Attenuation coefficients of soils
International Nuclear Information System (INIS)
Martini, E.; Naziry, M.J.
1989-01-01
As a prerequisite to the interpretation of gamma-spectrometric in situ measurements of activity concentrations of soil radionuclides the attenuation of 60 to 1332 keV gamma radiation by soil samples varying in water content and density has been investigated. A useful empirical equation could be set up to describe the dependence of the mass attenuation coefficient upon photon energy for soil with a mean water content of 10%, with the results comparing well with data in the literature. The mean density of soil in the GDR was estimated at 1.6 g/cm 3 . This value was used to derive the linear attenuation coefficients, their range of variation being 10%. 7 figs., 5 tabs. (author)
Burger, C; Goerres, G; Schoenes, S; Buck, A; Lonn, A H R; Von Schulthess, G K
2002-07-01
The CT data acquired in combined PET/CT studies provide a fast and essentially noiseless source for the correction of photon attenuation in PET emission data. To this end, the CT values relating to attenuation of photons in the range of 40-140 keV must be transformed into linear attenuation coefficients at the PET energy of 511 keV. As attenuation depends on photon energy and the absorbing material, an accurate theoretical relation cannot be devised. The transformation implemented in the Discovery LS PET/CT scanner (GE Medical Systems, Milwaukee, Wis.) uses a bilinear function based on the attenuation of water and cortical bone at the CT and PET energies. The purpose of this study was to compare this transformation with experimental CT values and corresponding PET attenuation coefficients. In 14 patients, quantitative PET attenuation maps were calculated from germanium-68 transmission scans, and resolution-matched CT images were generated. A total of 114 volumes of interest were defined and the average PET attenuation coefficients and CT values measured. From the CT values the predicted PET attenuation coefficients were calculated using the bilinear transformation. When the transformation was based on the narrow-beam attenuation coefficient of water at 511 keV (0.096 cm(-1)), the predicted attenuation coefficients were higher in soft tissue than the measured values. This bias was reduced by replacing 0.096 cm(-1) in the transformation by the linear attenuation coefficient of 0.093 cm(-1) obtained from germanium-68 transmission scans. An analysis of the corrected emission activities shows that the resulting transformation is essentially equivalent to the transmission-based attenuation correction for human tissue. For non-human material, however, it may assign inaccurate attenuation coefficients which will also affect the correction in neighbouring tissue.
Determination of beta attenuation coefficients by means of timing method
International Nuclear Information System (INIS)
Ermis, E.E.; Celiktas, C.
2012-01-01
Highlights: ► Beta attenuation coefficients of absorber materials were found in this study. ► For this process, a new method (timing method) was suggested. ► The obtained beta attenuation coefficients were compatible with the results from the traditional one. ► The timing method can be used to determine beta attenuation coefficient. - Abstract: Using a counting system with plastic scintillation detector, beta linear and mass attenuation coefficients were determined for bakelite, Al, Fe and plexiglass absorbers by means of timing method. To show the accuracy and reliability of the obtained results through this method, the coefficients were also found via conventional energy method. Obtained beta attenuation coefficients from both methods were compared with each other and the literature values. Beta attenuation coefficients obtained through timing method were found to be compatible with the values obtained from conventional energy method and the literature.
Investigation of photon attenuation coefficients for marble
International Nuclear Information System (INIS)
Basyigit, C; Akkurt, I; Kilincarslan, S; Akkurt, A
2005-01-01
The total linear attenuation coefficients μ (cm -1 ) have been obtained using the XCOM program at photon energies of 1 keV to 1 GeV for six different natural marbles produced in different places in Turkey. The individual contribution of photon interaction processes to the total linear attenuation coefficients for marble has been investigated. The calculated results were also compared with the measurements. The results obtained for marble were also compared with concrete. (note)
Guo, Zijian; Favazza, Christopher; Garcia-Uribe, Alejandro; Wang, Lihong V
2012-06-01
Photoacoustic (PA) microscopy (PAM) can image optical absorption contrast with ultrasonic spatial resolution in the optical diffusive regime. Conventionally, accurate quantification in PAM requires knowledge of the optical fluence attenuation, acoustic pressure attenuation, and detection bandwidth. We circumvent this requirement by quantifying the optical absorption coefficients from the acoustic spectra of PA signals acquired at multiple optical wavelengths. With the acoustic spectral method, the absorption coefficients of an oxygenated bovine blood phantom at 560, 565, 570, and 575 nm were quantified with errors of <3%. We also quantified the total hemoglobin concentration and hemoglobin oxygen saturation in a live mouse. Compared with the conventional amplitude method, the acoustic spectral method provides greater quantification accuracy in the optical diffusive regime. The limitations of the acoustic spectral method was also discussed.
Gamma ray attenuation coefficient measurement for neutron-absorbent materials
International Nuclear Information System (INIS)
Jalali, Majid; Mohammadi, Ali
2008-01-01
The compounds Na 2 B 4 O 7 , H 3 BO 3 , CdCl 2 and NaCl and their solutions attenuate gamma rays in addition to neutron absorption. These compounds are widely used in the shielding of neutron sources, reactor control and neutron converters. Mass attenuation coefficients of gamma related to the four compounds aforementioned, in energies 662, 778.9, 867.38, 964.1, 1085.9, 1173, 1212.9, 1299.1,1332 and 1408 keV, have been determined by the γ rays transmission method in a good geometry setup; also, these coefficients were calculated by MCNP code. A comparison between experiments, simulations and Xcom code has shown that the study has potential application for determining the attenuation coefficient of various compound materials. Experiment and computation show that H 3 BO 3 with the lowest average Z has the highest gamma ray attenuation coefficient among the aforementioned compounds
An Analytical-empirical Calculation of Linear Attenuation Coefficient of Megavoltage Photon Beams.
Seif, F; Tahmasebi-Birgani, M J; Bayatiani, M R
2017-09-01
In this study, a method for linear attenuation coefficient calculation was introduced. Linear attenuation coefficient was calculated with a new method that base on the physics of interaction of photon with matter, mathematical calculation and x-ray spectrum consideration. The calculation was done for Cerrobend as a common radiotherapy modifier and Mercury. The values of calculated linear attenuation coefficient with this new method are in acceptable range. Also, the linear attenuation coefficient decreases slightly as the thickness of attenuating filter (Cerrobend or mercury) increased, so the procedure of linear attenuation coefficient variation is in agreement with other documents. The results showed that the attenuation ability of mercury was about 1.44 times more than Cerrobend. The method that was introduced in this study for linear attenuation coefficient calculation is general enough to treat beam modifiers with any shape or material by using the same formalism; however, calculating was made only for mercury and Cerrobend attenuator. On the other hand, it seems that this method is suitable for high energy shields or protector designing.
Gamma ray attenuation coefficient measurement for neutron-absorbent materials
Energy Technology Data Exchange (ETDEWEB)
Jalali, Majid [Isfahan Nuclear Science and Technology Research Institute (NSTRT), Reactor and Accelerators Research and Development School, Atomic Energy Organization (Iran, Islamic Republic of)], E-mail: m_jalali@entc.org.ir; Mohammadi, Ali [Faculty of Science, Department of Physics, University of Kashan, Km. 6, Ravand Road, Kashan (Iran, Islamic Republic of)
2008-05-15
The compounds Na{sub 2}B{sub 4}O{sub 7}, H{sub 3}BO{sub 3}, CdCl{sub 2} and NaCl and their solutions attenuate gamma rays in addition to neutron absorption. These compounds are widely used in the shielding of neutron sources, reactor control and neutron converters. Mass attenuation coefficients of gamma related to the four compounds aforementioned, in energies 662, 778.9, 867.38, 964.1, 1085.9, 1173, 1212.9, 1299.1,1332 and 1408 keV, have been determined by the {gamma} rays transmission method in a good geometry setup; also, these coefficients were calculated by MCNP code. A comparison between experiments, simulations and Xcom code has shown that the study has potential application for determining the attenuation coefficient of various compound materials. Experiment and computation show that H{sub 3}BO{sub 3} with the lowest average Z has the highest gamma ray attenuation coefficient among the aforementioned compounds.
Determination of Dimensionless Attenuation Coefficient in Shaped Resonators
Daniels, C.; Steinetz, B.; Finkbeiner, J.; Raman, G.; Li, X.
2003-01-01
The value of dimensionless attenuation coefficient is an important factor when numerically predicting high-amplitude acoustic waves in shaped resonators. Both the magnitude of the pressure waveform and the quality factor rely heavily on this dimensionless parameter. Previous authors have stated the values used, but have not completely explained their methods. This work fully describes the methodology used to determine this important parameter. Over a range of frequencies encompassing the fundamental resonance, the pressure waves were experimentally measured at each end of the shaped resonators. At the corresponding dimensionless acceleration, the numerical code modeled the acoustic waveforms generated in the resonator using various dimensionless attenuation coefficients. The dimensionless attenuation coefficient that most closely matched the pressure amplitudes and quality factors of the experimental and numerical results was determined to be the value to be used in subsequent studies.
Validity of the CT to attenuation coefficient map conversion methods
International Nuclear Information System (INIS)
Faghihi, R.; Ahangari Shahdehi, R.; Fazilat Moadeli, M.
2004-01-01
The most important commercialized methods of attenuation correction in SPECT are based on attenuation coefficient map from a transmission imaging method. The transmission imaging system can be the linear source of radioelement or a X-ray CT system. The image of transmission imaging system is not useful unless to replacement of the attenuation coefficient or CT number with the attenuation coefficient in SPECT energy. In this paper we essay to evaluate the validity and estimate the error of the most used method of this transformation. The final result shows that the methods which use a linear or multi-linear curve accept a error in their estimation. The value of mA is not important but the patient thickness is very important and it can introduce a error more than 10 percent in the final result
Evaluation of downwelling diffuse attenuation coefficient algorithms in the Red Sea
Tiwari, Surya Prakash; Yellepeddi, Sarma B.; Jones, Burton
2016-01-01
to comprehend the diffuse attenuation coefficient and its relationship with in situ properties. Two apparent optical properties, spectral remote sensing reflectance (Rrs) and the downwelling diffuse attenuation coefficient (Kd), are calculated from vertical
Measurement of linear attenuation coefficient of different materials
International Nuclear Information System (INIS)
Ali, M. M.
2013-07-01
In this research we study the linear attenuation coefficient from the materials concrete, brick, mixture concrete and iron. In the secondary standard dosimetry laboratory in Atomic Energy from different distance by use Cs-137 sours, chamber farmer 2675 A-600 cc-S/N 0511, and electrometer 2670 A-S/N 114. Found the value of linear attenuation coefficient of concert in the range 0.167 cm -1 , the brick in the range 0.063 -1 and mixture concrete and iron in the range 0.253cm -1 .(Author)
Derivation of linear attenuation coefficients from CT numbers for low-energy photons
International Nuclear Information System (INIS)
Watanabe, Y.
1999-01-01
One can estimate photon attenuation properties from the CT number. In a standard method one assumes that the linear attenuation coefficient is proportional to electron density and ignores its nonlinear dependence on atomic number. When the photon energy is lower than about 50 keV, such as for brachytherapy applications, however, photoelectric absorption and Rayleigh scattering become important. Hence the atomic number must be explicitly considered in estimating the linear attenuation coefficient. In this study we propose a method to more accurately estimate the linear attenuation coefficient of low-energy photons from CT numbers. We formulate an equation that relates the CT number to the electron density and the effective atomic number. We use a CT calibration phantom to determine unknown coefficients in the equation. The equation with a given CT number is then solved for the effective atomic number, which in turn is used to calculate the linear attenuation coefficient for low-energy photons. We use the CT phantom to test the new method. The method significantly improves the standard method in estimating the attenuation coefficient at low photon energies (20keV≤E≤40keV) for materials with high atomic numbers. (author)
Two media method for linear attenuation coefficient determination of irregular soil samples
International Nuclear Information System (INIS)
Vici, Carlos Henrique Georges
2004-01-01
In several situations of nuclear applications, the knowledge of gamma-ray linear attenuation coefficient for irregular samples is necessary, such as in soil physics and geology. This work presents the validation of a methodology for the determination of the linear attenuation coefficient (μ) of irregular shape samples, in such a way that it is not necessary to know the thickness of the considered sample. With this methodology irregular soil samples (undeformed field samples) from Londrina region, north of Parana were studied. It was employed the two media method for the μ determination. It consists of the μ determination through the measurement of a gamma-ray beam attenuation by the sample sequentially immersed in two different media, with known and appropriately chosen attenuation coefficients. For comparison, the theoretical value of μ was calculated by the product of the mass attenuation coefficient, obtained by the WinXcom code, and the measured value of the density sample. This software employs the chemical composition of the samples and supplies a table of the mass attenuation coefficients versus the photon energy. To verify the validity of the two media method, compared with the simple gamma ray transmission method, regular pome stone samples were used. With these results for the attenuation coefficients and their respective deviations, it was possible to compare the two methods. In this way we concluded that the two media method is a good tool for the determination of the linear attenuation coefficient of irregular materials, particularly in the study of soils samples. (author)
Measurement of attenuation coefficients of the fundamental and second harmonic waves in water
Zhang, Shuzeng; Jeong, Hyunjo; Cho, Sungjong; Li, Xiongbing
2016-02-01
Attenuation corrections in nonlinear acoustics play an important role in the study of nonlinear fluids, biomedical imaging, or solid material characterization. The measurement of attenuation coefficients in a nonlinear regime is not easy because they depend on the source pressure and requires accurate diffraction corrections. In this work, the attenuation coefficients of the fundamental and second harmonic waves which come from the absorption of water are measured in nonlinear ultrasonic experiments. Based on the quasilinear theory of the KZK equation, the nonlinear sound field equations are derived and the diffraction correction terms are extracted. The measured sound pressure amplitudes are adjusted first for diffraction corrections in order to reduce the impact on the measurement of attenuation coefficients from diffractions. The attenuation coefficients of the fundamental and second harmonics are calculated precisely from a nonlinear least squares curve-fitting process of the experiment data. The results show that attenuation coefficients in a nonlinear condition depend on both frequency and source pressure, which are much different from a linear regime. In a relatively lower drive pressure, the attenuation coefficients increase linearly with frequency. However, they present the characteristic of nonlinear growth in a high drive pressure. As the diffraction corrections are obtained based on the quasilinear theory, it is important to use an appropriate source pressure for accurate attenuation measurements.
Mass attenuation coefficient of chromium and manganese compounds around absorption edge.
Sharanabasappa; Kaginelli, S B; Kerur, B R; Anilkumar, S; Hanumaiah, B
2009-01-01
The total mass attenuation coefficient for Potassium dichromate, Potassium chromate and Manganese acetate compounds are measured at different photon energies 5.895, 6.404, 6.490, 7.058, 8.041 and 14.390 keV using Fe-55, Co-57 and 241Am source with Copper target, radioactive sources. The photon intensity is analyzed using a high resolution HPGe detector system coupled to MCA under good geometrical arrangement. The obtained values of mass attenuation coefficient values are compared with theoretical values. This study suggests that measured mass attenuation coefficient values at and near absorption edges differ from the theoretical value by about 5-28%.
Calculation of noise attenuation coefficient for leaks in the system sodium-water
International Nuclear Information System (INIS)
Yugaj, V.S.; Kozlov, F.A.; Sorokina, T.G.
1986-01-01
In this report the authors present the calculation results for sound attenuation coefficient on hydrogen bubbles in sodium and show a calculation method of attenuation coefficient for different temperatures of sodium in the 1-200 kHz range frequencies [fr
International Nuclear Information System (INIS)
Fernandes Z, M. A.; Da Silva, T. A.; Nogueira, M. S.; Goncalves Z, E.
2015-10-01
In dentistry, alveolar bone regeneration procedures using based calcium phosphate biomaterials have been shown effective. However,there are not reports in the literature of studies the interaction of low energy radiation in these biomaterials used as attenuator and not being then allowed a comparison between the theoretical values and experimental.The objective of this study was to determine the interaction of radiation parameters of four dental biomaterials - BioOss, Cerasorb M Dental, Straumann Boneceramic and Osteogen for diagnostic radiology qualities. As a material and methods, the composition of the biomaterials was determined by the analytical techniques. The samples with 0.181 cm to 0,297 cm thickness were experimentally used as attenuators for the measurement of the transmitted X-rays spectra in X-ray equipment with 50 to 90 kV range by spectrometric system comprising the Cd Te detector. After this procedure, the mass attenuation coefficient, the effective atomic number were determined and compared between all the specimens analyzed, using the program WinXCOM in the range of 10 to 200 keV. In all strains examined observed that the energy spectrum of x-rays transmitted through the BioOss has the mean energy slightly smaller than the others biomaterials for close thickness. The μ/ρ and Z eff of the biomaterials showed its dependence on photon energy and atomic number of the elements of the material analyzed. It is concluded according to the methodology employed in this study that the measurements of x-ray spectrum, μ/ρ and Z eff using biomaterials as attenuators confirmed that the thickness, density, composition of the samples, the incident photon energy are factors that determine the characteristics of radiation in a tissue or equivalent material. (Author)
International Nuclear Information System (INIS)
Alles, J.; Mudde, R. F.
2007-01-01
Polychromatic x-ray beams traveling though material are prone to beam hardening, i.e., the high energy part of the incident spectrum gets over represented when traveling farther into the material. This study discusses the concept of a mean attenuation coefficient in a formal way. The total energy fluence is one-to-one related to the traveled distance in case of a polychromatic beam moving through a given, inhomogeneous material. On the basis of this one-to-one relation, it is useful to define a mean attenuation coefficient and study its decrease with depth. Our results are based on a novel parametrization of the energy dependence of the attenuation coefficient that allows for closed form evaluation of certain spectral integrals. This approach underpins the ad hoc semianalytical expressions given in the literature. An analytical model for the average attenuation coefficient is proposed that uses a simple fit of the attenuation coefficient as a function of the photon energy as input. It is shown that a simple extension of this model gives a rather good description of beam hardening for x-rays traveling through water
Reconstruction of bremsstrahlung spectra from attenuation data using generalized simulated annealing
International Nuclear Information System (INIS)
Menin, O.H.; Martinez, A.S.; Costa, A.M.
2016-01-01
A generalized simulated annealing algorithm, combined with a suitable smoothing regularization function is used to solve the inverse problem of X-ray spectrum reconstruction from attenuation data. The approach is to set the initial acceptance and visitation temperatures and to standardize the terms of objective function to automate the algorithm to accommodate different spectra ranges. Experiments with both numerical and measured attenuation data are presented. Results show that the algorithm reconstructs spectra shapes accurately. It should be noted that in this algorithm, the regularization function was formulated to guarantee a smooth spectrum, thus, the presented technique does not apply to X-ray spectrum where characteristic radiation are present. - Highlights: • X-ray spectra reconstruction from attenuation data using generalized simulated annealing. • Algorithm employs a smoothing regularization function, and sets the initial acceptance and visitation temperatures. • Algorithmic is automated by standardizing the terms of the objective function. • Algorithm is compared with classical methods.
Energy Technology Data Exchange (ETDEWEB)
Fernandes Z, M. A.; Da Silva, T. A.; Nogueira, M. S. [Centro de Desenvolvimento da Tecnologia Nuclear / CNEN, Pte. Antonio Carlos 6627, Belo Horizonte 31270-901, Minas Gerais (Brazil); Goncalves Z, E., E-mail: madelon@cdtn.br [Pontifice Catholic University of Minas Gerais, Av. Dom Jose Gaspar 500, Belo Horizonte 30535-901, Minas Gerais (Brazil)
2015-10-15
In dentistry, alveolar bone regeneration procedures using based calcium phosphate biomaterials have been shown effective. However,there are not reports in the literature of studies the interaction of low energy radiation in these biomaterials used as attenuator and not being then allowed a comparison between the theoretical values and experimental.The objective of this study was to determine the interaction of radiation parameters of four dental biomaterials - BioOss, Cerasorb M Dental, Straumann Boneceramic and Osteogen for diagnostic radiology qualities. As a material and methods, the composition of the biomaterials was determined by the analytical techniques. The samples with 0.181 cm to 0,297 cm thickness were experimentally used as attenuators for the measurement of the transmitted X-rays spectra in X-ray equipment with 50 to 90 kV range by spectrometric system comprising the Cd Te detector. After this procedure, the mass attenuation coefficient, the effective atomic number were determined and compared between all the specimens analyzed, using the program WinXCOM in the range of 10 to 200 keV. In all strains examined observed that the energy spectrum of x-rays transmitted through the BioOss has the mean energy slightly smaller than the others biomaterials for close thickness. The μ/ρ and Z{sub eff} of the biomaterials showed its dependence on photon energy and atomic number of the elements of the material analyzed. It is concluded according to the methodology employed in this study that the measurements of x-ray spectrum, μ/ρ and Z{sub eff} using biomaterials as attenuators confirmed that the thickness, density, composition of the samples, the incident photon energy are factors that determine the characteristics of radiation in a tissue or equivalent material. (Author)
International Nuclear Information System (INIS)
Silva, Richard M.C.; Appoloni, Carlos R.; Parreira, Paulo S.; Coimbra, Melayne M.; Aragao, Pedro H.A.
1997-01-01
This work demonstrates an alternative methodology for the linear attenuation coefficient determination (μρ) of irregular form samples. This methodology aims the study of indigenous archaeological ceramics from the region of Londrina, North of Parana State, Brazil. These ceramics are from Padre Carlos Weiss Historic Museum, Londrina University and belong to the Kaingaing tradition. Firstly, μρ determination by two mean method was performed by the gamma ray beam attenuation of the immersed ceramics, by using two different means with well-known linear attenuation coefficient. Beyond, the deduction of the equation for the μρ determination by the two-means methods, was also realized. By the other side, μρ theoretical value was determined with the XCOM computer program. This program uses the ceramics chemistry composition and provides an energy versus mass attenuation coefficient table. To verify the two-means method efficiency, five ceramics sample of thickness 1.15 cm and 1.87 cm were prepared with homogeneous clay. Theses ceramics, we used for the μρ determination using the attenuation method, and two-means method. The results and the μρ obtained deviation were compared for these samples, for the two methods. With the obtained results, it was concluded that the two-means method is applicable for the mass attenuation coefficient determination for the archaeometry studies. (author). 6 refs., 1 fig., 5 tabs
Tang, Junqi; Gao, Kunpeng; Ou, Quanhong; Fu, Xuewen; Man, Shi-Qing; Guo, Jie; Liu, Yingkai
2018-02-01
Gold nanoparticles (AuNPs) have been researched extensively, such as applied in various biosensors, biomedical imaging and diagnosis, catalysis and physico-chemical analysis. These applications usually required to know the nanoparticle size or concentration. Researchers have been studying a simply and quick way to estimate the concentration or size of nanoparticles from their optical spectra and SPR feature for several years. The extinction cross-sections and the molar attenuation coefficient were one of the key parameters. In this study, we calculated the extinction cross-sections and molar attenuation coefficient (decadic molar extinction coefficient) of small gold nanoparticles by dipole approximation method and modified Beer-Lambert law. The theoretical result showed that the surface plasmon resonance peak of small gold nanoparticles was blueshift with an increase size. Moreover, small AuNPs (sub-10 nm) were prepared by using of dextran or trisodium citrate as reducing agent and capping agent. The experimental synthesized AuNPs was also shows a blueshift as increasing particle size in a certain range. And the concentration of AuNPs was calculated based on the obtained molar attenuation coefficient. For small nanoparticles, the size of nanoparticles and surface plasmon resonance property was not showed a positive correlation compared to larger nanoparticles. These results suggested that SPR peak depended not only on the nanoparticle size and shape but also on the nanoparticles environment.
Coefficient of linear attenuation of beer for γ rays of 662 keV
International Nuclear Information System (INIS)
Ortiz A, M. D.; Cano S, D.; Vega C, H. R.
2017-10-01
The coefficient of linear attenuation of the beer was determined by means of a transmission experiment with a source of Cs 137 and a gamma ray spectrometer with a NaI(Tl) detector of 7.62 cm in diameter and 7.62 cm in height, using narrow geometry. The pulse height spectrum was accumulated for 1 minute of live time, 7 beer thicknesses (0.6 cm) were used. By means of linear regression by weighted squares we determined the linear attenuation coefficient whose value was μ = 0.0843 ± 0.0007 cm -1 . The coefficient of linear attenuation of water is 2.2% times greater than that of beer and to the geometry of the experimental arrangement. (Author)
Midgley, S M
2004-01-21
A novel parameterization of x-ray interaction cross-sections is developed, and employed to describe the x-ray linear attenuation coefficient and mass energy absorption coefficient for both elements and mixtures. The new parameterization scheme addresses the Z-dependence of elemental cross-sections (per electron) using a simple function of atomic number, Z. This obviates the need for a complicated mathematical formalism. Energy dependent coefficients describe the Z-direction curvature of the cross-sections. The composition dependent quantities are the electron density and statistical moments describing the elemental distribution. We show that it is possible to describe elemental cross-sections for the entire periodic table and at energies above the K-edge (from 6 keV to 125 MeV), with an accuracy of better than 2% using a parameterization containing not more than five coefficients. For the biologically important elements 1 coefficients. At higher energies, the parameterization uses fewer coefficients with only two coefficients needed at megavoltage energies.
Chemical effect on total mass attenuation coefficients of V, Cr, Mn, Co and Ni
International Nuclear Information System (INIS)
Soeguet, Oe.; Colak, S.; Bueyuekkasap, E.; Kuecuekoender, A.
2002-01-01
Detailed interpretation of data obtained from X-ray transmission measurements usually depends on the assumption that the contribution of each element is additive. This assumption yields the mixture rule for X-ray attenuation coefficients which is valid if molecular and chemical effects are negligible. Total mass attenuation coefficients of V, Cr, Mn, Co and Ni in various their compounds was measured. Absorption corrections were carried on data for ligands in the compounds. It was found that V, Cr, Mn, Co and Ni had different total mass attenuation coefficients in the different compounds. Results were compared with theoretical values of HUBBELL and SELTZER. (author)
Peinado, Liliana M.; Bloemen, Paul R.; Almasian, Mitra; van Leeuwen, Ton G.; Faber, Dirk J.
2016-03-01
Despite the improvements in early cancer diagnosis, adequate diagnostic tools for early staging of bladder cancer tumors are lacking [1]. MEMS-probes based on optical coherence tomography (OCT) provide cross-sectional imaging with a high-spatial resolution at a high-imaging speed, improving visualization of cancerous tissue [2-3]. Additionally, studies show that the measurement of localized attenuation coefficient allows discrimination between healthy and cancerous tissue [4]. We have designed a new miniaturized MEMS-probe based on OCT that will optimize early diagnosis by improving functional visualization of suspicious lesions in bladder. During the optical design phase of the probe, we have studied the effect of the numerical aperture (NA) on the OCT signal attenuation. For this study, we have employed an InnerVision Santec OCT system with several numerical apertures (25mm, 40mm, 60mm, 100mm, 150mm and 200mm using achromatic lenses). The change in attenuation coefficient was studied using 15 dilutions of intralipid ranging between 6*10-5 volume% and 20 volume%. We obtained the attenuation coefficient from the OCT images at several fixed positions of the focuses using established OCT models (e.g. single scattering with known confocal point spread function (PSF) [5] and multiple scattering using the Extended Huygens Fresnel model [6]). As a result, a non-linear increase of the scattering coefficient as a function of intralipid concentration (due to dependent scattering) was obtained for all numerical apertures. For all intralipid samples, the measured attenuation coefficient decreased with a decrease in NA. Our results suggest a non-negligible influence of the NA on the measured attenuation coefficient. [1] Khochikar MV. Rationale for an early detection program for bladder cancer. Indian J Urol 2011 Apr-Jun; 27(2): 218-225. [2] Sun J and Xie H. Review Article MEMS-Based Endoscopic Optical Coherence Tomography. IJO 2011, Article ID 825629, 12 pages. doi:10
Dose Rate and Mass Attenuation Coefficients of Gamma Ray for Concretes
Abdel-Latif, A A; Kansouh, W A; El-Sayed, F H
2003-01-01
This work is concerned with the study of the leakage gamma ray dose and mass attenuation coefficients for ordinary, basalt and dolomite concretes made from local ores. Concretes under investigation were constructed from gravel, basalt and dolomite ores, and then reconstructed with the addition of 3% steel fibers by weight. Measurements were carried out using a collimated beam from sup 6 sup 0 Co gamma ray source and sodium iodide (3x3) crystal with the genie 2000 gamma spectrometer. The obtained fluxes were transformed to gamma ray doses and displayed in the form of gamma ray dose rates distribution. The displayed curves were used to estimate the linear attenuation coefficients (mu), the relaxation lengths (lambda), half value layer (t sub 1 /2) and tenth value layer (t sub 1 /10). Also, The total mass attenuation coefficients of gamma ray have been calculated to the concerned concretes using XCOM (version 3.1) program and database elements cross sections from Z=1 to 100 at energies from 10 keV to 100 MeV. In...
Mass attenuation coefficients of X-rays in different medicinal plants
Energy Technology Data Exchange (ETDEWEB)
Morabad, R B [Department of Post-Graduate Studies and Research in Physics, Gulbarga University, Gulbarga 585106, Karnataka (India); Kerur, B.R. [Department of Post-Graduate Studies and Research in Physics, Gulbarga University, Gulbarga 585106, Karnataka (India)], E-mail: kerurbrk@yahoo.com
2010-02-15
The mass attenuation coefficients of specific parts of several plants, (fruits, leaves, stem and seeds) often used as medicines in the Indian herbal system, have been measured employing NaI (TI)) detector. The electronic setup used is a NaI (TI) detector, which is coupled to MCA for analysis of the spectrum. A source of {sup 241}Am is used to get X-rays in the energy range 8-32 keV from Cu, Rb, Mo, Ag and Ba targets. In the present study, the measured mass attenuation coefficient of Ocimum sanctum, Catharanthus roseus, Trigonella foenum-graecum, Azadirachta indica, Aegle marmelos, Zingiber officinalis, Emblica officinalis, Anacardium occidentale, Momordica charantia and Syzygium cumini show a linear relation with the energy.
Mass attenuation coefficients of X-rays in different medicinal plants
International Nuclear Information System (INIS)
Morabad, R.B.; Kerur, B.R.
2010-01-01
The mass attenuation coefficients of specific parts of several plants, (fruits, leaves, stem and seeds) often used as medicines in the Indian herbal system, have been measured employing NaI (TI)) detector. The electronic setup used is a NaI (TI) detector, which is coupled to MCA for analysis of the spectrum. A source of 241 Am is used to get X-rays in the energy range 8-32 keV from Cu, Rb, Mo, Ag and Ba targets. In the present study, the measured mass attenuation coefficient of Ocimum sanctum, Catharanthus roseus, Trigonella foenum-graecum, Azadirachta indica, Aegle marmelos, Zingiber officinalis, Emblica officinalis, Anacardium occidentale, Momordica charantia and Syzygium cumini show a linear relation with the energy.
Empirical formulae for mass attenuation and energy absorption coefficients from 1 keV to 20 MeV
International Nuclear Information System (INIS)
Manjunatha, H.C.; Sowmya, N.; Seenappa, L.; Sridhar, K.N.; Hanumantharayappa, C.
2017-01-01
Mass attenuation and energy absorption coefficients represents attenuation and absorption of X-rays and gamma rays in the material medium. A new empirical formula is proposed for mass attenuation and energy absorption coefficients in the region 1 < Z < 92 and from 1 keV to 20 MeV. The mass attenuation and energy absorption coefficients do not varies linearly with energy. We have performed the nonlinear regressions/nonlinear least square fittings and proposed the simple empirical relations between mass attenuation coefficients (μ/ρ) and mass energy absorption coefficients (μ en /ρ) and energy. We have compared the values produced by this formula with that of experiments. A good agreement of present formula with the experiments/previous models suggests that the present formulae could be used to evaluate mass attenuation and energy absorption coefficients in the region 1 < Z < 92. This formula is a model-independent formula and is the first of its kind that produces a mass attenuation and energy absorption coefficient values with the only simple input of energy for wide energy range 1 keV - 20 MeV in the atomic number region 1 < Z < 92. This formula is very much useful in the fields of radiation physics and dosimetry
Evaluation of downwelling diffuse attenuation coefficient algorithms in the Red Sea
Tiwari, Surya Prakash
2016-05-07
Despite the importance of the optical properties such as the downwelling diffuse attenuation coefficient for characterizing the upper water column, until recently no in situ optical measurements were published for the Red Sea. Kirby et al. used observations from the Coastal Zone Color Scanner to characterize the spatial and temporal variability of the diffuse attenuation coefficient (Kd(490)) in the Red Sea. To better understand optical variability and its utility in the Red Sea, it is imperative to comprehend the diffuse attenuation coefficient and its relationship with in situ properties. Two apparent optical properties, spectral remote sensing reflectance (Rrs) and the downwelling diffuse attenuation coefficient (Kd), are calculated from vertical profile measurements of downwelling irradiance (Ed) and upwelling radiance (Lu). Kd characterizes light penetration into water column that is important for understanding both the physical and biogeochemical environment, including water quality and the health of ocean environment. Our study tests the performance of the existing Kd(490) algorithms in the Red Sea and compares them against direct in situ measurements within various subdivisions of the Red Sea. Most standard algorithms either overestimated or underestimated with the measured in situ values of Kd. Consequently, these algorithms provided poor retrieval of Kd(490) for the Red Sea. Random errors were high for all algorithms and the correlation coefficients (r2) with in situ measurements were quite low. Hence, these algorithms may not be suitable for the Red Sea. Overall, statistical analyses of the various algorithms indicated that the existing algorithms are inadequate for the Red Sea. The present study suggests that reparameterizing existing algorithms or developing new regional algorithms is required to improve retrieval of Kd(490) for the Red Sea. © (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is
Nuclear equipment to determine soil and water mass attenuation coefficients
International Nuclear Information System (INIS)
Zucchi, O.L.A.D.; Nascimento Filho, V.F. do
1984-01-01
The feasibility of substituting the monochannel gamma spectrometer, traditionally used in the gamma ray attenuation technique, for a less sophisticated and less expensive system of integral counting is studied. The proposed system can be operated by a non-specialized person. Three detection systems were used in the determination of the mass attenuation coefficients for different types of soil and for water. (M.A.C.) [pt
Measurement of atomic number and mass attenuation coefficient in ...
Indian Academy of Sciences (India)
literature on the measurement of mass attenuation coefficient in magnesium ferrite. The knowledge of photon ... pure) MgO and Fe2O3. The details of experimental ... and (4 4 0) planes belonging to cubic spinel structure. The XRD pattern ...
Zhang, L.; Jia, M. C.; Gong, J. J.; Xia, W. M.
2017-12-01
The mass attenuation coefficient of various Lead-Boron Polyethylene samples which can be used as the photon shielding materials in marine reactor, have been simulated using the MCNP-5 code, and compared with the theoretical values at the photon energy range 0.001MeV—20MeV. A good agreement has been observed. The variations of mass attenuation coefficient, linear attenuation coefficient and mean free path with photon energy between 0.001MeV to 100MeV have been plotted. The result shows that all the coefficients strongly depends on the photon energy, material atomic composition and density. The dose transmission factors for source Cesium-137 and Cobalt-60 have been worked out and their variations with the thickness of various sample materials have also been plotted. The variations show that with the increase of materials thickness the dose transmission factors decrease continuously. The results of this paper can provide some reference for the use of the high effective shielding material Lead-Boron Polyethyene.
International Nuclear Information System (INIS)
Veneziani, G.R.; Correa, E.L.; Potiens, M.P.A.; Campos, L.L.
2015-01-01
IAEA code of practice TRS-457 states that standard phantoms should offer the same primary attenuation and scatter production as relevant body section of a representative patient. Material cost, availability and dimensional stability must also be considered. The goal of this study is to determine the attenuation coefficient of printed ABS and PLA in standard X-ray beams, verifying if phantoms printed with these materials could be an easier-handle substitute for PMMA, enabling the creation of different designs in an easier and cheaper way. Results show that PMMA presents higher attenuation coefficient, followed by PLA and ABS, which means that thinner PMMA layer creates higher radiation attenuation. (author)
Measurements of linear attenuation coefficients of irregular shaped samples by two media method
International Nuclear Information System (INIS)
Singh, Sukhpal; Kumar, Ashok; Thind, Kulwant Singh; Mudahar, Gurmel S.
2008-01-01
The linear attenuation coefficient values of regular and irregular shaped flyash materials have been measured without knowing the thickness of a sample using a new technique namely 'two media method'. These values have also been measured with a standard gamma ray transmission method and obtained theoretically with winXCOM computer code. From the comparison it is reported that the two media method has given accurate results of attenuation coefficients of flyash materials
Relationship between Secchi depth and the diffuse light attenuation coefficient in Danish estuaries
DEFF Research Database (Denmark)
Murray, Ciarán; Markager, Stiig
Analyis of temporal and spatial variation in the in the relationship between light attenuation and Secchi depth in Danish monitoring data There can be found timeseries of Secchi depth measurements in Danish waters which extend relatively far back in time. The Secchi depth measurement is therefore...... useful in that it allows comparison of present conditions with these older observations. An empirical inverse relationship between Secchi depth and light attenuation coefficient, Kd, has traditionally been used to estimate the light attenuation coefficient from Secchi depth measurements. However, studies...... have shown that the assumption of a constant inverse relationship between Kd and Secchi depth does not hold. The authors have analyzed measurements of Secchi depth and light attenuation from Danish monitoring data. The data used in our investigation was collected over a continuous period from 1986...
International Nuclear Information System (INIS)
Damla, N.; Baltas, H.; Celik, A.; Kiris, E.; Cevik, U.
2008-01-01
Some building materials, regularly used in Turkey, such as sand, cement, gas concrete (lightweight, aerated concrete), tile and brick, have been investigated in terms of mass attenuation coefficient, effective atomic, numbers (Z eff ), effective electron densities (N e ) and photon interaction cross section (σ a ) at 14 different energies from 81- to 1332-keV gamma-ray energies. The gamma rays were detected by using gamma-ray spectroscopy, a High Purity Germanium (HPGe) detector. The elemental compositions of samples were analysed using an energy dispersive X-ray fluorescence spectrometer. Mass attenuation coefficients of these samples have been compared with tabulations based upon the results of WinXcom. The theoretical mass attenuation coefficients were estimated using the mixture rule and the experimental values of investigated parameters were compared with the calculated values. The agreement of measured values of mass attenuation coefficient, effective atomic numbers, effective electron densities and photon interaction cross section with the theory has been found to be quite satisfactory. (authors)
International Nuclear Information System (INIS)
Miranda, Regina M. de; Pascholati, Elisabete M.
1997-01-01
Using an 241 Am source the mass attenuation coefficient of different woods and leaves of typical species of the Atlantic Forest were measured. The results for natural wood, dry wood and dry leaves indicate that the variation is very small among different species. However, woods present a higher attenuation than leaves, both depending on their water content. (author). 10 refs., 3 figs., 1 tab
Relationship between attenuation coefficients and dose-spread kernels
International Nuclear Information System (INIS)
Boyer, A.L.
1988-01-01
Dose-spread kernels can be used to calculate the dose distribution in a photon beam by convolving the kernel with the primary fluence distribution. The theoretical relationships between various types and components of dose-spread kernels relative to photon attenuation coefficients are explored. These relations can be valuable as checks on the conservation of energy by dose-spread kernels calculated by analytic or Monte Carlo methods
A comparison study for mass attenuation coefficients of some amino acids using MCNP code
Energy Technology Data Exchange (ETDEWEB)
Vahabi, Seyed Milad; Bahreynipour, Mostean; Shamsaie-Zafarghandi, Mojtaba [Amirkabir Univ. of Technology, Tehran (Iran, Islamic Republic of). Dept. of Energy Engineering and Physics
2017-07-15
In this study, a novel model of MCNP4C code reported recently was used to determine the photon mass attenuation coefficients of some amino acids at energies, 123, 360, 511, 662, 1170, 1280 and 1330 keV. The simulation results were compared with the XCOM data. It was indicated that the results were highly close to the calculated XCOM values. Obtained results were used to calculate the molar extinction coefficient. All the results showed the convenience and usefulness of the model in calculation of mass attenuation coefficients of amino acids.
Measurement of γ-Ray Attenuation Coefficient for Concrete with Different Aggregate
Energy Technology Data Exchange (ETDEWEB)
Oh, Jeong Hwan [Jeju National University, Jeju (Korea, Republic of); Lee, Jea Hyung; Mun, Young Bum; Choi, Hyun Kook [Sungshin Cement Co, Sejong (Korea, Republic of); Choi, Soo Seok [Jeju National University, Jeju (Korea, Republic of)
2016-05-15
In this work, we used different aggregates in a concrete to examine their effect on gamma-ray shielding. In addition, attenuation coefficient has been evaluated using a gamma-ray measuring system. The attenuation coefficient represents the amount of attenuated radiation by the thickness of a given sample material. Shielding performance improvement is expected to effect on the increasing high-weight aggregate rather than unit weigh and it is consider that additional research is needed for mixing condition of aggregates. In this study, shielding performance of concrete was confirmed to increase, according to the increasing in unit weight and aggregate. However, Iron ore is the density greater than oxidizing slag gravel, but attenuation coefficient is lower than including oxidizing slag gravel. The demand of radiation shielding material for a safe transport and storage of radioactive materials increases rapidly with the commencement of the medium and low-level radioactive waste disposal facility. It is because radioactive materials from a nuclear reactor, spent nuclear fuels, fission products, and many industrial application of radiation influences on environment over a long period by releasing gamma-ray and neutron continuously. Typical radiation shielding materials are lead, boron, iron, water, heavy-weight concrete, etc. In heavy-weight concrete, oxidizing slag from an electric arc furnace, magnetite and barite are used as an aggregate. The radiation shielding rate of the heavy-weight concrete which used oxidizing slag was studied. Both size of coarse aggregate and experiment sample is a few cm thicknesses. Therefore, location of shielding material including metal component in sample is important, according to direction of radiation.
Estimating the beam attenuation coefficient in coastal waters from AVHRR imagery
Gould, Richard W.; Arnone, Robert A.
1997-09-01
This paper presents an algorithm to estimate particle beam attenuation at 660 nm ( cp660) in coastal areas using the red and near-infrared channels of the NOAA AVHRR satellite sensor. In situ reflectance spectra and cp660 measurements were collected at 23 stations in Case I and II waters during an April 1993 cruise in the northern Gulf of Mexico. The reflectance spectra were weighted by the spectral response of the AVHRR sensor and integrated over the channel 1 waveband to estimate the atmospherically corrected signal recorded by the satellite. An empirical relationship between integrated reflectance and cp660 values was derived with a linear correlation coefficient of 0.88. Because the AVHRR sensor requires a strong channel 1 signal, the algorithm is applicable in highly turbid areas ( cp660 > 1.5 m -1) where scattering from suspended sediment strongly controls the shape and magnitude of the red (550-650 nm) reflectance spectrum. The algorithm was tested on a data set collected 2 years later in different coastal waters in the northern Gulf of Mexico and satellite estimates of cp660 averaged within 37% of measured values. Application of the algorithm provides daily images of nearshore regions at 1 km resolution for evaluating processes affecting ocean color distribution patterns (tides, winds, currents, river discharge). Further validation and refinement of the algorithm are in progress to permit quantitative application in other coastal areas. Published by Elsevier Science Ltd
Gamma-ray attenuation coefficients in some heavy metal oxide borate glasses at 662 keV
International Nuclear Information System (INIS)
Khanna, A.; Bhatti, S.S.; Singh, K.J.; Thind, K.S.
1996-01-01
The linear attenuation coefficient (μ) and mass attenuation coefficients (μ/ρ) of glasses in three systems: xPbO(1-x)B 2 O 3 , 0.25PbO.xCdO(0.75-x)B 2 O 3 and xBi 2 O 3 (1-x)B 2 O 3 were measured at 662 keV. Appreciable variations were noted in the attenuation coefficients due to changes in the chemical composition of glasses. In addition to this, absorption cross-sections per atom were also calculated. A comparison of shielding properties of these glasses with standar d shielding materials like lead, lead glass and concrete has proven that these glasses have a potential application as transparent radiation shielding. (orig.)
International Nuclear Information System (INIS)
Kern, F.; Wolf, D.; Pschera, P.; Lubk, A.
2016-01-01
Off-axis electron holography is a well-established transmission electron microscopy technique, typically employed to investigate electric and magnetic fields in and around nanoscale materials, which modify the phase of the reconstructed electron wave function. Here, we elaborate on a detailed analysis of the two characteristic intensity terms that are completing the electron hologram, the conventional image intensity and the interference fringe intensity. We show how both are related to elastic and inelastic scattering absorption at the sample and how they may be separated to analyze the chemical composition of the sample. Since scattering absorption is aperture dependent, a quantitative determination of the corresponding attenuation coefficients (reciprocal mean free path lengths) requires the use of holographic image modi with well-defined objective aperture stops in the back-focal plane of the objective lens. The proposed method extends quantitative electron holography to a correlated three-in-one characterization of electric and magnetic fields, Z-contrast and dielectric losses in materials. - Highlights: • Quantitative determination of attenuation coefficients by electron holography. • Separation of elastic and inelastic attenuation coefficients (mean free path length). • Quantitative determination of the objective aperture semi-angle influence. • Compilation of elastic and inelastic attenuation from different materials.
Energy Technology Data Exchange (ETDEWEB)
Kern, F.; Wolf, D.; Pschera, P.; Lubk, A.
2016-12-15
Off-axis electron holography is a well-established transmission electron microscopy technique, typically employed to investigate electric and magnetic fields in and around nanoscale materials, which modify the phase of the reconstructed electron wave function. Here, we elaborate on a detailed analysis of the two characteristic intensity terms that are completing the electron hologram, the conventional image intensity and the interference fringe intensity. We show how both are related to elastic and inelastic scattering absorption at the sample and how they may be separated to analyze the chemical composition of the sample. Since scattering absorption is aperture dependent, a quantitative determination of the corresponding attenuation coefficients (reciprocal mean free path lengths) requires the use of holographic image modi with well-defined objective aperture stops in the back-focal plane of the objective lens. The proposed method extends quantitative electron holography to a correlated three-in-one characterization of electric and magnetic fields, Z-contrast and dielectric losses in materials. - Highlights: • Quantitative determination of attenuation coefficients by electron holography. • Separation of elastic and inelastic attenuation coefficients (mean free path length). • Quantitative determination of the objective aperture semi-angle influence. • Compilation of elastic and inelastic attenuation from different materials.
Materials analysis using x-ray linear attenuation coefficient measurements at four photon energies
International Nuclear Information System (INIS)
Midgley, S M
2005-01-01
The analytical properties of an accurate parameterization scheme for the x-ray linear attenuation coefficient are examined. The parameterization utilizes an additive combination of N compositional- and energy-dependent coefficients. The former were derived from a parameterization of elemental cross-sections using a polynomial in atomic number. The compositional-dependent coefficients are referred to as the mixture parameters, representing the electron density and higher order statistical moments describing elemental distribution. Additivity is an important property of the parameterization, allowing measured x-ray linear attenuation coefficients to be written as linear simultaneous equations, and then solved for the unknown coefficients. The energy-dependent coefficients can be determined by calibration from measurements with materials of known composition. The inverse problem may be utilized for materials analysis, whereby the simultaneous equations represent multi-energy linear attenuation coefficient measurements, and are solved for the mixture parameters. For in vivo studies, the choice of measurement energies is restricted to the diagnostic region (approximately 20 keV to 150 keV), where the parameterization requires N ≥ 4 energies. We identify a mathematical pathology that must be overcome in order to solve the inverse problem in this energy regime. An iterative inversion strategy is presented for materials analysis using four or more measurements, and then tested against real data obtained at energies 32 keV to 66 keV. The results demonstrate that it is possible to recover the electron density to within ±4% and fourth mixture parameter. It is also a key finding that the second and third mixture parameters cannot be recovered, as they are of minor importance in the parameterization at diagnostic x-ray energies
Energy Technology Data Exchange (ETDEWEB)
Lopes, J.; De Medeiros, M. P.; Garcez, R.; Filgueiras, R.; Thalhofer, J.; Da Silva, A. X. [Universidade Federal do Rio de Janeiro, Programa de Engenharia Nuclear, Av. Horacio Macedo 2030, 21945-970 Rio de Janeiro (Brazil); Freitas R, W., E-mail: marqueslopez@yahoo.com.br [Instituto Militar de Engenharia, Secao de Engenharia Nuclear, Praca Gen. Tiburcio 80, 22290-270 Urca, Rio de Janeiro (Brazil)
2017-10-15
In spectrometry, the self-attenuation coefficients are fundamental to correct the efficiency of the detection of samples whose density is different from the radioactive standard. To facilitate the procedure of coefficient calculation, mathematical simulations have been widespread as a tool. In this paper, LabSOCS was used to calculate the self-attenuation coefficients for some geometries and the values found were compared to those obtained with MCNPX and experimental values. The percentage deviations found for the self-attenuation coefficient calculated by LabSOCS were below 1.6%, when compared to experimental values. In the extrapolation zone of the fitting curve of the experimental model, the deviations were below 1.9%. The results obtained show that the deviations increase proportionally to the amplitude between the density values of the radioactive standard and the sample. High percentage deviations were also obtained in simulations whose samples had high densities, complex geometries and low energy levels. However, the results indicate that LabSOCS is a tool which may be used in the calculation of self-attenuation coefficients. (Author)
International Nuclear Information System (INIS)
Alam, M.N.; Miah, M.M.H.; Chowdhury, M.I.; Kamal, M.; Ghose, S.; Rahman, Runi
2001-01-01
The linear and mass attenuation coefficients of different types of soil, sand, building materials and heavy beach mineral samples from the Chittagong and Cox's Bazar area of Bangladesh were measured using a high-resolution HPGe detector and the γ-ray energies 276.1, 302.8, 356.0, 383.8, 661.6 and 1173.2 and 1332.5 keV emitted from point sources of 133 Ba, 137 Cs and 60 Co, respectively. The linear attenuation coefficients show a linear relationship with the corresponding densities of the samples studied. The variations of the mass attenuation coefficient with γ-ray energy were exponential in nature. The measured mass attenuation coefficient values were compared with measurements made in other countries for similar kinds of materials. The values are in good agreement with each other in most cases
Wilson, Celia M.
2010-01-01
Research pertaining to the distortion of the squared canonical correlation coefficient has traditionally been limited to the effects of sampling error and associated correction formulas. The purpose of this study was to compare the degree of attenuation of the squared canonical correlation coefficient under varying conditions of score reliability.…
Summary of existing information on gamma-ray and X-ray attenuation coefficients of solutions
DEFF Research Database (Denmark)
Singh, K.; Gerward, Leif
2002-01-01
Accurate values of X-ray and gamma-ray attenuation coefficients of different chemicals are required in spectrometry as well as in many other scientific, engineering and medical disciplines involving photon radiation. The current state of knowledge of experimental and theoretical gamma-ray and X-r......-ray attenuation coefficients in aqueous solutions of salts is presented and exemplified by recent work. The results presented provide a basis for studying X-ray and gamma-ray photon interactions with ions in solution (hydrated ions) rather than ion compounds in solid form....
Inhomogeneity of neutron and gamma-ray attenuation in biological shields
Energy Technology Data Exchange (ETDEWEB)
El-bakkoush, F A; El-Ghobary, A M; Megahid, R M [Reactor and Neutron physics Department, Nuclear Research Center, A.E.A., Cairo (Egypt)
1997-12-31
Measurements have been carried-out to investigate the attenuation properties of some materials which are used as biological shields around nuclear radiation sources. Investigation was performed by measuring the transmitted fast neutron and gamma-spectra through cylindrical samples of magnetite- limonite, steel and cellulose shields. The neutron and gamma spectra were measured by a neutron-gamma spectrometer with stilbene scintillator. Discrimination between neutron and gamma pulses was achieved by a discrimination method. The obtained results are displayed in the form of neutron and gamma spectra and attenuation relations which are used to derive the total macroscopic cross-sections for neutrons and total linear attenuation coefficients for gamma-rays. The values of neutron and gamma relaxation lengths are also derived for the investigated materials. 10 figs., 1 tabs.
Uranium soft x-ray total attenuation coefficients
International Nuclear Information System (INIS)
Del Grande, N.K.; Oliver, A.J.
1981-01-01
Uranium total attenuation coefficients were measured continuously from 0.84 to 6.0 keV and at selected higher energies using a vacuum single crystal diffractometer and flow-proportional counter. Statistical fluctuations ranged from 0.5% to 2%. The overall accuracy was 3%. Prominent structure was measured within 20 eV of the M 5 (3.552 keV) and M 4 (3.728 keV) edges. Jump ratios were determined from log-log polynomial fits to data at energies apart from the near-edge regions. These data were compared with calculations based on a relativistic HFS central potential model and with previously tabulated data
International Nuclear Information System (INIS)
Silva, Richard Maximiliano Cunha e
1997-01-01
This work reports an alternative methodology for the linear attenuation coefficient determination (μ ρ) of irregular form samples, in such a way that is not necessary to consider the sample thickness. With this methodology, indigenous archaeological ceramics fragments from the region of Londrina, north of Parana, were studied. These ceramics fragments belong to the Kaingaing and Tupiguarani traditions. The equation for the μ ρ determination employing the two mean method was obtained and it was used for μ ρ determination by the gamma ray beam attenuation if immersed ceramics, by turns, in two different means with known linear attenuation coefficient. By the other side, μ theoretical value was determined with the XCOM computer code. This code uses as input the ceramics chemistry composition and provides an energy versus mass attenuation coefficient table. In order to validate the two mean method validation, five ceramics samples of thickness 1.15 cm and 1.87 cm were prepared with homogeneous clay. Using these ceramics, μ ρ was determined using the attenuation method, and the two mean method. The result obtained for μ ρ and its respective deviation were compared for these samples, for the two methods. With the obtained results, it was concluded that the two means method is good for the linear attenuation coefficient determination of materials of irregular shape, what is suitable, specially, for archaeometric studies. (author)
The linear attenuation coefficients as features of multiple energy CT image classification
International Nuclear Information System (INIS)
Homem, M.R.P.; Mascarenhas, N.D.A.; Cruvinel, P.E.
2000-01-01
We present in this paper an analysis of the linear attenuation coefficients as useful features of single and multiple energy CT images with the use of statistical pattern classification tools. We analyzed four CT images through two pointwise classifiers (the first classifier is based on the maximum-likelihood criterion and the second classifier is based on the k-means clustering algorithm) and one contextual Bayesian classifier (ICM algorithm - Iterated Conditional Modes) using an a priori Potts-Strauss model. A feature extraction procedure using the Jeffries-Matusita (J-M) distance and the Karhunen-Loeve transformation was also performed. Both the classification and the feature selection procedures were found to be in agreement with the predicted discrimination given by the separation of the linear attenuation coefficient curves for different materials
Hull, C C; Crofts, N C
1996-03-01
The Beer-Lambert law has been used to determine the total attenuation coefficient, mu t, of three hard and three soft contact lens materials. The three hard contact lens materials were PMMA, Polycon II and Boston IV whereas the 3 soft materials were chosen with differing water contents of 38, 55 and 70%, respectively. The total attenuation coefficients of all six materials were obtained from measurements of the axial transmission at 632.8 nm of a series of plano powered lenses varying in axial thickness from 0.5 to 3.5 mm. The value of the total attenuation coefficient depends on both scattering and absorption and hence PMMA and Boston IV, which both incorporated a handling tint, showed significantly higher values (P 0.5) was found between any of the hydrated soft contact lens materials tested.
Attenuation Coefficient of Single-Mode Periodic Waveguides
Baron, A.; Mazoyer, S.; Smigaj, W.; Lalanne, P.
2011-10-01
It is widely accepted that, on ensemble average, the transmission T of guided modes decays exponentially with the waveguide length L due to small imperfections, leading to the important figure of merit defined as the attenuation-rate coefficient α=-⟨ln(T)⟩/L. In this Letter, we evidence that the exponential-damping law is not valid in general for periodic monomode waveguides, especially as the group velocity decreases. This result, that contradicts common beliefs and experimental practices aiming at measuring α, is supported by a theoretical study of light transport in the limit of very small imperfections, and by numerical results obtained for two waveguide geometries that offer contrasted damping behaviors.
Obtaining the mass attenuation coefficient of the wood to a beam of gamma-ray of 241Am
International Nuclear Information System (INIS)
Costa, Vladimir Eliodoro; Rezende, Marcos Antonio de
2009-01-01
Full text: The quality of wood produced in Brazil reforestation has been the subject of many discussions in the Forestry Sector. SeEKXing to produce a rapid growth and wood quality, the Forestry Sector, found in Applied Nuclear Physics, a precise method of determining the density of wood known as ad hoc technique of attenuation of gamma-ray. The radioisotope used in this technique is that it has a picture 241 Am peak of 59.6 keV gamma-ray. This work has the objective of determining the mass attenuation coefficient of wood of the genus Eucalyptus for 241 Am radioisotope. We used 324 samples of wood from six different treatments: a seminal of Eucalyptus grandis; two clones of E. grandis; three clones of the hybrid E. grandis x E. urophylla. The same assay was used for the six treatments. It was determined the basic density of the samples by the method of immersion in water and then the basic density was converted into apparent density in the moisture equilibrium and it was determined the attenuation coefficient of mass. Preliminary results showed that the attenuation coefficient of mass did not vary between treatments, and its average value 0.1822 ± 0.0015. It was to here that the attenuation coefficient of mass in the wood of the genus Eucalyptus in moisture equilibrium can be constant. (author)
Energy Technology Data Exchange (ETDEWEB)
Roteta, M; Baro, J; Fernandez-Varea, J M; Salvat, F
1994-07-01
The FORTRAN 77 code PHOTAC to compute photon attenuation coefficients of elements and compounds is described. The code is based on the semi analytical approximate atomic cross sections proposed by Baro et al. (1994). Photoelectric cross sections for coherent and incoherent scattering and for pair production are obtained as integrals of the corresponding differential cross sections. These integrals are evaluated, to a pre-selected accuracy, by using a 20-point Gauss adaptive integration algorithm. Calculated attenuation coefficients agree with recently compiled databases to within - 1%, in the energy range from 1 keV to 1 GeV. The complete source listing of the program PHOTAC is included. (Author) 14 refs.
International Nuclear Information System (INIS)
Roteta, M.; Baro, J.; Fernandez-Varea, J. M.; Salvat, F.
1994-01-01
The FORTRAN 77 code PHOTAC to compute photon attenuation coefficients of elements and compounds is described. The code is based on the semi analytical approximate atomic cross sections proposed by Baro et al. (1994). Photoelectric cross sections for coherent and incoherent scattering and for pair production are obtained as integrals of the corresponding differential cross sections. These integrals are evaluated, to a pre-selected accuracy, by using a 20-point Gauss adaptive integration algorithm. Calculated attenuation coefficients agree with recently compiled databases to within - 1%, in the energy range from 1 keV to 1 GeV. The complete source listing of the program PHOTAC is included. (Author) 14 refs
Energy Technology Data Exchange (ETDEWEB)
Conti, C.C., E-mail: ccconti@ird.gov.br [Institute for Radioprotection and Dosimetry – IRD/CNEN, Rio de Janeiro (Brazil); Physics Institute, State University of Rio de Janeiro – UERJ, Rio de Janeiro (Brazil); Anjos, M.J. [Physics Institute, State University of Rio de Janeiro – UERJ, Rio de Janeiro (Brazil); Salgado, C.M. [Nuclear Engineering Institute – IEN/CNEN, Rio de Janeiro (Brazil)
2014-09-15
Highlights: •This work describes a procedure for sample self-absorption correction. •The use of Monte Carlo simulation to calculate the mass attenuation coefficients curve was effective. •No need for transmission measurement, saving time, financial resources and effort. •This article provides de curves for the 90° scattering angle. •Calculation on-line at (www.macx.net.br). -- Abstract: X-ray fluorescence technique plays an important role in nondestructive analysis nowadays. The development of equipment, including portable ones, enables a wide assortment of possibilities for analysis of stable elements, even in trace concentrations. Nevertheless, despite of the advantages, one important drawback is radiation self-attenuation in the sample being measured, which needs to be considered in the calculation for the proper determination of elemental concentration. The mass attenuation coefficient can be determined by transmission measurement, but, in this case, the sample must be in slab shape geometry and demands two different setups and measurements. The Rayleigh to Compton scattering ratio, determined from the X-ray fluorescence spectrum, provides a link to the mass attenuation coefficient by means of a polynomial type equation. This work presents a way to construct a Rayleigh to Compton scattering ratio versus mass attenuation coefficient curve by using the MCNP5 Monte Carlo computer code. The comparison between the calculated and literature values of the mass attenuation coefficient for some known samples showed to be within 15%. This calculation procedure is available on-line at (www.macx.net.br)
Design guidelines for flexural wave attenuation of slender beams with local resonators
International Nuclear Information System (INIS)
Liu, Yaozong; Yu, Dianlong; Li, Li; Zhao, Honggang; Wen, Jihong; Wen, Xisen
2007-01-01
The complex band structures and attenuation spectra of flexural waves in slender beams with periodically mounted local resonators are investigated with transfer matrix method. It is noteworthy that the frequency range and attenuation coefficient of the locally resonant gap become larger in complex band structures if larger resonators were used. But given the total add-on mass of resonators, the attenuation spectra of finite beams with large but few resonators do not demonstrate such phenomena because the attenuation needs several periods to establish. So with the view of application, a large number of small local resonators widely spread along the beam are preferred given the total add-on mass to the beam
Attenuation coefficients for fibrous self-compacting concrete in the energy range of 50-3000 keV
Energy Technology Data Exchange (ETDEWEB)
Bento, W.V.; Magalhaes, L.A.M.; Conti, C.C., E-mail: ccconti@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)
2017-04-01
The fibrous self-compacting concrete is a high performance concrete with uniformly distributed iron fibers. Transmission measurements, with {sup 137}Cs and {sup 60}Co sources were performed for the attenuation coefficients determination for both ordinary and fibrous self-compacting concretes. The results were compared to each other and to the values found in the literature for ordinary concrete. The mass attenuation coefficient for the fibrous self-compacting concrete showed to be higher than those for ordinary concrete of about 5%, depending on the gamma energy. However, it should be noted that the density of fibrous self-compacting concrete is higher than ordinary concrete, 2.4 g/cm{sup 3} and 1.9 g/cm{sup 3} respectively, increasing still further the difference in mass attenuation coefficient. In addition to that, by using Monte Carlo simulations, with MCNP5 Monte Carlo computer code, the data was extended to the 50-3000 keV gamma energy range. (author)
Attenuation coefficients for fibrous self-compacting concrete in the energy range of 50-3000 keV
International Nuclear Information System (INIS)
Bento, W.V.; Magalhaes, L.A.M.; Conti, C.C.
2017-01-01
The fibrous self-compacting concrete is a high performance concrete with uniformly distributed iron fibers. Transmission measurements, with "1"3"7Cs and "6"0Co sources were performed for the attenuation coefficients determination for both ordinary and fibrous self-compacting concretes. The results were compared to each other and to the values found in the literature for ordinary concrete. The mass attenuation coefficient for the fibrous self-compacting concrete showed to be higher than those for ordinary concrete of about 5%, depending on the gamma energy. However, it should be noted that the density of fibrous self-compacting concrete is higher than ordinary concrete, 2.4 g/cm"3 and 1.9 g/cm"3 respectively, increasing still further the difference in mass attenuation coefficient. In addition to that, by using Monte Carlo simulations, with MCNP5 Monte Carlo computer code, the data was extended to the 50-3000 keV gamma energy range. (author)
International Nuclear Information System (INIS)
Roteta, M.; Baro, J.; Fernandez-Varea, J.M.; Salvat, F.
1994-01-01
The FORTRAN 77 code PHOTAC to compute photon attenuation coefficients of elements and compounds is described. The code is based on the semi-analytical approximate atomic cross sections proposed by Baro et al. (1994). Photoelectric cross sections are calculated directly from a simple analytical expression. Atomic cross sections for coherent and incoherent scattering and for pair production are obtained as integrals of the corresponding differential cross sections. These integrals are evaluated, to a pre-selected accuracy, by using a 20-point Gauss adaptive integration algorithm. Calculated attenuation coefficients agree with recently compiled databases to within equal 1%, in the energy range from 1 KeV to 1 GeV. The complete source listing of the program PHOTAC is included
Conti, C. C.; Anjos, M. J.; Salgado, C. M.
2014-09-01
X-ray fluorescence technique plays an important role in nondestructive analysis nowadays. The development of equipment, including portable ones, enables a wide assortment of possibilities for analysis of stable elements, even in trace concentrations. Nevertheless, despite of the advantages, one important drawback is radiation self-attenuation in the sample being measured, which needs to be considered in the calculation for the proper determination of elemental concentration. The mass attenuation coefficient can be determined by transmission measurement, but, in this case, the sample must be in slab shape geometry and demands two different setups and measurements. The Rayleigh to Compton scattering ratio, determined from the X-ray fluorescence spectrum, provides a link to the mass attenuation coefficient by means of a polynomial type equation. This work presents a way to construct a Rayleigh to Compton scattering ratio versus mass attenuation coefficient curve by using the MCNP5 Monte Carlo computer code. The comparison between the calculated and literature values of the mass attenuation coefficient for some known samples showed to be within 15%. This calculation procedure is available on-line at www.macx.net.br.
Monte Carlo simulation of diffuse attenuation coefficient in presence of non uniform profiles
Digital Repository Service at National Institute of Oceanography (India)
Desa, E; Desai, R.G.P.; Desa, B.A.E
This paper presents a Monte Carlo simulation of the vertical depth structure of the downward attenuation coefficient (K sub(d)), and the irradiance reflectance (R) for a given profile of chlorophyll. The results are in quantitaive agreement...
Attenuation coefficient of the light in skin of BALB/c and C57BL/6 mice
Silva, C. R.; Camargo, C. F. M.; Aureliano, D. P.; De Pretto, L. R.; Freitas, A. Z.; Ribeiro, M. S.
2015-06-01
Optical properties of the biological tissue play an important role to a correct use of optical techniques for therapy and diagnosis. The mice skin presents morphological differences due to characteristics such as gender, body mass and age. Murine models are frequently used in pre-clinical trials in optical therapy and diagnosis. Therefore, the assessment of the skin tissue in animal models is needed for a proper understanding of how light interacts with skin. Noninvasive techniques such as optical coherence tomography (OCT) have been used to obtain optical information of the tissue, as the attenuation coefficient, with the advantage of obtaining sectional images in real time. In this study, eight female BALB/c albino mice (twenty-four weeks old) and eight male C57BL/6 black mice (eight weeks old) were used to measure the attenuation coefficient of the light in the skin, utilizing the OCT technique, aiming to check for influence of the aging process. Two moments were assessed twenty-two weeks apart from each other. Our data show that the aging process significantly affects the light attenuation coefficient in mice skin. Twenty-two weeks after, statistical significant differences were observed between groups within a same strain. We conclude that light attenuation coefficient of mice skin may be influenced by factors such as disorganization of the dermis. Morphological aspects of skin should be taken into account in studies that involve optical strategies in murine models.
International Nuclear Information System (INIS)
Almeida, A. T. Jr.; Nogueira, M.S.; Santos, M.A.P.; Campos, L.L.; Araújo, F. G. S.
2015-01-01
The attenuation coefficient depends on the incident photon energy and the nature of the materials. In order to minimize exposure to individuals. Barite concrete has been largely used as a shielding material in installations housing gamma radiation sources as well as X-ray generating equipment. This study was conducted to evaluate the efficacy of different mixtures of barite concrete for shielding in diagnostic X-ray rooms. The mass attenuation coefficient (μ/ρ). The mass attenuation coefficients have been measured by employing the CdTe detector model XR-100T. The distance between the source and the exposed surface of all samples was measured by SSD light indicator of machine which was 350 cm. The slope of the linear plot of the intensity transmitted versus specimen thickness would yield the attenuation coefficient. The mass attenuation coefficients (μ/ρ) were compared with the tabulations based upon the results of the XCOM program. The rectangular barite concrete blocks in different thicknesses from were used for the radiation attenuation test. The experimental values were compared with theoretical values WinXcom. The plots of the logarithm of transmitted intensity versus specimen thickness were linear for all the samples and the µ/ρ was obtained from the plots by linear regression over the 25%-2% transmission range, under good geometrical condition. There is a good agreement between theoretical and experimental values, within the 9%. In fact over the entire transmission range of 25-2% the experimental and theoretical values agree well for both the energies. (authors)
Matsumoto, Keiichi; Kitamura, Keishi; Mizuta, Tetsuro; Shimizu, Keiji; Murase, Kenya; Senda, Michio
2006-02-20
Transmission scanning can be successfully performed with a Cs-137 single-photon-emitting point source for three-dimensional PET imaging. This method was effective for postinjection transmission scanning because of differences in physical energy. However, scatter contamination in the transmission data lowers measured attenuation coefficients. The purpose of this study was to investigate the accuracy of the influence of object scattering by measuring the attenuation coefficients on the transmission images. We also compared the results with the conventional germanium line source method. Two different types of PET scanner, the SET-3000 G/X (Shimadzu Corp.) and ECAT EXACT HR(+) (Siemens/CTI) , were used. For the transmission scanning, the SET-3000 G/X and ECAT HR(+) were the Cs-137 point source and Ge-68/Ga-68 line source, respectively. With the SET-3000 G/X, we performed transmission measurement at two energy gate settings, the standard 600-800 keV as well as 500-800 keV. The energy gate setting of the ECAT HR(+) was 350-650 keV. The effects of scattering in a uniform phantom with different cross-sectional areas ranging from 201 cm(2) to 314 cm(2) to 628 cm(2) (apposition of the two 20 cm diameter phantoms) and 943 cm(2) (stacking of the three 20 cm diameter phantoms) were acquired without emission activity. First, we evaluated the attenuation coefficients of the two different types of transmission scanning using region of interest (ROI) analysis. In addition, we evaluated the attenuation coefficients with and without segmentation for Cs-137 transmission images using the same analysis. The segmentation method was a histogram-based soft-tissue segmentation process that can also be applied to reconstructed transmission images. In the Cs-137 experiment, the maximum underestimation was 3% without segmentation, which was reduced to less than 1% with segmentation at the center of the largest phantom. In the Ge-68/Ga-68 experiment, the difference in mean attenuation
International Nuclear Information System (INIS)
Matsumoto, Keiichi; Shimizu, Keiji; Senda, Michio; Kitamura, Keishi; Mizuta, Tetsuro; Murase, Kenya
2006-01-01
Transmission scanning can be successfully performed with a Cs-137 single-photon-emitting point source for three-dimensional PET imaging. This method was effective for postinjection transmission scanning because of differences in physical energy. However, scatter contamination in the transmission data lowers measured attenuation coefficients. The purpose of this study was to investigate the accuracy of the influence of object scattering by measuring the attenuation coefficients on the transmission images. We also compared the results with the conventional germanium line source method. Two different types of PET scanner, the SET-3000 G/X (Shimadzu Corp.) and ECAT EXACT HR + (Siemens/CTI), were used. For the transmission scanning, the SET-3000 G/X and ECAT HR + were the Cs-137 point source and Ge-68/Ga-68 line source, respectively. With the SET-3000 G/X, we performed transmission measurement at two energy gate settings, the standard 600-800 keV as well as 500-800 keV. The energy gate setting of the ECAT HR 2 + was 350-650 keV. The effects of scattering in a uniform phantom with different cross-sectional areas ranging from 201 cm 2 to 314 cm 2 to 628 cm 2 (apposition of the two 20 cm diameter phantoms) and 943 cm 2 (stacking of the three 20 cm diameter phantoms) were acquired without emission activity. First, we evaluated the attenuation coefficients of the two different types of transmission scanning using region of interest (ROI) analysis. In addition, we evaluated the attenuation coefficients with and without segmentation for Cs-137 transmission images using the same analysis. The segmentation method was a histogram-based soft-tissue segmentation process that can also be applied to reconstructed transmission images. In the Cs-137 experiment, the maximum underestimation was 3% without segmentation, which was reduced to less than 1% with segmentation at the center of the largest phantom. In the Ge-68/Ga-68 experiment, the difference in mean attenuation coefficients
Energy Technology Data Exchange (ETDEWEB)
Joffre, H; Pages, L [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1968-07-01
In this report are given the elements allowing the definition of the values of mass attenuation coefficients and mass energy absorption coefficients for some elements and mixtures, necessary for the study of tissue equivalent materials, for photons in the energy range 10 keV to 10 MeV. After a short reminding of the definitions of the two coefficients, follows, in table form, a compilation of these coefficients, as a function of energy, for simple elements, for certain mineral compounds, organic compounds, gases and particularly of soft tissues. (author) [French] Dans ce rapport, sont donnes les elements permettant de determiner les valeurs des coefficients d'attenuation massique et d'absorption massique en energie pour certains elements et melanges necessaires a l'etude des materiaux equivalents aux tissus pour les photons dans le domaine d'energie allant de 10 keV a 10 MeV. Apres un bref rappel des definitions des deux coefficients, suit, sous forme de tableaux, un recueil de ces coefficients, en fonction de l'energie, pour les elements simples, certains composes mineraux, composes organiques, gaz, et, particulierement, pour les tissus mous. (auteur)
Viscothermal Coupling Effects on Sound Attenuation in Concentrated Colloidal Dispersions.
Han, Wei
1995-11-01
This thesis describes a Unified Coupled Phase Continuum (UCPC) model to analyze sound propagation through aerosols, emulsions and suspensions in terms of frequency dependent attenuation coefficient and sound speed. Expressions for the viscous and thermal coupling coefficients explicitly account for the effects of particle size, shape factor, orientation as well as concentration and the sound frequency. The UCPC model also takes into account the intrinsic acoustic absorption within the fluid medium due to its viscosity and heat conductivity. The effective complex wave number as a function of frequency is derived. A frequency- and concentration-dependent complex Nusselt number for the interfacial thermal coupling coefficient is derived using an approximate similarity between the 'viscous skin drag' and 'heat conduction flux' associated with the discontinuous suspended phase, on the basis of a cell model. The theoretical predictions of attenuation spectra provide satisfactory agreement with reported experimental data on two concentrated suspensions (polystyrene latex and kaolin pigment), two concentrated emulsions (toluene -in-water, n-hexadecane-in-water), and two aerosols (oleic acid droplets-in-nitrogen, alumina-in-air), covering a wide range of relative magnitudes (from 10^ {-3} to 10^{3}) of thermal versus viscous contributions, for dispersed phase volume fractions as high as 50%. The relative differences between the additive result of separate viscous and thermal loss estimates and combined viscothermal absorption results are also presented. Effects of particle shape on viscous attenuation of sound in concentrated suspensions of non-spherical clay particles are studied. Attenuation spectra for 18 frequencies from 3 to 100 MHz are measured and analyzed for eleven kaolin clay slurries with solid concentrations ranging from 0.6% to 35% (w/w). A modified viscous drag coefficient that considers frequency, concentration, particle size, shape and orientation of
Effect of Different Concrete Grade on Radiation Linear Attenuation Coefficient (μ)
International Nuclear Information System (INIS)
Noor Azreen Masenwat; Mohammad Shahrizan Samsu; Mohamad Pauzi Ismail; Suhairy Sani; Ismail Mustapha; Nasharuddin Isa; Mohamad Haniza Mahmud
2014-01-01
In calculating the quantity of absorption of radiation and its relationship with the thickness of a material, linear attenuation coefficient (μ) of the material is one of the parameters to be taken into account. For normal concrete, the (μ) varies depending on the type of radiation used, 0.105 cm -1 for Co-60 and 0.123 cm -1 for Cs-137. Value (μ) is used in the calculation of the radiation absorption for concrete material does not take into account factors such concrete grades. In this research, concrete with different grades (Grade 15, Grade 20, Grade 25, Grade 30, Grade 35, Grade 40) are designed and manufactured with reference to the mixing method described in British Standard. Then, the linear attenuation (μ) for each grade are measured using the radiation from the source Co-60 and Cs-137 sources. This paper describes and discusses the impact of differences in concrete grade of linear attenuation (μ) for Co-60 source/ source Cs-137 and its relationship with the compressive strength. (author)
Digital Repository Service at National Institute of Oceanography (India)
Suresh, T.; Talaulikar, M.; Desa, E.; Matondkar, S.G.P.; Mascarenhas, A.
The results of study comparing the spectral diffuse attenuation coefficients Kd(Lambda) measured in the Arabian Sea with those derived from the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) using three algorithms, of which two are empirical...
Implications of NGA for NEHRP site coefficients
Borcherdt, Roger D.
2012-01-01
Three proposals are provided to update tables 11.4-1 and 11.4-2 of Minimum Design Loads for Buildings and Other Structures (7-10), by the American Society of Civil Engineers (2010) (ASCE/SEI 7-10), with site coefficients implied directly by NGA (Next Generation Attenuation) ground motion prediction equations (GMPEs). Proposals include a recommendation to use straight-line interpolation to infer site coefficients at intermediate values of ̅vs (average shear velocity). Site coefficients are recommended to ensure consistency with ASCE/SEI 7-10 MCER (Maximum Considered Earthquake) seismic-design maps and simplified site-specific design spectra procedures requiring site classes with associated tabulated site coefficients and a reference site class with unity site coefficients. Recommended site coefficients are confirmed by independent observations of average site amplification coefficients inferred with respect to an average ground condition consistent with that used for the MCER maps. The NGA coefficients recommended for consideration are implied directly by the NGA GMPEs and do not require introduction of additional models.
Region specific optimization of continuous linear attenuation coefficients based on UTE (RESOLUTE)
DEFF Research Database (Denmark)
Ladefoged, Claes N; Benoit, Didier; Law, Ian
2015-01-01
The reconstruction of PET brain data in a PET/MR hybrid scanner is challenging in the absence of transmission sources, where MR images are used for MR-based attenuation correction (MR-AC). The main challenge of MR-AC is to separate bone and air, as neither have a signal in traditional MR images......-valued linear attenuation coefficients in bone that provides accurate reconstructed PET image data. A total of 164 [(18)F]FDG PET/MR patients were included in this study, of which 10 were used for training. MR-AC was based on either standard CT (reference), UTE or our method (RESOLUTE). The reconstructed PET...... on the reconstructed PET images, as well as limiting the number and extent of the outliers....
Linear attenuation coefficients of tissues from 1 keV to 150 keV
Böke, Aysun
2014-09-01
The linear attenuation coefficients and three interaction processes have been computed for liver, kidney, muscle, fat and for a range of x-ray energies from 1 keV to 150 keV. Molecular photoelectric absorption cross sections were calculated from atomic cross section data. Total coherent (Rayleigh) and incoherent (Compton) scattering cross sections were obtained by numerical integration over combinations of F2m(x) with the Thomson formula and Sm(x) with the Klein-Nishina formula, respectively. For the coherent (Rayleigh) scattering cross section calculations, molecular form factors were obtained from recent experimental data in the literature for values of xelements involved in tissue composition is 5 for liver, 47 for kidney, 44 for muscle and 3 for fat. The results are compared with previously published experimental and theoretical linear attenuation coefficients. In general, good agreement is obtained. The molecular form factors and scattering functions and cross sections are incorporated into a Monte Carlo program. The energy distributions of x-ray photons scattered from tissues have been simulated and the results are presented.
Calculation of conversion coefficients for clinical photon spectra using the MCNP code.
Lima, M A F; Silva, A X; Crispim, V R
2004-01-01
In this work, the MCNP4B code has been employed to calculate conversion coefficients from air kerma to the ambient dose equivalent, H*(10)/Ka, for monoenergetic photon energies from 10 keV to 50 MeV, assuming the kerma approximation. Also estimated are the H*(10)/Ka for photon beams produced by linear accelerators, such as Clinac-4 and Clinac-2500, after transmission through primary barriers of radiotherapy treatment rooms. The results for the conversion coefficients for monoenergetic photon energies, with statistical uncertainty <2%, are compared with those in ICRP publication 74 and good agreements were obtained. The conversion coefficients calculated for real clinic spectra transmitted through walls of concrete of 1, 1.5 and 2 m thick, are in the range of 1.06-1.12 Sv Gy(-1).
Mohamad Asri, Muhammad Naeim; Mat Desa, Wan Nur Syuhaila; Ismail, Dzulkiflee
2018-01-01
The potential combination of two nondestructive techniques, that is, Raman spectroscopy (RS) and attenuated total reflectance-fourier transform infrared (ATR-FTIR) spectroscopy with Pearson's product moment correlation (PPMC) coefficient (r) and principal component analysis (PCA) to determine the actual source of red gel pen ink used to write a simulated threatening note, was examined. Eighteen (18) red gel pens purchased from Japan and Malaysia from November to December 2014 where one of the pens was used to write a simulated threatening note were analyzed using RS and ATR-FTIR spectroscopy, respectively. The spectra of all the red gel pen inks including the ink deposited on the simulated threatening note gathered from the RS and ATR-FTIR analyses were subjected to PPMC coefficient (r) calculation and principal component analysis (PCA). The coefficients r = 0.9985 and r = 0.9912 for pairwise combination of RS and ATR-FTIR spectra respectively and similarities in terms of PC1 and PC2 scores of one of the inks to the ink deposited on the simulated threatening note substantiated the feasibility of combining RS and ATR-FTIR spectroscopy with PPMC coefficient (r) and PCA for successful source determination of red gel pen inks. The development of pigment spectral library had allowed the ink deposited on the threatening note to be identified as XSL Poppy Red (CI Pigment Red 112). © 2017 American Academy of Forensic Sciences.
Directory of Open Access Journals (Sweden)
LUCIANA P.M. BRANDÃO
Full Text Available ABSTRACT We studied the effects of particulate and dissolved optically active components on the attenuation of photosynthetic active radiation (PAR in a tropical lake. The temporal and spatial distribution of tripton, Chl-a and aCDOM(440 and their relative contribution to the diffuse PAR attenuation coefficient (Kd was investigated at 21 sites (dry and wet seasons and two intermediate periods and at monthly interval at 1 pelagic site. Higher values of Kd were observed during the mixing period, characterized by a higher concentration of tripton and Chl-a compared to the stratified rainy season. In the spatial sampling PAR attenuation was dominated by tripton absorption/scattering (average relative contribution of 79%, followed by Chl-a (average 11.6%. In the monthly sampling tripton and Chl-a accounted for most of the Kd with relative contributions of 47.8% and 35.6%, respectively. Multiple linear regression analysis showed that Chl-a and tripton in combination explained 97% of the monthly variation in Kd (p<0.001, but Chl-a had more influence (higher regression coefficient. Thus, although most of light attenuation was due to tripton, seasonal variations in phytoplankton abundance were responsible for most of the temporal fluctuations in Kd.
Badran, H.; Yahia, I. S.; Hamdy, Mohamed S.; Awwad, N. S.
2017-01-01
Lithium-hydroxyapatite (0, 1, 5, 10, 20, 30 and 40 wt% Li-HAp) nano-composites were synthesized by sol-gel technique followed by microwave-hydrothermal treatment. The composites were characterized by X-ray diffraction (XRD), Field emission scanning electron microscope (FE-SEM), energy dispersive spectroscopy (EDS), Fourier transform infrared (FTIR) and Raman techniques. Gamma attenuation coefficient and the dielectric properties for all composites were investigated. The crystallinity degree of Li-doped HAp was higher than that of un-doped HAp. Gamma attenuation coefficient values increased from 0.562 cm-1 for 0 wt% Li-HAp to 2.190 cm-1 for 40 wt% Li-HAp. The alternating current conductivity increased with increasing frequency. The concentration of Li affect the values of dielectric constant where Li doped HAp of low dielectric constant can have an advantage for healing in bone fractures. The calcium to phosphorus ratio decreased from 1.43 to 1.37 with the addition of lithium indicating the Ca deficiency in the studied composites. Our findings lead to the conclusion that Li-HAp is a new nano-composite useful for medical applications and could be doped with gamma shield materials.
Ménesguen, Y.; Gerlach, M.; Pollakowski, B.; Unterumsberger, R.; Haschke, M.; Beckhoff, B.; Lépy, M.-C.
2016-02-01
The knowledge of atomic fundamental parameters such as mass attenuation coefficients with low uncertainties, is of decisive importance in elemental quantification using x-ray fluorescence analysis techniques. Several databases are accessible and frequently used within a large community of users. These compilations are most often in good agreement for photon energies in the hard x-ray ranges. However, they significantly differ for low photon energies and around the absorption edges of any element. In a joint cooperation of the metrology institutes of France and Germany, mass attenuation coefficients of copper and zinc were determined experimentally in the photon energy range from 100 eV to 30 keV by independent approaches using monochromatized synchrotron radiation at SOLEIL (France) and BESSY II (Germany), respectively. The application of high-accuracy experimental techniques resulted in mass attenuation coefficient datasets determined with low uncertainties that are directly compared to existing databases. The novel datasets are expected to enhance the reliability of mass attenuation coefficients.
The measurement of attenuation coefficients at low photon energies using fluorescent x-radiation
International Nuclear Information System (INIS)
Peaple, L.H.J.; White, D.R.
1978-03-01
A rapid and accurate method has been developed to measure low energy attenuation coefficients for materials of importance in radiation dosimetry. It employs a collimated beam of fluorescent x-rays from which the required radiation is selected by means of a high resolution germanium detector and multi-channel analyser. The method is described in detail and its accuracy and application outlined with reference to the results from nine different materials. (author)
Measurement of spectra for intra-oral X-ray beams using biological materials as attenuator
International Nuclear Information System (INIS)
Zenóbio, Madelon A.F.; Nogueira-Tavares, Maria S.; Zenóbio, Elton G.; Squair, Peterson Lima; Santos, Marcus A.P.; Silva, Teógenes A. da
2011-01-01
In diagnostic radiology, the radiation interaction probability in matter is a strong function of the X-ray energy. The knowledge of the X-ray energy spectral distribution allows optimizing the radiographic imaging system in order to obtain high quality images with as low as reasonably achievable patient doses. In this study, transmitted X-ray spectra through dentin and enamel that are existing materials in intra-oral radiology were experimentally determined in an X-ray equipment with 40–70 kV variable range. Dentin and enamel samples with 0.4–3.8 and 0.6–2.6 mm thick were used as attenuators. X-ray transmitted spectra were measured with XR-100T model CdTe detector and half-value layers (HVL) were determined. Characteristics of both dentin and enamel transmitted spectra showed that they have differences in the penetration power in matter and in the spectrum distribution. The results will be useful for phantom developments based on dentin and enamel for image quality control in dental radiology. - Highlights: ► The X-ray energy spectral distribution, optimize the radiographic imaging system. Transmitted X-ray spectra through dentin and enamel were experimentally determined. X-ray transmitted spectra were measured (XR-100T model CdTe detector). The transmitted spectra showed differences in the penetration power and spectrum distribution. Dentin and enamel transmitted spectra will be useful for phantom developments.
International Nuclear Information System (INIS)
Teli, M.T.; Nathuram, R.; Mahajan, C.S.
2000-01-01
As it is inconvenient to use elements like hydrogen, carbon and oxygen in pure forms for measurement of their gamma mass-attenuation coefficients, the measurements are to be done indirectly, by using compounds of the elements or a mixture of them. We give here a simple method of measuring the total mass-attenuation coefficients μ/ρ of the elements in a compound simultaneously and in a single experiment through the measurements of the μ/ρ values of the concerned compounds and using the mixture rule. The method is applied for the measurement of μ/ρ of hydrogen, carbon and oxygen by using acetone, ethanol and 1-propanol. Our results (for E γ =0.123-1.33 MeV) are seen to be in better agreement with the theoretical values of Hubbell and Seltzer (1995) [Hubbell J.H. and Seltzer S.M. (1995). Tables of X-ray mass attenuation coefficients and mass energy-absorption coefficients 1 keV to 20 MeV for elements Z=1 to 92 and 48 additional substances of dosimetric interest. NISTIR 5632] as compared to the results of El-Kateb and Abdul-Hamid (1991) [El-Kateb, A.H., Abdul-Hamid, A.S., 1991. Photon attenuation coefficient study of some materials containing hydrogen, carbon, and oxygen. Appl. Rad. Isot. 42, 303-307
Assessment of satellite derived diffuse attenuation coefficients ...
Optical data collected in coastal waters off South Florida and in the Caribbean Sea between January 2009 and December 2010 were used to evaluate products derived with three bio-optical inversion algorithms applied to MOIDS/Aqua, MODIS/Terra, and SeaWiFS satellite observations. The products included the diffuse attenuation coefficient at 490 nm (Kd_490) and for the visible range (Kd_PAR), and euphotic depth (Zeu, corresponding to 1% of the surface incident photosynthetically available radiation or PAR). Above-water hyperspectral reflectance data collected over optically shallow waters of the Florida Keys between June 1997 and August 2011 were used to help understand algorithm performance over optically shallow waters. The in situ data covered a variety of water types in South Florida and the Caribbean Sea, ranging from deep clear waters, turbid coastal waters, and optically shallow waters (Kd_490 range of ~0.03 – 1.29m-1). An algorithm based on Inherent Optical Properties (IOPs) showed the best performance (RMSD turbidity or shallow bottom contamination. Similar results were obtained when only in situ data were used to evaluate algorithm performance. The excellent agreement between satellite-derived remote sensing reflectance (Rrs) and in situ Rrs suggested that
Measurement of photon mass attenuation coefficients of plutonium from 60 to 2615 keV
International Nuclear Information System (INIS)
Rettschlag, M.; Berndt, R.; Mortreau, P.
2007-01-01
Measurements have been made to determine plutonium photon mass attenuation coefficients by using a collimated-beam transmission method in the energy range from 60 to 2615 keV. These experimental results were compared with previous experimental and theoretical data. Good agreements are observed in the 240-800 keV energy range, whereas differences up to maximum 10% are observed out of these limits
Energy Technology Data Exchange (ETDEWEB)
Vici, Carlos Henrique Georges
2004-07-01
In several situations of nuclear applications, the knowledge of gamma-ray linear attenuation coefficient for irregular samples is necessary, such as in soil physics and geology. This work presents the validation of a methodology for the determination of the linear attenuation coefficient ({mu}) of irregular shape samples, in such a way that it is not necessary to know the thickness of the considered sample. With this methodology irregular soil samples (undeformed field samples) from Londrina region, north of Parana were studied. It was employed the two media method for the {mu} determination. It consists of the {mu} determination through the measurement of a gamma-ray beam attenuation by the sample sequentially immersed in two different media, with known and appropriately chosen attenuation coefficients. For comparison, the theoretical value of {mu} was calculated by the product of the mass attenuation coefficient, obtained by the WinXcom code, and the measured value of the density sample. This software employs the chemical composition of the samples and supplies a table of the mass attenuation coefficients versus the photon energy. To verify the validity of the two media method, compared with the simple gamma ray transmission method, regular pome stone samples were used. With these results for the attenuation coefficients and their respective deviations, it was possible to compare the two methods. In this way we concluded that the two media method is a good tool for the determination of the linear attenuation coefficient of irregular materials, particularly in the study of soils samples. (author)
National Oceanic and Atmospheric Administration, Department of Commerce — The Sea surface topography, absorption, scattering, attenuation coefficients and other data in this accession was collected from NOAA-11 Advanced Very High...
Determination of the optical absorption spectra of thin layers from their photoacoustic spectra
Bychto, Leszek; Maliński, Mirosław; Patryn, Aleksy; Tivanov, Mikhail; Gremenok, Valery
2018-05-01
This paper presents a new method for computations of the optical absorption coefficient spectra from the normalized photoacoustic amplitude spectra of thin semiconductor samples deposited on the optically transparent and thermally thick substrates. This method was tested on CuIn(Te0.7Se0.3)2 thin films. From the normalized photoacoustic amplitude spectra, the optical absorption coefficient spectra were computed with the new formula as also with the numerical iterative method. From these spectra, the value of the energy gap of the thin film material and the type of the optical transitions were determined. From the experimental optical transmission spectra, the optical absorption coefficient spectra were computed too, and compared with the optical absorption coefficient spectra obtained from photoacoustic spectra.
International Nuclear Information System (INIS)
Wang Dachun; Yang Hua; Luo Pingan; Ding Xunliang; Wang Xinfu; Zhou Hongyu; Shen Xinyin; Zhu Guanghua
1991-08-01
The document contains the following two papers: X-ray attenuation coefficient and photoelectric cross sections of Sn for the Energy Range 3.3 KeV to 29.1 KeV - by Wang Dachun, Yang Hua and Luo Pingan. X-ray attenuation coefficients and photoelectric cross sections of Cu and Fe for the range 3 KeV to 29 KeV - by Wang Dachun, Ding Xunliang, Wang Xinfu, Yang Hua, Zhou Hongyu, Shen Xinyin and Zhu Guanghua. A separate abstract was prepared for each of these papers. Refs, figs and tabs
International Nuclear Information System (INIS)
Kimoto, Natsumi; Hayashi, Hiroaki; Asahara, Takashi; Mihara, Yoshiki; Kanazawa, Yuki; Yamakawa, Tsutomu; Yamamoto, Shuichiro; Yamasaki, Masashi; Okada, Masahiro
2017-01-01
The aim of our study is to develop a novel material identification method based on a photon counting technique, in which the incident and penetrating X-ray spectra are analyzed. Dividing a 40 kV X-ray spectra into two energy regions, the corresponding linear attenuation coefficients are derived. We can identify the materials precisely using the relationship between atomic number and linear attenuation coefficient through the correction of the beam hardening effect of the X-ray spectra. - Highlights: • We propose a precise material identification method to be used as a photon counting system. • Beam hardening correction is important, even when the analysis is applied to the short energy regions in the X-ray spectrum. • Experiments using a single probe-type CdTe detector were performed, and Monte Carlo simulation was also carried out. • We described the applicability of our method for clinical diagnostic X-ray imaging in the near future.
Lavine, Barry K; Fasasi, Ayuba; Mirjankar, Nikhil; Nishikida, Koichi; Campbell, Jay
2014-01-01
Attenuated total reflection (ATR) is a widely used sampling technique in infrared (IR) spectroscopy because minimal sample preparation is required. Since the penetration depth of the ATR analysis beam is quite shallow, the outer layers of a laminate or multilayered paint sample can be preferentially analyzed with the entire sample intact. For this reason, forensic laboratories are taking advantage of ATR to collect IR spectra of automotive paint systems that may consist of three or more layers. However, the IR spectrum of a paint sample obtained by ATR will exhibit distortions, e.g., band broadening and lower relative intensities at higher wavenumbers, compared with its transmission counterpart. This hinders library searching because most library spectra are measured in transmission mode. Furthermore, the angle of incidence for the internal reflection element, the refractive index of the clear coat, and surface contamination due to inorganic contaminants can profoundly influence the quality of the ATR spectrum obtained for automotive paints. A correction algorithm to allow ATR spectra to be searched using IR transmission spectra of the paint data query (PDQ) automotive database is presented. The proposed correction algorithm to convert transmission spectra from the PDQ library to ATR spectra is able to address distortion issues such as the relative intensities and broadening of the bands, and the introduction of wavelength shifts at lower frequencies, which prevent library searching of ATR spectra using archived IR transmission data.
International Nuclear Information System (INIS)
Kerur, B.R.; Thontadarya, S.R.; Hanumaiah, B.
1994-01-01
The x-ray attenuation coefficients for three elements and for eight compounds are determined, adopting the method developed by employing a proportional counter, with a view to study the effect of fine structure on the mass attenuation coefficient values using Mn K α and Cu K α x-rays derived from K x-ray emitters, 55 Fe and 65 Zn radioactive sources, by a differential absorption technique. It is experimentally established that a small difference in energy between K α1 and K α2 (11 eV in the case of Mn K α and 24 eV in the case of the Cu K α x-ray) is inconsequential by comparing the measured and theoretical values of μ/ρ for standard elements, aluminium, copper and tantalum. The effect of fine structure on μ/ρ values is studied using the compounds containing one element with its absorption edge close to the incident photon energy. Results obtained in the present investigation show the nonvalidity of the mixture rule above the edge and also below the edge, ranging from about 600 eV below the edge to about 1500 eV about the edge. The contribution of resonance Raman scattering to the attenuation coefficient and indications to the presence of pre-edge structure similar to EXAFS are discussed. (author)
International Nuclear Information System (INIS)
Akar, A.; Baltas, H.; Cevik, U.; Korkmaz, F.; Okumusoglu, N.T.
2006-01-01
The half-value thicknesses, linear and mass attenuation coefficients of biological samples such as bone, muscle, fat and water have been measured at 140, 364 and 662keV γ-ray energies by using the ATOMLAB TM -930 medical spectrometer. The γ-rays were obtained from 99m Tc, 131 I and 137 Cs γ-ray point sources. Also theoretical calculations have been performed in order to obtain the half-value thicknesses and, mass and linear attenuation coefficients at photon energies 0.001keV-20MeV for bone, muscle and water samples. The calculated value and the experimental results of this work and the other results in literature are found to be in good agreement
International Nuclear Information System (INIS)
Korun, M.; Vodenik, B.; Zorko, B.
2016-01-01
Two simple methods for calculating the correlations between peaks appearing in gamma-ray spectra are described. We show how the areas are correlated when the peaks do not overlap, but the spectral regions used for the calculation of the background below the peaks do. When the peaks overlap, the correlation can be stronger than in the case of the non-overlapping peaks. The methods presented are simplified to the extent of allowing their implementation with manual calculations. They are intended for practitioners as additional tools to be used when the correlations between the areas of the peaks in the gamma-ray spectra are to be calculated. Also, the correlation coefficient between the number of counts in the peak and the number of counts in the continuous background below the peak is derived. - Highlights: • The correlation coefficients between areas of closely spaced peaks are assessed. • For isolated peaks the correlation arises from the common continuous background. • If peaks overlap the correlation coefficient depends on how much they overlap. • If peaks overlap also the background height affects the correlation coefficient. • The correlation coefficient between the peak area and its background is −1.
International Nuclear Information System (INIS)
Roy, Bunty Rani; Rajput, Parasmani; Jha, S.N.; Nageswara Rao, A.S.
2015-01-01
The work presents the X-ray absorption fine structure (XAFS) technique for measuring the X-ray mass attenuation coefficient of nickel metal foil in the X-ray energy range of 8271.2–8849.4 eV using scanning XAFS beam line (BL-09) at Indus-2 synchrotron radiation source facility, Raja Ramanna Centre for Advanced Technology (RRCAT) at Indore, India. The result represents the X-ray mass attenuation coefficient data for 0.02 mm thick Ni metal foil in the XAFS region of Ni K-edge. However, the results are compared to theoretical values using X-COM. There is a maximum deviation which is found exactly near the K-edge jump and decreases as we move away from the absorption edge. Oscillatory structure appears just above the observed absorption edge i.e., 8348.7 eV and is confined to around 250 eV above the edge. - Highlights: • Mass attenuation coefficient measurements of nickel using synchrotron radiation. • The measurements were taken exactly near the Ni K-edge at an energy step of 1 eV. • A maximum deviation is found near the K-edge
Investigation of attenuation coefficients of some stainless steel and aluminum alloys
Caner, Zafer; Tufan, Mustafa ćaǧatay
2018-02-01
In this study, attenuation coefficients of two different stainless steel alloys (AISI 304 and AISI 310), which have a wide range of applications from home appliances to the automotive sector, and two different aluminum alloys (6013 and 5083), which have a high mechanical strength and a light weight structure and are used in many fields from aviation to military vehicles, has been determined. For this purpose, we used gamma spectrometer system with NaI(Tl) detector. In our measurements, we used Eu-152, Ra-226 and Co-60 as gamma ray sources. To narrow the beam of gamma rays, we designed the new steel based collimator. We also investigated the effect of using collimator. Obtained results were compared with the NIST XCOM values.
Measurement of mass attenuation coefficients around the K absorption edge by parametric X-rays
International Nuclear Information System (INIS)
Tamura, Masaya; Akimoto, Tadashi; Aoki, Yohei; Ikeda, Jiro; Sato, Koichi; Fujita, Fumiyuki; Homma, Akira; Sawamura, Teruko; Narita, Masakuni
2002-01-01
When electrons at relativistic velocities pass through a crystal plate, such as silicon, photons are emitted around the Bragg angle for X-ray diffraction. This phenomenon is called parametric X-ray radiation (PXR). The monochromaticity and directivity of PXR are adequate and the energy can be changed continuously by rotating the crystal. This study measured the mass attenuation coefficient around the K-shell absorption edge of Nb, Zr and Mo as a PXR application of monochromatic hard X-ray radiation sources
Measurement of mass attenuation coefficients around the K absorption edge by parametric X-rays
Tamura, M; Aoki, Y; Ikeda, J; Sato, K; Fujita, F; Homma, A; Sawamura, T; Narita, M
2002-01-01
When electrons at relativistic velocities pass through a crystal plate, such as silicon, photons are emitted around the Bragg angle for X-ray diffraction. This phenomenon is called parametric X-ray radiation (PXR). The monochromaticity and directivity of PXR are adequate and the energy can be changed continuously by rotating the crystal. This study measured the mass attenuation coefficient around the K-shell absorption edge of Nb, Zr and Mo as a PXR application of monochromatic hard X-ray radiation sources.
Effects of attenuation map accuracy on attenuation-corrected micro-SPECT images
Wu, C.; Gratama van Andel, H.A.; Laverman, P.; Boerman, O.C.; Beekman, F.J.
2013-01-01
Background In single-photon emission computed tomography (SPECT), attenuation of photon flux in tissue affects quantitative accuracy of reconstructed images. Attenuation maps derived from X-ray computed tomography (CT) can be employed for attenuation correction. The attenuation coefficients as well
Transmission properties of barite mortar using X-ray spectra measured with Cd Te detector
Energy Technology Data Exchange (ETDEWEB)
Santos, J. C.; Mariano, L.; Costa, P. R. [Universidade de Sao Paulo, Instituto de Fisica, Rua do Matao Travessa R. 187, Cidade Universitaria, 05508-090 Sao Paulo (Brazil); Tomal, A., E-mail: josilene@usp.br [Universidade Federal de Goias, Instituto de Fisica, Campus Samambaia, 74001-970 Goiania (Brazil)
2014-08-15
Current methods for calculating X-ray shielding barriers do not take into account spectral distribution of the beam transmitted by the protective material. This consideration is important in dose estimations for radiation workers and general public in diagnostic radiology facilities. The aim of the present study was to estimate barite mortar attenuation curves using X-ray spectra weighted by a workload distribution. These curves were described in units of ambient dose equivalent (H (10)), since it is the radiation quantity adopted by IAEA for dose assessment in medical environment. Attenuation curves were determined using the optimized model for shielding evaluation presented by Costa and Caldas (2002). Workload distribution presented by Simpkin (1996), measured primary spectra and mass attenuation coefficients of barite mortar were used as input data in this model. X-ray beams in diagnostic energy range were generated by an industrial X-ray tube with 3 mm of aluminum additional filtration. Primary experimental spectra were measured by a Cd Te detector and corrected by the response function of detector by means of a stripping procedure. Air kerma measurements were performed using an ionization chamber for normalization purpose of the spectra. The corrected spectra presented good agreement with spectra generated by a semi-empirical model. The variation of the ambient dose equivalent as a function of barite mortar thickness was calculated. Using these data, it was estimated the optimized thickness of protective barrier needed for shielding a particular area in an X-ray imaging facility. The results obtained for primary protective barriers exhibit qualitative agreement with those presented in literature. (Author)
Juttukonda, Meher R; Mersereau, Bryant G; Chen, Yasheng; Su, Yi; Rubin, Brian G; Benzinger, Tammie L S; Lalush, David S; An, Hongyu
2015-05-15
MR-based correction for photon attenuation in PET/MRI remains challenging, particularly for neurological applications requiring quantitation of data. Existing methods are either not sufficiently accurate or are limited by the computation time required. The goal of this study was to develop an MR-based attenuation correction method that accurately separates bone tissue from air and provides continuous-valued attenuation coefficients for bone. PET/MRI and CT datasets were obtained from 98 subjects (mean age [±SD]: 66yrs [±9.8], 57 females) using an IRB-approved protocol and with informed consent. Subjects were injected with 352±29MBq of (18)F-Florbetapir tracer, and PET acquisitions were begun either immediately or 50min after injection. CT images of the head were acquired separately using a PET/CT system. Dual echo ultrashort echo-time (UTE) images and two-point Dixon images were acquired. Regions of air were segmented via a threshold of the voxel-wise multiplicative inverse of the UTE echo 1 image. Regions of bone were segmented via a threshold of the R2* image computed from the UTE echo 1 and UTE echo 2 images. Regions of fat and soft tissue were segmented using fat and water images decomposed from the Dixon images. Air, fat, and soft tissue were assigned linear attenuation coefficients (LACs) of 0, 0.092, and 0.1cm(-1), respectively. LACs for bone were derived from a regression analysis between corresponding R2* and CT values. PET images were reconstructed using the gold standard CT method and the proposed CAR-RiDR method. The RiDR segmentation method produces mean Dice coefficient±SD across subjects of 0.75±0.05 for bone and 0.60±0.08 for air. The CAR model for bone LACs greatly improves accuracy in estimating CT values (28.2%±3.0 mean error) compared to the use of a constant CT value (46.9%±5.8, punits. From our analysis, we conclude that the proposed method closely approaches (<3% error) the gold standard CT-scaled method in PET reconstruction accuracy
Usry, J. W.; Whitlock, C. H.
1981-01-01
Management of water resources such as a reservoir requires using analytical models which describe such parameters as the suspended sediment field. To select or develop an appropriate model requires making many measurements to describe the distribution of this parameter in the water column. One potential method for making those measurements expeditiously is to measure light transmission or turbidity and relate that parameter to total suspended solids concentrations. An instrument which may be used for this purpose was calibrated by generating curves of transmission measurements plotted against measured values of total suspended solids concentrations and beam attenuation coefficients. Results of these experiments indicate that field measurements made with this instrument using curves generated in this study should correlate with total suspended solids concentrations and beam attenuation coefficients in the water column within 20 percent.
International Nuclear Information System (INIS)
Yue, Ning J.
2008-01-01
As different types of radionuclides (e.g., 131 Cs source) are introduced for clinical use in brachytherapy, the question is raised regarding whether a relatively simple method exists for the derivation of values of the half value layer (HVL) or the tenth value layer (TVL). For the radionuclide that has been clinically used for years, such as 125 I and 103 Pd, the sources have been manufactured and marketed by several vendors with different designs and structures. Because of the nature of emission of low energy photons for these radionuclides, energy spectra of the sources are very dependent on their individual designs. Though values of the HVL or the TVL in certain commonly used shielding materials are relatively small for these low energy photon emitting sources, the question remains how the variations in energy spectra affect the HVL (or TVL) values and whether these values can be calculated with a relatively simple method. A more fundamental question is whether a method can be established to derive the HVL (TVL) values for any brachytherapy sources and for different materials in a relatively straightforward fashion. This study was undertaken to answer these questions. Based on energy spectra, a well established semiempirical mass attenuation coefficient computing scheme was utilized to derive the HVL (TVL) values of different materials for different types of brachytherapy sources. The method presented in this study may be useful to estimate HVL (TVL) values of different materials for brachytherapy sources of different designs and containing different radionuclides
Korchemkina, E. N.; Latushkin, A. A.; Lee, M. E.
2017-11-01
The methods of determination of concentration and scattering by suspended particles in seawater are compared. The methods considered include gravimetric measurements of the mass concentration of suspended matter, empirical and analytical calculations based on measurements of the light beam attenuation coefficient (BAC) in 4 spectral bands, calculation of backscattering by particles using satellite measurements in the visible spectral range. The data were obtained in two cruises of the R/V "Professor Vodyanitsky" in the deep-water part of the Black Sea in July and October 2016., Spatial distribution of scattering by marine particles according to satellite data is in good agreement with the contact measurements.
National Oceanic and Atmospheric Administration, Department of Commerce — The Sea surface topography, absorption, scattering, attenuation coefficients and other data in this accession was collected from NOAA-11 AVHRR satellite in East...
Experimental apparatus to determine lead attenuation coefficients for photons of 0.511 MeV
International Nuclear Information System (INIS)
Vargas, Luis C.B.; Cardoso, Domingos O.; Gavazza, Sérgio; Morales, Rudnei K.; Oliveira, Luciano S. R.
2017-01-01
Radioactive gamma-emitting sources with higher energies than 1.022 MeV, may interact with matter by pair production process, generating two photons of 0.511 MeV in the positron annihilation, that may contribute to increase doses in both IOE´s or public. National regulatory agencies require a radiation protection plan and a shielding project to consider the influence of these photons in the licensing procedure. This work will present all steps for the development of the experimental apparatus for determination of the attenuation coefficients for photons with energy of 0.511 MeV in lead. (author)
Verdipoor, Khatibeh; Alemi, Abdolali; Mesbahi, Asghar
2018-06-01
Novel shielding materials for photons based on silicon resin and WO3, PbO, and Bi2O3 Micro and Nano-particles were designed and their mass attenuation coefficients were calculated using Monte Carlo (MC) method. Using lattice cards in MCNPX code, micro and nanoparticles with sizes of 100 nm and 1 μm was designed inside a silicon resin matrix. Narrow beam geometry was simulated to calculate the attenuation coefficients of samples against mono-energetic beams of Co60 (1.17 and 1.33 MeV), Cs137 (663.8 KeV), and Ba133 (355.9 KeV). The shielding samples made of nanoparticles had higher mass attenuation coefficients, up to 17% relative to those made of microparticles. The superiority of nano-shields relative to micro-shields was dependent on the filler concentration and the energy of photons. PbO, and Bi2O3 nanoparticles showed higher attenuation compared to WO3 nanoparticles in studied energies. Fabrication of novel shielding materials using PbO, and Bi2O3 nanoparticles is recommended for application in radiation protection against photon beams.
Klimasewski, A.; Sahakian, V. J.; Baltay, A.; Boatwright, J.; Fletcher, J. B.; Baker, L. M.
2017-12-01
A large source of epistemic uncertainty in Ground Motion Prediction Equations (GMPEs) is derived from the path term, currently represented as a simple geometric spreading and intrinsic attenuation term. Including additional physical relationships between the path properties and predicted ground motions would produce more accurate and precise, region-specific GMPEs by reclassifying some of the random, aleatory uncertainty as epistemic. This study focuses on regions of Southern California, using data from the Anza network and Southern California Seismic network to create a catalog of events magnitude 2.5 and larger from 1998 to 2016. The catalog encompasses regions of varying geology and therefore varying path and site attenuation. Within this catalog of events, we investigate several collections of event region-to-station pairs, each of which share similar origin locations and stations so that all events have similar paths. Compared with a simple regional GMPE, these paths consistently have high or low residuals. By working with events that have the same path, we can isolate source and site effects, and focus on the remaining residual as path effects. We decompose the recordings into source and site spectra for each unique event and site in our greater Southern California regional database using the inversion method of Andrews (1986). This model represents each natural log record spectra as the sum of its natural log event and site spectra, while constraining each record to a reference site or Brune source spectrum. We estimate a regional, path-specific anelastic attenuation (Q) and site attenuation (t*) from the inversion site spectra and corner frequency from the inversion event spectra. We then compute the residuals between the observed record data, and the inversion model prediction (event*site spectra). This residual is representative of path effects, likely anelastic attenuation along the path that varies from the regional median attenuation. We examine the
Experimental methodology for obtaining sound absorption coefficients
Directory of Open Access Journals (Sweden)
Carlos A. Macía M
2011-07-01
Full Text Available Objective: the authors propose a new methodology for estimating sound absorption coefficients using genetic algorithms. Methodology: sound waves are generated and conducted along a rectangular silencer. The waves are then attenuated by the absorbing material covering the silencer’s walls. The attenuated sound pressure level is used in a genetic algorithm-based search to find the parameters of the proposed attenuation expressions that include geometric factors, the wavelength and the absorption coefficient. Results: a variety of adjusted mathematical models were found that make it possible to estimate the absorption coefficients based on the characteristics of a rectangular silencer used for measuring the attenuation of the noise that passes through it. Conclusions: this methodology makes it possible to obtain the absorption coefficients of new materials in a cheap and simple manner. Although these coefficients might be slightly different from those obtained through other methodologies, they provide solutions within the engineering accuracy ranges that are used for designing noise control systems.
International Nuclear Information System (INIS)
Damla, N.; Cevik, U.; Kobya, A.I.; Celik, A.; Celik, N.; Yildirim, I.
2011-01-01
In this study the distribution of natural radionuclides ( 226 Ra, 232 Th, 40 K) in brick and roofing tile samples commonly used as building materials in Turkey was measured by using gamma spectrometry. The activity concentrations, radium equivalent activities (Ra eq ), representative level index, indoor absorbed dose rate in air values and annual effective dose due to the intake of the above-mentioned radionuclides in the brick and roofing tile samples were estimated to assess the radiation hazard for people living in dwellings made of the materials studied. The measured average activity concentrations of 226 Ra, 232 Th and 40 K were 34 ± 14, 34 ± 13 and 462 ± 175 Bq.kg -1 , respectively, for brick samples. For roofing tile, the average activity concentrations of 226 Ra, 232 Th and 40 K were measured to be 34 ± 14, 33 ± 12 and 429 ± 161 Bq.kg -1 , respectively. The concentrations for these natural radionuclides were compared with the reported data of other countries. The Ra eq values of all samples were lower than the limit of 370 Bq.kg -1 , equivalent to a gamma dose of 1.5 mSv.a -1 recommended by OECD. This study shows that the measured brick and roofing tile samples do not pose any significant source of radiation hazard and are safe to be used as building materials. Moreover, the experimental mass attenuation coefficients (μ/ρ) of brick and roofing tile samples were determined in the energy range 80-1332 keV using the gamma ray transmission method. The experimental mass attenuation coefficients were compared with theoretical values obtained using XCOM. It was found that the computed values and the experimental results of this work are in good agreement with those reported in the literature. The chemical compositions and structural analysis (XRD) of the brick and roofing tile samples are also presented. - Highlights: → In this study, the distribution of natural radionuclides in brick and roofing tile samples used in Turkey were studied. → Associated
Use of primary beam filtration in estimating mass attenuation coefficients by Compton scattering
International Nuclear Information System (INIS)
O'Connor, B.H.; Chang, W.J.
1985-01-01
Mass attenuation coefficients (MACs) are frequently estimated over a range of wavelengths in x-ray spectrometry from the intensity of the Compton peak I /SUB C/ associated with a prominent tube line. The MAC μ /SUB ll/ at wavelength lambda is estimated from the MAC at the Compton wavelength lambda /SUB C/ with the approximations μ /SUB ll/ α μ /SUB C/ and μ /SUB C/ α l/I /SUB C/ , Systematic errors may introduce absorption edge bias (AEB) effects into the results, caused by sample components with absorption edges between lambda /SUB C/ and lambda. A procedure is described which eliminates AEB effects by measuring I /SUB C/ using emission radiation from a primary beam filter
International Nuclear Information System (INIS)
Elay, A.G.
1978-01-01
A method to compare calculated and experimental neutron attenuation coefficients (chi) when samples are o, different geometries but the same material is proposed. The best Σ (total removal cross section) is determined by using the fact that the logarithm of the attenuation coefficient varies linearly with respect to Σ i.e. lg chi = + asub(s) Σ, where asub(s) is a parameter that characterises all the geometrical experimental conditions of the neutron source, the sample and the relative source-to-sample geometry. In order to increase the precision, samples of different geometries but the same material were used. Values of chi are determined experimentally and asub(s) calculated for these geometries. The graph of lg chi as a function of asub(s) together with a simple fit to a straight line is sufficient to determine Σ (the slope of the line). (T.G.)
Materna, T; Mondelaers, W; Masschaele, B
2000-01-01
The X-ray attenuation coefficients of bismuth and of uranium were measured in the regions of 40-240 and 70-240 keV, respectively, using a tuneable hard X-ray source based on the linear electron accelerator at the University of Ghent. Results were compared with the semi-empirical values of Storm and Israel and to the theoretical values of Berger and Hubbell. We also propose a simple function for the attenuation coefficient in the vicinity of the K-edge for uranium and in an extended range of energy for bismuth. The set-up of the source at Ghent is described and the future improvements are explained.
International Nuclear Information System (INIS)
Taschereau, R; Silverman, R W; Chatziioannou, A F
2010-01-01
Dual-energy x-ray computed tomography (DECT) has the capability to decompose attenuation coefficients using two basis functions and has proved its potential in reducing beam-hardening artifacts from reconstructed images. The method typically involves two successive scans with different x-ray tube voltage settings. This work proposes an approach to dual-energy imaging through x-ray beam filtration that requires only one scan and a single tube voltage setting. It has been implemented in a preclinical microCT tomograph with minor modifications. Retrofitting of the microCT scanner involved the addition of an automated filter wheel and modifications to the acquisition and reconstruction software. Results show that beam-hardening artifacts are reduced to noise level. Acquisition of a μ-Compton image is well suited for attenuation-correction of PET images while dynamic energy selection (4D viewing) offers flexibility in image viewing by adjusting contrast and noise levels to suit the task at hand. All dual-energy and single energy reference scans were acquired at the same soft tissue dose level of 50 mGy.
Energy Technology Data Exchange (ETDEWEB)
Taschereau, R; Silverman, R W; Chatziioannou, A F [Crump Institute for Molecular Imaging, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 (United States)], E-mail: rtaschereau@mednet.ucla.edu
2010-02-21
Dual-energy x-ray computed tomography (DECT) has the capability to decompose attenuation coefficients using two basis functions and has proved its potential in reducing beam-hardening artifacts from reconstructed images. The method typically involves two successive scans with different x-ray tube voltage settings. This work proposes an approach to dual-energy imaging through x-ray beam filtration that requires only one scan and a single tube voltage setting. It has been implemented in a preclinical microCT tomograph with minor modifications. Retrofitting of the microCT scanner involved the addition of an automated filter wheel and modifications to the acquisition and reconstruction software. Results show that beam-hardening artifacts are reduced to noise level. Acquisition of a {mu}-Compton image is well suited for attenuation-correction of PET images while dynamic energy selection (4D viewing) offers flexibility in image viewing by adjusting contrast and noise levels to suit the task at hand. All dual-energy and single energy reference scans were acquired at the same soft tissue dose level of 50 mGy.
A method for estimating the diffuse attenuation coefficient (KdPAR)from paired temperature sensors
Read, Jordan S.; Rose, Kevin C.; Winslow, Luke A.; Read, Emily K.
2015-01-01
A new method for estimating the diffuse attenuation coefficient for photosynthetically active radiation (KdPAR) from paired temperature sensors was derived. We show that during cases where the attenuation of penetrating shortwave solar radiation is the dominant source of temperature changes, time series measurements of water temperatures at multiple depths (z1 and z2) are related to one another by a linear scaling factor (a). KdPAR can then be estimated by the simple equation KdPAR ln(a)/(z2/z1). A suggested workflow is presented that outlines procedures for calculating KdPAR according to this paired temperature sensor (PTS) method. This method is best suited for conditions when radiative temperature gains are large relative to physical noise. These conditions occur frequently on water bodies with low wind and/or high KdPARs but can be used for other types of lakes during time periods of low wind and/or where spatially redundant measurements of temperatures are available. The optimal vertical placement of temperature sensors according to a priori knowledge of KdPAR is also described. This information can be used to inform the design of future sensor deployments using the PTS method or for campaigns where characterizing sub-daily changes in temperatures is important. The PTS method provides a novel method to characterize light attenuation in aquatic ecosystems without expensive radiometric equipment or the user subjectivity inherent in Secchi depth measurements. This method also can enable the estimation of KdPAR at higher frequencies than many manual monitoring programs allow.
Photoluminescence emission spectra of Makrofol® DE 1-1 upon irradiation with ultraviolet radiation
Directory of Open Access Journals (Sweden)
M. El Ghazaly
Full Text Available Photoluminescence (PL emission spectra of Makrofol® DE 1-1 (bisphenol-A based polycarbonate upon irradiation with ultraviolet radiation of different wavelengths were investigated. The absorption-and attenuation coefficient measurements revealed that the Makrofol® DE 1-1 is characterized by high absorbance in the energy range 6.53–4.43 eV but for a lower energy than 4.43 eV, it is approximately transparent. Makrofol® DE 1-1 samples were irradiated with ultraviolet radiation of wavelength in the range from 250 (4.28 eV to 400 (3.10 eV nm in step of 10 nm and the corresponding photoluminescence (PL emission spectra were measured with a spectrofluorometer. It is found that the integrated counts and the peak height of the photoluminescence emission (PL bands are strongly correlated with the ultraviolet radiation wavelength. They are increased at the ultraviolet radiation wavelength 280 nm and have maximum at 290 nm, thereafter they decrease and diminish at 360 nm of ultraviolet wavelength. The position of the PL emission band peak was red shifted starting from 300 nm, which increased with the increase the ultraviolet radiation wavelength. The PL bandwidth increases linearly with the increase of the ultraviolet radiation wavelength. When Makrofol® DE 1-1 is irradiated with ultraviolet radiation of short wavelength (UVC, the photoluminescence emission spectra peaks also occur in the UVC but of a relatively longer wavelength. The current new findings should be considered carefully when using Makrofol® DE 1-1 in medical applications related to ultraviolet radiation. Keywords: Photoluminescence spectra, Makrofol® DE 1-1, UV–vis spectrophotometry, Attenuation coefficient, Ultraviolet radiation
Gain attenuation of gated framing camera
International Nuclear Information System (INIS)
Xiao Shali; Liu Shenye; Cao Zhurong; Li Hang; Zhang Haiying; Yuan Zheng; Wang Liwei
2009-01-01
The theoretic model of framing camera's gain attenuation is analyzed. The exponential attenuation curve of the gain along the pulse propagation time is simulated. An experiment to measure the coefficient of gain attenuation based on the gain attenuation theory is designed. Experiment result shows that the gain follows an exponential attenuation rule with a quotient of 0.0249 nm -1 , the attenuation coefficient of the pulse is 0.00356 mm -1 . The loss of the pulse propagation along the MCP stripline is the leading reason of gain attenuation. But in the figure of a single stripline, the gain dose not follow the rule of exponential attenuation completely, instead, there is a gain increase at the stripline bottom. That is caused by the reflection of the pulse. The reflectance is about 24.2%. Combining the experiment and theory, which design of the stripline MCP can improved the gain attenuation. (authors)
Attenuation Measurements in Solutions of Some Carbohydrates
International Nuclear Information System (INIS)
Gagandeep; Singh, Kulwant; Lark, B.S.; Sahota, H.S.
2000-01-01
The linear attenuation coefficients in aqueous solutions of three carbohydrates, glucose (C 6 H 12 O 6 ), maltose monohydrate (C 12 H 22 O 11 .H 2 O), and sucrose (C 12 H 22 O 11 ), were determined at 81, 356, 511, 662, 1173, and 1332 keV by the gamma-ray transmission method in a good geometry setup. From the precisely measured densities of these solutions, mass attenuation coefficients were then obtained that varied systematically with the corresponding changes in the concentrations (g/cm 3 ) of these solutions. The experimental results were used in terms of effective atomic numbers and electron densities. A comparison between experimental and theoretical values of attenuation coefficients has proven that the study has a potential application for the determination of attenuation coefficients of solid solutes from their solutions without obtaining them in pure crystalline form
International Nuclear Information System (INIS)
Si, Hongjun
2014-01-01
Ground motion data on seismic bedrock is important, but it is very difficult to obtain such data directly. The data from KiK-net and JNES/SODB is valuable and very useful in developing the attenuation relationship of response spectra on seismic bedrock. NIED has approximately 200 observation points on seismic bedrock with S-wave velocity of more than 2000 m/s in Japan. Using data from observation at these points, a Ground Motion Prediction Equation (GMPE) is under development. (author)
Attenuation measurements in solutions of some carbohydrates
International Nuclear Information System (INIS)
Gagandeep; Singh, K.; Lark, B.S.; Sahota, H.S.
2000-01-01
The linear attenuation coefficients in aqueous solutions of three carbohydrates, glucose (C 6 H 12 O 6 ), maltose monohydrate (C 12 H 22 O 11 ·H 2 O), and sucrose (C 12 H 22 O 11 ), were determined at 81, 356, 511, 662, 1,173, and 1,332 keV by the gamma-ray transmission method in a good geometry setup. From the precisely measured densities of these solutions, mass attenuation coefficients were then obtained that varied systematically with the corresponding changes in the concentrations (g/cm 3 ) of these solutions. The experimental results were used in terms of effective atomic numbers and electron densities. A comparison between experimental and theoretical values of attenuation coefficients has proven that the study has a potential application for the determination of attenuation coefficients of solid solutes from their solutions without obtaining them in pure crystalline form
Energy Technology Data Exchange (ETDEWEB)
Mohd Yusof, Mohd Fahmi, E-mail: mfahmi@usm.my; Hamid, Puteri Nor Khatijah Abdul; Tajuddin, Abdul Aziz [School of Physics, Universiti Sains Malaysia, 11800 Penang (Malaysia); Bauk, Sabar [School of Distance Education, Universiti Sains Malaysia, 11800 Penang (Malaysia); Hashim, Rokiah [School of Industrial Technologies, Universiti Sains Malaysia, 11800 Penang (Malaysia)
2015-04-29
The Rhizophora spp. particleboards were fabricated using ≤ 104 µm particle size at three different fabrication methods; binderless, steam pre-treated and tannin-added. The mass attenuation coefficient of Rhizophora spp. particleboards were measured using x-ray fluorescent (XRF) photon from niobium, molybdenum, palladium, silver and tin metal plates that provided photon energy between 16.59 to 25.26 keV. The results were compared to theoretical values for water calculated using photon cross-section database (XCOM).The results showed that all Rhizophora spp. particleboards having mass attenuation coefficient close to calculated XCOM for water. Tannin-added Rizophora spp. particleboard was nearest to calculated XCOM for water with χ2 value of 13.008 followed by binderless Rizophora spp. (25.859) and pre-treated Rizophora spp. (91.941)
International Nuclear Information System (INIS)
Mohd Yusof, Mohd Fahmi; Hamid, Puteri Nor Khatijah Abdul; Tajuddin, Abdul Aziz; Bauk, Sabar; Hashim, Rokiah
2015-01-01
The Rhizophora spp. particleboards were fabricated using ≤ 104 µm particle size at three different fabrication methods; binderless, steam pre-treated and tannin-added. The mass attenuation coefficient of Rhizophora spp. particleboards were measured using x-ray fluorescent (XRF) photon from niobium, molybdenum, palladium, silver and tin metal plates that provided photon energy between 16.59 to 25.26 keV. The results were compared to theoretical values for water calculated using photon cross-section database (XCOM).The results showed that all Rhizophora spp. particleboards having mass attenuation coefficient close to calculated XCOM for water. Tannin-added Rizophora spp. particleboard was nearest to calculated XCOM for water with χ2 value of 13.008 followed by binderless Rizophora spp. (25.859) and pre-treated Rizophora spp. (91.941)
Borcherdt, Roger D.
2014-01-01
Proposals are developed to update Tables 11.4-1 and 11.4-2 of Minimum Design Loads for Buildings and Other Structures published as American Society of Civil Engineers Structural Engineering Institute standard 7-10 (ASCE/SEI 7–10). The updates are mean next generation attenuation (NGA) site coefficients inferred directly from the four NGA ground motion prediction equations used to derive the maximum considered earthquake response maps adopted in ASCE/SEI 7–10. Proposals include the recommendation to use straight-line interpolation to infer site coefficients at intermediate values of (average shear velocity to 30-m depth). The NGA coefficients are shown to agree well with adopted site coefficients at low levels of input motion (0.1 g) and those observed from the Loma Prieta earthquake. For higher levels of input motion, the majority of the adopted values are within the 95% epistemic-uncertainty limits implied by the NGA estimates with the exceptions being the mid-period site coefficient, Fv, for site class D and the short-period coefficient, Fa, for site class C, both of which are slightly less than the corresponding 95% limit. The NGA data base shows that the median value of 913 m/s for site class B is more typical than 760 m/s as a value to characterize firm to hard rock sites as the uniform ground condition for future maximum considered earthquake response ground motion estimates. Future updates of NGA ground motion prediction equations can be incorporated easily into future adjustments of adopted site coefficients using procedures presented herein.
National Oceanic and Atmospheric Administration, Department of Commerce — The Sea surface topography, absorption, scattering, attenuation coefficients and other data in this accession was collected from NOAA-11 satellite in East Coast...
Mirji, Rajeshwari; Lobo, Blaise
2017-06-01
The gamma ray mass attenuation coefficients of ten synthetic polymeric materials, namely, polyethylene (PE), polystyrene (PS), polycarbonate (PC), polyvinyl alcohol (PVA), polyvinyl chloride (PVC), Polyethylene terephthalate (PET), Polyvinyl pyrrolidone (PVP), Polytetrafluoroethylene (PTFE), Polypropylene (PP) and Polymethyl methacrylate (PMMA) have been calculated using second order polynomial equation and logarithmic interpolation formula at selected gamma photon energies, in the energy range starting from 14.4 keV up to 1332 keV. It is important to note that second order polynomial equation fits very well with NIST data for all the polymeric materials considered here, for gamma photon energies ranging from 300 keV up to 2000 keV. Third order polynomial fitting is best suited for lower gamma photon energies (from 10 keV up to 200 keV).
Idrissi, A; Longelin, S; Damay, P; Leclercq, F
2005-09-01
We report the results of the low-frequency Raman experiments on CO(2) which were carried out in a wide density range, along the liquid-gas coexistence curve in a temperature range of 293-303 K, and on the critical isochore of 94.4 cm(3) mol(-1) in a temperature range of 304-315 K. In our approach, the qualitative behavior of the diffusion coefficient D is predicted, assuming the following: first, that the low-frequency Raman spectra can be interpreted in terms of the translation rotation motions; second, that the random force could be replaced by the total force to calculate the friction coefficient; and finally, that the Einstein frequency is associated with the position of the maximum of the low-frequency Raman spectrum. The results show that the diffusion coefficient increases along the coexistence curve, and its values are almost constant on the critical isochore. The predicted values reproduce qualitatively those obtained by other techniques. The values of D were also calculated by molecular-dynamics simulation and they qualitatively reproduce the behavior of D.
Determining the Viscosity Coefficient for Viscoelastic Wave Propagation in Rock Bars
Niu, Leilei; Zhu, Wancheng; Li, Shaohua; Guan, Kai
2018-05-01
Rocks with microdefects exhibit viscoelastic behavior during stress wave propagation. The viscosity coefficient of the wave can be used to characterize the attenuation as the wave propagates in rock. In this study, a long artificial bar with a readily adjustable viscosity coefficient was fabricated to investigate stress wave attenuation. The viscoelastic behavior of the artificial bar under dynamic loading was investigated, and the initial viscoelastic coefficient was obtained based on the amplitude attenuation of the incident harmonic wave. A one-dimensional wave propagation program was compiled to reproduce the time history of the stress wave measured during the experiments, and the program was well fitted to the Kelvin-Voigt model. The attenuation and dispersion of the stress wave in long artificial viscoelastic bars were quantified to accurately determine the viscoelastic coefficient. Finally, the method used to determine the viscoelastic coefficient of a long artificial bar based on the experiments and numerical simulations was extended to determine the viscoelastic coefficient of a short rock bar. This study provides a new method of determining the viscosity coefficient of rock.
International Nuclear Information System (INIS)
Tajuddin, A.A.; Chong, C.S.; Shukri, A.; Bradley, D.A.
1995-01-01
Mass attenuation coefficients for 12 selected moderate-to-high atomic-number elements have been obtained from good-geometry measurements made at five 241 Am photon energies of significant emission intensity. Particular interest focuses on measured values for photon energies close to absorption edges. Comparisons with renormalized cross-section predictions indicate agreement to within stated error limits for the majority of cases. Significant discrepancies (> 10%) are noted for Ta at 17.8 and 26.3 keV and W at 59.5 keV. Some support for a discrepancy between measurement and theory for W in the region of 60 keV is found in the reported measurements of others. (author)
Radiation dose estimation and mass attenuation coefficients of marble used in Turkey
International Nuclear Information System (INIS)
Cevik, U.; Damla, N.; Kobya, A.I.; Celik, A.; Kara, A.
2010-01-01
In this study the natural radioactivity in marble samples used in Turkey was measured by means of gamma spectrometry. The results showed that the specific activities of 226 Ra, 232 Th and 40 K ranged from 10 to 92 Bq kg -1 , from 4 to 122 Bq kg -1 and from 28 to 676 Bq kg -1 , respectively. The radiological hazards in marble samples due to the natural radioactivity were inferred from calculations of radium equivalent activities (Ra eq ), indoor absorbed dose rate in air values, the annual effective dose and gamma and alpha indexes. These radiological parameters were evaluated and compared with the internationally recommended values. The measurements showed that marble samples used in Turkey have low level of natural radioactivity; therefore, the use of these types of marble in dwellings is safe for inhabitants. Mass attenuation coefficients (μ/ρ) were obtained both experimentally and theoretically for different marble samples produced in Turkey by using gamma-ray transmission method. Experimental values showed a good agreement with the theoretical values.
International Nuclear Information System (INIS)
Jonge, Martin D. de; Tran, Chanh Q.; Chantler, Christopher T.; Barnea, Zwi; Dhal, Bipin B.; Cookson, David J.; Lee, Wah-Keat; Mashayekhi, Ali
2005-01-01
We use the x-ray extended-range technique (XERT) [Chantler et al., Phys. Rev. A 64, 062506 (2001)] to measure the mass attenuation coefficients of molybdenum in the x-ray energy range of 13.5-41.5 keV to 0.02-0.15 % accuracy. Measurements made over an extended range of the measurement parameter space are critically examined to identify, quantify, and correct where necessary a number of experimental systematic errors. These results represent the most extensive experimental data set for molybdenum and include absolute mass attenuation coefficients in the regions of the x-ray absorption fine structure (XAFS) and x-ray-absorption near-edge structure (XANES). The imaginary component of the atomic form-factor f 2 is derived from the photoelectric absorption after subtracting calculated Rayleigh and Compton scattering cross sections from the total attenuation. Comparison of the result with tabulations of calculated photoelectric absorption coefficients indicates that differences of 1-15 % persist between the calculated and observed values
International Nuclear Information System (INIS)
Glover, J L; Chantler, C T; Barnea, Z; Rae, N A; Tran, C Q
2010-01-01
The x-ray mass-attenuation coefficients of gold are measured at 91 energies between 14 keV and 21 keV using synchrotron radiation. The measurements are accurate to between 0.08% and 0.1%. The photoelectric mass-absorption coefficients and the imaginary component of the form factors of gold are also determined. The results include the L I edge and are the most accurate and extensive gold dataset available in this energy range. An analysis of the L I edge XAFS showed excellent agreement between the measured and simulated XAFS and yielded highly accurate values of the bond lengths of gold. When our results are compared with earlier measurements and with predictions of major theoretical tabulations, significant discrepancies are noted. The comparison raises questions about the nature of discrepancies between experimental and theoretical values of mass-attenuation coefficients.
Energy Technology Data Exchange (ETDEWEB)
Silva, Richard Maximiliano Cunha e
1998-12-31
This work reports an alternative methodology for the linear attenuation coefficient determination ({mu} {rho}) of irregular form samples, in such a way that is not necessary to consider the sample thickness. With this methodology, indigenous archaeological ceramics fragments from the region of Londrina, north of Parana, were studied. These ceramics fragments belong to the Kaingaing and Tupiguarani traditions. The equation for the {mu} {rho} determination employing the two mean method was obtained and it was used for {mu} {rho} determination by the gamma ray beam attenuation if immersed ceramics, by turns, in two different means with known linear attenuation coefficient. By the other side, {mu} theoretical value was determined with the XCOM computer code. This code uses as input the ceramics chemistry composition and provides an energy versus mass attenuation coefficient table. In order to validate the two mean method validation, five ceramics samples of thickness 1.15 cm and 1.87 cm were prepared with homogeneous clay. Using these ceramics, {mu} {rho} was determined using the attenuation method, and the two mean method. The result obtained for {mu} {rho} and its respective deviation were compared for these samples, for the two methods. With the obtained results, it was concluded that the two means method is good for the linear attenuation coefficient determination of materials of irregular shape, what is suitable, specially, for archaeometric studies. (author) 25 refs., 29 figs., 28 tabs.
Energy Technology Data Exchange (ETDEWEB)
Silva, Richard Maximiliano Cunha e
1997-12-31
This work reports an alternative methodology for the linear attenuation coefficient determination ({mu} {rho}) of irregular form samples, in such a way that is not necessary to consider the sample thickness. With this methodology, indigenous archaeological ceramics fragments from the region of Londrina, north of Parana, were studied. These ceramics fragments belong to the Kaingaing and Tupiguarani traditions. The equation for the {mu} {rho} determination employing the two mean method was obtained and it was used for {mu} {rho} determination by the gamma ray beam attenuation if immersed ceramics, by turns, in two different means with known linear attenuation coefficient. By the other side, {mu} theoretical value was determined with the XCOM computer code. This code uses as input the ceramics chemistry composition and provides an energy versus mass attenuation coefficient table. In order to validate the two mean method validation, five ceramics samples of thickness 1.15 cm and 1.87 cm were prepared with homogeneous clay. Using these ceramics, {mu} {rho} was determined using the attenuation method, and the two mean method. The result obtained for {mu} {rho} and its respective deviation were compared for these samples, for the two methods. With the obtained results, it was concluded that the two means method is good for the linear attenuation coefficient determination of materials of irregular shape, what is suitable, specially, for archaeometric studies. (author) 25 refs., 29 figs., 28 tabs.
International Nuclear Information System (INIS)
Turgut, Ue.; Simsek, Oe.; Bueyuekkasap, E.; Ertugrul, M.
2004-01-01
To investigate the validity of the mixture rule which is used to compute the mass attenuation coefficients in compounds, the total mass attenuation coefficients for Cu, Cr elements and Cu 2 O, CuC 2 O 4 , CuCl 2 ·2H 2 O, Cu(C 2 H 3 O 2 ) 2 ·H 2 O, Cr 2 O 3 , Cr(NO 3 ) 3 , Cr 2 (SO 4 ) 3 ·H 2 O, Cr 3 (CH 3 CO 7 )(OH) 2 compounds were measured at photon energies between 4.508 and 13.375 keV by using the secondary excitation method. Ti, Mn, Fe, Ni, Zn, Ge, As, Rb elements were used as secondary exciters. 59.5 keV gamma rays emitted from an 241 Am annular source were used to excite the secondary exciters and Kα (K-L 3 , L 2 ) rays emitted from the secondary exciter were counted by a Si(Li) detector with a resolution of 160 eV at 5.9 keV. Our measurements indicate that the mixture rule is not a suitable method for the computation of mass attenuation coefficients of compounds especially at an energy that is near the absorption edge. Obtained values were compared with theoretical values
International Nuclear Information System (INIS)
Kumar, Sandeep; Singh, Sukhpal
2016-01-01
Five samples of Bismuth-Ground granulated blast furnace slag (Bi-GGBFS) concretes were prepared using composition (0.6 cement + x Bi_2O_3 + (0.4-x) GGBFS, x = 0.05, 0.10, 0.15, 0.20 and 0.25) by keeping constant water (W) cement (C) ratio. Mass attenuation coefficients (μ_m) of these prepared samples were calculated using a computer program winXCOM at different gamma ray energies, whereas effective atomic numbers (Z_e_f_f) is calculated using mathematical formulas. The radiation shielding properties of Bi-GGBFS concrete has been compared with standard radiation shielding concretes.
Radiation dose estimation and mass attenuation coefficients of cement samples used in Turkey
International Nuclear Information System (INIS)
Damla, N.; Cevik, U.; Kobya, A.I.; Celik, A.; Celik, N.; Van Grieken, R.
2010-01-01
Different cement samples commonly used in building construction in Turkey have been analyzed for natural radioactivity using gamma-ray spectrometry. The mean activity concentrations observed in the cement samples were 52, 40 and 324 Bq kg -1 for 226 Ra, 232 Th and 40 K, respectively. The measured activity concentrations for these radionuclides were compared with the reported data of other countries and world average limits. The radiological hazard parameters such as radium equivalent activities (Ra eq ), gamma index (I γ ) and alpha index (I α ) indices as well as terrestrial absorbed dose and annual effective dose rate were calculated and compared with the international data. The Ra eq values of cement are lower than the limit of 370 Bq kg -1 , equivalent to a gamma dose of 1.5 mSv y -1 . Moreover, the mass attenuation coefficients were determined experimentally and calculated theoretically using XCOM in some cement samples. Also, chemical compositions analyses of the cement samples were investigated.
International Nuclear Information System (INIS)
Waly, El-Sayed A.; Fusco, Michael A.; Bourham, Mohamed A.
2016-01-01
The variation in dosimetric parameters such as mass attenuation coefficient, half value layer factor, exposure buildup factor, and the photon mean free path for different oxide glasses for the incident gamma energy range 0.015–15 MeV has been studied using MicroShield code. It has been inferred that the addition of PbO and Bi 2 O 3 improves the gamma ray shielding properties. Thus, the effect of chemical composition on these parameters is investigated in the form of six different glass compositions, which are compared with specialty concrete for nuclear radiation shielding. The composition termed ‘Glass 6’ in this paper has the highest mass attenuation and the smallest half value layer and may have potential applications in radiation shielding. An example dry storage cask utilizing an additional layer of Glass 6 as an intermediate shielding layer, simulated in MicroShield, is capable of reducing the exposure rate at the cask surface by over 20 orders of magnitude compared to the case without a glass layer. Based on this study, Glass 6 shows promise as a gamma-ray shielding material, particularly for dry cask storage.
Dhakal, Y. P.; Kunugi, T.; Suzuki, W.; Aoi, S.
2013-12-01
The Mw 9.1 Tohoku-oki earthquake caused strong shakings of super high rise and high rise buildings constructed on deep sedimentary basins in Japan. Many people felt difficulty in moving inside the high rise buildings even on the Osaka basin located at distances as far as 800 km from the epicentral area. Several empirical equations are proposed to estimate the peak ground motions and absolute acceleration response spectra applicable mainly within 300 to 500km from the source area. On the other hand, Japan Meteorological Agency has recently proposed four classes of absolute velocity response spectra as suitable indices to qualitatively describe the intensity of long-period ground motions based on the observed earthquake records, human experiences, and actual damages that occurred in the high rise and super high rise buildings. The empirical prediction equations have been used in disaster mitigation planning as well as earthquake early warning. In this study, we discuss the results of our preliminary analysis on attenuation relation of absolute velocity response spectra calculated from the observed strong motion records including those from the Mw 9.1 Tohoku-oki earthquake using simple regression models with various model parameters. We used earthquakes, having Mw 6.5 or greater, and focal depths shallower than 50km, which occurred in and around Japanese archipelago. We selected those earthquakes for which the good quality records are available over 50 observation sites combined from K-NET and KiK-net. After a visual inspection on approximately 21,000 three component records from 36 earthquakes, we used about 15,000 good quality records in the period range of 1 to 10s within the hypocentral distance (R) of 800km. We performed regression analyses assuming the following five regression models. (1) log10Y (T) = c+ aMw - log10R - bR (2) log10Y (T) = c+ aMw - log10R - bR +gS (3) log10Y (T) = c+ aMw - log10R - bR + hD (4) log10Y (T) = c+ aMw - log10R - bR +gS +hD (5) log10Y
International Nuclear Information System (INIS)
Lindley, G.
1998-02-01
This report describes the results from three studies of source spectra, attenuation, and site effects of central and eastern United States earthquakes. In the first study source parameter estimates taken from 27 previous studies were combined to test the assumption that the earthquake stress drop is roughly a constant, independent of earthquake size. 200 estimates of stress drop and seismic moment from eastern North American earthquakes were combined. It was found that the estimated stress drop from the 27 studies increases approximately as the square-root of the seismic moment, from about 3 bars at 10 20 dyne-cm to 690 bars at 10 25 dyne-cm. These results do not support the assumption of a constant stress drop when estimating ground motion parameters from eastern North American earthquakes. In the second study, broadband seismograms recorded by the United States National Seismograph Network and cooperating stations have been analysed to determine Q Lg as a function of frequency in five regions: the northeastern US, southeastern US, central US, northern Basin and Range, and California and western Nevada. In the third study, using spectral analysis, estimates have been made for the anelastic attenuation of four regional phases, and estimates have been made for the source parameters of 27 earthquakes, including the M b 5.6, 14 April, 1995, West Texas earthquake
Characteristics of liver tissue for attenuate the gamma radiation
International Nuclear Information System (INIS)
Arcos P, A.; Rodriguez N, S.; Pinedo S, A.; Amador V, P.; Chacon R, A.; Vega C, H.R.
2005-01-01
It was determined the lineal attenuation coefficient of hepatic tissue before gamma radiation of a source of 137 Cs. When exposing organic material before X or gamma radiation fields, part of the energy of the photons is absorbed by the material, while another part crosses it without producing any effect. The quantity of energy that is absorbed is a measure of the dose that receives the material. The three main mechanisms by means of which the gamma rays interacting with the matter are: The Photoelectric Effect, the Compton dispersion and the Even production; the sum of these three processes is translated in the attenuation coefficient of the radiation. In this work we have used hepatic tissue of bovine, as substitute of the human hepatic tissue, and we have measured the lineal attenuation coefficient for photons of 0.662 MeV. Through a series of calculations we have determined the lineal attenuation coefficient for photons from 10 -3 to 10 -5 MeV and the measured coefficient was compared with the one calculated. (Author)
The Study of Rain Specific Attenuation for the Prediction of Satellite Propagation in Malaysia
Mandeep, J. S.; Ng, Y. Y.; Abdullah, H.; Abdullah, M.
2010-06-01
Specific attenuation is the fundamental quantity in the calculation of rain attenuation for terrestrial path and slant paths representing as rain attenuation per unit distance (dB/km). Specific attenuation is an important element in developing the predicted rain attenuation model. This paper deals with the empirical determination of the power law coefficients which allow calculating the specific attenuation in dB/km from the knowledge of the rain rate in mm/h. The main purpose of the paper is to obtain the coefficients of k and α of power law relationship between specific attenuation. Three years (from 1st January 2006 until 31st December 2008) rain gauge and beacon data taken from USM, Nibong Tebal have been used to do the empirical procedure analysis of rain specific attenuation. The data presented are semi-empirical in nature. A year-to-year variation of the coefficients has been indicated and the empirical measured data was compared with ITU-R provided regression coefficient. The result indicated that the USM empirical measured data was significantly vary from ITU-R predicted value. Hence, ITU-R recommendation for regression coefficients of rain specific attenuation is not suitable for predicting rain attenuation at Malaysia.
Directory of Open Access Journals (Sweden)
Vejdani-Noghreiyan Alireza
2016-01-01
Full Text Available Mass attenuation coefficient of lead-based ceramics have been measured by experimental methods and compared with theoretical and Monte Carlo simulation results. Lead-based ceramics were prepared using mixed oxide method and the X-ray diffraction analysis was done to evaluate the crystal structure of the produced handmade ceramics. The experimental results show good agreement with theoretical and simulation results. However at two gamma ray energies, small differences between experimental and theoretical results have been observed. By adding other additives to ceramics and observing the changes in the shielding properties such as flexibility, one can synthesize and optimize ceramics as a neutron shield.
Energy Technology Data Exchange (ETDEWEB)
Saim, A., E-mail: saim1989asma@gmail.com; Tebboune, A.; Berkok, H.; Belameiri, N.; Belbachir, A.H.
2014-07-25
The Full Potential Linear Muffin Tin Orbitals method within the density functional theory has been utilized to calculate structural and electronic properties of the CdTe compound. We have checked that the CdTe has two phase-transitions from zinc-blend to cinnabar and from cinnabar to rocksalt. We have found that the rigidity, the energy and the nature of the gap change according to the phase change, so we can predict that a CdTe detector may have different behaviors in different phase conditions. In order to investigate this behavior change, the linear and the mass attenuation coefficients of X-ray in rocksalt, zinc-blend and cinnabar structures are calculated from 10 keV to100 keV, using the XCOM data. We have found that when CdTe undergoes a phase transition from zinc-blend to cinnabar, its linear attenuation coefficient decreases down to a value of about 100 times smaller than its initial one, and when it undergoes a transition from cinnabar to rocksalt it increases up to a value about 90 times larger than its initial one.
El-Rahman, M A; Abdel-Hady, Y L; Kamel, N
2000-01-01
Measurements have been made to determine gamma-rays attenuation coefficients very accurately by using an extremely narrow-collimated-beam transmission method. The effect of the sample thickness on the measured values of the mass attenuation coefficients (mu/rho) cm sup 2 /g of perspex, bakelite, paraffin, Al, Cu, Pb and Hg have been investigated at three different gamma-ray energies (59.54, 661.6 and 1332.5 keV). It is seen that for these chosen materials (mu/rho) remains constant in good agreement with the theoretical values up to 3 mean free paths and after that (mu/rho) values for Cu, Pb and Hg decrease with further increase in the absorber thickness. This result may be attributed to the increase in the number of coherent small-angle scattering photons which reach the detector.
The Attenuation of Correlation Coefficients: A Statistical Literacy Issue
Trafimow, David
2016-01-01
Much of the science reported in the media depends on correlation coefficients. But the size of correlation coefficients depends, in part, on the reliability with which the correlated variables are measured. Understanding this is a statistical literacy issue.
Statistical Study of Turbulence: Spectral Functions and Correlation Coefficients
Frenkiel, Francois N.
1958-01-01
In reading the publications on turbulence of different authors, one often runs the risk of confusing the various correlation coefficients and turbulence spectra. We have made a point of defining, by appropriate concepts, the differences which exist between these functions. Besides, we introduce in the symbols a few new characteristics of turbulence. In the first chapter, we study some relations between the correlation coefficients and the different turbulence spectra. Certain relations are given by means of demonstrations which could be called intuitive rather than mathematical. In this way we demonstrate that the correlation coefficients between the simultaneous turbulent velocities at two points are identical, whether studied in Lagrange's or in Euler's systems. We then consider new spectra of turbulence, obtained by study of the simultaneous velocities along a straight line of given direction. We determine some relations between these spectra and the correlation coefficients. Examining the relation between the spectrum of the turbulence measured at a fixed point and the longitudinal-correlation curve given by G. I. Taylor, we find that this equation is exact only when the coefficient is very small.
Photon attenuation by intensifying screens
International Nuclear Information System (INIS)
Holje, G.
1983-01-01
The photon attenuation by intensifying screens of different chemical composition has been determined. The attenuation of photons between 20 keV and 120 keV was measured by use of a multi-channel analyzer and a broad bremsstrahlung distribution. The attenuation by the intensifying screens was hereby determined simultaneously at many different monoenergetic photon energies. Experimentally determined attenuations were found to agree well with attenuation calculated from mass attenuation coefficients. The attenuation by the screens was also determined at various bremsstrahlung distributions, simulating those occurring behind the patient in various diagnostic X-ray examinations. The high attenuation in some of the intensifying screens form the basis for an analysis of the construction of asymmetric screen pairs. Single screen systems are suggested as a favourable alternative to thick screen pair systems. (Author)
Effective x-ray attenuation measurements with full field digital mammography
International Nuclear Information System (INIS)
Heine, John J.; Behera, Madhusmita
2006-01-01
This work shows that effective x-ray attenuation coefficients may be estimated by applying Beer's Law to phantom image data acquired with the General Electric Senographe 2000D full field digital mammography system. Theoretical developments are provided indicating that an approximate form of the Beer's relation holds for polychromatic x-ray beams. The theoretical values were compared with experimentally determined measured values, which were estimated at various detector locations. The measured effective attenuation coefficients are in agreement with those estimated with theoretical developments and numerical integration. The work shows that the measured quantities show little spatial variation. The main ideas are demonstrated with polymethylmethacrylate and breast tissue equivalent phantom imaging experiments. The work suggests that the effective attenuation coefficients may be used as known values for radiometric standardization applications that compensate for the image acquisition influences. The work indicates that it is possible to make quantitative attenuation coefficient measurements from a system designed for clinical purposes
Elastic wave attenuation in rocks containing fluids
International Nuclear Information System (INIS)
Berryman, J.G.
1986-01-01
The low-frequency limit of Biot's theory of fluid-saturated porous media predicts that the coefficients for viscous attenuation of shear waves and of the fast compressional wave are proportional to the fluid permeability. Although the observed attenuation is generally in qualitative agreement with the theory, the magnitude of the observed attenuation coefficient in rocks is often more than an order of magnitude higher than expected. This apparent dilemma can be resolved without invoking other attenuation mechanisms if the intrinsic permeability of the rock is inhomogeneous and varies widely in magnitude. A simple calculation of the overall behavior of a layered porous material using local-flow Biot theory shows that the effective permeability for attenuation is the mean of the constituent permeabilities while the effective permeability for fluid flow is the harmonic mean. When the range of variation in the local permeability is one or more orders of magnitude, this difference in averaging method can easily explain some of the observed discrepancies
Energy Technology Data Exchange (ETDEWEB)
Marashdeh, M.W., E-mail: mwmarashdeh@yahoo.com [School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Bauk, S. [Physics Section, P.P.P. Jarak Jauh, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Tajuddin, A.A. [School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Hashim, R. [Division of Bio-resource, Paper and Coatings Technology, School of Industrial Technology, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia)
2012-04-15
The mass attenuation coefficients of Rhizophora spp. binderless particleboard with four different particle sizes (samples A, B, C and D) and natural raw Rhizophora spp. wood (sample E) were determined using single-beam photon transmission in the energy range between 16.59 and 25.26 keV. This was done by determining the attenuation of K{sub {alpha}1} X-ray fluorescent (XRF) photons from niobium, molybdenum, palladium, silver and tin targets. The results were compared with theoretical values of young-age breast (Breast 1) and water calculated using a XCOM computer program. It was found that the mass attenuation coefficient of Rhizophora spp. binderless particleboards to be close to the calculated XCOM values in water than natural Rhizophora spp. wood. Computed tomography (CT) scans were then used to determine the density profile of the samples. The CT scan results showed that the Rhizophora spp. binderless particleboard has uniform density compared to natural Rhizophora spp. wood. In general, the differences in the variability of the profile density decrease as the particle size of the pellet samples decreases. - Highlights: Black-Right-Pointing-Pointer Mass attenuation coefficients were determined by X-ray fluorescent photons. Black-Right-Pointing-Pointer Sample with smaller particle size found very close to calculated water XCOM. Black-Right-Pointing-Pointer X-ray computed tomography scanner was used to investigate the density distribution. Black-Right-Pointing-Pointer The density distribution profile is improved with the decrease in the particle size. Black-Right-Pointing-Pointer Rhizophora spp. binderless particleboard could be used as phantom material.
Photostimulated attenuation of hypersound in superlattice
International Nuclear Information System (INIS)
Mensah, S.Y.; Allotey, F.K.; Adjepong, S.K.
1992-10-01
Photostimulated attenuation of hypersound in semiconductor superlattice has been investigated. It is shown that the attenuation coefficient depends on the phonon wave vector q in an oscillatory manner and that from this oscillation the band width Δ of superlattice can be found. (author). 14 refs, 1 fig
International Nuclear Information System (INIS)
Chantler, C.T.
2000-01-01
Full text: Reliable knowledge of the complex X-ray form factor and the photoelectric attenuation coefficient is required for crystallography, medical diagnosis, refractive index studies and XAFS. Discrepancies between currently used theoretical approaches of 200% exist for numerous elements from 1 keV to 3 keV X-ray energies. This work derives new theoretical results in near-edge soft X-ray regions and improves upon the theoretical uncertainty in these regions by a factor of 10. This work was also reported in J.Phys.Chem.Ref.Data (2000)
International Nuclear Information System (INIS)
Mohd Fakarudin Abdul Rahman; Mohd Iqbal Saripan; Nor Paiza Mohamad Hasan; Ismail Mustapha
2011-01-01
The total mass attenuation coefficients (μ/ ρ) of stainless steel (SS316L) and carbon steel (A516) that are widely used as petrochemical plant components, such as distillation column, heat exchanger, boiler and storage tank were measured at 662, 1073 and 1332 keV of photon energies. Measurements of radiation intensity for various thicknesses of steel were made by using transmission method. The γ-ray intensity were counted by using a Gamma spectrometer that contains a Hyper-pure Germanium (HPGe) detector connected with Multi Channel Analyzer (MCA). The effective numbers of atomic (Z eff ) and electron (N eff ) obtained experimentally were compared by those obtained through theoretical calculation. Both experimental and calculated values of Z eff and N eff were in good agreement. (author)
Directory of Open Access Journals (Sweden)
Huseyin Ozan Tekin
2016-01-01
Full Text Available Gamma-ray measurements in various research fields require efficient detectors. One of these research fields is mass attenuation coefficients of different materials. Apart from experimental studies, the Monte Carlo (MC method has become one of the most popular tools in detector studies. An NaI(Tl detector has been modeled, and, for a validation study of the modeled NaI(Tl detector, the absolute efficiency of 3 × 3 inch cylindrical NaI(Tl detector has been calculated by using the general purpose Monte Carlo code MCNP-X (version 2.4.0 and compared with previous studies in literature in the range of 661–2620 keV. In the present work, the applicability of MCNP-X Monte Carlo code for mass attenuation of concrete sample material as building material at photon energies 59.5 keV, 80 keV, 356 keV, 661.6 keV, 1173.2 keV, and 1332.5 keV has been tested by using validated NaI(Tl detector. The mass attenuation coefficients of concrete sample have been calculated. The calculated results agreed well with experimental and some other theoretical results. The results specify that this process can be followed to determine the data on the attenuation of gamma-rays with other required energies in other materials or in new complex materials. It can be concluded that data from Monte Carlo is a strong tool not only for efficiency studies but also for mass attenuation coefficients calculations.
Hu, Haiyang; Wang, Qiang
2018-07-01
A new strategy for grouping spectral absorption coefficients, considering the influences of both temperature and species mole ratio inhomogeneities on correlated-k characteristics of the spectra of gas mixtures, has been deduced to match the calculation method of spectral overlap parameter used in multiscale multigroup wide band k-distribution model. By comparison with current spectral absorption coefficient grouping strategies, for which only the influence of temperature inhomogeneity on the correlated-k characteristics of spectra of single species was considered, the improvements in calculation accuracies resulting from the new grouping strategy were evaluated using a series of 0D cases in which radiance under 3-5-μm wave band emitted by hot combustion gas of hydrocarbon fuel was attenuated by atmosphere with quite different temperature and mole ratios of water vapor and carbon monoxide to carbon dioxide. Finally, evaluations are presented on the calculation of remote sensing thermal images of transonic hot jet exhausted from a chevron ejecting nozzle with solid wall cooling system.
Attenuation of the gamma rays in tissues
International Nuclear Information System (INIS)
Arcos P, A.; Rodriguez N, S.; Pinedo S, A.; Amador V, P.; Chacon R, A.; Vega C, H.R.
2005-01-01
The mass and lineal attenuation coefficient and of hepatic tissue, muscular, osseous and of brain before gamma rays of 10 -3 to 10 5 MeV were calculated. For the case of the osseous tissue the calculation was made for the cartilage, the cortical tissue and the bone marrow. During the calculations the elementary composition of the tissues of human origin was used. The calculations include by separate the Photoelectric effect, the Compton scattering and the Pair production, as well as the total. For to establish a comparison with the attenuation capacities, the coefficients of the water, the aluminum and the lead also were calculated. The study was complemented measuring the attenuation coefficient of hepatic tissue of bovine before gamma rays of 0.662 MeV of a source of 137 Cs. The measurement was made through of an experiment of photons transmission through samples frozen of hepatic tissue and with a Geiger-Mueller detector. (Author)
International Nuclear Information System (INIS)
Andrello, Avacir Casanova; Albuquerque, Sergio
2011-01-01
Full text: When a component for protecting against ionizing radiation is designed, the main aim to be accomplished is to attenuate radiations to acceptable values, within tolerable limits. Several materials and arrangements can be utilized as protection, among which we can name concrete, steel, lead plates and mortars. Where low-energy radiations (some dozens of keVs) are involved, the main interaction between radiation and the material is the photoelectric effect, whose radiation absorption depends on the photon and specific atomic number of the absorbent. High-density concretes are made by mixing several materials, and the granulometric mixture and proportion of these will determine the physical and chemical features of the product. When the aim is to develop a concrete trace to be utilized as a protection against gamma and X-ray ionizing radiations in low energies, not only aspects of the structural behavior of the component or material must be evaluated, but also the behavior of the composing materials in face of radiation flow must be studied and known in order to develop a concrete with proper performance and that can meet application requirements; among such requirements we can mention the homogeneity of the applied concrete, which directly affects the effective linear attenuation rate of the component and can assure a good performance in face of demands. In this work, our aim was to evaluate what influence the particle size of the aggregates used for producing of assayed concretes has on the variation of the linear attenuation coefficient at different points of the same sample, results which can be used to obtain the inhomogeneity rate of each case of the analyzed concretes. The concrete samples were prepared with small thicknesses, ten millimeters (10 mm) and to perform the assays, a source of Americium-241 was used to transmit gamma-rays in order to determine the variation that existed in the linear attenuation coefficient of each sample. The following
Attenuated radon transform: theory and application in medicine and biology
Energy Technology Data Exchange (ETDEWEB)
Gullberg, G.T.
1979-06-01
A detailed analysis is given of the properties of the attenuated Radon transform and of how increases in photon attenuation influence the numerical accuracy and computation efficiency of iterative and convolution algorithms used to determine its inversion. The practical applications for this work involve quantitative assessment of the distribution of injected radiopharmaceuticals and radionuclides in man and animals for basic physiological and biochemical studies as well as clinical studies in nuclear medicine. A mathematical structure is developed using function theory and the theory of linear operators on Hilbert spaces which lends itself to better understanding the spectral properties of the attenuated Radon transform. The continuous attenuated Radon transform reduces to a matrix operator for discrete angular and lateral sampling, and the reconstruction problem reduces to a system of linear equations. For the situation of variable attenuation coefficient frequently found in nuclear medicine applications of imaging the heart and chest, the procedure developed in this thesis involves iterative techniques of performing the generalized inverse. For constant attenuation coefficient less than 0.15 cm/sup -1/, convolution methods can reliably reconstruct a 30 cm object with 0.5 cm resolution. However, for high attenuation coefficients or for the situation where there is variable attenuation such as reconstruction of distribution of isotopes in the heart, iterative techniques developed in this thesis give the best results. (ERB)
International Nuclear Information System (INIS)
Menesguen, Y.; Lepy, M.C.
2011-01-01
This work presents the new Metrology beamline at the SOLEIL synchrotron facility and a first attempt to quantitative measurements of mass attenuation coefficients for Ag and Sn performed on the hard X-ray branch. We first describe the beamline itself and the characterization performed of the unfocused monochromatic beam running mode. We performed a first experimental measurement of mass attenuation coefficients in the range 3.5 ≤ E ≤ 28 keV and we also derived the K-absorption and L-absorption jump ratios. The results are compared with theoretical values as well as with other experimental data and agree well with previous published values. (authors)
Utilization of ilmenite/epoxy composite for neutrons and gamma rays attenuation
Energy Technology Data Exchange (ETDEWEB)
El-Sayed Abdo, A. E-mail: attiaabdo11@hotmail.com; El-Sarraf, M.A.; Gaber, F.A
2003-01-01
This work deals with the study of ilmenite/epoxy composite as an injecting mortar for cracks developed in biological concrete shields, as well as, neutrons and gamma rays attenuation. Effects of the particle size on the mechanical strengths have been studied for epoxy resin filled with crushed ilmenite with different maximum particle sizes ranging from 32 to 500 {mu}m. Thermal neutrons and gamma rays attenuation in ilmenite/epoxy composites with 75 and 80 wt.% of ilmenite concentration have been investigated. The total mass attenuation coefficients {mu}/{rho} (cm{sup 2} g{sup -1}) of gamma ray for five ilmenite/epoxy composites have been calculated using the XCOM program (version 3.1) at energies from 10 keV to 100 MeV. Also, the total mass attenuation coefficients ({mu}/{rho}) have estimated based on the measured total linear attenuation coefficients ({mu}) and compared with the calculated results where, a reasonable agreement was found.
Segmented attenuation correction using artificial neural networks in positron tomography
International Nuclear Information System (INIS)
Yu, S.K.; Nahmias, C.
1996-01-01
The measured attenuation correction technique is widely used in cardiac positron tomographic studies. However, the success of this technique is limited because of insufficient counting statistics achievable in practical transmission scan times, and of the scattered radiation in transmission measurement which leads to an underestimation of the attenuation coefficients. In this work, a segmented attenuation correction technique has been developed that uses artificial neural networks. The technique has been validated in phantoms and verified in human studies. The results indicate that attenuation coefficients measured in the segmented transmission image are accurate and reproducible. Activity concentrations measured in the reconstructed emission image can also be recovered accurately using this new technique. The accuracy of the technique is subject independent and insensitive to scatter contamination in the transmission data. This technique has the potential of reducing the transmission scan time, and satisfactory results are obtained if the transmission data contain about 400 000 true counts per plane. It can predict accurately the value of any attenuation coefficient in the range from air to water in a transmission image with or without scatter correction. (author)
GPR measurements of attenuation in concrete
Eisenmann, David; Margetan, Frank J.; Pavel, Brittney
2015-03-01
Ground-penetrating radar (GPR) signals from concrete structures are affected by several phenomenon, including: (1) transmission and reflection coefficients at interfaces; (2) the radiation patterns of the antenna(s) being used; and (3) the material properties of concrete and any embedded objects. In this paper we investigate different schemes for determining the electromagnetic (EM) attenuation of concrete from measured signals obtained using commercially-available GPR equipment. We adapt procedures commonly used in ultrasonic inspections where one compares the relative strengths of two or more signals having different travel paths through the material of interest. After correcting for beam spread (i.e., diffraction), interface phenomena, and equipment amplification settings, any remaining signal differences are assumed to be due to attenuation thus allowing the attenuation coefficient (say, in dB of loss per inch of travel) to be estimated. We begin with a brief overview of our approach, and then discuss how diffraction corrections were determined for our two 1.6 GHz GPR antennas. We then present results of attenuation measurements for two types of concrete using both pulse/echo and pitch/catch measurement setups.
GPR measurements of attenuation in concrete
International Nuclear Information System (INIS)
Eisenmann, David; Margetan, Frank J.; Pavel, Brittney
2015-01-01
Ground-penetrating radar (GPR) signals from concrete structures are affected by several phenomenon, including: (1) transmission and reflection coefficients at interfaces; (2) the radiation patterns of the antenna(s) being used; and (3) the material properties of concrete and any embedded objects. In this paper we investigate different schemes for determining the electromagnetic (EM) attenuation of concrete from measured signals obtained using commercially-available GPR equipment. We adapt procedures commonly used in ultrasonic inspections where one compares the relative strengths of two or more signals having different travel paths through the material of interest. After correcting for beam spread (i.e., diffraction), interface phenomena, and equipment amplification settings, any remaining signal differences are assumed to be due to attenuation thus allowing the attenuation coefficient (say, in dB of loss per inch of travel) to be estimated. We begin with a brief overview of our approach, and then discuss how diffraction corrections were determined for our two 1.6 GHz GPR antennas. We then present results of attenuation measurements for two types of concrete using both pulse/echo and pitch/catch measurement setups
GPR measurements of attenuation in concrete
Energy Technology Data Exchange (ETDEWEB)
Eisenmann, David, E-mail: djeisen@cnde.iastate.edu; Margetan, Frank J., E-mail: djeisen@cnde.iastate.edu; Pavel, Brittney, E-mail: djeisen@cnde.iastate.edu [Center for Nondestructive Evaluation, Iowa State University, 1915 Scholl Road, Ames, IA 50011-3042 (United States)
2015-03-31
Ground-penetrating radar (GPR) signals from concrete structures are affected by several phenomenon, including: (1) transmission and reflection coefficients at interfaces; (2) the radiation patterns of the antenna(s) being used; and (3) the material properties of concrete and any embedded objects. In this paper we investigate different schemes for determining the electromagnetic (EM) attenuation of concrete from measured signals obtained using commercially-available GPR equipment. We adapt procedures commonly used in ultrasonic inspections where one compares the relative strengths of two or more signals having different travel paths through the material of interest. After correcting for beam spread (i.e., diffraction), interface phenomena, and equipment amplification settings, any remaining signal differences are assumed to be due to attenuation thus allowing the attenuation coefficient (say, in dB of loss per inch of travel) to be estimated. We begin with a brief overview of our approach, and then discuss how diffraction corrections were determined for our two 1.6 GHz GPR antennas. We then present results of attenuation measurements for two types of concrete using both pulse/echo and pitch/catch measurement setups.
International Nuclear Information System (INIS)
Siozos, P.; Philippidis, A.; Hadjistefanou, M.; Gounarakis, C.; Anglos, D.
2013-01-01
Laser-induced breakdown spectroscopy (LIBS) was used to determine the mineral composition of various industrial scale samples. The aim of the study has been to investigate the capacity of LIBS to provide a fast, reliable analytical tool for carrying out routine analysis of inorganic scales, potentially on site, as a means to facilitate decision making concerning scale removal procedures. LIBS spectra collected in the range of 200–660 nm conveyed information about the metal content of the minerals. Via a straightforward analysis based on linear correlation of LIBS spectra it was possible to successfully discriminate scale samples into three main groups, Fe-rich, Ca-rich and Ba-rich, on the basis of correlation coefficients. By combining correlation coefficients with spectral data collected in the NIR, 860–960 nm, where sulfur emissions are detected, it became further possible to discriminate sulfates from carbonates as confirmed by independent analysis based on Raman spectroscopy. It is emphasized that the proposed LIBS-based method successfully identifies the major mineral or minerals present in the samples classifying the scales into relevant groups hence enabling process engineers to select appropriate scale dissolution strategies. - Highlights: • LIBS was used to determine the mineral composition of industrial scale samples. • Three groups of inorganic scales were identified: Ca rich, Ba rich and Fe rich. • A method that combines correlation coefficients and line detection is proposed. • The method successfully identifies the main mineral, or minerals, in the samples. • The results were compared with results obtained by use of Raman analysis
Precision Model for Microwave Rotary Vane Attenuator
DEFF Research Database (Denmark)
Guldbrandsen, Tom
1979-01-01
A model for a rotary vane attenuator is developed to describe the attenuator reflection and transmission coefficients in detail. All the parameters of the model can be measured in situ, i.e., without diassembling any part. The tranmission errors caused by internal reflections are calculated from ...
Microdosimetric spectra measurements of JANUS neutrons
Energy Technology Data Exchange (ETDEWEB)
Marshall, I.R.; Williamson, F.S.
1985-01-01
Neutron radiation from the JANUS reactor at Argonne National Laboratory is being used with increasing frequency for major biological experiments. The fast neutron spectrum has a Kerma-weighted mean energy of 0.8 MeV and low gamma-ray contamination. In 1984 the JANUS fission converter plate of highly enriched uranium was replaced by one made of low-enriched uranium. We recorded microdosimetric spectra at several different positions in the high-flux irradiation room of JANUS before the change of the converter plate. Each set of measurements consisted of spectra taken at three different site diameters (0.5, 1.0, and 5.0 ..mu..m) and in both ''attenuator up'' and ''attenuator down'' configurations. At two conventional dosimetry reference positions, two sets of measurements were recorded. At three biological reference positions, measurements simulating several biological irradiation conditions, were taken. The dose rate at each position was estimated and compared with dose rates obtained previously by conventional dosimetry. Comparison of the different measurements showed no major change in spectra as a function of position or irradiation condition. First results from similar sets of measurements recorded after the installment of the new converter plate indicate no major change in the spectra. 11 refs., 4 figs., 5 tabs.
Microdosimetric spectra measurements of JANUS neutrons
International Nuclear Information System (INIS)
Marshall, I.R.; Williamson, F.S.
1985-01-01
Neutron radiation from the JANUS reactor at Argonne National Laboratory is being used with increasing frequency for major biological experiments. The fast neutron spectrum has a Kerma-weighted mean energy of 0.8 MeV and low gamma-ray contamination. In 1984 the JANUS fission converter plate of highly enriched uranium was replaced by one made of low-enriched uranium. We recorded microdosimetric spectra at several different positions in the high-flux irradiation room of JANUS before the change of the converter plate. Each set of measurements consisted of spectra taken at three different site diameters (0.5, 1.0, and 5.0 μm) and in both ''attenuator up'' and ''attenuator down'' configurations. At two conventional dosimetry reference positions, two sets of measurements were recorded. At three biological reference positions, measurements simulating several biological irradiation conditions, were taken. The dose rate at each position was estimated and compared with dose rates obtained previously by conventional dosimetry. Comparison of the different measurements showed no major change in spectra as a function of position or irradiation condition. First results from similar sets of measurements recorded after the installment of the new converter plate indicate no major change in the spectra. 11 refs., 4 figs., 5 tabs
International Nuclear Information System (INIS)
Golosio, B.; Brunetti, A.; Cesareo, R.; Amendolia, S.R.; Rao, D.V.; Seltzer, S.M.
2001-01-01
Images of soft materials are obtained using image intensifier based X-ray system (Rao et al., Nucl. Instr. and Meth. A 437 (1999) 141). The interior of the soft material is visualized using the novel software in order to know the distribution of attenuation coefficient in terms of density. The novel software is based mainly on graphical library and applicable to several operating systems without any change. It can be applied to several applications starting from biomedical to industries, for example, quality control. The results for walnut and brew tooth are presented as a set of images from the internal parts of the sample. A description of the principal parameters required for tomographic visualization is given and some results based on this technique are reported and discussed
An attenuation measurement technique for rotating planar detector positron tomographs
International Nuclear Information System (INIS)
McNeil, P.A.; Julyan, P.J.; Parker, D.J.
1997-01-01
This paper presents a new attenuation measurement technique suitable for rotating planar detector positron tomographs. Transmission measurements are made using two unshielded positron-emitting line sources, one attached to the front face of each detector. Many of the scattered and accidental coincidences are rejected by including only those coincidences that form a vector passing within a predetermined distance of either line source. Some scattered and accidental coincidences are still included, which reduces the measured linear attenuation; in principle their contribution can be accurately estimated and subtracted, but in practice, when limited statistics are available (as is the case with the multi-wire Birmingham positron camera), this background subtraction unacceptably increases the noise. Instead an attenuation image having the correct features can be reconstructed from the measured projections. For objects containing only a few discrete linear attenuation coefficients, segmentation of this attenuation image reduces noise and allows the correct linear attenuation coefficients to be restored by renormalization. Reprojection through the segmented image may then provide quantitatively correct attenuation correction factors of sufficient statistical quality to correct for attenuation in PET emission images. (author)
Fast neutron attenuation measurements for detection of illicit materials
International Nuclear Information System (INIS)
Lee, Hee Seock; Chung, Chin Wha; Guon, Ki Il; Lee, Bo Young; Ko, Seung Kook; Shin, Yong Mu
2002-01-01
Experiments were carried out to develop a novel method using neutron attenuation for the detection of illicit materials. By using pulsed fast neutrons generated from a Bi target bombarded with a 2 GeV electron beam, attenuation spectra of C, N, and O have been measured to study the feasibility of a practical application. The spectral dependence on the material thickness and the geometrical distribution as well as the ability to identify different elements in a layered environment have been studied. For the elements mentioned here, the total cross sections have been obtained from the measured attenuation spectra and compared with ENDF-VI, which showed good agreement. The study confirms that a conventional low energy electron linac can be put into a practical use, and some practical idea is presented
Improvements to the Chebyshev expansion of attenuation correction factors for cylindrical samples
International Nuclear Information System (INIS)
Mildner, D.F.R.; Carpenter, J.M.
1990-01-01
The accuracy of the Chebyshev expansion coefficients used for the calculation of attenuation correction factors for cylinderical samples has been improved. An increased order of expansion allows the method to be useful over a greater range of attenuation. It is shown that many of these coefficients are exactly zero, others are rational numbers, and others are rational frations of π -1 . The assumptions of Sears in his asymptotic expression of the attenuation correction factor are also examined. (orig.)
International Nuclear Information System (INIS)
Silva, Daniela de Fatima Teixeira da
2002-01-01
Low-intensity laser therapy is characterized by its ability to induce athermic effects and nondestructive photobiological processes. Although it has been in use for more than 40 years, this phototherapy is still not an established therapeutic modality. The objectives of this study were: to quantify the collagen fibers organization by polarized light microscopy in normal and burned skin samples at day 17 post-injury considering preferential axis as the animal's spinal column and aligning the linear laser polarization in two directions of polarization, parallel or perpendicular to this axis; to determine the relative attenuation coefficient for the intensity light by the technique of imaging the light distribution in normal and burned skin during wound healing process taking only parallel direction of polarization. To reach the objectives, burns about 6 mm in diameter were created with liquid N 2 on the back of the rats and the lesions were irradiated on days 3, 7, 10 and 14 post-wounding, D= 1 J/cm 2 , to investigate the effects of low-intensity linearly polarized He-Ne laser beam on skin wounds healing. Control lesions were not irradiated. The results have demonstrated that: the skin samples irradiated with linearly parallel polarized He-Ne laser beam showed collagen fibers more organized; burned skin samples presents a higher attenuation coefficient than normal skin samples. These results are important to optimize low intensity laser therapy dosimetry on acceleration wound healing. (author)
On the sound attenuation in fluid due to the thermal diffusion and viscous dissipation
Energy Technology Data Exchange (ETDEWEB)
Hu, Hanping, E-mail: hphu@ustc.edu.cn; Wang, Yandong; Wang, Dongdong
2015-09-11
We review the sound attenuation in fluid due to the thermal diffusion and viscous dissipation and derive the formula of the sound attenuation coefficient in fluid by solving a fully thermally–mechanically coupled equation set. Problem occurring in Stokes–Kirchhoff relation, the well-known and widely used classical formula for sound attenuation coefficient, is therefore found and pointed out. The reason for its generation is analyzed and verified. An improved formula to replace Stokes–Kirchhoff relation is suggested and the typical case for the error in calculating sound pressure level (SPL) of attenuated sound wave in fluid between the two formulas is also given. - Highlights: • Problem with Stokes–Kirchhoff relation. • Generation reason of defect in Stokes–Kirchhoff relation. • An improved formula for sound attenuation coefficient in fluid. • Typical cases of the calculation error by Stokes–Kirchhoff relation.
International Nuclear Information System (INIS)
Diaz, J.E.
1982-01-01
The non-invasive, fully three-dimensional reconstruction of a radionuclide distribution is studied. The problem is considered in ideal form. Several solutions, ranging from the completely analytical to the completely graphical, are presented for both the non-attenuated and uniformly attenuated cases. A function is defined which, if enacted as a response to each detected photon, will yield, upon superposition, a faithful reconstruction of the radionuclide density. Two and three-dimensional forms of this functions are defined for both the non-attenuated and uniformly attenuated case
Photon mass attenuation coefficients, effective atomic numbers and ...
Indian Academy of Sciences (India)
of atomic number Z was performed using the logarithmic regression analysis of the data measured by the authors and reported earlier. The best-fit coefficients so obtained in the photon ..... This photon build-up is a function of thickness and atomic number of the sample and also the incident photon energy, which combine to ...
Measurement of the X-ray mass attenuation coefficients of silver in the 5-20 keV range.
Islam, M Tauhidul; Tantau, Lachlan J; Rae, Nicholas A; Barnea, Zwi; Tran, Chanh Q; Chantler, Christopher T
2014-03-01
The X-ray mass attenuation coefficients of silver were measured in the energy range 5-20 keV with an accuracy of 0.01-0.2% on a relative scale down to 5.3 keV, and of 0.09-1.22% on an absolute scale to 5.0 keV. This analysis confirms that with careful choice of foil thickness and careful correction for systematics, especially including harmonic contents at lower energies, the X-ray attenuation of high-Z elements can be measured with high accuracy even at low X-ray energies (silver in the low energy range, indicating the possibility of obtaining high-accuracy X-ray absorption fine structure down to the L1 edge (3.8 keV) of silver. Comparison of results reported here with an earlier data set optimized for higher energies confirms accuracy to within one standard error of each data set collected and analysed using the principles of the X-ray extended-range technique (XERT). Comparison with theory shows a slow divergence towards lower energies in this region away from absorption edges. The methodology developed can be used for the XAFS analysis of compounds and solutions to investigate structural features, bonding and coordination chemistry.
International Nuclear Information System (INIS)
Mukai, T.; Torizuka, K.; Douglass, K.H.; Wagner, H.N.
1985-01-01
Quantitative assessment of tracer distribution with single photon emission computed tomography (SPECT) is difficult because of attenuation and scattering of gamma rays within the object. A method considering the source geometry was developed, and effects of attenuation and scatter on SPECT quantitation were studied using phantoms with non-uniform attenuation. The distribution of attenuation coefficients (μ) within the source were obtained by transmission CT. The attenuation correction was performed by an iterative reprojection technique. The scatter correction was done by convolution of the attenuation corrected image and an appropriate filter made by line source studies. The filter characteristics depended on μ and SPEC measurement at each pixel. The SPECT obtained by this method showed the most reasonable results than the images reconstructed by other methods. The scatter correction could compensate completely for a 28% scatter components from a long line source, and a 61% component for thick and extended source. Consideration of source geometries was necessary for effective corrections. The present method is expected to be valuable for the quantitative assessment of regional tracer activity
Photon attenuation properties of some thorium, uranium and plutonium compounds
Energy Technology Data Exchange (ETDEWEB)
Singh, V. P.; Badiger, N. M. [Karnatak University, Department of Physics, Dharwad-580003, Karnataka (India); Vega C, H. R., E-mail: kudphyvps@rediffmail.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas, Zac. (Mexico)
2015-10-15
Mass attenuation coefficients, effective atomic numbers, effective electron densities for nuclear materials; thorium, uranium and plutonium compounds have been studied. The photon attenuation properties for the compounds have been investigated for partial photon interaction processes by photoelectric effect, Compton scattering and pair production. The values of these parameters have been found to change with photon energy and interaction process. The variations of mass attenuation coefficients, effective atomic number and electron density with energy are shown graphically. Moreover, results have shown that these compounds are better shielding and suggesting smaller dimensions. The study would be useful for applications of these materials for gamma ray shielding requirement. (Author)
An acoustic eikonal equation for attenuating VTI media
Hao, Qi
2016-09-06
We present an acoustic eikonal equation governing the complex-valued travel time of P-waves in attenuating, transversely isotropic media with a vertical symmetry axis (VTI). This equation is based on the assumption that the Pwave complex-valued travel time is independent of the Swave velocity parameter v in Thomsen\\'s notation and the attenuation coefficient A in the Thomsen-type notation for attenuating VTI media. We combine perturbation theory and Shanks transform to develop practical approximations to the attenuating acoustic eikonal equation, capable of admitting analytical description of the attenuation in homogeneous media. For a horizontal, attenuating VTI layer, we also derive non-hyperbolic approximations for the real and imaginary parts of the complex-valued reflection travel time.
Does the third mutual friction coefficient B'' exist
International Nuclear Information System (INIS)
Mathieu, P.; Placais, B.; Simon, Y.
1985-01-01
Precise measurements of the attenuation of a second-sound wave propagation axially in rotating He II at first sight suggest that the third mutual-friction coefficient B'' has a non-zero value (B'' = 0.021 at 1.9 K). But the observation of metastable states associated with various levels of attenuation is not reconcilable with the semi-classical model of the vortex line [fr
Acousto-optic measurements of ultrasound attenuation in tellurium dioxide crystal
International Nuclear Information System (INIS)
Voloshinov, V. B.; Lemyaskina, E. A.
1996-01-01
The paper is devoted to experimental investigation of ultrasound propagation in tellurium dioxide monocrystal. In particular, attenuation of slow shear acoustic modes in the crystal was measured. The measurements were performed by acousto-optic methods using probing of acoustic column by a laser beam. The paper describes measurements of acoustic attenuation coefficient for slow shear ultrasonic waves propagating at an angle =4.5 O with respect to the (110) direction in the (110) plane. The investigation was made at acoustic frequency f = 100 MHz with pulsed acoustic waves and with an optical beam of a He-Ne laser. It is found that the attenuation coefficient is α = 0.57 cm -1 ± 15 %. The attenuation at acoustic frequencies f ≥ 100 MHz influences performance characteristics of acousto-optical devices based on tellurium dioxide. As proved, spectral resolution of a quasicollinear acoustooptic filter decreases by a factor of 2 compared to a case of the attenuation absence. (authors)
Radiation induced time dependent attenuation in a fiber
International Nuclear Information System (INIS)
Kelly, R.E.; Lyons, P.B.; Looney, L.D.
1985-01-01
Characteristics describing the time dependent attenuation coefficient of an optical fiber during and following a very short and intense radiation pulse are analyzed. This problem is important for transmission applications when the fiber is subjected to gamma, electron, or neutron beams. Besides time, the attenuation coefficient is a function of temperature, dose rate, dose, nature of the radiation (n, e, γ), fiber composition and purity, pre-existing solid state defects, and wavelength of the transmitted signal. The peak attenuation for a given fiber is mainly determined by the dose rate and pulse length, but temperature and strain (or athermal) annealing also contribute to a partial recovery during the pulse duration. The peak attenuation per unit dose appears to be smaller at high doses, perhaps caused by particle track overlap, which produces a saturation effect. After pulse termination, the attenuation coefficient tends to recover towards its pre-radiation value at different rates, depending upon the factors mentioned above. In particular, ionized electrons relax back to the positive lattice ions at a rate which depends upon initial separation distance and temperature. The initial separation distance is a function of beam energy. Some electrons will encounter a trap in the lattice and may recombine by quantum mechanical tunneling or be removed by photons (hence, absorption). Besides ionization, radiation may induce lattice displacements which in turn produce additional absorption centers. The displacement contribution has a different time constant than that associated with ionization. These topics, as they influence fiber characteristics, are discussed, along with supporting experimental data
Treeby, Bradley E; Zhang, Edward Z; Thomas, Alison S; Cox, Ben T
2011-02-01
The ultrasound attenuation coefficient and dispersion from 0-70 MHz in whole human blood and its components (red blood cells and plasma) at 37°C is reported. The measurements are made using a fixed path substitution technique that exploits optical mechanisms for the generation and detection of ultrasound. This allows the measurements to cover a broad frequency range with a single source and receiver. The measured attenuation coefficient and dispersion in solutions of red blood cells and physiological saline for total haemoglobin concentrations of 10, 15 and 20 g/dL are presented. The attenuation coefficient and dispersion in whole human blood taken from four healthy volunteers by venipuncture is also reported. The power law dependence of the attenuation coefficient is shown to vary across the measured frequency range. This is due to the varying frequency dependence of the different mechanisms responsible for the attenuation. The attenuation coefficient measured at high frequencies is found to be significantly higher than that predicted by historical power law parameters. A review of the attenuation mechanisms in blood along with previously reported experimental measurements is given. Values for the sound speed and density in the tested samples are also presented. Copyright © 2011 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Experimental techniques of conversion coefficient measurements
International Nuclear Information System (INIS)
Hamilton, J.H.
1975-01-01
Discusses briefly the history of conversion electron spectra measurements, and the interpretation of the collected data. Then provides a comprehensive review of techniques presently available to measure the conversion coefficients. (Auth.)
International Nuclear Information System (INIS)
Ye Peng-Cheng; Pan Guang
2015-01-01
Due to the high speed of underwater vehicles, cavitation is generated inevitably along with the sound attenuation when the sound signal traverses through the cavity region around the underwater vehicle. The linear wave propagation is studied to obtain the influence of bubbly liquid on the acoustic wave propagation in the cavity region. The sound attenuation coefficient and the sound speed formula of the bubbly liquid are presented. Based on the sound attenuation coefficients with various vapor volume fractions, the attenuation of sound intensity is calculated under large cavitation number conditions. The result shows that the sound intensity attenuation is fairly small in a certain condition. Consequently, the intensity attenuation can be neglected in engineering. (paper)
International Nuclear Information System (INIS)
Christ, G.
1981-01-01
By the method of computer tomography, which is in use since about 10 years, X-ray images of a layer of interest can be produced without interference from the material present above this layer. An integral measurement of the attenuation of continuous X-radiation is sufficient to record the different attenuation behaviour in a layer for the purpose of image formation. For more information, however, can be obtained by taking into account the spectral distribution of the X-ray source and the energy dependence of the attenuation, which varies for different materials. In the experimental part of this work the measurement of the spectral distribution is described together with the necessary corrections, and the possible application of the cross sections for the relevant interaction processes, which are known from the literature is studied. As shown in the theoretical part, the attenuation coefficient can be described by an effective atomic number and the electron density of the absorber in the case of an arbitrary mixture of absorbing materials and a continuous X-ray spectrum. These two unknown material parameters can be determined by a method based on the measurement of two spectra with different spectral distribution. This is demonstrated by a one-dimensional and a two-dimensional computer simulation. (orig./WU) [de
Determination of the attenuation map in emission tomography
Zaidi, H
2002-01-01
Reliable attenuation correction methods for quantitative emission computed tomography (ECT) require accurate delineation of the body contour and often necessitate knowledge of internal anatomical structure. Two broad classes of methods have been used to calculate the attenuation map referred to as "transmissionless" and transmission-based attenuation correction techniques. While calculated attenuation correction belonging to the first class of methods is appropriate for brain studies, more adequate methods must be performed in clinical applications where the attenuation coefficient distribution is not known a priori, and for areas of inhomogeneous attenuation such as the chest. Measured attenuation correction overcomes this problem and utilizes different approaches to determine this map including transmission scanning, segmented magnetic resonance images or appropriately scaled X-ray CT scans acquired either independently on separate or simultaneously on multimodality imaging systems. Combination of data acqu...
International Nuclear Information System (INIS)
Tarim, Urkiye Akar; Ozmutlu, Emin N.; Yalcin, Sezai; Gundogdu, Ozcan; Bradley, D.A.; Gurler, Orhan
2017-01-01
A Monte Carlo method was developed to investigate radiation shielding properties of bismuth borate glass. The mass attenuation coefficients and half-value layer parameters were determined for different fractional amounts of Bi 2 O 3 in the glass samples for the 356, 662, 1173 and 1332 keV photon energies. A comparison of the theoretical and experimental attenuation coefficients is presented. - Highlights: • Radiation shielding properties of bismuth borate glass systems have been reported. • Mass attenuation coefficients increase linearly with increase in Bi concentration. • Half-value layer decreases with increasing concentration of Bi. • Half-value layer decreases with the increase in the sample density.
International Nuclear Information System (INIS)
AllamehZadeh, Mostafa
2011-01-01
A Quadratic Neural Networks (QNNs) model has been developed for identifying seismic source classification problem at regional distances using ARMA coefficients determination by Artificial Neural Networks (ANNs). We have devised a supervised neural system to discriminate between earthquakes and chemical explosions with filter coefficients obtained by windowed P-wave phase spectra (15 s). First, we preprocess the recording's signals to cancel out instrumental and attenuation site effects and obtain a compact representation of seismic records. Second, we use a QNNs system to obtain ARMA coefficients for feature extraction in the discrimination problem. The derived coefficients are then applied to the neural system to train and classification. In this study, we explore the possibility of using single station three-component (3C) covariance matrix traces from a priori-known explosion sites (learning) for automatically recognizing subsequent explosions from the same site. The results have shown that this feature extraction gives the best classifier for seismic signals and performs significantly better than other classification methods. The events have been tested, which include 36 chemical explosions at the Semipalatinsk test site in Kazakhstan and 61 earthquakes (mb = 5.0–6.5) recorded by the Iranian National Seismic Network (INSN). The 100% correct decisions were obtained between site explosions and some of non-site events. The above approach to event discrimination is very flexible as we can combine several 3C stations.
Energy Technology Data Exchange (ETDEWEB)
AllamehZadeh, Mostafa, E-mail: dibaparima@yahoo.com [International Institute of Earthquake Engineering and Seismology (Iran, Islamic Republic of)
2011-12-15
A Quadratic Neural Networks (QNNs) model has been developed for identifying seismic source classification problem at regional distances using ARMA coefficients determination by Artificial Neural Networks (ANNs). We have devised a supervised neural system to discriminate between earthquakes and chemical explosions with filter coefficients obtained by windowed P-wave phase spectra (15 s). First, we preprocess the recording's signals to cancel out instrumental and attenuation site effects and obtain a compact representation of seismic records. Second, we use a QNNs system to obtain ARMA coefficients for feature extraction in the discrimination problem. The derived coefficients are then applied to the neural system to train and classification. In this study, we explore the possibility of using single station three-component (3C) covariance matrix traces from a priori-known explosion sites (learning) for automatically recognizing subsequent explosions from the same site. The results have shown that this feature extraction gives the best classifier for seismic signals and performs significantly better than other classification methods. The events have been tested, which include 36 chemical explosions at the Semipalatinsk test site in Kazakhstan and 61 earthquakes (mb = 5.0-6.5) recorded by the Iranian National Seismic Network (INSN). The 100% correct decisions were obtained between site explosions and some of non-site events. The above approach to event discrimination is very flexible as we can combine several 3C stations.
International Nuclear Information System (INIS)
Kuramoto, R.Y.R.Renato Yoichi Ribeiro.; Appoloni, Carlos Roberto
2002-01-01
The two media method permits the application of Beer's law (Thesis (Master Degree), Universidade Estadual de Londrina, PR, Brazil, pp. 23) for the linear attenuation coefficient determination of irregular thickness samples by gamma-ray transmission. However, the use of this methodology introduces experimental complexity due to the great number of variables to be measured. As consequence of this complexity, the uncertainties associated with each of these variables may be correlated. In this paper, we examine the covariance terms in the uncertainty propagation, and quantify the correlation among the uncertainties of each of the variables in question
Elbashir, B. O.; Dong, M. G.; Sayyed, M. I.; Issa, Shams A. M.; Matori, K. A.; Zaid, M. H. M.
2018-06-01
The mass attenuation coefficients (μ/ρ), effective atomic numbers (Zeff) and electron densities (Ne) of some amino acids obtained experimentally by the other researchers have been calculated using MCNP5 simulations in the energy range 0.122-1.330 MeV. The simulated values of μ/ρ, Zeff, and Ne were compared with the previous experimental work for the amino acids samples and a good agreement was noticed. Moreover, the values of mean free path (MFP) for the samples were calculated using MCNP5 program and compared with the theoretical results obtained by XCOM. The investigation of μ/ρ, Zeff, Ne and MFP values of amino acids using MCNP5 simulations at various photon energies when compared with the XCOM values and previous experimental data for the amino acids samples revealed that MCNP5 code provides accurate photon interaction parameters for amino acids.
International Nuclear Information System (INIS)
Uwamino, Y.; Nakamura, T.
1983-01-01
Attenuation of neutrons and photons transmitted through grahite, iron, water and ordinary concrete assemblies were studied using gold foils for thermal neutron and an NE-213 organic scintillation detector with an (n-γ) discrimination technique for spectral measurements. Source neutrons and photons were produced by 52-MeV proton bombardment of a 21.4-mm-thick graphite target placed in front of the assembly. The distributions of the light output from the scintillator were unfolded by the revised FERDO code. These experimental results were used as benchmark data on neutron and photon penetration by neutrons energy above 15MeV. Multigroup Monte Carlo, one-dimensional ANISN and two-dimensional DOT-3.5 transport calculations were performed with the DLC-58/HELLO group cross sections to compare with the measurement and to evaluate the cross sections. The DOT code was also used for the estimation of room-scattered neutron and photon contribution to the measured spectra. The results of the ANISN calculation of neutrons and the three-dimensional Monte Carlo calculation agreed with the experimental values except for high energy neutrons transmitted through water and graphite. The agreement of both calculations was well within the accuracy of 7% in the measured attenuation coefficients. For photons, the ANISN calculation gave >20% overestimation of the attenuation coefficients in the case of deep penetration through the medium for which the photon mean-free-path is shorter than that of neutrons, such as in iron and concrete. The result of the DOT calculation of neutrons down to thermal energy agreed well with the gold foil measurement in the absolute value. (author)
Attenuation correction for SPECT
International Nuclear Information System (INIS)
Hosoba, Minoru
1986-01-01
Attenuation correction is required for the reconstruction of a quantitative SPECT image. A new method for detecting body contours, which are important for the correction of tissue attenuation, is presented. The effect of body contours, detected by the newly developed method, on the reconstructed images was evaluated using various techniques for attenuation correction. The count rates in the specified region of interest in the phantom image by the Radial Post Correction (RPC) method, the Weighted Back Projection (WBP) method, Chang's method were strongly affected by the accuracy of the contours, as compared to those by Sorenson's method. To evaluate the effect of non-uniform attenuators on the cardiac SPECT, computer simulation experiments were performed using two types of models, the uniform attenuator model (UAM) and the non-uniform attenuator model (NUAM). The RPC method showed the lowest relative percent error (%ERROR) in UAM (11 %). However, 20 to 30 percent increase in %ERROR was observed for NUAM reconstructed with the RPC, WBP, and Chang's methods. Introducing an average attenuation coefficient (0.12/cm for Tc-99m and 0.14/cm for Tl-201) in the RPC method decreased %ERROR to the levels for UAM. Finally, a comparison between images, which were obtained by 180 deg and 360 deg scans and reconstructed from the RPC method, showed that the degree of the distortion of the contour of the simulated ventricles in the 180 deg scan was 15 % higher than that in the 360 deg scan. (Namekawa, K.)
Bulk sample self-attenuation correction by transmission measurement
International Nuclear Information System (INIS)
Parker, J.L.; Reilly, T.D.
1976-01-01
Various methods used in either finding or avoiding the attenuation correction in the passive γ-ray assay of bulk samples are reviewed. Detailed consideration is given to the transmission method, which involves experimental determination of the sample linear attenuation coefficient by measuring the transmission through the sample of a beam of gamma rays from an external source. The method was applied to box- and cylindrically-shaped samples
Investigation of multilayered nanocomposites as low energy X-Rays attenuators
Energy Technology Data Exchange (ETDEWEB)
Silva, Liliane; Batista, Adriana S.M.; Nascimento, Jefferson P.; Furtado, Clascídia A.; Faria, Luiz O., E-mail: asfisica@gmail.com, E-mail: adriananuclear@yahoo.com.br, E-mail: farialo@cdtn.br, E-mail: nascimentopatricio@yahoo.com.br, E-mail: clas@cdtn.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil); Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)
2017-11-01
The development of radiation attenuating materials has application in radioprotection and conditioning of short-lived waste. Polymeric materials can serve as a matrix for the dispersion of nanomaterials with good attenuation features, resulting in lightweight, conformable, flexible and easy-to-process materials. Thus, some well-known shielding materials could be used in low proportion for the formation of new materials. On the other hand, nanostructured carbon materials, such as graphene oxide (GO) and carbon nanotubes (NTCs), have been reported recently to show enhanced attenuation properties. In this sense, polymeric matrixes provide the necessary flexibility for use in various applications that require molding. For the present work, poly(vinylidene fluoride) [PVDF] homopolymers and its fluorinated copolymers were filled with nanosized metallic and graphene oxides in order to produce nanocomposites with increased low energy X-ray attenuation efficiency. Film samples of PVDF/reduced Graphene Oxide [PVDF/rGO] and Poly(vinylidene fluoride – tryfluorethylene)/Barium Oxide [P(VDF-TrFE)/BaO] were synthesized. In a second step, the samples were then sandwiched between Kapton® layers and exposed to X-rays source (8.5 keV). The samples were characterized with Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). The attenuation coefficient was evaluated and compared with the attenuation of the individual constituents. It was observed an increase in the linear attenuation coefficient of the layered materials, justifying further investigation of these nanostructured composites as X-ray or gamma radiation attenuators. (author)
Investigation of multilayered nanocomposites as low energy X-Rays attenuators
International Nuclear Information System (INIS)
Silva, Liliane; Batista, Adriana S.M.; Nascimento, Jefferson P.; Furtado, Clascídia A.; Faria, Luiz O.
2017-01-01
The development of radiation attenuating materials has application in radioprotection and conditioning of short-lived waste. Polymeric materials can serve as a matrix for the dispersion of nanomaterials with good attenuation features, resulting in lightweight, conformable, flexible and easy-to-process materials. Thus, some well-known shielding materials could be used in low proportion for the formation of new materials. On the other hand, nanostructured carbon materials, such as graphene oxide (GO) and carbon nanotubes (NTCs), have been reported recently to show enhanced attenuation properties. In this sense, polymeric matrixes provide the necessary flexibility for use in various applications that require molding. For the present work, poly(vinylidene fluoride) [PVDF] homopolymers and its fluorinated copolymers were filled with nanosized metallic and graphene oxides in order to produce nanocomposites with increased low energy X-ray attenuation efficiency. Film samples of PVDF/reduced Graphene Oxide [PVDF/rGO] and Poly(vinylidene fluoride – tryfluorethylene)/Barium Oxide [P(VDF-TrFE)/BaO] were synthesized. In a second step, the samples were then sandwiched between Kapton® layers and exposed to X-rays source (8.5 keV). The samples were characterized with Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). The attenuation coefficient was evaluated and compared with the attenuation of the individual constituents. It was observed an increase in the linear attenuation coefficient of the layered materials, justifying further investigation of these nanostructured composites as X-ray or gamma radiation attenuators. (author)
Actinide L-line ED-XRF and Hybrid K-edge Densitometer Spectra Processing
International Nuclear Information System (INIS)
Esbelin, E.
2015-01-01
The analysis laboratory in the CEA Atalante complex at Marcoule (France) performs numerous R and D studies carried out in glove-boxes or in hot cells. Most of the samples are measured in liquid phase, aqueous or organic. The concentration of the main actinides of interest (U, Np, Pu, Am and Cm) are determined by XRF in a hot cell via their L-line X-ray between 13 and 15 keV. In order to limit the counting rate of many radioactive emitters (X-ray and gamma emitters) in the analysis solution and the continuous spectrum, a graphite monochromator is placed between the sample and detector. Commercial or free, the software packages available for processing X-ray spectra are designed and dedicated to a specific instrument and/or do not take into account the specific feature of our system, in other words, the presence of a monochromator. Therefore, a new X-ray analysis software programme was developed for this particular system which takes into account matrix effects corrections. For sample with U and/or Pu in high concentrations, the hybrid K-edge densitometer is used. A new software programme was also developed. For K-edge densitometry spectra processing, no calibration process is used. Spectra processing is based on theoretical equation and uses XCOM database for mass attenuation coefficients. Measured spectra on K-edge densitometer of Rokkasho Safeguards Analytical Laboratory were processed with this software and a very good agreement was found with IDTIMS results. The new graphical user interface allows to manually correct the defined edge. For the XRF spectra processing, new algorithms are used to define the base line and to find/integrate peaks. With these two analytical devices in laboratory, U and Pu concentrations can be measured from 0.5 mg/l to several hundred of g/l. (author)
Weinstock, B André; Guiney, Linda M; Loose, Christopher
2012-11-01
We have developed a rapid, nondestructive analytical method that estimates the thickness of a surface polymer layer with high precision but unknown accuracy using a single attenuated total reflection Fourier transform infrared (ATR FT-IR) measurement. Because the method is rapid, nondestructive, and requires no sample preparation, it is ideal as a process analytical technique. Prior to implementation, the ATR FT-IR spectrum of the substrate layer pure component and the ATR FT-IR and real refractive index spectra of the surface layer pure component must be known. From these three input spectra a synthetic mid-infrared spectral matrix of surface layers 0 nm to 10,000 nm thick on substrate is created de novo. A minimum statistical distance match between a process sample's ATR FT-IR spectrum and the synthetic spectral matrix provides the thickness of that sample. We show that this method can be used to successfully estimate the thickness of polysulfobetaine surface modification, a hydrated polymeric surface layer covalently bonded onto a polyetherurethane substrate. A database of 1850 sample spectra was examined. Spectrochemical matrix-effect unknowns, such as the nonuniform and molecularly novel polysulfobetaine-polyetherurethane interface, were found to be minimal. A partial least squares regression analysis of the database spectra versus their thicknesses as calculated by the method described yielded an estimate of precision of ±52 nm.
Electron attenuation in free, neutral ethane clusters.
Winkler, M; Myrseth, V; Harnes, J; Børve, K J
2014-10-28
The electron effective attenuation length (EAL) in free, neutral ethane clusters has been determined at 40 eV kinetic energy by combining carbon 1s x-ray photoelectron spectroscopy and theoretical lineshape modeling. More specifically, theory is employed to form model spectra on a grid in cluster size (N) and EAL (λ), allowing N and λ to be determined by optimizing the goodness-of-fit χ(2)(N, λ) between model and observed spectra. Experimentally, the clusters were produced in an adiabatic-expansion setup using helium as the driving gas, spanning a range of 100-600 molecules in mean cluster size. The effective attenuation length was determined to be 8.4 ± 1.9 Å, in good agreement with an independent estimate of 10 Å formed on the basis of molecular electron-scattering data and Monte Carlo simulations. The aggregation state of the clusters as well as the cluster temperature and its importance to the derived EAL value are discussed in some depth.
Ultrasonic attenuation as a function of heat treatment and grain size in 79Ni--6Mo--15Fe alloy
International Nuclear Information System (INIS)
Gieske, J.H.
1978-03-01
A pulse echo ultrasonic technique was used to measure the attenuation coefficient for 79Ni-6Mo-15Fe alloy specimens. The attenuation coefficient was determined using a 25 MHz ultrasonic transducer for specimens which had undergone different time-temperature heat treatments. The ultrasonic attenuation data versus heat treat time was used to assess grain size growth in the specimens
International Nuclear Information System (INIS)
Henry, L.J.; Rosenthal, M.S.
1992-01-01
We report results of scatter simulations for both point and distributed sources of 99m Tc in symmetrical non-uniform attenuating media. The simulations utilized Monte Carlo techniques and were tested against experimental phantoms. Both point and ring sources were used inside a 10.5 cm radius acrylic phantom. Attenuating media consisted of combinations of water, ground beef (to simulate muscle mass), air and bone meal (to simulate bone mass). We estimated/measured energy spectra, detector efficiencies and peak height ratios for all cases. In all cases, the simulated spectra agree with the experimentally measured spectra within 2 SD. Detector efficiencies and peak height ratios also are in agreement. The Monte Carlo code is able to properly model the non-uniform attenuating media used in this project. With verification of the simulations, it is possible to perform initial evaluation studies of scatter correction algorithms by evaluating the mechanisms of action of the correction algorithm on the simulated spectra where the magnitude and sources of scatter are known. (author)
Tarim, Urkiye Akar; Ozmutlu, Emin N.; Yalcin, Sezai; Gundogdu, Ozcan; Bradley, D. A.; Gurler, Orhan
2017-11-01
A Monte Carlo method was developed to investigate radiation shielding properties of bismuth borate glass. The mass attenuation coefficients and half-value layer parameters were determined for different fractional amounts of Bi2O3 in the glass samples for the 356, 662, 1173 and 1332 keV photon energies. A comparison of the theoretical and experimental attenuation coefficients is presented.
Energy Technology Data Exchange (ETDEWEB)
Arcos P, A.; Rodriguez N, S.; Pinedo S, A.; Amador V, P.; Chacon R, A.; Vega C, H.R. [Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)
2005-07-01
It was determined the lineal attenuation coefficient of hepatic tissue before gamma radiation of a source of {sup 137} Cs. When exposing organic material before X or gamma radiation fields, part of the energy of the photons is absorbed by the material, while another part crosses it without producing any effect. The quantity of energy that is absorbed is a measure of the dose that receives the material. The three main mechanisms by means of which the gamma rays interacting with the matter are: The Photoelectric Effect, the Compton dispersion and the Even production; the sum of these three processes is translated in the attenuation coefficient of the radiation. In this work we have used hepatic tissue of bovine, as substitute of the human hepatic tissue, and we have measured the lineal attenuation coefficient for photons of 0.662 MeV. Through a series of calculations we have determined the lineal attenuation coefficient for photons from 10{sup -3} to 10{sup -5} MeV and the measured coefficient was compared with the one calculated. (Author)
Ali, E. S. M.; Spencer, B.; McEwen, M. R.; Rogers, D. W. O.
2015-02-01
In this study, a quantitative estimate is derived for the uncertainty in the XCOM photon mass attenuation coefficients in the energy range of interest to external beam radiation therapy—i.e. 100 keV (orthovoltage) to 25 MeV—using direct comparisons of experimental data against Monte Carlo models and theoretical XCOM data. Two independent datasets are used. The first dataset is from our recent transmission measurements and the corresponding EGSnrc calculations (Ali et al 2012 Med. Phys. 39 5990-6003) for 10-30 MV photon beams from the research linac at the National Research Council Canada. The attenuators are graphite and lead, with a total of 140 data points and an experimental uncertainty of ˜0.5% (k = 1). An optimum energy-independent cross section scaling factor that minimizes the discrepancies between measurements and calculations is used to deduce cross section uncertainty. The second dataset is from the aggregate of cross section measurements in the literature for graphite and lead (49 experiments, 288 data points). The dataset is compared to the sum of the XCOM data plus the IAEA photonuclear data. Again, an optimum energy-independent cross section scaling factor is used to deduce the cross section uncertainty. Using the average result from the two datasets, the energy-independent cross section uncertainty estimate is 0.5% (68% confidence) and 0.7% (95% confidence). The potential for energy-dependent errors is discussed. Photon cross section uncertainty is shown to be smaller than the current qualitative ‘envelope of uncertainty’ of the order of 1-2%, as given by Hubbell (1999 Phys. Med. Biol 44 R1-22).
Earthquake spectra and near-source attenuation in the Cascadia subduction zone
Gomberg, J.; Creager, K.; Sweet, J.; Vidale, J.; Ghosh, A.; Hotovec, A.
2012-05-01
Models of seismic source displacement spectra are flat from zero to some corner frequency, fc, regardless of source type. At higher frequencies spectral models decay as f-1 for slow events and as f-2 for fast earthquakes. We show that at least in Cascadia, wave propagation effects likely control spectral decay rates above ˜2 Hz. We use seismograms from multiple small-aperture arrays to estimate the spectral decay rates of near-source spectra of 37 small `events' and find strong correlation between source location and decay rate. The decay rates (1) vary overall by an amount in excess of that inferred to distinguish slow sources from fast earthquakes, (2) are indistinguishable for sources separated by a few tens of km or less, and (3) separate into two populations that correlate with propagation through and outside a low-velocity zone imaged tomographically. We find that some events repeat, as is characteristic of low-frequency earthquakes (LFEs), but have spectra similar to those of non-repeating earthquakes. We also find no correlation between spectral decay rates and rates of ambient tremor activity. These results suggest that earthquakes near the plate boundary, at least in Cascadia, do not distinctly separate into `slow' and `fast' classes, and correctly accounting for propagation effects is necessary to characterize sources.
Comparative attenuation spectra of liquid skin-like phantoms
CSIR Research Space (South Africa)
Singh, A
2010-09-01
Full Text Available 4000). In addition to µt absorption and reduced scattering coefficients (μa and μs') can be extracted from a calibration model consisting of a matrix of elements of known μa and μs', created using different concentrations of Intralipid (20... signal for the SP measurements. While the current results indicate good agreement, these samples will be further investigated on a double IS system which is considered better for the extraction of μa and μs'. The optical properties obtained...
Effective atomic numbers (Z_e_f_f) of based calcium phosphate biomaterials: a comparative study
International Nuclear Information System (INIS)
Fernandes Zenobio, Madelon Aparecida; Gonçalves Zenobio, Elton; Silva, Teógenes Augusto da; Socorro Nogueira, Maria do
2016-01-01
This study determined the interaction of radiation parameters of four biomaterials as attenuators to measure the transmitted X-rays spectra, the mass attenuation coefficient and the effective atomic number by spectrometric system comprising the CdTe detector. The biomaterial BioOss"® presented smaller mean energy than the other biomaterials. The μ/ρ and Z_e_f_f of the biomaterials showed their dependence on photon energy. The data obtained from analytical methods of x-ray spectra, µ/ρ and Z_e_f_f_, using biomaterials as attenuators, demonstrated that these materials could be used as substitutes for dentin, enamel and bone. Further, they are determinants for the characterization of the radiation in tissues or equivalent materials. - Highlights: • Measure of the transmitted x-rays spectra using based calcium phosphate biomaterials as attenuators. • Determination effective atomic number using four dental biomaterials. • Determination of the mass attenuation coefficient (µ/ρ) of the biomaterials samples calculated by the WinXCOM software. • Determination of the chemical composition of calcium phosphate biomaterials.
An attenuated projector-backprojector for iterative SPECT reconstruction
International Nuclear Information System (INIS)
Gullberg, G.T.; Pelc, N.J.; Huesman, R.H.; Budinger, T.F.; Malko, J.A.
1985-01-01
A new ray-driven projector-backprojector which can easily be adapted for hardware implementation is described and simulated in software. The projector-backprojector discretely models the attenuated Radon transform of a source distributed within an attenuating medium as line integrals of discrete pixels, obtained using the standard sampling technique of averaging the emission source or attenuation distribution over small square regions. Attenuation factors are calculated for each pixel during the projection and backprojection operations instead of using precalculated values. The calculation of the factors requires a specification of the attenuation distribution, estimated either from an assumed constant distribution and an approximate body outline or from transmission measurements. The distribution of attenuation coefficients is stored in memory for efficient access during the projection and backprojection operations. The reconstruction of the source distribution is obtained by using a conjugate gradient or SIRT type iterative algorithm which requires one projection and one backprojection operation for each iteration. (author)
International Nuclear Information System (INIS)
Rosado, Paulo Henrique Goncalves
2008-01-01
Two sets of quantities are import in radiological protection: the protection and operational quantities. Both sets can be related to basic physical quantities such as kerma through conversion coefficients. For diagnostic x-ray beams the conversion coefficients and backscatter factors have not been determined yet, those parameters are need for calibrating dosimeters that will be used to determine the personal dose equivalent or the entrance skin dose. Conversion coefficients between air kerma and personal dose equivalent and backscatter factors were experimentally determined for the diagnostic x-ray qualities RQR and RQA recommended by the International Electrotechnical Commission (IEC). The air kerma in the phantom and the mean energy of the spectrum were measured for such purpose. Harshaw LiF-100H thermoluminescent dosemeters (TLD) were used for measurements after being calibrated against an 180 cm 3 Radcal Corporation ionization chamber traceable to a reference laboratory. A 300 mm x 300 mm x 150 mm polymethylmethacrylate (PMMA) slab phantom was used for deep-dose measurements. Tl dosemeters were placed in the central axis of the x-ray beam at 5, 10, 15, 25 and 35 mm depth in the phantom upstream the beam direction Another required parameter for determining the conversion coefficients from was the mean energy of the x-ray spectrum. The spectroscopy of x-ray beams was done with a CdTe semiconductor detector that was calibrated with 133 Ba, 241 Am and 57 Co radiation sources. Measurements of the x-ray spectra were carried out for all RQR and RQA IEC qualities. Corrections due to the detector intrinsic efficiency, total energy absorption, escape fraction of the characteristic x-rays, Compton effect and attenuation in the detector were done aiming an the accurate determination of the mean energy. Measured x-ray spectra were corrected with the stripping method by using these response functions. The typical combined standard uncertainties of conversion coefficients and
Directory of Open Access Journals (Sweden)
R. E. Mamouri
2009-09-01
Full Text Available We present initial aerosol validation results of the space-borne lidar CALIOP -onboard the CALIPSO satellite- Level 1 attenuated backscatter coefficient profiles, using coincident observations performed with a ground-based lidar in Athens, Greece (37.9° N, 23.6° E. A multi-wavelength ground-based backscatter/Raman lidar system is operating since 2000 at the National Technical University of Athens (NTUA in the framework of the European Aerosol Research LIdar NETwork (EARLINET, the first lidar network for tropospheric aerosol studies on a continental scale. Since July 2006, a total of 40 coincidental aerosol ground-based lidar measurements were performed over Athens during CALIPSO overpasses. The ground-based measurements were performed each time CALIPSO overpasses the station location within a maximum distance of 100 km. The duration of the ground–based lidar measurements was approximately two hours, centred on the satellite overpass time. From the analysis of the ground-based/satellite correlative lidar measurements, a mean bias of the order of 22% for daytime measurements and of 8% for nighttime measurements with respect to the CALIPSO profiles was found for altitudes between 3 and 10 km. The mean bias becomes much larger for altitudes lower that 3 km (of the order of 60% which is attributed to the increase of aerosol horizontal inhomogeneity within the Planetary Boundary Layer, resulting to the observation of possibly different air masses by the two instruments. In cases of aerosol layers underlying Cirrus clouds, comparison results for aerosol tropospheric profiles become worse. This is attributed to the significant multiple scattering effects in Cirrus clouds experienced by CALIPSO which result in an attenuation which is less than that measured by the ground-based lidar.
International Nuclear Information System (INIS)
Langenback, E.G.; Foster, W.M.; Bergofsky, E.H.
1989-01-01
We determined the overall external counting efficiency of radiolabeled particles deposited in the sheep lung. This efficiency permits the noninvasive calculation of the number of particles and microcuries from gamma-scintillation lung images of the live sheep. Additionally, we have calculated the attenuation of gamma radiation (120 keV) by the posterior chest wall and the gamma-scintillation camera collection efficiency of radiation emitted from the lung. Four methods were employed in our experiments: (1) by light microscopic counting of discrete carbonized polystyrene particles with a count median diameter (CMD) of 2.85 microns and tagged with cobalt-57, we delineated a linear relationship between the number of particles and the emitted counts per minute (cpm) detected by well scintillation counting; (2) from this conversion relationship we determined the number of particles inhaled and deposited in the lungs by scintillation counting fragments of dissected lung at autopsy; (3) we defined a linear association between the number of particles or microcuries contained in the lung and the emitted radiation as cpm detected by a gamma scintillation camera in the live sheep prior to autopsy; and (4) we compared the emitted radiation from the lungs of the live sheep to that of whole excised lungs in order to calculate the attenuation coefficient (ac) of the chest wall. The mean external counting efficiency was 4.00 X 10(4) particles/cpm (5.1 X 10(-3) microCi/cpm), the camera collection efficiency was 1 cpm/10(4) disintegrations per minute (dpm), and the ac had a mean of 0.178/cm. The external counting efficiency remained relatively constant over a range of particles and microcuries, permitting a more general use of this ratio to estimate number of particles or microcuries depositing after inhalation in a large mammalian lung if a similarly collimated gamma camera system is used
On the attenuation of x-rays and gamma-rays in dilute solutions
DEFF Research Database (Denmark)
Gerward, Leif
1996-01-01
The theory of X-ray and gamma-ray attenuation in solutions is developed. The rule of mixture for the calculation of mass and linear attenuation coefficients is elaborated in the general case as well as in the limit of extreme dilution. The validity of the latter approximation is illustrated...... by the attenuation of 17.443 keV X-rays in aqueous solutions of NaCl. Copyright (C) 1996 Elsevier Science Ltd...
Factors influencing seismic wave attenuation in the lithosphere in continental rift zones
Directory of Open Access Journals (Sweden)
А. А. Dobrynina
2017-01-01
Full Text Available Attenuation of seismic waves in the crust and the upper mantle has been studied in three global rift systems: the Baikal rift system (Eurasia, the North Tanzanian divergence zone (Africa and the Basin and Range Province (North America. Using the records of direct and coda waves of regional earthquakes, the single scattering theory [Aki, Chouet, 1975], the hybrid model from [Zeng, 1991] and the approach described in [Wennerberg, 1993], we estimated the seismic quality factor (QC, frequency parameter (n, attenuation coefficient (δ, and total attenuation (QT. In addition, we evaluated the contributions of two components into total attenuation: intrinsic attenuation (Qi, and scattering attenuation (Qsc. Values of QC are strongly dependent on the frequency within the range of 0.2–16 Hz, as well as on the length of the coda processing window. The observed increase of QC with larger lengths of the coda processing window can be interpreted as a decrease in attenuation with increasing depth. Having compared the depth variations in the attenuation coefficient (δ and the frequency (n with the velocity structures of the studied regions, we conclude that seismic wave attenuation changes at the velocity boundaries in the medium. Moreover, the comparison results show that the estimated variations in the attenuation parameters with increasing depth are considerably dependent on utilized velocity models of the medium. Lateral variations in attenuation of seismic waves correlate with the geological and geophysical characteristics of the regions, and attenuation is primarily dependent on the regional seismic activity and regional heat flow. The geological inhomogeneities of the medium and the age of crust consolidation are secondary factors. Our estimations of intrinsic attenuation (Qi and scattering attenuation (Qsc show that in all the three studied regions, intrinsic attenuation is the major contributor to total attenuation. Our study shows that the
Measurement of attenuation cross-sections of some fatty acids in the ...
Indian Academy of Sciences (India)
These quantities were obtained by utilizing experimentally measured values of mass attenuation coefficients ( μ m ) . A NaI(Tl) scintillation detector with 8.2% (at 662 keV) resolution was used for detecting of attenuated γ -photons. The variation in Zeff and Neff of fatty acids with energy is discussed. The experimental and ...
60Co γ-ray attenuation coefficient of barite concrete
International Nuclear Information System (INIS)
Bouzarjomehri, F.; Bayat, T.; Dashti, M. H.; Ghisari, J.; Abdoli, N.
2006-01-01
Recently, the use of medium and high energy X-rays has increased in Iran, and radiotherapy centers along with a variety of accelerators have been installed in some provinces. Hence, there is not sufficient skill in designing and installing radiotherapy treatment rooms. This study was conducted to evaluate the efficacy of different mixtures of barite concrete for shielding the radiotherapy rooms. This way, we have emphasized on determining the size and amount of barite aggregations to achieve the maximum radiation attenuation which leads to minimizing wall thickness in treatment room. Materials and Methods: To increase concrete density, the barite aggregation was added to concrete. Different size variations of barite aggregates mixed with different water/cement ratio were examined. The dimension of cubic concrete specimens for compression strength test was 15*15*15 cm. The rectangular barite concrete blocks with different compressions as used for strength test with cross section of 10*10 cm, and thicknesses from 5 to 40 cm were used for radiation attenuation test. To do so, concrete specimens were irradiated by gamma beam of 60 Co (Phoenix Theratron). The transmission radiation through the blocks was measured by a Farmer ionization chamber (Fc 65 P). Results: Our findings showed that in all specimens the highest mean compression strength was related to the specimens with equal ratio of fine to coarse barite aggregates, but the lowest half value layer was obtained from mixtures with fine to coarse ratio of 35/65. The concrete sample with a 0.45 water/cement ratio, 350 kg/m3 cement and equal amounts of fine and coarse barite sands had nearly minimum half value layer (half value layer), and maximum compression strength, so the sample was considered as the best barite concrete sample. Conclusion: Since half value layer of the barite concrete specimens with the same compression strength is markedly lower than the conventional concrete, and that there are quite a number
A Java-platform software for the evaluation of mass attenuation and ...
African Journals Online (AJOL)
A computer software was written for the evaluation of mass attenuation coefficient (μ/ρ) and mass energy-absorption coefficient (μ /ρ) for body tissues and substitutes of arbitrary elemental composition and en percentage-by-weight of elemental constituents using the Java development platform which could run on any ...
Ueno, Nami; Wakabayashi, Tomonari; Morisawa, Yusuke
2018-05-01
We measured the attenuated total reflectance-far ultraviolet (ATR-FUV) spectra of poly(ethylene glycol) (PEG; average molecular weights of 200, 300, and 400) and related materials in the liquid state in the 145-200-nm wavelength region. For appropriately assigning the absorption bands, we also performed theoretical simulation of the unit-number dependent electronic spectra. The FUV spectra of PEGs contain three bands, which are assigned to the transitions between n(CH2OCH2)-3s Rydberg state (176 nm), n(CH2OCH2)-3p Rydberg state (163 nm), and n(OH)-3p Rydberg state (153 nm). Since the contribution of n(OH) decreases compared to n(CH2OCH2) with increase in the number of units, the ratios of the molar absorption coefficients, ε, at 153 nm relative to 163 nm, decrease. On the other hand, the ratio of ε at 176 nm to that at 163 nm increases with increase in the number of units, because of the difference in the number of unoccupied orbitals in the transitions. The calculated results suggest that n orbitals form two electronic bands. In the upper band, the electrons expand over the ether chain, whereas in the lower band, the electrons are localized in the terminal OH in the PEGs.
Comprehensive analysis of earthquake source spectra in southern California
Shearer, Peter M.; Prieto, Germán A.; Hauksson, Egill
2006-01-01
We compute and analyze P wave spectra from earthquakes in southern California between 1989 and 2001 using a method that isolates source-, receiver-, and path-dependent terms. We correct observed source spectra for attenuation using both fixed and spatially varying empirical Green's function methods. Estimated Brune-type stress drops for over 60,000 M_L = 1.5 to 3.1 earthquakes range from 0.2 to 20 MPa with no dependence on moment or local b value. Median computed stress drop increases with de...
Absorption coefficient instrument for turbid natural waters
Friedman, E.; Cherdak, A.; Poole, L.; Houghton, W.
1980-01-01
The paper presents an instrument that directly measures multispectral absorption coefficient of turbid natural water. Attention is given to the design, which is shown to incorporate methods for the compensation of variation in the internal light source intensity, correction of the spectrally dependent nature of the optical elements, and correction for variation in the background light level. In addition, when used in conjunction with a spectrally matched total attenuation instrument, the spectrally dependent scattering coefficient can also be derived. Finally, it is reported that systematic errors associated with multiple scattering have been estimated using Monte Carlo techniques.
Mann, Kulwinder Singh
2018-01-01
Scattered photon's influence on measured values of attenuation coefficients (μm, cm2g-1) for six low-Z (effective atomic number) building materials, at three photon energies has been estimated. Narrow-beam transmission geometry has been used for the measurements. Samples of commonly used engineering materials (Cements, Clay, Lime-Stone, Plaster of Paris) have been selected for the present study. Standard radioactive sources Cs137 and Co60 have been used for obtaining γ-ray energies 661.66, 1173.24 and 1332.50 keV. The optical thickness (OT) of 0.5 mfp (mean free path) has been found the optimum optical thickness (OOT) for μm-measurement in the selected energy range (661.66-1332.50 keV). The aim of this investigation is to provide neglected information regarding subsistence of scattered photons in narrow beam geometry measurements for low-Z materials. The measurements have been performed for a wide range of sample-thickness (2-26 cm) such that their OT varies between 0.2-3.5 mfp in selected energy range. A computer program (GRIC2-toolkit) has been used for various theoretical computations required in this investigation. It has been concluded that in selected energy-range, good accuracy in μm-measurement of low-Z materials can be achieved by keeping their sample's OT below 0.5 mfp. The exposure buildup factors have been measured with the help of mathematical-model developed in this investigation.
Sorption Coefficients for Iodine, Silver, and Cesium on Dust Particles
International Nuclear Information System (INIS)
Stempniewicz, M.M.; Goede, P.
2014-01-01
This paper describes the work performed to find relevant experimental data and find the sorption coefficients that represent well the available data for cesium, iodine, and silver on dust particles. The purpose of this work is to generate a set of coefficients that may be recommended for the computer code users. The work was performed using the computer code SPECTRA. Calculations were performed for the following data: • I-131 on AVR dust; • Ag-110m on AVR dust; • Cs-13 and Cs-137 on AVR dust. Available data was matched using the SPECTRA Sorption Model. S = A(T) · C_V-B(T) · C_d. The results are summarized as follows: • The available data can be correlated. The data scatter is about 4 orders of magnitude. Therefore the coefficients of the Langmuir isotherms vary by 4 orders of magnitude. • Sorption rates are higher at low temperatures and lower at high temperatures. This tendency has been observed in the data compiled at Oak Ridge. It is therefore surmised that the highest value of the sorption coefficients are appropriate for the low temperatures and the lowest value of the sorption coefficients are appropriate for the high temperatures. The recommended sorption coefficients are presented in this paper. • The present set of coefficients is very rough and should be a subject for future verification against experimental data. (author)
Nam, Kibo; Rosado-Mendez, Ivan M.; Wirtzfeld, Lauren A.; Ghoshal, Goutam; Pawlicki, Alexander D.; Madsen, Ernest L.; Lavarello, Roberto J.; Oelze, Michael L.; Zagzebski, James A.; O’Brien, William D.; Hall, Timothy J.
2013-01-01
Backscatter and attenuation coefficient estimates are needed in many quantitative ultrasound strategies. In clinical applications, these parameters may not be easily obtained because of variations in scattering by tissues overlying a region of interest (ROI). The goal of this study is to assess the accuracy of backscatter and attenuation estimates for regions distal to nonuniform layers of tissue-mimicking materials. In addition, this work compares results of these estimates for “layered” phantoms scanned using different clinical ultrasound machines. Two tissue-mimicking phantoms were constructed, each exhibiting depth-dependent variations in attenuation or backscatter. The phantoms were scanned with three ultrasound imaging systems, acquiring radio frequency echo data for offline analysis. The attenuation coefficient and the backscatter coefficient (BSC) for sections of the phantoms were estimated using the reference phantom method. Properties of each layer were also measured with laboratory techniques on test samples manufactured during the construction of the phantom. Estimates of the attenuation coefficient versus frequency slope, α0, using backscatter data from the different systems agreed to within 0.24 dB/cm-MHz. Bias in the α0 estimates varied with the location of the ROI. BSC estimates for phantom sections whose locations ranged from 0 to 7 cm from the transducer agreed among the different systems and with theoretical predictions, with a mean bias error of 1.01 dB over the used bandwidths. This study demonstrates that attenuation and BSCs can be accurately estimated in layered inhomogeneous media using pulse-echo data from clinical imaging systems. PMID:23160474
Zhang, Lei; Jia, Mingchun; Gong, Junjun; Xia, Wenming
2017-08-01
The linear attenuation coefficient, mass attenuation coefficient and mean free path of various Lead-Boron Polyethylene (PbBPE) samples which can be used as the photon shielding materials in marine reactor have been simulated using the Monte Carlo N-Particle (MCNP)-5 code. The MCNP simulation results are in good agreement with the XCOM values and the reported experimental data for source Cesium-137 and Cobalt-60. Thus, this method based on MCNP can be used to simulate the photon attenuation characteristics of various types of PbBPE materials.
Brillouin scattering, piezobirefringence, and dispersion of photoelastic coefficients of CdS and ZnO
DEFF Research Database (Denmark)
Berkowicz, R.; Skettrup, Torben
1975-01-01
We have measured the dispersion of the Brillouin scattering from acoustoelectrical domains in CdS and ZnO. These spectra are compared with the birefringence spectra obtained by applying uniaxial stress. The resonant cancellation of the Brillouin scattering occurs at the spectral position of the i......We have measured the dispersion of the Brillouin scattering from acoustoelectrical domains in CdS and ZnO. These spectra are compared with the birefringence spectra obtained by applying uniaxial stress. The resonant cancellation of the Brillouin scattering occurs at the spectral position...... of the isotropic point of the stress-induced birefringence. From these spectra it is concluded that the Brillouin scattering in CdS and ZnO is determined by elasto-optic effects alone. The spectra of some of the photoelastic coefficients have been determined. A model dielectric constant is derived where both....... It is found that the exchange interaction between the excitons may change the values of the photoelastic coefficients in ZnO about 10%....
Vacuum ultraviolet (VUV) absorption spectra of chromatin and its components
International Nuclear Information System (INIS)
Dodonova, N.Y.; Kiseleva, M.N.; Petrov, M.Y.; Tsyganenko, N.M.; Bubyakina, V.V.; Chikhirzhina, G.I.
1984-01-01
The electron absorption spectra of thin films of chromatin and chromatin components in the ultraviolet region (140-280 nm) were investigated. The absorption coefficients μ(lambda) of chromatin, nucleosomes with and without histone H1, total histones (TH), and DNA were compared. The spectra of nucleosomes differ from the sum-spectrum of DNA plus TH. The chromatin and nucleosome spectra are not similar in the spectral region of 190-160 nm. The lack of additivity of absorption coefficients at different wavelengths may be explained by different conformational changes of DNA, TH in nucleosomes and chromatin during the process of drying aqueous solutions for the preparation of thin films. The μ(lambda) values are useful for an estimate of the DNA and TH absorption in chromatin and nucleosomes in discussing UV and VUV irradiation damages. (Auth.)
S-wave attenuation structure beneath the northern Izu-Bonin arc
Takahashi, Tsutomu; Obana, Koichiro; Kodaira, Shuichi
2016-04-01
To understand temperature structure or magma distribution in the crust and uppermost mantle, it is essential to know their attenuation structure. This study estimated the 3-D S-wave attenuation structure in the crust and uppermost mantle at the northern Izu-Bonin arc, taking into account the apparent attenuation due to multiple forward scattering. In the uppermost mantle, two areas of high seismic attenuation (high Q -1) imaged beneath the volcanic front were mostly colocated with low-velocity anomalies. This coincidence suggests that these high- Q -1 areas in low-velocity zones are the most likely candidates for high-temperature regions beneath volcanoes. The distribution of random inhomogeneities indicated the presence of three anomalies beneath the volcanic front: Two were in high- Q -1 areas but the third was in a moderate- Q -1 area, indicating a low correlation between random inhomogeneities and Q -1. All three anomalies of random inhomogeneities were rich in short-wavelength spectra. The most probable interpretation of such spectra is the presence of volcanic rock, which would be related to accumulated magma intrusion during episodes of volcanic activity. Therefore, the different distributions of Q -1 and random inhomogeneities imply that the positions of hot regions in the uppermost mantle beneath this arc have changed temporally; therefore, they may provide important constraints on the evolutionary processes of arc crust and volcanoes.
DEFF Research Database (Denmark)
Bruun, Susanne Wrang; Kohler, Achim; Adt, Isabelle
2006-01-01
an absorption band from either water vapor or CO(2). From two calibration data sets, gas model spectra were estimated in each of the four spectral regions, and these model spectra were applied for correction of gas absorptions in two independent test sets (spectra of aqueous solutions and a yeast biofilm (C...... of the growing yeast biofilm, the gas correction revealed otherwise hidden variations of relevance for modeling the growth dynamics. As the presented method improved the interpretation of the principle component analysis (PCA) models, it has proven to be a valuable tool for filtering atmospheric variation in ATR...
International Nuclear Information System (INIS)
Tekin, H.O.; Singh, V.P.; Manici, T.
2017-01-01
In the present work the effect of tungsten oxide (WO_3) nanoparticles on mass attenauation coefficients of concrete has been investigated by using MCNPX (version 2.4.0). The validation of generated MCNPX simulation geometry has been provided by comparing the results with standard XCOM data for mass attenuation coefficients of concrete. A very good agreement between XCOM and MCNPX have been obtained. The validated geometry has been used for definition of nano-WO_3 and micro-WO_3 into concrete sample. The mass attenuation coefficients of pure concrete and WO_3 added concrete with micro-sized and nano-sized have been compared. It was observed that shielding properties of concrete doped with WO_3 increased. The results of mass attenauation coefficients also showed that the concrete doped with nano-WO_3 significanlty improve shielding properties than micro-WO_3. It can be concluded that addition of nano-sized particles can be considered as another mechanism to reduce radiation dose. - Highlights: • It was found that size of the WO_3 affected the mass attenuation coefficients of concrete in all photon energies.
Çevik, U.; Baltaş, H.
2007-03-01
The mass attenuation coefficients for Bi, Pb, Sr, Ca, Cu metals, Bi2O3, PbO, SrCO3, CaO, CuO compounds and solid-state forms of Bi1.7Pb0.3Sr2Ca2Cu3O10 superconductor were determined at 57.5, 65.2, 77.1, 87.3, 94.6, 122 and 136 keV energies. The samples were irradiated using a 57Co point source emitted 122 and 136 keV γ-ray energies. The X-ray energies were obtained using secondary targets such as Ta, Bi2O3 and (CH3COO)2UO22H2O. The γ- and X-rays were counted by a Si(Li) detector with a resolution of 0.16 keV at 5.9 keV. The effect of absorption edges on electron density, effective atomic numbers and their variation with photon energy in composite superconductor samples was discussed. Obtained values were compared with theoretical values.
Attenuation of the gamma rays in tissues; Atenuacion de los rayos gamma en tejidos
Energy Technology Data Exchange (ETDEWEB)
Arcos P, A.; Rodriguez N, S.; Pinedo S, A.; Amador V, P.; Chacon R, A.; Vega C, H.R. [Unidad Academica de Estudios Nucleares, Cipres 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)
2005-07-01
The mass and lineal attenuation coefficient and of hepatic tissue, muscular, osseous and of brain before gamma rays of 10{sup -3} to 10{sup 5} MeV were calculated. For the case of the osseous tissue the calculation was made for the cartilage, the cortical tissue and the bone marrow. During the calculations the elementary composition of the tissues of human origin was used. The calculations include by separate the Photoelectric effect, the Compton scattering and the Pair production, as well as the total. For to establish a comparison with the attenuation capacities, the coefficients of the water, the aluminum and the lead also were calculated. The study was complemented measuring the attenuation coefficient of hepatic tissue of bovine before gamma rays of 0.662 MeV of a source of {sup 137} Cs. The measurement was made through of an experiment of photons transmission through samples frozen of hepatic tissue and with a Geiger-Mueller detector. (Author)
Some Methods for Calculating Competition Coefficients from Resource-Utilization Spectra.
Schoener, Thomas W
When relative frequencies of resource kinds in the diet are known, the competition coefficient giving the effect of competitor j on i may be computed as \\documentclass{aastex} \\usepackage{amsbsy} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{bm} \\usepackage{mathrsfs} \\usepackage{pifont} \\usepackage{stmaryrd} \\usepackage{textcomp} \\usepackage{portland,xspace} \\usepackage{amsmath,amsxtra} \\usepackage{wasysym} \\pagestyle{empty} \\DeclareMathSizes{10}{9}{7}{6} \\begin{document}$$\\alpha_{ij}=\\left(\\frac{T_{j}}{T_{i}}\\right)\\left[\\frac{{\\sum\\limits_{k=1}^{m}}(d_{ik}/f_{k})\\:(d_{jk}/f_{k})\\:b_{ik}}{\\sum\\limits_{k=1}^{m}(d_{ik}/f_{k})^{2}\\:b_{ik}}\\right],$$\\end{document} where T j /T i = the ratio of the number of items consumed by an individual of competitor j to that consumed by an individual of competitor i, measured over an interval of time that includes all regular fluctuations in consumption for both species; d ik = the frequency of resource k in the diet of competitor i (and similarly for d jk ); f k = the standing frequency of resource k in the environment; b ik = the net calories gained by an individual of competitor i from an item of resource k, or more approximately the calories contained in an item of resource k, or still more approximately the weight or volume of an item of resource k; and the summations are taken over all resources eaten by at least one of the competing species. The coefficient follows from MacArthur's (1968) consumer-resource system when the ratio of the carrying capacity to intrinsic rate of increase is constant for all resources. When relative frequencies of time spent foraging in habitat kinds are known, the competition coefficient may be computed as \\documentclass{aastex} \\usepackage{amsbsy} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{bm} \\usepackage{mathrsfs} \\usepackage{pifont} \\usepackage{stmaryrd} \\usepackage{textcomp} \\usepackage{portland,xspace} \\usepackage
Zhang, J.; Xia, T.; Chen, Q.; Sun, Q.; Deng, Y.; Wang, C.
2018-03-01
The characteristic absorption spectra of paraformaldehyde and metaldehyde in the terahertz frequency region are obtained by terahertz time-domain spectroscopy (THz-TDS). In order to reduce the absorption of terahertz (THz) wave by water vapor in the air and the background noise, the measurement system was filled with dry air and the measurements were conducted at the temperature of 24°C. Meanwhile, the humidity was controlled within 10% RH. The THz frequency domain spectra of samples and their references from 0 to 2.5 THz were analyzed via Fourier transform. The refractive index and absorption coefficients of the two aldehydes were calculated by the model formulas. From 0.1 to 2.5 THz, there appear two weak absorption peaks at 1.20 and 1.66 THz in the absorption spectra of paraformaldehyde. Only one distinct absorption peak emerges at 1.83 THz for metaldehyde. There are significant differences between the terahertz absorption coefficients of paraformaldehyde and metaldehyde, which can be used as "fingerprints" to identify these substances. Furthermore, the relationship between the average absorption coefficients and mass concentrations was investigated and the average absorption coefficient-mass concentration diagrams of paraformaldehyde and metaldehyde were shown. For paraformaldehyde, there is a linear relationship between the average absorption coefficient and the natural logarithm of mass concentration. For metaldehyde, there exists a simpler linear relationship between the average absorption coefficient and the mass concentration. Because of the characteristics of THz absorption of paraformaldehyde and metaldehyde, the THz-TDS can be applied to the qualitative and quantitative detection of the two aldehydes to reduce the unpredictable hazards due to these substances.
PET/MRI in the presence of metal implants: Completion of the attenuation map from PET emission data
DEFF Research Database (Denmark)
Fuin, Niccolo; Pedemonte, Stefano; Catalano, Onofrio A.
2017-01-01
of radioactivity and attenuation from the emission data to determine the position, shape, and linear attenuation coefficient (LAC) of metallic implants. Methods: The initial estimate of the attenuation map was obtained using the MR Dixon method currently available on the Siemens Biograph mMR scanner...
An examination on the correction of attenuation for calculating the renal RI accumulation
International Nuclear Information System (INIS)
Onoue, Koichi; Tachibana, Keizo; Maeda, Yoshihiro; Yanoo, Sanae; Morishita, Etsuko; Kawanaka, Masahiro; Kashiwagi, Toru; Fukuchi, Minoru
1999-01-01
An examination was made on the attenuation coefficients for calculation of true renal accumulation rate together with the precision of measurement of depth in the kidney. Kidney phantom for attenuation coefficients was a 20 x 20 cm cube where water was filled and radioactivity source of 99m Tc was placed at various depths. Radioactivity was measured by four kinds of scinti-camera with the collimator LEGP and LEHR. The phantom for radioactivity accumulation in the kidney was a 10 x 5 x 1, 3 or 5 cm box where 99m Tc solution of the standard 30 MBq was filled, and subjected to radioactivity measurement from various angles. Phantom radioactivity was found corrected by the effective attenuation coefficient, 0.131 cm, within the range of 98-114% of the standard counts. The precision of measurement of the depth was examined in sideways scintigrams obtained in clinical practice and was found to have the deviation of 1.1 cm as the mean of maximum ones and the variation coefficient of 7.1%. Measured depth was found to be well correlated with estimated ones by the method of Tonnesen or Ito which had the maximum deviation of 5.4 or 3.5 cm, respectively. (K.H.)
Lei, Ning; Chiang, Kwo-Fu; Oudrari, Hassan; Xiong, Xiaoxiong
2011-01-01
Optical sensors aboard Earth orbiting satellites such as the next generation Visible/Infrared Imager/Radiometer Suite (VIIRS) assume that the sensors radiometric response in the Reflective Solar Bands (RSB) is described by a quadratic polynomial, in relating the aperture spectral radiance to the sensor Digital Number (DN) readout. For VIIRS Flight Unit 1, the coefficients are to be determined before launch by an attenuation method, although the linear coefficient will be further determined on-orbit through observing the Solar Diffuser. In determining the quadratic polynomial coefficients by the attenuation method, a Maximum Likelihood approach is applied in carrying out the least-squares procedure. Crucial to the Maximum Likelihood least-squares procedure is the computation of the weight. The weight not only has a contribution from the noise of the sensor s digital count, with an important contribution from digitization error, but also is affected heavily by the mathematical expression used to predict the value of the dependent variable, because both the independent and the dependent variables contain random noise. In addition, model errors have a major impact on the uncertainties of the coefficients. The Maximum Likelihood approach demonstrates the inadequacy of the attenuation method model with a quadratic polynomial for the retrieved spectral radiance. We show that using the inadequate model dramatically increases the uncertainties of the coefficients. We compute the coefficient values and their uncertainties, considering both measurement and model errors.
Bezrukov, Ilja; Schmidt, Holger; Gatidis, Sergios; Mantlik, Frédéric; Schäfer, Jürgen F; Schwenzer, Nina; Pichler, Bernd J
2015-07-01
Pediatric imaging is regarded as a key application for combined PET/MR imaging systems. Because existing MR-based attenuation-correction methods were not designed specifically for pediatric patients, we assessed the impact of 2 potentially influential factors: inter- and intrapatient variability of attenuation coefficients and anatomic variability. Furthermore, we evaluated the quantification accuracy of 3 methods for MR-based attenuation correction without (SEGbase) and with bone prediction using an adult and a pediatric atlas (SEGwBONEad and SEGwBONEpe, respectively) on PET data of pediatric patients. The variability of attenuation coefficients between and within pediatric (5-17 y, n = 17) and adult (27-66 y, n = 16) patient collectives was assessed on volumes of interest (VOIs) in CT datasets for different tissue types. Anatomic variability was assessed on SEGwBONEad/pe attenuation maps by computing mean differences to CT-based attenuation maps for regions of bone tissue, lungs, and soft tissue. PET quantification was evaluated on VOIs with physiologic uptake and on 80% isocontour VOIs with elevated uptake in the thorax and abdomen/pelvis. Inter- and intrapatient variability of the bias was assessed for each VOI group and method. Statistically significant differences in mean VOI Hounsfield unit values and linear attenuation coefficients between adult and pediatric collectives were found in the lungs and femur. The prediction of attenuation maps using the pediatric atlas showed a reduced error in bone tissue and better delineation of bone structure. Evaluation of PET quantification accuracy showed statistically significant mean errors in mean standardized uptake values of -14% ± 5% and -23% ± 6% in bone marrow and femur-adjacent VOIs with physiologic uptake for SEGbase, which could be reduced to 0% ± 4% and -1% ± 5% using SEGwBONEpe attenuation maps. Bias in soft-tissue VOIs was less than 5% for all methods. Lung VOIs showed high SDs in the range of 15% for
Measurement of X-ray attenuation coefficients around K-absorption edges using Fe Kα X-rays
International Nuclear Information System (INIS)
Kerur, B.R.; Thontadarya, S.R.; Hanumaiah, B.
1993-01-01
The x-ray mass attenuation coefficients were measured around the K-absorption edges of elements in the range 16 ≤ Z ≤ 30 using Fe Kα x-rays of energy 6.400 keV, which is the weighted average energy of Kα 1 and Kα 2 x-ray components from the 57 Co radioactive source. Kβ x-rays were almost eliminated by the differential absorption technique. The small difference in energy between Kα 1 and Kα 2 , 13 eV, was shown to be inconsequential by comparing the measured and theoretical values of μ/ρ for standard materials such as Al, Cu, Mo and Ta. The effect of fine structure of the K-absorption edge on μ/ρ was elucidated by using the compounds of elements in the range 16 ≤ X ≤ 30, containing one element with its K-absorption edge energy (E k ) close to the incident photon energy (E x ). The results clearly indicate the validity of the theoretical mixture rule for all those compounds whose K edge is far away from the incident energy but show deviations of as much as 10% for the manganese compound whose K edge is 140 eV above E x and about 12% for the chromium compound whose K edge is 410 eV below E x . These deviations are attributed to the possible influence of resonance Raman scattering when the incident photon energy E x is less than the edge and to the influence of EXAFS when E x is more than the edge energy. (Author)
Statistical analysis and digital processing of the Mössbauer spectra
International Nuclear Information System (INIS)
Prochazka, Roman; Tucek, Jiri; Mashlan, Miroslav; Pechousek, Jiri; Tucek, Pavel; Marek, Jaroslav
2010-01-01
This work is focused on using the statistical methods and development of the filtration procedures for signal processing in Mössbauer spectroscopy. Statistical tools for noise filtering in the measured spectra are used in many scientific areas. The use of a pure statistical approach in accumulated Mössbauer spectra filtration is described. In Mössbauer spectroscopy, the noise can be considered as a Poisson statistical process with a Gaussian distribution for high numbers of observations. This noise is a superposition of the non-resonant photons counting with electronic noise (from γ-ray detection and discrimination units), and the velocity system quality that can be characterized by the velocity nonlinearities. The possibility of a noise-reducing process using a new design of statistical filter procedure is described. This mathematical procedure improves the signal-to-noise ratio and thus makes it easier to determine the hyperfine parameters of the given Mössbauer spectra. The filter procedure is based on a periodogram method that makes it possible to assign the statistically important components in the spectral domain. The significance level for these components is then feedback-controlled using the correlation coefficient test results. The estimation of the theoretical correlation coefficient level which corresponds to the spectrum resolution is performed. Correlation coefficient test is based on comparison of the theoretical and the experimental correlation coefficients given by the Spearman method. The correctness of this solution was analyzed by a series of statistical tests and confirmed by many spectra measured with increasing statistical quality for a given sample (absorber). The effect of this filter procedure depends on the signal-to-noise ratio and the applicability of this method has binding conditions
Statistical analysis and digital processing of the Mössbauer spectra
Prochazka, Roman; Tucek, Pavel; Tucek, Jiri; Marek, Jaroslav; Mashlan, Miroslav; Pechousek, Jiri
2010-02-01
This work is focused on using the statistical methods and development of the filtration procedures for signal processing in Mössbauer spectroscopy. Statistical tools for noise filtering in the measured spectra are used in many scientific areas. The use of a pure statistical approach in accumulated Mössbauer spectra filtration is described. In Mössbauer spectroscopy, the noise can be considered as a Poisson statistical process with a Gaussian distribution for high numbers of observations. This noise is a superposition of the non-resonant photons counting with electronic noise (from γ-ray detection and discrimination units), and the velocity system quality that can be characterized by the velocity nonlinearities. The possibility of a noise-reducing process using a new design of statistical filter procedure is described. This mathematical procedure improves the signal-to-noise ratio and thus makes it easier to determine the hyperfine parameters of the given Mössbauer spectra. The filter procedure is based on a periodogram method that makes it possible to assign the statistically important components in the spectral domain. The significance level for these components is then feedback-controlled using the correlation coefficient test results. The estimation of the theoretical correlation coefficient level which corresponds to the spectrum resolution is performed. Correlation coefficient test is based on comparison of the theoretical and the experimental correlation coefficients given by the Spearman method. The correctness of this solution was analyzed by a series of statistical tests and confirmed by many spectra measured with increasing statistical quality for a given sample (absorber). The effect of this filter procedure depends on the signal-to-noise ratio and the applicability of this method has binding conditions.
Abdoli, Mehrsima; Ay, Mohammad Reza; Ahmadian, Alireza; Zaidi, Habib
Objective Attenuation correction of PET data requires accurate determination of the attenuation map (mu map), which represents the spatial distribution of linear attenuation coefficients of different tissues at 511 keV. The presence of high-density metallic dental filling material in head and neck
Radiation attenuation by lead and nonlead materials used in radiation shielding garments
International Nuclear Information System (INIS)
McCaffrey, J. P.; Shen, H.; Downton, B.; Mainegra-Hing, E.
2007-01-01
The attenuating properties of several types of lead (Pb)-based and non-Pb radiation shielding materials were studied and a correlation was made of radiation attenuation, materials properties, calculated spectra and ambient dose equivalent. Utilizing the well-characterized x-ray and gamma ray beams at the National Research Council of Canada, air kerma measurements were used to compare a variety of commercial and pre-commercial radiation shielding materials over mean energy ranges from 39 to 205 keV. The EGSnrc Monte Carlo user code cavity.cpp was extended to provide computed spectra for a variety of elements that have been used as a replacement for Pb in radiation shielding garments. Computed air kerma values were compared with experimental values and with the SRS-30 catalogue of diagnostic spectra available through the Institute of Physics and Engineering in Medicine Report 78. In addition to garment materials, measurements also included pure Pb sheets, allowing direct comparisons to the common industry standards of 0.25 and 0.5 mm 'lead equivalent'. The parameter 'lead equivalent' is misleading, since photon attenuation properties for all materials (including Pb) vary significantly over the energy spectrum, with the largest variations occurring in the diagnostic imaging range. Furthermore, air kerma measurements are typically made to determine attenuation properties without reference to the measures of biological damage such as ambient dose equivalent, which also vary significantly with air kerma over the diagnostic imaging energy range. A single material or combination cannot provide optimum shielding for all energy ranges. However, appropriate choice of materials for a particular energy range can offer significantly improved shielding per unit mass over traditional Pb-based materials
Utilization of barite/cement composites for gamma rays attenuation
Sakr, Khaled; Ramadan, Wageeh; Sayed, Magda; El-Zakla, Tarek; El-Desouqy, Mohamed; El-Faramawy, Nabil
2018-04-01
The present work is directed to investigate the contribution of adding barite aggregates to cement as a shielding material for radioactive wastes disposal facilities. The percentages of barite from 5% up to 20% mixed with cement with different grain sizes were examined. Mechanical and physical properties such as compressive strength, wet and dry densities, water absorption, and porosity have been investigated. The thermogravimetric analysis and X-ray diffraction were used to examine the thermal stability and the characterizations of studied samples, respectively. The linear attenuation coefficient, mean free path, half value layer, and transmission fraction were evaluated. All the nuclear shielding parameters revealed the uppermost values for cement mixed with 5% barite of size range 250-600 µm. The attenuation coefficient of the investigated samples displayed an increase by more than 125% than that of neat cement.
Application of Wavelets and Quaternions to NIR Spectra Classification
International Nuclear Information System (INIS)
Barcala Riveira, J. M.; Fernandez Marron, J. L.; Alberdi Primicia, J.; Navarrete Marin, J. J.; Oller Gonzalez, J.C.
2003-01-01
This document describes how multi resolution analysis can combine with the use of quaternions to identify near infrared spectra. The method is applied to spectra of plastics usually present in domestic wastes. First, Haar wavelet is applied to spectrum. With the coefficients obtained, a quaternion is built. We named this quaternion a characteristic quaternion. Distances to characteristic quaternions are used to classify new quaternions. (Author) 54 refs
Spectroscopic Measurements of the Far-Ultraviolet Dust Attenuation Curve at z ˜ 3
Reddy, Naveen A.; Steidel, Charles C.; Pettini, Max; Bogosavljević, Milan
2016-09-01
We present the first spectroscopic measurements of the shape of the far-ultraviolet (far-UV; λ =950{--}1500 Å) dust attenuation curve at high redshift (z˜ 3). Our analysis employs rest-frame UV spectra of 933 galaxies at z˜ 3, 121 of which have very deep spectroscopic observations (≳ 7 hr) at λ =850{--}1300 \\mathring{{A}} , with the Low Resolution Imaging Spectrograph on the Keck Telescope. By using an iterative approach in which we calculate the ratios of composite spectra in different bins of continuum color excess, E(B-V), we derive a dust curve that implies a lower attenuation in the far-UV for a given E(B-V) than those obtained with standard attenuation curves. We demonstrate that the UV composite spectra of z˜ 3 galaxies can be modeled well by assuming our new attenuation curve, a high covering fraction of H I, and absorption from the Lyman-Werner bands of {{{H}}}2 with a small (≲ 20 % ) covering fraction. The low covering fraction of {{{H}}}2 relative to that of the {{H}} {{I}} and dust suggests that most of the dust in the ISM of typical galaxies at z˜ 3 is unrelated to the catalysis of {{{H}}}2, and is associated with other phases of the ISM (I.e., the ionized and neutral gas). The far-UV dust curve implies a factor of ≈ 2 lower dust attenuation of Lyman continuum (ionizing) photons relative to those inferred from the most commonly assumed attenuation curves for L* galaxies at z˜ 3. Our results may be utilized to assess the degree to which ionizing photons are attenuated in H II regions or, more generally, in the ionized or low column density (N({{H}} {{I}})≲ {10}17.2 cm-2) neutral ISM of high-redshift galaxies. Based on data obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA, and was made possible by the generous financial support of the W.M. Keck Foundation.
International Nuclear Information System (INIS)
Kupchishin, A.A.; Kupchishin, A.I.; Stusik, G.; Omarbekova, Zh.
2001-01-01
Peculiarities of approximation for reactor neutron energy spectra during radiation defects computerized simulation were discussed. Approximation of neutron spectra N(E) was carried out by N(E)=α·exp(-β·E)·sh(γ·E) formula (1), where α, β, γ - approximation coefficients. In the capacity of operating reactor data experimental data on 235 U and 239 Pu were applied. The algorithm was designed, and acting soft ware for spectra parameters calculation was developed. The following values of approximation parameters were obtained: α=80.8; β=0.935;γ=2.04 (for uranium and plutonium these coefficients are less distinguishing). Then with use of formula 1 and α, β, γ coefficients the approximation curves were constructed. These curves satisfactorily describe existing experimental data and allowing to use its for radiation defects simulation in the reactor materials
Energy Technology Data Exchange (ETDEWEB)
Wunderle, K [Cleveland Clinic Foundation, Cleveland, OH (United States); Wayne State University School of Medicine, Detroit, MI (United States); Godley, A; Shen, Z; Dong, F [Cleveland Clinic Foundation, Cleveland, OH (United States); Rakowski, J [Wayne State University School of Medicine, Detroit, MI (United States)
2016-06-15
Purpose: The purpose of this investigation is to quantify various first half-value-layers (HVLs), second HVLs and homogeneity coefficients (HCs) for a state-of-the-art fluoroscope utilizing spectral (copper) filtration. Methods: A Radcal (Monrovia, Ca) AccuPro dosimeter with a 10×6-6 calibrated ionization chamber was used to measure air kerma for radiographic x-ray exposures made on a Siemens (Erlangen, Germany) Artis ZeeGo fluoroscope operated in the service mode. The ionization chamber was centered in the x-ray beam at 72 cm from the focal spot with a source-to-image-distance of 120 cm. The collimators were introduced to limit the x-ray field to approximately 5 cm × 5 cm at the ionization chamber plane. Type-1100 aluminum filters, in 0.5 mm increments, were used to determine the HVL. Two HVL calculation methods were used, log-linear interpolation and Lambert-W interpolation as described by Mathieu [Med Phys, 38(8), 4546 (2011)]. Multiple measurements were made at 60, 80, 100, 120 kVp at spectral filtration thicknesses of 0, 0.1, 0.3, 0.6 and 0.9 mm. Results: First HVL, second HVL, and HCs are presented for the fluoroscopic x-ray beam spectra indicated above, with nearly identical results from the two interpolation methods. Accuracy of the set kVp was also determined and deviated less than 2%. First HVLs for fluoroscopic x-ray beam spectra without spectral filtration determined in our study were 7%–16% greater than previously published data by Fetterly et al. [Med Phys, 28, 205 (2001)]. However, the FDA minimum HVL requirements changed since that publication, requiring larger HVLs as of 2006. Additionally, x-ray tube and generator architecture have substantially changed over the last 15 years providing different beam spectra. Conclusion: X-ray beam quality characteristics for state-of-the-art fluoroscopes with spectral filtration have not been published. This study provides reference data which will be useful for defining beam qualities encountered on
A practical attenuation compensation method for cone beam spect
International Nuclear Information System (INIS)
Manglos, S.H.; Jaszczak, R.J.; Floyd, C.E.; Greer, K.L.; Coleman, R.E.
1987-01-01
An algorithm for attenuation compensation of cone beam SPECT images has been developed and implemented. The algorithm is based on a multiplicative post-processing method previously used for parallel and fan beam geometries. This method computes the compensation from the estimated average attenuation of photons originating from each image pixel. In the present development, a uniform attenuation coefficient inside of the body contour is assumed, although the method could be extended to include a non-uniform attenuation map. The algorithm is tested with experimental projections of a phantom obtained using a cone beam collimator. Profiles through the reconstructed images are presented as a quantitative test of the improvement due to the compensation. The algorithm provides adequate compensation for attenuation in a simple uniform cylindrical phantom, and the computational time is short compared to that expected for iterative reconstruction techniques. Also observed are image distortions in some reconstructed slices when the source distribution extends beyond the edge of the cone beam axial field-of-view
Photoluminescence emission spectra of Makrofol® DE 1-1 upon irradiation with ultraviolet radiation
El Ghazaly, M.; Aydarous, Abdulkadir
Photoluminescence (PL) emission spectra of Makrofol® DE 1-1 (bisphenol-A based polycarbonate) upon irradiation with ultraviolet radiation of different wavelengths were investigated. The absorption-and attenuation coefficient measurements revealed that the Makrofol® DE 1-1 is characterized by high absorbance in the energy range 6.53-4.43 eV but for a lower energy than 4.43 eV, it is approximately transparent. Makrofol® DE 1-1 samples were irradiated with ultraviolet radiation of wavelength in the range from 250 (4.28 eV) to 400 (3.10 eV) nm in step of 10 nm and the corresponding photoluminescence (PL) emission spectra were measured with a spectrofluorometer. It is found that the integrated counts and the peak height of the photoluminescence emission (PL) bands are strongly correlated with the ultraviolet radiation wavelength. They are increased at the ultraviolet radiation wavelength 280 nm and have maximum at 290 nm, thereafter they decrease and diminish at 360 nm of ultraviolet wavelength. The position of the PL emission band peak was red shifted starting from 300 nm, which increased with the increase the ultraviolet radiation wavelength. The PL bandwidth increases linearly with the increase of the ultraviolet radiation wavelength. When Makrofol® DE 1-1 is irradiated with ultraviolet radiation of short wavelength (UVC), the photoluminescence emission spectra peaks also occur in the UVC but of a relatively longer wavelength. The current new findings should be considered carefully when using Makrofol® DE 1-1 in medical applications related to ultraviolet radiation.
Effects of methods of attenuation correction on source parameter determination
Sonley, Eleanor; Abercrombie, Rachel E.
We quantify the effects of using different approaches to model individual earthquake spectra. Applying different approaches can introduce significant variability in the calculated source parameters, even when applied to the same data. To compare large and small earthquake source parameters, the results of multiple studies need to be combined to extend the magnitude range, but the variability introduced by the different approaches hampers the outcome. When studies are combined, there is large uncertainty and large scatter and some systematic differences have been neglected. We model individual earthquake spectra from repeating earthquakes (M˜2) at Parkfield, CA, recorded by a borehole network. We focus on the effects of trade-offs between attenuation (Q) and corner frequency in spectral fitting and the effect of the model shape at the corner frequency on radiated energy. The trade-off between attenuation and corner frequency can increase radiated energy by up to 400% and seismic moment by up to 100%.
An ice-sheet-wide framework for englacial attenuation from ice-penetrating radar data
Jordan, T. M.; Bamber, J. L.; Williams, C. N.; Paden, J. D.; Siegert, M. J.; Huybrechts, P.; Gagliardini, O.; Gillet-Chaulet, F.
2016-07-01
Radar inference of the bulk properties of glacier beds, most notably identifying basal melting, is, in general, derived from the basal reflection coefficient. On the scale of an ice sheet, unambiguous determination of basal reflection is primarily limited by uncertainty in the englacial attenuation of the radio wave, which is an Arrhenius function of temperature. Existing bed-returned power algorithms for deriving attenuation assume that the attenuation rate is regionally constant, which is not feasible at an ice-sheet-wide scale. Here we introduce a new semi-empirical framework for deriving englacial attenuation, and, to demonstrate its efficacy, we apply it to the Greenland Ice Sheet. A central feature is the use of a prior Arrhenius temperature model to estimate the spatial variation in englacial attenuation as a first guess input for the radar algorithm. We demonstrate regions of solution convergence for two input temperature fields and for independently analysed field campaigns. The coverage achieved is a trade-off with uncertainty and we propose that the algorithm can be "tuned" for discrimination of basal melt (attenuation loss uncertainty ˜ 5 dB). This is supported by our physically realistic ( ˜ 20 dB) range for the basal reflection coefficient. Finally, we show that the attenuation solution can be used to predict the temperature bias of thermomechanical ice sheet models and is in agreement with known model temperature biases at the Dye 3 ice core.
Performance Evaluation of the Spectral Centroid Downshift Method for Attenuation Estimation
Samimi, Kayvan; Varghese, Tomy
2015-01-01
Estimation of frequency-dependent ultrasonic attenuation is an important aspect of tissue characterization. Along with other acoustic parameters studied in quantitative ultrasound, the attenuation coefficient can be used to differentiate normal and pathological tissue. The spectral centroid downshift (CDS) method is one the most common frequency-domain approaches applied to this problem. In this study, a statistical analysis of this method’s performance was carried out based on a parametric m...
Comparative analysis of bone mineral contents with dual-energy quantitative computed tomography
International Nuclear Information System (INIS)
Choi, T. J.; Yoon, S. M.; Kim, O. B.; Lee, S. M.; Suh, S. J.
1997-01-01
The Dual-Energy Quantitative Computed Tomography(DEQCT) was compared with bone equivalent K 2 HPO 4 standard solution and ash weight of animal cadaveric trabecular bone in the measurement of bone mineral contents(BMC). The attenuation coefficient of tissues highly depends on the radiation energy, density and effective atomic number of composition. The bone mineral content of DEQCT in this experiments was determined from empirical constants and mass attenuation coefficients of bone, fat and soft tissue equivalent solution in two photon spectra. In this experiments, the BMC of DEQCT with 80 and 120kV p X rays was compared to ash weight of animal trabecular bone. We obtained the mass attenuation coefficient of 0.2409, 0.5608 and 0.2206 in 80kV p , and 0.2046, 0.3273 and 0.1971 cm 2 /g in 120kV p X-ray spectra for water, bone and fat equivalent materials, respectively. The BMC with DEQCT was accomplished with empirical constants K 1 =0.3232, K 2 =0.2450 and mass attenuation coefficients has very closed to ash weight of animal trabecular bone. The BMC of empirical DEQCT and that of manufacturing DEQCT were correlated with ash weight as a correlation r=0.998 and r=0.996, respectively. The BMC of empirical DEQCT using the experimental mass attenuation coefficients and that of manufacture have showed very close to ash weight of animal trabecular bone. (author)
Anelastic attenuation structure of the southern Aegean subduction area
Ventouzi, Chrisanthi; Papazachos, Constantinos; Papaioannou, Christos; Hatzidimitriou, Panagiotis
2014-05-01
The study of the anelastic attenuation structure plays a very important role for seismic wave propagation and provides not only valuable constraints for the Earth's interior (temperature, relative viscosity, slab dehydration and melt transport) but also significant information for the simulation of strong ground motions. In order to investigate the attenuation structure of the broader Southern Aegean subduction area, acceleration spectra of intermediate depth earthquakes produced from data provided by two local networks which operated in the area were used. More specifically, we employed data from approximately 400 intermediate-depth earthquakes, as these were recorded from the EGELADOS seismic monitoring project which consisted of 65 land stations and 24 OBS recorders and operated during 2005-2007, as well as data from the earlier installed CYCNET local network, which operated during 2002-2005. A frequency-independent path attenuation operator t* was computed for both P and S arrivals for each waveform, using amplitude spectra generated by the recorded data of the aforementioned networks. Initially, estimated P and S traveltimes were examined and modeled as a function of epicentral distance for different groups of focal depths, using data from the CYCNET network in order to obtain the expected arrival information when original arrival times were not available. Two approaches to assess the spectral-decay were adopted for t* determination. Initially, an automated approach was used, where t* was automatically calculated from the slope of the acceleration spectrum, assuming an ω2 source model for frequencies above the corner frequency, fc. Estimation of t* was performed in the frequency band of 0.2 to 25 Hz, using only spectra with a signal-to-noise ratio larger than 3 for a frequency range of at least 4Hz for P-waves and 1Hz for S-waves, respectively. In the second approach, the selection of the linearly-decaying part of the spectra where t* was calculated, was
Fuzzy clustering-based segmented attenuation correction in whole-body PET
Zaidi, H; Boudraa, A; Slosman, DO
2001-01-01
Segmented-based attenuation correction is now a widely accepted technique to reduce noise contribution of measured attenuation correction. In this paper, we present a new method for segmenting transmission images in positron emission tomography. This reduces the noise on the correction maps while still correcting for differing attenuation coefficients of specific tissues. Based on the Fuzzy C-Means (FCM) algorithm, the method segments the PET transmission images into a given number of clusters to extract specific areas of differing attenuation such as air, the lungs and soft tissue, preceded by a median filtering procedure. The reconstructed transmission image voxels are therefore segmented into populations of uniform attenuation based on the human anatomy. The clustering procedure starts with an over-specified number of clusters followed by a merging process to group clusters with similar properties and remove some undesired substructures using anatomical knowledge. The method is unsupervised, adaptive and a...
Gamma-ray attenuation studies of PbO-BaO-B2O3 glass system
International Nuclear Information System (INIS)
Singh, Narveer; Singh, Kanwar Jit; Singh, Kulwant; Singh, Harvinder
2006-01-01
PbO-BaO-B 2 O 3 glass system has been investigated in terms of molar mass, mass attenuation coefficient and half value layer parameters by using gamma-ray at 511,662 and 1274keV photon energies. Gamma-ray attenuation coefficients of the prepared glass samples have been compared with tabulations based upon the results of XCOM. Good agreement has been observed between experimental and theoretical tabulations. Our results have uncertainty less than 3%. Radiation shielding properties of the glass system have been compared with some standard radiation shielding concretes
Diffuse Attenuation Coef. K490, Aqua MODIS, 0.125 degrees, Indonesia
National Oceanic and Atmospheric Administration, Department of Commerce — OSU distributes Diffuse Attenuation Coefficient at 490 nm Wavelength data from NASA's Aqua satellite. Measurements are gathered by the Moderate Resolution Imaging...
Azeez, Ali Basheer; Mohammed, Kahtan S; Abdullah, Mohd Mustafa Al Bakri; Hussin, Kamarudin; Sandu, Andrei Victor; Razak, Rafiza Abdul
2013-10-23
Samples of concrete contain various waste materials, such as iron particulates, steel balls of used ball bearings and slags from steel industry were assessed for their anti-radiation attenuation coefficient properties. The attenuation measurements were performed using gamma spectrometer of NaI (Tl) detector. The utilized radiation sources comprised 137 Cs and ⁶⁰Co radioactive elements with photon energies of 0.662 MeV for 137 Cs and two energy levels of 1.17 and 1.33 MeV for the ⁶⁰Co. Likewise the mean free paths for the tested samples were obtained. The aim of this work is to investigate the effect of the waste loading rates and the particulate dispersive manner within the concrete matrix on the attenuation coefficients. The maximum linear attenuation coefficient (μ) was attained for concrete incorporates iron filling wastes of 30 wt %. They were of 1.12 ± 1.31×10 -3 for 137 Cs and 0.92 ± 1.57 × 10 -3 for ⁶⁰Co. Substantial improvement in attenuation performance by 20%-25% was achieved for concrete samples incorporate iron fillings as opposed to that of steel ball samples at different (5%-30%) loading rates. The steel balls and the steel slags gave much inferior values. The microstructure, concrete-metal composite density, the homogeneity and particulate dispersion were examined and evaluated using different metallographic, microscopic and measurement facilities.
PET/MRI in the Presence of Metal Implants: Completion of the Attenuation Map from PET Emission Data.
Fuin, Niccolo; Pedemonte, Stefano; Catalano, Onofrio A; Izquierdo-Garcia, David; Soricelli, Andrea; Salvatore, Marco; Heberlein, Keith; Hooker, Jacob M; Van Leemput, Koen; Catana, Ciprian
2017-05-01
We present a novel technique for accurate whole-body attenuation correction in the presence of metallic endoprosthesis, on integrated non-time-of-flight (non-TOF) PET/MRI scanners. The proposed implant PET-based attenuation map completion (IPAC) method performs a joint reconstruction of radioactivity and attenuation from the emission data to determine the position, shape, and linear attenuation coefficient (LAC) of metallic implants. Methods: The initial estimate of the attenuation map was obtained using the MR Dixon method currently available on the Siemens Biograph mMR scanner. The attenuation coefficients in the area of the MR image subjected to metal susceptibility artifacts are then reconstructed from the PET emission data using the IPAC algorithm. The method was tested on 11 subjects presenting 13 different metallic implants, who underwent CT and PET/MR scans. Relative mean LACs and Dice similarity coefficients were calculated to determine the accuracy of the reconstructed attenuation values and the shape of the metal implant, respectively. The reconstructed PET images were compared with those obtained using the reference CT-based approach and the Dixon-based method. Absolute relative change (aRC) images were generated in each case, and voxel-based analyses were performed. Results: The error in implant LAC estimation, using the proposed IPAC algorithm, was 15.7% ± 7.8%, which was significantly smaller than the Dixon- (100%) and CT- (39%) derived values. A mean Dice similarity coefficient of 73% ± 9% was obtained when comparing the IPAC- with the CT-derived implant shape. The voxel-based analysis of the reconstructed PET images revealed quantification errors (aRC) of 13.2% ± 22.1% for the IPAC- with respect to CT-corrected images. The Dixon-based method performed substantially worse, with a mean aRC of 23.1% ± 38.4%. Conclusion: We have presented a non-TOF emission-based approach for estimating the attenuation map in the presence of metallic implants, to
Lakin, B A; Grasso, D J; Shah, S S; Stewart, R C; Bansal, P N; Freedman, J D; Grinstaff, M W; Snyder, B D
2013-01-01
The aim of this study is to evaluate whether contrast-enhanced computed tomography (CECT) attenuation, using a cationic contrast agent (CA4+), correlates with the equilibrium compressive modulus (E) and coefficient of friction (μ) of ex vivo bovine articular cartilage. Correlations between CECT attenuation and E (Group 1, n = 12) and μ (Group 2, n = 10) were determined using 7 mm diameter bovine osteochondral plugs from the stifle joints of six freshly slaughtered, skeletally mature cows. The equilibrium compressive modulus was measured using a four-step, unconfined, compressive stress-relaxation test, and the coefficients of friction were determined from a torsional friction test. Following mechanical testing, samples were immersed in CA4+, imaged using μCT, rinsed, and analyzed for glycosaminoglycan (GAG) content using the 1,9-dimethylmethylene blue (DMMB) assay. The CECT attenuation was positively correlated with the GAG content of bovine cartilage (R(2) = 0.87, P coefficients of friction: CECT vs μ(static) (R(2) = 0.71, P = 0.002), CECT vs μ(static_equilibrium) (R(2) = 0.79, P coefficient of friction. Copyright © 2012 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Three-dimensional measurement of the local extinction coefficient in a dense spray
International Nuclear Information System (INIS)
Wellander, Rikard; Berrocal, Edouard; Kristensson, Elias; Richter, Mattias; Aldén, Marcus
2011-01-01
Laser extinction, signal attenuation and multiple scattering are the three main phenomena limiting qualitative and quantitative measurements in planar laser imaging of sprays. In this paper, a method is presented where structured laser illumination planar imaging is used to remove the signal contribution from multiply scattered light. Based on this technique, data from side scattering and transmission measurements are obtained simultaneously. An algorithm, compensating for signal attenuation and laser extinction, is further applied to calculate the local extinction coefficient. The method is first demonstrated on a cuvette containing a homogeneous solution of scattering particles with an extinction coefficient μ-bar e = 0.13 mm −1 . Finally the procedure is applied on an air-assisted water spray with a maximum optical depth of OD ∼ 3, where the position-dependent extinction coefficient is extracted within the probed volume. To the best of our knowledge, this paper demonstrates for the first time a method to measure the local μ-bar e within the three dimensions of an inhomogeneous scattering medium using laser sheet illumination, after suppression of the multiple light scattering intensity
Library search with regular reflectance IR spectra
International Nuclear Information System (INIS)
Staat, H.; Korte, E.H.; Lampen, P.
1989-01-01
Characterisation in situ for coatings and other surface layers is generally favourable, but a prerequisite for precious items such as art objects. In infrared spectroscopy only reflection techniques are applicable here. However for attenuated total reflection (ATR) it is difficult to obtain the necessary optical contact of the crystal with the sample, when the latter is not perfectly plane or flexible. The measurement of diffuse reflectance demands a scattering sample and usually the reflectance is very poor. Therefore in most cases one is left with regular reflectance. Such spectra consist of dispersion-like feature instead of bands impeding their interpretation in the way the analyst is used to. Furthermore for computer search in common spectral libraries compiled from transmittance or absorbance spectra a transformation of the reflectance spectra is needed. The correct conversion is based on the Kramers-Kronig transformation. This somewhat time - consuming procedure can be speeded up by using appropriate approximations. A coarser conversion may be obtained from the first derivative of the reflectance spectrum which resembles the second derivative of a transmittance spectrum. The resulting distorted spectra can still be used successfully for the search in peak table libraries. Experiences with both transformations are presented. (author)
A comparative analysis of the degree of stability and damper coefficient of an electric system
Energy Technology Data Exchange (ETDEWEB)
Gruzdev, I.A.; Shakhayeva, O.M.; Tin' , N.V.
1981-01-01
The problem is examined of optimization of parameters of strong action ARV. The technique is given for determining the damper coefficient from SG equations, and based on equivalent circuits. It is shown that use of the damper coefficient for estimating the length of transient processes is only possible for systems with low attenuation.
Tian, Zhen; Huo, Linsheng; Gao, Weihang; Li, Hongnan; Song, Gangbing
2017-10-01
Wave-based concrete structural health monitoring has attracted much attention. A stress wave experiences significant attenuation in concrete, however there is a lack of a unified method for predicting the attenuation coefficient of the stress wave. In this paper, a simple and effective absorption attenuation model of stress waves in concrete is developed based on the Rayleigh damping model, which indicates that the absorption attenuation coefficient of stress waves in concrete is directly proportional to the square of the stress wave frequency when the damping ratio is small. In order to verify the theoretical model, related experiments were carried out. During the experiments, a concrete beam was designed in which the d33-model piezoelectric smart aggregates were embedded to detect the propagation of stress waves. It is difficult to distinguish direct stress waves due to the complex propagation paths and the reflection and scattering of stress waves in concrete. Hence, as another innovation of this paper, a new method for computing the absorption attenuation coefficient based on the time-reversal method is developed. Due to the self-adaptive focusing properties of the time-reversal method, the time-reversed stress wave focuses and generates a peak value. The time-reversal method eliminates the adverse effects of multipaths, reflection, and scattering. The absorption attenuation coefficient is computed by analyzing the peak value changes of the time-reversal focused signal. Finally, the experimental results are found to be in good agreement with the theoretical model.
O' Doherty, Jim; Schleyer, Paul
2017-12-01
Simultaneous cardiac perfusion studies are an increasing trend in PET-MR imaging. During dynamic PET imaging, the introduction of gadolinium-based MR contrast agents (GBCA) at high concentrations during a dual injection of GBCA and PET radiotracer may cause increased attenuation effects of the PET signal, and thus errors in quantification of PET images. We thus aimed to calculate the change in linear attenuation coefficient (LAC) of a mixture of PET radiotracer and increasing concentrations of GBCA in solution and furthermore, to investigate if this change in LAC produced a measurable effect on the image-based PET activity concentration when attenuation corrected by three different AC strategies. We performed simultaneous PET-MR imaging of a phantom in a static scenario using a fixed activity of 40 MBq [18 F]-NaF, water, and an increasing GBCA concentration from 0 to 66 mM (based on an assumed maximum possible concentration of GBCA in the left ventricle in a clinical study). This simulated a range of clinical concentrations of GBCA. We investigated two methods to calculate the LAC of the solution mixture at 511 keV: (1) a mathematical mixture rule and (2) CT imaging of each concentration step and subsequent conversion to LAC at 511 keV. This comparison showed that the ranges of LAC produced by both methods are equivalent with an increase in LAC of the mixed solution of approximately 2% over the range of 0-66 mM. We then employed three different attenuation correction methods to the PET data: (1) each PET scan at a specific millimolar concentration of GBCA corrected by its corresponding CT scan, (2) each PET scan corrected by a CT scan with no GBCA present (i.e., at 0 mM GBCA), and (3) a manually generated attenuation map, whereby all CT voxels in the phantom at 0 mM were replaced by LAC = 0.1 cm -1 . All attenuation correction methods (1-3) were accurate to the true measured activity concentration within 5%, and there were no trends in image
Prediction of spectral acceleration response ordinates based on PGA attenuation
Graizer, V.; Kalkan, E.
2009-01-01
Developed herein is a new peak ground acceleration (PGA)-based predictive model for 5% damped pseudospectral acceleration (SA) ordinates of free-field horizontal component of ground motion from shallow-crustal earthquakes. The predictive model of ground motion spectral shape (i.e., normalized spectrum) is generated as a continuous function of few parameters. The proposed model eliminates the classical exhausted matrix of estimator coefficients, and provides significant ease in its implementation. It is structured on the Next Generation Attenuation (NGA) database with a number of additions from recent Californian events including 2003 San Simeon and 2004 Parkfield earthquakes. A unique feature of the model is its new functional form explicitly integrating PGA as a scaling factor. The spectral shape model is parameterized within an approximation function using moment magnitude, closest distance to the fault (fault distance) and VS30 (average shear-wave velocity in the upper 30 m) as independent variables. Mean values of its estimator coefficients were computed by fitting an approximation function to spectral shape of each record using robust nonlinear optimization. Proposed spectral shape model is independent of the PGA attenuation, allowing utilization of various PGA attenuation relations to estimate the response spectrum of earthquake recordings.
Attenuation correction for the NIH ATLAS small animal PET scanner
Yao, Rutao; Liow, JeihSan; Seidel, Jurgen
2003-01-01
We evaluated two methods of attenuation correction for the NIH ATLAS small animal PET scanner: 1) a CT-based method that derives 511 keV attenuation coefficients (mu) by extrapolation from spatially registered CT images; and 2) an analytic method based on the body outline of emission images and an empirical mu. A specially fabricated attenuation calibration phantom with cylindrical inserts that mimic different body tissues was used to derive the relationship to convert CT values to (I for PET. The methods were applied to three test data sets: 1) a uniform cylinder phantom, 2) the attenuation calibration phantom, and 3) a mouse injected with left bracket **1**8F right bracket FDG. The CT-based attenuation correction factors were larger in non-uniform regions of the imaging subject, e.g. mouse head, than the analytic method. The two methods had similar correction factors for regions with uniform density and detectable emission source distributions.
High-frequency attenuation and backscatter measurements of rat blood between 30 and 60 MHz
International Nuclear Information System (INIS)
Huang, Chih-Chung
2010-01-01
There has recently been a great deal of interest in noninvasive high-frequency ultrasound imaging of small animals such as rats due to their being the preferred animal model for gene therapy and cancer research. Improving the interpretation of the obtained images and furthering the development of the imaging devices require a detailed knowledge of the ultrasound attenuation and backscattering of biological tissue (e.g. blood) at high frequencies. In the present study, the attenuation and backscattering coefficients of the rat red blood cell (RBC) suspensions and whole blood with hematocrits ranging from 6% to 40% were measured between 30 and 60 MHz using a modified substitution approach. The acoustic parameters of porcine blood under the same conditions were also measured in order to compare differences in the blood properties between these two animals. For porcine blood, both whole blood and RBC suspension were stirred at a rotation speed of 200 rpm. Three different rotation speeds of 100, 200 and 300 rpm were carried out for rat blood experiments. The attenuation coefficients of both rat and porcine blood were found to increase linearly with frequency and hematocrit (the values of coefficients of determination (r 2 ) are around 0.82-0.97 for all cases). The average attenuation coefficient of rat whole blood with a hematocrit of 40% increased from 0.26 Nepers mm -1 at 30 MHz to 0.47 Nepers mm -1 at 60 MHz. The maximum backscattering coefficients of both rat and porcine RBC suspensions were between 10% and 15% hematocrits at all frequencies. The fourth-power dependence of backscatter on frequency was approximately valid for rat RBC suspensions with hematocrits between 6% and 40%. However, the frequency dependence of the backscatter estimate deviates from a fourth-power law for porcine RBC suspension with hematocrit higher than 20%. The backscattering coefficient plateaued for hematocrits higher than 15% in porcine blood, but for rat blood it was maximal around a
International Nuclear Information System (INIS)
Ghosh, A.K.; Rao, K.S.; Kushwaha, H.S.
1998-06-01
Earthquake accelerograms recorded on rock and soil sites have been analysed. Site-specific response spectra and peak ground acceleration attenuation relations have been developed. This report presents the normalised pseudo-absolute acceleration spectra for various values of damping and for various confidence levels. Scaling laws have been developed for the response spectra. The present results are based on a large database and comparison has been made with earlier results. These results will be useful in the earthquake resistant design of structures. (author)
Estuarine morphometry governs optically active substances, Kd(PAR) and beam attenuation
DEFF Research Database (Denmark)
Lund-Hansen, L. C.; Nielsen, J. M.; Blüthgen, J.
2013-01-01
estuaries using OACs as input parameters. It is concluded that there are no large differences in OAC concentrations between the two estuaries. The spatial distributions of OACs and optical properties were significantly different and governed by the estuary morphometry, i.e. a power distribution......°N) at high discharges. The major difference was the spatial distribution of the optical properties against distance, best described by significant power functions in the ria, compared to significant linear functions in the coastal plain. It was hypothesized that estuarine morphometry could explain...... this spatial distribution. Partition and multiple regression analyses showed that Chl-a governed Kd(PAR) and beam attenuation coefficient in both estuaries. Significant, high correlations were obtained by multiple regression analyses in the estimation of Kd(PAR) and beam attenuation coefficients in the two...
Hao, Qi
2016-11-21
Seismic-wave attenuation is an important component of describing wave propagation. Certain regions, such as gas clouds inside the earth, exert highly localized attenuation. In fact, the anisotropic nature of the earth induces anisotropic attenuation because the quasi P-wave dispersion effect should be profound along the symmetry direction. We have developed a 2D acoustic eikonal equation governing the complex-valued traveltime of quasi P-waves in attenuating, transversely isotropic media with a vertical-symmetry axis (VTI). This equation is derived under the assumption that the complex-valued traveltime of quasi P-waves in attenuating VTI media are independent of the S-wave velocity parameter υS0 in Thomsen\\'s notation and the S-wave attenuation coefficient AS0 in Zhu and Tsvankin\\'s notation. We combine perturbation theory and Shanks transform to develop practical approximations to the acoustic attenuating eikonal equation, capable of admitting an analytical description of the attenuation in homogeneous media. For a horizontal-attenuating VTI layer, we also derive the nonhyperbolic approximations for the real and imaginary parts of the complex-valued reflection traveltime. These equations reveal that (1) the quasi SV-wave velocity and the corresponding quasi SV-wave attenuation coefficient given as part of Thomsen-type notation barely affect the ray velocity and ray attenuation of quasi P-waves in attenuating VTI media; (2) combining the perturbation method and Shanks transform provides an accurate analytic eikonal solution for homogeneous attenuating VTI media; (3) for a horizontal attenuating VTI layer with weak attenuation, the real part of the complex-valued reflection traveltime may still be described by the existing nonhyperbolic approximations developed for nonattenuating VTI media, and the imaginary part of the complex-valued reflection traveltime still has the shape of nonhyperbolic curves. In addition, we have evaluated the possible extension of the
Attenuation of gamma radiation in concrete shields
International Nuclear Information System (INIS)
Azevedo e Souza, A.C. de.
1978-12-01
The attenuation characteristics of γ radiation in concrete layers considering their mechanical resistence and densities were determined. A 137 Cs source was used in a 'good geometry' arrangement to eliminate the effects of the buildup factor. The ordinary and the heavy concrete were irradiated and for the latter it was used as additives iron ore and Fe 2 O 3 pellets in various grain sizes. The detection system consisted of a 2' x 2' NaI (Tl) crystal coupled to a photomultiplier tube and the associated electronic equipment. FORTRAN programs were used for determining the absorption coefficients and the attenuation factors. These programs calculate photopeak areas eliminating all contributions due to Compton effect and background. (Author) [pt
Midgley, Stewart; Schleich, Nanette
2015-05-01
A novel method for dual-energy X-ray analysis (DEXA) is tested using measurements of the X-ray linear attenuation coefficient μ. The key is a mathematical model that describes elemental cross sections using a polynomial in atomic number. The model is combined with the mixture rule to describe μ for materials, using the same polynomial coefficients. Materials are characterized by their electron density Ne and statistical moments Rk describing their distribution of elements, analogous to the concept of effective atomic number. In an experiment with materials of known density and composition, measurements of μ are written as a system of linear simultaneous equations, which is solved for the polynomial coefficients. DEXA itself involves computed tomography (CT) scans at two energies to provide a system of non-linear simultaneous equations that are solved for Ne and the fourth statistical moment R4. Results are presented for phantoms containing dilute salt solutions and for a biological specimen. The experiment identifies 1% systematic errors in the CT measurements, arising from third-harmonic radiation, and 20-30% noise, which is reduced to 3-5% by pre-processing with the median filter and careful choice of reconstruction parameters. DEXA accuracy is quantified for the phantom as the mean absolute differences for Ne and R4: 0.8% and 1.0% for soft tissue and 1.2% and 0.8% for bone-like samples, respectively. The DEXA results for the biological specimen are combined with model coefficients obtained from the tabulations to predict μ and the mass energy absorption coefficient at energies of 10 keV to 20 MeV.
Azeez, Ali Basheer; Mohammed, Kahtan S.; Abdullah, Mohd Mustafa Al Bakri; Hussin, Kamarudin; Sandu, Andrei Victor; Razak, Rafiza Abdul
2013-01-01
Samples of concrete contain various waste materials, such as iron particulates, steel balls of used ball bearings and slags from steel industry were assessed for their anti-radiation attenuation coefficient properties. The attenuation measurements were performed using gamma spectrometer of NaI (Tl) detector. The utilized radiation sources comprised 137Cs and 60Co radioactive elements with photon energies of 0.662 MeV for 137Cs and two energy levels of 1.17 and 1.33 MeV for the 60Co. Likewise the mean free paths for the tested samples were obtained. The aim of this work is to investigate the effect of the waste loading rates and the particulate dispersive manner within the concrete matrix on the attenuation coefficients. The maximum linear attenuation coefficient (μ) was attained for concrete incorporates iron filling wastes of 30 wt %. They were of 1.12 ± 1.31×10−3 for 137Cs and 0.92 ± 1.57 × 10−3 for 60Co. Substantial improvement in attenuation performance by 20%–25% was achieved for concrete samples incorporate iron fillings as opposed to that of steel ball samples at different (5%–30%) loading rates. The steel balls and the steel slags gave much inferior values. The microstructure, concrete-metal composite density, the homogeneity and particulate dispersion were examined and evaluated using different metallographic, microscopic and measurement facilities. PMID:28788363
A Comparison Of GADRAS Simulated And Measured Gamma Ray Spectra
International Nuclear Information System (INIS)
Jeffcoat, R.; Salaymeh, S.
2010-01-01
Gamma-ray radiation detection systems are continuously being developed and improved for detecting the presence of radioactive material and for identifying isotopes present. Gamma-ray spectra, from many different isotopes and in different types and thicknesses of attenuation material and matrixes, are needed to evaluate the performance of these devices. Recently, a test and evaluation exercise was performed by the Savannah River National Laboratory that required a large number of gamma-ray spectra. Simulated spectra were used for a major portion of the testing in order to provide a pool of data large enough for the results to be statistically significant. The test data set was comprised of two types of data, measured and simulated. The measured data were acquired with a hand-held Radioisotope Identification Device (RIID) and simulated spectra were created using Gamma Detector Response and Analysis Software (GADRAS, Mitchell and Mattingly, Sandia National Laboratory). GADRAS uses a one-dimensional discrete ordinate calculation to simulate gamma-ray spectra. The measured and simulated spectra have been analyzed and compared. This paper will discuss the results of the comparison and offer explanations for spectral differences.
Application of the gamma-ray attenuation on the study of Amianthus-Cement tile with different ages
International Nuclear Information System (INIS)
Marques, Leonardo C.; Simeao, David da Silva; Oliveira, Ricardo Mendes de; Rocha, Wilson Roberto Dejato da; Costa, Elizabeth Cristina Soares da; Portezan Filho, Otavio; Coimbra, Melayne Martins
2005-01-01
In the civil construction, concrete of different resistances are prepared to assist to the objectives of the projects. Concrete samples, prepared in laboratory,can be used in the measurements of the density profiles along the sample, as well as to accompany the space and temporary evolution of the humidity in the process of water infiltration. Other material quite used in the civil construction it is the amianthus-cement tiles, that has good resistance to the deformation. This work intends to evaluate the homogeneity of the amianthus-cement tiles through the gamma-ray attenuation technique, in order to verify the possible existence of fissures or defects in the material, due to the aging and the bad weather. The first tile used was produced in 2002, te second one in 1991 and the third in 1978. Its dimensions were: 130x50x0,4 cm. To manipulate the tiles with easiness, these were divided in samples with the following dimensions: 12x8x0,4 cm. For each sample the linear attenuation coefficient was measured for a horizontal line, totalizing 14 points with an interval of 0,5 cm among the points. The measurement table used has a Na (Tl) scintillation detector of 2 x 2 , with circular collimator of 2 mm (for source) and of 5 mm (for the detector) and a radioactive source of 241 Am (59,6 keV, 100 mCi). With the measured values of the linear attenuation coefficient as a function of the position in the sample, we can build the curves of the linear attenuation coefficient versus position, which represent the homogeneity profile of the sample . The graphs of the linear attenuation coefficient versus position will be presented for the measured tiles as well as the statistical analysis of the results. (author)
International Nuclear Information System (INIS)
Draheim, J.E.; Anderson, G.P.; Duane, J.W.; Gross, E.L.
1986-01-01
The near-ultraviolet absorption and circular dichroic spectra of plastocyanin are dependent upon the redox state, solution pH, and ammonium sulfate concentration. This dependency was observed in plastocyanin isolated from spinach, poplar, and lettuce. Removal of the copper atom also perturbed the near-ultraviolet spectra. Upon reduction there are increases in both extinction and ellipticity at 252 nm. Further increases at 252 nm were observed upon formation of apo plastocyanin eliminating charge transfer transitions as the cause. The spectral changes in the near-ultraviolet imply a flexible tertiary conformation for plastocyanin. There are at least two charge transfer transitions at ∼295-340 nm. One of these transitions is sensitive to low pH's and is attributed to the His 87 copper ligand. The redox state dependent changes observed in the near-ultraviolet spectra of plastocyanin are attenuated either by decreasing the pH to 5 or by increasing the ammonium sulfate concentration to 2.7 M. This attenuation cannot be easily explained by simple charge screening. Hydrophobic interactions probably play an important role in this phenomenon. The pH and redox state dependent conformational changes may play an important role in regulating electron transport
Attenuation of Gamma Rays by Concrete . Lead Slag Composites
International Nuclear Information System (INIS)
Ismail, I.M.; Sweelam, M.H.; Zaghloul, Y.R.; Aly, H.F.
2008-01-01
Using of wastes and industrial by-products as concrete aggregate to be used as structural and radiation shielded material has increased in the recent years. Concrete was mixed with different amounts of lead slag extracted from recycling of the spent automotive batteries as fine aggregates. The lead slag was used as partial replacement of sand in the studied composites. The concrete composites obtained were characterized in terms of density, water absorption, porosity, compressive strength and attenuation of γ- rays with different energies. The attenuation coefficient and the half value thickness of the different matrices were calculated and discussed
X-ray-based attenuation correction for positron emission tomography/computed tomography scanners.
Kinahan, Paul E; Hasegawa, Bruce H; Beyer, Thomas
2003-07-01
A synergy of positron emission tomography (PET)/computed tomography (CT) scanners is the use of the CT data for x-ray-based attenuation correction of the PET emission data. Current methods of measuring transmission use positron sources, gamma-ray sources, or x-ray sources. Each of the types of transmission scans involves different trade-offs of noise versus bias, with positron transmission scans having the highest noise but lowest bias, whereas x-ray scans have negligible noise but the potential for increased quantitative errors. The use of x-ray-based attenuation correction, however, has other advantages, including a lack of bias introduced from post-injection transmission scanning, which is an important practical consideration for clinical scanners, as well as reduced scan times. The sensitivity of x-ray-based attenuation correction to artifacts and quantitative errors depends on the method of translating the CT image from the effective x-ray energy of approximately 70 keV to attenuation coefficients at the PET energy of 511 keV. These translation methods are usually based on segmentation and/or scaling techniques. Errors in the PET emission image arise from positional mismatches caused by patient motion or respiration differences between the PET and CT scans; incorrect calculation of attenuation coefficients for CT contrast agents or metallic implants; or keeping the patient's arms in the field of view, which leads to truncation and/or beam-hardening (or x-ray scatter) artifacts. Proper interpretation of PET emission images corrected for attenuation by using the CT image relies on an understanding of the potential artifacts. In cases where an artifact or bias is suspected, careful inspection of all three available images (CT and PET emission with and without attenuation correction) is recommended. Copyright 2003 Elsevier Inc. All rights reserved.
Wave attenuation charcteristics of tethered float system
Digital Repository Service at National Institute of Oceanography (India)
Vethamony, P.
incident wave height transmitted wave height G wave number float mass number of rows of floats drag power transmitted wave power incident wave power 111 112 P. Vethamony float radius wave period time velocity and acceleration of fluid... particles, respectively wave attenuation in percentage displacement, velocity and acceleration of float, respectively amplitude of float displacement added mass damping coefficient fluid particle displacement amplitude of fluid particle displacement...
Evaluation of X ray attenuation by means of radiographic images
International Nuclear Information System (INIS)
Barros, Frieda Saicla; Paredes, Ramon S.C.; Godoi, Walmor C.; Souza, Gabriel Pinto de
2011-01-01
This paper's main goal is to adopt a qualitative methodology to evaluate the attenuation of x-radiation through X-ray images in polymeric materials plus residual lead. To determinate the images it was initially used an experimental setup at the Laboratory for Materials Diagnostics LACTEC. These results correspond to a more qualitative analysis, even with quantitative answers. Through analysis of radiographic images we can measure the intensity of radiation that goes through the plate, making possible to establish a relationship between the attenuation coefficient and the thickness of the material. (author)
Energy Technology Data Exchange (ETDEWEB)
Ghosh, A K; Rao, K S; Kushwaha, H S [Reactor Safety Div., Bhabha Atomic Research Centre, Mumbai (India)
1998-06-01
Earthquake accelerograms recorded on rock and soil sites have been analysed. Site-specific response spectra and peak ground acceleration attenuation relations have been developed. This report presents the normalised pseudo-absolute acceleration spectra for various values of damping and for various confidence levels. Scaling laws have been developed for the response spectra. The present results are based on a large database and comparison has been made with earlier results. These results will be useful in the earthquake resistant design of structures. (author) 22 refs., 7 figs., 5 tabs.
Attenuation maps for SPECT determined using cone beam transmission computed tomography
International Nuclear Information System (INIS)
Manglos, S.H.; Bassano, D.A.; Duxbury, C.E.; Capone, R.B.
1990-01-01
This paper presents a new method for measuring non-uniform attenuation maps, using a cone beam geometry CT scan acquired on a standard rotating gamma camera normally used for SPECT imaging. The resulting map is intended for use in non-uniform attenuation compensation of SPECT images. The method was implemented using a light-weight point source holder attached to the camera. A cone beam collimator may be used on the gamma camera, but the cone beam CT scans may also be acquired without collimator. In either implementation, the advantages include very high efficiency and resolution limited not by the collimator but by the intrinsic camera resolution (about 4 mm). Several phantoms tested the spatial uniformity, noise, linearity as a function of attenuation coefficient, and spatial resolution. Good quality attenuation maps were obtained, at least for the central slices where no truncation was present
Diffuse Attenuation Coef. K490, Aqua MODIS, NPP, 0.125 degrees, East US
National Oceanic and Atmospheric Administration, Department of Commerce — NASA distributes Diffuse Attenuation Coefficient at 490 nm Wavelength data from NASA's Aqua satellite. Measurements are gathered by the Moderate Resolution Imaging...
Diffuse Attenuation Coef. K490, Aqua MODIS, NPP, 0.125 degrees, West US
National Oceanic and Atmospheric Administration, Department of Commerce — NASA distributes Diffuse Attenuation Coefficient at 490 nm Wavelength data from NASA's Aqua satellite. Measurements are gathered by the Moderate Resolution Imaging...
Cascadia Subduction Zone Earthquake Source Spectra from an Array of Arrays
Gomberg, J. S.; Vidale, J. E.
2011-12-01
It is generally accepted that spectral characteristics distinguish 'slow' seismic sources from those of 'ordinary' or 'fast' earthquakes. To explore this difference, we measure ordinary earthquake spectra of about 30 seismic events located near the Cascadia plate interface where ETS regularly occurs. We separate the affects of local site response, regional propagation (attenuation and spreading), and processes near or at the source for a dense dataset recorded on an array of eight seismic micro-arrays. The arrays have apertures of 1-2 km with 21-31 seismographs in each, and are separated by 10-20 km. We assume that the spectrum of each recorded signal may be described by the product of 1) frequency-dependent site response, 2) propagation effects that include geometric spreading and an exponential decay that varies with distance, frequency, and 3) a frequency-dependent source spectrum. Using more than1000 seismograms from all events recorded at all sites simultaneously, we solve for frequency-dependent site response and source spectra, as well as a single regional Q value. We interpret only the slope of the source terms because most earthquakes have magnitudes less than 0, so we expect that their corner frequencies are higher frequency than the recorded passband. The amplitude variation in the site response within the same array sometimes exceeds a factor of 3, which is consistent with the variation seen visually. We see variability in the slopes of the source spectra comparable to the difference between 'slow' and 'fast' events observed in other studies, and which show a strong correlation with source location. Spectral slopes of spatially clustered sources are nearly identical but usually differ from those of clusters at a distance of a few tens of km, and spectral content varies systematically with location within the distribution of events. While these differences may reflect varying source processes (e.g., rupture velocity, stress drop), the strong correlation
Indirect measurements of X-ray spectra
International Nuclear Information System (INIS)
Mainardi, R.T.
2006-01-01
To the effects of measuring the spectral distribution of the radiation emitted by the x-ray tubes and electron accelerators, numerous procedures that are grouped in two big categories exist at the present time: direct and indirect methods. The first ones use high resolution detectors that should be positioned, together with the appropriate collimator, in the direction of the x ray beam. The user should be an expert in the use and correction of the obtained data by the different effects that affect the detector operation such as efficiency and resolution in terms of the energy of the detected radiation. The indirect procedures, although its are more simple to use, its also require a considerable space along the beam to position the ionization chamber and the necessary absorbents to construct by this way the denominated attenuation curve. We will analyze the operation principle of the indirect methods and a new proposal in which such important novelties are introduced as the beam dispersion to avoid to measure along the main beam and that of determination of the attenuation curve in simultaneous form. By this way, with a single shot of the tube, the attenuation curve is measured, being necessary at most a shot of additional calibration to know the relative response of the detectors used in the experimental array. The physical processes involved in the obtaining of an attenuation curve are very well well-known and this it finishes it can be theoretically calculated if the analytic form of the spectrum is supposed well-known. Finally, we will see a spectra reconstruction example with the Kramers parametric form and comparisons with numeric simulations carried out with broadly validated programs as well as the possibility of the use of solid state dosemeters in the obtention of the attenuation curve. (Author)
International Nuclear Information System (INIS)
Barkmann, R.
1982-01-01
A senson element is described for the measurement of ultrasound wave attenuation in water. This device has been developed for in-situ measurements of the additional attenuation caused by particles or air bubbles. Results are presented for the attenuation variations induced by ions and solid-state particles. The method is based on the emission of a 80 μs acoustic sine wave burst at about 10 MHz in a water container of 10 cm length. Then the amplitudes of the decaying echos are registrated, which are caused by reflections at the transducer and the reflector. The sound attenuation coefficient is obtained from the amplitude ratio of the first two echos, taking into account corrections caused by diffraction and reflection effects. (orig./RW) [de
Occurrence and in-stream attenuation of wastewater-derived pharmaceuticals in Iberian rivers.
Acuña, Vicenç; von Schiller, Daniel; García-Galán, Maria Jesús; Rodríguez-Mozaz, Sara; Corominas, Lluís; Petrovic, Mira; Poch, Manel; Barceló, Damià; Sabater, Sergi
2015-01-15
A multitude of pharmaceuticals enter surface waters via discharges of wastewater treatment plants (WWTPs), and many raise environmental and health concerns. Chemical fate models predict their concentrations using estimates of mass loading, dilution and in-stream attenuation. However, current comprehension of the attenuation rates remains a limiting factor for predictive models. We assessed in-stream attenuation of 75 pharmaceuticals in 4 river segments, aiming to characterize in-stream attenuation variability among different pharmaceutical compounds, as well as among river segments differing in environmental conditions. Our study revealed that in-stream attenuation was highly variable among pharmaceuticals and river segments and that none of the considered pharmaceutical physicochemical and molecular properties proved to be relevant in determining the mean attenuation rates. Instead, the octanol-water partition coefficient (Kow) influenced the variability of rates among river segments, likely due to its effect on sorption to sediments and suspended particles, and therefore influencing the balance between the different attenuation mechanisms (biotransformation, photolysis, sorption, and volatilization). The magnitude of the measured attenuation rates urges scientists to consider them as important as dilution when aiming to predict concentrations in freshwater ecosystems. Copyright © 2014 Elsevier B.V. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Eke, Canel [Akdeniz Univ., Antalya (Turkey). Nuclear Sciences Application and Research Center; Akdeniz Univ., Antalya (Turkey). Div. of Physics Education; Agar, Osman [Akdeniz Univ., Antalya (Turkey). Nuclear Sciences Application and Research Center; Karamanoglu Mehmetbey Univ., Karaman (Turkey). Dept. of Physics; Segebade, Christian [Akdeniz Univ., Antalya (Turkey). Nuclear Sciences Application and Research Center; Boztosun, Ismail [Akdeniz Univ., Antalya (Turkey). Nuclear Sciences Application and Research Center; Akdeniz Univ., Antalya (Turkey). Dept. of Physics
2017-07-01
In this study, the γ-ray energy-dependent mass and linear attenuation coefficients of various granite and Turkish marble species have been experimentally obtained. Radionuclides ({sup 133}Ba, {sup 137}Cs, {sup 60}Co and {sup 22}Na) with point geometry were used as γ-ray sources. The absorption capacity of each sample at nine γ-ray energies was measured using a high resolution γ-ray spectrometer equipped with a high purity germanium (HPGe) detector. To obtain the precision of the results (1σ standard deviation of the single value), this procedure was repeated six times for each species of granite and marble, respectively. The energy-dependent mass attenuation coefficient (MAC), linear attenuation coefficient (LAC), the half (HVL) and the tenth value layer (TVL) were calculated following that the MAC and LAC results were compared to the literature values.
Performance evaluation of the spectral centroid downshift method for attenuation estimation.
Samimi, Kayvan; Varghese, Tomy
2015-05-01
Estimation of frequency-dependent ultrasonic attenuation is an important aspect of tissue characterization. Along with other acoustic parameters studied in quantitative ultrasound, the attenuation coefficient can be used to differentiate normal and pathological tissue. The spectral centroid downshift (CDS) method is one the most common frequencydomain approaches applied to this problem. In this study, a statistical analysis of this method's performance was carried out based on a parametric model of the signal power spectrum in the presence of electronic noise. The parametric model used for the power spectrum of received RF data assumes a Gaussian spectral profile for the transmit pulse, and incorporates effects of attenuation, windowing, and electronic noise. Spectral moments were calculated and used to estimate second-order centroid statistics. A theoretical expression for the variance of a maximum likelihood estimator of attenuation coefficient was derived in terms of the centroid statistics and other model parameters, such as transmit pulse center frequency and bandwidth, RF data window length, SNR, and number of regression points. Theoretically predicted estimation variances were compared with experimentally estimated variances on RF data sets from both computer-simulated and physical tissue-mimicking phantoms. Scan parameter ranges for this study were electronic SNR from 10 to 70 dB, transmit pulse standard deviation from 0.5 to 4.1 MHz, transmit pulse center frequency from 2 to 8 MHz, and data window length from 3 to 17 mm. Acceptable agreement was observed between theoretical predictions and experimentally estimated values with differences smaller than 0.05 dB/cm/MHz across the parameter ranges investigated. This model helps predict the best attenuation estimation variance achievable with the CDS method, in terms of said scan parameters.
Iijima, Yukina; Kudo, Nobuki
2017-07-01
Acoustic fields of a short-pulsed ultrasound propagating through a transparent medium with ultrasound attenuation were visualized by the focused shadowgraph technique. A brightness waveform and its spatial integrations were derived from a visualized field image and compared with a pressure waveform measured by a membrane hydrophone. The experimental results showed that first-order integration of the brightness wave has good agreement with the pressure waveforms. Frequency-dependent attenuation of the pulse propagating through castor oil was derived from brightness and pressure waveforms, and attenuation coefficients determined from focused shadowgraphy and hydrophone techniques showed good agreement. The results suggest the usefulness of the shadowgraph technique not only for the visualization of ultrasound fields but also for noncontact estimation of rough pressure waveforms and correct ultrasound attenuation.
International Nuclear Information System (INIS)
Podest, M.; Klima, J.; Stecher, P.; Stecherova, E.
1978-01-01
UO 2 pellets from ALUOX fuel elements were used in measuring the absorption coefficient of gamma radiation in UO 2 . The results of measurements of the energy dependence of the linear absorption coefficient (within 622 to 796 keV) and of the dependence on pellet density showed that in the given density interval the absorption coefficient was almost constant. The density interval was chosen to be typical for pellet fuel used in water cooled and water moderated power reactors. The results are also shown of the dependence of the mass absorption coefficient of gamma radiation in Zr on radiation energy and compared with the mass absorption coefficient of Mo; these also showed the independence of the absorption coefficient on density. The linear and mass absorption coefficients of UO 2 are considerably high and correspond approximately to the absorption coefficient of lead. For the measured energy range the variation of absorption coefficient is about 40%, which causes errors in burnup determination. The efficiency was also determined of Ge(Li) detectors for the energy range 0.5 to 1.2 MeV. The determination of the above coefficients was used for improving the gamma fuel scanning technique in determining the activity and burnup of spent fuel elements. (J.P.)
Halim, Yuwana; Schwartz, Steven J; Francis, David; Baldauf, Nathan A; Rodriguez-Saona, Luis E
2006-01-01
Lycopene is a potent antioxidant that has been shown to play critical roles in disease prevention. Efficient assays for detection and quantification of lycopene are desirable as alternatives to time- and labor-intensive methods. Attenuated total reflectance infrared (ATR-IR) spectroscopy was used for quantification of lycopene in tomato varieties. Calibration models were developed by partial least-squares regression (PLSR) using quantitative measures of lycopene concentration from liquid chromatography as reference method. IR spectra showed a distinct marker band at 957 cm(-1) for trans Carbon-Hydrogen (CH) deformation vibration of lycopene. PLSR models predicted the lycopene content accurately and reproducibly with a correlation coefficient (sigma) of 0.96 and standard error of cross-validation ATR-IR spectroscopy allowed for rapid, simple, and accurate determination of lycopene in tomatoes with minimal sample preparation. Results suggest that the ATR-IR method is applicable for high-throughput quantitative analysis and screening for lycopene in tomatoes.
Energy Technology Data Exchange (ETDEWEB)
Ni Jianming [Medical Imaging Department, Wuxi Second Hospital Affiliated Nanjing Medical University, 68 Zhong Shan Road, Wuxi, Jiangsu Province 214002 (China); Radiology Department, Huashan Hospital, Shanghai Medical College, Fudan University, 12 Urumqi Middle Road, Shanghai 200040 (China); Nuclear Medicine Department, Renji Hospital, Medical School of Jiaotong University, Dongfang Road 1630, Shanghai 200127 (China); Mogensen, Monique A. [Department of Radiology, Division of Neuroradiology, University of Southern California, Los Angeles, CA (United States); Chen Zengai [Radiology Department, Huashan Hospital, Shanghai Medical College, Fudan University, 12 Urumqi Middle Road, Shanghai 200040 (China); Nuclear Medicine Department, Renji Hospital, Medical School of Jiaotong University, Dongfang Road 1630, Shanghai 200127 (China); Shuang Chen; Shen Tianzhen [Radiology Department, Huashan Hospital, Shanghai Medical College, Fudan University, 12 Urumqi Middle Road, Shanghai 200040 (China); Huang Gang, E-mail: huang2802@163.co [Nuclear Medicine Department, Renji Hospital, Medical School of Jiaotong University, Dongfang Road 1630, Shanghai 200127 (China)
2010-08-15
Background and purpose: The application of a fluid-attenuated inversion-recovery pulse with a conventional diffusion-weighted MRI sequence (FLAIR DWI) decreases the partial volume effects from cerebrospinal fluid on apparent diffusion coefficient (ADC) measurements. For this reason, FLAIR DWI may be more useful in the evaluation of ischemic stroke, but few studies have looked at the effect of FLAIR on ADC measurements in this setting. This study quantitatively compares FLAIR DWI and conventional DWI in ischemic stroke of varying ages to assess the potential advantages of this technique. Methods: We respectively analyzed 139 DWI studies in patients with ischemic stroke with and without FLAIR at varying time points ranging from hyperacute to chronic. ADC values were measured in each lesion, as well as in the contralateral normal side. Comparisons were made between the ADC values obtained from the DWI sequences with and without FLAIR for both the lesion and the normal contralateral side. Results: The ADC measurements within the ischemic lesion were very similar on FLAIR DWI and conventional DWI for lesions less than 14 days old (p > 0.05), but were significantly decreased on FLAIR DWI for lesions between 15 and 30 days old and in lesions >31 days old (chronic stage) (p < 0.01). The contralateral ADC values were all significantly decreased on the FLAIR DWI sequence compared with conventional DWI (p < 0.01). Conclusions: The application of an inversion pulse does not significantly affect the ADC values for early stage ischemic stroke (less than 14 days from symptom onset), but results in a more accurate relative ADC measurement by reducing the cerebrospinal fluid partial volume effects of the normal contralateral side. In addition, combined with the conventional DWI, FLAIR DWI may be helpful in determining the age of ischemic lesions.
Diffuse Attenuation Coef. K490, Aqua MODIS, NPP, 0.05 degrees, Global, Science Quality
National Oceanic and Atmospheric Administration, Department of Commerce — NASA distributes Diffuse Attenuation Coefficient at 490 nm Wavelength data from NASA's Aqua satellite. Measurements are gathered by the Moderate Resolution Imaging...
Diffuse Attenuation Coef. K490, Aqua MODIS, NPP, 0.125 degrees, Gulf of Mexico
National Oceanic and Atmospheric Administration, Department of Commerce — NASA distributes Diffuse Attenuation Coefficient at 490 nm Wavelength data from NASA's Aqua satellite. Measurements are gathered by the Moderate Resolution Imaging...
NEBULAR ATTENUATION IN Hα-SELECTED STAR-FORMING GALAXIES AT z = 0.8 FROM THE NewHα SURVEY
International Nuclear Information System (INIS)
Momcheva, Ivelina G.; Lee, Janice C.; Ouchi, Masami; Ly, Chun; Salim, Samir; Dale, Daniel A.; Finn, Rose; Ono, Yoshiaki
2013-01-01
We present measurements of the dust attenuation of Hα-selected emission-line galaxies at z = 0.8 from the NewHα narrowband survey. The analysis is based on deep follow-up spectroscopy with Magellan/IMACS, which captures the strong rest-frame optical emission lines from [O II] λ3727 to [O III] λ5007. The spectroscopic sample used in this analysis consists of 341 confirmed Hα emitters. We place constraints on the active galactic nucleus (AGN) fraction using diagnostics that can be applied at intermediate redshift. We find that at least 5% of the objects in our spectroscopic sample can be classified as AGNs and 2% are composite, i.e., powered by a combination of star formation and AGN activity. We measure the dust attenuation for individual objects from the ratios of the higher order Balmer lines. The Hβ and Hγ pair of lines is detected with S/N > 5 in 55 individual objects and the Hβ and Hδ pair is detected in 50 individual objects. We also create stacked spectra to probe the attenuation in objects without individual detections. The median attenuation at Hα based on the objects with individually detected lines is A(Hα) = 0.9 ± 1.0 mag, in good agreement with the attenuation found in local samples of star-forming galaxies. We find that the z = 0.8 galaxies occupy a similar locus of attenuation as a function of magnitude, mass, and star formation rate (SFR) as a comparison sample drawn from the SDSS DR4. Both the results from the individual z = 0.8 galaxies and from the stacked spectra show consistency with the mass-attenuation and SFR-attenuation relations found in the local universe, indicating that these relations are also applicable at intermediate redshift.
NGA-West 2 GMPE average site coefficients for use in earthquake-resistant design
Borcherdt, Roger D.
2015-01-01
Site coefficients corresponding to those in tables 11.4–1 and 11.4–2 of Minimum Design Loads for Buildings and Other Structures published by the American Society of Civil Engineers (Standard ASCE/SEI 7-10) are derived from four of the Next Generation Attenuation West2 (NGA-W2) Ground-Motion Prediction Equations (GMPEs). The resulting coefficients are compared with those derived by other researchers and those derived from the NGA-West1 database. The derivation of the NGA-W2 average site coefficients provides a simple procedure to update site coefficients with each update in the Maximum Considered Earthquake Response MCER maps. The simple procedure yields average site coefficients consistent with those derived for site-specific design purposes. The NGA-W2 GMPEs provide simple scale factors to reduce conservatism in current simplified design procedures.
Mashin, N. I.; Chernyaeva, E. A.; Tumanova, A. N.; Gafarova, L. M.
2016-03-01
A new XRF procedure for the determination of the mass absorption coefficient in thin film Ti/V and V/Ti two-layer systems has been proposed. The procedure uses easy-to-make thin-film layers of sputtered titanium and vanadium on a polymer film substrate. Correction coefficients have been calculated that take into account attenuation of primary radiation of the X-ray tube, as well as attenuation of the spectral line of the bottom layer element in the top layer.
Digital dynamic amplitude-frequency spectra analyzer
International Nuclear Information System (INIS)
Kalinnikov, V.A.; )
2006-01-01
The spectra analyzer is intended for the dynamic spectral analysis of signals physical installations and noise filtering. The recurrence Fourier transformation algorithm is used in the digital dynamic analyzer. It is realized on the basis of the fast logic FPGA matrix and the special signal ADSP microprocessor. The discretization frequency is 2 kHz-10 MHz. The number of calculated spectral coefficients is not less 512. The functional fast-action is 20 ns [ru
Quantitative analysis of Moessbauer backscatter spectra from multilayer films
International Nuclear Information System (INIS)
Bainbridge, J.
1975-01-01
The quantitative interpretation of Moessbauer backscatter spectra with particular reference to internal conversion electrons has been treated assuming that electron attenuation in a surface film can be satisfactorily described by a simple exponential law. The theory of Krakowski and Miller has been extended to include multi-layer samples, and a relation between the Moessbauer spectrum area and an individual layer thickness derived. As an example, numerical results are obtained for a duplex oxide film grown on pure iron. (Auth.)
Capmany, José; Mora, José; Ortega, Beatriz; Pastor, Daniel
2005-03-07
We propose and experimentally demonstrate two configurations of photonic filters for the processing of microwave signals featuring tunability, reconfigurability and negative coefficients based on the use of low cost optical sources. The first option is a low power configuration based on spectral slicing of a broadband source. The second is a high power configuration based on fixed lasers. Tunability, reconfigurability and negative coefficients are achieved by means of a MEMS cross-connect, a variable optical attenuator array and simple 2x2 switches respectively.
Clustered DPCM with removing noise spectra for the lossless compression of hyperspectral images
Wu, Jiaji; Xu, Jianglei
2013-10-01
The clustered DPCM (C-DPCM) lossless compression method by Jarno et al. for hyperspectral images achieved a good compression effect. It can be divided into three components: clustering, prediction, and coding. In the prediction part, it solves a multiple linear regression model for each of the clusters in every band. Without considering the effect of noise spectra, there is still room for improvement. This paper proposes a C-DPCM method with Removing Noise Spectra (C-DPCM-RNS) for the lossless compression of hyperspectral images. C-DPCM-RNS's prediction part consists of two-times trainings. The prediction coefficients obtained from the first training will be used in the linear predictor to compute all the predicted values and then the difference between original and predicted values in current band of current class. Only the non-noise spectra are used in the second training. The resulting prediction coefficients from the second training will be used for prediction and sent to the decoder. The two-times trainings remove part of the interference of noise spectra, and reaches a better compression effect than other methods based on regression prediction.
Asgari, Afrouz; Ashoor, Mansour; Sohrabpour, Mostafa; Shokrani, Parvaneh; Rezaei, Ali
2015-05-01
Improving signal to noise ratio (SNR) and qualified images by the various methods is very important for detecting the abnormalities at the body organs. Scatter and attenuation of photons by the organs lead to errors in radiopharmaceutical estimation as well as degradation of images. The choice of suitable energy window and the radionuclide have a key role in nuclear medicine which appearing the lowest scatter fraction as well as having a nearly constant linear attenuation coefficient as a function of phantom thickness. The energy windows of symmetrical window (SW), asymmetric window (ASW), high window (WH) and low window (WL) using Tc-99m and Sm-153 radionuclide with solid water slab phantom (RW3) and Teflon bone phantoms have been compared, and Matlab software and Monte Carlo N-Particle (MCNP4C) code were modified to simulate these methods and obtaining the amounts of FWHM and full width at tenth maximum (FWTM) using line spread functions (LSFs). The experimental data were obtained from the Orbiter Scintron gamma camera. Based on the results of the simulation as well as experimental work, the performance of WH and ASW display of the results, lowest scatter fraction as well as constant linear attenuation coefficient as a function of phantom thickness. WH and ASW were optimal windows in nuclear medicine imaging for Tc-99m in RW3 phantom and Sm-153 in Teflon bone phantom. Attenuation correction was done for WH and ASW optimal windows and for these radionuclides using filtered back projection algorithm. Results of simulation and experimental show that very good agreement between the set of experimental with simulation as well as theoretical values with simulation data were obtained which was nominally less than 7.07 % for Tc-99m and less than 8.00 % for Sm-153. Corrected counts were not affected by the thickness of scattering material. The Simulated results of Line Spread Function (LSF) for Sm-153 and Tc-99m in phantom based on four windows and TEW method were
Gamma-ray self-attenuation corrections in environmental samples
International Nuclear Information System (INIS)
Robu, E.; Giovani, C.
2009-01-01
Gamma-spectrometry is a commonly used technique in environmental radioactivity monitoring. Frequently the bulk samples that should be measured differ with respect to composition and density from the reference sample used for efficiency calibration. Correction factors should be applied in these cases for activity measurement. Linear attenuation coefficients and self-absorption correction factors have been evaluated for soil, grass and liquid sources with different densities and geometries.(authors)
Passive Gamma-Ray Emission for Soil-Disturbance Detection
2016-08-01
technical reports published by ERDC, visit the ERDC online library at http://acwc.sdp.sirsi.net/client/default. ERDC/CRREL TR-16-10 August 2016...area should be relatively constant if landform and provenance are known and con- trolled . As the soil dries out, the gamma-ray spectra should change...attenuation-pathway con- trolled (Figure 3). The attenuation is a function of the mass attenuation coefficients of the soil constituents (i.e., soil, water
Prediction of slant path rain attenuation statistics at various locations
Goldhirsh, J.
1977-01-01
The paper describes a method for predicting slant path attenuation statistics at arbitrary locations for variable frequencies and path elevation angles. The method involves the use of median reflectivity factor-height profiles measured with radar as well as the use of long-term point rain rate data and assumed or measured drop size distributions. The attenuation coefficient due to cloud liquid water in the presence of rain is also considered. Absolute probability fade distributions are compared for eight cases: Maryland (15 GHz), Texas (30 GHz), Slough, England (19 and 37 GHz), Fayetteville, North Carolina (13 and 18 GHz), and Cambridge, Massachusetts (13 and 18 GHz).
Errors in MR-based attenuation correction for brain imaging with PET/MR scanners
International Nuclear Information System (INIS)
Rota Kops, Elena; Herzog, Hans
2013-01-01
Aim: Attenuation correction of PET data acquired by hybrid MR/PET scanners remains a challenge, even if several methods for brain and whole-body measurements have been developed recently. A template-based attenuation correction for brain imaging proposed by our group is easy to handle and delivers reliable attenuation maps in a short time. However, some potential error sources are analyzed in this study. We investigated the choice of template reference head among all the available data (error A), and possible skull anomalies of the specific patient, such as discontinuities due to surgery (error B). Materials and methods: An anatomical MR measurement and a 2-bed-position transmission scan covering the whole head and neck region were performed in eight normal subjects (4 females, 4 males). Error A: Taking alternatively one of the eight heads as reference, eight different templates were created by nonlinearly registering the images to the reference and calculating the average. Eight patients (4 females, 4 males; 4 with brain lesions, 4 w/o brain lesions) were measured in the Siemens BrainPET/MR scanner. The eight templates were used to generate the patients' attenuation maps required for reconstruction. ROI and VOI atlas-based comparisons were performed employing all the reconstructed images. Error B: CT-based attenuation maps of two volunteers were manipulated by manually inserting several skull lesions and filling a nasal cavity. The corresponding attenuation coefficients were substituted with the water's coefficient (0.096/cm). Results: Error A: The mean SUVs over the eight templates pairs for all eight patients and all VOIs did not differ significantly one from each other. Standard deviations up to 1.24% were found. Error B: After reconstruction of the volunteers' BrainPET data with the CT-based attenuation maps without and with skull anomalies, a VOI-atlas analysis was performed revealing very little influence of the skull lesions (less than 3%), while the filled
Errors in MR-based attenuation correction for brain imaging with PET/MR scanners
Rota Kops, Elena; Herzog, Hans
2013-02-01
AimAttenuation correction of PET data acquired by hybrid MR/PET scanners remains a challenge, even if several methods for brain and whole-body measurements have been developed recently. A template-based attenuation correction for brain imaging proposed by our group is easy to handle and delivers reliable attenuation maps in a short time. However, some potential error sources are analyzed in this study. We investigated the choice of template reference head among all the available data (error A), and possible skull anomalies of the specific patient, such as discontinuities due to surgery (error B). Materials and methodsAn anatomical MR measurement and a 2-bed-position transmission scan covering the whole head and neck region were performed in eight normal subjects (4 females, 4 males). Error A: Taking alternatively one of the eight heads as reference, eight different templates were created by nonlinearly registering the images to the reference and calculating the average. Eight patients (4 females, 4 males; 4 with brain lesions, 4 w/o brain lesions) were measured in the Siemens BrainPET/MR scanner. The eight templates were used to generate the patients' attenuation maps required for reconstruction. ROI and VOI atlas-based comparisons were performed employing all the reconstructed images. Error B: CT-based attenuation maps of two volunteers were manipulated by manually inserting several skull lesions and filling a nasal cavity. The corresponding attenuation coefficients were substituted with the water's coefficient (0.096/cm). ResultsError A: The mean SUVs over the eight templates pairs for all eight patients and all VOIs did not differ significantly one from each other. Standard deviations up to 1.24% were found. Error B: After reconstruction of the volunteers' BrainPET data with the CT-based attenuation maps without and with skull anomalies, a VOI-atlas analysis was performed revealing very little influence of the skull lesions (less than 3%), while the filled nasal
Experimental Test of a New Precision Model for Microwave Rotary Vane Attenuators
DEFF Research Database (Denmark)
Guldbrandsen, Tom; Guldbrandsen, Birthe; Warner, Frank L.
1983-01-01
coefficients have been measured versus angle of rotation by means of a computer-corrected automatic network analyzer and, within the uncertainty, they agree with the model. From the reflection measurements, corrections to the attenuation were calculated using relations derived from the model. The corrections...
International Nuclear Information System (INIS)
Ghoorun, S.; Groenewald, W.A.; Baete, K.; Nuyts, J.; Dupont, P.
2004-01-01
Full text: Aim: To study the influence of attenuation correction and the reconstruction technique on the detection of hypoperfused lesions in brain SPECT imaging, Material and Methods: A simulation experiment was used in which the effects of attenuation and reconstruction were decoupled, A high resolution SPECT phantom was constructed using the BrainWeb database, In this phantom, activity values were assigned to grey and white matter (ratio 4:1) and scaled to obtain counts of the same magnitude as in clinical practice, The true attenuation map was generated by assigning attenuation coefficients to each tissue class (grey and white matter, cerebral spinal fluid, skull, soft and fatty tissue and air) to create a non-uniform attenuation map, The uniform attenuation map was calculated using an attenuation coefficient of 0.15 cm-1, Hypoperfused lesions of varying intensities and sizes were added. The phantom was then projected as typical SPECT projection data, taking into account attenuation and collimator blurring with the addition of Poisson noise, The projection data was reconstructed using four different methods of reconstruction: (1) filtered backprojection (FBP) with the uniform attenuation map; (2) FBP using the true attenuation map; (3) ordered subset expectation maximization (OSEM) (equivalent to 423 iterations) with a uniform attenuation map; and (4) OSEM with a true attenuation map. Different Gaussian postsmooth kernels were applied to the reconstructed images. Results: The analysis of the reconstructed data was performed using figures of merit such as signal to noise ratio (SNR), bias and variance. The results illustrated that uniform attenuation correction offered slight deterioration (less than 2%) with regard to SNR when compared to the ideal attenuation map. which in reality is not known. The iterative techniques produced superior signal to noise ratios (increase of 5 - 20 % depending on the lesion and the postsmooth) in comparison to the FBP methods
Energy Technology Data Exchange (ETDEWEB)
More, Chaitali V., E-mail: chaitalimore89@gmail.com; Lokhande, Rajkumar M.; Pawar, Pravina P., E-mail: pravinapawar4@gmail.com [Department of physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004 (India)
2016-05-06
Mass attenuation coefficients of amino acids such as n-acetyl-l-tryptophan, n-acetyl-l-tyrosine and d-tryptophan were measured in the energy range 0.122-1.330 MeV. NaI (Tl) scintillation detection system was used to detect gamma rays with a resolution of 8.2% at 0.662 MeV. The measured attenuation coefficient values were then used to determine the mass energy-absorption coefficients (σ{sub a,en}) and average atomic energy-absorption cross sections (μ{sub en}/ρ) of the amino acids. Theoretical values were calculated based on XCOM data. Theoretical and experimental values are found to be in good agreement.
Izquierdo-Garcia, David; Catana, Ciprian
2016-01-01
Attenuation correction (AC) is one of the most important challenges in the recently introduced combined positron emission tomography/magnetic resonance imaging (PET/MR) scanners. PET/MR AC (MR-AC) approaches aim to develop methods that allow accurate estimation of the linear attenuation coefficients (LACs) of the tissues and other components located in the PET field of view (FoV). MR-AC methods can be divided into three main categories: segmentation-, atlas- and PET-based. This review aims to...
Transport properties and Raman spectra of impurity substituted MgB2
International Nuclear Information System (INIS)
Masui, T.
2007-01-01
Recent advances in the study of MgB 2 are reviewed, with focus on the transport properties and Raman scattering measurements for impurity substituted crystals. Carbon and Aluminium substitution change band filling, introduce intraband and interband scattering. These effects are seen in the temperature dependence of resistivity, Hall coefficients, and phonon peak of Raman spectra. Manganese substitution introduces magnetic scattering, that increases resistivity but gives little change in Raman spectra. The effect of disorder in neutron irradiated samples is also discussed
An innovative method for extracting isotopic information from low-resolution gamma spectra
International Nuclear Information System (INIS)
Miko, D.; Estep, R.J.; Rawool-Sullivan, M.W.
1998-01-01
A method is described for the extraction of isotopic information from attenuated gamma ray spectra using the gross-count material basis set (GC-MBS) model. This method solves for the isotopic composition of an unknown mixture of isotopes attenuated through an absorber of unknown material. For binary isotopic combinations the problem is nonlinear in only one variable and is easily solved using standard line optimization techniques. Results are presented for NaI spectrum analyses of various binary combinations of enriched uranium, depleted uranium, low burnup Pu, 137 Cs, and 133 Ba attenuated through a suite of absorbers ranging in Z from polyethylene through lead. The GC-MBS method results are compared to those computed using ordinary response function fitting and with a simple net peak area method. The GC-MBS method was found to be significantly more accurate than the other methods over the range of absorbers and isotopic blends studied
International Nuclear Information System (INIS)
Lehnert, Wencke; Meikle, Steven R; Siegel, Stefan; Newport, Danny; Banati, Richard B; Rosenfeld, Anatoly B
2006-01-01
An accurate, low noise estimate of photon attenuation in the subject is required for quantitative microPET studies of molecular tracer distributions in vivo. In this work, several transmission-based measurement techniques were compared, including coincidence mode with and without rod windowing, singles mode with two different energy sources ( 68 Ge and 57 Co), and postinjection transmission scanning. In addition, the effectiveness of transmission segmentation and the propagation of transmission bias and noise into the emission images were examined. The 57 Co singles measurements provided the most accurate attenuation coefficients and superior signal-to-noise ratio, while 68 Ge singles measurements were degraded due to scattering from the object. Scatter correction of 68 Ge transmission data improved the accuracy for a 10 cm phantom but over-corrected for a mouse phantom. 57 Co scanning also resulted in low bias and noise in postinjection transmission scans for emission activities up to 20 MBq. Segmentation worked most reliably for transmission data acquired with 57 Co but the minor improvement in accuracy of attenuation coefficients and signal-to-noise may not justify its use, particularly for small subjects. We conclude that 57 Co singles transmission scanning is the most suitable method for measured attenuation correction on the microPET Focus 220 animal scanner
International Nuclear Information System (INIS)
Moon, Jeung Hee; Yun, Eun Joo; Yoon, Dae Young
2006-01-01
We wanted to evaluate the clinical efficacy of an increased computed tomography attenuation coefficient (CTAC) of urine after the oral administration of iohexol in neonates who are suspected of suffering with neonatal necrotizing enterocolitis (NEC). During a recent 1 year-period, seventeen neonates were admitted for suspected NEC, and they were divided into the suspected and definite groups based on their clinical signs and radiographic findings; we also included ten normal neonates as the control group. Diluted iohexol was administered and the CTACs of collected urine samples at 8-12 hour intervals were measured. Comparative analysis of the three groups was done and statistical significance was determined by the Scheffe test. Among 17 neonates, there were 13 neonates in the suspect group and 4 neonates in the definite group. The mean CTACs of urine in each group were 2711 HU (control group), 3411 HU (suspected group), and 7625 HU (definite group), respectively. There was a significant difference between the mean CTAC of the definite group and that of the control or suspected groups (Scheffe t >2.65). However, no statistically significant difference was seen between the suspected and control groups (Scheffe t=1.14). Although measurements of the CTAC of urine showed no significant diagnostic efficacy in the suspected group, the CTAC of urine, which reflects the correlated degree of bowel mucosal injury, can be a useful aid for determining the severity and progression of NEC
International Nuclear Information System (INIS)
Calvin, W.M.
1990-01-01
Reflectance spectra of carbon dioxide frosts were calculated using the optical constants provided by Warren (1986) for the wavelength region 2-6 μm. In comparing these calculated spectra to spectra of frosts observed in the laboratory and on the surface of Mars, problems in the optical constants presented by Warren (1986) became apparent. Absorption coefficients for CO 2 ice have been derived using laboratory reflectance measurements and the Hapke (1981) model for calculating diffuse reflectance. This provides approximate values in regions where no data were previously available and indicates where corrections to the compilation by Warren (1986) are required. Using these coefficients to calculate the reflectance of CO 2 ice at varying grain sizes indicates that a typical Mariner polar cap spectrum is dominated by absorptions due to CO 2 frost or ice at grain sizes that are quite large, probably of the order of millimeters to centimeters. There are indications of contamination of water frost or dust, but confirmation will require more precise absorption coefficients for solid CO 2 than can be obtained from the method used here
Adaptive attenuation of aliased ground roll using the shearlet transform
Hosseini, Seyed Abolfazl; Javaherian, Abdolrahim; Hassani, Hossien; Torabi, Siyavash; Sadri, Maryam
2015-01-01
Attenuation of ground roll is an essential step in seismic data processing. Spatial aliasing of the ground roll may cause the overlap of the ground roll with reflections in the f-k domain. The shearlet transform is a directional and multidimensional transform that separates the events with different dips and generates subimages in different scales and directions. In this study, the shearlet transform was used adaptively to attenuate aliased and non-aliased ground roll. After defining a filtering zone, an input shot record is divided into segments. Each segment overlaps adjacent segments. To apply the shearlet transform on each segment, the subimages containing aliased and non-aliased ground roll, the locations of these events on each subimage are selected adaptively. Based on these locations, mute is applied on the selected subimages. The filtered segments are merged together, using the Hanning function, after applying the inverse shearlet transform. This adaptive process of ground roll attenuation was tested on synthetic data, and field shot records from west of Iran. Analysis of the results using the f-k spectra revealed that the non-aliased and most of the aliased ground roll were attenuated using the proposed adaptive attenuation procedure. Also, we applied this method on shot records of a 2D land survey, and the data sets before and after ground roll attenuation were stacked and compared. The stacked section after ground roll attenuation contained less linear ground roll noise and more continuous reflections in comparison with the stacked section before the ground roll attenuation. The proposed method has some drawbacks such as more run time in comparison with traditional methods such as f-k filtering and reduced performance when the dip and frequency content of aliased ground roll are the same as those of the reflections.
A new method for detecting hemoglobin directly in whole blood using photon attenuation techniques
International Nuclear Information System (INIS)
Medhat, M.E.
2014-01-01
The objective of the proposed work is focused on measuring iron concentration directly in whole blood as tool for estimating hemoglobin and anemic conditions in patients across the world. The investigated method depends on theory of photon attenuation through transmission of low energy in whole blood sample. The mathematical expressions for calculating hemoglobin and iron deficit on blood using photon attenuation are derived. Calculations are carried out for estimating concentration of iron in blood samples taken from children, adults and old patients and therefore measuring their hemoglobin and iron deficit from normal values. Theoretical mass attenuation coefficient values were obtained using the XCOM program. A high-resolution gamma-ray spectrometry based on high purity germanium detector was employed to measure attenuation of strongly collimated monoenergetic gamma beam through blood samples. (author)
Kaya, Necati; Tıraşoğlu, Engin; Apaydın, Gökhan; Aylıkcı, Volkan; Cengiz, Erhan
2007-08-01
The K-shell absorption jump factors and jump ratios were derived from new mass attenuation coefficients measured using an energy dispersive X-ray fluorescence (EDXRF) spectrometer for Tm, Yb elements being Tm 2O 3, Yb 2O 3 compounds and pure Lu, Hf, Ta, W, Re and Os. The measurements, in the region 56-77 keV, were done in a transmission geometry utilizing the K α1 , K α2 , K β1 and K β2 X- rays from different secondary source targets (Yb, Ta, Os, W, Re and Ir, etc.) excited by the 123.6 keV γ-photons from an 57Co annular source and detected by an Ultra-LEGe solid state detector with a resolution of 150 eV at 5.9 keV. Experimental results have been compared with theoretically calculated values. The measured values of Tm, Yb, Lu, Hf, Ta, W, Re and Os are reported here for the first time.
International Nuclear Information System (INIS)
Kaya, Necati; Tirasoglu, Engin; Apaydin, Goekhan; Aylikci, Volkan; Cengiz, Erhan
2007-01-01
The K-shell absorption jump factors and jump ratios were derived from new mass attenuation coefficients measured using an energy dispersive X-ray fluorescence (EDXRF) spectrometer for Tm, Yb elements being Tm 2 O 3 , Yb 2 O 3 compounds and pure Lu, Hf, Ta, W, Re and Os. The measurements, in the region 56-77 keV, were done in a transmission geometry utilizing the K α1 , K α2 , K β1 and K β2 X- rays from different secondary source targets (Yb, Ta, Os, W, Re and Ir, etc.) excited by the 123.6 keV γ-photons from an 57 Co annular source and detected by an Ultra-LEGe solid state detector with a resolution of 150 eV at 5.9 keV. Experimental results have been compared with theoretically calculated values. The measured values of Tm, Yb, Lu, Hf, Ta, W, Re and Os are reported here for the first time
Nicewander, W. Alan
2018-01-01
Spearman's correction for attenuation (measurement error) corrects a correlation coefficient for measurement errors in either-or-both of two variables, and follows from the assumptions of classical test theory. Spearman's equation removes all measurement error from a correlation coefficient which translates into "increasing the reliability of…
International Nuclear Information System (INIS)
Yang, Ching-Ching; Chan, Kai-Chieh
2013-06-01
-Small animal PET allows qualitative assessment and quantitative measurement of biochemical processes in vivo, but the accuracy and reproducibility of imaging results can be affected by several parameters. The first aim of this study was to investigate the performance of different CT-based attenuation correction strategies and assess the resulting impact on PET images. The absorbed dose in different tissues caused by scanning procedures was also discussed to minimize biologic damage generated by radiation exposure due to PET/CT scanning. A small animal PET/CT system was modeled based on Monte Carlo simulation to generate imaging results and dose distribution. Three energy mapping methods, including the bilinear scaling method, the dual-energy method and the hybrid method which combines the kVp conversion and the dual-energy method, were investigated comparatively through assessing the accuracy of estimating linear attenuation coefficient at 511 keV and the bias introduced into PET quantification results due to CT-based attenuation correction. Our results showed that the hybrid method outperformed the bilinear scaling method, while the dual-energy method achieved the highest accuracy among the three energy mapping methods. Overall, the accuracy of PET quantification results have similar trend as that for the estimation of linear attenuation coefficients, whereas the differences between the three methods are more obvious in the estimation of linear attenuation coefficients than in the PET quantification results. With regards to radiation exposure from CT, the absorbed dose ranged between 7.29-45.58 mGy for 50-kVp scan and between 6.61-39.28 mGy for 80-kVp scan. For 18 F radioactivity concentration of 1.86x10 5 Bq/ml, the PET absorbed dose was around 24 cGy for tumor with a target-to-background ratio of 8. The radiation levels for CT scans are not lethal to the animal, but concurrent use of PET in longitudinal study can increase the risk of biological effects. The
Impact of Scattering Model on Disdrometer Derived Attenuation Scaling
Zemba, Michael; Luini, Lorenzo; Nessel, James; Riva, Carlo (Compiler)
2016-01-01
NASA Glenn Research Center (GRC), the Air Force Research Laboratory (AFRL), and the Politecnico di Milano (POLIMI) are currently entering the third year of a joint propagation study in Milan, Italy utilizing the 20 and 40 GHz beacons of the Alphasat TDP5 Aldo Paraboni scientific payload. The Ka- and Q-band beacon receivers were installed at the POLIMI campus in June of 2014 and provide direct measurements of signal attenuation at each frequency. Collocated weather instrumentation provides concurrent measurement of atmospheric conditions at the receiver; included among these weather instruments is a Thies Clima Laser Precipitation Monitor (optical disdrometer) which records droplet size distributions (DSD) and droplet velocity distributions (DVD) during precipitation events. This information can be used to derive the specific attenuation at frequencies of interest and thereby scale measured attenuation data from one frequency to another. Given the ability to both predict the 40 GHz attenuation from the disdrometer and the 20 GHz timeseries as well as to directly measure the 40 GHz attenuation with the beacon receiver, the Milan terminal is uniquely able to assess these scaling techniques and refine the methods used to infer attenuation from disdrometer data.In order to derive specific attenuation from the DSD, the forward scattering coefficient must be computed. In previous work, this has been done using the Mie scattering model, however, this assumes a spherical droplet shape. The primary goal of this analysis is to assess the impact of the scattering model and droplet shape on disdrometer derived attenuation predictions by comparing the use of the Mie scattering model to the use of the T-matrix method, which does not assume a spherical droplet. In particular, this paper will investigate the impact of these two scattering approaches on the error of the resulting predictions as well as on the relationship between prediction error and rain rate.
Xie, Puhui; Chen, Yuan-Jang; Uddin, Md Jamal; Endicott, John F
2005-06-02
contributions of higher order vibronic terms. The emrep amplitudes of these complexes have their maxima at about 1500 cm(-1) in frozen solution, and Lambdax(max) decreases systematically by approximately 2-fold as Ef decreases from 17,220 for [Ru(bpy)3]2+ to 12,040 cm(-1) for [Ru(NH3)4bpy]2+ through the series of complexes. Corrections for higher order contributions and bandwidth differences based on the modeling with rR parameters indicate that the variations in Lambdax(max) imply somewhat larger decreases in first-order bpy vibrational reorganizational energies. The large attenuation of vibrational reorganizational energies of the [Ru(Am)6-2n(bpy)n]2+ complexes contrasts with the apparent similarity of reorganizational energy amplitudes for the absorption and emission of [Ru(NH3)4bpy]2+. These observations are consistent with increasing and very substantial excited-state/ground-state configurational mixing and decreasing excited-state distortion as Ef decreases, but more severe attenuation for singlet/singlet than triplet/singlet mixing (alphage > alphaeg for the configurational mixing coefficients at the ground-state and excited-state potential energy minima, respectively); it is inferred that 0.18 > or = alphage2 > or = 0.09 for [Ru(bpy)3]2+ and 0.37 > or = alphage2 > or = 0.18 for [Ru(NH3)4bpy]2+ in DMSO/water glasses, where the ranges are based on models that there is or is not a spin restriction on configurational mixing (alphage > alphaeg and alphage = alphaeg), respectively, for these complexes.
Two-phonon absorption spectra in CuInSe2
International Nuclear Information System (INIS)
Sobotta, H.; Neumann, H.; Kissinger, W.; Riede, V.; Kuehn, G.
1981-01-01
An attempt was made to measure and to analyse phonon combination mode spectra of CuInSe 2 and in this way to determine the phonon mode frequencies unknown so far. Considering the absorption coefficient spectra, there are to well-pronounced peaks at 405 and 428 cm -1 at room temperature which are shifted to 412 and 433 cm -1 , respectively, at 105 K. Accounting for the fact that the absorption peaks at 405 and 428 cm -1 show the same temperature shift, it seems to be not unreasonable to assume that all the phonon modes participating in these absorption processes are characterized by the same temperature dependence of the mode frequencies. The corresponding mode Grueneisen parameters have been estimated using the thermal expansion coefficients for CuInSe 2 . Values of 1.7 to 2.0 were obtained being nearly of the same magnitude as the values of the high-energy zone-center modes in CuAlS 2 and CuGaS 2 derived from high-pressure Raman scattering studies
Gong, Kuang; Yang, Jaewon; Kim, Kyungsang; El Fakhri, Georges; Seo, Youngho; Li, Quanzheng
2018-05-23
Positron Emission Tomography (PET) is a functional imaging modality widely used in neuroscience studies. To obtain meaningful quantitative results from PET images, attenuation correction is necessary during image reconstruction. For PET/MR hybrid systems, PET attenuation is challenging as Magnetic Resonance (MR) images do not reflect attenuation coefficients directly. To address this issue, we present deep neural network methods to derive the continuous attenuation coefficients for brain PET imaging from MR images. With only Dixon MR images as the network input, the existing U-net structure was adopted and analysis using forty patient data sets shows it is superior than other Dixon based methods. When both Dixon and zero echo time (ZTE) images are available, we have proposed a modified U-net structure, named GroupU-net, to efficiently make use of both Dixon and ZTE information through group convolution modules when the network goes deeper. Quantitative analysis based on fourteen real patient data sets demonstrates that both network approaches can perform better than the standard methods, and the proposed network structure can further reduce the PET quantification error compared to the U-net structure. © 2018 Institute of Physics and Engineering in Medicine.
Energy Technology Data Exchange (ETDEWEB)
Momcheva, Ivelina G. [Astronomy Department, Yale University, New Haven, CT 06511 (United States); Lee, Janice C.; Ouchi, Masami [Carnegie Observatories, Pasadena, CA 91101 (United States); Ly, Chun [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Salim, Samir [Astronomy Department, Indiana University, Bloomington, IN 47405 (United States); Dale, Daniel A. [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Finn, Rose [Physics Department, Siena College, Loudonville, NY 12211 (United States); Ono, Yoshiaki, E-mail: ivelina.momcheva@yale.edu [Department of Astronomy, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan)
2013-02-01
We present measurements of the dust attenuation of H{alpha}-selected emission-line galaxies at z = 0.8 from the NewH{alpha} narrowband survey. The analysis is based on deep follow-up spectroscopy with Magellan/IMACS, which captures the strong rest-frame optical emission lines from [O II] {lambda}3727 to [O III] {lambda}5007. The spectroscopic sample used in this analysis consists of 341 confirmed H{alpha} emitters. We place constraints on the active galactic nucleus (AGN) fraction using diagnostics that can be applied at intermediate redshift. We find that at least 5% of the objects in our spectroscopic sample can be classified as AGNs and 2% are composite, i.e., powered by a combination of star formation and AGN activity. We measure the dust attenuation for individual objects from the ratios of the higher order Balmer lines. The H{beta} and H{gamma} pair of lines is detected with S/N > 5 in 55 individual objects and the H{beta} and H{delta} pair is detected in 50 individual objects. We also create stacked spectra to probe the attenuation in objects without individual detections. The median attenuation at H{alpha} based on the objects with individually detected lines is A(H{alpha}) = 0.9 {+-} 1.0 mag, in good agreement with the attenuation found in local samples of star-forming galaxies. We find that the z = 0.8 galaxies occupy a similar locus of attenuation as a function of magnitude, mass, and star formation rate (SFR) as a comparison sample drawn from the SDSS DR4. Both the results from the individual z = 0.8 galaxies and from the stacked spectra show consistency with the mass-attenuation and SFR-attenuation relations found in the local universe, indicating that these relations are also applicable at intermediate redshift.
2016-04-19
the Wave Model (WAM; Hasselmann t al., 1988 ), and Simulating Waves Nearshore ( SWAN ; Booij et al., 999...of the circle represents the maximum wind speed of the hurricane. The black lines in the vicinity of the hurricane track represent the aircraft...contour maps and black contour lines for the model spec- ra at the same location. Then, the model spectra energy exceeds RA pk are plotted as
Speciation of Pu(4) complexes with weak ligands from visible spectra
International Nuclear Information System (INIS)
Berg, J.M.; Veirs, D.K.
2001-01-01
Stoichiometries of early actinide metal ion complexes in solution equilibrium can sometimes be determined by modelling the dependence of a species-sensitive measurement on ligand concentration. Weak ligands present the additional problem that these measurements cannot be made in the simplifying limiting case of low ligand concentration relative to the background electrolyte. At high ligand concentrations, constant ionic strength no longer implies constant activity coefficients. Additional parameters must be included in the equilibrium model to account for the variation of activity coefficients with ligand concentration as well as with overall ionic strength. We present the formalism of such a model based on SIT theory and its implementation for simultaneous fitting of spectra over a wide range of ionic strengths. As a test case, we analyse a subset of the spectra we have collected on complexation of Pu(IV) by nitrate in aqueous acid solutions. (authors)
Attenuation correction of myocardial SPECT by scatter-photopeak window method in normal subjects
International Nuclear Information System (INIS)
Okuda, Koichi; Nakajima, Kenichi; Matsuo, Shinro; Kinuya, Seigo; Motomura, Nobutoku; Kubota, Masahiro; Yamaki, Noriyasu; Maeda, Hisato
2009-01-01
Segmentation with scatter and photopeak window data using attenuation correction (SSPAC) method can provide a patient-specific non-uniform attenuation coefficient map only by using photopeak and scatter images without X-ray computed tomography (CT). The purpose of this study is to evaluate the performance of attenuation correction (AC) by the SSPAC method on normal myocardial perfusion database. A total of 32 sets of exercise-rest myocardial images with Tc-99m-sestamibi were acquired in both photopeak (140 keV±10%) and scatter (7% of lower side of the photopeak window) energy windows. Myocardial perfusion databases by the SSPAC method and non-AC (NC) were created from 15 female and 17 male subjects with low likelihood of cardiac disease using quantitative perfusion SPECT software. Segmental myocardial counts of a 17-segment model from these databases were compared on the basis of paired t test. AC average myocardial perfusion count was significantly higher than that in NC in the septal and inferior regions (P<0.02). On the contrary, AC average count was significantly lower in the anterolateral and apical regions (P<0.01). Coefficient variation of the AC count in the mid, apical and apex regions was lower than that of NC. The SSPAC method can improve average myocardial perfusion uptake in the septal and inferior regions and provide uniform distribution of myocardial perfusion. The SSPAC method could be a practical method of attenuation correction without X-ray CT. (author)
Directory of Open Access Journals (Sweden)
Vadim N. Pelevin
2001-12-01
Full Text Available A method for estimating the water backscattering coefficient was put forward on the basis of experimental data of diffuse attenuation coefficient for downwelling irradiance and irradiance reflectance. Calculations were carried out for open sea waters of different types and the spectral dependencies were found ("anomalous" spectra and explained. On this basis, a new model of light backscattering on particles in the sea is proposed. This model may be useful for modelling remote sensing reflectance spectra in order to solve the inverse problems of estimating the concentration of natural admixtures in shelf waters.
Elimination of endpoint-discontinuity artifacts in the analysis of spectra in reciprocal space
International Nuclear Information System (INIS)
Yoo, S. D.; Aspnes, D. E.
2001-01-01
Reciprocal-space analysis offers several advantages for determining critical point parameters in optical and other spectra, for example the separation of baseline effects, information, and noise in low-, medium-, and high-index Fourier coefficients, respectively. However, endpoint-discontinuity artifacts can obscure much of the information when segments are isolated for analysis. We developed a procedure for eliminating these artifacts and recovering buried information by minimizing in the white-noise region the mean-square deviation between the Fourier coefficients of the data and those of low-order polynomials, then subtracting the resulting coefficients from the data over the entire range. We find that spectral analysis is optimized if no false data are used, i.e., when the number of points transformed equals the number of actual data points in the segment. Using fractional differentiation we develop a simple derivation of the variation of the reciprocal-space coefficients with index n for Lorentzian and Gaussian line shapes in direct space. More generally, we show that the definition of critical point energies in terms of phase coherence of the Fourier coefficients allows these energies to be determined for a broad class of line shapes even if the direct-space line shapes themselves are not known. Limitations for undersampled or highly broadened spectra are discussed, along with extensions to two- or higher-dimensional arrays of data. [copyright] 2001 American Institute of Physics
International Nuclear Information System (INIS)
Meglinskii, I V
2001-01-01
The reflection spectra of a multilayer random medium - the human skin - strongly scattering and absorbing light are numerically simulated. The propagation of light in the medium and the absorption spectra are simulated by the stochastic Monte Carlo method, which combines schemes for calculations of real photon trajectories and the statistical weight method. The model takes into account the inhomogeneous spatial distribution of blood vessels, water, and melanin, the degree of blood oxygenation, and the hematocrit index. The attenuation of the incident radiation caused by reflection and refraction at Fresnel boundaries of layers inside the medium is also considered. The simulated reflection spectra are compared with the experimental reflection spectra of the human skin. It is shown that a set of parameters that was used to describe the optical properties of skin layers and their possible variations, despite being far from complete, is nevertheless sufficient for the simulation of the reflection spectra of the human skin and their quantitative analysis. (laser applications and other topics in quantum electronics)
Large photonic band gaps and strong attenuations of two-segment-connected Peano derivative networks
International Nuclear Information System (INIS)
Lu, Jian; Yang, Xiangbo; Zhang, Guogang; Cai, Lianzhang
2011-01-01
In this Letter, based on ancient Peano curves we construct four kinds of interesting Peano derivative networks composed of one-dimensional (1D) waveguides and investigate the optical transmission spectra and photonic attenuation behavior of electromagnetic (EM) waves in one- and two-segment-connected networks. It is found that for some two-segment-connected networks large photonic band gaps (PBGs) can be created and the widths of large PBGs can be controlled by adjusting the matching ratio of waveguide length and are insensitive to generation number. Diamond- and hexagon-Peano networks are good selectable structures for the designing of optical devices with large PBG(s) and strong attenuation(s). -- Highlights: → Peano and Peano derivative networks composed of 1D waveguides are designed. → Large PBGs with strong attenuations have been created by these fractal networks. → New approach for designing optical devices with large PBGs is proposed. → Diamond- and hexagon-Peano networks with d2:d1=2:1 are good selectable structures.
Line positions, intensities and self-broadening coefficients for the ν5 band of methyl chloride
International Nuclear Information System (INIS)
Barbouchi Ramchani, A.; Jacquemart, D.; Dhib, M.; Aroui, H.
2013-01-01
High resolution Fourier transform spectra have been recorded around 6.9 μm at room temperature using a rapid scan Bruker IFS 120 HR interferometer (unapodized Bruker resolution=0.005 cm −1 ). Transitions of both 12 CH 3 35 Cl and 12 CH 3 37 Cl isotopologues belonging to the ν 5 perpendicular band have been studied. Line positions, intensities, and self-broadening coefficients have been retrieved using a multispectrum fitting procedure that allowed to fit simultaneously the whole set of experimental spectra recorded at various pressures of CH 3 Cl. The wavenumber calibration has been performed using the frequencies of CO 2 transitions. The transition dipole moments squared have been determined for each measured line and the whole set of measurements has been compared with previous measurements and with values from HITRAN and GEISA databases. The rotational J and K dependencies of the self-broadening coefficients have been clearly observed and modeled using empirical polynomial expansions. The average accuracy of the line parameters obtained in this work has been estimated to be between 0.1×10 −3 and 1×10 −3 cm −1 for line positions, between 2% and 5% for line intensities and between 5% and 10% for self-broadening coefficients depending on the transitions. -- Highlights: ► Fourier-transform spectra of the ν 5 band of CH 3 Cl at room temperature. ► Measurements of line positions, intensities and self-broadening coefficients. ► Analysis of the J- and K-rotational dependences of self-widths. ► Comparisons with literature
Use of two monoenergetic gamma-ray attenuation method in wood samples
International Nuclear Information System (INIS)
Mortatti, J.; Nascimento Filho, V.F. do; Barros Ferraz, E.S. de
1983-01-01
The mass attenuation coefficients for 10 wood species were determined employing the gamma attenuation technique with a single beam comprising two monoenergetics gamma energies from 137 Cs/sup(137m) Ba and 141 Am (662 and 59,6 KeV, respectively). The absorbed radiation was simultaneously measured by means of a 3'' x 3'' Nal (T1) planar solid scintillator crystal connected to a two channel gamma spectrometer. The effect of the 137 Cs/ sup(137m) Ba compton radiation on the not 241 Am counting rates were corrected. Dead time effects were desregarded, as the counting rates were always below 10 5 cpm. (Author) [pt
Skyshine spectra of gamma rays
International Nuclear Information System (INIS)
Swarup, Janardan
1980-01-01
A study of the spectra of gamma photons back-scattered in vertical direction by infinite air above ground (skyshine) is presented. The source for these measurements is a 650 Ci Cobalt-60 point-source and the skyshine spectra are reported for distances from 150 m to 325 m from the source, measured with a 5 cm x 5 cm NaI(Tl) detector collimated with collimators of 12 mm and 20 mm diameter and 5 cm length. These continuous spectra are unfolded with Gold's iterative technique. The photon-spectra so obtained have a distinct line at 72 keV due to multiply-scattered photons. This is an energy where photoelectric and Compton cross-sections for multiply-scattered photons balance each other. The intensity of the line(I) decreases exponentially with distance (d) from the source obeying a relation of the type I = Isub(o)esup(-μd) where μ is called as ''Multiply-Scatter Coefficient'', a constant of the medium which is air in these measurements. This relationship is explained in terms of a halo around the source comprising of multiply-scattered gamma photons, Isub(0) being the intensity of these scattered photons at the location of cobalt-source. A fraction called as ''Back-scattered Fraction'', the ratio of Isub(0) to the number of original photons from the cobalt-source entering the infinite air, is also calculated. It is shown that with a properly calibrated detector system, this fraction can be used to determine the strength of a large gamma source, viz. a nuclear explosion in air, and for mineral prospecting. These conclusions are general and can be applied to any other infinite medium. Some forward-scatter (transmission) spectra of cobalt-60 source through 10 cm of Pb and 2.5 cm of Al are also reported. (auth.)
Wanniarachchi, W A M; Ranjith, P G; Perera, M S A; Rathnaweera, T D; Lyu, Q; Mahanta, B
2017-10-01
The mechanical properties of any substance are essential facts to understand its behaviour and make the maximum use of the particular substance. Rocks are indeed an important substance, as they are of significant use in the energy industry, specifically for fossil fuels and geothermal energy. Attenuation of seismic waves is a non-destructive technique to investigate mechanical properties of reservoir rocks under different conditions. The attenuation characteristics of five different rock types, siltstone, shale, Australian sandstone, Indian sandstone and granite, were investigated in the laboratory using ultrasonic and acoustic emission instruments in a frequency range of 0.1-1 MHz. The pulse transmission technique and spectral ratios were used to calculate the attenuation coefficient ( α ) and quality factor ( Q ) values for the five selected rock types for both primary ( P ) and secondary ( S ) waves, relative to the reference steel sample. For all the rock types, the attenuation coefficient was linearly proportional to the frequency of both the P and S waves. Interestingly, the attenuation coefficient of granite is more than 22% higher than that of siltstone, sandstone and shale for both P and S waves. The P and S wave velocities were calculated based on their recorded travel time, and these velocities were then used to calculate the dynamic mechanical properties including elastic modulus ( E ), bulk modulus ( K ), shear modulus ( µ ) and Poisson's ratio ( ν ). The P and S wave velocities for the selected rock types varied in the ranges of 2.43-4.61 km s -1 and 1.43-2.41 km h -1 , respectively. Furthermore, it was observed that the P wave velocity was always greater than the S wave velocity, and this confirmed the first arrival of P waves to the sensor. According to the experimental results, the dynamic E value is generally higher than the static E value obtained by unconfined compressive strength tests.
International Nuclear Information System (INIS)
Murase, Kenya; Itoh, Hisao; Mogami, Hiroshi; Ishine, Masashiro; Kawamura, Masashi; Iio, Atsushi; Hamamoto, Ken
1987-01-01
A computer based simulation method was developed to assess the relative effectiveness and availability of various attenuation compensation algorithms in single photon emission computed tomography (SPECT). The effect of the nonuniformity of attenuation coefficient distribution in the body, the errors in determining a body contour and the statistical noise on reconstruction accuracy and the computation time in using the algorithms were studied. The algorithms were classified into three groups: precorrection, post correction and iterative correction methods. Furthermore, a hybrid method was devised by combining several methods. This study will be useful for understanding the characteristics limitations and strengths of the algorithms and searching for a practical correction method for photon attenuation in SPECT. (orig.)
Program system for processing of spectra obtained on the multidetector correlation device (MUK)
International Nuclear Information System (INIS)
Venos, D.; Adam, J.; Hnatowicz, V.; Honusek, M.
1988-01-01
A program system used by evaluation of multidimensional coincidence spectra is described. The spectra recorded on magnetic tapes are obtained by means of multidetector correlation device (MUK). The angular correlation coefficients A 22 and A 44 for the given cascades of gamma transitions are the final result of the calculations. The system operates in DOS/ES system of the EC-1040 computer with the 1024 Kbyte memeory. All the codes are written in fortran language
Cheng-Wu, Li; Hong-Lai, Xue; Cheng, Guan; Wen-biao, Liu
2018-04-01
Statistical analysis shows that in the coal matrix, the diffusion coefficient for methane is time-varying, and its integral satisfies the formula μt κ /(1 + β κ ). Therefore, a so-called dynamic diffusion coefficient model (DDC model) is developed. To verify the suitability and accuracy of the DDC model, a series of gas diffusion experiments were conducted using coal particles of different sizes. The results show that the experimental data can be accurately described by the DDC and bidisperse models, but the fit to the DDC model is slightly better. For all coal samples, as time increases, the effective diffusion coefficient first shows a sudden drop, followed by a gradual decrease before stabilizing at longer times. The effective diffusion coefficient has a negative relationship with the size of the coal particle. Finally, the relationship between the constants of the DDC model and the effective diffusion coefficient is discussed. The constant α (μ/R 2 ) denotes the effective coefficient at the initial time, and the constants κ and β control the attenuation characteristic of the effective diffusion coefficient.
Energy Technology Data Exchange (ETDEWEB)
Chang, Connie Y.; Simeone, F.J.; Torriani, Martin; Bredella, Miriam A. [Massachusetts General Hospital, Division of Musculoskeletal Imaging and Intervention, Department of Radiology, Boston, MA (United States)
2017-10-15
Osseous metastases often undergo an osteoblastic healing response following chemotherapy. The purpose of our study was to demonstrate the quantitative CT changes in attenuation of osseous metastases before and after chemotherapy. Our study was IRB approved and HIPAA compliant. Our cohort consisted of 86 consecutive cancer patients with contrast-enhanced CTs before and 14 ± 2 (12-25) months after initiation of chemotherapy (60 ± 11 years, 36 males, 50 females). The average and maximum metastasis attenuations were measured in Hounsfield units (HU) by two readers. Treatment effects were assessed using paired t-tests and Fisher exact tests. Intraclass correlation coefficients (ICCs) were calculated. Patient records were reviewed to determine the patient's clinical status (worse, unchanged, or improved) at the time of follow-up CT. The distribution of lesion types was as follows: lytic (30/86, 35%), blastic (43/86, 50%), and mixed lytic-blastic (13/86, 15%). There was a significant increase in average and maximum CT attenuation of metastases following chemotherapy for all patients, which remained statistically significant when stratified by lesion type, clinical status (worsening or improving/stable), cancer type (breast, lung), and radiation therapy (P < 0.05). In a subgroup of patients whose osseous metastases decreased in average attenuation (14/86, 16%), more patients had a worse clinical status (11/14, 79%) (P = 0.02). ICC was almost perfect for average attenuation and substantial for maximum attenuation. Quantitative assessment of osseous metastatic disease using CT attenuation measurements demonstrated a statistically significant increase in attenuation more than 12 months after initiation of chemotherapy. (orig.)
COLLI-PTB, Neutron Fluence Spectra for 3-D Collimator System by Monte-Carlo
International Nuclear Information System (INIS)
Schlegel-Bickmann, Dietrich
1995-01-01
1 - Description of program or function: For optimizing collimator systems (shieldings) for fast neutrons with energies between 10 KeV and 20 MeV. Only elastic and inelastic neutron scattering processes are involved. Isotropic angular distribution for inelastic scattering in the center of mass system is assumed. 2 - Method of solution: The Monte Carlo method with importance sampling technique, splitting and Russian Roulette is used. The neutron attenuation and scattering kinematics is taken into account. 3 - Restrictions on the complexity of the problem: Energy range from 10 KeV to 20 MeV. For the output spectra any bin width is possible. The output spectra are confined to 40 equidistant channels
Attenuation of trace organic compounds (TOrCs) inbioelectrochemical systems
Werner, Craig M.
2015-04-01
Microbial fuel cells (MFCs) and microbial electrolysis cells (MECs) are two types of microbial bioelectrochemical systems (BESs) that use microorganisms to convert chemical energy in wastewaters into useful energy products such as (bio)electricity (MFC) or hydrogen gas (MEC). These two systems were evaluated for their capacity to attenuate trace organic compounds (TOrCs), commonly found in municipal wastewater, under closed circuit (current generation) and open circuit (no current generation) conditions, using acetate as the carbon source. A biocide was used to evaluate attenuation in terms of biotransformation versus sorption. The difference in attenuation observed before and after addition of the biocide represented biotransformation, while attenuation after addition of a biocide primarily indicated sorption. Attenuation of TOrCs was similar in MFCs and MECs for eight different TOrCs, except for caffeine and trimethoprim where slightly higher attenuation was observed in MECs. Electric current generation did not enhance attenuation of the TOrCs except for caffeine, which showed slightly higher attenuation under closed circuit conditions in both MFCs and MECs. Substantial sorption of the TOrCs occurred to the biofilm-covered electrodes, but no consistent trend could be identified regarding the physico-chemical properties of the TOrCs tested and the extent of sorption. The octanol-water distribution coefficient at pH 7.4 (log DpH 7.4) appeared to be a reasonable predictor for sorption of some of the compounds (carbamazepine, atrazine, tris(2-chloroethyl) phosphate and diphenhydramine) but not for others (N,N-Diethyl-meta-toluamide). Atenolol also showed high levels of sorption despite being the most hydrophilic in the suite of compounds studied (log DpH 7.4=-1.99). Though BESs do not show any inherent advantages over conventional wastewater treatment, with respect to TOrC removal, overall removals in BESs are similar to that reported for conventional wastewater
Neutron and gamma dose and spectra measurements on the Little Boy replica
International Nuclear Information System (INIS)
Hoots, S.; Wadsworth, D.
1984-01-01
The radiation-measurement team of the Weapons Engineering Division at Lawrence Livermore National Laboratory (LLNL) measured neutron and gamma dose and spectra on the Little Boy replica at Los Alamos National Laboratory (LANL) in April 1983. This assembly is a replica of the gun-type atomic bomb exploded over Hiroshima in 1945. These measurements support the National Academy of Sciences Program to reassess the radiation doses due to atomic bomb explosions in Japan. Specifically, the following types of information were important: neutron spectra as a function of geometry, gamma to neutron dose ratios out to 1.5 km, and neutron attenuation in the atmosphere. We measured neutron and gamma dose/fission from close-in to a kilometer out, and neutron and gamma spectra at 90 and 30 0 close-in. This paper describes these measurements and the results. 12 references, 13 figures, 5 tables
Seismic Linear Noise Attenuation with Use of Radial Transform
Szymańska-Małysa, Żaneta
2018-03-01
One of the goals of seismic data processing is to attenuate the recorded noise in order to enable correct interpretation of the image. Radial transform has been used as a very effective tool in the attenuation of various types of linear noise, both numerical and real (such as ground roll, direct waves, head waves, guided waves etc). The result of transformation from offset - time (X - T) domain into apparent velocity - time (R - T) domain is frequency separation between reflections and linear events. In this article synthetic and real seismic shot gathers were examined. One example was targeted at far offset area of dataset where reflections and noise had similar apparent velocities and frequency bands. Another example was a result of elastic modelling where linear artefacts were produced. Bandpass filtering and scaling operation executed in radial domain attenuated all discussed types of linear noise very effectively. After noise reduction all further processing steps reveal better results, especially velocity analysis, migration and stacking. In all presented cases signal-to-noise ratio was significantly increased and reflections covered previously by noise were revealed. Power spectra of filtered seismic records preserved real dynamics of reflections.
Indirect measure of X-rays spectra using TLDs
International Nuclear Information System (INIS)
Bonzi, E. V.; Mainardi, R. T.
2011-10-01
A methodology of indirect measure of X-rays spectra, emitted by conventional tubes, was developed recently and its feasibility verified in the first place by Monte Carlo simulations. For that case is intended to measure, by means of plastic scintillators, attenuation curves of dispersed beams previously. In this work were carried out measurements of attenuation curves with thermoluminescent dosimeters (TLD) to verify the kindness of the indirect measure method. The attenuation curve was also measured using an ionization chamber brand Capintec (model 192) with the purpose of making a comparison. The results of the attenuation curve measured with both dosimeters present a good resolution inside the statistical fluctuations and the spectral reconstruction using diverse parametric functions is carried out in a quick and simple way with excellent resolutions in the functional form. For this reconstruction method are of fundamental importance the following properties of the used dosimeter: in the first place the repetition of the measures, property that could check; in second place the precision of the measured data and lastly the dosimeter response, this is, the increase of the thermoluminescent signal before an increase of the photons flow of X-rays. This parameter is the gradient of the curve thermoluminescent signal versus the dose imparted to the dosimeter. The measures were realized with a generator of X-rays brand Kevex provided of a conventional tube with tungsten anti cathode that polarizes with high tension to a maximum value of 50 kV and current of 0.5 ma. (Author)
Wu, Yao; Yang, Wei; Lu, Lijun; Lu, Zhentai; Zhong, Liming; Huang, Meiyan; Feng, Yanqiu; Feng, Qianjin; Chen, Wufan
2016-10-01
Attenuation correction is important for PET reconstruction. In PET/MR, MR intensities are not directly related to attenuation coefficients that are needed in PET imaging. The attenuation coefficient map can be derived from CT images. Therefore, prediction of CT substitutes from MR images is desired for attenuation correction in PET/MR. This study presents a patch-based method for CT prediction from MR images, generating attenuation maps for PET reconstruction. Because no global relation exists between MR and CT intensities, we propose local diffeomorphic mapping (LDM) for CT prediction. In LDM, we assume that MR and CT patches are located on 2 nonlinear manifolds, and the mapping from the MR manifold to the CT manifold approximates a diffeomorphism under a local constraint. Locality is important in LDM and is constrained by the following techniques. The first is local dictionary construction, wherein, for each patch in the testing MR image, a local search window is used to extract patches from training MR/CT pairs to construct MR and CT dictionaries. The k-nearest neighbors and an outlier detection strategy are then used to constrain the locality in MR and CT dictionaries. Second is local linear representation, wherein, local anchor embedding is used to solve MR dictionary coefficients when representing the MR testing sample. Under these local constraints, dictionary coefficients are linearly transferred from the MR manifold to the CT manifold and used to combine CT training samples to generate CT predictions. Our dataset contains 13 healthy subjects, each with T1- and T2-weighted MR and CT brain images. This method provides CT predictions with a mean absolute error of 110.1 Hounsfield units, Pearson linear correlation of 0.82, peak signal-to-noise ratio of 24.81 dB, and Dice in bone regions of 0.84 as compared with real CTs. CT substitute-based PET reconstruction has a regression slope of 1.0084 and R 2 of 0.9903 compared with real CT-based PET. In this method, no
EVIDENCE FOR SECONDARY EMISSION AS THE ORIGIN OF HARD SPECTRA IN TeV BLAZARS
International Nuclear Information System (INIS)
Zheng, Y. G.; Kang, T.
2013-01-01
We develop a model for the possible origin of hard, very high energy (VHE) spectra from a distant blazar. In the model, both the primary photons produced in the source and secondary photons produced outside it contribute to the observed high-energy γ-ray emission. That is, the primary photons are produced through the synchrotron self-Compton process, and the secondary photons are produced through high-energy proton interactions with background photons along the line of sight. We apply the model to a characteristic case of VHE γ-ray emission in the distant blazar 1ES 1101-232. Assuming suitable electron and proton spectra, we obtain excellent fits to the observed spectra of this blazar. This indicated that the surprisingly low attenuation of the high-energy γ-rays, especially the shape of the VHE γ-ray tail of the observed spectra, can be explained by secondary γ-rays produced in interactions of cosmic-ray protons with background photons in intergalactic space.
Neutron and gamma-ray spectra measurement on the model of the KS-150 reactor radial shielding
International Nuclear Information System (INIS)
Holman, M.; Hogel, J.; Marik, J.; Kovarik, K.; Franc, L.; Vespalec, R.
1977-01-01
A shortened model of the peripheral region of the KS-150 reactor core consisting of two rows of fuel elements and a reflector was constructed from the peripheral fuel elements of the KS-150 reactor core in an experiment on the TR-0 reactor. The mockup of the thermal shield (10 cm of steel), the pressure vessel (15 cm of steel) and the inner wall of the water biological shielding (2 cm of steel) of the KS-150 reactor were erected outside the TR-0 vessel. Fast neutron and gamma spectra were measured with a stilbene crystal scintillation spectrometer. The resonance neutron spectra were measured with 197 Au, 63 Cu and 23 Na resonance activation detectors. Fast neutron spectra inside the reactor were measured with a 10 mm diameter by 10 mm thick stilbene crystal spectrometer, outside the reactor with a 10 mm diameter by 10 mm thick and a 20 mm diameter by 20 mm thick stilbene crystal spectrometer. Neutron spectra in the energy regions of 1 eV to 3 keV and 0.6 MeV to 0.8 MeV were obtained on the core periphery, on the reflector half-thickness and in front of and behind the reactor thermal shield. Gamma spectra were obtained in front of and behind the thermal shield. It was found that the attenuation of neutron fluxes by the reflector and the thermal shield increased with increasing energy while gamma radiation attenuation decreased with increasing energy. It was not possible to obtain the neutron spectrum in the 10 to 600 keV energy range because suitable detection instrumentation was not available. (J.P.)
Limkitjaroenporn, P.; Kaewkhao, J.
2014-10-01
In this work, the gamma-rays interaction properties of zircons from Cambodia and South Africa have been studied. The densities of Cambodian and South African's zircons are 4.6716±0.0040 g/cm3 and 4.5505±0.0018 g/cm3, respectively. The mass attenuation coefficient and the effective atomic number of gemstones were measured with the gamma-ray in energies range 223-662 keV using the Compton scattering technique. The mass attenuation coefficients of both zircons decreased with the increasing of gamma-rays energies. The different mass attenuation coefficients between the two zircons observed at gamma-ray energies below 400 keV are attributed to the differences in the photoelectric interaction. The effective atomic number of zircons was decreased with the increasing of gamma-ray energies and showed totally different values between the Cambodia and South Africa sources. The origins of the two zircons could be successfully identified by the method based on gamma-rays interaction with matter with advantage of being a non-destructive testing.
[Study on Vis/NIR spectra detecting system for watermelons and quality predicting in motion].
Tian, Hai-Qing; Ying, Yi-Bin; Xu, Hui-Rong; Lu, Hui-Shan; Xie, Li-Juan
2009-06-01
To make Vis/NIR diffuse transmittance technique applied to quality prediction for watermelon in motion, the dynamic spectra detecting system was rebuilt. Spectra detecting experiments were conducted and the effects of noises caused by motion on spectra were analyzed. Then the least--square filtering method and Norris differential filtering method were adopted to eliminate the effects of noise on spectra smoothing, and statistical models between the spectra and soluble solids content were developed using partial least square method. The performance of different models was assessed in terms of correlation coefficients (r) of validation set of samples, root mean square errors of calibration (RMSEC) and root mean square errors of prediction (RMSEP). Calibration and prediction results indicated that Norris differential method was an effective method to smooth spectra and improve calibration and prediction results, especially, with r of 0.895, RMSEC of 0.549, and RMSEP of 0.760 for the calibration and prediction result of the first derivative spectra.
Detection of shielded radionuclides from weak and poorly resolved spectra using group positive RIVAL
International Nuclear Information System (INIS)
Kump, Paul; Bai, Er-Wei; Chan, Kung-Sik; Eichinger, William
2013-01-01
This paper is concerned with the identification of nuclides from weak and poorly resolved spectra in the presence of unknown radiation shielding materials such as carbon, water, concrete and lead. Since a shield will attenuate lower energies more so than higher ones, isotope sub-spectra must be introduced into models and into detection algorithms. We propose a new algorithm for detection, called group positive RIVAL, that encourages the selection of groups of sub-spectra rather than the selection of individual sub-spectra that may be from the same parent isotope. Indeed, the proposed algorithm incorporates group positive LASSO, and, as such, we supply the consistency results of group positive LASSO and adaptive group positive LASSO. In an example employing various shielding materials and material thicknesses, group positive RIVAL is shown to perform well in all scenarios with the exception of ones in which the shielding material is lead. - Highlights: ► Identification of nuclides from weak and poorly resolved spectra. ► Shielding materials such as carbon, water, concrete, and lead are considered. ► Isotope spectra are decomposed into their sub-spectra. ► A variable selection algorithm is proposed that encourages group selection. ► Simulations demonstrate the proposed method's performance when nuclides have been shielded
Wave attenuation across a tidal marsh in San Francisco Bay
Foster-Martinez, Madeline R.; Lacy, Jessica; Ferner, Matthew C.; Variano, Evan A.
2018-01-01
Wave attenuation is a central process in the mechanics of a healthy salt marsh. Understanding how wave attenuation varies with vegetation and hydrodynamic conditions informs models of other marsh processes that are a function of wave energy (e.g. sediment transport) and allows for the incorporation of marshes into coastal protection plans. Here, we examine the evolution of wave height across a tidal salt marsh in San Francisco Bay. Instruments were deployed along a cross-shore transect, starting on the mudflat and crossing through zones dominated by Spartina foliosa and Salicornia pacifica. This dataset is the first to quantify wave attenuation for these vegetation species, which are abundant in the intertidal zone of California estuaries. Measurements were collected in the summer and winter to assess seasonal variation in wave attenuation. Calculated drag coefficients of S. foliosa and S. pacifica were similar, indicating equal amounts of vegetation would lead to similar energy dissipation; however, S. pacifica has much greater biomass close to the bed (<20 cm) and retains biomass throughout the year, and therefore, it causes more total attenuation. S. foliosa dies back in the winter, and waves often grow across this section of the marsh. For both vegetation types, attenuation was greatest for low water depths, when the vegetation was emergent. For both seasons, attenuation rates across S. pacifica were the highest and were greater than published attenuation rates across similar (Spartina alterniflora) salt marshes for the comparable depths. These results can inform designs for marsh restorations and management plans in San Francisco Bay and other estuaries containing these species.
Factors influencing radon attenuation by tailing covers
International Nuclear Information System (INIS)
Silker, W.B.; Rogers, V.C.
1981-07-01
The US NRC, in its Generic Environmental Impact Statement on uranium milling has specified that the radon flux escaping a uranium mill tailings pile will be reduced to pCi/m 2 s by application of covering layers of soils and clays. These covers present a radon diffusion barrier, which sufficiently increases the time required for radon passage from the tailings to the atmosphere to allow for decay of 222 Rn within the cover. The depth of cover necessary to reduce the escaping radon flux to the prescribed level is to be determined by calculation, and requires precise knowledge of the radon diffusion coefficient in the covering media. A Radon Attenuation Test Facility was developed to determine rates of radon diffusion through candidate cover materials. This paper describes this facility and its application for determining the influence of physical properties of the soil column on the radon diffusion coefficient
Attenuation process of the longitudinal phonon mode in a TeO2 crystal in the 20-GHz range
Ohno, S.; Sonehara, T.; Tatsu, E.; Koreeda, A.; Saikan, S.
2017-06-01
We experimentally investigated the hypersonic attenuation process of a longitudinal mode (L-mode) sound wave in TeO2 from room temperature to a lower temperature using Brillouin scattering and impulsive stimulated thermal scattering (ISTS) measurements. For precise measurement of the Brillouin linewidth at low temperatures, whereby the mean free path of the phonon becomes longer than the sample length, it is indispensable that the phonon should propagate along the phonon-resonance direction. To figure out the suitable direction, we defined two indices characterizing a degree of phonon divergence and a purity of propagation direction. The best direction that we found from these indices is [110] direction in TeO2, and it was used to discuss the temperature and frequency dependences of Brillouin spectra. We extracted the temperature dependence of the attenuation rate of T4 from the modulated Brillouin spectra due to the phonon resonance below Debye temperature. The frequency dependence ω1 of the hypersonic attenuation was also estimated from the polarization dependence of the Brillouin linewidth. Theoretically, it predicted that the L-mode phonon attenuation at low temperatures in TeO2 is a result of Herring's process, which shows the attenuation behavior of ω2T3 . The ω1T4 dependence is not allowed in Herring's process but is allowed by the L +L →L process, which has been considered to be forbidden so far. We evaluated the thermal phonon lifetime using ISTS and established that it was finite even at 20 K, thereby allowing the L +L →L process. Therefore, we conclude that the L +L →L process dominates the attenuation of an L-mode phonon in TeO2 in the low-temperature region.
Earthquake source scaling and self-similarity estimation from stacking P and S spectra
Prieto, GermáN. A.; Shearer, Peter M.; Vernon, Frank L.; Kilb, Debi
2004-08-01
We study the scaling relationships of source parameters and the self-similarity of earthquake spectra by analyzing a cluster of over 400 small earthquakes (ML = 0.5 to 3.4) recorded by the Anza seismic network in southern California. We compute P, S, and preevent noise spectra from each seismogram using a multitaper technique and approximate source and receiver terms by iteratively stacking the spectra. To estimate scaling relationships, we average the spectra in size bins based on their relative moment. We correct for attenuation by using the smallest moment bin as an empirical Green's function (EGF) for the stacked spectra in the larger moment bins. The shapes of the log spectra agree within their estimated uncertainties after shifting along the ω-3 line expected for self-similarity of the source spectra. We also estimate corner frequencies and radiated energy from the relative source spectra using a simple source model. The ratio between radiated seismic energy and seismic moment (proportional to apparent stress) is nearly constant with increasing moment over the magnitude range of our EGF-corrected data (ML = 1.8 to 3.4). Corner frequencies vary inversely as the cube root of moment, as expected from the observed self-similarity in the spectra. The ratio between P and S corner frequencies is observed to be 1.6 ± 0.2. We obtain values for absolute moment and energy by calibrating our results to local magnitudes for these earthquakes. This yields a S to P energy ratio of 9 ± 1.5 and a value of apparent stress of about 1 MPa.
Attenuation correction in positron emission tomography: Quality control and performance evaluation
International Nuclear Information System (INIS)
Nalis, J.; Courbon, F.; Brillouet, S.; Marre, D.; Serre, D.; Colin, V.; Caselles, O.; Flouzat, G.
2007-01-01
Objective: The aim of this study is to evaluate the performance of the Computed Tomography based Attenuation Correction (CTAC) for Positron Emission Tomography (PET) data. Attenuation maps containing linear attenuation coefficients at 511 keV (LAC 511 keV ) are calculated by trilinear conversion of Hounsfield Units (HU) obtained from CT slices after matrix size-reduction and Gaussian filtering. Our work focusses on this trilinear conversion. Materials and methods: CT slices of an electron density phantom. composed of 17 cylindrical inserts made of different tissue-equivalent materials, were acquired using a Discovery ST4 PET-CT. Data were processed with a customized version of CT quality control software, giving automatically the experimental conversion function: LAC 511 keV =f(HU). Furthermore, data from patient datasets were assessed using both smoothed CT slices and attenuation maps. Results: LAC 511 keV extracted from phantom data are in good correlation with the expected theoretical values, except for the standard 10 mm diameter dense bone insert, where the obtained CTAC values are underestimated, Assuming a sample size issue, similar acquisitions were performed with a special 30 mm-diameter dense bone insert, confirming the underestimation as a consequence of the sample size. (authors)
Multi-damping earthquake design spectra-compatible motion histories
International Nuclear Information System (INIS)
Choi, Dong-Ho; Lee, Sang-Hoon
2003-01-01
Two iterative methods of developing time histories compatible with multi-damping spectra are presented. The common method of forcing agreement among design and calculated spectral values at several frequencies and multiple damping values may give poor, even meaningless results. The two simple iterative techniques presented here use acceleration impulse functions for 'correcting' the time histories. In the first method the correction is calculated separately for each frequency and damping value and the maximum corresponding coefficient is used to correct the time history for the iteration. In the second method the solution is further improved by introducing a scale factor at each iteration. The effectiveness of the proposed techniques is illustrated by a comparison of a set of six multi-damping design spectra with spectral responses of a time history
Phase Aberration and Attenuation Effects on Acoustic Radiation Force-Based Shear Wave Generation.
Carrascal, Carolina Amador; Aristizabal, Sara; Greenleaf, James F; Urban, Matthew W
2016-02-01
Elasticity is measured by shear wave elasticity imaging (SWEI) methods using acoustic radiation force to create the shear waves. Phase aberration and tissue attenuation can hamper the generation of shear waves for in vivo applications. In this study, the effects of phase aberration and attenuation in ultrasound focusing for creating shear waves were explored. This includes the effects of phase shifts and amplitude attenuation on shear wave characteristics such as shear wave amplitude, shear wave speed, shear wave center frequency, and bandwidth. Two samples of swine belly tissue were used to create phase aberration and attenuation experimentally. To explore the phase aberration and attenuation effects individually, tissue experiments were complemented with ultrasound beam simulations using fast object-oriented C++ ultrasound simulator (FOCUS) and shear wave simulations using finite-element-model (FEM) analysis. The ultrasound frequency used to generate shear waves was varied from 3.0 to 4.5 MHz. Results: The measured acoustic pressure and resulting shear wave amplitude decreased approximately 40%-90% with the introduction of the tissue samples. Acoustic intensity and shear wave displacement were correlated for both tissue samples, and the resulting Pearson's correlation coefficients were 0.99 and 0.97. Analysis of shear wave generation with tissue samples (phase aberration and attenuation case), measured phase screen, (only phase aberration case), and FOCUS/FEM model (only attenuation case) showed that tissue attenuation affected the shear wave generation more than tissue aberration. Decreasing the ultrasound frequency helped maintain a focused beam for creation of shear waves in the presence of both phase aberration and attenuation.
Ichinose, G.; Woods, M.; Dwyer, J.
2014-03-01
We estimated the network-averaged mantle attenuation t*(total) of 0.5 s beneath the North Korea test site (NKTS) by use of P-wave spectra and normalized spectral stacks from the 25 May 2009 declared nuclear test (mb 4.5; IDC). This value was checked using P-waves from seven deep (580-600 km) earthquakes (4.8 test, which confirms the equality with the sum of t*(u) and t*(d). We included constraints on seismic moment, depth, and radiation pattern by using results from a moment tensor analysis and corner frequencies from modeling of P-wave spectra recorded at local distances. We also avoided finite-faulting effects by excluding earthquakes with complex source time functions. We assumed ω2 source models for earthquakes and explosions. The mantle attenuation beneath the NKTS is clearly different when compared with the network-averaged t* of 0.75 s for the western US and is similar to values of approximately 0.5 s for the Semipalatinsk test site within the 0.5-2 Hz range.
Recovery coefficients as a test of system linearity of response in PET
International Nuclear Information System (INIS)
Geworski, L.; Munz, D.L.; Knoop, B.; Hofmann, M.; Knapp, W.H.
2002-01-01
Aim: New imaging protocols have created an increasing demand for quantitation in dedicated PET. Besides attenuation and scatter correction the recovery correction, accounting for the instrument's limited spatial resolution, has gained importance. For clinical practicability these corrections should work independent from the object, i.e. from the actual distribution of emitter and absorber. Aim of the study was to test this object independency, i.e. system linearity of response, by comparing recovery coefficients (RC) determined for different object geometries. In fact, this comparison may serve as a final test on system linearity of response, as measured on the quantitative accuracy by which the activity concentration in small lesions can be recovered. Method: For hot and cold spot imaging situations spatial distribution of activity is different. Therefore, scatter correction algorithm has to deal with different scatter distributions. If all factors disturbing system linearity, specifically scatter and attenuation, are corrected to a sufficient degree of accuracy, the system behaves linearly resulting in the theoretical relationship. CSRC = (1-HSRC). Thus, this equation, applied hot and cold spot measurements, will serve as a test on the effectiveness of the corrections and, hence, as a test of system linearity of response. Following IEC standard procedures (IEC 61675-1) measurements were done with and without interplane septa (2D/3D) on an ECAT EXACT 922 using a cylindrical phantom containing six spheres of different diameters (10 mm - 40 mm). All data were corrected for attenuation (transmission scan) and scatter (2D: deconvolution, 3D: scatter model), as implemented in the scanner's standard software. Recovery coefficients were determined for cold (CSRC) and hot (HSRC) lesions using both 2D and 3D acquisition mode. Results: CSRC directly measured versus CSRC calculated according to eq. (1) from HSRC resulted in an excellent agreement for both 2D and 3D data
Cao, Fang; Fichot, Cedric G.; Hooker, Stanford B.; Miller, William L.
2014-01-01
Photochemical processes driven by high-energy ultraviolet radiation (UVR) in inshore, estuarine, and coastal waters play an important role in global bio geochemical cycles and biological systems. A key to modeling photochemical processes in these optically complex waters is an accurate description of the vertical distribution of UVR in the water column which can be obtained using the diffuse attenuation coefficients of down welling irradiance (Kd()). The Sea UV Sea UVc algorithms (Fichot et al., 2008) can accurately retrieve Kd ( 320, 340, 380,412, 443 and 490 nm) in oceanic and coastal waters using multispectral remote sensing reflectances (Rrs(), Sea WiFS bands). However, SeaUVSeaUVc algorithms are currently not optimized for use in optically complex, inshore waters, where they tend to severely underestimate Kd(). Here, a new training data set of optical properties collected in optically complex, inshore waters was used to re-parameterize the published SeaUVSeaUVc algorithms, resulting in improved Kd() retrievals for turbid, estuarine waters. Although the updated SeaUVSeaUVc algorithms perform best in optically complex waters, the published SeaUVSeaUVc models still perform well in most coastal and oceanic waters. Therefore, we propose a composite set of SeaUVSeaUVc algorithms, optimized for Kd() retrieval in almost all marine systems, ranging from oceanic to inshore waters. The composite algorithm set can retrieve Kd from ocean color with good accuracy across this wide range of water types (e.g., within 13 mean relative error for Kd(340)). A validation step using three independent, in situ data sets indicates that the composite SeaUVSeaUVc can generate accurate Kd values from 320 490 nm using satellite imagery on a global scale. Taking advantage of the inherent benefits of our statistical methods, we pooled the validation data with the training set, obtaining an optimized composite model for estimating Kd() in UV wavelengths for almost all marine waters. This
International Nuclear Information System (INIS)
Soussaline, F.; LeCoq, C.; Raynaud, C.; Kellershohn
1982-01-01
The potential of the Regularizing Iterative Method (RIM), when used in brain studies, is evaluated. RIM is designed to provide fast and accurate reconstruction of tomographic images when non-uniform attenuation is to be accounted for. As indicated by phantom studies, this method improves the contrast and the signal-to-noise ratio as compared to those obtained with Filtered Back Projection (FBP) technique. Preliminary results obtained in brain studies using isopropil-amphetamine I-123 (AMPI-123) are very encouraging in terms of quantitative regional cellular activity. However, the clinical usefulness of this mathematically accurate reconstruction procedure is going to be demonstrated, in comparing quantitative data in heart or liver studies where control values can be obtained
Implementing Monitored Natural Attenuation and Expediting Closure at Fuel-Release Sites
2004-08-01
gasoline, kerosene, diesel, and jet fuel (e.g., Jamison et al., 1975; Atlas , 1981, 1984, and 1988; Young, 1984; Bartha , 1986; Wilson et al., 1986 and...Supporting data. Gas Research Institute, Chicago, Illinois. Atlas , R. M. 1981. Microbial degradation of petroleum hydrocarbons - an Environmental... Microbial Ecology 12:155-172 Battelle. 1984. Chemical Attenuation Rates Coefficients, and Constants in Leachate Migration. Vol I: Critical Review
Method of spectra parametrization of (n, x) and (n, nx) reactions induced by DT-neutrons
International Nuclear Information System (INIS)
Aleksandrov, D.V.; Kovrigin, B.S.
1980-01-01
A method for parmetrization of experimental spectra has been developed for more convenient carrying out a process of separating competing mechanisms contributions in spectra of the (n, x) and (n, nx) reactions induced with DT neutrons. Differential cross sections of competing partial processes are used. as expanding coefficients. Model spectra may be represented in the form of tabulated-given functions calculated separately from formulae of any complexity degree. Fit of model expressions is performed by the least square method (lsm). Step-by-step algorithm of nonlinear optimization is used for search for lsm- evaluations of theoretical models parameters [ru
Jeong, S C; Kawakami, H
2003-01-01
We have examined, by a computer simulation, an on-line measurement of diffusion coefficients by using a short-lived alpha particle emitter, sup 8 Li (half life of 0.84s), as a radiotracer. The energy spectra of alpha particles emitted from diffusing sup 8 Li primarily implanted in the sample of LiAl ar simulated as a measure of the diffusion of sup 8 Li in the sample. As a possible time sequence for the measurement, a time cycle of 6s, i.e. the implantation of sup 8 Li for 1.5s and subsequent diffusion for 4.5s, is supposed. The sample is primarily set on a given temperature for the measurement. The time-dependent yields of alpha particles during the time cycle reveal the possibility to measure the diffusion coefficient with an accuracy of 10% if larger than 1 x 10 sup - sup 9 cm sup 2 /s, by the comparison with the experimental spectra measured at the temperature, i.e. at a certain diffusion coefficient. (author)
Zaidi, H; Slosman, D O
2003-01-01
Reliable attenuation correction represents an essential component of the long chain of modules required for the reconstruction of artifact-free, quantitative brain positron emission tomography (PET) images. In this work we demonstrate the proof of principle of segmented magnetic resonance imaging (MRI)-guided attenuation and scatter corrections in 3D brain PET. We have developed a method for attenuation correction based on registered T1-weighted MRI, eliminating the need of an additional transmission (TX) scan. The MR images were realigned to preliminary reconstructions of PET data using an automatic algorithm and then segmented by means of a fuzzy clustering technique which identifies tissues of significantly different density and composition. The voxels belonging to different regions were classified into air, skull, brain tissue and nasal sinuses. These voxels were then assigned theoretical tissue-dependent attenuation coefficients as reported in the ICRU 44 report followed by Gaussian smoothing and additio...
Energy Technology Data Exchange (ETDEWEB)
Vargas, Luis C.B.; Cardoso, Domingos O.; Gavazza, Sérgio; Morales, Rudnei K., E-mail: claudiovargasbrito@gmail.com [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil); Oliveira, Luciano S. R. [Instituto de Defesa Química Biológica Radiológica Nuclear (IDQBRN), Rio de Janeiro, RJ (Brazil)
2017-07-01
Radioactive gamma-emitting sources with higher energies than 1.022 MeV, may interact with matter by pair production process, generating two photons of 0.511 MeV in the positron annihilation, that may contribute to increase doses in both IOE´s or public. National regulatory agencies require a radiation protection plan and a shielding project to consider the influence of these photons in the licensing procedure. This work will present all steps for the development of the experimental apparatus for determination of the attenuation coefficients for photons with energy of 0.511 MeV in lead. (author)
Empirical evidence for site coefficients in building code provisions
Borcherdt, R.D.
2002-01-01
Site-response coefficients, Fa and Fv, used in U.S. building code provisions are based on empirical data for motions up to 0.1 g. For larger motions they are based on theoretical and laboratory results. The Northridge earthquake of 17 January 1994 provided a significant new set of empirical data up to 0.5 g. These data together with recent site characterizations based on shear-wave velocity measurements provide empirical estimates of the site coefficients at base accelerations up to 0.5 g for Site Classes C and D. These empirical estimates of Fa and Fnu; as well as their decrease with increasing base acceleration level are consistent at the 95 percent confidence level with those in present building code provisions, with the exception of estimates for Fa at levels of 0.1 and 0.2 g, which are less than the lower confidence bound by amounts up to 13 percent. The site-coefficient estimates are consistent at the 95 percent confidence level with those of several other investigators for base accelerations greater than 0.3 g. These consistencies and present code procedures indicate that changes in the site coefficients are not warranted. Empirical results for base accelerations greater than 0.2 g confirm the need for both a short- and a mid- or long-period site coefficient to characterize site response for purposes of estimating site-specific design spectra.
Energy Technology Data Exchange (ETDEWEB)
Vontobel, Jan; Liga, Riccardo; Possner, Mathias; Clerc, Olivier F.; Mikulicic, Fran; Veit-Haibach, Patrick; Voert, Edwin E.G.W. ter; Fuchs, Tobias A.; Stehli, Julia; Pazhenkottil, Aju P.; Benz, Dominik C.; Graeni, Christoph; Gaemperli, Oliver; Herzog, Bernhard; Buechel, Ronny R.; Kaufmann, Philipp A. [University Hospital Zurich, Department of Nuclear Medicine, Zurich (Switzerland)
2015-09-15
The aim of this study was to evaluate the feasibility of attenuation correction (AC) for cardiac {sup 18}F-labelled fluorodeoxyglucose (FDG) positron emission tomography (PET) using MR-based attenuation maps. We included 23 patients with no known cardiac history undergoing whole-body FDG PET/CT imaging for oncological indications on a PET/CT scanner using time-of-flight (TOF) and subsequent whole-body PET/MR imaging on an investigational hybrid PET/MRI scanner. Data sets from PET/MRI (with and without TOF) were reconstructed using MR AC and semi-quantitative segmental (20-segment model) myocardial tracer uptake (per cent of maximum) and compared to PET/CT which was reconstructed using CT AC and served as standard of reference. Excellent correlations were found for regional uptake values between PET/CT and PET/MRI with TOF (n = 460 segments in 23 patients; r = 0.913; p < 0.0001) with narrow Bland-Altman limits of agreement (-8.5 to +12.6 %). Correlation coefficients were slightly lower between PET/CT and PET/MRI without TOF (n = 460 segments in 23 patients; r = 0.851; p < 0.0001) with broader Bland-Altman limits of agreement (-12.5 to +15.0 %). PET/MRI with and without TOF showed minimal underestimation of tracer uptake (-2.08 and -1.29 %, respectively), compared to PET/CT. Relative myocardial FDG uptake obtained from MR-based attenuation corrected FDG PET is highly comparable to standard CT-based attenuation corrected FDG PET, suggesting interchangeability of both AC techniques. (orig.)
The off-center effect on the diffusion coefficient of Cu+ and Li+ in the KCl lattice
International Nuclear Information System (INIS)
Despa, F.
1994-07-01
It is well known that the diffusion coefficients of the Cu + cation in the NaCl and KCl lattices exceeds by three or four orders of magnitude the corresponding self-diffusion coefficients in the intrinsic temperature regions. This fast diffusion of the Cu + has been explained in many papers as an interstitial diffusion although the optical spectra do not confirm the existence of interstitial Cu + . In this paper we propose a new mechanism for fast diffusion. The model assumes that the equilibrium positions of the cationic impurities are noncentral and that the diffusion proceeds by hopping across the potential barrier along the nonlinear paths with the highest probability. The main result shows that the off-center position enhances considerably the diffusion. Theoretical diffusion coefficients have been obtained by modelling the potential barrier. Changes of the configuration entropy and the vibration spectra due to the presence of the noncentral impurity have been included in the model. We proceeded in the Li + cation case as in the case of Cu + cation. We emphasize the good agreement of the model with the experimental data and we show that if the impurity is placed close to the central site the due diffusion coefficient is close to that for the cationic self-diffusion. (author). 37 refs, 6 figs, 3 tabs
Energy Technology Data Exchange (ETDEWEB)
Paziresh, M.; Kingston, A. M., E-mail: andrew.kingston@anu.edu.au; Latham, S. J.; Fullagar, W. K.; Myers, G. M. [Department of Applied Mathematics, Research School of physics and Engineering, The Australian National University, Canberra 2601 (Australia)
2016-06-07
Dual-energy computed tomography and the Alvarez and Macovski [Phys. Med. Biol. 21, 733 (1976)] transmitted intensity (AMTI) model were used in this study to estimate the maps of density (ρ) and atomic number (Z) of mineralogical samples. In this method, the attenuation coefficients are represented [Alvarez and Macovski, Phys. Med. Biol. 21, 733 (1976)] in the form of the two most important interactions of X-rays with atoms that is, photoelectric absorption (PE) and Compton scattering (CS). This enables material discrimination as PE and CS are, respectively, dependent on the atomic number (Z) and density (ρ) of materials [Alvarez and Macovski, Phys. Med. Biol. 21, 733 (1976)]. Dual-energy imaging is able to identify sample materials even if the materials have similar attenuation coefficients at single-energy spectrum. We use the full model rather than applying one of several applied simplified forms [Alvarez and Macovski, Phys. Med. Biol. 21, 733 (1976); Siddiqui et al., SPE Annual Technical Conference and Exhibition (Society of Petroleum Engineers, 2004); Derzhi, U.S. patent application 13/527,660 (2012); Heismann et al., J. Appl. Phys. 94, 2073–2079 (2003); Park and Kim, J. Korean Phys. Soc. 59, 2709 (2011); Abudurexiti et al., Radiol. Phys. Technol. 3, 127–135 (2010); and Kaewkhao et al., J. Quant. Spectrosc. Radiat. Transfer 109, 1260–1265 (2008)]. This paper describes the tomographic reconstruction of ρ and Z maps of mineralogical samples using the AMTI model. The full model requires precise knowledge of the X-ray energy spectra and calibration of PE and CS constants and exponents of atomic number and energy that were estimated based on fits to simulations and calibration measurements. The estimated ρ and Z images of the samples used in this paper yield average relative errors of 2.62% and 1.19% and maximum relative errors of 2.64% and 7.85%, respectively. Furthermore, we demonstrate that the method accounts for the beam hardening effect in density (
MR Imaging-Guided Attenuation Correction of PET Data in PET/MR Imaging.
Izquierdo-Garcia, David; Catana, Ciprian
2016-04-01
Attenuation correction (AC) is one of the most important challenges in the recently introduced combined PET/magnetic resonance (MR) scanners. PET/MR AC (MR-AC) approaches aim to develop methods that allow accurate estimation of the linear attenuation coefficients of the tissues and other components located in the PET field of view. MR-AC methods can be divided into 3 categories: segmentation, atlas, and PET based. This review provides a comprehensive list of the state-of-the-art MR-AC approaches and their pros and cons. The main sources of artifacts are presented. Finally, this review discusses the current status of MR-AC approaches for clinical applications. Copyright © 2016 Elsevier Inc. All rights reserved.
Guerrero, Massimo; Di Federico, Vittorio
2018-03-01
The use of acoustic techniques has become common for estimating suspended sediment in water environments. An emitted beam propagates into water producing backscatter and attenuation, which depend on scattering particles concentration and size distribution. Unfortunately, the actual particles size distribution (PSD) may largely affect the accuracy of concentration quantification through the unknown coefficients of backscattering strength, ks2, and normalized attenuation, ζs. This issue was partially solved by applying the multi-frequency approach. Despite this possibility, a relevant scientific and practical question remains regarding the possibility of using acoustic methods to investigate poorly sorted sediment in the spectrum ranging from clay to fine sand. The aim of this study is to investigate the possibility of combining the measurement of sound attenuation and backscatter to determine ζs for the suspended particles and the corresponding concentration. The proposed method is moderately dependent from actual PSD, thus relaxing the need of frequent calibrations to account for changes in ks2 and ζs coefficients. Laboratory tests were conducted under controlled conditions to validate this measurement technique. With respect to existing approaches, the developed method more accurately estimates the concentration of suspended particles ranging from clay to fine sand and, at the same time, gives an indication on their actual PSD.
Comparison of photon attenuation coefficients (2-150 KeV) for diagnostic imaging simulations
Dodge, Charles W., III; Flynn, Michael J.
2004-05-01
The Radiology Research Laboratory at the Henry Ford Hospital has been involved in modeling x-ray units in order to predict image quality. A critical part of that modeling process is the accurate choice of interaction coefficients. This paper serves as a review and comparison of existing interaction models. Our objective was to obtain accurate and easily calculated interaction coefficients, at diagnostically relevant energies. We obtained data from: McMaster, Lawrence Berkeley Lab data (LBL), XCOM and FFAST Data from NIST, and the EPDL-97 database via LLNL. Our studies involve low energy photons; therefore, comparisons were limited to Coherent (Rayleigh), Incoherent (Compton) and Photoelectric effects, which were summed to determine a total interaction cross section. Without measured data, it becomes difficult to definitively choose the most accurate method. However, known limitations in the McMaster data and smoothing of photo-edge transitions can be used as a guide to establish more valid approaches. Each method was compared to one another graphically and at individual points. We found that agreement between all methods was excellent when away from photo-edges. Near photo-edges and at low energies, most methods were less accurate. Only the Chanter (FFAST) data seems to have consistently and accurately predicted the placement of edges (through M-shell), while minimizing smoothing errors. The EPDL-97 data by LLNL was the best over method in predicting coherent and incoherent cross sections.
International Nuclear Information System (INIS)
Santoro, R.T.; Barnes, J.M.
1983-08-01
Neutron and gamma-ray spectra resulting from the interactions of approx. 14-MeV neutrons in laminated slabs of stainless steel type-304 and borated polyethylene have been calculated using the Monte Carlo code MCNP. The calculated spectra are compared with measured data as a function of slab thickness and material composition and as a function of detector location behind the slabs. Comparisons of the differential energy spectra are made for neutrons with energies above 850 keV and for gamma rays with energies above 750 keV. The measured neutron spectra and those calculated using Monte Carlo methods agree within 5% to 50% depending on the slab thickness and composition and neutron energy. The agreement between the measured and calculated gamma-ray energy spectra is also within this range. The MCNP data are also in favorable agreement with attenuated data calculated previously by discrete ordinates transport methods and the Monte Carlo code SAM-CE
Energy Technology Data Exchange (ETDEWEB)
Venturini, Luzia; Nisti, Marcelo B. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)
1997-10-01
Self-attenuation corrections were calculated for gamma ray spectrometry of environmental samples with densities from 0.42 g/ml up to 1.59 g/ml, measured in Marinelli beakers and polyethylene flasks. These corrections are to be used when the counting efficiency is calculated for water measured in the same geometry. The model of Debertin for Marinelli beaker, numerical integration and experimental linear attenuation coefficients were used. (author). 3 refs., 4 figs., 6 tabs.
Glasses impregnated with lead for radiation shielding
International Nuclear Information System (INIS)
Abd El Monem, A.M.; Kansouh, W.A.; Megahid, R.M.; Ismail, A.L.; Awad, E.M.
2005-01-01
The attenuation properties of glasses with different concentration of lead have been investigated for the attenuation of gamma-rays from cesium-137 and for total gamma rays using a beam of neutrons and gamma rays emitted from californium-252 source. Measurements have been performed using a gamma-ray spectrometer with Nal(T1) detector for gamma-rays emitted from 137 Cs and a neutron/gamma spectrometer with stilbene scintillator for measurement of total gamma-rays from 252 Cf neutron source. The latter applied the pulse shape discrimination technique to distinguish between recoil proton and recoil electron pulses. The obtained results given the form displayed pulse height spectra and attenuation relations which were used to derive the linear attenuation coefficient (μ), and the mass attenuation coefficient (mu/p) of the investigated glasses. In addition, calculations were performed to determine the attenuation properties of glass shields under investigation using XCOM code given by the others. A comparison of the shielding properties of these glasses with some standard shielding materials indicated that, the investigated glasses process the shielding advantages required for different nuclear technology applications
Depth distributions of light action spectra for skin chromophores
Barun, V. V.; Ivanov, A. P.
2010-03-01
Light action spectra over wavelengths of 300-1000 nm are calculated for components of the human cutaneous covering: melanin, basal (bloodless) tissue, and blood oxy- and deoxyhemoglobin. The transformation of the spectra with depth in biological tissue results from two factors. The first is the wavelength dependence of the absorption coefficient corresponding to a particular skin chromophore and the second is the spectral selectivity of the radiation flux in biological tissue. This factor is related to the optical properties of all chromophores. A significant change is found to take place in the spectral distribution of absorbed radiant power with increasing depth. The action spectrum of light for the molecular oxygen contained in all components of biological tissue is also studied in the 625-645 nm range. The spectra are found to change with both the volume fraction of blood vessels and the degree of oxygenation of the blood. These results are useful for analyzing processes associated with optical absorption that are possible mechanisms for the interaction of light with biological tissues: photodissociation of oxyhemoglobin and the light-oxygen effect.
Extinction Coefficient of Gold Nanostars.
de Puig, Helena; Tam, Justina O; Yen, Chun-Wan; Gehrke, Lee; Hamad-Schifferli, Kimberly
2015-07-30
Gold nanostars (NStars) are highly attractive for biological applications due to their surface chemistry, facile synthesis and optical properties. Here, we synthesize NStars in HEPES buffer at different HEPES/Au ratios, producing NStars of different sizes and shapes, and therefore varying optical properties. We measure the extinction coefficient of the synthesized NStars at their maximum surface plasmon resonances (SPR), which range from 5.7 × 10 8 to 26.8 × 10 8 M -1 cm -1 . Measured values correlate with those obtained from theoretical models of the NStars using the discrete dipole approximation (DDA), which we use to simulate the extinction spectra of the nanostars. Finally, because NStars are typically used in biological applications, we conjugate DNA and antibodies to the NStars and calculate the footprint of the bound biomolecules.
Pesicek, J. D.; Bennington, N. L.; Thurber, C. H.; Zhang, H.
2011-12-01
Standard methods for mapping variations in seismic attenuation (Q) structure using local earthquake data involve a two-step process. First, values of the whole path attenuation operator t* are determined from earthquake data recorded on a seismic array by inverting observed spectra for source and attenuation parameters. Then, these t* data are used to invert tomographically for frequency-independent Q models. The observed earthquake amplitude spectra depend on both source parameters and site effects. However, quantification of site effects is often neglected. Bennington et al. [2008] determined site response jointly with source parameters for small groups of events and then computed each station's site response as the average over all groups. Building on this work, we have adapted the method to model all events simultaneously to more accurately determine site response from the earthquake spectra. This in turn allows us to more accurately determine t*. However, resolution analysis of the results shows that some parameters are not well resolved in the joint inversion. Thus, an alternating inversion scheme is tested and adapted to alleviate poor resolution and parameter trade-offs. The new scheme produces better fits to the earthquake spectra than previous methods, and the resulting t* data should allow for more accurate determination of the Q structure. Because the equation relating t* to Q is nonlinear, the typical approach to determining Q is to solve for changes to a starting model iteratively, similar to methods commonly used in travel time tomography. However, if we instead solve for the inverse of Q, the equation becomes linear and the solution no longer depends on the starting model. This simple modification may allow us to more accurately determine Q. We test these new t* and Q methods using earthquake data from Parkfield, California and Okmok volcano, Alaska. We present the results for real and synthetic data and compare and contrast these results to more
International Nuclear Information System (INIS)
Soussaline, F.; LeCoq, C.; Raynaud, C.; Kellershohn, C.
1982-09-01
The aim of this study is to evaluate the potential of the RIM technique when used in brain studies. The analytical Regulatorizing Iterative Method (RIM) is designed to provide fast and accurate reconstruction of tomographic images when non-uniform attenuation is to be accounted for. As indicated by phantom studies, this method improves the contrast and the signal-to-noise ratio as compared to those obtained with FBP (Filtered Back Projection) technique. Preliminary results obtained in brain studies using AMPI-123 (isopropil-amphetamine I-123) are very encouraging in terms of quantitative regional cellular activity. However, the clinical usefulness of this mathematically accurate reconstruction procedure is going to be demonstrated in our Institution, in comparing quantitative data in heart or liver studies where control values can be obtained
International Nuclear Information System (INIS)
Tuffier, Stephane; Joubert, Michael; Bailliez, Alban; Legallois, Damien; Belin, Annette; Redonnet, Michel; Agostini, Denis; Manrique, Alain
2016-01-01
Myocardial blood flow (MBF) measurement using positron emission tomography (PET) from the washout rate of 15 O-water is theoretically independent of tissue attenuation. The aim of this study was to evaluate the impact of not using attenuation correction in the assessment of coronary endothelial function and myocardial flow reserve (MFR) using 15 O-water PET. We retrospectively processed 70 consecutive 15 O-water PET examinations obtained at rest and during cold pressor testing (CPT) in patients with dilated cardiomyopathy (n = 58), or at rest and during adenosine infusion in heart transplant recipients (n = 12). Data were reconstructed with attenuation correction (AC) and without attenuation correction (NAC) using filtered backprojection, and MBF was quantified using a single compartmental model. The agreement between AC and NAC data was assessed using Lin's concordance correlation coefficient followed by Bland-Altman plot analysis. Regarding endothelial function, NAC PET showed poor reproducibility and poor agreement with AC PET data. Conversely, NAC PET demonstrated high reproducibility and a strong agreement with AC PET for the assessment of MFR. Non-attenuation-corrected 15 O-water PET provided an accurate measurement of MFR compared to attenuation-corrected PET. However, non-attenuation-corrected PET data were less effective for the assessment of endothelial function using CPT in this population. (orig.)
Understanding stripe domains in Permalloy films via the angular dependence of permeability spectra
Energy Technology Data Exchange (ETDEWEB)
Wei, Jinwu; Feng, Hongmei; Zhu, Zengtai; Song, Chengkun; Wang, Xiangqian; Liu, Qingfang [Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Wang, Jianbo, E-mail: wangjb@lzu.edu.cn [Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Key Laboratory for Special Function Materials and Structural Design of the Ministry of the Education, Lanzhou University, Lanzhou 730000 (China)
2017-06-15
Highlights: • A phenomenological model is proposed to analyze the angular dependence of the μ″{sub max}. • The maximum canting angle θ{sub 0} in the stripe domain structure can be estimated. • Micromagnetic simulation results are nearly in accordance with the experimental results. - Abstract: An investigation of the angular dependence of the dynamic permeability spectra has been performed. Three Permalloy films with different thickness were used as the study samples that possess the stripe domains. In order to better understand the magnetization distribution in stripe domains, a theoretical approach was proposed to analyze the variation of the resonance intensity of permeability spectra. By fitting the angular dependence of the μ″{sub max} using a theoretical function, a coefficient Λ that can be used to evaluate the average value of the periodic function of the anting angle θ in a periodic stripe is obtained. As the film thickness increases, the decrease of the ratio between domain wall width and stripe domain width is happen. This enables that the coefficient Λ decreases with the increase of film thickness. By deducing this coefficient Λ, one can estimate the maximum canting angle θ{sub 0} ∼ 8° for the Permalloy films in our experiments.
International Nuclear Information System (INIS)
Wen, Y.; Bryan, J.; Kantzas, A.
2005-01-01
Use of solvents for the extraction of heavy oil and bitumen appears to be an increasingly feasible technology. Both vapour extraction and direct solvent injection are considered for conventional exploration and production schemes, while solvent dilution of bitumen is a standard technique in oil sands mining. Mass transfer between solvent and bitumen is a poorly understood process. In some cases, it is totally ignored compared to viscous force effects. In other cases, phenomenological estimations of diffusion and dispersion coefficients are used. Low field NMR has been used successfully in determining both solvent content and viscosity reduction in heavy oil and bitumen mixtures with various solvents. As a solvent comes into contact with a heavy oil or bitumen sample, the mobility of hydrogen bearing molecules of both solvent and oil changes. These changes are detectable through changes in the NMR relaxation characteristics of both solvent and oil. Relaxation changes can then be correlated to mass flux and concentration changes. Based on Fick's Second Law, a diffusion coefficient, which is independent of concentration, was calculated against three oils and six solvents. (author)
Analysis of gamma-ray spectra by using fast Fourier transform
International Nuclear Information System (INIS)
Tominaga, Shoji; Nagata, Shojiro; Nayatani, Yoshinobu; Ueda, Isamu; Sasaki, Satoshi.
1977-01-01
In order to simplify the mass data processing in a response matrix method for γ-ray spectral analysis, a method using a Fast Fourier Transform devised. The validity of the method was confirmed by a computer simulation for spectra of a NaI detector. The method uses the fact that spectral data can be represented by Fourier series with reduced number of terms. The estimation of intensities of γ-ray components is performed by a matrix operation using the compressed data of an observation spectrum and standard spectra in Fourier coefficients. The identification of γ-ray energies is also easy. Several features in the method and a general problem to be solved in a response matrix method are described. (auth.)
Interlayer interactions in absorption and reflection spectra of bismuth HTSC crystals
International Nuclear Information System (INIS)
Kruchinin, S.P.; Yaremko, A.M.
1992-01-01
The HTSC reflection and absorption optic spectra peculiarities are analysed in the paper on the basis of bismuth and thallium. The approach suggested takes into account the complex character of crystals structure, possible localization of excitations in the isolated layers and further excitations exchange due to the interlayer interaction between cuprate (Cu O) and quasi-degenerate bismuth layers (Bi O/3pO). The expressions for the excitation and intensity energies of the corresponding transitions are obtained. It is shown that only part of excitations whose number is determined by the number of layers in the unit cell will be manifest in optical reflection and absorption spectra. The experimental results on spectral dependence of crystal reflection coefficients are analysed
The spectra and periodograms of anti-correlated discrete fractional Gaussian noise.
Raymond, G M; Percival, D B; Bassingthwaighte, J B
2003-05-01
Discrete fractional Gaussian noise (dFGN) has been proposed as a model for interpreting a wide variety of physiological data. The form of actual spectra of dFGN for frequencies near zero varies as f(1-2H), where 0 < H < 1 is the Hurst coefficient; however, this form for the spectra need not be a good approximation at other frequencies. When H approaches zero, dFGN spectra exhibit the 1 - 2H power-law behavior only over a range of low frequencies that is vanishingly small. When dealing with a time series of finite length drawn from a dFGN process with unknown H, practitioners must deal with estimated spectra in lieu of actual spectra. The most basic spectral estimator is the periodogram. The expected value of the periodogram for dFGN with small H also exhibits non-power-law behavior. At the lowest Fourier frequencies associated with a time series of N values sampled from a dFGN process, the expected value of the periodogram for H approaching zero varies as f(0) rather than f(1-2H). For finite N and small H, the expected value of the periodogram can in fact exhibit a local power-law behavior with a spectral exponent of 1 - 2H at only two distinct frequencies.
Li, Zhi; Zhang, Zhao-hui; Zhao, Xiao-yan; Su, Hai-xia; Yan, Fang
2012-04-01
Extracting absorption spectrum in THz band is one of the important aspects in THz applications. Sample's absorption coefficient has a complex nonlinear relationship with its thickness. However, as it is not convenient to measure the thickness directly, absorption spectrum is usually determined incorrectly. Based on the method proposed by Duvillaret which was used to precisely determine the thickness of LiNbO3, the approach to measuring the absorption coefficient spectra of glutamine and histidine in frequency range from 0.3 to 2.6 THz(1 THz = 10(12) Hz) was improved in this paper. In order to validate the correctness of this absorption spectrum, we designed a series of experiments to compare the linearity of absorption coefficient belonging to one kind amino acid in different concentrations. The results indicate that as agreed by Lambert-Beer's Law, absorption coefficient spectrum of amino acid from the improved algorithm performs better linearity with its concentration than that from the common algorithm, which can be the basis of quantitative analysis in further researches.
Beta spectra. II-Positron spectra
International Nuclear Information System (INIS)
Grau, A.; Garcia-Torano, E.
1981-01-01
Using the Fermi theory of beta decay, the beta spectra for 30 positron emitters have been computed, introducing a correction factor for unique forbidden transitions. The spectra are ploted vs. energy, once normalised, and tabulated with the related Fermi functions. The average and median energies are calculated. (author)
Simultaneous bulk density and soil moisture determination by attenuation of 137 Cs and 241 Am
International Nuclear Information System (INIS)
Barros Ferraz, E.S. de.
1974-01-01
The method of simultaneous bulk density and soil moisture determination by attenuation of 241 Am and 137 Cs gamma-radiation is introduced and studied with detail. Theoretical considerations are made about the attenuation process in the absorbers, the form of solving the problem of two unknowns, the sensitivity of the method the influences of the resolution time of the electronic counting equipment, and of the Compton scattering in the sample. From the methodological point of view studies are made about the influence of the geometry, adjustment of counting system, choice of radiation sources, attenuation coefficient and the manner of obtaining reliable measurements. Data obtained are analysed, discussed and compared with those found in the literature. Finally the author presents some applications of the method, its use in soil-water movement studies, in soil profile compaction studies, and specially in swelling soils. (author)
Temperature and current coefficients of lasing wavelength in tunable diode laser spectroscopy.
Fukuda, M; Mishima, T; Nakayama, N; Masuda, T
2010-08-01
The factors determining temperature and current coefficients of lasing wavelength are investigated and discussed under monitoring CO(2)-gas absorption spectra. The diffusion rate of Joule heating at the active layer to the surrounding region is observed by monitoring the change in the junction voltage, which is a function of temperature and the wavelength (frequency) deviation under sinusoidal current modulation. Based on the experimental results, the time interval of monitoring the wavelength after changing the ambient temperature or injected current (scanning rate) has to be constant at least to eliminate the monitoring error induced by the deviation of lasing wavelength, though the temperature and current coefficients of lasing wavelength differ with the rate.
Spectra of random networks in the weak clustering regime
Peron, Thomas K. DM.; Ji, Peng; Kurths, Jürgen; Rodrigues, Francisco A.
2018-03-01
The asymptotic behavior of dynamical processes in networks can be expressed as a function of spectral properties of the corresponding adjacency and Laplacian matrices. Although many theoretical results are known for the spectra of traditional configuration models, networks generated through these models fail to describe many topological features of real-world networks, in particular non-null values of the clustering coefficient. Here we study effects of cycles of order three (triangles) in network spectra. By using recent advances in random matrix theory, we determine the spectral distribution of the network adjacency matrix as a function of the average number of triangles attached to each node for networks without modular structure and degree-degree correlations. Implications to network dynamics are discussed. Our findings can shed light in the study of how particular kinds of subgraphs influence network dynamics.
Attenuation of the neutron and γ ray dose in concrete channels
International Nuclear Information System (INIS)
Paratte, J.M.
1983-08-01
The calculations of the γ and neutron dose in concrete channels is described. The method is based on the Monte Carlo procedure. One series of results obtained in straight channels shows the influence of the source spectra and geometry and thus the channel form. A second series shows the attenuation produced by bends along the length of the channel; the variation of the branch length is also studied. The results are generalised and represented by a simple formula. The parameters are adjusted to the curves obtained by the Monte Carlo programme. (G.T.H.)
International Nuclear Information System (INIS)
Zhang, Y Q; Wei, H J; Guo, Z Y; Gu, H M; Guo, X; Zhu, Z G; Yang, H Q; Xie, S S
2013-01-01
Previous studies from our group have demonstrated that glucose solution can induce optical clearing enhancement of esophageal tissues with optical coherence tomography (OCT). The aims of this study were to evaluate the optical clearing effects of ultrasound-mediated optical clearing agents (OCAs) and to find more effective methods to distinguish human normal esophageal tissues (NE) and cancerous esophageal tissues (CE). Here we used the OCT technique to investigate the optical attenuation of NE and CE in vitro after treatment with 30% glycerol alone and glycerol combined with ultrasound, respectively. Experimental results showed that the averaged attenuation coefficient of CE was significantly larger than that of NE. The maximal decreases of averaged attenuation coefficients of NE and CE were approximately 48.7% and 36.2% after treatment with 30% glycerol alone, and they were significantly lower than those treated with 30% glycerol and ultrasound (57.5% in NE and 44.8% in CE). Moreover, after treatment with 30% glycerol alone, the averaged attenuation coefficients of NE and CE reached their minima in about 80 min and 65 min, respectively. The times were much shorter in NE and CE after treatment with glycerol with ultrasound, being about 62 min and 50 min, respectively. The results suggest that there is a significant difference in the optical properties of NE and CE, and that OCT with an ultrasound–OCAs combination has the ability to distinguish CE from NE. (paper)
pDeep: Predicting MS/MS Spectra of Peptides with Deep Learning.
Zhou, Xie-Xuan; Zeng, Wen-Feng; Chi, Hao; Luo, Chunjie; Liu, Chao; Zhan, Jianfeng; He, Si-Min; Zhang, Zhifei
2017-12-05
In tandem mass spectrometry (MS/MS)-based proteomics, search engines rely on comparison between an experimental MS/MS spectrum and the theoretical spectra of the candidate peptides. Hence, accurate prediction of the theoretical spectra of peptides appears to be particularly important. Here, we present pDeep, a deep neural network-based model for the spectrum prediction of peptides. Using the bidirectional long short-term memory (BiLSTM), pDeep can predict higher-energy collisional dissociation, electron-transfer dissociation, and electron-transfer and higher-energy collision dissociation MS/MS spectra of peptides with >0.9 median Pearson correlation coefficients. Further, we showed that intermediate layer of the neural network could reveal physicochemical properties of amino acids, for example the similarities of fragmentation behaviors between amino acids. We also showed the potential of pDeep to distinguish extremely similar peptides (peptides that contain isobaric amino acids, for example, GG = N, AG = Q, or even I = L), which were very difficult to distinguish using traditional search engines.
BETA SPECTRA. I. Negatrons spectra
International Nuclear Information System (INIS)
Grau Malonda, A.; Garcia-Torano, E.
1978-01-01
Using the Fermi theory of beta decay, the beta spectra for 62 negatrons emitters have been computed introducing a correction factor for unique forbidden transitions. These spectra are plotted vs. energy, once normal i sed, and tabulated with the related Fermi functions. The average and median energies are calculated. (Author)
Bravo, Teresa; Maury, Cédric
2018-03-01
This paper describes analytical and experimental studies carried out to examine the attenuation and absorption properties of rigidly-backed fibrous anisotropic materials in contact with a uniform mean flow. The aim is to provide insights for the development of non-locally reacting wall-treatments able to dissipate the noise induced by acoustic excitations over in-duct or external lining systems. A model of sound propagation in anisotropic bulk-reacting liners is presented that fully accounts for anisotropic losses due to heat conduction, viscous dissipation and diffusion processes along and across the material fibres as well as for the convective effect of an external flow. The propagation constant for the least attenuated mode of the coupled system is obtained using a simulated annealing search method. The predicted acoustical performance is validated in the no-flow case for a wide range of fibre diameters. They are assessed against impedance tube and free-field pressure-velocity measurements of the normal incidence absorption coefficient and surface impedance. Parametric studies are then conducted to determine the key constitutive parameters such as the fibres orientation or the amount of anisotropy that mostly influence the axial attenuation or the normal absorption. They are supported by a low-frequency approximation to the axial attenuation under a low-speed flow.
Energy Technology Data Exchange (ETDEWEB)
Kawaguchi, Hiroshi; Hirano, Yoshiyuki; Kershaw, Jeff; Yoshida, Eiji [Molecular Imaging Center, National Institute of Radiological Sciences, Chiba (Japan); Shiraishi, Takahiro [Molecular Imaging Center, National Institute of Radiological Sciences, Chiba (Japan); Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan); Suga, Mikio [Molecular Imaging Center, National Institute of Radiological Sciences, Chiba (Japan); Center for Frontier Medical Engineering, Chiba University (Japan); Obata, Takayuki [Molecular Imaging Center, National Institute of Radiological Sciences, Chiba (Japan); Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan); Ito, Hiroshi; Yamaya, Taiga [Molecular Imaging Center, National Institute of Radiological Sciences, Chiba (Japan)
2014-07-29
In recent work, we proposed an MRI-based attenuation-coefficient (μ-value) estimation method that uses a weak fixed-position external radiation source to construct an attenuation map for PET/MRI. In this presentation we refer to this method as FixER, and perform a series of simulations to investigate the duration of the transmission scan required to accurately estimate μ-values.
International Nuclear Information System (INIS)
Kawaguchi, Hiroshi; Hirano, Yoshiyuki; Kershaw, Jeff; Yoshida, Eiji; Shiraishi, Takahiro; Suga, Mikio; Obata, Takayuki; Ito, Hiroshi; Yamaya, Taiga
2014-01-01
In recent work, we proposed an MRI-based attenuation-coefficient (μ-value) estimation method that uses a weak fixed-position external radiation source to construct an attenuation map for PET/MRI. In this presentation we refer to this method as FixER, and perform a series of simulations to investigate the duration of the transmission scan required to accurately estimate μ-values.
Energy Technology Data Exchange (ETDEWEB)
Acharya, S. [Variable Energy Cyclotron Centre, Kolkata (India); Adamova, D. [Academy of Sciences of the Czech Republic, Rez u Prahy (Czech Republic). Nuclear Physics Inst.; Adolfsson, J. [Lund Univ. (Sweden). Div. of Experimental High Energy Physics; Collaboration: ALICE Collaboration; and others
2017-10-15
The transverse momentum (p{sub T}) spectra and elliptic flow coefficient (v{sub 2}) of deuterons and anti-deuterons at mid-rapidity (vertical stroke y vertical stroke < 0.5) are measured with the ALICE detector at the LHC in Pb-Pb collisions at √(s{sub NN}) = 2.76 TeV. The measurement of the p{sub T} spectra of (anti-)deuterons is done up to 8 GeV/c in 0-10% centrality class and up to 6 GeV/c in 10-20% and 20-40% centrality classes. The v{sub 2} is measured in the 0.8 < p{sub T} < 5 GeV/c interval and in six different centrality intervals (0-5, 5-10, 10-20, 20-30, 30-40 and 40-50%) using the scalar product technique. Measured π{sup ±}, K{sup ±} and p+ p transverse-momentum spectra and v{sub 2} are used to predict the deuteron p{sub T} spectra and v{sub 2} within the Blast-Wave model. The predictions are able to reproduce the v{sub 2} coefficient in the measured p{sub T} range and the transverse-momentum spectra for p{sub T} > 1.8 GeV/c within the experimental uncertainties. The measurement of the coalescence parameter B{sub 2} is performed, showing a p{sub T} dependence in contrast with the simplest coalescence model, which fails to reproduce also the measured v{sub 2} coefficient. In addition, the coalescence parameter B{sub 2} and the elliptic flow coefficient in the 20-40% centrality interval are compared with the AMPT model which is able, in its version without string melting, to reproduce the measured v{sub 2}(p{sub T}) and the B{sub 2}(p{sub T}) trend. (orig.)
Effect of source encapsulation on the energy spectra of sup 192 Ir and sup 137 Cs seed sources
Energy Technology Data Exchange (ETDEWEB)
Thomason, C [Wisconsin Univ., Madison, WI (USA). Dept. of Medical Physics; Mackie, T R [Wisconsin Univ., Madison, WI (USA). Dept. of Medical Physics Wisconsin Univ., Madison, WI (USA). Dept. of Human Oncology; Lindstrom, M J [Wisconsin Univ., Madison, WI (USA). Biostatistics Center
1991-04-01
The effect of source encapsulation on the energy spectra of {sup 192}Ir and {sup 137}Cs seed sources, both with stainless steel and with platinum encapsulation, was determined from results of Monte Carlo simulation. The fractional scatter dose around these sources has also been determined from Monte Carlo simulation. The platinum-encapsulated {sup 192}Ir source exhibited greater attenuation of the primary spectrum, as expected, and, consistent with this greater attenuation, exhibited more scattered radiation. Significantly less scatter was seen with the {sup 137}Cs source than with either {sup 192}Ir source, as is consistent with the higher-energy photons from {sup 137}Cs. (author).
Microscopic theory of ultrasonic attenuation in high-Tc superconductors in normal state
International Nuclear Information System (INIS)
Bishoyi, K.C.; Rout, G.C.; Behera, S.N.
2001-01-01
The mechanism of the ultrasonic attenuation in high temperature superconductors is not yet studied thoroughly both experimentally and theoretically. A microscopic theoretical model is proposed here to study the attenuation in the electron doped and hole doped compounds like L 2-x M x CuO 4 (L=La,Nd; M=Sr,Ca,Ce). The model Hamiltonian contains the staggered magnetic field in the d-electrons of copper, the doped f-electrons term and the hybridisation between d- and f-electrons. The electron-phonon interaction arises due to the volume strain dependence of the hybridisation. The phonon Green's function is calculated by equations of motion of Zubarev technique. The temperature dependence of the ultrasonic attenuation coefficient (α) is calculated from the imaginary part of the phonon self energy and the velocity of sound in the dynamic and long wavelength limit. The dimensionless parameters involved in the calculations are the electron-phonon coupling (g), staggered magnetic field (h) , hybridization (υ), position of the f-level (d), frequency (ω), and temperature (t). The results are discussed. (author)
Teraherts spectra of A3B3C62 crystals under gamma-irradiation
International Nuclear Information System (INIS)
Sardarly, R. M.; Agayeva, R.Sh.; Badalov, A.Z.; Musa-zade, T.N.; Garet, F.; Urbanovic, A.; Coutaz, J.L.
2010-01-01
Nano-dimension topologic-disorder materials constitute an important feature in the development of modern electronics. Among such materials, low-dimensional (1D and 2D) compounds, show amazing properties, for example highly anisotropic super ionic conductivity. Here it is shown that in the THz spectrum of such materials, which exhibit strong absorption lines that could be attributed to the libration oscillation of the nanofibers. In classical THz time-domain spectroscopy (THz-TDS), one records the temporal waveforms impinging onto and transmitted by the sample. Then a numerical FFT of both signals is performed. The ratio of the transmitted and incident FFT spectra gives the transmission coefficient of the sample. If the origin of time is preserved between the two requested measurements, then the FFT gives both modulus and phase of the transmission coefficient. If the sample is a slab with parallel sides, the index of refraction and the coefficient of absorption could be accurately determined using an inverse electromagnetic method. For materials exhibiting high absorption bands, the transmission coefficient is almost zero in modulus, and its phase is unknown. The usual solution to this problem is to perform THz-TDS in reflection. Here it is proposed a combined technique, which takes benefit of both transmission and reflection THz-TDS's. The basic idea is to derive a rough estimation of the refractive index from reflection data, while both refractive index and absorption coefficient are also calculated from transmission data. A Kramers-Kronig calculation allows to determine the refractive index from the absorption spectrum measured in transmission. In the spectral regions of transparency, both refractive indices determined from reflection and from the Kramers-Kronig calculation should be superimposed. The method had been applied to determine the index of refraction of low dimensional compounds. Refractive index (full circles) and absorption (dashed line) spectra of
Energy Technology Data Exchange (ETDEWEB)
Rosado, Paulo Henrique Goncalves
2008-07-01
Two sets of quantities are import in radiological protection: the protection and operational quantities. Both sets can be related to basic physical quantities such as kerma through conversion coefficients. For diagnostic x-ray beams the conversion coefficients and backscatter factors have not been determined yet, those parameters are need for calibrating dosimeters that will be used to determine the personal dose equivalent or the entrance skin dose. Conversion coefficients between air kerma and personal dose equivalent and backscatter factors were experimentally determined for the diagnostic x-ray qualities RQR and RQA recommended by the International Electrotechnical Commission (IEC). The air kerma in the phantom and the mean energy of the spectrum were measured for such purpose. Harshaw LiF-100H thermoluminescent dosemeters (TLD) were used for measurements after being calibrated against an 180 cm{sup 3} Radcal Corporation ionization chamber traceable to a reference laboratory. A 300 mm x 300 mm x 150 mm polymethylmethacrylate (PMMA) slab phantom was used for deep-dose measurements. Tl dosemeters were placed in the central axis of the x-ray beam at 5, 10, 15, 25 and 35 mm depth in the phantom upstream the beam direction Another required parameter for determining the conversion coefficients from was the mean energy of the x-ray spectrum. The spectroscopy of x-ray beams was done with a CdTe semiconductor detector that was calibrated with {sup 133} Ba, {sup 241} Am and {sup 57} Co radiation sources. Measurements of the x-ray spectra were carried out for all RQR and RQA IEC qualities. Corrections due to the detector intrinsic efficiency, total energy absorption, escape fraction of the characteristic x-rays, Compton effect and attenuation in the detector were done aiming an the accurate determination of the mean energy. Measured x-ray spectra were corrected with the stripping method by using these response functions. The typical combined standard uncertainties of
Directory of Open Access Journals (Sweden)
Thomas Jerry A
2010-11-01
Full Text Available Abstract Background Calibrating mammograms to produce a standardized breast density measurement for breast cancer risk analysis requires an accurate spatial measure of the compressed breast thickness. Thickness inaccuracies due to the nominal system readout value and compression paddle orientation induce unacceptable errors in the calibration. Method A thickness correction was developed and evaluated using a fully specified two-component surrogate breast model. A previously developed calibration approach based on effective radiation attenuation coefficient measurements was used in the analysis. Water and oil were used to construct phantoms to replicate the deformable properties of the breast. Phantoms consisting of measured proportions of water and oil were used to estimate calibration errors without correction, evaluate the thickness correction, and investigate the reproducibility of the various calibration representations under compression thickness variations. Results The average thickness uncertainty due to compression paddle warp was characterized to within 0.5 mm. The relative calibration error was reduced to 7% from 48-68% with the correction. The normalized effective radiation attenuation coefficient (planar representation was reproducible under intra-sample compression thickness variations compared with calibrated volume measures. Conclusion Incorporating this thickness correction into the rigid breast tissue equivalent calibration method should improve the calibration accuracy of mammograms for risk assessments using the reproducible planar calibration measure.
The CaO orange system in meteor spectra
Berezhnoy, A. A.; Borovička, J.; Santos, J.; Rivas-Silva, J. F.; Sandoval, L.; Stolyarov, A. V.; Palma, A.
2018-02-01
The CaO orange band system was simulated in the region 5900-6300 Å and compared with the experimentally observed spectra of Benešov bolide wake. The required vibronic Einstein emission coefficients were estimated by means of the experimental radiative lifetimes under the simplest Franck-Condon approximation. A moderate agreement was achieved, and the largest uncertainties come from modeling shape of FeO orange bands. Using a simple model the CaO column density in the wake of the Benešov bolide at the height of 29 km was estimated as (5 ± 2) × 1014 cm-2 by a comparison of the present CaO spectra with the AlO bands nicely observed at 4600-5200 Å in the same spectrum. The obtained CaO content is in a good agreement with the quenching model developed for the impact-produced cloud, although future theoretical and experimental studies of both CaO and FeO orange systems contribution would be needed to confirm these results.
X-ray absorption spectra and emission spectra of plasmas
International Nuclear Information System (INIS)
Peng Yonglun; Yang Li; Wang Minsheng; Li Jiaming
2002-01-01
The author reports a theoretical method to calculate the resolved absorption spectra and emission spectra (optically thin) of hot dense plasmas. Due to its fully relativistic treatment incorporated with the quantum defect theory, it calculates the absorption spectra and emission spectra for single element or multi-element plasmas with little computational efforts. The calculated absorption spectra of LTE gold plasmas agree well with the experimental ones. It also calculates the optical thin emission spectra of LTE gold plasmas, which is helpful to diagnose the plasmas of relevant ICF plasmas. It can also provide the relevant parameters such as population density of various ionic stages, precise radiative properties for ICF studies
Renormalization-group decimation technique for spectra, wave-functions and density of states
International Nuclear Information System (INIS)
Wiecko, C.; Roman, E.
1983-09-01
The Renormalization Group decimation technique is very useful for problems described by 1-d nearest neighbour tight-binding model with or without translational invariance. We show how spectra, wave-functions and density of states can be calculated with little numerical work from the renormalized coefficients upon iteration. The results of this new procedure are verified using the model of Soukoulis and Economou. (author)
Kolmogorov spectra of long wavelength ion-drift waves in dusty plasmas
International Nuclear Information System (INIS)
Onishchenko, O.G.; Pokhotelov, O.A.; Sagdeev, R.Z.; Pavlenko, V.P.; Stenflo, L.; Shukla, P.K.; Zolotukhin, V.V.
2002-01-01
Weakly turbulent Kolmogorov spectra of ion-drift waves in dusty plasmas with an arbitrary ratio between the ion-drift and the Shukla-Varma frequencies are investigated. It is shown that in the long wavelength limit, when the contribution to the wave dispersion associated with the inhomogeneity of the dust component is larger than that related to the plasma inhomogeneity, the wave dispersion and the matrix interaction element coincide with those for the Rossby or the electron-drift waves described by the Charney or Hasegawa-Mima equations with an accuracy of unessential numerical coefficients. It is found that the weakly turbulent spectra related to the conservation of the wave energy are local and thus the energy flux is directed towards smaller spatial scales
Resonant Inverse Compton Scattering Spectra from Highly Magnetized Neutron Stars
Wadiasingh, Zorawar; Baring, Matthew G.; Gonthier, Peter L.; Harding, Alice K.
2018-02-01
Hard, nonthermal, persistent pulsed X-ray emission extending between 10 and ∼150 keV has been observed in nearly 10 magnetars. For inner-magnetospheric models of such emission, resonant inverse Compton scattering of soft thermal photons by ultrarelativistic charges is the most efficient production mechanism. We present angle-dependent upscattering spectra and pulsed intensity maps for uncooled, relativistic electrons injected in inner regions of magnetar magnetospheres, calculated using collisional integrals over field loops. Our computations employ a new formulation of the QED Compton scattering cross section in strong magnetic fields that is physically correct for treating important spin-dependent effects in the cyclotron resonance, thereby producing correct photon spectra. The spectral cutoff energies are sensitive to the choices of observer viewing geometry, electron Lorentz factor, and scattering kinematics. We find that electrons with energies ≲15 MeV will emit most of their radiation below 250 keV, consistent with inferred turnovers for magnetar hard X-ray tails. More energetic electrons still emit mostly below 1 MeV, except for viewing perspectives sampling field-line tangents. Pulse profiles may be singly or doubly peaked dependent on viewing geometry, emission locale, and observed energy band. Magnetic pair production and photon splitting will attenuate spectra to hard X-ray energies, suppressing signals in the Fermi-LAT band. The resonant Compton spectra are strongly polarized, suggesting that hard X-ray polarimetry instruments such as X-Calibur, or a future Compton telescope, can prove central to constraining model geometry and physics.
Stopping-power and mass energy-absorption coefficient ratios for Solid Water
International Nuclear Information System (INIS)
Ho, A.K.; Paliwal, B.R.
1986-01-01
The AAPM Task Group 21 protocol provides tables of ratios of average restricted stopping powers and ratios of mean energy-absorption coefficients for different materials. These values were based on the work of Cunningham and Schulz. We have calculated these quantities for Solid Water (manufactured by RMI), using the same x-ray spectra and method as that used by Cunningham and Schulz. These values should be useful to people who are using Solid Water for high-energy photon calibration
Intercomparison of attenuation correction algorithms for single-polarized X-band radars
Lengfeld, K.; Berenguer, M.; Sempere Torres, D.
2018-03-01
Attenuation due to liquid water is one of the largest uncertainties in radar observations. The effects of attenuation are generally inversely proportional to the wavelength, i.e. observations from X-band radars are more affected by attenuation than those from C- or S-band systems. On the other hand, X-band radars can measure precipitation fields in higher temporal and spatial resolution and are more mobile and easier to install due to smaller antennas. A first algorithm for attenuation correction in single-polarized systems was proposed by Hitschfeld and Bordan (1954) (HB), but it gets unstable in case of small errors (e.g. in the radar calibration) and strong attenuation. Therefore, methods have been developed that restrict attenuation correction to keep the algorithm stable, using e.g. surface echoes (for space-borne radars) and mountain returns (for ground radars) as a final value (FV), or adjustment of the radar constant (C) or the coefficient α. In the absence of mountain returns, measurements from C- or S-band radars can be used to constrain the correction. All these methods are based on the statistical relation between reflectivity and specific attenuation. Another way to correct for attenuation in X-band radar observations is to use additional information from less attenuated radar systems, e.g. the ratio between X-band and C- or S-band radar measurements. Lengfeld et al. (2016) proposed such a method based isotonic regression of the ratio between X- and C-band radar observations along the radar beam. This study presents a comparison of the original HB algorithm and three algorithms based on the statistical relation between reflectivity and specific attenuation as well as two methods implementing additional information of C-band radar measurements. Their performance in two precipitation events (one mainly convective and the other one stratiform) shows that a restriction of the HB is necessary to avoid instabilities. A comparison with vertically pointing
H2 line-mixing coefficients in the ν2 and ν4 bands of PH3 at low temperature
International Nuclear Information System (INIS)
Salem, Jamel; Blanquet, Ghislain; Lepère, Muriel; Aroui, Hassen
2016-01-01
Using a tunable diode-laser spectrometer adapted with a low temperature cell, we have measured the H 2 line-mixing coefficients for 21 lines in the Q R branch of the ν 2 band and in the P P and R P branches of the ν 4 band of phosphine (PH 3 ) at low temperature. These coefficients were determined using a multi-pressure fitting procedure that accounts for the apparatus function, the Doppler and the collisional effects. These lines with J values ranging from 2 to 11 and K from 0 to 9 are located in the spectral range from 1016 to 1093 cm −1 . The variations of these parameters with the temperature, and the ro-vibrational quantum numbers are discussed. - Graphical abstract: Comparisons of the determined line-mixing coefficients (in atm −1 ) obtained in this study in the ν 2 and ν 4 bands of PH 3 at T=173.2 K with those measured at T=298 K for different values of the J quantum number. - Highlights: • The spectra have been recorded with a tunable diode-laser spectrometer at 173.2 K. • The line-mixing coefficients are determined by a multi-pressure fitting procedure. • The effect of the line-mixing in the spectra, appear to be important.
Infrared Spectra and Band Strengths of Amorphous and Crystalline N2O
Hudson, R. L.; Loeffler, M. J.; Gerakines, P. A.
2017-01-01
Infrared transmission spectra from 4000 to 400 cm (exp -1), and associated band strengths and absorption coefficients, are presented for the first time for both amorphous and crystalline N2O. Changes in the spectra as a function of ice thickness and ice temperature are shown. New measurements of density, refractive index, and specific refraction are reported for amorphous and crystalline N2O. Comparisons are made to published results, and the most-likely reason for some recent disagreements in the literature is discussed. As with CO2, its isoelectronic congener, the formation of amorphous N2O is found to require greater care than the formation of amorphous solids from more-polar molecules.
International Nuclear Information System (INIS)
Limkitjaroenporn, P.; Kaewkhao, J.
2014-01-01
In this work, the gamma-rays interaction properties of zircons from Cambodia and South Africa have been studied. The densities of Cambodian and South African’s zircons are 4.6716±0.0040 g/cm 3 and 4.5505±0.0018 g/cm 3 , respectively. The mass attenuation coefficient and the effective atomic number of gemstones were measured with the gamma-ray in energies range 223–662 keV using the Compton scattering technique. The mass attenuation coefficients of both zircons decreased with the increasing of gamma-rays energies. The different mass attenuation coefficients between the two zircons observed at gamma-ray energies below 400 keV are attributed to the differences in the photoelectric interaction. The effective atomic number of zircons was decreased with the increasing of gamma-ray energies and showed totally different values between the Cambodia and South Africa sources. The origins of the two zircons could be successfully identified by the method based on gamma-rays interaction with matter with advantage of being a non-destructive testing. - Highlights: • Gamma-rays interaction of zircons from Cambodia and South Africa studied. • Measured energy is during 223–662 keV. • Different μ m between the two zircons observed at gamma-ray energies below 400 keV. • The origins the two zircons could be successfully identified
International Nuclear Information System (INIS)
Lamouroux, J.; Tran, H.; Laraia, A.L.; Gamache, R.R.; Rothman, L.S.; Gordon, I.E.; Hartmann, J.-M.
2010-01-01
In a previous series of papers, a model for the calculation of CO 2 -air absorption coefficients taking line-mixing into account and the corresponding database/software package were described and widely tested. In this study, we present an update of this package, based on the 2008 version of HITRAN, the latest currently available. The spectroscopic data for the seven most-abundant isotopologues are taken from HITRAN. When the HITRAN data are not complete up to J''=70, the data files are augmented with spectroscopic parameters from the CDSD-296 database and the high-temperature CDSD-1000 if necessary. Previously missing spectroscopic parameters, the air-induced pressure shifts and CO 2 line broadening coefficients with H 2 O, have been added. The quality of this new database is demonstrated by comparisons of calculated absorptions and measurements using CO 2 high-pressure laboratory spectra in the 1.5-2.3 μm region. The influence of the imperfections and inaccuracies of the spectroscopic parameters from the 2000 version of HITRAN is clearly shown as a big improvement of the residuals is observed by using the new database. The very good agreements between calculated and measured absorption coefficients confirm the necessity of the update presented here and further demonstrate the importance of line-mixing effects, especially for the high pressures investigated here. The application of the updated database/software package to atmospheric spectra should result in an increased accuracy in the retrieval of CO 2 atmospheric amounts. This opens improved perspectives for the space-borne detection of carbon dioxide sources and sinks.
DEFF Research Database (Denmark)
Stæhr, P. A.; Markager, S.
2004-01-01
We evaluated models predicting the spectral chlorophyll-a (Chl a)-specific absorption coefficient (a*ph (¿)) from Chl a concentration [Chl a] on the basis of 465 phytoplankton absorption spectra collected in estuarine, coastal and oceanic waters. A power model on ln-transformed data provided...
International Nuclear Information System (INIS)
EL-Kazzaz, S.A.; Youssef, M.; EL-Hadad, S.; and EL-Nadi, L.M.
1988-01-01
X-ray spectra were measured before and after passing through some materials of medical importance applying X-ray diffraction. The mass absorption coefficients of these materials were determined at X-ray peak voltages 27, 30 and 42 kV-p making use the measured spectrum and also by using the direct beam absorption. It has been found that the mass absorption coefficients calculated from the X-ray spectral distribution analysis are in general lower than those obtained considering the direct beam method. From the study of the atomic number and energy dependence of the mass absorption coefficients it has been found that the dependence of the coefficients calculated from the spectral distribution is good agreement with the previously studied data for monoenergetic x-ray beam. Also the roentgen - to - Rad conversion factors were determined at the different used energies and materials. The value of the mass absorption coefficients calculated from the spectral distribution is recommended for use in dose calculation
A study of tungsten spectra using large helical device and compact electron beam ion trap in NIFS
Morita, S.; Dong, C. F.; Goto, M.; Kato, D.; Murakami, I.; Sakaue, H. A.; Hasuo, M.; Koike, F.; Nakamura, N.; Oishi, T.; Sasaki, A.; Wang, E. H.
2013-07-01
Tungsten spectra have been observed from Large Helical Device (LHD) and Compact electron Beam Ion Trap (CoBIT) in wavelength ranges of visible to EUV. The EUV spectra with unresolved transition array (UTA), e.g., 6g-4f, 5g-4f, 5f-4d and 5p-4d transitions for W+24-+33, measured from LHD plasmas are compared with those measured from CoBIT with monoenergetic electron beam (≤2keV). The tungsten spectra from LHD are well analyzed based on the knowledge from CoBIT tungsten spectra. The C-R model code has been developed to explain the UTA spectra in details. Radial profiles of EUV spectra from highly ionized tungsten ions have been measured and analyzed by impurity transport simulation code with ADPAK atomic database code to examine the ionization balance determined by ionization and recombination rate coefficients. As the first trial, analysis of the tungsten density in LHD plasmas is attempted from radial profile of Zn-like WXLV (W44+) 4p-4s transition at 60.9Å based on the emission rate coefficient calculated with HULLAC code. As a result, a total tungsten ion density of 3.5×1010cm-3 at the plasma center is reasonably obtained. In order to observe the spectra from tungsten ions in lower-ionized charge stages, which can give useful information on the tungsten influx in fusion plasmas, the ablation cloud of the impurity pellet is directly measured with visible spectroscopy. A lot of spectra from neutral and singly ionized tungsten are observed and some of them are identified. A magnetic forbidden line from highly ionized tungsten ions has been examined and Cd-like WXXVII (W26+) at 3893.7Å is identified as the ground-term fine-structure transition of 4f23H5-3H4. The possibility of α particle diagnostic in D-T burning plasmas using the magnetic forbidden line is discussed.
A study of tungsten spectra using large helical device and compact electron beam ion trap in NIFS
International Nuclear Information System (INIS)
Morita, S.; Goto, M.; Murakami, I.; Dong, C. F.; Kato, D.; Sakaue, H. A.; Oishi, T.; Hasuo, M.; Koike, F.; Nakamura, N.; Sasaki, A.; Wang, E. H.
2013-01-01
Tungsten spectra have been observed from Large Helical Device (LHD) and Compact electron Beam Ion Trap (CoBIT) in wavelength ranges of visible to EUV. The EUV spectra with unresolved transition array (UTA), e.g., 6g-4f, 5g-4f, 5f-4d and 5p-4d transitions for W +24-+33 , measured from LHD plasmas are compared with those measured from CoBIT with monoenergetic electron beam (≤2keV). The tungsten spectra from LHD are well analyzed based on the knowledge from CoBIT tungsten spectra. The C-R model code has been developed to explain the UTA spectra in details. Radial profiles of EUV spectra from highly ionized tungsten ions have been measured and analyzed by impurity transport simulation code with ADPAK atomic database code to examine the ionization balance determined by ionization and recombination rate coefficients. As the first trial, analysis of the tungsten density in LHD plasmas is attempted from radial profile of Zn-like WXLV (W 44+ ) 4p-4s transition at 60.9Å based on the emission rate coefficient calculated with HULLAC code. As a result, a total tungsten ion density of 3.5×10 10 cm −3 at the plasma center is reasonably obtained. In order to observe the spectra from tungsten ions in lower-ionized charge stages, which can give useful information on the tungsten influx in fusion plasmas, the ablation cloud of the impurity pellet is directly measured with visible spectroscopy. A lot of spectra from neutral and singly ionized tungsten are observed and some of them are identified. A magnetic forbidden line from highly ionized tungsten ions has been examined and Cd-like WXXVII (W 26+ ) at 3893.7Å is identified as the ground-term fine-structure transition of 4f 23 H 5 - 3 H 4 . The possibility of α particle diagnostic in D-T burning plasmas using the magnetic forbidden line is discussed
A study of tungsten spectra using large helical device and compact electron beam ion trap in NIFS
Energy Technology Data Exchange (ETDEWEB)
Morita, S.; Goto, M.; Murakami, I. [National Institute for Fusion Science, Toki 509-5292, Gifu (Japan); Department of Fusion Science, Graduate University for Advanced Studies, Toki 509-5292, Gifu (Japan); Dong, C. F.; Kato, D.; Sakaue, H. A.; Oishi, T. [National Institute for Fusion Science, Toki 509-5292, Gifu (Japan); Hasuo, M. [Department of Mechanical Engineering and Science, Graduate School of Engineering, Kyoto University, Kyoto 606-8501 (Japan); Koike, F. [Physics Laboratory, School of Medicine, Kitasato University, Sagamihara 252-0374 (Japan); Nakamura, N. [Institute of Laser Science, University of Electro-Communications, Tokyo 182-8585 (Japan); Sasaki, A. [Quantum Beam Science Directorate, Japan Atomic Energy Research Agency, Kizugawa 619-0215, Kyoto (Japan); Wang, E. H. [Department of Fusion Science, Graduate University for Advanced Studies, Toki 509-5292, Gifu (Japan)
2013-07-11
Tungsten spectra have been observed from Large Helical Device (LHD) and Compact electron Beam Ion Trap (CoBIT) in wavelength ranges of visible to EUV. The EUV spectra with unresolved transition array (UTA), e.g., 6g-4f, 5g-4f, 5f-4d and 5p-4d transitions for W{sup +24-+33}, measured from LHD plasmas are compared with those measured from CoBIT with monoenergetic electron beam ({<=}2keV). The tungsten spectra from LHD are well analyzed based on the knowledge from CoBIT tungsten spectra. The C-R model code has been developed to explain the UTA spectra in details. Radial profiles of EUV spectra from highly ionized tungsten ions have been measured and analyzed by impurity transport simulation code with ADPAK atomic database code to examine the ionization balance determined by ionization and recombination rate coefficients. As the first trial, analysis of the tungsten density in LHD plasmas is attempted from radial profile of Zn-like WXLV (W{sup 44+}) 4p-4s transition at 60.9A based on the emission rate coefficient calculated with HULLAC code. As a result, a total tungsten ion density of 3.5 Multiplication-Sign 10{sup 10}cm{sup -3} at the plasma center is reasonably obtained. In order to observe the spectra from tungsten ions in lower-ionized charge stages, which can give useful information on the tungsten influx in fusion plasmas, the ablation cloud of the impurity pellet is directly measured with visible spectroscopy. A lot of spectra from neutral and singly ionized tungsten are observed and some of them are identified. A magnetic forbidden line from highly ionized tungsten ions has been examined and Cd-like WXXVII (W{sup 26+}) at 3893.7A is identified as the ground-term fine-structure transition of 4f{sup 23}H{sub 5}-{sup 3}H{sub 4}. The possibility of {alpha} particle diagnostic in D-T burning plasmas using the magnetic forbidden line is discussed.
Determination of fluence-to-dose conversion coefficients by means of artificial neural networks
International Nuclear Information System (INIS)
Soto B, T. G.; Rivera P, E.; De Leon M, H. A.; Hernandez D, V. M.; Vega C, H. R.; Gallego, E.; Lorente, A.
2012-10-01
In this paper is presented an Artificial Neural Network (Ann) that has been designed, trained and validated to determinate the effective dose e, ambient dose equivalent h(10) and personal dose equivalent hp(10,θ) fluence-to-dose conversion coefficients at different positions, having as only input data 7 count rates obtained with a Bonner Sphere Spectrometer (Bss) system. A set of 211 neutron spectra and the fluence-to-dose conversion coefficients published by the International Atomic Energy Agency were used to train and validate the Ann. This set was divided into 2 subsets, one of 181 elements to train the Ann and the remaining 30 to validate it. The Ann was trained using Bss count rates as input data and the fluence-to-dose conversion coefficients as output data. The network was validated and tested with the set of 30 elements that were not used during the training process. Good results were obtained proving that Ann are a good choice for calculating the fluence-to-dose conversion coefficients having as only data the count rates obtained with a Bss. (Author)
Determination of fluence-to-dose conversion coefficients by means of artificial neural networks
Energy Technology Data Exchange (ETDEWEB)
Soto B, T. G.; Rivera P, E.; De Leon M, H. A.; Hernandez D, V. M.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Gallego, E.; Lorente, A., E-mail: tzinnia.soto@gmail.com [Universidad Politecnica de Madrid, Departamento de Ingenieria Nuclear, Jose Gutierrez Abascal No. 2, 28006 Madrid (Spain)
2012-10-15
In this paper is presented an Artificial Neural Network (Ann) that has been designed, trained and validated to determinate the effective dose e, ambient dose equivalent h(10) and personal dose equivalent hp(10,{theta}) fluence-to-dose conversion coefficients at different positions, having as only input data 7 count rates obtained with a Bonner Sphere Spectrometer (Bss) system. A set of 211 neutron spectra and the fluence-to-dose conversion coefficients published by the International Atomic Energy Agency were used to train and validate the Ann. This set was divided into 2 subsets, one of 181 elements to train the Ann and the remaining 30 to validate it. The Ann was trained using Bss count rates as input data and the fluence-to-dose conversion coefficients as output data. The network was validated and tested with the set of 30 elements that were not used during the training process. Good results were obtained proving that Ann are a good choice for calculating the fluence-to-dose conversion coefficients having as only data the count rates obtained with a Bss. (Author)
International Nuclear Information System (INIS)
Harnish, R.; Lang, T.F.; Prevrhal, S.; Alavi, A.; Zaidi, H.
2014-01-01
To determine if metal artefact reduction (MAR) combined with a priori knowledge of prosthesis material composition can be applied to obtain CT-based attenuation maps with sufficient accuracy for quantitative assessment of 18 F-fluorodeoxyglucose uptake in lesions near metallic prostheses. A custom hip prosthesis phantom with a lesion-sized cavity filled with 0.2 ml 18 F-FDG solution having an activity of 3.367 MBq adjacent to a prosthesis bore was imaged twice with a chrome-cobalt steel hip prosthesis and a plastic replica, respectively. Scanning was performed on a clinical hybrid PET/CT system equipped with an additional external 137 Cs transmission source. PET emission images were reconstructed from both phantom configurations with CT-based attenuation correction (CTAC) and with CT-based attenuation correction using MAR (MARCTAC). To compare results with the attenuation-correction method extant prior to the advent of PET/CT, we also carried out attenuation correction with 137 Cs transmission-based attenuation correction (TXAC). CTAC and MARCTAC images were scaled to attenuation coefficients at 511 keV using a trilinear function that mapped the highest CT values to the prosthesis alloy attenuation coefficient. Accuracy and spatial distribution of the lesion activity was compared between the three reconstruction schemes. Compared to the reference activity of 3.37 MBq, the estimated activity quantified from the PET image corrected by TXAC was 3.41 MBq. The activity estimated from PET images corrected by MARCTAC was similar in accuracy at 3.32 MBq. CTAC corrected PET images resulted in nearly 40% overestimation of lesion activity at 4.70 MBq. Comparison of PET images obtained with the plastic and metal prostheses in place showed that CTAC resulted in a marked distortion of the 18 F-FDG distribution within the lesion, whereas application of MARCTAC and TXAC resulted in lesion distributions similar to those observed with the plastic replica. (author)
Energy Technology Data Exchange (ETDEWEB)
Tuffier, Stephane; Joubert, Michael; Bailliez, Alban [EA 4650, Normandie Universite, Caen (France); Legallois, Damien [EA 4650, Normandie Universite, Caen (France); Caen University Hospital, Department of Cardiology, Caen (France); Belin, Annette [Caen University Hospital, Department of Cardiac Surgery, Caen (France); Redonnet, Michel [Rouen University Hospital, Department of Cardiac Surgery, Rouen (France); Agostini, Denis [EA 4650, Normandie Universite, Caen (France); Caen University Hospital, Department of Nuclear Medicine, Caen (France); Manrique, Alain [EA 4650, Normandie Universite, Caen (France); Caen University Hospital, Department of Nuclear Medicine, Caen (France); Cyceron PET Centre, Caen (France)
2016-02-15
Myocardial blood flow (MBF) measurement using positron emission tomography (PET) from the washout rate of {sup 15}O-water is theoretically independent of tissue attenuation. The aim of this study was to evaluate the impact of not using attenuation correction in the assessment of coronary endothelial function and myocardial flow reserve (MFR) using {sup 15}O-water PET. We retrospectively processed 70 consecutive {sup 15}O-water PET examinations obtained at rest and during cold pressor testing (CPT) in patients with dilated cardiomyopathy (n = 58), or at rest and during adenosine infusion in heart transplant recipients (n = 12). Data were reconstructed with attenuation correction (AC) and without attenuation correction (NAC) using filtered backprojection, and MBF was quantified using a single compartmental model. The agreement between AC and NAC data was assessed using Lin's concordance correlation coefficient followed by Bland-Altman plot analysis. Regarding endothelial function, NAC PET showed poor reproducibility and poor agreement with AC PET data. Conversely, NAC PET demonstrated high reproducibility and a strong agreement with AC PET for the assessment of MFR. Non-attenuation-corrected {sup 15}O-water PET provided an accurate measurement of MFR compared to attenuation-corrected PET. However, non-attenuation-corrected PET data were less effective for the assessment of endothelial function using CPT in this population. (orig.)
Temperature dependence of the hydrogen-broadening coefficient for the nu 9 fundamental of ethane
Halsey, G. W.; Hillman, J. J.; Nadler, Shacher; Jennings, D. E.
1988-01-01
Experimental results for the temperature dependence of the H2-broadening coefficient for the nu 9 fundamental of ethane are reported. Measurements were made over the temperature range 95-300 K using a novel low-temperature absorption cell. These spectra were recorded with the Doppler-limited diode laser spectrometer at NASA Goddard. The results are compared with recent measurements and model predictions.
Energy Technology Data Exchange (ETDEWEB)
Appoloni, C R; Nardocci, A C; Obuti, M M [Universidade Estadual de Londrina, PR (Brazil). Dept. de Fisica
1988-04-01
This work deals with the study of the water diffusion in concrete by the gamma ray attenuation method. The moisture profiles, [theta] (z,t), of the vertical water flow were determined in concrete samples of different trace and porosity. The data were taken with a vertical and horizontal measurement table, a [sup 60] Co gamma ray source, a NaI (T) scintillation detector and the standard gamma ray spectrometry electronic. The [theta] (z,t) data analysis is presented using a phenomenological model of the moisture profile temporal evolution in heterogeneous materials. Two other models, Cell and Sandwich, were also applied to determine the attenuation coefficient of a non-homogeneous media from the attenuation coefficients of the components, taking into account particles-size effects. (author).
Hwang, Donghwi; Kim, Kyeong Yun; Kang, Seung Kwan; Seo, Seongho; Paeng, Jin Chul; Lee, Dong Soo; Lee, Jae Sung
2018-02-15
Simultaneous reconstruction of activity and attenuation using the maximum likelihood reconstruction of activity and attenuation (MLAA) augmented by time-of-flight (TOF) information is a promising method for positron emission tomography (PET) attenuation correction. However, it still suffers from several problems, including crosstalk artifacts, slow convergence speed, and noisy attenuation maps (μ-maps). In this work, we developed deep convolutional neural networks (CNNs) to overcome these MLAA limitations, and we verified their feasibility using a clinical brain PET data set. Methods: We applied the proposed method to one of the most challenging PET cases for simultaneous image reconstruction ( 18 F-FP-CIT PET scans with highly specific binding to striatum of the brain). Three different CNN architectures (convolutional autoencoder (CAE), U-net, hybrid of CAE and U-net) were designed and trained to learn x-ray computed tomography (CT) derived μ-map (μ-CT) from the MLAA-generated activity distribution and μ-map (μ-MLAA). PET/CT data of 40 patients with suspected Parkinson's disease were employed for five-fold cross-validation. For the training of CNNs, 800,000 transverse PET slices and CTs augmented from 32 patient data sets were used. The similarity to μ-CT of the CNN-generated μ-maps (μ-CAE, μ-Unet, and μ-Hybrid) and μ-MLAA was compared using Dice similarity coefficients. In addition, we compared the activity concentration of specific (striatum) and non-specific binding regions (cerebellum and occipital cortex) and the binding ratios in the striatum in the PET activity images reconstructed using those μ-maps. Results: The CNNs generated less noisy and more uniform μ-maps than original μ-MLAA. Moreover, the air cavities and bones were better resolved in the proposed CNN outputs. In addition, the proposed deep learning approach was useful for mitigating the crosstalk problem in the MLAA reconstruction. The hybrid network of CAE and U-net yielded the
Attenuated total reflection design for in situ FT-IR spectroelectrochemical studies
International Nuclear Information System (INIS)
Visser, Hendrik; Curtright, Aimee E.; McCusker, James K.; Sauer, Kenneth
2000-01-01
A versatile spectroelectrochemical apparatus is introduced to study the changes in IR spectra of organic and inorganic compounds upon oxidation or reduction. The design is based on an attenuated total reflection (ATR) device, which permits the study of a wide spectral range of 16,700 cm-1 (600 nm) - 250 cm-1 with a small opaque region of 2250 - 1900 cm-1. In addition, an IR data collection protocol is introduced to deal with electrochemically non-reversible background signals. This method is tested with ferrocene in acetonitrile, producing results that agree with those in the literature
Gilerson, Alexander; Carrizo, Carlos; Foster, Robert; Harmel, Tristan
2018-04-16
The value and spectral dependence of the reflectance coefficient (ρ) of skylight from wind-roughened ocean surfaces is critical for determining accurate water leaving radiance and remote sensing reflectances from shipborne, AERONET-Ocean Color and satellite observations. Using a vector radiative transfer code, spectra of the reflectance coefficient and corresponding radiances near the ocean surface and at the top of the atmosphere (TOA) are simulated for a broad range of parameters including flat and windy ocean surfaces with wind speeds up to 15 m/s, aerosol optical thicknesses of 0-1 at 440nm, wavelengths of 400-900 nm, and variable Sun and viewing zenith angles. Results revealed a profound impact of the aerosol load and type on the spectral values of ρ. Such impacts, not included yet in standard processing, may produce significant inaccuracies in the reflectance spectra retrieved from above-water radiometry and satellite observations. Implications for satellite cal/val activities as well as potential changes in measurement and data processing schemes are discussed.
International Nuclear Information System (INIS)
Soussaline, Francoise; Cao, A.; Lecoq, G.
1981-06-01
An analytically exact solution to the attenuated tomographic operator is proposed. Such a technique called Regularizing Iterative Method (RIM) belongs to the iterative class of procedures where a priori knowledge can be introduced on the evaluation of the size and shape of the activity domain to be reconstructed, and on the exact attenuation distribution. The relaxation factor used is so named because it leads to fast convergence and provides noise filtering for a small number of iteractions. The effectiveness of such a method was tested in the Single Photon Emission Computed Tomography (SPECT) reconstruction problem, with the goal of precise correction for attenuation before quantitative study. Its implementation involves the use of a rotating scintillation camera based SPECT detector connected to a mini computer system. Mathematical simulations of cylindical uniformly attenuated phantoms indicate that in the range of a priori calculated relaxation factor a fast converging solution can always be found with a (contrast) accuracy of the order of 0.2 to 4% given that numerical errors and noise are or not, taken into account. The sensitivity of the (RIM) algorithm to errors in the size of the reconstructed object and in the value of the attenuation coefficient μ was studied, using the same simulation data. Extreme variations of +- 15% in these parameters will lead to errors of the order of +- 20% in the quantitative results. Physical phantoms representing a variety of geometrical situations were also studied
Molar extinction coefficients of some fatty acids
DEFF Research Database (Denmark)
Sandhu, G.K.; Singh, K.; Lark, B.S.
2002-01-01
) and stearic acid (C18H36O2), has been measured at the photon energies 81, 356, 511, 662, 1173 and 1332 keV. Experimental values for the molar extinction coefficient, the effective atomic number and the electron density have been derived and compared with theoretical calculations. There is good agreement......The attenuation of gamma rays in some fatty acids, viz. formic acid (CH2O2), acetic acid (C2H4O2), propionic acid (C3H6O2), butyric acid (C4H8O2), n-hexanoic acid (C6H12O2), n-caprylic acid (C8H16O2), lauric acid (C12H24O2), myristic acid (C14H28O2), palmitic acid (C16H32O2), oleic acid (C18H34O2...
Etzion, Y; Linker, R; Cogan, U; Shmulevich, I
2004-09-01
This study investigates the potential use of attenuated total reflectance spectroscopy in the mid-infrared range for determining protein concentration in raw cow milk. The determination of protein concentration is based on the characteristic absorbance of milk proteins, which includes 2 absorbance bands in the 1500 to 1700 cm(-1) range, known as the amide I and amide II bands, and absorbance in the 1060 to 1100 cm(-1) range, which is associated with phosphate groups covalently bound to casein proteins. To minimize the influence of the strong water band (centered around 1640 cm(-1)) that overlaps with the amide I and amide II bands, an optimized automatic procedure for accurate water subtraction was applied. Following water subtraction, the spectra were analyzed by 3 methods, namely simple band integration, partial least squares (PLS) and neural networks. For the neural network models, the spectra were first decomposed by principal component analysis (PCA), and the neural network inputs were the spectra principal components scores. In addition, the concentrations of 2 constituents expected to interact with the protein (i.e., fat and lactose) were also used as inputs. These approaches were tested with 235 spectra of standardized raw milk samples, corresponding to 26 protein concentrations in the 2.47 to 3.90% (weight per volume) range. The simple integration method led to very poor results, whereas PLS resulted in prediction errors of about 0.22% protein. The neural network approach led to prediction errors of 0.20% protein when based on PCA scores only, and 0.08% protein when lactose and fat concentrations were also included in the model. These results indicate the potential usefulness of Fourier transform infrared/attenuated total reflectance spectroscopy for rapid, possibly online, determination of protein concentration in raw milk.
Energy Technology Data Exchange (ETDEWEB)
Mehranian, Abolfazl; Arabi, Hossein [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva CH-1211 (Switzerland); Zaidi, Habib, E-mail: habib.zaidi@hcuge.ch [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva CH-1211 (Switzerland); Geneva Neuroscience Centre, University of Geneva, Geneva CH-1205 (Switzerland); Department of Nuclear Medicine and Molecular Imaging, University of Groningen, Groningen 9700 RB (Netherlands)
2016-03-15
Attenuation correction is an essential component of the long chain of data correction techniques required to achieve the full potential of quantitative positron emission tomography (PET) imaging. The development of combined PET/magnetic resonance imaging (MRI) systems mandated the widespread interest in developing novel strategies for deriving accurate attenuation maps with the aim to improve the quantitative accuracy of these emerging hybrid imaging systems. The attenuation map in PET/MRI should ideally be derived from anatomical MR images; however, MRI intensities reflect proton density and relaxation time properties of biological tissues rather than their electron density and photon attenuation properties. Therefore, in contrast to PET/computed tomography, there is a lack of standardized global mapping between the intensities of MRI signal and linear attenuation coefficients at 511 keV. Moreover, in standard MRI sequences, bones and lung tissues do not produce measurable signals owing to their low proton density and short transverse relaxation times. MR images are also inevitably subject to artifacts that degrade their quality, thus compromising their applicability for the task of attenuation correction in PET/MRI. MRI-guided attenuation correction strategies can be classified in three broad categories: (i) segmentation-based approaches, (ii) atlas-registration and machine learning methods, and (iii) emission/transmission-based approaches. This paper summarizes past and current state-of-the-art developments and latest advances in PET/MRI attenuation correction. The advantages and drawbacks of each approach for addressing the challenges of MR-based attenuation correction are comprehensively described. The opportunities brought by both MRI and PET imaging modalities for deriving accurate attenuation maps and improving PET quantification will be elaborated. Future prospects and potential clinical applications of these techniques and their integration in commercial
Energy Technology Data Exchange (ETDEWEB)
Bai, Er-Wei, E-mail: er-wei-bai@uiowa.edu [Department of Electrical and Computer Engineering, University of Iowa, Iowa City, IA 52242 (United States); Chan, Kung-sik, E-mail: kung-sik-chan@uiowa.edu [Department of Statistical and Actuarial Science, University of Iowa, Iowa City, IA 52242 (United States); Eichinger, William, E-mail: william-eichinger@uiowa.edu [Department of Civil and Environmental Engineering, University of Iowa, Iowa City, IA 52242 (United States); Kump, Paul [Department of Electrical and Computer Engineering, University of Iowa, Iowa City, IA 52242 (United States)
2011-10-15
We consider a problem of identification of nuclides from weak and poorly resolved spectra. A two stage algorithm is proposed and tested based on the principle of majority voting. The idea is to model gamma-ray counts as Poisson processes. Then, the average part is taken to be the model and the difference between the observed gamma-ray counts and the average is considered as random noise. In the linear part, the unknown coefficients correspond to if isotopes of interest are present or absent. Lasso types of algorithms are applied to find non-vanishing coefficients. Since Lasso or any prediction error based algorithm is inconsistent with variable selection for finite data length, an estimate of parameter distribution based on subsampling techniques is added in addition to Lasso. Simulation examples are provided in which the traditional peak detection algorithms fail to work and the proposed two stage algorithm performs well in terms of both the False Negative and False Positive errors. - Highlights: > Identification of nuclides from weak and poorly resolved spectra. > An algorithm is proposed and tested based on the principle of majority voting. > Lasso types of algorithms are applied to find non-vanishing coefficients. > An estimate of parameter distribution based on sub-sampling techniques is included. > Simulations compare the results of the proposed method with those of peak detection.
International Nuclear Information System (INIS)
Bai, Er-Wei; Chan, Kung-sik; Eichinger, William; Kump, Paul
2011-01-01
We consider a problem of identification of nuclides from weak and poorly resolved spectra. A two stage algorithm is proposed and tested based on the principle of majority voting. The idea is to model gamma-ray counts as Poisson processes. Then, the average part is taken to be the model and the difference between the observed gamma-ray counts and the average is considered as random noise. In the linear part, the unknown coefficients correspond to if isotopes of interest are present or absent. Lasso types of algorithms are applied to find non-vanishing coefficients. Since Lasso or any prediction error based algorithm is inconsistent with variable selection for finite data length, an estimate of parameter distribution based on subsampling techniques is added in addition to Lasso. Simulation examples are provided in which the traditional peak detection algorithms fail to work and the proposed two stage algorithm performs well in terms of both the False Negative and False Positive errors. - Highlights: → Identification of nuclides from weak and poorly resolved spectra. → An algorithm is proposed and tested based on the principle of majority voting. → Lasso types of algorithms are applied to find non-vanishing coefficients. → An estimate of parameter distribution based on sub-sampling techniques is included. → Simulations compare the results of the proposed method with those of peak detection.
Modelling of bio-optical parameters of open ocean waters
Directory of Open Access Journals (Sweden)
Vadim N. Pelevin
2001-12-01
Full Text Available An original method for estimating the concentration of chlorophyll pigments, absorption of yellow substance and absorption of suspended matter without pigments and yellow substance in detritus using spectral diffuse attenuation coefficient for downwelling irradiance and irradiance reflectance data has been applied to sea waters of different types in the open ocean (case 1. Using the effective numerical single parameter classification with the water type optical index m as a parameter over the whole range of the open ocean waters, the calculations have been carried out and the light absorption spectra of sea waters tabulated. These spectra are used to optimize the absorption models and thus to estimate the concentrations of the main admixtures in sea water. The value of m can be determined from direct measurements of the downward irradiance attenuation coefficient at 500 nm or calculated from remote sensing data using the regressions given in the article. The sea water composition can then be readily estimated from the tables given for any open ocean area if that one parameter m characterizing the basin is known.
Utilizing experimentally derived multi-channel gamma-ray spectra for the analysis of airborne data
International Nuclear Information System (INIS)
Grasty, R.L.
1982-01-01
Gamma-ray spectra derived from measurements on radioactive concrete calibration pads using plywood sheets to simulate the attenuation effect of air have been successfully tested on airbone data. Cesium-137 at 662 keV, from atomic weapons tests was found to contribute significantly to the airborne spectrum. By fitting the experimental spectra, above the cesium energy, to airborne data, significant increases in accuracy were obtained for the measurement of uranium and thorium, compared to the standard 3-window method. By including a cesium spectrum is the analysis of gamma-ray data from a survey carried out in Saskatchewan, it was found that background radiation due to atmospheric bismuth-214 could be measured more reliably than by using a constant over-water background. Similar results were obtained by monitoring low energy lead-214 gamma-rays at 352 keV
Studies of photon spectra from a thallium-204 foil source as an aid to dosimetry and shielding
Francis, T M
1976-01-01
Beta ray foil sources incorporating nuclides such as thallium-204, promethium-147 and strontium-90 plus yttrium-90 ar increasingly used in industrial devices such as thickness gauges. These sources are so constructed that they give rise to complex photon spectra containing low energy Bremsstrahlung and X-rays characteristic of the constructional materials. The energy response of practical monitoring instruments is such that they are likely to underestimate the dose due to such spectra unless they are calibrated using appropriate spectra. This report describes a series of measurements carried out on a commercially available thallium-204 foil source and five commonly used shielding materials. The measurements made with a NaI(T1) spectrometer have been corrected for instrumental distortions to obtain the photon spectra in air. These spectra are presented and have been used to compute dose in air with the help of published data on mass energy-absorption coefficients. Also included in the report are data derived f...
Yuan, Fang-Ting; Argudo-Fernández, María; Shen, Shiyin; Hao, Lei; Jiang, Chunyan; Yin, Jun; Boquien, Médéric; Lin, Lihwai
2018-05-01
We investigate the star formation history and the dust attenuation in the galaxy merger Mrk 848. Thanks to the multiwavelength photometry from the ultraviolet (UV) to the infrared (IR), and MaNGA's integral field spectroscopy, we are able to study this merger in a detailed way. We divide the whole merger into the core and tail regions, and fit both the optical spectrum and the multi-band spectral energy distribution (SED) to models to obtain the star formation properties for each region respectively. We find that the color excess of stars in the galaxy E(B-V)sSED measured with the multi-band SED fitting is consistent with that estimated both from the infrared excess (the ratio of IR to UV flux) and from the slope of the UV continuum. Furthermore, the reliability of the E(B-V)sSED is examined with a set of mock SEDs, showing that the dust attenuation of the stars can be well constrained by the UV-to-IR broadband SED fitting. The dust attenuation obtained from optical continuum E(B-V)sspec is only about half of E(B-V)sSED. The ratio of the E(B-V)sspec to the E(B-V)g obtained from the Balmer decrement is consistent with the local value (around 0.5). The difference between the results from the UV-to-IR data and the optical data is consistent with the picture that younger stellar populations are attenuated by an extra dust component from the birth clouds compared to older stellar populations which are only attenuated by the diffuse dust. Both with the UV-to-IR SED fitting and the spectral fitting, we find that there is a starburst younger than 100 Myr in one of the two core regions, consistent with the scenario that the interaction-induced gas inflow can enhance the star formation in the center of galaxies.
Computer model for calculating gamma-ray pulse-height spectra for logging applications
International Nuclear Information System (INIS)
Evans, M.L.
1981-01-01
A generalized computer model has been devised to simulate the emission, transport, and detection of natural gamma radiation from various logging environments. The model yields high-resolution gamma-ray pulse-height spectra that can be used to correct both gross gamma and spectral gamma-ray logs. The technique can help provide corrections to airborne and surface radiometric survey logs for the effects of varying altitude, formation composition, and overburden. Applied to borehole logging, the model can yield estimates of the effects of varying borehole fluid and casing attenuations, as well as varying formation porosity and saturation
Directory of Open Access Journals (Sweden)
T. Tuvè
2006-06-01
Full Text Available A detailed analysis of the intensity attenuation in the Etna and other Italian volcanic districts, was performed using the most recent and complete intensity datasets. Attenuation laws were derived through empirical models fitting ?I (the difference between epicentral I0 and site Ix intensities average values versus hypocentral site distances by the least-square method. The huge amount of data available for the Etna area allowed us to elaborate bi-linear and logarithmic attenuation models, also taking source effects into account. Furthermore, the coefficients of the Grandori formulation have been re-calculated to verify the ones previously defined for seismic hazard purposes. Among the tested relationships, the logarithmic one is simple and fairly stable, so it was also adopted for the other volcanic Italian areas. The analysis showed different attenuation trends: on the one hand, Etna and Ischia show the highest decay of intensity (?I=4 in the first 20 km; on the contrary, the Aeolian Islands and Albani Hills present a slight intensity attenuation (?I=2 at 20 km from the hypocentre; finally, Vesuvius seems to have an intermediate behaviour between the two groups. The proposed regionalization gives a significantly better image of near-field damage in volcanic regions and is easily applicable to probabilistic seismic hazard analyses.
International Nuclear Information System (INIS)
Simmer, Gregor
2012-01-01
Due to secondary cosmic radiation (SCR), pilots and flight attendants receive elevated effective doses at flight altitudes. For this reason, since 2003 aircrew members are considered as occupationally exposed, in Germany. This work deals with the calculation of dose conversion coefficients (DCC) for protons, neutrons, electrons, positrons, photons and myons, which are crucial for estimation of effective dose from SCR. For the first time, calculations were performed combining Geant4 - a Monte Carlo code developed at CERN - with the voxel phantoms for the reference female and male published in 2008 by ICRP and ICRU. Furthermore, measurements of neutron fluence spectra - which contribute the major part to the effective dose of SCR - were carried out at the Environmental Research Station Schneefernerhaus (UFS) located at 2650 m above sea level nearby the Zugspitze mountain, Germany. These measured neutron spectra, and additionally available calculated spectra, were then folded with the DCC calculated in this work, and effective dose rates for different heights were calculated.
Control algorithms for dynamic attenuators
Energy Technology Data Exchange (ETDEWEB)
Hsieh, Scott S., E-mail: sshsieh@stanford.edu [Department of Radiology, Stanford University, Stanford, California 94305 and Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); Pelc, Norbert J. [Department of Radiology, Stanford University, Stanford California 94305 and Department of Bioengineering, Stanford University, Stanford, California 94305 (United States)
2014-06-15
Purpose: The authors describe algorithms to control dynamic attenuators in CT and compare their performance using simulated scans. Dynamic attenuators are prepatient beam shaping filters that modulate the distribution of x-ray fluence incident on the patient on a view-by-view basis. These attenuators can reduce dose while improving key image quality metrics such as peak or mean variance. In each view, the attenuator presents several degrees of freedom which may be individually adjusted. The total number of degrees of freedom across all views is very large, making many optimization techniques impractical. The authors develop a theory for optimally controlling these attenuators. Special attention is paid to a theoretically perfect attenuator which controls the fluence for each ray individually, but the authors also investigate and compare three other, practical attenuator designs which have been previously proposed: the piecewise-linear attenuator, the translating attenuator, and the double wedge attenuator. Methods: The authors pose and solve the optimization problems of minimizing the mean and peak variance subject to a fixed dose limit. For a perfect attenuator and mean variance minimization, this problem can be solved in simple, closed form. For other attenuator designs, the problem can be decomposed into separate problems for each view to greatly reduce the computational complexity. Peak variance minimization can be approximately solved using iterated, weighted mean variance (WMV) minimization. Also, the authors develop heuristics for the perfect and piecewise-linear attenuators which do not requirea priori knowledge of the patient anatomy. The authors compare these control algorithms on different types of dynamic attenuators using simulated raw data from forward projected DICOM files of a thorax and an abdomen. Results: The translating and double wedge attenuators reduce dose by an average of 30% relative to current techniques (bowtie filter with tube current
Control algorithms for dynamic attenuators
International Nuclear Information System (INIS)
Hsieh, Scott S.; Pelc, Norbert J.
2014-01-01
Purpose: The authors describe algorithms to control dynamic attenuators in CT and compare their performance using simulated scans. Dynamic attenuators are prepatient beam shaping filters that modulate the distribution of x-ray fluence incident on the patient on a view-by-view basis. These attenuators can reduce dose while improving key image quality metrics such as peak or mean variance. In each view, the attenuator presents several degrees of freedom which may be individually adjusted. The total number of degrees of freedom across all views is very large, making many optimization techniques impractical. The authors develop a theory for optimally controlling these attenuators. Special attention is paid to a theoretically perfect attenuator which controls the fluence for each ray individually, but the authors also investigate and compare three other, practical attenuator designs which have been previously proposed: the piecewise-linear attenuator, the translating attenuator, and the double wedge attenuator. Methods: The authors pose and solve the optimization problems of minimizing the mean and peak variance subject to a fixed dose limit. For a perfect attenuator and mean variance minimization, this problem can be solved in simple, closed form. For other attenuator designs, the problem can be decomposed into separate problems for each view to greatly reduce the computational complexity. Peak variance minimization can be approximately solved using iterated, weighted mean variance (WMV) minimization. Also, the authors develop heuristics for the perfect and piecewise-linear attenuators which do not requirea priori knowledge of the patient anatomy. The authors compare these control algorithms on different types of dynamic attenuators using simulated raw data from forward projected DICOM files of a thorax and an abdomen. Results: The translating and double wedge attenuators reduce dose by an average of 30% relative to current techniques (bowtie filter with tube current
Control algorithms for dynamic attenuators.
Hsieh, Scott S; Pelc, Norbert J
2014-06-01
The authors describe algorithms to control dynamic attenuators in CT and compare their performance using simulated scans. Dynamic attenuators are prepatient beam shaping filters that modulate the distribution of x-ray fluence incident on the patient on a view-by-view basis. These attenuators can reduce dose while improving key image quality metrics such as peak or mean variance. In each view, the attenuator presents several degrees of freedom which may be individually adjusted. The total number of degrees of freedom across all views is very large, making many optimization techniques impractical. The authors develop a theory for optimally controlling these attenuators. Special attention is paid to a theoretically perfect attenuator which controls the fluence for each ray individually, but the authors also investigate and compare three other, practical attenuator designs which have been previously proposed: the piecewise-linear attenuator, the translating attenuator, and the double wedge attenuator. The authors pose and solve the optimization problems of minimizing the mean and peak variance subject to a fixed dose limit. For a perfect attenuator and mean variance minimization, this problem can be solved in simple, closed form. For other attenuator designs, the problem can be decomposed into separate problems for each view to greatly reduce the computational complexity. Peak variance minimization can be approximately solved using iterated, weighted mean variance (WMV) minimization. Also, the authors develop heuristics for the perfect and piecewise-linear attenuators which do not require a priori knowledge of the patient anatomy. The authors compare these control algorithms on different types of dynamic attenuators using simulated raw data from forward projected DICOM files of a thorax and an abdomen. The translating and double wedge attenuators reduce dose by an average of 30% relative to current techniques (bowtie filter with tube current modulation) without
Continuous particle spectra and their angular distributions
International Nuclear Information System (INIS)
Sastry, Ch.V.; Jain, R.K.; Rama Rao, J.; Ernst, J.; Machner, H.
1996-01-01
The angular distribution of continuous particle spectra in pre-equilibrium reactions is still an unsolved problem, particularly so at forward angles. In the present work, the angular distributions of alpha particles emitted in (α, α',x) reactions in the target elements gold and rhodium have been studied in detail. Alpha particle beams of energy 60 MeV from the Variable Energy Cyclotron of Calcutta were used in these experiments. The theoretical calculations were done using an extended exciton model of Kalbach incorporated into the Computer Code PRECO-D2. The formalism used in the exciton model was modified to include division of pre equilibrium cross section into multi-step direct (MSD) and multi-step compound (MSC) components. These MSD and MSC cross sections were used to calculate the angular distributions in terms of Legendre polynomials whose coefficients are given by simple phenomenological relations. Even with a reasonable set of parameters, the agreement between theory and experiment was far from satisfactory at forward angles. Similar conclusion was also drawn in the case of continuous particle spectra of deuterons in (d, d'x) reactions at 25 MeV in various targets. (author). 10 refs., 2 figs
Harnish, Roy; Prevrhal, Sven; Alavi, Abass; Zaidi, Habib; Lang, Thomas F
2014-07-01
To determine if metal artefact reduction (MAR) combined with a priori knowledge of prosthesis material composition can be applied to obtain CT-based attenuation maps with sufficient accuracy for quantitative assessment of (18)F-fluorodeoxyglucose uptake in lesions near metallic prostheses. A custom hip prosthesis phantom with a lesion-sized cavity filled with 0.2 ml (18)F-FDG solution having an activity of 3.367 MBq adjacent to a prosthesis bore was imaged twice with a chrome-cobalt steel hip prosthesis and a plastic replica, respectively. Scanning was performed on a clinical hybrid PET/CT system equipped with an additional external (137)Cs transmission source. PET emission images were reconstructed from both phantom configurations with CT-based attenuation correction (CTAC) and with CT-based attenuation correction using MAR (MARCTAC). To compare results with the attenuation-correction method extant prior to the advent of PET/CT, we also carried out attenuation correction with (137)Cs transmission-based attenuation correction (TXAC). CTAC and MARCTAC images were scaled to attenuation coefficients at 511 keV using a trilinear function that mapped the highest CT values to the prosthesis alloy attenuation coefficient. Accuracy and spatial distribution of the lesion activity was compared between the three reconstruction schemes. Compared to the reference activity of 3.37 MBq, the estimated activity quantified from the PET image corrected by TXAC was 3.41 MBq. The activity estimated from PET images corrected by MARCTAC was similar in accuracy at 3.32 MBq. CTAC corrected PET images resulted in nearly 40 % overestimation of lesion activity at 4.70 MBq. Comparison of PET images obtained with the plastic and metal prostheses in place showed that CTAC resulted in a marked distortion of the (18)F-FDG distribution within the lesion, whereas application of MARCTAC and TXAC resulted in lesion distributions similar to those observed with the plastic replica. MAR combined
International Nuclear Information System (INIS)
Soussaline, F.; Bidaut, L.; Raynaud, C.; Le Coq, G.
1983-06-01
An analytical solution to the SPECT reconstruction problem, where the actual attenuation effect can be included, was developped using a regularizing iterative method (RIM). The potential of this approach in quantitative brain studies when using a tracer for cerebrovascular disorders is now under evaluation. Mathematical simulations for a distributed activity in the brain surrounded by the skull and physical phantom studies were performed, using a rotating camera based SPECT system, allowing the calibration of the system and the evaluation of the adapted method to be used. On the simulation studies, the contrast obtained along a profile, was less than 5%, the standard deviation 8% and the quantitative accuracy 13%, for a uniform emission distribution of mean = 100 per pixel and a double attenuation coefficient of μ = 0.115 cm -1 and 0.5 cm -1 . Clinical data obtained after injection of 123 I (AMPI) were reconstructed using the RIM without and with cerebrovascular diseases or lesion defects. Contour finding techniques were used for the delineation of the brain and the skull, and measured attenuation coefficients were assumed within these two regions. Using volumes of interest, selected on homogeneous regions on an hemisphere and reported symetrically, the statistical uncertainty for 300 K events in the tomogram was found to be 12%, the index of symetry was of 4% for normal distribution. These results suggest that quantitative SPECT reconstruction for brain distribution is feasible, and that combined with an adapted tracer and an adequate model physiopathological parameters could be extracted
An effective approach to attenuate random noise based on compressive sensing and curvelet transform
International Nuclear Information System (INIS)
Liu, Wei; Cao, Siyuan; Zu, Shaohuan; Chen, Yangkang
2016-01-01
Random noise attenuation is an important step in seismic data processing. In this paper, we propose a novel denoising approach based on compressive sensing and the curvelet transform. We formulate the random noise attenuation problem as an L _1 norm regularized optimization problem. We propose to use the curvelet transform as the sparse transform in the optimization problem to regularize the sparse coefficients in order to separate signal and noise and to use the gradient projection for sparse reconstruction (GPSR) algorithm to solve the formulated optimization problem with an easy implementation and a fast convergence. We tested the performance of our proposed approach on both synthetic and field seismic data. Numerical results show that the proposed approach can effectively suppress the distortion near the edge of seismic events during the noise attenuation process and has high computational efficiency compared with the traditional curvelet thresholding and iterative soft thresholding based denoising methods. Besides, compared with f-x deconvolution, the proposed denoising method is capable of eliminating the random noise more effectively while preserving more useful signals. (paper)
Zhang, Hua; Yang, Hui; Li, Hongxing; Huang, Guangnan; Ding, Zheyi
2018-04-01
The attenuation of random noise is important for improving the signal to noise ratio (SNR). However, the precondition for most conventional denoising methods is that the noisy data must be sampled on a uniform grid, making the conventional methods unsuitable for non-uniformly sampled data. In this paper, a denoising method capable of regularizing the noisy data from a non-uniform grid to a specified uniform grid is proposed. Firstly, the denoising method is performed for every time slice extracted from the 3D noisy data along the source and receiver directions, then the 2D non-equispaced fast Fourier transform (NFFT) is introduced in the conventional fast discrete curvelet transform (FDCT). The non-equispaced fast discrete curvelet transform (NFDCT) can be achieved based on the regularized inversion of an operator that links the uniformly sampled curvelet coefficients to the non-uniformly sampled noisy data. The uniform curvelet coefficients can be calculated by using the inversion algorithm of the spectral projected-gradient for ℓ1-norm problems. Then local threshold factors are chosen for the uniform curvelet coefficients for each decomposition scale, and effective curvelet coefficients are obtained respectively for each scale. Finally, the conventional inverse FDCT is applied to the effective curvelet coefficients. This completes the proposed 3D denoising method using the non-equispaced curvelet transform in the source-receiver domain. The examples for synthetic data and real data reveal the effectiveness of the proposed approach in applications to noise attenuation for non-uniformly sampled data compared with the conventional FDCT method and wavelet transformation.
Dynamics Coefficient for Two-Phase Soil Model
Directory of Open Access Journals (Sweden)
Wrana Bogumił
2015-02-01
Full Text Available The paper investigates a description of energy dissipation within saturated soils-diffusion of pore-water. Soils are assumed to be two-phase poro-elastic materials, the grain skeleton of which exhibits no irreversible behavior or structural hysteretic damping. Description of motion and deformation of soil is introduced as a system of equations consisting of governing dynamic consolidation equations based on Biot theory. Selected constitutive and kinematic relations for small strains and rotation are used. This paper derives a closed form of analytical solution that characterizes the energy dissipation during steady-state vibrations of nearly and fully saturated poro-elastic columns. Moreover, the paper examines the influence of various physical factors on the fundamental period, maximum amplitude and the fraction of critical damping of the Biot column. Also the so-called dynamic coefficient which shows amplification or attenuation of dynamic response is considered.
Energy Technology Data Exchange (ETDEWEB)
Barcala Riveira, J. M.; Fernandez Marron, J. L.; Alberdi Primicia, J.; Navarrete Marin, J. J.; Oller Gonzalez, J.C.
2003-07-01
This document describes how multi resolution analysis can combine with the use of quaternions to identify near infrared spectra. The method is applied to spectra of plastics usually present in domestic wastes. First, Haar wavelet is applied to spectrum. With the coefficients obtained, a quaternion is built. We named this quaternion a characteristic quaternion. Distances to characteristic quaternions are used to classify new quaternions. (Author) 54 refs.
Measurement of deuteron spectra and elliptic flow in Pb–Pb collisions at √sNN = 2.76 TeV at the LHC
Acharya, S.; Adamová, D.; Adolfsson, J.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmad, N.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Alam, S. N.; Alba, J. L. B.; Albuquerque, D. S. D.; Aleksandrov, D.; Alessandro, B.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altenkamper, L.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andreou, D.; Andrews, H. A.; Andronic, A.; Anguelov, V.; Anson, C. D.; Antičić, T.; Antinori, F.; Antonioli, P.; Anwar, R.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Ball, M.C.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barioglio, L.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Beltran, L. G. E.; Belyaev, V.; Bencedi, G.; Beole, S.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biro, G.; Biswas, R.; Biswas, S.; Blair, J. T.; Blau, D.; Blume, C.; Boca, G.; Bock, F.; Bogdanov, A.; Boldizsár, L.; Bombara, M.; Bonomi, G.; Bonora, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Botta, E.; Bourjau, C.; Bratrud, L.; Braun-Munzinger, P.; Bregant, M.; Broker, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buhler, P.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Cabala, J.; Caffarri, D.; Caines, H.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Capon, A. A.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A R; Ceballos Sanchez, C.; Cerello, P.; Chandra, S.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chauvin, A.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Cho, Sukhee; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Chowdhury, T.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Concas, M.; Conesa Balbastre, G.; Conesa del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Costanza, S.; Crkovská, J.; Crochet, P.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danisch, M. C.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; Dasgupta, S. S.; De Caro, A.; De Cataldo, G.; De Conti, C.; De Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; De Souza, R. Derradi; Degenhardt, H. F.; Deisting, A.; Deloff, A.; Deplano, C.; Dhankher, P.; Di Bari, D.; Di Mauro, A.; Di Nezza, P.; Di Ruzza, B.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, O.; Dobrin, A.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Doremalen, L. V. V.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Duggal, A. K.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Endress, E.; Engel, H.; Epple, E.; Erazmus, B.; Erhardt, F.; Espagnon, B.; Esumi, S.; Eulisse, G.; Eum, J.; Evans, D.; Evdokimov, S.; Fabbietti, L.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A S; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; De Francisco, A.; Frankenfeld, U.; Fronze, G. G.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gajdosova, K.; Gallio, M.; Galvan, C. D.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Garg, K.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Gay Ducati, M. B.; Germain, M.; Ghosh, J.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; Gonzalez, A. S.; Gonzalez, V; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Graham, K. L.; Greiner, L. C.; Grelli, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grion, N.; Gronefeld, J. M.; Grosa, F.; Grosse-Oetringhaus, J. F.; Grosso, R.; Gruber, L.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Guzman, I. B.; Haake, R.; Hadjidakis, C.; Hamagaki, H.; Hamar, G.; Hamon, J. C.; Haque, M. R.; Harris, J. W.; Harton, A.; Hassan, H.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Hellbär, E.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Herrmann, F.; Hess, B. A.; Hetland, K. F.; Hillemanns, H.; Hills, C.; Hippolyte, B.; Hladky, J.; Hohlweger, B.; Horak, D.; Sorkine-Hornung, Olga; Hosokawa, R.; Hristov, P.; Hughes, C.W.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Iga Buitron, S. A.; Ilkaev, R.; Inaba, M.; Ippolitov, M.; Irfan, M.; Isakov, V.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacak, B.; Jacazio, N.; Jacobs, P. M.; Jadhav, M. B.; Jadlovsky, J.; Jaelani, S.; Jahnke, C.; Jakubowska, M. J.; Janik, M. A.; Jayarathna, P. H S Y; Jena, C.; Jena, S.; Jercic, M.; Jimenez Bustamante, R. T.; Jones, P. G.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karczmarczyk, P.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L.D.; Keil, M.; Ketzer, B.; Khabanova, Z.; Khan, P.M.; Khan, Shfaqat A.; Khanzadeev, A.; Kharlov, Y.; Khatun, A.; Khuntia, A.; Kielbowicz, M. M.; Kileng, B.; Kim, B.; Kim, D.-S.; Kim, D. W.; Kim, D. J.; Kim, H.; Kim, J. S.; Kim, J.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C; Klein, J.; Klein-Bösing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Konyushikhin, M.; Kopcik, M.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.L.; Koyithatta Meethaleveedu, G.; Králik, I.; Kravčáková, A.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kuhn, C.; Kuijer, P. G.; Kumar, A.; Kumar, J.; Kumar, L.; Kumar, S.; Kundu, Seema; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Lagana Fernandes, C.; Lai, Y. S.; Lakomov, I.; Langoy, R.; Lapidus, K.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lavicka, R.; Lazaridis, L.; Lea, R.; Leardini, L.; Lee, S.; Lehas, F.; Strunz-Lehner, Christine; Lehrbach, J.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lim, B.; Lindal, S.; Lindenstruth, V.; Lindsay, S. W.; Lippmann, C.; Lisa, M. A.; Litichevskyi, V.; Ljunggren, H. M.; Llope, W. J.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Loncar, P.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Lunardon, M.; Luparello, G.; Lupi, M.; Lutz, T. H.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Malinina, L.; Mal’Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, Alicia; Markert, C.; Marquard, M.; Martin, N. A.; Martinengo, P.; Martinez, J. A. L.; Martínez, Isabel M.; Martínez García, G.; Martinez Pedreira, M.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Masson, E.; Mastroserio, A.; Mathis, A. M.; Matyja, A.; mayer, C.; Mazer, J.; Mazzilli, M.; Mazzoni, M. A.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Mhlanga, S.; Miake, Y.; Mieskolainen, M. M.; Mihaylov, D. L.; Mihaylov, D. L.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Mohisin Khan, M.; Montes, E.; Moreira De Godoy, D. A.; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Münning, K.; Munzer, R. H.; Murakami, H.; Murray, S.; Musa, L.; Musinsky, J.; Myers, C. J.; Myrcha, J. W.; Naik, B.; Nair, Rajiv; Nandi, B. K.; Nania, R.; Nappi, E.; Narayan, A.; Naru, M. U.; Natal Da Luz, H.; Nattrass, C.; Navarro, S. R.; Nayak, K.; Nayak, R.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Negrao De Oliveira, R. A.; Nellen, L.; Nesbo, S. V.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Nobuhiro, A.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Ohlson, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira Da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Oravec, M.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Pachmayer, Y.; Pacik, V.; Pagano, D.; Pagano, P.; Paić, G.; Palni, P.; Pan, J.; Pandey, A. K.; Panebianco, S.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, J.; Parmar, S.; Passfeld, A.; Pathak, S. P.; Paticchio, V.; Patra, R. N.; Paul, B.; Pei, H.; Peitzmann, T.; Peng, X.; Pereira, L. G.; Pereira Da Costa, H.; Peresunko, D.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Pezzi, R. P.; Piano, S.; Pikna, M.; Pillot, P.; Pimentel, L. O. D. L.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pliquett, F.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L M; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Poppenborg, H.; Porteboeuf-Houssais, S.; Porter, J.; Pozdniakov, V.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Rana, D. B.; Raniwala, R.; Raniwala, S.; Räsänen, S.; Rascanu, B. T.; Rathee, D.; Ratza, V.; Ravasenga, I.; Read, K. F.; Redlich, K.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rodríguez Cahuantzi, M.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Rokita, P. S.; Ronchetti, F.; Rosas, E. D.; Rosnet, P.; Rossi, A.; Rotondi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rueda, O. V.; Rui, R.; Rumyantsev, B.; Rustamov, A.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Saarinen, S.; Sadhu, S.; Sadovsky, S.; Šafařík, K.; Saha, S. K.; Sahlmuller, B.; Sahoo, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sandoval, A.; Sarkar, D.; Sarkar, N.; Sarma, P.; Sas, M. H.P.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Scheid, H. S.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schmidt, M. O.; Schmidt, M.; Schmidt, N. V.; Schuchmann, S.; Schukraft, J.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Šefčík, M.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Senyukov, S.; Serradilla, E.; Sett, P.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shahoyan, R.; Shaikh, W.; Shangaraev, A.; Sharma, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Sheikh, A. I.; Shigaki, K.; Shou, Q. Y.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R; Singhal, V.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J.M.; Snellman, T. W.; Song, J.; Song, M.; Soramel, F.; Sorensen, S.; Sozzi, F.; Spiriti, E.; Sputowska, I.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stankus, P.; Stenlund, E.; Stocco, D.; Storetvedt, M. M.; Strmen, P.; Suaide, A. A P; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Šumbera, M.; Sumowidagdo, S.; Suzuki, K.; Swain, S.; Szabo, A.; Szarka, I.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thakur, D.; Thakur, J. S.; Thomas, D.; Thoresen, F.; Tieulent, R.; Tikhonov, A.; Timmins, A. R.; Toia, A.; tripathy, S.; Trogolo, S.; Trombetta, G.; Tropp, Linda; Trubnikov, V.; Trzaska, W. H.; Trzeciak, B. A.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Umaka, E. N.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vala, M.; Van Der Maarel, J.; Van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vázquez Doce, O.; Vechernin, V.; Veen, A. M.; Velure, A.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Vértesi, R.; Vickovic, L.; Vigolo, S.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Virgili, T.; Vislavicius, V.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; Haller, B.; Vorobyev, I.; Voscek, D.; Vranic, D.; Vrláková, J.; Wagner, B.; Wang, H.; Wang, M.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Weiser, D. F.; Wenzel, S. C.; Wessels, J. P.; Westerhoff, U.; Whitehead, A. M.; Wiechula, J.; Wikne, J.; Wilk, G.; Wilkinson, J.; Willems, G. A.; Williams, M. C S; Willsher, E.; Windelband, B.; Witt, W. E.; Yalcin, S.; Yamakawa, K.; Yang, P.; Yano, S.; Yin, Z.; Yokoyama, H.; Yoo, I. K.; Yoon, J. H.; Yurchenko, V.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhang, C.; Zhang, Z.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zmeskal, J.; Zou, Shui
2017-01-01
The transverse momentum (pT) spectra and elliptic flow coefficient (v2) of deuterons and anti-deuterons at mid-rapidity (| y| < 0.5) are measured with the ALICE detector at the LHC in Pb–Pb collisions at √sNN = 2.76 TeV. The measurement of the pT spectra of (anti-)deuterons is done up to 8 GeV/c in
Revathy, J. S.; Anooja, J.; Krishnaveni, R. B.; Gangadathan, M. P.; Varier, K. M.
2018-06-01
A light-weight multichannel analyser (MCA)-based γ -ray spectrometer, developed earlier at the Inter University Accelerator Centre, New Delhi, has been used as part of the PG curriculum, to determine the effective atomic numbers for γ attenuation of ^{137}Cs γ -ray in different types of samples. The samples used are mixtures of graphite, aluminum and selenium powders in different proportions, commercial and home-made edible powders, fruit and vegetable juices as well as certain allopathic and ayurvedic medications. A narrow beam good geometry set-up has been used in the experiments. The measured attenuation coefficients have been used to extract effective atomic numbers in the samples. The results are consistent with XCOM values wherever available. The present results suggest that the γ attenuation technique can be used as an effective non-destructive method for finding adulteration of food materials.
Izquierdo-Garcia, David; Catana, Ciprian
2018-01-01
Synopsis Attenuation correction (AC) is one of the most important challenges in the recently introduced combined positron emission tomography/magnetic resonance imaging (PET/MR) scanners. PET/MR AC (MR-AC) approaches aim to develop methods that allow accurate estimation of the linear attenuation coefficients (LACs) of the tissues and other components located in the PET field of view (FoV). MR-AC methods can be divided into three main categories: segmentation-, atlas- and PET-based. This review aims to provide a comprehensive list of the state of the art MR-AC approaches as well as their pros and cons. The main sources of artifacts such as body-truncation, metallic implants and hardware correction will be presented. Finally, this review will discuss the current status of MR-AC approaches for clinical applications. PMID:26952727
Tracer attenuation in groundwater
Cvetkovic, Vladimir
2011-12-01
The self-purifying capacity of aquifers strongly depends on the attenuation of waterborne contaminants, i.e., irreversible loss of contaminant mass on a given scale as a result of coupled transport and transformation processes. A general formulation of tracer attenuation in groundwater is presented. Basic sensitivities of attenuation to macrodispersion and retention are illustrated for a few typical retention mechanisms. Tracer recovery is suggested as an experimental proxy for attenuation. Unique experimental data of tracer recovery in crystalline rock compare favorably with the theoretical model that is based on diffusion-controlled retention. Non-Fickian hydrodynamic transport has potentially a large impact on field-scale attenuation of dissolved contaminants.
Khanmohammadi, Mohammadreza; Bagheri Garmarudi, Amir; Samani, Simin; Ghasemi, Keyvan; Ashuri, Ahmad
2011-06-01
Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) microspectroscopy was applied for detection of colon cancer according to the spectral features of colon tissues. Supervised classification models can be trained to identify the tissue type based on the spectroscopic fingerprint. A total of 78 colon tissues were used in spectroscopy studies. Major spectral differences were observed in 1,740-900 cm(-1) spectral region. Several chemometric methods such as analysis of variance (ANOVA), cluster analysis (CA) and linear discriminate analysis (LDA) were applied for classification of IR spectra. Utilizing the chemometric techniques, clear and reproducible differences were observed between the spectra of normal and cancer cases, suggesting that infrared microspectroscopy in conjunction with spectral data processing would be useful for diagnostic classification. Using LDA technique, the spectra were classified into cancer and normal tissue classes with an accuracy of 95.8%. The sensitivity and specificity was 100 and 93.1%, respectively.
Indirect measurements of X-ray spectra; Mediciones indirectas de espectros de rayos X
Energy Technology Data Exchange (ETDEWEB)
Mainardi, R.T. [Facultad de Matematica, Astronomia y Fisica, Universidad Nacional de Cordoba, X5000HUA Cordoba (Argentina)
2006-07-01
To the effects of measuring the spectral distribution of the radiation emitted by the x-ray tubes and electron accelerators, numerous procedures that are grouped in two big categories exist at the present time: direct and indirect methods. The first ones use high resolution detectors that should be positioned, together with the appropriate collimator, in the direction of the x ray beam. The user should be an expert in the use and correction of the obtained data by the different effects that affect the detector operation such as efficiency and resolution in terms of the energy of the detected radiation. The indirect procedures, although its are more simple to use, its also require a considerable space along the beam to position the ionization chamber and the necessary absorbents to construct by this way the denominated attenuation curve. We will analyze the operation principle of the indirect methods and a new proposal in which such important novelties are introduced as the beam dispersion to avoid to measure along the main beam and that of determination of the attenuation curve in simultaneous form. By this way, with a single shot of the tube, the attenuation curve is measured, being necessary at most a shot of additional calibration to know the relative response of the detectors used in the experimental array. The physical processes involved in the obtaining of an attenuation curve are very well well-known and this it finishes it can be theoretically calculated if the analytic form of the spectrum is supposed well-known. Finally, we will see a spectra reconstruction example with the Kramers parametric form and comparisons with numeric simulations carried out with broadly validated programs as well as the possibility of the use of solid state dosemeters in the obtention of the attenuation curve. (Author)
Haberland, Christian; Rietbrock, Andreas
2001-06-01
High-quality data from 1498 local earthquakes recorded by the PISCO '94 (Proyecto de Investigatión Sismológica de la Cordillera Occidental, 1994) and ANCORP '96 (Andean Continental Research Project, 1996) temporary seismological networks allowed the detailed determination of the three-dimensional (3-D) attenuation structure (Qp-1) beneath the recent magmatic arc in the western central Andes (20° to 24°S). Assuming a frequency-independent Qp-1 in a frequency band between 1 and 30 Hz, whole path attenuation (t*) was estimated from the amplitude spectra of the P waves using spectral ratios and a spectral inversion technique. The damped least squares inversion (tomography) of the data reveals a complex attenuation structure. Crust and mantle of the forearc and subducting slab are generally characterized by low attenuation (Qp > 1000). Crust and mantle beneath the magmatic arc show elevated attenuation. The strongest anomaly of extremely low Qp is found in the crust between 22° and 23°S beneath the recent volcanic arc (Qp < 100). N-S variations can be observed: The western flank of the crustal attenuation anomaly follows the curved course of the volcanic front. North of 21°S the attenuation is less developed. In the northern part of the study area the low-Qp zone penetrates in the forearc mantle down to the subducting slab. In the south a deeper zone of high attenuation is resolved between 23° and 24°S directly above the subducting slab. Low Qp in the mantle correlates with earthquake clusters. The strong crustal attenuation is confined to the distribution of young ignimbrites and silicic volcanism and is interpreted as a thermally weakened zone with partial melts. The attenuation pattern in the upper mantle might reflect the variable extent of the asthenosphere and maps variations of subduction-related hydration processes in the mantle wedge from slab-derived fluids.
Estimation of the pseudoacceleration response spectra in sites of Mexico
International Nuclear Information System (INIS)
Jara-Guerrero, J. M.; Jara-Diaz, M.; Hernandez, H.
2007-01-01
A methodology for the pseudoacceleration response spectra assessment using utility functions is presented. This methodology was applied to the seismic hazard analysis of several cities in Mexico. After the identification of the main seismic sources that could affect the site, attenuation laws are proposed using empirical models and the instrumental information collected. Historical seismicity data and recent seismic data obtained form the strong-motion networks installed on several sites of the country are used for evaluating the characteristics of the coastal earthquakes. Due to the lack of instrumental information, empirical data are employed in other seismic faults. Source parameters, characterized by the maximum magnitudes expected, are chosen according to the physical parameters of the faults and a Bayesian analysis approach. The subduction earthquake occurrences are established with a relation between the time since the last major event and the expected magnitude of the next one. Bayes theorem was applied twice to determine the probability distribution of the parameters in the lognormal distribution of the interoccurrence times for each of the Mexican subduction segments. Annual exceedence rates of the ground acceleration and pseudoacceleration response spectra parameters based on a utility function are obtained. (authors)
Measurement of thermal neutron spectra using LINAC in Japan Atomic Energy Research Institute (JAERI)
International Nuclear Information System (INIS)
Akino, Fujiyoshi
1982-01-01
The exact grasp of thermal neutron spectra in a core region is very important for obtaining accurate thermal neutron group constants in the calculation for the nuclear design of a reactor core. For the accurate grasp of thermal neutron spectra, the capability of thermal neutron spectra to describe the moderator cross-sections for thermal neutron scattering is a key factor. Accordingly, 0 deg angular thermal neutron spectra were measured by the time of flight (TOF) method using the JAERI LINAC as a pulsed neutron source, for light water system added with Cd and In, high temperature graphite system added with boron, and light water-natural uranium heterogeneous multiplication system among the reactor moderators of light water or graphite systems. First, the equations to give the time of flight and neutron flux by TOF method were analyzed, and several corrections were investigated, such as those for detector efficiency, background, the transmission coefficient of air and the Al window of a flight tube, mean emission time of neutrons, and the distortion effect of re-entrant hole on thermal neutron spectra. Then, the experimental system, results and calculation were reported for the experiments on the above three moderator systems. Finally, the measurement of fast neutron spectra in natural uranium system and that of the efficiency of a 6 Li glass scintillator detector are described. (Wakatsuki, Y.)
International Nuclear Information System (INIS)
Gullberg, G.T.; Budinger, T.F.
1981-01-01
A back projection of filtered projection (BKFIL) reconstruction algorithm is presented that is applicable to single-photon emission computed tomography (ECT) in the presence of a constant attenuating medium such as the brain. The filters used in transmission computed tomography (TCT)-comprised of a ramp multiplied by window functions-are modified so that the single-photon ECT filter is a function of the constant attenuation coefficient. The filters give good reconstruction results with sufficient angular and lateral sampling. With continuous samples the BKFIL algorithm has a point spread function that is the Hankel transform of the window function. The resolution and statistical properties of the filters are demonstrated by various simulations which assume an ideal detector response. Statistical formulas for the reconstructed image show that the square of the percent-root-mean-square (percent-rms) uncertainty of the reconstruction is inversely proportional to the total measured counts. The results indicate that constant attenuation can be compensated for by using an attenuation-dependent filter that reconstructs the transverse section reliably. Computer time requirements are two times that of conventional TCT or positron ECT and there is no increase in memory requirements
Shan, Jiajia; Wang, Xue; Zhou, Hao; Han, Shuqing; Riza, Dimas Firmanda Al; Kondo, Naoshi
2018-04-01
Synchronous fluorescence spectra, combined with multivariate analysis were used to predict flavonoids content in green tea rapidly and nondestructively. This paper presented a new and efficient spectral intervals selection method called clustering based partial least square (CL-PLS), which selected informative wavelengths by combining clustering concept and partial least square (PLS) methods to improve models’ performance by synchronous fluorescence spectra. The fluorescence spectra of tea samples were obtained and k-means and kohonen-self organizing map clustering algorithms were carried out to cluster full spectra into several clusters, and sub-PLS regression model was developed on each cluster. Finally, CL-PLS models consisting of gradually selected clusters were built. Correlation coefficient (R) was used to evaluate the effect on prediction performance of PLS models. In addition, variable influence on projection partial least square (VIP-PLS), selectivity ratio partial least square (SR-PLS), interval partial least square (iPLS) models and full spectra PLS model were investigated and the results were compared. The results showed that CL-PLS presented the best result for flavonoids prediction using synchronous fluorescence spectra.
Energy Technology Data Exchange (ETDEWEB)
Barros, Frieda Saicla, E-mail: saicla@utfpr.edu.b [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil); Paredes, Ramon S.C., E-mail: ramon@ufpr.b [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil); Godoi, Walmor C., E-mail: walmor.godoi@gmail.co [Faculdade de Tecnologia Camoes (FATEC), Curitiba, PR (Brazil); Souza, Gabriel Pinto de [Universidade Estadual Paulista (UNESP), SP (Brazil)
2011-07-01
This paper's main goal is to adopt a qualitative methodology to evaluate the attenuation of x-radiation through X-ray images in polymeric materials plus residual lead. To determinate the images it was initially used an experimental setup at the Laboratory for Materials Diagnostics LACTEC. These results correspond to a more qualitative analysis, even with quantitative answers. Through analysis of radiographic images we can measure the intensity of radiation that goes through the plate, making possible to establish a relationship between the attenuation coefficient and the thickness of the material. (author)
Dielectronic satellite spectra of hydrogenlike iron from TFTR [Tokamak Fusion Test Reactor
International Nuclear Information System (INIS)
Decaux, V.; Bitter, M.; Hsuan, H.; von Goeler, S.; Hill, K.W.; Hulse, R.A.; Taylor, G.; Park, H.; Bhalla, C.P.
1990-08-01
Spectra of hydrogenlike iron, Fe26, have been observed from Tokamak Fusion Test Reactor (TFTR) plasmas with a high-resolution crystal spectrometer. The experimental arrangement permits simultaneous observation of the Fe26 Ly-α 1 and Ly-α 2 lines and the associated dielectronic satellites, which are due to transitions 1snl-2pnl' with n ≥ 2, as well as the heliumlike 1s 2 ( 1 S 0 )-1s4p( 1 P 1 )and both hydrogenlike Ly-β 1 and Ly-β 2 lines from chromium. Relative wavelengths and line intensities can be determined very accurately. The spectral data are in very good agreement with theoretical calculations. The observed spectra have also been used to estimate the total dielectronic recombination rate coefficient of Fe26. 30 refs., 4 figs., 3 tabs
International Nuclear Information System (INIS)
Fidone, I.; Giruzzi, G.; Caron, X.; Meyer, R.L.
1991-01-01
A method for measuring the radial profile of the lower-hybrid-driven current in a low-density tokamak plasma using electron-cyclotron wave attenuation is discussed. This diagnostic scheme is reminiscent of the transmission interferometry approach, commonly used in tokamaks to measure the plasma density, but now the wave amplitude instead of the phase is measured. Wave attenuation of the ordinary mode at ω p much-lt ω c along vertical chords is measured; at these frequencies, the waves are absorbed by the superthermal tail sustained by lower-hybrid waves and the local wave absorption coefficient is proportional to the noninductive current density. The radial profile of this current is obtained from Abel inversion. An application to the Tore Supra tokamak is presented
Optical absorption and scattering spectra of pathological stomach tissues
Giraev, K. M.; Ashurbekov, N. A.; Lakhina, M. A.
2011-03-01
Diffuse reflection spectra of biotissues in vivo and transmission and reflection coefficients for biotissues in vitro are measured over 300-800 nm. These data are used to determine the spectral absorption and scattering indices and the scattering anisotropy factor for stomach mucous membranes under normal and various pathological conditions (chronic atrophic and ulcerous defects, malignant neoplasms). The most importan tphysiological (hemodynamic and oxygenation levels) and structural-morphological (scatterer size and density) parameters are also determined. The results of a morphofunctional study correlate well with the optical properties and are consistent with data from a histomorphological analysis of the corresponding tissues.
Transfer coefficients of energy in mass for X radiation-air: the kV relation and effective energy
International Nuclear Information System (INIS)
Teixeira, G.J.; Sousa, C.H.S.; Peixoto, J.G.P.
2014-01-01
The objective was to determine, through specific software, the mass-energy transfer coefficients by X-ray beams in air between 30-150 kV. Were generated by the Spectrum Processor program, the spectra and calculated their mass coefficients. The results behaved numerically decreasing order, ranging between 0.3733 and 0.0439 cm 2 /g, inversely proportional to the voltage used and differing behavior of mono-energetic beams above 100 keV. Values align with literal definitions of the interaction of radiation with matter, being useful for dosimetry in diagnostic radiology, including for systems not using an ionization chamber. (author)
International Nuclear Information System (INIS)
Manduci, L.; Tenailleau, L.; Trolet, J.L.; De Vismes, A.; Lopez, G.; Piccione, M.
2010-01-01
The mass attenuation coefficients for a number of marine and terrestrial bioindicators were measured using γ spectrometry for energies between 22 and 80 keV. These values were then used to find the correction factor k for the apparent radioactivity. The experimental results were compared with a Monte Carlo simulation performed using PENELOPE in order to evaluate the reliability of the simplified calculation and to determine the correction factors.
Energy Technology Data Exchange (ETDEWEB)
Silva, Daniela de Fatima Teixeira da
2002-07-01
Low-intensity laser therapy is characterized by its ability to induce athermic effects and nondestructive photobiological processes. Although it has been in use for more than 40 years, this phototherapy is still not an established therapeutic modality. The objectives of this study were: to quantify the collagen fibers organization by polarized light microscopy in normal and burned skin samples at day 17 post-injury considering preferential axis as the animal's spinal column and aligning the linear laser polarization in two directions of polarization, parallel or perpendicular to this axis; to determine the relative attenuation coefficient for the intensity light by the technique of imaging the light distribution in normal and burned skin during wound healing process taking only parallel direction of polarization. To reach the objectives, burns about 6 mm in diameter were created with liquid N{sub 2} on the back of the rats and the lesions were irradiated on days 3, 7, 10 and 14 post-wounding, D= 1 J/cm{sup 2}, to investigate the effects of low-intensity linearly polarized He-Ne laser beam on skin wounds healing. Control lesions were not irradiated. The results have demonstrated that: the skin samples irradiated with linearly parallel polarized He-Ne laser beam showed collagen fibers more organized; burned skin samples presents a higher attenuation coefficient than normal skin samples. These results are important to optimize low intensity laser therapy dosimetry on acceleration wound healing. (author)
Quantitative investigation of the x-ray attenuation coefficient in computed tomography
International Nuclear Information System (INIS)
Yamamoto, Masaaki
1980-01-01
In this study, it is attempted to clarify whether the numerical analysis could be available for the more precise CT diagnosis. Using material generated by the EMI-scanner (160 x 160 matrix), the author analyzed fifty normal scans and fifty abnormal ones of proved pathology. For the analysis, the author chose a slice level about 4 cm above the canthomeatal line, which included basal ganglia, thalamus, pineal body, and so on. By means of the printed out data (80 x 80 matrix) of these cases, mean density, standard deviation (SD) and percentage histogram of EMI unit were obtained for each cerebral hemisphere. In order to make the abnormal finding more clearly recognized, deviation coefficient index (DC) was introduced, which was defined as the difference between the histogram concerned and the standard one that was averaged from nineteen cases of normal adults. Using SD and DC values, these lying within M + 2 sigma-s were arbitrarily regarded as normal. By these criteria, 96% of abnormal scans and 94% of normal scans were correctly judged without referring to analogue display. On the other hand, the linear discriminant analysis was made by use of SD and DC values. Theoretically this analysis provided 11.7% of misdiscriminant rate, but actual misdiscriminant rate was 11.0%, thus 100% of normal scans and 78% of abnormal ones being discriminated correctly. Furthermone, the percentage histogram provided a useful information which could be hardly obtained from the conventional CRT display. It was emphasized that the analysis would be a more favourable way to recognize such diffusely extending lesions as low grade brain edema, cerebral contusion, cerebral atrophy or hydrocephalus. (author)
Laser Sensing of Vegetation Based on Dual Spectrum Measurements of Reflection Coefficients
Directory of Open Access Journals (Sweden)
M. L. Belov
2017-01-01
Full Text Available Currently, a promising trend in remote sensing of environment is to monitor the vegetative cover: evaluate the productivity of agricultural crops; evaluate the moisture content of soils and the state of ecosystems; provide mapping the sites of bogging, desertification, drought, etc.; control the phases of vegetation of crops, etc.Development of monitoring systems for remote detection of vegetation sites being under unfavorable conditions (low or high temperature, excess or lack of water, soil salinity, disease, etc. is of relevance. Optical methods are the most effective for this task. These methods are based on the physical features of reflection spectra in the visible and near infrared spectral range for vegetation under unfavorable conditions and vegetation under normal conditions.One of the options of optoelectronic equipment for monitoring vegetation condition is laser equipment that allows remote sensing of vegetation from the aircraft and mapping of vegetation sites with abnormal (inactive periods of vegetation reflection spectra with a high degree of spatial resolution.The paper deals with development of a promising dual-spectrum method for laser remote sensing of vegetation. Using the experimentally measured reflection spectra of different vegetation types, mathematical modeling of probability for appropriate detection and false alarms to solve a problem of detecting the vegetation under unfavorable conditions (with abnormal reflection spectra is performed based on the results of dual-spectrum measurements of the reflection coefficient.In mathematical modeling, the lidar system was supposed to provide sensing at wavelengths of 0.532 μm and 0.85 μm. The noise of the measurement was supposed to be normal with zero mean value and mean-square value of 1% -10%.It is shown that the method of laser sensing of vegetation condition based on the results of dual-spectrum measurement of the reflection coefficient at wavelengths of 0.532 μm and 0
Osior, Agnieszka
2017-03-14
According to the damped quantum rotation (DQR) theory, hindered rotation of methyl groups, evidenced in nuclear magnetic resonance (NMR) line shapes, is a nonclassical process. It comprises a number of quantum-rate processes measured by two different quantum-rate constants. The classical jump model employing only one rate constant is reproduced if these quantum constants happen to be equal. The values of their ratio, or the nonclassicallity coefficient, determined hitherto from NMR spectra of single crystals and solutions range from about 1.20 to 1.30 in the latter case to above 5.0 in the former, with the value of 1 corresponding to the jump model. Presently, first systematic investigations of the DQR effects in wide-line NMR spectra of a powder sample are reported. For 1,1,1-triphenylethane deuterated in the aromatic positions, the relevant line-shape effects were monitored in the range 99–121 K. The values of the nonclassicality coefficient dropping from 2.7 to 1.7 were evaluated in line shape fits to the experimental powder spectra from the range 99–108 K. At these temperatures, the fits with the conventional line-shape model are visibly inferior to the DQR fits. Using a theoretical model reported earlier, a semiquantitative interpretation of the DQR parameters evaluated from the spectra is given. It is shown that the DQR effects as such can be detected in wide-line NMR spectra of powdered samples, which are relatively facile to measure. However, a fully quantitative picture of these effects can only be obtained from the much more demanding experiments on single crystals.
Modeling of XANES-spectra with the FEFF-program
Energy Technology Data Exchange (ETDEWEB)
Bosman, E; Thieme, J, E-mail: e.bosman@gmx.d, E-mail: jthieme@gwdg.d [Institute for X-Ray Physics, Georg-August-University Gottingen, Friedrich-Hund-Platz 1, 37077 Gottingen (Germany)
2009-09-01
The aim of this project is the calculation of the absorption coefficient {mu} of x-ray absorption spectra as a function of energy and a comparison with experimental data. A characteristic fine structure can be found in x-ray absorption spectra (XAS) consisting of the XANES (X-Ray Absorption Near Edge Structure) and the EXAFS (Extended X-Ray Absorption Fine Structure) region. XANES is characterized by multiple scattering and provides information about coordination chemistry and bonding angles of the irradiated sample. The program FEFF 8.4 was used for the calculations of the absorption K-edge spectra. FEFF was generated for ab initio multiple scattering calculations of X-ray Absorption Fine Structure (XAFS) of atom-clusters. The code yields scattering amplitudes, phases and other quantities. We computed {mu} at the K-edge of several elements like Ti, S and Fe. For this purpose, clusters of Na{sub 2}SO{sub 4}, Ba{sub 2}TiO{sub 4}, FeS{sub 2}, CaSO{sub 2} 2(H {sub 2}O) were used, working with several space groups. Some of the calculations are consistent with the results of the experiments, but others show energy shifts in the range of some eV. In summary, the FEFF calculations and the experimental data exhibit similarities as well as deviations. By using trimming parameters, deviations could be eliminated to a certain extent, which will be presented.
Moiseeva, N.; Churilova, T.; Efimova, T.; Krivenko, O.; Latushkin, A.
2017-11-01
Variability of the bio-optical properties of the Crimean coastal waters in June 2016 has been analyzed. The type of vertical distribution chlorophyll a concentration and phytoplankton light absorption coefficients and spectra shape differed between shallow and deeper water. In the deeper water seasonal stratification divided euphotic zone into layers with different environmental conditions. In the deeper part of the euphotic zone (below the thermocline) phytoplankton absorption spectra had local maximum at 550 nm, which was likely to be associated with high abundance of cyanobacteria (Synechococcus sps.) in the phytoplankton community. The concentration of chlorophyll a specific light absorption coefficient of phytoplankton decreased with depth (especially pronounced in the blue domain of the spectrum). In the shallow water the vertical distributions of all absorption properties were relatively homogeneous due to vertical water mixing. In the shallow water non-algal particles light absorption coefficient and its contribution to total particulate absorption were higher than those in the deeper water. The non-algal particles (NAP) and colored dissolved organic matter (CDOM) light absorption spectra were well described by an exponential function with a slope averaging 0.010 nm-1 (SD = 0.001 nm-1) and 0.022 nm-1 (SD = 0.0060 nm-1), correspondingly. The CDOM absorption at 440 nm and slope coefficient varied significantly across the investigated area, which was possibly associated with the terrestrial influences. The assessment of the contribution of phytoplankton, NAP and CDOM to total light absorption showed that CDOM dominated in the absorption at 440 nm.
Zhai, Hong Lin; Zhai, Yue Yuan; Li, Pei Zhen; Tian, Yue Li
2013-01-21
A very simple approach to quantitative analysis is proposed based on the technology of digital image processing using three-dimensional (3D) spectra obtained by high-performance liquid chromatography coupled with a diode array detector (HPLC-DAD). As the region-based shape features of a grayscale image, Zernike moments with inherently invariance property were employed to establish the linear quantitative models. This approach was applied to the quantitative analysis of three compounds in mixed samples using 3D HPLC-DAD spectra, and three linear models were obtained, respectively. The correlation coefficients (R(2)) for training and test sets were more than 0.999, and the statistical parameters and strict validation supported the reliability of established models. The analytical results suggest that the Zernike moment selected by stepwise regression can be used in the quantitative analysis of target compounds. Our study provides a new idea for quantitative analysis using 3D spectra, which can be extended to the analysis of other 3D spectra obtained by different methods or instruments.
Nguyen, Thien; Phan, Kien Nguyen; Lee, Jee-Bum; Kim, Jae Gwan
2016-05-01
We propose a simple, rapid, and nondestructive method to investigate formation, accumulation, and degradation of met-myoglobin (met-Mb) and myoglobin oxygenation from the interior of porcine meat. For the experiment, color photos and attenuance spectra of porcine meat (well-bled muscle, fat, and mixed) were collected daily to perform colorimetric analysis and to obtain the differences of attenuance between 578 and 567 nm (A578-A567) and between 615 and 630 nm (A630-A615), respectively. Oxy-, deoxy-, and met-myoglobin concentration changes over storage time were also calculated using Beer-Lamberts' law with reflectance intensities at 557, 582, and 630 nm. The change of A578-A567 was well matched with the change of myoglobin oxygenation, and the change of A630-A615 corresponded well with the formation and degradation of met-Mb. In addition, attenuation differences, A578-A567 and A630-A615, were able to show the formation of met-Mb earlier than colorimetric analysis. Therefore, the attenuance differences between wavelengths can be indicators for estimating myoglobin oxygenation and met-Mb formation, accumulation, and degradation, which enable us to design a simple device to monitor myoglobin activities in porcine meat.
International Nuclear Information System (INIS)
Blumhagen, Jan O.; Ladebeck, Ralf; Fenchel, Matthias; Braun, Harald; Quick, Harald H.; Faul, David; Scheffler, Klaus
2014-01-01
Purpose: In quantitative PET imaging, it is critical to accurately measure and compensate for the attenuation of the photons absorbed in the tissue. While in PET/CT the linear attenuation coefficients can be easily determined from a low-dose CT-based transmission scan, in whole-body MR/PET the computation of the linear attenuation coefficients is based on the MR data. However, a constraint of the MR-based attenuation correction (AC) is the MR-inherent field-of-view (FoV) limitation due to static magnetic field (B 0 ) inhomogeneities and gradient nonlinearities. Therefore, the MR-based human AC map may be truncated or geometrically distorted toward the edges of the FoV and, consequently, the PET reconstruction with MR-based AC may be biased. This is especially of impact laterally where the patient arms rest beside the body and are not fully considered. Methods: A met