semiconductores, Departamento de Fisica, Facultad de Ciencias, Universidad de Los Andes Apartado de Correos No.1, La Hechicera, Merida 5251 (Venezuela, Bolivarian Republic of); Perez, J.F. [Laboratorio de Instrumentacion Cientifica, Facultad de Ciencias, Universidad de Los Andes Apartado de Correos No.1, La Hechicera, Merida 5251 (Venezuela, Bolivarian Republic of)

    2010-08-01

    The ultrasonic attenuation of a single crystal of CdSe has been investigated over the temperature range from 1.2 to 300 K at frequencies of 10, 30 and 90 MHz. We report here the temperature dependence of the attenuation in the range 1.2-30 K for piezoactive and non-piezoactive acoustic waves. A temperature-induced relaxation for two piezoactive waves, which scale with frequency towards higher temperatures, was found. A modified Hutson and White model with a new parameter {gamma} is proposed to explain the relaxation maxima of our data and others in the literature. In this model the parameter {gamma}, which seems to be closely related to the compensation, takes into account the impurities-sound wave piezoelectric coupling. By inverting the proposed expression for the sound attenuation to obtain the electrical conductivity from the relaxation, it is found that impurity conductivity of the hopping type is the dominant conduction process at low temperatures.

  9. Ultrasonic attenuation of CdSe at low temperatures

    International Nuclear Information System (INIS)

    Fernandez, B.J.; Calderon, E.; Bracho, D.B.; Perez, J.F.

    2010-01-01

    The ultrasonic attenuation of a single crystal of CdSe has been investigated over the temperature range from 1.2 to 300 K at frequencies of 10, 30 and 90 MHz. We report here the temperature dependence of the attenuation in the range 1.2-30 K for piezoactive and non-piezoactive acoustic waves. A temperature-induced relaxation for two piezoactive waves, which scale with frequency towards higher temperatures, was found. A modified Hutson and White model with a new parameter γ is proposed to explain the relaxation maxima of our data and others in the literature. In this model the parameter γ, which seems to be closely related to the compensation, takes into account the impurities-sound wave piezoelectric coupling. By inverting the proposed expression for the sound attenuation to obtain the electrical conductivity from the relaxation, it is found that impurity conductivity of the hopping type is the dominant conduction process at low temperatures.

  10. A statistical rain attenuation prediction model with application to the advanced communication technology satellite project. 1: Theoretical development and application to yearly predictions for selected cities in the United States

    Science.gov (United States)

    Manning, Robert M.

    1986-01-01

    A rain attenuation prediction model is described for use in calculating satellite communication link availability for any specific location in the world that is characterized by an extended record of rainfall. Such a formalism is necessary for the accurate assessment of such availability predictions in the case of the small user-terminal concept of the Advanced Communication Technology Satellite (ACTS) Project. The model employs the theory of extreme value statistics to generate the necessary statistical rainrate parameters from rain data in the form compiled by the National Weather Service. These location dependent rain statistics are then applied to a rain attenuation model to obtain a yearly prediction of the occurrence of attenuation on any satellite link at that location. The predictions of this model are compared to those of the Crane Two-Component Rain Model and some empirical data and found to be very good. The model is then used to calculate rain attenuation statistics at 59 locations in the United States (including Alaska and Hawaii) for the 20 GHz downlinks and 30 GHz uplinks of the proposed ACTS system. The flexibility of this modeling formalism is such that it allows a complete and unified treatment of the temporal aspects of rain attenuation that leads to the design of an optimum stochastic power control algorithm, the purpose of which is to efficiently counter such rain fades on a satellite link.

  11. Photon attenuation by intensifying screens

    International Nuclear Information System (INIS)

    Holje, G.

    1983-01-01

    The photon attenuation by intensifying screens of different chemical composition has been determined. The attenuation of photons between 20 keV and 120 keV was measured by use of a multi-channel analyzer and a broad bremsstrahlung distribution. The attenuation by the intensifying screens was hereby determined simultaneously at many different monoenergetic photon energies. Experimentally determined attenuations were found to agree well with attenuation calculated from mass attenuation coefficients. The attenuation by the screens was also determined at various bremsstrahlung distributions, simulating those occurring behind the patient in various diagnostic X-ray examinations. The high attenuation in some of the intensifying screens form the basis for an analysis of the construction of asymmetric screen pairs. Single screen systems are suggested as a favourable alternative to thick screen pair systems. (Author)

  12. Evaluation of the attenuation properties of MR equipment for its use in a whole-body PET/MR scanner

    International Nuclear Information System (INIS)

    Delso, G; Martinez-Moeller, A; Bundschuh, R A; Ziegler, S I; Ladebeck, R; Candidus, Y; Faul, D

    2010-01-01

    The combination of magnetic resonance imaging (MR) and positron emission tomography (PET) scanners can provide a powerful tool for clinical diagnosis and investigation. Among the challenges of developing a combined scanner, obtaining attenuation maps for PET reconstruction is of critical importance. This requires accounting for the presence of MR hardware in the field of view. The attenuation introduced by this hardware cannot be obtained from MR data. We propose the creation of attenuation models of MR hardware, to be registered into the MR-based attenuation map prior to PET reconstruction. Two steps were followed to assess the viability of this method. First, transmission and emission measurements were performed on MR components (RF coils and medical probes). The severity of the artifacts in the reconstructed PET images was evaluated. Secondly, a high-exposure computed tomography (CT) scan was used to obtain a model of a head coil. This model was registered into the attenuation map of PET/CT scans of a uniform phantom fitted with the coil. The resulting PET images were compared to the PET/CT reconstruction in the absence of coils. The artifacts introduced by misregistration of the model were studied. The transmission scans revealed 17% count loss due to the presence of head and neck coils in the field of view. Important sources of attenuation were found in the lock, signal cables and connectors. However, the worst source of attenuation was the casing between both coils. None of the measured medical probes introduced a significant amount of attenuation. Concerning the attenuation model of the head coil, reconstructed PET images with model-based correction were comparable to the reference PET/CT reconstruction. However, inaccuracies greater than 1-2 mm in the axial positioning of the model led to important artifacts. In conclusion, the results show that model-based attenuation correction is possible. Using a high-exposure scan to create an attenuation model of the

  13. Prediction of spectral acceleration response ordinates based on PGA attenuation

    Science.gov (United States)

    Graizer, V.; Kalkan, E.

    2009-01-01

    Developed herein is a new peak ground acceleration (PGA)-based predictive model for 5% damped pseudospectral acceleration (SA) ordinates of free-field horizontal component of ground motion from shallow-crustal earthquakes. The predictive model of ground motion spectral shape (i.e., normalized spectrum) is generated as a continuous function of few parameters. The proposed model eliminates the classical exhausted matrix of estimator coefficients, and provides significant ease in its implementation. It is structured on the Next Generation Attenuation (NGA) database with a number of additions from recent Californian events including 2003 San Simeon and 2004 Parkfield earthquakes. A unique feature of the model is its new functional form explicitly integrating PGA as a scaling factor. The spectral shape model is parameterized within an approximation function using moment magnitude, closest distance to the fault (fault distance) and VS30 (average shear-wave velocity in the upper 30 m) as independent variables. Mean values of its estimator coefficients were computed by fitting an approximation function to spectral shape of each record using robust nonlinear optimization. Proposed spectral shape model is independent of the PGA attenuation, allowing utilization of various PGA attenuation relations to estimate the response spectrum of earthquake recordings.

  14. Ultrasonic attenuation measurements in neutron-irradiated quartz: a microscopic model for the tunneling states

    International Nuclear Information System (INIS)

    Keppens, V.; Laermans, C.; Coeck, M.

    1996-01-01

    Ultrasonic attenuation measurements are carried out in neutron-irradiated z-cut quartz for three different doses, in a frequency range from 70 to 320 MHz. The data are analyzed using the tunneling model, and the typical TS-parameters are derived. A comparison with the results obtained from similar x-cut samples shows that the coupling of the tunneling states with the longitudinal phonons is direction-dependent. This confirms the anisotropic behaviour of the tunneling states and gives support to the microscopic picture of the TS as a rotation of coupled SiO 4 tetrahedra. (orig.)

  15. STRATEGIC MODEL FOR ATTENUATING RURAL INEQUITIES IN SOUTH-MUNTENIA REGION

    Directory of Open Access Journals (Sweden)

    CRISTINA BÂLDAN

    2011-01-01

    Full Text Available In carrying out the paper: “Strategic model for attenuating rural inequities in South-Muntenia Region”, I had like primary goals the accomplishment of two kinds of objectives: general objectives and specific objectives. For the general objectives, I followed: developing the approach theoretical mode for combating rural inequities; the development of strategic plans for approaching the rural inequities combat and identifying strategic socio-economic measures dedicated for promoting necessary measures for combating social inequities. And the specific objectives had like goals the SWOT analysis and the development of strategic plans in local profile, based on clusters. The analysis of rural area in South-Muntenia Region has been made at the level of local administrative-territorial units, the smallest territorial level from which is collecting and after the statistic information is published. Utilizing this kind of territorial level is a positive premise for obtaining results with a high accurate degree.

  16. The attenuation of the periodic table

    International Nuclear Information System (INIS)

    Cook, N.D.

    1990-01-01

    Unique among models of nuclear structure, the face-centered-cubic (FCC) lattice model predicts the attenuation of the periodic table at Z < 110 and the impossibility of superheavy nuclei. The total binding energies of superheavy nuclei in the FCC model (109 < Z < 127) were calculated on the basis of parameters obtained from a least-squares best-fit for 914 nuclei (Z < 99). No indication of increased stability is found for any of the transuranic elements

  17. An ice-sheet-wide framework for englacial attenuation from ice-penetrating radar data

    Science.gov (United States)

    Jordan, T. M.; Bamber, J. L.; Williams, C. N.; Paden, J. D.; Siegert, M. J.; Huybrechts, P.; Gagliardini, O.; Gillet-Chaulet, F.

    2016-07-01

    Radar inference of the bulk properties of glacier beds, most notably identifying basal melting, is, in general, derived from the basal reflection coefficient. On the scale of an ice sheet, unambiguous determination of basal reflection is primarily limited by uncertainty in the englacial attenuation of the radio wave, which is an Arrhenius function of temperature. Existing bed-returned power algorithms for deriving attenuation assume that the attenuation rate is regionally constant, which is not feasible at an ice-sheet-wide scale. Here we introduce a new semi-empirical framework for deriving englacial attenuation, and, to demonstrate its efficacy, we apply it to the Greenland Ice Sheet. A central feature is the use of a prior Arrhenius temperature model to estimate the spatial variation in englacial attenuation as a first guess input for the radar algorithm. We demonstrate regions of solution convergence for two input temperature fields and for independently analysed field campaigns. The coverage achieved is a trade-off with uncertainty and we propose that the algorithm can be "tuned" for discrimination of basal melt (attenuation loss uncertainty ˜ 5 dB). This is supported by our physically realistic ( ˜ 20 dB) range for the basal reflection coefficient. Finally, we show that the attenuation solution can be used to predict the temperature bias of thermomechanical ice sheet models and is in agreement with known model temperature biases at the Dye 3 ice core.

  18. Active acoustic leak detection for LMFBR steam generator. Sound attenuation due to bubbles

    International Nuclear Information System (INIS)

    Kumagai, Hiromichi; Sakuma, Toshio

    1995-01-01

    In the steam generators (SG) of LMFBR, it is necessary to detect the leakage of water from tubes of heat exchangers as soon as it occurs. The active acoustic detection method has drawn general interest owing to its short response time and reduction of the influence of background noise. In this paper, the application of the active acoustic detection method for SG is proposed, and sound attenuation by bubbles is investigated experimentally. Furthermore, using the SG sector model, sound field characteristics and sound attenuation characteristics due to injection of bubbles are studied. It is clarified that the sound attenuation depends upon bubble size as well as void fraction, that the distance attenuation of sound in the SG model containing heat transfer tubes is 6dB for each two-fold increase of distance, and that emitted sound attenuates immediately upon injection of bubbles. (author)

  19. Canagliflozin, an SGLT2 inhibitor, attenuates the development of hepatocellular carcinoma in a mouse model of human NASH.

    Science.gov (United States)

    Shiba, Kumiko; Tsuchiya, Kyoichiro; Komiya, Chikara; Miyachi, Yasutaka; Mori, Kentaro; Shimazu, Noriko; Yamaguchi, Shinobu; Ogasawara, Naomi; Katoh, Makoto; Itoh, Michiko; Suganami, Takayoshi; Ogawa, Yoshihiro

    2018-02-05

    Sodium glucose cotransporter 2 (SGLT2) inhibitors, an antidiabetic drug, promotes urinary excretion of glucose by blocking its reabsorption in the renal proximal tubules. It is unclear whether SGLT2 inhibition could attenuate nonalcoholic steatohepatitis (NASH) and NASH-associated hepatocellular carcinoma. We examined the preventive effects of an SGLT2 inhibitor canagliflozin (CANA) in Western diet (WD)-fed melanocortin 4 receptor-deficient (MC4R-KO) mice, a mouse model of human NASH. An eight-week CANA treatment attenuated hepatic steatosis in WD-fed MC4R-KO mice, with increased epididymal fat mass without inflammatory changes. CANA treatment for 20 weeks inhibited the development of hepatic fibrosis in WD-fed MC4R-KO mice. After one year of CANA treatment, the number of liver tumors was significantly reduced in WD-fed MC4R-KO mice. In adipose tissue, CANA suppressed the ratio of oxidative to reduced forms of glutathiones (GSSG/GSH) in WD-fed MC4R-KO mice. Treatment with GSH significantly attenuated the H 2 O 2 -induced upregulation of genes related to NADPH oxidase in 3T3-L1 adipocytes, and that of Il6, Tgfb, and Pdgfb in RAW264.7 cells. This study provides evidence that SGLT2 inhibitors represent the unique class of drugs that can attenuate or delay the onset of NASH and eventually hepatocellular carcinoma, at least partly, through "healthy adipose expansion".

  20. Practical method of breast attenuation correction for cardiac SPECT

    International Nuclear Information System (INIS)

    Oliveira, Anderson de; Nogueira, Tindyua; Gutterres, Ricardo Fraga; Megueriam, Berdj Aram; Santos, Goncalo Rodrigues dos

    2007-01-01

    The breast attenuation effects on SPECT (Single Photon Emission Tomography) myocardium perfusion procedures have been lately scope of continuous inquiry. The requested attenuation correction factors are usually achieved by transmission analysis, making up the exposure of a standard external source to the SPECT, as a routine step. However, its high cost makes this methodology not fully available to the most of nuclear medicines services in Brazil and abroad. To overcome the problem, a new trend is presented in this work, implementing computational models to balance the breast attenuation effects on the left ventricle anterior wall, during myocardium perfusion scintigraphy procedures with SPECT. A neural network was put on in order to provide the attenuation correction indexes, based upon the following patients individual biotypes features: mass, age, height, chest and breast thicknesses, heart size, as well as the imparted activity intake levels. (author)

  1. Practical method of breast attenuation correction for cardiac SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Anderson de; Nogueira, Tindyua; Gutterres, Ricardo Fraga [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil). Coordenacao Geral de Instalacoes Medicas e Industriais (CGMI)]. E-mails: anderson@cnen.gov.br; tnogueira@cnen.gov.br; rguterre@cnen.gov.br; Megueriam, Berdj Aram [Instituto Nacional do Cancer (INCA), Rio de Janeiro, RJ (Brazil)]. E-mail: megueriam@hotmail.com; Santos, Goncalo Rodrigues dos [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)]. E-mail: goncalo@cnen.gov.br

    2007-07-01

    The breast attenuation effects on SPECT (Single Photon Emission Tomography) myocardium perfusion procedures have been lately scope of continuous inquiry. The requested attenuation correction factors are usually achieved by transmission analysis, making up the exposure of a standard external source to the SPECT, as a routine step. However, its high cost makes this methodology not fully available to the most of nuclear medicines services in Brazil and abroad. To overcome the problem, a new trend is presented in this work, implementing computational models to balance the breast attenuation effects on the left ventricle anterior wall, during myocardium perfusion scintigraphy procedures with SPECT. A neural network was put on in order to provide the attenuation correction indexes, based upon the following patients individual biotypes features: mass, age, height, chest and breast thicknesses, heart size, as well as the imparted activity intake levels. (author)

  2. Influence of intracoronary attenuation on coronary plaque measurements using multislice computed tomography: observations in an ex vivo model of coronary computed tomography angiography

    International Nuclear Information System (INIS)

    Cademartiri, Filippo; Krestin, Gabriel P.; Mollet, Nico R.; Feyter, Pim J. de; Runza, Giuseppe; Midiri, Massimo; Bruining, Nico; Hamers, Ronald; Somers, Pamela; Knaapen, Michiel; Verheye, Stefan

    2005-01-01

    Assessment of attenuation (measured in Hounsfield units, HU) of human coronary plaques was performed using multislice computed tomography (MSCT) in an ex vivo model. In three ex vivo specimens of left coronary arteries in oil, MSCT was performed after intracoronary injection of four solutions of contrast material (400 mgI/ml iomeprol). The four solutions were diluted as follows: 1/∞, 1/200, 1/80, and 1/20. All scans were performed with the following parameters: slices/collimation 16/0.75 mm, rotation time 375 ms. Each specimen was scored for the presence of atherosclerotic plaques. In each plaque the attenuation was measured in four regions of interest for lumen, plaque (non-calcified thickening of the vessel wall), calcium, and surrounding (oil surrounding the vessel). The results were compared with a one-way analysis of variance test and were correlated with Pearson's test. There were no significant differences in the attenuation of calcium and oil in the four solutions. The mean attenuation in the four solutions for lumen (35±10, 91±7, 246±18, 511±89 HU) and plaque (22±22, 50±26, 107±36, 152±67 HU) was significantly different between each decreasing dilution (p<0.001). The mean attenuation of lumen and plaque of coronary plaques showed high correlation, while the values were significantly different (r=0.73; p<0.001). Intracoronary attenuation modifies significantly the attenuation of plaques assessed with MSCT. (orig.)

  3. The coriolis attenuation problem in the perturbed i13/2 neutronbands

    Directory of Open Access Journals (Sweden)

    T. Engeland

    1983-01-01

    Full Text Available The Coriolis attenuation problem in the particle-rotor model is shown to be related to the BCS approximation. A model including the full recoil effect of one- and two-body terms, and with an exact diagonalization of the pairing force, is applied on four nuclei in the rare earth region known to have strongly Coriolis-perturbed i13/2 rotational bands. In all nuclei, the old Coriolis attenuation problem has been removed.

  4. Noncognitive Variables to Predict Academic Success among Junior Year Baccalaureate Nursing Students

    Science.gov (United States)

    Smith, Ellen M. T.

    2017-01-01

    An equitable predictor of academic success is needed as nursing education strives toward comprehensive preparation of diverse nursing students. The purpose of this study was to discover how Sedlacek's (2004a) Noncognitive Questionnaire (NCQ) and Duckworth & Quinn's (2009) Grit-S predicted baccalaureate nursing student academic performance and…

  5. Attenuation of postoperative adhesions using a modeled manual therapy.

    Directory of Open Access Journals (Sweden)

    Geoffrey M Bove

    Full Text Available Postoperative adhesions are pathological attachments that develop between abdominopelvic structures following surgery. Considered unavoidable and ubiquitous, postoperative adhesions lead to bowel obstructions, infertility, pain, and reoperations. As such, they represent a substantial health care challenge. Despite over a century of research, no preventive treatment exists. We hypothesized that postoperative adhesions develop from a lack of movement of the abdominopelvic organs in the immediate postoperative period while rendered immobile by surgery and opiates, and tested whether manual therapy would prevent their development. In a modified rat cecal abrasion model, rats were allocated to receive treatment with manual therapy or not, and their resulting adhesions were quantified. We also characterized macrophage phenotype. In separate experiments we tested the safety of the treatment on a strictureplasty model, and also the efficacy of the treatment following adhesiolysis. We show that the treatment led to reduced frequency and size of cohesive adhesions, but not other types of adhesions, such as those involving intraperitoneal fatty structures. This effect was associated with a delay in the appearance of trophic macrophages. The treatment did not inhibit healing or induce undesirable complications following strictureplasty. Our results support that that maintained movements of damaged structures in the immediate postoperative period has potential to act as an effective preventive for attenuating cohesive postoperative adhesion development. Our findings lay the groundwork for further research, including mechanical and pharmacologic approaches to maintain movements during healing.

  6. Attenuation of postoperative adhesions using a modeled manual therapy.

    Science.gov (United States)

    Bove, Geoffrey M; Chapelle, Susan L; Hanlon, Katherine E; Diamond, Michael P; Mokler, David J

    2017-01-01

    Postoperative adhesions are pathological attachments that develop between abdominopelvic structures following surgery. Considered unavoidable and ubiquitous, postoperative adhesions lead to bowel obstructions, infertility, pain, and reoperations. As such, they represent a substantial health care challenge. Despite over a century of research, no preventive treatment exists. We hypothesized that postoperative adhesions develop from a lack of movement of the abdominopelvic organs in the immediate postoperative period while rendered immobile by surgery and opiates, and tested whether manual therapy would prevent their development. In a modified rat cecal abrasion model, rats were allocated to receive treatment with manual therapy or not, and their resulting adhesions were quantified. We also characterized macrophage phenotype. In separate experiments we tested the safety of the treatment on a strictureplasty model, and also the efficacy of the treatment following adhesiolysis. We show that the treatment led to reduced frequency and size of cohesive adhesions, but not other types of adhesions, such as those involving intraperitoneal fatty structures. This effect was associated with a delay in the appearance of trophic macrophages. The treatment did not inhibit healing or induce undesirable complications following strictureplasty. Our results support that that maintained movements of damaged structures in the immediate postoperative period has potential to act as an effective preventive for attenuating cohesive postoperative adhesion development. Our findings lay the groundwork for further research, including mechanical and pharmacologic approaches to maintain movements during healing.

  7. Granulocyte colony stimulating factor attenuates inflammation in a mouse model of amyotrophic lateral sclerosis

    Directory of Open Access Journals (Sweden)

    Giniatullina Raisa

    2011-06-01

    Full Text Available Abstract Background Granulocyte colony stimulating factor (GCSF is protective in animal models of various neurodegenerative diseases. We investigated whether pegfilgrastim, GCSF with sustained action, is protective in a mouse model of amyotrophic lateral sclerosis (ALS. ALS is a fatal neurodegenerative disease with manifestations of upper and lower motoneuron death and muscle atrophy accompanied by inflammation in the CNS and periphery. Methods Human mutant G93A superoxide dismutase (SOD1 ALS mice were treated with pegfilgrastim starting at the presymptomatic stage and continued until the end stage. After long-term pegfilgrastim treatment, the inflammation status was defined in the spinal cord and peripheral tissues including hematopoietic organs and muscle. The effect of GCSF on spinal cord neuron survival and microglia, bone marrow and spleen monocyte activation was assessed in vitro. Results Long-term pegfilgrastim treatment prolonged mutant SOD1 mice survival and attenuated both astro- and microgliosis in the spinal cord. Pegfilgrastim in SOD1 mice modulated the inflammatory cell populations in the bone marrow and spleen and reduced the production of pro-inflammatory cytokine in monocytes and microglia. The mobilization of hematopoietic stem cells into the circulation was restored back to basal level after long-term pegfilgrastim treatment in SOD1 mice while the storage of Ly6C expressing monocytes in the bone marrow and spleen remained elevated. After pegfilgrastim treatment, an increased proportion of these cells in the degenerative muscle was detected at the end stage of ALS. Conclusions GCSF attenuated inflammation in the CNS and the periphery in a mouse model of ALS and thereby delayed the progression of the disease. This mechanism of action targeting inflammation provides a new perspective of the usage of GCSF in the treatment of ALS.

  8. Calorie restriction attenuates cardiac remodeling and diastolic dysfunction in a rat model of metabolic syndrome.

    Science.gov (United States)

    Takatsu, Miwa; Nakashima, Chieko; Takahashi, Keiji; Murase, Tamayo; Hattori, Takuya; Ito, Hiromi; Murohara, Toyoaki; Nagata, Kohzo

    2013-11-01

    Calorie restriction (CR) can modulate the features of obesity-related metabolic and cardiovascular diseases. We have recently characterized DahlS.Z-Lepr(fa)/Lepr(fa) (DS/obese) rats, derived from a cross between Dahl salt-sensitive and Zucker rats, as a new animal model of metabolic syndrome. DS/obese rats develop hypertension and manifest left ventricular remodeling and diastolic dysfunction, as well as increased cardiac oxidative stress and inflammation. We have now investigated the effects of CR on cardiac pathophysiology in DS/obese rats. DS/obese rats were fed either normal laboratory chow ad libitum or a calorie-restricted diet (65% of the average food intake for ad libitum) from 9 to 13 weeks. Age-matched homozygous lean (DahlS.Z-Lepr(+)/Lepr(+) or DS/lean) littermates served as controls. CR reduced body weight in both DS/obese and DS/lean rats, as well as attenuated the development of hypertension in DS/obese rats without affecting blood pressure in DS/lean rats. CR also reduced body fat content, ameliorated left ventricular hypertrophy, fibrosis, and diastolic dysfunction, and attenuated cardiac oxidative stress and inflammation in DS/obese rats. In addition, it increased serum adiponectin concentration, as well as downregulated the expression of angiotensin-converting enzyme and angiotensin II type 1A receptor genes in the heart of DS/obese rats. Our results thus show that CR attenuated obesity and hypertension, as well as left ventricular remodeling and diastolic dysfunction in DS/obese rats, with these latter effects being associated with reduced cardiac oxidative stress and inflammation.

  9. Electron attenuation in free, neutral ethane clusters.

    Science.gov (United States)

    Winkler, M; Myrseth, V; Harnes, J; Børve, K J

    2014-10-28

    The electron effective attenuation length (EAL) in free, neutral ethane clusters has been determined at 40 eV kinetic energy by combining carbon 1s x-ray photoelectron spectroscopy and theoretical lineshape modeling. More specifically, theory is employed to form model spectra on a grid in cluster size (N) and EAL (λ), allowing N and λ to be determined by optimizing the goodness-of-fit χ(2)(N, λ) between model and observed spectra. Experimentally, the clusters were produced in an adiabatic-expansion setup using helium as the driving gas, spanning a range of 100-600 molecules in mean cluster size. The effective attenuation length was determined to be 8.4 ± 1.9 Å, in good agreement with an independent estimate of 10 Å formed on the basis of molecular electron-scattering data and Monte Carlo simulations. The aggregation state of the clusters as well as the cluster temperature and its importance to the derived EAL value are discussed in some depth.

  10. Propofol attenuates oxidant-induced acute lung injury in an isolated perfused rabbit-lung model.

    Science.gov (United States)

    Yumoto, Masato; Nishida, Osamu; Nakamura, Fujio; Katsuya, Hirotada

    2005-01-01

    Reactive oxygen species have been strongly implicated in the pathogenesis of acute lung injury (ALI). Some animal studies suggest that free radical scavengers inhibit the onset of oxidant-induced ALI. Propofol (2,6-diisopropylphenol) is chemically similar to phenol-based free radical scavengers such as the endogenous antioxidant vitamin E. Both in vivo and in vitro studies have suggested that propofol has antioxidant potential. We hypothesized that propofol may attenuate ALI by acting as a free-radical scavenger. We investigated the effects of propofol on oxidant-induced ALI induced by purine and xanthine oxidase (XO), in isolated perfused rabbit lung, in two series of experiments. In series 1, we examined the relationship between the severity of ALI and the presence of hydrogen peroxide (H2O2). In series 2, we evaluated the effects of propofol on attenuating ALI and the dose dependence of these effects. The lungs were perfused for 90 min, and we evaluated the effects on the severity of ALI by monitoring the pulmonary capillary filtration coefficient (Kfc), pulmonary arterial pressure (Ppa), and the pulmonary capillary hydrostatic pressure (Ppc). In series 1, treatment with catalase (an H2O2 scavenger) prior to the addition of purine and XO resulted in complete prevention of ALI, suggesting that H2O2 may be involved closely in the pathogenesis of ALI. In series 2, pretreatment with propofol at concentrations in excess of 0.5 mM significantly inhibited the increases in the Kfc values, and that in excess of 0.75 mM significantly inhibited the increase in the Ppa values. Propofol attenuates oxidant-induced ALI in an isolated perfused rabbit lung model, probably due to its antioxidant action.

  11. Phase Aberration and Attenuation Effects on Acoustic Radiation Force-Based Shear Wave Generation.

    Science.gov (United States)

    Carrascal, Carolina Amador; Aristizabal, Sara; Greenleaf, James F; Urban, Matthew W

    2016-02-01

    Elasticity is measured by shear wave elasticity imaging (SWEI) methods using acoustic radiation force to create the shear waves. Phase aberration and tissue attenuation can hamper the generation of shear waves for in vivo applications. In this study, the effects of phase aberration and attenuation in ultrasound focusing for creating shear waves were explored. This includes the effects of phase shifts and amplitude attenuation on shear wave characteristics such as shear wave amplitude, shear wave speed, shear wave center frequency, and bandwidth. Two samples of swine belly tissue were used to create phase aberration and attenuation experimentally. To explore the phase aberration and attenuation effects individually, tissue experiments were complemented with ultrasound beam simulations using fast object-oriented C++ ultrasound simulator (FOCUS) and shear wave simulations using finite-element-model (FEM) analysis. The ultrasound frequency used to generate shear waves was varied from 3.0 to 4.5 MHz. Results: The measured acoustic pressure and resulting shear wave amplitude decreased approximately 40%-90% with the introduction of the tissue samples. Acoustic intensity and shear wave displacement were correlated for both tissue samples, and the resulting Pearson's correlation coefficients were 0.99 and 0.97. Analysis of shear wave generation with tissue samples (phase aberration and attenuation case), measured phase screen, (only phase aberration case), and FOCUS/FEM model (only attenuation case) showed that tissue attenuation affected the shear wave generation more than tissue aberration. Decreasing the ultrasound frequency helped maintain a focused beam for creation of shear waves in the presence of both phase aberration and attenuation.

  12. Cleaning up a salt spill : predictive modelling and monitoring natural attenuation to save remedial costs

    Energy Technology Data Exchange (ETDEWEB)

    Tsang, B.; Shaikh, A.A. [EBA Engineering Consultants Ltd., Calgary, AB (Canada)

    2006-07-01

    Predictive modelling and monitoring natural attenuation to save remedial costs in cleaning up a salt spill were discussed with reference to a site located in central Alberta, as well as a pipeline break in 2002 from a corroded pipe which resulted in a large spill of produced water and oil. Remedial alternatives and an assessment of the site were presented. This included an electromagnetic survey in 2004, groundwater flow regime, soil and groundwater quality data, vegetation survey, and predictive modelling versus observed water quality. Photos and illustrations of the site from the air were provided. A conceptual salt leaching and transport model was proposed as a solution. Model calculation results were also presented. Last, the presentation discussed some important considerations for predictive modeling and next steps for the site. These included continued monitoring, implementation of a restoration plan and engagement of stakeholders such as Alberta Environment and the site landowner. tabs., figs.

  13. Performance evaluation of the spectral centroid downshift method for attenuation estimation.

    Science.gov (United States)

    Samimi, Kayvan; Varghese, Tomy

    2015-05-01

    Estimation of frequency-dependent ultrasonic attenuation is an important aspect of tissue characterization. Along with other acoustic parameters studied in quantitative ultrasound, the attenuation coefficient can be used to differentiate normal and pathological tissue. The spectral centroid downshift (CDS) method is one the most common frequencydomain approaches applied to this problem. In this study, a statistical analysis of this method's performance was carried out based on a parametric model of the signal power spectrum in the presence of electronic noise. The parametric model used for the power spectrum of received RF data assumes a Gaussian spectral profile for the transmit pulse, and incorporates effects of attenuation, windowing, and electronic noise. Spectral moments were calculated and used to estimate second-order centroid statistics. A theoretical expression for the variance of a maximum likelihood estimator of attenuation coefficient was derived in terms of the centroid statistics and other model parameters, such as transmit pulse center frequency and bandwidth, RF data window length, SNR, and number of regression points. Theoretically predicted estimation variances were compared with experimentally estimated variances on RF data sets from both computer-simulated and physical tissue-mimicking phantoms. Scan parameter ranges for this study were electronic SNR from 10 to 70 dB, transmit pulse standard deviation from 0.5 to 4.1 MHz, transmit pulse center frequency from 2 to 8 MHz, and data window length from 3 to 17 mm. Acceptable agreement was observed between theoretical predictions and experimentally estimated values with differences smaller than 0.05 dB/cm/MHz across the parameter ranges investigated. This model helps predict the best attenuation estimation variance achievable with the CDS method, in terms of said scan parameters.

  14. A Yersinia pestis tat mutant is attenuated in bubonic and small-aerosol pneumonic challenge models of infection but not as attenuated by intranasal challenge.

    Directory of Open Access Journals (Sweden)

    Joel Bozue

    Full Text Available Bacterial proteins destined for the Tat pathway are folded before crossing the inner membrane and are typically identified by an N-terminal signal peptide containing a twin arginine motif. Translocation by the Tat pathway is dependent on the products of genes which encode proteins possessing the binding site of the signal peptide and mediating the actual translocation event. In the fully virulent CO92 strain of Yersinia pestis, the tatA gene was deleted. The mutant was assayed for loss of virulence through various in vitro and in vivo assays. Deletion of the tatA gene resulted in several consequences for the mutant as compared to wild-type. Cell morphology of the mutant bacteria was altered and demonstrated a more elongated form. In addition, while cultures of the mutant strain were able to produce a biofilm, we observed a loss of adhesion of the mutant biofilm structure compared to the biofilm produced by the wild-type strain. Immuno-electron microscopy revealed a partial disruption of the F1 antigen on the surface of the mutant. The virulence of the ΔtatA mutant was assessed in various murine models of plague. The mutant was severely attenuated in the bubonic model with full virulence restored by complementation with the native gene. After small-particle aerosol challenge in a pneumonic model of infection, the mutant was also shown to be attenuated. In contrast, when mice were challenged intranasally with the mutant, very little difference in the LD50 was observed between wild-type and mutant strains. However, an increased time-to-death and delay in bacterial dissemination was observed in mice infected with the ΔtatA mutant as compared to the parent strain. Collectively, these findings demonstrate an essential role for the Tat pathway in the virulence of Y. pestis in bubonic and small-aerosol pneumonic infection but less important role for intranasal challenge.

  15. Viscothermal Coupling Effects on Sound Attenuation in Concentrated Colloidal Dispersions.

    Science.gov (United States)

    Han, Wei

    1995-11-01

    This thesis describes a Unified Coupled Phase Continuum (UCPC) model to analyze sound propagation through aerosols, emulsions and suspensions in terms of frequency dependent attenuation coefficient and sound speed. Expressions for the viscous and thermal coupling coefficients explicitly account for the effects of particle size, shape factor, orientation as well as concentration and the sound frequency. The UCPC model also takes into account the intrinsic acoustic absorption within the fluid medium due to its viscosity and heat conductivity. The effective complex wave number as a function of frequency is derived. A frequency- and concentration-dependent complex Nusselt number for the interfacial thermal coupling coefficient is derived using an approximate similarity between the 'viscous skin drag' and 'heat conduction flux' associated with the discontinuous suspended phase, on the basis of a cell model. The theoretical predictions of attenuation spectra provide satisfactory agreement with reported experimental data on two concentrated suspensions (polystyrene latex and kaolin pigment), two concentrated emulsions (toluene -in-water, n-hexadecane-in-water), and two aerosols (oleic acid droplets-in-nitrogen, alumina-in-air), covering a wide range of relative magnitudes (from 10^ {-3} to 10^{3}) of thermal versus viscous contributions, for dispersed phase volume fractions as high as 50%. The relative differences between the additive result of separate viscous and thermal loss estimates and combined viscothermal absorption results are also presented. Effects of particle shape on viscous attenuation of sound in concentrated suspensions of non-spherical clay particles are studied. Attenuation spectra for 18 frequencies from 3 to 100 MHz are measured and analyzed for eleven kaolin clay slurries with solid concentrations ranging from 0.6% to 35% (w/w). A modified viscous drag coefficient that considers frequency, concentration, particle size, shape and orientation of

  16. Monitored Natural Attenuation of ino9rganic Contaminants Treatability Study Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Crapse, K

    2004-05-19

    The identification and quantification of key natural attenuation processes for inorganic contaminants at D-Area is detailed herein. Two overarching goals of this evaluation of monitored natural attenuation (MNA) as a remediation strategy were (1) to better define the availability of inorganic contaminants as potential sources for transport to groundwater and uptake by environmental receptors and (2) to understand the site-specific mechanisms controlling attenuation of these inorganic contaminants through tandem geochemical and biological characterization. Data collected in this study provides input for more appropriate site groundwater transport models. Significant natural attenuation is occurring at D-Area as evidenced by relatively low aqueous concentrations of constituents of concern (COCs) (Be, Ni, U, and As) at all locations characterized and the decrease in groundwater concentrations with increasing distance from the source. The observed magnitude of decrease in groundwater concentrations of COCs with distance from the D-Area Coal Pile Runoff Basin (DCPRB) could not be accounted for by the modeled physical attenuation processes of dilution/dispersion. This additional attenuation, i.e., the observed difference between the groundwater concentrations of COCs and the modeled physical attenuation, is due to biogeochemical processes occurring at the D-Area. In tandem geochemical and microbiological characterization studies designed to evaluate the mechanisms contributing to natural attenuation, pH was the single parameter found to be most predictive of contaminant attenuation. The increasing pH with distance from the source is likely responsible for increased sorption of COCs to soil surfaces within the aquifer at D-Area. Importantly, because the sediments appear to have a high buffering capacity, the acid emanating from the DCPRB has been neutralized by the soil, and these conditions have led to large Kd values at the site. Two major types of soils are present at

  17. Viscoacoustic wave-equation traveltime inversion with correct and incorrect attenuation profiles

    KAUST Repository

    Yu, Han

    2017-08-17

    A visco-acoustic wave-equation traveltime inversion method is presented that inverts for a shallow subsurface velocity distribution with correct and incorrect attenuation profiles. Similar to the classical wave equation traveltime inversion, this method applies the misfit functional that minimizes the first break differences between the observed and predicted data. Although, WT can partly avoid the cycle skipping problem, an initial velocity model approaches to the right or wrong velocity models under different setups of the attenuation profiles. However, with a Q model far away from the real model, the inverted tomogram is obviously different from the true velocity model while a small change of the Q model does not improve the inversion quality in a strong manner if low frequency information is not lost.

  18. Determination of Dimensionless Attenuation Coefficient in Shaped Resonators

    Science.gov (United States)

    Daniels, C.; Steinetz, B.; Finkbeiner, J.; Raman, G.; Li, X.

    2003-01-01

    The value of dimensionless attenuation coefficient is an important factor when numerically predicting high-amplitude acoustic waves in shaped resonators. Both the magnitude of the pressure waveform and the quality factor rely heavily on this dimensionless parameter. Previous authors have stated the values used, but have not completely explained their methods. This work fully describes the methodology used to determine this important parameter. Over a range of frequencies encompassing the fundamental resonance, the pressure waves were experimentally measured at each end of the shaped resonators. At the corresponding dimensionless acceleration, the numerical code modeled the acoustic waveforms generated in the resonator using various dimensionless attenuation coefficients. The dimensionless attenuation coefficient that most closely matched the pressure amplitudes and quality factors of the experimental and numerical results was determined to be the value to be used in subsequent studies.

  19. Influence of convolution filtering on coronary plaque attenuation values: observations in an ex vivo model of multislice computed tomography coronary angiography

    International Nuclear Information System (INIS)

    Cademartiri, Filippo; Palumbo, Alessandro; La Grutta, Ludovico; Runza, Giuseppe; Maffei, Erica; Mollet, Nico R.; Hamers, Ronald; Bruining, Nico; Bartolotta, Tommaso V.; Midiri, Massimo; Somers, Pamela; Knaapen, Michiel; Verheye, Stefan

    2007-01-01

    Attenuation variability (measured in Hounsfield Units, HU) of human coronary plaques using multislice computed tomography (MSCT) was evaluated in an ex vivo model with increasing convolution kernels. MSCT was performed in seven ex vivo left coronary arteries sunk into oil followingthe instillation of saline (1/∞) and a 1/50 solution of contrast material (400 mgI/ml iomeprol). Scan parameters were: slices/collimation, 16/0.75 mm; rotation time, 375 ms. Four convolution kernels were used: b30f-smooth, b36f-medium smooth, b46f-medium and b60f-sharp. An experienced radiologist scored for the presence of plaques and measured the attenuation in lumen, calcified and noncalcified plaques and the surrounding oil. The results were compared by the ANOVA test and correlated with Pearson's test. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated. The mean attenuation values were significantly different between the four filters (p < 0.0001) in each structure with both solutions. After clustering for the filter, all of the noncalcified plaque values (20.8 ± 39.1, 14.2 ± 35.8, 14.0 ± 32.0, 3.2 ± 32.4 HU with saline; 74.7 ± 66.6, 68.2 ± 63.3, 66.3 ± 66.5, 48.5 ± 60.0 HU in contrast solution) were significantly different, with the exception of the pair b36f-b46f, for which a moderate-high correlation was generally found. Improved SNRs and CNRs were achieved by b30f and b46f. The use of different convolution filters significantly modified the attenuation values, while sharper filtering increased the calcified plaque attenuation and reduced the noncalcified plaque attenuation. (orig.)

  20. Attenuation of concentration fluctuations of water vapor and other trace gases in turbulent tube flow

    Directory of Open Access Journals (Sweden)

    W. J. Massman

    2008-10-01

    Full Text Available Recent studies with closed-path eddy covariance (EC systems have indicated that the attenuation of fluctuations of water vapor concentration is dependent upon ambient relative humidity, presumably due to sorption/desorption of water molecules at the interior surface of the tube. Previous studies of EC-related tube attenuation effects have either not considered this issue at all or have only examined it superficially. Nonetheless, the attenuation of water vapor fluctuations is clearly much greater than might be expected from a passive tracer in turbulent tube flow. This study reexamines the turbulent tube flow issue for both passive and sorbing tracers with the intent of developing a physically-based semi-empirical model that describes the attenuation associated with water vapor fluctuations. Toward this end, we develop a new model of tube flow dynamics (radial profiles of the turbulent diffusivity and tube airstream velocity. We compare our new passive-tracer formulation with previous formulations in a systematic and unified way in order to assess how sensitive the passive-tracer results depend on fundamental modeling assumptions. We extend the passive tracer model to the vapor sorption/desorption case by formulating the model's wall boundary condition in terms of a physically-based semi-empirical model of the sorption/desorption vapor fluxes. Finally we synthesize all modeling and observational results into a single analytical expression that captures the effects of the mean ambient humidity and tube flow (Reynolds number on tube attenuation.

  1. Improvement of quantitation in SPECT: Attenuation and scatter correction using non-uniform attenuation data

    International Nuclear Information System (INIS)

    Mukai, T.; Torizuka, K.; Douglass, K.H.; Wagner, H.N.

    1985-01-01

    Quantitative assessment of tracer distribution with single photon emission computed tomography (SPECT) is difficult because of attenuation and scattering of gamma rays within the object. A method considering the source geometry was developed, and effects of attenuation and scatter on SPECT quantitation were studied using phantoms with non-uniform attenuation. The distribution of attenuation coefficients (μ) within the source were obtained by transmission CT. The attenuation correction was performed by an iterative reprojection technique. The scatter correction was done by convolution of the attenuation corrected image and an appropriate filter made by line source studies. The filter characteristics depended on μ and SPEC measurement at each pixel. The SPECT obtained by this method showed the most reasonable results than the images reconstructed by other methods. The scatter correction could compensate completely for a 28% scatter components from a long line source, and a 61% component for thick and extended source. Consideration of source geometries was necessary for effective corrections. The present method is expected to be valuable for the quantitative assessment of regional tracer activity

  2. Attenuation factors for B(E2) in the microscopic description of multiphonon states

    International Nuclear Information System (INIS)

    Matsuyanagi, Kenichi

    1982-01-01

    With an exactly solvable O(4) model of Piepenbring, Silvestre-Brac and Szymanski, we demonstrate that the attenuation factor for the B(E2) values, derived by the lowest-order approximation of the multiphonon method, takes excellent care of the kinematical anharmonicity effects, if multiphonon states are defined in the intrinsic subspace orthogonal to the pairing rotation. It is also shown that the other attenuation effect characterizing the interacting boson model is not a dominant effect in the model analysed here. (author)

  3. Precision and accuracy in CT attenuation measurement of vascular wall using region-of-interest supported by differentiation curve

    International Nuclear Information System (INIS)

    Suzuki, Shigeru; Kidouchi, Takashi; Kuwahara, Sadatoshi; Vembar, Mani; Takei, Ryoji; Yamamoto, Asako

    2012-01-01

    Objectives: To evaluate the precision and accuracy in CT attenuation measurement of vascular wall using region-of-interest (ROI) supported by differentiation curves. Study design: We used vascular models (actual attenuation value of the wall: 87 HU) with wall thicknesses of 1.5, 1.0, or 0.5 mm, filled with contrast material of 250, 348, or 436 HU. The nine vascular models were scanned with a 64-detector CT. The wall attenuation values were measured using three sizes (diameter: 0.5, 1.0, and 1.5 mm) of ROIs without differentiation curves. Sixteen measurements were repeated for each vascular model by each of two operators. Measurements supported by differentiation curves were also performed. We used analyses of variance with repeated measures for the measured attenuations for each size of the ROI. Results: Without differentiation curves, there were significant differences in the attenuation values of the wall among the three densities of contrast material, and the attenuation values tended to be overestimated more as the contrast material density increased. Operator dependencies were also found in measurements for 0.5- and 1.5-mm thickness models. With differentiation curves, measurements were not possible for 0.5- and 1.0-mm thickness models. Using differentiation curves for 1.5-mm thickness models with a ROI of 1.0- or 1.5-mm diameter, the wall attenuations were not affected by the contrast material densities and were operator independent, measuring between 75 and 103 HU. Conclusions: The use of differentiation curves can improve the precision and accuracy in wall attenuation measurement using a ROI technique, while measurements for walls of ≤1.0 mm thickness are difficult.

  4. Anisotropic attenuation in rocks: Theory, modelling and lab measurements

    Czech Academy of Sciences Publication Activity Database

    Vavryčuk, Václav; Svitek, Tomáš; Lokajíček, Tomáš

    2017-01-01

    Roč. 208, č. 3 (2017), s. 1724-1739 ISSN 0956-540X R&D Projects: GA ČR(CZ) GAP210/12/1491; GA ČR(CZ) GC16-19751J; GA MŠk LH13102 Institutional support: RVO:67985530 ; RVO:67985831 Keywords : elasticity and anelasticity * body waves * seismic anisotropy * seismic attenuation Subject RIV: DC - Siesmology, Volcanology, Earth Structure; DB - Geology ; Mineralogy (GLU-S) OBOR OECD: Volcanology; Geology (GLU-S) Impact factor: 2.414, year: 2016

  5. Heat-accelerated radioinactivation of attenuated poliovirus

    International Nuclear Information System (INIS)

    Dugan, V.L.; Trujillo, R.

    1975-01-01

    Attenuated poliovirus is inactivated in a synergistic manner when exposed simultaneously to heat and ionizing radiation. The synergistic response is observed in both the thermally labile and stable forms of the virus. A three-term kinetic model may be used to describe the inactivation response of the virus in a thermal and/or ionizing radiation environment. (orig.) [de

  6. The Study of Rain Specific Attenuation for the Prediction of Satellite Propagation in Malaysia

    Science.gov (United States)

    Mandeep, J. S.; Ng, Y. Y.; Abdullah, H.; Abdullah, M.

    2010-06-01

    Specific attenuation is the fundamental quantity in the calculation of rain attenuation for terrestrial path and slant paths representing as rain attenuation per unit distance (dB/km). Specific attenuation is an important element in developing the predicted rain attenuation model. This paper deals with the empirical determination of the power law coefficients which allow calculating the specific attenuation in dB/km from the knowledge of the rain rate in mm/h. The main purpose of the paper is to obtain the coefficients of k and α of power law relationship between specific attenuation. Three years (from 1st January 2006 until 31st December 2008) rain gauge and beacon data taken from USM, Nibong Tebal have been used to do the empirical procedure analysis of rain specific attenuation. The data presented are semi-empirical in nature. A year-to-year variation of the coefficients has been indicated and the empirical measured data was compared with ITU-R provided regression coefficient. The result indicated that the USM empirical measured data was significantly vary from ITU-R predicted value. Hence, ITU-R recommendation for regression coefficients of rain specific attenuation is not suitable for predicting rain attenuation at Malaysia.

  7. MR constrained simultaneous reconstruction of activity and attenuation maps in brain TOF-PET/MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Mehranian, Abolfazl; Zaidi, Habib [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva (Switzerland)

    2014-07-29

    The maximum likelihood estimation of attenuation and activity (MLAA) algorithm has been proposed to jointly estimate activity and attenuation from emission data only. Salomon et al employed the MLAA to estimate activity and attenuation from time-of-flight PET data with spatial MR prior information on attenuation. Recently, we proposed a novel algorithm to impose both spatial and statistical constraints on attenuation estimation within the MLAA algorithm using Dixon MR images and a constrained Gaussian mixture model (GMM). In this study, we compare the proposed algorithm with MLAA and MLAA-Salomon in brain TOF-PET/MR imaging.

  8. MR constrained simultaneous reconstruction of activity and attenuation maps in brain TOF-PET/MR imaging

    International Nuclear Information System (INIS)

    Mehranian, Abolfazl; Zaidi, Habib

    2014-01-01

    The maximum likelihood estimation of attenuation and activity (MLAA) algorithm has been proposed to jointly estimate activity and attenuation from emission data only. Salomon et al employed the MLAA to estimate activity and attenuation from time-of-flight PET data with spatial MR prior information on attenuation. Recently, we proposed a novel algorithm to impose both spatial and statistical constraints on attenuation estimation within the MLAA algorithm using Dixon MR images and a constrained Gaussian mixture model (GMM). In this study, we compare the proposed algorithm with MLAA and MLAA_Salomon in brain TOF-PET/MR imaging.

  9. Survival probability of precipitations and rain attenuation in tropical and equatorial regions

    Science.gov (United States)

    Mohebbi Nia, Masoud; Din, Jafri; Panagopoulos, Athanasios D.; Lam, Hong Yin

    2015-08-01

    This contribution presents a stochastic model useful for the generation of a long-term tropospheric rain attenuation time series for Earth space or a terrestrial radio link in tropical and equatorial heavy rain regions based on the well-known Cox-Ingersoll-Ross model previously employed in research in the fields of finance and economics. This model assumes typical gamma distribution for rain attenuation in heavy rain climatic regions and utilises the temporal dynamic of precipitation collected in equatorial Johor, Malaysia. Different formations of survival probability are also discussed. Furthermore, the correlation between these probabilities and the Markov process is determined, and information on the variance and autocorrelation function of rain events with respect to the particular characteristics of precipitation in this area is presented. The proposed technique proved to preserve the peculiarities of precipitation for an equatorial region and reproduce fairly good statistics of the rain attenuation correlation function that could help to improve the prediction of dynamic characteristics of rain fade events.

  10. Beam hardening: Analytical considerations of the effective attenuation coefficient of x-ray tomography

    International Nuclear Information System (INIS)

    Alles, J.; Mudde, R. F.

    2007-01-01

    Polychromatic x-ray beams traveling though material are prone to beam hardening, i.e., the high energy part of the incident spectrum gets over represented when traveling farther into the material. This study discusses the concept of a mean attenuation coefficient in a formal way. The total energy fluence is one-to-one related to the traveled distance in case of a polychromatic beam moving through a given, inhomogeneous material. On the basis of this one-to-one relation, it is useful to define a mean attenuation coefficient and study its decrease with depth. Our results are based on a novel parametrization of the energy dependence of the attenuation coefficient that allows for closed form evaluation of certain spectral integrals. This approach underpins the ad hoc semianalytical expressions given in the literature. An analytical model for the average attenuation coefficient is proposed that uses a simple fit of the attenuation coefficient as a function of the photon energy as input. It is shown that a simple extension of this model gives a rather good description of beam hardening for x-rays traveling through water

  11. 3-D seismic velocity and attenuation structures in the geothermal field

    Energy Technology Data Exchange (ETDEWEB)

    Nugraha, Andri Dian [Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia); Syahputra, Ahmad [Geophyisical Engineering, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia); Fatkhan,; Sule, Rachmat [Applied Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia)

    2013-09-09

    We conducted delay time tomography to determine 3-D seismic velocity structures (Vp, Vs, and Vp/Vs ratio) using micro-seismic events in the geothermal field. The P-and S-wave arrival times of these micro-seismic events have been used as input for the tomographic inversion. Our preliminary seismic velocity results show that the subsurface condition of geothermal field can be fairly delineated the characteristic of reservoir. We then extended our understanding of the subsurface physical properties through determining of attenuation structures (Qp, Qs, and Qs/Qp ratio) using micro-seismic waveform. We combined seismic velocities and attenuation structures to get much better interpretation of the reservoir characteristic. Our preliminary attanuation structures results show reservoir characterization can be more clearly by using the 3-D attenuation model of Qp, Qs, and Qs/Qp ratio combined with 3-D seismic velocity model of Vp, Vs, and Vp/Vs ratio.

  12. Attenuation and velocity dispersion in the exploration seismic frequency band

    Science.gov (United States)

    Sun, Langqiu

    In an anelastic medium, seismic waves are distorted by attenuation and velocity dispersion, which depend on petrophysical properties of reservoir rocks. The effective attenuation and velocity dispersion is a combination of intrinsic attenuation and apparent attenuation due to scattering, transmission response, and data acquisition system. Velocity dispersion is usually neglected in seismic data processing partly because of insufficient observations in the exploration seismic frequency band. This thesis investigates the methods of measuring velocity dispersion in the exploration seismic frequency band and interprets the velocity dispersion data in terms of petrophysical properties. Broadband, uncorrelated vibrator data are suitable for measuring velocity dispersion in the exploration seismic frequency band, and a broad bandwidth optimizes the observability of velocity dispersion. Four methods of measuring velocity dispersion in uncorrelated vibrator VSP data are investigated, which are the sliding window crosscorrelation (SWCC) method, the instantaneous phase method, the spectral decomposition method, and the cross spectrum method. Among them, the SWCC method is a new method and has satisfactory robustness, accuracy, and efficiency. Using the SWCC method, velocity dispersion is measured in the uncorrelated vibrator VSP data from three areas with different geological settings, i.e., Mallik gas hydrate zone, McArthur River uranium mines, and Outokumpu crystalline rocks. The observed velocity dispersion is fitted to a straight line with respect to log frequency for a constant (frequency-independent) Q value. This provides an alternative method for calculating Q. A constant Q value does not directly link to petrophysical properties. A modeling study is implemented for the Mallik and McArthur River data to interpret the velocity dispersion observations in terms of petrophysical properties. The detailed multi-parameter petrophysical reservoir models are built according to

  13. Landing gear noise attenuation

    Science.gov (United States)

    Moe, Jeffrey W. (Inventor); Whitmire, Julia (Inventor); Kwan, Hwa-Wan (Inventor); Abeysinghe, Amal (Inventor)

    2011-01-01

    A landing gear noise attenuator mitigates noise generated by airframe deployable landing gear. The noise attenuator can have a first position when the landing gear is in its deployed or down position, and a second position when the landing gear is in its up or stowed position. The noise attenuator may be an inflatable fairing that does not compromise limited space constraints associated with landing gear retraction and stowage. A truck fairing mounted under a truck beam can have a compliant edge to allow for non-destructive impingement of a deflected fire during certain conditions.

  14. Gypenosides attenuate the development of L-DOPA-induced dyskinesia in 6-hydroxydopamine-lesioned rat model of Parkinson's disease.

    Science.gov (United States)

    Shin, Keon Sung; Zhao, Ting Ting; Park, Keun Hong; Park, Hyun Jin; Hwang, Bang Yeon; Lee, Chong Kil; Lee, Myung Koo

    2015-04-21

    Gypenosides (GPS) and ethanol extract of Gynostemma pentaphyllum (GP-EX) show anxiolytic effects on affective disorders in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse model of Parkinson's disease (PD). Long-term administration of L-3,4-dihydroxyphenylalanine (L-DOPA) leads to the development of severe motor side effects such as L-DOPA-induced-dyskinesia (LID) in PD. The present study investigated the effects of GPS and GP-EX on LID in a 6-hydroxydopamine (6-OHDA)-lesioned rat model of PD. Daily administration of L-DOPA (25 mg/kg) in the 6-OHDA-lesioned rat model of PD for 22 days induced expression of LID, which was determined by the body and locomotive AIMs scores and contralateral rotational behaviors. However, co-treatments of GPS (25 and 50 mg/kg) or GP-EX (50 mg/kg) with L-DOPA significantly attenuated the development of LID without compromising the anti-parkinsonian effects of L-DOPA. In addition, the increases in ∆FosB expression and ERK1/2 phosphorylation in 6-OHDA-lesioned rats induced by L-DOPA administration were significantly reduced by co-treatment with GPS (25 and 50 mg/kg) or GP-EX (50 mg/kg). These results suggest that GPS (25 and 50 mg/kg) and GP-EX (50 mg/kg) effectively attenuate the development of LID by modulating the biomarker activities of ∆FosB expression and ERK1/2 phosphorylation in the 6-OHDA-lesioned rat model of PD. GPS and GP-EX will be useful adjuvant therapeutics for LID in PD.

  15. Relationship between comfort and attenuation measurements for two types of earplugs

    Directory of Open Access Journals (Sweden)

    David C Byrne

    2011-01-01

    Full Text Available Noise-induced hearing loss is almost always preventable if properly fitted hearing protectors are worn to reduce exposure. Many individuals choose not to wear hearing protection because it may interfere with effective communication in the workplace or it may be uncomfortable. Hearing protector comfort has not received the same amount of attention as noise reduction capability. The present study was conducted to evaluate the comfort level of two different types of insert earplugs as well as the attenuation levels achieved by the earplugs. Attenuation levels were obtained with a commercially available earplug fit-test system, and the comfort ratings were obtained by questionnaire. The primary research objective was to determine whether hearing protector comfort was related to measured attenuation values. A linear mixed effects model provided evidence for an inverse relationship between comfort and attenuation.

  16. Detecting The EBL Attenuation Of Blazars With GLAST

    Science.gov (United States)

    Reyes, Luis C.

    2006-09-01

    The Large Area Telescope (LAT) on board GLAST (Gamma-ray Large Area Space Telescope) due for launch in Fall 2007 will study the gamma-ray sky in the energy range 20 MeV to >300 GeV. GLAST-LAT's improved sensitivity with respect to previous missions will increase the number of known Blazars from about 100 to thousands, with redshifts up to z 5. Since Gamma rays with energy above 10 GeV interact via pair-production with photons from the Extragalactic Background Light (EBL), the systematic attenuation of GLAST-detected Blazars as a function of redshift would constitute and effective and unique probe to the optical-UV EBL density and its evolution over cosmic history. Based on the GLAST-LAT instrument performance, detailed simulations of expected blazar populations attenuated by EBL have been performed. In this poster we present an analysis of such simulations in order to measure the EBL attenuation, ensuing a clear distinction between competing EBL models.

  17. Evaluation of conceptual and numerical models for arsenic mobilization and attenuation during managed aquifer recharge.

    Science.gov (United States)

    Wallis, Ilka; Prommer, Henning; Simmons, Craig T; Post, Vincent; Stuyfzand, Pieter J

    2010-07-01

    Managed Aquifer Recharge (MAR) is promoted as an attractive technique to meet growing water demands. An impediment to MAR applications, where oxygenated water is recharged into anoxic aquifers, is the potential mobilization of trace metals (e.g., arsenic). While conceptual models for arsenic transport under such circumstances exist, they are generally not rigorously evaluated through numerical modeling, especially at field-scale. In this work, geochemical data from an injection experiment in The Netherlands, where the introduction of oxygenated water into an anoxic aquifer mobilized arsenic, was used to develop and evaluate conceptual and numerical models of arsenic release and attenuation under field-scale conditions. Initially, a groundwater flow and nonreactive transport model was developed. Subsequent reactive transport simulations focused on the description of the temporal and spatial evolution of the redox zonation. The calibrated model was then used to study and quantify the transport of arsenic. In the model that best reproduced field observations, the fate of arsenic was simulated by (i) release via codissolution of arsenopyrite, stoichiometrically linked to pyrite oxidation, (ii) kinetically controlled oxidation of dissolved As(III) to As(V), and (iii) As adsorption via surface complexation on neo-precipitated iron oxides.

  18. Ixeris dentata (Thunb) Nakai attenuates cognitive impairment in ...

    African Journals Online (AJOL)

    Ixeris dentata (Thunb) Nakai attenuates cognitive impairment in MPTP-treated mouse model of Parkinson's disease. ... Conclusion: IDE exhibits good protection against MPTP-induced behavioral deficits via potential antioxidant defense mechanisms. Therefore, IDE could potentially be developed as a therapeutic approach ...

  19. Modeling wave attenuation by salt marshes in Jamaica Bay, New York, using a new rapid wave model

    Science.gov (United States)

    Marsooli, Reza; Orton, Philip M.; Mellor, George

    2017-07-01

    Using a new rapid-computation wave model, improved and validated in the present study, we quantify the value of salt marshes in Jamaica Bay—a highly urbanized estuary located in New York City—as natural buffers against storm waves. We augment the MDO phase-averaged wave model by incorporating a vegetation-drag-induced energy dissipation term into its wave energy balance equation. We adopt an empirical formula from literature to determine the vegetation drag coefficient as a function of environmental conditions. Model evaluation using data from laboratory-scale experiments show that the improved MDO model accurately captures wave height attenuation due to submerged and emergent vegetation. We apply the validated model to Jamaica Bay to quantify the influence of coastal-scale salt marshes on storm waves. It is found that the impact of marsh islands is largest for storms with lower flood levels, due to wave breaking on the marsh island substrate. However, the role of the actual marsh plants, Spartina alterniflora, grows larger for storms with higher flood levels, when wave breaking does not occur and the vegetative drag becomes the main source of energy dissipation. For the latter case, seasonality of marsh height is important; at its maximum height in early fall, S. alterniflora causes twice the reduction as when it is at a shorter height in early summer. The model results also indicate that the vegetation drag coefficient varies 1 order of magnitude in the study area, and suggest exercising extra caution in using a constant drag coefficient in coastal wetlands.

  20. Evaluation of attenuation and scatter correction requirements in small animal PET and SPECT imaging

    Science.gov (United States)

    Konik, Arda Bekir

    Positron emission tomography (PET) and single photon emission tomography (SPECT) are two nuclear emission-imaging modalities that rely on the detection of high-energy photons emitted from radiotracers administered to the subject. The majority of these photons are attenuated (absorbed or scattered) in the body, resulting in count losses or deviations from true detection, which in turn degrades the accuracy of images. In clinical emission tomography, sophisticated correction methods are often required employing additional x-ray CT or radionuclide transmission scans. Having proven their potential in both clinical and research areas, both PET and SPECT are being adapted for small animal imaging. However, despite the growing interest in small animal emission tomography, little scientific information exists about the accuracy of these correction methods on smaller size objects, and what level of correction is required. The purpose of this work is to determine the role of attenuation and scatter corrections as a function of object size through simulations. The simulations were performed using Interactive Data Language (IDL) and a Monte Carlo based package, Geant4 application for emission tomography (GATE). In IDL simulations, PET and SPECT data acquisition were modeled in the presence of attenuation. A mathematical emission and attenuation phantom approximating a thorax slice and slices from real PET/CT data were scaled to 5 different sizes (i.e., human, dog, rabbit, rat and mouse). The simulated emission data collected from these objects were reconstructed. The reconstructed images, with and without attenuation correction, were compared to the ideal (i.e., non-attenuated) reconstruction. Next, using GATE, scatter fraction values (the ratio of the scatter counts to the total counts) of PET and SPECT scanners were measured for various sizes of NEMA (cylindrical phantoms representing small animals and human), MOBY (realistic mouse/rat model) and XCAT (realistic human model

  1. Live attenuated S. Typhimurium vaccine with improved safety in immuno-compromised mice.

    Directory of Open Access Journals (Sweden)

    Balamurugan Periaswamy

    Full Text Available Live attenuated vaccines are of great value for preventing infectious diseases. They represent a delicate compromise between sufficient colonization-mediated adaptive immunity and minimizing the risk for infection by the vaccine strain itself. Immune defects can predispose to vaccine strain infections. It has remained unclear whether vaccine safety could be improved via mutations attenuating a vaccine in immune-deficient individuals without compromising the vaccine's performance in the normal host. We have addressed this hypothesis using a mouse model for Salmonella diarrhea and a live attenuated Salmonella Typhimurium strain (ssaV. Vaccination with this strain elicited protective immunity in wild type mice, but a fatal systemic infection in immune-deficient cybb(-/-nos2(-/- animals lacking NADPH oxidase and inducible NO synthase. In cybb(-/-nos2(-/- mice, we analyzed the attenuation of 35 ssaV strains carrying one additional mutation each. One strain, Z234 (ssaV SL1344_3093, was >1000-fold attenuated in cybb(-/-nos2(-/- mice and ≈100 fold attenuated in tnfr1(-/- animals. However, in wt mice, Z234 was as efficient as ssaV with respect to host colonization and the elicitation of a protective, O-antigen specific mucosal secretory IgA (sIgA response. These data suggest that it is possible to engineer live attenuated vaccines which are specifically attenuated in immuno-compromised hosts. This might help to improve vaccine safety.

  2. Brunenders: a partially attenuated historic poliovirus type I vaccine strain.

    Science.gov (United States)

    Sanders, Barbara P; Liu, Ying; Brandjes, Alies; van Hoek, Vladimir; de Los Rios Oakes, Isabel; Lewis, John; Wimmer, Eckard; Custers, Jerome H H V; Schuitemaker, Hanneke; Cello, Jeronimo; Edo-Matas, Diana

    2015-09-01

    Brunenders, a type I poliovirus (PV) strain, was developed in 1952 by J. F. Enders and colleagues through serial in vitro passaging of the parental Brunhilde strain, and was reported to display partial neuroattenuation in monkeys. This phenotype of attenuation encouraged two vaccine manufacturers to adopt Brunenders as the type I component for their inactivated poliovirus vaccines (IPVs) in the 1950s, although today no licensed IPV vaccine contains Brunenders. Here we confirmed, in a transgenic mouse model, the report of Enders on the reduced neurovirulence of Brunenders. Although dramatically neuroattenuated relative to WT PV strains, Brunenders remains more virulent than the attenuated oral vaccine strain, Sabin 1. Importantly, the neuroattenuation of Brunenders does not affect in vitro growth kinetics and in vitro antigenicity, which were similar to those of Mahoney, the conventional type I IPV vaccine strain. We showed, by full nucleotide sequencing, that Brunhilde and Brunenders differ at 31 nucleotides, eight of which lead to amino acid changes, all located in the capsid. Upon exchanging the Brunenders capsid sequence with that of the Mahoney capsid, WT neurovirulence was regained in vivo, suggesting a role for the capsid mutations in Brunenders attenuation. To date, as polio eradication draws closer, the switch to using attenuated strains for IPV is actively being pursued. Brunenders preceded this novel strategy as a partially attenuated IPV strain, accompanied by decades of successful use in the field. Providing data on the attenuation of Brunenders may be of value in the further construction of attenuated PV strains to support the grand pursuit of the global eradication of poliomyelitis.

  3. Natural attenuation of metals and radionuclides: Report from a workshop held by Sandia National Laboratories

    International Nuclear Information System (INIS)

    Brady, P.V.; Borns, D.J.

    1997-11-01

    Natural attenuation is increasingly applied to remediate contaminated soils and ground waters. Roughly 25% of Superfund groundwater remedies in 1995 involved some type of monitored natural attenuation, compared to almost none 5 years ago. Remediation by natural attenuation (RNA) requires clear evidence that contaminant levels are decreasing sufficiently over time, a defensible explanation of the attenuation mechanism, long-term monitoring, and a contingency plan at the very least. Although the primary focus of implementation has to date been the biodegradation of organic contaminants, there is a wealth of scientific evidence that natural processes reduce the bioavailability of contaminant metals and radionuclides. Natural attenuation of metals and radionuclides is likely to revolve around sorption, solubility, biologic uptake and dilution controls over contaminant availability. Some of these processes can be applied to actively remediate sites. Others, such as phytoremediation, are likely to be ineffective. RNA of metals and radionuclides is likely to require specialized site characterization to construct contaminant and site-specific conceptual models of contaminant behavior. Ideally, conceptual models should be refined such that contaminant attenuation can be confidently predicted into the future. The technical approach to RNA of metals and radionuclides is explored here

  4. Natural attenuation of metals and radionuclides: Report from a workshop held by Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Brady, P.V.; Borns, D.J. [Sandia National Labs., Albuquerque, NM (United States). Geochemistry Dept.

    1997-11-01

    Natural attenuation is increasingly applied to remediate contaminated soils and ground waters. Roughly 25% of Superfund groundwater remedies in 1995 involved some type of monitored natural attenuation, compared to almost none 5 years ago. Remediation by natural attenuation (RNA) requires clear evidence that contaminant levels are decreasing sufficiently over time, a defensible explanation of the attenuation mechanism, long-term monitoring, and a contingency plan at the very least. Although the primary focus of implementation has to date been the biodegradation of organic contaminants, there is a wealth of scientific evidence that natural processes reduce the bioavailability of contaminant metals and radionuclides. Natural attenuation of metals and radionuclides is likely to revolve around sorption, solubility, biologic uptake and dilution controls over contaminant availability. Some of these processes can be applied to actively remediate sites. Others, such as phytoremediation, are likely to be ineffective. RNA of metals and radionuclides is likely to require specialized site characterization to construct contaminant and site-specific conceptual models of contaminant behavior. Ideally, conceptual models should be refined such that contaminant attenuation can be confidently predicted into the future. The technical approach to RNA of metals and radionuclides is explored here.

  5. Simulating high frequency water quality monitoring data using a catchment runoff attenuation flux tool (CRAFT).

    Science.gov (United States)

    Adams, Russell; Quinn, Paul F; Perks, Matthew; Barber, Nicholas J; Jonczyk, Jennine; Owen, Gareth J

    2016-12-01

    High resolution water quality data has recently become widely available from numerous catchment based monitoring schemes. However, the models that can reproduce time series of concentrations or fluxes have not kept pace with the advances in monitoring data. Model performance at predicting phosphorus (P) and sediment concentrations has frequently been poor with models not fit for purpose except for predicting annual losses. Here, the data from the Eden Demonstration Test Catchments (DTC) project have been used to calibrate the Catchment Runoff Attenuation Flux Tool (CRAFT), a new, parsimonious model developed with the aim of modelling both the generation and attenuation of nutrients and sediments in small to medium sized catchments. The CRAFT has the ability to run on an hourly timestep and can calculate the mass of sediments and nutrients transported by three flow pathways representing rapid surface runoff, fast subsurface drainage and slow groundwater flow (baseflow). The attenuation feature of the model is introduced here; this enables surface runoff and contaminants transported via this pathway to be delayed in reaching the catchment outlet. It was used to investigate some hypotheses of nutrient and sediment transport in the Newby Beck Catchment (NBC) Model performance was assessed using a suite of metrics including visual best fit and the Nash-Sutcliffe efficiency. It was found that this approach for water quality models may be the best assessment method as opposed to using a single metric. Furthermore, it was found that, when the aim of the simulations was to reproduce the time series of total P (TP) or total reactive P (TRP) to get the best visual fit, that attenuation was required. The model will be used in the future to explore the impacts on water quality of different mitigation options in the catchment; these will include attenuation of surface runoff. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Seismic wave attenuation and velocity dispersion in UAE carbonates

    Science.gov (United States)

    Ogunsami, Abdulwaheed Remi

    Interpreting the seismic property of fluids in hydrocarbon reservoirs at low frequency scale has been a cherished goal of petroleum geophysics research for decades. Lately, there has been tremendous interest in understanding attenuation as a result of fluid flow in porous media. Although interesting, the emerging experimental and theoretical information still remain ambiguous and are practically not utilized for reasons not too obscure. Attenuation is frequency dependent and hard to measure in the laboratory at low frequency. This thesis describes and reports the results of an experimental study of low frequency attenuation and velocity dispersion on a selected carbonate reservoir samples in the United Arab Emirates (UAE). For the low frequency measurements, stress-strain method was used to measure the moduli from which the velocity is derived. Attenuation was measured as the phase difference between the applied stress and the strain. For the ultrasonic component, the pulse propagation method was employed. To study the fluid effect especially at reservoir in situ conditions, the measurements were made dry and saturated with liquid butane and brine at differential pressures of up to 5000 psi with pore pressure held constant at 500 psi. Similarly to what has been documented in the literatures for sandstone, attenuation of the bulk compressibility mode dominates the losses in these dry and somewhat partially saturated carbonate samples with butane and brine. Overall, the observed attenuation cannot be simply said to be frequency dependent within this low seismic band. While attenuation seems to be practically constant in the low frequency band for sample 3H, such conclusion cannot be made for sample 7H. For the velocities, significant dispersion is observed and Gassmann generally fails to match the measured velocities. Only the squirt model fairly fits the velocities, but not at all pressures. Although the observed dispersion is larger than Biot's prediction, the fact

  7. Wave attenuation across a tidal marsh in San Francisco Bay

    Science.gov (United States)

    Foster-Martinez, Madeline R.; Lacy, Jessica; Ferner, Matthew C.; Variano, Evan A.

    2018-01-01

    Wave attenuation is a central process in the mechanics of a healthy salt marsh. Understanding how wave attenuation varies with vegetation and hydrodynamic conditions informs models of other marsh processes that are a function of wave energy (e.g. sediment transport) and allows for the incorporation of marshes into coastal protection plans. Here, we examine the evolution of wave height across a tidal salt marsh in San Francisco Bay. Instruments were deployed along a cross-shore transect, starting on the mudflat and crossing through zones dominated by Spartina foliosa and Salicornia pacifica. This dataset is the first to quantify wave attenuation for these vegetation species, which are abundant in the intertidal zone of California estuaries. Measurements were collected in the summer and winter to assess seasonal variation in wave attenuation. Calculated drag coefficients of S. foliosa and S. pacifica were similar, indicating equal amounts of vegetation would lead to similar energy dissipation; however, S. pacifica has much greater biomass close to the bed (<20 cm) and retains biomass throughout the year, and therefore, it causes more total attenuation. S. foliosa dies back in the winter, and waves often grow across this section of the marsh. For both vegetation types, attenuation was greatest for low water depths, when the vegetation was emergent. For both seasons, attenuation rates across S. pacifica were the highest and were greater than published attenuation rates across similar (Spartina alterniflora) salt marshes for the comparable depths. These results can inform designs for marsh restorations and management plans in San Francisco Bay and other estuaries containing these species.

  8. Measuring soil sydric content by the attenuation of a microwave signal

    International Nuclear Information System (INIS)

    Orden, S.; Goldberg, M.; Landini, A.; Sainato, C.; Bottini, L.; Arrigo, N.

    1995-01-01

    Measuring soil water content by means of microwave signal attenuation. The attenuation of microwave signal was used to measure the moisture of various soils. Samples of three soils with different textures and organic matter contents were used. The attenuation of the transmitted electromagnetic signal was measured for each sample with different values of soil moisture. Linear regression models were used to fit the experimental values obtained, and the 95% prediction interval was estimated for the attenuation. From the comparison between the moisture values obtained with this method and those of the gravimetric method, the advantages of the first one are seen, both in speed and in the possibility to estimate the in situ moisture, even if this method has a greater relative error. This method would be useful to operate an automatic control irrigation system, preventing hydric stress when the values of soil moisture reach near field capacity. (author) [es

  9. The attenuation of Fourier amplitudes for rock sites in eastern North America

    Science.gov (United States)

    Atkinson, Gail M.; Boore, David M.

    2014-01-01

    We develop an empirical model of the decay of Fourier amplitudes for earthquakes of M 3–6 recorded on rock sites in eastern North America and discuss its implications for source parameters. Attenuation at distances from 10 to 500 km may be adequately described using a bilinear model with a geometric spreading of 1/R1.3 to a transition distance of 50 km, with a geometric spreading of 1/R0.5 at greater distances. For low frequencies and distances less than 50 km, the effective geometric spreading given by the model is perturbed using a frequency‐ and hypocentral depth‐dependent factor defined in such a way as to increase amplitudes at lower frequencies near the epicenter but leave the 1 km source amplitudes unchanged. The associated anelastic attenuation is determined for each event, with an average value being given by a regional quality factor of Q=525f 0.45. This model provides a match, on average, between the known seismic moment of events and the inferred low‐frequency spectral amplitudes at R=1  km (obtained by correcting for the attenuation model). The inferred Brune stress parameters from the high‐frequency source terms are about 600 bars (60 MPa), on average, for events of M>4.5.

  10. Combined SEM/AVS and attenuation of concentration models for the assessment of bioavailability and mobility of metals in sediments of Sepetiba Bay (SE Brazil).

    Science.gov (United States)

    Ribeiro, Andreza Portella; Figueiredo, Ana Maria Graciano; dos Santos, José Osman; Dantas, Elizabeth; Cotrim, Marycel Elena Barboza; Figueira, Rubens Cesar Lopes; Silva Filho, Emmanoel V; Wasserman, Julio Cesar

    2013-03-15

    This study proposes a new methodology to study contamination, bioavailability and mobility of metals (Cd, Cu, Ni, Pb, and Zn) using chemical and geostatistics approaches in marine sediments of Sepetiba Bay (SE Brazil). The chemical model of SEM (simultaneously extracted metals)/AVS (acid volatile sulfides) ratio uses a technique of cold acid extraction of metals to evaluate their bioavailability, and the geostatistical model of attenuation of concentrations estimates the mobility of metals. By coupling the two it was observed that Sepetiba Port, the urban area of Sepetiba and the riverine discharges may constitute potential sources of metals to Sepetiba Bay. The metals are concentrated in the NE area of the bay, where they tend to have their lowest mobility, as shown by the attenuation model, and are not bioavailable, as they tend to associate with sulfide and organic matter originated in the mangrove forests of nearby Guaratiba area. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Joel Walls; M.T. Taner; Naum Derzhi; Gary Mavko; Jack Dvorkin

    2003-12-01

    We have developed and tested technology for a new type of direct hydrocarbon detection. The method uses inelastic rock properties to greatly enhance the sensitivity of surface seismic methods to the presence of oil and gas saturation. These methods include use of energy absorption, dispersion, and attenuation (Q) along with traditional seismic attributes like velocity, impedance, and AVO. Our approach is to combine three elements: (1) a synthesis of the latest rock physics understanding of how rock inelasticity is related to rock type, pore fluid types, and pore microstructure, (2) synthetic seismic modeling that will help identify the relative contributions of scattering and intrinsic inelasticity to apparent Q attributes, and (3) robust algorithms that extract relative wave attenuation attributes from seismic data. This project provides: (1) Additional petrophysical insight from acquired data; (2) Increased understanding of rock and fluid properties; (3) New techniques to measure reservoir properties that are not currently available; and (4) Provide tools to more accurately describe the reservoir and predict oil location and volumes. These methodologies will improve the industry's ability to predict and quantify oil and gas saturation distribution, and to apply this information through geologic models to enhance reservoir simulation. We have applied for two separate patents relating to work that was completed as part of this project.

  12. Edaravone attenuates neuronal apoptosis in hypoxic-ischemic brain damage rat model via suppression of TRAIL signaling pathway.

    Science.gov (United States)

    Li, Chunyi; Mo, Zhihuai; Lei, Junjie; Li, Huiqing; Fu, Ruying; Huang, Yanxia; Luo, Shijian; Zhang, Lei

    2018-06-01

    Edaravone is a new type of oxygen free radical scavenger and able to attenuate various brain damage including hypoxic-ischemic brain damage (HIBD). This study was aimed at investigating the neuroprotective mechanism of edaravone in rat hypoxic-ischemic brain damage model and its correlation with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) signaling pathway. 75 seven-day-old Sprague-Dawley neonatal rats were equally divided into three groups: sham-operated group (sham), HIBD group and HIBD rats injected with edaravone (HIBD + EDA) group. Neurological severity and space cognitive ability of rats in each group were evaluated using Longa neurological severity score and Morris water maze testing. TUNEL assay and flow cytometry were used to determine brain cell apoptosis. Western blot was used to estimate the expression level of death receptor-5 (DR5), Fas-associated protein with death domain (FADD), caspase 8, B-cell lymphoma-2 (Bcl-2) and Bcl-2 associated X protein (Bax). In addition, immunofluorescence was performed to detect caspase 3. Edaravone reduced neurofunctional damage caused by HIBD and improved the cognitive capability of rats. The above experiment results suggested that edaravone could down-regulate the expression of active caspase 3 protein, thereby relieving neuronal apoptosis. Taken together, edaravone could attenuate neuronal apoptosis in rat hypoxic-ischemic brain damage model via suppression of TRAIL signaling pathway, which also suggested that edaravone might be an effective therapeutic strategy for HIBD clinical treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Comparison of iodinated contrast media for the assessment of atherosclerotic plaque attenuation values by CT coronary angiography: Observations in an ex vivo model

    NARCIS (Netherlands)

    L. la Grutta (Ludovico); M. Galia (Massimo); G. Gentile; G. Lo Re (G.); E. Grassedonio (Emanuele); F. Coppolino; E. Maffei (Erica); E. Maresi (E.); A. Lo Casto (A.); F. Cademartiri (Filippo); M. Midiri (Massimo)

    2013-01-01

    textabstractObjective: To compare the influence of different iodinated contrast media with several dilutions on plaque attenuation in an ex vivo coronary model studied by multislice CT coronary angiography. Methods: In six ex vivo left anterior descending coronary arteries immersed in oil, CT

  14. Ultra-relativistic heavy-ion collisions - a hot cocktail of hydrodynamics, resonances and jets

    Directory of Open Access Journals (Sweden)

    Zabrodin E.

    2015-01-01

    Full Text Available Ultra-relativistic heavy-ion collisions at energies of RHIC and LHC are considered. For comparison with data the HYDJET++ model, which contains the treatment of both soft and hard processes, is employed. The study focuses mainly on the interplay of ideal hydrodynamics, final state interactions and jets, and its influence on the development of harmonics of the anisotropic flow. It is shown that jets are responsible for violation of the number-of-constituent-quark (NCQ scaling at LHC energies. The interplay between elliptic and triangular flows and their contribution to higher flow harmonics and dihadron angular correlations, including ridge, is also discussed.

  15. PET attenuation coefficients from CT images: experimental evaluation of the transformation of CT into PET 511-keV attenuation coefficients.

    Science.gov (United States)

    Burger, C; Goerres, G; Schoenes, S; Buck, A; Lonn, A H R; Von Schulthess, G K

    2002-07-01

    The CT data acquired in combined PET/CT studies provide a fast and essentially noiseless source for the correction of photon attenuation in PET emission data. To this end, the CT values relating to attenuation of photons in the range of 40-140 keV must be transformed into linear attenuation coefficients at the PET energy of 511 keV. As attenuation depends on photon energy and the absorbing material, an accurate theoretical relation cannot be devised. The transformation implemented in the Discovery LS PET/CT scanner (GE Medical Systems, Milwaukee, Wis.) uses a bilinear function based on the attenuation of water and cortical bone at the CT and PET energies. The purpose of this study was to compare this transformation with experimental CT values and corresponding PET attenuation coefficients. In 14 patients, quantitative PET attenuation maps were calculated from germanium-68 transmission scans, and resolution-matched CT images were generated. A total of 114 volumes of interest were defined and the average PET attenuation coefficients and CT values measured. From the CT values the predicted PET attenuation coefficients were calculated using the bilinear transformation. When the transformation was based on the narrow-beam attenuation coefficient of water at 511 keV (0.096 cm(-1)), the predicted attenuation coefficients were higher in soft tissue than the measured values. This bias was reduced by replacing 0.096 cm(-1) in the transformation by the linear attenuation coefficient of 0.093 cm(-1) obtained from germanium-68 transmission scans. An analysis of the corrected emission activities shows that the resulting transformation is essentially equivalent to the transmission-based attenuation correction for human tissue. For non-human material, however, it may assign inaccurate attenuation coefficients which will also affect the correction in neighbouring tissue.

  16. Attenuation by a Human Body and Trees as well as Material Penetration Loss in 26 and 39 GHz Millimeter Wave Bands

    Directory of Open Access Journals (Sweden)

    Qi Wang

    2017-01-01

    Full Text Available This paper investigates the attenuation by a human body and trees as well as material penetration loss at 26 and 39 GHz by measurements and theoretical modeling work. The measurements were carried out at a large restaurant and a university campus by using a time domain channel sounder. Meanwhile, the knife-edge (KE model and one-cylinder and two-cylinder models based on uniform theory of diffraction (UTD are applied to model the shape of a human body and predict its attenuation in theory. The ITU (International Telecommunication Union and its modified models are used to predict the attenuation by trees. The results show that the upper bound of the KE model is better to predict the attenuation by a human body compared with UTD one-cylinder and two-cylinder models at both 26 and 39 GHz. ITU model overestimates the attenuation by willow trees, and a modified attenuation model by trees is proposed based on our measurements at 26 GHz. Penetration loss for materials such as wood and glass with different types and thicknesses is measured as well. The measurement and modeling results in this paper are significant and necessary for simulation and planning of fifth-generation (5G mm-wave radio systems in ITU recommended frequency bands at 26 and 39 GHz.

  17. Selumetinib Attenuates Skeletal Muscle Wasting in Murine Cachexia Model through ERK Inhibition and AKT Activation.

    Science.gov (United States)

    Quan-Jun, Yang; Yan, Huo; Yong-Long, Han; Li-Li, Wan; Jie, Li; Jin-Lu, Huang; Jin, Lu; Peng-Guo, Chen; Run, Gan; Cheng, Guo

    2017-02-01

    Cancer cachexia is a multifactorial syndrome affecting the skeletal muscle. Previous clinical trials showed that treatment with MEK inhibitor selumetinib resulted in skeletal muscle anabolism. However, it is conflicting that MAPK/ERK pathway controls the mass of the skeletal muscle. The current study investigated the therapeutic effect and mechanisms of selumetinib in amelioration of cancer cachexia. The classical cancer cachexia model was established via transplantation of CT26 colon adenocarcinoma cells into BALB/c mice. The effect of selumetinib on body weight, tumor growth, skeletal muscle, food intake, serum proinflammatory cytokines, E3 ligases, and MEK/ERK-related pathways was analyzed. Two independent experiments showed that 30 mg/kg/d selumetinib prevented the loss of body weight in murine cachexia mice. Muscle wasting was attenuated and the expression of E3 ligases, MuRF1 and Fbx32, was inhibited following selumetinib treatment of the gastrocnemius muscle. Furthermore, selumetinib efficiently reduced tumor burden without influencing the cancer cell proliferation, cumulative food intake, and serum cytokines. These results indicated that the role of selumetinib in attenuating muscle wasting was independent of cancer burden. Detailed analysis of the mechanism revealed AKT and mTOR were activated, while ERK, FoxO3a, and GSK3β were inhibited in the selumetinib -treated cachexia group. These indicated that selumetinib effectively prevented skeletal muscle wasting in cancer cachexia model through ERK inhibition and AKT activation in gastrocnemius muscle via cross-inhibition. The study not only elucidated the mechanism of MEK/ERK inhibition in skeletal muscle anabolism, but also validated selumetinib therapy as an effective intervention against cancer cachexia. Mol Cancer Ther; 16(2); 334-43. ©2016 AACR. ©2016 American Association for Cancer Research.

  18. Experimental chronic kidney disease attenuates ischemia-reperfusion injury in an ex vivo rat lung model.

    Directory of Open Access Journals (Sweden)

    Chung-Kan Peng

    Full Text Available Lung ischemia reperfusion injury (LIRI is one of important complications following lung transplant and cardiopulmonary bypass. Although patients on hemodialysis are still excluded as lung transplant donors because of the possible effects of renal failure on the lungs, increased organ demand has led us to evaluate the influence of chronic kidney disease (CKD on LIRI. A CKD model was induced by feeding Sprague-Dawley rats an adenine-rich (0.75% diet for 2, 4 and 6 weeks, and an isolated rat lung in situ model was used to evaluate ischemia reperfusion (IR-induced acute lung injury. The clinicopathological parameters of LIRI, including pulmonary edema, lipid peroxidation, histopathological changes, immunohistochemistry changes, chemokine CXCL1, inducible nitric oxide synthase (iNOS, proinflammatory and anti-inflammatory cytokines, heat shock protein expression, and nuclear factor-κB (NF-κB activation were determined. Our results indicated that adenine-fed rats developed CKD as characterized by increased blood urea nitrogen and creatinine levels and the deposition of crystals in the renal tubules and interstitium. IR induced a significant increase in the pulmonary arterial pressure, lung edema, lung injury scores, the expression of CXCL1 mRNA, iNOS level, and protein concentration of the bronchial alveolar lavage fluid (BALF. The tumor necrosis factor-α levels in the BALF and perfusate; the interleukin-10 level in the perfusate; and the malondialdehyde levels in the lung tissue and perfusate were also significantly increased by LIRI. Counterintuitively, adenine-induced CKD significantly attenuated the severity of lung injury induced by IR. CKD rats exhibited increased heat shock protein 70 expression and decreased activation of NF-κB signaling. In conclusion, adenine-induced CKD attenuated LIRI by inhibiting the NF-κB pathway.

  19. Effect of particulate aggregation in aquatic environments on the beam attenuation and its utility as a proxy for particulate mass.

    Science.gov (United States)

    Boss, Emmanuel; Slade, Wayne; Hill, Paul

    2009-05-25

    Marine aggregates, agglomerations of particles and dissolved materials, are an important particulate pool in aquatic environments, but their optical properties are not well understood. To improve understanding of the optical properties of aggregates, two related studies are presented. In the first, an in situ manipulation experiment is described, in which beam attenuation of undisturbed and sheared suspensions are compared. Results show that in the sheared treatment bulk particle size decreases and beam attenuation increases, consistent with the hypothesis that a significant fraction of mass in suspension is contained in fragile aggregates. Interestingly, the magnitude of increase in beam attenuation is less than expected if the aggregates are modeled as solid spheres. Motivated by this result, a second study is presented, in which marine aggregates are modeled to assess how the beam attenuation of aggregates differs from that of their constituent particles and from solid particles of the same mass. The model used is based on that of Latimer [Appl. Opt. 24, 3231 (1985)] and mass specific attenuation is compared with that based on homogeneous and solid particles, the standard model for aquatic particles. In the modeling we use recent research relating size and solid fraction of aquatic aggregates. In contrast with Mie theory, this model provides a rather size-insensitive mass specific attenuation for most relevant sizes. This insensitivity is consistent with the observations that mass specific beam-attenuation of marine particles is in the range 0.2-0.6m(2)/gr despite large variability in size distribution and composition across varied aquatic environments.

  20. Measured attenuation correction methods

    International Nuclear Information System (INIS)

    Ostertag, H.; Kuebler, W.K.; Doll, J.; Lorenz, W.J.

    1989-01-01

    Accurate attenuation correction is a prerequisite for the determination of exact local radioactivity concentrations in positron emission tomography. Attenuation correction factors range from 4-5 in brain studies to 50-100 in whole body measurements. This report gives an overview of the different methods of determining the attenuation correction factors by transmission measurements using an external positron emitting source. The long-lived generator nuclide 68 Ge/ 68 Ga is commonly used for this purpose. The additional patient dose from the transmission source is usually a small fraction of the dose due to the subsequent emission measurement. Ring-shaped transmission sources as well as rotating point or line sources are employed in modern positron tomographs. By masking a rotating line or point source, random and scattered events in the transmission scans can be effectively suppressed. The problems of measured attenuation correction are discussed: Transmission/emission mismatch, random and scattered event contamination, counting statistics, transmission/emission scatter compensation, transmission scan after administration of activity to the patient. By using a double masking technique simultaneous emission and transmission scans become feasible. (orig.)

  1. Ultrasonic attenuation measurements and 'glassy' behaviour of neutron irradiated quartz

    International Nuclear Information System (INIS)

    Laermans, C.; Esteves, V.; Vanelstraete, A.

    1986-01-01

    The ultrasonic attenuation of longitudinal acoustic waves in slightly disordered crystalline quartz has been measured over a temperature range from 1.3 to 300 K, using the pulse-echo technique. Neutron irradiation is demonstrated to increase the ultrasonic attenuation at low temperatures indicating the presence of two-level tunneling systems similar to those of glasses. The present low-temperature acoustic results agree with a frequency independence and a T 3 behaviour for the relaxation process predicted by the two-level tunneling TLS-model where the regime ωT 1 >> 1 holds. (author)

  2. An attempt to model the relationship between MMI attenuation and engineering ground-motion parameters using artificial neural networks and genetic algorithms

    Directory of Open Access Journals (Sweden)

    G-A. Tselentis

    2010-12-01

    Full Text Available Complex application domains involve difficult pattern classification problems. This paper introduces a model of MMI attenuation and its dependence on engineering ground motion parameters based on artificial neural networks (ANNs and genetic algorithms (GAs. The ultimate goal of this investigation is to evaluate the target-region applicability of ground-motion attenuation relations developed for a host region based on training an ANN using the seismic patterns of the host region. This ANN learning is based on supervised learning using existing data from past earthquakes. The combination of these two learning procedures (that is, GA and ANN allows us to introduce a new method for pattern recognition in the context of seismological applications. The performance of this new GA-ANN regression method has been evaluated using a Greek seismological database with satisfactory results.

  3. Attenuation coefficients of soils

    International Nuclear Information System (INIS)

    Martini, E.; Naziry, M.J.

    1989-01-01

    As a prerequisite to the interpretation of gamma-spectrometric in situ measurements of activity concentrations of soil radionuclides the attenuation of 60 to 1332 keV gamma radiation by soil samples varying in water content and density has been investigated. A useful empirical equation could be set up to describe the dependence of the mass attenuation coefficient upon photon energy for soil with a mean water content of 10%, with the results comparing well with data in the literature. The mean density of soil in the GDR was estimated at 1.6 g/cm 3 . This value was used to derive the linear attenuation coefficients, their range of variation being 10%. 7 figs., 5 tabs. (author)

  4. Iterative methods for photoacoustic tomography in attenuating acoustic media

    Science.gov (United States)

    Haltmeier, Markus; Kowar, Richard; Nguyen, Linh V.

    2017-11-01

    The development of efficient and accurate reconstruction methods is an important aspect of tomographic imaging. In this article, we address this issue for photoacoustic tomography. To this aim, we use models for acoustic wave propagation accounting for frequency dependent attenuation according to a wide class of attenuation laws that may include memory. We formulate the inverse problem of photoacoustic tomography in attenuating medium as an ill-posed operator equation in a Hilbert space framework that is tackled by iterative regularization methods. Our approach comes with a clear convergence analysis. For that purpose we derive explicit expressions for the adjoint problem that can efficiently be implemented. In contrast to time reversal, the employed adjoint wave equation is again damping and, thus has a stable solution. This stability property can be clearly seen in our numerical results. Moreover, the presented numerical results clearly demonstrate the efficiency and accuracy of the derived iterative reconstruction algorithms in various situations including the limited view case.

  5. Attenuation correction for the large non-human primate brain imaging using microPET

    International Nuclear Information System (INIS)

    Naidoo-Variawa, S; Lehnert, W; Kassiou, M; Banati, R; Meikle, S R

    2010-01-01

    Assessment of the biodistribution and pharmacokinetics of radiopharmaceuticals in vivo is often performed on animal models of human disease prior to their use in humans. The baboon brain is physiologically and neuro-anatomically similar to the human brain and is therefore a suitable model for evaluating novel CNS radioligands. We previously demonstrated the feasibility of performing baboon brain imaging on a dedicated small animal PET scanner provided that the data are accurately corrected for degrading physical effects such as photon attenuation in the body. In this study, we investigated factors affecting the accuracy and reliability of alternative attenuation correction strategies when imaging the brain of a large non-human primate (papio hamadryas) using the microPET Focus 220 animal scanner. For measured attenuation correction, the best bias versus noise performance was achieved using a 57 Co transmission point source with a 4% energy window. The optimal energy window for a 68 Ge transmission source operating in singles acquisition mode was 20%, independent of the source strength, providing bias-noise performance almost as good as for 57 Co. For both transmission sources, doubling the acquisition time had minimal impact on the bias-noise trade-off for corrected emission images, despite observable improvements in reconstructed attenuation values. In a [ 18 F]FDG brain scan of a female baboon, both measured attenuation correction strategies achieved good results and similar SNR, while segmented attenuation correction (based on uncorrected emission images) resulted in appreciable regional bias in deep grey matter structures and the skull. We conclude that measured attenuation correction using a single pass 57 Co (4% energy window) or 68 Ge (20% window) transmission scan achieves an excellent trade-off between bias and propagation of noise when imaging the large non-human primate brain with a microPET scanner.

  6. Astaxanthin attenuates neurotoxicity in a mouse model of Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    B. Grimmig, L. Daly

    2017-08-01

    Full Text Available Background: Astaxanthin (AXT is a natural carotenoid with diverse biological activities. Although it is best known as a potent antioxidant, recent work suggests additional mechanisms of action that have the potential to oppose the ongoing pathophysiology of Parkinson’s disease (PD. For example, AXT has a putative role in modulating microglial activity and preserving mitochondrial function, thereby implicating this compound as a neuroprotective agent. Both oxidative stress and inflammation are involved in the progression of many neurodegenerative diseases. Therefore, we examined the efficacy for AXT to reduced neurotoxicity in a toxic model of PD in mice. Methods: In this study, we used a 4-week dietary supplementation of algae derived AXT to reduce 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP induced dopaminergic cell death. Results: AXT treated mice were protected against the loss of tyrosine hydroxylase (TH staining in the substantia nigra (SN after MPTP exposure compared to the control diet. This effect of preserved TH immunoreactivity was also observed in the striatum. Furthermore, AXT administration was able to interrupt the neuroinflammatory process known to contribute to neurodegeneration in this model. Conclusions: We demonstrate that AXT neuroprotection was associated with attenuated microglial activation as indicated by reduced immunohistochemical detection of IBA-1 in the SN and striatum of AXT treated mice. Altogether, these studies suggest that AXT has neuroprotective property in the central nervous system against MPTP neurodegeneration.

  7. Combinational deletion of three membrane protein-encoding genes highly attenuates yersinia pestis while retaining immunogenicity in a mouse model of pneumonic plague.

    Science.gov (United States)

    Tiner, Bethany L; Sha, Jian; Kirtley, Michelle L; Erova, Tatiana E; Popov, Vsevolod L; Baze, Wallace B; van Lier, Christina J; Ponnusamy, Duraisamy; Andersson, Jourdan A; Motin, Vladimir L; Chauhan, Sadhana; Chopra, Ashok K

    2015-04-01

    Previously, we showed that deletion of genes encoding Braun lipoprotein (Lpp) and MsbB attenuated Yersinia pestis CO92 in mouse and rat models of bubonic and pneumonic plague. While Lpp activates Toll-like receptor 2, the MsbB acyltransferase modifies lipopolysaccharide. Here, we deleted the ail gene (encoding the attachment-invasion locus) from wild-type (WT) strain CO92 or its lpp single and Δlpp ΔmsbB double mutants. While the Δail single mutant was minimally attenuated compared to the WT bacterium in a mouse model of pneumonic plague, the Δlpp Δail double mutant and the Δlpp ΔmsbB Δail triple mutant were increasingly attenuated, with the latter being unable to kill mice at a 50% lethal dose (LD50) equivalent to 6,800 LD50s of WT CO92. The mutant-infected animals developed balanced TH1- and TH2-based immune responses based on antibody isotyping. The triple mutant was cleared from mouse organs rapidly, with concurrent decreases in the production of various cytokines and histopathological lesions. When surviving animals infected with increasing doses of the triple mutant were subsequently challenged on day 24 with the bioluminescent WT CO92 strain (20 to 28 LD50s), 40 to 70% of the mice survived, with efficient clearing of the invading pathogen, as visualized in real time by in vivo imaging. The rapid clearance of the triple mutant, compared to that of WT CO92, from animals was related to the decreased adherence and invasion of human-derived HeLa and A549 alveolar epithelial cells and to its inability to survive intracellularly in these cells as well as in MH-S murine alveolar and primary human macrophages. An early burst of cytokine production in macrophages elicited by the triple mutant compared to WT CO92 and the mutant's sensitivity to the bactericidal effect of human serum would further augment bacterial clearance. Together, deletion of the ail gene from the Δlpp ΔmsbB double mutant severely attenuated Y. pestis CO92 to evoke pneumonic plague in a

  8. Rain attenuation studies from radiometric and rain DSD measurements at two tropical locations

    Science.gov (United States)

    Halder, Tuhina; Adhikari, Arpita; Maitra, Animesh

    2018-05-01

    Efficient use of satellite communication in tropical regions demands proper characterization of rain attenuation, particularly, in view of the available popular propagation models which are mostly based on temperate climatic data. Thus rain attenuations at frequencies 22.234, 23.834 and 31.4/30 GHz over two tropical locations Kolkata (22.57°N, 88.36°E, India) and Belem (1.45°S, 48.49° W, Brazil), have been estimated for the year 2010 and 2011, respectively. The estimation has been done utilizing ground-based disdrometer observations and radiometric measurements over Earth-space path. The results show that rain attenuation estimations from radiometric data are reliable only at low rain rates (measurements show good agreement with the ITU-R model, even at high rain rates (upto100 mm/h). Despite having significant variability in terms of drop size distribution (DSD), the attenuation values calculated from DSD data (disdrometer measurements) at Kolkata and Belem differ a little for the rain rates below 30 mm/h. However, the attenuation values, obtained from radiometric measurements at the two places, show significant deviations ranging from 0.54 dB to 3.2 dB up to a rain rate of 30 mm/h, on account of different rain heights, mean atmospheric temperatures and climatology of the two locations.

  9. Angelica Sinensis attenuates inflammatory reaction in experimental rat models having spinal cord injury.

    Science.gov (United States)

    Xu, Jun; E, Xiao-Qiang; Liu, Hui-Yong; Tian, Jun; Yan, Jing-Long

    2015-01-01

    This study was aimed to evaluate the effect of Angelica Sinensis on experimental rat models in which spinal cord injury was induced by studying different factors. Different factors causing inflammation play a key role in pathophysiology of SCI. Here three groups of rats (n=15, each was used). These included a sham control group where only laminectomy was performed, SCI group where SCI was induced and AS/SCI group where although SCI was induced but Angelica Sinensis was also administered to study its effect and draw a comparison with control. The expression of I-kBα and NF-kB p65 was also studied using western blotting and after recording optical density (OD) values of western blots. MPO activity was used to measure the effect of 20 mg/kg Angelica Sinensis. The levels of proinflammatory cytokines TNF-α, IL-1β and IL-6 were also studied. As compared with SCI group and sham control it was observed that Angelica Sinensis significantly reduced the expression of I-kBα and NF-kB p65, (PSinensis in rat models can attenuate the secondary damage caused by SCI and thus help in controlling the pathology of SCI in rats.

  10. Statistical analysis of accurate prediction of local atmospheric optical attenuation with a new model according to weather together with beam wandering compensation system: a season-wise experimental investigation

    Science.gov (United States)

    Arockia Bazil Raj, A.; Padmavathi, S.

    2016-07-01

    Atmospheric parameters strongly affect the performance of Free Space Optical Communication (FSOC) system when the optical wave is propagating through the inhomogeneous turbulent medium. Developing a model to get an accurate prediction of optical attenuation according to meteorological parameters becomes significant to understand the behaviour of FSOC channel during different seasons. A dedicated free space optical link experimental set-up is developed for the range of 0.5 km at an altitude of 15.25 m. The diurnal profile of received power and corresponding meteorological parameters are continuously measured using the developed optoelectronic assembly and weather station, respectively, and stored in a data logging computer. Measured meteorological parameters (as input factors) and optical attenuation (as response factor) of size [177147 × 4] are used for linear regression analysis and to design the mathematical model that is more suitable to predict the atmospheric optical attenuation at our test field. A model that exhibits the R2 value of 98.76% and average percentage deviation of 1.59% is considered for practical implementation. The prediction accuracy of the proposed model is investigated along with the comparative results obtained from some of the existing models in terms of Root Mean Square Error (RMSE) during different local seasons in one-year period. The average RMSE value of 0.043-dB/km is obtained in the longer range dynamic of meteorological parameters variations.

  11. Computer-controlled attenuator.

    Science.gov (United States)

    Mitov, D; Grozev, Z

    1991-01-01

    Various possibilities for applying electronic computer-controlled attenuators for the automation of physiological experiments are considered. A detailed description is given of the design of a 4-channel computer-controlled attenuator, in two of the channels of which the output signal can change by a linear step, in the other two channels--by a logarithmic step. This, together with the existence of additional programmable timers, allows to automate a wide range of studies in different spheres of physiology and psychophysics, including vision and hearing.

  12. Empirical formulae for mass attenuation and energy absorption coefficients from 1 keV to 20 MeV

    International Nuclear Information System (INIS)

    Manjunatha, H.C.; Sowmya, N.; Seenappa, L.; Sridhar, K.N.; Hanumantharayappa, C.

    2017-01-01

    Mass attenuation and energy absorption coefficients represents attenuation and absorption of X-rays and gamma rays in the material medium. A new empirical formula is proposed for mass attenuation and energy absorption coefficients in the region 1 < Z < 92 and from 1 keV to 20 MeV. The mass attenuation and energy absorption coefficients do not varies linearly with energy. We have performed the nonlinear regressions/nonlinear least square fittings and proposed the simple empirical relations between mass attenuation coefficients (μ/ρ) and mass energy absorption coefficients (μ en /ρ) and energy. We have compared the values produced by this formula with that of experiments. A good agreement of present formula with the experiments/previous models suggests that the present formulae could be used to evaluate mass attenuation and energy absorption coefficients in the region 1 < Z < 92. This formula is a model-independent formula and is the first of its kind that produces a mass attenuation and energy absorption coefficient values with the only simple input of energy for wide energy range 1 keV - 20 MeV in the atomic number region 1 < Z < 92. This formula is very much useful in the fields of radiation physics and dosimetry

  13. Implementation of viscoelastic mud-induced energy attenuation in the third-generation wave model, SWAN

    Science.gov (United States)

    Beyramzade, Mostafa; Siadatmousavi, Seyed Mostafa

    2018-01-01

    The interaction of waves with fluid mud can dissipate the wave energy significantly over few wavelengths. In this study, the third-generation wave model, SWAN, was advanced to include attenuation of wave energy due to interaction with a viscoelastic fluid mud layer. The performances of implemented viscoelastic models were verified against an analytical solution and viscous formulations for simple one-dimensional propagation cases. Stationary and non-stationary test cases in the Surinam coast and the Atchafalaya Shelf showed that the inclusion of the mud-wave interaction term in the third-generation wave model enhances the model performance in real applications. A high value of mud viscosity (of the order of 0.1 m2/s) was required in both field cases to remedy model overestimation at high frequency ranges of the wave spectrum. The use of frequency-dependent mud viscosity value improved the performance of model, especially in the frequency range of 0.2-0.35 Hz in the wave spectrum. In addition, the mud-wave interaction might affect the high frequency part of the spectrum, and this part of the wave spectrum is also affected by energy transfer from wind to waves, even for the fetch lengths of the order of 10 km. It is shown that exclusion of the wind input term in such cases might result in different values for parameters of mud layer when inverse modeling procedure was employed. Unlike viscous models for wave-mud interaction, the inverse modeling results to a set of mud parameters with the same performance when the viscoelastic model is used. It provides an opportunity to select realistic mud parameters which are in more agreement with in situ measurements.

  14. Attenuation in Superconducting Circular Waveguides

    Directory of Open Access Journals (Sweden)

    K. H. Yeap

    2016-09-01

    Full Text Available We present an analysis on wave propagation in superconducting circular waveguides. In order to account for the presence of quasiparticles in the intragap states of a superconductor, we employ the characteristic equation derived from the extended Mattis-Bardeen theory to compute the values of the complex conductivity. To calculate the attenuation in a circular waveguide, the tangential fields at the boundary of the wall are first matched with the electrical properties (which includes the complex conductivity of the wall material. The matching of fields with the electrical properties results in a set of transcendental equations which is able to accurately describe the propagation constant of the fields. Our results show that although the attenuation in the superconducting waveguide above cutoff (but below the gap frequency is finite, it is considerably lower than that in a normal waveguide. Above the gap frequency, however, the attenuation in the superconducting waveguide increases sharply. The attenuation eventually surpasses that in a normal waveguide. As frequency increases above the gap frequency, Cooper pairs break into quasiparticles. Hence, we attribute the sharp rise in attenuation to the increase in random collision of the quasiparticles with the lattice structure.

  15. Microwave attenuation with composite of copper microwires

    International Nuclear Information System (INIS)

    Gorriti, A.G.; Marin, P.; Cortina, D.; Hernando, A.

    2010-01-01

    It is shown that copper microwires composite media attenuates microwave reflection of metallic surfaces. We show how the distance to the metallic surface, as well as the length and volume fraction of microwires, determine the frequency of maximum absorption and the return loss level. Furthermore, we were able to fit the experimental results with a theoretical model based on Maxwell-Garnett mixing formula.

  16. Microwave attenuation with composite of copper microwires

    Energy Technology Data Exchange (ETDEWEB)

    Gorriti, A.G.; Marin, P. [Instituto de Magnetismo Aplicado, (UCM-ADIF-CSIC) and Departamento de Fisica de Materiales (UCM). P.O. Box 155, Las Rozas, Madrid 28230 (Spain); Cortina, D. [Micromag S.L., Las Rozas, Madrid 28230 (Spain); Hernando, A., E-mail: antonio.hernando@adif.e [Instituto de Magnetismo Aplicado, (UCM-ADIF-CSIC) and Departamento de Fisica de Materiales (UCM). P.O. Box 155, Las Rozas, Madrid 28230 (Spain); Micromag S.L., Las Rozas, Madrid 28230 (Spain)

    2010-05-15

    It is shown that copper microwires composite media attenuates microwave reflection of metallic surfaces. We show how the distance to the metallic surface, as well as the length and volume fraction of microwires, determine the frequency of maximum absorption and the return loss level. Furthermore, we were able to fit the experimental results with a theoretical model based on Maxwell-Garnett mixing formula.

  17. Radiofrequency attenuator and method

    Science.gov (United States)

    Warner, Benjamin P [Los Alamos, NM; McCleskey, T Mark [Los Alamos, NM; Burrell, Anthony K [Los Alamos, NM; Agrawal, Anoop [Tucson, AZ; Hall, Simon B [Palmerston North, NZ

    2009-01-20

    Radiofrequency attenuator and method. The attenuator includes a pair of transparent windows. A chamber between the windows is filled with molten salt. Preferred molten salts include quarternary ammonium cations and fluorine-containing anions such as tetrafluoroborate (BF.sub.4.sup.-), hexafluorophosphate (PF.sub.6.sup.-), hexafluoroarsenate (AsF.sub.6.sup.-), trifluoromethylsulfonate (CF.sub.3SO.sub.3.sup.-), bis(trifluoromethylsulfonyl)imide ((CF.sub.3SO.sub.2).sub.2N.sup.-), bis(perfluoroethylsulfonyl)imide ((CF.sub.3CF.sub.2SO.sub.2).sub.2N.sup.-) and tris(trifluoromethylsulfonyl)methide ((CF.sub.3SO.sub.2).sub.3C.sup.-). Radicals or radical cations may be added to or electrochemically generated in the molten salt to enhance the RF attenuation.

  18. Marine Mammal Brucella Reference Strains Are Attenuated in a BALB/c Mouse Model.

    Science.gov (United States)

    Nymo, Ingebjørg H; Arias, Maykel A; Pardo, Julián; Álvarez, María Pilar; Alcaraz, Ana; Godfroid, Jacques; Jiménez de Bagüés, María Pilar

    2016-01-01

    Brucellosis is a zoonosis of worldwide distribution with numerous animal host species. Since the novel isolation of Brucella spp. from marine mammals in 1994 the bacteria have been isolated from various marine mammal hosts. The marine mammal reference strains Brucella pinnipedialis 12890 (harbour seal, Phoca vitulina) and Brucella ceti 12891 (harbour porpoise, Phocoena phocoena) were included in genus Brucella in 2007, however, their pathogenicity in the mouse model is pending. Herein this is evaluated in BALB/c mice with Brucella suis 1330 as a control. Both marine mammal strains were attenuated, however, B. ceti was present at higher levels than B. pinnipedialis in blood, spleen and liver throughout the infection, in addition B. suis and B. ceti were isolated from brains and faeces at times with high levels of bacteraemia. In B. suis-infected mice serum cytokines peaked at day 7. In B. pinnipedialis-infected mice, levels were similar, but peaked predominantly at day 3 and an earlier peak in spleen weight likewise implied an earlier response. The inflammatory response induced pathology in the spleen and liver. In B. ceti-infected mice, most serum cytokine levels were comparable to those in uninfected mice, consistent with a limited inflammatory response, which also was indicated by restricted spleen and liver pathology. Specific immune responses against all three strains were detected in vitro after stimulation of splenocytes from infected mice with the homologous heat-killed brucellae. Antibody responses in vivo were also induced by the three brucellae. The immunological pattern of B. ceti in combination with persistence in organs and limited pathology has heretofore not been described for other brucellae. These two marine mammal wildtype strains show an attenuated pattern in BALB/c mice only previously described for Brucella neotomea.

  19. Marine Mammal Brucella Reference Strains Are Attenuated in a BALB/c Mouse Model.

    Directory of Open Access Journals (Sweden)

    Ingebjørg H Nymo

    Full Text Available Brucellosis is a zoonosis of worldwide distribution with numerous animal host species. Since the novel isolation of Brucella spp. from marine mammals in 1994 the bacteria have been isolated from various marine mammal hosts. The marine mammal reference strains Brucella pinnipedialis 12890 (harbour seal, Phoca vitulina and Brucella ceti 12891 (harbour porpoise, Phocoena phocoena were included in genus Brucella in 2007, however, their pathogenicity in the mouse model is pending. Herein this is evaluated in BALB/c mice with Brucella suis 1330 as a control. Both marine mammal strains were attenuated, however, B. ceti was present at higher levels than B. pinnipedialis in blood, spleen and liver throughout the infection, in addition B. suis and B. ceti were isolated from brains and faeces at times with high levels of bacteraemia. In B. suis-infected mice serum cytokines peaked at day 7. In B. pinnipedialis-infected mice, levels were similar, but peaked predominantly at day 3 and an earlier peak in spleen weight likewise implied an earlier response. The inflammatory response induced pathology in the spleen and liver. In B. ceti-infected mice, most serum cytokine levels were comparable to those in uninfected mice, consistent with a limited inflammatory response, which also was indicated by restricted spleen and liver pathology. Specific immune responses against all three strains were detected in vitro after stimulation of splenocytes from infected mice with the homologous heat-killed brucellae. Antibody responses in vivo were also induced by the three brucellae. The immunological pattern of B. ceti in combination with persistence in organs and limited pathology has heretofore not been described for other brucellae. These two marine mammal wildtype strains show an attenuated pattern in BALB/c mice only previously described for Brucella neotomea.

  20. What makes ribosome-mediated transcriptional attenuation sensitive to amino acid limitation?

    Directory of Open Access Journals (Sweden)

    Johan Elf

    2005-06-01

    Full Text Available Ribosome-mediated transcriptional attenuation mechanisms are commonly used to control amino acid biosynthetic operons in bacteria. The mRNA leader of such an operon contains an open reading frame with "regulatory" codons, cognate to the amino acid that is synthesized by the enzymes encoded by the operon. When the amino acid is in short supply, translation of the regulatory codons is slow, which allows transcription to continue into the structural genes of the operon. When amino acid supply is in excess, translation of regulatory codons is rapid, which leads to termination of transcription. We use a discrete master equation approach to formulate a probabilistic model for the positioning of the RNA polymerase and the ribosome in the attenuator leader sequence. The model describes how the current rate of amino acid supply compared to the demand in protein synthesis (signal determines the expression of the amino acid biosynthetic operon (response. The focus of our analysis is on the sensitivity of operon expression to a change in the amino acid supply. We show that attenuation of transcription can be hyper-sensitive for two main reasons. The first is that its response depends on the outcome of a race between two multi-step mechanisms with synchronized starts: transcription of the leader of the operon, and translation of its regulatory codons. The relative change in the probability that transcription is aborted (attenuated can therefore be much larger than the relative change in the time it takes for the ribosome to read a regulatory codon. The second is that the general usage frequencies of codons of the type used in attenuation control are small. A small percentage decrease in the rate of supply of the controlled amino acid can therefore lead to a much larger percentage decrease in the rate of reading a regulatory codon. We show that high sensitivity further requires a particular choice of regulatory codon among several synonymous codons for the

  1. Caffeine attenuates scopolamine-induced memory impairment in humans.

    Science.gov (United States)

    Riedel, W; Hogervorst, E; Leboux, R; Verhey, F; van Praag, H; Jolles, J

    1995-11-01

    Caffeine consumption can be beneficial for cognitive functioning. Although caffeine is widely recognized as a mild CNS stimulant drug, the most important consequence of its adenosine antagonism is cholinergic stimulation, which might lead to improvement of higher cognitive functions, particularly memory. In this study, the scopolamine model of amnesia was used to test the cholinergic effects of caffeine, administered as three cups of coffee. Subjects were 16 healthy volunteers who received 250 mg caffeine and 2 mg nicotine separately, in a placebo-controlled double-blind cross-over design. Compared to placebo, nicotine attenuated the scopolamine-induced impairment of storage in short-term memory and attenuated the scopolamine-induced slowing of speed of short-term memory scanning. Nicotine also attenuated the scopolamine-induced slowing of reaction time in a response competition task. Caffeine attenuated the scopolamine-induced impairment of free recall from short- and long-term memory, quality and speed of retrieval from long-term memory in a word learning task, and other cognitive and non-cognitive measures, such as perceptual sensitivity in visual search, reading speed, and rate of finger-tapping. On the basis of these results it was concluded that caffeine possesses cholinergic cognition enhancing properties. Caffeine could be used as a control drug in studies using the scopolamine paradigm and possibly also in other experimental studies of cognitive enhancers, as the effects of a newly developed cognition enhancing drug should at least be superior to the effects of three cups of coffee.

  2. Effects of methods of attenuation correction on source parameter determination

    Science.gov (United States)

    Sonley, Eleanor; Abercrombie, Rachel E.

    We quantify the effects of using different approaches to model individual earthquake spectra. Applying different approaches can introduce significant variability in the calculated source parameters, even when applied to the same data. To compare large and small earthquake source parameters, the results of multiple studies need to be combined to extend the magnitude range, but the variability introduced by the different approaches hampers the outcome. When studies are combined, there is large uncertainty and large scatter and some systematic differences have been neglected. We model individual earthquake spectra from repeating earthquakes (M˜2) at Parkfield, CA, recorded by a borehole network. We focus on the effects of trade-offs between attenuation (Q) and corner frequency in spectral fitting and the effect of the model shape at the corner frequency on radiated energy. The trade-off between attenuation and corner frequency can increase radiated energy by up to 400% and seismic moment by up to 100%.

  3. Prediction Method for Rain Rate and Rain Propagation Attenuation for K-Band Satellite Communications Links in Tropical Areas

    Directory of Open Access Journals (Sweden)

    Baso Maruddani

    2015-01-01

    Full Text Available This paper deals with the prediction method using hidden Markov model (HMM for rain rate and rain propagation attenuation for K-band satellite communication link at tropical area. As is well known, the K-band frequency is susceptible of being affected by atmospheric condition, especially in rainy condition. The wavelength of K-band frequency which approaches to the size of rain droplet causes the signal strength is easily attenuated and absorbed by the rain droplet. In order to keep the quality of system performance for K-band satellite communication link, therefore a special attention has to be paid for rain rate and rain propagation attenuation. Thus, a prediction method for rain rate and rain propagation attenuation based on HMM is developed to process the measurement data. The measured and predicted data are then compared with the ITU-R recommendation. From the result, it is shown that the measured and predicted data show similarity with the model of ITU-R P.837-5 recommendation for rain rate and the model of ITU-R P.618-10 recommendation for rain propagation attenuation. Meanwhile, statistical data for measured and predicted data such as fade duration and interfade duration have insignificant discrepancy with the model of ITU-R P.1623-1 recommendation.

  4. The LCLS Gas Attenuator Revisited

    International Nuclear Information System (INIS)

    Ryutov, D

    2005-01-01

    In the report ''X-ray attenuation cell'' [1] a preliminary analysis of the gas attenuator for the Linac Coherent Light Source (LCLS) was presented. This analysis was carried out for extremely stringent set of specifications. In particular, a very large diameter for the unobstructed beam was set (1 cm) to accommodate the spontaneous radiation; the attenuator was supposed to cover the whole range of energies of the coherent radiation, from 800 eV to 8000 eV; the maximum attenuation was set at the level of 10 4 ; the use of solid attenuators was not allowed, as well as the use of rotating shutters. The need to reach a sufficient absorption at the high-energy end of the spectrum predetermined the choice of Xe as the working gas (in order to have a reasonable absorption at a not-too-high pressure). A sophisticated differential pumping system that included a Penning-type ion pump was suggested in order to minimize the gas leak into the undulator/accelerator part of the facility. A high cost of xenon meant also that an efficient (and expensive) gas-recovery system would have to be installed. The main parameter that determined the high cost and the complexity of the system was a large radius of the orifice. The present viewpoint allows for much smaller size of the orifice, r 0 = 1.5 mm. (1) The use of solid attenuators is also allowed (R.M. Bionta, private communication). It is, therefore, worthwhile to reconsider various parameters of the gas attenuator for these much less stringent conditions. This brief study should be considered as a physics input for the engineering design. As a working gas we consider now the argon, which, on the one hand, provides a reasonable absorption lengths and, on the other hand, is inexpensive enough to be exhausted into the atmosphere (no recovery). The absorption properties of argon are illustrated by Fig.1 where the attenuation factor A is shown for various beam energies, based on Ref. [2]. The other relevant parameters for argon are

  5. Attenuation and Dispersion in Earth's Materials

    Science.gov (United States)

    Gueguen, Y.

    2012-04-01

    One of the last challenges of Pr. Luigi Burlini has been to set up an experimental apparatus that would measure elastic wave attenuation under high pressure conditions. This project has since been developed by his colleagues and students at ETH. As a tribute to Luigi Burlini, this presentation aims at recalling why such measurements are important , how challenging such a project is, and what the main issues ahead are. Most of our knowledge about either crustal layers (seismic exploration) or deeper layers (seismology) results from data related to elastic wave propagation inside the Earth. The large amount of available data as well as the huge capability of computers are such that descriptions in terms of isotropic homogeneous layers appear to be very crude today. Anisotropic, heterogeneous models are reported at various scales. In addition, accounting for wave attenuation (the Q factor) is potentially of great interest. The Q factor is highly sensitive to processes that involve some departure from perfect elasticity. Its knowledge may provide information on possible fluid content, temperature, etc. This is because various processes may dissipate energy (and thus lower Q value) as a result of fluid flow, solid flow, etc., depending on the precise P-T conditions at depth. This points immediately to the theoretical challenge of Q investigations: there are many possible ways for a rock to not behave as a perfect elastic body. To model these various mechanisms and identify in which conditions they can take place is a first major challenge. The second challenge is on the experimental ground. What is looked for is to get low frequencies (f close to seismic frequencies) Q data on crustal (or mantle) rocks at high pressure P-high temperature T. Experiments in such highT-high P-low f conditions are extremely difficult to perform. Only in Canberra (I. Jackson) and now in Zurich such conditions have been achieved. Attenuation and dispersion (frequency dependence) of elastic

  6. Live Cell Analysis and Mathematical Modeling Identify Determinants of Attenuation of Dengue Virus 2'-O-Methylation Mutant.

    Directory of Open Access Journals (Sweden)

    Bianca Schmid

    2015-12-01

    Full Text Available Dengue virus (DENV is the most common mosquito-transmitted virus infecting ~390 million people worldwide. In spite of this high medical relevance, neither a vaccine nor antiviral therapy is currently available. DENV elicits a strong interferon (IFN response in infected cells, but at the same time actively counteracts IFN production and signaling. Although the kinetics of activation of this innate antiviral defense and the timing of viral counteraction critically determine the magnitude of infection and thus disease, quantitative and kinetic analyses are lacking and it remains poorly understood how DENV spreads in IFN-competent cell systems. To dissect the dynamics of replication versus antiviral defense at the single cell level, we generated a fully viable reporter DENV and host cells with authentic reporters for IFN-stimulated antiviral genes. We find that IFN controls DENV infection in a kinetically determined manner that at the single cell level is highly heterogeneous and stochastic. Even at high-dose, IFN does not fully protect all cells in the culture and, therefore, viral spread occurs even in the face of antiviral protection of naïve cells by IFN. By contrast, a vaccine candidate DENV mutant, which lacks 2'-O-methylation of viral RNA is profoundly attenuated in IFN-competent cells. Through mathematical modeling of time-resolved data and validation experiments we show that the primary determinant for attenuation is the accelerated kinetics of IFN production. This rapid induction triggered by mutant DENV precedes establishment of IFN-resistance in infected cells, thus causing a massive reduction of virus production rate. In contrast, accelerated protection of naïve cells by paracrine IFN action has negligible impact. In conclusion, these results show that attenuation of the 2'-O-methylation DENV mutant is primarily determined by kinetics of autocrine IFN action on infected cells.

  7. Chlorine isotope investigation of natural attenuation of trichloroethene in an aerobic aquifer

    International Nuclear Information System (INIS)

    Sturchio, N.C.; Heraty, L.J.; Huang, L.; Holt, B.D.; Abrajano, T.A. Jr.; Clausen, J.L.

    1998-01-01

    Natural attenuation of chlorinated aliphatic hydrocarbons (CAHs) can be an important mechanism for groundwater remediation. It is difficult to determine the effectiveness of natural CAH attenuation from chemical analyses of groundwater samples because mixing, dispersion, and secondary reactions can mask the chemical evidence of attenuation. In this paper, the authors explore the application of stable chlorine isotope ratio measurements as a new tool for evaluating natural attenuation of CAHs. They report stable isotope ratios of chlorine in both trichloroethene (TCE) and inorganic chloride in groundwater from an aerobic aquifer beneath an extensively contaminated industrial site, the Paducah Gaseous Diffusion Plant in western Kentucky. Variations in the concentrations and chlorine isotope ratios of TCE and chloride in the groundwater are consistent with those expected from natural attenuation. These data support a model in which partial TCE degradation occurred in relatively impermeable, clay-rich sediments above the aquifer, and little or no further degradation of TCE occurred within the aquifer. A record of changing conditions within the TCE source area can be inferred from the spatial variation of chlorine isotope ratios for TCE and chloride within the plume

  8. MR-based attenuation correction for cardiac FDG PET on a hybrid PET/MRI scanner: comparison with standard CT attenuation correction

    Energy Technology Data Exchange (ETDEWEB)

    Vontobel, Jan; Liga, Riccardo; Possner, Mathias; Clerc, Olivier F.; Mikulicic, Fran; Veit-Haibach, Patrick; Voert, Edwin E.G.W. ter; Fuchs, Tobias A.; Stehli, Julia; Pazhenkottil, Aju P.; Benz, Dominik C.; Graeni, Christoph; Gaemperli, Oliver; Herzog, Bernhard; Buechel, Ronny R.; Kaufmann, Philipp A. [University Hospital Zurich, Department of Nuclear Medicine, Zurich (Switzerland)

    2015-09-15

    The aim of this study was to evaluate the feasibility of attenuation correction (AC) for cardiac {sup 18}F-labelled fluorodeoxyglucose (FDG) positron emission tomography (PET) using MR-based attenuation maps. We included 23 patients with no known cardiac history undergoing whole-body FDG PET/CT imaging for oncological indications on a PET/CT scanner using time-of-flight (TOF) and subsequent whole-body PET/MR imaging on an investigational hybrid PET/MRI scanner. Data sets from PET/MRI (with and without TOF) were reconstructed using MR AC and semi-quantitative segmental (20-segment model) myocardial tracer uptake (per cent of maximum) and compared to PET/CT which was reconstructed using CT AC and served as standard of reference. Excellent correlations were found for regional uptake values between PET/CT and PET/MRI with TOF (n = 460 segments in 23 patients; r = 0.913; p < 0.0001) with narrow Bland-Altman limits of agreement (-8.5 to +12.6 %). Correlation coefficients were slightly lower between PET/CT and PET/MRI without TOF (n = 460 segments in 23 patients; r = 0.851; p < 0.0001) with broader Bland-Altman limits of agreement (-12.5 to +15.0 %). PET/MRI with and without TOF showed minimal underestimation of tracer uptake (-2.08 and -1.29 %, respectively), compared to PET/CT. Relative myocardial FDG uptake obtained from MR-based attenuation corrected FDG PET is highly comparable to standard CT-based attenuation corrected FDG PET, suggesting interchangeability of both AC techniques. (orig.)

  9. Short-term prediction of rain attenuation level and volatility in Earth-to-Satellite links at EHF band

    Directory of Open Access Journals (Sweden)

    L. de Montera

    2008-08-01

    Full Text Available This paper shows how nonlinear models originally developed in the finance field can be used to predict rain attenuation level and volatility in Earth-to-Satellite links operating at the Extremely High Frequencies band (EHF, 20–50 GHz. A common approach to solving this problem is to consider that the prediction error corresponds only to scintillations, whose variance is assumed to be constant. Nevertheless, this assumption does not seem to be realistic because of the heteroscedasticity of error time series: the variance of the prediction error is found to be time-varying and has to be modeled. Since rain attenuation time series behave similarly to certain stocks or foreign exchange rates, a switching ARIMA/GARCH model was implemented. The originality of this model is that not only the attenuation level, but also the error conditional distribution are predicted. It allows an accurate upper-bound of the future attenuation to be estimated in real time that minimizes the cost of Fade Mitigation Techniques (FMT and therefore enables the communication system to reach a high percentage of availability. The performance of the switching ARIMA/GARCH model was estimated using a measurement database of the Olympus satellite 20/30 GHz beacons and this model is shown to outperform significantly other existing models.

    The model also includes frequency scaling from the downlink frequency to the uplink frequency. The attenuation effects (gases, clouds and rain are first separated with a neural network and then scaled using specific scaling factors. As to the resulting uplink prediction error, the error contribution of the frequency scaling step is shown to be larger than that of the downlink prediction, indicating that further study should focus on improving the accuracy of the scaling factor.

  10. Short-term prediction of rain attenuation level and volatility in Earth-to-Satellite links at EHF band

    Science.gov (United States)

    de Montera, L.; Mallet, C.; Barthès, L.; Golé, P.

    2008-08-01

    This paper shows how nonlinear models originally developed in the finance field can be used to predict rain attenuation level and volatility in Earth-to-Satellite links operating at the Extremely High Frequencies band (EHF, 20 50 GHz). A common approach to solving this problem is to consider that the prediction error corresponds only to scintillations, whose variance is assumed to be constant. Nevertheless, this assumption does not seem to be realistic because of the heteroscedasticity of error time series: the variance of the prediction error is found to be time-varying and has to be modeled. Since rain attenuation time series behave similarly to certain stocks or foreign exchange rates, a switching ARIMA/GARCH model was implemented. The originality of this model is that not only the attenuation level, but also the error conditional distribution are predicted. It allows an accurate upper-bound of the future attenuation to be estimated in real time that minimizes the cost of Fade Mitigation Techniques (FMT) and therefore enables the communication system to reach a high percentage of availability. The performance of the switching ARIMA/GARCH model was estimated using a measurement database of the Olympus satellite 20/30 GHz beacons and this model is shown to outperform significantly other existing models. The model also includes frequency scaling from the downlink frequency to the uplink frequency. The attenuation effects (gases, clouds and rain) are first separated with a neural network and then scaled using specific scaling factors. As to the resulting uplink prediction error, the error contribution of the frequency scaling step is shown to be larger than that of the downlink prediction, indicating that further study should focus on improving the accuracy of the scaling factor.

  11. Compensation for nonuniform attenuation in SPECT brain imaging

    International Nuclear Information System (INIS)

    Glick, S.J.; King, M.A.; Pan, T.S.; Soares, E.J.

    1996-01-01

    Accurate compensation for photon attenuation is needed to perform quantitative brain single-photon-emission computed tomographic (SPECT) imaging. Bellini's attenuation-compensation method has been used with a nonuniform attenuation map to account for the nonuniform attenuation properties of the head. Simulation studies using a three-dimensional (3-D) digitized anthropomorphic brain phantom were conducted to compare quantitative accuracy of reconstructions obtained with the nonuniform Bellini method to that obtained with the Chang method and to iterative reconstruction using maximum-likelihood expectation maximization (ML-EM). Using the Chang method and assuming the head to be a uniform attenuator gave reconstructions with an average bias of approximately 6-8%, whereas using the Bellini or the iterative ML-EM method with a nonuniform attenuation map gave an average bias of approximately 1%. The computation time required to implement nonuniform attenuation compensation with the Bellini algorithm is approximately equivalent to the time required to perform one iteration of ML-EM. Thus, using the Bellini method with a nonuniform attenuation map provides accurate compensation for photon attenuation within the head, and the method can be implemented in computation times suitable for routine clinical use

  12. Sialylated Autoantigen-Reactive IgG Antibodies Attenuate Disease Development in Autoimmune Mouse Models of Lupus Nephritis and Rheumatoid Arthritis

    Directory of Open Access Journals (Sweden)

    Yannic C. Bartsch

    2018-06-01

    Full Text Available Pro- and anti-inflammatory effector functions of IgG antibodies (Abs depend on their subclass and Fc glycosylation pattern. Accumulation of non-galactosylated (agalactosylated; G0 IgG Abs in the serum of rheumatoid arthritis and systemic lupus erythematosus (SLE patients reflects severity of the diseases. In contrast, sialylated IgG Abs are responsible for anti-inflammatory effects of the intravenous immunoglobulin (pooled human serum IgG from healthy donors, administered in high doses (2 g/kg to treat autoimmune patients. However, whether low amounts of sialylated autoantigen-reactive IgG Abs can also inhibit autoimmune diseases is hardly investigated. Here, we explore whether sialylated autoantigen-reactive IgG Abs can inhibit autoimmune pathology in different mouse models. We found that sialylated IgG auto-Abs fail to induce inflammation and lupus nephritis in a B cell receptor (BCR transgenic lupus model, but instead are associated with lower frequencies of pathogenic Th1, Th17 and B cell responses. In accordance, the transfer of small amounts of immune complexes containing sialylated IgG Abs was sufficient to attenuate the development of nephritis. We further showed that administration of sialylated collagen type II (Col II-specific IgG Abs attenuated the disease symptoms in a model of Col II-induced arthritis and reduced pathogenic Th17 cell and autoantigen-specific IgG Ab responses. We conclude that sialylated autoantigen-specific IgG Abs may represent a promising tool for treating pathogenic T and B cell immune responses in autoimmune diseases.

  13. Attenuation of Vrancea events revisited

    International Nuclear Information System (INIS)

    Radulian, M.; Popa, M.; Grecu, B.; Panza, G.F.

    2003-11-01

    New aspects of the frequency-dependent attenuation of the seismic waves traveling from Vrancea subcrustal sources toward NW (Transylvanian Basin) and SE (Romanian Plain) are evidenced by the recent experimental data made available by the CALIXTO'99 tomography experiment. The observations validate the previous theoretical computations performed for the assessment, by means of a deterministic approach, of the seismic hazard in Romania. They reveal an essential aspect of the seismic ground motion attenuation, that has important implications on the probabilistic assessment of seismic hazard from Vrancea intermediate-depth earthquakes. The attenuation toward NW is shown to be a much stronger frequency-dependent effect than the attenuation toward SE and the seismic hazard computed by the deterministic approach fits satisfactorily well the observed ground motion distribution in the low-frequency band (< 1 Hz). The apparent contradiction with the historically-based intensity maps arises mainly from a systematic difference in the vulnerability (buildings eigenperiod) of the buildings in the intra- and extra-Carpathians regions. (author)

  14. A comparison study for mass attenuation coefficients of some amino acids using MCNP code

    Energy Technology Data Exchange (ETDEWEB)

    Vahabi, Seyed Milad; Bahreynipour, Mostean; Shamsaie-Zafarghandi, Mojtaba [Amirkabir Univ. of Technology, Tehran (Iran, Islamic Republic of). Dept. of Energy Engineering and Physics

    2017-07-15

    In this study, a novel model of MCNP4C code reported recently was used to determine the photon mass attenuation coefficients of some amino acids at energies, 123, 360, 511, 662, 1170, 1280 and 1330 keV. The simulation results were compared with the XCOM data. It was indicated that the results were highly close to the calculated XCOM values. Obtained results were used to calculate the molar extinction coefficient. All the results showed the convenience and usefulness of the model in calculation of mass attenuation coefficients of amino acids.

  15. Determination of the attenuation map in emission tomography

    CERN Document Server

    Zaidi, H

    2002-01-01

    Reliable attenuation correction methods for quantitative emission computed tomography (ECT) require accurate delineation of the body contour and often necessitate knowledge of internal anatomical structure. Two broad classes of methods have been used to calculate the attenuation map referred to as "transmissionless" and transmission-based attenuation correction techniques. While calculated attenuation correction belonging to the first class of methods is appropriate for brain studies, more adequate methods must be performed in clinical applications where the attenuation coefficient distribution is not known a priori, and for areas of inhomogeneous attenuation such as the chest. Measured attenuation correction overcomes this problem and utilizes different approaches to determine this map including transmission scanning, segmented magnetic resonance images or appropriately scaled X-ray CT scans acquired either independently on separate or simultaneously on multimodality imaging systems. Combination of data acqu...

  16. Modeling of Fog and Smoke Attenuation in Free Space Optical Communications Link Under Controlled Laboratory Conditions

    Czech Academy of Sciences Publication Activity Database

    Ijaz, M.; Ghassemlooy, Z.; Pešek, J.; Fišer, Ondřej; Le Minh, H.; Bentley, E.

    2013-01-01

    Roč. 31, č. 11 (2013), s. 1720-1726 ISSN 0733-8724 R&D Projects: GA ČR(CZ) GAP102/11/1376 Institutional support: RVO:68378289 Keywords : Fog attenuation * free space optics * smoke attenuation * visibility Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 2.862, year: 2013 http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6497447&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6497447

  17. Microscopic theory of ultrasonic attenuation in high-Tc superconductors in normal state

    International Nuclear Information System (INIS)

    Bishoyi, K.C.; Rout, G.C.; Behera, S.N.

    2001-01-01

    The mechanism of the ultrasonic attenuation in high temperature superconductors is not yet studied thoroughly both experimentally and theoretically. A microscopic theoretical model is proposed here to study the attenuation in the electron doped and hole doped compounds like L 2-x M x CuO 4 (L=La,Nd; M=Sr,Ca,Ce). The model Hamiltonian contains the staggered magnetic field in the d-electrons of copper, the doped f-electrons term and the hybridisation between d- and f-electrons. The electron-phonon interaction arises due to the volume strain dependence of the hybridisation. The phonon Green's function is calculated by equations of motion of Zubarev technique. The temperature dependence of the ultrasonic attenuation coefficient (α) is calculated from the imaginary part of the phonon self energy and the velocity of sound in the dynamic and long wavelength limit. The dimensionless parameters involved in the calculations are the electron-phonon coupling (g), staggered magnetic field (h) , hybridization (υ), position of the f-level (d), frequency (ω), and temperature (t). The results are discussed. (author)

  18. Seismic Attenuation of Teleseismic Body Waves in Cascadia, Measured on the Amphibious Array

    Science.gov (United States)

    Eilon, Z.; Abers, G. A.

    2015-12-01

    Fundamental questions remain about the nature of the asthenosphere, including its dynamical relationship to overlying lithosphere, melt content, and entrainment in subduction zones. We examine the evolution of this low-velocity, highly attenuating layer using data from the Cascadia Initiative's Amphibious Array, which provides unprecedented coverage of an oceanic plate from ridge crest to trench to sub-arc. Our study extends the suite of measurements achievable with OBS data, augmenting traditional travel time analysis with integrated attenuation data that are a powerful tool for imaging melt/fluids and the variation of asthenospheric character with age. Cooling models, coupled with experimentally-derived anelastic scaling relationships, indicate that thermal gradients should cause appreciable decrease in attenuation of teleseismic body waves with increasing age. This long-wavelength cooling trend may be perturbed by highly attenuating melt or volatiles concentrated at the ridge axis or beneath the Cascades arc, depending on melt fraction and pore geometry. Attenuation beyond the trench should be a strong function of the fate of asthenospheric entrainment beneath subducted plates, with implications for mass transfer to the deep mantle as well as recent models of sub-slab anisotropy. The Amphibious Array, with 6.0 teleseismic earthquakes. We use a spectral ratio method to compute differential attenuation (Δt*) from body wave teleseisms recorded at OBS and land stations, allowing us to estimate path-integrated quality factor in the upper mantle. Preliminary results reveal variations of ~3 s in differential travel time and >0.5 s in ΔtS* across the 0-10 Ma oceanic plate, demonstrating the strong thermal control on anelasticity. Large values of Δt* observed east of the trench may indicate entrainment of highly attenuating asthenosphere during subduction, although more work is required to categorize and remove the signal of the overriding plate. This work complements

  19. Inhibitory effect of live-attenuated Listeria monocytogenes-based vaccines expressing MIA gene on malignant melanoma.

    Science.gov (United States)

    Qian, Yue; Zhang, Na; Jiang, Ping; Chen, Siyuan; Chu, Shujuan; Hamze, Firas; Wu, Yan; Luo, Qin; Feng, Aiping

    2012-08-01

    Listeria monocytogenes (LM), a Gram-positive facultative intracellular bacterium, can be used as an effective exogenous antigen expression vector in tumor-target therapy. But for successful clinical application, it is necessary to construct attenuated LM stain that is safe yet retains the potency of LM based on the full virulent pathogen. In this study, attenuated LM and recombinants of LM expressing melanoma inhibitory activity (MIA) were constructed successfully. The median lethal dose (LD(50)) and invasion efficiency of attenuated LM strains were detected. The recombinants were utilized for immunotherapy of animal model of B16F10 melanoma. The level of MIA mRNA expression in tumor tissue was detected by using real-time polymerase chain reaction (PCR) with specific sequence, meanwhile the anti-tumor immune response was assayed by flow cytometric analysis and enzyme-linked immunosorbent spot (ELISPOT) assay. The results showed the toxicity and invasiveness of attenuated LM were decreased as compared with LM, and attenuated LM expressing MIA, especially the double-genes attenuated LM recombinant, could significantly induce anti-tumor immune response and inhibit tumor growth. This study implicates attenuated LM may be a safer and more effective vector for immunotherapy of melanoma.

  20. An acoustic eikonal equation for attenuating VTI media

    KAUST Repository

    Hao, Qi

    2016-09-06

    We present an acoustic eikonal equation governing the complex-valued travel time of P-waves in attenuating, transversely isotropic media with a vertical symmetry axis (VTI). This equation is based on the assumption that the Pwave complex-valued travel time is independent of the Swave velocity parameter v in Thomsen\\'s notation and the attenuation coefficient A in the Thomsen-type notation for attenuating VTI media. We combine perturbation theory and Shanks transform to develop practical approximations to the attenuating acoustic eikonal equation, capable of admitting analytical description of the attenuation in homogeneous media. For a horizontal, attenuating VTI layer, we also derive non-hyperbolic approximations for the real and imaginary parts of the complex-valued reflection travel time.

  1. Immunity to Visceral Leishmaniasis Using Genetically Defined Live-Attenuated Parasites

    Directory of Open Access Journals (Sweden)

    Angamuthu Selvapandiyan

    2012-01-01

    Full Text Available Leishmaniasis is a protozoan parasitic disease endemic to the tropical and subtropical regions of the world, with three major clinical forms, self-healing cutaneous leishmaniasis (CL, mucocutaneous leishmaniasis (MCL, and visceral leishmaniasis (VL. Drug treatments are expensive and often result in the development of drug resistance. No vaccine is available against leishmaniasis. Subunit Leishmania vaccine immunization in animal models has shown some efficacy but little or none in humans. However, individuals who recover from natural infection are protected from reinfection and develop life-long protection, suggesting that infection may be a prerequisite for immunological memory. Thus, genetically altered live-attenuated parasites with controlled infectivity could achieve such memory. In this paper, we discuss development and characteristics of genetically altered, live-attenuated Leishmania donovani parasites and their possible use as vaccine candidates against VL. In addition, we discuss the challenges and other considerations in the use of live-attenuated parasites.

  2. The ultraviolet attenuation law in backlit spiral galaxies

    International Nuclear Information System (INIS)

    Keel, William C.; Manning, Anna M.; Holwerda, Benne W.; Lintott, Chris J.; Schawinski, Kevin

    2014-01-01

    The effective extinction law (attenuation behavior) in galaxies in the emitted ultraviolet (UV) regime is well known only for actively star-forming objects and combines effects of the grain properties, fine structure in the dust distribution, and relative distributions of stars and dust. We use Galaxy Evolution Explorer, XMM Optical Monitor, and Hubble Space Telescope (HST) data to explore the UV attenuation in the outer parts of spiral disks which are backlit by other UV-bright galaxies, starting with the candidate list of pairs provided by Galaxy Zoo participants. New optical images help to constrain the geometry and structure of the target galaxies. Our analysis incorporates galaxy symmetry, using non-overlapping regions of each galaxy to derive error estimates on the attenuation measurements. The entire sample has an attenuation law across the optical and UV that is close to the Calzetti et al. form; the UV slope for the overall sample is substantially shallower than found by Wild et al., which is a reasonable match to the more distant galaxies in our sample but not to the weighted combination including NGC 2207. The nearby, bright spiral NGC 2207 alone gives an accuracy almost equal to the rest of our sample, and its outer arms have a very low level of foreground starlight. Thus, this widespread, fairly 'gray' law can be produced from the distribution of dust alone, without a necessary contribution from differential escape of stars from dense clouds. Our results indicate that the extrapolation needed to compare attenuation between backlit galaxies at moderate redshifts from HST data, and local systems from Sloan Digital Sky Survey and similar data, is mild enough to allow the use of galaxy overlaps to trace the cosmic history of dust in galaxies. For NGC 2207, HST data in the near-UV F336W band show that the covering factor of clouds with small optical attenuation becomes a dominant factor farther into the UV, which opens the possibility that

  3. The ultraviolet attenuation law in backlit spiral galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Keel, William C. [Department of Physics and Astronomy, University of Alabama, Box 870324, Tuscaloosa, AL 35487 (United States); Manning, Anna M. [Stennis Space Center, MS 39522 (United States); Holwerda, Benne W. [ESA-ESTEC, Keplerlaan 1, 2201-AZ Noordwijk (Netherlands); Lintott, Chris J. [Astrophysics, Oxford University, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Schawinski, Kevin, E-mail: wkeel@ua.edu, E-mail: ammanning@bama.ua.edu, E-mail: bholwerd@rssd.esa.int, E-mail: Twitter@BenneHolwerda, E-mail: cjl@astro.ox.ac.uk, E-mail: Twitter@chrislintott, E-mail: kevin.schawinski@phys.ethz.ch, E-mail: Twitter@kevinschawinski [Institute for Astronomy, ETH Zürich, Wolfgang-Pauli-Strasse 27, CH-8093 Zurich (Switzerland)

    2014-02-01

    The effective extinction law (attenuation behavior) in galaxies in the emitted ultraviolet (UV) regime is well known only for actively star-forming objects and combines effects of the grain properties, fine structure in the dust distribution, and relative distributions of stars and dust. We use Galaxy Evolution Explorer, XMM Optical Monitor, and Hubble Space Telescope (HST) data to explore the UV attenuation in the outer parts of spiral disks which are backlit by other UV-bright galaxies, starting with the candidate list of pairs provided by Galaxy Zoo participants. New optical images help to constrain the geometry and structure of the target galaxies. Our analysis incorporates galaxy symmetry, using non-overlapping regions of each galaxy to derive error estimates on the attenuation measurements. The entire sample has an attenuation law across the optical and UV that is close to the Calzetti et al. form; the UV slope for the overall sample is substantially shallower than found by Wild et al., which is a reasonable match to the more distant galaxies in our sample but not to the weighted combination including NGC 2207. The nearby, bright spiral NGC 2207 alone gives an accuracy almost equal to the rest of our sample, and its outer arms have a very low level of foreground starlight. Thus, this widespread, fairly 'gray' law can be produced from the distribution of dust alone, without a necessary contribution from differential escape of stars from dense clouds. Our results indicate that the extrapolation needed to compare attenuation between backlit galaxies at moderate redshifts from HST data, and local systems from Sloan Digital Sky Survey and similar data, is mild enough to allow the use of galaxy overlaps to trace the cosmic history of dust in galaxies. For NGC 2207, HST data in the near-UV F336W band show that the covering factor of clouds with small optical attenuation becomes a dominant factor farther into the UV, which opens the possibility that

  4. Ultrasonic attenuation in superconducting zinc

    International Nuclear Information System (INIS)

    Auluck, S.

    1978-01-01

    The differences in the Zn ultrasonic attenuation data of different workers are analyzed. The superconducting energy gaps deduced from our analysis of the ultrasonic-attenuation data of Cleavelin and Marshall are consistent with the gaps deduced from the knowledge of the Fermi surface and the electron-phonon mass enhancement factor

  5. Effect of duct shape, Mach number, and lining construction on measured suppressor attenuation and comparison with theory

    Science.gov (United States)

    Olsen, W. A.; Krejsa, E. A.; Coats, J. W.

    1972-01-01

    Noise attenuation was measured for several types of cylindrical suppressors that use a duct lining composed of honeycomb cells covered with a perforated plate. The experimental technique used gave attenuation data that were repeatable and free of noise floors and other sources of error. The suppressor length, the effective acoustic diameter, suppressor shape and flow velocity were varied. The agreement among the attenuation data and two widely used analytical models was generally satisfactory. Changes were also made in the construction of the acoustic lining to measure their effect on attenuation. One of these produced a very broadband muffler.

  6. Theoretical evaluation of transcriptional pausing effect on the attenuation in trp leader sequence

    OpenAIRE

    Suzuki, H.; Kunisawa, T.; Otsuka, J.

    1986-01-01

    The effect of transcriptional pausing on attenuation is investigated theoretically on the basis of the attenuation control mechanism presented by Oxender et al. (Oxender, D. L., G. Zurawski, and C. Yanofsky, 1979, Proc. Natl. Acad. Sci. USA. 76:5524-5528). An extended stochastic model including the RNA polymerase pausing in the leader region is developed to calculate the probability of relative position between the RNA polymerase transcribing the trp leader sequence and the ribosome translati...

  7. Water Extract of Dolichos lablab Attenuates Hepatic Lipid Accumulation in a Cellular Nonalcoholic Fatty Liver Disease Model.

    Science.gov (United States)

    Im, A-Rang; Kim, Yun Hee; Lee, Hye Won; Song, Kwang Hoon

    2016-05-01

    Nonalcoholic fatty liver disease (NAFLD) is a common chronic liver disease that is rising in prevalence worldwide. Therapeutic strategies for patients with NAFLD are limited by a lack of effective drugs. In this report, we show that Dolichos lablab water extract (DLL-Ex) protects against free fatty acid (FFA)-induced lipid accumulation and attenuates expression of genes involved in lipid droplet accumulation in cellular NAFLD models. The hepatoprotective effects and underlying mechanism of DLL-Ex were assessed using an in vitro cellular model in which NAFLD was simulated by inducing excessive FFA influx into hepatocytes. HepG2 cells were treated with DLL-Ex and FFAs for 24 h, after which intracellular lipid content was observed by using Nile Red and Oil Red O staining. Quantitative real-time polymerase chain reaction was used to measure expression levels of genes related to FFA-mediated cellular energy depletion. Western blotting was used to measure protein levels of phosphorylated c-Jun N-terminal kinase, AMP-activated protein kinase alpha (AMPKα), and peroxisome proliferator-activated receptor γ coactivator 1 alpha. In HepG2 cells, DLL-Ex inhibited expression of CD36, which regulates fatty acid uptake, as well as BODIPY-labeled fatty acid uptake. Additionally, DLL-Ex significantly attenuated FFA-mediated cellular energy depletion and mitochondrial membrane depolarization. Furthermore, DLL-Ex enhanced phosphorylation of AMPK, indicating that AMPK is a critical regulator of DLL-Ex-mediated inhibition of hepatic lipid accumulation, possibly through its antioxidative effect. These results demonstrate that DLL-Ex exerts potent anti-NAFLD activity, suggesting that it could be a potential adjuvant treatment for patients with NAFLD.

  8. Understanding pyrotechnic shock dynamics and response attenuation over distance

    Science.gov (United States)

    Ott, Richard J.

    Pyrotechnic shock events used during stage separation on rocket vehicles produce high amplitude short duration structural response that can lead to malfunction or degradation of electronic components, cracks and fractures in brittle materials, local plastic deformation, and can cause materials to experience accelerated fatigue life. These transient loads propagate as waves through the structural media losing energy as they travel outward from the source. This work assessed available test data in an effort to better understand attenuation characteristics associated with wave propagation and attempted to update a historical standard defined by the Martin Marietta Corporation in the late 1960's using out of date data acquisition systems. Two data sets were available for consideration. The first data set came from a test that used a flight like cylinder used in NASA's Ares I-X program, and the second from a test conducted with a flat plate. Both data sets suggested that the historical standard was not a conservative estimate of shock attenuation with distance, however, the variation in the test data did not lend to recommending an update to the standard. Beyond considering attenuation with distance an effort was made to model the flat plate configuration using finite element analysis. The available flat plate data consisted of three groups of tests, each with a unique charge density linear shape charge (LSC) used to cut an aluminum plate. The model was tuned to a representative test using the lowest charge density LSC as input. The correlated model was then used to predict the other two cases by linearly scaling the input load based on the relative difference in charge density. The resulting model predictions were then compared with available empirical data. Aside from differences in amplitude due to nonlinearities associated with scaling the charge density of the LSC, the model predictions matched the available test data reasonably well. Finally, modeling best

  9. Dynamic Analysis and Vibration Attenuation of Cable-Driven Parallel Manipulators for Large Workspace Applications

    Directory of Open Access Journals (Sweden)

    Jingli Du

    2013-01-01

    Full Text Available Cable-driven parallel manipulators are one of the best solutions to achieving large workspace since flexible cables can be easily stored on reels. However, due to the negligible flexural stiffness of cables, long cables will unavoidably vibrate during operation for large workspace applications. In this paper a finite element model for cable-driven parallel manipulators is proposed to mimic small amplitude vibration of cables around their desired position. Output feedback of the cable tension variation at the end of the end-effector is utilized to design the vibration attenuation controller which aims at attenuating the vibration of cables by slightly varying the cable length, thus decreasing its effect on the end-effector. When cable vibration is attenuated, motion controller could be designed for implementing precise large motion to track given trajectories. A numerical example is presented to demonstrate the dynamic model and the control algorithm.

  10. ENHANCEMENTS TO NATURAL ATTENUATION: SELECTED CASE STUDIES

    Energy Technology Data Exchange (ETDEWEB)

    Vangelas, K; W. H. Albright, W; E. S. Becvar, E; C. H. Benson, C; T. O. Early, T; E. Hood, E; P. M. Jardine, P; M. Lorah, M; E. Majche, E; D. Major, D; W. J. Waugh, W; G. Wein, G; O. R. West, O

    2007-05-15

    In 2003 the US Department of Energy (DOE) embarked on a project to explore an innovative approach to remediation of subsurface contaminant plumes that focused on introducing mechanisms for augmenting natural attenuation to achieve site closure. Termed enhanced attenuation (EA), this approach has drawn its inspiration from the concept of monitored natural attenuation (MNA).

  11. 2D Coda Attenuation Analysis of Active Sources: The Rockall Basin

    Science.gov (United States)

    Sketsiou, P.; De Siena, L.; Asena, K.

    2017-12-01

    Passive seismic surveys are used for the evaluation of seismic attenuation parameters to characterise the Earth's lithosphere. Attenuation imaging is rarely applied to active datasets, attenuation being considered a hindrance than an efficient parameter when imaging reservoirs. In this study, we use one-component active source signals to study coda attenuation in the sub-basaltic North-Eastern Atlantic Margin, the Rockall Basin. Although this technique has been primarily used in volcanic and lithospheric environments, we apply it here to the oil and gas industrial setting. The Rockall Basin data consist of publicly available waveforms from the Oil and Gas Authority of the UK. The selected signals were band-passed filtered. A multiple scattering model was adopted, assuming dominant contributions from intrinsic absorption over scattering at large lapse times. The residual dependency of Q_c on the geometrical spreading factor was additionally investigated. The distribution of Q_c over a seismic line and its dependence on frequency were plotted, revealing high Q_c near a well in Rockall. The power law Q_c=Q_0(f/f_0)^\\gamma was used to express Q_c as a function of frequency.

  12. The effect of hydrate content on seismic attenuation: A case study for Mallik 2L-38 well data, Mackenzie delta, Canada

    Science.gov (United States)

    Chand, Shyam; Minshull, Tim A.

    2004-07-01

    Observations of velocities in sediments containing gas hydrates show that the strength of sediments increases with hydrate saturation. Hence it is expected that the attenuation of these sediments will decrease with increasing hydrate saturation. However, sonic log measurements in the Mallik 2L-38 well and cross hole tomography measurements in the Mallik field have shown that attenuation increases with hydrate saturation. We studied a range of mechanisms by which increasing hydrate saturation could cause increased attenuation. We found that a difference in permeability between the host sediment and the newly formed hydrate can produce the observed effect. We modelled attenuation in terms of Biot and squirt flow mechanisms in composite media. We have used our model to predict observed attenuations in the Mallik 2L-38 well, Mackenzie Delta, Canada.

  13. Envelope exchange for the generation of live-attenuated arenavirus vaccines.

    Directory of Open Access Journals (Sweden)

    Andreas Bergthaler

    2006-06-01

    Full Text Available Arenaviruses such as Lassa fever virus cause significant mortality in endemic areas and represent potential bioterrorist weapons. The occurrence of arenaviral hemorrhagic fevers is largely confined to Third World countries with a limited medical infrastructure, and therefore live-attenuated vaccines have long been sought as a method of choice for prevention. Yet their rational design and engineering have been thwarted by technical limitations. In addition, viral genes had not been identified that are needed to cause disease but can be deleted or substituted to generate live-attenuated vaccine strains. Lymphocytic choriomeningitis virus, the prototype arenavirus, induces cell-mediated immunity against Lassa fever virus, but its safety for humans is unclear and untested. Using this virus model, we have developed the necessary methodology to efficiently modify arenavirus genomes and have exploited these techniques to identify an arenaviral Achilles' heel suitable for targeting in vaccine design. Reverse genetic exchange of the viral glycoprotein for foreign glycoproteins created attenuated vaccine strains that remained viable although unable to cause disease in infected mice. This phenotype remained stable even after extensive propagation in immunodeficient hosts. Nevertheless, the engineered viruses induced T cell-mediated immunity protecting against overwhelming systemic infection and severe liver disease upon wild-type virus challenge. Protection was established within 3 to 7 d after immunization and lasted for approximately 300 d. The identification of an arenaviral Achilles' heel demonstrates that the reverse genetic engineering of live-attenuated arenavirus vaccines is feasible. Moreover, our findings offer lymphocytic choriomeningitis virus or other arenaviruses expressing foreign glycoproteins as promising live-attenuated arenavirus vaccine candidates.

  14. Envelope Exchange for the Generation of Live-Attenuated Arenavirus Vaccines.

    Directory of Open Access Journals (Sweden)

    2006-06-01

    Full Text Available Arenaviruses such as Lassa fever virus cause significant mortality in endemic areas and represent potential bioterrorist weapons. The occurrence of arenaviral hemorrhagic fevers is largely confined to Third World countries with a limited medical infrastructure, and therefore live-attenuated vaccines have long been sought as a method of choice for prevention. Yet their rational design and engineering have been thwarted by technical limitations. In addition, viral genes had not been identified that are needed to cause disease but can be deleted or substituted to generate live-attenuated vaccine strains. Lymphocytic choriomeningitis virus, the prototype arenavirus, induces cell-mediated immunity against Lassa fever virus, but its safety for humans is unclear and untested. Using this virus model, we have developed the necessary methodology to efficiently modify arenavirus genomes and have exploited these techniques to identify an arenaviral Achilles' heel suitable for targeting in vaccine design. Reverse genetic exchange of the viral glycoprotein for foreign glycoproteins created attenuated vaccine strains that remained viable although unable to cause disease in infected mice. This phenotype remained stable even after extensive propagation in immunodeficient hosts. Nevertheless, the engineered viruses induced T cell-mediated immunity protecting against overwhelming systemic infection and severe liver disease upon wild-type virus challenge. Protection was established within 3 to 7 d after immunization and lasted for approximately 300 d. The identification of an arenaviral Achilles' heel demonstrates that the reverse genetic engineering of live-attenuated arenavirus vaccines is feasible. Moreover, our findings offer lymphocytic choriomeningitis virus or other arenaviruses expressing foreign glycoproteins as promising live-attenuated arenavirus vaccine candidates.

  15. Adipose tissue and muscle attenuation as novel biomarkers predicting mortality in patients with extremity sarcomas

    Energy Technology Data Exchange (ETDEWEB)

    Veld, Joyce; Vossen, Josephina A.; Torriani, Martin; Bredella, Miriam A. [Massachusetts General Hospital and Harvard Medical School, Division of Musculoskeletal Imaging and Intervention, Department of Radiology, Boston, MA (United States); De Amorim Bernstein, Karen [Massachusetts General Hospital and Harvard Medical School, Department of Radiation Oncology, Francis H Burr Proton Therapy Center, Boston, MA (United States); Halpern, Elkan F. [Massachusetts General Hospital and Harvard Medical School, Institute of Technology Assessment, Boston, MA (United States)

    2016-12-15

    To assess CT-attenuation of abdominal adipose tissue and psoas muscle as predictors of mortality in patients with sarcomas of the extremities. Our study was IRB approved and HIPAA compliant. The study group comprised 135 patients with history of extremity sarcoma (mean age: 53 ± 17 years) who underwent whole body PET/CT. Abdominal subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT), and psoas muscle attenuation (HU) was assessed on non-contrast, attenuation-correction CT. Clinical information including survival, tumour stage, sarcoma type, therapy and pre-existing comorbidities were recorded. Cox proportional hazard models were used to determine longitudinal associations between adipose tissue and muscle attenuation and mortality. There were 47 deaths over a mean follow-up period of 20 ± 17 months. Higher SAT and lower psoas attenuation were associated with increased mortality (p = 0.03 and p = 0.005, respectively), which remained significant after adjustment for age, BMI, sex, tumor stage, therapy, and comorbidities (p = 0.002 and p = 0.02, respectively). VAT attenuation was not associated with mortality. Attenuation of SAT and psoas muscle, assessed on non-contrast CT, are predictors of mortality in patients with extremity sarcomas, independent of other established prognostic factors, suggesting that adipose tissue and muscle attenuation could serve as novel biomarkers for mortality in patients with sarcomas. (orig.)

  16. Adipose tissue and muscle attenuation as novel biomarkers predicting mortality in patients with extremity sarcomas

    International Nuclear Information System (INIS)

    Veld, Joyce; Vossen, Josephina A.; Torriani, Martin; Bredella, Miriam A.; De Amorim Bernstein, Karen; Halpern, Elkan F.

    2016-01-01

    To assess CT-attenuation of abdominal adipose tissue and psoas muscle as predictors of mortality in patients with sarcomas of the extremities. Our study was IRB approved and HIPAA compliant. The study group comprised 135 patients with history of extremity sarcoma (mean age: 53 ± 17 years) who underwent whole body PET/CT. Abdominal subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT), and psoas muscle attenuation (HU) was assessed on non-contrast, attenuation-correction CT. Clinical information including survival, tumour stage, sarcoma type, therapy and pre-existing comorbidities were recorded. Cox proportional hazard models were used to determine longitudinal associations between adipose tissue and muscle attenuation and mortality. There were 47 deaths over a mean follow-up period of 20 ± 17 months. Higher SAT and lower psoas attenuation were associated with increased mortality (p = 0.03 and p = 0.005, respectively), which remained significant after adjustment for age, BMI, sex, tumor stage, therapy, and comorbidities (p = 0.002 and p = 0.02, respectively). VAT attenuation was not associated with mortality. Attenuation of SAT and psoas muscle, assessed on non-contrast CT, are predictors of mortality in patients with extremity sarcomas, independent of other established prognostic factors, suggesting that adipose tissue and muscle attenuation could serve as novel biomarkers for mortality in patients with sarcomas. (orig.)

  17. Self-attenuation factors in gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Korun, M.

    1999-01-01

    The relation between the self-attenuation factors and the distribution function describing the number of photons detected in the full-energy peaks, as a function of their path length in the sample is presented. The relations between the self-attenuation factor and the moments of the distribution function, the average path length and the variance are also presented. The use of these relations is illustrated by applying them to self-attenuation factors describing attenuation in cylindrical samples. The results of the calculations are compared with the measured average path lengths and discussed in terms of the properties of the distribution function. (author)

  18. Light attenuation in estuarine mangrove lakes

    Science.gov (United States)

    Frankovich, Thomas A.; Rudnick, David T.; Fourqurean, James W.

    2017-01-01

    Submerged aquatic vegetation (SAV) cover has declined in brackish lakes in the southern Everglades characterized by low water transparencies, emphasizing the need to evaluate the suitability of the aquatic medium for SAV growth and to identify the light attenuating components that contribute most to light attenuation. Underwater attenuation of downwards irradiance of photosynthetically active radiation (PAR) was determined over a three year period at 42 sites in shallow (freshwater flow into these areas may dilute CDOM concentrations and improve the salinity and light climate for SAV communities.

  19. Application of conditional simulation of heterogeneous rock properties to seismic scattering and attenuation analysis in gas hydrate reservoirs

    Science.gov (United States)

    Huang, Jun-Wei; Bellefleur, Gilles; Milkereit, Bernd

    2012-02-01

    We present a conditional simulation algorithm to parameterize three-dimensional heterogeneities and construct heterogeneous petrophysical reservoir models. The models match the data at borehole locations, simulate heterogeneities at the same resolution as borehole logging data elsewhere in the model space, and simultaneously honor the correlations among multiple rock properties. The model provides a heterogeneous environment in which a variety of geophysical experiments can be simulated. This includes the estimation of petrophysical properties and the study of geophysical response to the heterogeneities. As an example, we model the elastic properties of a gas hydrate accumulation located at Mallik, Northwest Territories, Canada. The modeled properties include compressional and shear-wave velocities that primarily depend on the saturation of hydrate in the pore space of the subsurface lithologies. We introduce the conditional heterogeneous petrophysical models into a finite difference modeling program to study seismic scattering and attenuation due to multi-scale heterogeneity. Similarities between resonance scattering analysis of synthetic and field Vertical Seismic Profile data reveal heterogeneity with a horizontal-scale of approximately 50 m in the shallow part of the gas hydrate interval. A cross-borehole numerical experiment demonstrates that apparent seismic energy loss can occur in a pure elastic medium without any intrinsic attenuation of hydrate-bearing sediments. This apparent attenuation is largely attributed to attenuative leaky mode propagation of seismic waves through large-scale gas hydrate occurrence as well as scattering from patchy distribution of gas hydrate.

  20. The attenuation of seismic intensity in the Etna region and comparison with other Italian volcanic districts

    Directory of Open Access Journals (Sweden)

    T. Tuvè

    2006-06-01

    Full Text Available A detailed analysis of the intensity attenuation in the Etna and other Italian volcanic districts, was performed using the most recent and complete intensity datasets. Attenuation laws were derived through empirical models fitting ?I (the difference between epicentral I0 and site Ix intensities average values versus hypocentral site distances by the least-square method. The huge amount of data available for the Etna area allowed us to elaborate bi-linear and logarithmic attenuation models, also taking source effects into account. Furthermore, the coefficients of the Grandori formulation have been re-calculated to verify the ones previously defined for seismic hazard purposes. Among the tested relationships, the logarithmic one is simple and fairly stable, so it was also adopted for the other volcanic Italian areas. The analysis showed different attenuation trends: on the one hand, Etna and Ischia show the highest decay of intensity (?I=4 in the first 20 km; on the contrary, the Aeolian Islands and Albani Hills present a slight intensity attenuation (?I=2 at 20 km from the hypocentre; finally, Vesuvius seems to have an intermediate behaviour between the two groups. The proposed regionalization gives a significantly better image of near-field damage in volcanic regions and is easily applicable to probabilistic seismic hazard analyses.

  1. Believing and perceiving: authorship belief modulates sensory attenuation.

    Directory of Open Access Journals (Sweden)

    Andrea Desantis

    Full Text Available Sensory attenuation refers to the observation that self-generated stimuli are attenuated, both in terms of their phenomenology and their cortical response compared to the same stimuli when generated externally. Accordingly, it has been assumed that sensory attenuation might help individuals to determine whether a sensory event was caused by themselves or not. In the present study, we investigated whether this dependency is reciprocal, namely whether sensory attenuation is modulated by prior beliefs of authorship. Participants had to judge the loudness of auditory effects that they believed were either self-generated or triggered by another person. However, in reality, the sounds were always triggered by the participants' actions. Participants perceived the tones' loudness attenuated when they believed that the sounds were self-generated compared to when they believed that they were generated by another person. Sensory attenuation is considered to contribute to the emergence of people's belief of authorship. Our results suggest that sensory attenuation is also a consequence of prior belief about the causal link between an action and a sensory change in the environment.

  2. Radiation-attenuated vaccine for lungworm disease

    International Nuclear Information System (INIS)

    Singh, C.M.

    1977-01-01

    The work done at the Indian Veternary Research Institute, Izatnagar, on the development of a vaccine for lungworm diseases is reported. Research work done includes: (1) studies on the epidemiology and the incidence of the lungworm infections, (ii) studies on the radiation-attenuated lungworm Dictyocaulus filaria vaccine, (iii) studies on other parasites using ionizing radiation, (iv) incidence of lungworm infection in sheep in Jammu and Kashmir State, (v) suitable dose of gamma radiation for attenuation, (vi) laboratory studies with radiation-attenuated D. filaria vaccine, (vii) serology of D. filaria infection, (viii) field trials with the radiation-attenuated vaccine, (ix) immune response of previously exposed lambs to vaccination, (x) comparative susceptibility of sheep and goats to infection with D. filaria, (xi) quantitative studies of D. filaria in lambs and (xii) production and supply of lungworm vaccine. (A.K.)

  3. Comparison of Instantaneous Frequency Scaling from Rain Attenuation and Optical Disdrometer Measurements at K/Q bands

    Science.gov (United States)

    Nessel, James; Zemba, Michael; Luini, Lorenzo; Riva, Carlo

    2015-01-01

    Rain attenuation is strongly dependent on the rain rate, but also on the rain drop size distribution (DSD). Typically, models utilize an average drop size distribution, such as those developed by Laws and Parsons, or Marshall and Palmer. However, individual rain events may possess drop size distributions which could be significantly different from the average and will impact, for example, fade mitigation techniques which utilize channel performance estimates from a signal at a different frequency. Therefore, a good understanding of the characteristics and variability of the raindrop size distribution is extremely important in predicting rain attenuation and instantaneous frequency scaling parameters on an event-toevent basis. Since June 2014, NASA Glenn Research Center (GRC) and the Politecnico di Milano (POLIMI) have measured the attenuation due to rain in Milan, Italy, on the 20/40 GHz beacon signal broadcast from the Alphasat TDP#5 Aldo Paraboni Q/V-band Payload. Concomitant with these measurements are the measurements of drop size distribution and rain rate utilizing a Thies Clima laser precipitation monitor (disdrometer). In this paper, we discuss the comparison of the predicted rain attenuation at 20 and 40 GHz derived from the drop size distribution data with the measured rain attenuation. The results are compared on statistical and real-time bases. We will investigate the performance of the rain attenuation model, instantaneous frequency scaling, and the distribution of the scaling factor. Further, seasonal rain characteristics will be analysed.

  4. Analysis of biological samples by x-ray attenuation measurements

    International Nuclear Information System (INIS)

    Cesareo, R.

    1988-01-01

    Over the last few years there has been an increasing interest in X-ray attenuation measurements, mainly due to the enormous development of computer assisted tomography (CAT). With CAT, analytical information concerning the density and the mean atomic number distributions in a sample is deduced from a large number of attenuation measurements. Particular transmission methods developed, based on the differential attenuation method are discussed. The theoretical background for attenuation of radiation and for differential attenuation of radiation is given. Details about the generation of monoenergetic X-rays are discussed. Applications of attenuation measurements in the field of Medicine are presented

  5. Unfocused beam patterns in nonattenuating and attenuating fluids

    International Nuclear Information System (INIS)

    Goldstein, Albert

    2004-01-01

    The most important aspect of an ultrasound measuring system is knowledge of the transducer beam pattern. At all depths accurate single integral equations have been derived for the full beam pattern of steady state unfocused circular flat piston sources radiating into nonattenuating and attenuating fluids. The axial depth of the beginning of the unattenuated beam pattern far field is found to be at 6.41Y 0 . The unattenuated single integral equations are identical to a Jinc function directivity term at this and deeper depths. For attenuating fluids values of α and z are found that permit the attenuated axial pressure to be represented by a plane wave multiplicative exponential attenuation factor. This knowledge will aid in the experimental design of highly accurate attenuation measurements. Accurate single integral equations for the attenuated full beam pattern are derived using complex Bessel functions

  6. Hyperbaric oxygen therapy attenuates central sensitization induced by a thermal injury in humans

    DEFF Research Database (Denmark)

    Rasmussen, V M; Borgen, A E; Jansen, E C

    2015-01-01

    BACKGROUND: Hyperbaric oxygen (HBO2 ) treatment has in animal experiments demonstrated antinociceptive effects. It was hypothesized that these effects would attenuate secondary hyperalgesia areas (SHAs), an expression of central sensitization, after a first-degree thermal injury in humans. METHODS...... was demonstrated. However, in the nine volunteers starting with the control session, a statistical significant attenuation of SHAs was demonstrated in the HBO2 session (P = 0.004). CONCLUSIONS: The results indicate that HBO2 therapy in humans attenuates central sensitization induced by a thermal skin injury......, compared with control. These new and original findings in humans corroborate animal experimental data. The thermal injury model may give impetus to future human neurophysiological studies exploring the central effects of hyperbaric oxygen treatment....

  7. Association of the Host Immune Response with Protection Using a Live Attenuated African Swine Fever Virus Model.

    Science.gov (United States)

    Carlson, Jolene; O'Donnell, Vivian; Alfano, Marialexia; Velazquez Salinas, Lauro; Holinka, Lauren G; Krug, Peter W; Gladue, Douglas P; Higgs, Stephen; Borca, Manuel V

    2016-10-22

    African swine fever (ASF) is a lethal hemorrhagic disease of swine caused by a double-stranded DNA virus, ASF virus (ASFV). There is no vaccine to prevent the disease and current control measures are limited to culling and restricting animal movement. Swine infected with attenuated strains are protected against challenge with a homologous virulent virus, but there is limited knowledge of the host immune mechanisms generating that protection. Swine infected with Pretoriuskop/96/4 (Pret4) virus develop a fatal severe disease, while a derivative strain lacking virulence-associated gene 9GL (Pret4Δ9GL virus) is completely attenuated. Swine infected with Pret4Δ9GL virus and challenged with the virulent parental virus at 7, 10, 14, 21, and 28 days post infection (dpi) showed a progressive acquisition of protection (from 40% at 7 dpi to 80% at 21 and 28 dpi). This animal model was used to associate the presence of host immune response (ASFV-specific antibody and interferon (IFN)-γ responses, or specific cytokine profiles) and protection against challenge. With the exception of ASFV-specific antibodies in survivors challenged at 21 and 28 dpi, no association between the parameters assessed and protection could be established. These results, encompassing data from 65 immunized swine, underscore the complexity of the system under study, suggesting that protection relies on the concurrence of different host immune mechanisms.

  8. Seismic Linear Noise Attenuation with Use of Radial Transform

    Science.gov (United States)

    Szymańska-Małysa, Żaneta

    2018-03-01

    One of the goals of seismic data processing is to attenuate the recorded noise in order to enable correct interpretation of the image. Radial transform has been used as a very effective tool in the attenuation of various types of linear noise, both numerical and real (such as ground roll, direct waves, head waves, guided waves etc). The result of transformation from offset - time (X - T) domain into apparent velocity - time (R - T) domain is frequency separation between reflections and linear events. In this article synthetic and real seismic shot gathers were examined. One example was targeted at far offset area of dataset where reflections and noise had similar apparent velocities and frequency bands. Another example was a result of elastic modelling where linear artefacts were produced. Bandpass filtering and scaling operation executed in radial domain attenuated all discussed types of linear noise very effectively. After noise reduction all further processing steps reveal better results, especially velocity analysis, migration and stacking. In all presented cases signal-to-noise ratio was significantly increased and reflections covered previously by noise were revealed. Power spectra of filtered seismic records preserved real dynamics of reflections.

  9. How a joint interpretation of seismic scattering, velocity, and attenuation models explains the nature of the Campi Flegrei (Italy).

    Science.gov (United States)

    Calo, M.; Tramelli, A.

    2017-12-01

    Seismic P and S velocity models (and their ratio Vp/Vs) help illuminating the geometrical structure of the bodies and give insight on the presence of water, molten or gas saturated regions. Seismic attenuation represents the anelastic behavior of the medium. Due to its dependence on temperature, fluid contents and cracks presence, this parameter is also largely used to characterize the structures of volcanoes and geothermal areas. Scattering attenuation is related, in the upper crust, to the amount, size and organization of the fractures giving complementary information on the state of the medium.Therefore a joint interpretation of these models provides an exhaustive view of the elastic parameters in volcanic regions. Campi Flegrei is an active Caldera marked by strong vertical deformations of the ground called bradyseisms and several models have been proposed to describe the nature and the geometry of the bodies responsible of the bradyseisms. Here we show Vp, Vp/Vs, Qp and scattering models carried out by applying an enhanced seismic tomography method that combines de double difference approach (Zhang and Thurber, 2003) and the Weigthed Average Method (Calò et al., 2009, Calò et al., 2011, 2013). The data used are the earthquakes recorded during the largest bradyseism crisis of the 80's. Our method allowed to image structures with linear dimension of 0.5-1.2km, resulting in an improvement of the resolving power at least two times of the other published models (e.g. Priolo et al., 2012). The joint interpretation of seismic models allowed to discern small anomalous bodies at shallow depth (0.5-2.0 km) marked by relatively low Vp, high Vp/Vs ratio and low Qp values associated with the presence of shallow geothermal water saturated reservoir from regions with low Vp, low Vp/Vs and low Qp related to the gas saturated part of the reservoir. At deeper depth (2-3.5 km) bodies with high Vp and Vp/Vs and low Qp are associated with magmatic intrusions. The Scattering

  10. Lycopene attenuates Aβ1-42 secretion and its toxicity in human cell and Caenorhabditis elegans models of Alzheimer disease.

    Science.gov (United States)

    Chen, Wei; Mao, Liuqun; Xing, Huanhuan; Xu, Lei; Fu, Xiang; Huang, Liyingzi; Huang, Dongling; Pu, Zhijun; Li, Qinghua

    2015-11-03

    Growing evidence suggests concentration of lycopene was reduced in plasma of patients with Alzheimer disease (AD). Lycopene, a member of the carotenoid family, has been identified as an antioxidant to attenuate oxidative damage and has neuroprotective role in several AD models. However, whether lycopene is involved in the pathogenesis of AD and molecular underpinnings are elusive. In this study, we found that lycopene can significantly delay paralysis in the Aβ1-42-transgenic Caenorhabditis elegans strain GMC101. Lycopene treatment reduced Aβ1-42 secretion in SH-SY5Y cells overexpressing the Swedish mutant form of human β-amyloid precursor protein (APPsw). Next, we found lycopene can down-regulate expression level of β-amyloid precursor protein(APP) in APPsw cells. Moreover, lycopene treatment can not change endogenous reactive oxygen species level and apoptosis in APPsw cells. However, lycopene treatment protected against H2O2-induced oxidative stress and copper-induced damage in APPsw cells. Collectively, our data support that elevated lycopene contributes to the lower pathogenesis of AD. Our findings suggest that increasing lycopene in neurons may be a novel approach to attenuate onset and development of AD. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. The phosphodiesterase inhibitor, ibudilast, attenuates neuroinflammation in the MPTP model of Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Joanna Schwenkgrub

    Full Text Available Since the degeneration of the nigrostriatal dopaminergic pathway in Parkinson's disease (PD is associated with the inflammation process and decreased levels of cyclic nucleotides, inhibition of up-regulated cyclic nucleotide phosphodiesterases (PDEs appears to be a promising therapeutic strategy. We used ibudilast (IBD, a non-selective PDE3,4,10,11 inhibitor, due to the abundant PDE 4 and 10 expression in the striatum. The present study for the first time examined the efficacy of IBD in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP mouse model of PD.IBD [0, 20, 30, 40, or 50 mg/kg] was injected b.i.d. subcutaneously for nine days to three-month-old male C57Bl/10Tar mice, beginning two days prior to MPTP (60 mg/kg intoxication. High-pressure liquid chromatography, Western blot analysis, and real time RT-PCR methods were applied.Our study demonstrated that chronic administration of IBD attenuated astroglial reactivity and increased glial cell-derived neurotrophic factor (GDNF production in the striatum. Moreover, IBD reduced TNF-α, IL-6, and IL-1β expression.IBD had a well-defined effect on astroglial activation in the mouse model of PD; however, there was no protective effect in the acute phase of injury. Diminished inflammation and an increased level of GDNF may provide a better outcome in the later stages of neurodegeneration.

  12. The First Billion Years project: constraining the dust attenuation law of star-forming galaxies at z ≃ 5

    Science.gov (United States)

    Cullen, F.; McLure, R. J.; Khochfar, S.; Dunlop, J. S.; Dalla Vecchia, C.

    2017-09-01

    We present the results of a study investigating the dust attenuation law at z ≃ 5, based on synthetic spectral energy distributions (SEDs) calculated for a sample of N = 498 galaxies drawn from the First Billion Years (FiBY) simulation project. The simulated galaxies at z ≃ 5, which have M1500 ≤ -18.0 and 7.5 ≤ log(M/M}_{⊙}) ≤ 10.2, display a mass-dependent α-enhancement, with a median value of [α /{Fe}]_{z=5} ˜eq 4 × [α /{Fe}]_{Z_{⊙}}. The median Fe/H ratio of the simulated galaxies is 0.14 ± 0.05 which produces steep intrinsic ultraviolet (UV) continuum slopes; 〈βI〉 = -2.4 ± 0.05. Using a set of simple dust attenuation models, in which the wavelength-dependent attenuation is assumed to be of the form A(λ) ∝ λn, we explore the parameter values which best reproduce the observed z = 5 luminosity function (LF) and colour-magnitude relation (CMR). We find that a simple model in which the absolute UV attenuation is a linearly increasing function of log stellar mass (A1500 = 0.5 × log(M/M⊙) - 3.3), and the dust attenuation slope (n) is within the range -0.7 ≤ n ≤ -0.3, can successfully reproduce the LF and CMR over a wide range of stellar population synthesis model assumptions, including the effects of massive binaries. This range of attenuation curves is consistent with a power-law fit to the Calzetti attenuation law in the UV (n = -0.55). In contrast, curves as steep as the Small Magellanic Cloud extinction curve (n = -1.24) are formally ruled out. Finally, we show that our models are consistent with recent 1.3 mm Atacama Large Millimeter Array observations of the Hubble Ultra Deep Field, and predict the form of the z ≃ 5 infrared excess (IRX)-β relation.

  13. Insights into the lithospheric architecture of Iberia and Morocco from teleseismic body-wave attenuation

    Science.gov (United States)

    Bezada, Maximiliano J.

    2017-11-01

    The long and often complicated tectonic history of continental lithosphere results in lateral strength heterogeneities which in turn affect the style and localization of deformation. In this study, we produce a model for the attenuation structure of Iberia and northern Morocco using a waveform-matching approach on P-wave data from teleseismic deep-focus earthquakes. We find that attenuation is correlated with zones of intraplate deformation and seismicity, but do not find a consistent relationship between attenuation and recent volcanism. The main features of our model are low to moderate Δt* in the undeformed Tertiary basins of Spain and high Δt* in areas deformed by the Alpine orogeny. Additionally, low Δt* is found in areas where the Alboran slab is thought to be attached to the Iberian and African lithosphere, and high Δt* where it has detached. These features are robust with respect to inversion parameters, and are consistent with independent data. Very mild backazimuthal dependence of the measurements and comparison with previous results suggest that the source of the attenuation is sub-crustal. In line with other recent studies, the range of Δt* we observe is much larger than can be expected from lithospheric thickness or temperature variations.

  14. Fuselage panel noise attenuation by piezoelectric switching control

    International Nuclear Information System (INIS)

    Makihara, Kanjuro; Onoda, Junjiro; Minesugi, Kenji; Miyakawa, Takeya

    2010-01-01

    This paper describes a problem that we encountered in our noise attenuation project and our solution for it. We intend to attenuate low-frequency noise that transmits through aircraft fuselage panels. Our method of noise attenuation is implemented with a piezoelectric semi-active system having a selective switch instead of an active energy-supply system. The semi-active controller is based on the predicted sound pressure distribution obtained from acoustic emission analysis. Experiments and numerical simulations demonstrate that the semi-active method attenuates acoustic levels of not only the simple monochromatic noise but also of broadband noise. We reveal that tuning the electrical parameters in the circuit is the key to effective noise attenuation, to overcome the acoustic excitation problem due to sharp switching actions, as well as to control chattering problems. The results obtained from this investigation provide meaningful insights into designing noise attenuation systems for comfortable aircraft cabin environments

  15. Attenuation tomography in the rupture area of the 2010 M8.8 Maule, Chile, earthquake

    Science.gov (United States)

    Heather-Smith, Helen; Rietbrock, Andreas

    2016-04-01

    In recent years several seismological studies have developed a detailed image of the megathrust interface between the subducting Nazca plate and and the overriding South American plate in the rupture area of the 2010 M8.8 Maule, Chile, earthquake. Hicks et al. (2014) have published a high resolution 3D seismic tomography model and characterised the different regimes acting along the interface based on their seismic properties. A more detailed study by Moreno et al. (2014) showed that the seismic Vp/Vs ratio and inter-seismic locking determined from GPS measurements are correlated. Together these observations open up the possibility to map the rupture potential of possible future earthquakes, although the underlying processes are yet not fully understood and a more in depth analysis of other physical properties is needed. 3D seismic attenuation structure as well as seismic stress-drop distribution based on the aftershock seismicity are providing independent data sets to better constrain the physical processes acting along the subduction zone interface. As seismic attenuation is particularly sensitive to fluid saturation it opens up the possibility to study more directly the influence of fluids on aftershock activity as compared to standard velocity tomography studies. Based on our event catalogue of approximately 30,000 aftershocks we are currently selecting the most appropriate data set for the staggered 3D attenuation tomography. The inverted attenuation model will then be used to calculate seismic stress drop values for the complete aftershock catalogue. We will present our preliminary 3D attenuation model together with our stress drop estimates and compare our finding to the 3D velocity structure and slip distribution.

  16. The Ultraviolet Attenuation Law in Backlit Spiral Galaxies

    Science.gov (United States)

    Keel, William C.; Manning, Anna M.; Holwerda, Benne W.; Lintott, Chris J.; Schawinski, Kevin

    2014-02-01

    The effective extinction law (attenuation behavior) in galaxies in the emitted ultraviolet (UV) regime is well known only for actively star-forming objects and combines effects of the grain properties, fine structure in the dust distribution, and relative distributions of stars and dust. We use Galaxy Evolution Explorer, XMM Optical Monitor, and Hubble Space Telescope (HST) data to explore the UV attenuation in the outer parts of spiral disks which are backlit by other UV-bright galaxies, starting with the candidate list of pairs provided by Galaxy Zoo participants. New optical images help to constrain the geometry and structure of the target galaxies. Our analysis incorporates galaxy symmetry, using non-overlapping regions of each galaxy to derive error estimates on the attenuation measurements. The entire sample has an attenuation law across the optical and UV that is close to the Calzetti et al. form; the UV slope for the overall sample is substantially shallower than found by Wild et al., which is a reasonable match to the more distant galaxies in our sample but not to the weighted combination including NGC 2207. The nearby, bright spiral NGC 2207 alone gives an accuracy almost equal to the rest of our sample, and its outer arms have a very low level of foreground starlight. Thus, this widespread, fairly "gray" law can be produced from the distribution of dust alone, without a necessary contribution from differential escape of stars from dense clouds. Our results indicate that the extrapolation needed to compare attenuation between backlit galaxies at moderate redshifts from HST data, and local systems from Sloan Digital Sky Survey and similar data, is mild enough to allow the use of galaxy overlaps to trace the cosmic history of dust in galaxies. For NGC 2207, HST data in the near-UV F336W band show that the covering factor of clouds with small optical attenuation becomes a dominant factor farther into the UV, which opens the possibility that widespread

  17. Elastic wave attenuation in rocks containing fluids

    International Nuclear Information System (INIS)

    Berryman, J.G.

    1986-01-01

    The low-frequency limit of Biot's theory of fluid-saturated porous media predicts that the coefficients for viscous attenuation of shear waves and of the fast compressional wave are proportional to the fluid permeability. Although the observed attenuation is generally in qualitative agreement with the theory, the magnitude of the observed attenuation coefficient in rocks is often more than an order of magnitude higher than expected. This apparent dilemma can be resolved without invoking other attenuation mechanisms if the intrinsic permeability of the rock is inhomogeneous and varies widely in magnitude. A simple calculation of the overall behavior of a layered porous material using local-flow Biot theory shows that the effective permeability for attenuation is the mean of the constituent permeabilities while the effective permeability for fluid flow is the harmonic mean. When the range of variation in the local permeability is one or more orders of magnitude, this difference in averaging method can easily explain some of the observed discrepancies

  18. Direct Reconstruction of CT-based Attenuation Correction Images for PET with Cluster-Based Penalties

    Science.gov (United States)

    Kim, Soo Mee; Alessio, Adam M.; De Man, Bruno; Asma, Evren; Kinahan, Paul E.

    2015-01-01

    Extremely low-dose CT acquisitions for the purpose of PET attenuation correction will have a high level of noise and biasing artifacts due to factors such as photon starvation. This work explores a priori knowledge appropriate for CT iterative image reconstruction for PET attenuation correction. We investigate the maximum a posteriori (MAP) framework with cluster-based, multinomial priors for the direct reconstruction of the PET attenuation map. The objective function for direct iterative attenuation map reconstruction was modeled as a Poisson log-likelihood with prior terms consisting of quadratic (Q) and mixture (M) distributions. The attenuation map is assumed to have values in 4 clusters: air+background, lung, soft tissue, and bone. Under this assumption, the MP was a mixture probability density function consisting of one exponential and three Gaussian distributions. The relative proportion of each cluster was jointly estimated during each voxel update of direct iterative coordinate decent (dICD) method. Noise-free data were generated from NCAT phantom and Poisson noise was added. Reconstruction with FBP (ramp filter) was performed on the noise-free (ground truth) and noisy data. For the noisy data, dICD reconstruction was performed with the combination of different prior strength parameters (β and γ) of Q- and M-penalties. The combined quadratic and mixture penalties reduces the RMSE by 18.7% compared to post-smoothed iterative reconstruction and only 0.7% compared to quadratic alone. For direct PET attenuation map reconstruction from ultra-low dose CT acquisitions, the combination of quadratic and mixture priors offers regularization of both variance and bias and is a potential method to derive attenuation maps with negligible patient dose. However, the small improvement in quantitative accuracy relative to the substantial increase in algorithm complexity does not currently justify the use of mixture-based PET attenuation priors for reconstruction of CT

  19. Attenuated Vector Tomography -- An Approach to Image Flow Vector Fields with Doppler Ultrasonic Imaging

    International Nuclear Information System (INIS)

    Huang, Qiu; Peng, Qiyu; Huang, Bin; Cheryauka, Arvi; Gullberg, Grant T.

    2008-01-01

    The measurement of flow obtained using continuous wave Doppler ultrasound is formulated as a directional projection of a flow vector field. When a continuous ultrasound wave bounces against a flowing particle, a signal is backscattered. This signal obtains a Doppler frequency shift proportional to the speed of the particle along the ultrasound beam. This occurs for each particle along the beam, giving rise to a Doppler velocity spectrum. The first moment of the spectrum provides the directional projection of the flow along the ultrasound beam. Signals reflected from points further away from the detector will have lower amplitude than signals reflected from points closer to the detector. The effect is very much akin to that modeled by the attenuated Radon transform in emission computed tomography.A least-squares method was adopted to reconstruct a 2D vector field from directional projection measurements. Attenuated projections of only the longitudinal projections of the vector field were simulated. The components of the vector field were reconstructed using the gradient algorithm to minimize a least-squares criterion. This result was compared with the reconstruction of longitudinal projections of the vector field without attenuation. If attenuation is known, the algorithm was able to accurately reconstruct both components of the full vector field from only one set of directional projection measurements. A better reconstruction was obtained with attenuation than without attenuation implying that attenuation provides important information for the reconstruction of flow vector fields.This confirms previous work where we showed that knowledge of the attenuation distribution helps in the reconstruction of MRI diffusion tensor fields from fewer than the required measurements. In the application of ultrasound the attenuation distribution is obtained with pulse wave transmission computed tomography and flow information is obtained with continuous wave Doppler

  20. Joint Inflammation and Early Degeneration Induced by High-Force Reaching Are Attenuated by Ibuprofen in an Animal Model of Work-Related Musculoskeletal Disorder

    Directory of Open Access Journals (Sweden)

    Jeffrey B. Driban

    2011-01-01

    Full Text Available We used our voluntary rat model of reaching and grasping to study the effect of performing a high-repetition and high-force (HRHF task for 12 weeks on wrist joints. We also studied the effectiveness of ibuprofen, administered in the last 8 weeks, in attenuating HRHF-induced changes in these joints. With HRHF task performance, ED1+ and COX2+ cells were present in subchondral radius, carpal bones and synovium; IL-1alpha and TNF-alpha increased in distal radius/ulna/carpal bones; chondrocytes stained with Terminal deoxynucleotidyl Transferase- (TDT- mediated dUTP-biotin nick end-labeling (TUNEL increased in wrist articular cartilages; superficial structural changes (e.g., pannus and reduced proteoglycan staining were observed in wrist articular cartilages. These changes were not present in normal controls or ibuprofen treated rats, although IL-1alpha was increased in reach limbs of trained controls. HRHF-induced increases in serum C1,2C (a biomarker of collagen I and II degradation, and the ratio of collagen degradation to synthesis (C1,2C/CPII; the latter a biomarker of collage type II synthesis were also attenuated by ibuprofen. Thus, ibuprofen treatment was effective in attenuating HRHF-induced inflammation and early articular cartilage degeneration.

  1. Real-Time Rain Rate Evaluation via Satellite Downlink Signal Attenuation Measurement.

    Science.gov (United States)

    Giannetti, Filippo; Reggiannini, Ruggero; Moretti, Marco; Adirosi, Elisa; Baldini, Luca; Facheris, Luca; Antonini, Andrea; Melani, Samantha; Bacci, Giacomo; Petrolino, Antonio; Vaccaro, Attilio

    2017-08-12

    We present the NEFOCAST project (named by the contraction of "Nefele", which is the Italian spelling for the mythological cloud nymph Nephele, and "forecast"), funded by the Tuscany Region, about the feasibility of a system for the detection and monitoring of precipitation fields over the regional territory based on the use of a widespread network of new-generation Eutelsat "SmartLNB" (smart low-noise block converter) domestic terminals. Though primarily intended for interactive satellite services, these devices can also be used as weather sensors, as they have the capability of measuring the rain-induced attenuation incurred by the downlink signal and relaying it on an auxiliary return channel. We illustrate the NEFOCAST system architecture, consisting of the network of ground sensor terminals, the space segment, and the service center, which has the task of processing the information relayed by the terminals for generating rain field maps. We discuss a few methods that allow the conversion of a rain attenuation measurement into an instantaneous rainfall rate. Specifically, we discuss an exponential model relating the specific rain attenuation to the rainfall rate, whose coefficients were obtained from extensive experimental data. The above model permits the inferring of the rainfall rate from the total signal attenuation provided by the SmartLNB and from the link geometry knowledge. Some preliminary results obtained from a SmartLNB installed in Pisa are presented and compared with the output of a conventional tipping bucket rain gauge. It is shown that the NEFOCAST sensor is able to track the fast-varying rainfall rate accurately with no delay, as opposed to a conventional gauge.

  2. Development of a human live attenuated West Nile infectious DNA vaccine: Suitability of attenuating mutations found in SA14-14-2 for WN vaccine design

    Energy Technology Data Exchange (ETDEWEB)

    Yamshchikov, Vladimir, E-mail: yaximik@gmail.com; Manuvakhova, Marina; Rodriguez, Efrain

    2016-01-15

    Direct attenuation of West Nile (WN) virus strain NY99 for the purpose of vaccine development is not feasible due to its high virulence and pathogenicity. Instead, we created highly attenuated chimeric virus W1806 with the serological identity of NY99. To further attenuate W1806, we investigated effects of mutations found in Japanese encephalitis virus vaccine SA14-14-2. WN viruses carrying all attenuating mutations lost infectivity in mammalian, but not in mosquito cells. No single reversion restored infectivity in mammalian cells, although increased infectivity in mosquito cells was observed. To identify a subset of mutations suitable for further attenuation of W1806, we analyzed effects of E{sub 138}K and K{sub 279}M changes on virulence, growth properties, and immunogenicity of derivatized W956, from which chimeric W1806 inherited its biological properties and attenuation profile. Despite strong dominant attenuating effect, introduction of only two mutations was not sufficient for attenuating W1806 to the safety level acceptable for human use. - Highlights: • Further attenuation of a WN vaccine precursor is outlined. • Effect of SA14-14-2 attenuating mutations is tested. • Mechanism of attenuation is proposed and illustrated. • The need for additional attenuating mutations is justified.

  3. Structurally designed attenuated subunit vaccines for S. aureus LukS-PV and LukF-PV confer protection in a mouse bacteremia model.

    Directory of Open Access Journals (Sweden)

    Hatice Karauzum

    Full Text Available Previous efforts towards S. aureus vaccine development have largely focused on cell surface antigens to induce opsonophagocytic killing aimed at providing sterile immunity, a concept successfully applied to other Gram-positive pathogens such as Streptococcus pneumoniae. However, these approaches have largely failed, possibly in part due to the remarkable diversity of the staphylococcal virulence factors such as secreted immunosuppressive and tissue destructive toxins. S. aureus produces several pore-forming toxins including the single subunit alpha hemolysin as well as bicomponent leukotoxins such as Panton-Valentine leukocidin (PVL, gamma hemolysins (Hlg, and LukED. Here we report the generation of highly attenuated mutants of PVL subunits LukS-PV and LukF-PV that were rationally designed, based on an octameric structural model of the toxin, to be deficient in oligomerization. The attenuated subunit vaccines were highly immunogenic and showed significant protection in a mouse model of S. aureus USA300 sepsis. Protection against sepsis was also demonstrated by passive transfer of rabbit immunoglobulin raised against LukS-PV. Antibodies to LukS-PV inhibited the homologous oligomerization of LukS-PV with LukF-PV as well heterologous oligomerization with HlgB. Importantly, immune sera from mice vaccinated with the LukS mutant not only inhibited the PMN lytic activity produced by the PVL-positive USA300 but also blocked PMN lysis induced by supernatants of PVL-negative strains suggesting a broad protective activity towards other bicomponent toxins. These findings strongly support the novel concept of an anti-virulence, toxin-based vaccine intended for prevention of clinical S. aureus invasive disease, rather than achieving sterile immunity. Such a multivalent vaccine may include attenuated leukotoxins, alpha hemolysin, and superantigens.

  4. Photostimulated attenuation of hypersound in superlattice

    International Nuclear Information System (INIS)

    Mensah, S.Y.; Allotey, F.K.; Adjepong, S.K.

    1992-10-01

    Photostimulated attenuation of hypersound in semiconductor superlattice has been investigated. It is shown that the attenuation coefficient depends on the phonon wave vector q in an oscillatory manner and that from this oscillation the band width Δ of superlattice can be found. (author). 14 refs, 1 fig

  5. Calculation Of Pneumatic Attenuation In Pressure Sensors

    Science.gov (United States)

    Whitmore, Stephen A.

    1991-01-01

    Errors caused by attenuation of air-pressure waves in narrow tubes calculated by method based on fundamental equations of flow. Changes in ambient pressure transmitted along narrow tube to sensor. Attenuation of high-frequency components of pressure wave calculated from wave equation derived from Navier-Stokes equations of viscous flow in tube. Developed to understand and compensate for frictional attenuation in narrow tubes used to connect aircraft pressure sensors with pressure taps on affected surfaces.

  6. Attenuation of laser power of a focused Gaussian beam during interaction between a laser and powder in coaxial laser cladding

    International Nuclear Information System (INIS)

    Liu Jichang; Li Lijun; Zhang Yuanzhong; Xie Xiaozhu

    2005-01-01

    The power of a focused laser beam with a Gaussian intensity profile attenuated by powder in coaxial laser cladding is investigated experimentally and theoretically, and its resolution model is developed. With some assumptions, it is concluded that the attenuation of laser power is an exponential function and is determined by the powder feed rate, particle moving speed, spraying angles and waist positions and diameters of the laser beam and powder flow, grain diameter and run of the laser beam through the powder flow. The attenuation of laser power increases with powder feed rate or run of laser beam through the powder flow. In the experiment presented, 300 W laser power from a focused Gaussian beam is attenuated by a coaxial powder flow. The experimental results agree well with the values calculated with the developed model

  7. The selective cathepsin K inhibitor MIV-711 attenuates joint pathology in experimental animal models of osteoarthritis.

    Science.gov (United States)

    Lindström, Erik; Rizoska, Biljana; Tunblad, Karin; Edenius, Charlotte; Bendele, Alison M; Maul, Don; Larson, Michael; Shah, Neha; Yoder Otto, Valerie; Jerome, Chris; Grabowska, Urszula

    2018-03-09

    MIV-711 is a highly potent and selective cathepsin K inhibitor. The current article summarizes the therapeutic effects of MIV-711 on joint pathology in rabbits subjected to anterior cruciate ligament transection (ACLT), and the prophylactic effects on joint pathology in dogs subjected to partial medial meniscectomy, two surgical models of osteoarthritis (OA). Starting 1 week after surgery, rabbits were dosed daily via oral gavage with either MIV-711 or vehicle (n = 7/group) for 7 weeks. The four treatment groups were: (1) sham + vehicle; (2) ACLT + vehicle; (3) ACLT + MIV-711, 30 µmol/kg and (4) ACLT + MIV-711, 100 µmol/kg. Subchondral bone and articular cartilage structures were assessed by µCT, histomorphometry, and scoring. Dogs subjected to partial medial meniscectomy received either MIV-711 (30 µmol/kg) or vehicle (n = 15/group) via oral gavage once daily, starting 1 day before meniscectomy, for 28 days. Cartilage degradation was assessed at the macroscopic and microscopic levels. The exposures of MIV-711 were assessed in both studies and biomarkers reflecting bone resorption (HP-1 in rabbits, CTX-I in dogs) and cartilage degradation (CTX-II) were measured. In ACLT rabbits, MIV-711 decreased HP-1 levels by up to 72% (p subchondral bone plate and reduced trabecular bone volume in the femur and tibia. These effects were reversed by MIV-711. ACLT resulted in cartilage thickening, which was attenuated by MIV-711. MIV-711 did not affect osteophyte formation or Mankin scores. In dogs, MIV-711 reduced CTX-I and CTX-II levels by 86% (p subchondral bone loss and partially attenuates cartilage pathology in two animal models of OA. These beneficial effects of MIV-711 on joint pathology are observed in conjunction with decreases in bone and cartilage biomarkers that have been shown to be clinically attainable in human. The data support the further development of MIV-711 for the treatment of OA.

  8. Brazilian red propolis attenuates hypertension and renal damage in 5/6 renal ablation model.

    Directory of Open Access Journals (Sweden)

    Flávio Teles

    Full Text Available The pathogenic role of inflammation and oxidative stress in chronic kidney disease (CKD is well known. Anti-inflammatories and antioxidant drugs has demonstrated significant renoprotection in experimental nephropathies. Moreover, the inclusion of natural antioxidants derived from food and herbal extracts (such as polyphenols, curcumin and lycopene as an adjuvant therapy for slowing CKD progression has been largely tested. Brazilian propolis is a honeybee product, whose anti-inflammatory, antimicrobial and antioxidant effects have been widely shown in models of sepsis, cancer, skin irritation and liver fibrosis. Furthermore, previous studies demonstrated that this compound promotes vasodilation and reduces hypertension. However, potential renoprotective effects of propolis in CKD have never been investigated. The aim of this study was to evaluate the effects of a subtype of Brazilian propolis, the Red Propolis (RP, in the 5/6 renal ablation model (Nx. Adult male Wistar rats underwent Nx and were divided into untreated (Nx and RP-treated (Nx+RP groups, after 30 days of surgery; when rats already exhibited marked hypertension and proteinuria. Animals were observed for 90 days from the surgery day, when Nx+RP group showed significant reduction of hypertension, proteinuria, serum creatinine retention, glomerulosclerosis, renal macrophage infiltration and oxidative stress, compared to age-matched untreated Nx rats, which worsened progressively over time. In conclusion, RP treatment attenuated hypertension and structural renal damage in Nx model. Reduction of renal inflammation and oxidative stress could be a plausible mechanism to explain this renoprotection.

  9. Dose reduction using a dynamic, piecewise-linear attenuator

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Scott S., E-mail: sshsieh@stanford.edu [Department of Radiology, Stanford University, Stanford, California 94305 and Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); Fleischmann, Dominik [Department of Radiology, Stanford University, Stanford, California 94305 (United States); Pelc, Norbert J. [Department of Radiology, Stanford University, Stanford, California 94305 and Department of Bioengineering, Stanford University, Stanford, California 94305 (United States)

    2014-02-15

    Purpose: The authors recently proposed a dynamic, prepatient x-ray attenuator capable of producing a piecewise-linear attenuation profile customized to each patient and viewing angle. This attenuator was intended to reduce scatter-to-primary ratio (SPR), dynamic range, and dose by redistributing flux. In this work the authors tested the ability of the attenuator to reduce dose and SPR in simulations. Methods: The authors selected four clinical applications, including routine full field-of-view scans of the thorax and abdomen, and targeted reconstruction tasks for an abdominal aortic aneurysm and the pancreas. Raw data were estimated by forward projection of the image volume datasets. The dynamic attenuator was controlled to reduce dose while maintaining peak variance by solving a convex optimization problem, assuminga priori knowledge of the patient anatomy. In targeted reconstruction tasks, the noise in specific regions was given increased weighting. A system with a standard attenuator (or “bowtie filter”) was used as a reference, and used either convex optimized tube current modulation (TCM) or a standard TCM heuristic. The noise of the scan was determined analytically while the dose was estimated using Monte Carlo simulations. Scatter was also estimated using Monte Carlo simulations. The sensitivity of the dynamic attenuator to patient centering was also examined by shifting the abdomen in 2 cm intervals. Results: Compared to a reference system with optimized TCM, use of the dynamic attenuator reduced dose by about 30% in routine scans and 50% in targeted scans. Compared to the TCM heuristics which are typically used withouta priori knowledge, the dose reduction is about 50% for routine scans. The dynamic attenuator gives the ability to redistribute noise and variance and produces more uniform noise profiles than systems with a conventional bowtie filter. The SPR was also modestly reduced by 10% in the thorax and 24% in the abdomen. Imaging with the dynamic

  10. Assessment of endothelial function and myocardial flow reserve using 15O-water PET without attenuation correction

    International Nuclear Information System (INIS)

    Tuffier, Stephane; Joubert, Michael; Bailliez, Alban; Legallois, Damien; Belin, Annette; Redonnet, Michel; Agostini, Denis; Manrique, Alain

    2016-01-01

    Myocardial blood flow (MBF) measurement using positron emission tomography (PET) from the washout rate of 15 O-water is theoretically independent of tissue attenuation. The aim of this study was to evaluate the impact of not using attenuation correction in the assessment of coronary endothelial function and myocardial flow reserve (MFR) using 15 O-water PET. We retrospectively processed 70 consecutive 15 O-water PET examinations obtained at rest and during cold pressor testing (CPT) in patients with dilated cardiomyopathy (n = 58), or at rest and during adenosine infusion in heart transplant recipients (n = 12). Data were reconstructed with attenuation correction (AC) and without attenuation correction (NAC) using filtered backprojection, and MBF was quantified using a single compartmental model. The agreement between AC and NAC data was assessed using Lin's concordance correlation coefficient followed by Bland-Altman plot analysis. Regarding endothelial function, NAC PET showed poor reproducibility and poor agreement with AC PET data. Conversely, NAC PET demonstrated high reproducibility and a strong agreement with AC PET for the assessment of MFR. Non-attenuation-corrected 15 O-water PET provided an accurate measurement of MFR compared to attenuation-corrected PET. However, non-attenuation-corrected PET data were less effective for the assessment of endothelial function using CPT in this population. (orig.)

  11. Seismic attenuation system for a nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Liszkai, Tamas; Cadell, Seth

    2018-01-30

    A system for attenuating seismic forces includes a reactor pressure vessel containing nuclear fuel and a containment vessel that houses the reactor pressure vessel. Both the reactor pressure vessel and the containment vessel include a bottom head. Additionally, the system includes a base support to contact a support surface on which the containment vessel is positioned in a substantially vertical orientation. An attenuation device is located between the bottom head of the reactor pressure vessel and the bottom head of the containment vessel. Seismic forces that travel from the base support to the reactor pressure vessel via the containment vessel are attenuated by the attenuation device in a direction that is substantially lateral to the vertical orientation of the containment vessel.

  12. Increasing low frequency sound attenuation using compounded single layer of sonic crystal

    Science.gov (United States)

    Gulia, Preeti; Gupta, Arpan

    2018-05-01

    Sonic crystals (SC) are man-made periodic structures where sound hard scatterers are arranged in a crystalline manner. SC reduces noise in a particular range of frequencies called as band gap. Sonic crystals have a promising application in noise shielding; however, the application is limited due to the size of structure. Particularly for low frequencies, the structure becomes quite bulky, restricting its practical application. This paper presents a compounded model of SC, which has the same overall area and filling fraction but with increased low frequency sound attenuation. Two cases have been considered, a three layer SC and a compounded single layer SC. Both models have been analyzed using finite element simulation and plane wave expansion method. Band gaps for periodic structures have been obtained using both methods which are in good agreement. Further, sound transmission loss has been evaluated using finite element method. The results demonstrate the use of compounded model of Sonic Crystal for low frequency sound attenuation.

  13. A statistical rain attenuation prediction model with application to the advanced communication technology satellite project. 3: A stochastic rain fade control algorithm for satellite link power via non linear Markow filtering theory

    Science.gov (United States)

    Manning, Robert M.

    1991-01-01

    The dynamic and composite nature of propagation impairments that are incurred on Earth-space communications links at frequencies in and above 30/20 GHz Ka band, i.e., rain attenuation, cloud and/or clear air scintillation, etc., combined with the need to counter such degradations after the small link margins have been exceeded, necessitate the use of dynamic statistical identification and prediction processing of the fading signal in order to optimally estimate and predict the levels of each of the deleterious attenuation components. Such requirements are being met in NASA's Advanced Communications Technology Satellite (ACTS) Project by the implementation of optimal processing schemes derived through the use of the Rain Attenuation Prediction Model and nonlinear Markov filtering theory.

  14. Calculations and measurements of β-ray attenuation for determining density in an inhomogenous medium

    International Nuclear Information System (INIS)

    Williamson, T.G.; Mackinnon, J.G.; Frisch, A.F.; Jenkins, R.W. Jr.

    1980-01-01

    A model for the distribution of tobacco strands in a cigarette is proposed to explain the discrepancy between density as measured by weight and volume and that as measured by β-ray attenuation and to explain the large deviation of the β-ray measurements from the mean value. The parameters which contribute to this uncertainty are slope of the β-ray attenuation curve, the mean path length through the mass element, and the material volume fraction. (author)

  15. Silymarin attenuated hepatic steatosis through regulation of lipid metabolism and oxidative stress in a mouse model of nonalcoholic fatty liver disease (NAFLD).

    Science.gov (United States)

    Ni, Xunjun; Wang, Haiyan

    2016-01-01

    Silymarin, which derived from the milk thistle plant (silybum marianum), has been used for centuries as a natural remedy for diseases of the liver and biliary tract. Considering the therapeutic potential to liver disease, we tested efficacy of silymarin on hepatic steatosis with a high fat diet (HFD)-induced mouse model of non-alcoholic fatty liver disease (NAFLD), and investigated possible effects on lipid metabolic pathways. In our study, silymarin could attenuate the hepatic steatosis, which was proved by both Oil Red O staining and hepatic triglyceride (TG) level determination. Furthermore, compared with INT-747, a potent and selective FXR agonist, silymarin could preserve plasmatic high-density lipoprotein cholesterol (HDL-C) to a higher level and low-density lipoprotein cholesterol (LDL-C) to a lower level, which benefited more to the circulation system. Through real-time PCR analysis, we clarified a vital protective role of silymarin in mRNA regulation of genes involved in lipid metabolism and oxidative stress. It was also shown that silymarin had no effects on body weight, food intake, and liver transaminase. Taken together, silymarin could attenuate hepatic steatosis in a mouse model of NAFLD through regulation of lipid metabolism and oxidative stress, and benefit to the circulation system. All these findings shed new light on NAFLD treatment.

  16. Boundary layer attenuation in turbulent sodium flows

    International Nuclear Information System (INIS)

    Tenchine, D.

    1994-01-01

    Temperature fluctuations are produced in the sodium coolant of Liquid Metal Reactors when flows at different temperatures are mixing. That occurs in various areas of the reactor plant, in the primary and the secondary circuits. This paper deals with secondary circuit pipings, specifically the Superphenix steam generator outlet. The possibility of thermal striping in this area is studied because of the mixing of a main 'hot' flow surrounded by a smaller 'cold' flow in the vertical pipe located below the steam generator. This work was developed in the frame of a collaboration between CEA, EDF and FRAMATOME. The purpose of our study is to measure temperature fluctuations in the fluid and on the structures, on a sodium reduced scale model of the outlet region of the steam generator. We want to evidence the boundary layer attenuation by comparing wall and fluid measurements. From these experimental data, we shall propose a methodology to predict the boundary layer attenuation and the temperature fluctuations at the surface of the structure, for pipe flow configurations

  17. To what extent can isotopes help substantiate natural attenuation of chlorinated ethenes?

    DEFF Research Database (Denmark)

    Badin, A.; Broholm, Mette Martina; Hunkeler, D.

    to which isotopes could help substantiate natural attenuation of chlorinated ethenes at the field scale. Our work hence aims at exploring the latter based on data acquired in 2006 in a site located in Denmark which is contaminated with PCE and its end-products TCE, cDCE, and VC. Previous work on this site...... has enabled to demonstrate that PCE and TCE were undergoing reductive dechlorination while cDCE would be at least partially degraded through reductive dechlorination1. However, the magnitude of the contaminants attenuation by biodegradation was not evaluated. Based on simple modeling including...

  18. Tomography of atomic number and density of materials using dual-energy imaging and the Alvarez and Macovski attenuation model

    Energy Technology Data Exchange (ETDEWEB)

    Paziresh, M.; Kingston, A. M., E-mail: andrew.kingston@anu.edu.au; Latham, S. J.; Fullagar, W. K.; Myers, G. M. [Department of Applied Mathematics, Research School of physics and Engineering, The Australian National University, Canberra 2601 (Australia)

    2016-06-07

    Dual-energy computed tomography and the Alvarez and Macovski [Phys. Med. Biol. 21, 733 (1976)] transmitted intensity (AMTI) model were used in this study to estimate the maps of density (ρ) and atomic number (Z) of mineralogical samples. In this method, the attenuation coefficients are represented [Alvarez and Macovski, Phys. Med. Biol. 21, 733 (1976)] in the form of the two most important interactions of X-rays with atoms that is, photoelectric absorption (PE) and Compton scattering (CS). This enables material discrimination as PE and CS are, respectively, dependent on the atomic number (Z) and density (ρ) of materials [Alvarez and Macovski, Phys. Med. Biol. 21, 733 (1976)]. Dual-energy imaging is able to identify sample materials even if the materials have similar attenuation coefficients at single-energy spectrum. We use the full model rather than applying one of several applied simplified forms [Alvarez and Macovski, Phys. Med. Biol. 21, 733 (1976); Siddiqui et al., SPE Annual Technical Conference and Exhibition (Society of Petroleum Engineers, 2004); Derzhi, U.S. patent application 13/527,660 (2012); Heismann et al., J. Appl. Phys. 94, 2073–2079 (2003); Park and Kim, J. Korean Phys. Soc. 59, 2709 (2011); Abudurexiti et al., Radiol. Phys. Technol. 3, 127–135 (2010); and Kaewkhao et al., J. Quant. Spectrosc. Radiat. Transfer 109, 1260–1265 (2008)]. This paper describes the tomographic reconstruction of ρ and Z maps of mineralogical samples using the AMTI model. The full model requires precise knowledge of the X-ray energy spectra and calibration of PE and CS constants and exponents of atomic number and energy that were estimated based on fits to simulations and calibration measurements. The estimated ρ and Z images of the samples used in this paper yield average relative errors of 2.62% and 1.19% and maximum relative errors of 2.64% and 7.85%, respectively. Furthermore, we demonstrate that the method accounts for the beam hardening effect in density (

  19. Electron Effective-Attenuation-Length Database

    Science.gov (United States)

    SRD 82 NIST Electron Effective-Attenuation-Length Database (PC database, no charge)   This database provides values of electron effective attenuation lengths (EALs) in solid elements and compounds at selected electron energies between 50 eV and 2,000 eV. The database was designed mainly to provide EALs (to account for effects of elastic-eletron scattering) for applications in surface analysis by Auger-electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS).

  20. MASS BALANCE: A KEY TO ADVANCING MONITORED AND ENHANCED ATTENUATION FOR CHLORINATED SOLVENTS

    Energy Technology Data Exchange (ETDEWEB)

    Looney, B; Karen Vangelas, K; Karen-M Adams, K; Francis H. Chappelle; Tom O. Early; Claire H. Sink

    2006-06-30

    hydrologic, geochemical, and biological parameters needed to apply deterministic models. These models can then be used to estimate how contaminant behavior will change over time, as contaminant mass is removed, or if attenuation mechanisms are enhanced by engineering methods. The dual use of these empirical and deterministic approaches can help integrate the use of MNA and EA for overall site remediation.

  1. Association of the Host Immune Response with Protection Using a Live Attenuated African Swine Fever Virus Model

    Directory of Open Access Journals (Sweden)

    Jolene Carlson

    2016-10-01

    Full Text Available African swine fever (ASF is a lethal hemorrhagic disease of swine caused by a double-stranded DNA virus, ASF virus (ASFV. There is no vaccine to prevent the disease and current control measures are limited to culling and restricting animal movement. Swine infected with attenuated strains are protected against challenge with a homologous virulent virus, but there is limited knowledge of the host immune mechanisms generating that protection. Swine infected with Pretoriuskop/96/4 (Pret4 virus develop a fatal severe disease, while a derivative strain lacking virulence-associated gene 9GL (Pret4Δ9GL virus is completely attenuated. Swine infected with Pret4Δ9GL virus and challenged with the virulent parental virus at 7, 10, 14, 21, and 28 days post infection (dpi showed a progressive acquisition of protection (from 40% at 7 dpi to 80% at 21 and 28 dpi. This animal model was used to associate the presence of host immune response (ASFV-specific antibody and interferon (IFN-γ responses, or specific cytokine profiles and protection against challenge. With the exception of ASFV-specific antibodies in survivors challenged at 21 and 28 dpi, no association between the parameters assessed and protection could be established. These results, encompassing data from 65 immunized swine, underscore the complexity of the system under study, suggesting that protection relies on the concurrence of different host immune mechanisms.

  2. Soliton Attenuation and Emergent Hydrodynamics in Fragile Matter

    Directory of Open Access Journals (Sweden)

    N. Upadhyaya

    2014-03-01

    Full Text Available Disordered packings of soft grains are fragile mechanical systems that lose rigidity upon lowering the external pressure toward zero. At zero pressure, we find that any infinitesimal strain impulse propagates initially as a nonlinear solitary wave progressively attenuated by disorder. We demonstrate that the particle fluctuations generated by the solitary-wave decay can be viewed as a granular analogue of temperature. Their presence is manifested by two emergent macroscopic properties absent in the unperturbed granular packing: a finite pressure that scales with the injected energy (akin to a granular temperature and an anomalous viscosity that arises even when the microscopic mechanisms of energy dissipation are negligible. Consistent with the interpretation of this state as a fluidlike thermalized state, the shear modulus remains zero. Further, we follow in detail the attenuation of the initial solitary wave, identifying two distinct regimes—an initial exponential decay, followed by a longer power-law decay—and suggest simple models to explain these two regimes.

  3. Coupling of Realistic Rate Estimates with Genomics for Assessing Contaminant Attenuation and Long-Term Plume Containment - Task 4: Modeling - Final Report

    International Nuclear Information System (INIS)

    Robert C. Starr

    2005-01-01

    seven plumes at 24 DOE facilities were screened, and 14 plumes were selected for detailed examination. In the plumes selected for further study, spatial changes in the concentration of a conservative co-contaminant were used to compensate for the effects of mixing and temporal changes in TCE release from the contaminant source. Decline in TCE concentration along a flow path in excess of the co contaminant concentration decline was attributed to cometabolic degradation. This study indicated that TCE was degraded in 9 of the 14 plumes examined, with first order degradation half-lives ranging from about 1 to 12 years. TCE degradation in about two-thirds of the plumes examined suggests that cometabolism of TCE in aerobic groundwater is a common occurrence, in contrast to the conventional wisdom that TCE is recalcitrant in aerobic groundwater. The degradation half-life values calculated in this study are short enough that natural attenuation may be a viable remedy in many aerobic plumes. Computer modeling of groundwater flow and contaminant transport and degradation is frequently used to predict the evolution of groundwater plumes, and for evaluating natural attenuation and other remedial alternatives. An important aspect of a computer model is the mathematical approach for describing degradation kinetics. A common approach is to assume that degradation occurs as a first-order process. First order kinetics are easily incorporated into transport models and require only a single value (a degradation half-life) to describe reaction kinetics. The use of first order kinetics is justified in many cases because more elaborate kinetic equations often closely approximate first order kinetics under typical field conditions. A previous modeling study successfully simulated the INL TCE plume using first order degradation kinetics. TCE cometabolism is the result of TCE reacting with microbial enzymes that were produced for other purposes, such as oxidizing a growth substrate to obtain

  4. In-stream attenuation of neuro-active pharmaceuticals and their metabolites

    Science.gov (United States)

    Writer, Jeffrey; Antweiler, Ronald C.; Ferrar, Imma; Ryan, Joseph N.; Thurman, Michael

    2013-01-01

    In-stream attenuation was determined for 14 neuro-active pharmaceuticals and associated metabolites. Lagrangian sampling, which follows a parcel of water as it moves downstream, was used to link hydrological and chemical transformation processes. Wastewater loading of neuro-active compounds varied considerably over a span of several hours, and thus a sampling regime was used to verify that the Lagrangian parcel was being sampled and a mechanism was developed to correct measured concentrations if it was not. In-stream attenuation over the 5.4-km evaluated reach could be modeled as pseudo-first-order decay for 11 of the 14 evaluated neuro-active pharmaceutical compounds, illustrating the capacity of streams to reduce conveyance of neuro-active compounds downstream. Fluoxetine and N-desmethyl citalopram were the most rapidly attenuated compounds (t1/2 = 3.6 ± 0.3 h, 4.0 ± 0.2 h, respectively). Lamotrigine, 10,11,-dihydro-10,11,-dihydroxy-carbamazepine, and carbamazepine were the most persistent (t1/2 = 12 ± 2.0 h, 12 ± 2.6 h, 21 ± 4.5 h, respectively). Parent compounds (e.g., buproprion, carbamazepine, lamotrigine) generally were more persistent relative to their metabolites. Several compounds (citalopram, venlafaxine, O-desmethyl-venlafaxine) were not attenuated. It was postulated that the primary mechanism of removal for these compounds was interaction with bed sediments and stream biofilms, based on measured concentrations in stream biofilms and a column experiment using stream sediments.

  5. Thymoquinone Attenuates Brain Injury via an Anti-oxidative Pathway in a Status Epilepticus Rat Model.

    Science.gov (United States)

    Shao, Yi-Ye; Li, Bing; Huang, Yong-Mei; Luo, Qiong; Xie, Yang-Mei; Chen, Ying-Hui

    2017-01-01

    Status epilepticus (SE) results in the generation of reactive oxygen species (ROS), which contribute to seizure-induced brain injury. It is well known that oxidative stress plays a pivotal role in status epilepticus (SE). Thymoquinone (TQ) is a bioactive monomer extracted from black cumin (Nigella sativa) seed oil that has anti-inflammatory, anti-cancer, and antioxidant activity in various diseases. This study evaluated the protective effects of TQ on brain injury in a lithium-pilocarpine rat model of SE and investigated the underlying mechanism related to antioxidative pathway. Electroencephalogram and Racine scale were used to value seizure severity. Passive-avoidance test was used to determine learning and memory function. Moreover, anti-oxidative activity of TQ was observed using Western blot and super oxide dismutase (SOD) activity assay. Latency to SE increased in the TQ-pretreated group compared with rats in the model group, while the total power was significantly lower. Seizure severity measured on the Racine scale was significantly lower in the TQ group compared with the model group. Results of behavioral experiments suggest that TQ may also have a protective effect on learning and memory function. Investigation of the protective mechanism of TQ showed that TQ-pretreatment significantly increased the expression of Nrf2, HO-1 proteins and SOD in the hippocampus. These findings showed that TQ attenuated brain injury induced by SE via an anti-oxidative pathway.

  6. Attenuation of earmuffs used simultaneously with respiratory protective devices

    Directory of Open Access Journals (Sweden)

    Emil Kozłowski

    2017-06-01

    Full Text Available Background: In the work environment, apart from the noise, employees may be exposed to other harmful factors. Therefore, they wear hearing protectors and other personal protective equipment. The aim of the study was to determine whether simultaneous use of earmuffs and respiratory protective devices affects the attenuation of earmuffs. Material and Methods: The study was conducted in laboratory conditions using the subjective REAT (Real Ear Attenuation at Threshold and objective MIRE (Microphone in Real Ear methods. The REAT method was used to measure sound attenuation of earmuffs, while MIRE was used to determine changes in attenuation of earmuffs due to the use of other personal protective equipment. Results: The study showed reduction in attenuation of earmuffs due to the use of a full face mask up to 20 dB. Using a full face mask causes that attenuation of earmuffs in the low frequency range is close to zero. Reduction in attenuation due to the use of half masks for complete with particle filters (half masks is 3–15 dB. Simultaneous use of earmuffs and filtering half masks makes small changes in attenuation not exceeding 3 dB. Conclusions: The study showed that full face masks give the greatest reduction in attenuation of earmuffs. On the other hand, the least reduction is observed in the case of filtering half masks. There is a significant difference between the reduction in attenuation of earmuffs worn with half masks for complete with particle filters because they may be equipped with different kind of the head strap. Med Pr 2017;68(3:349–361

  7. GPR measurements of attenuation in concrete

    Science.gov (United States)

    Eisenmann, David; Margetan, Frank J.; Pavel, Brittney

    2015-03-01

    Ground-penetrating radar (GPR) signals from concrete structures are affected by several phenomenon, including: (1) transmission and reflection coefficients at interfaces; (2) the radiation patterns of the antenna(s) being used; and (3) the material properties of concrete and any embedded objects. In this paper we investigate different schemes for determining the electromagnetic (EM) attenuation of concrete from measured signals obtained using commercially-available GPR equipment. We adapt procedures commonly used in ultrasonic inspections where one compares the relative strengths of two or more signals having different travel paths through the material of interest. After correcting for beam spread (i.e., diffraction), interface phenomena, and equipment amplification settings, any remaining signal differences are assumed to be due to attenuation thus allowing the attenuation coefficient (say, in dB of loss per inch of travel) to be estimated. We begin with a brief overview of our approach, and then discuss how diffraction corrections were determined for our two 1.6 GHz GPR antennas. We then present results of attenuation measurements for two types of concrete using both pulse/echo and pitch/catch measurement setups.

  8. GPR measurements of attenuation in concrete

    International Nuclear Information System (INIS)

    Eisenmann, David; Margetan, Frank J.; Pavel, Brittney

    2015-01-01

    Ground-penetrating radar (GPR) signals from concrete structures are affected by several phenomenon, including: (1) transmission and reflection coefficients at interfaces; (2) the radiation patterns of the antenna(s) being used; and (3) the material properties of concrete and any embedded objects. In this paper we investigate different schemes for determining the electromagnetic (EM) attenuation of concrete from measured signals obtained using commercially-available GPR equipment. We adapt procedures commonly used in ultrasonic inspections where one compares the relative strengths of two or more signals having different travel paths through the material of interest. After correcting for beam spread (i.e., diffraction), interface phenomena, and equipment amplification settings, any remaining signal differences are assumed to be due to attenuation thus allowing the attenuation coefficient (say, in dB of loss per inch of travel) to be estimated. We begin with a brief overview of our approach, and then discuss how diffraction corrections were determined for our two 1.6 GHz GPR antennas. We then present results of attenuation measurements for two types of concrete using both pulse/echo and pitch/catch measurement setups

  9. GPR measurements of attenuation in concrete

    Energy Technology Data Exchange (ETDEWEB)

    Eisenmann, David, E-mail: djeisen@cnde.iastate.edu; Margetan, Frank J., E-mail: djeisen@cnde.iastate.edu; Pavel, Brittney, E-mail: djeisen@cnde.iastate.edu [Center for Nondestructive Evaluation, Iowa State University, 1915 Scholl Road, Ames, IA 50011-3042 (United States)

    2015-03-31

    Ground-penetrating radar (GPR) signals from concrete structures are affected by several phenomenon, including: (1) transmission and reflection coefficients at interfaces; (2) the radiation patterns of the antenna(s) being used; and (3) the material properties of concrete and any embedded objects. In this paper we investigate different schemes for determining the electromagnetic (EM) attenuation of concrete from measured signals obtained using commercially-available GPR equipment. We adapt procedures commonly used in ultrasonic inspections where one compares the relative strengths of two or more signals having different travel paths through the material of interest. After correcting for beam spread (i.e., diffraction), interface phenomena, and equipment amplification settings, any remaining signal differences are assumed to be due to attenuation thus allowing the attenuation coefficient (say, in dB of loss per inch of travel) to be estimated. We begin with a brief overview of our approach, and then discuss how diffraction corrections were determined for our two 1.6 GHz GPR antennas. We then present results of attenuation measurements for two types of concrete using both pulse/echo and pitch/catch measurement setups.

  10. Attenuation of shock waves in copper and stainless steel

    International Nuclear Information System (INIS)

    Harvey, W.B.

    1986-06-01

    By using shock pins, data were gathered on the trajectories of shock waves in stainless steel (SS-304L) and oxygen-free-high-conductivity copper (OFHC-Cu). Shock pressures were generated in these materials by impacting the appropriate target with thin (approx.1.5 mm) flying plates. The flying plates in these experiments were accelerated to high velocities (approx.4 km/s) by high explosives. Six experiments were conducted, three using SS-304L as the target material and three experiments using OFHC-Cu as the target material. Peak shock pressures generated in the steel experiments were approximately 109, 130, and 147 GPa and in the copper experiments, the peak shock pressures were approximately 111, 132, and 143 GPa. In each experiment, an attenuation of the shock wave by a following release wave was clearly observed. An extensive effort using two characteristic codes (described in this work) to theoretically calculate the attenuation of the shock waves was made. The efficacy of several different constitutive equations to successfully model the experiments was studied by comparing the calculated shock trajectories to the experimental data. Based on such comparisons, the conclusion can be drawn that OFHC-Cu enters a melt phase at about 130 GPa on the principal Hugoniot. There was no sign of phase changes in the stainless-steel experiments. In order to match the observed attenuation of the shock waves in the SS-304L experiments, it was necessary to include strength effects in the calculations. It was found that the values for the parameters in the strength equations were dependent on the equation of state used in the modeling of the experiments. 66 refs., 194 figs., 77 tabs

  11. Attenuation of shock waves in copper and stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, W.B.

    1986-06-01

    By using shock pins, data were gathered on the trajectories of shock waves in stainless steel (SS-304L) and oxygen-free-high-conductivity copper (OFHC-Cu). Shock pressures were generated in these materials by impacting the appropriate target with thin (approx.1.5 mm) flying plates. The flying plates in these experiments were accelerated to high velocities (approx.4 km/s) by high explosives. Six experiments were conducted, three using SS-304L as the target material and three experiments using OFHC-Cu as the target material. Peak shock pressures generated in the steel experiments were approximately 109, 130, and 147 GPa and in the copper experiments, the peak shock pressures were approximately 111, 132, and 143 GPa. In each experiment, an attenuation of the shock wave by a following release wave was clearly observed. An extensive effort using two characteristic codes (described in this work) to theoretically calculate the attenuation of the shock waves was made. The efficacy of several different constitutive equations to successfully model the experiments was studied by comparing the calculated shock trajectories to the experimental data. Based on such comparisons, the conclusion can be drawn that OFHC-Cu enters a melt phase at about 130 GPa on the principal Hugoniot. There was no sign of phase changes in the stainless-steel experiments. In order to match the observed attenuation of the shock waves in the SS-304L experiments, it was necessary to include strength effects in the calculations. It was found that the values for the parameters in the strength equations were dependent on the equation of state used in the modeling of the experiments. 66 refs., 194 figs., 77 tabs.

  12. Verification of photon attenuation characteristics for 3D printer based small animal lung model

    International Nuclear Information System (INIS)

    Lee, Se Ho; Lee, Seung Wook; Han, Su Chul; Park, Seung Woo

    2016-01-01

    Since it is difficult to measure absorbed dose to mice in vivo, replica mice are mostly used as alternative. In this study, realistic mouse phantom was fabricated by using 3D printer (object500 connex3, Stratasys, USA). Elemental inks as material of 3D printer were selected corresponding to mouse tissue. To represent lung, selected material was partially used with air layer. In order to verify material equivalent, super-flex bolus was simply compared to verify photon attenuation characteristics. In the case of lung, Hounsfield unit (HU) of the phantom were compared with a live mouse. In this study, we fabricated mouse phantom by using 3D printer, and practically verified photon attenuation characteristics. The fabricated phantom shows tissue equivalence as well as similar geometry with live mouse. As more and more growing of 3D printer technique, 3D printer based small preclinical animal phantom would increase reliability of verification of absorbed dose in small animal for preclinical study

  13. Verification of photon attenuation characteristics for 3D printer based small animal lung model

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Se Ho; Lee, Seung Wook [Pusan National University, Busan (Korea, Republic of); Han, Su Chul; Park, Seung Woo [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2016-05-15

    Since it is difficult to measure absorbed dose to mice in vivo, replica mice are mostly used as alternative. In this study, realistic mouse phantom was fabricated by using 3D printer (object500 connex3, Stratasys, USA). Elemental inks as material of 3D printer were selected corresponding to mouse tissue. To represent lung, selected material was partially used with air layer. In order to verify material equivalent, super-flex bolus was simply compared to verify photon attenuation characteristics. In the case of lung, Hounsfield unit (HU) of the phantom were compared with a live mouse. In this study, we fabricated mouse phantom by using 3D printer, and practically verified photon attenuation characteristics. The fabricated phantom shows tissue equivalence as well as similar geometry with live mouse. As more and more growing of 3D printer technique, 3D printer based small preclinical animal phantom would increase reliability of verification of absorbed dose in small animal for preclinical study.

  14. The CNTF-derived peptide mimetic Cintrofin attenuates spatial-learning deficits in a rat post-status epilepticus model

    DEFF Research Database (Denmark)

    Russmann, Vera; Seeger, Natalie; Zellinger, Christina

    2013-01-01

    Ciliary neurotrophic growth factor is considered a potential therapeutic agent for central nervous system diseases. We report first in vivo data of the ciliary neurotrophic growth factor peptide mimetic Cintrofin in a rat post-status epilepticus model. Cintrofin prevented long-term alterations...... in the number of doublecortin-positive neuronal progenitor cells and attenuated the persistence of basal dendrites. In contrast, Cintrofin did neither affect acute status epilepticus-associated alterations in hippocampal cell proliferation and neurogenesis nor reveal any relevant effect on seizure activity....... Whereas status epilepticus caused a significant disturbance in spatial learning in reversed peptide-treated rats, the performance of Cintrofin-treated rats did not differ from controls. The study confirms that Cintrofin comprises an active sequence mimicking effects of its parent molecule. While the data...

  15. A miniaturized reconfigurable broadband attenuator based on RF MEMS switches

    International Nuclear Information System (INIS)

    Guo, Xin; Gong, Zhuhao; Zhong, Qi; Liang, Xiaotong; Liu, Zewen

    2016-01-01

    Reconfigurable attenuators are widely used in microwave measurement instruments. Development of miniaturized attenuation devices with high precision and broadband performance is required for state-of-the-art applications. In this paper, a compact 3-bit microwave attenuator based on radio frequency micro-electro-mechanical system (RF MEMS) switches and polysilicon attenuation modules is presented. The device comprises 12 ohmic contact MEMS switches, π -type polysilicon resistive attenuation modules and microwave compensate structures. Special attention was paid to the design of the resistive network, compensate structures and system simulation. The device was fabricated using micromachining processes compatible with traditional integrated circuit fabrication processes. The reconfigurable attenuator integrated with RF MEMS switches and resistive attenuation modules was successfully fabricated with dimensions of 2.45  ×  4.34  ×  0.5 mm 3 , which is 1/1000th of the size of a conventional step attenuator. The measured RF performance revealed that the attenuator provides 10–70 dB attenuation at 10 dB intervals from 0.1–20 GHz with an accuracy better than  ±1.88 dB at 60 dB and an error of less than 2.22 dB at 10 dB. The return loss of each state of the 3-bit attenuator was better than 11.95 dB (VSWR  <  1.71) over the entire operating band. (paper)

  16. The VANDELS survey: dust attenuation in star-forming galaxies at z = 3-4

    Science.gov (United States)

    Cullen, F.; McLure, R. J.; Khochfar, S.; Dunlop, J. S.; Dalla Vecchia, C.; Carnall, A. C.; Bourne, N.; Castellano, M.; Cimatti, A.; Cirasuolo, M.; Elbaz, D.; Fynbo, J. P. U.; Garilli, B.; Koekemoer, A.; Marchi, F.; Pentericci, L.; Talia, M.; Zamorani, G.

    2018-05-01

    We present the results of a new study of dust attenuation at redshifts 3 Motivated by results from the First Billion Years (FiBY) simulation project, we argue that the intrinsic spectral energy distributions (SEDs) of star-forming galaxies at these redshifts have a self-similar shape across the mass range 8.2 ≤ log (M⋆/M⊙) ≤ 10.6 probed by our sample. Using FiBY data, we construct a set of intrinsic SED templates which incorporate both detailed star formation and chemical abundance histories, and a variety of stellar population synthesis (SPS) model assumptions. With this set of intrinsic SEDs, we present a novel approach for directly recovering the shape and normalization of the dust attenuation curve. We find, across all of the intrinsic templates considered, that the average attenuation curve for star-forming galaxies at z ≃ 3.5 is similar in shape to the commonly adopted Calzetti starburst law, with an average total-to-selective attenuation ratio of RV = 4.18 ± 0.29. In contrast, we find that an average attenuation curve as steep as the SMC extinction law is strongly disfavoured. We show that the optical attenuation (AV) versus stellar mass (M⋆) relation predicted using our method is consistent with recent ALMA observations of galaxies at 2 < z < 3 in the Hubble Ultra Deep Field (HUDF), as well as empirical AV - M⋆ relations predicted by a Calzetti-like law. In fact, our results, combined with other literature data, suggest that the AV-M⋆ relation does not evolve over the redshift range 0 < z < 5, at least for galaxies with log(M⋆/M⊙) ≳ 9.5. Finally, we present tentative evidence which suggests that the attenuation curve may become steeper at lower masses log(M⋆/M⊙) ≲ 9.0.

  17. Dose attenuation by a carbon fiber linac couch and modeling with a treatment planning system; Medida de la atenuacion producida por la mesa de tratamiento de un acelerador lineal y su modelado en un sistema de planificacion

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Galiano, P.; Garcia Sancho, J.M.; Crelgo, D.; Pamos, M.; Fernandez, J.; Vivanco, J.

    2010-07-01

    The purpose of this work is to investigate the attenuation caused by a carbon fiber linac treatment couch and the ability of a commercial radiotherapy treatment planning system to simulate it. The attenuation caused by an Exact{copyright} treatment couch in a Varian{copyright} Clinac{copyright} 2100 C/D was characterized in detail. Both 6 MV and 18 MV photon beams were studied. The treatment couch was modeled and incorporated to Elekta{copyright} XiO{copyright} treatment planning system. Measured and computed attenuation values were compared. As a result we found that the attenuation caused by this complex treatment couch is strongly dependent on the incidence angle of the beam. The measured attenuation values reach 16% for 6 MV and 10% for 18 MV. The model incorporated to the treatment planning software allows reducing the differences between measured and calculated data below 2.5% and 2.0% for 6 MV and 18 MV respectively. In conclusion, it is strongly recommended accounting for the perturbation caused by this carbon fiber treatment couch when the beam intersects it. The treatment planning system studied can simulate this treatment couch accurately. Clinical implementation of the described method requires a reliable procedure to reproduce the same patient geometry in the treatment delivery and planning. (Author).

  18. Rivaroxaban attenuates thrombosis by targeting the NF-κB signaling pathway in a rat model of deep venous thrombus.

    Science.gov (United States)

    Ma, Junhao; Li, Xinxi; Wang, Yang; Yang, Zhenwei; Luo, Jun

    2017-12-01

    Anticoagulant therapy is commonly used for the prevention and treatment of patients with deep venous thrombus. Evidence has shown that rivaroxaban is a potential oral anticoagulant drug for the acute treatment of venous thromboembolism. However, the rivaroxaban-mediated molecular mechanism involved in the progression of deep venous thrombosis has not been investigated. In the present study, we investigated the efficacy of rivaroxaban and the underlying signaling pathways in the prevention and treatment of rats with deep venous thrombosis. A rat model with deep vein thrombus formation was established and received treatment with rivaroxaban or PBS as control. The thrombin-activatable fibrinolysis inhibitor (TAFI) and plasminogen activator inhibitor-1 (PAI-1) were analyzed both in vitro and in vivo. The progression of thrombosis and stroke was evaluated after treatment with rivaroxaban or PBS. Nuclear factor-κB (NF-κB) signaling pathway in venous endothelial cells and in the rat model of deep venous thrombus was assessed. The therapeutic effects of rivaroxaban were evaluated as determined by changes in deep venous thrombosis in the rat model. Our results showed that rivaroxaban markedly inhibited TAFI and PAI-1 expression levels, neutrophils, tissue factor, neutrophil extracellular traps (NETs), myeloperoxidase and macrophages in venous endothelial cells and in the rat model of deep venous thrombus. Expression levels of ADP, PAIs, von Willebrand factor (vWF) and thromboxane were downregulated in vein endothelial cells and in serum from the experimental rats. Importantly, the incidences of inferior vena cava filter thrombus were protected by rivaroxaban during heparin-induced thrombolysis deep venous thrombosis in the rat model. We observed that activity of the NF-κB signaling pathway was inhibited by rivaroxaban in vein endothelial cells both in vitro and in vivo. Notably, immunohistology indicated that rivaroxaban attenuated deep venous thrombosis and the

  19. Fat Attenuation at CT in Anorexia Nervosa

    Science.gov (United States)

    Gill, Corey M.; Torriani, Martin; Murphy, Rachel; Harris, Tamara B.; Miller, Karen K.; Klibanski, Anne

    2016-01-01

    Purpose To investigate the composition, cross-sectional area (CSA), and hormonal correlates of different fat depots in women with anorexia nervosa (AN) and control subjects with normal weights to find out whether patients with AN have lower fat CSA but higher attenuation than did control subjects and whether these changes may be mediated by gonadal steroids, cortisol, and thyroid hormones. Materials and Methods This study was institutional review board approved and HIPAA compliant. Written informed consent was obtained. Forty premenopausal women with AN and 40 normal-weight women of comparable age (mean age ± standard deviation, 26 years ± 5) were studied. All individuals underwent computed tomography of the abdomen and thigh with a calibration phantom. Abdominal subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT), thigh SAT, and thigh intermuscular adipose tissue CSA and attenuation were quantified. Serum estradiol, thyroid hormones, and urinary free cortisol levels were assessed. Variables were compared by using analysis of variance. Associations were examined by using linear regression analysis. Results Women with AN had higher fat attenuation than did control subjects (−100.1 to −46.7 HU vs −117.6 to −61.8 HU, P < .0001), despite lower fat CSA (2.0–62.8 cm2 vs 5.5–185.9 cm2, P < .0001). VAT attenuation but not CSA was inversely associated with lowest prior lifetime body mass index in AN (r = −0.71, P = .006). Serum estradiol levels were inversely associated with fat attenuation (r = −0.34 to −0.61, P = .03 to <.0001) and were positively associated with fat CSA of all compartments (r = 0.42–0.64, P = .007 to <.0001). Thyroxine levels and urinary free cortisol levels were positively associated with thigh SAT attenuation (r = 0.64 [P = .006] and r = 0.68 [P = .0004], respectively) and were inversely associated with abdominal SAT and VAT CSA (r = −0.44 to −0.58, P = .04 to .02). Conclusion Women with AN have differences in fat

  20. Quantification of numerical aperture-dependence of the OCT attenuation coefficient (Conference Presentation)

    Science.gov (United States)

    Peinado, Liliana M.; Bloemen, Paul R.; Almasian, Mitra; van Leeuwen, Ton G.; Faber, Dirk J.

    2016-03-01

    Despite the improvements in early cancer diagnosis, adequate diagnostic tools for early staging of bladder cancer tumors are lacking [1]. MEMS-probes based on optical coherence tomography (OCT) provide cross-sectional imaging with a high-spatial resolution at a high-imaging speed, improving visualization of cancerous tissue [2-3]. Additionally, studies show that the measurement of localized attenuation coefficient allows discrimination between healthy and cancerous tissue [4]. We have designed a new miniaturized MEMS-probe based on OCT that will optimize early diagnosis by improving functional visualization of suspicious lesions in bladder. During the optical design phase of the probe, we have studied the effect of the numerical aperture (NA) on the OCT signal attenuation. For this study, we have employed an InnerVision Santec OCT system with several numerical apertures (25mm, 40mm, 60mm, 100mm, 150mm and 200mm using achromatic lenses). The change in attenuation coefficient was studied using 15 dilutions of intralipid ranging between 6*10-5 volume% and 20 volume%. We obtained the attenuation coefficient from the OCT images at several fixed positions of the focuses using established OCT models (e.g. single scattering with known confocal point spread function (PSF) [5] and multiple scattering using the Extended Huygens Fresnel model [6]). As a result, a non-linear increase of the scattering coefficient as a function of intralipid concentration (due to dependent scattering) was obtained for all numerical apertures. For all intralipid samples, the measured attenuation coefficient decreased with a decrease in NA. Our results suggest a non-negligible influence of the NA on the measured attenuation coefficient. [1] Khochikar MV. Rationale for an early detection program for bladder cancer. Indian J Urol 2011 Apr-Jun; 27(2): 218-225. [2] Sun J and Xie H. Review Article MEMS-Based Endoscopic Optical Coherence Tomography. IJO 2011, Article ID 825629, 12 pages. doi:10

  1. Attenuation Measurements in Solutions of Some Carbohydrates

    International Nuclear Information System (INIS)

    Gagandeep; Singh, Kulwant; Lark, B.S.; Sahota, H.S.

    2000-01-01

    The linear attenuation coefficients in aqueous solutions of three carbohydrates, glucose (C 6 H 12 O 6 ), maltose monohydrate (C 12 H 22 O 11 .H 2 O), and sucrose (C 12 H 22 O 11 ), were determined at 81, 356, 511, 662, 1173, and 1332 keV by the gamma-ray transmission method in a good geometry setup. From the precisely measured densities of these solutions, mass attenuation coefficients were then obtained that varied systematically with the corresponding changes in the concentrations (g/cm 3 ) of these solutions. The experimental results were used in terms of effective atomic numbers and electron densities. A comparison between experimental and theoretical values of attenuation coefficients has proven that the study has a potential application for the determination of attenuation coefficients of solid solutes from their solutions without obtaining them in pure crystalline form

  2. Interval training attenuates the metabolic disturbances in type 1 diabetes rat model.

    Science.gov (United States)

    Rocha, Ricelli Endrigo Ruppel; Coelho, Isabela; Pequito, Daniela Cristina T; Yamagushi, Adriana; Borghetti, Gina; Yamazaki, Ricardo Key; Brito, Gleisson Alisson Pereira de; Machado, Juliano; Kryczyk, Marcelo; Nunes, Everson Araújo; Venera, Graciela; Fernandes, Luiz Claudio

    2013-11-01

    This study investigated the effect of interval training on blood biochemistry and immune parameters in type 1 diabetic rats. Male Wistar rats were divided into four groups: sedentary (SE, n = 15), interval training (IT, n = 17), diabetic sedentary (DSE, n = 17), diabetic interval training (DIT, n = 17). Diabetes was induced by i.v. injection of streptozotocin (60 mg/kg). Swimming Interval Training consisted of 30-s exercise with 30-s rest, for 30 minutes, during 6 weeks, four times a week, with an overload of 15% of body mass. Plasma glucose, lactate, triacylglycerol and total cholesterol concentrations, phagocytic capacity, cationic vesicle content, and superoxide anion and hydrogen peroxide production by blood neutrophils and peritoneal macrophages were evaluated. Proliferation of mesenteric lymphocytes was also estimated. Interval training resulted in attenuation of the resting hyperglycemic state and decreased blood lipids in the DIT group. Diabetes increased the functionality of blood neutrophils and peritoneal macrophages in the DSE group. Interval training increased all functionality parameters of peritoneal macrophages in the IT group. Interval training also led to a twofold increase in the proliferation of mesenteric lymphocytes after 6 weeks of exercise in the DIT group. Low-volume high-intensity physical exercise attenuates hyperglycemia and dislipidemia induced by type 1 diabetes, and induces changes in the functionality of innate and acquired immunity.

  3. MicroRNA-155 Deficiency Attenuates Liver Steatosis and Fibrosis without Reducing Inflammation in a Mouse Model of Steatohepatitis.

    Directory of Open Access Journals (Sweden)

    Timea Csak

    Full Text Available MicroRNAs (miRs regulate hepatic steatosis, inflammation and fibrosis. Fibrosis is the consequence of chronic tissue damage and inflammation. We hypothesized that deficiency of miR-155, a master regulator of inflammation, attenuates steatohepatitis and fibrosis.Wild type (WT and miR-155-deficient (KO mice were fed methionine-choline-deficient (MCD or -supplemented (MCS control diet for 5 weeks. Liver injury, inflammation, steatosis and fibrosis were assessed.MCD diet resulted in steatohepatitis and increased miR-155 expression in total liver, hepatocytes and Kupffer cells. Steatosis and expression of genes involved in fatty acid metabolism were attenuated in miR-155 KO mice after MCD feeding. In contrast, miR-155 deficiency failed to attenuate inflammatory cell infiltration, nuclear factor κ beta (NF-κB activation and enhanced the expression of the pro-inflammatory cytokines tumor necrosis factor alpha (TNFα and monocyte chemoattractant protein-1 (MCP1 in MCD diet-fed mice. We found a significant attenuation of apoptosis (cleaved caspase-3 and reduction in collagen and α smooth muscle actin (αSMA levels in miR-155 KO mice compared to WTs on MCD diet. In addition, we found attenuation of platelet derived growth factor (PDGF, a pro-fibrotic cytokine; SMAD family member 3 (Smad3, a protein involved in transforming growth factor-β (TGFβ signal transduction and vimentin, a mesenchymal marker and indirect indicator of epithelial-to-mesenchymal transition (EMT in miR-155 KO mice. Nuclear binding of CCAAT enhancer binding protein β (C/EBPβ a miR-155 target involved in EMT was significantly increased in miR-155 KO compared to WT mice.Our novel data demonstrate that miR-155 deficiency can reduce steatosis and fibrosis without decreasing inflammation in steatohepatitis.

  4. MCNP-X Monte Carlo Code Application for Mass Attenuation Coefficients of Concrete at Different Energies by Modeling 3 × 3 Inch NaI(Tl Detector and Comparison with XCOM and Monte Carlo Data

    Directory of Open Access Journals (Sweden)

    Huseyin Ozan Tekin

    2016-01-01

    Full Text Available Gamma-ray measurements in various research fields require efficient detectors. One of these research fields is mass attenuation coefficients of different materials. Apart from experimental studies, the Monte Carlo (MC method has become one of the most popular tools in detector studies. An NaI(Tl detector has been modeled, and, for a validation study of the modeled NaI(Tl detector, the absolute efficiency of 3 × 3 inch cylindrical NaI(Tl detector has been calculated by using the general purpose Monte Carlo code MCNP-X (version 2.4.0 and compared with previous studies in literature in the range of 661–2620 keV. In the present work, the applicability of MCNP-X Monte Carlo code for mass attenuation of concrete sample material as building material at photon energies 59.5 keV, 80 keV, 356 keV, 661.6 keV, 1173.2 keV, and 1332.5 keV has been tested by using validated NaI(Tl detector. The mass attenuation coefficients of concrete sample have been calculated. The calculated results agreed well with experimental and some other theoretical results. The results specify that this process can be followed to determine the data on the attenuation of gamma-rays with other required energies in other materials or in new complex materials. It can be concluded that data from Monte Carlo is a strong tool not only for efficiency studies but also for mass attenuation coefficients calculations.

  5. White matter segmentation by estimating tissue optical attenuation from volumetric OCT massive histology of whole rodent brains

    Science.gov (United States)

    Lefebvre, Joël.; Castonguay, Alexandre; Lesage, Frédéric

    2017-02-01

    A whole rodent brain was imaged using an automated massive histology setup and an Optical Coherence Tomography (OCT) microscope. Thousands of OCT volumetric tiles were acquired, each covering a size of about 2.5x2.5x0.8 mm3 with a sampling resolution of 4.9x4.9x6.5 microns. This paper shows the techniques for reconstruction, attenuation compensation and segmentation of the sliced brains. The tile positions within the mosaic were evaluated using a displacement model of the motorized stage and pairwise coregistration. Volume blending was then performed by solving the 3D Laplace equation, and consecutive slices were assembled using the cross-correlation of their 2D image gradient. This reconstruction algorithm resulted in a 3D map of optical reflectivity for the whole brain at micrometric resolution. OCT tissue slices were then used to estimate the local attenuation coefficient based on a single scattering photon model. The attenuation map obtained exhibits a high contrast for all white matter fibres, regardless of their orientation. The tissue optical attenuation from the intrinsic OCT reflectivity contributes to better white matter tissue segmentation. The combined 3D maps of reflectivity and attenuation is a step toward the study of white matter at a microscopic scale for the whole brain in small animals.

  6. Attenuation relations of strong motion in Japan using site classification based on predominant period

    International Nuclear Information System (INIS)

    Toshimasa Takahashi; Akihiro Asano; Hidenobu Okada; Kojiro Irikura; Zhao, J.X.; Zhang Jian; Thio, H.K.; Somerville, P.G.; Yasuhiro Fukushima; Yoshimitsu Fukushima

    2005-01-01

    A spectral acceleration attenuation model for Japan is presented. The data set includes a very large number of strong ground motion records up to the end of 2003. Site class terms, instead of individual site correction terms, are used based on a recent study on site classification for strong motion recording stations in Japan. By using site class terms, tectonic source type effects are identified and accounted in the present model. Effects of faulting mechanism for crustal earthquakes are also accounted for. For crustal and interface earthquakes, a simple form of attenuation model is able to capture the main strong motion characteristics and achieves unbiased estimates. For subduction slab events, a simple distance modification factor is employed to achieve plausible and unbiased prediction. Effects of source depth, tectonic source type, and faulting mechanism for crustal earthquakes are significant. (authors)

  7. Anelastic attenuation structure of the southern Aegean subduction area

    Science.gov (United States)

    Ventouzi, Chrisanthi; Papazachos, Constantinos; Papaioannou, Christos; Hatzidimitriou, Panagiotis

    2014-05-01

    The study of the anelastic attenuation structure plays a very important role for seismic wave propagation and provides not only valuable constraints for the Earth's interior (temperature, relative viscosity, slab dehydration and melt transport) but also significant information for the simulation of strong ground motions. In order to investigate the attenuation structure of the broader Southern Aegean subduction area, acceleration spectra of intermediate depth earthquakes produced from data provided by two local networks which operated in the area were used. More specifically, we employed data from approximately 400 intermediate-depth earthquakes, as these were recorded from the EGELADOS seismic monitoring project which consisted of 65 land stations and 24 OBS recorders and operated during 2005-2007, as well as data from the earlier installed CYCNET local network, which operated during 2002-2005. A frequency-independent path attenuation operator t* was computed for both P and S arrivals for each waveform, using amplitude spectra generated by the recorded data of the aforementioned networks. Initially, estimated P and S traveltimes were examined and modeled as a function of epicentral distance for different groups of focal depths, using data from the CYCNET network in order to obtain the expected arrival information when original arrival times were not available. Two approaches to assess the spectral-decay were adopted for t* determination. Initially, an automated approach was used, where t* was automatically calculated from the slope of the acceleration spectrum, assuming an ω2 source model for frequencies above the corner frequency, fc. Estimation of t* was performed in the frequency band of 0.2 to 25 Hz, using only spectra with a signal-to-noise ratio larger than 3 for a frequency range of at least 4Hz for P-waves and 1Hz for S-waves, respectively. In the second approach, the selection of the linearly-decaying part of the spectra where t* was calculated, was

  8. Measurement Method of Temporal Attenuation by Human Body in Off-the-Shelf 60 GHz WLAN with HMM-Based Transmission State Estimation

    Directory of Open Access Journals (Sweden)

    Yusuke Koda

    2018-01-01

    Full Text Available This paper discusses a measurement method of time-variant attenuation of IEEE 802.11ad wireless LAN signals in the 60 GHz band induced by human blockage. The IEEE 802.11ad access point (AP transmits frames intermittently, not continuously. Thus, to obtain the time-varying signal attenuation, it is required to estimate the duration in which the AP transmitted signals. To estimate whether the AP transmitted signals or not at each sampling point, this paper applies a simple two-state hidden Markov model. In addition, the validity of the model is tested based on Bayesian information criterion in order to prevent model overfitting and consequent invalid results. The measurement method is validated in that the distribution of the time duration in which the signal attenuates by 5 dB is consistent with the existing statistical model and the range of the measured time duration in which the signal attenuation decreases from 5 dB to 0 dB is similar to that in the previous report.

  9. Sound attenuations of axial fan blade tones using flow-driven tunable resonator arrays

    Science.gov (United States)

    Gorny, Lee James

    attained and BPF tones were reduced to less than 5 dB from the broadband noise floor for each case discussed above. In parallel with experimental work, analytical models were developed to effectively model and predict optimal resonator configurations for a given fan in operation. Interactions between resonators and the driving pressure field from the rotor blades are modeled using transmission line (TL) theory. Blade tone acoustic pressure is obtained using a finite element method (FEM) propagation code. By combining of these two methods, a resonator configuration that achieves optimal attenuation can be numerically obtained. The use of resonators has been shown to significantly attenuate fan noise in the conditions explored in the considered experiments. Numerical modeling has shown consistency in the response of flow driven resonators and their. These results indicate a strong potential for active control of fan noise using resonators and an approach to applying this control is presented.

  10. Sound attenuation and absorption by anisotropic fibrous materials: Theoretical and experimental study

    Science.gov (United States)

    Bravo, Teresa; Maury, Cédric

    2018-03-01

    This paper describes analytical and experimental studies carried out to examine the attenuation and absorption properties of rigidly-backed fibrous anisotropic materials in contact with a uniform mean flow. The aim is to provide insights for the development of non-locally reacting wall-treatments able to dissipate the noise induced by acoustic excitations over in-duct or external lining systems. A model of sound propagation in anisotropic bulk-reacting liners is presented that fully accounts for anisotropic losses due to heat conduction, viscous dissipation and diffusion processes along and across the material fibres as well as for the convective effect of an external flow. The propagation constant for the least attenuated mode of the coupled system is obtained using a simulated annealing search method. The predicted acoustical performance is validated in the no-flow case for a wide range of fibre diameters. They are assessed against impedance tube and free-field pressure-velocity measurements of the normal incidence absorption coefficient and surface impedance. Parametric studies are then conducted to determine the key constitutive parameters such as the fibres orientation or the amount of anisotropy that mostly influence the axial attenuation or the normal absorption. They are supported by a low-frequency approximation to the axial attenuation under a low-speed flow.

  11. Recommendations for processing atmospheric attenuated backscatter profiles from Vaisala CL31 ceilometers

    Science.gov (United States)

    Kotthaus, Simone; O'Connor, Ewan; Münkel, Christoph; Charlton-Perez, Cristina; Haeffelin, Martial; Gabey, Andrew M.; Grimmond, C. Sue B.

    2016-08-01

    Ceilometer lidars are used for cloud base height detection, to probe aerosol layers in the atmosphere (e.g. detection of elevated layers of Saharan dust or volcanic ash), and to examine boundary layer dynamics. Sensor optics and acquisition algorithms can strongly influence the observed attenuated backscatter profiles; therefore, physical interpretation of the profiles requires careful application of corrections. This study addresses the widely deployed Vaisala CL31 ceilometer. Attenuated backscatter profiles are studied to evaluate the impact of both the hardware generation and firmware version. In response to this work and discussion within the CL31/TOPROF user community (TOPROF, European COST Action aiming to harmonise ground-based remote sensing networks across Europe), Vaisala released new firmware (versions 1.72 and 2.03) for the CL31 sensors. These firmware versions are tested against previous versions, showing that several artificial features introduced by the data processing have been removed. Hence, it is recommended to use this recent firmware for analysing attenuated backscatter profiles. To allow for consistent processing of historic data, correction procedures have been developed that account for artefacts detected in data collected with older firmware. Furthermore, a procedure is proposed to determine and account for the instrument-related background signal from electronic and optical components. This is necessary for using attenuated backscatter observations from any CL31 ceilometer. Recommendations are made for the processing of attenuated backscatter observed with Vaisala CL31 sensors, including the estimation of noise which is not provided in the standard CL31 output. After taking these aspects into account, attenuated backscatter profiles from Vaisala CL31 ceilometers are considered capable of providing valuable information for a range of applications including atmospheric boundary layer studies, detection of elevated aerosol layers, and model

  12. Attenuation (1/Q) estimation in reflection seismic records

    International Nuclear Information System (INIS)

    Raji, Wasiu; Rietbrock, Andreas

    2013-01-01

    Despite its numerous potential applications, the lack of a reliable method for determining attenuation (1/Q) in seismic data is an issue when utilizing attenuation for hydrocarbon exploration. In this paper, a new method for measuring attenuation in reflection seismic data is presented. The inversion process involves two key stages: computation of the centroid frequency for the individual signal using a variable window length and fast Fourier transform; and estimation of the difference in the centroid frequency and travel time for paired incident and transmitted signals. The new method introduces a shape factor and a constant which allows several spectral shapes to be used to represent a real seismic signal without altering the mathematical model. Application of the new method to synthetic data shows that it can provide reliable estimates of Q using any of the spectral shapes commonly assumed for real seismic signals. Tested against two published methods of Q measurement, the new method shows less sensitivity to interference from noise and change of frequency bandwidth. The method is also applied to a 3D data set from the Gullfaks field, North Sea, Norway. The trace length is divided into four intervals: AB, BC, CD, and DE. Results show that interval AB has the lowest 1/Q value, and that interval BC has the highest 1/Q value. The values of 1/Q measured in the CDP stack using the new method are consistent with those measured using the classical spectral ratio method. (paper)

  13. Interventional Vitamin C-A Strategy for Attenuation of Coagulopathy and Inflammation in Hemorrhagic Trauma and Shock

    Science.gov (United States)

    2017-10-01

    AWARD NUMBER: W81XWH-15-2-0064 TITLE: Interventional Vitamin C -A Strategy for Attenuation of Coagulopathy and Inflammation in Hemorrhagic...COVERED 30 Sep 2016 - 29 Sep 2017 4. TITLE AND SUBTITLE Interventional Vitamin C -A Strategy for Attenuation of Coagulopathy and Inflammation in...high dose parenteral vitamin C (VitC) in a swine model of combined hemorrhagic shock and tissue trauma that simulates the course of a combat casualty

  14. An attenuation measurement technique for rotating planar detector positron tomographs

    International Nuclear Information System (INIS)

    McNeil, P.A.; Julyan, P.J.; Parker, D.J.

    1997-01-01

    This paper presents a new attenuation measurement technique suitable for rotating planar detector positron tomographs. Transmission measurements are made using two unshielded positron-emitting line sources, one attached to the front face of each detector. Many of the scattered and accidental coincidences are rejected by including only those coincidences that form a vector passing within a predetermined distance of either line source. Some scattered and accidental coincidences are still included, which reduces the measured linear attenuation; in principle their contribution can be accurately estimated and subtracted, but in practice, when limited statistics are available (as is the case with the multi-wire Birmingham positron camera), this background subtraction unacceptably increases the noise. Instead an attenuation image having the correct features can be reconstructed from the measured projections. For objects containing only a few discrete linear attenuation coefficients, segmentation of this attenuation image reduces noise and allows the correct linear attenuation coefficients to be restored by renormalization. Reprojection through the segmented image may then provide quantitatively correct attenuation correction factors of sufficient statistical quality to correct for attenuation in PET emission images. (author)

  15. Characteristics of Earthquake Ground Motion Attenuation in Korea and Japan

    International Nuclear Information System (INIS)

    Choi, In-Kil; Choun, Young-Sun; Nakajima, Masato; Ohtori, Yasuki; Yun, Kwan-Hee

    2006-01-01

    The characteristics of a ground motion attenuation in Korea and Japan were estimated by using the earthquake ground motions recorded at the equal distance observation station by KMA, K-NET and KiK-net of Korea and Japan. The ground motion attenuation equations proposed for Korea and Japan were evaluated by comparing the predicted value for the Fukuoka earthquake with the observed records. The predicted values from the attenuation equations show a good agreement with the observed records and each other. It can be concluded from this study that the ground motion attenuation equations can be used for the prediction of strong ground motion attenuation and for an evaluation of the attenuation equations proposed for Korea

  16. Measurements of earplug attenuation under supra-aural and circumaural headphones.

    Science.gov (United States)

    Tufts, Jennifer B; Palmer, Jillian V; Marshall, Lynne

    2012-10-01

    Supra-aural audiometric headphones are generally not recommended for use in measuring the attenuation of earplugs, because contact between the headphone and pinna and/or earplug could alter the attenuation obtained, and because of concerns of non-comparability between modes of excitation from supra-aural headphones and the sound-field procedure required by the standardized method. In this study, we compared measurements of earplug attenuation obtained under Telephonics TDH-50P supra-aural headphones with measurements obtained under circumaural headphones designed expressly for such testing. The attenuation of three types of earplugs (foam, premolded quadruple-flange, and custom-molded) was measured in a repeated-measures design. The study sample comprised 42 normal-hearing adults (21 females, 21 males). With the foam earplugs, nearly all of the attenuation measurements under the supra-aural headphones fell within 10 dB of the measurements under the circumaural headphones. With the flange and custom earplugs, approximately 10% of individuals obtained spuriously high attenuation under the supra-aural headphones. We conclude that standard supra-aural audiometric headphones are suitable for measuring the attenuation provided by foam earplugs. However, supra-aural headphones should not be used to measure the attenuation of flange or custom-molded earplugs. The potential exists for substantial over-estimation of attenuation, especially of custom plugs.

  17. Attenuation coefficient of the light in skin of BALB/c and C57BL/6 mice

    Science.gov (United States)

    Silva, C. R.; Camargo, C. F. M.; Aureliano, D. P.; De Pretto, L. R.; Freitas, A. Z.; Ribeiro, M. S.

    2015-06-01

    Optical properties of the biological tissue play an important role to a correct use of optical techniques for therapy and diagnosis. The mice skin presents morphological differences due to characteristics such as gender, body mass and age. Murine models are frequently used in pre-clinical trials in optical therapy and diagnosis. Therefore, the assessment of the skin tissue in animal models is needed for a proper understanding of how light interacts with skin. Noninvasive techniques such as optical coherence tomography (OCT) have been used to obtain optical information of the tissue, as the attenuation coefficient, with the advantage of obtaining sectional images in real time. In this study, eight female BALB/c albino mice (twenty-four weeks old) and eight male C57BL/6 black mice (eight weeks old) were used to measure the attenuation coefficient of the light in the skin, utilizing the OCT technique, aiming to check for influence of the aging process. Two moments were assessed twenty-two weeks apart from each other. Our data show that the aging process significantly affects the light attenuation coefficient in mice skin. Twenty-two weeks after, statistical significant differences were observed between groups within a same strain. We conclude that light attenuation coefficient of mice skin may be influenced by factors such as disorganization of the dermis. Morphological aspects of skin should be taken into account in studies that involve optical strategies in murine models.

  18. Transport and attenuation of radiations

    CERN Document Server

    Nimal, J C

    2003-01-01

    This article treats of the calculation methods used for the dimensioning of the protections against radiations. The method consists in determining for a given point the flux of particles coming from a source at a given time. A strong attenuation (of about some few mu Sv.h sup - sup 1) is in general expected between the source and the areas accessible to the personnel or the public. The calculation has to take into account a huge number of radiation-matter interactions and to solve the integral-differential transport equation which links the particles flux to the source. Several methods exist from the simplified physical model with numerical developments to the more or less precise resolution of the transport equation. These methods allows also the calculation of the uncertainties of equivalent dose rates, heat sources, structure damages using the data covariances (efficient cross-sections, modeling, etc..): 1 - transport equation; 2 - Monte-Carlo method; 3 - semi-numerical methods S sub N; 4 - methods based o...

  19. Attenuation measurements in solutions of some carbohydrates

    International Nuclear Information System (INIS)

    Gagandeep; Singh, K.; Lark, B.S.; Sahota, H.S.

    2000-01-01

    The linear attenuation coefficients in aqueous solutions of three carbohydrates, glucose (C 6 H 12 O 6 ), maltose monohydrate (C 12 H 22 O 11 ·H 2 O), and sucrose (C 12 H 22 O 11 ), were determined at 81, 356, 511, 662, 1,173, and 1,332 keV by the gamma-ray transmission method in a good geometry setup. From the precisely measured densities of these solutions, mass attenuation coefficients were then obtained that varied systematically with the corresponding changes in the concentrations (g/cm 3 ) of these solutions. The experimental results were used in terms of effective atomic numbers and electron densities. A comparison between experimental and theoretical values of attenuation coefficients has proven that the study has a potential application for the determination of attenuation coefficients of solid solutes from their solutions without obtaining them in pure crystalline form

  20. Natural attenuation of metals and radionuclides - An overview of the Sandia/DOE approach

    International Nuclear Information System (INIS)

    Waters, R.D.; Brady, P.V.; Borns, D.J.

    1998-02-01

    Sandia National Laboratories is developing guidelines that outline the technical basis for relying on natural attenuation for the remediation of metals and radionuclide-contaminated soils and groundwaters at US Department of Energy (DOE) sites for those specific cases where natural processes are effective at ameliorating soil and groundwater toxicity. Remediation by monitored natural attenuation (MNA) requires a clear identification of the specific reaction(s) by which contaminant levels are made less available as well as considerable long-term monitoring. Central to MNA is the development of a conceptual model describing the biogeochemical behavior of contaminant(s) in the subsurface. The conceptual model will be used to make testable predictions of contaminant availability over time. In many cases, comparison between this prediction and field measurements will provide the test of whether MNA is to be implemented. As a result, development of the conceptual model should guide site characterization activities as well as long-term monitoring

  1. MOBIDIC-U: a watershed-scale model for stormwater attenuation through green infrastructures design

    Science.gov (United States)

    Ercolani, G.; Masseroni, D.; Chiaradia, E. A.; Bischetti, G. B.; Gandolfi, C.; Castelli, F.

    2017-12-01

    Surface water degradation resulting from the effects of urbanization on hydrology, water quality, habitat as well as ecological and environmental compartments represents an issue of primary focus for multiple agencies at the national, regional and local levels. Many management actions are needed throughout urban watersheds to achieve the desired effects on flow mitigation and pollutant reduction, but no single standardized solution can be effective in all locations. In this work, the distributed hydrological model MOBIDIC, already applied for hydrological balance simulations and flood prevention in different Italian regions, is adapted to the urban context (MOBIDIC-U) in order to evaluate alternative plans for stormwater quality management and flow abatement techniques through the adoption of green infrastructures (GIs). In particular the new modules included in MOBIDIC-U allow to (i) automatically define the upstream flow path as well as watershed boundary starting from a selected watershed closure point on the urban drainage network and (ii) obtain suitable graphical outputs for the visualization of flow peak and volume attenuation at the closure point. Moreover, MOBIDIC-U provides a public domain tool capable of evaluating the optimal location, type, and cost of the stormwater management practices needed to meet water quantity and quality goals. Despite the scalability of the model to different urban contexts, the current version of MOBIDIC-U has been developed for the area of the metropolitan city of Milan, Northern Italy. The model is implemented on a GIS platform, which already contains (i) the structure of the urban drainage network of the metropolitan city of Milan; (ii) the database of actual geomorphological and meteorological data for the previous domain (iii) the list of potential GIs, their standard size, installation and maintenance costs. Therefore, MOBIDIC-U provides an easy to use tool to local professionals to design and evaluate urban stormwater

  2. Mirtazapine attenuates cocaine seeking in rats.

    Science.gov (United States)

    Barbosa-Méndez, Susana; Leff, Phillipe; Arías-Caballero, Adriana; Hernández-Miramontes, Ricardo; Heinze, Gerardo; Salazar-Juárez, Alberto

    2017-09-01

    Relapse to cocaine use is a major problem in the clinical treatment of cocaine addiction. Antidepressants have been studied for their therapeutic potential to treat cocaine use disorder. Research has suggested that antidepressants attenuate both drug craving and the re-acquisition of drug-seeking and drug-taking behaviors. This study examined the efficacy of mirtazapine, an antidepressant/anxiolytic, in decreasing cocaine seeking in rats. We used the cocaine self-administration paradigm to assess the effects of mirtazapine on rats trained to self-administer cocaine or food under a fixed-ratio schedule. Mirtazapine (30 mg/kg, i.p.) was administered during extinction. Mirtazapine significantly attenuated non-reinforced lever-press responses during extinction. Moreover, the mirtazapine dosed for 30 days during extinction produced sustained attenuation of lever-press responses during re-acquisition of cocaine self-administration, without changing food-seeking behavior. Our results showed that mirtazapine attenuated the re-acquisition of cocaine-seeking responses. Our study pointed to the efficacy of mirtazapine in reducing the risk of drug relapse during abstinence, suggesting for its potential use as a novel pharmacological agent to treat drug abuse. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Measuring the attenuation length of water in the CHIPS-M water Cherenkov detector

    Energy Technology Data Exchange (ETDEWEB)

    Amat, F.; Bizouard, P. [Aix Marseille University Saint-Jerome, 13013 Marseille (France); Bryant, J. [Department of Physics and Astronomy, UCL, Gower St, London WC1E 6BT (United Kingdom); Carroll, T.J.; Rijck, S. De [Department of Physics, University of Texas at Austin, Austin, TX 78712 (United States); Germani, S. [Department of Physics and Astronomy, UCL, Gower St, London WC1E 6BT (United Kingdom); Joyce, T. [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Kriesten, B. [Department of Physics, College of William & Mary, Williamsburg, VA 23187 (United States); Marshak, M.; Meier, J. [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Nelson, J.K. [Department of Physics, College of William & Mary, Williamsburg, VA 23187 (United States); Perch, A.J.; Pfützner, M.M. [Department of Physics and Astronomy, UCL, Gower St, London WC1E 6BT (United Kingdom); Salazar, R. [Department of Physics, University of Texas at Austin, Austin, TX 78712 (United States); Thomas, J., E-mail: jennifer.thomas@ucl.ac.uk [Department of Physics and Astronomy, UCL, Gower St, London WC1E 6BT (United Kingdom); Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Trokan-Tenorio, J. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Vahle, P. [Department of Physics, College of William & Mary, Williamsburg, VA 23187 (United States); Wade, R. [Avenir Consulting, Abingdon, Oxfordshire (United Kingdom); Wendt, C. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Whitehead, L.H. [Department of Physics and Astronomy, UCL, Gower St, London WC1E 6BT (United Kingdom); and others

    2017-02-01

    The water at the proposed site of the CHIPS water Cherenkov detector has been studied to measure its attenuation length for Cherenkov light as a function of filtering time. A scaled model of the CHIPS detector filled with water from the Wentworth 2W pit, proposed site of the CHIPS deployment, in conjunction with a 3.2 m vertical column filled with this water, was used to study the transmission of 405 nm laser light. Results consistent with attenuation lengths of up to 100 m were observed for this wavelength with filtration and UV sterilization alone.

  4. An attenuation correction method for PET/CT images

    International Nuclear Information System (INIS)

    Ue, Hidenori; Yamazaki, Tomohiro; Haneishi, Hideaki

    2006-01-01

    In PET/CT systems, accurate attenuation correction can be achieved by creating an attenuation map from an X-ray CT image. On the other hand, respiratory-gated PET acquisition is an effective method for avoiding motion blurring of the thoracic and abdominal organs caused by respiratory motion. In PET/CT systems employing respiratory-gated PET, using an X-ray CT image acquired during breath-holding for attenuation correction may have a large effect on the voxel values, especially in regions with substantial respiratory motion. In this report, we propose an attenuation correction method in which, as the first step, a set of respiratory-gated PET images is reconstructed without attenuation correction, as the second step, the motion of each phase PET image from the PET image in the same phase as the CT acquisition timing is estimated by the previously proposed method, as the third step, the CT image corresponding to each respiratory phase is generated from the original CT image by deformation according to the motion vector maps, and as the final step, attenuation correction using these CT images and reconstruction are performed. The effectiveness of the proposed method was evaluated using 4D-NCAT phantoms, and good stability of the voxel values near the diaphragm was observed. (author)

  5. Sources of attenuation-correction artefacts in cardiac PET/CT and SPECT/CT.

    Science.gov (United States)

    McQuaid, Sarah J; Hutton, Brian F

    2008-06-01

    Respiratory motion during myocardial perfusion imaging can cause artefacts in both positron emission tomography (PET) and single-photon emission computed tomography (SPECT) images when mismatches between emission and transmission datasets arise. In this study, artefacts from different breathing motions were quantified in both modalities to assess key factors in attenuation-correction accuracy. Activity maps were generated using the NURBS-based cardiac-torso phantom for different respiratory cycles, which were projected, attenuation-corrected and reconstructed to form PET and SPECT images. Attenuation-correction was performed with maps at mismatched respiratory phases to observe the effect on the left-ventricular myocardium. Myocardial non-uniformity was assessed in terms of the standard deviation in scores obtained from the 17-segment model and changes in uniformity were compared for each mismatch and modality. Certain types of mismatch led to artefacts and corresponding increases in the myocardial non-uniformity. For each mismatch in PET, the increases in non-uniformity relative to an artefact-free image were as follows: (a) cardiac translation mismatch, 84% +/- 11%; (b) liver mismatch, 59% +/- 10%, (c) lung mismatch from diaphragm contraction, 28% +/- 8%; and (d) lung mismatch from chest-wall motion, 6% +/- 7%. The corresponding factors for SPECT were (a) 61% +/- 8%, (b) 34% +/- 8%, (c) -2% +/- 7)% and (d) -4% +/- 6%. Attenuation-correction artefacts were seen in PET and SPECT images, with PET being more severely affected. The most severe artefacts were produced from mismatches in cardiac and liver position, whereas lung mismatches were less critical. Both cardiac and liver positions must, therefore, be correctly matched during attenuation correction.

  6. Potential increase in coastal wetland vulnerability to sea-level rise suggested by considering hydrodynamic attenuation effects

    Science.gov (United States)

    Rodríguez, José F.; Saco, Patricia M.; Sandi, Steven; Saintilan, Neil; Riccardi, Gerardo

    2017-07-01

    The future of coastal wetlands and their ecological value depend on their capacity to adapt to the interacting effects of human impacts and sea-level rise. Even though extensive wetland loss due to submergence is a possible scenario, its magnitude is highly uncertain due to limited understanding of hydrodynamic and bio-geomorphic interactions over time. In particular, the effect of man-made drainage modifications on hydrodynamic attenuation and consequent wetland evolution is poorly understood. Predictions are further complicated by the presence of a number of vegetation types that change over time and also contribute to flow attenuation. Here, we show that flow attenuation affects wetland vegetation by modifying its wetting-drying regime and inundation depth, increasing its vulnerability to sea-level rise. Our simulations for an Australian subtropical wetland predict much faster wetland loss than commonly used models that do not consider flow attenuation.

  7. Maximizing effectiveness of adaptation action in Pacific Island communities using coastal wave attenuation models

    Science.gov (United States)

    Jung, H.; Carruthers, T.; Allison, M. A.; Weathers, D.; Moss, L.; Timmermans, H.

    2017-12-01

    Pacific Island communities are highly vulnerable to the effects of climate change, specifically accelerating rates of sea level rise, changes to storm intensity and associated rainfall patterns resulting in flooding and shoreline erosion. Nature-based adaptation is being planned not only to reduce the risk from shoreline erosion, but also to support benefits of a healthy ecosystem (e.g., supporting fisheries or coral reefs). In order to assess potential effectiveness of the nature-based actions to dissipate wave energy, two-dimensional X-Beach models were developed to predict the wave attenuation effect of coastal adaptation actions at the pilot sites—the villages of Naselesele and Somosomo on Taveuni island, Fiji. Both sites are experiencing serious shoreline erosion due to sea level rise and storm wave. The water depth (single-beam bathymetry), land elevation (truck-based LiDAR), and vegetation data including stem density and height were collected in both locations in a June 2017 field experiment. Wave height and water velocity were also measured for the model setup and calibration using a series of bottom-mounted instruments deployed in the 0-15 m water depth portions of the study grid. The calibrated model will be used to evaluate a range of possible adaptation actions identified by the community members of Naselesele and Somosomo. Particularly, multiple storm scenario runs with management-relevant shoreline restoration/adaptation options will be implemented to evaluate efficiencies of each adaptation action (e.g., no action, with additional planted trees, with sand mining, with seawalls constructed with natural materials, etc.). These model results will help to better understand how proposed adaption actions may influence future shoreline change and maximize benefits to communities in island nations across the SW Pacific.

  8. Features of HF Radio Wave Attenuation in the Midlatitude Ionosphere Near the Skip Zone Boundary

    Science.gov (United States)

    Denisenko, P. F.; Skazik, A. I.

    2017-06-01

    We briefly describe the history of studying the decameter radio wave attenuation by different methods in the midlatitude ionosphere. A new method of estimating the attenuation of HF radio waves in the ionospheric F region near the skip zone boundary is presented. This method is based on an analysis of the time structure of the interference field generated by highly stable monochromatic X-mode radio waves at the observation point. The main parameter is the effective electron collision frequency νeff, which allows for all energy losses in the form of equivalent heat loss. The frequency νeff is estimated by matching the assumed (model) and the experimentally observed structures. Model calculations are performed using the geometrical-optics approximation. The spatial attenuation caused by the influence of the medium-scale traveling ionospheric disturbances is taken into account. Spherical shape of the ionosphere and the Earth's magnetic field are roughly allowed for. The results of recording of the level of signals from the RWM (Moscow) station at a frequency of 9.996 MHz at point Rostov are used.

  9. Vanillin Attenuated Behavioural Impairments, Neurochemical Deficts, Oxidative Stress and Apoptosis Against Rotenone Induced Rat Model of Parkinson's Disease.

    Science.gov (United States)

    Dhanalakshmi, Chinnasamy; Janakiraman, Udaiyappan; Manivasagam, Thamilarasan; Justin Thenmozhi, Arokiasamy; Essa, Musthafa Mohamed; Kalandar, Ameer; Khan, Mohammed Abdul Sattar; Guillemin, Gilles J

    2016-08-01

    Vanillin (4-hydroxy-3-methoxybenzaldehyde), a pleasant smelling organic aromatic compound, is widely used as a flavoring additive in food, beverage, cosmetic and drug industries. It is reported to cross the blood brain barrier and also displayed antioxidant and neuroprotective activities. We previously reported the neuroprotective effect of vanillin against rotenone induced in in vitro model of PD. The present experiment was aimed to analyze the neuroprotective effect of vanillin on the motor and non-motor deficits, neurochemical variables, oxidative, anti-oxidative indices and the expression of apoptotic markers against rotenone induced rat model of Parkinson's disease (PD). Rotenone treatment exhibited motor and non-motor impairments, neurochemical deficits, oxidative stress and apoptosis, whereas oral administration of vanillin attenuated the above-said indices. However further studies are needed to explore the mitochondrial protective and anti-inflammatory properties of vanillin, as these processes play a vital role in the cause and progression of PD.

  10. Scalp acupuncture attenuates neurological deficits in a rat model of hemorrhagic stroke.

    Science.gov (United States)

    Liu, Hao; Sun, Xiaowei; Zou, Wei; Leng, Mengtong; Zhang, Beng; Kang, Xiaoyu; He, Tao; Wang, Hui

    2017-06-01

    Hemorrhagic stroke accounts for approximately 15% of all stroke cases, and is associated with high morbidity and mortality. Limited human studies suggested that scalp acupuncture could facilitate functional recovery after cerebral hemorrhage. In the current study, we used an animal model of cerebral hemorrhage to examine the potential effects of scalp acupuncture. Adult male Sprague-Dawley rats received autologous blood (50μL) into the right caudate nucleus on the right side under pentobarbital anesthesia, and then received scalp acupuncture (DU20 through GB7 on the lesion side) or sham acupuncture (1cm to the right side of the acupoints) (n=10 per group). A group of rats receiving autologous blood into the caudate nucleus but no other intervention, as well as a group of rats receiving anesthesia but no blood injection to the brain (n=10 per group) were included as additional controls. Composite neuroscore, corner turn test, forelimb placing test, wire hang task and beam walking were used to evaluate the behavior of rats. Hematoxylin and Eosin (HE) staining was used to observe the histopathological changes. Western blot was used to detect the content of tumor necrosis factor alpha (TNF-α) and nuclear factor-KappaB (NFκB) protein expression. Scalp acupuncture attenuated neurological deficits (phemorrhagic stroke. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Glyoxalase-1 overexpression reduces endothelial dysfunction and attenuates early renal impairment in a rat model of diabetes

    DEFF Research Database (Denmark)

    Brouwers, Olaf; Niessen, Petra M G; Miyata, Toshio

    2014-01-01

    AIMS/HYPOTHESIS: In diabetes, advanced glycation end-products (AGEs) and the AGE precursor methylglyoxal (MGO) are associated with endothelial dysfunction and the development of microvascular complications. In this study we used a rat model of diabetes, in which rats transgenically overexpressed...... the MGO-detoxifying enzyme glyoxalase-I (GLO-I), to determine the impact of intracellular glycation on vascular function and the development of early renal changes in diabetes. METHODS: Wild-type and Glo1-overexpressing rats were rendered diabetic for a period of 24 weeks by intravenous injection...... podocyte number and diabetes-induced elevation of urinary markers albumin, osteopontin, kidney-inflammation-molecule-1 and nephrin) were attenuated by Glo1 overexpression. In line with this, downregulation of Glo1 in cultured endothelial cells resulted in increased expression of inflammation...

  12. Josephson tunnel junction microwave attenuator

    DEFF Research Database (Denmark)

    Koshelets, V. P.; Shitov, S. V.; Shchukin, A. V.

    1993-01-01

    A new element for superconducting electronic circuitry-a variable attenuator-has been proposed, designed, and successfully tested. The principle of operation is based on the change in the microwave impedance of a superconductor-insulator-superconductor (SIS) Josephson tunnel junction when dc biased...... at different points in the current-voltage characteristic. Both numerical calculations based on the Tien-Gordon theory and 70-GHz microwave experiments have confirmed the wide dynamic range (more than 15-dB attenuation for one stage) and the low insertion loss in the ''open'' state. The performance of a fully...

  13. Stellar Absorption Line Analysis of Local Star-forming Galaxies: The Relation between Stellar Mass, Metallicity, Dust Attenuation, and Star Formation Rate

    Energy Technology Data Exchange (ETDEWEB)

    Jabran Zahid, H. [Smithsonian Astrophysical Observatory, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Kudritzki, Rolf-Peter; Ho, I-Ting [University of Hawaii at Manoa, Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Conroy, Charlie [Department of Astronomy, Harvard University, Cambridge, MA, 02138 (United States); Andrews, Brett, E-mail: zahid@cfa.harvard.edu [PITT PACC, Department of Physics and Astronomy, University of Pittsburgh, 3941 O’Hara Street, Pittsburgh, PA 15260 (United States)

    2017-09-20

    We analyze the optical continuum of star-forming galaxies in the Sloan Digital Sky Survey by fitting stacked spectra with stellar population synthesis models to investigate the relation between stellar mass, stellar metallicity, dust attenuation, and star formation rate. We fit models calculated with star formation and chemical evolution histories that are derived empirically from multi-epoch observations of the stellar mass–star formation rate and the stellar mass–gas-phase metallicity relations, respectively. We also fit linear combinations of single-burst models with a range of metallicities and ages. Star formation and chemical evolution histories are unconstrained for these models. The stellar mass–stellar metallicity relations obtained from the two methods agree with the relation measured from individual supergiant stars in nearby galaxies. These relations are also consistent with the relation obtained from emission-line analysis of gas-phase metallicity after accounting for systematic offsets in the gas-phase metallicity. We measure dust attenuation of the stellar continuum and show that its dependence on stellar mass and star formation rate is consistent with previously reported results derived from nebular emission lines. However, stellar continuum attenuation is smaller than nebular emission line attenuation. The continuum-to-nebular attenuation ratio depends on stellar mass and is smaller in more massive galaxies. Our consistent analysis of stellar continuum and nebular emission lines paves the way for a comprehensive investigation of stellar metallicities of star-forming and quiescent galaxies.

  14. Stellar Absorption Line Analysis of Local Star-forming Galaxies: The Relation between Stellar Mass, Metallicity, Dust Attenuation, and Star Formation Rate

    International Nuclear Information System (INIS)

    Jabran Zahid, H.; Kudritzki, Rolf-Peter; Ho, I-Ting; Conroy, Charlie; Andrews, Brett

    2017-01-01

    We analyze the optical continuum of star-forming galaxies in the Sloan Digital Sky Survey by fitting stacked spectra with stellar population synthesis models to investigate the relation between stellar mass, stellar metallicity, dust attenuation, and star formation rate. We fit models calculated with star formation and chemical evolution histories that are derived empirically from multi-epoch observations of the stellar mass–star formation rate and the stellar mass–gas-phase metallicity relations, respectively. We also fit linear combinations of single-burst models with a range of metallicities and ages. Star formation and chemical evolution histories are unconstrained for these models. The stellar mass–stellar metallicity relations obtained from the two methods agree with the relation measured from individual supergiant stars in nearby galaxies. These relations are also consistent with the relation obtained from emission-line analysis of gas-phase metallicity after accounting for systematic offsets in the gas-phase metallicity. We measure dust attenuation of the stellar continuum and show that its dependence on stellar mass and star formation rate is consistent with previously reported results derived from nebular emission lines. However, stellar continuum attenuation is smaller than nebular emission line attenuation. The continuum-to-nebular attenuation ratio depends on stellar mass and is smaller in more massive galaxies. Our consistent analysis of stellar continuum and nebular emission lines paves the way for a comprehensive investigation of stellar metallicities of star-forming and quiescent galaxies.

  15. Theoretical determination of gamma spectrometry systems efficiency based on probability functions. Application to self-attenuation correction factors

    Energy Technology Data Exchange (ETDEWEB)

    Barrera, Manuel, E-mail: manuel.barrera@uca.es [Escuela Superior de Ingeniería, University of Cadiz, Avda, Universidad de Cadiz 10, 11519 Puerto Real, Cadiz (Spain); Suarez-Llorens, Alfonso [Facultad de Ciencias, University of Cadiz, Avda, Rep. Saharaui s/n, 11510 Puerto Real, Cadiz (Spain); Casas-Ruiz, Melquiades; Alonso, José J.; Vidal, Juan [CEIMAR, University of Cadiz, Avda, Rep. Saharaui s/n, 11510 Puerto Real, Cádiz (Spain)

    2017-05-11

    A generic theoretical methodology for the calculation of the efficiency of gamma spectrometry systems is introduced in this work. The procedure is valid for any type of source and detector and can be applied to determine the full energy peak and the total efficiency of any source-detector system. The methodology is based on the idea of underlying probability of detection, which describes the physical model for the detection of the gamma radiation at the particular studied situation. This probability depends explicitly on the direction of the gamma radiation, allowing the use of this dependence the development of more realistic and complex models than the traditional models based on the point source integration. The probability function that has to be employed in practice must reproduce the relevant characteristics of the detection process occurring at the particular studied situation. Once the probability is defined, the efficiency calculations can be performed in general by using numerical methods. Monte Carlo integration procedure is especially useful to perform the calculations when complex probability functions are used. The methodology can be used for the direct determination of the efficiency and also for the calculation of corrections that require this determination of the efficiency, as it is the case of coincidence summing, geometric or self-attenuation corrections. In particular, we have applied the procedure to obtain some of the classical self-attenuation correction factors usually employed to correct for the sample attenuation of cylindrical geometry sources. The methodology clarifies the theoretical basis and approximations associated to each factor, by making explicit the probability which is generally hidden and implicit to each model. It has been shown that most of these self-attenuation correction factors can be derived by using a common underlying probability, having this probability a growing level of complexity as it reproduces more precisely

  16. Attenuation correction strategies for multi-energy photon emitters using SPECT

    International Nuclear Information System (INIS)

    Pretorius, P.H.; King, M.A.; Pan, T.S.

    1996-01-01

    The aim of this study was to investigate whether the photopeak window projections from different energy photons can be combined into a single window for reconstruction or if it is better to not combine the projections due to differences in the attenuation maps required for each photon energy. The mathematical cardiac torso (MCAT) phantom was modified to simulate the uptake of Ga-67 in the human body. Four spherical hot tumors were placed in locations which challenged attenuation correction. An analytical 3D projector with attenuation and detector response included was used to generate projection sets. Data were reconstructed using filtered backprojection (FBP) reconstruction with Butterworth filtering in conjunction with one iteration of Chang attenuation correction, and with 5 and 10 iterations of ordered-subset maximum-likelihood expectation-maximization reconstruction. To serve as a standard for comparison, the projection sets obtained from the two energies were first reconstructed separately using their own attenuation maps. The emission data obtained from both energies were added and reconstructed using the following attenuation strategies: (1) the 93 keV attenuation map for attenuation correction, (2) the 185 keV attenuation map for attenuation correction, (3) using a weighted mean obtained from combining the 93 keV and 185 keV maps, and (4) an ordered subset approach which combines both energies. The central count ratio (CCR) and total count ratio (TCR) were used to compare the performance of the different strategies. Compared to the standard method, results indicate an over-estimation with strategy 1, an under-estimation with strategy 2 and comparable results with strategies 3 and 4. In all strategies, the CCR's of sphere 4 were under-estimated, although TCR's were comparable to that of the other locations. The weighted mean and ordered subset strategies for attenuation correction were of comparable accuracy to reconstruction of the windows separately

  17. Investigation of attenuation correction in SPECT using textural features, Monte Carlo simulations, and computational anthropomorphic models.

    Science.gov (United States)

    Spirou, Spiridon V; Papadimitroulas, Panagiotis; Liakou, Paraskevi; Georgoulias, Panagiotis; Loudos, George

    2015-09-01

    To present and evaluate a new methodology to investigate the effect of attenuation correction (AC) in single-photon emission computed tomography (SPECT) using textural features analysis, Monte Carlo techniques, and a computational anthropomorphic model. The GATE Monte Carlo toolkit was used to simulate SPECT experiments using the XCAT computational anthropomorphic model, filled with a realistic biodistribution of (99m)Tc-N-DBODC. The simulated gamma camera was the Siemens ECAM Dual-Head, equipped with a parallel hole lead collimator, with an image resolution of 3.54 × 3.54 mm(2). Thirty-six equispaced camera positions, spanning a full 360° arc, were simulated. Projections were calculated after applying a ± 20% energy window or after eliminating all scattered photons. The activity of the radioisotope was reconstructed using the MLEM algorithm. Photon attenuation was accounted for by calculating the radiological pathlength in a perpendicular line from the center of each voxel to the gamma camera. Twenty-two textural features were calculated on each slice, with and without AC, using 16 and 64 gray levels. A mask was used to identify only those pixels that belonged to each organ. Twelve of the 22 features showed almost no dependence on AC, irrespective of the organ involved. In both the heart and the liver, the mean and SD were the features most affected by AC. In the liver, six features were affected by AC only on some slices. Depending on the slice, skewness decreased by 22-34% with AC, kurtosis by 35-50%, long-run emphasis mean by 71-91%, and long-run emphasis range by 62-95%. In contrast, gray-level non-uniformity mean increased by 78-218% compared with the value without AC and run percentage mean by 51-159%. These results were not affected by the number of gray levels (16 vs. 64) or the data used for reconstruction: with the energy window or without scattered photons. The mean and SD were the main features affected by AC. In the heart, no other feature was

  18. Determination of mass attenuation coefficient in wood and leaves of typical trees by gamma-ray attenuation technique

    International Nuclear Information System (INIS)

    Miranda, Regina M. de; Pascholati, Elisabete M.

    1997-01-01

    Using an 241 Am source the mass attenuation coefficient of different woods and leaves of typical species of the Atlantic Forest were measured. The results for natural wood, dry wood and dry leaves indicate that the variation is very small among different species. However, woods present a higher attenuation than leaves, both depending on their water content. (author). 10 refs., 3 figs., 1 tab

  19. Scatter and attenuation correction in SPECT

    International Nuclear Information System (INIS)

    Ljungberg, Michael

    2004-01-01

    The adsorbed dose is related to the activity uptake in the organ and its temporal distribution. Measured count rate with scintillation cameras is related to activity through the system sensitivity, cps/MBq. By accounting for physical processes and imaging limitations we can measure the activity at different time points. Correction for physical factor, such as attenuation and scatter is required for accurate quantitation. Both planar and SPECT imaging can be used to estimate activities for radiopharmaceutical dosimetry. Planar methods have been the most widely used but is a 2D technique. With accurate modelling for imagine in iterative reconstruction, SPECT methods will prove to be more accurate

  20. Anomalies of ultrasound attenuation in metals under hydrostatic pressure

    International Nuclear Information System (INIS)

    Galkin, A.A.; Datsko, O.I.; Varyukhin, V.N.; Pilipenko, N.P.

    1978-01-01

    Ultrasonic attenuation was measured in polycrystal specimens of molybdenum, chromium and zinc under hydrostatic pressure up to 6 kbar. On the plot of ultrasound attenuation dependence on the pressure in molybdenum the maxima are observed under the pressure of 2 kbar. The anomaly of ultrasound attenuation is shown to connect only with brittle-ductile transtion

  1. Assessment of endothelial function and myocardial flow reserve using {sup 15}O-water PET without attenuation correction

    Energy Technology Data Exchange (ETDEWEB)

    Tuffier, Stephane; Joubert, Michael; Bailliez, Alban [EA 4650, Normandie Universite, Caen (France); Legallois, Damien [EA 4650, Normandie Universite, Caen (France); Caen University Hospital, Department of Cardiology, Caen (France); Belin, Annette [Caen University Hospital, Department of Cardiac Surgery, Caen (France); Redonnet, Michel [Rouen University Hospital, Department of Cardiac Surgery, Rouen (France); Agostini, Denis [EA 4650, Normandie Universite, Caen (France); Caen University Hospital, Department of Nuclear Medicine, Caen (France); Manrique, Alain [EA 4650, Normandie Universite, Caen (France); Caen University Hospital, Department of Nuclear Medicine, Caen (France); Cyceron PET Centre, Caen (France)

    2016-02-15

    Myocardial blood flow (MBF) measurement using positron emission tomography (PET) from the washout rate of {sup 15}O-water is theoretically independent of tissue attenuation. The aim of this study was to evaluate the impact of not using attenuation correction in the assessment of coronary endothelial function and myocardial flow reserve (MFR) using {sup 15}O-water PET. We retrospectively processed 70 consecutive {sup 15}O-water PET examinations obtained at rest and during cold pressor testing (CPT) in patients with dilated cardiomyopathy (n = 58), or at rest and during adenosine infusion in heart transplant recipients (n = 12). Data were reconstructed with attenuation correction (AC) and without attenuation correction (NAC) using filtered backprojection, and MBF was quantified using a single compartmental model. The agreement between AC and NAC data was assessed using Lin's concordance correlation coefficient followed by Bland-Altman plot analysis. Regarding endothelial function, NAC PET showed poor reproducibility and poor agreement with AC PET data. Conversely, NAC PET demonstrated high reproducibility and a strong agreement with AC PET for the assessment of MFR. Non-attenuation-corrected {sup 15}O-water PET provided an accurate measurement of MFR compared to attenuation-corrected PET. However, non-attenuation-corrected PET data were less effective for the assessment of endothelial function using CPT in this population. (orig.)

  2. Post-Retrieval Extinction Attenuates Cocaine Memories

    OpenAIRE

    Sartor, Gregory C; Aston-Jones, Gary

    2013-01-01

    Recent studies have shown that post-retrieval extinction training attenuates fear and reward-related memories in both humans and rodents. This noninvasive, behavioral approach has the potential to be used in clinical settings to treat maladaptive memories that underlie several psychiatric disorders, including drug addiction. However, few studies to date have used a post-retrieval extinction approach to attenuate addiction-related memories. In the current study, we attempted to disrupt cocaine...

  3. Kaempferol Attenuates Myocardial Ischemic Injury via Inhibition of MAPK Signaling Pathway in Experimental Model of Myocardial Ischemia-Reperfusion Injury

    Science.gov (United States)

    Suchal, Kapil; Malik, Salma; Gamad, Nanda; Malhotra, Rajiv Kumar; Goyal, Sameer N.; Chaudhary, Uma; Bhatia, Jagriti; Ojha, Shreesh; Arya, Dharamvir Singh

    2016-01-01

    Kaempferol (KMP), a dietary flavonoid, has antioxidant, anti-inflammatory, and antiapoptotic effects. Hence, we investigated the effect of KMP in ischemia-reperfusion (IR) model of myocardial injury in rats. We studied male albino Wistar rats that were divided into sham, IR-control, KMP-20 + IR, and KMP 20 per se groups. KMP (20 mg/kg; i.p.) was administered daily to rats for the period of 15 days, and, on the 15th day, ischemia was produced by one-stage ligation of left anterior descending coronary artery for 45 min followed by reperfusion for 60 min. After completion of surgery, rats were sacrificed; heart was removed and processed for biochemical, morphological, and molecular studies. KMP pretreatment significantly ameliorated IR injury by maintaining cardiac function, normalizing oxidative stress, and preserving morphological alterations. Furthermore, there was a decrease in the level of inflammatory markers (TNF-α, IL-6, and NFκB), inhibition of active JNK and p38 proteins, and activation of ERK1/ERK2, a prosurvival kinase. Additionally, it also attenuated apoptosis by reducing the expression of proapoptotic proteins (Bax and Caspase-3), TUNEL positive cells, and increased level of antiapoptotic proteins (Bcl-2). In conclusion, KMP protected against IR injury by attenuating inflammation and apoptosis through the modulation of MAPK pathway. PMID:27087891

  4. Kaempferol Attenuates Myocardial Ischemic Injury via Inhibition of MAPK Signaling Pathway in Experimental Model of Myocardial Ischemia-Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Kapil Suchal

    2016-01-01

    Full Text Available Kaempferol (KMP, a dietary flavonoid, has antioxidant, anti-inflammatory, and antiapoptotic effects. Hence, we investigated the effect of KMP in ischemia-reperfusion (IR model of myocardial injury in rats. We studied male albino Wistar rats that were divided into sham, IR-control, KMP-20 + IR, and KMP 20 per se groups. KMP (20 mg/kg; i.p. was administered daily to rats for the period of 15 days, and, on the 15th day, ischemia was produced by one-stage ligation of left anterior descending coronary artery for 45 min followed by reperfusion for 60 min. After completion of surgery, rats were sacrificed; heart was removed and processed for biochemical, morphological, and molecular studies. KMP pretreatment significantly ameliorated IR injury by maintaining cardiac function, normalizing oxidative stress, and preserving morphological alterations. Furthermore, there was a decrease in the level of inflammatory markers (TNF-α, IL-6, and NFκB, inhibition of active JNK and p38 proteins, and activation of ERK1/ERK2, a prosurvival kinase. Additionally, it also attenuated apoptosis by reducing the expression of proapoptotic proteins (Bax and Caspase-3, TUNEL positive cells, and increased level of antiapoptotic proteins (Bcl-2. In conclusion, KMP protected against IR injury by attenuating inflammation and apoptosis through the modulation of MAPK pathway.

  5. Spatially resolved ultrasonic attenuation in resistance spot welds: implications for nondestructive testing.

    Science.gov (United States)

    Mozurkewich, George; Ghaffari, Bita; Potter, Timothy J

    2008-09-01

    Spatial variation of ultrasonic attenuation and velocity has been measured in plane parallel specimens extracted from resistance spot welds. In a strong weld, attenuation is larger in the nugget than in the parent material, and the region of increased attenuation is surrounded by a ring of decreased attenuation. In the center of a stick weld, attenuation is even larger than in a strong weld, and the low-attenuation ring is absent. These spatial variations are interpreted in terms of differences in grain size and martensite formation. Measured frequency dependences indicate the presence of an additional attenuation mechanism besides grain scattering. The observed attenuations do not vary as commonly presumed with weld quality, suggesting that the common practice of using ultrasonic attenuation to indicate weld quality is not a reliable methodology.

  6. Suppression of immune-mediated liver injury after vaccination with attenuated pathogenic cells.

    Science.gov (United States)

    Mei, Yunhua; Wang, Ying; Xu, Lingyun

    2007-05-15

    Cell vaccination via immunization with attenuated pathogenic cells is an effective preventive method that has been successfully applied in several animal models of inflammatory or autoimmune diseases. Concanavalin A (Con A)-induced hepatitis (CIH) is a commonly used experimental model to study immune-mediated liver injury. Multiple cell types including T lymphocytes, macrophages and neutrophils have been found to be involved in the pathogenesis of CIH. In this study, we used attenuated spleen lymphocytes or peripheral blood lymphocytes as vaccines to investigate whether they could induce protective immune responses to prevent mice from developing CIH. We found that mice receiving such vaccination before CIH induction developed much milder diseases, exhibited a lower level of alanine aminotransferase (ALT) released into their plasma and had less inflammatory lesions in their livers. Such CIH-suppression is dose- and frequency-dependent. The suppressive effect was associated with inhibition of several major inflammatory mediators, pro-inflammatory cytokines and chemokines.

  7. Nitrogen attenuation of terrestrial carbon cycle response to global environmental factors

    Science.gov (United States)

    Atul Jain; Xiaojuan Yang; Haroon Kheshgi; A. David McGuire; Wilfred Post; David. Kicklighter

    2009-01-01

    Nitrogen cycle dynamics have the capacity to attenuate the magnitude of global terrestrial carbon sinks and sources driven by CO2 fertilization and changes in climate. In this study, two versions of the terrestrial carbon and nitrogen cycle components of the Integrated Science Assessment Model (ISAM) are used to evaluate how variation in nitrogen...

  8. Expression of the axial magnetic attenuation for a circularly cylindrical magnetic shield with partial openings

    CERN Document Server

    Chang, L H; Luo, G H; Lin, M C

    2002-01-01

    This paper presents a novel empirical formula for evaluating the axial magnetic attenuation of a circularly cylindrical shield with partial openings at both ends, which is derived under the assumption of scaling law with help of the 3-D magnetostatic code TOSCA for computing the magnetic attenuation of some canonical models. Our formula allows a quick evaluation of the magnetic shielding for design application to a superconducting radio-frequency cavity with less than 10% discrepancy in comparison with that obtained from pure numerical simulations.

  9. Berberine attenuates CCN2-induced IL-1β expression and prevents cartilage degradation in a rat model of osteoarthritis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shan-Chi [Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan (China); Lee, Hsiang-Ping [Graduate Institute of Chinese Medicine, China Medical University, Taichung, Taiwan (China); Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan (China); Hung, Chun-Yin [Department of Orthopaedic Surgery, China Medical University Beigang Hospital, Yun-Lin County, Taiwan (China); Tsai, Chun-Hao [Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan (China); Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan (China); Li, Te-Mao [School of Chinese Medicine, China Medical University, Taichung, Taiwan (China); Tang, Chih-Hsin, E-mail: chtang@mail.cmu.edu.tw [Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan (China); Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan (China); Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan (China)

    2015-11-15

    Connective tissue growth factor (CTGF; also known as CCN2) is an inflammatory mediator that is abundantly expressed in osteoarthritis (OA). Interleukin-1β (IL-1β) plays a pivotal role in OA pathogenesis. Berberine exhibits an anti-inflammatory effect, but the mechanisms by which it modulates CCN2-induced IL-1β expression in OA synovial fibroblasts (OASFs) remain unknown. We showed that CCN2-induced IL-1β expression is mediated by the activation of α{sub v}β{sub 3}/α{sub v}β{sub 5} integrin-dependent reactive oxygen species (ROS) generation, and subsequent activation of apoptosis signal-regulating kinase 1 (ASK1), p38/JNK, and nuclear factor-κB (NF-κB) signaling pathways. This IL-1β expression in OASFs is attenuated by N-acetylcysteine (NAC), inhibitors of ASK1, p38, or JNK, or treatment with berberine. Furthermore, berberine also reverses cartilage damage in an experimental model of collagenase-induced OA (CIOA). We observed that CCN2 increased IL-1β expression via α{sub v}β{sub 3}/α{sub v}β{sub 5} integrins, ROS, and ASK1, p38/JNK, and NF-κB signaling pathways. Berberine was found to inhibit these signaling components in OASFs in vitro and prevent cartilage degradation in vivo. We suggest a novel therapeutic strategy of using berberine for managing OA. - Highlights: • CCN2 induce IL-1β production via αvβ3/αvβ5 integrin, ROS, ASK1, p38/JNK, and NF-κB. • Berberine attenuates CCN2-induced IL-1β expression in vitro and in OA rat model. • Berberine as natural drug of choice for anti-inflammatory effect to ameliorates OA.

  10. Natural attenuation processes in landfill leachate plumes at three Danish sites

    DEFF Research Database (Denmark)

    Bjerg, Poul Løgstrup; Tuxen, Nina; Reitzel, Lotte

    2011-01-01

    This article provides an overview of comprehensive core and fringe field studies at three Danish landfill sites. The goal of the research activities is to provide a holistic description of core and fringe attenuation processes for xenobiotic organic compounds in landfill leachate plumes. The appr......This article provides an overview of comprehensive core and fringe field studies at three Danish landfill sites. The goal of the research activities is to provide a holistic description of core and fringe attenuation processes for xenobiotic organic compounds in landfill leachate plumes....... The approach used is cross-disciplinary, encompassing integration of field-scale observations at different scales, field injection experiments, laboratory experiments, and reactive solute transport modeling. This is illustrated in examples from the most recently investigated site-the Sjoelund Landfill...... approaches and tools used in the application of MNA. In particular, the use of in situ indicators to document mass removal in landfill leachate plumes is emphasized. In this article, we advocate the application of conceptual and numerical models as tools for the integration of data and testing of hypotheses....

  11. Waveform tomography images of velocity and inelastic attenuation from the Mallik 2002 crosshole seismic surveys

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, R.G.; Hou, F. [Queen' s Univ., Kingston, ON (Canada); Bauer, K.; Weber, M. [GeoForschungsZentrum Potsdam, Potsdam (Germany)

    2005-07-01

    A time-lapse crosshole seismic survey was conducted at the Mallik field in Canada's Northwest Territories as part of the 2002 Mallik Gas Hydrate Production Research Well Program. The acquired data provided information on the distribution of the compressional-velocity and compressional-attenuation properties of the sediments. Waveform tomography extracted that information and provided subwavelength high-resolution quantitative images of the seismic velocity and attenuation from the first repeat survey, using frequencies between 100 Hz and 1000 Hz. A preprocessing flow was applied to the waveform data that includes tube-wave suppression, low-pass filtering, spatial subsampling, time-windowing, and amplitude equalization. Travel times by anisotropic velocity tomography was used to obtain the starting model for the waveform tomography. The gas-hydrate-bearing sediments were seen as laterally, continuous, high-velocity anomalies and were characterized by an increase in attenuation. The velocity images resolved individual layers as thin as a few metres. These layers could be followed across the area of interest. Slight lateral changes in velocity and in the attenuation factor were observed.

  12. A new parameterization for surface ocean light attenuation in Earth System Models: assessing the impact of light absorption by colored detrital material

    Science.gov (United States)

    Kim, G. E.; Pradal, M.-A.; Gnanadesikan, A.

    2015-03-01

    Light limitation can affect the distribution of biota and nutrients in the ocean. Light absorption by colored detrital material (CDM) was included in a fully coupled Earth System Model using a new parameterization for shortwave attenuation. Two model runs were conducted, with and without light attenuation by CDM. In a global average sense, greater light limitation associated with CDM increased surface chlorophyll, biomass and nutrients together. These changes can be attributed to the movement of biological productivity higher up the water column, which increased surface chlorophyll and biomass while simultaneously decreasing total biomass. Meanwhile, the reduction in biomass resulted in greater nutrient availability throughout the water column. Similar results were found on a regional scale in an analysis of the oceans by biome. In coastal regions, surface chlorophyll increased by 35% while total integrated phytoplankton biomass diminished by 18%. The largest relative increases in modeled surface chlorophyll and biomass in the open ocean were found in the equatorial biomes, while largest decreases in depth-integrated biomass and chlorophyll were found in the subpolar and polar biomes. This mismatch of surface and subsurface trends and their regional dependence was analyzed by comparing the competing factors of diminished light availability and increased nutrient availability on phytoplankton growth in the upper 200 m. Overall, increases in surface biomass were expected to accompany greater nutrient uptake and therefore diminish surface nutrients, but changes in light limitation decoupled trends between these two variables. Understanding changes in biological productivity requires both surface and depth-resolved information. Surface trends may be minimal or of the opposite sign to depth-integrated amounts, depending on the vertical structure of phytoplankton abundance.

  13. Determination of beta attenuation coefficients by means of timing method

    International Nuclear Information System (INIS)

    Ermis, E.E.; Celiktas, C.

    2012-01-01

    Highlights: ► Beta attenuation coefficients of absorber materials were found in this study. ► For this process, a new method (timing method) was suggested. ► The obtained beta attenuation coefficients were compatible with the results from the traditional one. ► The timing method can be used to determine beta attenuation coefficient. - Abstract: Using a counting system with plastic scintillation detector, beta linear and mass attenuation coefficients were determined for bakelite, Al, Fe and plexiglass absorbers by means of timing method. To show the accuracy and reliability of the obtained results through this method, the coefficients were also found via conventional energy method. Obtained beta attenuation coefficients from both methods were compared with each other and the literature values. Beta attenuation coefficients obtained through timing method were found to be compatible with the values obtained from conventional energy method and the literature.

  14. Selenite cataract and its attenuation by vitamin E in wistar rats.

    Directory of Open Access Journals (Sweden)

    Mathew Joe

    2003-01-01

    Full Text Available Purpose: To study the role of vitamin E in preventing cataract formation in experimental animals. Methods: An experimental model (selenite cataract was selected for this study. Selenite cataract was produced in rats by subcutaneous administration of sodium selenite. Biochemical and histological changes following induction of selenite cataract in weanling wistar rats were studied vis-à-vis the role of vitamin E in attenuating or preventing cataractogenesis. Results: Vitamin E was capable of preventing selenite cataractogenesis. Selenite cataract did not develop in 91.6% (11 of 12 and 76.7% (8 of 12 vitamin E treated rats, when administered on the 12th and 10th post partum day respectively. Conclusion: The study confirmed that selenite induced cataract in wistar rats is attenuated by vitamin E.

  15. Monitoring moisture movements in building materials using x-ray attenuation

    DEFF Research Database (Denmark)

    Pease, Bradley Justin; Scheffler, Gregor A.; Janssen, Hans

    2012-01-01

    analysis with a composite model consisting of a dry porous material and a thickness of water equivalent to the moisture content of the material. The current formulation of this composite model relies on certain assumptions, including a monochromatic x-ray photon beam source (i.e., x-ray photons of a single....... Implications of this inconsistency are introduced and discussed. This paper presents both an overview of fundamental descriptions of the x-ray attenuation measurement technique and results from a parametric experimental study of various porous construction materials, including calcium silicate board, aerated...

  16. Attenuating reaches and the regional flood response of an urbanizing drainage basin

    Science.gov (United States)

    Turner-Gillespie, Daniel F.; Smith, James A.; Bates, Paul D.

    The Charlotte, North Carolina metropolitan area has experienced extensive urban and suburban growth and sharply increasing trends in the magnitude and frequency of flooding. The hydraulics and hydrology of flood response in the region are examined through a combination of numerical modeling studies and diagnostic analyses of paired discharge observations from upstream-downstream gaging stations. The regional flood response is shown to strongly reflect urbanization effects, which increase flood peaks and decrease response times, and geologically controlled attenuating reaches, which decrease flood peaks and increase lag times. Attenuating reaches are characterized by systematic changes in valley bottom geometry and longitudinal profile. The morphology of the fluvial system is controlled by the bedrock geology, with pronounced changes occurring at or near contacts between intrusive igneous and metamorphic rocks. Analyses of wave celerity and flood peak attenuation over a range of discharge values for an 8.3 km valley bottom section of Little Sugar Creek are consistent with Knight and Shiono's characterization of the variation of flood wave velocity from in-channel conditions to valley bottom full conditions. The cumulative effect of variation in longitudinal profile, expansions and contractions of the valley bottom, floodplain roughness and sub-basin flood response is investigated using a two-dimensional, depth-averaged, finite element hydrodynamic model coupled with a distributed hydrologic model. For a 10.1 km stream reach of Briar Creek, with drainage area ranging from 13 km 2 at the upstream end of the reach to 49 km 2 at the downstream end, it is shown that flood response reflects a complex interplay of hydrologic and hydraulic processes on hillslopes and valley bottoms.

  17. Natural and Enhanced Attenuation of Chlorinated Solvents Using RT3D

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Christian D.; Truex, Michael J.; Clement, T P.

    2006-07-25

    RT3D (Reactive Transport in 3-Dimensions) is a reactive transport code that can be applied to model solute fate and transport for many different purposes. This document specifically addresses application of RT3D for modeling related to evaluation and implementation of Monitored Natural Attenuation (MNA). Selection of MNA as a remedy requires an evaluation process to demonstrate that MNA will meet the remediation goals. The U.S. EPA, through the Office of Solid Waste and Emergency Response (OSWER) Directive 9200.4?17P, provides the regulatory context for the evaluation and implementation of MNA. In a complementary fashion, the context for using fate and transport modeling as part of MNA evaluation is described in the EPA?s technical protocol for chlorinated solvent MNA, the Scenarios Evaluation Tool for Chlorinated Solvent MNA, and in this document. The intent of this document is to describe (1) the context for applying RT3D for chlorinated solvent MNA and (2) the attenuation processes represented in RT3D, (3) dechlorination reactions that may occur, and (4) the general approach for using RT3D reaction modules (including a summary of the RT3D reaction modules that are available) to model fate and transport of chlorinated solvents as part of MNA or for combinations of MNA and selected types of active remediation.

  18. Tracking the attenuation and nonbreaking dissipation of swells using altimeters

    Science.gov (United States)

    Jiang, Haoyu; Stopa, Justin E.; Wang, He; Husson, Romain; Mouche, Alexis; Chapron, Bertrand; Chen, Ge

    2016-02-01

    A method for systematically tracking swells across oceanic basins is developed by taking advantage of high-quality data from space-borne altimeters and wave model output. The evolution of swells is observed over large distances based on 202 swell events with periods ranging from 12 to 18 s. An empirical attenuation rate of swell energy of about 4 × 10-7 m-1 is estimated using these observations, and the nonbreaking energy dissipation rates of swells far away from their generating areas are also estimated using a point source model. The resulting acceptance range of nonbreaking dissipation rates is -2.5 to 5.0 × 10-7 m-1, which corresponds to a dissipation e-folding scales of at least 2000 km for steep swells, to almost infinite for small-amplitude swells. These resulting rates are consistent with previous studies using in-situ and synthetic aperture radar (SAR) observations. The frequency dispersion and angular spreading effects during swell propagation are discussed by comparing the results with other studies, demonstrating that they are the two dominant processes for swell height attenuation, especially in the near field. The resulting dissipation rates from these observations can be used as a reference for ocean engineering and wave modeling, and for related studies such as air-sea and wind-wave-turbulence interactions.

  19. Attenuated radon transform: theory and application in medicine and biology

    Energy Technology Data Exchange (ETDEWEB)

    Gullberg, G.T.

    1979-06-01

    A detailed analysis is given of the properties of the attenuated Radon transform and of how increases in photon attenuation influence the numerical accuracy and computation efficiency of iterative and convolution algorithms used to determine its inversion. The practical applications for this work involve quantitative assessment of the distribution of injected radiopharmaceuticals and radionuclides in man and animals for basic physiological and biochemical studies as well as clinical studies in nuclear medicine. A mathematical structure is developed using function theory and the theory of linear operators on Hilbert spaces which lends itself to better understanding the spectral properties of the attenuated Radon transform. The continuous attenuated Radon transform reduces to a matrix operator for discrete angular and lateral sampling, and the reconstruction problem reduces to a system of linear equations. For the situation of variable attenuation coefficient frequently found in nuclear medicine applications of imaging the heart and chest, the procedure developed in this thesis involves iterative techniques of performing the generalized inverse. For constant attenuation coefficient less than 0.15 cm/sup -1/, convolution methods can reliably reconstruct a 30 cm object with 0.5 cm resolution. However, for high attenuation coefficients or for the situation where there is variable attenuation such as reconstruction of distribution of isotopes in the heart, iterative techniques developed in this thesis give the best results. (ERB)

  20. Curcumin, a polyphenolic antioxidant, attenuates chronic fatigue syndrome in murine water immersion stress model.

    Science.gov (United States)

    Gupta, Amit; Vij, Garima; Sharma, Sameer; Tirkey, Naveen; Rishi, Praveen; Chopra, Kanwaljit

    2009-01-01

    Chronic fatigue syndrome, infection and oxidative stress are interrelated in epidemiological case studies. However, data demonstrating scientific validation of epidemiological claims regarding effectiveness of nutritional supplements for chronic fatigue syndrome are lacking. This study is designed to evaluate the effect of natural polyphenol, curcumin, in a mouse model of immunologically induced fatigue, where purified lipopolysaccharide (LPS) and Brucella abortus (BA) antigens were used as immunogens. The assessment of chronic fatigue syndrome was based on chronic water-immersion stress test for 10 min daily for 19 days and the immobility time was taken as the marker of fatigue. Mice challenged with LPS or BA for 19 days showed significant increase in the immobility time and hyperalgesia on day 19, as well as marked increase in serum tumor necrosis factor-alpha (TNF-alpha) levels. Concurrent treatment with curcumin resulted in significantly decreased immobility time as well as hyperalgesia. There was significant attenuation of oxidative stress as well as TNF-alpha levels. These findings strongly suggest that during immunological activation, there is significant increase in oxidative stress and curcumin can be a valuable option in the treatment of chronic fatigue syndrome.

  1. Attenuation of trace organic compounds (TOrCs) inbioelectrochemical systems

    KAUST Repository

    Werner, Craig M.

    2015-04-01

    Microbial fuel cells (MFCs) and microbial electrolysis cells (MECs) are two types of microbial bioelectrochemical systems (BESs) that use microorganisms to convert chemical energy in wastewaters into useful energy products such as (bio)electricity (MFC) or hydrogen gas (MEC). These two systems were evaluated for their capacity to attenuate trace organic compounds (TOrCs), commonly found in municipal wastewater, under closed circuit (current generation) and open circuit (no current generation) conditions, using acetate as the carbon source. A biocide was used to evaluate attenuation in terms of biotransformation versus sorption. The difference in attenuation observed before and after addition of the biocide represented biotransformation, while attenuation after addition of a biocide primarily indicated sorption. Attenuation of TOrCs was similar in MFCs and MECs for eight different TOrCs, except for caffeine and trimethoprim where slightly higher attenuation was observed in MECs. Electric current generation did not enhance attenuation of the TOrCs except for caffeine, which showed slightly higher attenuation under closed circuit conditions in both MFCs and MECs. Substantial sorption of the TOrCs occurred to the biofilm-covered electrodes, but no consistent trend could be identified regarding the physico-chemical properties of the TOrCs tested and the extent of sorption. The octanol-water distribution coefficient at pH 7.4 (log DpH 7.4) appeared to be a reasonable predictor for sorption of some of the compounds (carbamazepine, atrazine, tris(2-chloroethyl) phosphate and diphenhydramine) but not for others (N,N-Diethyl-meta-toluamide). Atenolol also showed high levels of sorption despite being the most hydrophilic in the suite of compounds studied (log DpH 7.4=-1.99). Though BESs do not show any inherent advantages over conventional wastewater treatment, with respect to TOrC removal, overall removals in BESs are similar to that reported for conventional wastewater

  2. Active inference, sensory attenuation and illusions.

    Science.gov (United States)

    Brown, Harriet; Adams, Rick A; Parees, Isabel; Edwards, Mark; Friston, Karl

    2013-11-01

    Active inference provides a simple and neurobiologically plausible account of how action and perception are coupled in producing (Bayes) optimal behaviour. This can be seen most easily as minimising prediction error: we can either change our predictions to explain sensory input through perception. Alternatively, we can actively change sensory input to fulfil our predictions. In active inference, this action is mediated by classical reflex arcs that minimise proprioceptive prediction error created by descending proprioceptive predictions. However, this creates a conflict between action and perception; in that, self-generated movements require predictions to override the sensory evidence that one is not actually moving. However, ignoring sensory evidence means that externally generated sensations will not be perceived. Conversely, attending to (proprioceptive and somatosensory) sensations enables the detection of externally generated events but precludes generation of actions. This conflict can be resolved by attenuating the precision of sensory evidence during movement or, equivalently, attending away from the consequences of self-made acts. We propose that this Bayes optimal withdrawal of precise sensory evidence during movement is the cause of psychophysical sensory attenuation. Furthermore, it explains the force-matching illusion and reproduces empirical results almost exactly. Finally, if attenuation is removed, the force-matching illusion disappears and false (delusional) inferences about agency emerge. This is important, given the negative correlation between sensory attenuation and delusional beliefs in normal subjects--and the reduction in the magnitude of the illusion in schizophrenia. Active inference therefore links the neuromodulatory optimisation of precision to sensory attenuation and illusory phenomena during the attribution of agency in normal subjects. It also provides a functional account of deficits in syndromes characterised by false inference

  3. Curcumin attenuates the scurfy-induced immune disorder, a model of IPEX syndrome, with inhibiting Th1/Th2/Th17 responses in mice.

    Science.gov (United States)

    Lee, Gihyun; Chung, Hwan-Suck; Lee, Kyeseok; Lee, Hyeonhoon; Kim, Minhwan; Bae, Hyunsu

    2017-09-15

    Immunodysregulation polyendocrinopathy enteropathy X-linked syndrome (IPEX) is a lethal autoimmune disease caused by mutations in the Foxp3 gene scurfin (scurfy). Immunosuppressive therapy for IPEX patients has been generally ineffective and has caused severe side effects, however curcumin has shown immune regulation properties for inflammatory diseases, such as rheumatoid arthritis, psoriasis, and inflammatory bowel diseases without side effects. The aim of this study was to investigate whether curcumin would attenuate symptoms of IPEX in mouse model and would prolong its survival period. C57BL/6 mice were separated into scurfy or wild-type litter mate groups by genotyping, and each group subsequently was separated into 2 subgroups that were fed a 1% curcumin containing or normal diet from the last day of breast-feeding. After weaning, pups were fed either a 1% curcumin containing or normal diet until all scurfy mice die for survival data. To elucidate immune cell proportions in spleen and lymph nodes, cells were analyzed by flowcytometry. Cellular cytokine production was accessed to investigate the effects of curcumin in T cell differentiation in vitro. Scurfy mice fed a 1% curcumin diet survived 4.0-fold longer compared to scurfy (92.5 days) mice fed a normal diet (23 days). A curcumin diet decreased all of the Th1/Th2/Th17 cell populations and attenuated diverse symptoms such as splenomegaly in scurfy mice. In vitro experiments showed that curcumin treatment directly decreased the Th1/Th2/Th17 cytokine production of IFN-γ, IL-4, and IL-17A in CD4 + T cells. Curcumin diet attenuated the scurfy-induced immune disorder, a model of IPEX syndrome, by inhibiting Th1/Th2/Th17 responses in mice. These results have implications for improving clinical therapy for patients with IPEX and other T cell related autoimmune diseases. Copyright © 2017 Elsevier GmbH. All rights reserved.

  4. Quantum system under the actions of two counteracting baths: A model for the attenuation-amplification interplay

    International Nuclear Information System (INIS)

    Lorenzen, F.; Moussa, M. H. Y.; Ponte, M. A. de; Almeida, N. G. de

    2009-01-01

    We analyze the dynamical behavior of a quantum system under the actions of two counteracting baths: the inevitable energy draining reservoir and, in opposition, exciting the system, an engineered Glauber's amplifier. We follow the system dynamics towards equilibrium to map its distinctive behavior arising from the interplay of attenuation and amplification. Such a mapping, with the corresponding parameter regimes, is achieved by calculating the evolution of both the excitation and the Glauber-Sudarshan P function. Techniques to compute the decoherence and the fidelity of quantum states under the action of both counteracting baths, based on the Wigner function rather than the density matrix, are also presented. They enable us to analyze the similarity of the evolved state vector of the system with respect to the original one, for all regimes of parameters. Applications of this attenuation-amplification interplay are discussed.

  5. Development of a new technic for breast attenuation correction in myocardial perfusion scintigraphy using computational methods

    International Nuclear Information System (INIS)

    Oliveira, Anderson de

    2015-01-01

    Introduction: One of the limitations of nuclear medicine studies are false-positive results that lead to unnecessary exams and procedures associated to morbidity and costs to the individual and society. One of the most frequent causes for reducing the specificity of myocardial perfusion imaging (MPI) is photon attenuation, especially by breast in women. Objective: To develop a new technique to compensate the photon attenuation by women breasts in myocardial perfusion imaging with 99m Tc-sestamibi, using computational methods. Materials and methods: A procedure was proposed which integrates Monte Carlo simulation, computational methods and experimental techniques. Initially, were obtained the chest attenuation correction percentages using a phantom Jaszczak and breast attenuation percentages by Monte Carlo simulation method, using the EGS4 program. The percentages of attenuation correction were linked to individual patients' characteristics by an artificial neural network and a multivariate analysis. A preliminary technical validation was done by comparing the results of the MPI and catheterism (CAT), before and after applying the technique to 4 patients. The t test for parametric data, Wilcoxon, Mann-Whitney and X 2 for the others were used. Probability values less than 0.05 were considered statistically significant. Results: Each increment of 1 cm in the thickness of breast was associated to an average increment of 6% on photon attenuation, while the maximum increase related to breast composition was about 2%. The average chest attenuation percentage per unit was 2.9%. Both, the artificial neural network and linear regression, showed an error less than 3% as predictive models for percentage of female attenuation. The anatomical-functional correlation between MPI and CAT was maintained after the use of the technique. Conclusion: Results suggest that the proposed technique is promising and could be a possible alternative to other conventional methods employed

  6. Inhibition of NF-κB activity in the hypothalamic paraventricular nucleus attenuates hypertension and cardiac hypertrophy by modulating cytokines and attenuating oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Xiao-Jing [Department of Physiology and Pathophysiology, Xi' an Jiaotong University School of Basic Medical Sciences, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University Health Science Center, Xi' an 710061 (China); Zhang, Dong-Mei [Department of Physiology, Dalian Medical University, Dalian 116044 (China); Jia, Lin-Lin; Qi, Jie; Song, Xin-Ai; Tan, Hong [Department of Physiology and Pathophysiology, Xi' an Jiaotong University School of Basic Medical Sciences, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University Health Science Center, Xi' an 710061 (China); Cui, Wei [Department of Endocrinology and Metabolism, First Affiliated Hospital of Xi' an Jiaotong University, Xi' an Jiaotong University Health Science Center, Xi' an 710061 (China); Chen, Wensheng [Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi' an 710032 (China); Zhu, Guo-Qing [Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing 210029 (China); Qin, Da-Nian, E-mail: dnqin@stu.edu.cn [Department of Physiology, Shantou University Medical College, Shantou 515041 (China); Kang, Yu-Ming, E-mail: ykang@mail.xjtu.edu.cn [Department of Physiology and Pathophysiology, Xi' an Jiaotong University School of Basic Medical Sciences, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University Health Science Center, Xi' an 710061 (China)

    2015-05-01

    We hypothesized that chronic inhibition of NF-κB activity in the hypothalamic paraventricular nucleus (PVN) delays the progression of hypertension and attenuates cardiac hypertrophy by up-regulating anti-inflammatory cytokines, reducing pro-inflammatory cytokines (PICs), attenuating nuclear factor-κB (NF-κB) p65 and NAD(P)H oxidase in the PVN of young spontaneously hypertensive rats (SHR). Young normotensive Wistar–Kyoto (WKY) and SHR rats received bilateral PVN infusions with NF–κB inhibitor pyrrolidine dithiocarbamate (PDTC) or vehicle for 4 weeks. SHR rats had higher mean arterial pressure and cardiac hypertrophy as indicated by increased whole heart weight/body weight ratio, whole heart weight/tibia length ratio, left ventricular weight/tibia length ratio, cardiomyocyte diameters of the left cardiac ventricle, and mRNA expressions of cardiac atrial natriuretic peptide (ANP) and beta-myosin heavy chain (β-MHC). These SHR rats had higher PVN levels of proinflammatory cytokines (PICs), reactive oxygen species (ROS), the chemokine monocyte chemoattractant protein-1 (MCP-1), NAD(P)H oxidase activity, mRNA expression of NOX-2 and NOX-4, and lower PVN IL-10, and higher plasma levels of PICs and NE, and lower plasma IL-10. PVN infusion of NF-κB inhibitor PDTC attenuated all these changes. These findings suggest that NF-κB activation in the PVN increases sympathoexcitation and hypertensive response, which are associated with the increases of PICs and oxidative stress in the PVN; PVN inhibition of NF-κB activity attenuates PICs and oxidative stress in the PVN, thereby attenuates hypertension and cardiac hypertrophy. - Highlights: • Spontaneously hypertensive rats exhibit neurohormonal excitation in the PVN. • PVN inhibition of NF-κB attenuates hypertension-induced cardiac hypertrophy. • PVN inhibition of NF-κB attenuates hypertension-induced neurohormonal excitation. • PVN inhibition of NF-κB attenuates hypertension-induced imbalance of cytokines

  7. A proposal on evaluation method of neutron absorption performance to substitute conventional neutron attenuation test

    International Nuclear Information System (INIS)

    Kim, Je Hyun; Shim, Chang Ho; Kim, Sung Hyun; Choe, Jung Hun; Cho, In Hak; Park, Hwan Seo; Park, Hyun Seo; Kim, Jung Ho; Kim, Yoon Ho

    2016-01-01

    For a verification of newly-developed neutron absorbers, one of guidelines on the qualification and acceptance of neutron absorbers is the neutron attenuation test. However, this approach can cause a problem for the qualifications that it cannot distinguish how the neutron attenuates from materials. In this study, an estimation method of neutron absorption performances for materials is proposed to detect both direct penetration and back-scattering neutrons. For the verification of the proposed method, MCNP simulations with the experimental system designed in this study were pursued using the polyethylene, iron, normal glass and the vitrified form. The results show that it can easily test neutron absorption ability using single absorber model. Also, from simulation results of single absorber and double absorbers model, it is verified that the proposed method can evaluate not only the direct thermal neutrons passing through materials, but also the scattered neutrons reflected to the materials. Therefore, the neutron absorption performances can be accurately estimated using the proposed method comparing with the conventional neutron attenuation test. It is expected that the proposed method can contribute to increase the reliability of the performance of neutron absorbers

  8. A proposal on evaluation method of neutron absorption performance to substitute conventional neutron attenuation test

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Je Hyun; Shim, Chang Ho [Dept. of Nuclear Engineering, Hanyang University, Seoul (Korea, Republic of); Kim, Sung Hyun [Nuclear Fuel Cycle Waste Treatment Research Division, Research Reactor Institute, Kyoto University, Osaka (Japan); Choe, Jung Hun; Cho, In Hak; Park, Hwan Seo [Ionizing Radiation Center, Nuclear Fuel Cycle Waste Treatment Research Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Hyun Seo; Kim, Jung Ho; Kim, Yoon Ho [Ionizing Radiation Center, Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2016-12-15

    For a verification of newly-developed neutron absorbers, one of guidelines on the qualification and acceptance of neutron absorbers is the neutron attenuation test. However, this approach can cause a problem for the qualifications that it cannot distinguish how the neutron attenuates from materials. In this study, an estimation method of neutron absorption performances for materials is proposed to detect both direct penetration and back-scattering neutrons. For the verification of the proposed method, MCNP simulations with the experimental system designed in this study were pursued using the polyethylene, iron, normal glass and the vitrified form. The results show that it can easily test neutron absorption ability using single absorber model. Also, from simulation results of single absorber and double absorbers model, it is verified that the proposed method can evaluate not only the direct thermal neutrons passing through materials, but also the scattered neutrons reflected to the materials. Therefore, the neutron absorption performances can be accurately estimated using the proposed method comparing with the conventional neutron attenuation test. It is expected that the proposed method can contribute to increase the reliability of the performance of neutron absorbers.

  9. A practical attenuation compensation method for cone beam spect

    International Nuclear Information System (INIS)

    Manglos, S.H.; Jaszczak, R.J.; Floyd, C.E.; Greer, K.L.; Coleman, R.E.

    1987-01-01

    An algorithm for attenuation compensation of cone beam SPECT images has been developed and implemented. The algorithm is based on a multiplicative post-processing method previously used for parallel and fan beam geometries. This method computes the compensation from the estimated average attenuation of photons originating from each image pixel. In the present development, a uniform attenuation coefficient inside of the body contour is assumed, although the method could be extended to include a non-uniform attenuation map. The algorithm is tested with experimental projections of a phantom obtained using a cone beam collimator. Profiles through the reconstructed images are presented as a quantitative test of the improvement due to the compensation. The algorithm provides adequate compensation for attenuation in a simple uniform cylindrical phantom, and the computational time is short compared to that expected for iterative reconstruction techniques. Also observed are image distortions in some reconstructed slices when the source distribution extends beyond the edge of the cone beam axial field-of-view

  10. Patient position alters attenuation effects in multipinhole cardiac SPECT.

    Science.gov (United States)

    Timmins, Rachel; Ruddy, Terrence D; Wells, R Glenn

    2015-03-01

    Dedicated cardiac cameras offer improved sensitivity over conventional SPECT cameras. Sensitivity gains are obtained by large numbers of detectors and novel collimator arrangements such as an array of multiple pinholes that focus on the heart. Pinholes lead to variable amounts of attenuation as a source is moved within the camera field of view. This study evaluated the effects of this variable attenuation on myocardial SPECT images. Computer simulations were performed for a set of nine point sources distributed in the left ventricular wall (LV). Sources were placed at the location of the heart in both an anthropomorphic and a water-cylinder computer phantom. Sources were translated in x, y, and z by up to 5 cm from the center. Projections were simulated with and without attenuation and the changes in attenuation were compared. A LV with an inferior wall defect was also simulated in both phantoms over the same range of positions. Real camera data were acquired on a Discovery NM530c camera (GE Healthcare, Haifa, Israel) for five min in list-mode using an anthropomorphic phantom (DataSpectrum, Durham, NC) with 100 MBq of Tc-99m in the LV. Images were taken over the same range of positions as the simulations and were compared based on the summed perfusion score (SPS), defect width, and apparent defect uptake for each position. Point sources in the water phantom showed absolute changes in attenuation of ≤8% over the range of positions and relative changes of ≤5% compared to the apex. In the anthropomorphic computer simulations, absolute change increased to 20%. The changes in relative attenuation caused a change in SPS of position-dependent changes were removed with attenuation correction. Translation of a source relative to a multipinhole camera caused only small changes in homogeneous phantoms with SPS changing position-dependent changes in attenuation.

  11. An Approximate Method for the Acoustic Attenuating VTI Eikonal Equation

    KAUST Repository

    Hao, Q.

    2017-05-26

    We present an approximate method to solve the acoustic eikonal equation for attenuating transversely isotropic media with a vertical symmetry axis (VTI). A perturbation method is used to derive the perturbation formula for complex-valued traveltimes. The application of Shanks transform further enhances the accuracy of approximation. We derive both analytical and numerical solutions to the acoustic eikonal equation. The analytic solution is valid for homogeneous VTI media with moderate anellipticity and strong attenuation and attenuation-anisotropy. The numerical solution is applicable for inhomogeneous attenuating VTI media.

  12. An Approximate Method for the Acoustic Attenuating VTI Eikonal Equation

    KAUST Repository

    Hao, Q.; Alkhalifah, Tariq Ali

    2017-01-01

    We present an approximate method to solve the acoustic eikonal equation for attenuating transversely isotropic media with a vertical symmetry axis (VTI). A perturbation method is used to derive the perturbation formula for complex-valued traveltimes. The application of Shanks transform further enhances the accuracy of approximation. We derive both analytical and numerical solutions to the acoustic eikonal equation. The analytic solution is valid for homogeneous VTI media with moderate anellipticity and strong attenuation and attenuation-anisotropy. The numerical solution is applicable for inhomogeneous attenuating VTI media.

  13. When and Why Mimicry is Facilitated and Attenuated

    NARCIS (Netherlands)

    Stel, Mariëlle; van Dijk, Eric; van Baaren, Rick B.

    2016-01-01

    Although people tend to mimic others automatically, mimicry is facilitated or attenuated depending on the specific context. In the current paper, the authors discuss when mimicry is facilitated and attenuated depending on characteristics of situations, targets, and observers. On the basis of the

  14. Magnitude corrections for attenuation in the upper mantle

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    Since 1969, a consistent discrepancy in seismic magnitudes of nuclear detonations at NTS compared with magnitudes of detonations elsewhere in the world has been observed. This discrepancy can be explained in terms of a relatively high seismic attenuation for compressional waves in the upper mantle beneath the NTS and in certain other locations. A correction has been developed for this attenuation based on a relationship between the velocity of compressional waves at the top of the earth's mantle (just beneath the Mohorovicic discontinuity) and the seismic attenuation further down in the upper mantle. Our new definition of body-wave magnitude includes corrections for attenuation in the upper mantle at both ends of the teleseismic body-wave path. These corrections bring the NTS oservations into line with measurements of foreign events, and enable one to make more reliable estimates of yields of underground nuclear explosions, wherever the explosion occurs

  15. Electromagnetic Wave Attenuation in Atmospheric Pressure Plasma

    International Nuclear Information System (INIS)

    Zhang Shu; Hu Xiwei; Liu Minghai; Luo Fang; Feng Zelong

    2007-01-01

    When an electromagnetic (EM) wave propagates in an atmospheric pressure plasma (APP) layer, its attenuation depends on the APP parameters such as the layer width, the electron density and its profile and collision frequency between electrons and neutrals. This paper proposes that a combined parameter-the product of the line average electron density n-bar and width d of the APP layer (i.e., the total number of electrons in a unit volume along the wave propagation path) can play a more explicit and decisive role in the wave attenuation than any of the above individual parameters does. The attenuation of the EM wave via the product of n-bar and d with various collision frequencies between electrons and neutrals is presented

  16. Investigation of multilayered nanocomposites as low energy X-Rays attenuators

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Liliane; Batista, Adriana S.M.; Nascimento, Jefferson P.; Furtado, Clascídia A.; Faria, Luiz O., E-mail: asfisica@gmail.com, E-mail: adriananuclear@yahoo.com.br, E-mail: farialo@cdtn.br, E-mail: nascimentopatricio@yahoo.com.br, E-mail: clas@cdtn.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil); Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-11-01

    The development of radiation attenuating materials has application in radioprotection and conditioning of short-lived waste. Polymeric materials can serve as a matrix for the dispersion of nanomaterials with good attenuation features, resulting in lightweight, conformable, flexible and easy-to-process materials. Thus, some well-known shielding materials could be used in low proportion for the formation of new materials. On the other hand, nanostructured carbon materials, such as graphene oxide (GO) and carbon nanotubes (NTCs), have been reported recently to show enhanced attenuation properties. In this sense, polymeric matrixes provide the necessary flexibility for use in various applications that require molding. For the present work, poly(vinylidene fluoride) [PVDF] homopolymers and its fluorinated copolymers were filled with nanosized metallic and graphene oxides in order to produce nanocomposites with increased low energy X-ray attenuation efficiency. Film samples of PVDF/reduced Graphene Oxide [PVDF/rGO] and Poly(vinylidene fluoride – tryfluorethylene)/Barium Oxide [P(VDF-TrFE)/BaO] were synthesized. In a second step, the samples were then sandwiched between Kapton® layers and exposed to X-rays source (8.5 keV). The samples were characterized with Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). The attenuation coefficient was evaluated and compared with the attenuation of the individual constituents. It was observed an increase in the linear attenuation coefficient of the layered materials, justifying further investigation of these nanostructured composites as X-ray or gamma radiation attenuators. (author)

  17. Investigation of multilayered nanocomposites as low energy X-Rays attenuators

    International Nuclear Information System (INIS)

    Silva, Liliane; Batista, Adriana S.M.; Nascimento, Jefferson P.; Furtado, Clascídia A.; Faria, Luiz O.

    2017-01-01

    The development of radiation attenuating materials has application in radioprotection and conditioning of short-lived waste. Polymeric materials can serve as a matrix for the dispersion of nanomaterials with good attenuation features, resulting in lightweight, conformable, flexible and easy-to-process materials. Thus, some well-known shielding materials could be used in low proportion for the formation of new materials. On the other hand, nanostructured carbon materials, such as graphene oxide (GO) and carbon nanotubes (NTCs), have been reported recently to show enhanced attenuation properties. In this sense, polymeric matrixes provide the necessary flexibility for use in various applications that require molding. For the present work, poly(vinylidene fluoride) [PVDF] homopolymers and its fluorinated copolymers were filled with nanosized metallic and graphene oxides in order to produce nanocomposites with increased low energy X-ray attenuation efficiency. Film samples of PVDF/reduced Graphene Oxide [PVDF/rGO] and Poly(vinylidene fluoride – tryfluorethylene)/Barium Oxide [P(VDF-TrFE)/BaO] were synthesized. In a second step, the samples were then sandwiched between Kapton® layers and exposed to X-rays source (8.5 keV). The samples were characterized with Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). The attenuation coefficient was evaluated and compared with the attenuation of the individual constituents. It was observed an increase in the linear attenuation coefficient of the layered materials, justifying further investigation of these nanostructured composites as X-ray or gamma radiation attenuators. (author)

  18. On the attenuation of the ambient seismic field

    International Nuclear Information System (INIS)

    Weemstra, C.

    2013-01-01

    Although myriad applications exploiting the ambient seismic field have been reported to date, comparatively little attention has been paid to its potential to resolve subsurface attenuation. The ambient seismic field, however, may ultimately prove itself an invaluable asset in constraining subsurface attenuation structure. Especially areas with dense seismometer coverage hold great potential. Moreover, since this coverage continues to grow, significant developments may await in the future. Subsurface structure in terms of attenuation is of great importance for many reasons. For example, knowledge of the attenuation structure may aid in predicting ground motions caused by future large earthquakes. From a scientific perspective, a great deal of new information may be extracted, potentially fostering research in related fields (e.g., geodynamics, hydrology). Both from an environmental and economic point of view, inversion of the ambient seismic wavefield for attenuation structure may in the future provide a means to image hydrocarbon reservoirs. In sufficiently diffuse wavefields, simple cross-correlation of long noise time series recorded by two receivers results in the response at one of the receivers as if there was a source at the position of the other. I present a case study that shows that thus retrieved surface waves can be used to recover attenuation beneath an array of ocean-bottom seismometers. Given the small aperture of the seismic survey, this is unprecedented. Unambiguous interpretation of recovered attenuation values is of major importance. Lack of understanding of the effect that preprocessing has on the amplitude of the noise cross-correlation prevents such unambiguous interpretation. I carefully examine the effect spectral whitening has on the noise cross-correlation. Emphasis is given to the dependence of the amplitudes on the length of the time windows employed in the cross-correlation procedure. Short time-window lengths may require an additional

  19. Attenuation Effects of Plasma on Ka-Band Wave Propagation in Various Gas and Pressure Environments

    Directory of Open Access Journals (Sweden)

    Joo Hwan Lee

    2018-01-01

    Full Text Available This work demonstrates attenuation effects of plasma on waves propagating in the 26.5–40 GHz range. The effect is investigated via experiments measuring the transmission between two Ka-band horn antennas set 30 cm apart. A dielectric-barrier-discharge (DBD plasma generator with a size of 200 mm × 100 mm × 70 mm and consisting of 20 layers of electrodes is placed between the two antennas. The DBD generator is placed in a 400 mm × 300 mm × 400 mm acrylic chamber so that the experiments can be performed for plasma generated under various conditions of gas and pressure, for instance, in air, Ar, and He environments at 0.001, 0.05, and 1 atm of pressure. Attenuation is calculated by the difference in the transmission level, with and without plasma, which is generated with a bias voltage of 20 kV in the 0.1–1.4 kHz range. Results show that the attenuation varies from 0.05 dB/m to 9.0 dB/m depending on the environment. Noble gas environments show higher levels of attenuation than air, and He is lossier than Ar. In all gas environments, attenuation increases as pressure increases. Finally, electromagnetic models of plasmas generated in various conditions are provided.

  20. Patient position alters attenuation effects in multipinhole cardiac SPECT

    International Nuclear Information System (INIS)

    Timmins, Rachel; Ruddy, Terrence D.; Wells, R. Glenn

    2015-01-01

    Purpose: Dedicated cardiac cameras offer improved sensitivity over conventional SPECT cameras. Sensitivity gains are obtained by large numbers of detectors and novel collimator arrangements such as an array of multiple pinholes that focus on the heart. Pinholes lead to variable amounts of attenuation as a source is moved within the camera field of view. This study evaluated the effects of this variable attenuation on myocardial SPECT images. Methods: Computer simulations were performed for a set of nine point sources distributed in the left ventricular wall (LV). Sources were placed at the location of the heart in both an anthropomorphic and a water-cylinder computer phantom. Sources were translated in x, y, and z by up to 5 cm from the center. Projections were simulated with and without attenuation and the changes in attenuation were compared. A LV with an inferior wall defect was also simulated in both phantoms over the same range of positions. Real camera data were acquired on a Discovery NM530c camera (GE Healthcare, Haifa, Israel) for five min in list-mode using an anthropomorphic phantom (DataSpectrum, Durham, NC) with 100 MBq of Tc-99m in the LV. Images were taken over the same range of positions as the simulations and were compared based on the summed perfusion score (SPS), defect width, and apparent defect uptake for each position. Results: Point sources in the water phantom showed absolute changes in attenuation of ≤8% over the range of positions and relative changes of ≤5% compared to the apex. In the anthropomorphic computer simulations, absolute change increased to 20%. The changes in relative attenuation caused a change in SPS of <1.5 for the water phantom but up to 4.2 in the anthropomorphic phantom. Changes were larger for axial than for transverse translations. These results were supported by SPS changes of up to six seen in the physical anthropomorphic phantom for axial translations. Defect width was also seen to significantly increase. The

  1. An Analytical-empirical Calculation of Linear Attenuation Coefficient of Megavoltage Photon Beams.

    Science.gov (United States)

    Seif, F; Tahmasebi-Birgani, M J; Bayatiani, M R

    2017-09-01

    In this study, a method for linear attenuation coefficient calculation was introduced. Linear attenuation coefficient was calculated with a new method that base on the physics of interaction of photon with matter, mathematical calculation and x-ray spectrum consideration. The calculation was done for Cerrobend as a common radiotherapy modifier and Mercury. The values of calculated linear attenuation coefficient with this new method are in acceptable range. Also, the linear attenuation coefficient decreases slightly as the thickness of attenuating filter (Cerrobend or mercury) increased, so the procedure of linear attenuation coefficient variation is in agreement with other documents. The results showed that the attenuation ability of mercury was about 1.44 times more than Cerrobend. The method that was introduced in this study for linear attenuation coefficient calculation is general enough to treat beam modifiers with any shape or material by using the same formalism; however, calculating was made only for mercury and Cerrobend attenuator. On the other hand, it seems that this method is suitable for high energy shields or protector designing.

  2. Compact silicon photonic resonance-sssisted variable optical attenuator.

    Science.gov (United States)

    Wang, Xiaoxi; Aguinaldo, Ryan; Lentine, Anthony; DeRose, Christopher; Starbuck, Andrew L; Trotter, Douglas; Pomerene, Andrew; Mookherjea, Shayan

    2016-11-28

    A two-part silicon photonic variable optical attenuator is demonstrated in a compact footprint which can provide a high extinction ratio at wavelengths between 1520 nm and 1620 nm. The device was made by following the conventional p-i-n waveguide section by a high-extinction-ratio second-order microring filter section. The rings provide additional on-off contrast by utilizing a thermal resonance shift, which harvested the heat dissipated by current injection in the p-i-n junction. We derive and discuss a simple thermal-resistance model in explanation of these effects.

  3. Utilisation of ISA Reverse Genetics and Large-Scale Random Codon Re-Encoding to Produce Attenuated Strains of Tick-Borne Encephalitis Virus within Days.

    Science.gov (United States)

    de Fabritus, Lauriane; Nougairède, Antoine; Aubry, Fabien; Gould, Ernest A; de Lamballerie, Xavier

    2016-01-01

    Large-scale codon re-encoding is a new method of attenuating RNA viruses. However, the use of infectious clones to generate attenuated viruses has inherent technical problems. We previously developed a bacterium-free reverse genetics protocol, designated ISA, and now combined it with large-scale random codon-re-encoding method to produce attenuated tick-borne encephalitis virus (TBEV), a pathogenic flavivirus which causes febrile illness and encephalitis in humans. We produced wild-type (WT) and two re-encoded TBEVs, containing 273 or 273+284 synonymous mutations in the NS5 and NS5+NS3 coding regions respectively. Both re-encoded viruses were attenuated when compared with WT virus using a laboratory mouse model and the relative level of attenuation increased with the degree of re-encoding. Moreover, all infected animals produced neutralizing antibodies. This novel, rapid and efficient approach to engineering attenuated viruses could potentially expedite the development of safe and effective new-generation live attenuated vaccines.

  4. MNAtoolbox: A Monitored Natural Attenuation Site Screening Program

    Energy Technology Data Exchange (ETDEWEB)

    Borns, David J.; Brady, Patrick V.; Brady, Warren D.; Krupka, Kenneth M.; Spalding, Brian P.; Waters, Robert D.; Zhang, Pengchu

    1999-07-12

    Screening of sites for the potential application and reliance upon monitored natural attenuation (MNA) can be done using MNAtoolbox, a web-based tool for estimating extent of biodegradation, chemical transformation, and dilution. MNAtoolbox uses site-specific input data, where available (default parameters are taken from the literature), to roughly quantify the nature and extent of attenuation at a particular site. Use of MNAtoolbox provides 3 important elements of site evaluation: (1) Identifies likely attenuation pathways, (2) Clearly identifies sites where MNA is inappropriate, and (3) Evaluates data requirements for subsequent reliance on MNA as a sole or partial corrective action.

  5. Deconvolution based attenuation correction for time-of-flight positron emission tomography

    Science.gov (United States)

    Lee, Nam-Yong

    2017-10-01

    For an accurate quantitative reconstruction of the radioactive tracer distribution in positron emission tomography (PET), we need to take into account the attenuation of the photons by the tissues. For this purpose, we propose an attenuation correction method for the case when a direct measurement of the attenuation distribution in the tissues is not available. The proposed method can determine the attenuation factor up to a constant multiple by exploiting the consistency condition that the exact deconvolution of noise-free time-of-flight (TOF) sinogram must satisfy. Simulation studies shows that the proposed method corrects attenuation artifacts quite accurately for TOF sinograms of a wide range of temporal resolutions and noise levels, and improves the image reconstruction for TOF sinograms of higher temporal resolutions by providing more accurate attenuation correction.

  6. Validation of mathematical models to describe fluid dynamics of a cold riser by gamma ray attenuation

    International Nuclear Information System (INIS)

    Melo, Ana Cristina Bezerra Azedo de

    2004-12-01

    The fluid dynamic behavior of a riser in a cold type FCC model was investigated by means of catalyst concentration distribution measured with gamma attenuation and simulated with a mathematical model. In the riser of the cold model, MEF, 0,032 m in diameter, 2,30 m in length the fluidized bed, whose components are air and FCC catalyst, circulates. The MEF is operated by automatic control and instruments for measuring fluid dynamic variables. An axial catalyst concentration distribution was measured using an Am-241 gamma source and a NaI detector coupled to a multichannel provided with a software for data acquisition and evaluation. The MEF was adapted for a fluid dynamic model validation which describes the flow in the riser, for example, by introducing an injector for controlling the solid flow in circulation. Mathematical models were selected from literature, analyzed and tested to simulate the fluid dynamic of the riser. A methodology for validating fluid dynamic models was studied and implemented. The stages of the work were developed according to the validation methodology, such as data planning experiments, study of the equations which describe the fluidodynamic, computational solvers application and comparison with experimental data. Operational sequences were carried out keeping the MEF conditions for measuring catalyst concentration and simultaneously measuring the fluid dynamic variables, velocity of the components and pressure drop in the riser. Following this, simulated and experimental values were compared and statistical data treatment done, aiming at the required precision to validate the fluid dynamic model. The comparison tests between experimental and simulated data were carried out under validation criteria. The fluid dynamic behavior of the riser was analyzed and the results and the agreement with literature were discussed. The adopt model was validated under the MEF operational conditions, for a 3 to 6 m/s gas velocity in the riser and a slip

  7. Observation and parametrization of wave attenuation through the MIZ

    Science.gov (United States)

    Ardhuin, F.; Stopa, J.; Dumont, D.; Sévigny, C.; Collard, F.; Boutin, G.

    2016-02-01

    Swell evolution from the open ocean into sea ice is poorly understood, in particular the amplitude attenuation expected from scattering and dissipation. New synthetic aperture radar (SAR) data from Sentinel-1 wave mode reveal intriguing patterns of bright oscillating lines shaped like instant noodles. We investigate cases in which the oscillations are in the azimuth direction, around a straight line in the range direction. This observation is interpreted as the distortion by the SAR processing of crests from a first swell, due to the presence of a second swell. Since deviations from a straight line should be proportional to the orbital velocity towards the satellite, swell height can be estimated. The intensity of the backscatter modulation with a single swell can also be used to retrieve swell height as it is found that the constructive velocity bunching is very sensitive to wave height. Using a novel algorithm to invert the wave directional spectrum, we investigate several cases of attenuation in the Arctic and southern ocean. On this basis we have adjusted an empirical wave-ice dissipation source term in the WAVEWATCH III model.

  8. Transmission-less attenuation correction in time-of-flight PET: analysis of a discrete iterative algorithm

    International Nuclear Information System (INIS)

    Defrise, Michel; Rezaei, Ahmadreza; Nuyts, Johan

    2014-01-01

    The maximum likelihood attenuation correction factors (MLACF) algorithm has been developed to calculate the maximum-likelihood estimate of the activity image and the attenuation sinogram in time-of-flight (TOF) positron emission tomography, using only emission data without prior information on the attenuation. We consider the case of a Poisson model of the data, in the absence of scatter or random background. In this case the maximization with respect to the attenuation factors can be achieved in a closed form and the MLACF algorithm works by updating the activity. Despite promising numerical results, the convergence of this algorithm has not been analysed. In this paper we derive the algorithm and demonstrate that the MLACF algorithm monotonically increases the likelihood, is asymptotically regular, and that the limit points of the iteration are stationary points of the likelihood. Because the problem is not convex, however, the limit points might be saddle points or local maxima. To obtain some empirical insight into the latter question, we present data obtained by applying MLACF to 2D simulated TOF data, using a large number of iterations and different initializations. (paper)

  9. Spectroscopic Measurements of the Far-Ultraviolet Dust Attenuation Curve at z ˜ 3

    Science.gov (United States)

    Reddy, Naveen A.; Steidel, Charles C.; Pettini, Max; Bogosavljević, Milan

    2016-09-01

    We present the first spectroscopic measurements of the shape of the far-ultraviolet (far-UV; λ =950{--}1500 Å) dust attenuation curve at high redshift (z˜ 3). Our analysis employs rest-frame UV spectra of 933 galaxies at z˜ 3, 121 of which have very deep spectroscopic observations (≳ 7 hr) at λ =850{--}1300 \\mathring{{A}} , with the Low Resolution Imaging Spectrograph on the Keck Telescope. By using an iterative approach in which we calculate the ratios of composite spectra in different bins of continuum color excess, E(B-V), we derive a dust curve that implies a lower attenuation in the far-UV for a given E(B-V) than those obtained with standard attenuation curves. We demonstrate that the UV composite spectra of z˜ 3 galaxies can be modeled well by assuming our new attenuation curve, a high covering fraction of H I, and absorption from the Lyman-Werner bands of {{{H}}}2 with a small (≲ 20 % ) covering fraction. The low covering fraction of {{{H}}}2 relative to that of the {{H}} {{I}} and dust suggests that most of the dust in the ISM of typical galaxies at z˜ 3 is unrelated to the catalysis of {{{H}}}2, and is associated with other phases of the ISM (I.e., the ionized and neutral gas). The far-UV dust curve implies a factor of ≈ 2 lower dust attenuation of Lyman continuum (ionizing) photons relative to those inferred from the most commonly assumed attenuation curves for L* galaxies at z˜ 3. Our results may be utilized to assess the degree to which ionizing photons are attenuated in H II regions or, more generally, in the ionized or low column density (N({{H}} {{I}})≲ {10}17.2 cm-2) neutral ISM of high-redshift galaxies. Based on data obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA, and was made possible by the generous financial support of the W.M. Keck Foundation.

  10. Attenuation of TRPV1 and TRPV4 Expression and Function in Mouse Inflammatory Pain Models Using Electroacupuncture

    Directory of Open Access Journals (Sweden)

    Wei-Hsin Chen

    2012-01-01

    Full Text Available Although pain is a major human affliction, our understanding of pain mechanisms is limited. TRPV1 (transient receptor potential vanilloid subtype 1 and TRPV4 are two crucial receptors involved in inflammatory pain, but their roles in EA- (electroacupuncture- mediated analgesia are unknown. We injected mice with carrageenan (carra or a complete Freund’s adjuvant (CFA to model inflammatory pain and investigated the analgesic effect of EA using animal behavior tests, immunostaining, Western blotting, and a whole-cell recording technique. The inflammatory pain model mice developed both mechanical and thermal hyperalgesia. Notably, EA at the ST36 acupoint reversed these phenomena, indicating its curative effect in inflammatory pain. The protein levels of TRPV1 and TRPV4 in DRG (dorsal root ganglion neurons were both increased at day 4 after the initiation of inflammatory pain and were attenuated by EA, as demonstrated by immunostaining and Western blot analysis. We verified DRG electrophysiological properties to confirm that EA ameliorated peripheral nerve hyperexcitation. Our results indicated that the AP (action potential threshold, rise time, and fall time, and the percentage and amplitude of TRPV1 and TRPV4 were altered by EA, indicating that EA has an antinociceptive role in inflammatory pain. Our results demonstrate a novel role for EA in regulating TRPV1 and TRPV4 protein expression and nerve excitation in mouse inflammatory pain models.

  11. Nonlinear attenuation of S-waves and Love waves within ambient rock

    Science.gov (United States)

    Sleep, Norman H.; Erickson, Brittany A.

    2014-04-01

    obtain scaling relationships for nonlinear attenuation of S-waves and Love waves within sedimentary basins to assist numerical modeling. These relationships constrain the past peak ground velocity (PGV) of strong 3-4 s Love waves from San Andreas events within Greater Los Angeles, as well as the maximum PGV of future waves that can propagate without strong nonlinear attenuation. During each event, the shaking episode cracks the stiff, shallow rock. Over multiple events, this repeated damage in the upper few hundred meters leads to self-organization of the shear modulus. Dynamic strain is PGV divided by phase velocity, and dynamic stress is strain times the shear modulus. The frictional yield stress is proportional to depth times the effective coefficient of friction. At the eventual quasi-steady self-organized state, the shear modulus increases linearly with depth allowing inference of past typical PGV where rock over the damaged depth range barely reaches frictional failure. Still greater future PGV would cause frictional failure throughout the damaged zone, nonlinearly attenuating the wave. Assuming self-organization has taken place, estimated maximum past PGV within Greater Los Angeles Basins is 0.4-2.6 m s-1. The upper part of this range includes regions of accumulating sediments with low S-wave velocity that may have not yet compacted, rather than having been damaged by strong shaking. Published numerical models indicate that strong Love waves from the San Andreas Fault pass through Whittier Narrows. Within this corridor, deep drawdown of the water table from its currently shallow and preindustrial levels would nearly double PGV of Love waves reaching Downtown Los Angeles.

  12. Attenuation and scattering tomography of the deep plumbing system of Mount St. Helens

    Science.gov (United States)

    De Siena, Luca; Thomas, Christine; Waite, Greg P.; Moran, Seth C.; Klemme, Stefan

    2014-01-01

    We present a combined 3-D P wave attenuation, 2-D S coda attenuation, and 3-D S coda scattering tomography model of fluid pathways, feeding systems, and sediments below Mount St. Helens (MSH) volcano between depths of 0 and 18 km. High-scattering and high-attenuation shallow anomalies are indicative of magma and fluid-rich zones within and below the volcanic edifice down to 6 km depth, where a high-scattering body outlines the top of deeper aseismic velocity anomalies. Both the volcanic edifice and these structures induce a combination of strong scattering and attenuation on any seismic wavefield, particularly those recorded on the northern and eastern flanks of the volcanic cone. North of the cone between depths of 0 and 10 km, a low-velocity, high-scattering, and high-attenuation north-south trending trough is attributed to thick piles of Tertiary marine sediments within the St. Helens Seismic Zone. A laterally extended 3-D scattering contrast at depths of 10 to 14 km is related to the boundary between upper and lower crust and caused in our interpretation by the large-scale interaction of the Siletz terrane with the Cascade arc crust. This contrast presents a low-scattering, 4–6 km2 “hole” under the northeastern flank of the volcano. We infer that this section represents the main path of magma ascent from depths greater than 6 km at MSH, with a small north-east shift in the lower plumbing system of the volcano. We conclude that combinations of different nonstandard tomographic methods, leading toward full-waveform tomography, represent the future of seismic volcano imaging.

  13. A blueberry-enriched diet attenuates nephropathy in a rat model of hypertension via reduction in oxidative stress.

    Directory of Open Access Journals (Sweden)

    Carrie M Elks

    Full Text Available To assess renoprotective effects of a blueberry-enriched diet in a rat model of hypertension. Oxidative stress (OS appears to be involved in the development of hypertension and related renal injury. Pharmacological antioxidants can attenuate hypertension and hypertension-induced renal injury; however, attention has shifted recently to the therapeutic potential of natural products as antioxidants. Blueberries (BB have among the highest antioxidant capacities of fruits and vegetables.Male spontaneously hypertensive rats received a BB-enriched diet (2% w/w or an isocaloric control diet for 6 or 12 weeks or 2 days. Compared to controls, rats fed BB-enriched diet for 6 or 12 weeks exhibited lower blood pressure, improved glomerular filtration rate, and decreased renovascular resistance. As measured by electron paramagnetic resonance spectroscopy, significant decreases in total reactive oxygen species (ROS, peroxynitrite, and superoxide production rates were observed in kidney tissues in rats on long-term dietary treatment, consistent with reduced pathology and improved function. Additionally, measures of antioxidant status improved; specifically, renal glutathione and catalase activities increased markedly. Contrasted to these observations indicating reduced OS in the BB group after long-term feeding, similar measurements made in rats fed the same diet for only 2 days yielded evidence of increased OS; specifically, significant increases in total ROS, peroxynitrite, and superoxide production rates in all tissues (kidney, brain, and liver assayed in BB-fed rats. These results were evidence of "hormesis" during brief exposure, which dissipated with time as indicated by enhanced levels of catalase in heart and liver of BB group.Long-term feeding of BB-enriched diet lowered blood pressure, preserved renal hemodynamics, and improved redox status in kidneys of hypertensive rats and concomitantly demonstrated the potential to delay or attenuate development

  14. Uranium soft x-ray total attenuation coefficients

    International Nuclear Information System (INIS)

    Del Grande, N.K.; Oliver, A.J.

    1981-01-01

    Uranium total attenuation coefficients were measured continuously from 0.84 to 6.0 keV and at selected higher energies using a vacuum single crystal diffractometer and flow-proportional counter. Statistical fluctuations ranged from 0.5% to 2%. The overall accuracy was 3%. Prominent structure was measured within 20 eV of the M 5 (3.552 keV) and M 4 (3.728 keV) edges. Jump ratios were determined from log-log polynomial fits to data at energies apart from the near-edge regions. These data were compared with calculations based on a relativistic HFS central potential model and with previously tabulated data

  15. Ghrelin Attenuates Retinal Neuronal Autophagy and Apoptosis in an Experimental Rat Glaucoma Model.

    Science.gov (United States)

    Zhu, Ke; Zhang, Meng-Lu; Liu, Shu-Ting; Li, Xue-Yan; Zhong, Shu-Min; Li, Fang; Xu, Ge-Zhi; Wang, Zhongfeng; Miao, Yanying

    2017-12-01

    Ghrelin, a natural ligand for the growth hormone secretagogue receptor type 1a (GHSR-1a), may protect retinal neurons against glaucomatous injury. We therefore characterized the underlying mechanism of the ghrelin/GHSR-1a-mediated neuroprotection with a rat chronic intraocular hypertension (COH) model. The rat COH model was produced by blocking episcleral veins. A combination of immunohistochemistry, Western blot, TUNEL assay, and retrograde labeling of retinal ganglion cells (RGCs) was used. Elevation of intraocular pressure induced a significant increase in ghrelin and GHSR-1a expression in retinal cells, including RGCs and Müller cells. Western blot confirmed that the protein levels of ghrelin exhibited a transient upregulation at week 2 after surgery (G2w), while the GHSR-1a protein levels were maintained at high levels from G2w to G4w. In COH retinas, the ratio of LC3-II/LC-I and beclin1, two autophagy-related proteins, were increased from G1w to G4w, and the cleavage product of caspase3, an apoptotic executioner, was detected from G2w to G4w. Intraperitoneal injection of ghrelin significantly increased the number of surviving RGCs; inhibited the changes of LC3-II/LC-I, beclin1, and the cleavage products of caspase3; and reduced the number of TUNEL-positive cells in COH retinas. Ghrelin treatment also reversed the decreased levels of p-Akt and p-mTOR, upregulated GHSR-1a protein levels, and attenuated glial fibrillary acidic protein levels in COH retinas. All these results suggest that ghrelin may provide neuroprotective effect in COH retinas through activating ghrelin/GHSR-1a system, which was mediated by inhibiting retinal autophagy, ganglion cell apoptosis, and Müller cell gliosis.

  16. The linear attenuation coefficients as features of multiple energy CT image classification

    International Nuclear Information System (INIS)

    Homem, M.R.P.; Mascarenhas, N.D.A.; Cruvinel, P.E.

    2000-01-01

    We present in this paper an analysis of the linear attenuation coefficients as useful features of single and multiple energy CT images with the use of statistical pattern classification tools. We analyzed four CT images through two pointwise classifiers (the first classifier is based on the maximum-likelihood criterion and the second classifier is based on the k-means clustering algorithm) and one contextual Bayesian classifier (ICM algorithm - Iterated Conditional Modes) using an a priori Potts-Strauss model. A feature extraction procedure using the Jeffries-Matusita (J-M) distance and the Karhunen-Loeve transformation was also performed. Both the classification and the feature selection procedures were found to be in agreement with the predicted discrimination given by the separation of the linear attenuation coefficient curves for different materials

  17. A simple model of ultrasound propagation in a cavitating liquid. Part I: Theory, nonlinear attenuation and traveling wave generation.

    Science.gov (United States)

    Louisnard, O

    2012-01-01

    The bubbles involved in sonochemistry and other applications of cavitation oscillate inertially. A correct estimation of the wave attenuation in such bubbly media requires a realistic estimation of the power dissipated by the oscillation of each bubble, by thermal diffusion in the gas and viscous friction in the liquid. Both quantities and calculated numerically for a single inertial bubble driven at 20 kHz, and are found to be several orders of magnitude larger than the linear prediction. Viscous dissipation is found to be the predominant cause of energy loss for bubbles small enough. Then, the classical nonlinear Caflish equations describing the propagation of acoustic waves in a bubbly liquid are recast and simplified conveniently. The main harmonic part of the sound field is found to fulfill a nonlinear Helmholtz equation, where the imaginary part of the squared wave number is directly correlated with the energy lost by a single bubble. For low acoustic driving, linear theory is recovered, but for larger drivings, namely above the Blake threshold, the attenuation coefficient is found to be more than 3 orders of magnitude larger then the linear prediction. A huge attenuation of the wave is thus expected in regions where inertial bubbles are present, which is confirmed by numerical simulations of the nonlinear Helmholtz equation in a 1D standing wave configuration. The expected strong attenuation is not only observed but furthermore, the examination of the phase between the pressure field and its gradient clearly demonstrates that a traveling wave appears in the medium. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. The use of microperforated plates to attenuate cavity resonances

    DEFF Research Database (Denmark)

    Fenech, Benjamin; Keith, Graeme; Jacobsen, Finn

    2006-01-01

    The use of microperforated plates to introduce damping in a closed cavity is examined. By placing a microperforated plate well inside the cavity instead of near a wall as traditionally done in room acoustics, high attenuation can be obtained for specific acoustic modes, compared with the lower...... attenuation that can be obtained in a broad frequency range with the conventional position of the plate. An analytical method for predicting the attenuation is presented. The method involves finding complex eigenvalues and eigenfunctions for the modified cavity and makes it possible to predict Green......'s functions. The results, which are validated experimentally, show that a microperforated plate can provide substantial attenuation of modes in a cavity. One possible application of these findings is the treatment of boiler tones in heat-exchanger cavities....

  19. Generation and Characterization of Live Attenuated Influenza A(H7N9 Candidate Vaccine Virus Based on Russian Donor of Attenuation.

    Directory of Open Access Journals (Sweden)

    Svetlana Shcherbik

    Full Text Available Avian influenza A (H7N9 virus has emerged recently and continues to cause severe disease with a high mortality rate in humans prompting the development of candidate vaccine viruses. Live attenuated influenza vaccines (LAIV are 6:2 reassortant viruses containing the HA and NA gene segments from wild type influenza viruses to induce protective immune responses and the six internal genes from Master Donor Viruses (MDV to provide temperature sensitive, cold-adapted and attenuated phenotypes.LAIV candidate A/Anhui/1/2013(H7N9-CDC-LV7A (abbreviated as CDC-LV7A, based on the Russian MDV, A/Leningrad/134/17/57 (H2N2, was generated by classical reassortment in eggs and retained MDV temperature-sensitive and cold-adapted phenotypes. CDC-LV7A had two amino acid substitutions N123D and N149D (H7 numbering in HA and one substitution T10I in NA. To evaluate the role of these mutations on the replication capacity of the reassortants in eggs, the recombinant viruses A(H7N9RG-LV1 and A(H7N9RG-LV2 were generated by reverse genetics. These changes did not alter virus antigenicity as ferret antiserum to CDC-LV7A vaccine candidate inhibited hemagglutination by homologous A(H7N9 virus efficiently. Safety studies in ferrets confirmed that CDC-LV7A was attenuated compared to wild-type A/Anhui/1/2013. In addition, the genetic stability of this vaccine candidate was examined in eggs and ferrets by monitoring sequence changes acquired during virus replication in the two host models. No changes in the viral genome were detected after five passages in eggs. However, after ten passages additional mutations were detected in the HA gene. The vaccine candidate was shown to be stable in the ferret model; post-vaccination sequence data analysis showed no changes in viruses collected in nasal washes present at day 5 or day 7.Our data indicate that the A/Anhui/1/2013(H7N9-CDC-LV7A reassortant virus is a safe and genetically stable candidate vaccine virus that is now available for

  20. Lipoxin A₄ prevents the progression of de novo and established endometriosis in a mouse model by attenuating prostaglandin E₂ production and estrogen signaling.

    Directory of Open Access Journals (Sweden)

    Rajesh Kumar

    Full Text Available Endometriosis, a leading cause of pelvic pain and infertility, is characterized by ectopic growth of endometrial-like tissue and affects approximately 176 million women worldwide. The pathophysiology involves inflammatory and angiogenic mediators as well as estrogen-mediated signaling and novel, improved therapeutics targeting these pathways are necessary. The aim of this study was to investigate mechanisms leading to the establishment and progression of endometriosis as well as the effect of local treatment with Lipoxin A4 (LXA₄, an anti-inflammatory and pro-resolving lipid mediator that we have recently characterized as an estrogen receptor agonist. LXA₄ treatment significantly reduced endometriotic lesion size and downregulated the pro-inflammatory cytokines IL-1β and IL-6, as well as the angiogenic factor VEGF. LXA₄ also inhibited COX-2 expression in both endometriotic lesions and peritoneal fluid cells, resulting in attenuated peritoneal fluid Prostaglandin E₂ (PGE₂ levels. Besides its anti-inflammatory effects, LXA₄ differentially regulated the expression and activity of the matrix remodeling enzyme matrix metalloproteinase (MMP-9 as well as modulating transforming growth factor (TGF-β isoform expression within endometriotic lesions and in peritoneal fluid cells. We also report for first time that LXA₄ attenuated aromatase expression, estrogen signaling and estrogen-regulated genes implicated in cellular proliferation in a mouse model of disease. These effects were observed both when LXA₄ was administered prior to disease induction and during established disease. Collectively, our findings highlight potential targets for the treatment of endometriosis and suggest a pleotropic effect of LXA₄ on disease progression, by attenuating pro-inflammatory and angiogenic mediators, matrix remodeling enzymes, estrogen metabolism and signaling, as well as downstream proliferative pathways.

  1. Measure of the attenuation curve of a beam of X-rays with TLD-100 dosimeters of LiF

    International Nuclear Information System (INIS)

    Bonzi, E. V.; Mainardi, R. T.; Germanier, A.; Delgado, V.

    2011-10-01

    The attenuation curve of a beam of X-rays represents the beam intensity in function of the attenuator thickness interposed between the source and the detector. To know with the major possible precision the attenuation curve is indispensable in procedures of spectral reconstruction. Their periodic measuring also offers valuable information on the correct operation of a tube of X-rays, diagnostic or therapy, when not have a specific detector for that activity. In this work was measured the attenuation curve of a tube of X-rays operated to 50 kV and 0.5 ma, using existent elements in any diagnostic or therapy laboratory with radiations. In the measures commercial aluminum foil was used, bent until 24 times and thermoluminescent dosimeters TLD 100 - LiF. Also, for comparison, was measured this attenuation curve with an ionization chamber brand Capintec model 192. Was determined by X-rays fluorescence the composition of the aluminium foil, since the present elements in the alloy can to affect the form of the attenuation curve. It is interesting to observe that these elements are in very low proportion (ppm) that they do not alter the attenuation capacity of the pure aluminium. Finally in a precision balance we weigh a big piece (30 cm x 100 cm) of aluminium foil and we obtained the thickness in g/c m2. It is possible to obtain attenuation curves of a beam of X-rays, with a high precision procedure and reproducibility. The use of TLD-100 dosimeters of LiF or similar makes that this activity was also quick and simple. (Author)

  2. Fuzzy clustering-based segmented attenuation correction in whole-body PET

    CERN Document Server

    Zaidi, H; Boudraa, A; Slosman, DO

    2001-01-01

    Segmented-based attenuation correction is now a widely accepted technique to reduce noise contribution of measured attenuation correction. In this paper, we present a new method for segmenting transmission images in positron emission tomography. This reduces the noise on the correction maps while still correcting for differing attenuation coefficients of specific tissues. Based on the Fuzzy C-Means (FCM) algorithm, the method segments the PET transmission images into a given number of clusters to extract specific areas of differing attenuation such as air, the lungs and soft tissue, preceded by a median filtering procedure. The reconstructed transmission image voxels are therefore segmented into populations of uniform attenuation based on the human anatomy. The clustering procedure starts with an over-specified number of clusters followed by a merging process to group clusters with similar properties and remove some undesired substructures using anatomical knowledge. The method is unsupervised, adaptive and a...

  3. Memory effects in attenuation and amplification quantum processes

    International Nuclear Information System (INIS)

    Lupo, Cosmo; Giovannetti, Vittorio; Mancini, Stefano

    2010-01-01

    With increasing communication rates via quantum channels, memory effects become unavoidable whenever the use rate of the channel is comparable to the typical relaxation time of the channel environment. We introduce a model of a bosonic memory channel, describing correlated noise effects in quantum-optical processes via attenuating or amplifying media. To study such a channel model, we make use of a proper set of collective field variables, which allows us to unravel the memory effects, mapping the n-fold concatenation of the memory channel to a unitarily equivalent, direct product of n single-mode bosonic channels. We hence estimate the channel capacities by relying on known results for the memoryless setting. Our findings show that the model is characterized by two different regimes, in which the cross correlations induced by the noise among different channel uses are either exponentially enhanced or exponentially reduced.

  4. Baicalein attenuates vinorelbine-induced vascular endothelial cell injury and chemotherapeutic phlebitis in rabbits

    International Nuclear Information System (INIS)

    Ge, Gang-Feng; Shi, Wei-Wen; Yu, Chen-Huan; Jin, Xiao-Yin; Zhang, Huan-Huan; Zhang, Wen-You; Wang, Lu-Chen; Yu, Bing

    2017-01-01

    Chemotherapy is one of the major strategies for cancer treatment. Several antineoplastic drugs including vinorelbine (VRB) are commonly intravenously infused and liable to cause serious phlebitis. The therapeutic drugs for preventing this complication are limited. In this study, the mechanism of baicalein (BCN) was investigated on VRB-induced phlebitis in vivo and vascular endothelial cell injury in vitro. Treatment with BCN obviously attenuated vascular endothelial cell loss, edema, inflammatory cell infiltration and blood clots, and reduced the serum levels of TNF-α, IL-1β, IL-6 and ICAM-1 in the rabbit model of phlebitis induced by intravenous injection of VRB compared with vehicle. Further tests in vitro demonstrated that BCN lessened VRB-induced endothelial cell apoptosis, decreased intracellular ROS levels, suppressed phosphorylation of p38 and eventually inhibited activation of NF-κB signaling pathway. And these effects could be reversed by p38 agonist P79350. These results suggested that BCN exerted the protective effects against VRB-induced endothelial disruption in the rabbit model of phlebitis via inhibition of intracellular ROS generation and inactivation of p38/NF-κB pathway, leading to the decreased production of pro-inflammatory cytokines. Thus, BCN could be used as a potential agent for the treatment of phlebitis. - Highlights: • Baicalein attenuated vinorelbine-induced vascular endothelial cell apoptosis. • Baicalein inhibited vinorelbine-induced oxidative stress in HUVECs. • Baicalein inhibited activation of p38/NF-κB signaling. • Baicalein attenuated vinorelbine-induced phlebitis and inflammation in rabbits.

  5. Baicalein attenuates vinorelbine-induced vascular endothelial cell injury and chemotherapeutic phlebitis in rabbits

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Gang-Feng [Zhejiang Chinese Medical University, Hangzhou 310053 (China); Shi, Wei-Wen [Zhejiang Medical Science and Education Development Center, Hangzhou 310006 (China); Yu, Chen-Huan; Jin, Xiao-Yin; Zhang, Huan-Huan; Zhang, Wen-You [Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou 310013 (China); Wang, Lu-Chen [Zhejiang Chinese Medical University, Hangzhou 310053 (China); Yu, Bing, E-mail: Jellycook2002@163.com [Zhejiang Chinese Medical University, Hangzhou 310053 (China)

    2017-03-01

    Chemotherapy is one of the major strategies for cancer treatment. Several antineoplastic drugs including vinorelbine (VRB) are commonly intravenously infused and liable to cause serious phlebitis. The therapeutic drugs for preventing this complication are limited. In this study, the mechanism of baicalein (BCN) was investigated on VRB-induced phlebitis in vivo and vascular endothelial cell injury in vitro. Treatment with BCN obviously attenuated vascular endothelial cell loss, edema, inflammatory cell infiltration and blood clots, and reduced the serum levels of TNF-α, IL-1β, IL-6 and ICAM-1 in the rabbit model of phlebitis induced by intravenous injection of VRB compared with vehicle. Further tests in vitro demonstrated that BCN lessened VRB-induced endothelial cell apoptosis, decreased intracellular ROS levels, suppressed phosphorylation of p38 and eventually inhibited activation of NF-κB signaling pathway. And these effects could be reversed by p38 agonist P79350. These results suggested that BCN exerted the protective effects against VRB-induced endothelial disruption in the rabbit model of phlebitis via inhibition of intracellular ROS generation and inactivation of p38/NF-κB pathway, leading to the decreased production of pro-inflammatory cytokines. Thus, BCN could be used as a potential agent for the treatment of phlebitis. - Highlights: • Baicalein attenuated vinorelbine-induced vascular endothelial cell apoptosis. • Baicalein inhibited vinorelbine-induced oxidative stress in HUVECs. • Baicalein inhibited activation of p38/NF-κB signaling. • Baicalein attenuated vinorelbine-induced phlebitis and inflammation in rabbits.

  6. Puerarin attenuates learning and memory impairments and inhibits oxidative stress in STZ-induced SAD mice.

    Science.gov (United States)

    Zhao, Shan-shan; Yang, Wei-na; Jin, Hui; Ma, Kai-ge; Feng, Gai-feng

    2015-12-01

    Puerarin (PUE), an isoflavone purified from the root of Pueraria lobata (Chinese herb), has been reported to attenuate learning and memory impairments in the transgenic mouse model of Alzheimer's disease (AD). In the present study, we tested PUE in a sporadic AD (SAD) mouse model which was induced by the intracerebroventricular injection of streptozotocin (STZ). The mice were administrated PUE (25, 50, or 100mg/kg/d) for 28 days. Learning and memory abilities were assessed by the Morris water maze test. After behavioral test, the biochemical parameters of oxidative stress (glutathione peroxidase (GSH-Px), superoxide dismutases (SOD), and malondialdehyde (MDA)) were measured in the cerebral cortex and hippocampus. The SAD mice exhibited significantly decreased learning and memory ability, while PUE attenuated these impairments. The activities of GSH-Px and SOD were decreased while MDA was increased in the SAD animals. After PUE treatment, the activities of GSH-Px and SOD were elevated, and the level of MDA was decreased. The middle dose PUE was more effective than others. These results indicate that PUE attenuates learning and memory impairments and inhibits oxidative stress in STZ-induced SAD mice. PUE may be a promising therapeutic agent for SAD. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. An electro-magnetic micromachined actuator monolithically integrated with a vertical shutter for variable optical attenuation

    International Nuclear Information System (INIS)

    Hung, Shao Hsuan; Hsieh, Hsin-Ta; John Su, Guo-Dung

    2008-01-01

    The design, fabrication and test results of an electromagnetic-actuated micromachined variable optical attenuator (VOA) are reported in this paper. Optical attenuation is achieved by moving a shutter into the light path between a pair of single mode fiber collimators. The shutter, consisting of a 500 µm × 1200 µm vertical micromirror, is monolithically integrated with an actuation flap. The micromirror was made by tetra-methyl ammonium hydroxide (TMAH) anisotropic wet etching with a sharp edge and a smooth reflecting surface. By arranging fiber collimators in different configurations, the reported VOA can be used as either normally-on or normally-off modes due to its relatively large shutter surface. The insertion loss of the VOA is 0.2 dB and 0.4 dB for normally-on and normally-off modes, respectively. Both optical and mechanical simulation models of the device were discussed, and the theoretical calculations based on these models offered an efficient way to predict the performance of the shutter-type VOA. The controllable attenuation range is approximately 40 dB with a driving voltage less than 0.5 V, and the driving power is less than 2 mW. A response time of 5 ms is achieved by applying proper driving waveform

  8. Investigation of photon attenuation coefficients for marble

    International Nuclear Information System (INIS)

    Basyigit, C; Akkurt, I; Kilincarslan, S; Akkurt, A

    2005-01-01

    The total linear attenuation coefficients μ (cm -1 ) have been obtained using the XCOM program at photon energies of 1 keV to 1 GeV for six different natural marbles produced in different places in Turkey. The individual contribution of photon interaction processes to the total linear attenuation coefficients for marble has been investigated. The calculated results were also compared with the measurements. The results obtained for marble were also compared with concrete. (note)

  9. Lateral variation of seismic attenuation in Sikkim Himalaya

    Science.gov (United States)

    Thirunavukarasu, Ajaay; Kumar, Ajay; Mitra, Supriyo

    2017-01-01

    We use data from local earthquakes (mb ≥ 3.0) recorded by the Sikkim broad-band seismograph network to study the frequency-dependent attenuation of the crust and uppermost mantle. These events have been relocated using body wave phase data from local and regional seismograms. The decay of coda amplitudes at a range of central frequencies (1 to 12 Hz) has been measured for 74 earthquake-receiver pairs. These measurements are combined to estimate the frequency-dependent coda Q of the form Q( f) = Q0 f η. The estimated Q0 values range from 80 to 200, with an average of 123 ± 29; and η ranges from 0.92 to 1.04, with an average of 0.98 ± 0.04. To study the lateral variation of Q0 and η, we regionalized the measured Q values by combining all the earthquake-receiver path measurements through a back projection algorithm. We consider a single back-scatter model for the coda waves with elliptical sampling and parametrize the sampled area using 0.2° square grids. A nine-point spatial smoothening (similar to spatial Gaussian filter) is applied to stabilize the inversion. This is done at every frequency to observe the spatial variation of Q( f) and subsequently combined to obtain η variations. Results of our study reveal that the Sikkim Himalaya is characterized by low Q0 (80-100) compared to the foreland basin to its south (150-200) and the Nepal Himalaya to its west (140-160). The low Q and high η in Sikkim Himalaya is attributed to extrinsic scattering attenuation from structural heterogeneity and active faults within the crust, and intrinsic attenuation due to anelasticity in the hotter lithosphere beneath the actively deforming mountain belt. Similar low Q and high η values had also been observed in northwest and Garhwal-Kumaun Himalaya.

  10. Attenuation correction for the NIH ATLAS small animal PET scanner

    CERN Document Server

    Yao, Rutao; Liow, JeihSan; Seidel, Jurgen

    2003-01-01

    We evaluated two methods of attenuation correction for the NIH ATLAS small animal PET scanner: 1) a CT-based method that derives 511 keV attenuation coefficients (mu) by extrapolation from spatially registered CT images; and 2) an analytic method based on the body outline of emission images and an empirical mu. A specially fabricated attenuation calibration phantom with cylindrical inserts that mimic different body tissues was used to derive the relationship to convert CT values to (I for PET. The methods were applied to three test data sets: 1) a uniform cylinder phantom, 2) the attenuation calibration phantom, and 3) a mouse injected with left bracket **1**8F right bracket FDG. The CT-based attenuation correction factors were larger in non-uniform regions of the imaging subject, e.g. mouse head, than the analytic method. The two methods had similar correction factors for regions with uniform density and detectable emission source distributions.

  11. Acousto-optic measurements of ultrasound attenuation in tellurium dioxide crystal

    International Nuclear Information System (INIS)

    Voloshinov, V. B.; Lemyaskina, E. A.

    1996-01-01

    The paper is devoted to experimental investigation of ultrasound propagation in tellurium dioxide monocrystal. In particular, attenuation of slow shear acoustic modes in the crystal was measured. The measurements were performed by acousto-optic methods using probing of acoustic column by a laser beam. The paper describes measurements of acoustic attenuation coefficient for slow shear ultrasonic waves propagating at an angle =4.5 O with respect to the (110) direction in the (110) plane. The investigation was made at acoustic frequency f = 100 MHz with pulsed acoustic waves and with an optical beam of a He-Ne laser. It is found that the attenuation coefficient is α = 0.57 cm -1 ± 15 %. The attenuation at acoustic frequencies f ≥ 100 MHz influences performance characteristics of acousto-optical devices based on tellurium dioxide. As proved, spectral resolution of a quasicollinear acoustooptic filter decreases by a factor of 2 compared to a case of the attenuation absence. (authors)

  12. Assessment of LabSOCS as a tool for the calculation of self-attenuation coefficients in gamma spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, J.; De Medeiros, M. P.; Garcez, R.; Filgueiras, R.; Thalhofer, J.; Da Silva, A. X. [Universidade Federal do Rio de Janeiro, Programa de Engenharia Nuclear, Av. Horacio Macedo 2030, 21945-970 Rio de Janeiro (Brazil); Freitas R, W., E-mail: marqueslopez@yahoo.com.br [Instituto Militar de Engenharia, Secao de Engenharia Nuclear, Praca Gen. Tiburcio 80, 22290-270 Urca, Rio de Janeiro (Brazil)

    2017-10-15

    In spectrometry, the self-attenuation coefficients are fundamental to correct the efficiency of the detection of samples whose density is different from the radioactive standard. To facilitate the procedure of coefficient calculation, mathematical simulations have been widespread as a tool. In this paper, LabSOCS was used to calculate the self-attenuation coefficients for some geometries and the values found were compared to those obtained with MCNPX and experimental values. The percentage deviations found for the self-attenuation coefficient calculated by LabSOCS were below 1.6%, when compared to experimental values. In the extrapolation zone of the fitting curve of the experimental model, the deviations were below 1.9%. The results obtained show that the deviations increase proportionally to the amplitude between the density values of the radioactive standard and the sample. High percentage deviations were also obtained in simulations whose samples had high densities, complex geometries and low energy levels. However, the results indicate that LabSOCS is a tool which may be used in the calculation of self-attenuation coefficients. (Author)

  13. Gallic acid attenuates pulmonary fibrosis in a mouse model of transverse aortic contraction-induced heart failure.

    Science.gov (United States)

    Jin, Li; Piao, Zhe Hao; Sun, Simei; Liu, Bin; Ryu, Yuhee; Choi, Sin Young; Kim, Gwi Ran; Kim, Hyung-Seok; Kee, Hae Jin; Jeong, Myung Ho

    2017-12-01

    Gallic acid, a trihydroxybenzoic acid found in tea and other plants, attenuates cardiac hypertrophy, fibrosis, and hypertension in animal models. However, the role of gallic acid in heart failure remains unknown. In this study, we show that gallic acid administration prevents heart failure-induced pulmonary fibrosis. Heart failure induced in mice, 8weeks after transverse aortic constriction (TAC) surgery, was confirmed by echocardiography. Treatment for 2weeks with gallic acid but not furosemide prevented cardiac dysfunction in mice. Gallic acid significantly inhibited TAC-induced pathological changes in the lungs, such as increased lung mass, pulmonary fibrosis, and damaged alveolar morphology. It also decreased the expression of fibrosis-related genes, including collagen types I and III, fibronectin, connective tissue growth factor (CTGF), and phosphorylated Smad3. Further, it inhibited the expression of epithelial-mesenchymal transition (EMT)-related genes, such as N-cadherin, vimentin, E-cadherin, SNAI1, and TWIST1. We suggest that gallic acid has therapeutic potential for the treatment of heart failure-induced pulmonary fibrosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Adaptive attenuation of aliased ground roll using the shearlet transform

    Science.gov (United States)

    Hosseini, Seyed Abolfazl; Javaherian, Abdolrahim; Hassani, Hossien; Torabi, Siyavash; Sadri, Maryam

    2015-01-01

    Attenuation of ground roll is an essential step in seismic data processing. Spatial aliasing of the ground roll may cause the overlap of the ground roll with reflections in the f-k domain. The shearlet transform is a directional and multidimensional transform that separates the events with different dips and generates subimages in different scales and directions. In this study, the shearlet transform was used adaptively to attenuate aliased and non-aliased ground roll. After defining a filtering zone, an input shot record is divided into segments. Each segment overlaps adjacent segments. To apply the shearlet transform on each segment, the subimages containing aliased and non-aliased ground roll, the locations of these events on each subimage are selected adaptively. Based on these locations, mute is applied on the selected subimages. The filtered segments are merged together, using the Hanning function, after applying the inverse shearlet transform. This adaptive process of ground roll attenuation was tested on synthetic data, and field shot records from west of Iran. Analysis of the results using the f-k spectra revealed that the non-aliased and most of the aliased ground roll were attenuated using the proposed adaptive attenuation procedure. Also, we applied this method on shot records of a 2D land survey, and the data sets before and after ground roll attenuation were stacked and compared. The stacked section after ground roll attenuation contained less linear ground roll noise and more continuous reflections in comparison with the stacked section before the ground roll attenuation. The proposed method has some drawbacks such as more run time in comparison with traditional methods such as f-k filtering and reduced performance when the dip and frequency content of aliased ground roll are the same as those of the reflections.

  15. Attenuation correction of myocardial SPECT by scatter-photopeak window method in normal subjects

    International Nuclear Information System (INIS)

    Okuda, Koichi; Nakajima, Kenichi; Matsuo, Shinro; Kinuya, Seigo; Motomura, Nobutoku; Kubota, Masahiro; Yamaki, Noriyasu; Maeda, Hisato

    2009-01-01

    Segmentation with scatter and photopeak window data using attenuation correction (SSPAC) method can provide a patient-specific non-uniform attenuation coefficient map only by using photopeak and scatter images without X-ray computed tomography (CT). The purpose of this study is to evaluate the performance of attenuation correction (AC) by the SSPAC method on normal myocardial perfusion database. A total of 32 sets of exercise-rest myocardial images with Tc-99m-sestamibi were acquired in both photopeak (140 keV±10%) and scatter (7% of lower side of the photopeak window) energy windows. Myocardial perfusion databases by the SSPAC method and non-AC (NC) were created from 15 female and 17 male subjects with low likelihood of cardiac disease using quantitative perfusion SPECT software. Segmental myocardial counts of a 17-segment model from these databases were compared on the basis of paired t test. AC average myocardial perfusion count was significantly higher than that in NC in the septal and inferior regions (P<0.02). On the contrary, AC average count was significantly lower in the anterolateral and apical regions (P<0.01). Coefficient variation of the AC count in the mid, apical and apex regions was lower than that of NC. The SSPAC method can improve average myocardial perfusion uptake in the septal and inferior regions and provide uniform distribution of myocardial perfusion. The SSPAC method could be a practical method of attenuation correction without X-ray CT. (author)

  16. Characterizing X-ray Attenuation of Containerized Cargo

    Energy Technology Data Exchange (ETDEWEB)

    Birrer, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Divin, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Glenn, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Martz, H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wang, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-08-02

    X-ray inspection systems can be used to detect radiological and nuclear threats in imported cargo. In order to better understand performance of these systems, the attenuation characteristics of imported cargo need to be determined. This project focused on developing image processing algorithms for segmenting cargo and using x-ray attenuation to quantify equivalent steel thickness to determine cargo density. These algorithms were applied to over 450 cargo radiographs. The results are summarized in this report.

  17. Self-attenuation correction in the environmental sample gamma spectrometry; Correcao de auto-absorcao na espectrometria gama de amostras ambientais

    Energy Technology Data Exchange (ETDEWEB)

    Venturini, Luzia; Nisti, Marcelo B. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)

    1997-10-01

    Self-attenuation corrections were calculated for gamma ray spectrometry of environmental samples with densities from 0.42 g/ml up to 1.59 g/ml, measured in Marinelli beakers and polyethylene flasks. These corrections are to be used when the counting efficiency is calculated for water measured in the same geometry. The model of Debertin for Marinelli beaker, numerical integration and experimental linear attenuation coefficients were used. (author). 3 refs., 4 figs., 6 tabs.

  18. aroA-Deficient Salmonella enterica Serovar Typhimurium Is More Than a Metabolically Attenuated Mutant

    Science.gov (United States)

    Frahm, Michael; Kocijancic, Dino; Rohde, Manfred; Eckweiler, Denitsa; Bielecka, Agata; Bueno, Emilio; Cava, Felipe; Abraham, Wolf-Rainer; Curtiss, Roy; Häussler, Susanne; Erhardt, Marc; Weiss, Siegfried

    2016-01-01

    ABSTRACT Recombinant attenuated Salmonella enterica serovar Typhimurium strains are believed to act as powerful live vaccine carriers that are able to elicit protection against various pathogens. Auxotrophic mutations, such as a deletion of aroA, are commonly introduced into such bacteria for attenuation without incapacitating immunostimulation. In this study, we describe the surprising finding that deletion of aroA dramatically increased the virulence of attenuated Salmonella in mouse models. Mutant bacteria lacking aroA elicited increased levels of the proinflammatory cytokine tumor necrosis factor alpha (TNF-α) after systemic application. A detailed genetic and phenotypic characterization in combination with transcriptomic and metabolic profiling demonstrated that ΔaroA mutants display pleiotropic alterations in cellular physiology and lipid and amino acid metabolism, as well as increased sensitivity to penicillin, complement, and phagocytic uptake. In concert with other immunomodulating mutations, deletion of aroA affected flagellin phase variation and gene expression of the virulence-associated genes arnT and ansB. Finally, ΔaroA strains displayed significantly improved tumor therapeutic activity. These results highlight the importance of a functional shikimate pathway to control homeostatic bacterial physiology. They further highlight the great potential of ΔaroA-attenuated Salmonella for the development of vaccines and cancer therapies with important implications for host-pathogen interactions and translational medicine. PMID:27601574

  19. Seismic attenuation in the African LLSVP estimated from PcS phases

    Science.gov (United States)

    Liu, Chujie; Grand, Stephen P.

    2018-05-01

    Seismic tomography models have revealed two broad regions in the lowermost mantle marked by ∼3% slower shear velocity than normal beneath the south central Pacific and southern Africa. These two regions are known as large-low-shear-velocity provinces (LLSVP). There is debate over whether the LLSVPs can be explained by purely thermal variations or whether they must be chemically distinct from normal mantle. Elastic properties alone, have been unable to distinguish the thermal from chemical interpretations. Anelastic structure, however, can help discriminate among models of the LLSVPs since intrinsic attenuation is more sensitive to temperature than to chemical variations. Here we estimate Qμ (the shear wave quality factor) in the African LLSVP using PcS waves generated from a Scotia Arc earthquake, recorded by broadband seismometers deployed in Southern Africa during the Kaapvaal experiment. The upward leg of the PcS waves sweeps from normal mantle into the African LLSVP across the array. We use the spectral ratio (SR) and instantaneous frequency matching (IFM) techniques to measure the differential attenuation (Δt*) between waves sampling the African LLSVP and the waves that sample normal lower mantle. Using both methods for estimating Δt* we find that PcS waves sampling the LLSVP are more attenuated than the waves that miss the LLSVP yielding a Δt* difference of more than 1 s. Using the Δt* measurements we estimate the average Qμ in the LLSVP to be about 110. Using a range of activation enthalpy (H*) estimates, we find an average temperature anomaly within the LLSVP ranging from +250 to +800 K. Our estimated temperature anomaly range overlaps previous isochemical geodynamic studies that explain the LLSVP as a purely thermal structure although the large uncertainties cannot rule out chemical variations as well.

  20. Differential elliptic flow of identified hadrons and constituent quark number scaling at the GSI Facility for Antiproton and Ion Research (FAIR)

    International Nuclear Information System (INIS)

    Bhaduri, Partha Pratim; Chattopadhyay, Subhasis

    2010-01-01

    Differential elliptic flow v 2 (p T ) for identified hadrons is investigated in the FAIR energy regime, employing a hadronic-string transport model (UrQMD) as well as a partonic transport model (AMPT). It is observed that both models show a mass ordering of v 2 at low p T and a switch-over resulting in a baryon-meson crossing at intermediate p T . AMPT generates higher v 2 values compared to UrQMD. In addition, constituent quark number scaling behavior of elliptic flow is addressed. Scaling behavior in terms of the transverse momentum p T is found to be absent for both the partonic and the hadronic model. However, UrQMD and AMPT with a string melting scenario do exhibit an NCQ scaling of v 2 to varying degrees, with respect to the transverse kinetic energy KE T . But the default AMPT, where partonic scatterings are not included, does not show any considerable scaling behavior. A variable α is defined to quantify the degree of KE T scaling. We found that UrQMD gives better scaling than AMPT at FAIR.

  1. Using Auditory Steady-State Responses for Measuring Hearing Protector Attenuation

    Directory of Open Access Journals (Sweden)

    Olivier Valentin

    2017-01-01

    Full Text Available Introduction: Present methods of measuring the attenuation of hearing protection devices (HPDs have limitations. Objective measurements such as field microphone in real-ear do not assess bone-conducted sound. Psychophysical measurements such as real-ear attenuation at threshold (REAT are biased due to the low frequency masking effects from test subjects’ physiological noise and the variability of measurements based on subjective responses. An auditory steady-state responses (ASSRs procedure is explored as a technique which might overcome these limitations. Subjects and Methods: Pure tone stimuli (500 and 1000 Hz, amplitude modulated at 40 Hz, are presented to 10 normal-hearing adults through headphones at three levels in 10 dB steps. Two conditions were assessed: unoccluded ear canal and occluded ear canal. ASSR amplitude data as a function of the stimulation level are linearized using least-square regressions. The “physiological attenuation” is then calculated as the average difference between the two measurements. The technical feasibility of measuring earplug attenuation is demonstrated for the group average attenuation across subjects. Results: No significant statistical difference is found between the average REAT attenuation and the average ASSR-based attenuation. Conclusion: Feasibility is not yet demonstrated for individual subjects since differences between the estimates occurred for some subjects.

  2. Yiguanjian cataplasm attenuates opioid dependence in a mouse

    Science.gov (United States)

    Gao, Shuai; Gao, Hong; Fan, Yuchen; Zhang, Guanghua; Sun, Fengkai; Zhao, Jing; Li, Feng; Yang, Yang; Wang, Kai

    2016-08-01

    To investigate the effect of Yiguanjian (YGJ) cataplasm on the development of opioid dependence in a mouse model of naloxone-induced opioid withdrawal syndrome. One hundred Swiss albino mice, of equal male to female ratio, were randomly and equally divided into 10 groups. A portion (3 cm2) of the backside hair of the mice was removed 1 day prior to the experiment. Morphine (5 mg/kg) was intraperitoneally administered twice daily for 5 days. YGJ cataplasm was prepared and pasted on the bare region of the mice immediately before morphine administration on day 3 and subsequently removed at the end day 5. On day 6, naloxone (8 mg/kg) was intraperitoneally injected to precipitate opioid withdrawal syndrome. Behavioral observation was performed in two 30-min phases immediately after naloxone injection. The YGJ cataplasm significantly and dose-dependently attenuated morphine-naloxone- induced experimental opioid withdrawal, in terms of withdrawal severity score and the frequencies of jumping, rearing, forepaw licking, and circling behaviors. However, YGJ cataplasm treatment did not alter the acute analgesic effect of morphine. YGJ cataplasm could attenuate opioid dependence and its associated withdrawal symptoms. Therefore, YGJ cataplasm could serve as a potential therapy for opioid addiction in the future.

  3. Terahertz time-domain attenuated total reflection spectroscopy applied to the rapid discrimination of the botanical origin of honeys

    Science.gov (United States)

    Liu, Wen; Zhang, Yuying; Yang, Si; Han, Donghai

    2018-05-01

    A new technique to identify the floral resources of honeys is demanded. Terahertz time-domain attenuated total reflection spectroscopy combined with chemometrics methods was applied to discriminate different categorizes (Medlar honey, Vitex honey, and Acacia honey). Principal component analysis (PCA), cluster analysis (CA) and partial least squares-discriminant analysis (PLS-DA) have been used to find information of the botanical origins of honeys. Spectral range also was discussed to increase the precision of PLS-DA model. The accuracy of 88.46% for validation set was obtained, using PLS-DA model in 0.5-1.5 THz. This work indicated terahertz time-domain attenuated total reflection spectroscopy was an available approach to evaluate the quality of honey rapidly.

  4. Analytical inversion formula for uniformly attenuated fan-beam projections

    International Nuclear Information System (INIS)

    Weng, Y.; Zeng, G.L.; Gullberg, G.T.

    1997-01-01

    In deriving algorithms to reconstruct single photon emission computed tomography (SPECT) projection data, it is important that the algorithm compensates for photon attenuation in order to obtain quantitative reconstruction results. A convolution backprojection algorithm was derived by Tretiak and Metz to reconstruct two-dimensional (2-D) transaxial slices from uniformly attenuated parallel-beam projections. Using transformation of coordinates, this algorithm can be modified to obtain a formulation useful to reconstruct uniformly attenuated fan-beam projections. Unlike that for parallel-beam projections, this formulation does not produce a filtered backprojection reconstruction algorithm but instead has a formulation that is an inverse integral operator with a spatially varying kernel. This algorithm thus requires more computation time than does the filtered backprojection reconstruction algorithm for the uniformly attenuated parallel-beam case. However, the fan-beam reconstructions demonstrate the same image quality as that of parallel-beam reconstructions

  5. Gamma ray attenuation coefficient measurement for neutron-absorbent materials

    International Nuclear Information System (INIS)

    Jalali, Majid; Mohammadi, Ali

    2008-01-01

    The compounds Na 2 B 4 O 7 , H 3 BO 3 , CdCl 2 and NaCl and their solutions attenuate gamma rays in addition to neutron absorption. These compounds are widely used in the shielding of neutron sources, reactor control and neutron converters. Mass attenuation coefficients of gamma related to the four compounds aforementioned, in energies 662, 778.9, 867.38, 964.1, 1085.9, 1173, 1212.9, 1299.1,1332 and 1408 keV, have been determined by the γ rays transmission method in a good geometry setup; also, these coefficients were calculated by MCNP code. A comparison between experiments, simulations and Xcom code has shown that the study has potential application for determining the attenuation coefficient of various compound materials. Experiment and computation show that H 3 BO 3 with the lowest average Z has the highest gamma ray attenuation coefficient among the aforementioned compounds

  6. Evaluating Ecosystem Services for Reducing Groundwater Nitrate Contamination: Nitrate Attenuation in the Unsaturated and Saturated Zones

    Science.gov (United States)

    Wang, J.

    2013-12-01

    Nitrates are the most common type of groundwater contamination in agricultural regions. Environmental policies targeting nitrates have focused on input control (e.g., restricted fertilizer application), intermediate loads control (e.g., reduce nitrate leached from crop fields), and final loads control (e.g., reduce catchment nitrate loads). Nitrate loads can be affected by hydrological processes in both unsaturated and saturated zones. Although many of these processes have been extensively investigated in literature, they are commonly modeled as exogenous to farm management. A couple of recent studies by scientists from the Lawrence Livermore National Laboratory show that in some situations nitrate attenuation processes in the unsaturated/saturated zone, particularly denitrification, can be intensified by certain management practices to mitigate nitrate loads. Therefore, these nitrate attenuation processes can be regarded as a set of ecosystem services that farmers can take advantage of to reduce their cost of complying with environmental policies. In this paper, a representative California dairy farm is used as a case study to show how such ecosystem attenuation services can be framed within the farm owner's decision-making framework as an option for reducing groundwater nitrate contamination. I develop an integrated dynamic model, where the farmer maximizes discounted net farm profit over multiple periods subject to environmental regulations. The model consists of three submodels: animal-waste-crop, hydrologic, and economic model. In addition to common choice variables such as irrigation, fertilization, and waste disposal options, the farmer can also endogenously choose from three water sources: surface water, deep groundwater (old groundwater in the deep aquifer that is not affected by farm effluent in the short term), and shallow groundwater (drainage water that can be recycled via capture wells at the downstream end of the farm). The capture wells not only

  7. Digital-Control-Based Approximation of Optimal Wave Disturbances Attenuation for Nonlinear Offshore Platforms

    Directory of Open Access Journals (Sweden)

    Xiao-Fang Zhong

    2017-12-01

    Full Text Available The irregular wave disturbance attenuation problem for jacket-type offshore platforms involving the nonlinear characteristics is studied. The main contribution is that a digital-control-based approximation of optimal wave disturbances attenuation controller (AOWDAC is proposed based on iteration control theory, which consists of a feedback item of offshore state, a feedforward item of wave force and a nonlinear compensated component with iterative sequences. More specifically, by discussing the discrete model of nonlinear offshore platform subject to wave forces generated from the Joint North Sea Wave Project (JONSWAP wave spectrum and linearized wave theory, the original wave disturbances attenuation problem is formulated as the nonlinear two-point-boundary-value (TPBV problem. By introducing two vector sequences of system states and nonlinear compensated item, the solution of introduced nonlinear TPBV problem is obtained. Then, a numerical algorithm is designed to realize the feasibility of AOWDAC based on the deviation of performance index between the adjacent iteration processes. Finally, applied the proposed AOWDAC to a jacket-type offshore platform in Bohai Bay, the vibration amplitudes of the displacement and the velocity, and the required energy consumption can be reduced significantly.

  8. Photoacoustic signal attenuation analysis for the assessment of thin layers thickness in paintings

    Science.gov (United States)

    Tserevelakis, George J.; Dal Fovo, Alice; Melessanaki, Krystalia; Fontana, Raffaella; Zacharakis, Giannis

    2018-03-01

    This study introduces a novel method for the thickness estimation of thin paint layers in works of art, based on photoacoustic signal attenuation analysis (PAcSAA). Ad hoc designed samples with acrylic paint layers (Primary Red Magenta, Cadmium Yellow, Ultramarine Blue) of various thicknesses on glass substrates were realized for the specific application. After characterization by Optical Coherence Tomography imaging, samples were irradiated at the back side using low energy nanosecond laser pulses of 532 nm wavelength. Photoacoustic waves undergo a frequency-dependent exponential attenuation through the paint layer, before being detected by a broadband ultrasonic transducer. Frequency analysis of the recorded time-domain signals allows for the estimation of the average transmitted frequency function, which shows an exponential decay with the layer thickness. Ultrasonic attenuation models were obtained for each pigment and used to fit the data acquired on an inhomogeneous painted mock-up simulating a real canvas painting. Thickness evaluation through PAcSAA resulted in excellent agreement with cross-section analysis with a conventional brightfield microscope. The results of the current study demonstrate the potential of the proposed PAcSAA method for the non-destructive stratigraphic analysis of painted artworks.

  9. Development of digital phantoms based on a finite element model to simulate low-attenuation areas in CT imaging for pulmonary emphysema quantification.

    Science.gov (United States)

    Diciotti, Stefano; Nobis, Alessandro; Ciulli, Stefano; Landini, Nicholas; Mascalchi, Mario; Sverzellati, Nicola; Innocenti, Bernardo

    2017-09-01

    To develop an innovative finite element (FE) model of lung parenchyma which simulates pulmonary emphysema on CT imaging. The model is aimed to generate a set of digital phantoms of low-attenuation areas (LAA) images with different grades of emphysema severity. Four individual parameter configurations simulating different grades of emphysema severity were utilized to generate 40 FE models using ten randomizations for each setting. We compared two measures of emphysema severity (relative area (RA) and the exponent D of the cumulative distribution function of LAA clusters size) between the simulated LAA images and those computed directly on the models output (considered as reference). The LAA images obtained from our model output can simulate CT-LAA images in subjects with different grades of emphysema severity. Both RA and D computed on simulated LAA images were underestimated as compared to those calculated on the models output, suggesting that measurements in CT imaging may not be accurate in the assessment of real emphysema extent. Our model is able to mimic the cluster size distribution of LAA on CT imaging of subjects with pulmonary emphysema. The model could be useful to generate standard test images and to design physical phantoms of LAA images for the assessment of the accuracy of indexes for the radiologic quantitation of emphysema.

  10. Mesenchymal Stem Cells (MSCs) Attenuate Cutaneous Sclerodermatous Graft-Versus-Host Disease (Scl-GVHD) through Inhibition of Immune Cell Infiltration in a Mouse Model.

    Science.gov (United States)

    Lim, Ji-Young; Ryu, Da-Bin; Lee, Sung-Eun; Park, Gyeongsin; Min, Chang-Ki

    2017-09-01

    Human chronic graft-versus-host disease (GVHD) shares clinical characteristics with a murine sclerodermatous GVHD model that is characterized by skin thickening and lung fibrosis. A B10.D2 → BALB/c transplant model of sclerodermatous GVHD was used to address the therapeutic effect of mesenchymal stem cells (MSCs) on the development of chronic GVHD. The clinical and pathological severity of cutaneous sclerodermatous GVHD was significantly attenuated in MSC-treated recipients relative to sclerodermatous GVHD control subjects. After MSC treatment, skin collagen production was significantly reduced, with consistent down-regulation of Tgfb expression. Effects of MSCs on molecular markers implicated in persistent transforming growth factor-β signaling and fibrosis, such as PTEN, phosphorylated Smad-2/3, and matrix metalloproteinase-1, were observed in skin tissue. MSCs neither migrate to the skin nor affect the in vivo expansion of immune effector cells, but they inhibited the infiltration of immune effector cells into skin via down-regulation of CCR4 and CCR8 expression on CD4 + T cells and CCR1 on CD11b + monocyte/macrophages. MSCs diminished expression of chemokines such as CCL1, CCL3, CCL8, CCL17, and CCL22 in skin. MSCs were also dependent on stimulated splenocytes to suppress fibroblast proliferation. Our findings indicate that MSCs attenuate the cutaneous sclerodermatous GVHD by selectively blocking immune cell migration and down-regulating chemokines and chemokine receptors. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Viability of natural attenuation in a petroleum-contaminated shallow sandy aquifer

    International Nuclear Information System (INIS)

    Lee, Jin-Yong; Lee, Kang-Kun

    2003-01-01

    More than 20 years would be required to clean up the site by natural attenuation alone. - This study focused on evaluating and quantifying the potential of natural attenuation of groundwater at a petroleum-contaminated site in an industrial area of a satellite city of Seoul, Korea. Groundwater at the study site was contaminated with toluene, ethylbenzene and xylene (TEX). Eight rounds of groundwater sampling and subsequent chemical analyses were performed over a period of 3 years. The groundwater quality data suggest that TEX concentrations at this site have been decreasing with time and that the TEX plume is at a quasi-steady state. Trend analysis, changes in mass flux and plume area also confirmed that the TEX plume has reached a quasi-steady state. The proportion of the total attenuation attributable to biodegradation has decreased over the monitoring period while contribution of other attenuation processes, such as dilution or dispersion, has increased. Based on the calculated attenuation rates, it would take more than 20 years to clean up the site by natural attenuation alone

  12. Radiation-induced attenuation in integrated optical materials

    International Nuclear Information System (INIS)

    Evans, B.D.

    1989-01-01

    This paper reports that three materials commonly employed in opto-electronic integrated circuits evaluated for radiation-induced optical attenuation in the range 300 nm to 3000 nm. These include optically clear epoxy and crystalline lithium niobate after Co-60 exposure and crystalline tellurium dioxide after mixed gamma/fast-neutron exposure. In all these materials, however, induced loss was restricted to shorter wavelengths; attenuation induced at the telecommunications windows near 850, 1300 and 1550 nm was <0.1 dB/cm

  13. Principles underlying rational design of live attenuated influenza vaccines

    Science.gov (United States)

    Jang, Yo Han

    2012-01-01

    Despite recent innovative advances in molecular virology and the developments of vaccines, influenza virus remains a serious burden for human health. Vaccination has been considered a primary countermeasure for prevention of influenza infection. Live attenuated influenza vaccines (LAIVs) are particularly attracting attention as an effective strategy due to several advantages over inactivated vaccines. Cold-adaptation, as a classical means for attenuating viral virulence, has been successfully used for generating safe and effective donor strains of LAIVs against seasonal epidemics and occasional pandemics. Recently, the advent of reverse genetics technique expedited a variety of rational strategies to broaden the pool of LAIVs. Considering the breadth of antigenic diversity of influenza virus, the pool of LAIVs is likely to equip us with better options for controlling influenza pandemics. With a brief reflection on classical attenuating strategies used at the initial stage of development of LAIVs, especially on the principles underlying the development of cold-adapted LAIVs, we further discuss and outline other attenuation strategies especially with respect to the rationales for attenuation, and their practicality for mass production. Finally, we propose important considerations for a rational vaccine design, which will provide us with practical guidelines for improving the safety and effectiveness of LAIVs. PMID:23596576

  14. Comparison of the live attenuated yellow fever vaccine 17D-204 strain to its virulent parental strain Asibi by deep sequencing.

    Science.gov (United States)

    Beck, Andrew; Tesh, Robert B; Wood, Thomas G; Widen, Steven G; Ryman, Kate D; Barrett, Alan D T

    2014-02-01

    The first comparison of a live RNA viral vaccine strain to its wild-type parental strain by deep sequencing is presented using as a model the yellow fever virus (YFV) live vaccine strain 17D-204 and its wild-type parental strain, Asibi. The YFV 17D-204 vaccine genome was compared to that of the parental strain Asibi by massively parallel methods. Variability was compared on multiple scales of the viral genomes. A modeled exploration of small-frequency variants was performed to reconstruct plausible regions of mutational plasticity. Overt quasispecies diversity is a feature of the parental strain, whereas the live vaccine strain lacks diversity according to multiple independent measurements. A lack of attenuating mutations in the Asibi population relative to that of 17D-204 was observed, demonstrating that the vaccine strain was derived by discrete mutation of Asibi and not by selection of genomes in the wild-type population. Relative quasispecies structure is a plausible correlate of attenuation for live viral vaccines. Analyses such as these of attenuated viruses improve our understanding of the molecular basis of vaccine attenuation and provide critical information on the stability of live vaccines and the risk of reversion to virulence.

  15. Quantitative contrast-enhanced CT attenuation evaluation of osseous metastases following chemotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Connie Y.; Simeone, F.J.; Torriani, Martin; Bredella, Miriam A. [Massachusetts General Hospital, Division of Musculoskeletal Imaging and Intervention, Department of Radiology, Boston, MA (United States)

    2017-10-15

    Osseous metastases often undergo an osteoblastic healing response following chemotherapy. The purpose of our study was to demonstrate the quantitative CT changes in attenuation of osseous metastases before and after chemotherapy. Our study was IRB approved and HIPAA compliant. Our cohort consisted of 86 consecutive cancer patients with contrast-enhanced CTs before and 14 ± 2 (12-25) months after initiation of chemotherapy (60 ± 11 years, 36 males, 50 females). The average and maximum metastasis attenuations were measured in Hounsfield units (HU) by two readers. Treatment effects were assessed using paired t-tests and Fisher exact tests. Intraclass correlation coefficients (ICCs) were calculated. Patient records were reviewed to determine the patient's clinical status (worse, unchanged, or improved) at the time of follow-up CT. The distribution of lesion types was as follows: lytic (30/86, 35%), blastic (43/86, 50%), and mixed lytic-blastic (13/86, 15%). There was a significant increase in average and maximum CT attenuation of metastases following chemotherapy for all patients, which remained statistically significant when stratified by lesion type, clinical status (worsening or improving/stable), cancer type (breast, lung), and radiation therapy (P < 0.05). In a subgroup of patients whose osseous metastases decreased in average attenuation (14/86, 16%), more patients had a worse clinical status (11/14, 79%) (P = 0.02). ICC was almost perfect for average attenuation and substantial for maximum attenuation. Quantitative assessment of osseous metastatic disease using CT attenuation measurements demonstrated a statistically significant increase in attenuation more than 12 months after initiation of chemotherapy. (orig.)

  16. Giardia duodenalis infection reduces granulocyte infiltration in an in vivo model of bacterial toxin-induced colitis and attenuates inflammation in human intestinal tissue.

    Directory of Open Access Journals (Sweden)

    James A Cotton

    Full Text Available Giardia duodenalis (syn. G. intestinalis, G. lamblia is a predominant cause of waterborne diarrheal disease that may lead to post-infectious functional gastrointestinal disorders. Although Giardia-infected individuals could carry as much as 106 trophozoites per centimetre of gut, their intestinal mucosa is devoid of overt signs of inflammation. Recent studies have shown that in endemic countries where bacterial infectious diseases are common, Giardia infections can protect against the development of diarrheal disease and fever. Conversely, separate observations have indicated Giardia infections may enhance the severity of diarrheal disease from a co-infecting pathogen. Polymorphonuclear leukocytes or neutrophils (PMNs are granulocytic, innate immune cells characteristic of acute intestinal inflammatory responses against bacterial pathogens that contribute to the development of diarrheal disease following recruitment into intestinal tissues. Giardia cathepsin B cysteine proteases have been shown to attenuate PMN chemotaxis towards IL-8/CXCL8, suggesting Giardia targets PMN accumulation. However, the ability of Giardia infections to attenuate PMN accumulation in vivo and how in turn this effect may alter the host inflammatory response in the intestine has yet to be demonstrated. Herein, we report that Giardia infection attenuates granulocyte tissue infiltration induced by intra-rectal instillation of Clostridium difficile toxin A and B in an isolate-dependent manner. This attenuation of granulocyte infiltration into colonic tissues paralled decreased expression of several cytokines associated with the recruitment of PMNs. Giardia trophozoite isolates that attenuated granulocyte infiltration in vivo also decreased protein expression of cytokines released from inflamed mucosal biopsy tissues collected from patients with active Crohn's disease, including several cytokines associated with PMN recruitment. These results demonstrate for the first time

  17. Attenuation of the gamma rays in tissues

    International Nuclear Information System (INIS)

    Arcos P, A.; Rodriguez N, S.; Pinedo S, A.; Amador V, P.; Chacon R, A.; Vega C, H.R.

    2005-01-01

    The mass and lineal attenuation coefficient and of hepatic tissue, muscular, osseous and of brain before gamma rays of 10 -3 to 10 5 MeV were calculated. For the case of the osseous tissue the calculation was made for the cartilage, the cortical tissue and the bone marrow. During the calculations the elementary composition of the tissues of human origin was used. The calculations include by separate the Photoelectric effect, the Compton scattering and the Pair production, as well as the total. For to establish a comparison with the attenuation capacities, the coefficients of the water, the aluminum and the lead also were calculated. The study was complemented measuring the attenuation coefficient of hepatic tissue of bovine before gamma rays of 0.662 MeV of a source of 137 Cs. The measurement was made through of an experiment of photons transmission through samples frozen of hepatic tissue and with a Geiger-Mueller detector. (Author)

  18. Gamma ray attenuation coefficient measurement for neutron-absorbent materials

    Energy Technology Data Exchange (ETDEWEB)

    Jalali, Majid [Isfahan Nuclear Science and Technology Research Institute (NSTRT), Reactor and Accelerators Research and Development School, Atomic Energy Organization (Iran, Islamic Republic of)], E-mail: m_jalali@entc.org.ir; Mohammadi, Ali [Faculty of Science, Department of Physics, University of Kashan, Km. 6, Ravand Road, Kashan (Iran, Islamic Republic of)

    2008-05-15

    The compounds Na{sub 2}B{sub 4}O{sub 7}, H{sub 3}BO{sub 3}, CdCl{sub 2} and NaCl and their solutions attenuate gamma rays in addition to neutron absorption. These compounds are widely used in the shielding of neutron sources, reactor control and neutron converters. Mass attenuation coefficients of gamma related to the four compounds aforementioned, in energies 662, 778.9, 867.38, 964.1, 1085.9, 1173, 1212.9, 1299.1,1332 and 1408 keV, have been determined by the {gamma} rays transmission method in a good geometry setup; also, these coefficients were calculated by MCNP code. A comparison between experiments, simulations and Xcom code has shown that the study has potential application for determining the attenuation coefficient of various compound materials. Experiment and computation show that H{sub 3}BO{sub 3} with the lowest average Z has the highest gamma ray attenuation coefficient among the aforementioned compounds.

  19. Minimal residual cone-beam reconstruction with attenuation correction in SPECT

    International Nuclear Information System (INIS)

    La, Valerie; Grangeat, Pierre

    1998-01-01

    This paper presents an iterative method based on the minimal residual algorithm for tomographic attenuation compensated reconstruction from attenuated cone-beam projections given the attenuation distribution. Unlike conjugate-gradient based reconstruction techniques, the proposed minimal residual based algorithm solves directly a quasisymmetric linear system, which is a preconditioned system. Thus it avoids the use of normal equations, which improves the convergence rate. Two main contributions are introduced. First, a regularization method is derived for quasisymmetric problems, based on a Tikhonov-Phillips regularization applied to the factorization of the symmetric part of the system matrix. This regularization is made spatially adaptive to avoid smoothing the region of interest. Second, our existing reconstruction algorithm for attenuation correction in parallel-beam geometry is extended to cone-beam geometry. A circular orbit is considered. Two preconditioning operators are proposed: the first one is Grangeat's inversion formula and the second one is Feldkamp's inversion formula. Experimental results obtained on simulated data are presented and the shadow zone effect on attenuated data is illustrated. (author)

  20. Segmented attenuation correction using artificial neural networks in positron tomography

    International Nuclear Information System (INIS)

    Yu, S.K.; Nahmias, C.

    1996-01-01

    The measured attenuation correction technique is widely used in cardiac positron tomographic studies. However, the success of this technique is limited because of insufficient counting statistics achievable in practical transmission scan times, and of the scattered radiation in transmission measurement which leads to an underestimation of the attenuation coefficients. In this work, a segmented attenuation correction technique has been developed that uses artificial neural networks. The technique has been validated in phantoms and verified in human studies. The results indicate that attenuation coefficients measured in the segmented transmission image are accurate and reproducible. Activity concentrations measured in the reconstructed emission image can also be recovered accurately using this new technique. The accuracy of the technique is subject independent and insensitive to scatter contamination in the transmission data. This technique has the potential of reducing the transmission scan time, and satisfactory results are obtained if the transmission data contain about 400 000 true counts per plane. It can predict accurately the value of any attenuation coefficient in the range from air to water in a transmission image with or without scatter correction. (author)

  1. Intercomparison of attenuation correction algorithms for single-polarized X-band radars

    Science.gov (United States)

    Lengfeld, K.; Berenguer, M.; Sempere Torres, D.

    2018-03-01

    Attenuation due to liquid water is one of the largest uncertainties in radar observations. The effects of attenuation are generally inversely proportional to the wavelength, i.e. observations from X-band radars are more affected by attenuation than those from C- or S-band systems. On the other hand, X-band radars can measure precipitation fields in higher temporal and spatial resolution and are more mobile and easier to install due to smaller antennas. A first algorithm for attenuation correction in single-polarized systems was proposed by Hitschfeld and Bordan (1954) (HB), but it gets unstable in case of small errors (e.g. in the radar calibration) and strong attenuation. Therefore, methods have been developed that restrict attenuation correction to keep the algorithm stable, using e.g. surface echoes (for space-borne radars) and mountain returns (for ground radars) as a final value (FV), or adjustment of the radar constant (C) or the coefficient α. In the absence of mountain returns, measurements from C- or S-band radars can be used to constrain the correction. All these methods are based on the statistical relation between reflectivity and specific attenuation. Another way to correct for attenuation in X-band radar observations is to use additional information from less attenuated radar systems, e.g. the ratio between X-band and C- or S-band radar measurements. Lengfeld et al. (2016) proposed such a method based isotonic regression of the ratio between X- and C-band radar observations along the radar beam. This study presents a comparison of the original HB algorithm and three algorithms based on the statistical relation between reflectivity and specific attenuation as well as two methods implementing additional information of C-band radar measurements. Their performance in two precipitation events (one mainly convective and the other one stratiform) shows that a restriction of the HB is necessary to avoid instabilities. A comparison with vertically pointing

  2. Extraction procedure compared to attenuation model to assess heavy metals mobility in sediments from Sepetiba Bay, Rio de Janeiro

    International Nuclear Information System (INIS)

    Ribeiro, Andreza Portella

    2006-01-01

    , for Zn, and as level 1, for Cd, Cu, Pb and Ni, according to the CONAMA 344/04 act. A geostatistical approach is presented, the attenuation of concentrations model, which aims to estimate metal mobility in sediments. The proposed model showed the highest attenuation values for Zn, Cd, Cu and Pb in the northeastern region, indicating that the mobility of these metals is low in this region, suggesting low availability, which is in good agreement with the results obtained by the SIGMA[SEM]/[AVS] model. These results indicate good possibilities of applying this model in metal contamination studies in estuarine ecosystems. (author)

  3. Radiation induced time dependent attenuation in a fiber

    International Nuclear Information System (INIS)

    Kelly, R.E.; Lyons, P.B.; Looney, L.D.

    1985-01-01

    Characteristics describing the time dependent attenuation coefficient of an optical fiber during and following a very short and intense radiation pulse are analyzed. This problem is important for transmission applications when the fiber is subjected to gamma, electron, or neutron beams. Besides time, the attenuation coefficient is a function of temperature, dose rate, dose, nature of the radiation (n, e, γ), fiber composition and purity, pre-existing solid state defects, and wavelength of the transmitted signal. The peak attenuation for a given fiber is mainly determined by the dose rate and pulse length, but temperature and strain (or athermal) annealing also contribute to a partial recovery during the pulse duration. The peak attenuation per unit dose appears to be smaller at high doses, perhaps caused by particle track overlap, which produces a saturation effect. After pulse termination, the attenuation coefficient tends to recover towards its pre-radiation value at different rates, depending upon the factors mentioned above. In particular, ionized electrons relax back to the positive lattice ions at a rate which depends upon initial separation distance and temperature. The initial separation distance is a function of beam energy. Some electrons will encounter a trap in the lattice and may recombine by quantum mechanical tunneling or be removed by photons (hence, absorption). Besides ionization, radiation may induce lattice displacements which in turn produce additional absorption centers. The displacement contribution has a different time constant than that associated with ionization. These topics, as they influence fiber characteristics, are discussed, along with supporting experimental data

  4. Bulk sample self-attenuation correction by transmission measurement

    International Nuclear Information System (INIS)

    Parker, J.L.; Reilly, T.D.

    1976-01-01

    Various methods used in either finding or avoiding the attenuation correction in the passive γ-ray assay of bulk samples are reviewed. Detailed consideration is given to the transmission method, which involves experimental determination of the sample linear attenuation coefficient by measuring the transmission through the sample of a beam of gamma rays from an external source. The method was applied to box- and cylindrically-shaped samples

  5. An acoustic eikonal equation for attenuating transversely isotropic media with a vertical symmetry axis

    KAUST Repository

    Hao, Qi

    2016-11-21

    Seismic-wave attenuation is an important component of describing wave propagation. Certain regions, such as gas clouds inside the earth, exert highly localized attenuation. In fact, the anisotropic nature of the earth induces anisotropic attenuation because the quasi P-wave dispersion effect should be profound along the symmetry direction. We have developed a 2D acoustic eikonal equation governing the complex-valued traveltime of quasi P-waves in attenuating, transversely isotropic media with a vertical-symmetry axis (VTI). This equation is derived under the assumption that the complex-valued traveltime of quasi P-waves in attenuating VTI media are independent of the S-wave velocity parameter υS0 in Thomsen\\'s notation and the S-wave attenuation coefficient AS0 in Zhu and Tsvankin\\'s notation. We combine perturbation theory and Shanks transform to develop practical approximations to the acoustic attenuating eikonal equation, capable of admitting an analytical description of the attenuation in homogeneous media. For a horizontal-attenuating VTI layer, we also derive the nonhyperbolic approximations for the real and imaginary parts of the complex-valued reflection traveltime. These equations reveal that (1) the quasi SV-wave velocity and the corresponding quasi SV-wave attenuation coefficient given as part of Thomsen-type notation barely affect the ray velocity and ray attenuation of quasi P-waves in attenuating VTI media; (2) combining the perturbation method and Shanks transform provides an accurate analytic eikonal solution for homogeneous attenuating VTI media; (3) for a horizontal attenuating VTI layer with weak attenuation, the real part of the complex-valued reflection traveltime may still be described by the existing nonhyperbolic approximations developed for nonattenuating VTI media, and the imaginary part of the complex-valued reflection traveltime still has the shape of nonhyperbolic curves. In addition, we have evaluated the possible extension of the

  6. ADVANCING THE SCIENCE OF NATURAL AND ENHANCED ATTENUATION FOR CHLORINATED SOLVENTS

    Energy Technology Data Exchange (ETDEWEB)

    Looney, B; TOM O. EARLY, T; TYLER GILMORE, T; FRANCIS H. CHAPELLE, F; NORMAN H. CUTSHALL, N; JEFF ROSS, J; MARK ANKENY, M; Michael Heitkamp, M; DAVID MAJOR, D; CHARLES J. NEWELL, C; W. JODY WAUGH, W; GARY WEIN, G; Karen Vangelas, K; Karen-M Adams, K; CLAIRE H. SINK, C

    2006-12-27

    This report summarizes the results of a three-year program that addressed key scientific and technical aspects related to natural and enhanced attenuation of chlorinated organics. The results from this coordinated three-year program support a variety of technical and regulatory advancements. Scientists, regulators, engineers, end-users and stakeholders participated in the program, which was supported by the U.S. Department of Energy (DOE) and the Interstate Technology and Regulatory Council (ITRC). The overarching objective of the effort was to examine environmental remedies that are based on natural processes--remedies such as Monitored Natural Attenuation (MNA) or Enhanced Attenuation (EA). A key result of the recent effort was the general affirmation of the approaches and guidance in the original U.S. Environmental Protection Agency (EPA) chlorinated solvent MNA protocols and directives from 1998 and 1999, respectively. The research program did identify several specific opportunities for advances based on: (1) mass balance as the central framework for attenuation based remedies, (2) scientific advancements and achievements during the past ten years, (3) regulatory and policy development and real-world experience using MNA, and (4) exploration of various ideas for integrating attenuation remedies into a systematic set of ''combined remedies'' for contaminated sites. These opportunities are summarized herein and are addressed in more detail in referenced project documents and journal articles, as well as in the technical and regulatory documents being developed within the ITRC. Natural attenuation processes occur in all soil and groundwater systems and act, to varying degrees, on all contaminants. Thus, a decision to rely on natural attenuation processes as part of a site-remediation strategy does not depend on the occurrence of natural attenuation, but on its effectiveness in meeting site-specific remediation goals. Meeting these goals

  7. Developement of a Light Attenuator Based on Glassy Reflections ...

    African Journals Online (AJOL)

    The light intensity control of a luminous source is a very important operation in many optical applications. Several types of light attenuator exploiting different optical phenomena like diffraction, absorption, and reflection exist and they differ principally in the maximum attenuation rate, the control range, the sensitivity and the ...

  8. Experiment evaluation of impact attenuator for a racing car under static load

    Science.gov (United States)

    Imanullah, Fahmi; Ubaidillah, Prasojo, Arfi Singgih; Wirawan, Adhe Aji

    2018-02-01

    The automotive world is a world where one of the factors that must be considered carefully is the safety aspect. In the formula student car one of the safety factor in the form of impact attenuator. Impact attenuator is used as anchoring when a collision occurs in front of the vehicle. In the rule of formula society of automotive engineer (FSAE) student, impact attenuator is required to absorb the energy must meet or exceed 7350 Joules with a slowdown in speed not exceeding 20 g average and peak of 40 g. The student formula participants are challenged to pass the boundaries so that in designing and making the impact attenuator must pay attention to the strength and use of the minimum material so that it can minimize the expenditure. In this work, an impact attenuator was fabricated and tested using static compression. The primary goal was evaluating the actual capability of the impact attenuator for impact energy absorption. The prototype was made of aluminum alloy in a prismatic shape, and the inside wall was filled with rooftop plastic slices and polyurethane hard foam. The compression test has successfully carried out, and the load versus displacement data could be used in calculating energy absorption capability. The result of the absorbent energy of the selected impact attenuator material. Impact attenuator full polyurethane absorbed energy reach 6380 Joule. For impact attenuator with aluminum polyurethane with a slashed rooftop material as section absorbed energy reach 6600 Joule. Impact attenuator with Aluminum Polyurethane with aluminum orange peel partitions absorbed energy reach 8800 Joule. From standard student formula, energy absorbed in this event must meet or exceed 7350 Joules that meet aluminum polyurethane with aluminum orange peel partitions with the ability to absorb 8800 Joule.

  9. Validity of the CT to attenuation coefficient map conversion methods

    International Nuclear Information System (INIS)

    Faghihi, R.; Ahangari Shahdehi, R.; Fazilat Moadeli, M.

    2004-01-01

    The most important commercialized methods of attenuation correction in SPECT are based on attenuation coefficient map from a transmission imaging method. The transmission imaging system can be the linear source of radioelement or a X-ray CT system. The image of transmission imaging system is not useful unless to replacement of the attenuation coefficient or CT number with the attenuation coefficient in SPECT energy. In this paper we essay to evaluate the validity and estimate the error of the most used method of this transformation. The final result shows that the methods which use a linear or multi-linear curve accept a error in their estimation. The value of mA is not important but the patient thickness is very important and it can introduce a error more than 10 percent in the final result

  10. Reactive transport modeling of processes controlling the distribution and natural attenuation of phenolic compounds in a deep sandstone aquifer

    Science.gov (United States)

    Mayer, K. U.; Benner, S. G.; Frind, E. O.; Thornton, S. F.; Lerner, D. N.

    2001-12-01

    Reactive solute transport modeling was utilized to evaluate the potential for natural attenuation of a contaminant plume containing phenolic compounds at a chemical producer in the West Midlands, UK. The reactive transport simulations consider microbially mediated biodegradation of the phenolic compounds (phenols, cresols, and xylenols) by multiple electron acceptors. Inorganic reactions including hydrolysis, aqueous complexation, dissolution of primary minerals, formation of secondary mineral phases, and ion exchange are considered. One-dimensional (1D) and three-dimensional (3D) simulations were conducted. Mass balance calculations indicate that biodegradation in the saturated zone has degraded approximately 1-5% of the organic contaminant plume over a time period of 47 years. Simulations indicate that denitrification is the most significant degradation process, accounting for approximately 50% of the organic contaminant removal, followed by sulfate reduction and fermentation reactions, each contributing 15-20%. Aerobic respiration accounts for less than 10% of the observed contaminant removal in the saturated zone. Although concentrations of Fe(III) and Mn(IV) mineral phases are high in the aquifer sediment, reductive dissolution is limited, producing only 5% of the observed mass loss. Mass balance calculations suggest that no more than 20-25% of the observed total inorganic carbon (TIC) was generated from biodegradation reactions in the saturated zone. Simulations indicate that aerobic biodegradation in the unsaturated zone, before the contaminant entered the aquifer, may have produced the majority of the TIC observed in the plume. Because long-term degradation is limited to processes within the saturated zone, use of observed TIC concentrations to predict the future natural attenuation may overestimate contaminant degradation by a factor of 4-5.

  11. Vinpocetine attenuates lipid accumulation and atherosclerosis formation

    International Nuclear Information System (INIS)

    Cai, Yujun; Li, Jian-Dong; Yan, Chen

    2013-01-01

    Highlights: •Vinpocetine attenuates hyperlipidemia-induced atherosclerosis in a mouse model. •Vinpocetine antagonizes ox-LDL uptake and accumulation in macrophages. •Vinpocetine blocks the induction of ox-LDL receptor LOX-1 in vitro and in vivo. -- Abstract: Atherosclerosis, the major cause of myocardial infarction and stroke, is a chronic arterial disease characterized by lipid deposition and inflammation in the vessel wall. Cholesterol, in low-density lipoprotein (LDL), plays a critical role in the pathogenesis of atherosclerosis. Vinpocetine, a derivative of the alkaloid vincamine, has long been used as a cerebral blood flow enhancer for treating cognitive impairment. Recent study indicated that vinpocetine is a potent anti-inflammatory agent. However, its role in the pathogenesis of atherosclerosis remains unexplored. In the present study, we show that vinpocetine significantly reduced atherosclerotic lesion formation in ApoE knockout mice fed with a high-fat diet. In cultured murine macrophage RAW264.7 cells, vinpocetine markedly attenuated oxidized LDL (ox-LDL) uptake and foam cell formation. Moreover, vinpocetine greatly blocked the induction of ox-LDL receptor 1 (LOX-1) in cultured macrophages as well as in the LOX-1 level in atherosclerotic lesions. Taken together, our data reveal a novel role of vinpocetine in reduction of pathogenesis of atherosclerosis, at least partially through suppressing LOX-1 signaling pathway. Given the excellent safety profile of vinpocetine, this study suggests vinpocetine may be a therapeutic candidate for treating atherosclerosis

  12. Vinpocetine attenuates lipid accumulation and atherosclerosis formation

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yujun [Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, 601 Elmwood Ave, Rochester, NY 14642 (United States); Li, Jian-Dong [Center for Inflammation, Immunity and Infection, and Department of Biology, Georgia State University, Atlanta, GA 30303 (United States); Yan, Chen, E-mail: Chen_Yan@urmc.rochester.edu [Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, 601 Elmwood Ave, Rochester, NY 14642 (United States)

    2013-05-10

    Highlights: •Vinpocetine attenuates hyperlipidemia-induced atherosclerosis in a mouse model. •Vinpocetine antagonizes ox-LDL uptake and accumulation in macrophages. •Vinpocetine blocks the induction of ox-LDL receptor LOX-1 in vitro and in vivo. -- Abstract: Atherosclerosis, the major cause of myocardial infarction and stroke, is a chronic arterial disease characterized by lipid deposition and inflammation in the vessel wall. Cholesterol, in low-density lipoprotein (LDL), plays a critical role in the pathogenesis of atherosclerosis. Vinpocetine, a derivative of the alkaloid vincamine, has long been used as a cerebral blood flow enhancer for treating cognitive impairment. Recent study indicated that vinpocetine is a potent anti-inflammatory agent. However, its role in the pathogenesis of atherosclerosis remains unexplored. In the present study, we show that vinpocetine significantly reduced atherosclerotic lesion formation in ApoE knockout mice fed with a high-fat diet. In cultured murine macrophage RAW264.7 cells, vinpocetine markedly attenuated oxidized LDL (ox-LDL) uptake and foam cell formation. Moreover, vinpocetine greatly blocked the induction of ox-LDL receptor 1 (LOX-1) in cultured macrophages as well as in the LOX-1 level in atherosclerotic lesions. Taken together, our data reveal a novel role of vinpocetine in reduction of pathogenesis of atherosclerosis, at least partially through suppressing LOX-1 signaling pathway. Given the excellent safety profile of vinpocetine, this study suggests vinpocetine may be a therapeutic candidate for treating atherosclerosis.

  13. Symphony orchestra musicians′ use of hearing protection and attenuation of custom-made hearing protectors as measured with two different real-ear attenuation at threshold methods

    Directory of Open Access Journals (Sweden)

    K H Huttunen

    2011-01-01

    Full Text Available Despite a high level of sound exposure and a fairly large selection of earplugs available, musicians have often been reported to use personal hearing protectors only seldom. For better hearing conservation, it is important to identify and eliminate the causes for the low motivation to use hearing protection. We explored the usage rate of custom-molded musician′s earplugs (ER-15 among 15 symphony orchestra musicians with a questionnaire, and measured the attenuation properties of their earplugs with a Real-Ear Attenuation at Threshold (REAT procedure in a sound field. Earplug use was found to be low, and the musicians reported that earplugs hampered listening to their own and their colleagues′ playing; earplugs affected either timbre or dynamics, or both. Additionally, several reasons related to discomfort of use were itemized, but the musicians who consistently used their earplugs did so in spite of problems with use. The REAT values obtained in sound field were relatively close to the manufacturer′s nominal specifications, being 13.7 dB, on average. In the frequency range studied (0.125-8 kHz, individual variation in REAT was, however, up to 15 dB across the measured frequencies. Fluctuation in attenuation might be related to low use of hearing protectors, and REAT measured at fixed center frequencies may be too robust a method to uncover it. We therefore tested 10 additional subjects to find out whether a sweeping signal used in Bιkιsy audiometry would bring more detailed information on earplug attenuation. Mean attenuation was found to be somewhat closer to the nominal attenuation of the ER-9 and ER-15 earplugs up to about 1 kHz, whereas REAT measurements in sound field revealed more even attenuation at frequencies between 1 and 6 kHz. No significant association was found between earplug attenuation properties and earplug use. It was concluded that support and determination to get accustomed to hearing protector use are important

  14. Characterization and Monitoring of Natural Attenuation of Chlorinated Solvents in Ground Water: A Systems Approach

    Science.gov (United States)

    Cutshall, N. H.; Gilmore, T.; Looney, B. B.; Vangelas, K. M.; Adams, K. M.; Sink, C. H.

    2006-05-01

    Like many US industries and businesses, the Department of Energy (DOE) is responsible for remediation and restoration of soils and ground water contaminated with chlorinated ethenes. Monitored Natural Attenuation (MNA) is an attractive remediation approach and is probably the universal end-stage technology for removing such contamination. Since 2003 we have carried out a multifaceted program at the Savannah River Site designed to advance the state of the art for MNA of chlorinated ethenes in soils and groundwater. Three lines of effort were originally planned: 1) Improving the fundamental science for MNA, 2) Promoting better characterization and monitoring (CM) techniques, and 3) Advancing the regulatory aspects of MNA management. A fourth line, developing enhanced attenuation methods based on sustainable natural processes, was added in order to deal with sites where the initial natural attenuation capacity cannot offset contaminant loading rates. These four lines have been pursued in an integrated and mutually supportive fashion. Many DOE site-cleanup program managers view CM as major expenses, especially for natural attenuation where measuring attenuation is complex and the most critical attenuation mechanisms cannot be determined directly. We have reviewed new and developing approaches to CM for potential application in support of natural attenuation of chlorinated hydrocarbons in ground water at DOE sites (Gilmore, Tyler, et al., 2006 WSRC-TR- 2005-00199). Although our project is focused on chlorinated ethenes, many of the concepts and strategies are also applicable to a wider range of contaminants including radionuclides and metals. The greatest savings in CM are likely to come from new management approaches. New approaches can be based, for example, on conceptual models of attenuation capacity, the ability of a formation to reduce risks caused by contaminants. Using the mass balance concept as a guide, the integrated mass flux of contaminant is compared to

  15. The relationship of rain-induced cross-polarization discrimination to attenuation for 10 to 30 GHz earth-space radio links

    Science.gov (United States)

    Stutzman, W. L.; Runyon, D. L.

    1984-01-01

    Rain depolarization is quantified through the cross-polarization discrimination (XPD) versus attenuation relationship. Such a relationship is derived by curve fitting to a rigorous theoretical model (the multiple scattering model) to determine the variation of the parameters involved. This simple isolation model (SIM) is compared to data from several earth-space link experiments and to three other models.

  16. Whole-body PET/MRI: The effect of bone attenuation during MR-based attenuation correction in oncology imaging

    Energy Technology Data Exchange (ETDEWEB)

    Aznar, M.C., E-mail: marianne.aznar@regionh.dk [Department of Oncology, Section of Radiotherapy 3994, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen (Denmark); Sersar, R., E-mail: rachidadk@hotmail.com [DTU Informatics, Technical University of Denmark, Kongens Lyngby (Denmark); Saabye, J., E-mail: julie_saa@hotmail.com [DTU Informatics, Technical University of Denmark, Kongens Lyngby (Denmark); Ladefoged, C.N., E-mail: claesnl@gmail.com [Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen (Denmark); Andersen, F.L., E-mail: Flemming.Andersen@regionh.dk [Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen (Denmark); Rasmussen, J.H., E-mail: jacobrasmu@gmail.com [Department of Oncology, Section of Radiotherapy 3994, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen (Denmark); Löfgren, J., E-mail: Johan.Loefgren@regionh.dk [Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen (Denmark); Beyer, T., E-mail: thomas.beyer@meduniwien.ac.at [Centre for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna (Austria)

    2014-07-15

    Purpose: In combined PET/MRI standard PET attenuation correction (AC) is based on tissue segmentation following dedicated MR sequencing and, typically, bone tissue is not represented. We evaluate PET quantification in whole-body (WB)-PET/MRI following MR-AC without considering bone attenuation and then investigate different strategies to account for bone tissue in clinical PET/MR imaging. To this purpose, bone tissue representation was extracted from separate CT images, and different bone representations were simulated from hypothetically derived MR-based bone classifications. Methods: Twenty oncology patients referred for a PET/CT were injected with either [18F]-FDG or [18F]-NaF and imaged on PET/CT (Biograph TruePoint/mCT, Siemens) and PET/MRI (mMR, Siemens) following a standard single-injection, dual-imaging clinical WB-protocol. Routine MR-AC was based on in-/opposed-phase MR imaging (orgMR-AC). PET(/MRI) images were reconstructed (AW-OSEM, 3 iterations, 21 subsets, 4 mm Gaussian) following routine MR-AC and MR-AC based on four modified attenuation maps. These modified attenuation maps were created for each patient by non-linear co-registration of the CT images to the orgMR-AC images, and adding CT bone mask values representing cortical bone: 1200 HU (cortCT), spongiosa bone: 350 HU (spongCT), average CT value (meanCT) and original CT values (orgCT). Relative difference images of the PET following AC using the modified attenuation maps were compared. SUVmean was calculated in anatomical reference regions and for PET-positive lesions. Results: The relative differences in SUVmean across patients following orgMR-AC and orgCT in soft tissue lesions and in bone lesions were similar (range: 0.0% to −22.5%), with an average underestimation of SUVmean of 7.2% and 10.0%, respectively when using orgMR-AC. In bone lesions, spongCT values were closest to orgCT (median bias of 1.3%, range: –9.0% to 13.5%) while the overestimation of SUVmean with respect to orgCT was

  17. Pentoxifylline Attenuates Cardiac Remodeling Induced by Tobacco Smoke Exposure

    Energy Technology Data Exchange (ETDEWEB)

    Minicucci, Marcos; Oliveira, Fernando; Santos, Priscila; Polegato, Bertha; Roscani, Meliza; Fernandes, Ana Angelica; Lustosa, Beatriz; Paiva, Sergio; Zornoff, Leonardo; Azevedo, Paula, E-mail: paulasa@fmb.unesp.br [Faculdade de Medicina de Botucatu, Universidade Estadual Paulista, São Paulo, SP (Brazil)

    2016-05-15

    Tobacco smoke exposure is an important risk factor for cardiac remodeling. Under this condition, inflammation, oxidative stress, energy metabolism abnormalities, apoptosis, and hypertrophy are present. Pentoxifylline has anti‑inflammatory, anti-apoptotic, anti-thrombotic and anti-proliferative properties. The present study tested the hypothesis that pentoxifylline would attenuate cardiac remodeling induced by smoking. Wistar rats were distributed in four groups: Control (C), Pentoxifylline (PX), Tobacco Smoke (TS), and PX-TS. After two months, echocardiography, invasive blood pressure measurement, biochemical, and histological studies were performed. The groups were compared by two-way ANOVA with a significance level of 5%. TS increased left atrium diameter and area, which was attenuated by PX. In the isolated heart study, TS lowered the positive derivate (+dp/dt), and this was attenuated by PX. The antioxidants enzyme superoxide dismutase and glutathione peroxidase were decreased in the TS group; PX recovered these activities. TS increased lactate dehydrogenase (LDH) and decreased 3-hydroxyacyl Coenzyme A dehydrogenases (OH-DHA) and citrate synthase (CS). PX attenuated LDH, 3-OH-DHA and CS alterations in TS-PX group. TS increased IL-10, ICAM-1, and caspase-3. PX did not influence these variables. TS induced cardiac remodeling, associated with increased inflammation, oxidative stress, apoptosis, and changed energy metabolism. PX attenuated cardiac remodeling by reducing oxidative stress and improving cardiac bioenergetics, but did not act upon cardiac cytokines and apoptosis.

  18. Broad beam X-rays attenuation in silicum glass

    International Nuclear Information System (INIS)

    Risticj, Dj.; Vukovicj, S.; Markovicj, P.

    1987-01-01

    Using broad beam geometry the attenuation for domestic silicum glass have been studied for constant X-ray potentials from 50 to 150 kV. The density of the silicium glass was 2,5x10 3 kg/m 3 . From the attenuation curves the half value layers were obtained. The use of this glass as the biological shield is pointed out. (author). 2 refs.; 2 tabs.; 2 figs

  19. Perineural pretreatment of bee venom attenuated the development of allodynia in the spinal nerve ligation injured neuropathic pain model; an experimental study.

    Science.gov (United States)

    Koh, Won Uk; Choi, Seong Soo; Lee, Jong Hyuk; Lee, So Hee; Lee, Sun Kyung; Lee, Yoon Kyung; Leem, Jeong Gil; Song, Jun Gol; Shin, Jin Woo

    2014-11-04

    Diluted bee venom (BV) is known to have anti-nociceptive and anti-inflammatory effects. We therefore assessed whether perineural bee venom pretreatment could attenuate the development of neuropathic pain in the spinal nerve ligation injured animal model. Neuropathic pain was surgically induced in 30 male Sprague Dawley rats by ligation of the L5 and L6 spinal nerves, with 10 rats each treated with saline and 0.05 and 0.1 mg BV. Behavioral testing for mechanical, cold, and thermal allodynia was conducted on postoperative days 3 to 29. Three rats in each group and 9 sham operated rats were sacrificed on day 9, and the expression of transient receptor potential vanilloid type 1 (TRPV1), ankyrin type 1 (TRPA1), and melastatin type 8 (TRPM8) receptors in the ipsilateral L5 dorsal root ganglion was analyzed. The perineural administration of BV to the spinal nerves attenuated the development of mechanical, thermal, and cold allodynia, and the BV pretreatment reduced the expression of TRPV1, TRPA1, TRPM8 and c - Fos in the ipsilateral dorsal root ganglion. The current study demonstrates that the perineural pretreatment with diluted bee venom before the induction of spinal nerve ligation significantly suppresses the development of neuropathic pain. Furthermore, this bee venom induced suppression was strongly related with the involvement of transient receptor potential family members.

  20. Minocycline through attenuation of oxidative stress and inflammatory response reduces the neuropathic pain in a rat model of chronic constriction injury

    Directory of Open Access Journals (Sweden)

    Abolfazl Abbaszadeh

    2018-02-01

    Full Text Available Objective(s: Several lines of evidence showed that minocycline possesses antioxidant and anti-inflammatory properties. This study aimed to demonstrate the effects of minocycline in rats subjected to chronic constriction injury (CCI. Materials and Methods: In this study four groups (n = 6–8 of rats were used as follows: Sham, CCI, CCI + minocycline (MIN 10 mg/Kg (IP and CCI + MIN 30 mg/Kg (IP. On days 3, 7, 14, and 21 post-surgery hot-plate, acetone, and von Frey tests were carried out. Finally, Motor Nerve Conduction Velocity Evaluation (MNCV assessment was performed and spinal cords were harvested in order to measure tissue concentrations of TNF_α, IL-1β, Glutathione peroxidase (GPx, Superoxide dismutase (SOD and Malondialdehyde (MDA. Extent of perineural inflammation and damage around the sciatic nerve was histopathologically evaluated. Results: Our results demonstrated that CCI significantly caused hyperalgesia and allodynia twenty-one days after CCI. MIN attenuated heat hyperalgesia, cold and mechanical allodynia and MNCV in animals. MIN also decreased the levels of TNF_α and IL-1β. Antioxidative enzymes (SOD, MDA, and GPx were restored following MIN treatment. Our findings showed that MIN decreased perineural inflammation around the sciatic nerve. According to the results, the neuropathic pain reduced in the CCI hyperalgesia model using 30 mg/kg of minocycline. Conclusion: It is suggested that antinociceptive effects of minocycline might be mediated through the inhibition of inflammatory response and attenuation of oxidative stress.

  1. MicroRNA-Based Attenuation of Influenza Virus across Susceptible Hosts.

    Science.gov (United States)

    Waring, Barbara M; Sjaastad, Louisa E; Fiege, Jessica K; Fay, Elizabeth J; Reyes, Ismarc; Moriarity, Branden; Langlois, Ryan A

    2018-01-15

    Influenza A virus drives significant morbidity and mortality in humans and livestock. Annual circulation of the virus in livestock and waterfowl contributes to severe economic disruption and increases the risk of zoonotic transmission of novel strains into the human population, where there is no preexisting immunity. Seasonal vaccinations in humans help prevent infection and can reduce symptoms when infection does occur. However, current vaccination regimens available for livestock are limited in part due to safety concerns regarding reassortment/recombination with circulating strains. Therefore, inactivated vaccines are used instead of the more immunostimulatory live attenuated vaccines. MicroRNAs (miRNAs) have been used previously to generate attenuated influenza A viruses for use as a vaccine. Here, we systematically targeted individual influenza gene mRNAs using the same miRNA to determine the segment(s) that yields maximal attenuation potential. This analysis demonstrated that targeting of NP mRNA most efficiently ablates replication. We further increased the plasticity of miRNA-mediated attenuation of influenza A virus by exploiting a miRNA, miR-21, that is ubiquitously expressed across influenza-susceptible hosts. In order to construct this targeted virus, we used CRISPR/Cas9 to eliminate the universally expressed miR-21 from MDCK cells. miR-21-targeted viruses were attenuated in human, mouse, canine, and avian cells and drove protective immunity in mice. This strategy has the potential to enhance the safety of live attenuated vaccines in humans and zoonotic reservoirs. IMPORTANCE Influenza A virus circulates annually in both avian and human populations, causing significant morbidity, mortality, and economic burden. High incidence of zoonotic infections greatly increases the potential for transmission to humans, where no preexisting immunity or vaccine exists. There is a critical need for new vaccine strategies to combat emerging influenza outbreaks. Micro

  2. Glutathione attenuates uranyl toxicity in Lactococcus lactis

    International Nuclear Information System (INIS)

    Fahmy, Karim; Oertel, Jana; Solioz, M.

    2017-01-01

    We investigated the role of intracellular glutathione (GSH), which in a large number of taxa plays a role in the protection against the toxicity of heavy metals. Anaerobically grown Lactococcus lactis containing an inducible GSH synthesis pathway was used as a model organism allowing the study of GSH-dependent uranyl detoxification without interference from additional reactive oxygen species. Microcalorimetric measurements of the metabolic heat showed that intracellular GSH attenuates the toxicity of uranium at a concentration in the range of 10-150 μM. Isothermal titration calorimetry revealed the endothermic binding of U(VI) to the carboxyl group(s) of GSH. The data indicate that the primary detoxifying mechanism is the intracellular sequestration of carboxyl-coordinated U(VI) into an insoluble complex with GSH.

  3. Glutathione attenuates uranyl toxicity in Lactococcus lactis

    Energy Technology Data Exchange (ETDEWEB)

    Fahmy, Karim; Oertel, Jana [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Biophysics; Obeid, M. [Technische Univ. Dresden (Germany); Solioz, M. [Bern Univ. (Switzerland)

    2017-06-01

    We investigated the role of intracellular glutathione (GSH), which in a large number of taxa plays a role in the protection against the toxicity of heavy metals. Anaerobically grown Lactococcus lactis containing an inducible GSH synthesis pathway was used as a model organism allowing the study of GSH-dependent uranyl detoxification without interference from additional reactive oxygen species. Microcalorimetric measurements of the metabolic heat showed that intracellular GSH attenuates the toxicity of uranium at a concentration in the range of 10-150 μM. Isothermal titration calorimetry revealed the endothermic binding of U(VI) to the carboxyl group(s) of GSH. The data indicate that the primary detoxifying mechanism is the intracellular sequestration of carboxyl-coordinated U(VI) into an insoluble complex with GSH.

  4. ATTENUATION OF DIFFRACTED MULTIPLES WITH AN APEX-SHIFTED TANGENT-SQUARED RADON TRANSFORM IN IMAGE SPACE

    Directory of Open Access Journals (Sweden)

    Alvarez Gabriel

    2006-12-01

    Full Text Available In this paper, we propose a method to attenuate diffracted multiples with an apex-shifted tangent-squared Radon transform in angle domain common image gathers (ADCIG . Usually, where diffracted multiples are a problem, the wave field propagation is complex and the moveout of primaries and multiples in data space is irregular. The method handles the complexity of the wave field propagation by wave-equation migration provided that migration velocities are reasonably accurate. As a result, the moveout of the multiples is well behaved in the ADCIGs. For 2D data, the apex-shifted tangent-squared Radon transform maps the 2D space image into a 3D space-cube model whose dimensions are depth, curvature and apex-shift distance.
    Well-corrected primaries map to or near the zero curvature plane and specularly-reflected multiples map to or near the zero apex-shift plane. Diffracted multiples map elsewhere in the cube according to their curvature and apex-shift distance. Thus, specularly reflected as well as diffracted multiples can be attenuated simultaneously. This approach is illustrated with a segment of a 2D seismic line over a large salt body in the Gulf of Mexico. It is shown that ignoring the apex shift compromises the attenuation of the diffracted multiples, whereas the approach proposed attenuates both the specularly-reflected and the diffracted multiples without compromising the primaries.

  5. Using Tectonic Tremor to Constrain Seismic-wave Attenuation in Cascadia

    Science.gov (United States)

    Littel, G.; Thomas, A.; Baltay, A.

    2017-12-01

    In addition to fast, seismic slip, many subduction zones also host slow, largely aseismic slip, accompanied by a weak seismic signal known as tectonic tremor. Tremor is a small amplitude, low-frequency seismic signal that originates at the plate interface, down-dip of where large earthquakes typically occur. The Cascadia subduction zone has not seen a large megathrust earthquake since 1700, yet its recurrence interval of 350-500 years motivates heightened interest in understanding the seismic hazard of the region. Of great importance is to understand the degree to which waves are attenuated as they leave the plate interface and travel towards populated regions of interest. Ground motion prediction equations (GMPEs) relate ground motion to a number of parameters, including earthquake magnitude, depth, style of faulting, and anelastic attenuation, and are typically determined empirically from earthquake ground motion recordings. In Cascadia, however, earthquakes of the moderate size typically used to constrain GMPEs occur relatively infrequently compared to tectonic tremor events, which, in contrast, occur periodically approximately every 10-19 months. Studies have shown that the abundant tectonic tremor in Cascadia, despite its small amplitudes, can be used to constrain seismic wave attenuation in GMPEs. Here we quantify seismic wave attenuation and determine its spatial variations in Cascadia by performing an inversion using tremor ground motion amplitudes, taken as peak ground acceleration (PGA) and peak ground velocity (PGV) from 1 min window waveforms of each individual tremor event. We estimate the anelastic attenuation parameter for varying regional sections along the Cascadia margin. Changes in seismic-wave attenuation along the Cascadia Subduction Zone could result in significantly different ground motions in the event of a very large earthquake, hence quantifying attenuation may help to better estimate the severity of shaking in densely populated

  6. Utilization of ilmenite/epoxy composite for neutrons and gamma rays attenuation

    Energy Technology Data Exchange (ETDEWEB)

    El-Sayed Abdo, A. E-mail: attiaabdo11@hotmail.com; El-Sarraf, M.A.; Gaber, F.A

    2003-01-01

    This work deals with the study of ilmenite/epoxy composite as an injecting mortar for cracks developed in biological concrete shields, as well as, neutrons and gamma rays attenuation. Effects of the particle size on the mechanical strengths have been studied for epoxy resin filled with crushed ilmenite with different maximum particle sizes ranging from 32 to 500 {mu}m. Thermal neutrons and gamma rays attenuation in ilmenite/epoxy composites with 75 and 80 wt.% of ilmenite concentration have been investigated. The total mass attenuation coefficients {mu}/{rho} (cm{sup 2} g{sup -1}) of gamma ray for five ilmenite/epoxy composites have been calculated using the XCOM program (version 3.1) at energies from 10 keV to 100 MeV. Also, the total mass attenuation coefficients ({mu}/{rho}) have estimated based on the measured total linear attenuation coefficients ({mu}) and compared with the calculated results where, a reasonable agreement was found.

  7. Viability of natural attenuation in a petroleum-contaminated shallow sandy aquifer

    International Nuclear Information System (INIS)

    Jin Yong Lee; Kang Kun Lee

    2003-01-01

    This study focused on evaluating and quantifying the potential of natural attenuation of groundwater at a petroleum-contaminated site in an industrial area of a satellite city of Seoul, Korea. Groundwater at the study site was contaminated with toluene, ethylbenzene and xylene (TEX). Eight rounds of groundwater sampling and subsequent chemical analyses were performed over a period of 3 years. The groundwater quality data suggest that TEX concentrations at this site have been decreasing with time and that the TEX plume is at a quasi-steady state. Trend analysis, changes in mass flux and plume area also confirmed that the TEX plume has reached a quasi-steady state. The proportion of the total attenuation attributable to biodegradation has decreased over the monitoring period while contribution of other attenuation processes, such as dilution or dispersion, has increased. Based on the calculated attenuation rates, it would take more than 20 years to clean up the site by natural attenuation alone. (author)

  8. Characteristics of liver tissue for attenuate the gamma radiation

    International Nuclear Information System (INIS)

    Arcos P, A.; Rodriguez N, S.; Pinedo S, A.; Amador V, P.; Chacon R, A.; Vega C, H.R.

    2005-01-01

    It was determined the lineal attenuation coefficient of hepatic tissue before gamma radiation of a source of 137 Cs. When exposing organic material before X or gamma radiation fields, part of the energy of the photons is absorbed by the material, while another part crosses it without producing any effect. The quantity of energy that is absorbed is a measure of the dose that receives the material. The three main mechanisms by means of which the gamma rays interacting with the matter are: The Photoelectric Effect, the Compton dispersion and the Even production; the sum of these three processes is translated in the attenuation coefficient of the radiation. In this work we have used hepatic tissue of bovine, as substitute of the human hepatic tissue, and we have measured the lineal attenuation coefficient for photons of 0.662 MeV. Through a series of calculations we have determined the lineal attenuation coefficient for photons from 10 -3 to 10 -5 MeV and the measured coefficient was compared with the one calculated. (Author)

  9. R-flurbiprofen attenuates experimental autoimmune encephalomyelitis in mice.

    Science.gov (United States)

    Schmitz, Katja; de Bruin, Natasja; Bishay, Philipp; Männich, Julia; Häussler, Annett; Altmann, Christine; Ferreirós, Nerea; Lötsch, Jörn; Ultsch, Alfred; Parnham, Michael J; Geisslinger, Gerd; Tegeder, Irmgard

    2014-11-01

    R-flurbiprofen is the non-cyclooxygenase inhibiting R-enantiomer of the non-steroidal anti-inflammatory drug flurbiprofen, which was assessed as a remedy for Alzheimer's disease. Because of its anti-inflammatory, endocannabinoid-modulating and antioxidative properties, combined with low toxicity, the present study assessed R-flurbiprofen in experimental autoimmune encephalomyelitis (EAE) models of multiple sclerosis in mice. Oral R-flurbiprofen prevented and attenuated primary progressive EAE in C57BL6/J mice and relapsing-remitting EAE in SJL mice, even if the treatment was initiated on or after the first flare of the disease. R-flurbiprofen reduced immune cell infiltration and microglia activation and inflammation in the spinal cord, brain and optic nerve and attenuated myelin destruction and EAE-evoked hyperalgesia. R-flurbiprofen treatment increased CD4(+)CD25(+)FoxP3(+) regulatory T cells, CTLA4(+) inhibitory T cells and interleukin-10, whereas the EAE-evoked upregulation of pro-inflammatory genes in the spinal cord was strongly reduced. The effects were associated with an increase of plasma and cortical endocannabinoids but decreased spinal prostaglandins, the latter likely due to R to S inversion. The promising results suggest potential efficacy of R-flurbiprofen in human MS, and its low toxicity may justify a clinical trial. © 2014 The Authors. Published under the terms of the CC BY 4.0 license.

  10. Sparse signal reconstruction from polychromatic X-ray CT measurements via mass attenuation discretization

    International Nuclear Information System (INIS)

    Gu, Renliang; Dogandžić, Aleksandar

    2014-01-01

    We propose a method for reconstructing sparse images from polychromatic x-ray computed tomography (ct) measurements via mass attenuation coefficient discretization. The material of the inspected object and the incident spectrum are assumed to be unknown. We rewrite the Lambert-Beer’s law in terms of integral expressions of mass attenuation and discretize the resulting integrals. We then present a penalized constrained least-squares optimization approach for reconstructing the underlying object from log-domain measurements, where an active set approach is employed to estimate incident energy density parameters and the nonnegativity and sparsity of the image density map are imposed using negative-energy and smooth ℓ 1 -norm penalty terms. We propose a two-step scheme for refining the mass attenuation discretization grid by using higher sampling rate over the range with higher photon energy, and eliminating the discretization points that have little effect on accuracy of the forward projection model. This refinement allows us to successfully handle the characteristic lines (Dirac impulses) in the incident energy density spectrum. We compare the proposed method with the standard filtered backprojection, which ignores the polychromatic nature of the measurements and sparsity of the image density map. Numerical simulations using both realistic simulated and real x-ray ct data are presented

  11. Chlorine signal attenuation in concrete.

    Science.gov (United States)

    Naqvi, A A; Maslehuddin, M; Ur-Rehman, Khateeb; Al-Amoudi, O S B

    2015-11-01

    The intensity of prompt gamma-ray was measured at various depths from chlorine-contaminated silica fume (SF) concrete slab concrete specimens using portable neutron generator-based prompt gamma-ray setup. The intensity of 6.11MeV chloride gamma-rays was measured from the chloride contaminated slab at distance of 15.25, 20.25, 25.25, 30.25 and 35.25cm from neutron target in a SF cement concrete slab specimens. Due to attenuation of thermal neutron flux and emitted gamma-ray intensity in SF cement concrete at various depths, the measured intensity of chlorine gamma-rays decreases non-linearly with increasing depth in concrete. A good agreement was noted between the experimental results and the results of Monte Carlo simulation. This study has provided useful experimental data for evaluating the chloride contamination in the SF concrete utilizing gamma-ray attenuation method. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Attenuation of landfill leachate by UK Triassic sandstone aquifer materials. 1. Fate of inorganic pollutants in laboratory columns

    Science.gov (United States)

    Thornton, Steven F.; Tellam, John H.; Lerner, David N.

    2000-05-01

    The attenuation of inorganic contaminants in acetogenic and methanogenic landfill leachate by calcareous and carbonate-deficient, oxide-rich Triassic sandstone aquifer materials from the English Midlands was examined in laboratory columns. Aqueous equilibrium speciation modelling, simple transport modelling and chemical mass balance approaches are used to evaluate the key processes and aquifer geochemical properties controlling contaminant fate. The results indicate that leachate-rock interactions are dominated by ion-exchange processes, acid-base and redox reactions and sorption/precipitation of metal species. Leachate NH 4 is attenuated by cation exchange with the aquifer sediments; however, NH 4 migration could be described with a simple model using retardation factors. Organic acids in the acetogenic leachate buffered the system pH at low levels during flushing of the calcareous aquifer material. In contrast, equilibrium with Al oxyhydroxide phases initially buffered pH (˜4.5) during flushing of the carbonate-deficient sandstone with methanogenic leachate. This led to the mobilisation of sorbed and oxide-bound heavy metals from the aquifer sediment which migrated as a concentrated pulse at the leachate front. Abiotic reductive dissolution of Mn oxyhydroxides on each aquifer material by leachate Fe 2+ maintains high concentrations of dissolved Mn and buffers the leachate inorganic redox system. This feature is analogous to the Mn-reducing zones found in leachate plumes and in the experiments provides a sink for the leachate Fe load and other heavy metals. The availability of reactive solid phase Mn oxyhydroxides limits the duration of redox buffering and Fe attenuation by these aquifer sediments. Aquifer pH and redox buffering capacity exert a fundamental influence on leachate inorganic contaminant fate in these systems. The implications for the assessment of aquifer vulnerability at landfills are discussed and simple measurements of aquifer properties which

  13. Research on strength attenuation law of concrete in freezing - thawing environment

    Science.gov (United States)

    Xiao, qianhui; Cao, zhiyuan; Li, qiang

    2018-03-01

    By rapid freezing and thawing method, the experiments of concrete have been 300 freeze-thaw cycles specimens in the water. The cubic compression strength value under different freeze-thaw cycles was measured. By analyzing the test results, the water-binder ratio of the concrete under freeze-thaw environments, fly ash and air entraining agent is selected dosage recommendations. The exponential attenuation prediction model and life prediction model of compression strength of concrete under freezing-thawing cycles considering the factors of water-binder ratio, fly ash content and air-entraining agent dosage were established. The model provides the basis for predicting the durability life of concrete under freezing-thawing environment. It also provides experimental basis and references for further research on concrete structures with antifreeze requirements.

  14. Identification of sequence changes in live attenuated goose parvovirus vaccine strains developed in Asia and Europe.

    Science.gov (United States)

    Shien, J-H; Wang, Y-S; Chen, C-H; Shieh, H K; Hu, C-C; Chang, P-C

    2008-10-01

    Live attenuated vaccines have been used for control of the disease caused by goose parvovirus (GPV), but the mechanism involved in attenuation of GPV remains elusive. This report presents the complete nucleotide sequences of two live attenuated strains of GPV (82-0321V and VG32/1) that were independently developed in Taiwan and Europe, together with the parental strain of 82-0321V and a field strain isolated in Taiwan in 2006. Sequence comparisons showed that 82-0321V and VG32/1 had multiple deletions and substitutions in the inverted terminal repeats region when compared with their parental strain or the field virus, but these changes did not affect the formation of the hairpin structure essential for viral replication. Moreover, 82-0321V and VG32/1 had five amino acid changes in the non-structural protein, but these changes were located at positions distant from known functional motifs in the non-structural protein. In contrast, 82-0321V had nine changes and VG32/1 had 11 changes in their capsid proteins (VP1), and the majority of these changes occurred at positions close to the putative receptor binding sites of VP1, as predicted using the structure of adeno-associated virus 2 as the model system. Taken together, the results suggest that changes in sequence near the receptor binding sites of VP1 might be responsible for attenuation of GPV. This is the first report of complete nucleotide sequences of GPV other than the virulent B strain, and suggests a possible mechanism for attenuation of GPV.

  15. Frequency scaling of slant-path atmospheric attenuation in the absence of rain for millimeter-wave links

    Science.gov (United States)

    Lucas-Vegas, María. José; Riera, José Manuel

    2016-11-01

    Broadband satellite communications systems, either used for broadcast or fixed satellite services, have grown continuously in recent years. This has led to the use of higher frequency bands, from the Ku (14/11 GHz) to the Ka band (30/20 GHz) in the last decade, and with the expectation of using the Q/V band (50/40 GHz) and even the W band (75-110 GHz) in the future. As frequency increases, radio wave propagation effects in the slant-path within the troposphere are becoming more and more relevant. The objective of this research is the proposal of frequency scaling approximations for the total attenuation in the absence of rain, a condition that occurs during the highest percentages of time, usually more than 95% in temperate climates. There is a strong relationship between total attenuation at different frequencies, as it arises from the same physical phenomena, namely, the presence of oxygen, water vapor, and clouds in the slant path. This strong relationship allows frequency scaling estimations to be proposed. In particular, polynomials for instantaneous frequency scaling of total attenuation under these conditions have been calculated for a set of frequencies in the range 10-100 GHz, based on atmospheric profiles of 60 sites from all over the world and physical models of attenuation. Global polynomials are provided for the 72 combinations of nine significant frequencies, which can be used to estimate attenuation at a frequency band from its known value at a different one. Refined expressions have also been calculated for different climatic zones, providing more precise estimations.

  16. Visco-acoustic wave-equation traveltime inversion and its sensitivity to attenuation errors

    KAUST Repository

    Yu, Han

    2018-02-23

    A visco-acoustic wave-equation traveltime inversion method is presented that inverts for the shallow subsurface velocity distribution. Similar to the classical wave equation traveltime inversion, this method finds the velocity model that minimizes the squared sum of the traveltime residuals. Even though, wave-equation traveltime inversion can partly avoid the cycle skipping problem, a good initial velocity model is required for the inversion to converge to a reasonable tomogram with different attenuation profiles. When Q model is far away from the real model, the final tomogram is very sensitive to the starting velocity model. Nevertheless, a minor or moderate perturbation of the Q model from the true one does not strongly affect the inversion if the low wavenumber information of the initial velocity model is mostly correct. These claims are validated with numerical tests on both the synthetic and field data sets.

  17. Visco-acoustic wave-equation traveltime inversion and its sensitivity to attenuation errors

    Science.gov (United States)

    Yu, Han; Chen, Yuqing; Hanafy, Sherif M.; Huang, Jiangping

    2018-04-01

    A visco-acoustic wave-equation traveltime inversion method is presented that inverts for the shallow subsurface velocity distribution. Similar to the classical wave equation traveltime inversion, this method finds the velocity model that minimizes the squared sum of the traveltime residuals. Even though, wave-equation traveltime inversion can partly avoid the cycle skipping problem, a good initial velocity model is required for the inversion to converge to a reasonable tomogram with different attenuation profiles. When Q model is far away from the real model, the final tomogram is very sensitive to the starting velocity model. Nevertheless, a minor or moderate perturbation of the Q model from the true one does not strongly affect the inversion if the low wavenumber information of the initial velocity model is mostly correct. These claims are validated with numerical tests on both the synthetic and field data sets.

  18. Simultaneous correction of attenuation and geometric response in emission tomography applied to nuclear waste drums

    International Nuclear Information System (INIS)

    Thierry, Raphael

    1999-01-01

    Multi-photonic emission tomography is a non destructive technique applied to the control of radioactive waste drums. The emitted gamma rays are detected on the range [50 keV, 2 MeV] by a hyper pure germanium, of high resolution in energy, which enables to set up a detailed list of radionuclides contained within the drum. From different points of measurement located in a transaxial plane of the drum, the activity distribution is computed by a reconstruction algorithm. An algebraic modelling of the physical process has been developed in order to correct the different degrading phenomenon, in particular the attenuation and the detector geometric response. Attenuation through the materials constituting the barrel is the preponderant phenomena. Its ignorance prevents from accurate activity quantification. Its correction has been realised from an attenuation map obtained by a transmission tomograph. The detector geometric response, introducing a blurring within the detection, is compensated by an analytic model. An adequate modelling of those phenomenon is primordial: it highly contributes on a large scale the image quality and the quantification. The image reconstruction, requiring the resolution of sparse linear system, is realised by iterative algorithms. Due to the 'ill-posed' nature of tomographic reconstruction, it is necessary to use regularisation: by introducing an a priori information on the solution, the stabilisation of the methods is carried out. We chose to minimise the Maximum A Posteriori criterion. Its resolution is considered with a half-quadratic regularisation: it permits the preservation of natural discontinuities, and avoids global-over smoothing of the image. It is evaluated on real phantoms and waste drums. Efficient sampling of the data is considered. (author) [fr

  19. Natural attenuation of herbicides

    DEFF Research Database (Denmark)

    Tuxen, Nina; Højberg, Anker Lajer; Broholm, Mette Martina

    2002-01-01

    A field injection experiment in a sandy, aerobic aquifer showed that two phenoxy acids MCPP (mecoprop) and dichlorprop were degraded within I in downgradient of the injection wells after an apparent lag period. The plume development and microbial measurements indicated that microbial growth gover....... The observations may be important for application of natural attenuation as a remedy in field scale systems....

  20. Natural attenuation: A feasible approach to remediation of landfill leachate plumes?

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Kjeldsen, Peter; Bjerg, Poul Løgstrup

    2000-01-01

    Natural attenuation has been implemented for petroleum hydrocarbons plumes and recently also for chlorinated solvent plumes, primarily in the USA, but natural attenuation has not yet gained a foothold with respect to leachate plumes. Based on the experiences gained from ten years of research on two...... Danish landfills, it is suggested that natural attenuation is a feasible approach, but much more complicated and demanding than in the case of petroleum hydrocarbons and chlorinated solvent....

  1. Attenuation of food allergy symptoms following treatment with human milk oligosaccharides in a mouse model.

    Science.gov (United States)

    Castillo-Courtade, L; Han, S; Lee, S; Mian, F M; Buck, R; Forsythe, P

    2015-09-01

    The prebiotic nature of human milk oligosaccharides (HMOs) and increasing evidence of direct immunomodulatory effects of these sugars suggest that they may have some therapeutic potential in allergy. Here, we assess the effect of two HMOs, 2'-fucosyllactose and 6'-sialyllactose, on symptomatology and immune responses in an ovalbumin-sensitized mouse model of food allergy. The effects of oral treatment with 2'-fucosyllactose and 6'-sialyllactose on anaphylactic symptoms induced by oral ovalbumin (OVA) challenge in sensitized mice were investigated. Mast cell functions in response to oral HMO treatment were also measured in the passive cutaneous anaphylaxis model, and direct effects on IgE-mediated degranulation of mast cells were assessed. Daily oral treatment with 2'-fucosyllactose or 6'-sialyllactose attenuated food allergy symptoms including diarrhea and hypothermia. Treatment with HMOs also suppressed antigen-induced increases in mouse mast cell protease-1 in serum and mast cell numbers in the intestine. These effects were associated with increases in the CD4(+) CD25(+) IL-10(+) cell populations in the Peyer's patches and mesenteric lymph nodes, while 6'-sialyllactose also induced increased IL-10 and decreased TNF production in antigen-stimulated splenocytes. Both 2'-fucosyllactose and 6'-sialyllactose reduced the passive cutaneous anaphylaxis response, but only 6'-sialyllactose directly inhibited mast cell degranulation in vitro, at high concentrations. Our results suggest that 2'-fucosyllactose and 6'-sialyllactose reduce the symptoms of food allergy through induction of IL-10(+) T regulatory cells and indirect stabilization of mast cells. Thus, human milk oligosaccharides may have therapeutic potential in allergic disease. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Attenuation correction method for single photon emission CT

    Energy Technology Data Exchange (ETDEWEB)

    Morozumi, Tatsuru; Nakajima, Masato [Keio Univ., Yokohama (Japan). Faculty of Science and Technology; Ogawa, Koichi; Yuta, Shinichi

    1983-10-01

    A correction method (Modified Correction Matrix method) is proposed to implement iterative correction by exactly measuring attenuation constant distribution in a test body, calculating a correction factor for every picture element, then multiply the image by these factors. Computer simulation for the comparison of the results showed that the proposed method was specifically more effective to an application to the test body, in which the rate of attenuation constant change is large, than the conventional correction matrix method. Since the actual measurement data always contain quantum noise, the noise was taken into account in the simulation. However, the correction effect was large even under the noise. For verifying its clinical effectiveness, the experiment using an acrylic phantom was also carried out. As the result, the recovery of image quality in the parts with small attenuation constant was remarkable as compared with the conventional method.

  3. Consideration of natural attenuation. In remedation contaminated sites

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-04-15

    Upon the proposal submitted by ist Standing committee 5 (Contaminated Sites Committee - ALA) the Federal / State Working Group on Soil protection employed an ad hoc subcommittee dealing with considering natural attenuation in remediating contaminated sites and preparing an inter-State position paper. In the present position paper the way how to consider natural attenuation in practical remediation of contaminated sites is described. The systematic approach outlined allows an understandable decision-finding. A way is shown how the competent soil protection authorities may exercise discretion and in the framework of checking the appropriateness of measures may decide on the implementation of MNA based on a MNA concept (MNA = monitored natural attenuation). It is, however, also explained that when carrying out MNA a decision always made in an individual case is concerned which should be made in a close agreement between the obligated party and the authority.

  4. Minocycline attenuates cognitive impairment induced by isoflurane anesthesia in aged rats.

    Directory of Open Access Journals (Sweden)

    Feijuan Kong

    Full Text Available Postoperative cognitive dysfunction (POCD is a clinical phenomenon characterized by cognitive deficits in patients after anesthesia and surgery, especially in geriatric surgical patients. Although it has been documented that isoflurane exposure impaired cognitive function in several aged animal models, there are few clinical interventions and treatments available to prevent this disorder. Minocycline has been well established to exert neuroprotective effects in various experimental animal models and neurodegenerative diseases. Therefore, we hypothesized that pretreatment with minocycline attenuates isoflurane-induced cognitive decline in aged rats. In the present study, twenty-month-old rats were administered minocycline or an equal volume of saline by intraperitoneal injection 12 h before exposure to isoflurane. Then the rats were exposed to 1.3% isoflurane for 4 h. Two weeks later, spatial learning and memory of the rats were examined using the Morris Water Maze. We found that pretreatment with minocycline mitigated isoflurane-induced cognitive deficits and suppressed the isoflurane-induced excessive release of IL-1β and caspase-3 in the hippocampal CA1 region at 4 h after isoflurane exposure, as well as the number of TUNEL-positive nuclei. In addition, minocycline treatment also prevented the changes of synaptic ultrastructure in the hippocampal CA1 region induced by isoflurane. In conclusion, pretreatment with minocycline attenuated isoflurane-induced cognitive impairment in aged rats.

  5. Two media method for linear attenuation coefficient determination of irregular soil samples

    International Nuclear Information System (INIS)

    Vici, Carlos Henrique Georges

    2004-01-01

    In several situations of nuclear applications, the knowledge of gamma-ray linear attenuation coefficient for irregular samples is necessary, such as in soil physics and geology. This work presents the validation of a methodology for the determination of the linear attenuation coefficient (μ) of irregular shape samples, in such a way that it is not necessary to know the thickness of the considered sample. With this methodology irregular soil samples (undeformed field samples) from Londrina region, north of Parana were studied. It was employed the two media method for the μ determination. It consists of the μ determination through the measurement of a gamma-ray beam attenuation by the sample sequentially immersed in two different media, with known and appropriately chosen attenuation coefficients. For comparison, the theoretical value of μ was calculated by the product of the mass attenuation coefficient, obtained by the WinXcom code, and the measured value of the density sample. This software employs the chemical composition of the samples and supplies a table of the mass attenuation coefficients versus the photon energy. To verify the validity of the two media method, compared with the simple gamma ray transmission method, regular pome stone samples were used. With these results for the attenuation coefficients and their respective deviations, it was possible to compare the two methods. In this way we concluded that the two media method is a good tool for the determination of the linear attenuation coefficient of irregular materials, particularly in the study of soils samples. (author)

  6. Oxytocin attenuates deficits in social interaction but not recognition memory in a prenatal valproic acid-induced mouse model of autism.

    Science.gov (United States)

    Hara, Yuta; Ago, Yukio; Higuchi, Momoko; Hasebe, Shigeru; Nakazawa, Takanobu; Hashimoto, Hitoshi; Matsuda, Toshio; Takuma, Kazuhiro

    2017-11-01

    Recent studies have reported that oxytocin ameliorates behavioral abnormalities in both animal models and individuals with autism spectrum disorders (ASD). However, the mechanisms underlying the ameliorating effects of oxytocin remain unclear. In this study, we examined the effects of intranasal oxytocin on impairments in social interaction and recognition memory in an ASD mouse model in which animals are prenatally exposed to valproic acid (VPA). We found that a single intranasal administration of oxytocin restored social interaction deficits for up to 2h in mice prenatally exposed to VPA, but there was no effect on recognition memory impairments. Additionally, administration of oxytocin across 2weeks improved prenatal VPA-induced social interaction deficits for at least 24h. In contrast, there were no effects on the time spent sniffing in control mice. Immunohistochemical analysis revealed that intranasal administration of oxytocin increased c-Fos expression in the paraventricular nuclei (PVN), prefrontal cortex, and somatosensory cortex, but not the hippocampal CA1 and CA3 regions of VPA-exposed mice, suggesting the former regions may underlie the effects of oxytocin. These findings suggest that oxytocin attenuates social interaction deficits through the activation of higher cortical areas and the PVN in an ASD mouse model. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Attenuation of Self-Generated Tactile Sensations is Predictive, not Postdictive.

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available When one finger touches the other, the resulting tactile sensation is perceived as weaker than the same stimulus externally imposed. This attenuation of sensation could result from a predictive process that subtracts the expected sensory consequences of the action, or from a postdictive process that alters the perception of sensations that are judged after the event to be self-generated. In this study we observe attenuation even when the fingers unexpectedly fail to make contact, supporting a predictive process. This predictive attenuation of self-generated sensation may have evolved to enhance the perception of sensations with an external cause.

  8. Attenuation of self-generated tactile sensations is predictive, not postdictive.

    Directory of Open Access Journals (Sweden)

    Paul M Bays

    2006-02-01

    Full Text Available When one finger touches the other, the resulting tactile sensation is perceived as weaker than the same stimulus externally imposed. This attenuation of sensation could result from a predictive process that subtracts the expected sensory consequences of the action, or from a postdictive process that alters the perception of sensations that are judged after the event to be self-generated. In this study we observe attenuation even when the fingers unexpectedly fail to make contact, supporting a predictive process. This predictive attenuation of self-generated sensation may have evolved to enhance the perception of sensations with an external cause.

  9. Quantitative SPECT brain imaging: Effects of attenuation and detector response

    International Nuclear Information System (INIS)

    Gilland, D.R.; Jaszczak, R.J.; Bowsher, J.E.; Turkington, T.G.; Liang, Z.; Greer, K.L.; Coleman, R.E.

    1993-01-01

    Two physical factors that substantially degrade quantitative accuracy in SPECT imaging of the brain are attenuation and detector response. In addition to the physical factors, random noise in the reconstructed image can greatly affect the quantitative measurement. The purpose of this work was to implement two reconstruction methods that compensate for attenuation and detector response, a 3D maximum likelihood-EM method (ML) and a filtered backprojection method (FB) with Metz filter and Chang attenuation compensation, and compare the methods in terms of quantitative accuracy and image noise. The methods were tested on simulated data of the 3D Hoffman brain phantom. The simulation incorporated attenuation and distance-dependent detector response. Bias and standard deviation of reconstructed voxel intensities were measured in the gray and white matter regions. The results with ML showed that in both the gray and white matter regions as the number of iterations increased, bias decreased and standard deviation increased. Similar results were observed with FB as the Metz filter power increased. In both regions, ML had smaller standard deviation than FB for a given bias. Reconstruction times for the ML method have been greatly reduced through efficient coding, limited source support, and by computing attenuation factors only along rays perpendicular to the detector

  10. Wild type measles virus attenuation independent of type I IFN

    Directory of Open Access Journals (Sweden)

    Horvat Branka

    2008-02-01

    Full Text Available Abstract Background Measles virus attenuation has been historically performed by adaptation to cell culture. The current dogma is that attenuated virus strains induce more type I IFN and are more resistant to IFN-induced protection than wild type (wt. Results The adaptation of a measles virus isolate (G954-PBL by 13 passages in Vero cells induced a strong attenuation of this strain in vivo. The adapted virus (G954-V13 differs from its parental strain by only 5 amino acids (4 in P/V/C and 1 in the M gene. While a vaccine strain, Edmonston Zagreb, could replicate equally well in various primate cells, both G954 strains exhibited restriction to the specific cell type used initially for their propagation. Surprisingly, we observed that both G954 strains induced type I IFN, the wt strain inducing even more than the attenuated ones, particularly in human plasmacytoid Dendritic Cells. Type I IFN-induced protection from the infection of both G954 strains depended on the cell type analyzed, being less efficient in the cells used to grow the viral strain. Conclusion Thus, mutations in M and P/V/C proteins can critically affect MV pathogenicity, cellular tropism and lead to virus attenuation without interfering with the α/β IFN system.

  11. Renal sympathetic denervation attenuates hypertension and vascular remodeling in renovascular hypertensive rats.

    Science.gov (United States)

    Li, Peng; Huang, Pei-Pei; Yang, Yun; Liu, Chi; Lu, Yan; Wang, Fang; Sun, Wei; Kong, Xiang-Qing

    2017-01-01

    Li P, Huang P, Yang Y, Liu C, Lu Y, Wang F, Sun W, Kong X. Renal sympathetic denervation attenuates hypertension and vascular remodeling in renovascular hypertensive rats. J Appl Physiol 122: 121-129, 2017. First published October 14, 2016; doi:10.1152/japplphysiol.01019.2015-Sympathetic activity is enhanced in patients with essential or secondary hypertension, as well as in various hypertensive animal models. Therapeutic targeting of sympathetic activation is considered an effective antihypertensive strategy. We hypothesized that renal sympathetic denervation (RSD) attenuates hypertension and improves vascular remodeling and renal disease in the 2-kidney, 1-clip (2K1C) rat model. Rats underwent 2K1C modeling or sham surgery; then rats underwent RSD or sham surgery 4 wk later, thus resulting in four groups (normotensive-sham, normotensive-RSD, 2K1C-sham, and 2K1C-RSD). Norepinephrine was measured by ELISA. Echocardiography was used to assess heart function. Fibrosis and apoptosis were assessed by Masson and TUNEL staining. Changes in mean arterial blood pressure in response to hexamethonium and plasma norepinephrine levels were used to evaluate basal sympathetic nerve activity. The 2K1C modeling success rate was 86.8%. RSD reversed the elevated systolic blood pressure induced by 2K1C, but had no effect on body weight. Compared with rats in the 2K1C-sham group, rats in the 2K1C-RSD group showed lower left ventricular mass/body weight ratio, interventricular septal thickness in diastole, left ventricular end-systolic diameter, and left ventricular posterior wall thickness in systole, whereas fractional shortening and ejection fraction were higher. Right kidney apoptosis and left kidney hypertrophy were not changed by RSD. Arterial fibrosis was lower in animals in the 2K1C-RSD group compared with those in the 2K1C-sham group. RSD reduced plasma norepinephrine and basal sympathetic activity in rats in the 2K1C-RSD group compared with rats in the 2K1C-sham group. These

  12. Numerical simulation of several impact attenuator design for a formula student car

    Science.gov (United States)

    Sinaga, Farlian Rizky; Ubaidillah, Kurniawan, Krishna Eka; Fadhil, Muhamad Ivan; Cahyono, Sukmaji Indro; Idris, Muhamad Hafiz

    2018-02-01

    In the Formula Society of Automotive Engineer (SAE), safety is a vigorous factor. One of the safety components in the Formula SAE car is the impact attenuator. The purpose of this study is to get the impact attenuator design with the best ability to absorb kinetic energy from several existing designs, through numerical approaches, for estimating conditions against dynamic impacts. Material of impact attenuator use combination of aluminum and Zirconium G350. The simulation was caried out by crashing the impact with the rigid wall, to find the deformation that occurs and the energies are absorbed. The impact attenuator design to be simulated should be optimized to meet some parameters in the SAE Formula. The result of impact attenuator simulation should be able to absorb energy of 7350 joules at move 7 m/s and deformation at bulkhead less than 25.4 mm.

  13. Laser-generated shock wave attenuation aimed at microscale pyrotechnic device design

    Directory of Open Access Journals (Sweden)

    Hyeonju Yu

    2016-05-01

    Full Text Available To meet the rising demand for miniaturizing the pyrotechnic device that consists of donor/acceptor pair separated by a bulkhead or a thin gap, the shock initiation sensitivity in the microscale gap test configuration is investigated. For understanding the shock attenuation within a gap sample (304 stainless steel thickness of 10∼800 μm, the laser-generated shock wave in water confinement is adopted. The shock properties are obtained from the free surface velocity by making use of a velocity interferometer system for any reflector (VISAR. Analytical models for plasma generation in a confined geometry and for evolution and decay of shock waves during the propagation are considered. The shape and amplitude of the laser-driven initial pressure load and its attenuation pattern in the gap are effectively controlled for targeting the microscale propagation distance and subsequent triggering pressure for the acceptor charge. The reported results are important in the precise controlling of the shock strength during the laser initiation of microscale pyrotechnic devices.

  14. Colored dissolved organic matter in shallow estuaries: relationships between carbon sources and light attenuation

    Science.gov (United States)

    Oestreich, W. K.; Ganju, N. K.; Pohlman, J. W.; Suttles, S. E.

    2016-02-01

    Light availability is of primary importance to the ecological function of shallow estuaries. For example, benthic primary production by submerged aquatic vegetation is contingent upon light penetration to the seabed. A major component that attenuates light in estuaries is colored dissolved organic matter (CDOM). CDOM is often measured via a proxy, fluorescing dissolved organic matter (fDOM), due to the ease of in situ fDOM sensor measurements. Fluorescence must be converted to CDOM absorbance for use in light attenuation calculations. However, this CDOM-fDOM relationship varies among and within estuaries. We quantified the variability in this relationship within three estuaries along the mid-Atlantic margin of the eastern United States: West Falmouth Harbor (MA), Barnegat Bay (NJ), and Chincoteague Bay (MD/VA). Land use surrounding these estuaries ranges from urban to developed, with varying sources of nutrients and organic matter. Measurements of fDOM (excitation and emission wavelengths of 365 nm (±5 nm) and 460 nm (±40 nm), respectively) and CDOM absorbance were taken along a terrestrial-to-marine gradient in all three estuaries. The ratio of the absorption coefficient at 340 nm (m-1) to fDOM (QSU) was higher in West Falmouth Harbor (1.22) than in Barnegat Bay (0.22) and Chincoteague Bay (0.17). The CDOM : fDOM absorption ratio was variable between sites within West Falmouth Harbor and Barnegat Bay, but consistent between sites within Chincoteague Bay. Stable carbon isotope analysis for constraining the source of dissolved organic matter (DOM) in West Falmouth Harbor and Barnegat Bay yielded δ13C values ranging from -19.7 to -26.1 ‰ and -20.8 to -26.7 ‰, respectively. Concentration and stable carbon isotope mixing models of DOC (dissolved organic carbon) indicate a contribution of 13C-enriched DOC in the estuaries. The most likely source of 13C-enriched DOC for the systems we investigated is Spartina cordgrass. Comparison of DOC source to CDOM : f

  15. Partial Portal Vein Arterialization Attenuates Acute Bile Duct Injury Induced by Hepatic Dearterialization in a Rat Model.

    Science.gov (United States)

    Jiang, Jun; Wei, Jishu; Wu, Junli; Gao, Wentao; Li, Qiang; Jiang, Kuirong; Miao, Yi

    2016-01-01

    Hepatic infarcts or abscesses occur after hepatic artery interruption. We explored the mechanisms of hepatic deprivation-induced acute liver injury and determine whether partial portal vein arterialization attenuated this injury in rats. Male Sprague-Dawley rats underwent either complete hepatic arterial deprivation or partial portal vein arterialization, or both. Hepatic ischemia was evaluated using biochemical analysis, light microscopy, and transmission electron microscopy. Hepatic ATP levels, the expression of hypoxia- and inflammation-associated genes and proteins, and the expression of bile transporter genes were assessed. Complete dearterialization of the liver induced acute liver injury, as evidenced by the histological changes, significantly increased serum biochemical markers, decreased ATP content, increased expression of hypoxia- and inflammation-associated genes and proteins, and decreased expression of bile transporter genes. These detrimental changes were extenuated but not fully reversed by partial portal vein arterialization, which also attenuated ductular reaction and fibrosis in completely dearterialized rat livers. Collectively, complete hepatic deprivation causes severe liver injury, including bile infarcts and biloma formation. Partial portal vein arterialization seems to protect against acute ischemia-hypoxia-induced liver injury.

  16. Partial Portal Vein Arterialization Attenuates Acute Bile Duct Injury Induced by Hepatic Dearterialization in a Rat Model

    Directory of Open Access Journals (Sweden)

    Jun Jiang

    2016-01-01

    Full Text Available Hepatic infarcts or abscesses occur after hepatic artery interruption. We explored the mechanisms of hepatic deprivation-induced acute liver injury and determine whether partial portal vein arterialization attenuated this injury in rats. Male Sprague-Dawley rats underwent either complete hepatic arterial deprivation or partial portal vein arterialization, or both. Hepatic ischemia was evaluated using biochemical analysis, light microscopy, and transmission electron microscopy. Hepatic ATP levels, the expression of hypoxia- and inflammation-associated genes and proteins, and the expression of bile transporter genes were assessed. Complete dearterialization of the liver induced acute liver injury, as evidenced by the histological changes, significantly increased serum biochemical markers, decreased ATP content, increased expression of hypoxia- and inflammation-associated genes and proteins, and decreased expression of bile transporter genes. These detrimental changes were extenuated but not fully reversed by partial portal vein arterialization, which also attenuated ductular reaction and fibrosis in completely dearterialized rat livers. Collectively, complete hepatic deprivation causes severe liver injury, including bile infarcts and biloma formation. Partial portal vein arterialization seems to protect against acute ischemia-hypoxia-induced liver injury.

  17. Is visual assessment of thyroid attenuation on unenhanced CT of the chest useful for detecting hypothyroidism?

    Science.gov (United States)

    Maldjian, P D; Chen, T

    2016-11-01

    To determine if visual assessment of the attenuation of morphologically normal appearing thyroid glands on unenhanced computed tomography (CT) of the chest is useful for identifying patients with decreased thyroid function. This was a retrospective study of 765 patients who underwent both unenhanced CT of the chest and thyroid function tests performed within 1 year of the CT examination. Attenuation of the thyroid gland was visually assessed in each patient relative to the attenuation of the surrounding muscles to categorise the gland as "low attenuation" (attenuation similar to surrounding muscles) or "high attenuation" (attenuation greater than surrounding muscles). Thyroid attenuation was quantitatively measured in each case to determine the validity of the visual assessment. Results of thyroid function tests were used to classify thyroid function as hypothyroid, euthyroid, or hyperthyroid. Data were analysed to determine the relationship between visual assessment of thyroid attenuation and status of thyroid function. Thyroid glands of low attenuation were present in 4.2% (32/765) of the patients. Nearly half (47%) of the patients with low-attenuation thyroids had hypofunctioning thyroid glands. Compared to patients with high-attenuation thyroids, patients with low-attenuation thyroids were significantly more likely to have decreased thyroid function (clinical and subclinical hypothyroidism) and significantly less likely to be euthyroid (p<0.0001). Quantitative measurement of thyroid attenuation confirmed the validity of the visual assessment. Low attenuation of an otherwise normal-appearing thyroid gland on unenhanced CT of the chest is strongly associated with decreased thyroid function. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  18. The Self Attenuation Correction for Holdup Measurements, a Historical Perspective

    International Nuclear Information System (INIS)

    Oberer, R. B.; Gunn, C. A.; Chiang, L. G.

    2006-01-01

    Self attenuation has historically caused both conceptual as well as measurement problems. The purpose of this paper is to eliminate some of the historical confusion by reviewing the mathematical basis and by comparing several methods of correcting for self attenuation focusing on transmission as a central concept

  19. Transmission-less attenuation estimation from time-of-flight PET histo-images using consistency equations

    Science.gov (United States)

    Li, Yusheng; Defrise, Michel; Metzler, Scott D.; Matej, Samuel

    2015-08-01

    In positron emission tomography (PET) imaging, attenuation correction with accurate attenuation estimation is crucial for quantitative patient studies. Recent research showed that the attenuation sinogram can be determined up to a scaling constant utilizing the time-of-flight information. The TOF-PET data can be naturally and efficiently stored in a histo-image without information loss, and the radioactive tracer distribution can be efficiently reconstructed using the DIRECT approaches. In this paper, we explore transmission-less attenuation estimation from TOF-PET histo-images. We first present the TOF-PET histo-image formation and the consistency equations in the histo-image parameterization, then we derive a least-squares solution for estimating the directional derivatives of the attenuation factors from the measured emission histo-images. Finally, we present a fast solver to estimate the attenuation factors from their directional derivatives using the discrete sine transform and fast Fourier transform while considering the boundary conditions. We find that the attenuation histo-images can be uniquely determined from the TOF-PET histo-images by considering boundary conditions. Since the estimate of the attenuation directional derivatives can be inaccurate for LORs tangent to the patient boundary, external sources, e.g. a ring or annulus source, might be needed to give an accurate estimate of the attenuation gradient for such LORs. The attenuation estimation from TOF-PET emission histo-images is demonstrated using simulated 2D TOF-PET data.

  20. Implementation of a monitoring protocol for the natural attenuation of soil

    International Nuclear Information System (INIS)

    Setier, J.C.; Pornain, J.L.; Millette, D.; Perie, F.; Deschenes, L.; Samson, R.

    2005-01-01

    Large quantities of hydrocarbons are extracted, produced, refined, and transported each year. Despite environmental procedures that are used in industry, the risk of environmental degradation cannot be avoided. Furthermore, aging installations can also present residual contamination. Some of these sites must be decontaminated to residual levels of soil contaminants that are established through discussions with national authorities. These levels are set with respect to the intended use of the site. For several years now, the evaluation of the risk of a contaminant in a particular environment must take into account land use. For certain sites that do not present direct risks for the surrounding environment, natural attenuation offers an interesting alternative to costly remediation strategies. In order to determine whether natural attenuation is a technique suited for soil restoration, TOTAL Exploration Production launched a research project on natural attenuation in 1997. By natural attenuation, we refer to all the processes that act to reduce the concentrations of contaminants in soil (i.e. biotic and abiotic mechanisms). The research project consists of two main components: - The development of decision-making tools designed to evaluate the potential for natural attenuation of hydrocarbons. These software programs, named SITE I and SITE II and developed by the Industrial Chair in Site Remediation and Management of the Ecole Polytechnique de Montreal take into account microbial and biotic processes involved the natural attenuation of contaminants in groundwater (SITE I) and soil (SITE II). - The set-up of a pilot-scale demonstration of natural attenuation in soils within the vadose zone at a refinery belonging to the TOTAL group. This pilot project, done in collaboration with the NSERC Industrial Chair in Site Remediation and Management of the Ecole Polytechnique de Montreal, has the following objectives : 1. Evaluation of the feasibility of natural attenuation as