WorldWideScience

Sample records for attenuates trail-induced apoptosis

  1. HDAC2 attenuates TRAIL-induced apoptosis of pancreatic cancer cells

    Directory of Open Access Journals (Sweden)

    Saur Dieter

    2010-04-01

    Full Text Available Abstract Background Pancreatic ductal adenocarcinoma (PDAC is one of the most malignant tumors with a dismal prognosis and no effective conservative therapeutic strategies. Although it is demonstrated that histone deacetylases (HDACs, especially the class I HDACs HDAC1, 2 and 3 are highly expressed in this disease, little is known about HDAC isoenzyme specific functions. Results Depletion of HDAC2, but not HDAC1, in the pancreatic cancer cell lines MiaPaCa2 and Panc1 resulted in a marked sensitization towards the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL. Correspondingly, the more class I selective HDAC inhibitor (HDACI valproic acid (VPA synergized with TRAIL to induce apoptosis of MiaPaCa2 and Panc1 cells. At the molecular level, an increased expression of the TRAIL receptor 1 (DR5, accelerated processing of caspase 8, pronounced cleavage of the BH3-only protein Bid, and increased effector caspase activation was observed in HDAC2-depleted and TRAIL-treated MiaPaCa2 cells. Conclusions Our data characterize a novel HDAC2 function in PDAC cells and point to a strategy to overcome TRAIL resistance of PDAC cells, a prerequisite to succeed with a TRAIL targeted therapy in clinical settings.

  2. Hypoxia inhibits TRAIL-induced tumor cell apoptosis: involvement of lysosomal cathepsins.

    Science.gov (United States)

    Nagaraj, Nagathihalli S; Vigneswaran, Nadarajah; Zacharias, Wolfgang

    2007-01-01

    Tumor hypoxia interferes with the efficacy of chemotherapy, radiotherapy, and tumor necrosis factor-alpha. TRAIL (tumor necrosis factor-related apoptosis inducing ligand) is a potent apoptosis inducer that limits tumor growth without damaging normal cells and tissues in vivo. We present evidence for a central role of lysosomal cathepsins in hypoxia and/or TRAIL-induced cell death in oral squamous cell carcinoma (OSCC) cells. Hypoxia or TRAIL-induced activation of cathepsins (B, D and L), caspases (-3 and -9), Bid cleavage, release of Bax and cytochrome c, and DNA fragmentation were blocked independently by zVAD-fmk, CA074Me or pepstatin A, consistent with the involvement of lysosomal cathepsin B and D in cell death. Lysosome stability and mitochondrial membrane potential were reduced in hypoxia and TRAIL-induced apoptosis. However, TRAIL treatment under hypoxic condition resulted in diminished apoptosis rates compared to treatment under normoxia. This inhibitory effect of hypoxia on TRAIL-induced apoptosis may be based on preventing Bax activation and thus protecting mitochondria stability. Our data show that TRAIL or hypoxia independently triggered activation of cathepsin B and D leading to apoptosis through Bid and Bax, and suggest that hypoxic tissue regions provide a selective environment for highly apoptosis-resistant clonal cells. Molecular therapy approaches based on cathepsin inhibitors need to address this novel tumor-preventing function of cathepsins in OSCC.

  3. The DeISGylase USP18 limits TRAIL-induced apoptosis through the regulation of TRAIL levels: Cellular levels of TRAIL influences responsiveness to TRAIL-induced apoptosis

    OpenAIRE

    Manini, Ivana; Sgorbissa, Andrea; Potu, Harish; Tomasella, Andrea; Brancolini, Claudio

    2013-01-01

    Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a promising molecule for anti-cancer therapies. Unfortunately, cancer cells frequently acquire resistance to rhTRAIL. Various co-treatments have been proposed to overcome apoptosis resistance to TRAIL. Here we show that downregulation of the deISGylase USP18 sensitizes cancer cells to rhTRAIL, whereas, elevate levels of USP18 inhibit TRAIL-induced apoptosis, in a deISGylase-independent manner. USP18 influences TRAIL sign...

  4. Chalcones Enhance TRAIL-Induced Apoptosis in Prostate Cancer Cells

    OpenAIRE

    Ewelina Szliszka; Zenon P. Czuba; Bogdan Mazur; Lukasz Sedek; Andrzej Paradysz; Wojciech Krol

    2009-01-01

    Chalcones exhibit chemopreventive and antitumor effects. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a naturally occurring anticancer agent that induces apoptosis in cancer cells and is not toxic to normal cells. We examined the cytotoxic and apoptotic effect of five chalcones in combination with TRAIL on prostate cancer cells. The cytotoxicity was evaluated by the MTT and LDH assays. The apoptosis was determined using flow cytometry with annexin V-FITC. Our study showe...

  5. Flavopiridol Strongly Sensitizes Canine Lymphoma Cells to TRAIL-induced Apoptosis.

    Science.gov (United States)

    Pawlak, Aleksandra; DE Miguel, Diego; Kutkowska, Justyna; Obmińska-Mrukowicz, Bożena; Rapak, Andrzej; Lostao, Luis Martinez

    2017-12-01

    Targeting the extrinsic apoptotic pathway is an interesting option for anticancer therapy. A protein which such ability is Apo2 ligand, also known as TNF-related apoptosis-inducing ligand (TRAIL). The aim of this study was to examine the possibility of sensitizing resistant CLBL-1 canine lymphoma cells to TRAIL-induced apoptosis by using flavopiridol (FVP) a cyclin-dependent kinase inhibitor (CDKs). The CLBL-1 (canine B-cell lymphoma cell line) was used in the study. The effect of FVP and TRAIL treatment on apoptosis induction was assessed by flow cytometry and western blot. Although canine lymphoma cells were resistant to TRAIL-induced apoptosis, combination of this death ligand with FVP was able to overcome TRAIL resistance of CLBL-1 lymphoma cells. Our results demonstrated that although canine lymphoma cells were resistant to TRAIL-induced apoptosis, combination of this death ligand with FVP was able to overcome TRAIL resistance of CLBL-1 lymphoma cell line. Although further investigation is required to deepen the knowledge of TRAIL as an antitumor agent in canine cancers, our results open the door to future use of TRAIL-based treatment strategies in veterinary oncology. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  6. Epigallocatechin-3-gallate Sensitizes Human 786-O Renal Cell Carcinoma Cells to TRAIL-Induced Apoptosis.

    Science.gov (United States)

    Wei, Ruojing; Zhu, Guodong; Jia, Ning; Yang, Wenzeng

    2015-05-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising anticancer agent. Epigallocatechin-3-gallate (EGCG) is a polyphenolic constituent of green tea. In this study, potentiating effect of EGCG on TRAIL-induced apoptosis human renal carcinoma cell line 786-O which is relatively resistant to TRAIL was examined, and the possible mechanism was investigated. Here, we show that co-treatment with EGCG and TRAIL induced significantly more profound apoptosis in 786-O cells. Treatment of 786-O cells with EGCG and TRAIL downregulated c-FLIP, Mcl-1, and Bcl-2 proteins in a caspase-dependent pathway. Moreover, we found that pretreatment with NAC markedly inhibited the expression levels of c-FLIP, Mcl-1, and Bcl-2 downregulated by the combinatory treatment, suggesting that the regulating effect of EGCG on these above apoptosis-relevant molecules was partially mediated by generation of ROS. Taken together, the present study demonstrates that EGCG sensitizes human 786-O renal cell carcinoma cells to TRAIL-induced apoptosis by downregulation of c-FLIP, Mcl-1, and Bcl-2.

  7. Chalcones Enhance TRAIL-Induced Apoptosis in Prostate Cancer Cells

    Science.gov (United States)

    Szliszka, Ewelina; Czuba, Zenon P; Mazur, Bogdan; Sedek, Lukasz; Paradysz, Andrzej; Krol, Wojciech

    2009-01-01

    Chalcones exhibit chemopreventive and antitumor effects. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a naturally occurring anticancer agent that induces apoptosis in cancer cells and is not toxic to normal cells. We examined the cytotoxic and apoptotic effect of five chalcones in combination with TRAIL on prostate cancer cells. The cytotoxicity was evaluated by the MTT and LDH assays. The apoptosis was determined using flow cytometry with annexin V-FITC. Our study showed that all five tested chalcones: chalcone, licochalcone-A, isobavachalcone, xanthohumol, butein markedly augmented TRAIL-mediated apoptosis and cytotoxicity in prostate cancer cells and confirmed the significant role of chalcones in chemoprevention of prostate cancer. PMID:20161998

  8. Chalcones Enhance TRAIL-Induced Apoptosis in Prostate Cancer Cells

    Directory of Open Access Journals (Sweden)

    Ewelina Szliszka

    2009-12-01

    Full Text Available Chalcones exhibit chemopreventive and antitumor effects. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL is a naturally occurring anticancer agent that induces apoptosis in cancer cells and is not toxic to normal cells. We examined the cytotoxic and apoptotic effect of five chalcones in combination with TRAIL on prostate cancer cells. The cytotoxicity was evaluated by the MTT and LDH assays. The apoptosis was determined using flow cytometry with annexin V-FITC. Our study showed that all five tested chalcones: chalcone, licochalcone-A, isobavachalcone, xanthohumol, butein markedly augmented TRAIL-mediated apoptosis and cytotoxicity in prostate cancer cells and confirmed the significant role of chalcones in chemoprevention of prostate cancer.

  9. Cathepsin B mediates TRAIL-induced apoptosis in oral cancer cells.

    Science.gov (United States)

    Nagaraj, Nagathihalli S; Vigneswaran, Nadarajah; Zacharias, Wolfgang

    2006-03-01

    The death ligand TRAIL (tumor necrosis factor-related apoptosis inducing ligand) triggers apoptosis in a variety of cancer cells, which implies the potential for therapeutic applications. The purpose of this study was to investigate the role of the lysosomal protease cathepsin B (CB) in mediating TRAIL-induced cell death in oral squamous cell carcinoma (OSCC) cells. OSCC cell lines from primary tumor and lymph node metastasis were examined for expression of apoptosis markers by Western blots, enzyme activity assays, nuclear fragmentation assays, and FACS analysis. Gene-specific ribozymes or chemical inhibitors were used to inhibit CB or caspases in target cells. TRAIL-induced activation of caspase-3, cleavage of Bid and poly-ADP-ribose polymerase, release of cytochrome c, and DNA fragmentation were blocked either by a pan-caspase inhibitor (zVAD-fmk) or a CB inhibitor (CA074Me), consistent with the involvement of TRAIL as well as CB in cell death. The primary tumor cells were more susceptible to apoptosis than their corresponding lymph node metastatic cells. Stable transfection of a ribozyme which inhibited CB expression also decreased the apoptotic process. We conclude that TRAIL-induced apoptotic cell death in OSCC cells is mediated through CB or through caspase activation. Our data point to a new tumor-suppressive role for CB in OSCC which is opposed to the invasion- and metastasis-promoting functions of lysosomal proteases.

  10. Cryptolepine, isolated from Sida acuta, sensitizes human gastric adenocarcinoma cells to TRAIL-induced apoptosis.

    Science.gov (United States)

    Ahmed, Firoj; Toume, Kazufumi; Ohtsuki, Takashi; Rahman, Mahmudur; Sadhu, Samir Kumar; Ishibashi, Masami

    2011-01-01

    Bioassay guided separation of Sida acuta whole plants led to the isolation of an alkaloid, cryptolepine (1), along with two kaempferol glycosides (2-3). Compound 1 showed strong activity in overcoming TRAIL-resistance in human gastric adenocarcinoma (AGS) cells at 1.25, 2.5 and 5 μm. Combined treatment of 1 and TRAIL sensitized AGS cells to TRAIL-induced apoptosis at the aforementioned concentrations. Copyright © 2010 John Wiley & Sons, Ltd.

  11. Methoxyflavone derivatives modulate the effect of TRAIL-induced apoptosis in human leukemic cell lines

    Directory of Open Access Journals (Sweden)

    Wudtiwai Benjawan

    2011-12-01

    Full Text Available Abstract Background Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL induces apoptosis in various tumor cells, but does not affect normal cells or human leukemic cells, such as MOLT-4 and U937 cells, which are relatively resistant to TRAIL. Three flavonoids extracted from the rhizome of K. parviflora were 5,7-dimethoxyflavone (DMF, 5,7,4'-trimethoxyflavone (TMF and 3,5,7,3',4'-pentamethoxyflavone (PMF, and synthetic flavonoids including 5-methoxyflavone (5-MF and 2'-methoxyflavone (2"-MF were chosen for testing in this study. The aims of this study were to examine whether the treatment of TRAIL-resistant leukemia MOLT-4 and U937 cells, with methoxyflavone derivatives could enhance the apoptotic response and to identify the mechanism involved. Methods The cytotoxic effect of methoxyflavone (MF derivatives in MOLT-4, U937 and peripheral blood mononuclear cells (PBMCs was analyzed by the MTT assay. The induction of apoptosis and the reduction of mitochondrial transmembrane potential (ΔΨm after staining with annexin V FITC and propidium iodide (PI, and 3,3'-dihexyloxacarbocyanine iodide (DiOC6, respectively, were performed using flow cytometry. ROS production was determined by staining with 2',7'-dichlorofluorescin diacetate and processed with a flow cytometer. DR4, DR5, cFLIP, Mcl-1, BAX and Bid expression were demonstrated by immunoblotting. Caspase-8 and -3 activities were determined by using IETD-AFC and DEVD-AFC substrates and the fluorescence intensity was measured. Results All methoxyflavone derivatives were cytotoxic to MOLT-4, U937 cells and PBMCs, except DMF, TMF and PMF were not toxic to PBMCs. All MF derivatives induced human leukemic MOLT-4 cell apoptosis, but not in U937 cells. Percentage of MOLT-4 cells with (ΔΨm was increased when treated with DMF, TMF, PMF, 5-MF and 2'-MF in the presence of TRAIL. 5-MF and 2'-MF enhanced TRAIL-induced apoptosis through the up-regulation of both DRs and the down-regulation of c

  12. Fascaplysin sensitizes cells to TRAIL-induced apoptosis through upregulating DR5 expression

    Science.gov (United States)

    Wang, Feng; Chen, Haimin; Yan, Xiaojun; Zheng, Yanling

    2013-05-01

    This study investigated the molecular mechanism of anti-tumor effect of fascaplysin, a nitrogenous red pigment firstly isolated from a marine sponge. Microarray analysis show that the TNF and TNF receptor superfamily in human umbilical vein endothelial cells (HUVEC) and human hepatocarcinoma cells (BEL-7402) were significantly regulated by fascaplysin. Western Blot results reveal that fascaplysin increased the expression of cleaved caspase-9, active caspase-3, and decreased the level of procaspase-8 and Bid. Flow cytometry and cytotoxicity tests indicate that fascaplysin sensitized cells to tumor necrosis-related apoptosisinducing ligand-(TRAIL) induced apoptosis, which was markedly blocked by TRAIL R2/Fc chimera, a dominant negative form of TRAIL receptor DR5. Therefore, our results demonstrate that fascaplysin promotes apoptosis through the activation of TRAIL signaling pathway by upregulating DR5 expression.

  13. Interferon-α and cyclooxygenase-2 inhibitor cooperatively mediates TRAIL-induced apoptosis in hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Chaohui, E-mail: zuochaohui@vip.sina.com [Department of Gastroduodenal and Pancreatic Surgery, Translation Medicine Research Center of Liver Cancer, Hunan Province Tumor Hospital & Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan Province (China); Department of Pathology, Immunology and Laboratory Medicine and Shands Cancer Center, University of Florida, Gainesville, FL (United States); Qiu, Xiaoxin [Department of Gastroduodenal and Pancreatic Surgery, Translation Medicine Research Center of Liver Cancer, Hunan Province Tumor Hospital & Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan Province (China); Cancer Research Institute, University of South China, Hengyang, Hunan Province (China); Liu, Nianli; Yang, Darong [Cancer Research Institute, University of South China, Hengyang, Hunan Province (China); Xia, Man [Department of Gastroduodenal and Pancreatic Surgery, Translation Medicine Research Center of Liver Cancer, Hunan Province Tumor Hospital & Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan Province (China); Department of Pathology, Immunology and Laboratory Medicine and Shands Cancer Center, University of Florida, Gainesville, FL (United States); Liu, Jingshi [Department of Gastroduodenal and Pancreatic Surgery, Translation Medicine Research Center of Liver Cancer, Hunan Province Tumor Hospital & Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan Province (China); Wang, Xiaohong [Cancer Research Institute, University of South China, Hengyang, Hunan Province (China); and others

    2015-05-01

    Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality worldwide. Interferon-alpha (IFN-α) has recently been recognized to harbor therapeutic potential in the prevention and treatment of HCC, but it remains controversial as to whether IFN-α exerts direct cytotoxicity against HCC. Cyclooxygenase-2 (COX-2) is overexpressed in HCC and is considered to play a role in hepatocarcinogenesis. Therefore, we aimed to elucidate the combined effect of a COX-2 inhibitor, celecoxib, and IFN-α on in vitro growth suppression of HCC using the hepatoma cell line HLCZ01 and the in vivo nude mouse xenotransplantation model using HLCZ01 cells. Treatment with celecoxib and IFN-α synergistically inhibited cell proliferation in a dose- and time-dependent manner. Apoptosis was identified by 4',6-diamidino-2-phenylindole dihydrochloride and fluorescent staining. IFN-α upregulated the expression of TRAIL, while celecoxib increased the expression of TRAIL receptors. The combined regimen with celecoxib and IFN-α reduced the growth of xenotransplanted HCCs in nude mice. The regulation of IFN-α- and COX-2 inhibitor-induced cell death is impaired in a subset of TRAIL-resistant cells. The molecular mechanisms of HCC cells resistant to TRAIL-induced apoptosis were explored using molecular biological and immunological methods. Interferon-α and the COX-2 inhibitor celecoxib synergistically increased TRAIL-induced apoptosis in hepatocellular carcinoma. These data suggest that IFN-α and celecoxib may offer a novel role with important implications in designing new therapeutics for TRAIL-resistant tumors. - Highlights: ●The cytotoxic effect of TRAIL on a developed HCC HLCZ01 cells infected with HBV. ●IFN-α and celecoxib induced apoptosis in HLCZ01 cells infected with HBV. ●The combined regime reduced the growth of xenotransplanted HCCs in nude mice model.

  14. TRAF-6 dependent signaling pathway is essential for TNF-related apoptosis-inducing ligand (TRAIL induces osteoclast differentiation.

    Directory of Open Access Journals (Sweden)

    Men-Luh Yen

    Full Text Available Human osteoclast formation from mononuclear phagocyte precursors involves interactions between tumor necrosis factor (TNF ligand superfamily members and their receptors. Recent evidence indicates that in addition to triggering apoptosis, the TNF-related apoptosis-inducing ligand (TRAIL induces osteoclast differentiation. To understand TRAIL-mediated signal transduction mechanism in osteoclastogenesis, we demonstrated that TRAIL induces osteoclast differentiation via a Tumor necrosis factor receptor-associated factor 6 (TRAF-6-dependent signaling pathway. TRAIL-induced osteoclast differentiation was significantly inhibited by treatment with TRAF-6 siRNA and TRAF6 decoy peptides in both human monocytes and murine RAW264.7 macrophage cell lines, as evaluated in terms of tartrate-resistant acid phosphatase (TRAP-positive multinucleated cells and bone resorption activity. Moreover, TRAIL-induced osteoclast differentiation was also abolished in TRAF6 knockout bone marrow macrophages. In addition to induction of NFATc1, treatment of TRAIL also induced ubiquitination of TRAF6 in osteoclast differentiation. Thus, our data demonstrate that TRAIL induces osteoclastic differentiation via a TRAF-6 dependent signaling pathway. This study suggests TRAF6-dependent signaling may be a central pathway in osteoclast differentiation, and that TNF superfamily molecules other than RANKL may modify RANK signaling by interaction with TRAF6-associated signaling.

  15. The Roles of ROS and Caspases in TRAIL-Induced Apoptosis and Necroptosis in Human Pancreatic Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Min Zhang

    Full Text Available Death signaling provided by tumor necrosis factor (TNF-related apoptosis-inducing ligand (TRAIL can induce death in cancer cells with little cytotoxicity to normal cells; this cell death has been thought to involve caspase-dependent apoptosis. Reactive oxygen species (ROS are also mediators that induce cell death, but their roles in TRAIL-induced apoptosis have not been elucidated fully. In the current study, we investigated ROS and caspases in human pancreatic cancer cells undergoing two different types of TRAIL-induced cell death, apoptosis and necroptosis. TRAIL treatment increased ROS in two TRAIL-sensitive pancreatic cancer cell lines, MiaPaCa-2 and BxPC-3, but ROS were involved in TRAIL-induced apoptosis only in MiaPaCa-2 cells. Unexpectedly, inhibition of ROS by either N-acetyl-L-cysteine (NAC, a peroxide inhibitor, or Tempol, a superoxide inhibitor, increased the annexin V-/propidium iodide (PI+ early necrotic population in TRAIL-treated cells. Additionally, both necrostatin-1, an inhibitor of receptor-interacting protein kinase 1 (RIP1, and siRNA-mediated knockdown of RIP3 decreased the annexin V-/PI+ early necrotic population after TRAIL treatment. Furthermore, an increase in early apoptosis was induced in TRAIL-treated cancer cells under inhibition of either caspase-2 or -9. Caspase-2 worked upstream of caspase-9, and no crosstalk was observed between ROS and caspase-2/-9 in TRAIL-treated cells. Together, these results indicate that ROS contribute to TRAIL-induced apoptosis in MiaPaCa-2 cells, and that ROS play an inhibitory role in TRAIL-induced necroptosis of MiaPaCa-2 and BxPC-3 cells, with caspase-2 and -9 playing regulatory roles in this process.

  16. Integrative analysis of kinase networks in TRAIL-induced apoptosis provides a source of potential targets for combination therapy

    DEFF Research Database (Denmark)

    So, Jonathan; Pasculescu, Adrian; Dai, Anna Y.

    2015-01-01

    /threonine kinase (PXK) and AP2-associated kinase 1 (AAK1), which promote receptor endocytosis and may enable cells to resist TRAIL-induced apoptosis by enhancing endocytosis of the TRAIL receptors. We assembled protein interaction maps using mass spectrometry-based protein interaction analysis and quantitative...... combination therapies to selectively kill cancer cells....

  17. Amiodarone sensitizes human glioma cells but not astrocytes to TRAIL-induced apoptosis via CHOP-mediated DR5 upregulation

    Science.gov (United States)

    Kim, In Young; Kang, You Jung; Yoon, Mi Jin; Kim, Eun Hee; Kim, Seung U; Kwon, Taeg Kyu; Kim, In Ah; Choi, Kyeong Sook

    2011-01-01

    Amiodarone is a widely used anti-arrhythmic drug that inhibits diverse ion channels, including the Na+/Ca2+ exchanger (NCX), L-type Ca2+ channels, and Na+ channels. Here, we report that subtoxic doses of amiodarone and tumor necrosis factor–related apoptosis-inducing ligand (TRAIL) synergistically induced apoptosis of various glioma cells. Treatment of U251MG glioma cells with amiodarone increased intracellular Ca2+ levels and enhanced the expression of the endoplasmic reticulum (ER) stress-inducible transcription factor C/EBP homologous protein (CHOP). This upregulation of CHOP was followed by marked upregulation of the TRAIL receptor, DR5. Suppression of DR5 expression by small interfering (si) RNAs almost completely blocked amiodarone/TRAIL-induced apoptosis in U251MG glioma cells, demonstrating that DR5 is critical to this cell death. siRNA-mediated CHOP suppression reduced amiodarone-induced DR5 upregulation and attenuated the cell death induced by amiodarone plus TRAIL. In addition, omitting Ca2+ from the external medium using ethylene glycol tetraacetic acid markedly inhibited this cell death, reducing the protein levels of CHOP and DR5. These results suggest that amiodarone-induced influx of Ca2+ plays an important role in sensitizing U251MG cells to TRAIL-mediated apoptosis through CHOP-mediated DR5 upregulation. Furthermore, subtoxic doses of bepridil and cibenzoline, two other anti-arrhythmic drugs with NCX-inhibitor activity, also sensitized glioma cells to TRAIL-mediated apoptosis, via the upregulation of both CHOP and DR5. Notably, amiodarone/TRAIL cotreatment did not induce cell death in astrocytes, nor did it affect the expression of CHOP or DR5 in these cells. These results collectively suggest that a combined regimen of amiodarone plus TRAIL may offer an effective therapeutic strategy for safely and selectively treating resistant gliomas. PMID:21292685

  18. Amiodarone sensitizes human glioma cells but not astrocytes to TRAIL-induced apoptosis via CHOP-mediated DR5 upregulation.

    Science.gov (United States)

    Kim, In Young; Kang, You Jung; Yoon, Mi Jin; Kim, Eun Hee; Kim, Seung U; Kwon, Taeg Kyu; Kim, In Ah; Choi, Kyeong Sook

    2011-03-01

    Amiodarone is a widely used anti-arrhythmic drug that inhibits diverse ion channels, including the Na(+)/Ca(2+) exchanger (NCX), L-type Ca(2+) channels, and Na(+) channels. Here, we report that subtoxic doses of amiodarone and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) synergistically induced apoptosis of various glioma cells. Treatment of U251MG glioma cells with amiodarone increased intracellular Ca(2+) levels and enhanced the expression of the endoplasmic reticulum (ER) stress-inducible transcription factor C/EBP homologous protein (CHOP). This upregulation of CHOP was followed by marked upregulation of the TRAIL receptor, DR5. Suppression of DR5 expression by small interfering (si) RNAs almost completely blocked amiodarone/TRAIL-induced apoptosis in U251MG glioma cells, demonstrating that DR5 is critical to this cell death. siRNA-mediated CHOP suppression reduced amiodarone-induced DR5 upregulation and attenuated the cell death induced by amiodarone plus TRAIL. In addition, omitting Ca(2+) from the external medium using ethylene glycol tetraacetic acid markedly inhibited this cell death, reducing the protein levels of CHOP and DR5. These results suggest that amiodarone-induced influx of Ca(2+) plays an important role in sensitizing U251MG cells to TRAIL-mediated apoptosis through CHOP-mediated DR5 upregulation. Furthermore, subtoxic doses of bepridil and cibenzoline, two other anti-arrhythmic drugs with NCX-inhibitor activity, also sensitized glioma cells to TRAIL-mediated apoptosis, via the upregulation of both CHOP and DR5. Notably, amiodarone/TRAIL cotreatment did not induce cell death in astrocytes, nor did it affect the expression of CHOP or DR5 in these cells. These results collectively suggest that a combined regimen of amiodarone plus TRAIL may offer an effective therapeutic strategy for safely and selectively treating resistant gliomas.

  19. Polyphenols Isolated from Propolis Augment TRAIL-Induced Apoptosis in Cancer Cells

    Directory of Open Access Journals (Sweden)

    Ewelina Szliszka

    2013-01-01

    Full Text Available Epidemiological data support the concept that phenols and polyphenols in diet are safe and nontoxic, and have long-lasting beneficial effects on human health. The potential target for complementary and alternative medicine (CAM research has been on the discovery of natural compounds that can be used in the prevention and treatment of cancer. Propolis is one of the richest sources of plant phenolics (flavonoids and phenolic acids. The ethanolic extract of propolis (EEP and its polyphenols possess immunomodulatory, chemopreventive, and antitumor effects. Tumor necrosis factor-related apoptosis inducing ligand (TRAIL is a  naturally occurring anticancer agent that preferentially induces apoptosis in cancer cells and is not toxic to normal cells. Endogenous TRAIL plays a significant role in immunosurveillance and defense against cancer cells. However, as more tumor cells are reported to be resistant to TRAIL-mediated death, it is important to develop new strategies to overcome this resistance. EEP and polyphenols isolated from propolis have been shown to sensitize cancer cells to TRAIL-induced apoptosis. In this paper we demonstrate for the first time the crucial role of the main phenolics isolated from propolis in enhancing TRAIL-mediated death in tumor cells for cancer chemoprevention.

  20. Salirasib sensitizes hepatocarcinoma cells to TRAIL-induced apoptosis through DR5 and survivin-dependent mechanisms.

    Science.gov (United States)

    Charette, N; De Saeger, C; Horsmans, Y; Leclercq, I; Stärkel, P

    2013-01-24

    Ras activation is a frequent event in human hepatocarcinoma that may contribute to resistance towards apoptosis. Salirasib is a ras and mTOR inhibitor that induces a pro-apoptotic phenotype in human hepatocarcinoma cell lines. In this work, we evaluate whether salirasib sensitizes those cells to TRAIL-induced apoptosis. Cell viability, cell death and apoptosis were evaluated in vitro in HepG2, Hep3B and Huh7 cells treated with DMSO, salirasib and YM155 (a survivin inhibitor), alone or in combination with recombinant TRAIL. Our results show that pretreatment with salirasib sensitized human hepatocarcinoma cell lines, but not normal human hepatocytes, to TRAIL-induced apoptosis. Indeed, FACS analysis showed that 25 (Huh7) to 50 (HepG2 and Hep3B) percent of the cells treated with both drugs were apoptotic. This occurred through activation of the extrinsic and the intrinsic pathways, as evidenced by a marked increase in caspase 3/7 (five to ninefold), caspase 8 (four to sevenfold) and caspase 9 (eight to 12-fold) activities in cells treated with salirasib and TRAIL compared with control. Survivin inhibition had an important role in this process and was sufficient to sensitize hepatocarcinoma cells to apoptosis. Furthermore, TRAIL-induced apoptosis in HCC cells pretreated with salirasib was dependent on activation of death receptor (DR) 5. In conclusion, salirasib sensitizes hepatocarcinoma cells to TRAIL-induced apoptosis by a mechanism involving the DR5 receptor and survivin inhibition. These results in human hepatocarcinoma cell lines and primary hepatocytes provide a rationale for testing the combination of salirasib and TRAIL agonists in human hepatocarcinoma.

  1. Targeting Death Receptor TRAIL-R2 by Chalcones for TRAIL-Induced Apoptosis in Cancer Cells

    Science.gov (United States)

    Szliszka, Ewelina; Jaworska, Dagmara; Kłósek, Małgorzata; Czuba, Zenon P.; Król, Wojciech

    2012-01-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis in cancer cells without toxicity to normal cells. TRAIL binds to death receptors, TRAIL-R1 (DR4) and TRAIL-R2 (DR5) expressed on cancer cell surface and activates apoptotic pathways. Endogenous TRAIL plays an important role in immune surveillance and defense against cancer cells. However, as more tumor cells are reported to be resistant to TRAIL mediated death, it is important to search for and develop new strategies to overcome this resistance. Chalcones can sensitize cancer cells to TRAIL-induced apoptosis. We examined the cytotoxic and apoptotic effects of TRAIL in combination with four chalcones: chalcone, isobavachalcone, licochalcone A and xanthohumol on HeLa cancer cells. The cytotoxicity was measured by MTT and LDH assays. The apoptosis was detected using annexin V-FITC staining by flow cytometry and fluorescence microscopy. Death receptor expression was analyzed using flow cytometry. The decreased expression of death receptors in cancer cells may be the cause of TRAIL-resistance. Chalcones enhance TRAIL-induced apoptosis in HeLa cells through increased expression of TRAIL-R2. Our study has indicated that chalcones augment the antitumor activity of TRAIL and confirm their cancer chemopreventive properties. PMID:23203129

  2. Bortezomib sensitizes primary human esthesioneuroblastoma cells to TRAIL-induced apoptosis.

    Science.gov (United States)

    Koschny, Ronald; Holland, Heidrun; Sykora, Jaromir; Erdal, Hande; Krupp, Wolfgang; Bauer, Manfred; Bockmuehl, Ulrike; Ahnert, Peter; Meixensberger, Jürgen; Stremmel, Wolfgang; Walczak, Henning; Ganten, Tom M

    2010-04-01

    TNF-related apoptosis-inducing ligand (TRAIL), a promising novel anti-cancer cytokine of the TNF superfamily, and Bortezomib, the first-in-class clinically used proteasome inhibitor, alone or in combination have been shown to efficiently kill numerous tumor cell lines. However, data concerning primary human tumor cells are very rare. Using primary esthesioneuroblastoma cells we analyzed the anti-tumor potential and the mechanism employed by Bortezomib in combination with TRAIL for the treatment of this rare but aggressive tumor. Expression of components of the TRAIL pathway was analyzed in tumor specimens and isolated primary tumor cells at the protein level. Cells were treated with TRAIL, Bortezomib, and a combination thereof, and apoptosis induction was quantified. Clonogenicity assays were performed to elucidate the long-term effect of this treatment. Despite expressing all components of the TRAIL pathway, freshly isolated primary esthesioneuroblastoma cells were completely resistant to TRAIL-induced apoptosis. They could, however, be very efficiently sensitized by subtoxic doses of Bortezomib. The influence of Bortezomib on the TRAIL pathway was analyzed and showed upregulation of TRAIL death receptor expression, enhancement of the TRAIL death-inducing signaling complex (DISC), and downregulation of anti-apoptotic proteins of the TRAIL pathway. Of clinical relevance, TRAIL-resistant primary tumor cells could be repeatedly sensitized by Bortezomib, providing the basis for repeated clinical application schedules. This is the first report on the highly synergistic induction of apoptosis in primary esthesioneuroblastoma cells by Bortezomib and TRAIL. This combination, therefore, represents a promising novel therapeutic option for esthesioneuroblastoma.

  3. Downregulation of DcR3 sensitizes hepatocellular carcinoma cells to TRAIL-induced apoptosis

    Directory of Open Access Journals (Sweden)

    Liang CJ

    2017-01-01

    Full Text Available Chaojie Liang,* Yingchen Xu,* Guangming Li, Tuanjie Zhao, Feng Xia, Guanqun Li, Dongxin Zhang, Jixiang Wu Department of General Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, People’s Republic of China *These authors contributed equally to this work Abstract: Decoy receptor 3 (DcR3 has been recently described as an antiapoptosis and prometastasis factor since it can competitively bind to FasL, TL1A, and LIGHT, and it is highly expressed in many malignant tumors. Downregulation of DcR3 can promote tumor cell apoptosis and inhibit metastasis. A previous study demonstrated that reduction of DcR3 could induce tumor necrosis factor-related apoptosis-inducing ligand (TRAIL-mediated apoptosis in pancreatic cancer cells. However, whether such an effect is seen in hepatocellular carcinoma (HCC remains to be explored. This study was designed to investigate the sensitivity of HCC cells to TRAIL after silencing DcR3, and this was done by evaluating the expression of DcR3 in HCC cells and the effect on TRAIL-mediated apoptosis after downregulation of DcR3. Our data showed that DcR3 was highly expressed in HepG2, BEL-7402, Hep3B, Huh-7, MHCC97H, and SMCC7721 cell lines compared with normal liver cell line LO-2. Both HepG2 and BEL-7402 were tolerant to TRAIL-mediated apoptosis, and the tolerance was negatively correlated to the expression of DcR3. Silencing of DcR3 with shRNA and treatment with TRAIL induced obvious apoptosis in HepG2 and BEL-7402, with more cancer cells found in the G1 phase. SiDcR3 combined with TRAIL could induce activation of caspases-3, -8, and -9, raise the expression of the apoptotic protein Bax, and reduce the expression of antiapoptotic proteins (Bcl-2, Mcl-1, Bcl-XL, IAP-2, and survivin. Caspase-8 inhibitor Ac-IETD-CHO significantly decreased the activation of caspase cascade, indicating that the extrinsic pathway may have a vital role in the apoptotic events induced by SiDcR3/TRAIL. Furthermore, our

  4. Human embryonic and induced pluripotent stem cells express TRAIL receptors and can be sensitized to TRAIL-induced apoptosis.

    Science.gov (United States)

    Vinarsky, Vladimir; Krivanek, Jan; Rankel, Liina; Nahacka, Zuzana; Barta, Tomas; Jaros, Josef; Andera, Ladislav; Hampl, Ales

    2013-11-15

    Death ligands and their tumor necrosis factor receptor (TNFR) family receptors are the best-characterized and most efficient inducers of apoptotic signaling in somatic cells. In this study, we analyzed whether these prototypic activators of apoptosis are also expressed and able to be activated in human pluripotent stem cells. We examined human embryonic stem cells (hESC) and human-induced pluripotent stem cells (hiPSC) and found that both cell types express primarily TNF-related apoptosis-inducing ligand (TRAIL) receptors and TNFR1, but very low levels of Fas/CD95. We also found that although hESC and hiPSC contain all the proteins required for efficient induction and progression of extrinsic apoptotic signaling, they are resistant to TRAIL-induced apoptosis. However, both hESC and hiPSC can be sensitized to TRAIL-induced apoptosis by co-treatment with protein synthesis inhibitors such as the anti-leukemia drug homoharringtonine (HHT). HHT treatment led to suppression of cellular FLICE inhibitory protein (cFLIP) and Mcl-1 expression and, in combination with TRAIL, enhanced processing of caspase-8 and full activation of caspase-3. cFLIP likely represents an important regulatory node, as its shRNA-mediated down-regulation significantly sensitized hESC to TRAIL-induced apoptosis. Thus, we provide the first evidence that, irrespective of their origin, human pluripotent stem cells express canonical components of the extrinsic apoptotic system and on stress can activate death receptor-mediated apoptosis.

  5. STI571 reduces TRAIL-induced apoptosis in colon cancer cells: c-Abl activation by the death receptor leads to stress kinase-dependent cell death

    Directory of Open Access Journals (Sweden)

    Huang Duen-Yi

    2012-03-01

    Full Text Available Abstract Background In an effort to achieve better cancer therapies, we elucidated the combination cancer therapy of STI571 (an inhibitor of Bcr-Abl and clinically used for chronic myelogenous leukemia and TNF-related apoptosis-inducing ligand (TRAIL, a developing antitumor agent in leukemia, colon, and prostate cancer cells. Methods Colon cancer (HCT116, SW480, prostate cancer (PC3, LNCaP and leukemia (K562 cells were treated with STI571 and TRAIL. Cell viability was determined by MTT assay and sub-G1 appearance. Protein expression and kinase phosphorylation were determined by Western blotting. c-Abl and p73 activities were inhibited by target-specific small interfering (siRNA. In vitro kinase assay of c-Abl was conducted using CRK as a substrate. Results We found that STI571 exerts opposite effects on the antitumor activity of TRAIL. It enhanced cytotoxicity in TRAIL-treated K562 leukemia cells and reduced TRAIL-induced apoptosis in HCT116 and SW480 colon cancer cells, while having no effect on PC3 and LNCaP cells. In colon and prostate cancer cells, TRAIL caused c-Abl cleavage to the active form via a caspase pathway. Interestingly, JNK and p38 MAPK inhibitors effectively blocked TRAIL-induced toxicity in the colon, but not in prostate cancer cells. Next, we found that STI571 could attenuate TRAIL-induced c-Abl, JNK and p38 activation in HCT116 cells. In addition, siRNA targeting knockdown of c-Abl and p73 also reduced TRAIL-induced cytotoxicity, rendering HCT116 cells less responsive to stress kinase activation, and masking the cytoprotective effect of STI571. Conclusions All together we demonstrate a novel mediator role of p73 in activating the stress kinases p38 and JNK in the classical apoptotic pathway of TRAIL. TRAIL via caspase-dependent action can sequentially activate c-Abl, p73, and stress kinases, which contribute to apoptosis in colon cancer cells. Through the inhibition of c-Abl-mediated apoptotic p73 signaling, STI571 reduces

  6. TRAIL induces neutrophil apoptosis and dampens sepsis-induced organ injury in murine colon ascendens stent peritonitis.

    Directory of Open Access Journals (Sweden)

    Katharina Beyer

    Full Text Available TNF-related apoptosis inducing ligand (TRAIL influences several inflammatory reactions by partially still unknown mechanisms. TRAIL is produced and expressed by several cells of the immune system. Murine Colon Ascendens Stent Peritonitis (CASP represents a hyperinflammatory model of diffuse peritonitis. As we have shown previously, TRAIL strongly improves survival in murine CASP. This is accompanied by a significantly reduced infiltration of neutrophils in the associated lymphoid tissue. Additionally, it is known that TRAIL induces apoptosis in neutrophils and acceleration of neutrophil apoptosis enhances resolution of inflammatory reactions. In this study, we investigated the correlation of the protective effect of TRAIL in sepsis and its influence on neutrophils. We found that neutrophils infiltrating the lymphoid organs express the TRAIL-receptor DR5 at high density. Furthermore, we demonstrated that TRAIL-treatment enhances apoptosis of neutrophils in the spleen, lung and liver and decreases organ injury during sepsis. To further examine a role for neutrophils in TRAIL-mediated protection in CASP, we have depleted neutrophils 24 hours prior to CASP. In these depleted mice, administration of TRAIL was ineffective. We conclude that TRAIL induces apoptosis in tissue-infiltrating neutrophils thereby protecting organs from sepsis-induced injury.

  7. Flavopiridol induces cellular FLICE-inhibitory protein degradation by the proteasome and promotes TRAIL-induced early signaling and apoptosis in breast tumor cells.

    Science.gov (United States)

    Palacios, Carmen; Yerbes, Rosario; López-Rivas, Abelardo

    2006-09-01

    The cyclin-dependent kinase inhibitor flavopiridol is undergoing clinical trials as an antitumor drug. We show here that pretreatment of different human breast cancer cell lines with flavopiridol facilitates tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. In breast tumor cells, apoptosis induction by TRAIL is blocked at the level of apical caspase-8 activation. Flavopiridol treatment enhances TRAIL-induced formation of death-inducing signaling complex and early processing of procaspase-8. Subsequently, a TRAIL-induced, mitochondria-operated pathway of apoptosis is activated in cells treated with flavopiridol. Down-regulation of cellular FLICE-inhibitory proteins (c-FLIP; c-FLIP(L) and c-FLIP(S)) is observed on flavopiridol treatment. c-FLIP loss and apoptosis sensitization by flavopiridol are both prevented in cells treated with an inhibitor of the ubiquitin-proteasome system. Furthermore, targeting c-FLIP directly with small interfering RNA oligonucleotides also sensitizes various human breast tumor cell lines to TRAIL-induced apoptosis. Our results indicate that flavopiridol sensitizes breast cancer cells to TRAIL-induced apoptosis by facilitating early events in the apoptotic pathway, and this combination treatment could be regarded as a potential therapeutic tool against breast tumors.

  8. Soluble Extracellular Domain of Death Receptor 5 Inhibits TRAIL-Induced Apoptosis by Disrupting Receptor-Receptor Interactions.

    Science.gov (United States)

    Vunnam, Nagamani; Lo, Chih Hung; Grant, Benjamin D; Thomas, David D; Sachs, Jonathan N

    2017-09-15

    Dysregulation of tumor necrosis factor (TNF) receptor signaling is a key feature of various inflammatory disorders. Current treatments for TNF-related diseases function either by sequestering ligand or blocking ligand-receptor interactions, which can cause dangerous side effects by inhibiting the receptors that are not involved in the disease condition. Thus, alternate strategies that target receptor-receptor interactions are needed. We hypothesized that the soluble extracellular domain (ECD) of long isoform of death receptor 5 (DR5) could block endogenous receptor assembly, mimicking the biological effect of decoy receptors that lack the death domain to trigger apoptosis. Using live-cell fluorescence resonance energy transfer studies, we demonstrated that soluble ECD disrupts endogenous DR5-DR5 interactions. Cell viability assays were used to demonstrate the complete inhibition of TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis by the ECD, although TRAIL is still able to bind to the receptor. Importantly, we used mutagenesis to prove that the inhibition of TRAIL-induced apoptosis by the ECD predominantly comes from the disruption of DR5 oligomerization and not ligand sequestration. Inhibition of death receptor activation should have important therapeutic applications in diseases such as nonalcoholic fatty liver disease. More generally, this approach should be generalized to enable the inhibition of other TNF receptor signaling mechanisms that are associated in a wide range of clinical conditions. Copyright © 2017. Published by Elsevier Ltd.

  9. A novel, soluble compound, C25, sensitizes to TRAIL-induced apoptosis through upregulation of DR5 expression.

    Science.gov (United States)

    James, Michael A; Seibel, William L; Kupert, Elena; Hu, Xiao X; Potharla, Vishwakanth Y; Anderson, Marshall W

    2015-06-01

    The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a potential therapeutic agent that induces apoptosis selectively in tumor cells. However, numerous solid tumor types are resistant to TRAIL. Sensitization to TRAIL has been an area of great research interest, but has met significant challenges because of poor bioavailability, half-life, and solubility of sensitizing compounds such as curcumin. Soluble, TRAIL-sensitizing compounds were screened on the basis of similarity to the redox-active substructure of curcumin and sensitization to TRAIL-induced apoptosis. We determined the effect of the lead compound, C25, in combination with TRAIL in human cancer cell lines using MTS proliferation assays, apoptosis assays, and western blotting. Short hairpin RNA knockdown of death receptor 5 (DR5) was performed to determine whether DR5 upregulation was required for TRAIL-mediated apoptosis. In-vivo efficacy was determined using human lung tumor xenograft models. C25 helped overcome TRAIL resistance by upregulating the expression of the TRAIL receptor DR5 and apoptosis in several tumor cell lines. Blockade of DR5 expression abrogated C25 sensitization to TRAIL, demonstrating the requirement for DR5 upregulation for C25-mediated potentiation of TRAIL-mediated apoptosis. The combination of C25 and TRAIL effectively inhibited tumorigenesis in vivo. This study demonstrates the synergistic efficacy of C25 in sensitization to TRAIL-induced apoptosis in multiple tumor cell types, including highly resistant lung and ovarian tumor cell lines. Furthermore, C25 was efficacious against tumor growth in vivo. Thus, C25 may be a potential therapeutic for cancer in combination with TRAIL or DR5 agonist therapy.

  10. α-Hispanolol sensitizes hepatocellular carcinoma cells to TRAIL-induced apoptosis via death receptor up-regulation

    Energy Technology Data Exchange (ETDEWEB)

    Mota, Alba, E-mail: amota@iib.uam.es [Unidad de Terapias Farmacológicas, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III, Madrid (Spain); Jiménez-Garcia, Lidia, E-mail: ljimenez@isciii.es [Unidad de Terapias Farmacológicas, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III, Madrid (Spain); Herránz, Sandra, E-mail: sherranz@isciii.es [Unidad de Terapias Farmacológicas, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III, Madrid (Spain); Heras, Beatriz de las, E-mail: lasheras@ucm.es [Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Madrid (Spain); Hortelano, Sonsoles, E-mail: shortelano@isciii.es [Unidad de Terapias Farmacológicas, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III, Madrid (Spain)

    2015-08-01

    Hispanolone derivatives have been previously described as anti-inflammatory and antitumoral agents. However, their effects on overcoming Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) resistance remain to be elucidated. In this study, we analyzed the cytotoxic effects of the synthetic hispanolone derivative α-hispanolol (α-H) in several tumor cell lines, and we evaluated the induction of apoptosis, as well as the TRAIL-sensitizing potential of α-H in the hepatocellular carcinoma cell line HepG2. Our data show that α-H decreased cell viability in a dose-dependent manner in HeLa, MDA-MB231, U87 and HepG2 cell lines, with a more prominent effect in HepG2 cells. Interestingly, α-H had no effect on non-tumoral cells. α-H induced activation of caspase-8 and caspase-9 and also increased levels of the proapoptotic protein Bax, decreasing antiapoptotic proteins (Bcl-2, X-IAP and IAP-1) in HepG2 cells. Specific inhibition of caspase-8 abrogated the cascade of caspase activation, suggesting that the extrinsic pathway has a critical role in the apoptotic events induced by α-H. Furthermore, combined treatment of α-H with TRAIL enhanced apoptosis in HepG2 cells, activating caspase-8 and caspase-9. This correlated with up-regulation of both the TRAIL death receptor DR4 and DR5. DR4 or DR5 neutralizing antibodies abolished the effect of α-H on TRAIL-induced apoptosis, suggesting that sensitization was mediated through the death receptor pathway. Our results demonstrate that α-H induced apoptosis in the human hepatocellular carcinoma cell line HepG2 through activation of caspases and induction of the death receptor pathway. In addition, we describe a novel function of α-H as a sensitizer on TRAIL-induced apoptotic cell death in HepG2 cells. - Highlights: • α-Hispanolol induced apoptosis in the human hepatocellular carcinoma cell line HepG2. • α-Hispanolol induced activation of caspases and the death receptor pathway. • α-Hispanolol enhanced

  11. Cellular inhibitor of apoptosis 1 (cIAP-1) degradation by caspase 8 during TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis.

    Science.gov (United States)

    Guicciardi, Maria Eugenia; Mott, Justin L; Bronk, Steven F; Kurita, Satoshi; Fingas, Christian D; Gores, Gregory J

    2011-01-01

    TNF-related apoptosis-inducing ligand (TRAIL) is a potential chemotherapeutic agent with high selectivity for malignant cells. Many tumors, however, are resistant to TRAIL cytotoxicity. Although cellular inhibitors of apoptosis 1 and 2 (cIAP-1 and -2) are often over-expressed in cancers, their role in mediating TRAIL resistance remains unclear. Here, we demonstrate that TRAIL-induced apoptosis of liver cancer cells is associated with degradation of cIAP-1 and X-linked IAP (XIAP), whereas cIAP-2 remains unchanged. Lower concentrations of TRAIL causing minimal or no apoptosis do not alter cIAP-1 or XIAP protein levels. Silencing of cIAP-1 expression, but not XIAP or cIAP-2, as well as co-treatment with a second mitochondrial activator of caspases (SMAC) mimetic (which results in rapid depletion of cIAP-1), sensitizes the cells to TRAIL. TRAIL-induced loss of cIAP-1 and XIAP requires caspase activity. In particular, caspase 8 knockdown stabilizes both cIAP-1 and XIAP, while caspase 9 knockdown prevents XIAP, but not cIAP-1 degradation. Cell-free experiments confirmed cIAP-1 is a substrate for caspase 8, with likely multiple cleavage sites. These results suggest that TRAIL-mediated apoptosis proceeds through caspase 8-dependent degradation of cIAP-1. Targeted depletion of cIAP-1 by SMAC mimetics in conjunction with TRAIL may be beneficial for the treatment of human hepatobiliary malignancies. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. An anthraquinone derivative, emodin sensitizes hepatocellular carcinoma cells to TRAIL induced apoptosis through the induction of death receptors and downregulation of cell survival proteins.

    Science.gov (United States)

    Subramaniam, Aruljothi; Loo, Ser Yue; Rajendran, Peramaiyan; Manu, Kanjoormana A; Perumal, Ekambaram; Li, Feng; Shanmugam, Muthu K; Siveen, Kodappully Sivaraman; Park, Joo-In; Ahn, Kwang Seok; Hui, Kam M; Kumar, Alan P; Sethi, Gautam

    2013-10-01

    Recombinant tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is currently under clinical trials for cancer, however many tumor cells, including hepatocellular carcinoma (HCC) develop resistance to TRAIL-induced apoptosis. Hence, novel agents that can alleviate TRAIL-induced resistance are urgently needed. In the present report, we investigated the potential of emodin to enhance apoptosis induced by TRAIL in HCC cells. As observed by MTT cytotoxicity assay and the externalization of the membrane phospholipid phosphatidylserine, we found that emodin can significantly potentiate TRAIL-induced apoptosis in HCC cells. When investigated for the mechanism(s), we observed that emodin can downregulate the expression of various cell survival proteins, and induce the cell surface expression of both TRAIL receptors, death receptors (DR) 4 as well as 5. In addition, emodin increased the expression of C/EBP homologous protein (CHOP) in a time-dependent manner. Knockdown of CHOP by siRNA decreased the induction of emodin-induced DR5 expression and apoptosis. Emodin-induced induction of DR5 was mediated through the generation of reactive oxygen species (ROS), as N-acetylcysteine blocked the induction of DR5 and the induction of apoptosis. Also, the knockdown of X-linked inhibitor of apoptosis protein by siRNA significantly reduced the sensitization effect of emodin on TRAIL-induced apoptosis. Overall, our experimental results clearly indicate that emodin can indeed potentiate TRAIL-induced apoptosis through the downregulation of antiapoptotic proteins, increased expression of apoptotic proteins, and ROS mediated upregulation of DR in HCC cells.

  13. Tumor associated macrophages protect colon cancer cells from TRAIL-induced apoptosis through IL-1beta-dependent stabilization of Snail in tumor cells.

    Directory of Open Access Journals (Sweden)

    Pawan Kaler

    2010-07-01

    Full Text Available We recently reported that colon tumor cells stimulate macrophages to release IL-1beta, which in turn inactivates GSK3beta and enhances Wnt signaling in colon cancer cells, generating a self-amplifying loop that promotes the growth of tumor cells.Here we describe that macrophages protect HCT116 and Hke-3 colon cancer cells from TRAIL-induced apoptosis. Inactivation of IL-1beta by neutralizing IL-1beta antibody, or silencing of IL-1beta in macrophages inhibited their ability to counter TRAIL-induced apoptosis. Accordingly, IL-1beta was sufficient to inhibit TRAIL-induced apoptosis. TRAIL-induced collapse of the mitochondrial membrane potential (Delta psi and activation of caspases were prevented by macrophages or by recombinant IL-1beta. Pharmacological inhibition of IL-1beta release from macrophages by vitamin D(3, a potent chemopreventive agent for colorectal cancer, restored the ability of TRAIL to induce apoptosis of tumor cells cultured with macrophages. Macrophages and IL-1beta failed to inhibit TRAIL-induced apoptosis in HCT116 cells expressing dnIkappaB, dnAKT or dnTCF4, confirming that they oppose TRAIL-induced cell death through induction of Wnt signaling in tumor cells. We showed that macrophages and IL-1beta stabilized Snail in tumor cells in an NF-kappaB/Wnt dependent manner and that Snail deficient tumor cells were not protected from TRAIL-induced apoptosis by macrophages or by IL-1beta, demonstrating a crucial role of Snail in the resistance of tumor cells to TRAIL.We have identified a positive feedback loop between tumor cells and macrophages that propagates the growth and promotes the survival of colon cancer cells: tumor cells stimulate macrophages to secrete IL-1beta, which in turn, promotes Wnt signaling and stabilizes Snail in tumor cells, conferring resistance to TRAIL. Vitamin D(3 halts this amplifying loop by interfering with the release of IL-1beta from macrophages. Accordingly, vitamin D(3 sensitizes tumor cells to TRAIL-induced

  14. MicroRNA-138 enhances TRAIL-induced apoptosis through interferon-stimulated gene 15 downregulation in hepatocellular carcinoma cells.

    Science.gov (United States)

    Zuo, Chaohui; Sheng, Xinyi; Liu, Zhuo; Ma, Min; Xiong, Shuhan; Deng, Hongyu; Li, Sha; Yang, Darong; Wang, Xiaohong; Xiao, Hua; Quan, Hu; Xia, Man

    2017-06-01

    Hepatocellular carcinoma is a leading cause of cancer-related mortality worldwide. TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) is a potential target for cancer therapy. However, many cancer cells are resistant to TRAIL-induced apoptosis and its mechanism is not well understood. In this study, to identify potential therapeutic targets for TRAIL-resistant cancer cells, we compared the expression levels of interferon-stimulated gene 15 in TRAIL-sensitive and TRAIL-resistant hepatocellular carcinoma cell lines. Western blot analysis showed that interferon-stimulated gene 15 expression levels were significantly higher in resistant HLCZ01and Huh7 cells than in sensitive LH86 and SMMC-7721 cells. Interferon-stimulated gene 15 knockdown in resistance cells led to TRAIL sensitivity. Conversely, interferon-stimulated gene 15 overexpression in sensitive cells resulted in TRAIL resistance. Our bioinformatics search detected a putative target sequence for microRNA miR-138 in the 3' untranslated region of the interferon-stimulated gene 15. Real-time quantitative polymerase chain reaction analysis demonstrated that miR-138 was significantly downregulated in TRAIL-resistant cells compared to TRAIL-sensitive cells. Forced expression of miR-138 in resistant cells decreased both messenger RNA and protein levels of interferon-stimulated gene 15, and when exposed to TRAIL, activated poly(adenosine diphosphate-ribose) polymerase, indicating sensitization to TRAIL. The results suggested that miR-138 regulates the interferon-stimulated gene 15 expression by directly targeting the 3' untranslated region of interferon-stimulated gene 15 and modulates the sensitivity to TRAIL-induced apoptosis. MiR-138 may be a target for therapeutic intervention in TRAIL-based drug treatments of resistant hepatocellular carcinoma or could be a biomarker to select patients who may benefit from the treatment.

  15. The cyclin-dependent kinase inhibitor flavopiridol sensitizes human hepatocellular carcinoma cells to TRAIL-induced apoptosis.

    Science.gov (United States)

    Miyashita, Kazumi; Shiraki, Katsuya; Fuke, Hiroyuki; Inoue, Tomoko; Yamanaka, Yutaka; Yamaguchi, Yumi; Yamamoto, Norihiko; Ito, Keiichi; Sugimoto, Kazushi; Nakano, Takeshi

    2006-08-01

    Flavopiridol was one of the first cyclin-dependent kinase inhibitors demonstrated to have an antitumor effect in several cancer types. Here, we investigated the effects of flavopiridol on TNF-related apoptosis-inducing ligand (TRAIL) in the human hepatocellular carcinoma (HCC) cell lines HLE and HepG2, and evaluated the role of flavopiridol in apoptosis. To better understand the mechanism of increased TRAIL sensitivity in HCC cells, we determined the effect of flavopiridol on cell surface expression of TRAIL and TRAIL receptors using flow cytometry analysis. The levels of survivin, FLIP, Bcl-xL and X-chromosome-linked IAP (XIAP) in treated and untreated cells was also determined. Flavopiridol decreased cell viability in a dose-dependent manner in the two HCC cell lines tested. The pan-caspase inhibitor z-VAD-FMK did not inhibit the effect. However, subtoxic levels of flavopiridol dramatically enhanced TRAIL-induced apoptosis in both cells. Flavopiridol up-regulated TRAIL, TRAIL-R1 and TRAIL-R2 in both cell lines. In addition, flavopiridol down-regulated expression of survivin in both cell lines, and expression of FLIP and Bcl-xL were down-regulated in HLE cells. In summary, flavopiridol augmented TRAIL sensitivity by up-regulation of TRAIL receptors and down-regulation of survivin, FLIP and Bcl-xL. Thus, combining flavopiridol with a TRAIL agonist may prove to be an effective new strategy for treatment of HCC.

  16. The DeISGylase USP18 limits TRAIL-induced apoptosis through the regulation of TRAIL levels

    Science.gov (United States)

    Manini, Ivana; Sgorbissa, Andrea; Potu, Harish; Tomasella, Andrea; Brancolini, Claudio

    2013-01-01

    Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a promising molecule for anti-cancer therapies. Unfortunately, cancer cells frequently acquire resistance to rhTRAIL. Various co-treatments have been proposed to overcome apoptosis resistance to TRAIL. Here we show that downregulation of the deISGylase USP18 sensitizes cancer cells to rhTRAIL, whereas, elevate levels of USP18 inhibit TRAIL-induced apoptosis, in a deISGylase-independent manner. USP18 influences TRAIL signaling through the control of the IFN autocrine loop. In fact, cells with downregulated USP18 expression augment the expression of cellular TRAIL. Downregulation of cellular TRAIL abrogates the synergism between TRAIL and USP18 siRNA and also limits cell death induced by rhTRAIL. By comparing the apoptotic responsiveness to TRAIL in a panel of cancer cell lines, we have discovered a correlation between TRAIL levels and the apoptotic susceptibility to rhTRAIL, In cells expressing high levels of TRAIL-R2 susceptibility to rhTRAIL correlates with TRAIL expression. In conclusion, we propose that cellular TRAIL is an additional factor that can influence the apoptotic response to rhTRAIL. PMID:24153058

  17. Bay 61-3606 Sensitizes TRAIL-Induced Apoptosis by Downregulating Mcl-1 in Breast Cancer Cells.

    Directory of Open Access Journals (Sweden)

    So-Young Kim

    Full Text Available Breast cancer cells generally develop resistance to TNF-Related Apoptosis-Inducing Ligand (TRAIL and, therefore, assistance from sensitizers is required. In our study, we have demonstrated that Spleen tyrosine kinase (Syk inhibitor Bay 61-3606 was identified as a TRAIL sensitizer. Amplification of TRAIL-induced apoptosis by Bay 61-3606 was accompanied by the strong activation of Bak, caspases, and DNA fragmentation. In mechanism of action, Bay 61-3606 sensitized cells to TRAIL via two mechanisms regulating myeloid cell leukemia sequence-1 (Mcl-1. First, Bay 61-3606 triggered ubiquitin-dependent degradation of Mcl-1 by regulating Mcl-1 phosphorylation. Second, Bay 61-3606 downregulates Mcl-1 expression at the transcription level. In this context, Bay 61-3606 acted as an inhibitor of Cyclin-Dependent Kinase (CDK 9 rather than Syk. In summary, Bay 61-3606 downregulates Mcl-1 expression in breast cancer cells and sensitizes cancer cells to TRAIL-mediated apoptosis.

  18. Modeling dynamics of cell-to-cell variability in TRAIL-induced apoptosis explains fractional killing and predicts reversible resistance.

    Directory of Open Access Journals (Sweden)

    François Bertaux

    2014-10-01

    Full Text Available Isogenic cells sensing identical external signals can take markedly different decisions. Such decisions often correlate with pre-existing cell-to-cell differences in protein levels. When not neglected in signal transduction models, these differences are accounted for in a static manner, by assuming randomly distributed initial protein levels. However, this approach ignores the a priori non-trivial interplay between signal transduction and the source of this cell-to-cell variability: temporal fluctuations of protein levels in individual cells, driven by noisy synthesis and degradation. Thus, modeling protein fluctuations, rather than their consequences on the initial population heterogeneity, would set the quantitative analysis of signal transduction on firmer grounds. Adopting this dynamical view on cell-to-cell differences amounts to recast extrinsic variability into intrinsic noise. Here, we propose a generic approach to merge, in a systematic and principled manner, signal transduction models with stochastic protein turnover models. When applied to an established kinetic model of TRAIL-induced apoptosis, our approach markedly increased model prediction capabilities. One obtains a mechanistic explanation of yet-unexplained observations on fractional killing and non-trivial robust predictions of the temporal evolution of cell resistance to TRAIL in HeLa cells. Our results provide an alternative explanation to survival via induction of survival pathways since no TRAIL-induced regulations are needed and suggest that short-lived anti-apoptotic protein Mcl1 exhibit large and rare fluctuations. More generally, our results highlight the importance of accounting for stochastic protein turnover to quantitatively understand signal transduction over extended durations, and imply that fluctuations of short-lived proteins deserve particular attention.

  19. Ethanolic extract of Thevetia peruviana flowers enhances TNF-α and TRAIL-induced apoptosis of human cervical cancer cells via intrinsic and extrinsic pathways

    Science.gov (United States)

    Managit, Chittima; Sakurai, Hiroaki; Saiki, Ikuo

    2017-01-01

    Tumor necrosis factor-α (TNF-α) and TNF-related apoptosis-inducing ligand (TRAIL) are promising candidates for cancer treatment due to their ability to induce apoptosis through death receptor stimulation. However, their usage may be limited due to the resistance of cancer cells to TNF-α- and TRAIL-induced apoptosis. Currently, there is interest in screening for natural products that can sensitize cancer cells to TNF-α- and TRAIL-induced apoptosis for their use in combination with TNF-α or TRAIL. It was previously reported that the bark extract of Thevetia peruviana showed a reversal effect on TRAIL-resistance in human gastric adenocarcinoma cell lines. In the present study, the effects of the ethanolic extract of T. peruviana flowers on TNF-α- and TRAIL-induced apoptosis of human cervical cancer HeLa cells were investigated in vitro by determining cell viability and apoptosis using a WST-1 cell proliferation assay and immunoblot analysis, respectively. The ethanolic extract of T. peruviana flowers promoted TNF-α and TRAIL-mediated cell death through the activation of the caspase cascade, poly(ADP-ribose) polymerase and BH3-interacting domain death agonist cleavage. Combined treatment using the extract plus TNF-α resulted in downregulation of anti-apoptotic protein, including myeloid cell leukemia sequence-1, B-cell lymphoma-extra large (Bcl-XL), X-linked inhibitor of apoptosis protein and survivin, while the combined treatment with TRAIL downregulated Bcl-XL. Thus, the ethanolic extract of T. peruviana flowers has potential in sensitizing the TNF-α- and TRAIL-induced apoptosis of HeLa cells via the intrinsic and extrinsic pathways. PMID:28454468

  20. Hepatitis B virus X protein and proinflammatory cytokines synergize to enhance TRAIL-induced apoptosis of renal tubular cells by upregulation of DR4.

    Science.gov (United States)

    Yang, Yitong; Wang, Xuan; Zhang, Yueyue; Yuan, Weijie

    2018-02-09

    Persistent infection with hepatitis B virus (HBV) may lead to HBV-associated glomerulonephritis (HBV-GN). Presence of HBV-DNA and -RNA in renal tubular epithelial cells (RTECs) suggests direct virus-induced injury. Increase in proinflammatory cytokines is also observed under these conditions. Apoptosis by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) plays a significant role in the pathogenesis of HBV-infections. However, the effects of HBV X protein (HBx) on TRAIL-induced apoptosis of RTECs especially under certain inflammatory conditions remain obscure. Here, we show that HBx synergizes with proinflammatory cytokines to significantly increase TRAIL-induced apoptosis of RTECs. HBx markedly up-regulates death receptor-4 (DR4) expression by enhancing the activation of nuclear factor-kappa B (NF-κB) in the presence of proinflammatory cytokines. Dramatic increase in DR4 expression leads to the sensitization of RTECs to TRAIL-induced apoptosis. Furthermore, in patients with HBV-GN, DR4 expression in the kidneys is significantly elevated and is positively correlated with the HBx and proinflammatory cytokines expression. These findings provide a novel insight into the underlying mechanisms of renal tubule lesions induced by HBx in HBV-GN. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Hepatitis C virus sensitizes host cells to TRAIL-induced apoptosis by up-regulating DR4 and DR5 via a MEK1-dependent pathway.

    Directory of Open Access Journals (Sweden)

    Zhongfan Deng

    Full Text Available BACKGROUND: Hepatitis C virus (HCV is the leading cause of liver fibrosis, cirrhosis and hepatocellular carcinoma. It is believed that continuous liver cell apoptosis contributes to HCV pathogenesis. Recent studies have shown that HCV infection can sensitize host cells to TNF-related apoptosis-inducing ligand (TRAIL induced apoptosis, but the mechanism by which HCV regulates the TRAIL pathway remains unclear. METHODS AND RESULTS: Using a sub-genomic replicon and full length virus, JFH-1, we demonstrate that HCV can sensitize host cells to TRAIL-induced apoptosis by up-regulating two TRAIL receptors, death receptor 4 (DR4 and death receptor 5 (DR5. Furthermore, the HCV replicon enhanced transcription of DR5 via Sp1, and the HCV-mediated up-regulation of DR4 and DR5 required MEK1 activity. HCV infection also stimulated the activity of MEK1, and the inhibition of MEK1 activity or the knockdown of MEK1 increased the replication of HCV. CONCLUSIONS: Our studies demonstrate that HCV replication sensitizes host cells to TRAIL-induced apoptosis by up-regulating DR4 and DR5 via a MEK1 dependent pathway. These findings may help to further understand the pathogenesis of HCV infection and provide a therapeutic target.

  2. Live free or die: cell-cell adhesion regulates sensitivity to trail-induced apoptosis.

    Science.gov (United States)

    Gallegos, Lisa L; Brugge, Joan S

    2014-07-14

    The ability of the death ligand TRAIL to induce tumor cell apoptosis has led to the development of TRAIL-based cancer therapies. Reporting recently in Molecular Cell, Lu et al. (2014) show that the basis for differential TRAIL responses involves clustering of death receptor complexes by E-cadherin and the actin cytoskeleton. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. The plant alkaloid and anti-leukemia drug homoharringtonine sensitizes resistant human colorectal carcinoma cells to TRAIL-induced apoptosis via multiple mechanisms.

    Science.gov (United States)

    Beranova, Lenka; Pombinho, Antonio R; Spegarova, Jarmila; Koc, Michal; Klanova, Magdalena; Molinsky, Jan; Klener, Pavel; Bartunek, Petr; Andera, Ladislav

    2013-06-01

    TNF-related apoptosis-inducing ligand (TRAIL) is a pro-apoptotic ligand from the TNF-alpha family that is under consideration, along with agonistic anti-TRAIL receptor antibodies, as a potential anti-tumor agent. However, most primary human tumors are resistant to monotherapy with TRAIL apoptogens, and thus the potential applicability of TRAIL in anti-tumor therapy ultimately depends on its rational combination with drugs targeting these resistances. In our high-throughput screening for novel agents/drugs that could sensitize TRAIL-resistant colorectal cancer cells to TRAIL-induced apoptosis, we found homoharringtonine (HHT), a cephalotaxus alkaloid and tested anti-leukemia drug, to be a very effective, low nanomolar enhancer of TRAIL-mediated apoptosis/growth suppression of these resistant cells. Co-treatment of TRAIL-resistant RKO or HT-29 cells with HHT and TRAIL led to the effective induction of apoptosis and the complete elimination of the treated cells. HHT suppressed the expression of the anti-apoptotic proteins Mcl-1 and cFLIP and enhanced the TRAIL-triggered activation of JNK and p38 kinases. The shRNA-mediated down-regulation of cFLIP or Mcl-1 in HT-29 or RKO cells variably enhanced their TRAIL-induced apoptosis but it did not markedly sensitize them to TRAIL-mediated growth suppression. However, with the notable exception of RKO/sh cFLIP cells, the downregulation of cFLIP or Mcl-1 significantly lowered the effective concentration of HHT in HHT + TRAIL co-treatment. Combined HHT + TRAIL therapy also led to the strong suppression of HT-29 tumors implanted into immunodeficient mice. Thus, HHT represents a very efficient enhancer of TRAIL-induced apoptosis with potential application in TRAIL-based, anti-cancer combination therapy.

  4. PPI-G4 Glycodendrimers Upregulate TRAIL-Induced Apoptosis in Chronic Lymphocytic Leukemia Cells.

    Science.gov (United States)

    Franiak-Pietryga, Ida; Ostrowska, Kinga; Maciejewski, Henryk; Appelhans, Dietmar; Misiewicz, Małgorzata; Ziemba, Barbara; Bednarek, Michał; Bryszewska, Maria; Borowiec, Maciej

    2017-05-01

    Although chronic lymphocytic leukemia (CLL) is the most common adult leukemia in Western world, it remains incurable with conventional chemotherapeutic agents. Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is an antitumor candidate in cancer therapy. This study examines the proapoptotic effects of poly(propylene imine) (PPI) glycodendrimers modified with the maltotriose residues (PPI-G4-OS-Mal-III and PPI-G4-DS-Mal-III) on the TNF family in CLL cells. The combination of an understanding of the signaling pathways associated with CLL and the development of a molecular profiling is a key issue for the design of personalized approaches to therapy. Gene expression is determined with two-color microarray 8 × 60K. The findings indicate that PPI-G4-OS/DS-Mal-III affect gene expression from the TRAIL apoptotic pathway and exert a strong effect on CLL cells comparable with fludarabine. Dendrimer-targeted technology may well prove to bridge the gap between the ineffective treatment of today and the effective personalized therapy of the future. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Lyapunov exponents and phase diagrams reveal multi-factorial control over TRAIL-induced apoptosis.

    Science.gov (United States)

    Aldridge, Bree B; Gaudet, Suzanne; Lauffenburger, Douglas A; Sorger, Peter K

    2011-11-22

    Receptor-mediated apoptosis proceeds via two pathways: one requiring only a cascade of initiator and effector caspases (type I behavior) and the second requiring an initiator-effector caspase cascade and mitochondrial outer membrane permeabilization (type II behavior). Here, we investigate factors controlling type I versus II phenotypes by performing Lyapunov exponent analysis of an ODE-based model of cell death. The resulting phase diagrams predict that the ratio of XIAP to pro-caspase-3 concentrations plays a key regulatory role: type I behavior predominates when the ratio is low and type II behavior when the ratio is high. Cell-to-cell variability in phenotype is observed when the ratio is close to the type I versus II boundary. By positioning multiple tumor cell lines on the phase diagram we confirm these predictions. We also extend phase space analysis to mutations affecting the rate of caspase-3 ubiquitylation by XIAP, predicting and showing that such mutations abolish all-or-none control over activation of effector caspases. Thus, phase diagrams derived from Lyapunov exponent analysis represent a means to study multi-factorial control over a complex biochemical pathway.

  6. Metformin sensitizes human bladder cancer cells to TRAIL-induced apoptosis through mTOR/S6K1-mediated downregulation of c-FLIP.

    Science.gov (United States)

    Zhang, Tao; Wang, Xinyang; He, Dalin; Jin, Xunbo; Guo, Peng

    2014-09-01

    Metformin, an oral antidiabetic agent, has been reported to potentiate chemotherapeutic-induced cytotoxicity. In this study, we investigated the effects and molecular mechanisms of metformin in sensitizing tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in human bladder cancer cells. Metformin alone did not induce apoptosis, but markedly potentiated TRAIL-induced apoptosis in 253J and RT4 bladder cancer cells. To elucidate the underlying mechanism, we examined the modulatory effects of metformin on the key components of the TRAIL signaling pathway and found that metformin did not alter the expression levels of death receptor 4 (DR4) and death receptor 5 (DR5), but significantly reduced the cellular Fas-associated death domain (FADD)-like interleukin-1β-converting enzyme (FLICE) inhibitory protein (c-FLIP) levels, contributing toward the sensitization to TRAIL. Further experiments showed that metformin did not affect the mRNA level, proteasomal degradation, and protein stability of c-FLIPL. However, metformin inhibited the mTOR/S6K1 pathway in 253J and RT4 cells, which usually regulates protein translation; moreover, knockdown of S6K1 effectively reduced the levels of c-FLIPL, indicating that metformin downregulates c-FLIP through inhibition of the mTOR/S6K1 pathway. In addition, AMP-activated protein kinase (AMPK) inhibitor compound C did not prevent the inhibitory effects of metformin on the mTOR/S6K1 pathway and metformin-mediated sensitization to TRAIL. Taken together, our results indicate that metformin sensitizes human bladder cancer cells to TRAIL-induced apoptosis through downregulation of c-FLIP, which is mediated by the mTOR/S6K1 pathway, but independent of AMPK; furthermore, these findings provide a rationale for the combined application of metformin with TRAIL in the treatment of bladder cancer.

  7. DR5-Cbl-b/c-Cbl-TRAF2 complex inhibits TRAIL-induced apoptosis by promoting TRAF2-mediated polyubiquitination of caspase-8 in gastric cancer cells.

    Science.gov (United States)

    Xu, Ling; Zhang, Ye; Qu, Xiujuan; Che, Xiaofang; Guo, Tianshu; Li, Ce; Ma, Rui; Fan, Yibo; Ma, Yanju; Hou, Kezuo; Li, Danni; Hu, Xuejun; Liu, Bofang; Yu, Ruoxi; Yan, Hongfei; Gong, Jing; Liu, Yunpeng

    2017-10-03

    Ubiquitination of caspase-8 regulates TRAIL sensitivity in cancer cell, and the preligand assembly complex plays a role in caspase-8 polyubiquitination. However, whether such a complex exists in gastric cancer cells and its role in TRAIL-triggered apoptosis is unclear. In the present study, DR5, Cbl-b/c-Cbl, and TRAF2 formed a complex in TRAIL-resistant gastric cancer cells, and Cbl-b and c-Cbl were the critical adaptors linking DR5 and TRAF2. Treatment with TRAIL induced caspase-8 translocation into the DR5-Cbl-b/c-Cbl-TRAF2 complex to interact with TRAF2, which then mediated the K48-linked polyubiquitination of caspase-8. The proteasome inhibitor bortezomib markedly enriched the p43/41 products of caspase-8 activated by TRAIL, indicating proteasomal degradation of caspase-8. Moreover, TRAF2 knockdown prevented the polyubiquitination of caspase-8, and thus increased TRAIL sensitivity. In addition, the inhibition of Cbl-b or c-Cbl expression and overexpression of miR-141 targeting Cbl-b and c-Cbl partially reversed TRAIL resistance by inhibiting the interaction of TRAF2 and caspase-8 and the subsequent polyubiquitination of caspase-8. These results indicate that the DR5-Cbl-b/c-Cbl-TRAF2 complex inhibited TRAIL-induced apoptosis by promoting TRAF2-mediated polyubiquitination of caspase-8 in gastric cancer cells. Molecular Oncology (2017) © 2017 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

  8. Ruthenium Polypyridyl Complex Inhibits Growth and Metastasis of Breast Cancer Cells by Suppressing FAK signaling with Enhancement of TRAIL-induced Apoptosis

    Science.gov (United States)

    Cao, Wenqiang; Zheng, Wenjie; Chen, Tianfeng

    2015-03-01

    Ruthenium-based complexes have emerged as promising antitumor and antimetastatic agents during the past decades. However, the limited understanding of the antimetastatic mechanisms of these agents is a roadblock to their clinical application. Herein, we reported that, RuPOP, a ruthenium polypyridyl complex with potent antitumor activity, was able to effectively inhibit growth and metastasis of MDA-MB-231 cells and synergistically enhance TRAIL-induced apoptosis. The selective intracellular uptake and cytotoxic effect of RuPOP was found associated with transferring receptor (TfR)-mediated endocytosis. Further investigation on intracellular mechanisms reveled that RuPOP notably suppressed FAK-mediated ERK and Akt activation. Pretreatment of cells with ERK inhibitor (U0126) and PI3K inhibitor (LY294002) significantly potentiated the inhibitory effect of RuPOP on cell growth, migration and invasion. Moreover, the alternation in the expression levels of metastatic regulatory proteins, including uPA, MMP-2/-9, and inhibition of VEGF secretion were also observed after RuPOP treatment. These results demonstrate the inhibitory effect of RuPOP on the growth and metastasis of cancer cells and the enhancement of TRAIL-induced apoptosis though suppression of FAK-mediated signaling. Furthermore, RuPOP exhibits the potential to be developed as a metal-based antimetastatic agent and chemosensitizer of TRAIL for the treatment of human metastatic cancers.

  9. TRAIL-induced apoptosis and expression of death receptor TRAIL-R1 and TRAIL-R2 in bladder cancer cells.

    Directory of Open Access Journals (Sweden)

    Zenon P Czuba

    2010-05-01

    Full Text Available Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/Apo2L is a member of TNF superfamily able to induce programmed death in cancer cells with no toxicity against normal tissues. TRAIL mediate apoptosis follows binding to the two death receptors, TRAIL-R1 (DR4 and/or TRAIL-R2 (DR5. In this study we investigated the cytotoxic and apoptotic effect of TRAIL on bladder cancer cells and the expression of death receptor TRAIL-R1 and TRAIL-R2 on the surface of these cancer cells. Three human bladder transitional cancer cell (TCC lines - SW780, 647V and T24 were tested for TRAIL sensitivity. The bladder cancer cells were incubated with human soluble recombinant TRAIL. Cytotoxicity was measured by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-dimethyltetrazolium bromide and LDH (lactate dyhydrogenase assays. Apoptosis was detected by flow cytometry with annexin V-FITC/propidium iodide and by fluorescence microscopy with Hoechst 33342/annexin V-FITC/Ethidium Homodimer. The cell surface expression of TRAIL death receptors on bladder cancer were determined using flow cytometry with phycoerythrin-conjugated monoclonal anti-human TRAIL-R1 and TRAIL-R2. Our investigations confirmed that SW780 cells were sensitive to TRAIL, and two other bladder cancer cell lines, 647V and T24, were resistant to TRAIL induced apoptosis. We therefore examined the expression of TRAIL death receptors on bladder cancer cell surfaces. We showed decreased expression of TRAIL-R2 receptor in TRAIL-resistant bladder cancer cells and increased expression of this death receptor in TRAIL-sensitive SW780 cells. The expression of TRAILR1 receptor was similar in all bladder cancer cell lines. TRAIL is one of the promising candidates for cancer therapeutics. However, some cancer cells are resistant to TRAIL-mediated apoptosis. It is therefore important to overcome this resistance for the clinical use of TRAIL in cancer therapy. TRAIL death receptors are attractive therapeutic targets in

  10. Drug-induced caspase 8 upregulation sensitises cisplatin-resistant ovarian carcinoma cells to rhTRAIL-induced apoptosis

    NARCIS (Netherlands)

    Duiker, E. W.; Meijer, A.; van der Bilt, A. R. M.; Meersma, G. J.; Kooi, N.; van der Zee, A. G. J.; de Vries, E. G.; de Jong, S.

    2011-01-01

    BACKGROUND: Drug resistance is a major problem in ovarian cancer. Triggering apoptosis using death ligands such as tumour necrosis factor-related apoptosis inducing ligand (TRAIL) might overcome chemoresistance. METHODS: We investigated whether acquired cisplatin resistance affects sensitivity to

  11. STL-based analysis of TRAIL-induced apoptosis challenges the notion of type I/type II cell line classification.

    Directory of Open Access Journals (Sweden)

    Szymon Stoma

    Full Text Available Extrinsic apoptosis is a programmed cell death triggered by external ligands, such as the TNF-related apoptosis inducing ligand (TRAIL. Depending on the cell line, the specific molecular mechanisms leading to cell death may significantly differ. Precise characterization of these differences is crucial for understanding and exploiting extrinsic apoptosis. Cells show distinct behaviors on several aspects of apoptosis, including (i the relative order of caspases activation, (ii the necessity of mitochondria outer membrane permeabilization (MOMP for effector caspase activation, and (iii the survival of cell lines overexpressing Bcl2. These differences are attributed to the activation of one of two pathways, leading to classification of cell lines into two groups: type I and type II. In this work we challenge this type I/type II cell line classification. We encode the three aforementioned distinguishing behaviors in a formal language, called signal temporal logic (STL, and use it to extensively test the validity of a previously-proposed model of TRAIL-induced apoptosis with respect to experimental observations made on different cell lines. After having solved a few inconsistencies using STL-guided parameter search, we show that these three criteria do not define consistent cell line classifications in type I or type II, and suggest mutants that are predicted to exhibit ambivalent behaviors. In particular, this finding sheds light on the role of a feedback loop between caspases, and reconciliates two apparently-conflicting views regarding the importance of either upstream or downstream processes for cell-type determination. More generally, our work suggests that these three distinguishing behaviors should be merely considered as type I/II features rather than cell-type defining criteria. On the methodological side, this work illustrates the biological relevance of STL-diagrams, STL population data, and STL-guided parameter search implemented in the

  12. STL-based analysis of TRAIL-induced apoptosis challenges the notion of type I/type II cell line classification.

    Science.gov (United States)

    Stoma, Szymon; Donzé, Alexandre; Bertaux, François; Maler, Oded; Batt, Gregory

    2013-01-01

    Extrinsic apoptosis is a programmed cell death triggered by external ligands, such as the TNF-related apoptosis inducing ligand (TRAIL). Depending on the cell line, the specific molecular mechanisms leading to cell death may significantly differ. Precise characterization of these differences is crucial for understanding and exploiting extrinsic apoptosis. Cells show distinct behaviors on several aspects of apoptosis, including (i) the relative order of caspases activation, (ii) the necessity of mitochondria outer membrane permeabilization (MOMP) for effector caspase activation, and (iii) the survival of cell lines overexpressing Bcl2. These differences are attributed to the activation of one of two pathways, leading to classification of cell lines into two groups: type I and type II. In this work we challenge this type I/type II cell line classification. We encode the three aforementioned distinguishing behaviors in a formal language, called signal temporal logic (STL), and use it to extensively test the validity of a previously-proposed model of TRAIL-induced apoptosis with respect to experimental observations made on different cell lines. After having solved a few inconsistencies using STL-guided parameter search, we show that these three criteria do not define consistent cell line classifications in type I or type II, and suggest mutants that are predicted to exhibit ambivalent behaviors. In particular, this finding sheds light on the role of a feedback loop between caspases, and reconciliates two apparently-conflicting views regarding the importance of either upstream or downstream processes for cell-type determination. More generally, our work suggests that these three distinguishing behaviors should be merely considered as type I/II features rather than cell-type defining criteria. On the methodological side, this work illustrates the biological relevance of STL-diagrams, STL population data, and STL-guided parameter search implemented in the tool Breach

  13. Inhibition of methyltransferases accelerates degradation of cFLIP and sensitizes B-cell lymphoma cells to TRAIL-induced apoptosis.

    Directory of Open Access Journals (Sweden)

    Frank K Braun

    Full Text Available Non-Hodgkin lymphomas (NHLs are characterized by specific abnormalities that alter cell cycle regulation, DNA damage response, and apoptotic signaling. It is believed that cancer cells are particularly sensitive to cell death induced by tumor necrosis factor α-related apoptosis-inducing ligand (TRAIL. However, many cancer cells show blocked TRAIL signaling due to up-regulated expression of anti-apoptotic factors, such as cFLIP. This hurdle to TRAIL's tumor cytotoxicity might be overcome by combining TRAIL-based therapy with drugs that reverse blockages of its apoptotic signaling. In this study, we investigated the impact of a pan-methyltransferase inhibitor (3-deazaneplanocin A, or DZNep on TRAIL-induced apoptosis in aggressive B-cell NHLs: mantle cell, Burkitt, and diffuse large B-cell lymphomas. We characterized TRAIL apoptosis regulation and caspase activation in several NHL-derived cell lines pre-treated with DZNep. We found that DZNep increased cancer cell sensitivity to TRAIL signaling by promoting caspase-8 processing through accelerated cFLIP degradation. No change in cFLIP mRNA level indicated independence of promoter methylation alterations in methyltransferase activity induced by DZNep profoundly affected cFLIP mRNA stability and protein stability. This appears to be in part through increased levels of cFLIP-targeting microRNAs (miR-512-3p and miR-346. However, additional microRNAs and cFLIP-regulating mechanisms appear to be involved in DZNep-mediated enhanced response to extrinsic apoptotic stimuli. The capacity of DZNep to target cFLIP expression on multiple levels underscores DZNep's potential in TRAIL-based therapies for B-cell NHLs.

  14. Down-regulation of HSP27 sensitizes TRAIL-resistant tumor cell to TRAIL-induced apoptosis

    DEFF Research Database (Denmark)

    Zhuang, Hongqin; Jiang, Weiwei; Cheng, Wei

    2010-01-01

    Tumor necrosis factor-alpha-related apoptosis-inducing ligand (TRAIL) has recently emerged as a cancer therapeutic agent because it preferentially induces apoptosis in human cancer over normal cells. Most tumor cells, including lung cancer cell line A549, unfortunately, are resistant to TRAIL...... treatment even at high dose. Recent studies indicated that TRAIL-resistant cancer cells could be sensitized to TRAIL by combination therapy. Stress and heat shock proteins such as HSP90, HSP70 and HSP27 are induced in response to a wide variety of physiological environmental insults including heat, reactive...... oxygen species or anticancer drugs. Their elevated expressions facilitate cells to survive in stress circumstances. The HSP27 expression is enhanced in many tumor cells, implying that it is involved in tumor progression and the development of treatment resistance in various tumors, including lung cancer...

  15. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces death receptor 5 networks that are highly organized.

    Science.gov (United States)

    Valley, Christopher C; Lewis, Andrew K; Mudaliar, Deepti J; Perlmutter, Jason D; Braun, Anthony R; Karim, Christine B; Thomas, David D; Brody, Jonathan R; Sachs, Jonathan N

    2012-06-15

    Recent evidence suggests that TNF-related apoptosis-inducing ligand (TRAIL), a death-inducing cytokine with anti-tumor potential, initiates apoptosis by re-organizing TRAIL receptors into large clusters, although the structure of these clusters and the mechanism by which they assemble are unknown. Here, we demonstrate that TRAIL receptor 2 (DR5) forms receptor dimers in a ligand-dependent manner at endogenous receptor levels, and these receptor dimers exist within high molecular weight networks. Using mutational analysis, FRET, fluorescence microscopy, synthetic biochemistry, and molecular modeling, we find that receptor dimerization relies upon covalent and noncovalent interactions between membrane-proximal residues. Additionally, by using FRET, we show that the oligomeric structure of two functional isoforms of DR5 is indistinguishable. The resulting model of DR5 activation should revise the accepted architecture of the functioning units of DR5 and the structurally homologous TNF receptor superfamily members.

  16. Tumor Necrosis Factor-related Apoptosis-inducing Ligand (TRAIL) Induces Death Receptor 5 Networks That Are Highly Organized*

    Science.gov (United States)

    Valley, Christopher C.; Lewis, Andrew K.; Mudaliar, Deepti J.; Perlmutter, Jason D.; Braun, Anthony R.; Karim, Christine B.; Thomas, David D.; Brody, Jonathan R.; Sachs, Jonathan N.

    2012-01-01

    Recent evidence suggests that TNF-related apoptosis-inducing ligand (TRAIL), a death-inducing cytokine with anti-tumor potential, initiates apoptosis by re-organizing TRAIL receptors into large clusters, although the structure of these clusters and the mechanism by which they assemble are unknown. Here, we demonstrate that TRAIL receptor 2 (DR5) forms receptor dimers in a ligand-dependent manner at endogenous receptor levels, and these receptor dimers exist within high molecular weight networks. Using mutational analysis, FRET, fluorescence microscopy, synthetic biochemistry, and molecular modeling, we find that receptor dimerization relies upon covalent and noncovalent interactions between membrane-proximal residues. Additionally, by using FRET, we show that the oligomeric structure of two functional isoforms of DR5 is indistinguishable. The resulting model of DR5 activation should revise the accepted architecture of the functioning units of DR5 and the structurally homologous TNF receptor superfamily members. PMID:22496450

  17. Inhibition of the mitochondrial pyrimidine biosynthesis enzyme dihydroorotate dehydrogenase by doxorubicin and brequinar sensitizes cancer cells to TRAIL-induced apoptosis.

    Science.gov (United States)

    He, T; Haapa-Paananen, S; Kaminskyy, V O; Kohonen, P; Fey, V; Zhivotovsky, B; Kallioniemi, O; Perälä, M

    2014-07-03

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising agent in selectively killing tumor cells. However, TRAIL monotherapy has not been successful as many cancer cells are resistant to TRAIL. Chemotherapeutic agents, such as doxorubicin have been shown to act synergistically with TRAIL, but the exact mechanisms of actions are poorly understood. In this study, we performed high-throughput small interfering RNA screening and genome-wide gene expression profiling on doxorubicin-treated U1690 cells to explore novel mechanisms underlying doxorubicin-TRAIL synergy. The screening and expression profiling results were integrated and dihydroorotate dehydrogenase (DHODH) was identified as a potential candidate. DHODH is the rate-limiting enzyme in the pyrimidine synthesis pathway, and its expression was downregulated by doxorubicin. We demonstrated that silencing of DHODH or inhibition of DHODH activity by brequinar dramatically increased the sensitivity of U1690 cells to TRAIL-induced apoptosis both in 2D and 3D cultures, and was accompanied by downregulation of c-FLIPL as well as by mitochondrial depolarization. In addition, uridine, an end product of the pyrimidine synthesis pathway was able to rescue the sensitization effects initiated by both brequinar and doxorubicin. Furthermore, several other cancer cell lines, LNCaP, MCF-7 and HT-29 were also shown to be sensitized to TRAIL by brequinar. Taken together, our findings have identified a novel protein target and its inhibitor, brequinar, as a potential agent in TRAIL-based combinatorial cancer therapy and highlighted for the first time the importance of mitochondrial DHODH enzyme and pyrimidine pathway in mediating TRAIL sensitization in cancer cells.

  18. Disruption of IGF-1R signaling increases TRAIL-induced apoptosis: A new potential therapy for the treatment of melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Karasic, Thomas B.; Hei, Tom K. [Center for Radiological Research, Department of Radiation Oncology, College of Physicians and Surgeons, Columbia University, New York, NY 10032 (United States); Ivanov, Vladimir N., E-mail: vni3@columbia.edu [Center for Radiological Research, Department of Radiation Oncology, College of Physicians and Surgeons, Columbia University, New York, NY 10032 (United States)

    2010-07-15

    Resistance of cancer cells to apoptosis is dependent on a balance of multiple genetic and epigenetic mechanisms, which up-regulate efficacy of the surviving growth factor-receptor signaling pathways and suppress death-receptor signaling pathways. The Insulin-like Growth Factor-1 Receptor (IGF-1R) signaling pathway is highly active in metastatic melanoma cells by mediating downstream activation of PI3K-AKT and MAPK pathways and controlling general cell survival and proliferation. In the present study, we used human melanoma lines with established genotypes that represented different phases of cancer development: radial-growth-phase WM35, vertical-growth-phase WM793, metastatic LU1205 and WM9 [1]. All these lines have normal NRAS. WM35, WM793, LU1205 and WM9 cells have mutated BRAF (V600E). WM35 and WM9 cells express normal PTEN, while in WM793 cells PTEN expression is down-regulated; finally, in LU1205 cells PTEN is inactivated by mutation. Cyclolignan picropodophyllin (PPP), a specific inhibitor of IGF-1R kinase activity, strongly down-regulated the basal levels of AKT activity in WM9 and in WM793 cells, modestly does so in LU1205, but has no effect on AKT activity in the early stage WM35 cells that are deficient in IGF-1R. In addition, PPP partially down-regulated the basal levels of active ERK1/2 in all lines used, highlighting the role of an alternative, non-BRAF pathway in MAPK activation. The final result of PPP treatment was an induction of apoptosis in WM793, WM9 and LU1205 melanoma cells. On the other hand, dose-dependent inhibition of IGF-1R kinase activity by PPP at a relatively narrow dose range (near 500 nM) has different effects on melanoma cells versus normal cells, inducing apoptosis in cancer cells and G2/M arrest of fibroblasts. To further enhance the pro-apoptotic effects of PPP on melanoma cells, we used a combined treatment of TNF-Related Apoptosis-Inducing Ligand (TRAIL) and PPP. This combination substantially increased death by apoptosis for

  19. MAPK p38 and JNK have opposing activities on TRAIL-induced apoptosis activation in NSCLC H460 cells that involves RIP1 and caspase-8 and is mediated by Mcl-1.

    Science.gov (United States)

    Azijli, Kaamar; Yuvaraj, Saravanan; van Roosmalen, Ingrid; Flach, Koen; Giovannetti, Elisa; Peters, Godefridus J; de Jong, Steven; Kruyt, Frank A E

    2013-07-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can induce both caspase-dependent apoptosis and kinase activation in tumor cells. Here, we examined the consequences and mechanisms of TRAIL-induced MAPKs p38 and JNK in non-small cell lung cancer (NSCLC) cells. In apoptosis sensitive H460 cells, these kinases were phosphorylated, but not in resistant A549 cells. Time course experiments in H460 cells showed that induction of p38 phosphorylation preceded that of JNK. To explore the function of these kinases in apoptosis activation by TRAIL, chemical inhibitors or siRNAs were employed to impair JNK or p38 functioning. JNK activation counteracted TRAIL-induced apoptosis whereas activation of p38 stimulated apoptosis. Notably, the serine/threonine kinase RIP1 was cleaved following TRAIL treatment, concomitant with detectable JNK phosphorylation. Further examination of the role of RIP1 by short hairpin (sh)RNA-dependent knockdown or inhibition by necrostatin-1 showed that p38 can be phosphorylated in both RIP1-dependent and -independent manner, whereas JNK phosphorylation occurred independent of RIP1. On the other hand JNK appeared to suppress RIP1 cleavage via an unknown mechanism. In addition, only the activation of JNK by TRAIL was caspase-8-dependent. Finally, we identified Mcl-1, a known substrate for p38 and JNK, as a downstream modulator of JNK or p38 activity. Collectively, our data suggest in a subset of NSCLC cells a model in which TRAIL-induced activation of p38 and JNK have counteracting effects on Mcl-1 expression leading to pro- or anti-apoptotic effects, respectively. Strategies aiming to stimulate p38 and inhibit JNK may have benefit for TRAIL-based therapies in NSCLC.

  20. Short-hairpin RNA-induced suppression of adenine nucleotide translocase-2 in breast cancer cells restores their susceptibility to TRAIL-induced apoptosis by activating JNK and modulating TRAIL receptor expression

    Directory of Open Access Journals (Sweden)

    Kim Chul-Woo

    2010-09-01

    Full Text Available Abstract Background Tumor necrosis factor (TNF-related apoptosis-inducing ligand (TRAIL; apo2 ligand induces apoptosis in cancer cells but has little effect on normal cells. However, many cancer cell types are resistant to TRAIL-induced apoptosis, limiting the clinical utility of TRAIL as an anti-cancer agent. We previously reported that the suppression of adenine nucleotide translocase-2 (ANT2 by short-hairpin RNA (shRNA induces apoptosis of breast cancer cells, which frequently express high levels of ANT2. In the present study, we examined the effect of RNA shRNA-induced suppression of ANT2 on the resistance of breast cancer cells to TRAIL-induced apoptosis in vitro and in vivo. Results ANT2 shRNA treatment sensitized MCF7, T47 D, and BT474 cells to TRAIL-induced apoptosis by up-regulating the expression of TRAIL death receptors 4 and 5 (DR4 and DR5 and down-regulating the TRAIL decoy receptor 2 (DcR2. In MCF7 cells, ANT2 knockdown activated the stress kinase c-Jun N-terminal kinase (JNK, subsequently stabilizing and increasing the transcriptional activity of p53 by phosphorylating it at Thr81; it also enhanced the expression and activity of DNA methyltransferase 1 (DNMT1. ANT2 shRNA-induced overexpression of DR4/DR5 and TRAIL sensitization were blocked by a p53 inhibitor, suggesting that p53 activation plays an important role in the transcriptional up-regulation of DR4/DR5. However, ANT2 knockdown also up-regulated DR4/DR5 in the p53-mutant cell lines BT474 and T47 D. In MCF7 cells, ANT2 shRNA treatment led to DcR2 promoter methylation and concomitant down-regulation of DcR2 expression, consistent with the observed activation of DNMT1. Treatment of the cells with a demethylating agent or JNK inhibitor prevented the ANT2 shRNA-induced down-regulation of DcR2 and activation of both p53 and DNMT1. In in vivo experiments using nude mice, ANT2 shRNA caused TRAIL-resistant MCF7 xenografts to undergo TRAIL-induced cell death, up-regulated DR4/DR5

  1. Tangeretin sensitises human lung cancer cells to TRAIL- induced ...

    African Journals Online (AJOL)

    necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in human lung cancer cells. (H1299 and H1975). Methods: ... Western blotting was performed to assess the expression of death receptors, apoptosis pathway proteins, JNK and ERK1/2. ...... upregulation in hepatocellular carcinoma cells. World J.

  2. Sensitization of human bladder tumor cells to TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis with a small molecule IAP antagonist.

    Science.gov (United States)

    Griffith, Thomas S; Kucaba, Tamara A; O'Donnell, Michael A; Burns, Jennifer; Benetatos, Christopher; McKinlay, Mark A; Condon, Stephen; Chunduru, Srinivas

    2011-01-01

    Urothelial carcinoma of the bladder accounts for approximately 5% of all cancer deaths in humans. The large majority of bladder tumors are non-muscle invasive at diagnosis, but even after local surgical therapy there is a high rate of local tumor recurrence and progression. Current treatments extend time to recurrence but do not significantly alter disease survival. The objective of the present study was to investigate the tumoricidal potential of combining the apoptosis-inducing protein TNF-related apoptosis-inducing ligand (TRAIL) with a small molecule inhibitor of apoptosis proteins (IAP) antagonist to interfere with intracellular regulators of apoptosis in human bladder tumor cells. Our results demonstrate that the IAP antagonist Compound A exhibits high binding affinity to the XIAP BIR3 domain. When Compound A was used at nontoxic concentrations in combination with TRAIL, there was a significant increase in the sensitivity of TRAIL-sensitive and TRAIL-resistant bladder tumor lines to TRAIL-mediated apoptosis. In addition, modulation of TRAIL sensitivity in the TRAIL-resistant bladder tumor cell line T24 with Compound A was reciprocated by XIAP small interfering RNA-mediated suppression of XIAP expression, suggesting the importance of XIAP-mediated resistance to TRAIL in these cells. These results suggest the potential of combining Compound A with TRAIL as an alternative therapy for bladder cancer.

  3. Regulation of the Src-PP2A interaction in tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)-induced apoptosis.

    Science.gov (United States)

    Xu, Jing; Xu, Zhengfan; Zhou, Jun-Ying; Zhuang, Zhengping; Wang, Enhua; Boerner, Julie; Wu, Gen Sheng

    2013-11-15

    TNF-related apoptosis-inducing ligand (TRAIL) selectively induces apoptosis in transformed and tumor cells but not in normal cells, making it a promising agent for cancer therapy. However, many cancer cells are resistant to TRAIL, and the underlying mechanisms are not fully understood. Here, we show that the regulation of the PP2A and Src interaction plays a critical role in TRAIL resistance. Specifically, we show that TRAIL treatment activates the tyrosine kinase Src, which subsequently phosphorylates caspase-8 at tyrosine 380, leading to the inhibition of caspase-8 activation. We also show that upon TRAIL treatment, Src, caspase-8, and PP2A/C (a catalytic subunit of the PP2A phosphatase) are redistributed into lipid rafts, a microdomain of the plasma membrane enriched with cholesterol, where PP2A dephosphorylates Src at tyrosine 418 and in turn inhibits caspase-8 phosphorylation. Furthermore, we find that TRAIL treatment causes PP2A/C degradation. These data suggest that the balance between Src-mediated caspase-8 phosphorylation and the inactivation of Src-mediated caspase-8 phosphorylation by PP2A determines the outcome of TRAIL treatment in breast cancer cells. Therefore, this work identifies a novel mechanism by which the interaction between PP2A and Src in the context of caspase-8 activation modulates TRAIL sensitivity in cancer cells.

  4. Regulation of the Src-PP2A Interaction in Tumor Necrosis Factor (TNF)-related Apoptosis-inducing Ligand (TRAIL)-induced Apoptosis*

    Science.gov (United States)

    Xu, Jing; Xu, Zhengfan; Zhou, Jun-Ying; Zhuang, Zhengping; Wang, Enhua; Boerner, Julie; Wu, Gen Sheng

    2013-01-01

    TNF-related apoptosis-inducing ligand (TRAIL) selectively induces apoptosis in transformed and tumor cells but not in normal cells, making it a promising agent for cancer therapy. However, many cancer cells are resistant to TRAIL, and the underlying mechanisms are not fully understood. Here, we show that the regulation of the PP2A and Src interaction plays a critical role in TRAIL resistance. Specifically, we show that TRAIL treatment activates the tyrosine kinase Src, which subsequently phosphorylates caspase-8 at tyrosine 380, leading to the inhibition of caspase-8 activation. We also show that upon TRAIL treatment, Src, caspase-8, and PP2A/C (a catalytic subunit of the PP2A phosphatase) are redistributed into lipid rafts, a microdomain of the plasma membrane enriched with cholesterol, where PP2A dephosphorylates Src at tyrosine 418 and in turn inhibits caspase-8 phosphorylation. Furthermore, we find that TRAIL treatment causes PP2A/C degradation. These data suggest that the balance between Src-mediated caspase-8 phosphorylation and the inactivation of Src-mediated caspase-8 phosphorylation by PP2A determines the outcome of TRAIL treatment in breast cancer cells. Therefore, this work identifies a novel mechanism by which the interaction between PP2A and Src in the context of caspase-8 activation modulates TRAIL sensitivity in cancer cells. PMID:24100030

  5. Importin β1 protein-mediated nuclear localization of death receptor 5 (DR5) limits DR5/tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)-induced cell death of human tumor cells.

    Science.gov (United States)

    Kojima, Yuko; Nakayama, Masafumi; Nishina, Takashi; Nakano, Hiroyasu; Koyanagi, Makoto; Takeda, Kazuyoshi; Okumura, Ko; Yagita, Hideo

    2011-12-16

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)/death receptor 5 (DR5)-mediated cell death plays an important role in the elimination of tumor cells and transformed cells. Recently, recombinant TRAIL and agonistic anti-DR5 monoclonal antibodies have been developed and applied to cancer therapy. However, depending on the type of cancer, the sensitivity to TRAIL has been reportedly different, and some tumor cells are resistant to TRAIL-mediated apoptosis. Using confocal microscopy, we found that large amounts of DR5 were localized in the nucleus in HeLa and HepG2 cells. Moreover, these tumor cells were resistant to TRAIL, whereas DU145 cells, which do not have nuclear DR5, were highly sensitive to TRAIL. By means of immunoprecipitation and Western blot analysis, we found that DR5 and importin β1 were physically associated, suggesting that the nuclear DR5 was transported through the nuclear import pathway mediated by importin β1. Two functional nuclear localization signals were identified in DR5, the mutation of which abrogated the nuclear localization of DR5 in HeLa cells. Moreover, the nuclear transport of DR5 was also prevented by the knockdown of importin β1 using siRNA, resulting in the up-regulation of DR5 expression on the cell surface and an increased sensitivity of HeLa and HepG2 cells to TRAIL. Taken together, our findings suggest that the importin β1-mediated nuclear localization of DR5 limits the DR5/TRAIL-induced cell death of human tumor cells and thus can be a novel target to improve cancer therapy with recombinant TRAIL and anti-DR5 antibodies.

  6. Combination of AAV-TRAIL with miR-221-Zip Therapeutic Strategy Overcomes the Resistance to TRAIL Induced Apoptosis in Liver Cancer.

    Science.gov (United States)

    Ma, Sisi; Sun, Jiazeng; Guo, Yabin; Zhang, Peng; Liu, Yanxin; Zheng, Dexian; Shi, Juan

    2017-01-01

    TNF-related apoptosis-inducing ligand (TRAIL) possesses the capacity to induce apoptosis in a wide variety of tumor cells without affecting most normal cells. However, it has now emerged that many primary cancer cells are resistant to TRAIL monotherapy. Overcoming the intrinsic or acquired TRAIL resistance is desirable for TRAIL-mediated cancer therapy. In this study, we found that the miR-221/222 cluster was up-regulated in TRAIL-resistant liver cancer cells. Specific inhibitors of miR-221 and/or miR-222, called sponge, TuD and miR-Zip were constructed, and their ability to overcome TRAIL resistance was compared. Among them, AAV-mediated gene therapy using co-expression of TRAIL with miR-221-Zip showed the most synergistic activity in the induction of apoptosis in vitro. In vivo treatment of nude mice bearing human TRAIL-resistant liver cancer xenografts with AAV-TRAIL-miR-221-Zip also led to growth inhibition. This sensitizing effect of miR-221-Zip was associated with increased expression of PTEN, the miR-221 target, as well as with decreasing levels of Survivin. Moreover, miR-221 expression was concomitant with promotion of Survivin expression and suppression of PTEN expression. TRAIL sensitivity of cancer cells isolated from liver cancer tissues or from patients was significantly correlated with miR-221 expression. And miR-221 blood expression levels in liver cancer patients were correlated with TRAIL sensitivity, thus it had the potential to be a predictor of TRAIL sensitivity in liver cancer. These data suggested the potential of combining AAV-TRAIL with miR-221-Zip as a therapeutic intervention for liver cancer.

  7. MiR-34a/c-Dependent PDGFR-α/β Downregulation Inhibits Tumorigenesis and Enhances TRAIL-Induced Apoptosis in Lung Cancer.

    Directory of Open Access Journals (Sweden)

    Michela Garofalo

    Full Text Available Lung cancer is the leading cause of cancer mortality in the world today. Although some advances in lung cancer therapy have been made, patient survival is still poor. MicroRNAs (miRNAs can act as oncogenes or tumor-suppressor genes in human malignancy. The miR-34 family consists of tumor-suppressive miRNAs, and its reduced expression has been reported in various cancers, including non-small cell lung cancer (NSCLC. In this study, we found that miR-34a and miR-34c target platelet-derived growth factor receptor alpha and beta (PDGFR-α and PDGFR-β, cell surface tyrosine kinase receptors that induce proliferation, migration and invasion in cancer. MiR-34a and miR-34c were downregulated in lung tumors compared to normal tissues. Moreover, we identified an inverse correlation between PDGFR-α/β and miR-34a/c expression in lung tumor samples. Finally, miR-34a/c overexpression or downregulation of PDGFR-α/β by siRNAs, strongly augmented the response to TNF-related apoptosis inducing ligand (TRAIL while reducing migratory and invasive capacity of NSCLC cells.

  8. Gingerol sensitizes TRAIL-induced apoptotic cell death of glioblastoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dae-Hee, E-mail: leedneo@gmail.com [Departments of Surgery and Pharmacology and Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA (United States); Kim, Dong-Wook [Department of Microbiology, Immunology, and Cancer Biology, University of VA (United States); Jung, Chang-Hwa [Division of Metabolism and Functionality Research, Korea Food Research Institute (Korea, Republic of); Lee, Yong J. [Departments of Surgery and Pharmacology and Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA (United States); Park, Daeho, E-mail: daehopark@gist.ac.kr [School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of)

    2014-09-15

    Glioblastoma multiforme (GBM) is the most lethal and aggressive astrocytoma of primary brain tumors in adults. Although there are many clinical trials to induce the cell death of glioblastoma cells, most glioblastoma cells have been reported to be resistant to TRAIL-induced apoptosis. Here, we showed that gingerol as a major component of ginger can induce TRAIL-mediated apoptosis of glioblastoma. Gingerol increased death receptor (DR) 5 levels in a p53-dependent manner. Furthermore, gingerol decreased the expression level of anti-apoptotic proteins (survivin, c-FLIP, Bcl-2, and XIAP) and increased pro-apoptotic protein, Bax and truncate Bid, by generating reactive oxygen species (ROS). We also found that the sensitizing effects of gingerol in TRAIL-induced cell death were blocked by scavenging ROS or overexpressing anti-apoptotic protein (Bcl-2). Therefore, we showed the functions of gingerol as a sensitizing agent to induce cell death of TRAIL-resistant glioblastoma cells. This study gives rise to the possibility of applying gingerol as an anti-tumor agent that can be used for the purpose of combination treatment with TRAIL in TRAIL-resistant glioblastoma tumor therapy. - Highlights: • Most GBM cells have been reported to be resistant to TRAIL-induced apoptosis. • Gingerol enhances the expression level of anti-apoptotic proteins by ROS. • Gingerol enhances TRAIL-induced apoptosis through actions on the ROS–Bcl2 pathway.

  9. Wogonin Induces Eosinophil Apoptosis and Attenuates Allergic Airway Inflammation

    Science.gov (United States)

    Dorward, David A.; Sharma, Sidharth; Rennie, Jillian; Felton, Jennifer M.; Alessandri, Ana L.; Duffin, Rodger; Schwarze, Jurgen; Haslett, Christopher; Rossi, Adriano G.

    2015-01-01

    Rationale: Eosinophils are key effector cells in allergic diseases, including allergic rhinitis, eczema, and asthma. Their tissue presence is regulated by both recruitment and increased longevity at inflamed sites. Objectives: To investigate the ability of the flavone wogonin to induce eosinophil apoptosis in vitro and attenuate eosinophil-dominant allergic inflammation in vivo in mice. Methods: Human and mouse eosinophil apoptosis in response to wogonin was investigated by cellular morphology, flow cytometry, mitochondrial membrane permeability, and pharmacological caspase inhibition. Allergic lung inflammation was modeled in mice sensitized and challenged with ovalbumin. Bronchoalveolar lavage (BAL) and lung tissue were examined for inflammation, mucus production, and inflammatory mediator production. Airway hyperresponsiveness to aerosolized methacholine was measured. Measurements and Main Results: Wogonin induced time- and concentration-dependent human and mouse eosinophil apoptosis in vitro. Wogonin-induced eosinophil apoptosis occurred with activation of caspase-3 and was inhibited by pharmacological caspase inhibition. Wogonin administration attenuated allergic airway inflammation in vivo with reductions in BAL and interstitial eosinophil numbers, increased eosinophil apoptosis, reduced airway mucus production, and attenuated airway hyperresponsiveness. This wogonin-induced reduction in allergic airway inflammation was prevented by concurrent caspase inhibition in vivo. Conclusions: Wogonin induces eosinophil apoptosis and attenuates allergic airway inflammation, suggesting that it has therapeutic potential for the treatment of allergic inflammation in humans. PMID:25629436

  10. Inhibition of the autophagy flux by gingerol enhances TRAIL-induced tumor cell death.

    Science.gov (United States)

    Nazim, Uddin Md; Jeong, Jae-Kyo; Seol, Jae-Won; Hur, Jin; Eo, Seong-Kug; Lee, John-Hwa; Park, Sang-Youel

    2015-05-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a primary anticancer agent and a member of the tumor necrosis factor family that selectively induces apoptosis in various tumor cells, but not in normal cells. Gingerol is a major ginger component with anti-inflammatory and anti‑tumorigenic activities. Autophagy flux is the complete process of autophagy, in which the autophagosomes are lysed by lysosomes. The role of autophagy in cell death or cell survival is controversial. A549 adenocarcinoma cells are TRAIL-resistant. In the present study, we showed that treatment with TRAIL slightly induced cell death, but gingerol treatment enhanced the TRAIL-induced cell death in human lung cancer cells. The combination of gingerol and TRAIL increased accumulation of microtubule-associated protein light chain 3-II and p62, confirming the inhibited autophagy flux. Collectively, our results suggest that gingerol sensitizes human lung cancer cells to TRAIL-induced apoptosis by inhibiting the autophagy flux.

  11. Inhibition of never in mitosis A (NIMA)-related kinase-4 reduces survivin expression and sensitizes cancer cells to TRAIL-induced cell death.

    Science.gov (United States)

    Park, So Jung; Jo, Doo Sin; Jo, Se-Young; Shin, Dong Woon; Shim, Sangmi; Jo, Yoon Kyung; Shin, Ji Hyun; Ha, Ye Jin; Jeong, Seong-Yun; Hwang, Jung Jin; Kim, Young Sam; Suh, Young-Ah; Chang, Jong Wook; Kim, Jin Cheon; Cho, Dong-Hyung

    2016-10-04

    The tumor necrosis factor-related apoptosis inducing ligand (TRAIL) preferentially induces apoptosis in cancer cells. However, many tumors are resistant to TRAIL-induced apoptosis, and resistance mechanisms are not fully understood. To identify novel regulatory molecules of TRAIL resistance, we screened a siRNA library targeting the human kinome, and NEK4 (NIMA-related kinase-4) was identified. Knockdown of NEK4 sensitized TRAIL-resistant cancer cells and in vivo xenografts to cell death. In contrast, over expression of NEK4 suppressed TRAIL-induced cell death in TRAIL-sensitive cancer cells. In addition, loss of NEK4 resulted in decrease of the anti-apoptotic protein survivin, but an increase in apoptotic cell death. Interestingly, NEK4 was highly upregulated in tumor tissues derived from patients with lung cancer and colon cancer. These results suggest that inhibition of NEK4 sensitizes cancer cells to TRAIL-induced apoptosis by regulation of survivin expression.

  12. The novel Akt inhibitor API-1 induces c-FLIP degradation and synergizes with TRAIL to augment apoptosis independent of Akt inhibition.

    Science.gov (United States)

    Li, Bo; Ren, Hui; Yue, Ping; Chen, Mingwei; Khuri, Fadlo R; Sun, Shi-Yong

    2012-04-01

    API-1 (pyrido[2,3-d]pyrimidines) is a novel small-molecule inhibitor of Akt, which acts by binding to Akt and preventing its membrane translocation and has promising preclinical antitumor activity. In this study, we reveal a novel function of API-1 in regulation of cellular FLICE-inhibitory protein (c-FLIP) levels and TRAIL-induced apoptosis, independent of Akt inhibition. API-1 effectively induced apoptosis in tested cancer cell lines including activation of caspase-8 and caspase-9. It reduced the levels of c-FLIP without increasing the expression of death receptor 4 (DR4) or DR5. Accordingly, it synergized with TRAIL to induce apoptosis. Enforced expression of ectopic c-FLIP did not attenuate API-1-induced apoptosis but inhibited its ability to enhance TRAIL-induced apoptosis. These data indicate that downregulation of c-FLIP mediates enhancement of TRAIL-induced apoptosis by API-1 but is not sufficient for API-1-induced apoptosis. API-1-induced reduction of c-FLIP could be blocked by the proteasome inhibitor MG132. Moreover, API-1 increased c-FLIP ubiquitination and decreased c-FLIP stability. These data together suggest that API-1 downregulates c-FLIP by facilitating its ubiquitination and proteasome-mediated degradation. Because other Akt inhibitors including API-2 and MK2206 had minimal effects on reducing c-FLIP and enhancement of TRAIL-induced apoptosis, it is likely that API-1 reduces c-FLIP and enhances TRAIL-induced apoptosis independent of its Akt-inhibitory activity. 2012 AACR

  13. Sulforaphane and TRAIL induce a synergistic elimination of advanced prostate cancer stem-like cells.

    Science.gov (United States)

    Labsch, Sabrina; Liu, Li; Bauer, Nathalie; Zhang, Yiyao; Aleksandrowicz, Ewa; Gladkich, Jury; Schönsiegel, Frank; Herr, Ingrid

    2014-05-01

    Advanced androgen-independent prostate cancer (AIPC) is an aggressive malignancy with a poor prognosis. Apoptosis-resistant cancer stem cells (CSCs) have been identified in AIPC and are not eliminated by current therapeutics. Novel therapeutic options, which are currently being evaluated in patient studies, include TRAIL and the broccoli-derived isothiocyanate sulforaphane. Although neither agent targets normal cells, TRAIL induces apoptosis in most cancer cells, and sulforaphane eliminates CSCs. In this study, the established AIPC cell lines DU145 and PC3, with enriched CSC features, and primary patient-derived prostate CSCs were treated with sulforaphane and recombinant soluble TRAIL. We examined the effects of these drugs on NF-κB activity, self-renewal and differentiation potential, and stem cell signaling via spheroid- and colony-forming assays, FACS and western blot analyses, immunohistochemistry, and an antibody protein array in vitro and after xenotransplantation. We largely found a stronger effect of sulforaphane on CSC properties compared to TRAIL, though the agents acted synergistically when applied in combination. This was associated with the inhibition of TRAIL-induced NF-κB binding; CXCR4, Jagged1, Notch 1, SOX 2, and Nanog expression; ALDH1 activity inhibition; and the elimination of differentiation and self-renewal potential. In vivo, tumor engraftment and tumor growth were strongly inhibited, without the induction of liver necrosis or other obvious side effects. These findings suggest that sulforaphane shifts the balance from TRAIL-induced survival signals to apoptosis and thus explains the observed synergistic effect. A nutritional strategy for high sulforaphane intake may target the cancer-specific activity of TRAIL in CSCs.

  14. TRAIL-induced apoptosis in colon cancer : resistance and modulation

    NARCIS (Netherlands)

    Geelen, Caroline Mirjam Maria van

    2005-01-01

    Colorectal cancer is one of the most important causes of cancer-related death. Although over 80% of colorectal carcinomas are macroscopically resectable at the time of diagnosis, 50% of patients subsequently relapse with metastatic disease, due to the presence of micrometastasis. Adjuvant

  15. Gingerol sensitizes TRAIL-induced apoptotic cell death of glioblastoma cells.

    Science.gov (United States)

    Lee, Dae-Hee; Kim, Dong-Wook; Jung, Chang-Hwa; Lee, Yong J; Park, Daeho

    2014-09-15

    Glioblastoma multiforme (GBM) is the most lethal and aggressive astrocytoma of primary brain tumors in adults. Although there are many clinical trials to induce the cell death of glioblastoma cells, most glioblastoma cells have been reported to be resistant to TRAIL-induced apoptosis. Here, we showed that gingerol as a major component of ginger can induce TRAIL-mediated apoptosis of glioblastoma. Gingerol increased death receptor (DR) 5 levels in a p53-dependent manner. Furthermore, gingerol decreased the expression level of anti-apoptotic proteins (survivin, c-FLIP, Bcl-2, and XIAP) and increased pro-apoptotic protein, Bax and truncate Bid, by generating reactive oxygen species (ROS). We also found that the sensitizing effects of gingerol in TRAIL-induced cell death were blocked by scavenging ROS or overexpressing anti-apoptotic protein (Bcl-2). Therefore, we showed the functions of gingerol as a sensitizing agent to induce cell death of TRAIL-resistant glioblastoma cells. This study gives rise to the possibility of applying gingerol as an anti-tumor agent that can be used for the purpose of combination treatment with TRAIL in TRAIL-resistant glioblastoma tumor therapy. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. TRAIL-induced programmed necrosis as a novel approach to eliminate tumor cells

    Science.gov (United States)

    2014-01-01

    Background The cytokine TRAIL represents one of the most promising candidates for the apoptotic elimination of tumor cells, either alone or in combination therapies. However, its efficacy is often limited by intrinsic or acquired resistance of tumor cells to apoptosis. Programmed necrosis is an alternative, molecularly distinct mode of programmed cell death that is elicited by TRAIL under conditions when the classical apoptosis machinery fails or is actively inhibited. The potential of TRAIL-induced programmed necrosis in tumor therapy is, however, almost completely uncharacterized. We therefore investigated its impact on a panel of tumor cell lines of wide-ranging origin. Methods Cell death/viability was measured by flow cytometry/determination of intracellular ATP levels/crystal violet staining. Cell surface expression of TRAIL receptors was detected by flow cytometry, expression of proteins by Western blot. Ceramide levels were quantified by high-performance thin layer chromatography and densitometric analysis, clonogenic survival of cells was determined by crystal violet staining or by soft agarose cloning. Results TRAIL-induced programmed necrosis killed eight out of 14 tumor cell lines. Clonogenic survival was reduced in all sensitive and even one resistant cell lines tested. TRAIL synergized with chemotherapeutics in killing tumor cell lines by programmed necrosis, enhancing their effect in eight out of 10 tested tumor cell lines and in 41 out of 80 chemotherapeutic/TRAIL combinations. Susceptibility/resistance of the investigated tumor cell lines to programmed necrosis seems to primarily depend on expression of the pro-necrotic kinase RIPK3 rather than the related kinase RIPK1 or cell surface expression of TRAIL receptors. Furthermore, interference with production of the lipid ceramide protected all tested tumor cell lines. Conclusions Our study provides evidence that TRAIL-induced programmed necrosis represents a feasible approach for the elimination of

  17. Epoxyeicosatrienoic acids attenuating hypotonic-induced apoptosis of IMCD cells via γ-ENaC inhibition.

    Science.gov (United States)

    Wang, Luyun; Liu, Yang; Wang, Huamin; Liu, Xun; Chen, Jie; Wang, Mong-Heng; Wang, Jingfeng; Huang, Hui

    2014-01-01

    Inner medulla collecting duct (IMCD) cells are the key part for urinary concentration. Hypotonic stress may trigger apoptosis of IMCD cells and induce renal injury. Epoxyeicosatrienoic acids (EETs) play an important role in anti-apoptosis, but their roles in hypotonic-induced apoptosis of IMCD cells are still unclear. Here we found increasing exogenous 11, 12-EET or endogenous EETs with Ad-CMV-CYP2C23-EGFP transfection decreased apoptosis of IMCD cells induced by hypotonic stress. Moreover, up-regulation of γ-ENaC induced by hypotonic stress was abolished by elevation of exogenous or endogenous EETs. Collectively, this study illustrated that EETs attenuated hypotonic-induced apoptosis of IMCD cells, and that regulation of γ-ENAC may be a possible mechanism contributing to the anti-apoptotic effect of EETs in response to hypotonic stress.

  18. MicroRNA-208a Silencing Attenuates Doxorubicin Induced Myocyte Apoptosis and Cardiac Dysfunction

    Directory of Open Access Journals (Sweden)

    Hasahya Tony

    2015-01-01

    Full Text Available Aims. GATA4 depletion is a distinct mechanism by which doxorubicin leads to cardiomyocyte apoptosis, and preservation of GATA4 mitigates doxorubicin induced myocyte apoptosis and cardiac dysfunction. We investigated a novel approach of attenuating doxorubicin induced cardiac toxicity by silencing miR-208a, a heart specific microRNA known to target GATA4. Methods and Results. Eight-week-old female Balb/C mice were randomly assigned to sham, antagomir, and control groups. Antagomir group were pretreated with miR-208a antagomir 4 days before doxorubicin administration. At day 0, control and antagomir groups received 20 mg/kg of doxorubicin, while sham mice received phosphate buffered solution. Echocardiography was done at day 7, after which animals were sacrificed and hearts harvested and assessed for apoptosis and expression of miR-208a, GATA4, and BCL-2. Doxorubicin significantly upregulated miR-208a, downregulated GATA4, and increased myocyte apoptosis, with resulting decrease in cardiac function. In contrast, therapeutic silencing of miR-208a salvaged GATA4 and BCL-2 and decreased apoptosis, with improvement in cardiac function. Conclusion. Doxorubicin upregulates miR-208a and promotes cardiomyocyte apoptosis, while therapeutic silencing of miR-208a attenuates doxorubicin induced myocyte apoptosis with subsequent improvement in cardiac function. These novel results highlight the therapeutic potential of targeting miR-208a to prevent doxorubicin cardiotoxicity.

  19. The long non-coding RNA HOTAIR enhances pancreatic cancer resistance to TNF-related apoptosis-inducing ligand.

    Science.gov (United States)

    Yang, Shan-Zhong; Xu, Fei; Zhou, Tong; Zhao, Xinyang; McDonald, Jay M; Chen, Yabing

    2017-06-23

    Pancreatic cancer is a malignant neoplasm with a high mortality rate. Therapeutic agents that activate TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis have shown promising efficacy, but many pancreatic cancers are resistant to TRAIL therapy. Epigenetic regulation plays important roles in tumor pathogenesis and resistance, and a recent study indicated that the long non-coding RNA HOX transcript antisense RNA (HOTAIR) is overexpressed in pancreatic cancer. However, the role of HOTAIR in pancreatic cancer resistance to anticancer agents is unknown. The present study determined the role of HOTAIR in pancreatic cancer TRAIL resistance and investigated the underlying molecular mechanisms. We observed that TRAIL-resistant pancreatic cancer cells had higher levels of HOTAIR expression, whereas TRAIL-sensitive pancreatic cancer cells had lower HOTAIR levels. Overexpressing HOTAIR in TRAIL-sensitive cells attenuated TRAIL-induced apoptosis, and shRNA-mediated HOTAIR knockdown in TRAIL-resistant PANC-1 cells sensitized them to TRAIL-induced apoptosis. These results support a causative effect of HOTAIR on TRAIL sensitivity. Mechanistically, we found that increased HOTAIR expression inhibited the expression of the TRAIL receptor death receptor 5 (DR5), whereas HOTAIR knockdown increased DR5 expression. We further demonstrated that HOTAIR regulates DR5 expression via the epigenetic regulator enhancer of zeste homolog 2 (EZH2) and that EZH2 controls histone H3 lysine 27 trimethylation on the DR5 gene. Taken together, these results demonstrate that high HOTAIR levels increase the resistance of pancreatic cancer cells to TRAIL-induced apoptosis via epigenetic regulation of DR5 expression. Our study therefore supports the notion that targeting HOTAIR function may represent a strategy to overcome TRAIL resistance in pancreatic cancer. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Antiaging Gene Klotho Attenuates Pancreatic β-Cell Apoptosis in Type 1 Diabetes.

    Science.gov (United States)

    Lin, Yi; Sun, Zhongjie

    2015-12-01

    Apoptosis is the major cause of death of insulin-producing β-cells in type 1 diabetes mellitus (T1DM). Klotho is a recently discovered antiaging gene. We found that the Klotho gene is expressed in pancreatic β-cells. Interestingly, halplodeficiency of Klotho (KL(+/-)) exacerbated streptozotocin (STZ)-induced diabetes (a model of T1DM), including hyperglycemia, glucose intolerance, diminished islet insulin storage, and increased apoptotic β-cells. Conversely, in vivo β-cell-specific expression of mouse Klotho gene (mKL) attenuated β-cell apoptosis and prevented STZ-induced diabetes. mKL promoted cell adhesion to collagen IV, increased FAK and Akt phosphorylation, and inhibited caspase 3 cleavage in cultured MIN6 β-cells. mKL abolished STZ- and TNFα-induced inhibition of FAK and Akt phosphorylation, caspase 3 cleavage, and β-cell apoptosis. These promoting effects of Klotho can be abolished by blocking integrin β1. Therefore, these cell-based studies indicated that Klotho protected β-cells by inhibiting β-cell apoptosis through activation of the integrin β1-FAK/Akt pathway, leading to inhibition of caspase 3 cleavage. In an autoimmune T1DM model (NOD), we showed that in vivo β-cell-specific expression of mKL improved glucose tolerance, attenuated β-cell apoptosis, enhanced insulin storage in β-cells, and increased plasma insulin levels. The beneficial effect of Klotho gene delivery is likely due to attenuation of T-cell infiltration in pancreatic islets in NOD mice. Overall, our results demonstrate for the first time that Klotho protected β-cells in T1DM via attenuating apoptosis. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  1. Tamoxifen Attenuates Lipopolysaccharide/Galactosamine-induced Acute Liver Failure by Antagonizing Hepatic Inflammation and Apoptosis.

    Science.gov (United States)

    Zhang, Peng; Zhang, Meisheng; Wan, Mengqi; Huang, Xiaoliu; Jiang, Yan; Xu, Siying; Luo, Mansheng

    2017-04-01

    Bacterial lipopolysaccharide (LPS)-induced acute liver failure (ALF) is a common severe clinical syndrome in intensive care unit. No other methods are available for its prevention apart from supportive treatment and liver transplantation. Tamoxifen (TAM) was reported to attenuate ALF induced by excessive acetaminophen, while its effect on LPS-induced ALF remained unknown. For this, in the present study, we comprehensively assessed whether TAM can attenuate ALF induced by LPS/galactosamine (GaIN). Mice were given TAM once a day for three times. Twelve hours after the last treatment, mice were given LPS/GaIN (intraperitoneally [i.p.]). Survival, plasma transaminases, and histopathology were examined. Serum TNF-α and IL-1β were analyzed by ELISA. Hepatic apoptosis was analyzed by TUNEL and caspase-3 Western blotting, respectively. Compared to the model group, ALF induced by LPS/GaIN was alleviated remarkably following TAM administration, as evidenced by the improvement of survival (87.5% vs. 37.5%), hepatic swell, moderate transaminases, slightly increased serum TNF-α, IL-1β (P < 0.05), and moderate histopathology. In respect of apoptosis, severe hepatocellular apoptosis was reduced notably by TAM treatment confirmed by less TUNEL-positive hepatocytes and decreased caspase-3 cleavage. The results demonstrated that TAM could attenuate LPS/GaIN-induced ALF effectively, probably due to hepatic inflammation and apoptosis antagonism. Furthermore, it was the first report about the effect of TAM on LPS/GaIN-induced ALF.

  2. TRAIL induces pro-apoptotic crosstalk between the TRAIL-receptor signaling pathway and TrkAIII in SH-SY5Y cells, unveiling a potential therapeutic "Achilles heel" for the TrkAIII oncoprotein in neuroblastoma.

    Science.gov (United States)

    Gneo, Luciana; Ruggeri, Pierdomenico; Cappabianca, Lucia; Farina, Antonietta Rosella; Di Ianni, Natalia; Mackay, Andrew Reay

    2016-12-06

    TrkAIII expression in neuroblastoma (NB) associates with advanced stage disease, worse prognosis, post therapeutic relapse, and in NB models TrkAIII exhibits oncogenic activity and promotes chemotherapeutic-resistance. Here, we report a potential therapeutic "Achilles heel" for the TrkAIII oncoprotein in a SH-SY5Y NB model that is characterised by one-way TRAIL-induced, pro-apoptotic crosstalk between the TRAIL receptor signaling pathway and TrkAIII that results in the delayed induction of apoptosis. In TrkAIII SH-SY5Y cells, blocked in the intrinsic apoptosis pathway by elevated constitutive Bcl-2, Bcl-xL and Mcl-1 expression, TRAIL induced delayed caspase-dependent apoptosis via the extrinsic pathway and completely abrogated tumourigenic capacity in vitro. This effect was initiated by TRAIL-induced SHP-dependent c-Src activation, the induction of TrkAIII/SHP-1/c-Src complexing leading to SHP-mediated TrkAIII de-phosphorylation, subsequent induction of complexing between de-phosphorylated TrkAIII and cFLIP associated with a time-dependent increase the caspase-8 to cFLIP ratio at activated death receptors, resulting in delayed caspase cleavage and caspase-dependent apoptosis. We also confirm rate-limiting roles for c-FLIP and Mcl-1 in regulating the sensitivity of TrkAIII SH-SY5Y cells to TRAIL-induced apoptosis via the extrinsic and intrinsic pathways, respectively. Our study unveils a novel mechanism for the TRAIL-induced apoptosis of TrkAIII expressing NB cells that depends upon SHP/Src-mediated crosstalk between the TRAIL-receptor signaling pathway and TrkAIII, and supports a novel potential pro-apoptotic therapeutic use for TRAIL in TrkAIII expressing NB.

  3. Low Dose of Apelin-36 Attenuates ER Stress-Associated Apoptosis in Rats with Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Jian Qiu

    2017-10-01

    Full Text Available Cerebral ischemia/reperfusion (I/R injury-induced cellular apoptosis contributes to neuronal death in ischemic stroke, while endoplasmic reticulum stress (ERS and subsequently triggered unfolded protein response (UPR are the major mechanisms of cerebral I/R injury-induced apoptosis. A number of studies indicated that apelin-13 protects neurons from I/R injury-induced apoptosis. Apelin-36, the longest isoform of apelin, has stronger affinity to apelin receptor than apelin-13 does. However, the role of apelin-36 in ischemic stroke is less studied. In addition, preventive administration of apelin was applied in most studies, which could not precisely reflect its therapeutic potential in ischemic stroke. Here, we first reported that low dose of apelin-36, other than apelin-13, administrated after ischemic stroke significantly reduced infarct volume in rats. Moreover, apelin-36 attenuated cerebral I/R injury-induced apoptosis and caspase-3 activation. Furthermore, apelin-36 suppressed I/R injury-induced CHOP and GRP78 elevation, indicating that apelin-36 inhibited ERS/UPR activation. Our study first demonstrated that post-stroke administration of low-dose apelin-36 could attenuate cerebral I/R injury-induced infarct and apoptosis, which is associated with the inhibition of cerebral I/R injury-induced ERS/UPR activation. Our data support the therapeutic potential of apelin-36 in ischemic stroke although further investigation is needed.

  4. NOX2 Antisense Attenuates Hypoxia-Induced Oxidative Stress and Apoptosis in Cardiomyocyte.

    Science.gov (United States)

    Yu, Bo; Meng, Fanbo; Yang, Yushuang; Liu, Dongna; Shi, Kaiyao

    2016-01-01

    Heart ischemia is a hypoxia related disease. NOX2 and HIF-1α proteins were increased in cardiomyocytes after acute myocardial infarction. However, the relationship of the hypoxia-induced HIF-1α. NOX2-derived oxidative stress and apoptosis in cardiomyocyte remains unclear. In the current study, we use NOX2 antisense strategy to investigate the role of NOX2 in hypoxia-induced oxidative stress and apoptosis in rat cardiomyocytes. Here, we show that transduction of ADV-NOX2-AS induces potent silencing of NOX2 in cardiomyocytes, and resulting in attenuation of hypoxia-induced oxidative stress and apoptosis. This study indicates the potential of antisense-based therapies and validates NOX2 as a potent therapeutic candidate for heart ischemia.

  5. IL-33 attenuates anoxia/reoxygenation-induced cardiomyocyte apoptosis by inhibition of PKCβ/JNK pathway.

    Directory of Open Access Journals (Sweden)

    Tao Rui

    Full Text Available Interleukin-33 (IL-33 is a new member of the IL-1 cytokine family. The objectives of present study are to assess whether IL-33 can protect cardiomyocytes from anoxia/reoxygenation (A/R-induced injury and the mechanism involved in the protection.Cardiomyocytes derived from either wild type or JNK1(-/- mice were challenged with an A/R with or without IL-33. Myocyte apoptosis was assessed by measuring caspase 3 activity, fragmented DNA and TUNEL staining. In addition, cardiomyocyte oxidative stress was assessed by measuring DHR123 oxidation; PKCβII and JNK phosphorylation were assessed with Western blot.Challenge of cardiomyocytes with an A/R resulted in cardiomyocyte oxidative stress, PKCβII and JNK phosphorylation, and myocyte apoptosis. Treatment of the cardiomyocytes with IL-33 attenuated the A/R-induced myocyte oxidative stress, prevented PKCβII and JNK phosphorylation and attenuated the A/R-induced myocyte apoptosis. The protective effect of the IL-33 did not show in cardiac myocytes with siRNA specific to PKCβII or myocytes deficient in JNK1. Inhibition of PKCβII prevented the A/R-induced JNK phosphorylation, but inhibition of JNK1 showed no effect on A/R-induced PKCβII phosphorylation.Our results indicate that IL-33 prevents the A/R-induced myocyte apoptosis through inhibition of PKCβ/JNK pathway.

  6. Attenuation of Endoplasmic Reticulum Stress–Related Myocardial Apoptosis by SERCA2a Gene Delivery in Ischemic Heart Disease

    OpenAIRE

    Xin, Wei; Lu, Xiaochun; Li, Xiaoying; Niu, Kun; Cai, Jimei

    2010-01-01

    Previous studies suggested that endoplasmic reticulum (ER) stress–associated apoptosis plays an important role in the pathogenesis of ischemic heart disease. Gene transfer of sarco/endoplasmic reticulum Ca2+ ATPase 2a (SERCA2a) attenuates myocardial apoptosis in a variety of heart failure models. This study is to investigate the effects of SERCA2a gene delivery on the myocardial apoptosis and ER stress pathway in a porcine ischemic heart disease model. Eighteen pigs were either subjected to a...

  7. Ginkgo Biloba Extract Attenuates Oxidative Stress and Apoptosis in Mouse Cochlear Neural Stem Cells.

    Science.gov (United States)

    Wang, Congpin; Wang, Bin

    2016-05-01

    In the organ or Corti, oxidative stress could result in damage to the hearing, and neural stem cells (NSCs) hold great therapeutic potential in treating hearing loss. Ginkgo biloba extract (GBE) has been widely shown to exhibit anti-oxidative and anti-apoptotic effects in treatments of neural damage and disorder. Using hydrogen peroxide to induced oxidative stress as a model, we investigated the anti-oxidative role of GBE in isolated mouse cochlear NSCs. GBE treatment was found to significantly promote viability of NSCs, by markedly attenuating hydrogen peroxide induced oxidative stress. In addition, this anti-oxidative function of GBE was also able to prevent mitochondrial depolarization and subsequent apoptosis. Moreover, the anti-apoptotic role of GBE was mediated by antagonizing the intrinsic mitochondrial apoptotic pathway, where GBE could reverse the changes in key intrinsic apoptosis pathway factors including Bcl-2, Bax, and Caspase-3. Our data provided the first report on the beneficial role of GBE in protecting cochlear NSCs, by attenuating oxidative stress triggered intrinsic apoptosis, therefore supporting the potential therapeutic value of GBE in preventing oxidative stress-related hearing loss. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  8. Epigallocatechin-3-gallate attenuates acrylamide-induced apoptosis and astrogliosis in rat cerebral cortex.

    Science.gov (United States)

    He, Yin; Tan, Dehong; Bai, Bing; Wu, Zhaoxia; Ji, Shujuan

    2017-05-01

    The potent neurotoxic agent acrylamide (ACR) is formed during Maillard reaction in food processing. Epigallocatechin-3-gallate (EGCG), a major bioactive component of green tea, is an antioxidant, but its effects on ACR-induced neurotoxicity are unclear. Here, we investigated the neuroprotective effects of EGCG against ACR-induced apoptosis and astrogliosis in the cerebral cortex. Rats were pretreated with EGCG for 4 d and then co-administered ACR for 14 d. Immunohistochemical analysis of glial fibrillary acidic protein and 8-hydroxy-2'-deoxyguanosine indicated that EGCG attenuated astrogliosis and DNA damage in ACR-treated rats. Analysis of DNA fragmentation and protein expression of Bax, Bcl-2, caspase 3, and cytochrome c revealed that EGCG inhibited ACR-induced apoptosis. Furthermore, EGCG inhibited oxidative stress by enhancing the activity of antioxidant enzymes and glutathione levels and reducing the formation of reactive oxygen species and lipid peroxidation. Taken together, our data demonstrate that EGCG inhibits ACR-induced apoptosis and astrogliosis in the cerebral cortex.

  9. Hongjingtian Injection Attenuates Myocardial Oxidative Damage via Promoting Autophagy and Inhibiting Apoptosis

    Directory of Open Access Journals (Sweden)

    Shujing Zhang

    2017-01-01

    Full Text Available Natural products with antioxidative activities are widely applied to prevent and treat various oxidative stress related diseases, including ischemic heart disease. However, the cellular and molecular mechanisms of those therapies are still needed to be illustrated. In this study, we characterized the cardioprotective effects of Hongjingtian Injection (HJT, an extensively used botanical drug for treating coronary heart disease. The H/R-induced profound elevation of oxidative stress was suppressed by HJT. HJT also attenuates oxidative injury by promoting cell viability, intracellular ATP contents, and mitochondrial oxygen consumption. Validation experiments indicated that HJT inhibited H/R-induced apoptosis and regulated the expression of apoptosis-associated proteins Bcl-2 and cleaved caspase3. Interestingly, HJT significantly regulated the expression of autophagy-related proteins LC3, Beclin, and mTOR as well as ERK and AKT. We provide evidence that the mechanism involves activation of AKT/Beclin-1, AKT, and ERK/mTOR pathway in cardiomyocyte autophagy. Histological and physiological evaluation revealed that HJT significantly decreased the infarct area of the heart, improved cardiac function, and increased the expression of LC3B in a rat model of coronary occlusion. From the obtained data, we proposed that HJT diminished myocardial oxidative damage through regulating the balance of autophagy and apoptosis and reducing oxidative stress.

  10. Resveratrol attenuates methylglyoxal-induced mitochondrial dysfunction and apoptosis by Sestrin2 induction

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Kyuhwa; Seo, Suho; Han, Jae Yun; Ki, Sung Hwan; Shin, Sang Mi, E-mail: smshin@chosun.ac.kr

    2014-10-15

    Methylglyoxal is found in high levels in the blood and other tissues of diabetic patients and exerts deleterious effects on cells and tissues. Previously, we reported that resveratrol, a polyphenol in grapes, induced the expression of Sestrin2 (SESN2), a novel antioxidant protein, and inhibited hepatic lipogenesis. This study investigated whether resveratrol protects cells from the methylglyoxal-induced toxicity via SESN2 induction. Methylglyoxal significantly induced cell death in HepG2 cells. However, cells pretreated with resveratrol were rescued from methylglyoxal-induced apoptosis. Resveratrol attenuated glutathione (GSH) depletion and ROS production promoted by methylglyoxal. Moreover, mitochondrial damage was observed by methylglyoxal treatment, but resveratrol restored mitochondrial function, as evidenced by the observed lack of mitochondrial permeability transition and increased ADP/ATP ratio. Resveratrol treatment inhibited SESN2 depletion elicited by methylglyoxal. SESN2 overexpression repressed methylglyoxal-induced mitochondrial dysfunction and apoptosis. Likewise, rotenone-induced cytotoxicity was not observed in SESN2 overexpressed cells. Furthermore, siRNA knockdown of SESN2 reduced the ability of resveratrol to prevent methylglyoxal-induced mitochondrial permeability transition. In addition, when mice were exposed to methylglyoxal after infection of Ad-SESN2, the plasma levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and GSH depletion by methylglyoxal in liver was reduced in Ad-SESN2 infected mice. Our results demonstrated that resveratrol is capable of protecting cells from methylglyoxal-induced mitochondrial dysfunction and oxidative stress via SESN2 induction. - Highlights: • Resveratrol decreased methylglyoxal-induced apoptosis. • Resveratrol attenuated GSH depletion and ROS production promoted by methylglyoxal. • Resveratrol restored the mitochondrial function by Sestrin2 induction. • Induction of Sestrin2

  11. Ginsenoside Rd attenuates mitochondrial dysfunction and sequential apoptosis after transient focal ischemia.

    Science.gov (United States)

    Ye, R; Zhang, X; Kong, X; Han, J; Yang, Q; Zhang, Y; Chen, Y; Li, P; Liu, J; Shi, M; Xiong, L; Zhao, G

    2011-03-31

    We previously found that ginsenoside Rd (Rd), one of the major active ingredients in Panax ginseng, protects neuronal cells from hydrogen peroxide and oxygen-glucose deprivation, an in vitro model of cerebral ischemia. In this study, we examined the protective effects of Rd in an animal model of focal cerebral ischemia. Rats administered with Rd or vehicle were subjected to transient middle cerebral artery occlusion (MCAO). Rd (50 mg/kg) significantly reduced the infarct volume by 52.8%. This reduction of injury volume was associated with an improvement in neurological function and was sustained for at least 2 weeks after the induction of ischemia. To evaluate the underlying mechanisms of Rd against stroke, brain tissues were assayed for mitochondrial enzyme activities, mitochondrial membrane potential (MMP), production of reactive oxygen species (ROS), energy metabolites, and apoptosis. Rd markedly protected mitochondria as indicated by preserved respiratory chain complex activities and aconitase activity, lowered mitochondrial hydrogen peroxide production, and hyperpolarized MMP. Microdialysis results illustrated that Rd significantly decreased the accumulation of lactate, the end product of anaerobic glycolysis, and increased pyruvate, the end product of aerobic glycolysis, hence inducing a lower lactate/pyruvate ratio. Additionally, in vitro studies further exhibited that Rd protected isolated mitochondria from calcium-induced damage by attenuating mitochondrial swelling, preserving MMP and decreasing ROS production. Moreover, Rd treatment reduced mitochondrial release of cytochrome c (CytoC) and apoptosis-inducing factor (AIF), thereby minimizing mitochondria-mediated apoptosis following ischemia. In conclusion, these findings demonstrated that Rd exerts neuroprotective effects in transient focal ischemia, which may involve an integrated process of the mitochondrial protection, energy restoration and inhibition of apoptosis. Copyright © 2011 IBRO. Published

  12. A new pharmacological role for donepezil: attenuation of morphine-induced tolerance and apoptosis in rat central nervous system

    Science.gov (United States)

    2014-01-01

    Background Tolerance to the analgesic effect of opioids is a pharmacological phenomenon that occurs after their prolonged administration. It has been shown that morphine-induced tolerance is associated with apoptosis in the central nervous system and neuroprotective agents which prevented apoptosis signaling could attenuate tolerance to the analgesic effects. On the other hand donepezil, an acetylcholinesterase inhibitor, has been reported to have neuroprotective effects. Therefore in this study, the effect of systemic administration of donepezil on morphine-induced tolerance and apoptosis in the rat cerebral cortex and lumbar spinal cord was evaluated. Various groups of rats received morphine (ip) and different doses of donepezil (0, 0.5, 1, 1.5 mg/kg/day). Nociception was assessed using tail flick apparatus. Tail flick latency was recorded when the rat shook its tail. For apoptosis assay other groups of rats received the above treatment and apoptosis was evaluated by in situ terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling (TUNEL) method. Results The results showed that administration of donepezil (0.5, 1, 1.5 mg/kg, ip) delayed the morphine tolerance for 9, 12 and 17 days, respectively. Furthermore pretreatment injection of donepezil attenuated the number of apoptotic cells in the cerebral cortex and lumbar spinal cord compared to the control group. Conclusion In conclusion, we found that systemic administration of donepezil attenuated morphine-induced tolerance and apoptosis in the rat cerebral cortex and lumbar spinal cord. PMID:24455992

  13. Hexane extract from Polygonum multiflorum attenuates glutamate-induced apoptosis in primary cultured cortical neurons.

    Science.gov (United States)

    Jang, Ji Yeon; Kim, Ha Neui; Kim, Yu Ri; Choi, Young Whan; Choi, Yung Hyun; Lee, Jun Hyuk; Shin, Hwa Kyoung; Choi, Byung Tae

    2013-01-09

    Polygonum multiflorum has traditionally had wide use as an anti-aging treatment in East Asian countries. We investigated the neuroprotective effects of Polygonum multiflorum against glutamate-induced neurotoxicity with a focus on the anti-apoptotic mechanism in primary cultured cortical neurons. Cell viability, cytotoxicity, morphological, flow cytometry, Western blot, and caspase activity assays were performed for examination of the neuroprotective effects of active hexane extract from Polygonum multiflorum (HEPM). Pretreatment with HEPM resulted in significantly decreased glutamate-induced neurotoxicity in a concentration-dependent manner and also resulted in drastically inhibited glutamate-induced apoptosis. Treatment with HEPM resulted in decreased expression of glutamate-induced death receptor (DR)4, and enhanced expression of glutamate-attenuated anti-apoptotic proteins, including Bcl-2, XIAP, and cIAP-1, and slightly reduced glutamate-induced cleavage of Bid. In addition, treatment with HEPM resulted in suppressed glutamate-induced activation of caspase-8, caspase-9, and caspase-3, and, subsequently, decreased degradation of poly(ADP-ribose) polymerase, β-catenin, and phospholipase Cγ1 protein, which are downstream targets of activated caspase-3. The results of this study demonstrated that HEPM exerts a neuroprotective effect against glutamate-induced neurotoxicity via inhibition of apoptosis. This protection may be mediated through suppression of DR4 and up-regulation of Bcl-2, XIAP, and cIAP-1, as well as inhibition of caspase activation, resulting in prevention of apoptosis of cortical neurons. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  14. Genipin attenuates sepsis-induced immunosuppression through inhibition of T lymphocyte apoptosis.

    Science.gov (United States)

    Kim, Joon-Sung; Kim, So-Jin; Lee, Sun-Mee

    2015-07-01

    Sepsis, a systemic inflammatory response to infection, initiates a complex immune response consisting of an early hyperinflammatory response and a subsequent hypoinflammatory response that impairs the removal of infectious organisms. The importance of sepsis-induced immunosuppression and its contribution to mortality has recently emerged. Apoptotic depletion of T lymphocytes is a critical cause of immunosuppression in the late phase of sepsis. Genipin is a major active compound of gardenia fruit that has anti-apoptotic and anti-microbial properties. This study investigated the mechanisms of action of genipin on immunosuppression in the late phase of sepsis. Mice received genipin (1, 2.5 and 5mg/kg, i.v.) at 0 (immediately) and 24h after cecal ligation and puncture (CLP). Twenty-six hours after CLP, the spleen and blood were collected. Genipin improved the survival rate compared to controls. CLP increased the levels of FADD, caspase-8 and caspase-3 protein expression, which were attenuated by genipin. Genipin increased the level of anti-apoptotic B-cell lymphoma-2 protein expression, while it decreased the level of pro-apoptotic phosphorylated-Bim protein expression in CLP. CLP decreased the CD4(+) and CD8(+) T cell population, while it increased the regulatory T cell (Treg) population and the level of cytotoxic T lymphocyte-associated antigen 4 protein expression on Treg. These changes were attenuated by genipin. The splenic levels of interferon-γ and interleukin (IL)-2 were reduced, while the levels of IL-4 and IL-10 increased after CLP. Genipin attenuated these alterations. These findings suggest that genipin reduces immunosuppression by inhibiting T lymphocyte apoptosis in the late phase of sepsis. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Minocycline suppresses oxidative stress and attenuates fetal cardiac myocyte apoptosis triggered by in utero cocaine exposure

    Science.gov (United States)

    Sinha-Hikim, Indrani; Shen, Ruoqing; Nzenwa, Ify; Gelfand, Robert; Mahata, Sushil K.

    2015-01-01

    This study investigates the molecular mechanisms by which minocycline, a second generation tetracycline, prevents cardiac myocyte death induced by in utero cocaine exposure. Timed mated pregnant Sprague-Dawley (SD) rats received one of the following treatments twice daily from embryonic (E) day 15–21 (E15–E21): (i) intraperitoneal (IP) injections of saline (control); (ii) IP injections of cocaine (15 mg/kg BW); and (iii) IP injections of cocaine + oral administration of 25 mg/kg BW of minocycline. Pups were killed on postnatal day 15 (P15). Additional pregnant dams received twice daily IP injections of cocaine (from E15–E21) + oral administration of a relatively higher (37.5 mg/kg BW) dose of minocycline. Minocycline treatment continued from E15 until the pups were sacrificed on P15. In utero cocaine exposure resulted in an increase in oxidative stress and fetal cardiac myocyte apoptosis through activation of c-Jun-NH2-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK)-mediated mitochondria-dependent apoptotic pathway. Continued minocycline treatment from E15 through P15 significantly prevented oxidative stress, kinase activation, perturbation of BAX/BCL-2 ratio, cytochrome c release, caspase activation, and attenuated fetal cardiac myocyte apoptosis after prenatal cocaine exposure. These results demonstrate in vivo cardioprotective effects of minocycline in preventing fetal cardiac myocyte death after prenatal cocaine exposure. Given its proven clinical safety and ability to cross the placental barrier and enter into the fetal circulation, minocycline may be an effective therapy for preventing cardiac consequences of in utero cocaine exposure. PMID:21424555

  16. Myricitrin Attenuates High Glucose-Induced Apoptosis through Activating Akt-Nrf2 Signaling in H9c2 Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Bin Zhang

    2016-07-01

    Full Text Available Hyperglycemia, as well as diabetes mellitus, has been shown to trigger cardiac cell apoptosis. We have previously demonstrated that myricitrin prevents endothelial cell apoptosis. However, whether myricitrin can attenuate H9c2 cell apoptosis remains unknown. In this study, we established an experiment model in H9c2 cells exposed to high glucose. We tested the hypothesis that myricitrin may inhibit high glucose (HG-induced cardiac cell apoptosis as determined by TUNEL staining. Furthermore, myricitrin promoted antioxidative enzyme production, suppressed high glucose-induced reactive oxygen species (ROS production and decreased mitochondrial membrane potential (MMP in H9c2 cells. This agent significantly inhibited apoptotic protein expression, activated Akt and facilitated the transcription of NF-E2-related factor 2 (Nrf2-mediated protein (heme oxygenase-1 (HO-1 and quinone oxidoreductase 1 (NQO-1 expression as determined by Western blotting. Significantly, an Akt inhibitor (LY294002 or HO-1 inhibitor (ZnPP not only inhibited myricitrin-induced HO-1/NQO-1 upregulation but also alleviated its anti-apoptotic effects. In summary, these observations demonstrate that myricitrin activates Nrf2-mediated anti-oxidant signaling and attenuates H9c2 cell apoptosis induced by high glucose via activation of Akt signaling.

  17. Salidroside attenuates chronic hypoxia-induced pulmonary hypertension via adenosine A2a receptor related mitochondria-dependent apoptosis pathway.

    Science.gov (United States)

    Huang, Xiaoying; Zou, Lizhen; Yu, Xiaoming; Chen, Mayun; Guo, Rui; Cai, Hui; Yao, Dan; Xu, Xiaomei; Chen, Yanfan; Ding, Cheng; Cai, Xueding; Wang, Liangxing

    2015-05-01

    Pulmonary arterial hypertension (PAH) is characterized by pulmonary arterial remodeling mainly due to excess cellular proliferation and apoptosis resistance of pulmonary arterial smooth muscle cells (PASMCs). Salidroside, an active ingredient isolated from Rhodiola rosea is proposed to exert protective effects against PAH. However, the function of salidroside in PAH has not been investigated systematically and the underlying mechanisms are not clear. To investigate the effects of salidroside on PAH, the mice in chronic hypoxia model of PAH were given by an increasing concentration of salidroside (0, 16 mg/kg, 32 mg/kg, and 64 mg/kg). After salidroside treatment, the chronic hypoxia-induced right ventricular hypertrophy and pulmonary arterial remodeling were attenuated, suggesting a protective role played by salidroside in PAH. To explore the potential mechanisms, the apoptosis of PASMCs after salidroside treatment under hypoxia conditions were determined in vivo and in vitro, and also the mitochondria-dependent apoptosis factors, Bax, Bcl-2, cytochrome C, and caspase 9 were examined. The results revealed that salidroside reversed hypoxia-induced cell apoptosis resistance at least partially via a mitochondria-dependent pathway. In addition, salidroside upregulated the expression of adenosine A2a receptor (A2aR) in lung tissues of mice and in PASMCs in vitro after hypoxia exposure. Combined the evidence above, we conclude that salidroside can attenuate chronic hypoxia-induced PAH by promoting PASMCs apoptosis via an A2aR related mitochondria dependent pathway. Copyright © 2015. Published by Elsevier Ltd.

  18. Resveratrol Attenuated Low Ambient Temperature-Induced Myocardial Hypertrophy via Inhibiting Cardiomyocyte Apoptosis

    Directory of Open Access Journals (Sweden)

    Kun Yin

    2015-04-01

    Full Text Available Background/Aims: Low ambient temperature is an important risk factor for cardiovascular diseases, and has been shown to lead to cardiac hypertrophy. In this study, we aim to investigate if Resveratrol may inhibit cold exposure-induced cardiac hypertrophy in mice, and if so to clarify its molecular mechanism. Methods: Adult male mice were randomly assigned to Control group (kept at room temperature, Cold group (kept at low air temperature range from 3°C to 5°C and Resveratrol treatment group (100mg/kg/day for eight weeks. HE staining, Masson staining and Transmission electron microscopy were employed to detect cardiac structure, fibrosis and myocardial ultrastructure, respectively. Echocardiogram was used to measure myocardial functions. Western blot was used to detect the expression of MAPK pathway and apoptotic proteins. TUENL assay was performed to evaluate cardiomyocyte apoptosis. qRT-PCR was employed to measure the mRNA level. Results: Cold-treated mice showed a higher heart/body weight ratio and heart weight/tibia length ratio compared with control mice, and Resveratrol treatment may suppress these changes in cold-treated mice. Myocardial cross-section area and cardiac collagen volume were larger in cold group than control group, which also can be attenuated by Resveratrol treatment. Also, Resveratrol improved the ultrastructure damage of myocardium such as myofibril disarray in cold group. Echocardiogram measurement showed that EF and FS values in cold group declined apparently as compared to control group, and Resveratrol may improve the reduction of heart functions. The expression of p-JNK, p-p38 and p-ERK relative to total JNK, p38 and ERK in cold group was not altered in cold group and Resveratrol group as compared to control group. Cold-treated mouse hearts also showed the upregulation of hypertrophy-related miRNA-miR-328 but not miR-23a, and Resveratrol treatment can inhibit the increase of miR-328. Finally, Resveratrol treatment

  19. Interleukin-1 receptor antagonist reduced apoptosis and attenuated intestinal mucositis in a 5-fluorouracil chemotherapy model in mice.

    Science.gov (United States)

    Wu, Zhen-Qian; Han, Xiao-Dong; Wang, Yu; Yuan, Ke-Li; Jin, Zhi-Ming; Di, Jian-Zhong; Yan, Jun; Pan, Ye; Zhang, Pin; Huang, Xin-Yu; Wang, Zhi-Gang; Zheng, Qi

    2011-07-01

    The aim of this study was to investigate the relationship between changes in IL-1β expression and intestinal apoptosis after chemotherapy. And we further determine whether interleukin-1 receptor antagonist (IL-1Ra) reduces apoptosis in vivo after 5-fluorouracil (5-FU) chemotherapy in the small intestine. Intestinal mucositis was induced in mice by intraperitoneal injection of a single dose of 5-FU (200 mg/kg). IL-1Ra (1 mg/kg) was injected subcutaneously twice daily after 5-FU injection. 5-FU-induced intestinal apoptosis was detected by TUNEL assay. The expression of IL-1β induced by 5-FU in local intestinal tissue was examined by RT-PCR and immunohistochemistry. Assessment of 5-FU-induced mucositis (histology, diarrhea scores, bowel weight) was performed. The apoptosis-related proteins were investigated by western blotting analysis. The proliferation of intestine was examined by immunohistological staining of PCNA. Viability of IEC-6 cells was determined using the CCK-8 assay. The apoptosis of IEC-6 cells was examined by Hoechst 33342 staining. The variation of IL-1β expression induced by 5-FU was in accordance with the changes in intestinal apoptosis. Administration of IL-1Ra could block the destructive effect of IL-1β and reduce apoptosis in the small intestinal crypt after chemotherapy. The protection against apoptosis was in accordance with the reduction of the up-regulation of Bax and caspase 3 and the elimination of the down-regulation of Bcl-2 and Bcl-xL. Moreover, IL-1Ra attenuated the severity of intestinal mucositis induced by 5-FU and enhanced intestinal crypt proliferation. In vitro experiments showed that IL-1Ra suppressed apoptosis and increased cell viability in enterocyte IEC-6 cells treated with 5-FU. Additionally, IL-1Ra did not affect the chemotherapeutic effect of 5-FU in tumor CT-26 xenograft mice. Our studies elucidate that IL-1β is quite possibly involved in and mediated the course of intestinal apoptosis after 5-FU chemotherapy

  20. Fermented Chinese formula Shuan-Tong-Ling attenuates ischemic stroke by inhibiting inflammation and apoptosis

    Directory of Open Access Journals (Sweden)

    Zhi-gang Mei

    2017-01-01

    Full Text Available The fermented Chinese formula Shuan-Tong-Ling is composed of radix puerariae (Gegen, salvia miltiorrhiza (Danshen, radix curcuma (Jianghuang, hawthorn (Shanzha, salvia chinensis (Shijianchuan, sinapis alba (Baijiezi, astragalus (Huangqi, panax japonicas (Zhujieshen, atractylodes macrocephala koidz (Baizhu, radix paeoniae alba (Baishao, bupleurum (Chaihu, chrysanthemum (Juhua, rhizoma cyperi (Xiangfu and gastrodin (Tianma, whose aqueous extract was fermented with lactobacillus, bacillus aceticus and saccharomycetes. Shuan-Tong-Ling is a formula used to treat brain diseases including ischemic stroke, migraine, and vascular dementia. Shuan-Tong-Ling attenuated H2O2-induced oxidative stress in rat microvascular endothelial cells. However, the potential mechanism involved in these effects is poorly understood. Rats were intragastrically treated with 5.7 or 17.2 mL/kg Shuan-Tong-Ling for 7 days before middle cerebral artery occlusion was induced. The results indicated Shuan-Tong-Ling had a cerebral protective effect by reducing infarct volume and increasing neurological scores. Shuan-Tong-Ling also decreased tumor necrosis factor-α and interleukin-1β levels in the hippocampus on the ischemic side. In addition, Shuan-Tong-Ling upregulated the expression of SIRT1 and Bcl-2 and downregulated the expression of acetylated-protein 53 and Bax. Injection of 5 mg/kg silent information regulator 1 (SIRT1 inhibitor EX527 into the subarachnoid space once every 2 days, four times, reversed the above changes. These results demonstrate that Shuan-Tong-Ling might benefit cerebral ischemia/reperfusion injury by reducing inflammation and apoptosis through activation of the SIRT1 signaling pathway.

  1. Ghrelin Attenuates Retinal Neuronal Autophagy and Apoptosis in an Experimental Rat Glaucoma Model.

    Science.gov (United States)

    Zhu, Ke; Zhang, Meng-Lu; Liu, Shu-Ting; Li, Xue-Yan; Zhong, Shu-Min; Li, Fang; Xu, Ge-Zhi; Wang, Zhongfeng; Miao, Yanying

    2017-12-01

    Ghrelin, a natural ligand for the growth hormone secretagogue receptor type 1a (GHSR-1a), may protect retinal neurons against glaucomatous injury. We therefore characterized the underlying mechanism of the ghrelin/GHSR-1a-mediated neuroprotection with a rat chronic intraocular hypertension (COH) model. The rat COH model was produced by blocking episcleral veins. A combination of immunohistochemistry, Western blot, TUNEL assay, and retrograde labeling of retinal ganglion cells (RGCs) was used. Elevation of intraocular pressure induced a significant increase in ghrelin and GHSR-1a expression in retinal cells, including RGCs and Müller cells. Western blot confirmed that the protein levels of ghrelin exhibited a transient upregulation at week 2 after surgery (G2w), while the GHSR-1a protein levels were maintained at high levels from G2w to G4w. In COH retinas, the ratio of LC3-II/LC-I and beclin1, two autophagy-related proteins, were increased from G1w to G4w, and the cleavage product of caspase3, an apoptotic executioner, was detected from G2w to G4w. Intraperitoneal injection of ghrelin significantly increased the number of surviving RGCs; inhibited the changes of LC3-II/LC-I, beclin1, and the cleavage products of caspase3; and reduced the number of TUNEL-positive cells in COH retinas. Ghrelin treatment also reversed the decreased levels of p-Akt and p-mTOR, upregulated GHSR-1a protein levels, and attenuated glial fibrillary acidic protein levels in COH retinas. All these results suggest that ghrelin may provide neuroprotective effect in COH retinas through activating ghrelin/GHSR-1a system, which was mediated by inhibiting retinal autophagy, ganglion cell apoptosis, and Müller cell gliosis.

  2. Vagus Nerve Attenuates Hepatocyte Apoptosis upon Ischemia-Reperfusion via α7 Nicotinic Acetylcholine Receptor on Kupffer Cells in Mice.

    Science.gov (United States)

    Ni, Min; Fu, Hui; Huang, Fang; Zhao, Ting; Chen, Ji-Kuai; Li, Dong-Jie; Shen, Fu-Ming

    2016-11-01

    Hepatic ischemia-reperfusion (HIR) injury is a complication of liver surgery. As much as 50% of hepatocytes undergo apoptosis within the first 24 h of reperfusion. The neurotransmitters of the vagus nerve can activate α7 nicotinic acetylcholine receptor (α7nAChR) on macrophages. The function of Kupffer cells (KCs) determines HIR injury. We hypothesize that the vagus nerve could attenuate HIR-induced hepatocyte apoptosis by activating α7nAChR on KCs. Hepatic vagotomized C57BL/6J mice, KC-eliminated C57BL/6J mice, and α7nAChR mice were used for HIR. Primary KCs and hepatocytes were subjected to hypoxia/reoxygenation (HR). Liver injury, hepatocyte apoptosis, reactive oxygen species (ROS) production, and soluble CD163 were measured. Hepatic vagotomy and α7nAChR caused higher levels of alanine transaminase and liver caspase-3 and -8 activity by HIR. Activating α7nAChR attenuated these changes in wild-type but not in the α7nAChR mice. Furthermore, activating α7nAChR diminished hepatic injury and reduced liver apoptosis by HIR in vagotomized mice. In vitro, activating α7nAChR reduced apoptosis of hepatocytes cocultured with KCs that suffered HR. Similar to the effects by catalase, activating α7nAChR on KCs reduced ROS and H2O2 by HR. The supernatant from KCs, with α7nAChR activated or catalase treated, prevented hepatocyte apoptosis by HR. Finally, KC elimination reduced HIR-induced H2O2 production in mice. Activating α7nAChR significantly attenuated soluble CD163 both in mice by HIR (serum: 240 ± 34 vs. 446 ± 72; mean ± SD; n = 8; P vagus nerve could minimize HIR-induced liver apoptosis through activating α7nAChR on KCs possibly by preventing their excessive ROS production.

  3. TRAIL-induced kinases activation and apoptosis : towards improved death receptor targeted therapy for lung cancer

    NARCIS (Netherlands)

    Azijli, Kaamar

    2013-01-01

    Longkanker is een van de meest voorkomende soorten kanker in de westerse wereld en verantwoordelijk voor het grootste aantal kanker gerelateerde sterftegevallen. Huidige behandelingen met chemotherapie en radiotherapie zijn vaak niet voldoende effectief. Nieuwe behandelmethoden van longkanker zijn

  4. The ER stress inducer DMC enhances TRAIL-induced apoptosis in glioblastoma

    NARCIS (Netherlands)

    van Roosmalen, Ingrid A. M.; Dos Reis, Carlos R; Setroikromo, Rita; Yuvaraj, Saravanan; Joseph, Justin V.; Tepper, Pieter G.; Kruyt, Frank A. E.; Quax, Wim J.

    2014-01-01

    Glioblastoma multiforme (GBM) is the most aggressive malignant brain tumour in humans and is highly resistant to current treatment modalities. We have explored the combined treatment of the endoplasmic reticulum (ER) stress-inducing agent 2,5-dimethyl-celecoxib (DMC) and TNF-related

  5. Inhibition of PKR protects against H2O2-induced injury on neonatal cardiac myocytes by attenuating apoptosis and inflammation.

    Science.gov (United States)

    Wang, Yongyi; Men, Min; Xie, Bo; Shan, Jianggui; Wang, Chengxi; Liu, Jidong; Zheng, Hui; Yang, Wengang; Xue, Song; Guo, Changfa

    2016-12-08

    Reactive oxygenation species (ROS) generated from reperfusion results in cardiac injury through apoptosis and inflammation, while PKR has the ability to promote apoptosis and inflammation. The aim of the study was to investigate whether PKR is involved in hydrogen peroxide (H2O2) induced neonatal cardiac myocytes (NCM) injury. In our study, NCM, when exposed to H2O2, resulted in persistent activation of PKR due to NCM endogenous RNA. Inhibition of PKR by 2-aminopurine (2-AP) or siRNA protected against H2O2 induced apoptosis and injury. To elucidate the mechanism, we revealed that inhibition of PKR alleviated H2O2 induced apoptosis companied by decreased caspase3/7 activity, BAX and caspase-3 expression. We also revealed that inhibition of PKR suppressed H2O2 induced NFκB pathway and NLRP3 activation. Finally, we found ADAR1 mRNA and protein expression were both induced after H2O2 treatment through STAT-2 dependent pathway. By gain and loss of ADAR1 expression, we confirmed ADAR1 modulated PKR activity. Therefore, we concluded inhibition of PKR protected against H2O2-induced injury by attenuating apoptosis and inflammation. A self-preservation mechanism existed in NCM that ADAR1 expression is induced by H2O2 to limit PKR activation simultaneously. These findings identify a novel role for PKR/ADAR1 in myocardial reperfusion injury.

  6. Expression of TRAIL (TNF-related apoptosis-inducing ligand) and its receptors in normal colonic mucosa, adenomas, and carcinomas

    NARCIS (Netherlands)

    Koornstra, JJ; Kleibeuker, JH; van Geelen, CMM; Rijcken, FEM; Hollema, H; de Vries, EGE; de Jong, S

    Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis intumour cell lines. Four membrane-bound receptors for TRAIL have been identified, two apoptosis-mediating receptors, DR4 and DR5, and two apoptosis-inhibiting receptors, DcR1 and DcR2. The aim of this study was to

  7. Anti-TNF-alpha antibody attenuates subarachnoid hemorrhage-induced apoptosis in the hypothalamus by inhibiting the activation of Erk

    Directory of Open Access Journals (Sweden)

    Ma L

    2018-02-01

    -induced apoptosis in the hypothalamus. Moreover, we found that Erk activation was necessary for apoptosis after SAH and that the microinfusion of anti-TNF-α antibody could inhibit apoptosis by suppressing the increase of p-Erk in the hypothalamus. Finally, our data indicated that the infusion of anti-TNF-α antibody could improve anxiety-like behavior. Conclusion: Collectively, our data demonstrate that anti-TNF-α antibody attenuates apoptosis in the hypothalamus by inhibiting the activation of Erk, which plays an important role in the treatment of SAH. Keywords: apoptosis, subarachnoid hemorrhage, hypothalamus, tumor necrosis factor-alpha, Erk

  8. Cardiac Shock Wave Therapy Attenuates H9c2 Myoblast Apoptosis by Activating the AKT Signal Pathway

    Directory of Open Access Journals (Sweden)

    Weiwei Yu

    2014-04-01

    Full Text Available Background: Previous studies have demonstrated that Cardiac Shock Wave Therapy (CSWT improves myocardial perfusion and cardiac function in a porcine model of chronic myocardial ischemia and also ameliorates myocardial ischemia in patients with severe coronary artery disease (CAD. Apoptosis plays a key role in ischemic myocardial pathogenesis. However, it remains unclear whether CSWT is beneficial for ischemia/hypoxia (I/H-induced myocardial cell apoptosis and by which mechanism CSWT could improve heart function. We put forward the hypothesis that CSWT might protect heart function during ischemia/hypoxia by decreasing apoptosis. Methods: We generated ischemia/hypoxia (I/H-induced apoptosis in the H9c2 myoblast cell line to examine the CSWT function and possible mechanisms. H9c2 cells were treated under hypoxic serum-starved conditions for 24 h and then treated with or without CSWT (500 shots, 0.06, 0.09, 0.12mJ/mm2. The apoptotic cell rate was determined by flow cytometry assay, cell viability was examined by the MTT assay, nuclear fragmentation was detected by Hoechst 33342 staining, and the mitochondrial-mediated intrinsic pathway of apoptosis was assessed by the expression of Bax and Bcl-2 protein and Caspase3 activation. Results: First, apoptosis could be induced by ischemia/hypoxia in H9c2 cells. Second, CSWT attenuates the cell death and decreases the H9c2 cell apoptosis rate induced by ischemia and hypoxia. Third, CSWT suppresses the expression of apoptosis molecules that regulate the intrinsic pathway of apoptosis in H9c2 cells. Fourth, CSWT increases the phosphorylation of AKT, which indicates the activation of the PI3K-AKT pathway. Conclusions: These results indicate that CSWT exerts a protective effect against I/H-induced cell death, potentially by preventing the activation of components of the mitochondrial-dependent intrinsic apoptotic pathway. We also demonstrate that the PI3K-Akt pathway may be involved in the CSWT effects on

  9. Galectin-3 leads to attenuation of apoptosis through Bax heterodimerization in human thyroid carcinoma cells.

    Science.gov (United States)

    Harazono, Yosuke; Kho, Dhong Hyo; Balan, Vitaly; Nakajima, Kosei; Zhang, Tianpeng; Hogan, Victor; Raz, Avraham

    2014-10-30

    Cancer cells survive escaping normal apoptosis and the blocks in apoptosis that keep cancer cells alive are promising candidates for targeted therapy. Galectin-3 (Gal-3) is, a member of the lectin family, which is involved in cell growth, adhesion, proliferation and apoptosis. It remains elusive to understand the role of Gal-3 on apoptosis in thyroid carcinoma cells. Here, we report that Gal-3 heterodimerizes Bax, mediated by the carbohydrate recognition domain (CRD) of Gal-3, leading to anti-apoptotic characteristic. Gal-3/Bax interaction was suppressed by an antagonist of Gal-3, in which in turn cells became sensitive to apoptosis. The data presented here highlight that Gal-3 is involved in the anti-apoptosis of thyroid carcinoma cells. Thus, it suggests that targeting Gal-3 may lead to an improved therapeutic modality for thyroid cancer.

  10. Syndecan-1 Attenuates Lung Injury during Influenza Infection by Potentiating c-Met Signaling to Suppress Epithelial Apoptosis.

    Science.gov (United States)

    Brauer, Rena; Ge, Lingyin; Schlesinger, Saundra Y; Birkland, Timothy P; Huang, Ying; Parimon, Tanyalak; Lee, Vivian; McKinney, Bonnie L; McGuire, John K; Parks, William C; Chen, Peter

    2016-08-01

    Syndecan-1 is a cell surface heparan sulfate proteoglycan primarily expressed in the lung epithelium. Because the influenza virus is tropic to the airway epithelium, we investigated the role of syndecan-1 in influenza infection. To determine the mechanism by which syndecan-1 regulates the lung mucosal response to influenza infection. Wild-type (WT) and Sdc1(-/-) mice were infected with a H1N1 virus (PR8) as an experimental model of influenza infection. Human and murine airway epithelial cell cultures were also infected with PR8 to study the mechanism by which syndecan-1 regulates the inflammatory response. We found worsened outcomes and lung injury in Sdc1(-/-) mice compared with WT mice after influenza infection. Our data demonstrated that syndecan-1 suppresses bronchial epithelial apoptosis during influenza infection to limit widespread lung inflammation. Furthermore, we determined that syndecan-1 attenuated apoptosis by crosstalking with c-Met to potentiate its cytoprotective signals in airway epithelial cells during influenza infection. Our work shows that cell-associated syndecan-1 has an important role in regulating lung injury. Our findings demonstrate a novel mechanism in which cell membrane-associated syndecan-1 regulates the innate immune response to influenza infection by facilitating cytoprotective signals through c-Met signaling to limit bronchial epithelial apoptosis, thereby attenuating lung injury and inflammation.

  11. Attenuation of PTEN increases p21 stability and cytosolic localization in kidney cancer cells: a potential mechanism of apoptosis resistance

    Directory of Open Access Journals (Sweden)

    Baksh Shairaz

    2007-02-01

    Full Text Available Abstract Background The PTEN (Phosphatase and Tensin homolog deleted on chromosome Ten tumor suppressor gene is frequently mutated or deleted in a wide variety of solid tumors, and these cancers are generally more aggressive and difficult to treat than those possessing wild type PTEN. While PTEN lies upstream of the phosphoinositide-3 kinase signaling pathway, the mechanisms that mediate its effects on tumor survival remain incompletely understood. Renal cell carcinoma (RCC is associated with frequent treatment failures (~90% in metastatic cases, and these tumors frequently contain PTEN abnormalities. Results Using the ACHN cell line containing wild type PTEN, we generated a stable PTEN knockdown RCC cell line using RNA interference. We then used this PTEN knockdown cell line to show that PTEN attenuation increases resistance to cisplatin-induced apoptosis, a finding associated with increased levels of the cyclin kinase inhibitor p21. Elevated levels of p21 result from stabilization of the protein, and they are dependent on the activities of phosphoinositide-3 kinase and Akt. More specifically, the accumulation of p21 occurs preferentially in the cytosolic compartment, which likely contributes to both cell cycle progression and resistance to apoptosis. Conclusion Since p21 regulates a decision point between repair and apoptosis after DNA damage, our data suggest that p21 plays a key role in mechanisms used by PTEN-deficient tumors to escape chemotherapy. This in turn raises the possibility to use p21 attenuators as chemotherapy sensitizers, an area under active continuing investigation in our laboratories.

  12. Attenuation of PTEN increases p21 stability and cytosolic localization in kidney cancer cells: a potential mechanism of apoptosis resistance

    Science.gov (United States)

    Lin, Pei-Yin; Fosmire, Susan P; Park, See-Hyoung; Park, Jin-Young; Baksh, Shairaz; Modiano, Jaime F; Weiss, Robert H

    2007-01-01

    Background The PTEN (Phosphatase and Tensin homolog deleted on chromosome Ten) tumor suppressor gene is frequently mutated or deleted in a wide variety of solid tumors, and these cancers are generally more aggressive and difficult to treat than those possessing wild type PTEN. While PTEN lies upstream of the phosphoinositide-3 kinase signaling pathway, the mechanisms that mediate its effects on tumor survival remain incompletely understood. Renal cell carcinoma (RCC) is associated with frequent treatment failures (~90% in metastatic cases), and these tumors frequently contain PTEN abnormalities. Results Using the ACHN cell line containing wild type PTEN, we generated a stable PTEN knockdown RCC cell line using RNA interference. We then used this PTEN knockdown cell line to show that PTEN attenuation increases resistance to cisplatin-induced apoptosis, a finding associated with increased levels of the cyclin kinase inhibitor p21. Elevated levels of p21 result from stabilization of the protein, and they are dependent on the activities of phosphoinositide-3 kinase and Akt. More specifically, the accumulation of p21 occurs preferentially in the cytosolic compartment, which likely contributes to both cell cycle progression and resistance to apoptosis. Conclusion Since p21 regulates a decision point between repair and apoptosis after DNA damage, our data suggest that p21 plays a key role in mechanisms used by PTEN-deficient tumors to escape chemotherapy. This in turn raises the possibility to use p21 attenuators as chemotherapy sensitizers, an area under active continuing investigation in our laboratories. PMID:17300726

  13. Restoration of Akt activity by the bisperoxovanadium compound bpV(pic) attenuates hippocampal apoptosis in experimental neonatal pneumococcal meningitis.

    Science.gov (United States)

    Sury, Matthias D; Vorlet-Fawer, Lorianne; Agarinis, Claudia; Yousefi, Shida; Grandgirard, Denis; Leib, Stephen L; Christen, Stephan

    2011-01-01

    Pneumococcal meningitis causes apoptosis of developing neurons in the dentate gyrus of the hippocampus. The death of these cells is accompanied with long-term learning and memory deficits in meningitis survivors. Here, we studied the role of the PI3K/Akt (protein kinase B) survival pathway in hippocampal apoptosis in a well-characterized infant rat model of pneumococcal meningitis. Meningitis was accompanied by a significant decrease of the PI3K product phosphatidylinositol 3,4,5-trisphosphate (PIP(3)) and of phosphorylated (i.e., activated) Akt in the hippocampus. At the cellular level, phosphorylated Akt was decreased in both the granular layer and the subgranular zone of the dentate gyrus, the region where the developing neurons undergo apoptosis. Protein levels and activity of PTEN, the major antagonist of PI3K, were unaltered by infection, suggesting that the observed decrease in PIP(3) and Akt phosphorylation is a result of decreased PI3K signaling. Treatment with the PTEN inhibitor bpV(pic) restored Akt activity and significantly attenuated hippocampal apoptosis. Co-treatment with the specific PI3K inhibitor LY294002 reversed the restoration of Akt activity and attenuation of hippocampal apoptosis, while it had no significant effect on these parameters on its own. These results indicate that the inhibitory effect of bpV(pic) on apoptosis was mediated by PI3K-dependent activation of Akt, strongly suggesting that bpV(pic) acted on PTEN. Treatment with bpV(pic) also partially inhibited the concentration of bacteria and cytokines in the CSF, but this effect was not reversed by LY294002, indicating that the effect of bpV(pic) on apoptosis was independent of its effect on CSF bacterial burden and cytokine levels. These results indicate that the PI3K/Akt pathway plays an important role in the death and survival of developing hippocampal neurons during the acute phase of pneumococcal meningitis. Copyright © 2010 Elsevier Inc. All rights reserved.

  14. Attenuated apoptosis response to Fas-ligand in active ulcerative colitis

    DEFF Research Database (Denmark)

    Seidelin, Jakob B; Nielsen, Ole H

    2008-01-01

    BACKGROUND: From mainly carcinoma cell line studies, apoptosis has been thought to play a major role in the pathogenesis of ulcerative colitis (UC). Apoptosis has been suggested to be due to a Fas ligand / Fas receptor interaction, but has never been studied in cells from patients with active UC...

  15. Punicalagin, a polyphenol in pomegranate juice, downregulates p53 and attenuates hypoxia-induced apoptosis in cultured human placental syncytiotrophoblasts.

    Science.gov (United States)

    Chen, Baosheng; Longtine, Mark S; Nelson, D Michael

    2013-11-15

    Oxidative stress is associated with placental dysfunction and suboptimal pregnancy outcomes. Therapeutic interventions to limit placental injury from oxidative stress are lacking. Punicalagin is an ellagitannin and a potent antioxidant in pomegranate juice. We showed that both pomegranate juice and punicalagin decrease oxidative stress and apoptosis in cultured syncytiotrophoblasts. p53 is involved in the oxidative stress-induced apoptosis in trophoblasts. We now test the hypothesis that punicalagin limits trophoblast injury in vitro by regulating the levels of p53. We examined the expression of p53, mouse double minute 2 homolog, p21, hypoxia-inducible factor (HIF) α, and selected members of the B cell lymphoma 2 (BCL2) family of proteins in cultured syncytiotrophoblasts exposed to ≤1% oxygen in the absence or presence of punicalagin. We found that punicalagin attenuated hypoxia-induced apoptosis in syncytiotrophoblasts, as quantified by levels of cleaved poly-ADP ribose polymerase. This protective effect was in part mediated by reduced p53 activity shown by decreased expression of p21, lower HIF1α expression, and limited activity of caspases 9 and 3. There was no change in expression of proteins in the BCL2 family, which are also important in apoptosis. The data support a role for downregulation of p53 in the protection of human trophoblasts by punicalagin.

  16. AT1R blocker losartan attenuates intestinal epithelial cell apoptosis in a mouse model of Crohn's disease.

    Science.gov (United States)

    Liu, Tian-Jing; Shi, Yong-Yan; Wang, En-Bo; Zhu, Tong; Zhao, Qun

    2016-02-01

    Angiotensin II, which is the main effector of the renin‑angiotensin system, has an important role in intestinal inflammation via the angiotensin II type 1 receptor (AT1R). The present study aimed to investigate the protective effects of the AT1R blocker losartan on 2,4,6-trinitrobenzenesulphonic acid (TNBS)-induced colitis. Losartan was administered to male adult C57BL/6 J mice 2 weeks prior to the induction of colitis, and images of the whole colon were captured to record changes, scored according to a microscopic scoring system, and reverse transcription-quantitative polymerase chain reaction were performed in order to investigate colonic inflammation. In addition, intestinal epithelial barrier permeability was evaluated, and intestinal epithelial cell (IEC) apoptosis was measured using terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, and apoptosis-related protein expression levels were detected by western blotting. Losartan was able to attenuate TNBS-induced body weight loss and colonic damage. Furthermore, T helper 1-mediated proinflammatory cytokines were suppressed by losartan, and gut permeability was largely preserved. TUNEL staining revealed reduced IEC apoptosis in the losartan-treated mice. Losartan also increased the B-cell lymphoma 2 (Bcl2)/Bcl-2-associated X protein (Bax) ratio and suppressed caspase-3 induction. These results suggested that the AT1R blocker losartan may attenuate TNBS-induced colitis by inhibiting the apoptosis of IECs. The effects of losartan were partially mediated through increasing the Bcl-2/Bax ratio and subsequently suppressing the induction of the proapoptotic mediator caspase-3.

  17. Bicyclol attenuates tetracycline-induced fatty liver associated with inhibition of hepatic ER stress and apoptosis in mice.

    Science.gov (United States)

    Yao, Xiao-Min; Li, Yue; Li, Hong-Wei; Cheng, Xiao-Yan; Lin, Ai-Bin; Qu, Jun-Ge

    2016-01-01

    Endoplasmic reticulum (ER) stress is known to be involved in the development of several metabolic disorders, including non-alcoholic fatty liver disease (NAFLD). Tetracycline can cause hepatic steatosis, and ER stress may be involved in tetracycline-induced fatty liver. Our previous study showed that bicyclol has been proven to protect against tetracycline-induced fatty liver in mice, and ER stress may also be involved in bicyclol's hepatoprotective effect. Therefore, this study was performed to investigate the underlying mechanisms associated with ER stress and apoptosis, by which bicyclol attenuated tetracycline-induced fatty liver in mice. Bicyclol (300 mg/kg) was given to mice by gavage 3 times. Tetracycline (200 mg/kg, intraperitoneally) was injected at 1 h after the last dose of bicyclol. At 6 h and 24 h after single dose of tetracycline injection, serum ALT, AST, TG, CHO and hepatic histopathological examinations were performed to evaluate liver injuries. Hepatic steatosis was assessed by the accumulation of hepatic TG and CHO. Moreover, hepatic apoptosis and ER stress related markers were determined by TUNEL, real-time PCR, and western blot. As a result, bicyclol significantly protected against tetracycline-induced fatty liver as evidenced by the decrease of elevated serum transaminases and hepatic triglyceride, and the attenuation of histopathological changes in mice. In addition, bicyclol remarkably alleviated hepatic apoptosis and the gene expression of caspase-3, and increased the gene expression of XIAP. The gene expressions of ER stress-related markers, including CHOP, GRP78, IRE-1α, and ATF6, which were downregulated by bicyclol pretreatment in tetracycline-injected mice. These results suggested that bicyclol protected tetracycline-induced fatty liver partly due to its ability of anti-apoptosis associated with ER stress.

  18. Heat Killed Attenuated Leishmania Induces Apoptosis of HepG2 Cells Through ROS Mediated p53 Dependent Mitochondrial Pathway.

    Science.gov (United States)

    Bose, Dipayan; Banerjee, Somenath; Das, Subhadip; Chatterjee, Nabanita; Saha, Krishna Das

    2016-01-01

    Cytotoxic effect of attenuated Leishmania on liver cancer cells by inducing ROS generation. Spectrophotometric study to analyze cell death and levels of different active caspases. Flow cytometric study was done to analyze apoptosis induction and ROS generation and levels of different protein. Western blot analysis was performed to study the levels of protein. Confocal microscopy was done to ascertain the expression of different apoptotic markers. We have now observed that attenuated Leishmania donovani UR6 also has potentiality towards growth inhibition of HepG2 cells and investigated the mechanism of action. The effect is associated with increased DNA fragmentation, rise in number of annexinV positive cells, and cell cycle arrest at G1 phase. The detection of unregulated levels of active PARP, cleaved caspases 3 and 9, cytosolic cytochrome C, Bax, and Bad, along with the observed downregulation of Bcl-2 and loss of mitochondrial membrane potential suggested the involvement of mitochondrial pathway. Enhanced ROS and p53 levels regulate the apoptosis of HepG2 cells. NAC was found to inhibit p53 production but PFT-α has no effect on ROS generation. In conclusion, Leishmania donovani UR6 efficiently induces apoptosis in HepG2 cells through ROS mediated p53 dependent mitochondrial pathway. It has been reported earlier that some parasites show prominent cytotoxic effect and prevent tumor growth. From our study we found that Leishmania donovani UR6 efficiently induced apoptosis in HepG2 cells through ROS mediated p53 dependent mitochondrial pathway. This study has rejuvenated the age old idea of bio-therapy. © 2016 The Author(s) Published by S. Karger AG, Basel.

  19. Heat Killed Attenuated Leishmania Induces Apoptosis of HepG2 Cells Through ROS Mediated p53 Dependent Mitochondrial Pathway

    Directory of Open Access Journals (Sweden)

    Dipayan Bose

    2016-03-01

    Full Text Available Background/Aims: Cytotoxic effect of attenuated Leishmania on liver cancer cells by inducing ROS generation. Methods: Spectrophotometric study to analyze cell death and levels of different active caspases. Flow cytometric study was done to analyze apoptosis induction and ROS generation and levels of different protein. Western blot analysis was performed to study the levels of protein. Confocal microscopy was done to ascertain the expression of different apoptotic markers. Results: We have now observed that attenuated Leishmania donovani UR6 also has potentiality towards growth inhibition of HepG2 cells and investigated the mechanism of action. The effect is associated with increased DNA fragmentation, rise in number of annexinV positive cells, and cell cycle arrest at G1 phase. The detection of unregulated levels of active PARP, cleaved caspases 3 and 9, cytosolic cytochrome C, Bax, and Bad, along with the observed downregulation of Bcl-2 and loss of mitochondrial membrane potential suggested the involvement of mitochondrial pathway. Enhanced ROS and p53 levels regulate the apoptosis of HepG2 cells. NAC was found to inhibit p53 production but PFT-α has no effect on ROS generation. In conclusion, Leishmania donovani UR6 efficiently induces apoptosis in HepG2 cells through ROS mediated p53 dependent mitochondrial pathway. Conclusion: It has been reported earlier that some parasites show prominent cytotoxic effect and prevent tumor growth. From our study we found that Leishmania donovani UR6 efficiently induced apoptosis in HepG2 cells through ROS mediated p53 dependent mitochondrial pathway. This study has rejuvenated the age old idea of bio-therapy.

  20. Curcumin enhances the apoptosis-inducing potential of TRAIL in prostate cancer cells: molecular mechanisms of apoptosis, migration and angiogenesis

    OpenAIRE

    Shankar, Sharmila; Chen, Qinghe; Sarva, Krishna; Siddiqui, Imtiaz; Srivastava, Rakesh K

    2007-01-01

    Background: We have recently shown that curcumin (a diferuloylmethane) inhibits growth and induces apoptosis, and also demonstrated that TRAIL induces apoptosis by binding to specific cell surface death receptors in prostate cancer cells. The objectives of this paper were to investigate the molecular mechanisms by which curcumin enhanced the apoptosis-inducing potential of TRAIL in prostate cancer cells.Results: Curcumin enhanced the apoptosis-inducing potential of TRAIL in androgen-unrespons...

  1. Lutein Attenuates Both Apoptosis and Autophagy upon Cobalt (II) Chloride-Induced Hypoxia in Rat Műller Cells.

    Science.gov (United States)

    Fung, Frederic K C; Law, Betty Y K; Lo, Amy C Y

    2016-01-01

    Retinal ischemia/reperfusion injury is a common feature of various retinal diseases such as glaucoma and diabetic retinopathy. Lutein, a potent anti-oxidant, is used to improve visual function in patients with age-related macular degeneration (AMD). Lutein attenuates apoptosis, oxidative stress and inflammation in animal models of acute retinal ischemia/hypoxia. Here, we further show that lutein improved Műller cell viability and enhanced cell survival upon hypoxia-induced cell death through regulation of intrinsic apoptotic pathway. Moreover, autophagy was activated upon treatment of cobalt (II) chloride, indicating that hypoxic injury not only triggered apoptosis but also autophagy in our in vitro model. Most importantly, we report for the first time that lutein treatment suppressed autophagosome formation after hypoxic insult and lutein administration could inhibit autophagic event after activation of autophagy by a pharmacological approach (rapamycin). Taken together, lutein may have a beneficial role in enhancing glial cell survival after hypoxic injury through regulating both apoptosis and autophagy.

  2. Andrographolide Attenuates LPS-Induced Cardiac Malfunctions Through Inhibition of IκB Phosphorylation and Apoptosis in Mice

    Directory of Open Access Journals (Sweden)

    Jinlong Zhang

    2015-11-01

    Full Text Available Background/Aims: Cardiac malfunction is a common complication in sepsis and significantly increases the mortality of patients in septic shock. However, no studies have examined whether andrographolide (And reduces LPS-induced myocardial malfunction. Methods: Left ventricular systolic and diastolic functions were examined using echocardiography. TNF-a and IL-1ß protein levels were detected by an enzyme-linked immunosorbent assay (ELISA. NO oxidation products were determined using Griess reagent. Protein expression levels of inhibitors of NF-κBa (IκB and phospho-IκB were determined via Western blot. Oxidative injury was determined by measuring myocardial lipid peroxidation and superoxide dismutase activity. Cardiac apoptosis was examined by terminal deoxynucleotidyl transferase-mediated dUTP nickend-labeling (TUNEL and cardiac caspase 3/7 activity. Results: And blunted LPS-induced myocardial malfunctions in mice. LPS induced TNF-a, IL-1ß, and NO production as well as I-κB phosphorylation. Cardiac apoptosis was attenuated via incubation with And, but the extent of oxidative injury remained unaffected. Conclusion: And prevents LPS-induced cardiac malfunctions in mice by inhibiting TNF-a, IL-1ß, and NO production, IκB phosphorylation, and cardiac apoptosis, indicating that And may be a potential agent for preventing myocardial malfunction during sepsis.

  3. Astaxanthin Attenuates the Apoptosis of Retinal Ganglion Cells in db/db Mice by Inhibition of Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Xiao-Li Kang

    2013-03-01

    Full Text Available Diabetic retinopathy is a common diabetic eye disease caused by changes in retinal ganglion cells (RGCs. It is an ocular manifestation of systemic disease, which affects up to 80% of all patients who have had diabetes for 10 years or more. The genetically diabetic db/db mouse, as a model of type-2 diabetes, shows diabetic retinopathy induced by apoptosis of RGCs. Astaxanthin is a carotenoid with powerful antioxidant properties that exists naturally in various plants, algae and seafood. Here, astaxanthin was shown to reduce the apoptosis of RGCs and improve the levels of oxidative stress markers, including superoxide anion, malondialdehyde (MDA, a marker of lipid peroxidation, 8-hydroxy-2-deoxyguanosine (8-OHdG, indicator of oxidative DNA damage and MnSOD (manganese superoxide dismutase activity in the retinal tissue of db/db mouse. In addition, astaxanthin attenuated hydrogen peroxide(H2O2-induced apoptosis in the transformed rat retinal ganglion cell line RGC-5. Therefore, astaxanthin may be developed as an antioxidant drug to treat diabetic retinopathy.

  4. Garlic oil attenuates the cardiac apoptosis in hamster-fed with hypercholesterol diet.

    Science.gov (United States)

    Cheng, Yi-Chang; Chang, Mu-Hsin; Tsai, Cheng-Chih; Chen, Tung-Sheng; Fan, Chung-Chen; Lin, Chien-Chung; Lai, Chao-Hung; Tsai, Fuu-Jen; Lin, James A; Huang, Chih-Yang

    2013-02-15

    Hypercholesterolemia is a well established risk factor for cardiac cell apoptosis. The purpose of this study is to evaluate the effects of garlic oil on cardiac apoptosis induced by a hypercholesterol diet. Twenty-four male Golden-Syrian hamsters at 3 months of age were randomly divided into three groups, control, cholesterol and garlic oil groups received a chow diet, chow diet with 2% cholesterol, and chow diet with 2% cholesterol and 1% garlic oil for 8 weeks, respectively. The TUNEL-positive apoptotic cells, and several apoptotic proteins were significantly induced in the excised left ventricle in cholesterol group, whereas significant reduction was observed in cholesterol plus garlic oil group. The IGFI receptor dependent survival pathway was inhibited in cholesterol group whereas it was obviously reversed in cholesterol plus garlic oil group. Our results suggest that administration of garlic oil shows protective effects on cardiac apoptosis in rats with high cholesterol intake. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Bid-deficient fish delay grass carp reovirus (GCRV) replication and attenuate GCRV-triggered apoptosis

    OpenAIRE

    He, Libo; Wang, Hao; Luo, Lifei; Li, Yongming; Huang, Rong; Liao, Lanjie; Zhu, Zuoyan; Wang, Yaping

    2017-01-01

    Bid, BH3-interacting domain death agonist, is a pro-apoptotic BH3-only member of Bcl-2 family, playing an important role in apoptosis. In the study, Bid genes from grass carp (Ctenopharyngodon idellus) and rare minnow (Gobiocypris rarus), named CiBid and GrBid, were cloned and analyzed. Bid was constitutively expressed in all examined tissues of grass carp, but the expression level varied in different tissues. Following grass carp reovirus (GCRV) stimulation in vivo, Bid and apoptosis related...

  6. L-carnitine attenuates H2O2-induced neuron apoptosis via inhibition of endoplasmic reticulum stress.

    Science.gov (United States)

    Ye, Junli; Han, Yantao; Chen, Xuehong; Xie, Jing; Liu, Xiaojin; Qiao, Shunhong; Wang, Chunbo

    2014-12-01

    Both oxidative stress and endoplasmic reticulum stress (ER stress) have been linked to pathogenesis of neurodegenerative diseases. Our previous study has shown that L-carnitine may function as an antioxidant to inhibit H2O2-induced oxidative stress in neuroblastoma SH-SY5Y cells. To further explore the neuroprotection of L-carnitine, here we study the effects of L-carnitine on the ER stress response in H2O2-induced SH-SY5Y cell injury. Our results showed that L-carnitine pretreatment could increase cell viability; inhibit apoptosis and ROS accumulation caused by H2O2 or tunicamycin (TM). L-carnitine suppress the endoplasmic reticulum dilation and activation of ER stress-associated proteins including glucose-regulated protein 78 (GRP78), CCAAT/enhancer-binding protein-homologous protein (CHOP), JNK, Bax and Bim induced by H2O2 or TM. In addition, H2O2-induced cell apoptosis and activation of ER stress can also be attenuated by antioxidant N-acetylcysteine (NAC), CHOP siRNA and the inhibitor of ER stress 4-phenylbutyric acid (4-PBA). Taken together, our results demonstrated that H2O2 could trigger both oxidative stress and ER stress in SH-SY5Y cells, and ER stress participated in SH-SY5Y apoptosis mediated by H2O2-induced oxidative stress. CHOP/Bim or JNK/Bim-dependent ER stress signaling pathways maybe related to the neuroprotective effects of L-carnitine against H2O2-induced apoptosis and oxidative injury. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Human recombinant factor VIIa may improve heat intolerance in mice by attenuating hypothalamic neuronal apoptosis and damage.

    Science.gov (United States)

    Hsu, Chuan-Chih; Chen, Sheng-Hsien; Lin, Cheng-Hsien; Yung, Ming-Chi

    2014-10-01

    Intolerance to heat exposure is believed to be associated with hypothalamo-pituitary-adrenocortical (HPA) axis impairment [reflected by decreases in blood concentrations of both adrenocorticotrophic-hormone (ACTH) and corticosterone]. The purpose of this study was to determine the effect of human recombinant factor VIIa (rfVIIa) on heat intolerance, HPA axis impairment, and hypothalamic inflammation, ischemic and oxidative damage, and apoptosis in mice under heat stress. Immediately after heat stress (41.2 °C for 1 h), mice were treated with vehicle (1 mL/kg of body weight) or rfVIIa (65-270 µg/kg of body weight) and then returned to room temperature (26 °C). Mice still alive on day 4 of heat exposure were considered survivors. Cellular ischemia markers (e.g., glutamate, lactate-to-pyruvate ratio), oxidative damage markers (e.g., nitric oxide metabolite, hydroxyl radials), and pro-inflammatory cytokines (e.g., interleukin-6, interleukin-1β, tumor necrosis factor-α) in hypothalamus were determined. In addition, blood concentrations of both ACTH and corticosterone were measured. Hypothalamic cell damage was assessed by determing the neuronal damage scores, whereas the hypothalamic cell apoptosis was determined by assessing the numbers of cells stained with terminal deoxynucleotidyl transferase-mediated αUTP nick-end labeling, caspase-3-positive cells, and platelet endothelial cell adhesion molecula-1-positive cells in hypothalamus. Compared with vehicle-treated heated mice, rfVIIa-treated heated mice had significantly higher fractional survival (8/10 vs 1/10), lesser thermoregulatory deficit (34.1 vs 24.8 °C), lesser extents of ischemic, oxidative, and inflammatory markers in hypothalamus, lesser neuronal damage scores and apoptosis in hypothalamus, and lesser HPA axis impairment. Human recombinant factor VIIa appears to exert a protective effect against heatstroke by attenuating hypothalamic cell apoptosis (due to ischemic, inflammatory, and oxidative damage

  8. Sirt1 attenuates camptothecin-induced apoptosis through caspase-3 pathway in porcine preadipocytes

    Science.gov (United States)

    Adipose tissue is an important energy reservoir, and its over-development results in obesity in humans or body fat over-deposition in livestock. Loss of preadipocytes through apoptosis has been proposed as an alternative way to reduce adipose tissue mass. At present, the effect and regulatory mechan...

  9. Attenuated apoptosis response to Fas-ligand in active ulcerative colitis

    DEFF Research Database (Denmark)

    Seidelin, J.B.; Nielsen, Ole Haagen

    2008-01-01

    . The aim was to investigate both the spontaneous and the cell death receptor ligand-induced apoptosis in UC. METHODS: Twenty patients with UC and 16 control subjects who underwent routine colonoscopy either for the control or surveillance of their disease or where the diagnosis of irritable bowel syndrome...

  10. Indigestible material attenuated changes in apoptosis in the fasted rat jejunal mucosa.

    Science.gov (United States)

    Kakimoto, Takashi; Fujise, Takehiro; Shiraishi, Ryosuke; Kuroki, Tsukasa; Park, Jae Myung; Ootani, Akifumi; Sakata, Yasuhisa; Tsunada, Seiji; Iwakiri, Ryuichi; Fujimoto, Kazuma

    2008-03-01

    We have previously demonstrated that fasting induced apoptosis and decreased cell proliferation in the rat intestinal mucosa. The aim was to investigate the effect of expanded polystyrene as indigestible material on apoptosis and cell proliferation in rat small intestinal mucosa during fasting. Male SD rats were divided into 3 groups. The first group was fed with chow and water ad libitum. The second group fasted for 72 hrs. The third group was fasted for 24 hrs and was fed expanded polystyrene. Intestinal apoptosis was evaluated by percent fragmented DNA assay, terminal deoxynucleotidyl transferase-mediated dUDP-biotin nick end-labeling (TUNEL) staining, and caspase-3 assay. Cell proliferation was analyzed by 5-bromo-2'-deoxyuridine (5-BrdU) uptake. Truncal vagotomy was performed to evaluate a role of the central nervous system. In the 72-hr fasted rat, mucosal height of the rat jejunum was decreased to 73% of that in rats fed ad libitum, and this decrease was partly restored to 90% in rats fed expanded polystyrene. The fragmented DNA was increased in fasted rats (28.0%) when compared with that in rats fed ad libitum (2.6%). The increase in fragmented DNA in fasted rats was recovered by feeding them expanded polystyrene (8.3%). TUNEL staining confirmed this result. The effect of polystyrene on apoptosis was decreased by truncal vagotomy. Expression of cleaved caspase-3 was increased in fasted rats, which was then decreased by feeding of expanded polystyrene. In contrast to apoptosis, feeding of expanded polystyrene had no reconstructive effect on 5-BrdU uptake in the intestinal epithelium, which was decreased by fasting to 60% of that in rats fed ad libitum. In conclusion, feeding of indigestible material partly restored the decrease in intestinal mucosal length in the fasted rats through the apoptotic pathway without any influence on BrdU uptake. Further exploration focused on the mechanism of this effect of indigestible material is required.

  11. Minocycline attenuates colistin-induced neurotoxicity via suppression of apoptosis, mitochondrial dysfunction and oxidative stress.

    Science.gov (United States)

    Dai, Chongshan; Ciccotosto, Giuseppe D; Cappai, Roberto; Wang, Yang; Tang, Shusheng; Xiao, Xilong; Velkov, Tony

    2017-06-01

    Neurotoxicity is an adverse effect patients experience during colistin therapy. The development of effective neuroprotective agents that can be co-administered during polymyxin therapy remains a priority area in antimicrobial chemotherapy. The present study investigates the neuroprotective effect of the synergistic tetracycline antibiotic minocycline against colistin-induced neurotoxicity. The impact of minocycline pretreatment on colistin-induced apoptosis, caspase activation, oxidative stress and mitochondrial dysfunction were investigated using cultured mouse neuroblastoma-2a (N2a) and primary cortical neuronal cells. Colistin-induced neurotoxicity in mouse N2a and primary cortical cells gives rise to the generation of reactive oxygen species (ROS) and subsequent cell death via apoptosis. Pretreatment of the neuronal cells with minocycline at 5, 10 and 20 μM for 2 h prior to colistin (200 μM) exposure (24 h), had an neuroprotective effect by significantly decreasing intracellular ROS production and by upregulating the activities of the anti-ROS enzymes superoxide dismutase and catalase. Minocycline pretreatment also protected the cells from colistin-induced mitochondrial dysfunction, caspase activation and subsequent apoptosis. Immunohistochemical imaging studies revealed colistin accumulates within the dendrite projections and cell body of primary cortical neuronal cells. To our knowledge, this is first study demonstrating the protective effect of minocycline on colistin-induced neurotoxicity by scavenging of ROS and suppression of apoptosis. Our study highlights that co-administration of minocycline kills two birds with one stone: in addition to its synergistic antimicrobial activity, minocycline could potentially ameliorate unwanted neurotoxicity in patients undergoing polymyxin therapy.

  12. Dickkopf 3 attenuates xanthine dehydrogenase expression to prevent oxidative stress-induced apoptosis.

    Science.gov (United States)

    Qui, Shuang; Kano, Junko; Noguchi, Masayuki

    2017-04-01

    Dickkopf (DKK) 3 is a DKK glycoprotein family member that controls cell fate during embryogenesis and exerts opposing effects on survival in a cell type-dependent manner; however, the mechanisms governing its pro-apoptosis versus pro-survival functions remain unclear. Here, we investigated DKK3 function in Li21 hepatoma cells and tPH5CH immortalized hepatocytes. DKK3 knockdown by siRNA resulted in reactive oxygen species accumulation and subsequent apoptosis, which were abrogated by administration of the antioxidant N-acetyl-cysteine. Moreover, forced DKK3 over-expression induced resistance to hydrogen peroxide (H2 O2 )-induced apoptosis. Expression analysis by cDNA microarray showed that xanthine dehydrogenase (XDH) expression was significantly lower in Li21 and tPH5CHDKK3-over-expressing cells in response to H2 O2 treatment when compared to that in their respective mock-transfected controls, whereas a marked increase was observed in H2 O2 -treated DKK3 knockdown cells. Thus, these data suggest that DKK3 promotes cell survival during oxidative stress by suppressing the expression of the superoxide-producing enzyme XDH. © 2017 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  13. Vanillin Attenuated Behavioural Impairments, Neurochemical Deficts, Oxidative Stress and Apoptosis Against Rotenone Induced Rat Model of Parkinson's Disease.

    Science.gov (United States)

    Dhanalakshmi, Chinnasamy; Janakiraman, Udaiyappan; Manivasagam, Thamilarasan; Justin Thenmozhi, Arokiasamy; Essa, Musthafa Mohamed; Kalandar, Ameer; Khan, Mohammed Abdul Sattar; Guillemin, Gilles J

    2016-08-01

    Vanillin (4-hydroxy-3-methoxybenzaldehyde), a pleasant smelling organic aromatic compound, is widely used as a flavoring additive in food, beverage, cosmetic and drug industries. It is reported to cross the blood brain barrier and also displayed antioxidant and neuroprotective activities. We previously reported the neuroprotective effect of vanillin against rotenone induced in in vitro model of PD. The present experiment was aimed to analyze the neuroprotective effect of vanillin on the motor and non-motor deficits, neurochemical variables, oxidative, anti-oxidative indices and the expression of apoptotic markers against rotenone induced rat model of Parkinson's disease (PD). Rotenone treatment exhibited motor and non-motor impairments, neurochemical deficits, oxidative stress and apoptosis, whereas oral administration of vanillin attenuated the above-said indices. However further studies are needed to explore the mitochondrial protective and anti-inflammatory properties of vanillin, as these processes play a vital role in the cause and progression of PD.

  14. The DNA methylation inhibitor induces telomere dysfunction and apoptosis of leukemia cells that is attenuated by telomerase over-expression.

    Science.gov (United States)

    Zhang, Xiaolu; Li, Bingnan; de Jonge, Nick; Björkholm, Magnus; Xu, Dawei

    2015-03-10

    DNA methyltransferase inhibitors (DNMTIs) such as 5-azacytidine (5-AZA) have been used for treatment of acute myeloid leukemia (AML) and other malignancies. Although inhibiting global/gene-specific DNA methylation is widely accepted as a key mechanism behind DNMTI anti-tumor activity, other mechanisms are likely involved in DNMTI's action. Because telomerase reverse transcriptase (TERT) plays key roles in cancer through telomere elongation and telomere lengthening-independent activities, and TERT has been shown to confer chemo- or radio-resistance to cancer cells, we determine whether DNMTIs affect telomere function and whether TERT/telomerase interferes with their anti-cancer efficacy. We showed that 5-AZA induced DNA damage and telomere dysfunction in AML cell lines by demonstrating the presence of 53-BP1 foci and the co-localization of 53-BP1 foci with telomere signals, respectively. Telomere dysfunction was coupled with diminished TERT expression, shorter telomere and apoptosis in 5-AZA-treated cells. However, 5-AZA treatment did not lead to changes in the methylation status of subtelomere regions. Down-regulation of TERT expression similarly occurred in primary leukemic cells derived from AML patients exposed to 5-AZA. TERT over-expression significantly attenuated 5-AZA-mediated DNA damage, telomere dysfunction and apoptosis of AML cells. Collectively, 5-AZA mediates the down-regulation of TERT expression, and induces telomere dysfunction, which consequently exerts an anti-tumor activity.

  15. Epigallocatechin-3-gallate attenuates apoptosis and autophagy in concanavalin A-induced hepatitis by inhibiting BNIP3

    Science.gov (United States)

    Li, Sainan; Xia, Yujing; Chen, Kan; Li, Jingjing; Liu, Tong; Wang, Fan; Lu, Jie; Zhou, Yingqun; Guo, Chuanyong

    2016-01-01

    Background Epigallocatechin-3-gallate (EGCG) is the most effective compound in green tea, and possesses a wide range of beneficial effects, including anti-inflammatory, antioxidant, antiobesity, and anticancer effects. In this study, we investigated the protective effects of EGCG in concanavalin A (ConA)-induced hepatitis in mice and explored the possible mechanisms involved in these effects. Methods Balb/C mice were injected with ConA (25 mg/kg) to induce acute autoimmune hepatitis, and EGCG (10 or 30 mg/kg) was administered orally twice daily for 10 days before ConA injection. Serum liver enzymes, proinflammatory cytokines, and other marker proteins were determined 2, 8, and 24 hours after the ConA administration. Results BNIP3 mediated cell apoptosis and autophagy in ConA-induced hepatitis. EGCG decreased the immunoreaction and pathological damage by reducing inflammatory factors, such as TNF-α, IL-6, IFN-γ, and IL-1β. EGCG also exhibited an antiapoptotic and antiautophagic effect by inhibiting BNIP3 via the IL-6/JAKs/STAT3 pathway. Conclusion EGCG attenuated liver injury in ConA-induced hepatitis by downregulating IL-6/JAKs/STAT3/BNIP3-mediated apoptosis and autophagy. PMID:26929598

  16. Therapeutic attenuation of neuroinflammation and apoptosis by black tea theaflavin in chronic MPTP/probenecid model of Parkinson's disease.

    Science.gov (United States)

    Anandhan, Annadurai; Essa, Musthafa Mohamed; Manivasagam, Thamilarasan

    2013-02-01

    Neuroinflammation and apoptosis in the dopaminergic neurons of substantia nigra play an important role in the pathogenesis of experimental and clinical Parkinson's disease (PD). This study focused on the possible anti-inflammatory and anti-apoptotic effects of theaflavin (TF), a black tea polyphenol against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity in mice. C57BL/6 male mice were treated with 10 doses of MPTP (25 mg/kg, s.c.) and probenecid (250 mg/kg, i.p.) for 3.5 days interval. TF (10 mg/kg) was administered 1 h prior to the administration of MPTP for 35 days of experimental period. MPTP/p treatment upregulates the release of interleukin-1beta, IL-6, tumor necrosis factor-alpha, IL-10, glial fibrillary acidic protein and Bax, and downregulates anti-apoptotic marker Bcl-2. Oral treatment of black tea polyphenol TF significantly attenuates MPTP-induced neuroinflammation as well as apoptosis. Behavioral studies (catalepsy and akinesia) were carried out to confirm these molecular studies. The results demonstrate that TF mediated its neuroprotection against chronic MPTP-induced toxicity through the involvement of multiple molecular events. It was concluded that TF may provide a precious therapeutic strategy for the treatment of progressive neurodegenerative disease such as PD in future.

  17. Chinese medicine Nao-Shuan-Tong attenuates cerebral ischemic injury by inhibiting apoptosis in a rat model of stroke.

    Science.gov (United States)

    Xiang, Jun; Tang, Yu-Ping; Wu, Ping; Gao, Jun-Peng; Cai, Ding-Fang

    2010-08-19

    Nao-Shuan-Tong (NST) in capsule form is a compound prescription formulated according to the meridian theory of traditional Chinese medicine (TCM) and is approved by the State Food and Drug Administration of China for the treatment of ischemic stroke. To test the neuroprotective effects of the Chinese medicine Nao-Shuang-Tong on cerebral ischemia in rats and to explore the underlying mechanisms. 115 Male Sprague-Dawley rats were randomly divided into 5 groups: sham, ischemia-reperfusion (I/R), and I/R plus NST 0.25, NST 0.5 and NST 1 (n=23 in each group). Cerebral ischemia was induced by 1.5h of middle cerebral artery occlusion. Cerebral infarct area was measured by tetrazolium staining at 24h following reperfusion, and neurological functional deficits were assessed at 1, 3, 7 and 14 d after reperfusion. Neuronal apoptosis was studied by Nissl staining and DNA fragmentation assay at 1 and 3d after reperfusion. The activation of caspase-3, -8, -9 and Bax/Bcl-2 levels were analyzed by western blot 24h after reperfusion. NST (0.5 and 1g/kg) significantly reduced cerebral infarct area, attenuated neurological functional deficits, and reduced neuronal apoptosis in ischemic cortex and in the CA1 region of hippocampus. NST also suppressed overexpression of Bax and activated caspases-3, -8 and -9, and also inhibited the reduction of Bcl-2 expression and markedly depressed the Bax/Bcl-2 ratio. These findings demonstrate that NST is neuroprotective against cerebral ischemia and is likely to act via inhibition of neuronal apoptosis associated with changes in levels of caspases-3 and -8, Bax and Bcl-2. (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  18. Selenium Attenuates HPV-18 Associated Apoptosis in Embryo-Derived Trophoblastic Cells but Not Inner Cell Mass In Vitro

    Directory of Open Access Journals (Sweden)

    Jennifer A. Tolen

    2015-01-01

    Full Text Available Objectives. Human papillomaviruses (HPV are associated with cell cycle arrest. This study focused on antioxidant selenomethionine (SeMet inhibition of HPV-mediated necrosis. The objectives were to determine HPV-18 effects on embryonic cells and to evaluate SeMet in blocking HPV-18 effects. Methods. Fertilized mouse embryos were cultured for 5 days to implanted trophoblasts and exposed to either control medium (group 1, HPV-18 (group 2, combined HPV-18 and 0.5 µM SeMet (group 3, or combined HPV-18 and 5.0 µM SeMet (group 4. After 48 hrs, trophoblast integrity and, apoptosis/necrosis were assessed using morphometric and dual-stain fluorescence assays, respectively. Results. HPV-18 exposed trophoblasts nuclei (253.8 ± 28.5 sq·µ were 29% smaller than controls (355.6 ± 35.9 sq·µ. Supplementation with 0.5 and 5.0 µM SeMet prevented nuclear shrinkage after HPV-18 exposure. HPV-18 infected trophoblasts remained larger with SeMet supplementation. HPV-18 decreased cell viability by 44% but SeMet supplementation sustained cell viability. Apoptosis was lower when SeMet was present. HPV-18 decreased inner cell mass (ICM viability by over 60%. Conclusions. HPV-18 decreased nuclear size and trophoblast viability but these effects were attenuated by the antioxidant SeMet. SeMet blocked HPV-18 associated apoptosis process in trophoblasts but not ICM cells suggesting involvement of different oxidative stress pathways.

  19. AMP-Activated Protein Kinase Activation during Cardioplegia-Induced Hypoxia/Reoxygenation Injury Attenuates Cardiomyocytic Apoptosis via Reduction of Endoplasmic Reticulum Stress

    Directory of Open Access Journals (Sweden)

    Chi-Hsiao Yeh

    2010-01-01

    Our results revealed that AMPK activation during cardioplegia-induced H/R injury attenuates cardiomyocytic apoptosis, via enhancement of antiapoptotic and reduction of proapoptotic responses, resulting from lessening ER stress and the UPR. AMPK activation may serve as a future pharmacological target to reduce H/R injury in the clinical setting.

  20. Doxorubicin potentiates TRAIL cytotoxicity and apoptosis and can overcome TRAIL-resistance in rhabdomyosarcoma cells

    NARCIS (Netherlands)

    Komdeur, R; Meijer, C; Van Zweeden, M; De Jong, S; Wesseling, J; Hoekstra, HJ; van der Graaf, WTA

    Doxorubicin (DOX) and ifosfamide (IFO) are the most active single agents in soft tissue sarcomas (STS). Tumour necrosis factor-alpha (TNF-alpha) is used for STS in the setting of isolated limb perfusions. Like TNF-alpha, TNF-related apoptosis-inducing ligand (TRAIL) induces apoptosis. In contrast to

  1. Flavonoid Naringenin Attenuates Oxidative Stress, Apoptosis and Improves Neurotrophic Effects in the Diabetic Rat Retina.

    Science.gov (United States)

    Al-Dosari, Dalia I; Ahmed, Mohammed M; Al-Rejaie, Salim S; Alhomida, Abdullah S; Ola, Mohammad S

    2017-10-24

    Diabetic retinopathy (DR) is one of the leading causes of decreased vision and blindness worldwide. Diabetes-induced oxidative stress is believed to be the key factor that initiates neuronal damage in the diabetic retina leading to DR. Experimental approaches to utilize dietary flavonoids, which possess both antidiabetic and antioxidant activities, might protect the retinal damage in diabetes. The aim of this study was to investigate the potential protective effects of naringenin in the retina of streptozotocin-induced diabetic rats. Diabetic rats were orally treated and untreated with naringenin (50 mg/kg/day) for five weeks and retinas were analyzed for markers of oxidative stress, apoptosis and neurotrophic factors. Systemic effects of naringenin treatments were also analyzed and compared with untreated groups. The results showed that elevated levels of thiobarbituric acid reactive substances (TBARs) and decreased level of glutathione (GSH) in diabetic rats were ameliorated with naringenin treatments. Moreover, decreased levels of neuroprotective factors (Brain derived neurotrophic factor (BDNF)), tropomyosin related kinase B (TrkB) and synaptophysin in diabetic retina were augmented with naringenin treatments. In addition, naringenin treatment ameliorated the levels of apoptosis regulatory proteins; B cell lymphoma 2 (Bcl-2), Bcl-2 associated X protein (Bax) and caspase-3 in the diabetic retina. Thus, the study demonstrates the beneficial effects of naringenin that possesses anti-diabetic, antioxidant and antiapoptotic properties, which may limit neurodegeneration by providing neurotrophic support to prevent retinal damage in diabetic retinopathy.

  2. Ras-association domain family 1C protein promotes breast cancer cell migration and attenuates apoptosis

    Directory of Open Access Journals (Sweden)

    Aragon Robert J

    2010-10-01

    Full Text Available Abstract Background The Ras association domain family 1 (RASSF1 gene is a Ras effector encoding two major mRNA forms, RASSF1A and RASSF1C, derived by alternative promoter selection and alternative mRNA splicing. RASSF1A is a tumor suppressor gene. However, very little is known about the function of RASSF1C both in normal and transformed cells. Methods Gene silencing and over-expression techniques were used to modulate RASSF1C expression in human breast cancer cells. Affymetrix-microarray analysis was performed using T47D cells over-expressing RASSF1C to identify RASSF1C target genes. RT-PCR and western blot techniques were used to validate target gene expression. Cell invasion and apoptosis assays were also performed. Results In this article, we report the effects of altering RASSF1C expression in human breast cancer cells. We found that silencing RASSF1C mRNA in breast cancer cell lines (MDA-MB231 and T47D caused a small but significant decrease in cell proliferation. Conversely, inducible over-expression of RASSF1C in breast cancer cells (MDA-MB231 and T47D resulted in a small increase in cell proliferation. We also report on the identification of novel RASSF1C target genes. RASSF1C down-regulates several pro-apoptotic and tumor suppressor genes and up-regulates several growth promoting genes in breast cancer cells. We further show that down-regulation of caspase 3 via overexpression of RASSF1C reduces breast cancer cells' sensitivity to the apoptosis inducing agent, etoposide. Furthermore, we found that RASSF1C over-expression enhances T47D cell invasion/migration in vitro. Conclusion Together, our findings suggest that RASSF1C, unlike RASSF1A, is not a tumor suppressor, but instead may play a role in stimulating metastasis and survival in breast cancer cells.

  3. Withania somnifera Improves Ischemic Stroke Outcomes by Attenuating PARP1-AIF-Mediated Caspase-Independent Apoptosis.

    Science.gov (United States)

    Raghavan, Aparna; Shah, Zahoor A

    2015-12-01

    Withania somnifera (WS), popularly known as "Ashwagandha" has been used for centuries as a nerve tonic. Its protective effect has been elucidated in many neurodegenerative pathologies, although there is a paucity of data regarding its effects in ischemic stroke. We examined the neuroprotective properties of an aqueous extract of WS in both pre- and poststroke treatment regimens in a mouse model of permanent distal middle cerebral artery occlusion (pMCAO). WS (200 mg/kg) improved functional recovery and significantly reduced the infarct volume in mice, when compared to those treated with vehicle, in both paradigms. We investigated the protective mechanism/s induced by WS using brain cortices by testing its ability to modulate the expression of key proteins in the ischemic-apoptotic cascade. The Western blots and immunofluorescence analyses of mice cortices revealed that WS upregulated the expression of hemeoxygenase 1 (HO1) and attenuated the expression of the proapoptotic protein poly (ADP-ribose) polymerase-1 (PARP1) via the PARP1-AIF pathway, thus preventing the nuclear translocation of apoptosis-inducing factor (AIF), and subsequent apoptosis. Semaphorin-3A (Sema3A) expression was reduced in WS-treated group, whereas Wnt, pGSK3β, and pCRMP2 expression levels were virtually unaltered. These results indicate the interplay of antioxidant-antiapoptic pathways and the possible involvement of angiogenesis in the protective mechanism of WS while emphasizing the noninvolvement of one of the prime pathways of neurogenesis. Our results suggest that WS could be a potential prophylactic as well as a therapeutic agent aiding stroke repair, and that part of its mechanism could be attributed to its antiapoptotic and antioxidant properties.

  4. Schisandrin B Ameliorates Myocardial Ischemia/Reperfusion Injury Through Attenuation of Endoplasmic Reticulum Stress-Induced Apoptosis.

    Science.gov (United States)

    Zhang, Wei; Sun, Zhiqing; Meng, Fanhua

    2017-12-01

    Schisandrin B (Sch B), an active composition isolated from the fruit of Schisandra chinensis, has been proved to possess antiinflammatory, antioxidant and anti-endoplasmic reticulum (ER) stress effects in many rodent tissues. However, the exact mechanism of cardioprotective effect of Sch B still needs more study. Here, we detected the effects of Sch B on myocardial ischemia/reperfusion (I/R) injury rats. I/R injury model in this study was established by left anterior descending coronary artery ligation for 40 min followed by 1 h of reperfusion. Male healthy rats were randomly divided into five groups: the sham, I/R, Sch B (20 mg/kg) + I/R, and Sch B (40 mg/kg) + I/R, Sch B (80 mg/kg) + I/R, with 10 rats in each group. We showed that Sch B treatment significantly protected against myocardial I/R injury, as demonstrated by the decrease in the percentage of infarct formation assessed by 2,3,5-triphenyl tetrazolium chloride (TTC) staining in representative heart tissue slices, comparing with the I/R control group. The levels of creatine kinase (CK), lactate dehydrogenase (LDH), malondialdehyde (MDA), and total superoxide dismutase (T-SOD) were tested. The ER stress-related proteins such as C/EBP homologous protein (CHOP), activating transcription factor 6 (ATF6), and (PKR)-like ER kinase (PERK) were further measured by western blot, and their messenger RNA levels were measured by real-time PCR. The apoptosis of heart tissue cells was also tested through the expressions of caspase-9, caspase-3, Bcl-2, and Bax proteins. Collectively, these results revealed that Sch B exerts protection role on myocardial I/R injury through decreasing oxidative reaction, suppressing ATF6 and PERK pathway, and attenuating ER stress-induced apoptosis.

  5. Berberine Attenuates Inflammation Associated with Delayed-Type Hypersensitivity via Suppressing Th1 Response and Inhibiting Apoptosis.

    Science.gov (United States)

    Wang, Zhigang; Chen, Zhe; Chen, Tao; Yi, Tao; Zheng, Zhou; Fan, Hong; Chen, Zebin

    2017-02-01

    Berberine, one of the active alkaloids from Rhizoma Coptidis, has been indicated to have anti-inflammatory and immunosuppressive properties. The aim of this study was to determine the role of berberine on ovalbumin (OVA)-induced delayed-type hypersensitivity (DTH) and its potential mechanisms. Berberine treatment significantly reduced footpad swelling, inflammatory cells infiltration, anti-OVA IgG levels, IgE concentration in serum, and the tetramer(+)CD8(+) cells. In homogenized footpad tissue, the production of Th1-mediated cytokines including IFN-γ, TNF-α, and IL-2 were suppressed following the administration of berberine. Detailed studies revealed that berberine prevented differentiation into Th1 cells in the OVA-primed lymphocytes, resulting from suppressing the expression of T-bet and secretion of IFN-γ but not IL-4. Concanavalin A stimulation assay and MTT assay also indicated inhibiting effect of berberine treatment on IFN-γ production and decreased cytotoxicity in lymphocytes proliferation, respectively. Additionally, berberine obviously decreased the cell apoptosis and enzymatic activity of caspase-3, which was further confirmed by the facts that berberine clearly lowered Bax/Bcl-2 ratio and expression of cleaved caspase-3 protein. On correlation analysis, the percentage of apoptotic cells showed a significant positive relationship with IFN-γ/IL-4 ratio of supernatant from footpad tissue in berberine-treated DTH mice. These results demonstrated that berberine attenuated Th1-mediated inflammation in OVA-induced DTH by curbing Th1 response and inhibiting cell apoptosis, suggesting a therapeutic potential for berberine for the treatment of type IV hypersensitivity.

  6. Attenuated Lead Induced Apoptosis in Rat Hepatocytes in the Presence of Lycopersicon Esculentum

    Directory of Open Access Journals (Sweden)

    Hamidreza Ahmadi Ashtiani

    2016-05-01

    Full Text Available Lead (Pb, has, for decades, being known for its adverse effects on various body organs and systems. In the present study, the damage of Pb on the Liver tissue apoptosis was investigated, and Lycopersicon esculentum as an antioxidants source was administered orally to prevent the adverse effects of Pb. Eighteen Wistar rats, randomized into three groups (n=6, were used for this study. Animals in Group A served as the control and were drinking distilled water. Animals in Groups B and C were drinking 1%Lead acetate (LA. Group C animals were, in addition to drinking LA, treated with 1.5 ml/day of Lycopersicon esculentum. Treatments were for three months. The obtained results showed that lead acetate caused significant reductions in the liver weight, plasma and tissue superoxide dismutase and catalase activity, but a significant increase in plasma and tissue malondialdehyde concentration but Lycopersicon esculentum have an inhibitory effect on LA liver adverse effect. So, it can be concluded that Lycopersicon esculentum have a significant protective effect on liver lead acetate adverse effects as well as, lead acetate -induced oxidative stress.

  7. Scolopendin, an antimicrobial peptide from centipede, attenuates mitochondrial functions and triggers apoptosis in Candida albicans.

    Science.gov (United States)

    Lee, Heejeong; Hwang, Jae-Sam; Lee, Dong Gun

    2017-02-20

    Centipedes, a type of arthropod, reportedly produce antimicrobial peptides as part of an innate immune response. Scolopendin (SPSEKAGLQPVGRIGRMLKK) is a novel antimicrobial peptide derived from Scolopendra subspinipes mutilans Many antifungal agents have more than one type of cell death mechanism. Although scolopendin is involved in membrane perturbation, the corresponding intracellular changes require further investigation. Therefore, we assessed the cell morphology and calcium ion concentration of the cytosol and mitochondria of scolopendin-treated cells. The treated cells were shrunken, and calcium ion homeostasis was disrupted in both the cytosol and mitochondria. These conditions attenuated mitochondrial homeostasis, disrupting mitochondrial membrane potential and cytochrome c levels. Fungal cells treated with scolopendin exhibited various apoptotic phenotypes such as reactive oxygen species accumulation, phosphatidylserine exposure, chromatin condensation, and nuclear fragmentation. Scolopendin-induced cell death also triggered metacaspase activation. In conclusion, treatment of Candida albicans with scolopendin induced the apoptotic response, which in turn led to mitochondrial dysfunction, metacaspase activation, and cell death. The antimicrobial peptide scolopendin from the centipede S.s. mutilans demonstrated a novel apoptotic mechanism as an antifungal agent. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  8. TRAIL/bortezomib cotreatment is potentially hepatotoxic but induces cancer-specific apoptosis within a therapeutic window

    NARCIS (Netherlands)

    Koschny, Ronald; Ganten, Tom M.; Sykora, Jaromir; Haas, Tobias L.; Sprick, Martin R.; Kolb, Armin; Stremmel, Wolfgang; Walczak, Henning

    2007-01-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) represents a novel promising anticancer biotherapeutic. However, TRAIL-resistant tumor cells require combinatorial regimens to sensitize tumor but not normal cells for TRAIL-induced apoptosis. Here, we investigated the mechanism of the

  9. Ticagrelor Attenuates Apoptosis of Lung and Myocardial Cells Induced by Abdominal Aorta Ischemia/Reperfusion.

    Science.gov (United States)

    Findik, Orhan; Kunt, Atike Tekeli; Yazir, Yusufhan; Yardimoğlu, Melda; Yilmaz, Seda Güleç; Aydin, Ufuk; Rençber, Selenay Furat; Baris, Ozgur; Balci, Canan; Isbir, Turgay

    2016-01-01

    This study aimed to analyze the effect of ticagrelor pretreatment on the prevention of lung and heart injury induced by abdominal aorta ischemia and reperfusion (I/R) and also to determine the effective dose. Thirty-five male Sprague-Dawley rats weighing 350-400 g were randomized into five groups. The animals received ticagrelor at doses of 7.5 mg/kg, 15 mg/kg and 25 mg/kg or normal saline 0.1 ml/kg orally via gastric gavage before the ischemic period. In the control and study groups, I/R injury was induced by clamping the aorta infrarenally for 2 hs, followed by 4 h of reperfusion. After sacrifice, hearts and lungs of the animals were extracted for both histopathological and biochemical analysis. There was a significant difference between the animals that received 7.5 mg/kg and 25 mg/kg and 15 mg/kg and 25 mg/kg dose of ticagrelor regarding tissue malondealdehyde (MDA), and glutathione reductase levels in both lung and heart Ticagrelor treatment at 25 mg/kg led to significant cardiac remodeling activity and normal lung architecture against I/R induced injury. The number of TdT-mediated dUTP nick-end labeling (TUNEL)-positive cells in alveolar epithelium and myocytes were increased in the sections from saline (I/R) group rats, and decreased following 25 mg/kg ticagrelor treatment. Ticagrelor dose-dependently inhibits platelet aggregation, increases cyclooxygenase-2 and also inhibits cellular uptake of adenosine all resulting in attenuation of I/R injury. Ticagrelor at 25 mg/kg was determined as the dose effective against I/R-induced injury in lung and heart in Sprague-Dawley rats in the present study. Copyright © 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  10. Myofibrillogenesis regulator-1 attenuated hypoxia/reoxygenation-induced apoptosis by inhibiting the PERK/Nrf2 pathway in neonatal rat cardiomyocytes.

    Science.gov (United States)

    Tao, Tian-Qi; Wang, Xiao-Reng; Liu, Mi; Xu, Fei-Fei; Liu, Xiu-Hua

    2015-03-01

    The purpose of this study was to investigate the role of myofibrillogenesis regulator-1 (MR-1) in cardiomyocyte apoptosis induced by hypoxia/reoxygenation (H/R), through protein kinase R-like ER kinase (PERK)/nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. To address this aim, an H/R model of neonatal rat cardiomyocytes was used. MR-1 was overexpressed using an adenoviral vector system and knocked down using MR-1 specific siRNA. Apoptosis was assessed by using Annexin V/PI double staining, terminal deoxynucleotidyl transferase mediated dUTP-biotin nick end labeling assay, and the Bcl-2/Bax ratio. Western blotting was used to detect the protein levels of MR-1, glucose-regulated protein 78 (GRP78), total and phosphorylated PERK, Nrf2, activating transcription factor 4 (ATF4), C/EBP homologous protein (CHOP), Bcl-2 and Bax. Immunofluorescence staining was used to assess the subcellular location of Nrf2. We found that H/R induced significant apoptosis in neonatal rat cardiomyocytes. MR-1 overexpression attenuated H/R-induced apoptosis, decreased GRP78 (P apoptosis, increased expression of GRP78 and CHOP (P apoptosis through inhibition of the PERK/Nrf2 pathway.

  11. Attenuation of Oxidative Stress-Induced Osteoblast Apoptosis by Curcumin is Associated with Preservation of Mitochondrial Functions and Increased Akt-GSK3β Signaling.

    Science.gov (United States)

    Dai, Panpan; Mao, Yixin; Sun, Xiaoyu; Li, Xumin; Muhammad, Ibrahim; Gu, Weiyan; Zhang, Dafeng; Zhou, Yu; Ma, Jianfeng; Ni, Zhenyu; Huang, Shengbin

    2017-01-01

    Osteoblast apoptosis induced by oxidative stress plays a crucial role in the development and progression of osteoporosis. Curcumin, a natural antioxidant isolated from Curcuma longa, has highly protective effects against osteoporosis. However, the effects of curcumin on oxidative stress-induced osteoblast apoptosis remain unclear. This study aimed to explore the effect of curcumin on hydrogen peroxide (H2O2) induced osteoblast apoptosis and the underlying mechanisms. An osteoblastic cell line (Saos-2) was exposed to various concentrations of H2O2 with or without curcumin treatment. Cell viability was evaluated by MTT assays. The apoptosis rate was analyzed by flow cytometry and TUNEL assays. Mitochondrial ROS and membrane potential were determined using a fluorescence microscope. Mitochondrial respiratory enzyme activity was measured using a spectrophotometer. Protein levels were detected by western blotting. Curcumin was cytoprotective because it greatly improved the viability of Saos-2 cells exposed to H2O2 and attenuated H2O2-induced apoptosis. Curcumin treatment also preserved the mitochondrial redox potential, decreased the mitochondrial oxidative status, and improved the mitochondrial membrane potential and functions. Furthermore, curcumin treatment markedly increased levels of phosphorylated protein kinase B (Akt) and phosphorylated glycogen synthase kinase-3β (GSK3β). Curcumin administration ameliorates oxidative stress-induced apoptosis in osteoblasts by preserving mitochondrial functions and activation of Akt-GSK3β signaling. These data provide experimental evidence supporting the clinical use of curcumin for prevention or treatment of osteoporosis. © 2017 The Author(s)Published by S. Karger AG, Basel.

  12. Lack of caspase-3 attenuates immobilization-induced muscle atrophy and loss of tension generation along with mitigation of apoptosis and inflammation

    Science.gov (United States)

    Zhu, Shimei; Nagashima, Michio; Khan, Mahammad A.S; Yasuhara, Shingo; Kaneki, Masao; Jeevendra Martyn, J. A.

    2012-01-01

    Introduction Immobilization by casting induces disuse muscle atrophy (DMA). Methods Using wild type (WT) and caspase-3 knockout (KO) mice, we evaluated the effect of caspase-3 on muscle mass, apoptosis and inflammation during DMA. Results Caspase-3 deficiency significantly attenuated muscle mass decrease [gastrocnemius: 28 ± 1% in KO vs. 41 ± 3% in WT; soleus: 47 ± 2% in KO vs. 56 ± 2% in WT; (P immobilized versus contralateral hindlimb. Lack of caspase-3 decreased immobilization-induced increased apoptotic myonuclei (3.2-fold) and macrophage infiltration (2.2-fold) in soleus muscle and attenuated increased monocyte chemoattractant protein-1 mRNA expression (2-fold in KO vs. 18-fold in WT) in gastrocnemius. Conclusion Caspase-3 plays a key role in DMA and associated decreased tension, presumably by acting on the apoptosis and inflammation pathways. PMID:23401051

  13. Phosphoinositide 3-kinase accelerates postoperative tumor growth by inhibiting apoptosis and enhancing resistance to chemotherapy-induced apoptosis. Novel role for an old enemy.

    LENUS (Irish Health Repository)

    Coffey, J Calvin

    2012-02-03

    Tumor removal remains the principal treatment modality in the management of solid tumors. The process of tumor removal may potentiate the resurgent growth of residual neoplastic tissue. Herein, we describe a novel murine model in which flank tumor cytoreduction is followed by accelerated local tumor recurrence. This model held for primary and recurrent tumors generated using a panel of human and murine (LS174T, DU145, SW480, SW640, and 3LL) cell lines and replicated accelerated tumor growth following excisional surgery. In investigating this further, epithelial cells were purified from LS174T primary and corresponding recurrent tumors for comparison. Baseline as well as tumor necrosis factor apoptosis-inducing ligand (TRAIL)-induced apoptosis were significantly reduced in recurrent tumor epithelia. Primary and recurrent tumor gene expression profiles were then compared. This identified an increase and reduction in the expression of p110gamma and p85alpha class Ia phosphoinositide 3-kinase (PI3K) subunits in recurrent tumor epithelia. These changes were further confirmed at the protein level. The targeting of PI3K ex vivo, using LY294002, restored sensitivity to TRAIL in recurrent tumor epithelia. In vivo, adjuvant LY294002 prolonged survival and significantly attenuated recurrent tumor growth by greatly enhancing apoptosis levels. Hence, PI3K plays a role in generating the antiapoptotic and chemoresistant phenotype associated with accelerated local tumor recurrence.

  14. bta-miR-29b attenuates apoptosis by directly targeting caspase-7 and NAIF1 and suppresses bovine viral diarrhea virus replication in MDBK cells.

    Science.gov (United States)

    Fu, Qiang; Shi, Huijun; Shi, Mengting; Meng, Luping; Zhang, Hui; Ren, Yan; Guo, Fei; Jia, Bin; Wang, Pengyan; Ni, Wei; Chen, Chuangfu

    2014-07-01

    MicroRNAs (miRNAs) are small, endogenous, noncoding RNA molecules that serve as powerful regulators of multiple cellular processes, including apoptosis, differentiation, growth, and proliferation. Bovine viral diarrhea virus (BVDV) contributes significantly to health-related economic losses in the beef and dairy industries. Although BVDV-induced apoptosis correlates with increased intracellular viral RNA accumulation and with bta-miR-29b (miR-29b) expression upregulation in Madin-Darby bovine kidney (MDBK) cells infected with BVDV strain NADL, the role of miR-29b in regulating BVDV-infection-related apoptosis remains unexplored. Here, we report that miR-29b serves as a new miRNA regulating apoptosis. We showed that miR-29b target sequences were present in the 3' untranslated regions of 2 key apoptosis regulators mRNAs, cysteine aspartases-7 (caspase-7) and nuclear apoptosis-inducing factor 1 (NAIF1). Indeed, upon miRNA overexpression, both mRNA and protein levels of caspase-7 and NAIF1 were decreased. We further found that miR-29b attenuated apoptosis by directly regulating intracellular levels of caspase-7 and NAIF1. Moreover, apoptosis blockage by miR-29b was rescued upon co-infection of MDBK cells with lentiviruses expressing caspase-7 and NAIF1. Importantly, miR-29b decreased BVDV NADL envelope glycoprotein E1 mRNA levels and suppressed viral replication. These studies advance our understanding of the mechanisms of miRNAs in mediating the cells combating viral infections.

  15. Brucea javanica Leaf Extract Induced Apoptosis in Human Oral Squamous Cell Carcinoma (HSC2 Cells by Attenuation of Mitochondrial Membrane Permeability

    Directory of Open Access Journals (Sweden)

    Britanto Dani Wicaksono

    2015-08-01

    Full Text Available BACKGROUND: Brucea javanica extract has been reported to have anti-proliferative and cell death induction activities. B. javanica extract was reported to induce apoptosis through caspase cascade. Most of investigated B. javanica extracts were derived from seeds and fruits, or commercially available oil emulsion. Therefore we conducted a study on B. javanica leaf extract (BJLE in oral cancer cells. METHODS: B. javanica leaves were collected, identified, minced, dried, extracted with distilled ethanol at room temperature for 24 hours, filtered and evaporated. Resulted BJLE was stored at 4°C. Human oral squamous cell carcinoma (HSC-2 cells were fasted for 12 hours and treated with BJLE in various concentrations for 24 hours. Cells were then quantified with 3-(4,5-dimethylthiazol-2-yl-2,5-Diphenyltetrazolium bromide (MTT assay, demonstrated with 4',6'-diamidino-2-phenylindole (DAPI staining. To find out mitochondrial membrane permeability (MMP, mitochondrial membrane potential (ΔΨM was analyzed. RESULTS: BJLE reduced percentage of viable HSC-2 cells in a concentration dependent manner. BJLE induced apoptosis in HSC-2 cells. With treatment of 50 μg/ml BJLE, fragmented nuclei were seen. ΔΨM of HSC-2 cells treated with 50 μg/ml BJLE were shifted to the left, meaning that BJLE induced reduction of ΔΨM and attenuation of MMP. CONCLUSIONS: Our results suggested that BJLE could induce apoptosis by attenuating MMP. KEYWORDS: Brucea javanica, leaf, apoptosis, HSC-2, MTT, DAPI, mitochondria, permeability.

  16. The Zinc Ion Chelating Agent TPEN Attenuates Neuronal Death/apoptosis Caused by Hypoxia/ischemia Via Mediating the Pathophysiological Cascade Including Excitotoxicity, Oxidative Stress, and Inflammation.

    Science.gov (United States)

    Wang, Wei-Ming; Liu, Zhao; Liu, Ai-Jun; Wang, Yu-Xiang; Wang, Hong-Gang; An, Di; Heng, Bin; Xie, Lai-Hua; Duan, Jun-Li; Liu, Yan-Qiang

    2015-09-01

    We aim to determine the significant effect of TPEN, a Zn(2+) chelator, in mediating the pathophysiological cascade in neuron death/apoptosis induced by hypoxia/ischemia. We conducted both in vivo and in vitro experiments in this study. PC12 cells were used to establish hypoxia/ischemia model by applying oxygen-glucose deprivation (OGD). SHR-SP rats were used to establish an acute ischemic model by electrocoagulating middle cerebral artery occlusion. The effect of TPEN on neuron death/apoptosis was evaluated. In addition, the relative biomarks of excitotoxicity, oxidative stress, and inflammation reactions in hypoxia/ischemia PC12 cell model as well as in SHR-SP rat hypoxia/ischemia model were also assessed. TPEN significantly attenuates the neurological deficit, reduced the cerebral infarction area and the ratio of apoptotic neurons, and increased the expression of GluR2 in the rat hypoxia/ischemia brain. TPEN also increased blood SOD activity, decreased blood NOS activity and blood MDA and IL-6 contents in rats under hypoxia/ischemia. In addition, TPEN significantly inhibited the death and apoptosis of cells and attenuated the alteration of GluR2 and NR2 expression caused by OGD or OGD plus high Zn(2+) treatments. Zn(2+) is involved in neural cell apoptosis and/or death caused by hypoxia/ischemia via mediating excitotoxicity, oxidative stress, and inflammation. © 2015 John Wiley & Sons Ltd.

  17. Argon inhalation attenuates retinal apoptosis after ischemia/reperfusion injury in a time- and dose-dependent manner in rats.

    Directory of Open Access Journals (Sweden)

    Felix Ulbrich

    Full Text Available Retinal ischemia and reperfusion injuries (IRI permanently affect neuronal tissue and function by apoptosis and inflammation due to the limited regenerative potential of neurons. Recently, evidence emerged that the noble gas Argon exerts protective properties, while lacking any detrimental or adverse effects. We hypothesized that Argon inhalation after IRI would exert antiapoptotic effects in the retina, thereby protecting retinal ganglion cells (RGC of the rat's eye.IRI was performed on the left eyes of rats (n = 8 with or without inhaled Argon postconditioning (25, 50 and 75 Vol% for 1 hour immediately or delayed after ischemia (i.e. 1.5 and 3 hours. Retinal tissue was harvested after 24 hours to analyze mRNA and protein expression of Bcl-2, Bax and Caspase-3, NF-κB. Densities of fluorogold-prelabeled RGCs were analyzed 7 days after injury in whole-mounts. Histological tissue samples were prepared for immunohistochemistry and blood was analyzed regarding systemic effects of Argon or IRI. Statistics were performed using One-Way ANOVA.IRI induced RGC loss was reduced by Argon 75 Vol% inhalation and was dose-dependently attenuated by lower concentrations, or by delayed Argon inhalation (1504±300 vs. 2761±257; p<0.001. Moreover, Argon inhibited Bax and Bcl-2 mRNA expression significantly (Bax: 1.64±0.30 vs. 0.78±0.29 and Bcl-2: 2.07±0.29 vs. 0.99±0.22; both p<0.01, as well as caspase-3 cleavage (1.91±0.46 vs. 1.05±0.36; p<0.001. Expression of NF-κB was attenuated significantly. Immunohistochemistry revealed an affection of Müller cells and astrocytes. In addition, IRI induced leukocytosis was reduced significantly after Argon inhalation at 75 Vol%.Immediate and delayed Argon postconditioning protects IRI induced apoptotic loss of RGC in a time- and dose-dependent manner, possibly mediated by the inhibition of NF-κB. Further studies need to evaluate Argon's possible role as a therapeutic option.

  18. Silencing nox4 in the paraventricular nucleus improves myocardial infarction-induced cardiac dysfunction by attenuating sympathoexcitation and periinfarct apoptosis.

    Science.gov (United States)

    Infanger, David W; Cao, Xian; Butler, Scott D; Burmeister, Melissa A; Zhou, Yi; Stupinski, John A; Sharma, Ram V; Davisson, Robin L

    2010-06-11

    Myocardial infarction (MI)-induced heart failure is characterized by central nervous system-driven sympathoexcitation and deteriorating cardiac function. The paraventricular nucleus (PVN) of the hypothalamus is a key regulator of sympathetic nerve activity and is implicated in heart failure. Redox signaling in the PVN and other central nervous system sites is a primary mechanism of neuro-cardiovascular regulation, and excessive oxidant production by activation of NADPH oxidases (Noxs) is implicated in some neuro-cardiovascular diseases. We tested the hypothesis that Nox-mediated redox signaling in the PVN contributes to MI-induced sympathoexcitation and cardiac dysfunction in mice. Real-time PCR revealed that Nox4 was the most abundantly expressed Nox in PVN under basal conditions. Coronary arterial ligation (MI) caused a selective upregulation of this homolog compared to Nox1 and Nox2. Adenoviral gene transfer of Nox4 (AdsiNox4) to PVN (bilateral) attenuated MI-induced superoxide formation in this brain region (day 14) to the same level as that produced by PVN-targeted gene transfer of cytoplasmic superoxide dismutase (AdCu/ZnSOD). MI mice treated with AdsiNox4 or AdCu/ZnSOD in the PVN showed marked improvement in cardiac function as assessed by echocardiography and left ventricular hemodynamic analysis. This was accompanied by significantly diminished sympathetic outflow and apoptosis in the periinfarct region of the heart. These results suggest that MI causes dysregulation of Nox4-mediated redox signaling in the PVN, which leads to sympathetic overactivation and a decline in cardiac function. Targeted inhibition of oxidant signaling in the PVN could provide a novel treatment for MI-induced heart failure.

  19. Methanolic extract of onion (Allium cepa) attenuates ischemia/hypoxia-induced apoptosis in cardiomyocytes via antioxidant effect.

    Science.gov (United States)

    Park, Sok; Kim, Mi-Young; Lee, Dong Ha; Lee, Soo Hwan; Baik, Eun Joo; Moon, Chang-Hyun; Park, Se Won; Ko, Eun Young; Oh, Sei-Ryang; Jung, Yi-Sook

    2009-06-01

    Although there is growing awareness of the beneficial potential of onion intake to lower the risk of cardiovascular disease, there is little information about the effect of onion on ischemic heart injury, one of the most common cardiovascular diseases. This study investigates the effect of the methanol-soluble extract of onion on ischemic injury in heart-derived H9c2 cells in vitro and in rat hearts in vivo. The underlying mechanism is also investigated. To evaluate the effect of onion on ischemia-induced cell death, LDH release and TUNEL-positivity were assessed in H9c2 cells, and the infarct size was measured in a myocardial infarct model. To investigate the mechanism of the cardioprotection by onion, the reactive oxygen species (ROS) level and the mitochondrial membrane potential (DeltaPsi(m)) were measured using an imaging technique; the caspase-3 activity was assayed, and Western blotting was performed to examine cytochrome c release in H9c2 cells. The methanolic extract of onion had a preventive effect on ischemia/hypoxia-induced apoptotic death in H9c2 cells in vitro and in rat heart in vivo. The onion extract (0.05 g/ml) inhibited the elevation of the ROS, mitochondrial membrane depolarization, cytochrome c release and caspase-3 activation during hypoxia in H9c2 cells. In the in vivo rat myocardial infarction model, onion extract (10 g/kg) significantly reduced the infarct size, the apoptotic cell death of the heart and the plasma MDA level. In conclusion, the results of this study suggest that the methanolic extract of onion attenuates ischemia/hypoxia-induced apoptosis in heart-derived H9c2 cells in vitro and in rat hearts in vivo, through, at least in part, an antioxidant effect.

  20. Knockdown of GRP78 promotes apoptosis in pancreatic acinar cells and attenuates the severity of cerulein and LPS induced pancreatic inflammation.

    Directory of Open Access Journals (Sweden)

    Yong Liu

    Full Text Available Acute pancreatitis (AP is a potentially lethal disease characterized by inflammation and parenchymal cell death; also, the severity of AP correlates directly with necrosis and inversely with apoptosis. However, mechanisms of regulating cell death in AP remain unclear. The endoplasmic reticulum (ER chaperone protein GRP78 has anti-apoptotic properties, in addition to modulating ER stress responses. This study used RNA interference (RNAi approach to investigate the potential role of GRP78 in regulating apoptosis during AP. In vitro models of AP were successfully developed by treating AR42J cells with cerulein or cerulein plus lipoplysaccharide (LPS. There was more pancreatic inflammation and less apoptosis with the cerulein plus LPS treatment. Furthermore, knockdown of GRP78 expression markedly promoted apoptosis and reduced necrosis in pancreatic acinar cells. This was accomplished by enhancing the activation of caspases and inhibiting the activity of X-linked inhibitor of apoptosis protein (XIAP, as well as a receptor interacting protein kinase-1(RIPK1, which is a key mediator of necrosis. This attenuated the severity of pancreatic inflammation, especially after cerulein plus LPS treatment. In conclusion, these findings indicate that GRP78 plays an anti-apoptotic role in regulating the cell death response during AP. Therefore, GRP78 is a potential therapeutic target for AP.

  1. S‐Allylmercaptocysteine Attenuates  Cisplatin‐Induced Nephrotoxicity through  Suppression of Apoptosis, Oxidative Stress, and  Inflammation

    Directory of Open Access Journals (Sweden)

    Xiaosong Zhu

    2017-02-01

    Full Text Available Cisplatin is a potent chemotherapeutic agent, but its clinical usage is limited by nephrotoxicity. S‐allylmercaptocysteine (SAMC, one of the water‐soluble organosulfur garlic derivatives, has antioxidant and anti‐inflammatory properties and plays an important role in protecting cells from apoptosis. This study aims to examine the protective effects of SAMC on cisplatin nephrotoxicity and to explore the mechanism of its renoprotection. Rats were treated with cisplatin with or without pre‐treatment with SAMC. Renal function, histological change, oxidative stress markers and antioxidant enzyme activities were investigated. Apoptotic marker, nuclearfactor (NF‐κB activity, expression of nuclear factor erythroid 2‐related factor 2 (Nrf2, NAD(PH:quinone oxidoreductase 1 (NQO1 and inflammatory cytokines were also examined. The effect of SAMC on cell viability and apoptosis was examined in cultured human kidney (HK‐2 cells. SAMC was confirmed to significantly attenuate cisplatin‐induced renal damage by using histological pathology and molecular biological method. Pre‐treatment with SAMC reduced NF‐κB activity, up‐regulated Nrf2 and NQO1 expression and down‐regulated inflammatory cytokine levels after cisplatin administration. Cisplatin‐induced apoptosis in HK‐2 cells was significantly attenuated by SAMC. Thus our results suggest that SAMC could be a potential therapeutic agent in the treatment of the cisplatin‐induced nephrotoxicity through its anti‐apoptotic, anti‐oxidant and anti‐inflammatory effects.

  2. S-Allylmercaptocysteine Attenuates  Cisplatin-Induced Nephrotoxicity through  Suppression of Apoptosis, Oxidative Stress, and  Inflammation.

    Science.gov (United States)

    Zhu, Xiaosong; Jiang, Xiaoyan; Li, Ang; Zhao, Zhongxi; Li, Siying

    2017-02-20

    Cisplatin is a potent chemotherapeutic agent, but its clinical usage is limited by nephrotoxicity. S-allylmercaptocysteine (SAMC), one of the water-soluble organosulfur garlic derivatives, has antioxidant and anti-inflammatory properties and plays an important role in protecting cells from apoptosis. This study aims to examine the protective effects of SAMC on cisplatin nephrotoxicity and to explore the mechanism of its renoprotection. Rats were treated with cisplatin with or without pre-treatment with SAMC. Renal function, histological change, oxidative stress markers and antioxidant enzyme activities were investigated. Apoptotic marker, nuclearfactor (NF)-κB activity, expression of nuclear factor erythroid 2-related factor 2 (Nrf2), NAD(P)H:quinone oxidoreductase 1 (NQO1) and inflammatory cytokines were also examined. The effect of SAMC on cell viability and apoptosis was examined in cultured human kidney (HK-2) cells. SAMC was confirmed to significantly attenuate cisplatin-induced renal damage by using histological pathology and molecular biological method. Pre-treatment with SAMC reduced NF-κB activity, up-regulated Nrf2 and NQO1 expression and down-regulated inflammatory cytokine levels after cisplatin administration. Cisplatin-induced apoptosis in HK-2 cells was significantly attenuated by SAMC. Thus our results suggest that SAMC could be a potential therapeutic agent in the treatment of the cisplatin-induced nephrotoxicity through its anti-apoptotic, anti-oxidant and anti-inflammatory effects.

  3. Proteasome inhibitor MG132 sensitizes HPV-positive human cervical cancer cells to rhTRAIL-induced apoptosis

    NARCIS (Netherlands)

    Hougardy, BMT; Maduro, JH; van der Zee, AGJ; de Groot, DJA; van den Heuvel, FAJ; de Vries, EGE; de Jong, S

    2006-01-01

    In cervical carcinogenesis, the p53 tumor suppressor pathway is disrupted by HPV (human papilloma virus) E6 oncogene expression. E6 targets p53 for rapid proteasome-mediated degradation. We therefore investigated whether proteasome inhibition by MG132 could restore wild-type p53 levels and sensitize

  4. Reactivation of the PI3K/Akt Signaling Pathway by the Bisperoxovanadium Compound bpV(pic) Attenuates Photoreceptor Apoptosis in Experimental Retinal Detachment.

    Science.gov (United States)

    Mao, Dan; Sun, Xiaodong

    2015-08-01

    Phosphatase and tensin homology deleted on chromosome 10 (PTEN) is crucial in neuronal apoptosis. This study evaluated the role of PTEN in photoreceptor cell apoptosis caused by retinal detachment (RD). A rat model of RD was established, and PTEN expression changes were detected at different time points by Western blotting and immunofluorescence. Some of the rats were given subretinal injections of bisperoxovanadium compound (bpV[pic]) after RD. We documented the expression and distribution of phospho-Akt (p-Akt) and B-cell lymphoma 2 (Bcl-2) in the retina by Western blot analysis and immunofluorescence. Levels of phosph-phosphoinositide-dependent kinase 1 (p-PDK1), phospho-Bcl-2 death promotor (p-BAD), cytosolic cytochrome c (Cyt c), and cleaved Caspase-3 were detected by Western blotting. We measured phosphatidylinositol 3,4,5-triphosphate (PIP3) by ELISA. Apoptosis of photoreceptors was detected using the TUNEL assay. The thickness of the outer nuclear layer (ONL) also was recorded. The expression of PTEN gradually increased after RD, peaking at 3 days and then decreasing to normal by 7 days after RD. Subretinal injection of bpV(pic) effectively reduced the apoptosis of photoreceptors and preserved the retinal thickness of the ONL after RD. Compared to vehicle-treated RD groups, levels of p-Akt and p-PDK1 were significantly upregulated in bpV-treated RD groups. In addition, bpV treatment increased the levels of p-BAD and Bcl-2, and decreased the expression levels of cytosolic Cyt c and cleaved caspase-3 after RD. Phosphatase and tensin homology deleted on chromosome 10 (PTEN) participates in the apoptosis of photoreceptors after RD. Blocking PTEN may reactivate the PI3K/Akt pathway and attenuate photoreceptor apoptosis by suppressing the mitochondrial pathway.

  5. Inhibitor of apoptosis (IAP)-like protein lacks a baculovirus IAP repeat (BIR) domain and attenuates cell death in plant and animal systems.

    Science.gov (United States)

    Kim, Woe Yeon; Lee, Sun Yong; Jung, Young Jun; Chae, Ho Byoung; Nawkar, Ganesh M; Shin, Mi Rim; Kim, Sun Young; Park, Jin Ho; Kang, Chang Ho; Chi, Yong Hun; Ahn, Il Pyung; Yun, Dae Jin; Lee, Kyun Oh; Kim, Young-Myeong; Kim, Min Gab; Lee, Sang Yeol

    2011-12-09

    A novel Arabidopsis thaliana inhibitor of apoptosis was identified by sequence homology to other known inhibitor of apoptosis (IAP) proteins. Arabidopsis IAP-like protein (AtILP) contained a C-terminal RING finger domain but lacked a baculovirus IAP repeat (BIR) domain, which is essential for anti-apoptotic activity in other IAP family members. The expression of AtILP in HeLa cells conferred resistance against tumor necrosis factor (TNF)-α/ActD-induced apoptosis through the inactivation of caspase activity. In contrast to the C-terminal RING domain of AtILP, which did not inhibit the activity of caspase-3, the N-terminal region, despite displaying no homology to known BIR domains, potently inhibited the activity of caspase-3 in vitro and blocked TNF-α/ActD-induced apoptosis. The anti-apoptotic activity of the AtILP N-terminal domain observed in plants was reproduced in an animal system. Transgenic Arabidopsis lines overexpressing AtILP exhibited anti-apoptotic activity when challenged with the fungal toxin fumonisin B1, an agent that induces apoptosis-like cell death in plants. In AtIPL transgenic plants, suppression of cell death was accompanied by inhibition of caspase activation and DNA fragmentation. Overexpression of AtILP also attenuated effector protein-induced cell death and increased the growth of an avirulent bacterial pathogen. The current results demonstrated the existence of a novel plant IAP-like protein that prevents caspase activation in Arabidopsis and showed that a plant anti-apoptosis gene functions similarly in plant and animal systems.

  6. Controlled Release of Interleukin-1 Receptor Antagonist from Hyaluronic Acid-Chitosan Microspheres Attenuates Interleukin-1β-Induced Inflammation and Apoptosis in Chondrocytes

    Directory of Open Access Journals (Sweden)

    Bo Qiu

    2016-01-01

    Full Text Available This paper investigates the protective effect of interleukin-1 receptor antagonist (IL-1Ra released from hyaluronic acid chitosan (HA-CS microspheres in a controlled manner on IL-1β-induced inflammation and apoptosis in chondrocytes. The IL-1Ra release kinetics was characterized by an initial burst release, which was reduced to a linear release over eight days. Chondrocytes were stimulated with 10 ng/ml IL-1β and subsequently incubated with HA-CS-IL-1Ra microspheres. The cell viability was decreased by IL-1β, which was attenuated by HA-CS-IL-1Ra microspheres as indicated by an MTT assay. ELISA showed that HA-CS-IL-1Ra microspheres inhibited IL-1β-induced inflammation by attenuating increases in NO2- and prostaglandin E2 levels as well as increase in glycosaminoglycan release. A terminal deoxyribonucleotide transferase deoxyuridine triphosphate nick-end labeling assay revealed that the IL-1β-induced chondrocyte apoptosis was decreased by HA-CS-IL-1Ra microspheres. Moreover, HA-CS-IL-1Ra microspheres blocked IL-1β-induced chondrocyte apoptosis by increasing B-cell lymphoma 2 (Bcl-2 and decreasing Bcl-2-associated X protein and caspase-3 expressions at mRNA and protein levels, as indicated by reverse-transcription quantitative polymerase chain reaction and western blot analysis, respectively. The results of the present study indicated that HA-CS-IL-1Ra microspheres as a controlled release system of IL-1Ra possess potential anti-inflammatory and antiapoptotic properties in rat chondrocytes due to their ability to regulate inflammatory factors and apoptosis associated genes.

  7. Globular Adiponectin Attenuated H2O2-Induced Apoptosis in Rat Chondrocytes by Inducing Autophagy Through the AMPK/ mTOR Pathway.

    Science.gov (United States)

    Hu, Junzheng; Cui, Weiding; Ding, Wenxiao; Gu, Yanqing; Wang, Zhen; Fan, Weimin

    2017-01-01

    Chondrocyte apoptosis is closely related to the development and progression of osteoarthritis. Global adiponectin (gAPN), secreted from adipose tissue, possesses potent anti-inflammatory and antiapoptotic properties in various cell types. This study aimed to investigate the role of autophagy induced by gAPN in the suppression of H2O2-induced apoptosis and the potential mechanism of gAPN-induced autophagy in chondrocytes. H2O2 was used to induce apoptotic injury in rat chondrocytes. CCK-8 assay was performed to determine the viability of cells treated with different concentrations of gAPN with or without H2O2. Cell apoptosis was detected by flow cytometry and TUNEL staining. Mitochondrial membrane potential was examined using JC-1 fluorescence staining assay. The autophagy inhibitors 3-MA and Bafilomycin A1 were used to treat cells and then evaluate the effect of gAPN-induced autophagy. To determine the downstream pathway, chondrocytes were preincubated with the AMPK inhibitor Compound C. Beclin-1, LC3B, P62 and apoptosis-related proteins were identified by Western blot analysis. H2O2 (400 µM)-induced chondrocytes apoptosis and caspase-3 activation were attenuated by gAPN (0.5 µg/mL). gAPN increased Bcl-2 expression and decreased Bax expression. The loss of mitochondrial membrane potential induced by H2O2 was also abolished by gAPN. Furthermore, the antiapoptotic effect of gAPN was related to gAPN-induced autophagy by increased formation of Beclin-1 and LC3B and P62 degradation. In particular, the inhibition of gAPN-induced autophagy by 3-MA prevented the protective effect of gAPN on apoptosis induced by H2O2. Moreover, gAPN increased p-AMPK expression and decreased p-mTOR expression. Compound C partly suppressed the expression of autophagy-related proteins and restored the expression of p-mTOR suppressed by gAPN. Thus, the AMPK/mTOR pathway played an important role in the induction of autophagy and protection of H2O2-induced chondrocytes apoptosis by gAPN. g

  8. Globular Adiponectin Attenuated H2O2-Induced Apoptosis in Rat Chondrocytes by Inducing Autophagy Through the AMPK/ mTOR Pathway

    Directory of Open Access Journals (Sweden)

    Junzheng Hu

    2017-08-01

    Full Text Available Background/Aims: Chondrocyte apoptosis is closely related to the development and progression of osteoarthritis. Global adiponectin (gAPN, secreted from adipose tissue, possesses potent anti-inflammatory and antiapoptotic properties in various cell types. This study aimed to investigate the role of autophagy induced by gAPN in the suppression of H2O2-induced apoptosis and the potential mechanism of gAPN-induced autophagy in chondrocytes. Methods: H2O2 was used to induce apoptotic injury in rat chondrocytes. CCK-8 assay was performed to determine the viability of cells treated with different concentrations of gAPN with or without H2O2. Cell apoptosis was detected by flow cytometry and TUNEL staining. Mitochondrial membrane potential was examined using JC-1 fluorescence staining assay. The autophagy inhibitors 3-MA and Bafilomycin A1 were used to treat cells and then evaluate the effect of gAPN-induced autophagy. To determine the downstream pathway, chondrocytes were preincubated with the AMPK inhibitor Compound C. Beclin-1, LC3B, P62 and apoptosis-related proteins were identified by Western blot analysis. Results: H2O2 (400 µM-induced chondrocytes apoptosis and caspase-3 activation were attenuated by gAPN (0.5 µg/mL. gAPN increased Bcl-2 expression and decreased Bax expression. The loss of mitochondrial membrane potential induced by H2O2 was also abolished by gAPN. Furthermore, the antiapoptotic effect of gAPN was related to gAPN-induced autophagy by increased formation of Beclin-1 and LC3B and P62 degradation. In particular, the inhibition of gAPN-induced autophagy by 3-MA prevented the protective effect of gAPN on apoptosis induced by H2O2. Moreover, gAPN increased p-AMPK expression and decreased p-mTOR expression. Compound C partly suppressed the expression of autophagy-related proteins and restored the expression of p-mTOR suppressed by gAPN. Thus, the AMPK/mTOR pathway played an important role in the induction of autophagy and protection of

  9. Asiatic acid, a pentacyclic triterpene in Centella asiatica, attenuates glutamate-induced cognitive deficits in mice and apoptosis in SH-SY5Y cells

    Science.gov (United States)

    Xu, Min-fang; Xiong, Yu-yun; Liu, Jian-kang; Qian, Jin-jun; Zhu, Li; Gao, Jing

    2012-01-01

    Aim: To investigate whether asiatic acid (AA), a pentacyclic triterpene in Centella asiatica, exerted neuroprotective effects in vitro and in vivo, and to determine the underlying mechanisms. Methods: Human neuroblastoma SH-SY5Y cells were used for in vitro study. Cell viability was determined with the MTT assay. Hoechst 33342 staining and flow cytometry were used to examine the apoptosis. The mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) were measured using fluorescent dye. PGC-1α and Sirt1 levels were examined using Western blotting. Neonatal mice were given monosodium glutamate (2.5 mg/g) subcutaneously at the neck from postnatal day (PD) 7 to 13, and orally administered with AA on PD 14 daily for 30 d. The learning and memory of the mice were evaluated with the Morris water maze test. HE staining was used to analyze the pyramidal layer structure in the CA1 and CA3 regions. Results: Pretreatment of SH-SY5Y cells with AA (0.1–100 nmol/L) attenuated toxicity induced by 10 mmol/L glutamate in a concentration-dependent manner. AA 10 nmol/L significantly decreased apoptotic cell death and reduced reactive oxygen species (ROS), stabilized the mitochondrial membrane potential (MMP), and promoted the expression of PGC-1α and Sirt1. In the mice models, oral administration of AA (100 mg/kg) significantly attenuated cognitive deficits in the Morris water maze test, and restored lipid peroxidation and glutathione and the activity of SOD in the hippocampus and cortex to the control levels. AA (50 and 100 mg/kg) also attenuated neuronal damage of the pyramidal layer in the CA1 and CA3 regions. Conclusion: AA attenuates glutamate-induced cognitive deficits of mice and protects SH-SY5Y cells against glutamate-induced apoptosis in vitro. PMID:22447225

  10. Anti-apoptotic protein BRE/BRCC45 attenuates apoptosis through maintaining the expression of caspase inhibitor XIAP in mouse Lewis lung carcinoma D122 cells.

    Science.gov (United States)

    Chui, Yiu-Loon; Ma, Chun-Hung; Li, Wei; Xu, Zhenyu; Yao, Yao; Lin, Frances Ka-Yin; Chan, John Yeuk-Hon; Lee, Kenneth Ka-Ho

    2014-05-01

    Brain and Reproductive Organ Expressed (BRE), or BRCC45, is a death receptor-associated antiapoptotic protein, which is also involved in DNA-damage repair, and K63-specific deubiquitination. BRE overexpression attenuates both death receptor- and stress-induced apoptosis, promotes experimental tumor growth, and is associated with human hepatocellular and esophageal carcinoma. How BRE mediates its antiapoptotic function is unknown. Here we report based on the use of a mouse Lewis lung carcinoma cell line D122 that BRE has an essential role in maintaining the cellular protein level of XIAP, which is the most potent endogenous inhibitor of the caspases functioning in both extrinsic and intrinsic apoptosis. shRNA-mediated exhaustive depletion of BRE sensitized D122 cells to apoptosis induced not only by etopoxide, but also by TNF-α even in the absence of cycloheximide, which blocks the synthesis of antiapoptotic proteins by TNF-α-activated NF-κB pathway. In BRE-depleted cells, protein level of XIAP was downregulated, but not the levels of other antiapoptotic proteins, cIAP-1, 2, and cFLIP, regulated by the same NF-κB pathway. Reconstitution of BRE restored XIAP levels and increased resistance to apoptosis. XIAP mRNA level was also reduced in the BRE-depleted cells, but the level of reduction was less profound than that of the protein level. However, BRE could not delay protein turnover of XIAP. Depletion of BRE also increased tumor cell apoptosis, and decreased both local and metastatic tumor growth. Taken together, these findings indicate that BRE and its XIAP-sustaining mechanism could represent novel targets for anti-cancer therapy.

  11. Punicalagin, a polyphenol in pomegranate juice, downregulates p53 and attenuates hypoxia-induced apoptosis in cultured human placental syncytiotrophoblasts

    OpenAIRE

    Chen, Baosheng; Longtine, Mark S.; Nelson, D. Michael

    2013-01-01

    Oxidative stress is associated with placental dysfunction and suboptimal pregnancy outcomes. Therapeutic interventions to limit placental injury from oxidative stress are lacking. Punicalagin is an ellagitannin and a potent antioxidant in pomegranate juice. We showed that both pomegranate juice and punicalagin decrease oxidative stress and apoptosis in cultured syncytiotrophoblasts. p53 is involved in the oxidative stress-induced apoptosis in trophoblasts. We now test the hypothesis that puni...

  12. Genetically attenuated, P36p-deficient malarial sporozoites induce protective immunity and apoptosis of infected liver cells.

    NARCIS (Netherlands)

    Dijk, M.R. van; Douradinha, B.G.; Franke-Fayard, B.; Heussler, V.; Dooren, M.W. van; Schaijk, B.C.L. van; Gemert, G.J.A. van; Sauerwein, R.W.; Mota, M.M.; Waters, A.P.; Janse, C.J.

    2005-01-01

    Immunization with Plasmodium sporozoites that have been attenuated by gamma-irradiation or specific genetic modification can induce protective immunity against subsequent malaria infection. The mechanism of protection is only known for radiation-attenuated sporozoites, involving cell-mediated and

  13. Apigenin Attenuates Atherogenesis through Inducing Macrophage Apoptosis via Inhibition of AKT Ser473 Phosphorylation and Downregulation of Plasminogen Activator Inhibitor-2

    Directory of Open Access Journals (Sweden)

    Ping Zeng

    2015-01-01

    Full Text Available Macrophage survival is believed to be a contributing factor in the development of early atherosclerotic lesions. Dysregulated apoptosis of macrophages is involved in the inflammatory process of atherogenesis. Apigenin is a flavonoid that possesses various clinically relevant properties such as anti-inflammatory, antiplatelet, and antitumor activities. Here we showed that apigenin attenuated atherogenesis in apoE-/- mice in an in vivo test. In vitro experiments suggested that apigenin induced apoptosis of oxidized low density lipoprotein- (OxLDL- loaded murine peritoneal macrophages (MPMs. Proteomic analysis showed that apigenin reduced the expression of plasminogen activator inhibitor 2 (PAI-2. PAI-2 has antiapoptotic effects in OxLDL-loaded MPMs. Enhancing PAI-2 expression significantly reduced the proapoptosis effects of apigenin. Molecular docking assay with AutoDock software predicted that residue Ser473 of Akt1 is a potential binding site for apigenin. Lentiviral-mediated overexpression of Akt1 wild type weakened the proapoptosis effect of apigenin in OxLDL-loaded MPMs. Collectively, apigenin executes its anti-atherogenic effects through inducing OxLDL-loaded MPMs apoptosis. The proapoptotic effects of apigenin were at least partly attributed to downregulation of PAI-2 through suppressing phosphorylation of AKT at Ser473.

  14. Estrogen-Related Receptor Alpha Confers Methotrexate Resistance via Attenuation of Reactive Oxygen Species Production and P53 Mediated Apoptosis in Osteosarcoma Cells

    Directory of Open Access Journals (Sweden)

    Peng Chen

    2014-01-01

    Full Text Available Osteosarcoma (OS is a malignant tumor mainly occurring in children and adolescents. Methotrexate (MTX, a chemotherapy agent, is widely used in treating OS. However, treatment failures are common due to acquired chemoresistance, for which the underlying molecular mechanisms are still unclear. In this study, we report that overexpression of estrogen-related receptor alpha (ERRα, an orphan nuclear receptor, promoted cell survival and blocked MTX-induced cell death in U2OS cells. We showed that MTX induced ROS production in MTX-sensitive U2OS cells while ERRα effectively blocked the ROS production and ROS associated cell apoptosis. Our further studies demonstrated that ERRα suppressed ROS induction of tumor suppressor P53 and its target genes NOXA and XAF1 which are mediators of P53-dependent apoptosis. In conclusion, this study demonstrated that ERRα plays an important role in the development of MTX resistance through blocking MTX-induced ROS production and attenuating the activation of p53 mediated apoptosis signaling pathway, and points to ERRα as a novel target for improving osteosarcoma therapy.

  15. Panax quinquefolium saponin inhibits endoplasmic reticulum stress-induced apoptosis and the associated inflammatory response in chondrocytes and attenuates the progression of osteoarthritis in rat.

    Science.gov (United States)

    Xie, Jun-Jun; Chen, Jian; Guo, Shi-Kun; Gu, Yun-Tao; Yan, Ying-Zhao; Guo, Wei-Jun; Yao, Cheng-Lun; Jin, Meng-Yun; Xie, Cheng-Long; Wang, Xiang; Wang, Xiang-Yang; Chen, Long

    2018-01-01

    Treatments for osteoarthritis (OA) seek to restore chondrocyte function and inhibit cell apoptosis. Panax quinquefolium saponin (PQS) is the major active ingredient of Radix panacis quinquefolii (American ginseng), and has been demonstrated to exert anti-inflammatory and anti-apoptotic effects in various diseases. However, any potential effect of PQS on the pathological process of OA remains unclear. This work aimed to explore the role of PQS in chondrocytes and to clarify its potential mechanisms. We showed that PQS treatment could protect chondrocytes against endoplasmic reticulum (ER) stress and associated apoptosis induced by interleukin (IL)-1β. Also, PQS further attenuated triglyceride (TG)-induced ER stress and associated apoptosis. Moreover, PQS may inhibit the ER stress-activated NF-κB pathway and associated inflammatory response in chondrocytes. Finally, PQS abolished rat cartilage degeneration in an in-vivo OA model of the knee joint. Our results indicate that PQS may be a potential novel treatment for OA. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. Ethanol extract of Prunus mume fruit attenuates hydrogen peroxide-induced oxidative stress and apoptosis involving Nrf2/HO-1 activation in C2C12 myoblasts

    Directory of Open Access Journals (Sweden)

    Ji Sook Kang

    Full Text Available ABSTRACT The fruit of the Prunus mume (Siebold Siebold & Zucc., Rosaceae (Korean name: Maesil has long been used as a health food or valuable medicinal material in traditional herb medicine in Southeast Asian countries. In this study, we determined the potential therapeutic efficacy of the ethanol extract of P. mume fruits (EEPM against H2O2-induced oxidative stress and apoptosis in the murine skeletal muscle myoblast cell line C2C12, and sought to understand the associated molecular mechanisms. The results indicated that exposure of C2C12 cells to H2O2 caused a reduction in cell viability by increasing the generation of intracellular reactive oxygen species and by disrupting mitochondrial membrane permeability, leading to DNA damage and apoptosis. However, pretreatment of the cells with EEPM before H2O2 exposure effectively attenuated these changes, suggesting that EEPM prevented H2O2-induced mitochondria-dependent apoptosis. Furthermore, the increased ex-pression and phosphorylation of nuclear factor erythroid 2-related factor 2 (Nrf2 and up-regulation of heme oxygenase-1 (HO-1, a phase II antioxidant enzyme, were detected in EEPM-treated C2C12 cells. We also found that zinc protoporphyrin IX, an HO-1 inhibitor, attenuated the protective effects of EEPM against H2O2-induced reactive oxygen species accumulation and cytotoxicity. Therefore, these results indicate that the activation of the Nrf2/HO-1 pathway might be involved in the protection of EEPM against H2O2-induced cellular oxidative damage. In conclusion, these results show that EEPM contributes to the prevention of oxidative damage and could be used as a nutritional agent for oxidative stress-related diseases.

  17. Polymeric gene delivery of ischemia-inducible VEGE significantly attenuates infarct size and apoptosis following myocardial infarct.(Clinical report)

    National Research Council Canada - National Science Library

    Yockman, J.W; Choi, D; Whitten, M.G; Chang, C.W; Kastenmeier, A; Erickson, H; Albanil, A; Lee, M; Kim, S.W; Bull, D.A

    2009-01-01

    ... cell protective effects. (6,7) Vascular endothelial growth factor (VEGF), one of the number of angiogenic growth factors, has been shown to preserve myocardial function in the setting of ischemia-reperfusion and to inhibit apoptosis in some systems. (8,9) Furthermore, myocyte-secreted VEGF, acting via autocrine and paracrine pathways, has been shown to...

  18. Clematichinenoside (AR Attenuates Hypoxia/Reoxygenation-Induced H9c2 Cardiomyocyte Apoptosis via a Mitochondria-Mediated Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Haiyan Ding

    2016-05-01

    Full Text Available Mitochondria-mediated cardiomyocyte apoptosis is involved in myocardial ischemia/reperfusion (MI/R injury. Clematichinenoside (AR is a triterpenoid saponin isolated from the roots of Clematis chinensis with antioxidant and anti-inflammatory cardioprotection effects against MI/R injury, yet the anti-apoptotic effect and underlying mechanisms of AR in MI/R injury remain unclear. We hypothesize that AR may improve mitochondrial function to inhibit MI/R-induced cardiomyocyte apoptosis. In this study, we replicated an in vitro H9c2 cardiomyocyte MI/R model by hypoxia/reoxygenation (H/R treatment. The viability of H9c2 cardiomyocytes was determined by MTT assay; apoptosis was evaluated by flow cytometry and TUNEL experiments; mitochondrial permeability transition pore (mPTP opening was analyzed by a calcein-cobalt quenching method; and mitochondrial membrane potential (ΔΨm was detected by JC-1. Moreover, we used western blots to determine the mitochondrial cytochrome c translocation to cytosolic and the expression of caspase-3, Bcl-2, and Bax proteins. These results showed that the application of AR decreased the ratio of apoptosis and the extent of mPTP opening, but increased ΔΨm. AR also inhibited H/R-induced release of mitochondrial cytochrome c and decreased the expression of the caspase-3, Bax proteins. Conversely, it remarkably increased the expression of Bcl-2 protein. Taken together, these results revealed that AR protects H9c2 cardiomyocytes against H/R-induced apoptosis through mitochondrial-mediated apoptotic signaling pathway.

  19. Protection of ischemic postconditioning against neuronal apoptosis induced by transient focal ischemia is associated with attenuation of NF-κB/p65 activation.

    Science.gov (United States)

    Liang, Jianmin; Luan, Yongxin; Lu, Bin; Zhang, Hongbo; Luo, Yi-nan; Ge, Pengfei

    2014-01-01

    Accumulating evidences have demonstrated that nuclear factor κB/p65 plays a protective role in the protection of ischemic preconditioning and detrimental role in lethal ischemia-induced programmed cell death including apoptosis and autophagic death. However, its role in the protection of ischemic postconditioning is still unclear. Rat MCAO model was used to produce transient focal ischemia. The procedure of ischemic postconditioning consisted of three cycles of 30 seconds reperfusion/reocclusion of MCA. The volume of cerebral infarction was measured by TTC staining and neuronal apoptosis was detected by TUNEL staining. Western blotting was used to analyze the changes in protein levels of Caspase-3, NF-κB/p65, phosphor- NF-κB/p65, IκBα, phosphor- IκBα, Noxa, Bim and Bax between rats treated with and without ischemic postconditioning. Laser scanning confocal microscopy was used to examine the distribution of NF-κB/p65 and Noxa. Ischemic postconditioning made transient focal ischemia-induced infarct volume decrease obviously from 38.6% ± 5.8% to 23.5% ± 4.3%, and apoptosis rate reduce significantly from 46.5% ± 6.2 to 29.6% ± 5.3% at reperfusion 24 h following 2 h focal cerebral ischemia. Western blotting analysis showed that ischemic postconditioning suppressed markedly the reduction of NF-κB/p65 in cytoplasm, but elevated its content in nucleus either at reperfusion 6 h or 24 h. Moreover, the decrease of IκBα and the increase of phosphorylated IκBα and phosphorylated NF-κB/p65 at indicated reperfusion time were reversed by ischemic postconditioning. Correspondingly, proapoptotic proteins Caspase-3, cleaved Caspase-3, Noxa, Bim and Bax were all mitigated significantly by ischemic postconditioning. Confocal microscopy revealed that ischemic postconditioning not only attenuated ischemia-induced translocation of NF-κB/p65 from neuronal cytoplasm to nucleus, but also inhibited the abnormal expression of proapoptotic protein Noxa within neurons. We

  20. E2F1-Mediated Induction of NFYB Attenuates Apoptosis via Joint Regulation of a Pro-Survival Transcriptional Program.

    Directory of Open Access Journals (Sweden)

    Xiaolei Jiang

    Full Text Available The E2F1 transcription factor regulates cell proliferation and apoptosis through the control of a considerable variety of target genes. Previous work has detailed the role of other transcription factors in mediating the specificity of E2F function. Here we identify the NF-YB transcription factor as a novel direct E2F1 target. Genome-wide expression analysis of the effects of NFYB knockdown on E2F1-mediated transcription identified a large group of genes that are co-regulated by E2F1 and NFYB. We also provide evidence that knockdown of NFYB enhances E2F1-induced apoptosis, suggesting a pro-survival function of the NFYB/E2F1 joint transcriptional program. Bioinformatic analysis suggests that deregulation of these NFY-dependent E2F1 target genes might play a role in sarcomagenesis as well as drug resistance.

  1. Tanshinone IIA attenuates the inflammatory response and apoptosis after traumatic injury of the spinal cord in adult rats.

    Directory of Open Access Journals (Sweden)

    Xin Yin

    Full Text Available BACKGROUND: Spinal cord injury (SCI, including immediate mechanical injury and secondary injury, is associated with the inflammatory response, apoptosis and oxidative stress in response to traumatic injury. Tanshinone IIA (TIIA is one of the major extracts obtained from Salvia miltiorrhiza BUNGE, which has anti-inflammatory and anti-apoptotic effects on many diseases. However, little is known about the effects of TIIA treatment on SCI. Therefore, the aim of the present study is to evaluate the pharmacological action of TIIA on secondary damage and the underlying mechanisms of experimental SCI in rats. METHODOLOGY/PRINCIPAL FINDINGS: SCI was generated using a weight drop device on the dorsal spinal cord via a two-level T9-T11 laminectomy. SCI in rats resulted in severe trauma, characterized by locomotor disturbance, edema, neutrophil infiltration, the production of astrocytes and inflammatory mediators, apoptosis and oxidative stress. TIIA treatment (20 mg/kg, i.p. after SCI induced significant effects: (1 improved motor function (Basso, Beattie and Bresnahan scores, (2 reduced the degree of tissue injury (histological score, neutrophil infiltration (myeloperoxidase activity and the expression of astrocytes, (3 inhibited the activation of SCI-related pathways, such as NF-κB and MAPK signaling pathways, (4 decreased the production of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6 and iNOS, (5 reduced apoptosis (TUNEL staining, and Bcl-2 and caspase-3 expression and (6 reversed the redox state imbalance. CONCLUSIONS/SIGNIFICANCE: The results clearly show that TIIA has a prominent protective effect against SCI through inhibiting the inflammatory response and apoptosis in the spinal cord tissue after SCI.

  2. MicroRNA-Mediated Down-Regulation of Apoptosis Signal-Regulating Kinase 1 (ASK1 Attenuates the Apoptosis of Human Mesenchymal Stem Cells (MSCs Transplanted into Infarcted Heart

    Directory of Open Access Journals (Sweden)

    Chang Youn Lee

    2016-10-01

    Full Text Available Stem cell therapy using adult stem cells, such as mesenchymal stem cells (MSCs has produced some promising results in treating the damaged heart. However, the low survival rate of MSCs after transplantation is still one of the crucial factors that limit the therapeutic effect of stem cells. In the damaged heart, oxidative stress due to reactive oxygen species (ROS production can cause the death of transplanted MSCs. Apoptosis signal-regulating kinase 1 (ASK1 has been implicated in the development of oxidative stress-related pathologic conditions. Thus, we hypothesized that down-regulation of ASK1 in human MSCs (hMSCs might attenuate the post-transplantation death of MSCs. To test this hypothesis, we screened microRNAs (miRNAs based on a miRNA-target prediction database and empirical data and investigated the anti-apoptotic effect of selected miRNAs on human adipose-derived stem cells (hASCs and on rat myocardial infarction (MI models. Our data indicated that miRNA-301a most significantly suppressed ASK1 expression in hASCs. Apoptosis-related genes were significantly down-regulated in miRNA-301a-enriched hASCs exposed to hypoxic conditions. Taken together, these data show that miRNA-mediated down-regulation of ASK1 protects MSCs during post-transplantation, leading to an increase in the efficacy of MSC-based cell therapy.

  3. Honokiol Attenuates Oligomeric Amyloid β1-42-Induced Alzheimer’s Disease in Mice Through Attenuating Mitochondrial Apoptosis and Inhibiting the Nuclear Factor Kappa-B Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Mo Wang

    2017-08-01

    Full Text Available Background: Increasing evidence indicates that amyloid β oligomer (AβO is toxic to neurons in Alzheimer’s disease (AD brain. The aim of the present study is to evaluate the effects of honokiol on AβO-induced learning and memory dysfunction in mice. Methods: AD mice model was established by AβO intrahippocampal injection. The cognitive function was evaluated using Morris water maze (MWM. Nissl staining was used to examine the hippocampal neuron damage. Primary hippocampal neurons were exposed to AβO. The apoptosis in the hippocampal tissues and primary neurons was assessed using terminal dexynucleotidyl transferase-mediated dUTP nick end labeling-neuronal nuclei (NeuN and Hoechst staining, respectively. The mitochondrial membrane potential and radical oxygen species were detected using standard methods. Western blotting assay was used to check the expression levels of apoptotic and nuclear factor kappa-B (NF-κB signaling-associated proteins and electrophoretic mobility shift assay was used to detect NF-κB-DNA binding. Results: Honokiol increased the time spend in the target zone of the AD mice in the MWM. In addition, honokiol dose-dependently attenuated AβO-induced hippocampal neuronal apoptosis, reactive oxygen species production and loss of mitochondrial membrane potential. Furthermore, AβO-induced NF-κB activation was inhibited by honokiol, as well as the upregulated amyloid precursor protein and β-secretase. Conclusion: Honokiol attenuates AβO-induced learning and memory dysfunction in mice and it may be a potential candidate in AD therapy.

  4. Endoplasmic Reticulum Stress Is Involved in Nucleus Pulposus Degeneration and Attenuates Low pH-Induced Apoptosis of Rat Nucleus Pulposus Cells.

    Science.gov (United States)

    Xie, Zhi-Yang; Chen, Lu; Wang, Feng; Liu, Lei; Zhang, Cong; Wang, Kun; Cai, Feng; Sinkemanni, Arjun; Hong, Xin; Wu, Xiao-Tao

    2017-08-01

    The microenvironment of degenerative intervertebral disk (IVD) is characteristic of a high concentration of lactic acid and low pH levels, whereas the underlying mechanism has not been clearly defined. Endoplasmic reticulum (ER) is the hub of interactions between environmental signals and cellular biological functions, the malfunction of which is closely involved in the pathogenesis of multiple disorders, including IVD degeneration (IVDD). This research mainly aims at exploring what role ER stress plays in the natural process of IVDD and pH-induced apoptosis of rat nucleus pulposus (NP) cells (NPCs). The IVD of Sprague-Dawley rats at different ages was stained by Hematoxylin-Eosin staining to visualize the histocytological changes during the nature process of IVDD. Immunohistochemical staining was performed to evaluate the expression of ER stress markers within normal and degenerated NP. The ER stress markers were also quantified by quantitative real-time-polymerase chain reaction (PCR) and Western blotting analysis, respectively. NPCs were exposed to the culturing media with acidity of pH 7.4, 7.0, 6.5, or 6.0 for 24-72 h, with or without the supplement of 4-phenylbutyrayte (4-PBA, the blocker of ER stress pathways). Changes in cell viability were evaluated by CCK-8 assay and neutral red assay, whereas apoptosis was stained by Annexin-V/PI staining and quantified by flow cytometry analysis. The acidity-induced changes in the expression of ER stress markers were studied by immunofluorescent staining, qRT-PCR, and Western blotting analysis. In vivo, the expression of GRP78 and XBP1 was downregulated whereas CHOP and Caspase12 were upregulated in natural degeneration. In vitro, low pH induced apoptosis of rat NPCs; prolonged exposure of acid reduced cell viability and caused upregulation of ER stress markers. 4-PBA was used to alleviate ER stress, and it promoted acid-induced apoptosis of NPCs. ER stress is involved in NP natural degeneration and attenuates low

  5. Attenuation of 7-ketocholesterol-induced overproduction of reactive oxygen species, apoptosis, and autophagy by dimethyl fumarate on 158N murine oligodendrocytes.

    Science.gov (United States)

    Zarrouk, Amira; Nury, Thomas; Karym, El-Mostafa; Vejux, Anne; Sghaier, Randa; Gondcaille, Catherine; Andreoletti, Pierre; Trompier, Doriane; Savary, Stéphane; Cherkaoui-Malki, Mustapha; Debbabi, Meryam; Fromont, Agnès; Riedinger, Jean-Marc; Moreau, Thibault; Lizard, Gérard

    2017-05-01

    Mitochondrial dysfunctions and oxidative stress are involved in several non demyelinating or demyelinating neurodegenerative diseases. Some of them, including multiple sclerosis (MS), are associated with lipid peroxidation processes leading to increased levels of 7-ketocholesterol (7KC). So, the eventual protective effect of dimethylfumarate (DMF), which is used for the treatment of MS, was evaluated on 7KC-treated oligodendrocytes, which are myelin synthesizing cells. To this end, murine oligodendrocytes 158N were exposed to 7KC (25, 50μM) for 24h without or with DMF (1, 25, 50μM). The biological activities of DMF associated or not with 7KC were evaluated by phase contrast microscopy, crystal violet and MTT tests. The impact on transmembrane mitochondrial potential (ΔYm), O 2 - and H 2 O 2 production, apoptosis and autophagy was measured by microscopical and flow cytometric methods by staining with DiOC 6 (3), dihydroethidine and dihydrorhodamine 123, Hoechst 33342, and by Western blotting with the use of specific antibodies raised against uncleaved and cleaved caspase-3 and PARP, and LC3-I/II. DMF attenuates the different effects of 7KC, namely: cell growth inhibition and/or loss of cell adhesion, decrease of ΔΨm, O 2 - and H 2 O 2 overproduction, PARP and caspase-3 cleavage, nuclear condensation and fragmentation, and activation of LC3-I into LC3-II. The ability of DMF to attenuate 7KC-induced reactive oxygen species overproduction, apoptosis, and autophagy on oligodendrocytes reinforces the interest for this molecule for the treatment of MS or other demyelinating diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Granulocyte-Colony Stimulating Factor (G-CSF) Accelerates Wound Healing in Hemorrhagic Shock Rats by Enhancing Angiogenesis and Attenuating Apoptosis

    Science.gov (United States)

    Huang, Hong; Zhang, Qi; Liu, Jiejie; Hao, Haojie; Jiang, Chaoguang; Han, Weidong

    2017-01-01

    Background Following severe trauma, treatment of cutaneous injuries is often delayed by inadequate blood supply. The aim of the present study was to determine whether granulocyte-colony stimulating factor (G-CSF) protects endothelial cells (ECs) and enhances angiogenesis in a rat model of hemorrhagic shock (HS) combined with cutaneous injury after resuscitation. Material/Methods The HS rats with full-thickness defects were resuscitated and randomly divided into a G-CSF group (200 μg/kg body weight), a normal saline group, and a blank control group. Histological staining was to used estimate the recovery and apoptosis of skin. Apoptosis- and angiogenesis-related factors were analyzed by reverse transcription-polymerase chain reaction (RT-PCR) and Western blot (WB). Scratch assay, tube formation, and WB experiments were performed to verify the functional effects of G-CSF on HUVECs in vitro. Results H&E staining and Masson trichrome staining showed earlier inflammation resolution and collagen synthesis in the G-CSF-treated group. Angiogenesis-related factors were elevated at mRNA and protein levels. TUNEL staining suggested fewer apoptotic cells in the G-CSF group. The apoptotic-related factors were down-regulated and anti-apoptotic factors were up-regulated in the G-CSF-treated group. Scratch assay and tube formation experiments revealed that G-CSF facilitated migration ability and angiogenic potential of HUVECs. The angiogenic and anti-apoptotic effects were also enhanced in vitro. Conclusions Our results suggest that G-CSF after resuscitation attenuates local apoptosis and accelerates angiogenesis. These findings hold great promise for improving therapy for cutaneous injury in severe trauma and ischemia diseases. PMID:28559534

  7. Diallylsulfide attenuates excessive collagen production and apoptosis in a rat model of bleomycin induced pulmonary fibrosis through the involvement of protease activated receptor-2

    Energy Technology Data Exchange (ETDEWEB)

    Kalayarasan, Srinivasan, E-mail: kalaivasanbio@gmail.com; Sriram, Narayanan; Soumyakrishnan, Syamala; Sudhandiran, Ganapasam, E-mail: sudhandiran@yahoo.com

    2013-09-01

    Pulmonary fibrosis (PF) can be a devastating lung disease. It is primarily caused by inflammation leading to severe damage of the alveolar epithelial cells. The pathophysiology of PF is not yet been clearly defined, but studying lung parenchymal injury by involving reactive oxygen species (ROS) through the activation of protease activated receptor-2 (PAR-2) may provide promising results. PAR-2 is a G-protein coupled receptor is known to play an important role in the development of PF. In this study, we investigated the inhibitory role of diallylsulfide (DAS) against ROS mediated activation of PAR-2 and collagen production accompanied by epithelial cell apoptosis. Bleomycin induced ROS levels may prompt to induce the expression of PAR-2 as well as extracellular matrix proteins (ECM), such as MMP 2 and 9, collagen specific proteins HSP-47, α-SMA, and cytokines IL-6, and IL-8RA. Importantly DAS treatment effectively decreased the expression of all these proteins. The inhibitory effect of DAS on profibrotic molecules is mediated by blocking the ROS level. To identify apoptotic signaling as a mediator of PF induction, we performed apoptotic protein expression, DNA fragmentation analysis and ultrastructural details of the lung tissue were performed. DAS treatment restored all these changes to near normalcy. In conclusion, treatment of PF bearing rats with DAS results in amelioration of the ROS production, PAR-2 activation, ECM production, collagen synthesis and alveolar epithelial cell apoptosis during bleomycin induction. We attained the first evidence that treatment of DAS decreases the ROS levels and may provide a potential therapeutic effect attenuating bleomycin induced PF. - Highlights: • DAS inhibits PAR-2 activity; bleomycin stimulates PAR-2 activity. • Increase in PAR-2 activity is correlated with pulmonary fibrosis • DAS reduces pro-inflammatory activity linked to facilitating pulmonary fibrosis. • DAS inhibits apoptosis of alveolar epithelial cells.

  8. Formononetin Attenuates IL-1β-Induced Apoptosis and NF-κB Activation in INS-1 Cells

    Directory of Open Access Journals (Sweden)

    Xiao Han

    2012-08-01

    Full Text Available Several studies suggest that the inflammation plays a role in the pathogenesis of some glucose disorders in adults. Exposure of pancreatic β-cells to cytokines, such as interleukin-1β (IL-1β, is thought to contribute to β-cell apoptosis. One important event triggered by IL-1β is induction of nitric oxide synthase (iNOS, an enzyme that catalyzes intracellular generation of the cytotoxic free radical NO. Recent work have suggested that formononetin, as an O-methylated isoflavone found in a number of plants and herbs like Astragalus membranaceus, inhibited some pro-inflammatory cytokine production in macrophages. However, the roles of formononetin in pancreatic beta cells have not been fully established. The aim of the present study was to assess possible in vitro effects of formononetin on cell apoptosis induced by IL-1β in the rat insulinoma cell line, INS-1. Our results demonstrate that formononetin significantly prevents IL-1β-increased INS-1 cell death and blocks cytokine-induced apoptotic signaling (the reduction of Bax/Bcl-2 ratio and caspase-3 activity. Formononetin also inhibited the activation of nuclear factor-kappaB (NF-κB, which is a significant transcription factor for iNOS, so as to decease nitric oxide (NO formation in a dose dependent manner in vitro. Our observations indicated that formononetin could protect against pancreatic β-cell apoptosis caused by IL-1β and therefore could be used in the future as a new drug improving diabetes mellitus.

  9. Rosmarinic acid attenuates hepatic fibrogenesis via suppression of hepatic stellate cell activation/proliferation and induction of apoptosis.

    Science.gov (United States)

    El-Lakkany, Naglaa M; El-Maadawy, Walaa H; Seif El-Din, Sayed H; Hammam, Olfat A; Mohamed, Salwa H; Ezzat, Shahira M; Safar, Marwa M; Saleh, Samira

    2017-05-01

    To investigate the antifibrotic role of rosmarinic acid (RA), a natural polyphenolic compound, on HSCs activation/proliferation and apoptosis in vitro and in vivo. The impact of RA on stellate cell line (HSC-T6) proliferation, activation and apoptosis was assessed along with its safety on primary hepatocytes. In vivo, rats were divided into: (i) normal; (ii) thioacetamide (TAA)-intoxicated rats for 12 weeks; (iii) TAA + silymarin or (iv) TAA + RA. At the end of experiment, liver functions, oxidative stress, inflammatory and profibrogenic markers, tissue inhibitor metalloproteinases type-1 (TIMP-1) and hydroxyproline (HP) levels were evaluated. Additionally, liver histopathology and immunohistochemical examinations of alpha-smooth muscle actin (α-SMA), caspase-3 and proliferation cellular nuclear antigen (PCNA) were determined. RA exhibited anti-proliferative effects on cultured HSCs in a time and concentration dependent manner showing an IC50 of 276 μg/mL and 171 μg/mL for 24 h and 48 h, respectively, with morphological reversion of activated stellate cell morphology to quiescent form. It significantly improved ALT, AST, oxidative stress markers and reduced TIMP-1, HP levels, inflammatory markers and fibrosis score (S1 vs S4). Furthermore, reduction in α-SMA plus elevation in caspase-3 expressions of HSCs in vitro and in vivo associated with an inhibition in proliferation of damaged hepatocytes were recorded. RA impeded the progression of liver fibrosis through inhibition of HSCs activation/proliferation and induction of apoptosis with preservation of hepatic architecture. Copyright © 2017 Hainan Medical University. Production and hosting by Elsevier B.V. All rights reserved.

  10. Combinatorial treatment with anacardic acid followed by TRAIL augments induction of apoptosis in TRAIL resistant cancer cells by the regulation of p53, MAPK and NFκβ pathways.

    Science.gov (United States)

    Harsha Raj, M; Yashaswini, B; Rössler, Jochen; Salimath, Bharathi P

    2016-05-01

    TRAIL, an apoptosis inducing cytokine currently in phase II clinical trial, was investigated for its capability to induce apoptosis in six different human tumor cell lines out of which three cell lines showed resistance to TRAIL induced apoptosis. To investigate whether Anacardic acid (A1) an active component of Anacardium occidentale can sensitize the resistant cell lines to TRAIL induced apoptosis, we treated the resistant cells with suboptimal concentration of A1 and showed that it is a potent enhancer of TRAIL induced apoptosis which up-regulates the expression of both DR4 and DR5 receptors, which has been observed in the cellular, protein and mRNA levels. The death receptors upregulation consequent to A1 treatment was corroborated by the activation of p53 as well as phosphorylation of p38 and JNK MAP kinases and concomitant inactivation of NFκβ and ERK signaling cascades. Also, A1 modulated the expression of key apoptotic players like Bax, Bcl-2 and CAD along with the abatement of tumor angiogenesis in vivo in EAT mouse model. Thus, post A1 treatment the TRAIL resistant cells turned into TRAIL sensitive cells. Hence our results demonstrate that A1 can synergize TRAIL induced apoptosis through the upregulation of death receptors and downregulation of anti-apoptotic proteins in cancer context.

  11. Polyphenolic Extract of Euphorbia supina Attenuates Manganese-Induced Neurotoxicity by Enhancing Antioxidant Activity through Regulation of ER Stress and ER Stress-Mediated Apoptosis

    Directory of Open Access Journals (Sweden)

    Entaz Bahar

    2017-01-01

    Full Text Available Manganese (Mn is an important trace element present in human body, which acts as an enzyme co-factor or activator in various metabolic reactions. While essential in trace amounts, excess levels of Mn in human brain can produce neurotoxicity, including idiopathic Parkinson’s disease (PD-like extrapyramidal manganism symptoms. This study aimed to investigate the protective role of polyphenolic extract of Euphorbia supina (PPEES on Mn-induced neurotoxicity and the underlying mechanism in human neuroblastoma SKNMC cells and Sprague-Dawley (SD male rat brain. PPEES possessed significant amount of total phenolic and flavonoid contents. PPEES also showed significant antioxidant activity in 1,1-diphenyl-2-picrylhydrazyl (DPPH radical scavenging and reducing power capacity (RPC assays. Our results showed that Mn treatment significantly reduced cell viability and increased lactate dehydrogenase (LDH level, which was attenuated by PPEES pretreatment at 100 and 200 µg/mL. Additionally, PPEES pretreatment markedly attenuated Mn-induced antioxidant status alteration by resolving the ROS, MDA and GSH levels and SOD and CAT activities. PPEES pretreatment also significantly attenuated Mn-induced mitochondrial membrane potential (ΔΨm and apoptosis. Meanwhile, PPEES pretreatment significantly reversed the Mn-induced alteration in the GRP78, GADD34, XBP-1, CHOP, Bcl-2, Bax and caspase-3 activities. Furthermore, administration of PPEES (100 and 200 mg/kg to Mn exposed rats showed improvement of histopathological alteration in comparison to Mn-treated rats. Moreover, administration of PPEES to Mn exposed rats showed significant reduction of 8-OHdG and Bax immunoreactivity. The results suggest that PPEES treatment reduces Mn-induced oxidative stress and neuronal cell loss in SKNMC cells and in the rat brain. Therefore, PPEES may be considered as potential treat-ment in Mn-intoxicated patients.

  12. Treadmill exercise attenuates 3,4-methylenedioxymethamphetamine-induced memory impairment through a decrease apoptosis in male rat hippocampus.

    Science.gov (United States)

    Gharebaghi, Alireza; Amiri, Iraj; Salehi, Iraj; Shahidi, Siamak; Komaki, Alireza; Mehdizadeh, Mehdi; Moravej, Fahimeh Ghasemi; Asl, Sara Soleimani

    2017-12-01

    3,4-methylenedioxymethamphetamine (MDMA) leads to apoptosis in the hippocampus with consequent induction of learning and memory impairment. In this study, we have investigated the effects of treadmill exercise on memory in relation to apoptosis and oxidative stress in the hippocampi of MDMA-treated rats. Male Wistar rats received multiple intraperitoneal (IP) injections of MDMA (10 mg/kg) and exercised for one month on a treadmill (simultaneously or asynchronously with MDMA). We assessed memory function with the Morris water maze (MWM) test. Lipid peroxidation (LPO) and expression of caspase 3, Bax, and Bcl-2 were examined by the thiobarbituric acid assay (TBA) and western blot, respectively. Our results showed that asynchronous treadmill exercise could significantly improve MDMA-induced memory impairment in the MWM test. Caspase 3 expression decreased in the exercise group compared to the MDMA group. Although MDMA treatment caused an increase in the Bax/Bcl-2 ratio, the treadmill exercise reduced this ratio. Simultaneous exercise caused a reduction in lipid peroxidation in the hippocampus. This data suggests that treadmill exercise can be a useful strategy for treating memory impairment in persons with neurodegenerative disease and stimulant drug users. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. Astaxanthin Attenuates Early Acute Kidney Injury Following Severe Burns in Rats by Ameliorating Oxidative Stress and Mitochondrial-Related Apoptosis

    Directory of Open Access Journals (Sweden)

    Song-Xue Guo

    2015-04-01

    Full Text Available Early acute kidney injury (AKI is a devastating complication in critical burn patients, and it is associated with severe morbidity and mortality. The mechanism of AKI is multifactorial. Astaxanthin (ATX is a natural compound that is widely distributed in marine organisms; it is a strong antioxidant and exhibits other biological effects that have been well studied in various traumatic injuries and diseases. Hence, we attempted to explore the potential protection of ATX against early post burn AKI and its possible mechanisms of action. The classic severe burn rat model was utilized for the histological and biochemical assessments of the therapeutic value and mechanisms of action of ATX. Upon ATX treatment, renal tubular injury and the levels of serum creatinine and neutrophil gelatinase-associated lipocalin were improved. Furthermore, relief of oxidative stress and tubular apoptosis in rat kidneys post burn was also observed. Additionally, ATX administration increased Akt and Bad phosphorylation and further down-regulated the expression of other downstream pro-apoptotic proteins (cytochrome c and caspase-3/9; these effects were reversed by the PI3K inhibitor LY294002. Moreover, the protective effect of ATX presents a dose-dependent enhancement. The data above suggested that ATX protects against early AKI following severe burns in rats, which was attributed to its ability to ameliorate oxidative stress and inhibit apoptosis by modulating the mitochondrial-apoptotic pathway, regarded as the Akt/Bad/Caspases signalling cascade.

  14. WISP-1 attenuates p53-mediated apoptosis in response to DNA damage through activation of the Akt kinase.

    Science.gov (United States)

    Su, Fei; Overholtzer, Michael; Besser, Daniel; Levine, Arnold J

    2002-01-01

    WISP-1 (Wnt-1-induced secreted protein) was identified as an oncogene regulated by the Wnt-1-beta-catenin pathway. WISP-1 belongs to the CCN family of growth factors, which are cysteine-rich, heparin-binding, secreted proteins associated with the extracellular matrix, and can interact with cellular integrins. Expression of WISP-1 in some cells results in transformation and tumorigenesis. Here it is shown that WISP-1 can activate the antiapoptotic Akt/PKB signaling pathway. It also is demonstrated that WISP-1 can prevent cells from undergoing apoptosis following DNA damage through inhibition of the mitochondrial release of cytochrome c and up-regulation of antiapoptotic Bcl-X(L). Furthermore, the results show that WISP-1 protects cells from p53-dependent cell death, but not Fas-ligand activated cell death, suggesting that there may be cross talk between the tumor suppressor protein p53 and WISP-1 signaling pathways. WISP-1 acts to block cell death at a late stage in the p53-mediated apoptosis pathway.

  15. Osthole Attenuates Doxorubicin-Induced Apoptosis in PC12 Cells through Inhibition of Mitochondrial Dysfunction and ROS Production

    Directory of Open Access Journals (Sweden)

    Yalda Shokoohinia

    2014-01-01

    Full Text Available Doxorubicin (DOX is a potent, broad-spectrum chemotherapeutic drug used for treatment of several types of cancers. Despite its effectiveness, it has a wide range of toxic side effects, many of which most likely result from its inherent prooxidant activity. It has been reported that DOX has toxic effects on normal tissues, including brain tissue. In the current study, we investigated the protective effect of osthole isolated from Prangos ferulacea (L. Lindl. on oxidative stress and apoptosis induced by DOX in PC12 as a neuronal model cell line. PC12 cells were pretreated with osthole 2 h after treatment with different concentrations of DOX. 24 h later, the cell viability, mitochondrial membrane potential (MMP, the activity of caspase-3, the expression ratio of Bax/Bcl-2, and the generation of intracellular ROS were detected. We found that pretreatment with osthole on PC12 cells significantly reduced the loss of cell viability, the activity of caspase-3, the increase in Bax/Bcl-2 ratio, and the generation of intracellular ROS induced by DOX. Moreover, pretreatment with osthole led to an increase in MMP in PC12 cells. In conclusion, our results indicated that pretreatment with nontoxic concentrations of osthole protected PC12 cells from DOX-mediated apoptosis by inhibition of ROS production.

  16. Human TNF-related apoptosis-inducing ligand-expressing dendritic cells from transgenic pigs attenuate human xenogeneic T cell responses.

    Science.gov (United States)

    Kemter, Elisabeth; Lieke, Thorsten; Kessler, Barbara; Kurome, Mayuko; Wuensch, Annegret; Summerfield, Artur; Ayares, David; Nagashima, Hiroshi; Baars, Wiebke; Schwinzer, Reinhard; Wolf, Eckhard

    2012-01-01

    Efficient and precise techniques for the genetic modification of pigs facilitate the generation of tailored donor animals for xenotransplantation. Numerous transgenic pig lines exist with the focus on inhibition of the complement system and of humoral immune responses. In addition, immune cell-based responses need to be controlled to prevent pig-to-primate xenograft rejection. Expression of human (hu) TNF-related apoptosis-inducing ligand (TRAIL) on porcine cells has the potential to ameliorate human T cell responses. We generated transgenic pigs expressing human tumor necrosis factor (TNF)-related apoptosis-inducing ligand (huTRAIL) under the control of either the mouse H2K(b) promoter or a CMV enhancer/chicken β-actin (CAG) promoter, the latter one (CAG-huTRAIL) on a GGTA1 knockout/huCD46 transgenic background. The biological activity of huTRAIL was demonstrated by its apoptosis-inducing effect on Jurkat lymphoma cells. To clarify whether huTRAIL affects also primary immune cells and whether its effects depend on the presence of co-stimulatory molecules, we exposed human peripheral blood mononuclear cells (PBMC) or isolated T cells to huTRAIL-expressing porcine fibroblasts or dendritic cells in vitro. H2Kb-huTRAIL transgenic pigs express huTRAIL mainly in the spleen and secondary lymphoid tissues. The CAG-huTRAIL construct facilitated huTRAIL expression in multiple organs, the level being at least one order of magnitude higher than in H2Kb-huTRAIL transgenic pigs. Incubation with huTRAIL-expressing H2Kb-huTRAIL transgenic porcine dendritic cells decreased human T cell proliferation significantly without any signs of apoptosis. In spite of the high transgene expression level, CAG-huTRAIL transgenic fibroblasts did not affect proliferation of human PBMC, independent of their activation state. These results suggest huTRAIL expression on porcine dendritic cells as a possible strategy to attenuate T cell responses against pig-to-primate xenografts. © 2012 John Wiley

  17. Pomegranate juice and punicalagin attenuate oxidative stress and apoptosis in human placenta and in human placental trophoblasts.

    Science.gov (United States)

    Chen, Baosheng; Tuuli, Methodius G; Longtine, Mark S; Shin, Joong Sik; Lawrence, Russell; Inder, Terrie; Michael Nelson, D

    2012-05-15

    The human placenta is key to pregnancy outcome, and the elevated oxidative stress present in many complicated pregnancies contributes to placental dysfunction and suboptimal pregnancy outcomes. We tested the hypothesis that pomegranate juice, which is rich in polyphenolic antioxidants, limits placental trophoblast injury in vivo and in vitro. Pregnant women with singleton pregnancies were randomized at 35∼38 wk gestation to 8 oz/day of pomegranate juice or apple juice (placebo) until the time of delivery. Placental tissues from 12 patients (4 in the pomegranate group and 8 in the control group) were collected for analysis of oxidative stress. The preliminary in vivo results were extended to oxidative stress and cell death assays in vitro. Placental explants and cultured primary human trophoblasts were exposed to pomegranate juice or glucose (control) under defined oxygen tensions and chemical stimuli. We found decreased oxidative stress in term human placentas from women who labored after prenatal ingestion of pomegranate juice compared with apple juice as control. Moreover, pomegranate juice reduced in vitro oxidative stress, apoptosis, and global cell death in term villous explants and primary trophoblast cultures exposed to hypoxia, the hypoxia mimetic cobalt chloride, and the kinase inhibitor staurosporine. Punicalagin, but not ellagic acid, both prominent polyphenols in pomegranate juice, reduced oxidative stress and stimulus-induced apoptosis in cultured syncytiotrophoblasts. We conclude that pomegranate juice reduces placental oxidative stress in vivo and in vitro while limiting stimulus-induced death of human trophoblasts in culture. The polyphenol punicalagin mimics this protective effect. We speculate that antenatal intake of pomegranate may limit placental injury and thereby may confer protection to the exposed fetus.

  18. Pomegranate juice and punicalagin attenuate oxidative stress and apoptosis in human placenta and in human placental trophoblasts

    Science.gov (United States)

    Tuuli, Methodius G.; Longtine, Mark S.; Shin, Joong Sik; Lawrence, Russell; Inder, Terrie; Michael Nelson, D.

    2012-01-01

    The human placenta is key to pregnancy outcome, and the elevated oxidative stress present in many complicated pregnancies contributes to placental dysfunction and suboptimal pregnancy outcomes. We tested the hypothesis that pomegranate juice, which is rich in polyphenolic antioxidants, limits placental trophoblast injury in vivo and in vitro. Pregnant women with singleton pregnancies were randomized at 35∼38 wk gestation to 8 oz/day of pomegranate juice or apple juice (placebo) until the time of delivery. Placental tissues from 12 patients (4 in the pomegranate group and 8 in the control group) were collected for analysis of oxidative stress. The preliminary in vivo results were extended to oxidative stress and cell death assays in vitro. Placental explants and cultured primary human trophoblasts were exposed to pomegranate juice or glucose (control) under defined oxygen tensions and chemical stimuli. We found decreased oxidative stress in term human placentas from women who labored after prenatal ingestion of pomegranate juice compared with apple juice as control. Moreover, pomegranate juice reduced in vitro oxidative stress, apoptosis, and global cell death in term villous explants and primary trophoblast cultures exposed to hypoxia, the hypoxia mimetic cobalt chloride, and the kinase inhibitor staurosporine. Punicalagin, but not ellagic acid, both prominent polyphenols in pomegranate juice, reduced oxidative stress and stimulus-induced apoptosis in cultured syncytiotrophoblasts. We conclude that pomegranate juice reduces placental oxidative stress in vivo and in vitro while limiting stimulus-induced death of human trophoblasts in culture. The polyphenol punicalagin mimics this protective effect. We speculate that antenatal intake of pomegranate may limit placental injury and thereby may confer protection to the exposed fetus. PMID:22374759

  19. Probucol Attenuates Cyclophosphamide-induced Oxidative Apoptosis, p53 and Bax Signal Expression in Rat Cardiac Tissues

    Directory of Open Access Journals (Sweden)

    Yousif A. Asiri

    2010-01-01

    tissues. Probucol pretreatment not only counteracted significantly the CP-induced increase in cardiac enzymes and apoptosis but also induced a significant increase in mRNA expression of antioxidant enzymes and improved ATP, ATP/ADP, glutathione (GSH in cardiac tissues. In conclusion, data from the present study suggest that probucol prevents the development of CP-induced cardiotoxicity by a mechanism related, at least in part, to its ability to increase mRNA expression of antioxidant genes and to decrease apoptosis in cardiac tissues with the consequent improvement in mitochondrial oxidative phosphorylation and energy production.

  20. Effects of Placental Ischemia Are Attenuated by 1,25-Dihydroxyvitamin D Treatment and Associated with Reduced Apoptosis and Increased Autophagy.

    Science.gov (United States)

    Tian, Xiaoyu; Ma, Suling; Wang, Yaqi; Hou, Lianguo; Shi, Yun; Yao, Min; Wang, Xiaoning; Zhang, Huifeng; Jiang, Lingling

    2016-02-01

    We evaluated the effects of administration of 1,25-dihydroxyvitamin D (1,25(OH)2D) during pregnancy on relieving adverse outcomes of preeclampsia and the pathologic and biochemical changes in reduction in uteroplacental perfusion (RUPP) model of rats. On day 1, 7, and 14 of pregnancy, rats in pregnant RUPP plus 1,25(OH)2D (RUPP+VD) group (n = 15) received 120 ng/100 g body weight/week of 1,25(OH)2D by subcutaneous injection, while rats in normal pregnant (n = 12) and the RUPP group (n = 14) received 1,25(OH)2D vehicle (saline solution). On day 19 of pregnancy, after measure of blood pressure and cardiac function and urine collection, rats were euthanized, and fetal and maternal serum, placenta, and heart and kidney were collected. Fetal mortality, urinary protein, glucose, and parameters for kidney function in serum were measured. We evaluated vitamin D receptor expression and pathological and ultrastructural changes in rat heart, kidney, and placenta. Levels of oxidative stress, endoplasmic reticulum (ER) stress, apoptosis, and autophagy were measured in placenta. Compared to RUPP rats, 1,25(OH)2D decreased fetal mortality, mean blood pressure, 24-h urinary protein, urine microalbumin, and hyperglycemia in RUPP+VD rats. These were consistent with the improvements of structure impairment in heart, kidney, and placenta of RUPP rat by 1,25(OH)2D. In placenta of RUPP rat, the decrease in oxidative stress and ER stress by 1,25(OH)2D treatment was accompanied by autophagy activation and apoptosis attenuation. 1,25(OH)2D plays a beneficial effect on preeclampsia at the early gestation and might be used as a potential protective agent for preeclampsia. However, the RUPP model only recapitulated the hypoxic origin of preeclampsia; further randomized controlled trial is expected to be performed for validation and evaluation.

  1. Cannabinoids Receptor-2 (CB2) agonist ameliorates colitis in IL-10−/− mice by attenuating the activation of T cells and promoting their apoptosis

    Science.gov (United States)

    Singh, Udai P.; Singh, Narendra P.; Singh, Balwan; Price, Robert L.; Nagarkatti, Mitzi; Nagarkatti, Prakash S.

    2014-01-01

    Inflammatory bowel disease (IBD) is a chronic intestinal inflammation caused by hyperactivated effector immune cells that produce pro-inflammatory cytokines. Recent studies have shown that the cannabinoid system may play a critical role in mediating protection against intestinal inflammation. However, the effect of cannabinoid receptors induction after chronic colitis progression has not been investigated. Here, we investigate the effect of cannabinoid receptor-2 (CB2) agonist, JWH-133, after chronic colitis in IL-10−/− mice. JWH-133 effectively attenuated the overall clinical score, reversed colitis-associated pathogenesis and decrease in body weight in IL-10−/− mice. After JWH-133 treatment, the percentage of CD4+ T cells, neutrophils, mast cells, natural killer (NK1.1) cells, and activated T cells in the LP of colitis mice declined after JWH-133 treatment in the intestinal lamina propria (LP) and mesenteric lymph nodes (MLN). JWH-133 was also effective in ameliorating dextran sodium sulphate (DSS)-induced colitis. In this model, JWH-133 reduced the number and percentage of macrophages and IFN-γ expressing cells that were induced during colitis progression. Treatment with aminoalkylindole 6-iodopravadoline (AM630), a CB2 receptor antagonist, reversed the colitis protection provided by JWH-133 treatment. Also, activated T cells were found to undergo apoptosis following JWH-133 treatment both in-vivo and in-vitro. These findings suggest that JWH-133 mediates its effect through CB2 receptors, and ameliorates chronic colitis by inducing apoptosis in activated T cells, reducing the numbers of activated T cells, suppressing induction of mast cells, NK cells, and neutrophils at sites of inflammation in the LP. These results support the idea that the CB2 receptor agonists may serve as a therapeutic modality against IBD. PMID:22119709

  2. Extracellular Vesicles Derived from Bone Marrow Mesenchymal Stem Cells Protect against Experimental Colitis via Attenuating Colon Inflammation, Oxidative Stress and Apoptosis.

    Science.gov (United States)

    Yang, Jia; Liu, Xing-Xing; Fan, Heng; Tang, Qing; Shou, Zhe-Xing; Zuo, Dong-Mei; Zou, Zhou; Xu, Meng; Chen, Qian-Yun; Peng, Ying; Deng, Shuang-Jiao; Liu, Yu-Jin

    2015-01-01

    The administration of bone mesenchymal stem cells (BMSCs) could reverse experimental colitis, and the predominant mechanism in tissue repair seems to be related to their paracrine activity. BMSCs derived extracellular vesicles (BMSC-EVs), including mcirovesicles and exosomes, containing diverse proteins, mRNAs and micro-RNAs, mediating various biological functions, might be a main paracrine mechanism for stem cell to injured cell communication. We aimed to investigate the potential alleviating effects of BMSC-EVs in 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis model. Intravenous injection of BMSC-EVs attenuated the severity of colitis as evidenced by decrease of disease activity index (DAI) and histological colonic damage. In inflammation response, the BMSC-EVs treatment significantly reduced both the mRNA and protein levels of nuclear factor kappaBp65 (NF-κBp65), tumor necrosis factor-alpha (TNF-α), induciblenitric oxidesynthase (iNOS) and cyclooxygenase-2 (COX-2) in injured colon. Additionally, the BMSC-EVs injection resulted in a markedly decrease in interleukin-1β (IL-1β) and an increase in interleukin-10 (IL-10) expression. Therapeutic effect of BMSC-EVs associated with suppression of oxidative perturbations was manifested by a decrease in the activity of myeloperoxidase (MPO) and Malondialdehyde (MDA), as well as an increase in superoxide dismutase (SOD) and glutathione (GSH). BMSC-EVs also suppressed the apoptosis via reducing the cleavage of caspase-3, caspase-8 and caspase-9 in colitis rats. Data obtained indicated that the beneficial effects of BMSC-EVs were due to the down regulation of pro-inflammatory cytokines levels, inhibition of NF-κBp65 signal transduction pathways, modulation of anti-oxidant/ oxidant balance, and moderation of the occurrence of apoptosis.

  3. Extracellular Vesicles Derived from Bone Marrow Mesenchymal Stem Cells Protect against Experimental Colitis via Attenuating Colon Inflammation, Oxidative Stress and Apoptosis.

    Directory of Open Access Journals (Sweden)

    Jia Yang

    Full Text Available The administration of bone mesenchymal stem cells (BMSCs could reverse experimental colitis, and the predominant mechanism in tissue repair seems to be related to their paracrine activity. BMSCs derived extracellular vesicles (BMSC-EVs, including mcirovesicles and exosomes, containing diverse proteins, mRNAs and micro-RNAs, mediating various biological functions, might be a main paracrine mechanism for stem cell to injured cell communication. We aimed to investigate the potential alleviating effects of BMSC-EVs in 2,4,6-trinitrobenzene sulfonic acid (TNBS-induced colitis model. Intravenous injection of BMSC-EVs attenuated the severity of colitis as evidenced by decrease of disease activity index (DAI and histological colonic damage. In inflammation response, the BMSC-EVs treatment significantly reduced both the mRNA and protein levels of nuclear factor kappaBp65 (NF-κBp65, tumor necrosis factor-alpha (TNF-α, induciblenitric oxidesynthase (iNOS and cyclooxygenase-2 (COX-2 in injured colon. Additionally, the BMSC-EVs injection resulted in a markedly decrease in interleukin-1β (IL-1β and an increase in interleukin-10 (IL-10 expression. Therapeutic effect of BMSC-EVs associated with suppression of oxidative perturbations was manifested by a decrease in the activity of myeloperoxidase (MPO and Malondialdehyde (MDA, as well as an increase in superoxide dismutase (SOD and glutathione (GSH. BMSC-EVs also suppressed the apoptosis via reducing the cleavage of caspase-3, caspase-8 and caspase-9 in colitis rats. Data obtained indicated that the beneficial effects of BMSC-EVs were due to the down regulation of pro-inflammatory cytokines levels, inhibition of NF-κBp65 signal transduction pathways, modulation of anti-oxidant/ oxidant balance, and moderation of the occurrence of apoptosis.

  4. Intravenous dexamethasone attenuated inflammation and influenced apoptosis of lung cells in an experimental model of acute lung injury.

    Science.gov (United States)

    Kosutova, P; Mikolka, P; Balentova, S; Adamkov, M; Kolomaznik, M; Calkovska, A; Mokra, D

    2016-12-22

    Acute lung injury (ALI) is characterized by diffuse alveolar damage, inflammation, and transmigration and activation of inflammatory cells. This study evaluated if intravenous dexamethasone can influence lung inflammation and apoptosis in lavage-induced ALI. ALI was induced in rabbits by repetitive saline lung lavage (30 ml/kg, 9+/-3-times). Animals were divided into 3 groups: ALI without therapy (ALI), ALI treated with dexamethasone i.v. (0.5 mg/kg, Dexamed; ALI+DEX), and healthy non-ventilated controls (Control). After following 5 h of ventilation, ALI animals were overdosed by anesthetics. Total and differential counts of cells in bronchoalveolar lavage fluid (BAL) were estimated. Lung edema was expressed as wet/dry weight ratio. Concentrations of IL-1beta, IL-8, esRAGE, S1PR3 in the lung were analyzed by ELISA methods. In right lung, apoptotic cells were evaluated by TUNEL assay and caspase-3 immunohistochemically. Dexamethasone showed a trend to improve lung functions and histopathological changes, reduced leak of neutrophils (P<0.001) into the lung, decreased concentrations of pro-inflammatory IL-1beta (P<0.05) and marker of lung injury esRAGE (P<0.05), lung edema formation (P<0.05), and lung apoptotic index (P<0.01), but increased immunoreactivity of caspase-3 in the lung (P<0.001). Considering the action of dexamethasone on respiratory parameters and lung injury, the results indicate potential of this therapy in ALI.

  5. Cannabinoid receptor-2 (CB2) agonist ameliorates colitis in IL-10{sup −/−} mice by attenuating the activation of T cells and promoting their apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Udai P.; Singh, Narendra P. [Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29208 (United States); Singh, Balwan [National Primate Research Center, Emory University, Atlanta GA 30329 (United States); Price, Robert L. [Department of Cell and Developmental Biology, University of South Carolina, Columbia, SC 29208 (United States); Nagarkatti, Mitzi [Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29208 (United States); Nagarkatti, Prakash S., E-mail: Prakash.Nagarkatti@uscmed.sc.edu [Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29208 (United States)

    2012-01-15

    Inflammatory bowel disease (IBD) is a chronic intestinal inflammation caused by hyperactivated effector immune cells that produce pro-inflammatory cytokines. Recent studies have shown that the cannabinoid system may play a critical role in mediating protection against intestinal inflammation. However, the effect of cannabinoid receptor induction after chronic colitis progression has not been investigated. Here, we investigate the effect of cannabinoid receptor-2 (CB2) agonist, JWH-133, after chronic colitis in IL-10{sup −/−} mice. JWH-133 effectively attenuated the overall clinical score, and reversed colitis-associated pathogenesis and decrease in body weight in IL-10{sup −/−} mice. After JWH-133 treatment, the percentage of CD4{sup +} T cells, neutrophils, mast cells, natural killer (NK1.1) cells, and activated T cells declined in the intestinal lamina propria (LP) and mesenteric lymph nodes (MLN) of mice with chronic colitis. JWH-133 was also effective in ameliorating dextran sodium sulfate (DSS)-induced colitis. In this model, JWH-133 reduced the number and percentage of macrophages and IFN-γ expressing cells that were induced during colitis progression. Treatment with aminoalkylindole 6-iodo-pravadoline (AM630), a CB2 receptor antagonist, reversed the colitis protection provided by JWH-133 treatment. Also, activated T cells were found to undergo apoptosis following JWH-133 treatment both in-vivo and in-vitro. These findings suggest that JWH-133 mediates its effect through CB2 receptors, and ameliorates chronic colitis by inducing apoptosis in activated T cells, reducing the numbers of activated T cells, and suppressing induction of mast cells, NK cells, and neutrophils at sites of inflammation in the LP. These results support the idea that the CB2 receptor agonists may serve as a therapeutic modality against IBD. -- Highlights: ► JWH-133, a cannnabinoid receptor-2 agonist ameliorates experimental colitis. ► JWH-133 suppressed inflammation and

  6. [Salidroside attenuates high glucose-induced apoptosis in human umbilical vein endothelial cells via activating the Ca(2)+/CaM/CAMKIIδ/eNOS pathway].

    Science.gov (United States)

    Chen, Ziwei; Wu, Xiang

    2014-04-01

    Endothelial oxidative stress plays an important role in the pathogenesis of cardiovascular disease. Salidroside, a phenylpropanoid glycoside isolated from Rhodiola rosea L, could exert potent antioxidant properties. In this study, we investigated the protective effects, and related mechanism of salidroside against high glucose (33 mmol/L)-induced cell damage in human umbilical vein endothelial cells (HUVECs). HUVECs were cultured in normal glucose (5.5 mmol/L), high glucose (33 mmol/L), high salidroside (10 µg/ml+33 mmol/L glucose), moderate salidroside (4 µg/ml+33 mmol/L glucose), low salidroside (1 µg/ml+33 mmol/L glucose) and very low salidroside (0.1 µg/ml+33 mmol/L glucose) for 48 h. Cell viability, the level of malondialdehyde (MDA) , reactive oxygen species (ROS) , nitric oxide (NO) , [Ca(2)+]i, calmodulin (CaM) , calmodulin-dependent kinase (CaMK) IIδ, endothelial nitric oxide synthase (eNOS) , active caspase-3 protein expression and eNOS ser 1177 phosphorylation of HUVECs post various treatments were measured. The cell viability was assessed with MTT assay, and the level of ROS, and [Ca(2)+]i was analyzed using flow cytometry. Nitric oxide and MDA was detected by Nitric Oxide Assay Kit and MDA Assay Kit. Western blot was performed to detect the protein expressions of eNOS, active caspase-3 and eNOS ser 1177 phosphorylation. Comparing to the normal glucose group, high glucose treatment increased the cell damage, the level of NO and [Ca(2)+]i (P Salidroside treatment significantly attenuated high glucose-induce cell damage on cultured HUVECs in a dose-dependent manner. Comparing to the high glucose group, 10 µg/ml Salidroside significantly increased cell viability (P salidroside could attenuate high glucose induced apoptosis in HUVEC, partly through activating the Ca(2)+/CaM/CAMKIIδ/eNOS pathway.

  7. Marine Drugs Regulating Apoptosis Induced by Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL)

    Science.gov (United States)

    Elmallah, Mohammed I. Y.; Micheau, Olivier

    2015-01-01

    Marine biomass diversity is a tremendous source of potential anticancer compounds. Several natural marine products have been described to restore tumor cell sensitivity to TNF-related apoptosis inducing ligand (TRAIL)-induced cell death. TRAIL is involved during tumor immune surveillance. Its selectivity for cancer cells has attracted much attention in oncology. This review aims at discussing the main mechanisms by which TRAIL signaling is regulated and presenting how marine bioactive compounds have been found, so far, to overcome TRAIL resistance in tumor cells. PMID:26580630

  8. Marine Drugs Regulating Apoptosis Induced by Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL

    Directory of Open Access Journals (Sweden)

    Mohammed I. Y. Elmallah

    2015-11-01

    Full Text Available Marine biomass diversity is a tremendous source of potential anticancer compounds. Several natural marine products have been described to restore tumor cell sensitivity to TNF-related apoptosis inducing ligand (TRAIL-induced cell death. TRAIL is involved during tumor immune surveillance. Its selectivity for cancer cells has attracted much attention in oncology. This review aims at discussing the main mechanisms by which TRAIL signaling is regulated and presenting how marine bioactive compounds have been found, so far, to overcome TRAIL resistance in tumor cells.

  9. Attenuated lipotoxicity and apoptosis is linked to exogenous and endogenous augmenter of liver regeneration by different pathways

    Science.gov (United States)

    Lupke, Madeleine; Ibrahim, Sara; Buechler, Christa; Lorenz, Julia; Ruemmele, Petra; Hofmann, Ute; Melter, Michael; Dayoub, Rania

    2017-01-01

    Nonalcoholic fatty liver disease (NAFLD) covers a spectrum from simple steatosis to nonalcoholic steatohepatitis (NASH) and cirrhosis. Free fatty acids (FFA) induce steatosis and lipo-toxicity and correlate with severity of NAFLD. In this study we aimed to investigate the role of exogenous and endogenous ALR (augmenter of liver regeneration) for FFA induced ER (endoplasmatic reticulum) -stress and lipoapoptosis. Primary human hepatocytes or hepatoma cells either treated with recombinant human ALR (rhALR, 15kDa) or expressing short form ALR (sfALR, 15kDa) were incubated with palmitic acid (PA) and analyzed for lipo-toxicity, -apoptosis, activation of ER-stress response pathways, triacylglycerides (TAG), mRNA and protein expression of lipid metabolizing genes. Both, exogenous rhALR and cytosolic sfALR reduced PA induced caspase 3 activity and Bax protein expression and therefore lipotoxicity. Endogenous sfALR but not rhALR treatment lowered TAG levels, diminished activation of ER-stress mediators C-Jun N-terminal kinase (JNK), X-box binding protein-1 (XBP1) and proapoptotic transcription factor C/EBP-homologous protein (CHOP), and reduced death receptor 5 protein expression. Cellular ALR exerts its lipid lowering and anti-apoptotic actions by enhancing FABP1, which binds toxic FFA, increasing mitochondrial β-oxidation by elevating the mitochondrial FFA transporter CPT1α, and decreasing ELOVL6, which delivers toxic FFA metabolites. We found reduced hepatic mRNA levels of ALR in a high fat diet mouse model, and of ALR and FOXA2, a transcription factor inducing ALR expression, in human steatotic as well as NASH liver samples, which may explain increased lipid deposition and reduced β-oxidation in NASH patients. Present study shows that exogenous and endogenous ALR reduce PA induced lipoapoptosis. Furthermore, cytosolic sfALR changes mRNA and protein expression of genes regulating lipid metabolism, reduces ER-stress finally impeding progression of NASH. PMID:28877220

  10. Metformin attenuates palmitate-induced endoplasmic reticulum stress, serine phosphorylation of IRS-1 and apoptosis in rat insulinoma cells.

    Directory of Open Access Journals (Sweden)

    Laura Simon-Szabó

    Full Text Available Lipotoxicity refers to cellular dysfunctions caused by elevated free fatty acid levels playing a central role in the development and progression of obesity related diseases. Saturated fatty acids cause insulin resistance and reduce insulin production in the pancreatic islets, thereby generating a vicious cycle, which potentially culminates in type 2 diabetes. The underlying endoplasmic reticulum (ER stress response can lead to even β-cell death (lipoapoptosis. Since improvement of β-cell viability is a promising anti-diabetic strategy, the protective effect of metformin, a known insulin sensitizer was studied in rat insulinoma cells. Assessment of palmitate-induced lipoapoptosis by fluorescent microscopy and by detection of caspase-3 showed a significant decrease in metformin treated cells. Attenuation of β-cell lipotoxicity was also revealed by lower induction/activation of various ER stress markers, e.g. phosphorylation of eukaryotic initiation factor 2α (eIF2α, c-Jun N-terminal kinase (JNK, insulin receptor substrate-1 (IRS-1 and induction of CCAAT/enhancer binding protein homologous protein (CHOP. Our results indicate that the β-cell protective activity of metformin in lipotoxicity can be at least partly attributed to suppression of ER stress.

  11. Adipose-derived stem cell conditioned medium attenuates cisplatin-triggered apoptosis in tongue squamous cell carcinoma.

    Science.gov (United States)

    Chiu, Yu-Jen; Yang, Jai-Sing; Hsu, Han-Shui; Tsai, Chi-Han; Ma, Hsu

    2018-02-01

    Autologous fat grafting procedures have noted a markedly increased frequency, not only for cosmetic purposes, but also for deformities after head and neck cancer and breast cancer surgery. Carcinogenesis is always a major concern in cell therapy-related issues. However, there is no literature discussing this issue in head and neck squamous cell carcinoma patients. To evaluate the interaction of tongue cancer cells and adipose-derived stem cells, we performed a series of in vitro experiments. Our results demonstrated that cisplatin significantly reduced the viabilities of SCC‑25 and CAL‑27 cells in a concentration-dependent manner, but it had low cytotoxicity in cisplatin-resistant CAL‑27 (CAR) cells. There was no significant difference in terms of viability among the SCC‑25, CAL‑27, and CAR cells in the adipose-derived stem cell conditioned medium and control groups. There was also no significant difference in terms of cell migration as determined by wound healing assay of SCC‑25, CAL‑27, and CAR cells between the adipose-derived stem cell conditioned medium treatment and control treatment. Importantly, the adipose-derived stem cell conditioned medium attenuated cisplatin-triggered cell death in the SCC‑25 and CAL‑27 cells. Moreover, adipose-derived stem cell conditioned medium markedly inhibited cisplatin-induced apoptotic cell death (sub‑G1 phase) in the CAL‑27 cells. Western blot analyses indicated that cisplatin-induced reductions in pro‑caspase‑3, pro‑caspase‑9, phospho-BAD, phospho-IGF-1R, phospho-AKT, and phospho-ERK in CAL‑27 cells were reversed by adipose-derived stem cell conditioned medium supplement. Taken together, we provide evidence that adipose-derived stem cell conditioned medium protects CAL‑27 cells from cisplatin-induced cell death, possibly through upregulation of the IGF-1R/AKT/ERK signaling pathway.

  12. Silencing Nox4 in the Paraventricular Nucleus Improves Myocardial Infarction-Induced Cardiac Dysfunction by Attenuating Sympathoexcitation and Peri-infarct Apoptosis

    Science.gov (United States)

    Infanger, David W.; Cao, Xian; Butler, Scott D.; Burmeister, Melissa A.; Zhou, Yi; Stupinski, John A.; Sharma, Ram V.; Davisson, Robin L.

    2010-01-01

    Rationale: Myocardial infarction (MI)-induced heart failure (HF) is characterized by central nervous system (CNS)-driven sympathoexcitation and deteriorating cardiac function. The paraventricular nucleus (PVN) of the hypothalamus is a key regulator of sympathetic nerve activity and is implicated in HF. Redox signaling in the PVN and other CNS sites is a primary mechanism of neuro-cardiovascular regulation, and excessive oxidant production by activation of NADPH oxidases (Nox) is implicated in some neuro-cardiovascular diseases. Objective: We tested the hypothesis that Nox-mediated redox signaling in the PVN contributes to MI-induced sympathoexcitation and cardiac dysfunction in mice. Methods and Results: Real-time PCR revealed that Nox4 was the most abundantly expressed Nox in PVN under basal conditions. Coronary arterial ligation (MI) caused a selective upregulation of this homologue compared to Nox1 and Nox2. Adenoviral gene transfer of Nox4 siRNA (AdsiNox4) to PVN (bilateral) attenuated MI-induced superoxide formation in this brain region (day 14) to the same level as that produced by PVN-targeted gene transfer of cytoplasmic superoxide dismutase (AdCu/ZnSOD). MI mice treated with AdsiNox4 or AdCu/ZnSOD in the PVN showed marked improvement in cardiac function as assessed by echocardiography and left ventricular hemodynamic analysis. This was accompanied by significantly diminished sympathetic outflow and apoptosis in the peri-infarct region of the heart. Conclusions: These results suggest that MI causes dysregulation of Nox4-mediated redox signaling in the PVN, which leads to sympathetic overactivation and a decline in cardiac function. Targeted inhibition of oxidant signaling in the PVN could provide a novel treatment for MI-induced HF. PMID:20413786

  13. The Extracts of Morinda officinalis and Its Hairy Roots Attenuate Dextran Sodium Sulfate-Induced Chronic Ulcerative Colitis in Mice by Regulating Inflammation and Lymphocyte Apoptosis

    Directory of Open Access Journals (Sweden)

    Jian Liang

    2017-08-01

    Full Text Available Morinda officinalis is beneficial for the treatment of inflammatory bowel disease (IBD. The hairy root with higher genetic and biochemical stability cultured from M. officinalis might have similar effects to treat IBD. In this study, the main chemical composition of the root extracts of M. officinalis (MORE native plant and the hairy root extract of M. officinalis (MOHRE was compared by quantitative HPLC. The difference of their therapeutic effects and potential mechanism was evaluated using 3% dextran sodium sulfate-induced chronic colitis in mice and T lymphocytes in vitro. The results found that MOHRE possesses many specific peaks unobserved in the chromatogram of native plant. The content of iridoids in the MORE (3.10% and MOHRE (3.01% is somewhat similar but quite different for their anthraquinones’s content (0.14 and 0.66%, respectively. Despite all this, treatment with both MORE and MOHRE significantly attenuated the symptoms of colitis, including diarrhea, body weight loss, colon shortening, histological damage, and decreased inflammatory cytokine levels. In addition, they dose-dependently increased the apoptosis of T lymphocyte in vivo and in vitro. And, the differences for treatment effects on ulcerative colitis (UC between them both in this study were mostly insignificant. The results demonstrated that the effects of MORE and MOHRE for the treatment of UC are similar, although there are a few difference on their chemical composition, indicating the hairy root cultured from M. officinalis might be able to replace its native plant on treatment of UC. The successful derivation of a sustainable hairy root culture provides a model system to study the synthetic pathways for bioactive metabolites, which will make the use of bioreactors to largely produce traditional medicine become reality.

  14. The promise of cancer therapeutics targeting the TNF-related apoptosis-inducing ligand and TRAIL receptor pathway.

    Science.gov (United States)

    Wang, S

    2008-10-20

    Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF superfamily and has been shown to induce apoptosis in cancer cells but not normal cells. TRAIL triggers apoptosis through binding to its receptors DR4 and KILLER/DR5. Chemo or radiotherapy induces apoptosis through activation of p53 in response to cellular damage, whereas TRAIL induces apoptosis independent of p53. Mutations or deletions of p53 occurred in more than half of human tumors confer resistance to chemo-radiotherapy. Treatment of TRAIL-resistant tumors with agents targeting death receptors, intrinsic Bcl-2 family members, inhibitor of apoptosis proteins or PI3K/Akt pathway restores the sensitivity to TRAIL-induced apoptosis. Combination of rhTRAIL or the agonist antibody for TRAIL receptor with conventional chemotherapeutic agents results in enhanced efficacy in preventing tumor progression and metastasis. Therefore, the rational design of TRAIL-based therapy combining with other modality that either synergizes to apoptosis induction or overcomes the resistance represents a challenging strategy to achieve the systemic tumor targeting and augment the antitumor activity of cancer therapeutics.

  15. miR-25 targets TNF-related apoptosis inducing ligand (TRAIL) death receptor-4 and promotes apoptosis resistance in cholangiocarcinoma.

    Science.gov (United States)

    Razumilava, Nataliya; Bronk, Steve F; Smoot, Rory L; Fingas, Christian D; Werneburg, Nathan W; Roberts, Lewis R; Mott, Justin L

    2012-02-01

    It has been established that microRNA expression and function contribute to phenotypic features of malignant cells, including resistance to apoptosis. Although targets and functional roles for a number of microRNAs have been described in cholangiocarcinoma, many additional microRNAs dysregulated in this tumor have not been assigned functional roles. In this study, we identify elevated miR-25 expression in malignant cholangiocarcinoma cell lines as well as patient samples. In cultured cells, treatment with the Smoothened inhibitor, cyclopamine, reduced miR-25 expression, suggesting Hedgehog signaling stimulates miR-25 production. Functionally, miR-25 was shown to protect cells against TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. Correspondingly, antagonism of miR-25 in culture sensitized cells to apoptotic death. Computational analysis identified the TRAIL Death Receptor-4 (DR4) as a potential novel miR-25 target, and this prediction was confirmed by immunoblot, cell staining, and reporter assays. These data implicate elevated miR-25 levels in the control of tumor cell apoptosis in cholangiocarcinoma. The identification of the novel miR-25 target DR4 provides a mechanism by which miR-25 contributes to evasion of TRAIL-induced cholangiocarcinoma apoptosis. Copyright © 2011 American Association for the Study of Liver Diseases.

  16. A Novel Role of IGF1 in Apo2L/TRAIL-Mediated Apoptosis of Ewing Tumor Cells

    Directory of Open Access Journals (Sweden)

    Frans van Valen

    2012-01-01

    Full Text Available Insulin-like growth factor 1 (IGF1 reputedly opposes chemotoxicity in Ewing sarcoma family of tumor (ESFT cells. However, the effect of IGF1 on apoptosis induced by apoptosis ligand 2 (Apo2L/tumor necrosis factor (TNF- related apoptosis-inducing ligand (TRAIL remains to be established. We find that opposite to the partial survival effect of short-term IGF1 treatment, long-term IGF1 treatment amplified Apo2L/TRAIL-induced apoptosis in Apo2L/TRAIL-sensitive but not resistant ESFT cell lines. Remarkably, the specific IGF1 receptor (IGF1R antibody α-IR3 was functionally equivalent to IGF1. Short-term IGF1 incubation of cells stimulated survival kinase AKT and increased X-linked inhibitor of apoptosis (XIAP protein which was associated with Apo2L/TRAIL resistance. In contrast, long-term IGF1 incubation resulted in repression of XIAP protein through ceramide (Cer formation derived from de novo synthesis which was associated with Apo2L/TRAIL sensitization. Addition of ceramide synthase (CerS inhibitor fumonisin B1 during long-term IGF1 treatment reduced XIAP repression and Apo2L/TRAIL-induced apoptosis. Noteworthy, the resistance to conventional chemotherapeutic agents was maintained in cells following chronic IGF1 treatment. Overall, the results suggest that chronic IGF1 treatment renders ESFT cells susceptible to Apo2L/TRAIL-induced apoptosis and may have important implications for the biology as well as the clinical management of refractory ESFT.

  17. RIP-1/c-FLIPL Induce Hepatic Cancer Cell Apoptosis Through Regulating Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL).

    Science.gov (United States)

    Sun, Jichun; Yu, Xiao; Wang, Changfa; Yu, Can; Li, Zhiqiang; Nie, Wanpin; Xu, Xundi; Miao, Xiongying; Jin, Xiaoxin

    2017-03-08

    BACKGROUND Almost all hepatic cancer cells have resistance to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. c-FLIPL and RIP-1 are apoptotic negative regulatory factors. This study investigated the role of c-FLIPL and RIP-1 in hepatic cancer cell resistance to TRAIL-induced apoptosis. MATERIAL AND METHODS HepG2 cells were treated by TRAIL, RIP-1 siRNA, and/or BY11-7082. Cell viability was detected by MTT assay. Cell apoptosis was tested by flow cytometry. DISC component proteins, RIP-1, and p-p65 were measured by Western blot. Caspase-8 and caspase-3 were determined by spectrophotometry. RESULTS Single TRAIL treatment showed no significant impact on cell proliferation and apoptosis. HepG2 cells expressed high levels of RIP1 and c-FLIPL, while a high concentration of TRAIL upregulated RIP-1 and c-FLIPL expression but not DR4 and DR5. Single TRAIL treatment did not obviously activate caspase-8 and caspase-3. RIP-1 or c-FLIPL siRNA markedly induced cell apoptosis and enhanced caspase-8 and caspase-3 activities. Combined transfection obviously increased apoptotic cells. TRAIL markedly upregulated RIP-1 expression and enhanced p-p65 protein. Downregulating RIP-1 and/or BAY11-7082 significantly reduced NF-kB transcriptional activity, blocked cells in G0/G1 phase, weakened proliferation, elevated caspase-8 and caspase-3 activities, and promoted cell apoptosis. CONCLUSIONS TRAIL can enhance RIP1 and c-FLIPL expression in HepG2 cells. High expression of RIP1 and c-FLIPL is an important reason for TRAIL resistance. Downregulation of RIP1 and c-FLIPL can relieve caspase-8 suppression, activate caspase-3, and promote cell apoptosis. TRAIL mediates apoptosis resistance through upregulating RIP-1 expression, enhancing NF-kB transcriptional activity, and weakening caspase activity.

  18. Comparative Study on the Protective Effects of Salidroside and Hypoxic Preconditioning for Attenuating Anoxia-Induced Apoptosis in Pheochromocytoma (PC12) Cells.

    Science.gov (United States)

    Hu, Yao; Lv, Xiumei; Zhang, Jing; Meng, Xianli

    2016-10-30

    BACKGROUND Hypoxia is an important sign that can result from body injuries or a special condition such as being at a high altitude or deep water diving. In the current studies, hypoxic preconditioning (HPC) plays a key role in reducing hypoxia-induced apoptosis. We aimed to study the pharmacologic preconditioning effects of salidroside versus those of HPC in hypoxia-/anoxia-induced apoptosis in PC12 cells (pheochromocytoma). MATERIAL AND METHODS PC12 cells were treated by different experimental conditions: control condition, hypoxia condition, HPC condition, low-/middle-/high-dose condition of salidroside, cyclosporine A (CsA), and oratractyloside (ATR). The cell viability, lactate dehydrogenase (LDH) activity, apoptosis, mitochondrial membrane potential (MMP), intracellular Ca2+, caspase-3 activity, and expression of Bcl-2 were detected in PC12 cells after the hypoxia treatment. Salidroside, extracted from the traditional Chinese herb Rhodiola rosea L, plays an essential role in reducing hypoxia-induced apoptosis in PC12 cells by the mitochondrial pathway. RESULTS Salidroside decreased the apoptosis and increased the viability of hypoxia-induced PC12 cells more effectively than HPC Moreover, salidroside markedly stabilized MMP and intracellular Ca2+, reduced or inhibited LDH and caspase-3 activity, and up-regulated Bcl-2; CsA and ATR showed corresponding function. CONCLUSIONS Salidroside administration restrains apoptosis induced by hypoxia in PC12 cells. The protective effects are mediated by preservation of mitochondrial integrity and MMP to inhibit the excessive Ca2+ influx and caspase-3 activity and to promote the Bcl-2 expression, providing a potential clinical and effective therapeutic mechanism to reduce deaths from ischemic or hypoxic injury.

  19. Puerarin attenuates renal fibrosis by reducing oxidative stress induced-epithelial cell apoptosis via MAPK signal pathways in vivo and in vitro.

    Science.gov (United States)

    Zhou, Xiangjun; Bai, Chen; Sun, Xinbo; Gong, Xiaoxin; Yang, Yong; Chen, Congbo; Shan, Guang; Yao, Qisheng

    2017-11-01

    Puerarin (PR) is an isoflavonoid isolated from the root of the plant Pueraria lobata and has been widely used in traditional Chinese herbal medicine for the treatment of various diseases. Oxidative stress and epithelial cell apoptosis play important roles in the renal fibrotic process. The present study aimed to determine whether or not PR inhibits renal fibrosis by reducing oxidative stress induced-epithelial cell apoptosis. In vivo, unilateral ureteral obstruction (UUO) induced renal fibrosis, and epithelial cell apoptosis. A total of 24 mice were randomly assigned to four experimental groups: sham, UUO alone, UUO +50 mg/kg PR, and UUO +100 mg/kg PR. In vitro, 200 μM hydrogen peroxide (H2O2) induced epithelial cell apoptosis. The experiments were dived into four groups: control, H2O2 alone, H2O2+50 μM PR, and H2O2+100 μM PR. Tubular injury was measured in the renal cortex of the mice through periodic acid-Schiff (PAS) staining, and the extracellular matrix (ECM) was measured through Sirius red (SR), immunohistochemistry (IHC) staining, and Western blot. Renal epithelial cell apoptosis was measured through terminal deoxynucleotidyl transferase-mediated dUTP Nick-End labeling (TUNEL), flow cytometry (FCM), and Hoechst assays. The protein expression of NOX4, caspase3, ERK, P38, and JNK was assessed through Western blot. PAS staining showed that PR decreased renal tubular injury in UUO mice. SR and IHC staining demonstrated that PR decreased the accumulation of ECM. PR treatment significantly inhibited epithelial cell apoptosis according to the results of TUNEL, FCM, Hoechst, and Western blot. Furthermore, NOX4 increased in UUO mice and decreased with PR treatment. H2O2-derived oxidative stress activated epithelial apoptosis and mitogen-activated protein kinases (MAPK), and PR treatment significantly reversed it. These results suggest that PR treatment ameliorates renal fibrosis by inhibiting oxidative stress induced-epithelial cell apoptosis through

  20. Long-term oral administration of 5α-reductase inhibitor attenuates erectile function by inhibiting autophagy and promoting apoptosis of smooth muscle cells in corpus cavernosum of aged rats.

    Science.gov (United States)

    Zhang, Min-Guan; Wang, Xian-Jin; Shen, Zhou-Jun; Gao, Ping-Jin

    2013-09-01

    To investigate the effects and mechanisms of long-term treatment of 5α-reductase inhibitors (5ARIs) on erectile organ structure and function in aged rats. Thirty 16-month-old male rats were assigned to 2 groups: untreated or treated with 5ARIs. After 16 weeks, the erectile function was measured after electrical stimulation of the cavernous nerve. The weights and histopathologic features of the corpus cavernosum were examined. The levels of autophagy, apoptosis, and protein expression were also recorded. In the 5ARI-treatment group, the plasma and intraprostatic dihydrotestosterone concentration was lowered by 52.1% and 57.3%, respectively, and the weight of the corpus cavernosum and prostate had decreased by 22.4% and 35.6%, respectively. The in vivo erectile response to electrical stimulation of the cavernous nerve had decreased significantly in the 5ARI-treatment group (P corpus cavernosum of the 5ARI-treatment group. Using transmission electron microscopy and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling, decreased autophagy, aggravated ultrastructural injury of mitochondria, and increased apoptosis were observed in the cavernous smooth muscle cells from the rats in the 5ARI-treatment group. Long-term 5ARI treatment did attenuate the erectile function of aged rats. The mechanisms might have been the decreased rate of autophagy and an increased rate of apoptosis in the cavernous smooth muscle cells, suggesting a new role for androgen in maintaining the structural and functional integrity of the erectile organ. Additional studies are necessary to demonstrate the mechanisms of dihydrotestosterone in regulating the autophagy and apoptosis of the cavernous smooth muscle cells. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Curcumin attenuates palmitate-induced apoptosis in MIN6 pancreatic β-cells through PI3K/Akt/FoxO1 and mitochondrial survival pathways.

    Science.gov (United States)

    Hao, Feng; Kang, Jinsen; Cao, Yajun; Fan, Shengjun; Yang, Haopeng; An, Yu; Pan, Yan; Tie, Lu; Li, Xuejun

    2015-11-01

    Lipotoxicity plays a vital role in development and progression of type 2 diabetes. Prolonged elevation of free fatty acids especially the palmitate leads to pancreatic β-cell dysfunction and apoptosis. Curcumin (diferuloylmethane), a polyphenol from the curry spice turmeric, is considered to be a broadly cytoprotective agent. The present study was designed to determine the protective effect of curcumin on palmitate-induced apoptosis in β-cells and investigate underlying mechanisms. Our results showed that curcumin improved cell viability and enhanced glucose-induced insulin secretory function in MIN6 pancreatic β-cells. Palmitate incubation evoked chromatin condensation, DNA nick end labeling and activation of caspase-3 and -9. Curcumin treatment inhibited palmitate-induced apoptosis, relieved mitochondrial depolarization and up-regulated Bcl-2/Bax ratio. Palmitate induced the generation of reactive oxygen species and inhibited activities of antioxidant enzymes, which could be neutralized by curcumin treatment. Moreover, curcumin could promote rapid phosphorylation of Akt and nuclear exclusion of FoxO1 in MIN6 cells under lipotoxic condition. Phosphatidylinositol 3-kinase and Akt specific inhibitors abolished the anti-lipotoxic effect of curcumin and stimulated FoxO1 nuclear translocation. These findings suggested that curcumin protected MIN6 pancreatic β-Cells against apoptosis through activation of Akt, inhibition of nuclear translocation of FoxO1 and mitochondrial survival pathway.

  2. Angiotensin-(1-7) attenuated long-term hypoxia-stimulated cardiomyocyte apoptosis by inhibiting HIF-1α nuclear translocation via Mas receptor regulation.

    Science.gov (United States)

    Chang, Ruey-Lin; Lin, Jing-Wei; Kuo, Wei-Wen; Hsieh, Dennis Jine-Yuan; Yeh, Yu-Lan; Shen, Chia-Yao; Day, Cecilia-Hsuan; Ho, Tsung-Jung; Viswanadha, Vijaya Padma; Huang, Chih-Yang

    2016-02-01

    Extreme hypoxia often leads to myocardial apoptosis and causes heart failure. Angiotensin-(1-7)Ang-(1-7) is well known for its cardio-protective effects. However, the effects of Ang-(1-7) on long-term hypoxia (LTH)-induced apoptosis remain unknown. In this study, we found that Ang-(1-7) reduced myocardial apoptosis caused by hypoxia through the Mas receptor. Activation of the Ang-(1-7)/Mas axis down-regulated the hypoxia pro-apoptotic signaling cascade by decreasing the protein levels of hypoxia-inducible factor 1α (HIF-1α) and insulin-like growth factor binding protein-3 (IGFBP3). Moreover, the Ang-(1-7)/Mas axis further inhibited HIF-1α nuclear translocation. On the other hand, Ang-(1-7) activated the IGF1R/PI3K/Akt signaling pathways, which mediate cell survival. However, the above effects were abolished by A779 treatment or silencing of Mas expression. Taken together, our findings indicate that the Ang-(1-7)/Mas axis protects cardiomyocytes from LTH-stimulated apoptosis. The protective effect of Ang-(1-7) is associated with the inhibition of HIF-1α nuclear translocation and the induction of IGF1R and Akt phosphorylation.

  3. Propofol attenuates H2O2-induced oxidative stress and apoptosis via the mitochondria- and ER-medicated pathways in neonatal rat cardiomyocytes.

    Science.gov (United States)

    Liu, Xue-Ru; Cao, Lu; Li, Tao; Chen, Lin-Lin; Yu, Yi-Yan; Huang, Wen-Jun; Liu, Li; Tan, Xiao-Qiu

    2017-05-01

    Previous studies have shown that propofol, an intravenous anesthetic commonly used in clinical practice, protects the myocardium from injury. Mitochondria- and endoplasmic reticulum (ER)-mediated oxidative stress and apoptosis are two important signaling pathways involved in myocardial injury and protection. The present study aimed to test the hypothesis that propofol could exert a cardio-protective effect via the above two pathways. Cultured neonatal rat cardiomyocytes were treated with culture medium (control group), H2O2 at 500 μM (H2O2 group), propofol at 50 μM (propofol group), and H2O2 plus propofol (H2O2 + propofol group), respectively. The oxidative stress, mitochondrial membrane potential (ΔΨm) and apoptosis of the cardiomyocytes were evaluated by a series of assays including ELISA, flow cytometry, immunofluorescence microscopy and Western blotting. Propofol significantly suppressed the H2O2-induced elevations in the activities of caspases 3, 8, 9 and 12, the ratio of Bax/Bcl-2, and cell apoptosis. Propofol also inhibited the H2O2-induced reactive oxygen species (ROS) generation, lactic dehydrogenase (LDH) release and mitochondrial transmembrane potential (ΔΨm) depolarization, and restored the H2O2-induced reductions of glutathione (GSH) and superoxide dismutase (SOD). In addition, propofol decreased the expressions of glucose-regulated protein 78 kDa (Grp78) and inositol-requiring enzyme 1α (IRE1α), two important signaling molecules in the ER-mediated apoptosis pathway. Propofol protects cardiomyocytes from H2O2-induced injury by inhibiting the mitochondria- and ER-mediated apoptosis signaling pathways.

  4. Acetylcholine Attenuated TNF-α-Induced Apoptosis in H9c2 Cells: Role of Calpain and the p38-MAPK Pathway

    Directory of Open Access Journals (Sweden)

    Ming Zhao

    2015-07-01

    Full Text Available Background: Previous studies have shown that inflammation is associated with excessive activation of calpains. Acetylcholine (ACh has been reported to inhibit pro-inflammatory cytokine release and protect against cardiomyocyte injury. However, there is no direct evidence regarding whether ACh can regulate calpains to exert cardioprotection. To this end, we investigated the effect of ACh on tumour necrosis factor alpha (TNF-α-induced cardiomyocyte injury and further explored the underlying mechanism. Methods: Flow cytometry and transmission electron microscopy were performed to evaluate apoptosis and cellular ultrastructure. Western blotting was performed to assess changes in protein expression. siRNA was employed to silence specific proteins. Results: TNF-α treatment increased the expression of cleaved caspase-3, calpain-1 and p38-mitogen-activated protein kinase (p38-MAPK. The calpain inhibitor PD150606 and the p38-MAPK inhibitor SB203580 inhibited apoptosis induced by TNF-α. Moreover, SB203580 decreased the expression and activity of calpain-1, possibly related to the up-regulation of calpastatin. ACh significantly inhibited TNF-α-induced cell apoptosis, as evidenced by decreases in caspase-3 cleavage, p38-MAPK phosphorylation, and calpain-1 expression and activity as well as increases in calpastatin expression. These beneficial effects of ACh were abolished by atropine or M2AChR siRNA. Conclusion: Our results suggest that ACh ameliorated TNF-α-induced calpain activation by decreasing p38-MAPK phosphorylation and enhancing calpastatin expression, indicating that calpain may be an important link between inflammatory factors and myocardial cell apoptosis.

  5. Herbal Formulation C168 Attenuates Proliferation and Induces Apoptosis in HCT 116 Human Colorectal Carcinoma Cells: Role of Oxidative Stress and DNA Damage

    Directory of Open Access Journals (Sweden)

    Lek Mun Leong

    2016-01-01

    Full Text Available The use of herbal formulations has gained scientific interest, particularly in cancer treatment. In this study, the herbal formulation of interest, denoted as C168, is a mixture of eight genera of plants. This study aims to investigate the antiproliferative effect of C168 methanol extract (CME on various cancer cells and its underlying mechanism of action on the most responsive cell line, namely, HCT 116 cells. CME exerted antiproliferative activities on HCT 116 colorectal carcinoma cells and HepG2 hepatocellular carcinoma cells but not on CCD-841-CoN normal colon epithelial cells, Jurkat E6.1 lymphoblastic leukemic cells, and V79-4 Chinese hamster lung fibroblasts. Further investigation on HCT 116 cells showed that CME induced G2/M cell-cycle arrest and apoptosis. Treatment of CME induced oxidative stress in HCT 116 cells by increasing the superoxide anion level and decreasing the intracellular glutathione. CME also increased tail moment value and H2AX phosphorylation in HCT 116 cells, suggesting DNA damage as an early signal of CME induced apoptosis. Loss of mitochondrial membrane potential in CME-treated cells also indicated the involvement of mitochondria in CME induced apoptosis. This study indicated the selectivity of CME toward colon cancer cells with the involvement of oxidative damage as its possible mechanism of action.

  6. TNF-related apoptosis-inducing ligand significantly attenuates metabolic abnormalities in high-fat-fed mice reducing adiposity and systemic inflammation.

    Science.gov (United States)

    Bernardi, Stella; Zauli, Giorgio; Tikellis, Christos; Candido, Riccardo; Fabris, Bruno; Secchiero, Paola; Cooper, Mark E; Thomas, Merlin C

    2012-11-01

    TRAIL [TNF (tumour necrosis factor)-related apoptosis-inducing ligand] has recently been shown to ameliorate the natural history of DM (diabetes mellitus). It has not been determined yet whether systemic TRAIL delivery would prevent the metabolic abnormalities due to an HFD [HF (high-fat) diet]. For this purpose, 27 male C57bl6 mice aged 8 weeks were randomly fed on a standard diet, HFD or HFD+TRAIL for 12 weeks. TRAIL was delivered weekly by intraperitoneal injection. Body composition was evaluated; indirect calorimetry studies, GTT (glucose tolerance test) and ITT (insulin tolerance test) were performed. Pro-inflammatory cytokines, together with adipose tissue gene expression and apoptosis, were measured. TRAIL treatment reduced significantly the increased adiposity associated with an HFD. Moreover, it reduced significantly hyperglycaemia and hyperinsulinaemia during a GTT and it improved significantly the peripheral response to insulin. TRAIL reversed the changes in substrate utilization induced by the HFD and ameliorated skeletal muscle non-esterified fatty acids oxidation rate. This was associated with a significant reduction of pro-inflammatory cytokines together with a modulation of adipose tissue gene expression and apoptosis. These findings shed light on the possible anti-adipogenic and anti-inflammatory effects of TRAIL and open new therapeutic possibilities against obesity, systemic inflammation and T2DM (Type 2 DM).

  7. Retracted: Sirt3 activation attenuated oxidized low-density lipoprotein-induced human umbilical vein endothelial cells' apoptosis by sustaining autophagy by Luo, X, Yang, Z, Zheng, S, Cao, Y and Wu, Y.

    Science.gov (United States)

    2017-08-01

    The above article, published online on 05 May 2014 in Wiley Online Library (http://onlinelibrary.wiley.com/doi/10.1002/cbin.10291/full), has been retracted by agreement between the authors, the journal Editor, Sergio Schenkman, and John Wiley & Sons Ltd. The retraction has been agreed because the authors discovered that the results of section 3 in this paper were irreproducible. In addition, Zhiqiang Yang, a co-author, states conflict of interest in this paper. The authors and publisher apologize for any inconvenience. Reference Luo X, Yang Z, Zheng S, Cao Y, Wu Y (2014) Sirt3 activation attenuated oxidized low-density lipoprotein induced human umbilical vein endothelial cells' apoptosis by sustaining autophagy. Cell Biol Int, https://doi.org/10.1002/cbin.10291. © 2017 International Federation for Cell Biology.

  8. Kimchi attenuates fatty streak formation in the aorta of low-density lipoprotein receptor knockout mice via inhibition of endoplasmic reticulum stress and apoptosis.

    Science.gov (United States)

    Woo, Minji; Kim, Mijeong; Noh, Jeong Sook; Park, Chan Hum; Song, Yeong Ok

    2017-12-01

    Endoplasmic reticulum (ER) stress is positively associated with atherosclerosis via elevating macrophage cell death and plaque formation, in which oxidative stress plays a pivotal role. Antioxidative, lipid-lowering, and anti-atherogenic effects of kimchi, a Korean fermented vegetable, have been established, wherein capsaicin, ascorbic acid, quercetin, 3-(4'-hydroxyl-3',5'-dimethoxyphenyl)propionic acid, and lactic acids were identified. In this study, mechanisms of action of kimchi methanol extracts (KME) on fatty streak formation via suppression of ER stress and apoptosis in aorta were examined in low-density lipoprotein receptor knockout mice. Mice fed a high cholesterol diet with an oral administration of KME (KME group, 200 mg·kg-bw -1 ·day -1 ) or distilled water (control group) for 8 weeks (n = 20 for group). Plasma lipid and oxidative stress levels were evaluated. Protein expression was measured by western blot assay. Fatty streak lesion size and the degree of apoptosis were examined in the aorta. Compared to the control group, in the KME group, plasma lipids levels were decreased and oxidative stress was alleviated ( P < 0.05). Protein expression levels of nuclear factor (erythroid-derived 2)-like 2-mediated antioxidants in aorta were increased whereas those for ER stress markers, glucose regulated protein 78, phospho-protein kinase RNA-like ER kinase, phospho-eukaryotic initiation factor 2 subunit α, X-box binding protein 1, and C/EBP homologous protein were decreased in the KME group ( P < 0.05). Moreover, apoptosis was suppressed via downregulation of phospho-c-Jun N-terminal kinase, bcl-2-associated X protein, caspases-9, and -3 with a concomitant upregulation of anti-apoptotic protein, B-cell lymphoma 2 ( P < 0.05). Fatty streak lesion size was reduced and the degree of apoptosis was less severe in the KME group ( P < 0.05). In conclusion, antioxidant activity of KME might prevent fatty streak formation through, in part, inhibition of ER stress and

  9. A New Perspective for Osteosarcoma Therapy: Proteasome Inhibition by MLN9708/2238 Successfully Induces Apoptosis and Cell Cycle Arrest and Attenuates the Invasion Ability of Osteosarcoma Cells in Vitro.

    Science.gov (United States)

    Liu, Renhao; Fu, Chunjiang; Sun, Jiabing; Wang, Xvming; Geng, Shuo; Wang, Xiaoyu; Zou, Jilong; Bi, Zhenggang; Yang, Chenglin

    2017-01-01

    The proteasome exists in all eukaryotic cells and provides the main route of intracellular proteins degradation involved in cell growth and apoptosis. Proteasome inhibition could block protein degradation pathways and disturb regulatory networks, possibly leading to profound effects on cell growth, particularly in cancer cells. A proteasome inhibitor with an appropriate toxicity index for malignant cells rather than normal cells would be an attractive anticancer therapy. The human osteosarcoma (OS) cell lines MG-63 and Saos-2 and normal osteoblast cells were used to study the antitumour activity of the proteasome inhibitor MLN9708/2238. MLN2238 inhibited cell growth, induced cell cycle arrest and apoptosis, and attenuated the invasion abilities of MG-63 and Saos-2 cells, with little cytotoxicity to normal cells. In addition, MLN2238 promoted antitumour mechanisms including the accumulation of E2F1, P53, P21 and other negative G2/M checkpoint proteins; up-regulated the relative expression ratio of BAX/BCL-2, APAF-1 and pro-apoptotic proteins of the BCL-2 family; triggered mitochondrial outer membrane permeabilization (MOMP); down-regulated BCL-2 and XIAP; activated caspase3/8/9; and suppressed MMP2/9 expression and secretion levels. The proteasome may be a novel biochemical target for OS treatment in vitro. Our study provides a promising mechanistic framework for MLN9708/2238 in OS treatment, supporting its clinical development. © 2017 The Author(s). Published by S. Karger AG, Basel.

  10. A natural product from Cannabis sativa subsp. sativa inhibits homeodomain-interacting protein kinase 2 (HIPK2), attenuating MPP+-induced apoptosis in human neuroblastoma SH-SY5Y cells.

    Science.gov (United States)

    Wang, Guan; Zhu, Lingjuan; Zhao, Yuqian; Gao, Suyu; Sun, Dejuan; Yuan, Jingquan; Huang, Yuxin; Zhang, Xue; Yao, Xinsheng

    2017-06-01

    Homeodomain-interacting protein kinase 2 (HIPK2) is a conserved serine/threonine kinase, which regulate transcription, cell differentiation, proliferation and apoptosis. Previous evidences indicated that HIPK2 could be involved in the pathogenesis of neurodegenerative diseases, suggesting as a novel target for Parkinson's disease (PD) therapeutic development. Herein, gene microarray analysis was performed to verify the key regulatory function of HIPK2 in PD. (Z)-methylp-hydroxycinnamate (ZMHC, 7) with other eighteen compounds were isolated from Cannabis sativa subsp. sativa, growing in Bama Yao Autonomous County, one of the five largest longevity regions of the world. Intriguingly, ZMHC was identified to bind HIPK2 with high affinity through molecular modeling and molecular dynamics (MD) simulations. Moreover, cell morphology, flow cytometry and western blot assay suggested that ZMHC inhibited HIPK2, which attenuated MPP+-induced apoptosis in SH-SY5Y cells. In conclusion, these findings discovered a natural product that inhibited HIPK2, and highlighted that ZMHC could be a potential precursor agent for future PD therapy. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Therapeutic hypothermia attenuates global cerebral reperfusion-induced mitochondrial damage by suppressing dynamin-related protein 1 activation and mitochondria-mediated apoptosis in a cardiac arrest rat model.

    Science.gov (United States)

    Fan, Jingjing; Cai, Shenquan; Zhong, Hao; Cao, Liangbin; Hui, Kangli; Xu, Miaomiao; Duan, Manlin; Xu, Jianguo

    2017-04-24

    Therapeutic hypothermia is effective to attenuate brain ischemia/reperfusion (I/R) injury after cardiac arrest, and multiple mechanisms have been proposed. Dynamin-related protein 1 (Drp1), a large GTPases of dynamin superfamily, predominantly controls mitochondrial fission and is related to IR-induced Cyt C release and apoptosis. However, the effect of therapeutic hypothermia on Drp1 and mitochondrial fission after cardiac arrest remains still unclear. In this study, non-cardiac arrest and post-cardiac arrest rats received 6-h normothermia (37-38°C) or therapeutic hypothermia (32-34°C), and the hippocampus was harvested at 6h and 72h after cardiac arrest. Results showed the expression of Drp1 and Cyt C increased after cardiac arrest, but therapeutic hypothermia partially reversed this increase at 6h after cardiac arrest. Transmission electron microscopy (TEM) also showed a change in morphology following therapeutic hypothermia after cardiac arrest. Moreover, therapeutic hypothermia could decrease the histopathological damage, inhibit the apoptosis of CA1 neurons and improve the survival and neurological outcomes at 72h after cardiac arrest. Taken together, our study demonstrates that therapeutic hypothermia is neuroprotective against global cerebral I/R injury, which is, at least partially, ascribed to the inhibition Drp1 and Cyt C expression and the protection of mitochondrial structure. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Activated Cdc42-associated kinase 1 (Ack1) is required for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor recruitment to lipid rafts and induction of cell death.

    Science.gov (United States)

    Linderoth, Emma; Pilia, Giulia; Mahajan, Nupam P; Ferby, Ingvar

    2013-11-15

    TNF-related apoptosis-inducing ligand (TRAIL) holds promise for treatment of cancer due to its ability to selectively kill cancer cells while sparing normal cells. Ligand-induced translocation of TRAIL receptors (TRAIL-R) 1 and 2 (also called DR4 and DR5, respectively) into lipid raft membrane microdomains is required for TRAIL-induced cell death by facilitating receptor clustering and formation of the death-inducing signaling complex, yet the underlying regulatory mechanisms remain largely unknown. We show here that the non-receptor tyrosine kinase Ack1, previously implicated in the spatiotemporal regulation of the EGF receptor, is required for TRAIL-induced cell death in multiple epithelial cell lines. TRAIL triggered a transient up-regulation of Ack1 and its recruitment to lipid rafts along with TRAIL-R1/2. siRNA-mediated depletion of Ack1 disrupted TRAIL-induced accumulation of TRAIL-R1/2 in lipid rafts and efficient recruitment of caspase-8 to the death-inducing signaling complex. Pharmacological inhibition of Ack1 did not affect TRAIL-induced cell death, indicating that Ack1 acts in a kinase-independent manner to promote TRAIL-R1/2 accumulation in lipid rafts. These findings identify Ack1 as an essential player in the spatial regulation of TRAIL-R1/2.

  13. Lycium barbarum polysaccharides attenuates N-methy-N-nitrosourea-induced photoreceptor cell apoptosis in rats through regulation of poly (ADP-ribose) polymerase and caspase expression.

    Science.gov (United States)

    Zhu, Yafei; Zhao, Qipeng; Gao, Hua; Peng, Xiaodong; Wen, Youmin; Dai, Guidong

    2016-09-15

    Lycium barbarum L., popularly known as "Goji berry", a classic of Traditional Chinese Medicine has long been used to treat ocular diseases and cardiovascular diseases. Recently, the photoreceptor cell protection of Lycium barbarum polysaccharides (LBP), a water extract from Lycium barbarum L. has received more attention. The present study was designed to investigate the effect of LBP on N-methyl-N-nitrosourea (MNU)-induced photoreceptor cell apoptosis, and the involvement of the poly (ADP-ribose) polymerase (PARP) and caspase. Photoreceptor cell injury was induced in male Sprague-Dawley rats by an intraperitoneal injection of MNU 60mg/kg. Seven days prior to MNU injection, LBP were intragastrical administered daily, rats were sacrificed at 24h and 7 days after MNU injection. Retinal morphologies, photoreceptor cells apoptosis, and protein expression were evaluated at 24h and 7 days after MNU injection. Morphologically, the outer nuclear layer was well preserved in the LBP-treated rat retinas throughout the experimental period. Terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-digoxigenin nick-end labeling (TUNEL) assays showed that LBP could significantly suppress the loss of photoreceptor cells, as determined by the photoreceptor cell ratio at the central retina 24h and 7 days after MNU administration. Western-blot analysis demonstrated the expression levels of procaspase-9, -7, -3 and cleaved caspase-9, -7, -3 were upregulated, and PARP were downregulated both 24h and 7 days after MNU injection. LBP treatment significantly decreased protein levels of procaspase and cleaved caspase, increased the level of PARP and cleaved PARP on 24h and 7 days. LBP inhibits MNU-induced rat photoreceptor cell apoptosis and protects retinal structure via the regulation of the expressions of PARP and caspase. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Genetic ablation of Bcl-x attenuates invasiveness without affecting apoptosis or tumor growth in a mouse model of pancreatic neuroendocrine cancer.

    Directory of Open Access Journals (Sweden)

    Jeffrey H Hager

    Full Text Available Tumor cell death is modulated by an intrinsic cell death pathway controlled by the pro- and anti-apoptotic members of the Bcl-2 family. Up-regulation of anti-apoptotic Bcl-2 family members has been shown to suppress cell death in pre-clinical models of human cancer and is implicated in human tumor progression. Previous gain-of-function studies in the RIP1-Tag2 model of pancreatic islet carcinogenesis, involving uniform or focal/temporal over-expression of Bcl-x(L, demonstrated accelerated tumor formation and growth. To specifically assess the role of endogenous Bcl-x in regulating apoptosis and tumor progression in this model, we engineered a pancreatic beta-cell-specific knockout of both alleles of Bcl-x using the Cre-LoxP system of homologous recombination. Surprisingly, there was no appreciable effect on tumor cell apoptosis rates or on tumor growth in the Bcl-x knockout mice. Other anti-apoptotic Bcl-2 family members were expressed but not substantively altered at the mRNA level in the Bcl-x-null tumors, suggestive of redundancy without compensatory transcriptional up-regulation. Interestingly, the incidence of invasive carcinomas was reduced, and tumor cells lacking Bcl-x were impaired in invasion in a two-chamber trans-well assay under conditions mimicking hypoxia. Thus, while the function of Bcl-x in suppressing apoptosis and thereby promoting tumor growth is evidently redundant, genetic ablation implicates Bcl-x in selectively facilitating invasion, consistent with a recent report documenting a pro-invasive capability of Bcl-x(L upon exogenous over-expression.

  15. Salidroside pretreatment attenuates apoptosis and autophagy during hepatic ischemia–reperfusion injury by inhibiting the mitogen-activated protein kinase pathway in mice

    Directory of Open Access Journals (Sweden)

    Feng J

    2017-07-01

    Full Text Available Jiao Feng,1,* Qinghui Zhang,2,* Wenhui Mo,3,* Liwei Wu,1 Sainan Li,1 Jingjing Li,1 Tong Liu,1 Shizan Xu,4 Xiaoming Fan,5 Chuanyong Guo1 1Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 2Department of Clinical Laboratory, Kunshan First People’s Hospital Affiliated to Jiangsu University, Kunshan, JiangSu, 3Department of Gastroenterology, Minhang Hospital, Fudan University, Shanghai, 4Department of Gastroenterology, Shanghai Tenth People’s Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai, 5Department of Gastroenterology, Jinshan Hospital of Fudan University, Jinshan, Shanghai, China *These authors contributed equally to this work Abstract: Ischemia–reperfusion injury (IRI contributes to liver damage in many clinical situations, such as liver resection and liver transplantation. In the present study, we investigated the effects of the antioxidant, anti-inflammatory, and anticancer agent salidroside (Sal on hepatic IRI in mice. The mice were randomly divided into six groups: normal control, Sham, Sal (20 mg/kg, IRI, IRI + Sal (10 mg/kg, and IRI + Sal (20 mg/kg. We measured liver enzymes, proinflammatory cytokines, TNF-α and interleukin-6, and apoptosis- and autophagy-related marker proteins at 2, 8, and 24 hours after reperfusion. Components of mitogen-activated protein kinase (MAPK signaling, including P-38, jun N-terminal kinase (JNK, and extracellular signal-regulated kinase (ERK, were also measured using an MAPK activator anisomycin to deduce their roles in hepatic IRI. Our results show that Sal safely protects hepatocytes from IRI by reducing levels of liver enzymes in the serum. These findings were confirmed by histopathology. We concluded that Sal protects hepatocytes from IRI partly by inhibiting the activation of MAPK signaling, including the phosphorylation of P38, JNK, and ERK. This ameliorates inflammatory reactions, apoptosis, and

  16. c-Jun NH2-terminal kinase-dependent upregulation of DR5 mediates cooperative induction of apoptosis by perifosine and TRAIL

    Directory of Open Access Journals (Sweden)

    Chen Georgia Z

    2010-12-01

    Full Text Available Abstract Background Perifosine, an alkylphospholipid tested in phase II clinical trials, modulates the extrinsic apoptotic pathway and cooperates with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL to augment apoptosis. The current study focuses on revealing the mechanisms by which perifosine enhances TRAIL-induced apoptosis. Results The combination of perifosine and TRAIL was more active than each single agent alone in inducing apoptosis of head and neck squamous cell carcinoma cells and inhibiting the growth of xenografts. Interestingly, perifosine primarily increased cell surface levels of DR5 although it elevated the expression of both DR4 and DR5. Blockade of DR5, but not DR4 upregulation, via small interfering RNA (siRNA inhibited perifosine/TRAIL-induced apoptosis. Perifosine increased phosphorylated c-Jun NH2-terminal kinase (JNK and c-Jun levels, which were paralleled with DR4 and DR5 induction. However, only DR5 upregulaiton induced by perifosine could be abrogated by both the JNK inhibitor SP600125 and JNK siRNA. The antioxidants, N-acetylcysteine and glutathione, but not vitamin C or tiron, inhibited perifosine-induced elevation of p-c-Jun, DR4 and DR5. Moreover, no increased production of reactive oxygen species was detected in perifosine-treated cells although reduced levels of intracellular GSH were measured. Conclusions DR5 induction plays a critical role in mediating perifosine/TRAIL-induced apoptosis. Perifosine induces DR5 expression through a JNK-dependent mechanism independent of reactive oxygen species.

  17. Epigenetic silencing of apoptosis-inducing gene expression can be efficiently overcome by combined SAHA and TRAIL treatment in uterine sarcoma cells.

    Directory of Open Access Journals (Sweden)

    Leopold F Fröhlich

    Full Text Available The lack of knowledge about molecular pathology of uterine sarcomas with a representation of 3-7% of all malignant uterine tumors prevents the establishment of effective therapy protocols. Here, we explored advanced therapeutic options to the previously discovered antitumorigenic effects of the histone deacetylase (HDAC inhibitor suberoylanilide hydroxamic acid (SAHA by combined treatment with the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/Apo-2L. In addition, we investigated the uterine sarcoma cell lines, MES-SA and ESS-1, regarding the underlying molecular mechanisms of SAHA and TRAIL-induced apoptosis and their resistance towards TRAIL. Compared to single SAHA or TRAIL treatment, the combination of SAHA with TRAIL led to complete cell death of both tumor cell lines after 24 to 48 hours. In contrast to single SAHA treatment, apoptosis occured faster and was more pronounced in ESS-1 cells than in MES-SA cells. Induction of SAHA- and TRAIL-induced apoptosis was accompanied by upregulation of the intrinsic apoptotic pathway via reduction of mitochondrial membrane potential, caspase-3, -6, and -7 activation, and PARP cleavage, but was also found to be partially caspase-independent. Apoptosis resistance was caused by reduced expression of caspase-8 and DR 4/TRAIL-R1 in ESS-1 and MES-SA cells, respectively, due to epigenetic silencing by DNA hypermethylation of gene promoter sequences. Treatment with the demethylating agent 5-Aza-2'-deoxycytidine or gene transfer therefore restored gene expression and increased the sensitivity of both cell lines against TRAIL-induced apoptosis. Our data provide evidence that deregulation of epigenetic silencing by histone acetylation and DNA hypermethylation might play a fundamental role in the origin of uterine sarcomas. Therefore, tumor growth might be efficiently overcome by a cytotoxic combinatorial treatment of HDAC inhibitors with TRAIL.

  18. Potent effects of alkaloid-rich extract from Huperzia selago against sodium nitroprusside-evoked PC12 cells damage via attenuation of oxidative stress and apoptosis

    Directory of Open Access Journals (Sweden)

    Anna Magdalena Lenkiewicz

    2016-06-01

    Full Text Available Imbalance between production and scavenging of free radicals and other reactive oxygen species (ROS is a component of many diseases, but it is especially important in aging-related diseases of the central nervous system. Oxidative stress-induced neuronal dysfunction plays an important role in the pathomechanism of neurodegenerative disorders, including Alzheimer’s and Parkinson’s disease. Experimental data showed that free radical scavengers may protect the brain against oxidative modifications. The need for efficient and safe antioxidants with therapeutic potential stimulated the rise of interest in the medicinal plant products, which are a rich source of phytochemicals possessing biological activity. In our studies we focused on alkaloid fractions (AFs isolated from club moss, Huperzia selago and Diphasiastrum complanatum, due to their beneficial activity and exclusive chemical structure. Our previous study demonstrated that selected alkaloids from Huperzia selago effectively protect macromolecules from oxidative damage. Therefore, in the present study we investigated the effects and mechanisms of action of AFs isolated from Huperzia selago and Diphasiastrum complanatum against sodium nitroprusside (SNP-induced oxidative injury in PC12 cells. The results demonstrated that the selected AFs via reduction of nitric oxide (NO liberation protected cells against oxidative stress, DNA and mitochondrial damage, as well as apoptosis caused by SNP. Selected AF notably decreased SNP-evoked mitochondrial polymerase γ (Polg up-regulation. Furthermore, AF which contains Lycopodine, Serratidine, Lycoposerramine-G and (probably Cermizine B completely inhibited the SNP-induced expression of interferon-γ (Ifng and cyclooxygenase 2 (Ptgs2 as well as significantly down-regulated the expression of 12/15-lipoxygenase (Alox12 and tended to decrease the mRNA level of interleukin-6 gene (Il6. In conclusion, these results suggest that the AFs from Huperzia selago

  19. L-Satropane Prevents Retinal Neuron Damage by Attenuating Cell Apoptosis and Aβ Production via Activation of M1 Muscarinic Acetylcholine Receptor.

    Science.gov (United States)

    Yu, Ping; Zhou, Wei; Liu, Lu; Tang, Ya-Bin; Song, Yun; Lu, Juan-Juan; Hou, Li-Na; Chen, Hong-Zhuan; Cui, Yong-Yao

    2017-09-01

    Muscarinic acetylcholine receptor (mAChR) agonists have been used to treat glaucoma due to their intraocular pressure-lowering effects. Recently, it has been reported that retinal mAChRs activation can also stimulate neuroprotective pathways. In our study, we evaluated the potential neuroprotective effect of L-satropane, a novel mAChR agonist, on retinal neuronal injury induced by cobalt chloride (CoCl2) and ischemia/reperfusion (I/R). CoCl2-induced hypoxia injury in cultured cell models and I/R-induced retinal neuronal damage in rats in vivo were used to evaluate the abilities of L-satropane. In detail, we measured the occurrence of retinal pathological changes including molecular markers of neuronal apoptosis and Aβ expression. Pretreatment with L-satropane protects against CoCl2-induced neurotoxicity in PC12 and primary retinal neuron (PRN) cells in a dose-dependent manner by increasing retinal neuron survival. CoCl2 or I/R-induced cell apoptosis by upregulating Bax expression and downregulating Bcl-2 expression, which resulted in an increased Bax/Bcl-2 ratio, and upregulating caspase-3 expression/activity was significantly reversed by L-satropane treatment. In addition, L-satropane significantly inhibited the upregulation of Aβ production in both retinal neurons and tissue. We also found that I/R-induced histopathological retinal changes including cell loss in the retinal ganglion cell layer (GCL) and increased TUNEL positive retinal ganglion cells in GCL and thinning of the inner plexiform layer (IPL) and inner nuclear layer (INL) were markedly improved by L-satropane. The effects of L-satropane were largely abolished by the nonselective mAChRs antagonist atropine and M1-selective mAChR antagonist pirenzepine. These results demonstrated that L-satropane might be effective in preventing retinal neuron damage caused by CoCl2 or I/R. The neuroprotective effects of L-satropane may be attributed to decreasing cell apoptosis and Aβ production through activation

  20. Exercise training enhanced SIRT1 longevity signaling replaces the IGF1 survival pathway to attenuate aging-induced rat heart apoptosis.

    Science.gov (United States)

    Lai, Chao-Hung; Ho, Tsung-Jung; Kuo, Wei-Wen; Day, Cecilia-Hsuan; Pai, Pei-Ying; Chung, Li-Chin; Liao, Po-Hsiang; Lin, Feng-Huei; Wu, En-Ting; Huang, Chih-Yang

    2014-01-01

    Cardiovascular disease is the second leading cause of death (9.1 %) in Taiwan. Heart function deteriorates with age at a rate of 1 % per year. As society ages, we must study the serious problem of cardiovascular disease. SIRT1 regulates important cellular processes, including anti-apoptosis, neuronal protection, cellular senescence, aging, and longevity. In our previous studies, rats with obesity, high blood pressure, and diabetes exhibiting slowed myocardial performance and induced cell apoptosis were reversed via sports training through IGF1 survival signaling compensation. This study designed a set of experiments with rats, in aging and exercise groups, to identify changes in myocardial cell signaling transduction pathways. Three groups of three different aged rats, 3, 12, and 18 months old, were randomly divided into aging groups (C3, A12, and A18) and exercise groups (E3, AE12, and AE18). The exercise training consisted of swimming five times a week with gradual increases from the first week from 20 to 60 min for 12 weeks. After the sports training process was completed, tissue sections were taken to observe cell organization (hematoxylin and eosin (H&E) stain) and apoptosis (terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays) and to observe any changes in the myocardial tissues and proteins (Western blotting). The experimental results show that cardiomyocyte apoptotic pathway protein expression increased with age in the aging groups (C3, A12, and A18), with improvement in the exercise group (E3, AE12, and AE18). However, the expression of the pro-survival p-Akt protein decreased significantly with age and reduced performance. The IGF1R/PI3K/Akt survival pathway in the heart of young rats can indeed be increased through exercise training. As rats age, this pathway loses its original function, even with increasing upstream IGF1. However, levels of SIRT1 and its downstream target PGC-1α were found to increase with age and

  1. Attenuation of Apoptosis by Telmisartan in Atherosclerotic Plaques of Apolipoprotein E−/− Mice: Evaluation Using Technetium 99m–Annexin A5

    Directory of Open Access Journals (Sweden)

    Yan Zhao

    2013-07-01

    Full Text Available Technetium 99m (99mTc–annexin A5, a marker of ongoing apoptosis, is supposed to be useful in the detection of metabolically active atheroma. The aim of this study was to determine the potential of 99mTc–annexin A5 for evaluating the therapeutic effects of an angiotensin II receptor type 1 blocker (ARB (telmisartan on atherosclerosis. Male apolipoprotein E−/− mice were divided into telmisartan-treated (3 mg/kg/d, n = 10 and control (n = 10 groups. After 16 to 21 weeks of treatment, 99mTc–annexin A5 was injected and cryostat sections of aortic tissues (n = 10–12/aorta were prepared. The 99mTc–annexin A5 accumulation level in the plaques was evaluated by autoradiography. Serial sections of the plaques were histologically examined to identify the lesion phenotypes (normal vessels, early lesions, atheromatous lesions, and fibrotic lesions, plaque size, macrophage infiltration levels, and lipid deposition levels. Telmisartan treatment significantly decreased the plaque size (0.05 ± 0.05 vs 0.11 ± 0.08, mm2, macrophage infiltration level (0.02 ± 0.02 vs 0.03 ± 0.02, mm2, lipid deposition level (0.01 ± 0.01 vs 0.02 ± 0.02, mm2, and 99mTc–annexin A5 accumulation level (1.30 ± 1.09 vs 2.15 ± 1.91, × 10−6/g. 99mTc–annexin A5 accumulation levels in the plaques positively correlated with macrophage infiltration (r = .69, p < .05 and lipid deposition (r = .66, p < .05 levels. Apoptosis imaging with 99mTc–annexin A5 may be useful for evaluating the therapeutic effects of ARBs on atherosclerosis.

  2. Anti-tumor Necrosis Factor Alpha (Infliximab) Attenuates Apoptosis, Oxidative Stress, and Calcium Ion Entry Through Modulation of Cation Channels in Neutrophils of Patients with Ankylosing Spondylitis.

    Science.gov (United States)

    Ugan, Yunus; Nazıroğlu, Mustafa; Şahin, Mehmet; Aykur, Mehmet

    2016-08-01

    Ankylosing Spondylitis (AS) is known to be associated with increased neutrophil activation and oxidative stress, however, the mechanism of neutrophil activation is still unclear. We have hypothesized that the antioxidant and anti-tumor necrosis factor properties of infliximab may affect intracellular Ca(2+) concentration in the neutrophils of AS patients. The objective of this study was to investigate the effects of infliximab on calcium signaling, oxidative stress, and apoptosis in neutrophils of AS patients. Neutrophils collected from ten patients with AS and ten healthy controls were used in the study. In a cell viability test, the ideal non-toxic dose and incubation time of infliximab were found as 100 μM and 1 h, respectively. In some experiments, the neutrophils were incubated with the voltage-gated calcium channel (VGCC) blockers verapamil + diltiazem (V + D) and the TRPM2 channel blocker 2-aminoethyl diphenylborinate (2-APB). Intracellular Ca(2+) concentration, lipid peroxidation, apoptosis, caspase 3, and caspase 9 values were high in neutrophils of AS patients and were reduced with infliximab treatment. Reduced glutathione level and glutathione peroxidase activity were low in the patients and increased with infliximab treatment. The intracellular Ca(2+) concentrations were low in 2-APB and V + D groups. In conclusion, the current study suggests that infliximab is useful against apoptotic cell death and oxidative stress in neutrophils of patients with AS, which seem to be dependent on increased levels of intracellular Ca(2+) through activation of TRPM2 and VGCC.

  3. By Improving Regional Cortical Blood Flow, Attenuating Mitochondrial Dysfunction and Sequential Apoptosis Galangin Acts as a Potential Neuroprotective Agent after Acute Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Ming Cheng

    2012-11-01

    Full Text Available Ischemic stroke is a devastating disease with a complex pathophysiology. Galangin is a natural flavonoid isolated from the rhizome of Alpina officinarum Hance, which has been widely used as an antioxidant agent. However, its effects against ischemic stroke have not been reported and its related neuroprotective mechanism has not really been explored. In this study, neurological behavior, cerebral infarct volumes and the improvement of the regional cortical blood flow (rCBF were used to evaluate the therapeutic effect of galangin in rats impaired by middle cerebral artery occlusion (MCAO-induced focal cerebral ischemia. Furthermore, the determination of mitochondrial function and Western blot of apoptosis-related proteins were performed to interpret the neuroprotective mechanism of galangin. The results showed that galangin alleviated the neurologic impairments, reduced cerebral infarct at 24 h after MCAO and exerted a protective effect on the mitochondria with decreased production of mitochondrial reactive oxygen species (ROS. These effects were consistent with improvements in the membrane potential level (Dym, membrane fluidity, and degree of mitochondrial swelling in a dose-dependent manner. Moreover, galangin significantly improved the reduced rCBF after MCAO. Western blot analysis revealed that galangin also inhibited apoptosis in a dose-dependent manner concomitant with the up-regulation of Bcl-2 expression, down-regulation of Bax expression and the Bax/Bcl-2 ratio, a reduction in cytochrome c release from the mitochondria to the cytosol, the reduced expression of activated caspase-3 and the cleavage of poly(ADP-ribose polymerase (PARP. All these data in this study demonstrated that galangin might have therapeutic potential for ischemic stroke and play its protective role through the improvement in rCBF, mitochondrial protection and inhibiting caspase-dependent mitochondrial cell death pathway for the first time.

  4. Synthetic flavanones augment the anticancer effect of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL).

    Science.gov (United States)

    Szliszka, Ewelina; Kostrzewa-Susłow, Edyta; Bronikowska, Joanna; Jaworska, Dagmara; Janeczko, Tomasz; Czuba, Zenon P; Krol, Wojciech

    2012-10-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is considered as the most promising anticancer agent in the TNF superfamily because of its selective cytotoxicity against tumor cells versus normal primary cells. However, as more tumor cells are reported to be resistant to TRAIL-mediated death, it is important to develop new therapeutic strategies to overcome this resistance. Flavonoids have been shown to sensitize cancer cells to TRAIL-induced apoptosis. The aim of this study was to examine the cytotoxic and apoptotic activities of TRAIL on HeLa cancer cells in combination with two synthetic compounds: 6-hydroxyflavanone (6-HF) and its derivative 6-propionoxy-flavanone (6-PF) and to determine the mechanism by which the flavanones overcome the TRAIL-resistance. The cytotoxicity was measured by MTT and LDH assays. The apoptosis was detected by annexin V-FITC fluorescence staining in flow cytometry and microscopy. Death receptor (TRAIL-R1/DR4 and TRAIL-R2/DR5) expression were analysed using flow cytometry. Mitochondrial membrane potential was evaluated using DePsipher staining by fluorescence microscopy. The synthetic flavanones enhanced TRAIL-induced apoptosis in HeLa cells through increased expression of TRAIL-R2 death receptor and reduction of mitochondrial membrane potential. Our study indicates that the 6-HF and 6-PF augmented the anticancer effects of TRAIL and confirm a potential use of flavanones in TRAIL-based anticancer therapy and prevention.

  5. Iridoid glycosides fraction from Picrorhiza kurroa attenuates cyclophosphamide-induced renal toxicity and peripheral neuropathy via PPAR-γ mediated inhibition of inflammation and apoptosis.

    Science.gov (United States)

    Sharma, Supriya; Sharma, Pallavi; Kulurkar, Pankaj; Singh, Damanpreet; Kumar, Dinesh; Patial, Vikram

    2017-12-01

    Picrorhiza kurroa Royle (Scrophulariaceae) is an important medicinal herb being widely used in variety of ailments. The present study was envisaged to evaluate the effects of iridoid glycosides enriched fraction (IGs) from Picrorhiza kurroa rhizome against cyclophosphamide (CP) -induced renal toxicity and peripheral neuropathy. Mice in different groups were pretreated with 25, 50 and 100 mg/kg; p.o. doses of IGs for 21 days, followed by cyclophosphamide intoxication for consecutive two days. Further, to identify the putative role of PPAR-γ receptors for the protective effect of IGs, an additional group of mice were pretreated with PPAR-γ antagonist BADGE (5 mg/kg; i.p.) followed by IGs (100 mg/kg; p.o.) for 21 days before CP intoxication. IGs pretreatment decreased the hyperalgesic responses toward acetone and heat in acetone drop and tail immersion tests. The abolition of intramyelin odema, cytoplasmic vacuolization and axonal degeneration of sciatic nerve were observed in IGs pretreated mice in a dose-dependent manner. IGs treatment also attenuated the altered serum biochemical markers for renal injury. Furthermore, the treatment prevented renal tubular swelling, granular degeneration and glomerular damage. The levels of IL-1β and TNFα in different group revealed the anti-inflammatory effect of IGs, which was further confirmed by improvement in altered expressions of NF-kB in kidney and sciatic serve. Bax/Bcl-2 expressions and caspase 3/9 activity in renal tissues showed the anti-apoptotic effect of IGs. IGs pretreatment also improved the PPAR-γ expression in the kidney tissues. All the observed protective effects of IGs were suppressed after pretreatment with BADGE. Present study concludes that IGs from Picrorhiza kurroa attenuates CP-induced renal toxicity and peripheral neuropathy via PPAR-γ -mediated pathways. Copyright © 2017 Elsevier GmbH. All rights reserved.

  6. Simvastatin attenuates intestinal fibrosis independent of the anti-inflammatory effect by promoting fibroblast/myofibroblast apoptosis in the regeneration/healing process from TNBS-induced colitis.

    Science.gov (United States)

    Abe, Yosuke; Murano, Mitsuyuki; Murano, Naoko; Morita, Eijiro; Inoue, Takuya; Kawakami, Ken; Ishida, Kumi; Kuramoto, Takanori; Kakimoto, Kazuki; Okada, Toshihiko; Narabayashi, Ken; Umegaki, Eiji; Higuchi, Kazuhide

    2012-02-01

    Intestinal deformity and stenosis are induced by fibrosis during the process healing of intestinal chronic inflammation in inflammatory bowel disease (IBD). Potent anti-inflammatory treatment of patients with Crohn's disease (CD) may induce fibrous stenosis, and this is often difficult to treat in clinical practice. Therefore, it is necessary to develop a treatment strategy that concomitantly exhibits repair/regenerative and anti-fibrotic effects, in addition to the current anti-inflammatory effect, for the treatment of inflammatory bowel diseases. However, the relationship between the course of inflammatory activity and the healing process and fibrogenesis has not been elucidated; although the complex involvement of various factors in the mechanism of biological fibrosis has been investigated. Simvastatin (SIMV), an HMG-CoA reductase inhibitor, exhibits anti-inflammatory and anti-fibrotic effects. The current study established a model of the regeneration/healing process from TNBS-induced colitis and investigated the anti-inflammatory and anti-fibrotic effects of SIMV. Four groups of TNBS-induced colitis model were prepared using male SJL/J mice: A: Normal control group, B: control group, and C and D: treatment groups. The mucosal healing process was classified into three phases (an early phase: inflammation period, a mid-phase: regeneration promoting period, and a late phase: regeneration-converging period), and inflammation, the expression of fibrosis-related growth factors, and induction of apoptosis of fibrosis-related cells were compared in each period. (1) The clinical findings showed that SIMV showed anti-inflammatory effects with body weight gain and improvement of epithelial injury in the late phase. Histological (macroscopic/microscopic) improvement was noted in the mid- and late phases. The inflammatory cytokine (TNF-α) level significantly decreased in the mid- and late phases in the high-dose treatment group. (2) SIMV also had anti-fibrotic effects

  7. Group VIB Phospholipase A2 Promotes Proliferation of INS-1 Insulinoma Cells and Attenuates Lipid Peroxidation and Apoptosis Induced by Inflammatory Cytokines and Oxidant Agents

    Science.gov (United States)

    Bao, Shunzhong; Song, Haowei; Tan, Min; Wohltmann, Mary; Ladenson, Jack H.; Turk, John

    2012-01-01

    Group VIB Phospholipase A2 (iPLA2γ) is distributed in membranous organelles in which β-oxidation occurs, that is, mitochondria and peroxisomes, and is expressed by insulin-secreting pancreatic islet β-cells and INS-1 insulinoma cells, which can be injured by inflammatory cytokines, for example, IL-1β and IFN-γ, and by oxidants, for example, streptozotocin (STZ) or t-butyl-hydroperoxide (TBHP), via processes pertinent to mechanisms of β-cell loss in types 1 and 2 diabetes mellitus. We find that incubating INS-1 cells with IL-1β and IFN-γ, with STZ, or with TBHP causes increased expression of iPLA2γ mRNA and protein. We prepared INS-1 knockdown (KD) cell lines with reduced iPLA2γ expression, and they proliferate more slowly than control INS-1 cells and undergo increased membrane peroxidation in response to cytokines or oxidants. Accumulation of oxidized phospholipid molecular species in STZ-treated INS-1 cells was demonstrated by LC/MS/MS scanning, and the levels in iPLA2γ-KD cells exceeded those in control cells. iPLA2γ-KD INS-1 cells also exhibited higher levels of apoptosis than control cells when incubated with STZ or with IL-1β and IFN-γ. These findings suggest that iPLA2γ promotes β-cell proliferation and that its expression is increased during inflammation or oxidative stress as a mechanism to mitigate membrane injury that may enhance β-cell survival. PMID:23213352

  8. SGLT2-inhibitor and DPP-4 inhibitor improve brain function via attenuating mitochondrial dysfunction, insulin resistance, inflammation, and apoptosis in HFD-induced obese rats.

    Science.gov (United States)

    Sa-Nguanmoo, Piangkwan; Tanajak, Pongpan; Kerdphoo, Sasiwan; Jaiwongkam, Thidarat; Pratchayasakul, Wasana; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2017-10-15

    Dipeptidyl peptidase-4 inhibitor (vildagliptin) has been shown to exert beneficial effects on insulin sensitivity and neuroprotection in obese-insulin resistance. Recent studies demonstrated the neuroprotection of the sodium-glucose co-transporter 2 inhibitor (dapagliflozin) in diabetes. However, the comparative effects of both drugs and a combination of two drugs on metabolic dysfunction and brain dysfunction impaired by the obese-insulin resistance have never been investigated. Forty male Wistar rats were divided into two groups, and received either a normal-diet (ND, n=8) or a high-fat diet (HFD, n=32) for 16weeks. At week 13, the HFD-fed rats were divided into four subgroups (n=8/subgroup) to receive either a vehicle, vildagliptin (3mg/kg/day) dapagliflozin (1mg/kg/day) or combined drugs for four weeks. ND rats were given a vehicle for four weeks. Metabolic parameters and brain function were investigated. The results demonstrated that HFD rats developed obese-insulin resistance and cognitive decline. Dapagliflozin had greater efficacy on improved peripheral insulin sensitivity and reduced weight gain than vildagliptin. Single therapy resulted in equally improved brain mitochondrial function, insulin signaling, apoptosis and prevented cognitive decline. However, only dapagliflozin improved hippocampal synaptic plasticity. A combination of the drugs had greater efficacy in improving brain insulin sensitivity and reducing brain oxidative stress than the single drug therapy. These findings suggested that dapagliflozin and vildagliptin equally prevented cognitive decline in the obese-insulin resistance, possibly through some similar mechanisms. Dapagliflozin had greater efficacy than vildagliptin for preserving synaptic plasticity, thus combined drugs could be the best therapeutic approach for neuroprotection in the obese-insulin resistance. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Apoptosis signal-regulating kinase 1 inhibition attenuates cardiac hypertrophy and cardiorenal fibrosis induced by uremic toxins: Implications for cardiorenal syndrome.

    Science.gov (United States)

    Savira, Feby; Cao, Longxing; Wang, Ian; Yang, Wendi; Huang, Kevin; Hua, Yue; Jucker, Beat M; Willette, Robert N; Huang, Li; Krum, Henry; Li, Zhiliang; Fu, Qiang; Wang, Bing Hui

    2017-01-01

    Intracellular accumulation of protein-bound uremic toxins in the setting of cardiorenal syndrome leads to adverse effects on cardiorenal cellular functions, where cardiac hypertrophy and cardiorenal fibrosis are the hallmarks. In this study, we sought to determine if Apoptosis Signal-Regulated Kinase 1 (ASK1), an upstream regulator of cellular stress response, mediates cardiac hypertrophy and cardiorenal fibrosis induced by indoxyl sulfate (IS) and p-cresol sulfate (PCS) in vitro, and whether ASK1 inhibition is beneficial to ameliorate these cellular effects. PCS augmented cardiac myocyte hypertrophy and fibroblast collagen synthesis (as determined by 3H-leucine and 3H-proline incorporation, respectively), similar to our previous finding with IS. IS and PCS also increased collagen synthesis of proximal tubular cells and renal mesangial cells. Pro-hypertrophic (α-skeletal muscle actin and β-MHC) and pro-fibrotic genes (TGF-β1 and ctgf) were induced by both IS and PCS. Western blot analyses revealed the activation of ASK1 and downstream mitogen activated protein kinases (MAPKs) (p38MAPK and ERK1/2) as well as nuclear factor-kappa B (NF-κB) by IS and PCS. ASK1, OAT1/3, ERK1/2 and p38MAPK inhibitors suppressed all these effects. In summary, IS and PCS exhibit pro-hypertrophic and pro-fibrotic properties, at least in part, via the activation of ASK1 and its downstream pathways. ASK1 inhibitor is an effective therapeutic agent to alleviate protein-bound uremic toxin-induced cardiac hypertrophy and cardiorenal fibrosis in vitro, and may be translated further for cardiorenal syndrome therapy.

  10. Nonsteroidal anti-inflammatory drugs induce apoptosis in cutaneous T-cell lymphoma cells and enhance their sensitivity for TNF-related apoptosis-inducing ligand.

    Science.gov (United States)

    Braun, Frank K; Al-Yacoub, Nadya; Plötz, Michael; Möbs, Markus; Sterry, Wolfram; Eberle, Jürgen

    2012-02-01

    Cutaneous T-cell lymphomas (CTCL) form a heterogeneous group of non-Hodgkin's lymphomas of the skin. In previous studies, we had characterized CTCL cells as resistant to the death ligand tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), which correlated to pronounced expression of the caspase-8/-10 inhibitor c-FLIP. For identification of proapoptotic strategies in CTCL cells and for overcoming their death ligand resistance, we investigated the effects of nonsteroidal anti-inflammatory drugs (NSAIDs) such as acetylsalicylic acid, sodium salicylate, and diclofenac (DF). These drugs strongly enhanced apoptosis, as well as decreased CTCL cell proliferation and vitality, and DF furthermore sensitized for TRAIL-induced apoptosis. Full activation of the caspase cascade (caspase-3, -8, -9) and decreased mitochondrial membrane potential were characteristic for NSAID treatment, whereas cytochrome c release was seen only for DF. Downregulation of Mcl-1 and enhanced surface expression of TRAIL were seen in response to NSAIDs. Most characteristic for apoptosis induction was the downregulation of c-FLIP. In agreement with the critical role of c-FLIP for apoptosis deficiency of CTCL cells, its overexpression decreased NSAID-mediated apoptosis and its downregulation by small hairpin RNA-enhanced apoptosis. The study provides a rationale for the use of NSAIDs as a new therapeutic option for CTCL patients. Supporting this concept, ex vivo lymphoma cells of CTCL patients also revealed significant sensitivity for NSAID treatment.

  11. TNFα cooperates with IFN-γ to repress Bcl-xL expression to sensitize metastatic colon carcinoma cells to TRAIL-mediated apoptosis.

    Directory of Open Access Journals (Sweden)

    Feiyan Liu

    Full Text Available BACKGROUND: TNF-related apoptosis-inducing ligand (TRAIL is an immune effector molecule that functions as a selective anti-tumor agent. However, tumor cells, especially metastatic tumor cells often exhibit a TRAIL-resistant phenotype, which is currently a major impediment in TRAIL therapy. The aim of this study is to investigate the synergistic effect of TNFα and IFN-γ in sensitizing metastatic colon carcinoma cells to TRAIL-mediated apoptosis. METHODOLOGY/PRINCIPAL FINDINGS: The efficacy and underlying molecular mechanism of cooperation between TNFα and IFN-γ in sensitizing metastatic colon carcinoma cells to TRAIL-mediated apoptosis were examined. The functional significance of TNFα- and IFN-γ-producing T lymphocyte immunotherapy in combination with TRAIL therapy in suppression of colon carcinoma metastasis was determined in an experimental metastasis mouse model. We observed that TNFα or IFN-γ alone exhibits minimal sensitization effects, but effectively sensitized metastatic colon carcinoma cells to TRAIL-induced apoptosis when used in combination. TNFα and IFN-γ cooperate to repress Bcl-xL expression, whereas TNFα represses Survivin expression in the metastatic colon carcinoma cells. Silencing Bcl-xL expression significantly increased the metastatic colon carcinoma cell sensitivity to TRAIL-induced apoptosis. Conversely, overexpression of Bcl-xL significantly decreased the tumor cell sensitivity to TRAIL-induced apoptosis. Furthermore, TNFα and IFN-γ also synergistically enhanced TRAIL-induced caspase-8 activation. TNFα and IFN-γ was up-regulated in activated primary and tumor-specific T cells. TRAIL was expressed in tumor-infiltrating immune cells in vivo, and in tumor-specific cytotoxic T lymphocytes (CTL ex vivo. Consequently, TRAIL therapy in combination with TNFα/IFN-γ-producing CTL adoptive transfer immunotherapy effectively suppressed colon carcinoma metastasis in vivo. CONCLUSIONS/SIGNIFICANCE: TNFα and IFN

  12. TNFα Cooperates with IFN-γ to Repress Bcl-xL Expression to Sensitize Metastatic Colon Carcinoma Cells to TRAIL-mediated Apoptosis

    Science.gov (United States)

    Liu, Feiyan; Hu, Xiaolin; Zimmerman, Mary; Waller, Jennifer L.; Wu, Ping; Hayes-Jordan, Andrea; Lev, Dina; Liu, Kebin

    2011-01-01

    Background TNF-related apoptosis-inducing ligand (TRAIL) is an immune effector molecule that functions as a selective anti-tumor agent. However, tumor cells, especially metastatic tumor cells often exhibit a TRAIL-resistant phenotype, which is currently a major impediment in TRAIL therapy. The aim of this study is to investigate the synergistic effect of TNFα and IFN-γ in sensitizing metastatic colon carcinoma cells to TRAIL-mediated apoptosis. Methodology/Principal Findings The efficacy and underlying molecular mechanism of cooperation between TNFα and IFN-γ in sensitizing metastatic colon carcinoma cells to TRAIL-mediated apoptosis were examined. The functional significance of TNFα- and IFN-γ-producing T lymphocyte immunotherapy in combination with TRAIL therapy in suppression of colon carcinoma metastasis was determined in an experimental metastasis mouse model. We observed that TNFα or IFN-γ alone exhibits minimal sensitization effects, but effectively sensitized metastatic colon carcinoma cells to TRAIL-induced apoptosis when used in combination. TNFα and IFN-γ cooperate to repress Bcl-xL expression, whereas TNFα represses Survivin expression in the metastatic colon carcinoma cells. Silencing Bcl-xL expression significantly increased the metastatic colon carcinoma cell sensitivity to TRAIL-induced apoptosis. Conversely, overexpression of Bcl-xL significantly decreased the tumor cell sensitivity to TRAIL-induced apoptosis. Furthermore, TNFα and IFN-γ also synergistically enhanced TRAIL-induced caspase-8 activation. TNFα and IFN-γ was up-regulated in activated primary and tumor-specific T cells. TRAIL was expressed in tumor-infiltrating immune cells in vivo, and in tumor-specific cytotoxic T lymphocytes (CTL) ex vivo. Consequently, TRAIL therapy in combination with TNFα/IFN-γ-producing CTL adoptive transfer immunotherapy effectively suppressed colon carcinoma metastasis in vivo. Conclusions/Significance TNFα and IFN-γ cooperate to overcome

  13. Bid is cleaved upstream of caspase-8 activation during TRAIL-mediated apoptosis in human osteosarcoma cells.

    Science.gov (United States)

    Garnett, Theodore O; Filippova, Maria; Duerksen-Hughes, Penelope Jayne

    2007-07-01

    TRAIL induces apoptosis in many malignant cell types. In this study, we used the human papilloma virus (HPV) 16 E6 protein as a molecular tool to probe the TRAIL pathway in HCT116 colon carcinoma cells and U2OS osteosarcoma cells. Intriguingly, we found that while E6 protected HCT116 cells from TRAIL, U2OS cells expressing E6 remained sensitive to TRAIL. Furthermore, silencing FADD and procaspase-8 expression with siRNA did not prevent TRAIL-induced apoptosis in U2OS cells. However, siBid provided significant protection from TRAIL, and the cleavage kinetics of Bid and caspase-8 revealed that Bid was cleaved prior to the activation of caspase-8. Cathepsin B activity in U2OS cells was significantly activated shortly after exposure to TRAIL, and the cathepsin B inhibitor, CA074Me, inhibited both TRAIL- and anti-DR5-mediated apoptosis and delayed the cleavage of Bid. These findings suggest that TRAIL activates a pathway dependent on Bid, but largely independent of FADD and caspase-8, in U2OS cells.

  14. Effects of A.marina-Derived Isoquercitrin on TNF-Related Apoptosis-Inducing Ligand Receptor (TRAIL-R) Expression and Apoptosis Induction in Cervical Cancer Cells.

    Science.gov (United States)

    Arumugam, Sathishkumar; Bandil, Kapil; Proksch, Peter; Murugiyan, Kalaiselvam; Bharadwaj, Mausumi

    2017-06-01

    TNF-related apoptosis-inducing ligand (TRAIL) is an anticancer agent, which has greater apoptosis inducing capacity, but most of the cancer cells become resistant to TRAIL-induced apoptosis. The combined treatment of TRAIL with natural products could restore the cancer cell sensitivity to recombinant human TRAIL (rhTRAIL) protein and might enhance the TNF-related apoptosis-inducing ligand receptor (TRAIL-R) expression. This investigation was aimed to isolate flavonoids from leaves of Avicennia marina and evaluate their potential for sensitization of rhTRAIL in human cervical cancer cells (SiHa). The methanolic extract of A.marina leaves were purified and structure was elucidated as isoquercitrin by NMR and LC-MS analysis. Isolated isoquercitrin showed cytotoxicity against SiHa cell line at IC50 of 980 μM. Messenger RNA (mRNA) expression of TRAIL-Rs was quantified by qRT-PCR, combination of isoquercitrin, and/or rhTRAIL increased TRAIL-R1 and TRAIL-R2 gene expression by 7 folds and 4 folds, respectively. Also, FACS assay revealed that combined treatment has increased the early apoptosis up to 7.24%. In the present study, we found that isoquercitrin enhances the mRNA expression of TRAIL-Rs, but the percentage of apoptosis was meager, possibly due to the influence of other anti-apoptotic proteins.

  15. Inhibition of NF-κB Pathway and Modulation of MAPK Signaling Pathways in Glioblastoma and Implications for Lovastatin and Tumor Necrosis Factor-Related Apoptosis Inducing Ligand (TRAIL Combination Therapy.

    Directory of Open Access Journals (Sweden)

    Pi Chu Liu

    Full Text Available Glioblastoma is a common malignant brain tumor and it is refractory to therapy because it usually contains a mixture of cell types. The tumor necrosis factor-related apoptosis inducing ligand (TRAIL has been shown to induce apoptosis in a range of tumor cell types. Previously, we found that two human glioblastoma cell lines are resistant to TRAIL, while lovastatin sensitizes these glioblastoma cells to TRAIL-induced cell death. In this study, we investigated the mechanisms underlying the TRAIL-induced apoptosis in human glioblastoma cell lines by lovastatin. Furthermore, we have confirmed the anti-tumor effect of combination therapy with lovastatin and TRAIL in the subcutaneous brain tumor model. We showed that lovastatin significantly up-regulated the expression of death receptor 5 (DR5 in glioblastoma cell lines as well as in tumor-bearing mice with peri-tumoral administration of lovastatin. Further study in glioblastoma cell lines suggested that lovastatin treatment could inhibit NF-κB and Erk/MAPK pathways but activates JNK pathway. These results suggest that lovastatin sensitizes TRAIL-induced apoptosis by up-regulation of DR5 level via NF-κB inactivation, but also directly induces apoptosis by dysregulation of MAPK pathway. Our in vivo study showed that local peri-tumoral co-injection of lovastatin and TRAIL substantially reduced tumor growth compared with single injection of lovastatin or TRAIL in subcutaneous nude mice model. This study suggests that combined treatment of lovastatin and TRAIL is a promising therapeutic strategy to TRAIL-resistant glioblastoma.

  16. Inhibition of NF-κB Pathway and Modulation of MAPK Signaling Pathways in Glioblastoma and Implications for Lovastatin and Tumor Necrosis Factor-Related Apoptosis Inducing Ligand (TRAIL) Combination Therapy.

    Science.gov (United States)

    Liu, Pi Chu; Lu, Gang; Deng, Yi; Wang, Cheng Dong; Su, Xian Wei; Zhou, Jing Ye; Chan, Tat Ming; Hu, Xiang; Poon, Wai Sang

    2017-01-01

    Glioblastoma is a common malignant brain tumor and it is refractory to therapy because it usually contains a mixture of cell types. The tumor necrosis factor-related apoptosis inducing ligand (TRAIL) has been shown to induce apoptosis in a range of tumor cell types. Previously, we found that two human glioblastoma cell lines are resistant to TRAIL, while lovastatin sensitizes these glioblastoma cells to TRAIL-induced cell death. In this study, we investigated the mechanisms underlying the TRAIL-induced apoptosis in human glioblastoma cell lines by lovastatin. Furthermore, we have confirmed the anti-tumor effect of combination therapy with lovastatin and TRAIL in the subcutaneous brain tumor model. We showed that lovastatin significantly up-regulated the expression of death receptor 5 (DR5) in glioblastoma cell lines as well as in tumor-bearing mice with peri-tumoral administration of lovastatin. Further study in glioblastoma cell lines suggested that lovastatin treatment could inhibit NF-κB and Erk/MAPK pathways but activates JNK pathway. These results suggest that lovastatin sensitizes TRAIL-induced apoptosis by up-regulation of DR5 level via NF-κB inactivation, but also directly induces apoptosis by dysregulation of MAPK pathway. Our in vivo study showed that local peri-tumoral co-injection of lovastatin and TRAIL substantially reduced tumor growth compared with single injection of lovastatin or TRAIL in subcutaneous nude mice model. This study suggests that combined treatment of lovastatin and TRAIL is a promising therapeutic strategy to TRAIL-resistant glioblastoma.

  17. N-glycosylation of mouse TRAIL-R and human TRAIL-R1 enhances TRAIL-induced death : N-glycosylation of TRAIL receptors

    OpenAIRE

    Dufour, Florent; Rattier, Thibault; Shirley, Sarah; Picarda, Gaelle; Constantinescu, Andrei Alexandru; Morlé, Aymeric; Zakaria, Al Batoul; Marcion, Guillaume; Causse, Sebastien; Szegezdi, Eva; Zajonc, Dirk Michael; Seigneuric, Renaud; Guichard, Gilles; Gharbi, Tijani; Picaud, Fabien

    2017-01-01

    International audience; APO2L/TRAIL (TNF-related apoptosis-inducing ligand) induces death of tumor cells through two agonist receptors, TRAIL-R1 and TRAIL-R2. We demonstrate here that N-linked glycosylation (N-glyc) plays also an important regulatory role for TRAIL-R1-mediated and mouse TRAIL receptor (mTRAIL-R)-mediated apoptosis, but not for TRAIL-R2, which is devoid of N-glycans. Cells expressing N-glyc-defective mutants of TRAIL-R1 and mouse TRAIL-R were less sensitive to TRAIL than their...

  18. Survivin S81A Enhanced TRAIL's Activity in Inducing Apoptosis

    Directory of Open Access Journals (Sweden)

    Ferry Sandra

    2010-12-01

    Full Text Available BACKGROUND: Survivin is rarely expressed in normal healthy adult tissues, however, it is upregulated in the majority of cancers. Survivin, which belongs to IAPs family, has been widely reported to protect cells from apoptosis by inhibiting caspases pathway. Survivin’s mitotic activity is modulated by many kinases, and its phosphor status can also influence its ability to inhibit apoptosis. There are several important survivin’s phosphorylation sites, such as S20 and T34. We have continued our investigation on other potential survivin’s phosphorylation sites that could be important site for regulating survivin’s cyto-protection. METHODS: By assuming that S81 could be a potential target to modify activity of survivin, wild-type survivin (Survivin, antisense survivin (Survivin-AS, mutated-survivin Thr34Ala (Survivin-T34A and mutated-survivin Ser81Ala (Survivin-S81A were constructed and inserted into pMSCV-IRES-GFP vector with cytomegalovirus (CMV promoter. Each retroviral product was produced in BOSC23 cells. LY294002 pretreatment and TRAIL treatment along with infection of retroviral products were performed in murine fibrosarcoma L929 cells. For analysis, flow cytometric apoptosis assay and western blot were performed. RESULTS: In our present study, survivin for providing cytoprotection was regulated by PI3K. The results showed that LY294002, an inhibitor of PI3K, effectively suppressed survivin-modulated cytoprotection in a TRAIL-induced apoptotic model. In addition, mutated survivin S81A showed marked suppression on survivin’s cytoprotection. Along with that, TRAIL’s apoptotic activity was enhanced for inducing apoptosis. CONCLUSIONS: We suggested that survivin could inhibit apoptosis through PI3K and S81A could be another potential target in order to inhibit Survivin-modulated cytoprotection as well as to sensitize efficacy of TRAIL or other related apoptotic inducers. KEYWORDS: apoptosis, survivin, TRAIL, S81A, L929, LY294002.

  19. Effects of cIAP-1, cIAP-2 and XIAP triple knockdown on prostate cancer cell susceptibility to apoptosis, cell survival and proliferation.

    LENUS (Irish Health Repository)

    Gill, Catherine

    2009-01-01

    BACKGROUND: Manipulating apoptotic resistance represents an important strategy for the treatment of hormone refractory prostate cancer. We hypothesised that the Inhibitor of Apoptosis (IAP) Proteins may be mediating this resistance and knockdown of cIAP-1, cIAP-2 and XIAP would increase sensitivity to apoptosis. METHODS: cIAP-1, cIAP-2 and XIAP where knocked down either individually or in combination using siRNA in androgen independent prostate cancer PC-3 cells as confirmed by real-time PCR and western blotting. Cells were then treated with TRAIL, Etoposide, or Tunicamycin, and apoptosis assessed by PI DNA staining. Apoptosis was confirmed with Annexin V labelling and measurement of PARP cleavage, and was inhibited using the pan-caspase inhibitor, zVAD.fmk. Clonogenic assays and assessment of ID-1 expression by western blotting were used to measure recovery and proliferation. RESULTS: PC-3 are resistant to TRAIL induced apoptosis and have elevated expression of cIAP-1, cIAP-2 and XIAP. Combined knockdown sensitised PC-3 to TRAIL induced apoptosis, but not to Etoposide or Tunicmycin, with corresponding increases in caspase activity and PARP cleavage which was inhibited by ZVAD.fmk. Triple knock down decreased proliferation which was confirmed by decreased ID-1 expression. CONCLUSION: Simultaneous knock down of the IAPs not only sensitised the PC-3 to TRAIL but also inhibited their proliferation rates and clonogenic survival. The inability to alter sensitivity to other triggers of apoptosis suggests that this effect is specific for death receptor pathways and knock down might facilitate immune-surveillance mechanisms to counter cancer progression and, in combination with therapeutic approaches using TRAIL, could represent an important treatment strategy.

  20. Effects of cIAP-1, cIAP-2 and XIAP triple knockdown on prostate cancer cell susceptibility to apoptosis, cell survival and proliferation

    Directory of Open Access Journals (Sweden)

    Dowling Catherine

    2009-06-01

    Full Text Available Abstract Background Manipulating apoptotic resistance represents an important strategy for the treatment of hormone refractory prostate cancer. We hypothesised that the Inhibitor of Apoptosis (IAP Proteins may be mediating this resistance and knockdown of cIAP-1, cIAP-2 and XIAP would increase sensitivity to apoptosis. Methods cIAP-1, cIAP-2 and XIAP where knocked down either individually or in combination using siRNA in androgen independent prostate cancer PC-3 cells as confirmed by real-time PCR and western blotting. Cells were then treated with TRAIL, Etoposide, or Tunicamycin, and apoptosis assessed by PI DNA staining. Apoptosis was confirmed with Annexin V labelling and measurement of PARP cleavage, and was inhibited using the pan-caspase inhibitor, zVAD.fmk. Clonogenic assays and assessment of ID-1 expression by western blotting were used to measure recovery and proliferation. Results PC-3 are resistant to TRAIL induced apoptosis and have elevated expression of cIAP-1, cIAP-2 and XIAP. Combined knockdown sensitised PC-3 to TRAIL induced apoptosis, but not to Etoposide or Tunicmycin, with corresponding increases in caspase activity and PARP cleavage which was inhibited by ZVAD.fmk. Triple knock down decreased proliferation which was confirmed by decreased ID-1 expression. Conclusion Simultaneous knock down of the IAPs not only sensitised the PC-3 to TRAIL but also inhibited their proliferation rates and clonogenic survival. The inability to alter sensitivity to other triggers of apoptosis suggests that this effect is specific for death receptor pathways and knock down might facilitate immune-surveillance mechanisms to counter cancer progression and, in combination with therapeutic approaches using TRAIL, could represent an important treatment strategy.

  1. Measurement of caspase-2 activation during different anti-tumor drugs induced apoptosis by FRET technique

    Science.gov (United States)

    Lin, Juqiang; Zeng, Shaoqun; Luo, Qingming; Rong, Chen; Zhang, Zhihong

    2007-11-01

    Caspase-2 is important for the engagement of the mitochondrial apoptotic pathway, in the presence of DNA-damaging agents, such as cisplatin; however, the mechanism by which caspase-2 executes apoptosis remains obscure. In this study, we carried out the measurements of the dynamics of caspase-2 activation in a single living cell by a FRET (fluorescence resonance energy transfer) probe. A FRET probe was constructed that encoded a CRS (caspase-2 recognition site) fused with a cyan fluorescent protein (CFP) and a red fluorescent protein (DsRed) (CFP-CRS-DsRed). Using this probe, we found that during TRAIL-induced apoptosis, caspase-2 was not activated, and caspase-2 activation occurred in etoposide and cisplatin treated cells. However, during cisplatin-induced apoptosis caspase-2 activation was initiated much earlier than that of etoposide. Cisplatin and etoposide is one of the most broadly used drugs in the Clinical applications of cancer chemotherapy, and TRAIL, which belongs to the TNF family proteins, can selectively induce apoptosis in many transformed cells but not in normal cells. Most of anticancer drugs can induce apoptosis mediated by the activation of caspase pathway. Thus, the perfect synergistic effect group of multi-drug can be selected by using our FRET probe.

  2. Reduction of decoy receptor 3 enhances TRAIL-mediated apoptosis in pancreatic cancer.

    Directory of Open Access Journals (Sweden)

    Wei Wang

    Full Text Available Most human pancreatic cancer cells are resistant to tumor necrosis factor (TNF-related apoptosis-inducing ligand (TRAIL-mediated apoptosis. However, the mechanisms by which pancreatic cancer cells utilize their extracellular molecules to counteract the proapoptotic signaling mediated by the TNF family are largely unknown. In this study, we demonstrate for the first time that DcR3, a secreted decoy receptor that malignant pancreatic cancer cells express at a high level, acts as an extracellular antiapoptotic molecule by binding to TRAIL and counteracting its death-promoting function. The reduction of DcR3 with siRNA unmasked TRAIL and greatly enhanced TRAIL-induced apoptosis. Gemcitabine, a first-line drug for pancreatic cancer, also reduced the level of DcR3. The addition of DcR3 siRNA further enhanced gemcitabine-induced apoptosis. Notably, our in vivo study demonstrated that the therapeutic effect of gemcitabine could be enhanced via further reduction of DcR3, suggesting that downregulation of DcR3 in tumor cells could tip the balance of pancreatic cells towards apoptosis and potentially serve as a new strategy for pancreatic cancer therapy.

  3. Modulation of tumor necrosis factor related apoptosis-inducing ligand (TRAIL) receptors in a human osteoclast model in vitro.

    Science.gov (United States)

    McManus, Stephen; Chamoux, Estelle; Bisson, Martine; Roux, Sophie

    2012-02-01

    TRAIL (TNF-related apoptosis-inducing ligand) has been shown to induce apoptosis by binding to TRAIL-R1 and -R2 death receptors, but not to TRAIL-R3 or -R4, its decoy receptors that lack the internal death domain. Osteoclasts (Ocs) are sensitive to TRAIL-induced apoptosis, and modulation of these receptors may change Oc sensitivity to TRAIL. Using human Oc cultures, we first investigated the gene expression profile of these receptors (TNFRSF10 -A, -B, -C, -D encoding TRAIL-Rs 1-4) by real time PCR after adding osteotropic factors during the last week of Oc cultures. We observed a significant decrease in the expression of TNFRSF10-A after the addition of TGFβ, and an increase in that of TNFRSF10-A and -B post-PTH stimulation. Protein expression of TRAIL-R1 and -R3 was upregulated in the presence of MIP-1α, but down-regulated in the presence of TGFβ (R1), TRAIL (R2) or OPG (R3). The percentage of Ocs expressing the TRAIL-R1 and/or -R2 at their surface was increased by MIP-1α and TRAIL, increased (R2) or decreased (R1) by TGFβ, and the percentage expressing TRAIL-R3 was increased by MIP-1α, TRAIL and RANKL. Although significant, the magnitude of all these changes was of about 10-15%. While a direct correlation between these changes and TRAIL-induced Oc apoptosis was less clear, a protective effect was observed in Ocs that had been treated with OPG, and an additive effect in Ocs pre-treated with TRAIL or TGFβ increased TRAIL sensitivity.

  4. Carnitine sensitizes TRAIL-resistant cancer cells to TRAIL-induced apoptotic cell death through the up-regulation of Bax.

    Science.gov (United States)

    Park, So Jung; Park, Seong Ho; Kim, Joo-Oh; Kim, Jung Ho; Park, So Jung; Hwang, Jung Jin; Jin, Dong-Hoon; Jeong, Seong-Yun; Lee, Seung Jin; Kim, Jin Cheon; Kim, Inki; Cho, Dong-Hyung

    2012-11-09

    Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the tumor necrosis factor family with apoptosis-inducing activity. Given that TRAIL selectively induces cell death in various tumors but has little or no toxicity to normal cells, TRAIL agonists have been considered as promising anti-cancer therapeutic agents. However, the resistance of many primary tumors and cancer cells to TRAIL poses a challenge. In our present study, we found that carnitine, a metabolite that transfers long-chain fatty acids into mitochondria for beta-oxidation and modulates protein kinase C activity, sensitizes TRAIL-resistant cancer cells to TRAIL. Combination of carnitine and TRAIL was found to synergistically induce apoptotic cell death through caspase activation, which was blocked by a pan caspase inhibitor, but not by an inhibitor of autophagy or an inhibitor of necrosis. The combination of carnitine and TRAIL reversed the resistance to TRAIL in lung cancer cells, colon carcinoma cells, and breast carcinoma cells. We further demonstrate that carnitine, either alone or in combination with TRAIL, enhances the expression of the pro-apoptotic Bcl-2 family protein, Bcl-2-associated X protein (Bax). The down-regulation of Bax expression by small interfering RNA reduced caspase activation when cells were treated with TRAIL, and experiments with cells from Bax knockout mice confirmed this result. Taken together, our current results suggest that carnitine can reverse the resistance of cancer cells to TRAIL by up-regulating Bax expression. Thus, a combined delivery of carnitine and TRAIL may represent a new therapeutic strategy to treat TRAIL-resistant cancer cells. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Osthole enhances TRAIL-mediated apoptosis through downregulation of c-FLIP expression in renal carcinoma Caki cells.

    Science.gov (United States)

    Min, Kyoung-Jin; Han, Min Ae; Kim, Shin; Park, Jong-Wook; Kwon, Taeg Kyu

    2017-04-01

    Osthole, an active constituent isolated from the fruit of Cnidium monnieri (L.) Cusson, has been shown to induce various beneficial biochemical effects such as anti-inflammatory and antitumor. In the present study, we examined whether osthole could sensitize TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in human renal carcinoma Caki cells. We found that osthole and TRAIL alone, had no effect on apoptosis, but combined treatment with osthole and TRAIL markedly induced apoptosis in Caki (renal carcinoma), U251MG (glioma) and MDA-MB-231 (breast carcinoma) cells. In contrast, combined treatment with osthole and TRAIL did not induce apoptosis in normal human skin fibroblast cells. Osthole induced downregulation of cellular FLICE-like inhibitory protein (c-FLIP) expression, and overexpression of c-FLIP markedly blocked apoptosis induced by the combined treatment with osthole and TRAIL. In addition, osthole markedly reduced mitochondrial membrane potential levels, and increased cytosolic cytochrome c release in combined treatment with osthole and TRAIL. Therefore, these data suggest that osthole may be an efficient TRAIL sensitizer.

  6. Activation of KIT modulates the function of tumor necrosis factor-related apoptosis-inducing ligand receptor (TRAIL-R) in mast cells.

    Science.gov (United States)

    Förster, A; Grotha, S P; Seeger, J M; Rabenhorst, A; Gehring, M; Raap, U; Létard, S; Dubreuil, P; Kashkar, H; Walczak, H; Roers, A; Hartmann, K

    2015-07-01

    Mastocytosis is characterized by the accumulation of mast cells (MCs) associated with activating mutations of KIT. Tumor necrosis factor-related apoptosis-inducing ligand receptors (TRAIL-Rs) are preferentially expressed on neoplastic cells and induce the extrinsic apoptotic pathway. Recent studies reported on the expression of TRAIL-Rs and TRAIL-induced apoptosis in cultured human MCs, which depend on stem cell factor (SCF)-induced or constitutive KIT activation. We sought to further define the impact of TRAIL-Rs on MCs in vivo and in vitro. Using Cre/loxP recombination, we generated mice with MC-specific and ubiquitous knockout of TRAIL-R. In these mice, anaphylaxis and numbers of MCs were investigated. We also explored the expression and function of TRAIL-Rs in cultured murine and human MCs upon activation of KIT. By conducting immunofluorescence staining, we analyzed the expression of TRAIL-Rs in MCs infiltrating the bone marrow of patients with mastocytosis. MC-specific deletion of TRAIL-R was associated with a slight, but significant increase in anaphylaxis. Numbers of MCs in MC-specific knockouts of TRAIL-R were comparable to controls. Whereas cultured IL-3-dependent murine MCs from wild-type mice were resistant to TRAIL-induced apoptosis, SCF-stimulated MCs underwent apoptosis in response to TRAIL. Interestingly, activating KIT mutations also promoted sensitivity to TRAIL-mediated apoptosis in human MCs. In line with these findings, MCs infiltrating the bone marrow of patients with mastocytosis expressed TRAIL-R1. Activation of KIT regulates the function of TRAIL-Rs in MCs. TRAIL-R1 may represent an attractive diagnostic and therapeutic target in diseases associated with KIT mutations, such as mastocytosis. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Chalcones and Dihydrochalcones Augment TRAIL-Mediated Apoptosis in Prostate Cancer Cells

    Directory of Open Access Journals (Sweden)

    Wojciech Krol

    2010-08-01

    Full Text Available Chalcones and dihydrochalcones exhibit chemopreventive and antitumor activity. TRAIL (tumor necrosis factor-related apoptosis-inducing ligand is a natural endogenous anticancer agent. We examined the cytotoxic and apoptotic effect of chalcones and dihydrochalcones on TRAIL-mediated apoptosis in LNCaP prostate cancer cells. The cytotoxicity was evaluated by the MTT and LDH assays. The apoptosis was detected using annexin V-FITC by flow cytometry and fluorescence microscopy. The ΔΨm was evaluated using DePsipher staining by fluorescence microscopy. Our study showed that two tested chalcones (chalcone and 2’,6’dihydroxy-4’-methoxychalcone and three dihydrochalcones (2’,6’-dihydroxy-4’4-dimethoxydihydrochalcone, 2’,6’-dihydroxy-4’-methoxydihydro- chalcone,  and 2’,4’,6’-trihydroxydihydrochalcone, called phloretin markedly augmented TRAIL-induced apoptosis and cytotoxicity in LNCaP cells and confirmed the significant role of chalcones in chemoprevention of prostate cancer.

  8. TNF-related apoptosis-inducing ligand (TRAIL): a new path to anti-cancer therapies.

    Science.gov (United States)

    Holoch, Peter A; Griffith, Thomas S

    2009-12-25

    Since its discovery in 1995, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), a member of the tumor necrosis factor super family, has been under intense focus because of its remarkable ability to induce apoptosis in malignant human cells while leaving normal cells unscathed. Consequently, activation of the apoptotic signaling pathway from the death-inducing TRAIL receptors provides an attractive, biologically-targeted approach to cancer therapy. A great deal of research has focused on deciphering the TRAIL receptor signaling cascade and intracellular regulation of this pathway, as many human tumor cells possess mechanisms of resistance to TRAIL-induced apoptosis. This review focuses on the current state of knowledge regarding TRAIL signaling and resistance, the preclinical development of therapies targeted at TRAIL receptors and modulators of the pathway, and the results of clinical trials for cancer treatment that have emerged from this base of knowledge. TRAIL-based approaches to cancer therapy vary from systemic administration of recombinant, soluble TRAIL protein with or without the combination of traditional chemotherapy, radiation or novel anti-cancer agents to agonistic monoclonal antibodies directed against functional TRAIL receptors to TRAIL gene transfer therapy. A better understanding of TRAIL resistance mechanisms may allow for the development of more effective therapies that exploit this cell-mediated pathway to apoptosis.

  9. Genistein sensitizes human hepatocellular carcinoma cells to TRAIL-mediated apoptosis by enhancing Bid cleavage.

    Science.gov (United States)

    Jin, Cheng-Yun; Park, Cheol; Moon, Sung-Kwon; Kim, Gi-Young; Kwon, Taeg Kyu; Lee, Su Jae; Kim, Wun-Jae; Choi, Yung Hyun

    2009-09-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a member of the tumor necrosis factor superfamily, and it has been shown that many human cancer cell lines are refractory to TRAIL-induced cell death. However, the molecular mechanisms underlying resistance are unclear. In this study, we show that TRAIL resistance is reversed in human hepatoma cells by genistein, an isoflavone found in soy products. Synergistic induction of apoptosis in cells treated with genistein plus TRAIL was associated with cleavage of Bid, a proapoptotic BH3-only protein. Silencing of Bid expression reduced decreases in mitochondrial membrane potential and reduced apoptosis in cells treated with genistein and TRAIL, confirming that Bid cleavage is required for the response. Pretreatment with caspase-3 and caspase-8 inhibitors reduced cotreatment-induced apoptosis. However, treatment with TRAIL alone induced caspase-8 activity that was not different than TRAIL plus genistein; both effectively induced Bid cleavage. These data suggest that genistein abolishes resistance to the Bid cleavage of TRAIL, and that genistein does not interfere with signals upstream of Bid in hepatoma cells.

  10. Geldanamycin induces apoptosis in human gastric carcinomas by affecting multiple oncogenic kinases that have synergic effects with TNF-related apoptosis-inducing ligand.

    Science.gov (United States)

    Chen, Hui; Li, Liang-Qing; Pan, Dun

    2015-12-01

    The aim of the present study was to evaluate the effect of geldanamycin (GA) on the treatment of human gastric carcinomas and to investigate the molecular mechanism that provides the basis for the combination of GA with the tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) induction strategy. The expression of target proteins at the mRNA level was determined using reverse transcription-polymerase chain reaction (RT-PCR), and apoptosis was evaluated with the terminal deoxynucleotidyl transferase mediated digoxigenin-dUTP nick-end labeling and Annexin V/propidium iodide (PI) staining methods. Phosphorylation of targeted kinases was studied using immunocytochemistry methods, and malignant phenotypes were studied using in vitro assays. GA treatment inhibits proliferation, migration and invasion, and induces apoptosis in human gastric cancer SGC-7901 cells, most likely by decreasing the expression of B-RAF and by phosphorylation of protein kinase B (AKT) and ERK. The inhibitory role of AKT in TRAIL regulation holds considerable potential for achieving a synergic effect in clinical therapy, using a combination of GA treatment and TRAIL induction. The present study provides a basis for the future application of heat shock protein 90 (Hsp90) inhibitors, such as GA, in the clinical treatment of gastric cancer, particularly in combination therapies with TRAIL inducers.

  11. TNF-related apoptosis-inducing ligand (TRAIL) exerts therapeutic efficacy for the treatment of pneumococcal pneumonia in mice.

    Science.gov (United States)

    Steinwede, Kathrin; Henken, Stefanie; Bohling, Jennifer; Maus, Regina; Ueberberg, Bianca; Brumshagen, Christina; Brincks, Erik L; Griffith, Thomas S; Welte, Tobias; Maus, Ulrich A

    2012-10-22

    Apoptotic death of alveolar macrophages observed during lung infection with Streptococcus pneumoniae is thought to limit overwhelming lung inflammation in response to bacterial challenge. However, the underlying apoptotic death mechanism has not been defined. Here, we examined the role of the TNF superfamily member TNF-related apoptosis-inducing ligand (TRAIL) in S. pneumoniae-induced macrophage apoptosis, and investigated the potential benefit of TRAIL-based therapy during pneumococcal pneumonia in mice. Compared with WT mice, Trail(-/-) mice demonstrated significantly decreased lung bacterial clearance and survival in response to S. pneumoniae, which was accompanied by significantly reduced apoptosis and caspase 3 cleavage but rather increased necrosis in alveolar macrophages. In WT mice, neutrophils were identified as a major source of intraalveolar released TRAIL, and their depletion led to a shift from apoptosis toward necrosis as the dominant mechanism of alveolar macrophage cell death in pneumococcal pneumonia. Therapeutic application of TRAIL or agonistic anti-DR5 mAb (MD5-1) dramatically improved survival of S. pneumoniae-infected WT mice. Most importantly, neutropenic mice lacking neutrophil-derived TRAIL were protected from lethal pneumonia by MD5-1 therapy. We have identified a previously unrecognized mechanism by which neutrophil-derived TRAIL induces apoptosis of DR5-expressing macrophages, thus promoting early bacterial killing in pneumococcal pneumonia. TRAIL-based therapy in neutropenic hosts may represent a novel antibacterial treatment option.

  12. TNF-related apoptosis-inducing ligand (TRAIL) exerts therapeutic efficacy for the treatment of pneumococcal pneumonia in mice

    Science.gov (United States)

    Steinwede, Kathrin; Henken, Stefanie; Bohling, Jennifer; Maus, Regina; Ueberberg, Bianca; Brumshagen, Christina; Brincks, Erik L.; Griffith, Thomas S.; Welte, Tobias

    2012-01-01

    Apoptotic death of alveolar macrophages observed during lung infection with Streptococcus pneumoniae is thought to limit overwhelming lung inflammation in response to bacterial challenge. However, the underlying apoptotic death mechanism has not been defined. Here, we examined the role of the TNF superfamily member TNF-related apoptosis-inducing ligand (TRAIL) in S. pneumoniae–induced macrophage apoptosis, and investigated the potential benefit of TRAIL-based therapy during pneumococcal pneumonia in mice. Compared with WT mice, Trail−/− mice demonstrated significantly decreased lung bacterial clearance and survival in response to S. pneumoniae, which was accompanied by significantly reduced apoptosis and caspase 3 cleavage but rather increased necrosis in alveolar macrophages. In WT mice, neutrophils were identified as a major source of intraalveolar released TRAIL, and their depletion led to a shift from apoptosis toward necrosis as the dominant mechanism of alveolar macrophage cell death in pneumococcal pneumonia. Therapeutic application of TRAIL or agonistic anti-DR5 mAb (MD5-1) dramatically improved survival of S. pneumoniae–infected WT mice. Most importantly, neutropenic mice lacking neutrophil-derived TRAIL were protected from lethal pneumonia by MD5-1 therapy. We have identified a previously unrecognized mechanism by which neutrophil-derived TRAIL induces apoptosis of DR5-expressing macrophages, thus promoting early bacterial killing in pneumococcal pneumonia. TRAIL-based therapy in neutropenic hosts may represent a novel antibacterial treatment option. PMID:23071253

  13. Spermine inhibits Endoplasmic Reticulum Stress - induced Apoptosis: a New Strategy to Prevent Cardiomyocyte Apoptosis

    Directory of Open Access Journals (Sweden)

    Can Wei

    2016-02-01

    Full Text Available Background/Aims: Endoplasmic reticulum stress (ERS plays an important role in the progression of acute myocardial infarction (AMI, in part by mediating apoptosis. Polyamines, including putrescine, spermidine, and spermine, are polycations with anti-oxidative, anti-aging, and cell growth-promoting activities. This study aimed to determine the mechanisms by which spermine protects against ERS-induced apoptosis in rats following AMI. Methods and Results: AMI was established by ligation of the left anterior descending coronary artery (LAD in rats, and exogenous spermine was administered by intraperitoneal injection (2.5 mg/ml daily for 7 days pre-AMI. Spermine treatment limited infarct size, attenuated cardiac troponin I and creatinine kinase-MB release, improved cardiac function, and decreased ERS and apoptosis related protein expression. Isolated cardiomyocytes subjected to hypoxia showed significant increase in reactive oxygen species (ROS and the expression of apoptosis and ERS related proteins; these effects occurred through PERK and eIF2α phosphorylation. The addition of spermine attenuated cardiomyocyte apoptosis, suppressed the production of ROS, and inhibited ERS related pathways. Conclusions: Spermine was an effective pre-treatment strategy to attenuate cardiac ERS injury in rats, and the cardioprotective mechanism occurring through inhibition of ROS production and down regulation of the PERK-eIF2α pathway. These findings provide a novel target for the prevention of apoptosis in the setting of AMI.

  14. Oral treatment with the herbal formula B401 protects against aging-dependent neurodegeneration by attenuating oxidative stress and apoptosis in the brain of R6/2 mice.

    Science.gov (United States)

    Wang, Sheue-Er; Lin, Ching-Lung; Hsu, Chih-Hsiang; Sheu, Shuenn-Jyi; Wu, Chung-Hsin

    2015-01-01

    Neurodegeneration is characterized by progressive neurological deficits due to selective neuronal loss in the nervous system. Huntington's disease (HD) is an incurable neurodegenerative disorder. Neurodegeneration in HD patients shows aging-dependent pattern. Our previous study has suggested that a herbal formula B401 may have neuroprotective effects in the brains of R6/2 mice. To clarify possible mechanisms for neurodegeneration, which improves the understanding the aging process. This study focuses on clarifying neurodegenerative mechanisms and searching potential therapeutic targets in HD patients. The oxidative stress and apoptosis were compared in the brain tissue between R6/2 HD mice with and without oral B401 treatment. Expressions of proteins for oxidative stress and apoptosis in the brain tissue of R6/2 HD mice were examined by using immunostaining and Western blotting techniques. R6/2 HD mice with oral B401 treatment significantly reduced reactive oxygen species levels in the blood, but markedly increased expressions of superoxide dismutase 2 in the brain tissue. Furthermore, R6/2 HD mice with oral B401 treatment significantly increased expressions of B-cell lymphoma 2 (Bcl-2), but significantly reduced expressions of Bcl-2-associated X protein (Bax), calpain, and caspase-3 in the brain tissue. Our findings provide evidence that the herbal formula B401 can remedy for aging-dependent neurodegeneration of R6/2 mice via suppressing oxidative stress and apoptosis in the brain. We suggest that the herbal formula B401 can be developed as a potential health supplement for ameliorating aging-dependent neurodegeneration.

  15. Inhibition of the Inflammasome NLRP3 by Arglabin Attenuates Inflammation, Protects Pancreatic β-Cells from Apoptosis, and Prevents Type 2 Diabetes Mellitus Development in ApoE2Ki Mice on a Chronic High-Fat Diet.

    Science.gov (United States)

    Abderrazak, Amna; El Hadri, Khadija; Bosc, Elodie; Blondeau, Bertrand; Slimane, Mohamed-Naceur; Büchele, Berthold; Simmet, Thomas; Couchie, Dominique; Rouis, Mustapha

    2016-06-01

    Intraperitoneal injection of arglabin (2.5 ng/g of body weight, twice daily, 13 weeks) into female human apolipoprotein E2 gene knock-in (ApoE2Ki) mice fed a high-fat Western-type diet (HFD) reduced plasma levels of glucose and insulin by ∼20.0% ± 3.5% and by 50.0% ± 2.0%, respectively, in comparison with vehicle-treated mice. Immunohistochemical analysis revealed the absence of active caspase-3 in islet sections from ApoE2Ki mice fed a HFD and treated with arglabin. In addition, arglabin reduced interleukin-1β (IL-1β) production in a concentration-dependent manner in Langerhans islets isolated from ApoE2Ki mice treated with lipopolysaccharide (LPS) and with cholesterol crystals. This inhibitory effect is specific for the inflammasome NOD-like receptor family, pyrin domain-containing 3 (NLRP3) because IL-1β production was abolished in Langerhans islets isolated from Nlrp3(-/-) mice. In the insulin-secreting INS-1 cells, arglabin inhibited, in a concentration-dependent manner, the maturation of pro-IL-1β into biologically active IL-1β probably through the inhibition of the maturation of procaspase-1 into active capsase-1. Moreover, arglabin reduced the susceptibility of INS-1 cells to apoptosis by increasing Bcl-2 levels. Similarly, autophagy activation by rapamycin decreased apoptosis susceptibility while autophagy inhibition by 3-methyladenin treatment promoted apoptosis. Arglabin further increased the expression of the autophagic markers Bcl2-interacting protein (Beclin-1) and microtubule-associated protein 1 light chain 3 II (LC3-II) in a concentration-dependent manner. Thus, arglabin reduces NLRP3-dependent inflammation as well as apoptosis in pancreatic β-cells in vivo and in the INS-1 cell line in vitro, whereas it increases autophagy in cultured INS-1 cells, indicating survival-promoting properties of the compound in these cells. Hence, arglabin may represent a new promising compound to treat inflammation and type 2 diabetes mellitus development

  16. Attenuation of hyperlipidemia- and diabetes-induced early-stage apoptosis and late-stage renal dysfunction via administration of fibroblast growth factor-21 is associated with suppression of renal inflammation.

    Science.gov (United States)

    Zhang, Chi; Shao, Minglong; Yang, Hong; Chen, Liangmiao; Yu, Lechu; Cong, Weitao; Tian, Haishan; Zhang, Fangfang; Cheng, Peng; Jin, Litai; Tan, Yi; Li, Xiaokun; Cai, Lu; Lu, Xuemian

    2013-01-01

    Lipotoxicity is a key feature of the pathogenesis of diabetic kidney disease, and is attributed to excessive lipid accumulation (hyperlipidemia). Increasing evidence suggests that fibroblast growth factor (FGF)21 has a crucial role in lipid metabolism under diabetic conditions. The present study investigated whether FGF21 can prevent hyperlipidemia- or diabetes-induced renal damage, and if so, the possible mechanism. Mice were injected with free fatty acids (FFAs, 10 mg/10 g body weight) or streptozotocin (150 mg/kg) to establish a lipotoxic model or type 1 diabetic model, respectively. Simultaneously the mice were treated with FGF21 (100 µg/kg) for 10 or 80 days. The kidney weight-to-tibia length ratio and renal function were assessed. Systematic and renal lipid levels were detected by ELISA and Oil Red O staining. Renal apoptosis was examined by TUNEL assay. Inflammation, oxidative stress, and fibrosis were assessed by Western blot. Acute FFA administration and chronic diabetes were associated with lower kidney-to-tibia length ratio, higher lipid levels, severe renal apoptosis and renal dysfunction. Obvious inflammation, oxidative stress and fibrosis also observed in the kidney of both mice models. Deletion of the fgf21 gene further enhanced the above pathological changes, which were significantly prevented by administration of exogenous FGF21. These results suggest that FFA administration and diabetes induced renal damage, which was further enhanced in FGF21 knock-out mice. Administration of FGF21 significantly prevented both FFA- and diabetes-induced renal damage partially by decreasing renal lipid accumulation and suppressing inflammation, oxidative stress, and fibrosis.

  17. Attenuation of hyperlipidemia- and diabetes-induced early-stage apoptosis and late-stage renal dysfunction via administration of fibroblast growth factor-21 is associated with suppression of renal inflammation.

    Directory of Open Access Journals (Sweden)

    Chi Zhang

    Full Text Available BACKGROUND: Lipotoxicity is a key feature of the pathogenesis of diabetic kidney disease, and is attributed to excessive lipid accumulation (hyperlipidemia. Increasing evidence suggests that fibroblast growth factor (FGF21 has a crucial role in lipid metabolism under diabetic conditions. OBJECTIVE: The present study investigated whether FGF21 can prevent hyperlipidemia- or diabetes-induced renal damage, and if so, the possible mechanism. METHODS: Mice were injected with free fatty acids (FFAs, 10 mg/10 g body weight or streptozotocin (150 mg/kg to establish a lipotoxic model or type 1 diabetic model, respectively. Simultaneously the mice were treated with FGF21 (100 µg/kg for 10 or 80 days. The kidney weight-to-tibia length ratio and renal function were assessed. Systematic and renal lipid levels were detected by ELISA and Oil Red O staining. Renal apoptosis was examined by TUNEL assay. Inflammation, oxidative stress, and fibrosis were assessed by Western blot. RESULTS: Acute FFA administration and chronic diabetes were associated with lower kidney-to-tibia length ratio, higher lipid levels, severe renal apoptosis and renal dysfunction. Obvious inflammation, oxidative stress and fibrosis also observed in the kidney of both mice models. Deletion of the fgf21 gene further enhanced the above pathological changes, which were significantly prevented by administration of exogenous FGF21. CONCLUSION: These results suggest that FFA administration and diabetes induced renal damage, which was further enhanced in FGF21 knock-out mice. Administration of FGF21 significantly prevented both FFA- and diabetes-induced renal damage partially by decreasing renal lipid accumulation and suppressing inflammation, oxidative stress, and fibrosis.

  18. Shenyuan, an extract of American Ginseng and Corydalis Tuber formula, attenuates cardiomyocyte apoptosis via inhibition of endoplasmic reticulum stress and oxidative stress in a porcine model of acute myocardial infarction.

    Science.gov (United States)

    Zhu, Xin-Yuan; Zhang, Zi-Long; Li, Pei; Liang, Wen-Yi; Feng, Xue-Ru; Liu, Mei-Lin

    2013-11-25

    The decoction of American Ginseng and Corydalis Tuber has been widely used for treatment of cardiovascular diseases due to their anti-ischemic and anti-arrhythmic effects. The aim of this study is to evaluate the anti-apoptotic effect of Shenyuan, which is composed of the bioactive components extracted from the mixture of American Ginseng and Corydalis Tuber, and to explore potential mechanisms involved in the regulation of apoptosis. A porcine model of acute myocardial infarction (AMI) was established by ligation of the left anterior descending coronary artery. Thirty-eight pigs were randomized into six groups: Group S, sham (n=6); Group C, AMI controls (n=8); Group L, AMI+low-dose Shenyuan (240 mg/kg·d, n=6); Group M, AMI+moderate-dose Shenyuan (320 mg/kg·d, n=6); Group H, AMI+high-dose Shenyuan (400 mg/kg·d, n=6); Group B, AMI+Metoprolol Tartrate (1 mg/kg·d, n=6). The treatment of Shenyuan or Metoprolol started one week before AMI and continued for another two weeks after AMI. Treatment with all doses of Shenyuan as well as Metoprolol produced a significant decrease of apoptotic index (P infarct size. In Group H, levels of MDA, 8-iso-prostaglandin F2α, GRP78/bip, calregulin, CHOP/GADD153, Bax, caspase-3, cleaved caspase-3 and activity of caspase-3 were reduced, while GSH, SOD, Bcl-2 and the Bcl-2/Bax ratio were significantly increased (P infarct size. Shenyuan treatment inhibited apoptosis and may have a therapeutic role in improving the natural process of AMI. © 2013 Published by Elsevier Ireland Ltd.

  19. Artesunate induces AIF-dependent apoptosis in A549 cells

    Science.gov (United States)

    Zhou, Chen-juan; Chen, Tong-Sheng

    2012-03-01

    Artesunate (ART), a semi-synthetic derivative of the sesquiterpene artemisinin extracted from the Chinese herb Artemisia annua, exerts a broad spectrum of clinical activity against human cancers. It has been shown that ART induces cancer cells death through apoptosis pathway. This study investigated whether ART treatment induced reactive oxygen species (ROS)-dependent cell death in the apoptosis fashion in human lung adenocarconoma A549 cell line and the proapoptotic protein apoptosis inducing factor (AIF) is involved in ART-induced apoptosis. Cells treated with ART exhibited typical apoptotic morphology as chromatin condensation, margination and shrunken nucleus. ART treatment also induced a loss of mitochondrial membrane potential and AIF release from mitochondria. Silencing AIF can remarkable attenuated ART-induced apoptosis. Collectively, ART induces apoptosis by caspase-independent intrinsic pathway in A549 cells.

  20. Evidence for a Proangiogenic Activity of TNF-Related Apoptosis-Inducing Ligand

    Directory of Open Access Journals (Sweden)

    Paola Secchiero

    2004-07-01

    Full Text Available Starting from the observation that tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/ Apo-2L protein is expressed in both malignant and inflammatory cells in some highly vascularized soft tissue sarcomas, the angiogenic potential of TRAIL was investigated in a series of in vitro assays. Recombinant soluble TRAIL induced endothelial cell migration and vessel tube formation to a degree comparable to vascular endothelial growth factor (VEGF, one of the best-characterized angiogenic factors. However, the proangiogenic activity of TRAIL was not mediated by endogenous expression of VEGF. Although TRAIL potentiated VEGF-induced extracellular signal-regulated kinase (ERK phosphorylation and endothelial cell proliferation, the combination of TRAIL + VEGF did not show additive effects with respect to VEGF alone in inducing vessel tube formation. Thus, although TRAIL has gained attention as a potential anticancer therapeutic for its ability to induce apoptosis in a variety of cancer cells, our present data suggest that TRAIL might also play an unexpected role in promoting angiogenesis, which might have therapeutic implications.

  1. Bid participates in genotoxic drug-induced apoptosis of HeLa cells and is essential for death receptor ligands' apoptotic and synergistic effects.

    Science.gov (United States)

    Köhler, Barbara; Anguissola, Sergio; Concannon, Caoimhin G; Rehm, Markus; Kögel, Donat; Prehn, Jochen H M

    2008-07-30

    The BH3-only protein Bid is an important component of death receptor-mediated caspase activation. Bid is cleaved by caspase-8 or -10 into t-Bid, which translocates to mitochondria and triggers the release of caspase-activating factors. Bid has also been reported to be cleaved by other proteases. To test the hypothesis that Bid is a central mediator of stress-induced apoptosis, we investigated the effects of a small molecule Bid inhibitor on stress-induced apoptosis, and generated HeLa cells deficient for Bid. Stable knockdown of bid lead to a pronounced resistance to Fas/CD95- and TRAIL-induced caspase activation and apoptosis, and significantly increased clonogenic survival. While Bid-deficient cells were equally sensitive to ER stress-induced apoptosis, they showed moderate, but significantly reduced levels of apoptosis, as well as increased clonogenic survival in response to the genotoxic drugs Etoposide, Oxaliplatin, and Doxorubicin. Similar effects were observed using the Bid inhibitor BI6C9. Interestingly, Bid-deficient cells were dramatically protected from apoptosis when subtoxic concentrations of ER stressors, Etoposide or Oxaliplatin were combined with subtoxic TRAIL concentrations. Our data demonstrate that Bid is central for death receptor-induced cell death and participates in anti-cancer drug-induced apoptosis in human cervical cancer HeLa cells. They also show that the synergistic effects of TRAIL in combination with either ER stressors or genotoxic anti-cancer drugs are nearly exclusively mediated via an increased activation of Bid-induced apoptosis signalling.

  2. Inhibition of Cathepsin S Induces Mitochondrial ROS That Sensitizes TRAIL-Mediated Apoptosis Through p53-Mediated Downregulation of Bcl-2 and c-FLIP.

    Science.gov (United States)

    Seo, Bo Ram; Min, Kyoung-Jin; Woo, Seon Min; Choe, Misun; Choi, Kyeong Sook; Lee, Young-Kyung; Yoon, Gyesoon; Kwon, Taeg Kyu

    2017-08-01

    Cathepsin S is highly expressed in various cancer cells, and it has protumoral effects, including promotion of migration, invasion, and neovascularization. In this study, we show that inhibition of cathepsin S could sensitize cancer cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis. An inhibitor of cathepsin S (Z-FL-COCHO; ZFL) markedly induced apoptosis in human renal cancer cells treated with TRAIL. In contrast, combined treatment with ZFL and TRAIL had no effect on normal cells. ZFL downregulated Bcl-2 expression at the transcriptional level in a p53-dependent manner, and overexpression of Bcl-2 also markedly blocked apoptosis induced by combined treatment with ZFL and TRAIL. In addition, ZFL induced downregulation of c-FLIP, and overexpression of c-FLIP blocked the apoptosis induced by ZFL plus TRAIL. Moreover, ZFL increased the expression of Cbl, an E3 ligase of c-FLIP, in a p53-dependent manner, and knockdown of Cbl markedly prevented c-FLIP downregulation and the apoptosis induced by ZFL plus TRAIL. Interestingly, ZFL induced p53 expression via production of mitochondrial reactive oxygen species (ROS). We also demonstrated that downregulation of cathepsin S by small interfering RNA sensitized TRAIL-mediated apoptosis in Caki cells. These results reveal the importance of cathepsin S on resistance against TRAIL, and inhibition of cathepsin S activity plays a crucial role in TRAIL-mediated cell death of cancer cells. Our results indicated that inhibition of cathepsin S stimulates TRAIL-induced apoptosis through downregulation of Bcl-2 and Cbl-mediated c-FLIP by ROS-mediated p53 expression. Antioxid. Redox Signal. 27, 215-233.

  3. P-glycoprotein-dependent resistance of cancer cells toward the extrinsic TRAIL apoptosis signaling pathway

    Science.gov (United States)

    Galski, Hanan; Oved-Gelber, Tamar; Simanovsky, Masha; Lazarovici, Philip; Gottesman, Michael M.; Nagler, Arnon

    2014-01-01

    The TNF-related apoptosis-inducing ligand (TRAIL or Apo2L) preferentially cause apoptosis of malignant cells in vitro and in vivo without severe toxicity. Therefore, TRAIL or agonist antibodies to the TRAIL DR4 and DR5 receptors are used in cancer therapy. However, many malignant cells are intrinsically resistant or acquire resistance to TRAIL. It has been previously proposed that the multidrug transporter P-glycoprotein (Pgp) might play a role in resistance of cells to intrinsic apoptotic pathways by interfering with components of ceramide metabolism or by modulating the electrochemical gradient across the plasma membrane. In this study we investigated whether Pgp also confers resistance toward extrinsic death ligands of the TNF family. To this end we focused our study on HeLa cells carrying a tetracycline-repressible plasmid system which shuts down Pgp expression in the presence of tetracycline. Our findings demonstrate that expression of Pgp is a significant factor conferring resistance to TRAIL administration, but not to other death ligands such as TNF-α and Fas ligand. Moreover, blocking Pgp transport activity sensitizes the malignant cells toward TRAIL. Therefore, Pgp transport function is required to confer resistance to TRAIL. Although the resistance to TRAIL-induced apoptosis is Pgp specific, TRAIL itself is not a direct substrate of Pgp. Pgp expression has no effect on the level of the TRAIL receptors DR4 and DR5. These findings might have clinical implications since the combination of TRAIL therapy with administration of Pgp modulators might sensitize TRAIL resistant tumors. PMID:23774624

  4. Insights on distinct pathways of thiazolidinediones (PPARgamma ligand)-promoted apoptosis in TRAIL-sensitive or -resistant malignant urothelial cells.

    Science.gov (United States)

    Plissonnier, Marie Laure; Fauconnet, Sylvie; Bittard, Hugues; Lascombe, Isabelle

    2010-10-15

    Thiazolidinediones, including rosiglitazone and troglitazone, are insulin-sensitizing drugs and high-affinity ligands for the peroxisome proliferator-activated receptor gamma (PPARgamma). Apart from their antidiabetic activity, these molecules possess antitumor properties. We investigated their potential apoptotic effects on RT4 (derived from a well-differentiated Grade I papillary tumor) and T24 (derived from an undifferentiated Grade III carcinoma) bladder cancer cells. Rosiglitazone induced G2/M or G0/G1 phase cell cycle arrest in RT4 and T24 cells, respectively. Only troglitazone triggered apoptosis via extrinsic and intrinsic pathways in both cell lines. Interestingly, rosiglitazone amplified TRAIL-induced apoptosis in TRAIL-sensitive RT4 cells or let TRAIL-resistant T24 cells to respond to TRAIL. Thiazolidinediones acted through PPARgamma activation-independent mechanisms. The underlying mechanisms involved for the first time in cancer cells the upregulation of soluble and/or membrane-bound TRAIL. This was associated with increased cell surface death receptor 5 expression and c-FLIP and survivin downregulation, mediated in part through proteasome-dependent degradation in troglitazone-promoted cell death. Therefore, the combination of rosiglitazone and TRAIL could be clinically relevant as chemopreventive or therapeutic agents for the treatment of TRAIL-resistant high-grade urothelial cancers.

  5. Tumor cell-selective apoptosis induction through targeting of KV10.1 via bifunctional TRAIL antibody

    Science.gov (United States)

    2011-01-01

    Background The search for strategies to target ion channels for therapeutic applications has become of increasing interest. Especially, the potassium channel KV10.1 (Ether-á-go-go) is attractive as target since this surface protein is virtually not detected in normal tissue outside the central nervous system, but is expressed in approximately 70% of tumors from different origins. Methods We designed a single-chain antibody against an extracellular region of KV10.1 (scFv62) and fused it to the human soluble TRAIL. The KV10.1-specific scFv62 antibody -TRAIL fusion protein was expressed in CHO-K1 cells, purified by chromatography and tested for biological activity. Results Prostate cancer cells, either positive or negative for KV10.1 were treated with the purified construct. After sensitization with cytotoxic drugs, scFv62-TRAIL induced apoptosis only in KV10.1-positive cancer cells, but not in non-tumor cells, nor in tumor cells lacking KV10.1 expression. In co-cultures with KV10.1-positive cancer cells the fusion protein also induced apoptosis in bystander KV10.1-negative cancer cells, while normal prostate epithelial cells were not affected when present as bystander. Conclusions KV10.1 represents a novel therapeutic target for cancer. We could design a strategy that selectively kills tumor cells based on a KV10.1-specific antibody. PMID:21899742

  6. Hyperthermia-induced apoptosis

    NARCIS (Netherlands)

    Nijhuis, E.H.A.

    2008-01-01

    This thesis describes a number of studies that investigated several aspects of heat-induced apoptosis in human lymphoid malignancies. Cells harbour both pro- and anti-apoptotic proteins and the balance between these proteins determines whether a cell is susceptible to undergo apoptosis. In this

  7. Ubiquitination in apoptosis signaling

    NARCIS (Netherlands)

    van de Kooij, L.W.

    2014-01-01

    The work described in this thesis focuses on ubiquitination and protein degradation, with an emphasis on how these processes regulate apoptosis signaling. More specifically, our aims were: 1. To increase the understanding of ubiquitin-mediated regulation of apoptosis signaling. 2. To identify the E3

  8. Apoptosis of neutrophils

    NARCIS (Netherlands)

    Maianski, N. A.; Maianski, A. N.; Kuijpers, T. W.; Roos, D.

    2004-01-01

    Regulation of the neutrophil life span by apoptosis provides a fine balance between their function as effector cells of host defense and a safe turnover of these potentially harmful cells. Alterations of neutrophil apoptosis are associated with a number of diseases. As do other cell types,

  9. Pressure surge attenuator

    Science.gov (United States)

    Christie, Alan M.; Snyder, Kurt I.

    1985-01-01

    A pressure surge attenuation system for pipes having a fluted region opposite crushable metal foam. As adapted for nuclear reactor vessels and heads, crushable metal foam is disposed to attenuate pressure surges.

  10. Trail (TNF-related apoptosis-inducing ligand) induces an inflammatory response in human adipocytes.

    Science.gov (United States)

    Zoller, Verena; Funcke, Jan-Bernd; Roos, Julian; Dahlhaus, Meike; Abd El Hay, Muad; Holzmann, Karlheinz; Marienfeld, Ralf; Kietzmann, Thomas; Debatin, Klaus-Michael; Wabitsch, Martin; Fischer-Posovszky, Pamela

    2017-07-18

    High serum concentrations of TNF-related apoptosis-inducing ligand (TRAIL), a member of the tumor necrosis factor protein family, are found in patients with increased BMI and serum lipid levels. In a model of murine obesity, both the expression of TRAIL and its receptor (TRAIL-R) is elevated in adipose tissue. Accordingly, TRAIL has been proposed as an important mediator of adipose tissue inflammation and obesity-associated diseases. The aim of this study was to investigate if TRAIL regulates inflammatory processes at the level of the adipocyte. Using human Simpson-Golabi-Behmel syndrome (SGBS) cells as a model system, we found that TRAIL induces an inflammatory response in both preadipocytes and adipocytes. It stimulates the expression of interleukin 6 (IL-6), interleukin 8 (IL-8) as well as the chemokines monocyte chemoattractant protein-1 (MCP-1) and chemokine C-C motif ligand 20 (CCL-20) in a time- and dose-dependent manner. By using small molecule inhibitors, we found that both the NFκB and the ERK1/2 pathway are crucial for mediating the effect of TRAIL. Taken together, we identified a novel pro-inflammatory function of TRAIL in human adipocytes. Our findings suggest that targeting the TRAIL/TRAIL-R system might be a useful strategy to tackle obesity-associated adipose tissue inflammation.

  11. Regulation of apoptosis in human melanoma and neuroblastoma cells by statins, sodium arsenite and TRAIL: a role of combined treatment versus monotherapy

    Science.gov (United States)

    Ivanov, Vladimir N.; Hei, Tom K.

    2015-01-01

    Treatment of melanoma cells by sodium arsenite or statins (simvastatin and lovastatin) dramatically modified activities of the main cell signaling pathways resulting in the induction of heme oxygenase-1 (HO-1) and in a downregulation of cyclooxygenase-2 (COX-2) protein levels. Through heme degradation and the production of carbon monoxide and biliverdin, HO-1 plays a protective role in different scenario of oxidative stress followed by mitochondrial apoptosis. Both sodium arsenite and statins could be efficient inducers of apoptosis in some melanoma cell lines, but often exhibited only modest proapoptotic activity in others, due to numerous protective mechanisms. We demonstrated in the present study that treatment by sodium arsenite or statins with an additional inhibition of HO-1 expression (or activation) caused a substantial upregulation of apoptosis in melanoma cells. Sodium arsenite- or statin-induced apoptosis was independent of BRAF status (wild type versus V600E) in melanoma lines. Monotreatment required high doses of statins (20–40 μM) for effective induction of apoptosis. As an alternative approach, pretreatment of melanoma cells with statin at decreased doses (5–20 μM) dramatically enhanced TRAIL-induced apoptosis, due to suppression of the NF-κB and STAT3-transcriptional targets (including COX-2) and downregulation of cFLIP-L (a caspase-8 inhibitor) protein levels. Furthermore, combined treatment with sodium arsenite and TRAIL or simvastatin and TRAIL efficiently induced apoptotic commitment in human neuroblastoma cells. In summary, our findings on enhancing effects of combined treatment of cancer cells using statin and TRAIL provide the rationale for further preclinical evaluation. PMID:21910007

  12. Pentoxifylline Attenuates Cardiac Remodeling Induced by Tobacco Smoke Exposure

    Energy Technology Data Exchange (ETDEWEB)

    Minicucci, Marcos; Oliveira, Fernando; Santos, Priscila; Polegato, Bertha; Roscani, Meliza; Fernandes, Ana Angelica; Lustosa, Beatriz; Paiva, Sergio; Zornoff, Leonardo; Azevedo, Paula, E-mail: paulasa@fmb.unesp.br [Faculdade de Medicina de Botucatu, Universidade Estadual Paulista, São Paulo, SP (Brazil)

    2016-05-15

    Tobacco smoke exposure is an important risk factor for cardiac remodeling. Under this condition, inflammation, oxidative stress, energy metabolism abnormalities, apoptosis, and hypertrophy are present. Pentoxifylline has anti‑inflammatory, anti-apoptotic, anti-thrombotic and anti-proliferative properties. The present study tested the hypothesis that pentoxifylline would attenuate cardiac remodeling induced by smoking. Wistar rats were distributed in four groups: Control (C), Pentoxifylline (PX), Tobacco Smoke (TS), and PX-TS. After two months, echocardiography, invasive blood pressure measurement, biochemical, and histological studies were performed. The groups were compared by two-way ANOVA with a significance level of 5%. TS increased left atrium diameter and area, which was attenuated by PX. In the isolated heart study, TS lowered the positive derivate (+dp/dt), and this was attenuated by PX. The antioxidants enzyme superoxide dismutase and glutathione peroxidase were decreased in the TS group; PX recovered these activities. TS increased lactate dehydrogenase (LDH) and decreased 3-hydroxyacyl Coenzyme A dehydrogenases (OH-DHA) and citrate synthase (CS). PX attenuated LDH, 3-OH-DHA and CS alterations in TS-PX group. TS increased IL-10, ICAM-1, and caspase-3. PX did not influence these variables. TS induced cardiac remodeling, associated with increased inflammation, oxidative stress, apoptosis, and changed energy metabolism. PX attenuated cardiac remodeling by reducing oxidative stress and improving cardiac bioenergetics, but did not act upon cardiac cytokines and apoptosis.

  13. Genetically engineered Newcastle disease virus expressing interleukin-2 and TNF-related apoptosis-inducing ligand for cancer therapy.

    Science.gov (United States)

    Bai, Fu-Liang; Yu, Yin-Hang; Tian, Hui; Ren, Gui-Ping; Wang, Hui; Zhou, Bing; Han, Xiao-Hui; Yu, Qing-Zhong; Li, De-Shan

    2014-09-01

    Recombinant Newcastle disease virus (rNDV) have shown oncolytic therapeutic efficacy in preclinical studies and are currently in clinical trials. In this study, we have evaluated the possibility to enhance the cancer therapeutic potential of NDV by means of inserting both interleukin-2 (IL-2) and tumor necrosis factor-related apoptosis inducing ligand (TRAIL) delivered by rNDV. We demonstrated that rNDV expressing TRAIL (rNDV-TRAIL) or both human IL-2 and TRAIL (rNDV-IL-2-TRAIL) significantly enhanced inherent anti-neoplastic of rNDV by inducing apoptosis. And we showed that apoptosis-related genes mRNA expression was increased after treated with rNDV-TRAIL or rNDV-IL-2-TRAIL compared with rNDV and rNDV-IL-2. We also demonstrated that both rNDV-IL-2 and rNDV-IL-2-TRAIL induced proliferation of the CD4(+) and CD8(+) in treated mice and elicited expression of TNF-α and IFN-γ antitumor cytokines. These mice treated with oncolytic agents exhibited significant reduction in tumor development compared with mice treated with the parental virus. In addition, experiments in both hepatocellular carcinoma and melanoma-bearing mice demonstrated that the genetically engineered rNDV-IL-2-TRAIL exhibited prolonged animals' survival compared with rNDV, rNDV-IL-2, and rNDV-TRAIL. In conclusion, the immunotherapy and oncolytic virotherapy properties of NDV can be enhanced by the introduction of IL-2 and TRAIL genes, whose products initiated a broad cascade of immunological affects and induced tumor cells apoptosis in the microenvironment of the immune system.

  14. TNF-related apoptosis-inducing ligand cooperates with NSAIDs via activated Wnt signalling in (pre)malignant colon cells.

    Science.gov (United States)

    Heijink, Dianne M; Jalving, Mathilde; Oosterhuis, Dorenda; Sloots, Ineke A; Koster, Roelof; Hollema, Harry; Kleibeuker, Jan H; Koornstra, Jan J; de Vries, Elisabeth G E; de Jong, Steven

    2011-02-01

    TNF-related apoptosis-inducing ligand (TRAIL) receptor agonistic agents and non-steroidal anti-inflammatory drugs (NSAIDs) are interesting agents for the chemoprevention and treatment of colorectal cancer. We investigated whether NSAIDs sensitize colon cancer and adenoma cell lines and ex vivo cultured human adenomas to recombinant human (rh)TRAIL. Involvement of the crucial Wnt signalling pathway in the sensitization of colon cancer cells was examined. Five colon cancer and two adenoma cell lines, human ex vivo adenomas and normal colonic epithelium were treated with aspirin or sulindac combined with rhTRAIL. Apoptosis levels, expression of intracellular proteins and TRAIL receptor membrane expression were assessed. Ls174T cells stably transfected with an inducible dominant negative TCF-4 (dnTCF-4) construct served to analyse the role of Wnt pathway activation. Both rhTRAIL-sensitive and -resistant colon cancer cell lines were strongly sensitized to rhTRAIL by aspirin (maximum enhancement ratio, 7.1). Remarkably, in adenoma cell lines sulindac enhanced rhTRAIL-induced apoptosis most effectively (maximum enhancement ratio, 2.5). Although membrane TRAIL receptor expression was not affected by NSAIDs, caspase-8 activation was enhanced by combinational treatment. Several proteins from different biological pathways were affected by NSAIDs, indicating complex mechanisms of sensitization. Elimination of TCF-4 completely blocked the sensitizing effect in colon cancer cells. In ex vivo adenomas the combination of sulindac and rhTRAIL increased apoptosis from 18.4% (sulindac) and 17.8% (rhTRAIL) to 28.0% (p = 0.003 and p = 0.005, respectively). It was concluded that NSAID-induced sensitization to rhTRAIL requires TCF-4 activity. Thus, the combination of TRAIL-receptor agonistic agents and NSAIDs is a potentially attractive treatment option for (pre)malignant tumours with constitutively active Wnt signalling, such as colorectal tumours. Copyright © 2010 Pathological Society

  15. Apoptosis signal-regulating kinase 1 mediates denbinobin-induced apoptosis in human lung adenocarcinoma cells

    Directory of Open Access Journals (Sweden)

    Pan Shiow-Lin

    2009-05-01

    Full Text Available Abstract In the present study, we explore the role of apoptosis signal-regulating kinase 1 (ASK1 in denbinobin-induced apoptosis in human lung adenocarcinoma (A549 cells. Denbinobin-induced cell apoptosis was attenuated by an ASK1 dominant-negative mutant (ASK1DN, two antioxidants (N-acetyl-L-cysteine (NAC and glutathione (GSH, a c-Jun N-terminal kinase (JNK inhibitor (SP600125, and an activator protein-1 (AP-1 inhibitor (curcumin. Treatment of A549 cells with denbinobin caused increases in ASK1 activity and reactive oxygen species (ROS production, and these effects were inhibited by NAC and GSH. Stimulation of A549 cells with denbinobin caused JNK activation; this effect was markedly inhibited by NAC, GSH, and ASK1DN. Denbinobin induced c-Jun phosphorylation, the formation of an AP-1-specific DNA-protein complex, and Bim expression. Bim knockdown using a bim short interfering RNA strategy also reduced denbinobin-induced A549 cell apoptosis. The denbinobin-mediated increases in c-Jun phosphorylation and Bim expression were inhibited by NAC, GSH, SP600125, ASK1DN, JNK1DN, and JNK2DN. These results suggest that denbinobin might activate ASK1 through ROS production to cause JNK/AP-1 activation, which in turn induces Bim expression, and ultimately results in A549 cell apoptosis.

  16. Apoptosis and plastic surgery.

    Science.gov (United States)

    Gastman, Brian R; Futrell, J William; Manders, Ernest K

    2003-04-01

    Apoptosis, or programmed cell death, is a phenomenon that is integral to development and cellular homeostasis. In the last decade, many of the essential molecules and pathways that control this phenomenon have been elucidated. Because apoptosis is involved in almost all physiologic and pathologic processes, the understanding of its regulation has significant clinical ramifications. This article reviews the basic understanding of programmed cell death in terms of the effector molecules and pathways. Areas of interest to plastic surgeons are reviewed as they pertain to apoptosis. These areas include allotransplantation, craniofacial and limb development, flap survival, wound healing, stem cell science, and physiologic aging. These topics have not yet been studied extensively in the context of cell death. In this review article, other related and more comprehensively studied scientific areas are used to extrapolate their relevance to apoptosis. Apoptosis is an increasingly better understood process. With the knowledge of how programmed cell death is controlled, combined with the improved ability to effectively perform genetic manipulation and to design specific chemical approaches, apoptosis is gaining clinical relevance. In the next few years, practical clinical breakthroughs will help the medical community to understand the phenomenon of apoptosis and how it relates to the needs of patients.

  17. Caspases: An apoptosis mediator

    Directory of Open Access Journals (Sweden)

    Tapan Kumar Palai

    2015-03-01

    Full Text Available The process of programmed cell death, or apoptosis, is generally characterized by distinct morphological characteristics and energy - dependent biochemical mechanisms. Apoptosis is a widely conserved phenomenon helping many processes, including normal cell turnover, proper development and functioning of the immune system, hormone dependent atrophy etc. Inappropriate apoptosis (either low level or high level leads to many developmental abnormalities like, neurodegenerative diseases, ischemic damage, autoimmune disorders and many types of cancer. To use cells for therapeutic purposes through generating cell lines, it is critical to study the cell cycle machinery and signalling pathways that controls cell death and apoptosis. Apoptotic pathways provide a fundamental protective mechanism that decreases cellular sensitivity to damaging events and allow proper developmental process in multi-cellular organisms. Major mediator of apoptosis is a family of proteins known as caspases. There are mainly fourteen types of caspases but out of them only ten caspasese have got essential role in controlling the process of apoptosis. These ten caspases have been categorized into either initiator caspases (caspase 2, 8, 9, 10 or executioner caspases (caspase 3, 6, 7. Although various types of caspases have been identified so far, the exact mechanisms of action of these groups of proteins is still to be fully understood. The aim of this review is to provide a detail overview of role of different caspases in regulating the process of apoptosis.

  18. Reaper-Induced Apoptosis

    National Research Council Canada - National Science Library

    Perry, Jennifer

    2005-01-01

    Reaper is a central regulator of apoptosis in the fly, Drosophila melanogaster. At the start of this proposal our laboratory identified what was believed to be a pro-apoptotic human homolog of Reaper...

  19. Apoptosis in Pneumovirus Infection

    Directory of Open Access Journals (Sweden)

    Reinout A. Bem

    2013-01-01

    Full Text Available Pneumovirus infections cause a wide spectrum of respiratory disease in humans and animals. The airway epithelium is the major site of pneumovirus replication. Apoptosis or regulated cell death, may contribute to the host anti-viral response by limiting viral replication. However, apoptosis of lung epithelial cells may also exacerbate lung injury, depending on the extent, the timing and specific location in the lungs. Differential apoptotic responses of epithelial cells versus innate immune cells (e.g., neutrophils, macrophages during pneumovirus infection can further contribute to the complex and delicate balance between host defense and disease pathogenesis. The purpose of this manuscript is to give an overview of the role of apoptosis in pneumovirus infection. We will examine clinical and experimental data concerning the various pro-apoptotic stimuli and the roles of apoptotic epithelial and innate immune cells during pneumovirus disease. Finally, we will discuss potential therapeutic interventions targeting apoptosis in the lungs.

  20. Paclitaxel Induces Apoptosis in Breast Cancer Cells through Different Calcium—Regulating Mechanisms Depending on External Calcium Conditions

    OpenAIRE

    Zhi Pan; Andrew Avila; Lauren Gollahon

    2014-01-01

    Previously, we reported that endoplasmic reticulum calcium stores were a direct target for paclitaxel initiation of apoptosis. Furthermore, the actions of paclitaxel attenuated Bcl-2 resistance to apoptosis through endoplasmic reticulum-mediated calcium release. To better understand the calcium-regulated mechanisms of paclitaxel-induced apoptosis in breast cancer cells, we investigated the role of extracellular calcium, specifically; whether influx of extracellular calcium contributed to and...

  1. The antidiabetic drug ciglitazone induces high grade bladder cancer cells apoptosis through the up-regulation of TRAIL.

    Directory of Open Access Journals (Sweden)

    Marie-Laure Plissonnier

    Full Text Available Ciglitazone belongs to the thiazolidinediones class of antidiabetic drug family and is a high-affinity ligand for the Peroxisome Proliferator-Activated Receptor γ (PPARγ. Apart from its antidiabetic activity, this molecule shows antineoplastic effectiveness in numerous cancer cell lines.Using RT4 (derived from a well differentiated grade I papillary tumor and T24 (derived from an undifferentiated grade III carcinoma bladder cancer cells, we investigated the potential of ciglitazone to induce apoptotic cell death and characterized the molecular mechanisms involved. In RT4 cells, the drug induced G2/M cell cycle arrest characterized by an overexpression of p53, p21(waf1/CIP1 and p27(Kip1 in concomitance with a decrease of cyclin B1. On the contrary, in T24 cells, it triggered apoptosis via extrinsic and intrinsic pathways. Cell cycle arrest and induction of apoptosis occurred at high concentrations through PPARγ activation-independent pathways. We show that in vivo treatment of nude mice by ciglitazone inhibits high grade bladder cancer xenograft development. We identified a novel mechanism by which ciglitazone kills cancer cells. Ciglitazone up-regulated soluble and membrane-bound TRAIL and let TRAIL-resistant T24 cells to respond to TRAIL through caspase activation, death receptor signalling pathway and Bid cleavage. We provided evidence that TRAIL-induced apoptosis is partially driven by ciglitazone-mediated down-regulation of c-FLIP and survivin protein levels through a proteasome-dependent degradation mechanism.Therefore, ciglitazone could be clinically relevant as chemopreventive or therapeutic agent for the treatment of TRAIL-refractory high grade urothelial cancers.

  2. The antidiabetic drug ciglitazone induces high grade bladder cancer cells apoptosis through the up-regulation of TRAIL.

    Science.gov (United States)

    Plissonnier, Marie-Laure; Fauconnet, Sylvie; Bittard, Hugues; Lascombe, Isabelle

    2011-01-01

    Ciglitazone belongs to the thiazolidinediones class of antidiabetic drug family and is a high-affinity ligand for the Peroxisome Proliferator-Activated Receptor γ (PPARγ). Apart from its antidiabetic activity, this molecule shows antineoplastic effectiveness in numerous cancer cell lines. Using RT4 (derived from a well differentiated grade I papillary tumor) and T24 (derived from an undifferentiated grade III carcinoma) bladder cancer cells, we investigated the potential of ciglitazone to induce apoptotic cell death and characterized the molecular mechanisms involved. In RT4 cells, the drug induced G2/M cell cycle arrest characterized by an overexpression of p53, p21(waf1/CIP1) and p27(Kip1) in concomitance with a decrease of cyclin B1. On the contrary, in T24 cells, it triggered apoptosis via extrinsic and intrinsic pathways. Cell cycle arrest and induction of apoptosis occurred at high concentrations through PPARγ activation-independent pathways. We show that in vivo treatment of nude mice by ciglitazone inhibits high grade bladder cancer xenograft development. We identified a novel mechanism by which ciglitazone kills cancer cells. Ciglitazone up-regulated soluble and membrane-bound TRAIL and let TRAIL-resistant T24 cells to respond to TRAIL through caspase activation, death receptor signalling pathway and Bid cleavage. We provided evidence that TRAIL-induced apoptosis is partially driven by ciglitazone-mediated down-regulation of c-FLIP and survivin protein levels through a proteasome-dependent degradation mechanism. Therefore, ciglitazone could be clinically relevant as chemopreventive or therapeutic agent for the treatment of TRAIL-refractory high grade urothelial cancers.

  3. Apoptosis and cell cycle

    Directory of Open Access Journals (Sweden)

    Petrović Marija

    2014-01-01

    Full Text Available Apoptosis, a form of programmed cell death, is used to eliminate individual cells surrounded by normal cell population. It is a controlled way of cell death in which the cell actively participates by conducting precise, gene-regulated program of self-destruction, that is, cell 'suicide.' Active synthesis of macromolecules is necessary during this process. Death of individual cells is necessary to maintain a balance in living systems, so the process of apoptosis is continuously present in the body, which allows normal development, tissue homeostasis, and many other physiological processes. The molecular mechanisms that regulate apoptosis are functionally linked to other cellular mechanisms, such as control of the cell cycle, cell proliferation and differentiation, genomic stability and cellular metabolism. Damage to the DNA molecule, caused both spontaneously and under the influence of various chemical and physical agents, leads to the cell cycle arrest and activation of mechanisms that repair the damage. Depending on the type and extent of the damage, the cell either continues progression through the cell cycle, or activates the mechanisms that lead to apoptosis. Disturbances in the regulation of apoptosis and cell cycle present the molecular and biological basis of many diseases. Because of the importance of these processes during the development and progression of tumors, their use as biological markers is one of the main strategies in the formation of therapeutic approaches for the treatment of cancer.

  4. Spaceflight Associated Apoptosis

    Science.gov (United States)

    Ichiki, Albert T.; Gibson, Linda A.; Allebban, Zuhair

    1996-01-01

    Lymphoid tissues have been shown to atrophy in rats flown on Russian spaceflights. Histological examination indicated evidence for cell degradation. Lymphoid tissues from rats flown on Spacelab Life Sciences-2 mission were analyzed for apoptosis by evidence of fragmented lymphocytes, which could be engulfed by macrophages, or DNA strand breaks using the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay. Apoptosis was not detected in the thymus and spleen collected inflight or from the synchronous ground rats but was detected in the thymus, spleen and inguinal lymph node of the flight animals on recovery. These results indicate that the apoptosis observed in the lymphatic tissues of the rats on recovery could have been induced by the gravitational stress of reentry, corroborating the findings from the early space-flight observations.

  5. Lysosomal chymotrypsin B potentiates apoptosis via cleavage of Bid.

    Science.gov (United States)

    Zhao, Kai; Zhao, Xingyu; Tu, Yaping; Miao, Qi; Cao, Dongxu; Duan, Wenjuan; Sun, Yang; Wang, Jincheng; Wei, Taotao; Yang, Fuyu

    2010-08-01

    We have reported that chymotrypsin B (CtrB) is not just a digestive enzyme but is also stored in lysosomes. Herein, we demonstrated a broad distribution of CtrB and explored the involvement of CtrB in apoptosis. Exposure of RH-35 cells to H(2)O(2) or palmitate induced the redistribution of lysosomal CtrB into the cytoplasm as a result of lysosomal membrane permeabilization (LMP). Suppression of CtrB significantly blocked apoptosis, while overexpression of CtrB sensitized apoptosis markedly. CtrB could cleave Bid under neutral conditions. In RH-35 cells with Bid silenced, apoptosis induced by CtrB protein was attenuated, suggesting that CtrB mediates apoptosis of RH-35 cells mainly through processing Bid. Our data also suggest that LMP occurs earlier than mitochondrial outer membrane permeabilization; Bid activation initiated by caspase-8 might be reinforced by CtrB in consequence of LMP, which causes a positive feedback loop leading to the accumulation of tBid, and results in lysosome- and mitochondrion-dependent apoptosis.

  6. LYMPHOCYTE APOPTOSIS IN PSORIASIS

    Directory of Open Access Journals (Sweden)

    О. M. Kapuler

    2006-01-01

    Full Text Available Abstract. Forty-two patients with progressive vulgar psoriasis (PASI = 19.7 ± 1.5 and 40 healthy volunteers were under investigation. Psoriatic patients were characterized by increased number of CD4+ CD95+ peripheral blood T lymphocytes, which correlates with clinical psoriatic score, and by increased levels of soluble Fas (sFas in serum, as compared to controls (resp., 1868.1 ± 186.8 pg/ml vs. 1281.4 ± 142.5 pg/ml, PLSD = 0.019. The levels of spontaneous lymphocyte apoptosis and anti-Fas (Mab-induced apoptosis in psoriatic patients did not differ from the controls. However, apoptosis induced by “oxidative stress” (50 M Н202, 4 hrs was depressed in the patients. Moreover, a simultaneous assessment of cell cycle structure (metachromatic staining with Acridine Orange, apoptosis and Fas receptor expression (AnnV-FITC/antiFas mAbs-PE staining following a short-term mitogenic stimulation (PHA-P, 5 µg/ml, 24 hrs were performed. We found no marked differences in mitogenic reactivity, activation-induced apoptosis, and activation-induced Fas receptor expression when studying lymphocytes from healthy donors and psoriatic patients. However, PHA-activated lymphocytes from psoriatic patients displayed a significantly decreased ratio of AnnV+CD95+ to the total AnnV+ subpopulation, thus suggesting a decreased role of Fas-dependent mechanisms of apoptosis during the cell activation. The data obtained confirm a view, that an abnormal lymphocyte “apoptotic reactivity”, which plays a crucial role in the mechanisms of autoimmunity, may also of importance in the pathogenesis of psoriasis.

  7. Multi-level disruption of the extrinsic apoptotic pathway mediates resistance of leukemia cells to TNF-related apoptosis-inducing ligand (TRAIL).

    Science.gov (United States)

    Leahomschi, S; Molinsky, J; Klanova, M; Andera, L; Peterka, M; Gasova, Z; Klener, P; Trneny, M; Necas, E; Simonova, T; Zivny, J; Klener, P

    2013-01-01

    Disruption of apoptotic pathways belongs to commonly reported molecular mechanisms that underlie cancer drug resistance. Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL, Apo2L) is a cytokine of the TNF family with selective anti-tumor activity and minimal toxicity toward healthy tissues. Primary leukemia cells are, however, largely intrinsically resistant to TRAIL-induced apoptosis. In this study we analyzed molecular differences between TRAIL-resistant K562 cell line and TRAIL-sensitive K562 clones. We demonstrate that TRAIL-sensitive K562 cells differ from the TRAIL-resistant cell line by cell surface downregulation of TRAIL decoy receptor 1, upregulation of both TRAIL death receptors, enhanced assembly and improved functioning of the death-inducing signaling complex, and increased cytoplasmic protein expression of CASP8 and key proapoptotic BCL2 members BID, BIM, BAD and BAK. The molecular basis of the intrinsic leukemia cell TRAIL resistance thus appears a consequence of the multi-level disruption of the extrinsic apoptotic pathway. The results of this study also suggest that the leukemia TRAIL-resistance is functional, leaving a possibility of overcoming the resistance by preexposure of the leukemia cells to potent TRAIL sensitizers, e.g. BH3-mimetics.

  8. Activation of PKC-e counteracts maturation and apoptosis of HL-60 myeloid leukemic cells in response to TNF family members

    Directory of Open Access Journals (Sweden)

    A. Gonelli

    2009-09-01

    Full Text Available Protein kinase C (PKC-e, a component of the serine/threonine PKC family, has been shown to influence the survival and differentiation pathways of normal hematopoietic cells. Here, we have modulated the activity of PKC-e with specific small molecule activator or inhibitor peptides. PKC-e inhibitor and activator peptides showed modest effects on HL-60 maturation when added alone, but PKC-e activator peptide significantly counteracted the pro-maturative activity of tumor necrosis factor (TNF-a towards the monocytic/macrophagic lineage, as evaluated in terms of CD14 surface expression and morphological analyses. Moreover, while PKC-e inhibitor peptide showed a reproducible increase of TNF-related apoptosis inducing ligand (TRAIL-induced apoptosis, PKC-e activator peptide potently counteracted the pro-apoptotic activity of TRAIL. Taken together, the anti-maturative and anti-apoptotic activities of PKC-e envision a potentially important proleukemic role of this PKC family member.

  9. Effect of clenbuterol on apoptosis, adipogenesis, and lipolysis in adipocytes.

    Science.gov (United States)

    Kim, Hye-Kyeong; Della-Fera, Mary Anne; Hausman, Dorothy B; Baile, Clifton A

    2010-09-01

    Clenbuterol, a beta(2)-adrenergic receptor (beta(2)-AR) selective agonist, has been shown to decrease body fat in animals and can induce apoptosis in adipose tissue in mice. We hypothesized that direct actions of a beta-adrenergic receptor agonist on adipocytes could trigger the observed apoptotic effect. The hypothesis was inspected by investigating the direct effect of clenbuterol on apoptosis, adipogenesis, and lipolysis in vitro using the 3T3-L1 cell line and rat primary adipocytes. Cells were treated with 10(-9) to 10(-5) M clenbuterol depending on the experiments. There was no apoptotic effect of clenbuterol both in 3T3-L1 cells and rat primary adipocytes. Adipogenesis monitored by Oil Red O staining and AdipoRed assay was modestly decreased by clenbuterol treatment (p clenbuterol increased basal lipolysis compared with the control (p clenbuterol does not cause apoptosis in adipocytes, despite a direct lipolytic stimulation and attenuation of adipogenesis.

  10. Landing gear noise attenuation

    Science.gov (United States)

    Moe, Jeffrey W. (Inventor); Whitmire, Julia (Inventor); Kwan, Hwa-Wan (Inventor); Abeysinghe, Amal (Inventor)

    2011-01-01

    A landing gear noise attenuator mitigates noise generated by airframe deployable landing gear. The noise attenuator can have a first position when the landing gear is in its deployed or down position, and a second position when the landing gear is in its up or stowed position. The noise attenuator may be an inflatable fairing that does not compromise limited space constraints associated with landing gear retraction and stowage. A truck fairing mounted under a truck beam can have a compliant edge to allow for non-destructive impingement of a deflected fire during certain conditions.

  11. Dominant negative effects of tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) receptor 4 on TRAIL receptor 1 signaling by formation of heteromeric complexes.

    Science.gov (United States)

    Neumann, Simon; Hasenauer, Jan; Pollak, Nadine; Scheurich, Peter

    2014-06-06

    The cytokine TNF-related apoptosis-inducing ligand (TRAIL) and its cell membrane receptors constitute an elaborate signaling system fulfilling important functions in immune regulation and tumor surveillance. Activation of the death receptors TRAILR1 and TRAILR2 can lead to apoptosis, whereas TRAILR3 and TRAILR4 are generally referred to as decoy receptors, which have been shown to inhibit TRAIL-induced apoptosis. The underlying molecular mechanisms, however, remain unclear. Alike other members of the TNF receptor superfamily, TRAIL receptors contain a pre-ligand binding assembly domain (PLAD) mediating receptor oligomerization. Still, the stoichiometry of TRAIL receptor oligomers as well as the issue of whether the PLAD mediates only homotypic or also heterotypic interactions remained inconclusive until now. Performing acceptor-photobleaching FRET studies with receptors 1, 2, and 4, we demonstrate interactions in all possible combinations. Formation of dimers was shown by chemical cross-linking experiments for interactions of TRAILR2 and heterophilic interactions between the two death receptors or between either of the death receptors and TRAILR4. Implications of the demonstrated receptor-receptor interactions on signaling were investigated in suitable cellular models. Both apoptosis induction and activation of the transcription factor NFκB were significantly reduced in the presence of TRAILR4. Our experimental data combined with mathematical modeling show that the inhibitory capacity of TRAILR4 is attributable to signaling-independent mechanisms, strongly suggesting a reduction of signaling competent death receptors through formation heteromeric receptor complexes. In summary, we propose a model of TRAIL receptor interference driven by PLAD-mediated formation of receptor heterodimers on the cell membrane. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Apoptosis and inflammation

    Directory of Open Access Journals (Sweden)

    C. Haanen

    1995-01-01

    Full Text Available During the last few decades it has been recognized that cell death is not the consequence of accidental injury, but is the expression of a cell suicide programme. Kerr et al. (1972 introduced the term apoptosis. This form of cell death is under the influence of hormones, growth factors and cytokines, which depending upon the receptors present on the target cells, may activate a genetically controlled cell elimination process. During apoptosis the cell membrane remains intact and the cell breaks into apoptotic bodies, which are phagocytosed. Apoptosis, in contrast to necrosis, is not harmful to the host and does not induce any inflammatory reaction. The principal event that leads to inflammatory disease is cell damage, induced by chemical/physical injury, anoxia or starvation. Cell damage means leakage of cell contents into the adjacent tissues, resulting in the capillary transmigration of granulocytes to the injured tissue. The accumulation of neutrophils and release of enzymes and oxygen radicals enhances the inflammatory reaction. Until now there has been little research into the factors controlling the accumulation and the tissue load of granulocytes and their histotoxic products in inflammatory processes. Neutrophil apoptosis may represent an important event in the control of intlamtnation. It has been assumed that granulocytes disintegrate to apoptotic bodies before their fragments are removed by local macrophages. Removal of neutrophils from the inflammatory site without release of granule contents is of paramount importance for cessation of inflammation. In conclusion, apoptotic cell death plays an important role in inflammatory processes and in the resolution of inflammatory reactions. The facts known at present should stimulate further research into the role of neutrophil, eosinophil and macrophage apoptosis in inflammatory diseases.

  13. Podocyte hypertrophy precedes apoptosis under experimental diabetic conditions.

    Science.gov (United States)

    Lee, Sun Ha; Moon, Sung Jin; Paeng, Jisun; Kang, Hye-Young; Nam, Bo Young; Kim, Seonghun; Kim, Chan Ho; Lee, Mi Jung; Oh, Hyung Jung; Park, Jung Tak; Han, Seung Hyeok; Yoo, Tae-Hyun; Kang, Shin-Wook

    2015-08-01

    Podocyte hypertrophy and apoptosis are two hallmarks of diabetic glomeruli, but the sequence in which these processes occur remains a matter of debate. Here we investigated the effects of inhibiting hypertrophy on apoptosis, and vice versa, in both podocytes and glomeruli, under diabetic conditions. Hypertrophy and apoptosis were inhibited using an epidermal growth factor receptor inhibitor (PKI 166) and a pan-caspase inhibitor (zAsp-DCB), respectively. We observed significant increases in the protein expression of p27, p21, phospho-eukaryotic elongation factor 4E-binding protein 1, and phospho-p70 S6 ribosomal protein kinase, in both cultured podocytes exposed to high-glucose (HG) medium, and streptozotocin-induced diabetes mellitus (DM) rat glomeruli. These increases were significantly inhibited by PKI 166, but not by zAsp-DCB. In addition, the amount of protein per cell, the relative cell size, and the glomerular volume were all significantly increased under diabetic conditions, and these changes were also blocked by treatment with PKI 166, but not zAsp-DCB. Increased protein expression of cleaved caspase-3 and cleaved poly (ADP-ribose) polymerase, together with increased Bax/Bcl-2 ratios, were also observed in HG-stimulated podocytes and DM glomeruli. Treatment with either zAsp-DCB or PKI 166 resulted in a significant attenuation of these effects. Both PKI 166 and zAsp-DCB also inhibited the increase in number of apoptotic cells, as assessed by Hoechst 33342 staining and TUNEL assay. Under diabetic conditions, inhibition of podocyte hypertrophy results in attenuated apoptosis, whereas blocking apoptosis has no effect on podocyte hypertrophy, suggesting that podocyte hypertrophy precedes apoptosis.

  14. APOPTOSIS AND CHRONIC CARDIAC INSUFFICIENCY

    Directory of Open Access Journals (Sweden)

    A.G. Gasanov

    2009-01-01

    Full Text Available Research into molecular apoptosis mechanisms in patients with cardio-vascular diseases is one of the pressing issues in modern medicine. Many mechanisms of this phenomenon still remain unexamined, the role of inductors and regulators in cardiomyocyte apoptosis has not yet been fully explained. This review summarizes research data that analyze the role that various groups of cell death inductors and regulators, such as FasL, Fas-R and mitochondrial apoptosis factors. Influence of the Bcl-2 protein family as apoptosis regulators is described. Developments in programmed cell death are reviewed.Key words: apoptosis, cell death mechanisms, mitochondria, cardiamyocytes.

  15. Novel Intriguing Strategies Attenuating to Sarcopenia

    Directory of Open Access Journals (Sweden)

    Kunihiro Sakuma

    2012-01-01

    Full Text Available Sarcopenia, the age-related loss of skeletal muscle mass, is characterized by a deterioration of muscle quantity and quality leading to a gradual slowing of movement, a decline in strength and power, increased risk of fall-related injury, and, often, frailty. Since sarcopenia is largely attributed to various molecular mediators affecting fiber size, mitochondrial homeostasis, and apoptosis, the mechanisms responsible for these deleterious changes present numerous therapeutic targets for drug discovery. Resistance training combined with amino acid-containing supplements is often utilized to prevent age-related muscle wasting and weakness. In this review, we summarize more recent therapeutic strategies (myostatin or proteasome inhibition, supplementation with eicosapentaenoic acid (EPA or ursolic acid, etc. for counteracting sarcopenia. Myostatin inhibitor is the most advanced research with a Phase I/II trial in muscular dystrophy but does not try the possibility for attenuating sarcopenia. EPA and ursolic acid seem to be effective as therapeutic agents, because they attenuate the degenerative symptoms of muscular dystrophy and cachexic muscle. The activation of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α in skeletal muscle by exercise and/or unknown supplementation would be an intriguing approach to attenuating sarcopenia. In contrast, muscle loss with age may not be influenced positively by treatment with a proteasome inhibitor or antioxidant.

  16. A viral vector expressing hypoxia-inducible factor 1 alpha inhibits hippocampal neuronal apoptosis

    OpenAIRE

    Chai, Xiqing; Kong, Weina; Liu, Lingyun; Yu, Wenguo; Zhang, Zhenqing; Sun, Yimin

    2014-01-01

    Hypoxia-inducible factor 1 (HIF-1) attenuates amyloid-beta protein neurotoxicity and decreases apoptosis induced by oxidative stress or hypoxia in cortical neurons. In this study, we constructed a recombinant adeno-associated virus (rAAV) vector expressing the human HIF-1α gene (rAAV-HIF-1α), and tested the assumption that rAAV-HIF-1α represses hippocampal neuronal apoptosis induced by amyloid-beta protein. Our results confirmed that rAAV-HIF-1α significantly reduces apoptosis induced by amyl...

  17. The sesquiterpene lactone eupatolide sensitizes breast cancer cells to TRAIL through down-regulation of c-FLIP expression.

    Science.gov (United States)

    Lee, Jongkyu; Hwangbo, Cheol; Lee, Jung Joon; Seo, Juhee; Lee, Jeong-Hyung

    2010-01-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising candidate for cancer therapeutics due to its ability to induce apoptosis selectively in cancer cells. However, sensitivity of cancer cells for induction of apoptosis by TRAIL varies considerably. Therefore, it is important to develop agents that overcome this resistance. We show, for the first time, that eupatolide, the sesquiterpene lactone isolated from the medicinal plant Inula britannica, sensitizes human breast cancer cells to TRAIL-induced apoptosis. Treatment with TRAIL in combination with subtoxic concentrations of eupatolide enhanced the TRAIL-induced cytotoxicity in MCF-7, MDA-MB-231 and MDA-MB-453 breast cancer cells, whereas each reagent alone slightly induced cell death. The combination induced sub-G1 phase DNA content and annexin V-staining in MCF-7 cells, which are major features of apoptosis. Apoptotic characteristics induced by the combined treatment were significantly inhibited by a pan-caspase inhibitor. The sensitization to TRAIL-induced apoptosis was accompanied by the activation of caspase-8 and was concomitant with Bid and poly(ADP-ribose) polymerase (PARP) cleavage. Treatment of eupatolide alone significantly down-regulated the expression of cellular FLICE inhibitory protein (c-FLIP) in MCF-7 cells. Furthermore, enforced expression of c-FLIP significantly attenuated the apoptosis induced by this combination in MCF-7 cells, suggesting a key role for c-FLIP down-regulation in these events. We also observed that euaptolide inhibited AKT phosphorylation in a dose- and time-dependent manner. Moreover, inhibition of Akt by LY294002, a specific PI3K inhibitor, down-regulated c-FLIP expression in MCF-7 cells. Taken together, these results indicate that eupatolide could augment TRAIL-induced apoptosis in human breast cancer cells by down-regulating c-FLIP expression through the inhibition of AKT phosphorylation and be a valuable compound to overcome TRAIL resistance in

  18. Cathepsin B is involved in the heat shock induced cardiomyocytes apoptosis as well as the anti-apoptosis effect of HSP-70.

    Science.gov (United States)

    Hsu, Shu-Fen; Hsu, Chuan-Chih; Cheng, Bor-Chih; Lin, Cheng-Hsien

    2014-11-01

    Cathepsin B is one of the major lysosomal cysteine proteases that plays an important role in apoptosis. Herein, we investigated whether Cathepsin B is involved in cardiomyocyte apoptosis caused by hyperthermic injury (HI) and heat shock protein (HSP)-70 protects these cells from HI-induced apoptosis mediated by Cathepsin. HI was produced in H9C2 cells by putting them in a circulating 43 °C water bath for 120 min, whereas preinduction of HSP-70 was produced in H9C2 cells by mild heat preconditioning (or putting them in 42 °C water bath for 30 min) 8 h before the start of HI. It was found that HI caused both cardiomyocyte apoptosis and increased Cathepsin B activity in H9C2 cells. E-64-c, in addition to reducing Cathepsin B activity, significantly attenuated HI-induced cardiomyocyte apoptosis (evidenced by increased apoptotic cell numbers, increased tuncated Bid (t-Bid), increased cytochrome C, increased caspase-9/-3, and decreased Bcl-2/Bax) in H9C2 cells. In addition, preinduction of HSP-70 by mild heat preconditioning or inhibition of HSP-70 by Tripolide significantly attenuated or exacerbated respectively both the cardiomyocyte apoptosis and increased Cathepsin B activity in H9C2 cells. Furthermore, the beneficial effects of pre-induction of HSP-70 by mild heat production in reducing both cardiomyocyte apoptosis and increased Cathepsin B activity caused by HI can be significantly reduced by Triptolide preconditioning. These results indicate that Cathepsin B is involved in HI-induced cardiomyocyte apoptosis in H9C2 cells and HSP-70 protects these cells from HI-induced cardiomyocyte apoptosis through Cathepsin B pathways.

  19. Bim is a crucial regulator of apoptosis induced by Mycobacterium tuberculosis

    Science.gov (United States)

    Aguiló, N; Uranga, S; Marinova, D; Martín, C; Pardo, J

    2014-01-01

    Mycobacterium tuberculosis, the causative agent of tuberculosis, induces apoptosis in infected macrophages in vitro and in vivo. However, the molecular mechanism controlling this process is not known. In order to study the involvement of the mitochondrial apoptotic pathway in M. tuberculosis-induced apoptosis, we analysed cell death in M. tuberculosis-infected embryonic fibroblasts (MEFs) derived from different knockout mice for genes involved in this route. We found that apoptosis induced by M. tuberculosis is abrogated in the absence of Bak and Bax, caspase 9 or the executioner caspases 3 and 7. Notably, we show that MEF deficient in the BH3-only BCL-2-interacting mediator of cell death (Bim) protein were also resistant to this process. The relevance of these results has been confirmed in the mouse macrophage cell line J774, where cell transfection with siRNA targeting Bim impaired apoptosis induced by virulent mycobacteria. Notably, only infection with a virulent strain, but not with attenuated ESX-1-defective strains, such as Bacillus Calmette-Guerin and live-attenuated M. tuberculosis vaccine strain MTBVAC, induced Bim upregulation and apoptosis, probably implicating virulence factor early secreted antigenic target 6-kDa protein in this process. Our results suggest that Bim upregulation and apoptosis is mediated by the p38MAPK-dependent pathway. Our findings show that Bim is a master regulator of apoptosis induced by M. tuberculosis. PMID:25032866

  20. Fullerene and apoptosis

    Directory of Open Access Journals (Sweden)

    M. A. Orlova

    2013-01-01

    Full Text Available Fullerene derivatives superfamily attracts a serious attention as antiviral and anticancer agents and drug delivery carriers as well. A large number of such fullerene С60 derivatives obtained to date. However, there is an obvious deficit of information about causes and mechanisms of immediately and long-term consequences of their effects in vivo which is a true obstacle on the way leading to practical medical use of them. First, this concerns their impact on the proliferation, apoptosis and necrosis regulation. Fullerene nanoparticle functionalization type, their sizes and surface nanopathology are of great importance to further promoting of either cytoprotective or cytotoxic effects. This lecture provides modern concept analysis regarding fullerenes effects on apoptosis pathway in normal and tumor cells.

  1. Cl- channels in apoptosis

    DEFF Research Database (Denmark)

    Wanitchakool, Podchanart; Ousingsawat, Jiraporn; Sirianant, Lalida

    2016-01-01

    A remarkable feature of apoptosis is the initial massive cell shrinkage, which requires opening of ion channels to allow release of K(+), Cl(-), and organic osmolytes to drive osmotic water movement and cell shrinkage. This article focuses on the role of the Cl(-) channels LRRC8, TMEM16/anoctamin......, and cystic fibrosis transmembrane conductance regulator (CFTR) in cellular apoptosis. LRRC8A-E has been identified as a volume-regulated anion channel expressed in many cell types. It was shown to be required for regulatory and apoptotic volume decrease (RVD, AVD) in cultured cell lines. Its presence also......(-) channels or as regulators of other apoptotic Cl(-) channels, such as LRRC8. CFTR has been known for its proapoptotic effects for some time, and this effect may be based on glutathione release from the cell and increase in cytosolic reactive oxygen species (ROS). Although we find that CFTR is activated...

  2. Radiofrequency attenuator and method

    Science.gov (United States)

    Warner, Benjamin P [Los Alamos, NM; McCleskey, T Mark [Los Alamos, NM; Burrell, Anthony K [Los Alamos, NM; Agrawal, Anoop [Tucson, AZ; Hall, Simon B [Palmerston North, NZ

    2009-01-20

    Radiofrequency attenuator and method. The attenuator includes a pair of transparent windows. A chamber between the windows is filled with molten salt. Preferred molten salts include quarternary ammonium cations and fluorine-containing anions such as tetrafluoroborate (BF.sub.4.sup.-), hexafluorophosphate (PF.sub.6.sup.-), hexafluoroarsenate (AsF.sub.6.sup.-), trifluoromethylsulfonate (CF.sub.3SO.sub.3.sup.-), bis(trifluoromethylsulfonyl)imide ((CF.sub.3SO.sub.2).sub.2N.sup.-), bis(perfluoroethylsulfonyl)imide ((CF.sub.3CF.sub.2SO.sub.2).sub.2N.sup.-) and tris(trifluoromethylsulfonyl)methide ((CF.sub.3SO.sub.2).sub.3C.sup.-). Radicals or radical cations may be added to or electrochemically generated in the molten salt to enhance the RF attenuation.

  3. Apoptosis and DNA Methylation

    Directory of Open Access Journals (Sweden)

    Richard R. Meehan

    2011-04-01

    Full Text Available Epigenetic mechanisms assist in maintaining gene expression patterns and cellular properties in developing and adult tissues. The molecular pathology of disease states frequently includes perturbation of DNA and histone methylation patterns, which can activate apoptotic pathways associated with maintenance of genome integrity. This perspective focuses on the pathways linking DNA methyltransferases and methyl-CpG binding proteins to apoptosis, and includes new bioinformatic analyses to characterize the evolutionary origin of two G/T mismatch-specific thymine DNA glycosylases, MBD4 and TDG.

  4. Thymoquinone suppression of the human hepatocellular carcinoma cell growth involves inhibition of IL-8 expression, elevated levels of TRAIL receptors, oxidative stress and apoptosis.

    Science.gov (United States)

    Ashour, Abdelkader E; Abd-Allah, Adel R; Korashy, Hesham M; Attia, Sabry M; Alzahrani, Abdelrahman Z; Saquib, Quaiser; Bakheet, Saleh A; Abdel-Hamied, Hala E; Jamal, Shazia; Rishi, Arun K

    2014-04-01

    Hepatocellular carcinoma (HCC) is the fourth most common solid tumor worldwide. The chemokine interleukin-8 (IL-8) is overexpressed in HCC and is a potential target for therapy. Although the transcription factor NF-κB regulates IL-8 expression, and while thymoquinone (TQ; the most bioactive constituent of black seed oil) inhibits NF-κB activity, the precise mechanisms by which TQ regulates IL-8 and cancer cell growth remain to be clarified. Here, we report that TQ inhibited growth of HCC cells in a dose- and time-dependent manner, caused G2M cell cycle arrest, and stimulated apoptosis. Apoptosis was substantiated by activation of caspase-3 and -9, as well as cleavage of poly(ADP-ribose)polymerase. TQ treatments inhibited expression of NF-κB and suppressed IL-8 and its receptors. TQ treatments caused increased levels of reactive oxygen species (ROS) and mRNAs of oxidative stress-related genes, NQO1 and HO-1. Pretreatment of HepG2 cells with N-acetylcysteine, a scavenger of ROS, prevented TQ-induced cell death. TQ treatment stimulated mRNA expression of pro-apoptotic Bcl-xS and TRAIL death receptors, and inhibited expression of the anti-apoptotic gene Bcl-2. TQ enhanced TRAIL-induced death of HepG2 cells, in part by up-regulating TRAIL death receptors, inhibiting NF-κB and IL-8 and stimulating apoptosis. Altogether, these findings provide insights into the pleiotropic molecular mechanisms of TQ-dependent suppression of HCC cell growth and underscore potential of this compound as anti-HCC drug.

  5. Natural attenuation of herbicides

    DEFF Research Database (Denmark)

    Tuxen, Nina; Højberg, Anker Lajer; Broholm, Mette Martina

    2002-01-01

    A field injection experiment in a sandy, aerobic aquifer showed that two phenoxy acids MCPP (mecoprop) and dichlorprop were degraded within I in downgradient of the injection wells after an apparent lag period. The plume development and microbial measurements indicated that microbial growth....... The observations may be important for application of natural attenuation as a remedy in field scale systems....

  6. Reassessing apoptosis in plants.

    Science.gov (United States)

    Dickman, Martin; Williams, Brett; Li, Yurong; de Figueiredo, Paul; Wolpert, Thomas

    2017-10-01

    Cell death can be driven by a genetically programmed signalling pathway known as programmed cell death (PCD). In plants, PCD occurs during development as well as in response to environmental and biotic stimuli. Our understanding of PCD regulation in plants has advanced significantly over the past two decades; however, the molecular machinery responsible for driving the system remains elusive. Thus, whether conserved PCD regulatory mechanisms include plant apoptosis remains enigmatic. Animal apoptotic regulators, including Bcl-2 family members, have not been identified in plants but expression of such regulators can trigger or suppress plant PCD. Moreover, plants exhibit nearly all of the biochemical and morphological features of apoptosis. One difference between plant and animal PCD is the absence of phagocytosis in plants. Evidence is emerging that the vacuole may be key to removal of unwanted plant cells, and may carry out functions that are analogous to animal phagocytosis. Here, we provide context for the argument that apoptotic-like cell death occurs in plants.

  7. Apoptosis Resistance in Endometriosis

    Directory of Open Access Journals (Sweden)

    Liselotte Mettler

    2011-08-01

    Full Text Available Introduction: In a cytological analysis of endometriotic lesions neither granulocytes nor cytotoxic T-cells appear in an appreciable number. Based on this observation we aimed to know, whether programmed cell death plays an essential role in the destruction of dystopic endometrium. Disturbances of the physiological mechanisms of apoptosis, a persistence of endometrial tissue could explain the disease. Another aspect of this consideration is the proliferation competence of the dystopic mucous membrane. Methods: Endometriotic lesions of 15 patients were examined through a combined measurement of apoptosis activity with the TUNEL technique (terminal deoxyribosyltransferase mediated dUTP Nick End Labeling and the proliferation activity (with the help of the Ki-67-Antigens using the monoclonal antibody Ki-S5. Results: Twelve out of 15 women studied showed a positive apoptotic activity of 3-47% with a proliferation activity of 2-25% of epithelial cells. Therefore we concluded that the persistence of dystopic endometrium requires proliferative epithelial cells from middle to lower endometrial layers. Conclusion: A dystopia misalignment of the epithelia of the upper layers of the functionalism can be rapidly eliminated by apoptotic procedures.

  8. Nucleolus and apoptosis.

    Science.gov (United States)

    Horký, M; Kotala, V; Anton, M; Wesierska-Gadek, J

    2002-11-01

    The nucleolus represents a highly dynamic nuclear compartment of the interphase nucleus. It plays a key role in ribosome biogenesis. The number of nucleoli, their size, and their activity increase in exponentially growing cells; therefore these parameters reflect the proliferating activity of the cells. A variety of staining techniques have been employed to vizualize nucleolar changes in malignant cells. Staining of so-called nucleolar organizer regions (NORs), based upon a strong avidity of nucleolar proteins to bind silver ions, represents the technique most frequently used by pathologists. Nucleolar changes and pleomorphism associated with overt proliferation of tumor cells have also been documented by immunohistochemical and ultrastructural studies. Contrary to cell proliferation, cytostatics-induced changes of nucleolar phenotype in malignant cells point to a potential role of nucleolar components in the execution of active cell death. Recent studies have provided direct clues that so-called death domains and other apoptosis-related proteins are accumulated in nucleoli upon induction of active cell death. It can be concluded that the plurifunctionality of nucleoli regarding cell proliferation and apoptosis could open new vistas toward understanding dysregulation in malignant cells.

  9. Targeting Dynamin 2 as a Novel Pathway to Inhibit Cardiomyocyte Apoptosis Following Oxidative Stress.

    Science.gov (United States)

    Gao, Danchen; Yang, Jian; Wu, Yutao; Wang, Qiwen; Wang, Qiaoling; Lai, En Yin; Zhu, Jianhua

    2016-01-01

    Inhibition of Drp-1-mediated mitochondrial fission limits reactive oxygen species (ROS) production and apoptosis in cardiomyocytes subjected to ischemia/reperfusion injury. It remains unknown if Dynamin 2 inhibition results in similar protective effects. Here we studied the role of Dynamin 2 in cardiomyocyte oxidative stress-induced apoptosis and ROS production. The effect of lentiviral shRNA (lv5-shRNA) mediated Dynamin 2 knockdown on apopotosis, mitochondria, and ROS production were studied in neonatal mouse cardiomycytes, which were further treated with either selective Drp1 inhibitor mdivi-1 or the Dynamin 2/Drp1 inhibitor Dynasore. Apoptosis was evaluated by flow cytometry. Mitochondrial morphology and transmembrane potential (ΔΨm) were studied by confocal microscopy, and ROS production was detected by dichlorofluorescein diacetate. Inhibition of Drp1 and Dynamin 2 protected against mitochondrial fragmentation, maintained ΔΨm, attenuated cellular ROS production and limited apoptosis. Moreover, Lv5-shRNA mediated knockdown of Dynamin 2 alleviated mitochondrial fragmentation, and reduced both ROS production and oxidative stress-induced apoptosis. The protective effects of Dynamin 2 knockdown were enhanced by Dynasore, indicating an added benefit. Oxidative stress-induced apoptosis and ROS production are attenuated by not only Drp1 inhibition but also Dynamin 2 inhibition, implicating Dynamin 2 as a mediator of oxidative stress in cardiomyocytes. © 2016 The Author(s) Published by S. Karger AG, Basel.

  10. El coactivador de receptores nucleares RAC3 tiene un rol protector de la Apoptosis inducida por distintos estímulos RAC3 nuclear receptor co-activator has a protective role in the apoptosis induced by different stimuli

    Directory of Open Access Journals (Sweden)

    Georgina P. Coló

    2007-10-01

    of RAC3 if compared with the non-tumoral HEK293 cells. The normal or transfected coactivator over-expression inhibits apoptosis through a diminished caspase activity and AIF nuclear translocation, increased NF-kappa;B, AKT and p38, and decreased ERK activities. In contrast, inhibition of RAC3 by siRNA induced sensitivity of K562 to TRAIL-induced apoptosis. Such results suggest that over-expression of RAC3 contributes to tumor development through molecular mechanisms that do not depend strictly on acetylation and/or steroid hormones, which control cell death. This could be a possible target for future tumor therapies.

  11. Fluid dynamic bowtie attenuators

    Science.gov (United States)

    Szczykutowicz, Timothy P.; Hermus, James

    2015-03-01

    Fluence field modulated CT allows for improvements in image quality and dose reduction. To date, only 1-D modulators have been proposed, the extension to 2-D modulation is difficult with solid-metal attenuation-based modulators. This work proposes to use liquids and gas to attenuate the x-ray beam which can be arrayed allowing for 2-D fluence modulation. The thickness of liquid and the pressure for a given path length of gas were determined that provided the same attenuation as 30 cm of soft tissue at 80, 100, 120, and 140 kV. Gaseous Xenon and liquid Iodine, Zinc Chloride, and Cerium Chloride were studied. Additionally, we performed some proof-of-concept experiments in which (1) a single cell of liquid was connected to a reservoir which allowed the liquid thickness to be modulated and (2) a 96 cell array was constructed in which the liquid thickness in each cell was adjusted manually. Liquid thickness varied as a function of kV and chemical composition, with Zinc Chloride allowing for the smallest thickness; 1.8, 2.25, 3, and 3.6 cm compensated for 30 cm of soft tissue at 80, 100, 120, and 140 kV respectively. The 96 cell Iodine attenuator allowed for a reduction in both dynamic range to the detector and scatter to primary ratio. Successful modulation of a single cell was performed at 0, 90, and 130 degrees using a simple piston/actuator. The thickness of liquids and the Xenon gas pressure seem logistically implementable within the constraints of CBCT and diagnostic CT systems.

  12. The Neurokinin-1 Receptor Modulates the Methamphetamine-Induced Striatal Apoptosis and Nitric Oxide Formation in Mice

    OpenAIRE

    Zhu, Judy; Xu, Wenjing; Wang, Jing; Ali, Syed F.; Angulo, Jesus A.

    2009-01-01

    In a previous study we showed that pharmacological blockade of the neurokinin-1 receptors attenuated the methamphetamine-induced toxicity of the striatal dopamine terminals. In the present study we examined the role of the neurokinin-1 receptors on the methamphetamine-induced apoptosis of some striatal neurons. To that end, we administered a single injection of METH (30 mg/kg, i.p.) to male mice. METH induced the apoptosis (TUNEL) of approximately 20% of striatal neurons. This percentage of M...

  13. Sulforaphane Prevents Neuronal Apoptosis and Memory Impairment in Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Gengyin Wang

    2016-08-01

    Full Text Available Background/Aims: To explore the effects of sulforaphane (SFN on neuronal apoptosis in hippocampus and memory impairment in diabetic rats. Methods: Thirty male rats were randomly divided into normal control, diabetic model and SFN treatment groups (N = 10 in each group. Streptozotocin (STZ was applied to establish diabetic model. Water Morris maze task was applied to test learning and memory. Tunel assaying was used to detect apoptosis in hippocampus. The expressions of Caspase-3 and myeloid cell leukemia 1(MCL-1 were detected by western blotting. Neurotrophic factor levels and AKT/GSK3β pathway were also detected. Results: Compared with normal control, learning and memory were apparently impaired, with up-regulation of Caspase-3 and down-regulation of MCL-1 in diabetic rats. Apoptotic neurons were also found in CA1 region after diabetic modeling. By contrast, SFN treatment prevented the memory impairment, decreased the apoptosis of hippocampal neurons. SFN also attenuated the abnormal expression of Caspase-3 and MCL-1 in diabetic model. Mechanically, SFN treatment reversed diabetic modeling-induced decrease of p-Akt, p-GSK3β, NGF and BDNF expressions. Conclusion: SFN could prevent the memory impairment and apoptosis of hippocampal neurons in diabetic rat. The possible mechanism was related to the regulation of neurotropic factors and Akt/GSK3β pathway.

  14. Punicalagin promotes autophagy to protect primary human syncytiotrophoblasts from apoptosis.

    Science.gov (United States)

    Wang, Ying; Chen, Baosheng; Longtine, Mark S; Nelson, D Michael

    2016-02-01

    Punicalagin is a prominent polyphenol in pomegranate juice that protects cultured syncytiotrophoblasts from stress-induced apoptosis. Here, we test the hypothesis that punicalagin has this effect by inhibiting the mTOR kinase pathway to enhance autophagic turnover and limit apoptosis in cultured primary human syncytiotrophoblasts. In syncytiotrophoblasts, starvation, rapamycin, or punicalagin all decreased the expression of phosphorylated ribosomal protein S6, a downstream target of the mTOR kinase, and of the autophagy markers, LC3-II and p62. In contrast, in the presence of bafilomycin, an inhibitor of late stages of autophagy and degradation in the autophagolysosome, syncytiotrophoblasts exposed to starvation, rapamycin, or punicalagin all showed increased levels of LC3-II and p62. The number of LC3-II punctae also increased in punicalagin-treated syncytiotrophoblasts exposed to chloroquine, another inhibitor of autophagic degradation, and punicalagin increased the number of lysosomes. The apoptosis-reducing effect of punicalagin was attenuated by inhibition of autophagy using bafilomycin or knockdown of the autophagy related gene, ATG16L1. Collectively, these data support the hypothesis that punicalagin modulates the crosstalk between autophagy and apoptosis to promote survival in cultured syncytiotrophoblasts. © 2016 Society for Reproduction and Fertility.

  15. Formaldehyde suppresses neuronal apoptosis via inhibition of outward K(+) currents in rat hippocampus.

    Science.gov (United States)

    Liu, Pei; Guo, Jianli; Qi, Zhi

    2011-11-01

    Formaldehyde (FA) is widely present in the environment, and is also a mammalian metabolite. However, its biological role has not been well understood. Here, we show that FA plays an anti-apoptotic role in cultured hippocampal neurons: FA suppressed staurosporine-induced neuronal apoptosis and inhibited the activity of apoptosis-associated caspase-3/7 proteases in a concentration-dependent manner. Moreover, FA suppressed outward K(+) currents and attenuated the enhanced IK currents that are associated with neuronal apoptosis. As an increase in outward K(+) currents is critical for cell apoptosis, our results suggest that FA exerts its anti-apoptotic effects on neuronal cells, probably through its inhibitory effect on the outward K(+) currents.

  16. Malaria parasite liver stages render host hepatocytes susceptible to mitochondria-initiated apoptosis.

    Science.gov (United States)

    Kaushansky, A; Metzger, P G; Douglass, A N; Mikolajczak, S A; Lakshmanan, V; Kain, H S; Kappe, S Hi

    2013-08-08

    Intracellular eukaryotic parasites and their host cells constitute complex, coevolved cellular interaction systems that frequently cause disease. Among them, Plasmodium parasites cause a significant health burden in humans, killing up to one million people annually. To succeed in the mammalian host after transmission by mosquitoes, Plasmodium parasites must complete intracellular replication within hepatocytes and then release new infectious forms into the blood. Using Plasmodium yoelii rodent malaria parasites, we show that some liver stage (LS)-infected hepatocytes undergo apoptosis without external triggers, but the majority of infected cells do not, and can also resist Fas-mediated apoptosis. In contrast, apoptosis is dramatically increased in hepatocytes infected with attenuated parasites. Furthermore, we find that blocking total or mitochondria-initiated host cell apoptosis increases LS parasite burden in mice, suggesting that an anti-apoptotic host environment fosters parasite survival. Strikingly, although LS infection confers strong resistance to extrinsic host hepatocyte apoptosis, infected hepatocytes lose their ability to resist apoptosis when anti-apoptotic mitochondrial proteins are inhibited. This is demonstrated by our finding that B-cell lymphoma 2 family inhibitors preferentially induce apoptosis in LS-infected hepatocytes and significantly reduce LS parasite burden in mice. Thus, targeting critical points of susceptibility in the LS-infected host cell might provide new avenues for malaria prophylaxis.

  17. Shikonin ameliorates isoproterenol (ISO)-induced myocardial damage through suppressing fibrosis, inflammation, apoptosis and ER stress.

    Science.gov (United States)

    Yang, Jun; Wang, Zhao; Chen, Dong-Lin

    2017-09-01

    Shikonin, isolated from the roots of herbal plant Lithospermum erythrorhizon, is a naphthoquinone. It has been reported to exert beneficial anti-inflammatory effects and anti-oxidant properties in various diseases. Isoproterenol (ISO) has been widely used to establish cardiac injury in vivo and in vitro. However, shikonin function in ISO-induced cardiac injury remains uncertain. In our study, we attempted to investigate the efficiency and possible molecular mechanism of shikonin in cardiac injury treatment induced by ISO. In vivo, C57BL6 mice were subcutaneously injected with 5mg/kg ISO to induce heart failure. And mice were given a gavage of shikonin (2 or 4mg/kg/d, for four weeks). Cardiac function, fibrosis indices, inflammation response, apoptosis and endoplasmic reticulum (ER) stress were calculated. Pathological alterations, fibrosis-, inflammation-, apoptosis- and ER stress-related molecules were examined. In ISO-induced cardiac injury, shikonin significantly ameliorated heart function, decreased myocardial fibrosis, suppressed inflammation, attenuated apoptosis and ER stress through impeding collagen accumulation, Toll like receptor 4/nuclear transcription factor κB (TLR4/NF-κB), Caspase-3 and glucose-regulated protein 78 (GRP78) signaling pathways activity, relieving heart failure in vivo. Also, in vitro, shikonin attenuated ISO-induced cardiac muscle cells by reducing fibrosis, inflammation, apoptosis and ER stress. Our findings indicated that shikonin treatment attenuated ISO-induced heart injury, providing an effective therapeutic strategy for heart failure treatment for future. Copyright © 2017. Published by Elsevier Masson SAS.

  18. Activating transcription factor 4 is involved in endoplasmic reticulum stress-mediated apoptosis contributing to vascular calcification.

    Science.gov (United States)

    Duan, Xiao-Hui; Chang, Jin-Rui; Zhang, Jing; Zhang, Bao-Hong; Li, Yu-Lin; Teng, Xu; Zhu, Yi; Du, Jie; Tang, Chao-Shu; Qi, Yong-Fen

    2013-09-01

    Our previous work reported that endoplasmic reticulum stress (ERS)-mediated apoptosis was activated during vascular calcification (VC). Activating transcription factor 4 (ATF4) is a critical transcription factor in osteoblastogenesis and ERS-induced apoptosis. However, whether ATF4 is involved in ERS-mediated apoptosis contributing to VC remains unclear. In the present study, in vivo VC was induced in rats by administering vitamin D3 plus nicotine. Vascular smooth muscle cell (VSMC) calcification in vitro was induced by incubation in calcifying media containing β-glycerophosphate and CaCl2. ERS inhibitors taurine or 4-phenylbutyric acid attenuated ERS and VSMC apoptosis in calcified rat arteries, reduced calcification and retarded the VSMC contractile phenotype transforming into an osteoblast-like phenotype in vivo. Inhibition of ERS retarded the VSMC phenotypic transition into an osteoblast-like cell phenotype and reduced VSMC calcification and apoptosis in vitro. Interestingly, ATF4 was activated in calcified aortas and calcified VSMCs in vitro. ATF4 knockdown attenuated ERS-induced apoptosis in calcified VSMCs. ATF4 deficiency blocked VSMC calcification and negatively regulated the osteoblast phenotypic transition of VSMCs in vitro. Our results demonstrate that ATF4 was involved at least in part in the process of ERS-mediated apoptosis contributing to VC.

  19. Methylselenium and Prostate Cancer Apoptosis

    National Research Council Canada - National Science Library

    Lu, Junxuan

    2008-01-01

    The purpose of this research is to gain a better understanding of the biochemical pathways and molecular targets for the selective induction of apoptosis signaling and execution of prostate cancer (PCa...

  20. Methylselenium and Prostate Cancer Apoptosis

    National Research Council Canada - National Science Library

    Lu, Junxuan

    2006-01-01

    The purpose of this research is to gain a better understanding of the biochemical pathways and molecular targets for the selective induction of apoptosis signaling and execution of prostate cancer (PCa...

  1. Methylselenium and Prostate Cancer Apoptosis

    National Research Council Canada - National Science Library

    Lu, Junxuan

    2007-01-01

    The purpose of this research is to gain a better understanding of the biochemical pathways and molecular targets for the selective induction of apoptosis signaling and execution of prostate cancer (PCa...

  2. Methylselenium and Prostate Cancer Apoptosis

    National Research Council Canada - National Science Library

    Lu, Junxuan

    2003-01-01

    The purpose of this research is to gain a better understanding of the biochemical pathways and molecular targets for the selective induction of apoptosis signaling and execution of PCa cells by methyl selenium (Se...

  3. Methylselenium and Prostate Cancer Apoptosis

    National Research Council Canada - National Science Library

    Lu, Junxuan

    2004-01-01

    The purpose of this research is to gain a better understanding of the biochemical pathways and molecular targets for the selective induction of apoptosis signaling and execution of PCa cells by methyl selenium (Se)/selenol...

  4. Methylselenium and Prostate Cancer Apoptosis

    National Research Council Canada - National Science Library

    Lu, Junxuan

    2005-01-01

    The purpose of this research is to gain a better understanding of the biochemical pathways and molecular targets for the selective induction of apoptosis signaling and execution of prostate cancer (PCa...

  5. Novel Piperazine-based Compounds Inhibit Microtubule Dynamics and Sensitize Colon Cancer Cells to Tumor Necrosis Factor-induced Apoptosis*

    Science.gov (United States)

    Chopra, Avijeet; Anderson, Amy; Giardina, Charles

    2014-01-01

    We recently identified a series of mitotically acting piperazine-based compounds that potently increase the sensitivity of colon cancer cells to apoptotic ligands. Here we describe a structure-activity relationship study on this compound class and identify a highly active derivative ((4-(3-chlorophenyl)piperazin-1-yl)(2-ethoxyphenyl)methanone), referred to as AK301, the activity of which is governed by the positioning of functional groups on the phenyl and benzoyl rings. AK301 induced mitotic arrest in HT29 human colon cancer cells with an ED50 of ≈115 nm. Although AK301 inhibited growth of normal lung fibroblast cells, mitotic arrest was more pronounced in the colon cancer cells (50% versus 10%). Cells arrested by AK301 showed the formation of multiple microtubule organizing centers with Aurora kinase A and γ-tubulin. Employing in vitro and in vivo assays, tubulin polymerization was found to be slowed (but not abolished) by AK301. In silico molecular docking suggests that AK301 binds to the colchicine-binding domain on β-tubulin, but in a novel orientation. Cells arrested by AK301 expressed elevated levels of TNFR1 on their surface and more readily activated caspases-8, -9, and -3 in the presence of TNF. Relative to other microtubule destabilizers, AK301 was the most active TNF-sensitizing agent and also stimulated Fas- and TRAIL-induced apoptosis. In summary, we report a new class of mitosis-targeting agents that effectively sensitizes cancer cells to apoptotic ligands. These compounds should help illuminate the role of microtubules in regulating apoptotic ligand sensitivity and may ultimately be useful for developing agents that augment the anti-cancer activities of the immune response. PMID:24338023

  6. ClC-3 deficiency protects preadipocytes against apoptosis induced by palmitate in vitro and in type 2 diabetes mice.

    Science.gov (United States)

    Huang, Yun-Ying; Huang, Xiong-Qin; Zhao, Li-Yan; Sun, Fang-Yun; Chen, Wen-Liang; Du, Jie-Yi; Yuan, Feng; Li, Jie; Huang, Xue-Lian; Liu, Jie; Lv, Xiao-Fei; Guan, Yong-Yuan; Chen, Jian-Wen; Wang, Guan-Lei

    2014-11-01

    Palmitate, a common saturated free fatty acid (FFA), has been demonstrated to induce preadipocyte apoptosis in the absence of adipogenic stimuli, suggesting that preadipocytes may be prone to apoptosis under adipogenic insufficient conditions, like type 2 diabetes mellitus (T2DM). ClC-3, encoding Cl(-) channel or Cl(-)/H(+) antiporter, is critical for cell fate choices of proliferation versus apoptosis under diseased conditions. However, it is unknown whether ClC-3 is related with preadipocyte apoptosis induced by palmitate or T2DM. Palmitate, but not oleate, induced apoptosis and increase in ClC-3 protein expression and endoplasmic reticulum (ER) stress in 3T3-L1 preadipocyte. ClC-3 specific siRNA attenuated palmitate-induced apoptosis and increased protein levels of Grp78, ATF4, CHOP and phosphorylation of JNK1/2, whereas had no effects on increased phospho-PERK and phospho-eIF2α protein expression. Moreover, the enhanced apoptosis was shown in preadipocytes from high-sucrose/fat, low-dose STZ induced T2DM mouse model with hyperglycemia, hyperlipidemia (elevated serum TG and FFA levels) and insulin resistance. ClC-3 knockout significantly attenuated preadipocyte apoptosis and the above metabolic disorders in T2DM mice. These data demonstrated that ClC-3 deficiency prevent preadipocytes against palmitate-induced apoptosis via suppressing ER stress, and also suggested that ClC-3 may play a role in regulating cellular apoptosis and disorders of glucose and lipid metabolism during T2DM.

  7. Morphine Protects Spinal Cord Astrocytes from Glutamate-Induced Apoptosis via Reducing Endoplasmic Reticulum Stress

    Directory of Open Access Journals (Sweden)

    Chao Zhang

    2016-10-01

    Full Text Available Glutamate is not only a neurotransmitter but also an important neurotoxin in central nervous system (CNS. Chronic elevation of glutamate induces both neuronal and glial cell apoptosis. However, its effect on astrocytes is complex and still remains unclear. In this study, we investigated whether morphine, a common opioid ligand, could affect glutamate-induced apoptosis in astrocytes. Primary cultured astrocytes were incubated with glutamate in the presence/absence of morphine. It was found that morphine could reduce glutamate-induced apoptosis of astrocytes. Furthermore, glutamate activated Ca2+ release, thereby inducing endoplasmic reticulum (ER stress in astrocytes, while morphine attenuated this deleterious effect. Using siRNA to reduce the expression of κ-opioid receptor, morphine could not effectively inhibit glutamate-stimulated Ca2+ release in astrocytes, the protective effect of morphine on glutamate-injured astrocytes was also suppressed. These results suggested that morphine could protect astrocytes from glutamate-induced apoptosis via reducing Ca2+ overload and ER stress pathways. In conclusion, this study indicated that excitotoxicity participated in the glutamate mediated apoptosis in astrocytes, while morphine attenuated this deleterious effect via regulating Ca2+ release and ER stress.

  8. Tang-Luo-Ning, a Traditional Chinese Medicine, Inhibits Endoplasmic Reticulum Stress-Induced Apoptosis of Schwann Cells under High Glucose Environment

    Directory of Open Access Journals (Sweden)

    Weijie Yao

    2017-01-01

    Full Text Available Tang-Luo-Ning (TLN has a definite effect in the clinical treatment of diabetic peripheral neuropathy (DPN. Schwann cells (SCs apoptosis induced by endoplasmic reticulum stress (ER stress is one of the main pathogeneses of DPN. This study investigates whether TLN can inhibit SCs apoptosis by inhibiting ER stress-induced apoptosis. Our previous researches have demonstrated that TLN could increase the expression of ER stress marker protein GRP78 and inhibited the expression of apoptosis marker protein CHOP in ER stress. In this study, the results showed that TLN attenuated apoptosis by decreasing Ca2+ level in SCs and maintaining ER morphology. TLN could decrease downstream proteins of CHOP including GADD34 and Ero1α, while it increased P-eIF2α and decreased the upstream proteins of CHOP including P-IRE1α/IRE1α and XBP-1, thereby reducing ER stress-induced apoptosis.

  9. Lysophosphatidic acid rescues bone mesenchymal stem cells from hydrogen peroxide-induced apoptosis.

    Science.gov (United States)

    Wang, Xian-Yun; Fan, Xue-Song; Cai, Lin; Liu, Si; Cong, Xiang-Feng; Chen, Xi

    2015-03-01

    The increase of reactive oxygen species in infracted heart significantly reduces the survival of donor mesenchymal stem cells, thereby attenuating the therapeutic efficacy for myocardial infarction. In our previous study, we demonstrated that lysophosphatidic acid (LPA) protects bone marrow-derived mesenchymal stem cells (BMSCs) against hypoxia and serum deprivation-induced apoptosis. However, whether LPA protects BMSCs from H2O2-induced apoptosis was not examined. In this study, we report that H2O2 induces rat BMSC apoptosis whereas LPA pre-treatment effectively protects BMSCs from H2O2-induced apoptosis. LPA protection of BMSC from the induced apoptosis is mediated mostly through LPA3 receptor. Furthermore, we found that membrane G protein Gi2 and Gi3 are involved in LPA-elicited anti-apoptotic effects through activation of ERK1/2- and PI3 K-pathways. Additionally, H2O2 increases levels of type II of light chain 3B (LC3B II), an autophagy marker, and H2O2-induced autophagy thus protected BMSCs from apoptosis. LPA further increases the expression of LC3B II in the presence of H2O2. In contrast, autophagy flux inhibitor bafilomycin A1 has no effect on LPA's protection of BMSC from H2O2-induced apoptosis. Taken together, our data suggest that LPA rescues H2O2-induced apoptosis mainly by interacting with Gi-coupled LPA3, resulting activation of the ERK1/2- and PI3 K/AKT-pathways and inhibition caspase-3 cleavage, and LPA protection of BMSCs against the apoptosis is independent of it induced autophagy.

  10. Cyclic GMP protects human macrophages against peroxynitrite-induced apoptosis

    Directory of Open Access Journals (Sweden)

    Rossi Adriano G

    2009-05-01

    Full Text Available Abstract Background Nitric oxide (NO can be both pro- and anti-apoptotic in various cell types, including macrophages. This apparent paradox may result from the actions of NO-related species generated in the microenvironment of the cell, for example the formation of peroxynitrite (ONOO-. In this study we have examined the ability of NO and ONOO- to evoke apoptosis in human monocyte-derived macrophages (MDMϕ, and investigated whether preconditioning by cyclic guanosine monophosphate (cGMP is able to limit apoptosis in this cell type. Methods Characterisation of the NO-related species generated by (Z-1- [2-(2-aminoethyl-N-(2-ammonioethylamino]diazen-1-ium-1,2-diolate (DETA/NO and 1,2,3,4-oxatriazolium, 5-amino-3-(3,4-dichlorophenyl-, chloride (GEA-3162 was performed by electrochemistry using an isolated NO electrode and electron paramagnetic resonance (EPR spectrometry. Mononuclear cells were isolated from peripheral blood of healthy volunteers and cultured to allow differentiation into MDMϕ. Resultant MDMϕ were treated for 24 h with DETA/NO (100 – 1000 μM or GEA-3162 (10 – 300 μM in the presence or absence of BAY 41–2272 (1 μM, isobutylmethylxanthine (IBMX; 1 μM, 1H- [1,2,4]oxadiazolo [4,3-a]quinoxalin-1-one (ODQ; 20 μM or 8-bromo-cGMP (1 mM. Apoptosis in MDMϕ was assessed by flow cytometric analysis of annexin V binding in combination with propidium iodide staining. Results Electrochemistry and EPR revealed that DETA/NO liberated free NO radical, whilst GEA-3162 concomitantly released NO and O2-, and is therefore a ONOO- generator. NO (DETA/NO had no effect on cell viability, but ONOO- (GEA-3162 caused a concentration-dependent induction of apoptosis in MDMϕ. Preconditioning of MDMϕ with NO in combination with the phosphodiesterase inhibitor, 3-Isobutyl-1-methylxanthine (IBMX, or the NO-independent stimulator of soluble guanylate cyclase, BAY 41–2272, significantly attenuated ONOO--induced apoptosis in a cGMP-dependent manner

  11. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis.

    Science.gov (United States)

    Shimada, Kenichi; Crother, Timothy R; Karlin, Justin; Dagvadorj, Jargalsaikhan; Chiba, Norika; Chen, Shuang; Ramanujan, V Krishnan; Wolf, Andrea J; Vergnes, Laurent; Ojcius, David M; Rentsendorj, Altan; Vargas, Mario; Guerrero, Candace; Wang, Yinsheng; Fitzgerald, Katherine A; Underhill, David M; Town, Terrence; Arditi, Moshe

    2012-03-23

    We report that in the presence of signal 1 (NF-κB), the NLRP3 inflammasome was activated by mitochondrial apoptotic signaling that licensed production of interleukin-1β (IL-1β). NLRP3 secondary signal activators such as ATP induced mitochondrial dysfunction and apoptosis, resulting in release of oxidized mitochondrial DNA (mtDNA) into the cytosol, where it bound to and activated the NLRP3 inflammasome. The antiapoptotic protein Bcl-2 inversely regulated mitochondrial dysfunction and NLRP3 inflammasome activation. Mitochondrial DNA directly induced NLRP3 inflammasome activation, because macrophages lacking mtDNA had severely attenuated IL-1β production, yet still underwent apoptosis. Both binding of oxidized mtDNA to the NLRP3 inflammasome and IL-1β secretion could be competitively inhibited by the oxidized nucleoside 8-OH-dG. Thus, our data reveal that oxidized mtDNA released during programmed cell death causes activation of the NLRP3 inflammasome. These results provide a missing link between apoptosis and inflammasome activation, via binding of cytosolic oxidized mtDNA to the NLRP3 inflammasome. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Acidosis Promotes Bcl-2 Family-mediated Evasion of Apoptosis

    Science.gov (United States)

    Ryder, Christopher; McColl, Karen; Zhong, Fei; Distelhorst, Clark W.

    2012-01-01

    Acidosis arises in solid and lymphoid malignancies secondary to altered nutrient supply and utilization. Tumor acidosis correlates with therapeutic resistance, although the mechanism behind this effect is not fully understood. Here we show that incubation of lymphoma cell lines in acidic conditions (pH 6.5) blocks apoptosis induced by multiple cytotoxic metabolic stresses, including deprivation of glucose or glutamine and treatment with dexamethasone. We sought to examine the role of the Bcl-2 family of apoptosis regulators in this process. Interestingly, we found that acidic culture causes elevation of both Bcl-2 and Bcl-xL, while also attenuating glutamine starvation-induced elevation of p53-up-regulated modulator of apoptosis (PUMA) and Bim. We confirmed with knockdown studies that these shifts direct survival decisions during starvation and acidosis. Importantly, the promotion of a high anti- to pro-apoptotic Bcl-2 family member ratio by acidosis renders cells exquisitely sensitive to the Bcl-2/Bcl-xL antagonist ABT-737, suggesting that acidosis causes Bcl-2 family dependence. This dependence appears to be mediated, in part, by the acid-sensing G protein-coupled receptor, GPR65, via a MEK/ERK pathway. PMID:22685289

  13. Paclitaxel Induces Apoptosis in Breast Cancer Cells through Different Calcium—Regulating Mechanisms Depending on External Calcium Conditions

    Directory of Open Access Journals (Sweden)

    Zhi Pan

    2014-02-01

    Full Text Available Previously, we reported that endoplasmic reticulum calcium stores were a direct target for paclitaxel initiation of apoptosis. Furthermore, the actions of paclitaxel attenuated Bcl-2 resistance to apoptosis through endoplasmic reticulum-mediated calcium release. To better understand the calcium-regulated mechanisms of paclitaxel-induced apoptosis in breast cancer cells, we investigated the role of extracellular calcium, specifically; whether influx of extracellular calcium contributed to and/or was necessary for paclitaxel-induced apoptosis. Our results demonstrated that paclitaxel induced extracellular calcium influx. This mobilization of extracellular calcium contributed to subsequent cytosolic calcium elevation differently, depending on dosage. Under normal extracellular calcium conditions, high dose paclitaxel induced apoptosis-promoting calcium influx, which did not occur in calcium-free conditions. In the absence of extracellular calcium an “Enhanced Calcium Efflux” mechanism in which high dose paclitaxel stimulated calcium efflux immediately, leading to dramatic cytosolic calcium decrease, was observed. In the absence of extracellular calcium, high dose paclitaxel’s stimulatory effects on capacitative calcium entry and apoptosis could not be completely restored. Thus, normal extracellular calcium concentrations are critical for high dose paclitaxel-induced apoptosis. In contrast, low dose paclitaxel mirrored controls, indicating that it occurs independent of extracellular calcium. Thus, extracellular calcium conditions only affect efficacy of high dose paclitaxel-induced apoptosis.

  14. Paclitaxel induces apoptosis in breast cancer cells through different calcium--regulating mechanisms depending on external calcium conditions.

    Science.gov (United States)

    Pan, Zhi; Avila, Andrew; Gollahon, Lauren

    2014-02-17

    Previously, we reported that endoplasmic reticulum calcium stores were a direct target for paclitaxel initiation of apoptosis. Furthermore, the actions of paclitaxel attenuated Bcl-2 resistance to apoptosis through endoplasmic reticulum-mediated calcium release. To better understand the calcium-regulated mechanisms of paclitaxel-induced apoptosis in breast cancer cells, we investigated the role of extracellular calcium, specifically; whether influx of extracellular calcium contributed to and/or was necessary for paclitaxel-induced apoptosis. Our results demonstrated that paclitaxel induced extracellular calcium influx. This mobilization of extracellular calcium contributed to subsequent cytosolic calcium elevation differently, depending on dosage. Under normal extracellular calcium conditions, high dose paclitaxel induced apoptosis-promoting calcium influx, which did not occur in calcium-free conditions. In the absence of extracellular calcium an "Enhanced Calcium Efflux" mechanism in which high dose paclitaxel stimulated calcium efflux immediately, leading to dramatic cytosolic calcium decrease, was observed. In the absence of extracellular calcium, high dose paclitaxel's stimulatory effects on capacitative calcium entry and apoptosis could not be completely restored. Thus, normal extracellular calcium concentrations are critical for high dose paclitaxel-induced apoptosis. In contrast, low dose paclitaxel mirrored controls, indicating that it occurs independent of extracellular calcium. Thus, extracellular calcium conditions only affect efficacy of high dose paclitaxel-induced apoptosis.

  15. Paclitaxel Induces Apoptosis in Breast Cancer Cells through Different Calcium—Regulating Mechanisms Depending on External Calcium Conditions

    Science.gov (United States)

    Pan, Zhi; Avila, Andrew; Gollahon, Lauren

    2014-01-01

    Previously, we reported that endoplasmic reticulum calcium stores were a direct target for paclitaxel initiation of apoptosis. Furthermore, the actions of paclitaxel attenuated Bcl-2 resistance to apoptosis through endoplasmic reticulum-mediated calcium release. To better understand the calcium-regulated mechanisms of paclitaxel-induced apoptosis in breast cancer cells, we investigated the role of extracellular calcium, specifically; whether influx of extracellular calcium contributed to and/or was necessary for paclitaxel-induced apoptosis. Our results demonstrated that paclitaxel induced extracellular calcium influx. This mobilization of extracellular calcium contributed to subsequent cytosolic calcium elevation differently, depending on dosage. Under normal extracellular calcium conditions, high dose paclitaxel induced apoptosis-promoting calcium influx, which did not occur in calcium-free conditions. In the absence of extracellular calcium an “Enhanced Calcium Efflux” mechanism in which high dose paclitaxel stimulated calcium efflux immediately, leading to dramatic cytosolic calcium decrease, was observed. In the absence of extracellular calcium, high dose paclitaxel’s stimulatory effects on capacitative calcium entry and apoptosis could not be completely restored. Thus, normal extracellular calcium concentrations are critical for high dose paclitaxel-induced apoptosis. In contrast, low dose paclitaxel mirrored controls, indicating that it occurs independent of extracellular calcium. Thus, extracellular calcium conditions only affect efficacy of high dose paclitaxel-induced apoptosis. PMID:24549172

  16. Placental apoptosis in recurrent miscarriage

    Directory of Open Access Journals (Sweden)

    Tarek A. Atia

    2017-09-01

    Full Text Available Apoptosis is an interactive and dynamic biological process involved in all phases of embryogenesis. We aimed to study the effect of placental apoptosis on recurrent miscarriage (RM. Placental tissue samples were collected from 40 women with RM (study group and 30 women with sporadic spontaneous abortion (control group. Samples were prepared and stained immunohistochemically with markers for both the apoptotic protein (p53 and anti-apoptotic Bcl-2 antibodies. Our results showed that expression of the apoptotic (p53 protein was significantly increased in the placental tissues of the RM group (p = 0.003. By contrast, the expression of anti-apoptotic (Bcl-2 antibodies was significantly increased in the placental tissues of the control group (p = 0.025. We concluded that placental apoptosis plays a crucial role in pregnancy continuation. However, increased p53 expression in placental tissue in early pregnancy could negatively affect pregnancy continuation.

  17. Lipotoxicity-Induced PRMT1 Exacerbates Mesangial Cell Apoptosis via Endoplasmic Reticulum Stress.

    Science.gov (United States)

    Park, Min-Jung; Han, Ho Jae; Kim, Dong-Il

    2017-07-03

    Lipotoxicity-induced mesangial cell apoptosis is implicated in the exacerbation of diabetic nephropathy (DN). Protein arginine methyltransferases (PRMTs) have been known to regulate a variety of biological functions. Recently, it was reported that PRMT1 expression is increased in proximal tubule cells under diabetic conditions. However, their roles in mesangial cells remain unexplored. Thus, we examined the pathophysiological roles of PRMTs in mesangial cell apoptosis. Treatment with palmitate, which mimics cellular lipotoxicity, induced mesangial cell apoptosis via protein kinase RNA-like endoplasmic reticulum kinase (PERK) and ATF6-mediated endoplasmic reticulum (ER) stress signaling. Palmitate treatment increased PRMT1 expression and activity in mesangial cells as well. Moreover, palmitate-induced ER stress activation and mesangial cell apoptosis was diminished by PRMT1 knockdown. In the mice study, high fat diet-induced glomerular apoptosis was attenuated in PRMT1 haploinsufficient mice. Together, these results provide evidence that lipotoxicity-induced PRMT1 expression promotes ER stress-mediated mesangial cell apoptosis. Strategies to regulate PRMT1 expression or activity could be used to prevent the exacerbation of DN.

  18. Lipotoxicity-Induced PRMT1 Exacerbates Mesangial Cell Apoptosis via Endoplasmic Reticulum Stress

    Directory of Open Access Journals (Sweden)

    Min-Jung Park

    2017-07-01

    Full Text Available Lipotoxicity-induced mesangial cell apoptosis is implicated in the exacerbation of diabetic nephropathy (DN. Protein arginine methyltransferases (PRMTs have been known to regulate a variety of biological functions. Recently, it was reported that PRMT1 expression is increased in proximal tubule cells under diabetic conditions. However, their roles in mesangial cells remain unexplored. Thus, we examined the pathophysiological roles of PRMTs in mesangial cell apoptosis. Treatment with palmitate, which mimics cellular lipotoxicity, induced mesangial cell apoptosis via protein kinase RNA-like endoplasmic reticulum kinase (PERK and ATF6-mediated endoplasmic reticulum (ER stress signaling. Palmitate treatment increased PRMT1 expression and activity in mesangial cells as well. Moreover, palmitate-induced ER stress activation and mesangial cell apoptosis was diminished by PRMT1 knockdown. In the mice study, high fat diet-induced glomerular apoptosis was attenuated in PRMT1 haploinsufficient mice. Together, these results provide evidence that lipotoxicity-induced PRMT1 expression promotes ER stress-mediated mesangial cell apoptosis. Strategies to regulate PRMT1 expression or activity could be used to prevent the exacerbation of DN.

  19. Compound K induces apoptosis via CAMK-IV/AMPK pathways in HT-29 colon cancer cells.

    Science.gov (United States)

    Kim, Do Yeon; Park, Min Woo; Yuan, Hai Dan; Lee, Hyo Jung; Kim, Sung Hoon; Chung, Sung Hyun

    2009-11-25

    Although compound K (CK), an intestinal metabolite of ginseng protopanaxadiol saponins, has been known to induce apoptosis in various cancer cells, association of AMP-activated protein kinase (AMPK) with apoptosis in HT-29 colon cancer cells remains unclear. We hypothesized that CK may exert an anticancer activity through modulating the AMPK pathway in HT-29 cells. CK-induced apoptosis was associated with the disruption of the mitochondrial membrane potential, release of apoptogenic factors (cytochrome c and apoptosis-inducing factor) from mitochondria, and cleavage of caspase-9, caspase-3, caspase-8, Bid, and PARP proteins. This apoptotic effect of CK on colon cancer cells was found to be initiated by AMPK activation, and AMPK was activated through phosphorylation by Ca2+/calmodulin-activated protein kinase-IV (CAMK-IV). Treatment of HT-29 cells with compound C (AMPK inhibitor) or siRNA for AMPK completely abolished the CK-induced apoptosis. STO-609, CAMKs inhibitor, also attenuated CK-induced AMPK activation and apoptosis. In conclusion, the present study demonstrates that CK-mediated cell death of HT-29 colon cancer cells is regulated by CAMK-IV/AMPK pathways, and these findings provide a molecular basis for the anticancer effect of CK.

  20. Vascular smooth muscle cell apoptosis promotes transplant arteriosclerosis through inducing the production of SDF-1α.

    Science.gov (United States)

    Li, J; Liu, S; Li, W; Hu, S; Xiong, J; Shu, X; Hu, Q; Zheng, Q; Song, Z

    2012-08-01

    Transplant arteriosclerosis is a leading cause of late allograft loss. Medial smooth muscle cell (SMC) apoptosis is considered to be an important event in transplant arteriosclerosis. However, the precise contribution of medial SMC apoptosis to transplant arteriosclerosis and the underlying mechanisms remain unclear. We transferred wild-type p53 to induce apoptosis of cultured SMCs. We found that apoptosis induces the production of SDF-1α from apoptotic and neighboring viable cells, resulting in increased SDF-1α in the culture media. Conditioned media from Ltv-p53-transferred SMCs activated PI3K/Akt/mTOR and MAPK/Erk signaling in a SDF-1α-dependent manner and thereby promoted mesenchymal stem cell (MSC) migration and proliferation. In a rat aorta transplantation model, lentivirus-mediated BclxL transfer selectively inhibits medial SMC apoptosis in aortic allografts, resulting in a remarkable decrease of SDF-1α both in allograft media and in blood plasma, associated with diminished recruitment of CD90(+)CD105(+) double-positive cells and impaired neointimal formation. Systemic administration of rapamycin or PD98059 also attenuated MSC recruitment and neointimal formation in the aortic allografts. These results suggest that medial SMC apoptosis is critical for the development of transplant arteriosclerosis through inducing SDF-1α production and that MSC recruitment represents a major component of vascular remodeling, constituting a relevant target and mechanism for therapeutic interventions. © Copyright 2012 The American Society of Transplantation and the American Society of Transplant Surgeons.

  1. Stimulation of p38 mitogen-activated protein kinase is an early regulatory event for the cadmium-induced apoptosis in human promonocytic cells.

    Science.gov (United States)

    Galán, A; García-Bermejo, M L; Troyano, A; Vilaboa, N E; de Blas, E; Kazanietz, M G; Aller, P

    2000-04-14

    Pulse treatment of U-937 promonocytic cells with cadmium chloride (2 h at 200 microM) provoked apoptosis and induced a rapid phosphorylation of p38 mitogen-activated protein kinase (p38(MAPK)) as well as a late phosphorylation of extracellular signal-regulated protein kinases (ERK1/2). However, although the p38(MAPK)-specific inhibitor SB203580 attenuated apoptosis, the process was not affected by the ERK-specific inhibitor PD98059. The attenuation of the cadmium-provoked apoptosis by SB203580 was a highly specific effect. In fact, the kinase inhibitor did not prevent the generation of apoptosis by heat shock and camptothecin, nor the generation of necrosis by cadmium treatment of glutathione-depleted cells, nor the cadmium-provoked activation of the stress response. The generation of apoptosis was preceded by intracellular H(2)O(2) accumulation and was accompanied by the disruption of mitochondrial transmembrane potential, both of which were inhibited by SB203580. On the other hand, the antioxidant agent butylated hydroxyanisole-inhibited apoptosis but did not prevent p38(MAPK) phosphorylation. In a similar manner, p38(MAPK) phosphorylation was not affected by the caspase inhibitors Z-VAD and DEVD-CHO, which nevertheless prevented apoptosis. These results indicate that p38(MAPK) activation is an early and specific regulatory event for the cadmium-provoked apoptosis in promonocytic cells.

  2. Advanced oxidation protein products induce chondrocyte apoptosis via receptor for advanced glycation end products-mediated, redox-dependent intrinsic apoptosis pathway.

    Science.gov (United States)

    Wu, Qian; Zhong, Zhao-Ming; Zhu, Si-Yuan; Liao, Cong-Rui; Pan, Ying; Zeng, Ji-Huan; Zheng, Shuai; Ding, Ruo-Ting; Lin, Qing-Song; Ye, Qing; Ye, Wen-Bin; Li, Wei; Chen, Jian-Ting

    2016-01-01

    Pro-inflammatory cytokine-induced chondrocyte apoptosis is a primary cause of cartilage destruction in the progression of rheumatoid arthritis (RA). Advanced oxidation protein products (AOPPs), a novel pro-inflammatory mediator, have been confirmed to accumulate in patients with RA. However, the effect of AOPPs accumulation on chondrocyte apoptosis and the associated cellular mechanisms remains unclear. The present study demonstrated that the plasma formation of AOPPs was enhanced in RA rats compared with normal. Then, chondrocyte were treated with AOPPs-modified rat serum albumin (AOPPs-RSA) in vitro. Exposure of chondrocyte to AOPPs activated nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and increased expression of NADPH oxidase subunits, which was mediated by receptor for advanced glycation end products (RAGE), but not scavenger receptor CD36. Moreover, AOPPs challenge triggered NADPH oxidase-dependent ROS generation which induced mitochondrial dysfunction and endoplasmic reticulum stress resulted in activation of caspase family that eventually lead to apoptosis. Lastly, blockade of RAGE, instead of CD36, largely attenuated these signals. Our study demonstrated first time that AOPPs induce chondrocyte apoptosis via RAGE-mediated and redox-dependent intrinsic apoptosis pathway in vitro. These data implicates that AOPPs may represent a novel pathogenic factor that contributes to RA progression. Targeting AOPPs-triggered cellular mechanisms might emerge as a promising therapeutic option for patients with RA.

  3. Growth Hormone Mediates Its Protective Effect in Hepatic Apoptosis through Hnf6

    OpenAIRE

    Wang, Kewei; Wang, Minhua; Gannon, Maureen; Holterman, AiXuan

    2016-01-01

    Background and Aims Growth hormone (GH) not only supports hepatic metabolism but also protects against hepatocyte cell death. Hnf6 (or Oc1) belonging to the Onecut family of hepatocyte transcription factors known to regulate differentiated hepatic function, is a GH-responsive gene. We evaluate if GH mediates Hnf6 activity to attenuate hepatic apoptotic injury. Methods We used an animal model of hepatic apoptosis by bile duct ligation (BDL) with Hnf6 -/- (KO) mice in which hepatic Hnf6 was con...

  4. The mechanism of PDT-induced apoptosis

    Science.gov (United States)

    Cai, Xiongwei; Liu, Timon C.; Ding, Xin-Min; Gu, Ying; Liu, Fan-Guang; Liu, Song-Hao

    2003-12-01

    Photodynamic therapy (PDT) can induce apoptosis in many cancer cells in vitro and in tumors in vivo. Cells become more oxidation with PDT, and maintain differentiation and proliferation, go apoptosis and necrosis with the increase of reactive oxygen species (ROS) concentration. ROS can induce apoptosis through mitochondria by inhibiting respiration chain or oxidative phosphorylation or damaging mitochondrial membrane. ROS can initiate apoptosis through endoplamic reticulum(ER) by opening Ca2+ channel or starting unfold protein response (UPR). ROS can also induce apoptosis through Golgi by producing ganglioside GD3 by use of ceramide, which induces apoptosis by activating caspase-3, JNK and p38 MAPK. It can also induce apoptosis by activating Bip (mitochondria-dependant) or preocaspase-12 (mitochondria- independent) or inhibiting protein synthesizing. There are so complicated cross-talking among different signal pathways or organnells that we think PDT-induced apoptosis is mediated by multiplex pathways and excessive levels in a refined network.

  5. SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Joel Walls; M.T. Taner; Gary Mavko; Jack Dvorkin

    2002-04-01

    Wave-induced variations of pore pressure in a partially-saturated reservoir result in oscillatory liquid flow. The viscous losses during this flow are responsible for wave attenuation. The same viscous effects determine the changes in the dynamic bulk modulus of the system versus frequency. These changes are necessarily linked to attenuation via the causality condition. We analytically quantify the frequency dependence of the bulk modulus of a partially saturated rock by assuming that saturation is patchy and then link these changes to the inverse quality factor. As a result, the P-wave attenuation is quantitatively linked to saturation and thus can serve as a saturation indicator.

  6. Lycopene Protects against Hypoxia/Reoxygenation Injury by Alleviating ER Stress Induced Apoptosis in Neonatal Mouse Cardiomyocytes

    Science.gov (United States)

    Xu, Jiqian; Hu, Houxiang; Chen, Bin; Yue, Rongchuan; Zhou, Zhou; Liu, Yin; Zhang, Shuang; Xu, Lei; Wang, Huan; Yu, Zhengping

    2015-01-01

    Endoplasmic reticulum (ER) stress induced apoptosis plays a pivotal role in myocardial ischemia/reperfusion (I/R)-injury. Inhibiting ER stress is a major therapeutic target/strategy in treating cardiovascular diseases. Our previous studies revealed that lycopene exhibits great pharmacological potential in protecting against the I/R-injury in vitro and vivo, but whether attenuation of ER stress (and) or ER stress-induced apoptosis contributes to the effects remains unclear. In the present study, using neonatal mouse cardiomyocytes to establish an in vitro model of hypoxia/reoxygenation (H/R) to mimic myocardium I/R in vivo, we aimed to explore the hypothesis that lycopene could alleviate the ER stress and ER stress-induced apoptosis in H/R-injury. We observed that lycopene alleviated the H/R injury as revealed by improving cell viability and reducing apoptosis, suppressed reactive oxygen species (ROS) generation and improved the phosphorylated AMPK expression, attenuated ER stress as evidenced by decreasing the expression of GRP78, ATF6 mRNA, sXbp-1 mRNA, eIF2α mRNA and eIF2α phosphorylation, alleviated ER stress-induced apoptosis as manifested by reducing CHOP/GADD153 expression, the ratio of Bax/Bcl-2, caspase-12 and caspase-3 activity in H/R-treated cardiomyocytes. Thapsigargin (TG) is a potent ER stress inducer and used to elicit ER stress of cardiomyocytes. Our results showed that lycopene was able to prevent TG-induced ER stress as reflected by attenuating the protein expression of GRP78 and CHOP/GADD153 compared to TG group, significantly improve TG-caused a loss of cell viability and decrease apoptosis in TG-treated cardiomyocytes. These results suggest that the protective effects of lycopene on H/R-injury are, at least in part, through alleviating ER stress and ER stress-induced apoptosis in neonatal mouse cardiomyocytes. PMID:26291709

  7. Nicotine Induces Podocyte Apoptosis through Increasing Oxidative Stress.

    Directory of Open Access Journals (Sweden)

    Xiqian Lan

    Full Text Available Cigarette smoking plays an important role in the progression of chronic kidney disease (CKD. Nicotine, one of the major components of cigarette smoking, has been demonstrated to increase proliferation of renal mesangial cells. In this study, we examined the effect of nicotine on podocyte injury.To determine the expression of nicotinic acetylcholine receptors (nAChR subunits in podocytes, cDNAs and cell lysate of cultured human podocytes were used for the expression of nAChR mRNAs and proteins, respectively; and mouse renal cortical sections were subjected to immunofluorescant staining. We also studied the effect of nicotine on podocyte nephrin expression, reactive oxygen species (ROS generation (via DCFDA loading followed by fluorometric analysis, proliferation, and apoptosis (morphologic assays. We evaluated the effect of nicotine on podocyte downstream signaling including phosphorylation of ERK1/2, JNK, and p38 and established causal relationships by using respective inhibitors. We used nAChR antagonists to confirm the role of nicotine on podocyte injury.Human podocytes displayed robust mRNA and protein expression of nAChR in vitro studies. In vivo studies, mice renal cortical sections revealed co-localization of nAChRs along with synaptopodin. In vitro studies, nephrin expression in podocyte was decreased by nicotine. Nicotine stimulated podocyte ROS generation; nonetheless, antioxidants such as N-acetyl cysteine (NAC and TEMPOL (superoxide dismutase mimetic agent inhibited this effect of nicotine. Nicotine did not modulate proliferation but promoted apoptosis in podocytes. Nicotine enhanced podocyte phosphorylation of ERK1/2, JNK, and p38, and their specific inhibitors attenuated nicotine-induced apoptosis. nAChR antagonists significantly suppressed the effects of nicotine on podocyte.Nicotine induces podocyte apoptosis through ROS generation and associated downstream MAPKs signaling. The present study provides insight into molecular

  8. Attenuated Mycobacterium tuberculosis SO2 vaccine candidate is unable to induce cell death.

    Directory of Open Access Journals (Sweden)

    Adriana Aporta

    Full Text Available It has been proposed that Mycobacterium tuberculosis virulent strains inhibit apoptosis and trigger cell death by necrosis of host macrophages to evade innate immunity, while non-virulent strains induce typical apoptosis activating a protective host response. As part of the characterization of a novel tuberculosis vaccine candidate, the M. tuberculosis phoP mutant SO2, we sought to evaluate its potential to induce host cell death. The parental M. tuberculosis MT103 strain and the current vaccine against tuberculosis Bacillus Calmette-Guérin (BCG were used as comparators in mouse models in vitro and in vivo. Our data reveal that attenuated SO2 was unable to induce apoptotic events neither in mouse macrophages in vitro nor during lung infection in vivo. In contrast, virulent MT103 triggers typical apoptotic events with phosphatidylserine exposure, caspase-3 activation and nuclear condensation and fragmentation. BCG strain behaved like SO2 and did not induce apoptosis. A clonogenic survival assay confirmed that viability of BCG- or SO2-infected macrophages was unaffected. Our results discard apoptosis as the protective mechanism induced by SO2 vaccine and provide evidence for positive correlation between classical apoptosis induction and virulent strains, suggesting apoptosis as a possible virulence determinant during M. tuberculosis infection.

  9. Kaempferol Promotes Apoptosis in Human Bladder Cancer Cells by Inducing the Tumor Suppressor, PTEN

    Directory of Open Access Journals (Sweden)

    Liqun Zhou

    2013-10-01

    Full Text Available Kaempferol (Kae, a natural flavonoid, is widely distributed in fruits and vegetables. Previous studies have identified Kae as a possible cancer preventive and therapeutic agent. We found Kae to exhibit potent antiproliferation and anti-migration effects in human bladder cancer EJ cells. Kaempferol robustly induced apoptosis in EJ cells in a dose-dependent manner, as evidenced by increased cleavage of caspase-3. Furthermore, we found Kae-induced apoptosis in EJ cells to be associated with phosphatase and the tensin homolog deleted on the chromosome 10 (PTEN/PI3K/Akt pathway. Kae significantly increased PTEN and decreased Akt phosphorylation. Kae-induced apoptosis was partially attenuated in PTEN-knockdown cells. Our findings indicate that Kae could be an alternative medicine for bladder cancer, based on a PTEN activation mechanism.

  10. Heme oxygenase-1 prevents non-alcoholic steatohepatitis through suppressing hepatocyte apoptosis in mice

    Directory of Open Access Journals (Sweden)

    Fu Na

    2010-10-01

    Full Text Available Abstract Objective Heme oxygenase-1 (HO-1, the rate-limiting enzyme in heme catabolism, has been reported to have potential antioxidant properties. However, the role of HO-1 on hepatocyte apoptosis remains unclear. We aim to elucidate the effects of HO-1 on oxidative stress related hepatocellular apoptosis in nutritional steatohepatitis in mice. Methods C57BL/6J mice were fed with methionine-choline deficient (MCD diet for four weeks to induce hepatic steatohepatitis. HO-1 chemical inducer (hemin, HO-1 chemical inhibitor zinc protoporphyrin IX (ZnPP-IX and/or adenovirus carrying HO-1 gene (Ad-HO-1 were administered to mice, respectively. Hepatocyte apoptosis was evaluated by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL assay, the mRNA and protein expression of apoptosis related genes were assayed by quantitative real-time PCR and Western blot. Results Hepatocyte signs of oxidative related apoptotic injury were presented in mice fed with MCD diet for 4 weeks. Induction of HO-1 by hemin or Ad-HO-1 significantly attenuated the severity of liver histology, which was associated with decreased hepatic lipid peroxidation content, reduced number of apoptotic cells by TUNEL staining, down-regulated expression of pro-apoptosis related genes including Fas/FasL, Bax, caspase-3 and caspase-9, reduced expression of cytochrome p4502E1 (CYP2E1, inhibited cytochrome c (Cyt-c release, and up-regulated expression of anti-apoptosis gene Bcl-2. Whereas, inhibition of HO-1 by ZnPP-IX caused oxidative stress related hepatic injury, which concomitant with increased number of TUNEL positive cells and up-regulated expression of pro-apoptosis related genes. Conclusions The present study provided evidences for the protective role of HO-1 in preventing nutritional steatohepatitis through suppressing hepatocyte apoptosis in mice.

  11. MicroRNA-210 alleviates oxidative stress-associated cardiomyocyte apoptosis by regulating BNIP3.

    Science.gov (United States)

    Diao, Hongying; Liu, Bin; Shi, Yongfeng; Song, Chunli; Guo, Ziyuan; Liu, Ning; Song, Xianjing; Lu, Yang; Lin, Xiaoye; Li, Zhuoran

    2017-09-01

    Oxidative stress-induced myocardial apoptosis and necrosis are involved in ischemia/reperfusion (I/R) injury. This study was performed to investigate microRNA (miR)-210's role in oxidative stress-related myocardial damage. The expression of miR-210 was upregulated in myocardial tissues of I/R rats, while that of Bcl-2 adenovirus E1B 19kDa-interacting protein 3 (BNIP3) was downregulated. To simulate in vivo oxidative stress, H9c2 cells were treated with H2O2 for 48 h. MiR-210 level was increased upon H2O2 stimulation, peaked at 8 h, and then decreased. An opposite expression pattern of BNIP3 was observed. BNIP3 was demonstrated as a direct target of miR-210 via luciferase reporter assay. H2O2-induced cell apoptosis was attenuated by miR-210 mimics, whereas aggravated by miR-210 inhibitor. MiR-210 knockdown-induced cell apoptosis in presence of H2O2 was attenuated by BNIP3 siRNA. Our work demonstrates that miR-210 plays a protective role in H2O2-induced cardiomyocyte apoptosis at least by regulating the pro-apoptotic BNIP3.

  12. Apoptosis in oral erythema multiforme.

    Science.gov (United States)

    Chrysomali, E; Lozada-Nur, F; Dekker, N P; Papanicolaou, S I; Regezi, J A

    1997-02-01

    Cell death was evaluated in oral erythema multiforme to test the hypothesis that apoptosis may be a mechanism by which keratinocytes die in this condition. Ten erythema multiforme and five control oral mucosa biopsy specimens were evaluated in immunohistochemically stained sections for apoptosis-regulating proteins Bcl-2, Bcl-x, Bax, p53, Fas, and Fas-ligand. Apoptotic keratinocytes, determined by a detection method for DNA fragmentation (TUNEL) and by conventional morphologic criteria were counted per high power field. Keratinocyte staining for Bcl-2 protein was comparable in erythema multiforme and controls. Bcl-x expression was reduced in five erythema multiforme cases. Staining for Bax protein differed in six erythema multiforme cases and showed variable intensity in layers under the parakeratin. Only slight differences in staining patterns of Fas and Fas-ligand proteins were noted between erythema multiforme and controls. The number of apoptotic keratinocytes evaluated by morphologic examination was significantly higher in erythema multiforme (mean per high power field, 0.90 +/- 0.2; controls, 0.06 +/- 0.04; p erythema multiforme, 0.43 +/- 0.1; controls, 0.02 +/- 0.02). Overexpression of p53 protein was seen in basal keratinocytes in five erythema multiforme specimens (mean, 17.5 +/- 4.03 per high power field; controls 1.2 +/- 0.3). There is evidence that cell death in erythema multiforme is at least in part due to apoptosis. The apoptotic mechanism may be related to an altered expression of apoptosis-regulating proteins. Although measurable alterations in the phenotypic expression of Fas and Fas-ligand proteins were not apparent, activation of Fas/Fas-ligand system could still be involved in the induction of apoptosis in erythema multiforme.

  13. p53 modulates the AMPK inhibitor compound C induced apoptosis in human skin cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Shi-Wei [Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); Wu, Chun-Ying [Division of Gastroenterology and Hepatology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Wang, Yen-Ting [Department of Medical Research and Education, Cheng Hsin General Hospital, Taipei, Taiwan (China); Kao, Jun-Kai [Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); Department of Pediatrics, Children' s Hospital, Changhua Christian Hospital, Changhua, Taiwan (China); Lin, Chi-Chen; Chang, Chia-Che; Mu, Szu-Wei; Chen, Yu-Yu [Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); Chiu, Husan-Wen [Institute of Biotechnology, National Cheng-Kung University, Tainan, Taiwan (China); Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan (China); Chang, Chuan-Hsun [Department of Surgical Oncology, Cheng Hsin General Hospital, Taipei, Taiwan (China); Department of Nutrition Therapy, Cheng Hsin General Hospital, Taipei, Taiwan (China); School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan (China); Liang, Shu-Mei [Institute of Biotechnology, National Cheng-Kung University, Tainan, Taiwan (China); Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan (China); Chen, Yi-Ju [Department of Dermatology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Huang, Jau-Ling [Department of Bioscience Technology, Chang Jung Christian University, Tainan, Taiwan (China); Shieh, Jeng-Jer, E-mail: shiehjj@vghtc.gov.tw [Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); Department of Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan (China)

    2013-02-15

    Compound C, a well-known inhibitor of the intracellular energy sensor AMP-activated protein kinase (AMPK), has been reported to cause apoptotic cell death in myeloma, breast cancer cells and glioma cells. In this study, we have demonstrated that compound C not only induced autophagy in all tested skin cancer cell lines but also caused more apoptosis in p53 wildtype skin cancer cells than in p53-mutant skin cancer cells. Compound C can induce upregulation, phosphorylation and nuclear translocalization of the p53 protein and upregulate expression of p53 target genes in wildtype p53-expressing skin basal cell carcinoma (BCC) cells. The changes of p53 status were dependent on DNA damage which was caused by compound C induced reactive oxygen species (ROS) generation and associated with activated ataxia-telangiectasia mutated (ATM) protein. Using the wildtype p53-expressing BCC cells versus stable p53-knockdown BCC sublines, we present evidence that p53-knockdown cancer cells were much less sensitive to compound C treatment with significant G2/M cell cycle arrest and attenuated the compound C-induced apoptosis but not autophagy. The compound C induced G2/M arrest in p53-knockdown BCC cells was associated with the sustained inactive Tyr15 phosphor-Cdc2 expression. Overall, our results established that compound C-induced apoptosis in skin cancer cells was dependent on the cell's p53 status. - Highlights: ► Compound C caused more apoptosis in p53 wildtype than p53-mutant skin cancer cells. ► Compound C can upregulate p53 expression and induce p53 activation. ► Compound C induced p53 effects were dependent on ROS induced DNA damage pathway. ► p53-knockdown attenuated compound C-induced apoptosis but not autophagy. ► Compound C-induced apoptosis in skin cancer cells was dependent on p53 status.

  14. Propofol inhibits LPS-induced apoptosis in lung epithelial cell line, BEAS-2B.

    Science.gov (United States)

    Lv, Xiang; Zhou, Xuhui; Yan, Jia; Jiang, Jue; Jiang, Hong

    2017-03-01

    Lipopolysaccharide (LPS) plays an important role in lung endothelial apoptosis which is crucial for lung fibrogenesis in ARDS progression. Reactive oxygen species (ROS) has been reported to be involved in LPS-induced lung epithelial cell apoptosis. Propofol is a commonly used intravenous anesthetic agent in clinic and it could attenuate LPS-induced epithelial cells oxidation and apoptosis. However, the mechanisms are still obscure. In this study, we examined whether and how propofol attenuates LPS-induced oxidation and apoptosis in BEAS-2B cells. Compared with control group, LPS up-regulated Pin-1, phosphatase A2 (PP2A) expression, induced p66Shc-Ser36 phosphorylation, and facilitated p66Shc mitochondrial translocation, thus leading to superoxide anion (O2-) generation, mitochondrial cytochrome c release, active caspase 3 over-expression and cell viability inhibition. Importantly, propofol was shown to down-regulate LPS-induced PP2A expression, limit p66Shc mitochondrial translocation, decrease O2- generation, inhibit mitochondrial cytochrome c release, reduce active caspase 3 expression, and recover cells viability, while propofol had no effects on LPS-induced Pin-1 expression and p66Shc-Ser36 phosphorylation. Moreover, the protective effects of propofol on LPS-induced BEAS-2B cells apoptosis were similar to that of calyculin A, which is an inhibitor of PP2A. We also found that FTY720, which is an activator of PP2A, can effectively reverse the protective function of propofol. Our data illustrated that propofol could alleviate LPS-induced BEAS-2B cells oxidation and apoptosis through down-regulating PP2A expression, limiting p66Shc-Ser36 dephosphorylation and p66Shc mitochondrial translocation, decreasing O2- generation, mitochondrial cytochrome c release, activating caspase 3 expression. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  15. Integrated Microfluidic Variable Optical Attenuator

    Science.gov (United States)

    2005-11-28

    indices , the optical output power is gradually attenuated. We obtain a maximum attenuation of 28 dB when the fluid refractive index changes from 1.557 to...Electron. 23, pp. 1348-1354 (2005). 14. J. M. Ruano, V. Benoit, J. S. Aitchison , and J. M. Cooper, “Flame hydrolysis deposition of glass on silicon for...different refractive indices flowing in a microfluidic channel as the cladding for a segment of straight optical waveguide. Recently, the integration of

  16. Endoplasmic reticulum stress signaling is involved in mitomycin C (MMC)-induced apoptosis in human fibroblasts via PERK pathway.

    Science.gov (United States)

    Shi, Kun; Wang, Daode; Cao, Xiaojian; Ge, Yingbin

    2013-01-01

    Endoplasmic reticulum (ER) stress-mediated cell apoptosis has been implicated in various cell types, including fibroblasts. Previous studies have shown that mitomycin C (MMC)-induced apoptosis occurs in fibroblasts, but the effects of MMC on ER stress-mediated apoptosis in fibroblasts have not been examined. Here, MMC-induced apoptosis in human primary fibroblasts was investigated by exposing cells to a single dose of MMC for 5 minutes. Significant inhibition of cell proliferation and increased apoptosis were observed using a cell viability assay, Annexin V/propidium iodide double staining, cell cycle analysis, and TUNEL (terminal deoxynucleotidyl transferase dUTP nick-end labeling) staining. Upregulation of proapoptotic factors, including cleaved caspase-3 and poly ADP-ribose polymerase (PARP), was detected by Western blotting. MMC-induced apoptosis was correlated with elevation of 78-kDa glucose-regulated protein (GRP78) and C/EBP homologous protein (CHOP), which are hallmarks of ER stress. Three unfolded protein response (UPR) sensors (inositol-requiring enzyme 1, IRE1; activating transcription factor 6, ATF6; and PKR-like ER kinase, PERK) and their downstream signaling pathways were also activated. Knockdown of CHOP attenuated MMC-induced apoptosis by increasing the ratio of BCL-2/BAX and decreasing BIM expression, suggesting that ER stress is involved in MMC-induced fibroblast apoptosis. Interestingly, knockdown of PERK significantly decreased ER stress-mediated apoptosis by reducing the expression of CHOP, BIM and cleaved caspase-3. Reactive oxygen species (ROS) scavenging also decreased the expression of GRP78, phospho-PERK, CHOP, and BIM. These results demonstrate that MMC-induced apoptosis is triggered by ROS generation and PERK activation.

  17. The role of apoptosis in pulmonary fibrosis

    Directory of Open Access Journals (Sweden)

    B. D. Uhal

    2008-12-01

    Full Text Available Apoptosis has been defined as "gene-directed cellular self-destruction" and is an active process that is tightly regulated by a number of gene products, which promote or block cell death. Apoptotic death can be triggered by a wide variety of stimuli and, importantly, not all cells necessarily undergo apoptosis in response to the same stimulus. Abnormal regulation of apoptosis has been implicated in a wide range of diseases and approaches to modifying apoptosis represent important future therapeutic strategies. Idiopathic pulmonary fibrosis (IPF is a progressive and relentless disease involving scarring of the lung, which has been recognised as the most lethal interstitial lung disease. In the lungs of IPF patients, increased epithelial apoptosis, together with decreased apoptosis of myofibroblasts, represents persistent findings (particularly in areas of collagen deposition supporting an interaction between altered apoptosis and the pathogenesis of the disease. Data from human tissues and animal models are refining current knowledge of the processes involved in this pathogenesis. This has challenged the dogma that IPF is purely a disease of unresolved inflammation by emphasising the central roles played by the alveolar epithelial cell and myofibroblasts and, as part of that role, the importance of altered apoptosis. Evidence suggests blockade of epithelial cell apoptosis can prevent subsequent collagen deposition, and induction of myofibroblast apoptosis, at least theoretically, would be expected to resolve ongoing fibrosis. These two concepts raise the prospect of therapeutic intervention aimed at modifying apoptosis and, thus, fibrosis in idiopathic pulmonary fibrosis.

  18. The Neurokinin-1 Receptor Modulates the Methamphetamine-Induced Striatal Apoptosis and Nitric Oxide Formation in Mice

    Science.gov (United States)

    Zhu, Judy; Xu, Wenjing; Wang, Jing; Ali, Syed F.; Angulo, Jesus A.

    2009-01-01

    In a previous study we showed that pharmacological blockade of the neurokinin-1 receptors attenuated the methamphetamine-induced toxicity of the striatal dopamine terminals. In the present study we examined the role of the neurokinin-1 receptors on the methamphetamine-induced apoptosis of some striatal neurons. To that end, we administered a single injection of METH (30 mg/kg, i.p.) to male mice. METH induced the apoptosis (TUNEL) of approximately 20% of striatal neurons. This percentage of METH-induced apoptosis was significantly attenuated by either a single injection of the neurokinin-1 receptor antagonist WIN-51,708 (5 mg/kg, i.p.) or the ablation of the striatal interneurons expressing the neurokinin-1 receptors (cholinergic and somatostatin) with the selective neurotoxin [Sar9,Met(O2)11] substance P-saporin. Next we assessed the levels of striatal 3-nitrotyrosine (3-NT) by HPLC and immunohistochemistry. METH increased the levels of striatal 3-NT and this increase was attenuated by pretreatment with WIN-51,708. Our data support the hypothesis that METH-induced striatal apoptosis occurs via a mechanism involving the neurokinin-1 receptors and the activation of nitric oxide synthesis. Our findings are relevant for the treatment of METH abuse and may be relevant to certain neurological disorders involving the dopaminergic circuitry of the basal ganglia. PMID:19682209

  19. Taraxerol Induces Cell Apoptosis through A Mitochondria-Mediated Pathway in HeLa Cells.

    Science.gov (United States)

    Yaoi, Xiangyang; Lu, Binyu; Lü, Chaotian; Bai, Qin; Yan, Dazhong; Xu, Hui

    2017-10-01

    Taraxerol acetate has potent anti-cancer effects via the induction of apoptosis, autophagy, cell cycle arrest, and inhibition of cell migration. However, whether taraxerol induced apoptosis and its underlying mechanisms of action is not clear. In the present study, we assess the effects of taraxerol on the mitochondrial apoptotic pathway and determine the release of cytochrome c to the cytosol and activation of caspases. In this experimental study, we mainly investigated the effect of taraxerol on HeLa cells. We tested cell viability by the MTT assay and morphologic changes, analyzed apoptosis by DAPI staining and flow cytometry. We also determined reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) using a Microplate Reader. In addition, the apoptotic proteins were tested by Western blot. Taraxerol enhanced ROS levels and attenuated the MMP (Δψm) in HeLa cells. Taraxerol induced apoptosis mainly via the mitochondrial pathway including the release of cytochrome c to the cytosol and activation of caspases 9 and 3, and anti-poly (ADPribose) polymerase (PARP). Taraxerol could induce the down-regulation of the anti-apoptotic protein Bcl-2 and up-regulation of pro-apoptotic protein Bax. It suppressed the PI3K/ Akt signaling pathway. These results demonstrated that taraxerol induced cell apoptosis through a mitochondria-mediated pathway in HeLa cells. Thus, taraxerol might be a potential anticervical cancer candidate.

  20. Alginate Oligosaccharide Prevents Acute Doxorubicin Cardiotoxicity by Suppressing Oxidative Stress and Endoplasmic Reticulum-Mediated Apoptosis.

    Science.gov (United States)

    Guo, Jun-Jie; Ma, Lei-Lei; Shi, Hong-Tao; Zhu, Jian-Bing; Wu, Jian; Ding, Zhi-Wen; An, Yi; Zou, Yun-Zeng; Ge, Jun-Bo

    2016-12-20

    Doxorubicin (DOX) is a highly potent chemotherapeutic agent, but its usage is limited by dose-dependent cardiotoxicity. DOX-induced cardiotoxicity involves increased oxidative stress and activated endoplasmic reticulum-mediated apoptosis. Alginate oligosaccharide (AOS) is a non-immunogenic, non-toxic and biodegradable polymer, with anti-oxidative, anti-inflammatory and anti-endoplasmic reticulum stress properties. The present study examined whether AOS pretreatment could protect against acute DOX cardiotoxicity, and the underlying mechanisms focused on oxidative stress and endoplasmic reticulum-mediated apoptosis. We found that AOS pretreatment markedly increased the survival rate of mice insulted with DOX, improved DOX-induced cardiac dysfunction and attenuated DOX-induced myocardial apoptosis. AOS pretreatment mitigated DOX-induced cardiac oxidative stress, as shown by the decreased expressions of gp91 (phox) and 4-hydroxynonenal (4-HNE). Moreover, AOS pretreatment significantly decreased the expression of Caspase-12, C/EBP homologous protein (CHOP) (markers for endoplasmic reticulum-mediated apoptosis) and Bax (a downstream molecule of CHOP), while up-regulating the expression of anti-apoptotic protein Bcl-2. Taken together, these findings identify AOS as a potent compound that prevents acute DOX cardiotoxicity, at least in part, by suppression of oxidative stress and endoplasmic reticulum-mediated apoptosis.

  1. Calcium signals and caspase-12 participated in paraoxon-induced apoptosis in EL4 cells.

    Science.gov (United States)

    Li, Lan; Cao, Zhiheng; Jia, Pengfei; Wang, Ziren

    2010-04-01

    In order to investigate whether calcium signals participate in paraoxon (POX)-induced apoptosis in EL4 cells, real-time laser scanning confocal microscopy (LSCM) was used to detect Ca(2+) changes during the POX application. Apoptotic rates of EL4 cells and caspase-12 expression were also evaluated. POX (1-10nM) increased intracellular calcium concentration ([Ca(2+)]i) in EL4 cells in a dose-dependent manner at early stage (0-2h) of POX application, and apoptotic rates of EL4 cells after treatment with POX for 16h were also increased in a dose-dependent manner. Pre-treatment with EGTA, heparin or procaine attenuated POX-induced [Ca(2+)]i elevation and apoptosis. Additionally, POX up-regulated caspase-12 expression in a dose-dependent manner, and pre-treatment with EGTA, heparin or procaine significantly inhibited POX-induced increase of caspase-12 expression. Our results suggested that POX induced [Ca(2+)]i elevation in EL4 cells at the early stage of POX-induced apoptosis, which might involve Ca(2+) efflux from the endoplasmic reticulum (ER) and Ca(2+) influx from extracellular medium. Calcium signals and caspase-12 were important upstream messengers in POX-induced apoptosis in EL4 cells. The ER-associated pathway possibly operated in this apoptosis. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  2. Tunicamycin promotes apoptosis in leukemia cells through ROS generation and downregulation of survivin expression.

    Science.gov (United States)

    Lim, Eun Jin; Heo, Jeonghoon; Kim, Young-Ho

    2015-08-01

    Tunicamycin (TN), one of the endoplasmic reticulum stress inducers, has been reported to inhibit tumor cell growth and exhibit anticarcinogenic activity. However, the mechanism by which TN initiates apoptosis remains poorly understood. In the present study, we investigated the effect of TN on the apoptotic pathway in U937 cells. We show that TN induces apoptosis in association with caspase-3 activation, generation of reactive oxygen species (ROS), and downregulation of survivin expression. P38 MAPK (mitogen-activated protein kinase) and the generation of ROS signaling pathway play crucial roles in TN-induced apoptosis in U937 cells. We hypothesized that TN-induced activation of p38 MAPK signaling pathway is responsible for cell death. To test this hypothesis, we selectively inhibited MAPK during treatment with TN. Our data demonstrated that inhibitor of p38 (SB), but not ERK (PD) or JNK (SP), partially maintained apoptosis during treatment with TN. Pre-treatment with NAC and GSH markedly prevented cell death, suggesting a role for ROS in this process. Ectopic expression of survivin in U937 cells attenuated TN-induced apoptosis by suppression of caspase-3 cleavage, mitochondrial membrane potential, and cytochrome c release in U937 cells. Taken together, our results show that TN modulates multiple components of the apoptotic response of human leukemia cells and raise the possibility of a novel therapeutic strategy for hematological malignancies.

  3. l-Cystathionine Inhibits the Mitochondria-Mediated Macrophage Apoptosis Induced by Oxidized Low Density Lipoprotein

    Science.gov (United States)

    Zhu, Mingzhu; Du, Junbao; Chen, Siyao; Liu, Angie Dong; Holmberg, Lukas; Chen, Yonghong; Zhang, Chunyu; Tang, Chaoshu; Jin, Hongfang

    2014-01-01

    This study was designed to investigate the regulatory role of l-cystathionine in human macrophage apoptosis induced by oxidized low density lipoprotein (ox-LDL) and its possible mechanisms. THP-1 cells were induced with phorbol 12-myristate 13-acetate (PMA) and differentiated into macrophages. Macrophages were incubated with ox-LDL after pretreatment with l-cystathionine. Superoxide anion, apoptosis, mitochondrial membrane potential, and mitochondrial permeability transition pore (MPTP) opening were examined. Caspase-9 activities and expression of cleaved caspase-3 were measured. The results showed that compared with control group, ox-LDL treatment significantly promoted superoxide anion generation, release of cytochrome c (cytc) from mitochondrion into cytoplasm, caspase-9 activities, cleavage of caspase-3, and cell apoptosis, in addition to reduced mitochondrial membrane potential as well as increased MPTP opening. However, 0.3 and 1.0 mmol/L l-cystathionine significantly reduced superoxide anion generation, increased mitochondrial membrane potential, and markedly decreased MPTP opening in ox-LDL + l-cystathionine macrophages. Moreover, compared to ox-LDL treated-cells, release of cytc from mitochondrion into cytoplasm, caspase-9 activities, cleavage of caspase-3, and apoptosis levels in l-cystathionine pretreated cells were profoundly attenuated. Taken together, our results suggested that l-cystathionine could antagonize mitochondria-mediated human macrophage apoptosis induced by ox-LDL via inhibition of cytc release and caspase activation. PMID:25514411

  4. Apoptosis of bone marrow mesenchymal stem cells caused by homocysteine via activating JNK signal.

    Directory of Open Access Journals (Sweden)

    Benzhi Cai

    Full Text Available Bone marrow mesenchymal stem cells (BMSCs are capable of homing to and repair damaged myocardial tissues. Apoptosis of BMSCs in response to various pathological stimuli leads to the attenuation of healing ability of BMSCs. Plenty of evidence has shown that elevated homocysteine level is a novel independent risk factor of cardiovascular diseases. The present study was aimed to investigate whether homocysteine may induce apoptosis of BMSCs and its underlying mechanisms. Here we uncovered that homocysteine significantly inhibited the cellular viability of BMSCs. Furthermore, TUNEL, AO/EB, Hoechst 333342 and Live/Death staining demonstrated the apoptotic morphological appearance of BMSCs after homocysteine treatment. A distinct increase of ROS level was also observed in homocysteine-treated BMSCs. The blockage of ROS by DMTU and NAC prevented the apoptosis of BMSCs induced by homocysteine, indicating ROS was involved in the apoptosis of BMSCs. Moreover, homocysteine also caused the depolarization of mitochondrial membrane potential of BMSCs. Furthermore, apoptotic appearance and mitochondrial membrane potential depolarization in homocysteine-treated BMSCs was significantly reversed by JNK inhibitor but not p38 MAPK and ERK inhibitors. Western blot also confirmed that p-JNK was significantly activated after exposing BMSCs to homocysteine. Homocysteine treatment caused a significant reduction of BMSCs-secreted VEGF and IGF-1 in the culture medium. Collectively, elevated homocysteine induced the apoptosis of BMSCs via ROS-induced the activation of JNK signal, which provides more insight into the molecular mechanisms of hyperhomocysteinemia-related cardiovascular diseases.

  5. Oxidative Stress Induces Mouse Follicular Granulosa Cells Apoptosis via JNK/FoxO1 Pathway.

    Science.gov (United States)

    Weng, Qiannan; Liu, Zequn; Li, Bojiang; Liu, Kaiqing; Wu, Wangjun; Liu, Honglin

    2016-01-01

    The c-Jun N-terminal protein kinase (JNK) plays an important role in the regulation of cell apoptosis. Forkhead box O (FoxO) transcription factors are involved in diverse biological processes, including cellular metabolism, cell apoptosis, and cell cycle. However, the JNK/FoxO1 pathway involved in the process of apoptosis induced by oxidative stress remains to be elucidated. Here, we demonstrated that the JNK activity significantly increased in response to oxidative stress in mouse follicular granulosa cells (MGCs). SP600125, a selective JNK inhibitor, attenuated the oxidative stress-induced MGCs apoptosis. Oxidative stress enhanced the FoxO1 nuclear translocation by activating the JNK activity. Moreover, JNK mediated the dissociation of FoxO1 from 14-3-3 proteins in MGCs after the treatment with H2O2. Finally, oxidative stress up-regulated the expression of FoxO1 via JNK mediation of FoxO1 self-regulation in MGCs. Taken together, our findings suggest that JNK/FoxO1 is involved in the regulation of oxidative stress-induced cell apoptosis in MGCs.

  6. Attenuation in Superconducting Circular Waveguides

    Directory of Open Access Journals (Sweden)

    K. H. Yeap

    2016-09-01

    Full Text Available We present an analysis on wave propagation in superconducting circular waveguides. In order to account for the presence of quasiparticles in the intragap states of a superconductor, we employ the characteristic equation derived from the extended Mattis-Bardeen theory to compute the values of the complex conductivity. To calculate the attenuation in a circular waveguide, the tangential fields at the boundary of the wall are first matched with the electrical properties (which includes the complex conductivity of the wall material. The matching of fields with the electrical properties results in a set of transcendental equations which is able to accurately describe the propagation constant of the fields. Our results show that although the attenuation in the superconducting waveguide above cutoff (but below the gap frequency is finite, it is considerably lower than that in a normal waveguide. Above the gap frequency, however, the attenuation in the superconducting waveguide increases sharply. The attenuation eventually surpasses that in a normal waveguide. As frequency increases above the gap frequency, Cooper pairs break into quasiparticles. Hence, we attribute the sharp rise in attenuation to the increase in random collision of the quasiparticles with the lattice structure.

  7. TRAIL-Based High Throughput Screening Reveals a Link between TRAIL-Mediated Apoptosis and Glutathione Reductase, a Key Component of Oxidative Stress Response.

    Directory of Open Access Journals (Sweden)

    Dmitri Rozanov

    Full Text Available A high throughput screen for compounds that induce TRAIL-mediated apoptosis identified ML100 as an active chemical probe, which potentiated TRAIL activity in prostate carcinoma PPC-1 and melanoma MDA-MB-435 cells. Follow-up in silico modeling and profiling in cell-based assays allowed us to identify NSC130362, pharmacophore analog of ML100 that induced 65-95% cytotoxicity in cancer cells and did not affect the viability of human primary hepatocytes. In agreement with the activation of the apoptotic pathway, both ML100 and NSC130362 synergistically with TRAIL induced caspase-3/7 activity in MDA-MB-435 cells. Subsequent affinity chromatography and inhibition studies convincingly demonstrated that glutathione reductase (GSR, a key component of the oxidative stress response, is a target of NSC130362. In accordance with the role of GSR in the TRAIL pathway, GSR gene silencing potentiated TRAIL activity in MDA-MB-435 cells but not in human hepatocytes. Inhibition of GSR activity resulted in the induction of oxidative stress, as was evidenced by an increase in intracellular reactive oxygen species (ROS and peroxidation of mitochondrial membrane after NSC130362 treatment in MDA-MB-435 cells but not in human hepatocytes. The antioxidant reduced glutathione (GSH fully protected MDA-MB-435 cells from cell lysis induced by NSC130362 and TRAIL, thereby further confirming the interplay between GSR and TRAIL. As a consequence of activation of oxidative stress, combined treatment of different oxidative stress inducers and NSC130362 promoted cell death in a variety of cancer cells but not in hepatocytes in cell-based assays and in in vivo, in a mouse tumor xenograft model.

  8. TNF-related apoptosis-inducing ligand (TRAIL) regulates midline-1, thymic stromal lymphopoietin, inflammation, and remodeling in experimental eosinophilic esophagitis.

    Science.gov (United States)

    Collison, Adam M; Sokulsky, Leon A; Sherrill, Joseph D; Nightingale, Scott; Hatchwell, Luke; Talley, Nicholas J; Walker, Marjorie M; Rothenberg, Marc E; Mattes, Joerg

    2015-10-01

    Eosinophilic esophagitis (EoE) is an inflammatory disorder of the esophagus defined by eosinophil infiltration and tissue remodeling with resulting symptoms of esophageal dysfunction. TNF-related apoptosis-inducing ligand (TRAIL) promotes inflammation through upregulation of the E3 ubiquitin-ligase midline-1 (MID1), which binds to and deactivates the catalytic subunit of protein phosphatase 2Ac, resulting in increased nuclear factor κB activation. We sought to elucidate the role of TRAIL in EoE. We used Aspergillus fumigatus to induce EoE in TRAIL-sufficient (wild-type) and TRAIL-deficient (TRAIL(-/-)) mice and targeted MID1 in the esophagus with small interfering RNA. We also treated mice with recombinant thymic stromal lymphopoietin (TSLP) and TRAIL. TRAIL deficiency and MID1 silencing with small interfering RNA reduced esophageal eosinophil and mast cell numbers and protected against esophageal circumference enlargement, muscularis externa thickening, and collagen deposition. MID1 expression and nuclear factor κB activation were reduced in TRAIL(-/-) mice, whereas protein phosphatase 2Ac levels were increased compared with those seen in wild-type control mice. This was associated with reduced expression of CCL24, CCL11, CCL20, IL-5, IL-13, IL-25, TGFB, and TSLP. Treatment with TSLP reconstituted hallmark features of EoE in TRAIL(-/-) mice and recombinant TRAIL induced esophageal TSLP expression in vivo in the absence of allergen. Post hoc analysis of gene array data demonstrated significant upregulation of TRAIL and MID1 in a cohort of children with EoE compared with that seen in controls. TRAIL regulates MID1 and TSLP, inflammation, fibrosis, smooth muscle hypertrophy, and expression of inflammatory effector chemokines and cytokines in experimental EoE. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  9. The tyrosine kinase inhibitor nintedanib activates SHP-1 and induces apoptosis in triple-negative breast cancer cells.

    Science.gov (United States)

    Liu, Chun-Yu; Huang, Tzu-Ting; Chu, Pei-Yi; Huang, Chun-Teng; Lee, Chia-Han; Wang, Wan-Lun; Lau, Ka-Yi; Tsai, Wen-Chun; Chao, Tzu-I; Su, Jung-Chen; Chen, Ming-Huang; Shiau, Chung-Wai; Tseng, Ling-Ming; Chen, Kuen-Feng

    2017-08-11

    Triple-negative breast cancer (TNBC) remains difficult to treat and urgently needs new therapeutic options. Nintedanib, a multikinase inhibitor, has exhibited efficacy in early clinical trials for HER2-negative breast cancer. In this study, we examined a new molecular mechanism of nintedanib in TNBC. The results demonstrated that nintedanib enhanced TNBC cell apoptosis, which was accompanied by a reduction of p-STAT3 and its downstream proteins. STAT3 overexpression suppressed nintedanib-mediated apoptosis and further increased the activity of purified SHP-1 protein. Moreover, treatment with either a specific inhibitor of SHP-1 or SHP-1-targeted siRNA reduced the apoptotic effects of nintedanib, which validates the role of SHP-1 in nintedanib-mediated apoptosis. Furthermore, nintedanib-induced apoptosis was attenuated in TNBC cells expressing SHP-1 mutants with constantly open conformations, suggesting that the autoinhibitory mechanism of SHP-1 attenuated the effects of nintedanib. Importantly, nintedanib significantly inhibited tumor growth via the SHP-1/p-STAT3 pathway. Clinically, SHP-1 levels were downregulated, whereas p-STAT3 was upregulated in tumor tissues, and SHP-1 transcripts were associated with improved disease-free survival in TNBC patients. Our findings revealed that nintedanib induces TNBC apoptosis by acting as a SHP-1 agonist, suggesting that targeting STAT3 by enhancing SHP-1 expression could be a viable therapeutic strategy against TNBC.

  10. Sodium Ferulate Prevents Daunorubicin - Induced Apoptosis in H9c2 Cells via Inhibition of the ERKs Pathway

    Directory of Open Access Journals (Sweden)

    Zhi-Juan Wu

    2015-07-01

    Full Text Available Background: Daunorubicin (DNR-induced cardiotoxicity, which is closely associated with cardiomyocyte apoptosis, limits the drug's clinical application. The activation of the extracellular regulated protein kinases (ERKs pathway is responsible for the pro-apoptosis effect of DNR Sodium ferulate (SF has recently been found to attenuate both DNR-induced cardiotoxicity and mitochondrial apoptosis in juvenile rats. Nonetheless, the precise mechanism underlying SF-induced cardio-protection remains unclear. Methods: The DNR-injured H9c2 cell model was prepared by incubating the cells in 1 µM DNR for 24 h. Amounts of 15.6, 31.3 or 62.5 µM SF were simultaneously added to the cells. The effect of SF on the cytotoxic and apoptotic parameters of the cells was studied by monitoring apoptosis regulation via the ERKs pathway. Results: SF attenuated DNR-induced cell death (particularly apoptotic death, cTnI and β-tubulin degradation, and cellular morphological changes. SF reduced mitochondrial membrane potential depolarization, cytochrome c leakage, and caspase-9 and caspase-3 activation. SF also decreased ERK1/2, phospho-ERK1/2, p53 and Bax expression and increased Bcl-2 expression. These effects were similar to the results observed when using the pharmacological ERKs phosphorylation inhibitor, AZD6244. Conclusion: We determined that SF protects H9c2 cells from DNR-induced apoptosis through a mechanism that involves the interruption of the ERKs signaling pathway.

  11. Bacteremia causes hippocampal apoptosis in experimental pneumococcal meningitis

    DEFF Research Database (Denmark)

    Andersen, Christian Østergaard; Leib, S.L.; Rowland, Ian J

    2010-01-01

    by antibody treatment resulted in significantly reduced apoptosis (0.08 (0.02-0.20), P=0.01) as compared to meningitis. CONCLUSIONS: Our results demonstrate that bacteremia accompanying meningitis plays an important role in the development of hippocampal injury in pneumococcal meningitis.......ABSTRACT: BACKGROUND: Bacteremia and systemic complications both play important roles in brain pathophysiological alterations and the outcome of pneumococcal meningitis. Their individual contributions to the development of brain damage, however, still remain to be defined. METHODS: Using an adult...... rat pneumococcal meningitis model, the impact of bacteremia accompanying meningitis on the development of hippocampal injury was studied. The study comprised of the three groups: I. Meningitis (n=11), II. meningitis with attenuated bacteremia resulting from iv injection of serotype...

  12. Elevated pressure, a novel cancer therapeutic tool for sensitizing cisplatin-mediated apoptosis in A549

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Sangnam [Cellular and Developmental Biology, Division of Biomedical Science, College of Medicine, Korea University, Seoul 136-705 (Korea, Republic of); Department of Preventive Medicine and Medical Research Center for Environmental Toxico-Genomics and Proteomics, College of Medicine, Korea University, Seoul 136-705 (Korea, Republic of); Kim, Yanghee [Department of Preventive Medicine and Medical Research Center for Environmental Toxico-Genomics and Proteomics, College of Medicine, Korea University, Seoul 136-705 (Korea, Republic of); Kim, Joonhee [Cellular and Developmental Biology, Division of Biomedical Science, College of Medicine, Korea University, Seoul 136-705 (Korea, Republic of); Department of Preventive Medicine and Medical Research Center for Environmental Toxico-Genomics and Proteomics, College of Medicine, Korea University, Seoul 136-705 (Korea, Republic of); Kwon, Daeho [Department of Preventive Medicine and Medical Research Center for Environmental Toxico-Genomics and Proteomics, College of Medicine, Korea University, Seoul 136-705 (Korea, Republic of); Lee, Eunil, E-mail: eunil@korea.ac.kr [Cellular and Developmental Biology, Division of Biomedical Science, College of Medicine, Korea University, Seoul 136-705 (Korea, Republic of); Department of Preventive Medicine and Medical Research Center for Environmental Toxico-Genomics and Proteomics, College of Medicine, Korea University, Seoul 136-705 (Korea, Republic of)

    2010-08-13

    Research highlights: {yields} Sensitized apoptosis in cancer cells stimulated by EP precondition with p53 dependence. {yields} EP attenuates several CDDP-resistance mechanisms. {yields} No harmful effect of EP on normal fibroblasts. -- Abstract: Intensive cancer therapy strategies have thus far focused on sensitizing cancer cells to anticancer drug-mediated apoptosis to overcome drug resistance, and this strategy has led to more effective cancer therapeutics. Cisplatin (cis-diamminedichloroplatinum(II), CDDP) is an effective anticancer drug used to treat many types of cancer, including non-small cell lung carcinoma (NSCLC), and can be used in combination with various chemicals to enhance cancer cell apoptosis. Here, we introduce the use of elevated pressure (EP) in combination with CDDP for cancer treatment and explore the effects of EP on CDDP-mediated apoptosis in NSCLC cells. Our findings demonstrate that preconditioning NSCLC cells with EP sensitizes cells for CDDP-induced apoptosis. Enhanced apoptosis was dependent on p53 and HO-1 expression, and was associated with increased DNA damage and down-regulation of genes involved in nucleotide excision repair. The transcriptional levels of transporter proteins indicated that the mechanism by which EP-induced CDDP sensitization was intracellular drug accumulation. The protein levels of some antioxidants, such as hemeoxygenase-1 (HO-1), glutathione (GSH) and glutathione peroxidase (Gpx), were decreased in A549 cells exposed to EP via the down-regulation of the transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf-2). Furthermore, normal human fibroblasts were resistant to EP treatment, with no elevated DNA damage or apoptosis. Collectively, these data show that administration of EP is a potential adjuvant tool for CDDP-based chemosensitivity of lung cancer cells that may reduce drug resistance.

  13. Testosterone reduces AGTR1 expression to prevent β-cell and islet apoptosis from glucotoxicity.

    Science.gov (United States)

    Kooptiwut, Suwattanee; Hanchang, Wanthanee; Semprasert, Namoiy; Junking, Mutita; Limjindaporn, Thawornchai; Yenchitsomanus, Pa-thai

    2015-03-01

    Hypogonadism in men is associated with an increased incidence of type 2 diabetes. Supplementation with testosterone has been shown to protect pancreatic β-cell against apoptosis due to toxic substances including streptozotocin and high glucose. One of the pathological mechanisms of glucose-induced pancreatic β-cell apoptosis is the induction of the local rennin-angiotensin-aldosterone system (RAAS). The role of testosterone in regulation of the pancreatic RAAS is still unknown. This study aims to investigate the protective action of testosterone against glucotoxicity-induced pancreatic β-cell apoptosis via alteration of the pancreatic RAAS pathway. Rat insulinoma cell line (INS-1) cells or isolated male mouse islets were cultured in basal and high-glucose media in the presence or absence of testosterone, losartan, and angiotensin II (Ang II), then cell apoptosis, cleaved caspase 3 expression, oxidative stress, and expression of angiotensin II type 1 receptor (AGTR1) and p47(phox) mRNA and protein were measured. Testosterone and losartan showed similar effects in reducing pancreatic β-cell apoptosis. Testosterone significantly reduced expression of AGTR1 protein in INS-1 cells cultured in high-glucose medium or high-glucose medium with Ang II. Testosterone decreased the expression of AGTR1 and p47(phox) mRNA and protein in comparison with levels in cells cultured in high-glucose medium alone. Furthermore, testosterone attenuated superoxide production when co-cultured with high-glucose medium. In contrast, when cultured in basal glucose, supplementation of testosterone did not have any effect on cell apoptosis, oxidative stress, and expression of AGT1R and p47(phox). In addition, high-glucose medium did not increase cleaved caspase 3 in AGTR1 knockdown experiments. Thus, our results indicated that testosterone prevents pancreatic β-cell apoptosis due to glucotoxicity through reduction of the expression of ATGR1 and its signaling pathway. © 2015 Society for

  14. Antioxidant micronutrients improve intrinsic and UV-induced apoptosis of human lymphocytes particularly in elderly people.

    Science.gov (United States)

    Ma, A G; Ge, S; Zhang, M; Shi, X X; Schouten, E G; Kok, F J; Sun, Y Y; Han, X X

    2011-12-01

    Aging and oxidative stress may lead to enhanced cellular damage and programmed cell death. To study the association of intrinsic apoptosis with age and the effect of antioxidant supplementation on intrinsic and UV-induced apoptosis in children, young and elderly people. The study was a 2 months, double-blind, randomized trial. Three age groups were studied: children, young adults and elderly people. A total of 274 healthy subjects were allocated to a group supplemented with moderate amounts of retinol, β-carotene, α-tocopherol, ascorbic acid and selenium or placebo. Plasma oxidative stress parameters were detected and apoptosis of lymphocytes was evaluated with TUNEL staining. At baseline, percentages of intrinsic apoptosis were 13.8% and 11.1% in elderly and young people, respectively, both significantly higher than children (6.3%). A decrease of 1.7% and 2.3% in intrinsic apoptosis of lymphocytes was found in the supplemented groups of young and elderly people compared with their control groups (all p values children. Moreover, percentages UV-induced apoptosis significantly decreased by 1.4%, 1.9% and 3.1% in children, young and elderly people, respectively, compared with control groups after the trial. There were considerable increments in concentrations of plasma β-carotene, retinol, tocopherol, ascorbic acid and selenium in all three treated groups after the supplementation. Young and elderly people have a higher intrinsic apoptosis than children, which was improved by antioxidant supplementation. UV-induced damage was attenuated by the supplementation in all three age groups.

  15. Glyceraldehyde-3-phosphate dehydrogenase interacts with proapoptotic kinase mst1 to promote cardiomyocyte apoptosis.

    Directory of Open Access Journals (Sweden)

    Bei You

    Full Text Available Mammalian sterile 20-like kinase 1 (Mst1 is a critical component of the Hippo signaling pathway, which regulates a variety of biological processes ranging from cell contact inhibition, organ size control, apoptosis and tumor suppression in mammals. Mst1 plays essential roles in the heart disease since its activation causes cardiomyocyte apoptosis and dilated cardiomyopathy. However, the mechanism underlying Mst1 activation in the heart remains unknown. In a yeast two-hybrid screen of a human heart cDNA library with Mst1 as bait, glyceraldehyde-3-phosphate dehydrogenase (GAPDH was identified as an Mst1-interacting protein. The interaction of GAPDH with Mst1 was confirmed by co-immunoprecipitation in both co-transfected HEK293 cells and mouse heart homogenates, in which GAPDH interacted with the kinase domain of Mst1, whereas the C-terminal catalytic domain of GAPDH mediated its interaction with Mst1. Moreover, interaction of Mst1 with GAPDH caused a robust phosphorylation of GAPDH and markedly increased the Mst1 activity in cells. Chelerythrine, a potent inducer of apoptosis, substantially increased the nuclear translocation and interaction of GAPDH and Mst1 in cardiomyocytes. Overexpression of GAPDH significantly augmented the Mst1 mediated apoptosis, whereas knockdown of GAPDH markedly attenuated the Mst1 activation and cardiomyocyte apoptosis in response to either chelerythrine or hypoxia/reoxygenation. These findings reveal a novel function of GAPDH in Mst1 activation and cardiomyocyte apoptosis and suggest that disruption of GAPDH interaction with Mst1 may prevent apoptosis related heart diseases such as heart failure and ischemic heart disease.

  16. Rosmarinic acid potentiates carnosic acid induced apoptosis in lung fibroblasts.

    Science.gov (United States)

    Bahri, Sana; Mies, Frédérique; Ben Ali, Ridha; Mlika, Mona; Jameleddine, Saloua; Mc Entee, Kathleen; Shlyonsky, Vadim

    2017-01-01

    Pulmonary fibrosis is characterized by over-population and excessive activation of fibroblasts and myofibroblasts disrupting normal lung structure and functioning. Rosemary extract rich in carnosic acid (CA) and rosmarinic acid (RA) was reported to cure bleomycin-(BLM)-induced pulmonary fibrosis. We demonstrate that CA decreased human lung fibroblast (HLF) viability with IC50 value of 17.13±1.06 μM, while RA had no cytotoxic effect. In the presence of 50 μM of RA, dose-response for CA shifted to IC50 value of 11.70±1.46 μM, indicating synergic action. TGFβ-transformed HLF, rat lung fibroblasts and L929 cells presented similar sensitivity to CA and CA+RA (20μM+100μM, respectively) treatment. Rat alveolar epithelial cells died only under CA+RA treatment, while A549 cells were not affected. Annexin V staining and DNA quantification suggested that HLF are arrested in G0/G1 cell cycle phase and undergo apoptosis. CA caused sustained activation of phospho-Akt and phospho-p38 expression and inhibition of p21 protein.Addition of RA potentiated these effects, while RA added alone had no action.Only triple combination of inhibitors (MAPK-p38, pan-caspase, PI3K/Akt/autophagy) partially attenuated apoptosis; this suggests that cytotoxicity of CA+RA treatment has a complex mechanism involving several parallel signaling pathways. The in vivo antifibrotic effect of CA and RA was compared with that of Vitamine-E in BLM-induced fibrosis model in rats. We found comparable reduction in fibrosis score by CA, RA and CA+RA, attenuation of collagen deposition and normalization of oxidative stress markers. In conclusion, antifibrotic effect of CA+RA is due to synergistic pro-apoptotic action on lung fibroblasts and myofibroblasts.

  17. Rosmarinic acid potentiates carnosic acid induced apoptosis in lung fibroblasts.

    Directory of Open Access Journals (Sweden)

    Sana Bahri

    Full Text Available Pulmonary fibrosis is characterized by over-population and excessive activation of fibroblasts and myofibroblasts disrupting normal lung structure and functioning. Rosemary extract rich in carnosic acid (CA and rosmarinic acid (RA was reported to cure bleomycin-(BLM-induced pulmonary fibrosis. We demonstrate that CA decreased human lung fibroblast (HLF viability with IC50 value of 17.13±1.06 μM, while RA had no cytotoxic effect. In the presence of 50 μM of RA, dose-response for CA shifted to IC50 value of 11.70±1.46 μM, indicating synergic action. TGFβ-transformed HLF, rat lung fibroblasts and L929 cells presented similar sensitivity to CA and CA+RA (20μM+100μM, respectively treatment. Rat alveolar epithelial cells died only under CA+RA treatment, while A549 cells were not affected. Annexin V staining and DNA quantification suggested that HLF are arrested in G0/G1 cell cycle phase and undergo apoptosis. CA caused sustained activation of phospho-Akt and phospho-p38 expression and inhibition of p21 protein.Addition of RA potentiated these effects, while RA added alone had no action.Only triple combination of inhibitors (MAPK-p38, pan-caspase, PI3K/Akt/autophagy partially attenuated apoptosis; this suggests that cytotoxicity of CA+RA treatment has a complex mechanism involving several parallel signaling pathways. The in vivo antifibrotic effect of CA and RA was compared with that of Vitamine-E in BLM-induced fibrosis model in rats. We found comparable reduction in fibrosis score by CA, RA and CA+RA, attenuation of collagen deposition and normalization of oxidative stress markers. In conclusion, antifibrotic effect of CA+RA is due to synergistic pro-apoptotic action on lung fibroblasts and myofibroblasts.

  18. Antiproliferative and apoptosis inducing effects of citral via p53 and ROS-induced mitochondrial-mediated apoptosis in human colorectal HCT116 and HT29 cell lines.

    Science.gov (United States)

    Sheikh, Bassem Y; Sarker, Md Moklesur Rahman; Kamarudin, Muhamad Noor Alfarizal; Mohan, Gokula

    2017-12-01

    Despite various anticancer reports, antiproliferative and apoptosis inducing activity of citral in HCT116 and HT29 cells have never been reported. This study aimed to evaluate the cytotoxic and apoptosis inducing effects of citral in colorectal cancer cell lines. The citral-treated cells were subjected to MTT assay followed by flow cytometric Annexin V-FITC/PI, mitochondrial membrane potential and intracellular reactive oxygen species (ROS) determination. The apoptotic proteins expression was investigated by Western blot analysis. Citral inhibited the growth of HCT116 and HT29 cells by dose- and time-dependent manner without inducing cytotoxicity in CCD841-CoN normal colon cells. Flow cytometric analysis showed that citral (50-200μM; 24-48h) induced the externalization of phoshpotidylserine and reduced the mitochondrial membrane potential in HCT116 and HT29 cells. Citral elevated intracellular ROS level while attenuating GSH levels in HCT116 and HT29 cells which were reversed with N-acetycysteine (2mM) pre-treatment indicating that citral induced mitochondrial-mediated apoptosis via augmentation of intracellular ROS. Citral induced the phosphorylation of p53 protein and the expression of Bax while decreasing Bc-2 and Bcl-xL expression which promoted the cleavage of caspase-3. Collectively, our data suggest that citral induced p53 and ROS-mediated mitochondrial-mediated apoptosis in human colorectal cancer HCT116 and HT29 cells. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Increased endoplasmic reticulum stress response is involved in clopidogrel-induced apoptosis of gastric epithelial cells.

    Directory of Open Access Journals (Sweden)

    Hai-Lu Wu

    Full Text Available The widespread use of clopidogrel alone or in combination with aspirin may result in gastrointestinal mucosal injury, clinically represented as recurrent ulceration and bleeding complications. Our recent work suggested that clopidogrel significantly induced human gastric epithelial cell (GES-1 apoptosis and disrupted gastric mucosal barrier, and that a p38 MAPK inhibitor could attenuate such injury. However, their exact mechanisms are largely unknown.The GES-1 cells were used as a model system, the effects of clopidogrel on the whole gene expression profile were evaluated by human gene expression microarray and gene ontology analysis, changes of the mRNA and protein expression were determined by real-time PCR and Western blot analysis, and cell viability and apoptosis were measured by MTT assay and flow cytometry analysis, respectively.Gene microarray analysis identified 79 genes that were differentially expressed (P3 when cells were treated with or without clopidogrel. Gene ontology analysis revealed that response to stress and cell apoptosis dysfunction were ranked in the top 10 cellular events being affected, and that the major components of endoplasmic reticulum stress-mediated apoptosis pathway - CHOP and TRIB3- were up-regulated in a concentration- and time-dependent manner when cells were treated with clopidogrel. Pathway analysis demonstrated that multiple MAPK kinases were phosphorylated in clopidogrel-treated GES-1 cells, but that only SB-203580 (a p38-specific MAPK inhibitor attenuated cell apoptosis and CHOP over-expression, both of which were induced by clopidogrel.Increased endoplasmic reticulum stress response is involved in clopidogrel-induced gastric mucosal injury, acting through p38 MAPK activation.

  20. Increased Endoplasmic Reticulum Stress Response Is Involved in Clopidogrel-Induced Apoptosis of Gastric Epithelial Cells

    Science.gov (United States)

    Jiang, Zong-Dan; Cao, Wei-Jun; Wang, Zhi-Bing; Hu, Ke-Wei; Gao, Xin; Wang, Shu-Kui; He, Bang-Shun; Zhang, Zhen-Yu; Xie, Hong-Guang

    2013-01-01

    Background The widespread use of clopidogrel alone or in combination with aspirin may result in gastrointestinal mucosal injury, clinically represented as recurrent ulceration and bleeding complications. Our recent work suggested that clopidogrel significantly induced human gastric epithelial cell (GES-1) apoptosis and disrupted gastric mucosal barrier, and that a p38 MAPK inhibitor could attenuate such injury. However, their exact mechanisms are largely unknown. Methods The GES-1 cells were used as a model system, the effects of clopidogrel on the whole gene expression profile were evaluated by human gene expression microarray and gene ontology analysis, changes of the mRNA and protein expression were determined by real-time PCR and Western blot analysis, and cell viability and apoptosis were measured by MTT assay and flow cytometry analysis, respectively. Results Gene microarray analysis identified 79 genes that were differentially expressed (P3) when cells were treated with or without clopidogrel. Gene ontology analysis revealed that response to stress and cell apoptosis dysfunction were ranked in the top 10 cellular events being affected, and that the major components of endoplasmic reticulum stress-mediated apoptosis pathway – CHOP and TRIB3– were up-regulated in a concentration- and time-dependent manner when cells were treated with clopidogrel. Pathway analysis demonstrated that multiple MAPK kinases were phosphorylated in clopidogrel-treated GES-1 cells, but that only SB-203580 (a p38-specific MAPK inhibitor) attenuated cell apoptosis and CHOP over-expression, both of which were induced by clopidogrel. Conclusions Increased endoplasmic reticulum stress response is involved in clopidogrel-induced gastric mucosal injury, acting through p38 MAPK activation. PMID:24058556

  1. Ischemic preconditioning: Protection against myocardial necrosis and apoptosis

    Directory of Open Access Journals (Sweden)

    Efstathios K Iliodromitis

    2007-11-01

    Full Text Available Efstathios K Iliodromitis1, Antigone Lazou2, Dimitrios Th Kremastinos112nd University Department of Cardiology, Medical School, University of Athens, Greece; 2Lab of Animal Physiology, School of Biology, Aristotle University of Thessaloniki, GreeceAbstract: The phenomenon of ischemic preconditioning has been recognized as one of the most potent mechanisms to protect against myocardial ischemic injury. In experimental animals and humans, a brief period of ischemia has been shown to protect the heart from more prolonged episodes of ischemia, reducing infarct size, attenuating the incidence, and severity of reperfusion-induced arrhythmias, and preventing endothelial cell dysfunction. Although the exact mechanism of ischemic preconditioning remains obscure, several reports indicate that this phenomenon may be a form of receptor-mediated cardiac protection and that the underlying intracellular signal transduction pathways involve activation of a number of protein kinases, including protein kinase C, and mitochondrial KATP channels. Apoptosis, a genetically programmed form of cell death, has been associated with cardiomyocyte cell loss in a variety of cardiac pathologies, including cardiac failure and those related to ischemia/reperfusion injury. While ischemic preconditioning significantly reduces DNA fragmentation and apoptotic myocyte death associated with ischemia-reperfusion, the potential mechanisms underlying this effect have not been fully clarified. A comprehensive understanding of these mechanisms and application to clinical scenarios will provide new directions in research and translate this information into new treatment approaches for reducing the extent of ischemia/reperfusion injury.Keywords: preconditioning, ischemia, reperfusion, necrosis, apoptosis

  2. Apoptosis during embryonic tissue remodeling is accompanied by cell senescence

    Science.gov (United States)

    Lorda-Diez, Carlos I.; Garcia-Riart, Beatriz; Montero, Juan A.; Rodriguez-León, Joaquín; Garcia-Porrero, Juan A; Hurle, Juan M.

    2015-01-01

    This study re-examined the dying process in the interdigital tissue during the formation of free digits in the developing limbs. We demonstrated that the interdigital dying process was associated with cell senescence, as deduced by induction of β-gal activity, mitotic arrest, and transcriptional up-regulation of p21 together with many components of the senescence-associated secretory phenotype. We also found overlapping domains of expression of members of the Btg/Tob gene family of antiproliferative factors in the regressing interdigits. Notably, Btg2 was up-regulated during interdigit remodeling in species with free digits but not in the webbed foot of the duck. We also demonstrate that oxidative stress promoted the expression of Btg2, and that FGF2 and IGF1 which are survival signals for embryonic limb mesenchyme inhibited Btg2 expression. Btg2 overexpression in vivo and in vitro induced all the observed changes during interdigit regression, including oxidative stress, arrest of cell cycle progression, transcriptional regulation of senescence markers, and caspase-mediated apoptosis. Consistent with the central role of p21 on cell senescence, the transcriptional effects induced by overexpression of Btg2 are attenuated by silencing p21. Our findings indicate that cell senescence and apoptosis are complementary processes in the regression of embryonic tissues and share common regulatory signals. PMID:26568417

  3. Attenuation in silica-based optical fibers

    DEFF Research Database (Denmark)

    Wandel, Marie Emilie

    2006-01-01

    In this thesis on attenuation in silica based optical fibers results within three main topics are reported. Spectral attenuation measurements on transmission fibers are performed in the wide wavelength range 290 nm – 1700 nm. The measured spectral attenuation is analyzed with special emphasis...... on absorption peaks in order to investigate the cause of an unusual high attenuation in a series of transmission fibers. Strong indications point to Ni2+ in octahedral coordination as being the cause of the high attenuation. The attenuation of fibers having a high core refractive index is analyzed and the cause...... of the high attenuation measured in such fibers is described as being due to scattering of light on fluctuations of the core diameter. A novel semi-empirical model for predicting the attenuation of high index fibers is presented. The model is shown to be able to predict the attenuation of high index fibers...

  4. Automatic image analysis of multicellular apoptosis process.

    Science.gov (United States)

    Ziraldo, Riccardo; Link, Nichole; Abrams, John; Ma, Lan

    2014-01-01

    Apoptotic programmed cell death (PCD) is a common and fundamental aspect of developmental maturation. Image processing techniques have been developed to detect apoptosis at the single-cell level in a single still image, while an efficient algorithm to automatically analyze the temporal progression of apoptosis in a large population of cells is unavailable. In this work, we have developed an ImageJ-based program that can quantitatively analyze time-lapse microscopy movies of live tissues undergoing apoptosis with a fluorescent cellular marker, and subsequently extract the temporospatial pattern of multicellular response. The protocol is applied to characterize apoptosis of Drosophila wing epithelium cells at eclosion. Using natural anatomic structures as reference, we identify dynamic patterns in the progression of apoptosis within the wing tissue, which not only confirms the previously observed collective cell behavior from a quantitative perspective for the first time, but also reveals a plausible role played by the anatomic structures in Drosophila apoptosis.

  5. SIRT1 sensitizes hepatocellular carcinoma cells expressing hepatitis B virus X protein to oxidative stress-induced apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Srisuttee, Ratakorn [WCU, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Koh, Sang Seok [Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, University of Science and Technology, Daejeon 305-333 (Korea, Republic of); Department of Functional Genomics, University of Science and Technology, Daejeon 305-333 (Korea, Republic of); Malilas, Waraporn; Moon, Jeong; Cho, Il-Rae [WCU, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Jhun, Byung Hak [Department of Applied Nanoscience, Pusan National University, Busan 609-735 (Korea, Republic of); Horio, Yoshiyuki [Department of Pharmacology, Sapporo Medical University, Sapporo 060-8556 (Japan); Chung, Young-Hwa, E-mail: younghc@pusan.ac.kr [WCU, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735 (Korea, Republic of)

    2012-12-07

    Highlights: Black-Right-Pointing-Pointer Up-regulation of SIRT1 protein and activity sensitizes Hep3B-HBX cells to oxidative stress-induced apoptosis. Black-Right-Pointing-Pointer Nuclear localization of SIRT1 is not required for oxidation-induced apoptosis. Black-Right-Pointing-Pointer Ectopic expression and enhanced activity of SIRT1 attenuate JNK phosphorylation. Black-Right-Pointing-Pointer Inhibition of SIRT1 activity restores resistance to oxidation-induced apoptosis through JNK activation. -- Abstract: We previously showed that SIRT1 deacetylase inhibits proliferation of hepatocellular carcinoma cells expressing hepatitis B virus (HBV) X protein (HBX), by destabilization of {beta}-catenin. Here, we report another role for SIRT1 in HBX-mediated resistance to oxidative stress. Ectopic expression and enhanced activity of SIRT1 sensitize Hep3B cells stably expressing HBX to oxidative stress-induced apoptosis. SIRT1 mutant analysis showed that nuclear localization of SIRT1 is not required for sensitization of oxidation-mediated apoptosis. Furthermore, ectopic expression of SIRT1 and treatment with resveratrol (a SIRT1 activator) attenuated JNK phosphorylation, which is a prerequisite for resistance to oxidative stress-induced apoptosis. Conversely, suppression of SIRT1 activity with nicotinamide inhibited the effect of resveratrol on JNK phosphorylation, leading to restoration of resistance to oxidation-induced apoptosis. Taken together, these results suggest that up-regulation of SIRT1 under oxidative stress may be a therapeutic strategy for treatment of hepatocellular carcinoma cells related to HBV through inhibition of JNK activation.

  6. AMPK/mTOR-mediated inhibition of survivin partly contributes to metformin-induced apoptosis in human gastric cancer cell

    Science.gov (United States)

    Han, Gang; Gong, Hangjun; Wang, Yidong; Guo, Shaowen; Liu, Kun

    2015-01-01

    Recent studies demonstrated that metformin exerts anti-neoplastic effect in a spectrum of malignancies. However, the mechanism whereby metformin affects various cancers, including gastric cancer, is poorly elucidated. Considering apoptosis plays critical role in tumorigenesis, we, in the present study, investigated the in vitro apoptotic effect of metformin on human gastric cancer cell and the underlying mechanism. Three differently-differentiated gastric cancer cell lines, MKN-28, SGC-7901 and BGC-823, along with one noncancerous gastric cell line GES-1 were used. We found that metformin treatment selectively induces apoptosis in the 3 cancer cell lines, but not the noncancerous one, as confirmed by flow cytometry, Caspase-Glo assay and western blotting against PARP and cleaved caspase 3. Moreover, the apoptotic effect of metformin seems to correlate negatively with the differentiation degree of gastric cancer. Metformin-induced apoptosis may be partially mediated through inhibition of anti-apoptotic survivin. Additionally, AMPK and mTOR, 2 important regulatory molecules responsible for metformin action, were investigated for their possible involvements in metformin-induced apoptosis of gastric cancer cell. AMPK knockdown by siRNA restores metformin-inhibited survivin expression and partially abolishes metformin-induced apoptosis. Similarly, forced overexpression of mTOR downstream effector p70S6K1 relieves metformin-induced inhibition of survivin and partly attenuates metformin-induced apoptosis. More importantly, survivin overexpression alleviates metformin-induced apoptosis. Xenograft nude mouse experiment also confirmed that AMPK/mTOR-mediated decrease of suvivin is in vivo implicated in metformin-induced apoptosis. Taken together, these evidences suggest that AMPK/mTOR-mediated inhibition of survivin may partly contribute to metformin-induced apoptosis of gastric cancer cell. PMID:25456211

  7. AMPK/mTOR-mediated inhibition of survivin partly contributes to metformin-induced apoptosis in human gastric cancer cell.

    Science.gov (United States)

    Han, Gang; Gong, Hangjun; Wang, Yidong; Guo, Shaowen; Liu, Kun

    2015-01-01

    Recent studies demonstrated that metformin exerts anti-neoplastic effect in a spectrum of malignancies. However, the mechanism whereby metformin affects various cancers, including gastric cancer, is poorly elucidated. Considering apoptosis plays critical role in tumorigenesis, we, in the present study, investigated the in vitro apoptotic effect of metformin on human gastric cancer cell and the underlying mechanism. Three differently-differentiated gastric cancer cell lines, MKN-28, SGC-7901 and BGC-823, along with one noncancerous gastric cell line GES-1 were used. We found that metformin treatment selectively induces apoptosis in the 3 cancer cell lines, but not the noncancerous one, as confirmed by flow cytometry, Caspase-Glo assay and western blotting against PARP and cleaved caspase 3. Moreover, the apoptotic effect of metformin seems to correlate negatively with the differentiation degree of gastric cancer. Metformin-induced apoptosis may be partially mediated through inhibition of anti-apoptotic survivin. Additionally, AMPK and mTOR, 2 important regulatory molecules responsible for metformin action, were investigated for their possible involvements in metformin-induced apoptosis of gastric cancer cell. AMPK knockdown by siRNA restores metformin-inhibited survivin expression and partially abolishes metformin-induced apoptosis. Similarly, forced overexpression of mTOR downstream effector p70S6K1 relieves metformin-induced inhibition of survivin and partly attenuates metformin-induced apoptosis. More importantly, survivin overexpression alleviates metformin-induced apoptosis. Xenograft nude mouse experiment also confirmed that AMPK/mTOR-mediated decrease of suvivin is in vivo implicated in metformin-induced apoptosis. Taken together, these evidences suggest that AMPK/mTOR-mediated inhibition of survivin may partly contribute to metformin-induced apoptosis of gastric cancer cell.

  8. Lycium barbarum polysaccharide attenuates cisplatininduced ...

    African Journals Online (AJOL)

    Expressions of glucose-regulated protein 78(GRP78), C/EBP homologous protein (CHOP), caspase-3, Bax protein and B cell lymphoma-2(Bcl-2) were assayed by Western blot and qRT-PCR. Results: Apoptosis index (37.6 ± 2.44 %) was significantly higher (p > 0.05) in DDP group than in the control group (14.3 ± 1.09 %) ...

  9. Seismic attenuation imaging with causality

    NARCIS (Netherlands)

    Hak, B.; Mulder, W.A.

    2010-01-01

    Seismic data enable imaging of the Earth, not only of velocity and density but also of attenuation contrasts. Unfortunately, the Born approximation of the constant-density visco-acoustic wave equation, which can serve as a forward modelling operator related to seismic migration, exhibits an

  10. Josephson tunnel junction microwave attenuator

    DEFF Research Database (Denmark)

    Koshelets, V. P.; Shitov, S. V.; Shchukin, A. V.

    1993-01-01

    A new element for superconducting electronic circuitry-a variable attenuator-has been proposed, designed, and successfully tested. The principle of operation is based on the change in the microwave impedance of a superconductor-insulator-superconductor (SIS) Josephson tunnel junction when dc bias...

  11. Compact plasmonic variable optical attenuator

    DEFF Research Database (Denmark)

    Leosson, Kristjan; Rosenzveig, Tiberiu; Hermannsson, Pétur Gordon

    2008-01-01

    We demonstrate plasmonic nanowire-based thermo-optic variable optical attenuators operating in the 1525-1625 nm wavelength range. The devices have a footprint as low as 1 mm, extinction ratio exceeding 40 dB, driving voltage below 3 V, and full modulation bandwidth of 1 kHz. The polarization...

  12. Flagella overexpression attenuates Salmonella pathogenesis.

    Directory of Open Access Journals (Sweden)

    Xinghong Yang

    Full Text Available Flagella are cell surface appendages involved in a number of bacterial behaviors, such as motility, biofilm formation, and chemotaxis. Despite these important functions, flagella can pose a liability to a bacterium when serving as potent immunogens resulting in the stimulation of the innate and adaptive immune systems. Previous work showing appendage overexpression, referred to as attenuating gene expression (AGE, was found to enfeeble wild-type Salmonella. Thus, this approach was adapted to discern whether flagella overexpression could induce similar attenuation. To test its feasibility, flagellar filament subunit FliC and flagellar regulon master regulator FlhDC were overexpressed in Salmonella enterica serovar Typhimurium wild-type strain H71. The results show that the expression of either FliC or FlhDC alone, and co-expression of the two, significantly attenuates Salmonella. The flagellated bacilli were unable to replicate within macrophages and thus were not lethal to mice. In-depth investigation suggests that flagellum-mediated AGE was due to the disruptive effects of flagella on the bacterial membrane, resulting in heightened susceptibilities to hydrogen peroxide and bile. Furthermore, flagellum-attenuated Salmonella elicited elevated immune responses to Salmonella presumably via FliC's adjuvant effect and conferred robust protection against wild-type Salmonella challenge.

  13. Flagella Overexpression Attenuates Salmonella Pathogenesis

    Science.gov (United States)

    Yang, Xinghong; Thornburg, Theresa; Suo, Zhiyong; Jun, SangMu; Robison, Amanda; Li, Jinquan; Lim, Timothy; Cao, Ling; Hoyt, Teri; Avci, Recep; Pascual, David W.

    2012-01-01

    Flagella are cell surface appendages involved in a number of bacterial behaviors, such as motility, biofilm formation, and chemotaxis. Despite these important functions, flagella can pose a liability to a bacterium when serving as potent immunogens resulting in the stimulation of the innate and adaptive immune systems. Previous work showing appendage overexpression, referred to as attenuating gene expression (AGE), was found to enfeeble wild-type Salmonella. Thus, this approach was adapted to discern whether flagella overexpression could induce similar attenuation. To test its feasibility, flagellar filament subunit FliC and flagellar regulon master regulator FlhDC were overexpressed in Salmonella enterica serovar Typhimurium wild-type strain H71. The results show that the expression of either FliC or FlhDC alone, and co-expression of the two, significantly attenuates Salmonella. The flagellated bacilli were unable to replicate within macrophages and thus were not lethal to mice. In-depth investigation suggests that flagellum-mediated AGE was due to the disruptive effects of flagella on the bacterial membrane, resulting in heightened susceptibilities to hydrogen peroxide and bile. Furthermore, flagellum-attenuated Salmonella elicited elevated immune responses to Salmonella presumably via FliC’s adjuvant effect and conferred robust protection against wild-type Salmonella challenge. PMID:23056473

  14. Effect of glutathione depletion on antitumor drug toxicity (apoptosis and necrosis) in U-937 human promonocytic cells. The role of intracellular oxidation.

    Science.gov (United States)

    Troyano, A; Fernández, C; Sancho, P; de Blas, E; Aller, P

    2001-12-14

    Treatment with the DNA topoisomerase inhibitors etoposide, doxorubicin, and camptothecin, and with the alkylating agents cisplatin and melphalan, caused peroxide accumulation and apoptosis in U-937 human promonocytic cells. Preincubation with the reduced glutathione (GSH) synthesis inhibitor l-buthionine-(S,R)-sulfoximine (BSO) always potentiated peroxide accumulation. However, although GSH depletion potentiated the toxicity of cisplatin and melphalan, occasionally switching the mode of death from apoptosis to necrosis, it did not affect the toxicity of the other antitumor drugs. Hypoxia or preincubation with antioxidant agents attenuated death induction, apoptotic and necrotic, by alkylating drugs. The generation of necrosis by cisplatin could not be mimicked by addition of exogenous H(2)O(2) instead of BSO and was not adequately explained by caspase inactivation nor by a selective fall in ATP content. Treatment with cisplatin and melphalan caused a late decrease in mitochondrial transmembrane potential (DeltaPsim), which was much greater during necrosis than during apoptosis. The administration of the antioxidant agents N-acetyl-l-cysteine and butylated hydroxyanisole after pulse treatment with cisplatin or melphalan did not affect apoptosis but attenuated necrosis. Under these conditions, both antioxidants attenuated the necrosis-associated DeltaPsim decrease. These results indicate that oxidation-mediated alterations in mitochondrial function regulate the selection between apoptosis and necrosis in alkylating drug-treated human promonocytic cells.

  15. Mycobacterium tuberculosis effectors interfering host apoptosis signaling.

    Science.gov (United States)

    Liu, Minqiang; Li, Wu; Xiang, Xiaohong; Xie, Jianping

    2015-07-01

    Tuberculosis remains a serious human public health concern. The coevolution between its pathogen Mycobacterium tuberculosis and human host complicated the way to prevent and cure TB. Apoptosis plays subtle role in this interaction. The pathogen endeavors to manipulate the apoptosis via diverse effectors targeting key signaling nodes. In this paper, we summarized the effectors pathogen used to subvert the apoptosis, such as LpqH, ESAT-6/CFP-10, LAMs. The interplay between different forms of cell deaths, such as apoptosis, autophagy, necrosis, is also discussed with a focus on the modes of action of effectors, and implications for better TB control.

  16. Apoptosis and Molecular Targeting Therapy in Cancer

    Science.gov (United States)

    Hassan, Mohamed; Watari, Hidemichi; AbuAlmaaty, Ali; Ohba, Yusuke; Sakuragi, Noriaki

    2014-01-01

    Apoptosis is the programmed cell death which maintains the healthy survival/death balance in metazoan cells. Defect in apoptosis can cause cancer or autoimmunity, while enhanced apoptosis may cause degenerative diseases. The apoptotic signals contribute into safeguarding the genomic integrity while defective apoptosis may promote carcinogenesis. The apoptotic signals are complicated and they are regulated at several levels. The signals of carcinogenesis modulate the central control points of the apoptotic pathways, including inhibitor of apoptosis (IAP) proteins and FLICE-inhibitory protein (c-FLIP). The tumor cells may use some of several molecular mechanisms to suppress apoptosis and acquire resistance to apoptotic agents, for example, by the expression of antiapoptotic proteins such as Bcl-2 or by the downregulation or mutation of proapoptotic proteins such as BAX. In this review, we provide the main regulatory molecules that govern the main basic mechanisms, extrinsic and intrinsic, of apoptosis in normal cells. We discuss how carcinogenesis could be developed via defective apoptotic pathways or their convergence. We listed some molecules which could be targeted to stimulate apoptosis in different cancers. Together, we briefly discuss the development of some promising cancer treatment strategies which target apoptotic inhibitors including Bcl-2 family proteins, IAPs, and c-FLIP for apoptosis induction. PMID:25013758

  17. Atorvastatin Inhibits Myocardial Apoptosis in a Swine Model of Coronary Microembolization by Regulating PTEN/PI3K/Akt Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Jiangyou Wang

    2016-01-01

    Full Text Available Background/Aims: Phosphatase and tensin homolog deleted on chromosome ten (PTEN has been recognized as a promoter of apoptosis in various tissues, and revealed to be up-regulated in circumstances of coronary microembolization (CME. However, whether this functional protein could be modified by pretreatment of atorvastatin in models of CME has not been disclosed yet. Methods: Swine CME was induced by intra-coronary injection of inertia plastic microspheres (diameter 42 μm into left anterior descending coronary, with or without pretreatment of atorvastatin or PTEN siRNA. Echocardiologic measurements, pathologic examination, TUNEL staining and western blotting were applied to assess their functional, morphological and molecular effects in CME. Results: PTEN were aberrantly up-regulated in cardiomyocytes following CME, with both the mRNA and protein levels increased after CME modeling. Pretreatment with atorvastatin could attenuate the induction of PTEN. Furthermore, down-regulation of PTEN in vivo via siRNA was associated with an improved cardiac function, attenuated myocardial apoptosis, and concomitantly inhibited expressions of key proapoptotic proteins such as Bax, cleaved-caspase-3. Interestingly, atorvastatin could markedly attenuate PTEN expression and therefore partially reverse cardiac dysfunction and attenuate the apoptosis of the myocardium following CME. Conclusion: Modulation of PTEN was probably as a potential mechanism involved in the beneficial effects of pretreatment of atorvastatin to cardiac function and apoptosis in large animal models of CME.

  18. Mitoprotection attenuates myocardial vascular impairment in porcine metabolic syndrome.

    Science.gov (United States)

    Yuan, Fang; Hedayat, Ahmad F; Ferguson, Christopher M; Lerman, Amir; Lerman, Lilach O; Eirin, Alfonso

    2017-12-01

    The metabolic syndrome (MetS) leads to cardiac vascular injury, which may reflect in increased retention of endothelial progenitor cells (EPC). Coronary endothelial cell (EC) mitochondria partly regulate vascular function and structure. We hypothesized that chronic mitoprotection would preserve EC mitochondria and attenuate coronary vascular injury and dysfunction in swine MetS. Pigs were studied after 16 weeks of diet-induced MetS, MetS treated for the last 4 weeks with the mitochondria-targeted peptide elamipretide (ELAM, 0.1mg/kg SC q.d), and lean controls (n=6 each). Cardiac remodeling and function were assessed in vivo by multi-detector-CT, and coronary artery and sinus blood samples collected. EC mitochondrial density, apoptosis, oxidative stress, endothelial nitric oxide (eNOS) immunoreactivity, myocardial microvascular density (3D micro-CT), and coronary endothelial function (organ bath) were assessed ex-vivo. The number and arteriovenous gradient of CD34+/KDR+ EPC was calculated by FACS (a negative net gradient indicating EPC retention). MetS and MetS+ELAM pigs developed similar MetS (obesity, hyperlipidemia, insulin resistance, and hypertension). EC mitochondrial density decreased in MetS compared to lean, but normalized in MetS+ELAM. ELAM also attenuated EC oxidative stress and apoptosis, and improved subendocardial microvascular density. ELAM-induced vasculoprotection was reflected in decreased coronary retention of EPC. ELAM also partly improved eNOS immunoreactivity, coronary endothelial function, and vessel maturity, whereas myocardial perfusion was unaffected. Chronic mitoprotection improved coronary EC mitochondrial density and decreased vascular remodeling and dysfunction. Yet, additional mitochondria-independent mechanisms likely contribute to MetS-induced cardiac vascular injury.

  19. Trichloroethylene metabolite S-(1,2-dichlorovinyl)-l-cysteine induces lipid peroxidation-associated apoptosis via the intrinsic and extrinsic apoptosis pathways in a first-trimester placental cell line.

    Science.gov (United States)

    Elkin, Elana R; Harris, Sean M; Loch-Caruso, Rita

    2018-01-01

    Trichloroethylene (TCE), a prevalent environmental contaminant, is a potent renal and hepatic toxicant through metabolites such as S-(1, 2-dichlorovinyl)-l-cysteine (DCVC). However, effects of TCE on other target organs such as the placenta have been minimally explored. Because elevated apoptosis and lipid peroxidation in placenta have been observed in pregnancy morbidities involving poor placentation, we evaluated the effects of DCVC exposure on apoptosis and lipid peroxidation in a human extravillous trophoblast cell line, HTR-8/SVneo. We exposed the cells in vitro to 10-100μM DCVC for various time points up to 24h. Following exposure, we measured apoptosis using flow cytometry, caspase activity using luminescence assays, gene expression using qRT-PCR, and lipid peroxidation using a malondialdehyde quantification assay. DCVC significantly increased apoptosis in time- and concentration-dependent manners (plipid peroxidation in a concentration-dependent manner. Co-treatment with the antioxidant peroxyl radical scavenger (±)-α-tocopherol attenuated caspase 3 and 7 activity, suggesting that lipid peroxidation mediates DCVC-induced apoptosis in extravillous trophoblasts. Our findings suggest that DCVC-induced apoptosis and lipid peroxidation in extravillous trophoblasts could contribute to poor placentation if similar effects occur in vivo in response to TCE exposure, indicating that further studies into this mechanism are warranted. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Nitric Oxide Suppresses β-Cell Apoptosis by Inhibiting the DNA Damage Response

    Science.gov (United States)

    Oleson, Bryndon J.; Broniowska, Katarzyna A.; Naatz, Aaron; Hogg, Neil; Tarakanova, Vera L.

    2016-01-01

    Nitric oxide, produced in pancreatic β cells in response to proinflammatory cytokines, plays a dual role in the regulation of β-cell fate. While nitric oxide induces cellular damage and impairs β-cell function, it also promotes β-cell survival through activation of protective pathways that promote β-cell recovery. In this study, we identify a novel mechanism in which nitric oxide prevents β-cell apoptosis by attenuating the DNA damage response (DDR). Nitric oxide suppresses activation of the DDR (as measured by γH2AX formation and the phosphorylation of KAP1 and p53) in response to multiple genotoxic agents, including camptothecin, H2O2, and nitric oxide itself, despite the presence of DNA damage. While camptothecin and H2O2 both induce DDR activation, nitric oxide suppresses only camptothecin-induced apoptosis and not H2O2-induced necrosis. The ability of nitric oxide to suppress the DDR appears to be selective for pancreatic β cells, as nitric oxide fails to inhibit DDR signaling in macrophages, hepatocytes, and fibroblasts, three additional cell types examined. While originally described as the damaging agent responsible for cytokine-induced β-cell death, these studies identify a novel role for nitric oxide as a protective molecule that promotes β-cell survival by suppressing DDR signaling and attenuating DNA damage-induced apoptosis. PMID:27185882

  1. Induction of Apoptosis by Fucoidan in Human Leukemia U937 Cells through Activation of p38 MAPK and Modulation of Bcl-2 Family

    Directory of Open Access Journals (Sweden)

    Yung Hyun Choi

    2013-07-01

    Full Text Available The present study investigated possible mechanisms on the apoptosis induction of human leukemic cells by fucoidan, a sulfated polysaccharide found in marine algae. Fucoidan treatment of cells resulted in inhibition of growth and induction of apoptosis, as measured by 3-(4,5-dimetylthiazol-2-yl-2,5-diphenyl-tetrazolium (MTT assay, fluorescence microscopy, DNA fragmentation, and flow cytometry analysis. The increase in apoptosis was associated with the proteolytic activation of caspases, Bid cleavage, insertion of pro-apoptotic Bax into the mitochondria, release of cytochrome c from mitochondria to cytosol, and loss of mitochondria membrane potential (MMP in U937 cells. However, apoptosis induced by fucoidan was attenuated by caspase inhibitors, indicating that fucoidan-induced apoptosis was dependent on the activation of caspases. Furthermore, fucoidan treatment effectively activated the p38 mitogen-activated protein kinase (MAPK and p38 MAPK inhibitor, SB203580, and significantly reduced fucoidan-induced apoptosis through inhibition of Bax translocation and caspases activation, suggesting that the activation of p38 MAPK may play a key role in fucoidan-induced apoptosis. In addition, the authors found fucoidan-induced significantly attenuated in Bcl-2 overexpressing U937 cells, and pretreatment with fucoidan and HA 14-1, a small-molecule Bcl-2 inhibitor, markedly increased fucoidan-mediated apoptosis in Bcl-2 overexpressing U937 cells. Our findings imply that we may attribute some of the biological functions of p38 MAPK and Bcl-2 to their ability to inhibit fucoidan-induced apoptosis.

  2. Clitocine targets Mcl-1 to induce drug-resistant human cancer cell apoptosis in vitro and tumor growth inhibition in vivo.

    Science.gov (United States)

    Sun, Jian-Guo; Li, Hua; Li, Xia; Zeng, Xueli; Wu, Ping; Fung, Kwok-Pui; Liu, Fei-Yan

    2014-05-01

    Drug resistance is a major reason for therapy failure in cancer. Clitocine is a natural amino nucleoside isolated from mushroom and has been shown to inhibit cancer cell proliferation in vitro. In this study, we observed that clitocine can effectively induce drug-resistant human cancer cell apoptosis in vitro and inhibit tumor xenograft growth in vivo. Clitocine treatment inhibited drug-resistant human cancer cell growth in vitro in a dose- and time-dependent manner. Biochemical analysis revealed that clitocine-induced tumor growth inhibition is associated with activation of caspases 3, 8 and 9, PARP cleavage, cytochrome c release and Bax, Bak activation, suggesting that clitocine inhibits drug-resistant cancer cell growth through induction of apoptosis. Analysis of apoptosis regulatory genes indicated that Mcl-1 level was dramatically decreased after clitocine treatment. Over-expression of Mcl-1 reversed the activation of Bax and attenuated clitocine-induced apoptosis, suggesting that clitocine-induced apoptosis was at least partially by inducing Mcl-1 degradation to release Bax and Bak. Consistent with induction of apoptosis in vitro, clitocine significantly suppressed the drug-resistant hepatocellular carcinoma xenograft growth in vivo by inducing apoptosis as well as inhibiting cell proliferation. Taken together, our data demonstrated that clitocine is a potent Mcl-1 inhibitor that can effectively induce apoptosis to suppress drug-resistant human cancer cell growth both in vitro and in vivo, and thus holds great promise for further development as potentially a novel therapeutic agent to overcome drug resistance in cancer therapy.

  3. Taurine inhibits 2,5-hexanedione-induced oxidative stress and mitochondria-dependent apoptosis in PC12 cells.

    Science.gov (United States)

    Li, Shuangyue; Guan, Huai; Qian, Zhiqiang; Sun, Yijie; Gao, Chenxue; Li, Guixin; Yang, Yi; Piao, Fengyuan; Hu, Shuhai

    2017-04-07

    2,5-hexanedione (HD) is the ultimate neurotoxic metabolite of hexane, causing the progression of nerve diseases in human. It was reported that HD induced apoptosis and oxidative stress. Taurine has been shown to be a potent antioxidant. In the present study, we investigated the protection of taurine against HD-induced apoptosis in PC12 cells and the underlying mechanism. Our results showed the decreased viability and increased apoptosis in HD-exposed PC12 cells. HD also induced the disturbance of Bax and Bcl-2 expression, the loss of MMP, the release of mitochondrial cytochrome c and caspase-3 activation in PC12 cells. Moreover, HD resulted in an increase in reactive oxygen species (ROS) level and a decline in the activities of superoxidedismutase and catalase in PC12 cells. However, taurine pretreatment ameliorated the increased apoptosis and the alterations in key regulators of mitochondria-dependent pathway in PC12 exposed to HD. The increased ROS level and the decreased activities of the antioxidant enzymes in HD group were attenuated by taurine. These results indicate that pretreatment of taurine may, at least partly, prevent HD-induced apoptosis via inhibiting mitochondria-dependent pathway. It is also suggested that the potential of taurine against HD-induced apoptosis may benefit from its anti-oxidative property.

  4. Nickel sulfate induced apoptosis via activating ROS-dependent mitochondria and endoplasmic reticulum stress pathways in rat Leydig cells.

    Science.gov (United States)

    Zou, Lingyue; Su, Li; Sun, Yifan; Han, Aijie; Chang, Xuhong; Zhu, An; Liu, Fangfang; Li, Jin; Sun, Yingbiao

    2017-07-01

    Nickel can induce apoptosis of testicular Leydig cells in mice, whereas the mechanisms remain unclear. In this study, we investigated the role of nickel-induced reactive oxygen species (ROS) generation in mitochondria and endoplasmic reticulum stress (ERS) mediated apoptosis pathways in rat Leydig cells. Fluorescent DCF and Annexin-V FITC/PI staining were performed to measure the production of ROS and apoptosis in Leydig cells. RT-qPCR and Western blot were conducted to analyze the key genes and proteins involved in mitochondria and ERS apoptotic pathways. The results showed that nickel sulfate induced ROS generation, consequently resulted in nucleolus deformation and apoptosis in testicular Leydig cells, which were then attenuated by ROS inhibitors of N-acetylcysteine (NAC) and 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO). Nickel sulfate-triggered Leydig cells apoptosis via mitochondria and ERS pathways was characterized by the upregulated mRNA and proteins expression of Bak, cytochrome c, caspase 9, caspase 3, GRP78, GADD153, and caspase 12, which were inhibited by NAC and TEMPO respectively. The findings indicated that nickel-induced ROS generation was involved in apoptosis via mitochondria and ERS pathways in rat Leydig cells. © 2017 Wiley Periodicals, Inc.

  5. Propofol Treatment Inhibits Constitutive Apoptosis in Human Primary Neutrophils and Granulocyte-Differentiated Human HL60 Cells

    Science.gov (United States)

    Hsing, Chung-Hsi; Chen, Chia-Ling; Lin, Wei-Chieh; Lin, Chiou-Feng

    2015-01-01

    Apoptosis regulation is essential for neutrophil homeostasis. We previously demonstrated that a process involving glycogen synthase kinase (GSK)-3β determines neutrophil apoptosis. As for this apoptotic process, an overdose of propofol (2,6-Diisopropylphenol; 25 μg/ml or 140 μM) also causes GSK-3β-mediated macrophage apoptosis; however, the early deactivation of GSK-3β with low-dose propofol has been shown. Therefore, we hypothesize that low-dose propofol may induce neutrophil survival via GSK-3β inactivation. Following in vitro culture, the therapeutic concentration of propofol (10 μg/ml or 56 μM) treatment decreased constitutive apoptosis in isolated human primary neutrophils and in granulocyte-differentiated HL60 cells after all-trans retinoic acid (1 μM) treatment. The inactivation of phosphatidylinositol 3-kinase (PI3-kinase)/AKT and the activation of GSK-3β results in myeloid cell leukemia 1 (Mcl-1) down-regulation, the loss of the mitochondrial transmembrane potential, and caspase-3 activation in these cells, which is accompanied by apoptosis. Notably, propofol treatment attenuates these effects in a PI3-kinase-regulated manner. We found that propofol initiates PI3-kinase/AKT-mediated GSK-3β inactivation and Mcl-1 stabilization, rescuing the constitutive apoptosis in primary neutrophils and granulocyte-differentiated acute promyelocytic leukemia HL60 cells. PMID:26061531

  6. Lung attenuation measurements in healthy young adults.

    NARCIS (Netherlands)

    Smit, H.J.M.; Golding, R.P.; Schramel, F.M.N.H.; Devillé, W.L.; Manoliu, R.A.; Postmus, P.E.

    2003-01-01

    Background: High-resolution computed tomography (HRCT) attenuation measurements may be more sensitive in finding early emphysematous changes in relatively young subjects than lung function measurements. Objectives: To define lung attenuation parameters in smokers and never-smokers. Methods: A

  7. Artemisinin induces caspase-8/9-mediated and Bax/Bak-independent apoptosis in human lung adenocarcinoma (ASTC-a-1) cells.

    Science.gov (United States)

    Xiao, Feng-Lian; Gao, Wei-Jie; Liu, Cheng-Yi; Wang, Xiao-Ping; Chen, Tong-Sheng

    2011-01-01

    Artemisinin (ARTE), an antimalarial phytochemical component from the sweet wormwood plant, has been shown a potential anticancer activity by inducing cell apoptosis. The aim of this report is to explore the mechanism of ARTE-induced human lung adenocarcinoma (ASTC-a-1) cell apoptosis. Cell counting kit (CCK-8) assay showed that ARTE induced cytotoxcity in a dose- and time-dependent manner. Confocal microscopy fluorescence imaging of cells stained with Hoechst 33258 and flow cytometry (FCM) analysis of cells stained with Annexin V-FITC/propidium iodide (PI) showed that ARTE induced reactive oxygen species (ROS)-dependent apoptosis. Confocal fluorescence resonance energy transfer (FRET) imaging of single living cells expressing SCAT3, SCAT9 or CFP-Bid-YFP and fluorometic substrate assay showed that ARTE induced the activation of caspase-3, -8 and -9. Moreover, inhibition of caspase-8 or -9 completely blocked ARTE-induced apoptosis which was only partially attenuated by caspase-3 inhibitor. Interestingly, silencing Bax and Bak by RNA interference (RNAi) did not attenuate ARTE-induced apoptosis. Collectively, ARTE induces caspase-dependent but Bax/Bak-independent apoptosis in ASTC-a-1 cells.

  8. Inner Core Anisotropy in Attenuation

    Science.gov (United States)

    Yu, W.; Wen, L.

    2004-12-01

    It is now well established that the compressional velocity in the Earth's inner core varies in both direction and geographic location. The compressional waves travel faster along the polar directions than along the equatorial directions. Such polar-equatorial difference is interpreted as a result of inner core anisotropy in velocity (with a magnitude of about 3%) and such anisotropy appears to be stronger in the ``western hemisphere" (180oW -40oE) than in the ``eastern hemisphere" (40oE-180oE). Along the equatorial paths, the compressional velocity also exhibits a hemispheric pattern with the eastern hemisphere being about 1% higher than the western hemisphere. Possible explanations for the causes of the velocity in anisotropy and the hemispheric difference in velocity along the equatorial paths include different geometric inclusions of melt or different alignments of iron crystals which are known to be anisotropic in velocities. Here, we report an observation of ubiquitous correlation between small (large) amplitude and fast (slow) travel time of the PKIKP waves sampling the top 300 km of the inner core. We study this correlation by jointly analyzing the differential travel times and amplitude ratios of the PKiKP-PKIKP and the PKPbc-PKIKP phases recorded by the Global Seismographic Network (1990-2001), various regional seismic networks (BANJO, BLSP, FREESIA, GEOFON, GEOSCOPE, Kazakhstan, Kyrgyz, MEDNET, and OHP), and several PASSCAL Networks deployed in Alaska and Antarctica (XE: 1999-2001, XF: 1995-1996, and YI: 1998-1999). Our dataset consists of 310 PKiKP-PKIKP and 240 PKPbc-PKIKP phases, selected from a total of more than 16,000 observations. PKIKP waves exhibit relatively smaller amplitudes for those sampling the eastern hemisphere along the equatorial paths and even smaller amplitudes for those sampling the polar paths in the western hemisphere. One simple explanation for the velocity-attenuation relation is that the inner core is anisotropic in attenuation

  9. Dexmedetomidine Attenuates Oxidative Stress Induced Lung Alveolar Epithelial Cell Apoptosis In Vitro

    Directory of Open Access Journals (Sweden)

    Jian Cui

    2015-01-01

    Full Text Available Background. Oxidative stress plays a pivotal role in the lung injuries of critical ill patients. This study investigates the protection conferred by α2 adrenoceptor agonist dexmedetomidine (Dex from lung alveolar epithelial cell injury induced by hydrogen peroxide (H2O2 and the underlying mechanisms. Methods. The lung alveolar epithelial cell line, A549, was cultured and then treated with 500 μM H2O2 with or without Dex (1 nM or Dex in combination with atipamezole (10 nM, an antagonist of α2 receptors. Their effect on mitochondrial membrane potential (Δψm, reactive oxygen species (ROS, and the cell cycle was assessed by flow cytometry. Cleaved-caspases 3 and 9, BAX, Bcl-2, phospho-mTOR (p-mTOR, ERK1/2, and E-cadherin expression were also determined with immunocytochemistry. Results. Upregulation of cleaved-caspases 3 and 9 and BAX and downregulation of Bcl-2, p-mTOR, and E-cadherin were found following H2O2 treatment, and all of these were reversed by Dex. Dex also prevented the ROS generation, cytochrome C release, and cell cycle arrest induced by H2O2. The effects of Dex were partially reversed by atipamezole. Conclusion. Our study demonstrated that Dex protected lung alveolar epithelial cells from apoptotic injury, cell cycle arrest, and loss of cell adhesion induced by H2O2 through enhancing the cell survival and proliferation.

  10. Resveratrol Attenuated Low Ambient Temperature-Induced Myocardial Hypertrophy via Inhibiting Cardiomyocyte Apoptosis

    OpenAIRE

    Kun Yin; Liang Zhao; Dan Feng; Wenya Ma; Yu Liu; Yang Wang; Jing Liang; Fan Yang; Chongwei Bi; Hongyang Chen; Xingda Li; Yanjie Lu; Benzhi Cai

    2015-01-01

    Background/Aims: Low ambient temperature is an important risk factor for cardiovascular diseases, and has been shown to lead to cardiac hypertrophy. In this study, we aim to investigate if Resveratrol may inhibit cold exposure-induced cardiac hypertrophy in mice, and if so to clarify its molecular mechanism. Methods: Adult male mice were randomly assigned to Control group (kept at room temperature), Cold group (kept at low air temperature range from 3°C to 5°C) and Resveratrol treatment group...

  11. Fas-induced apoptosis in malnourished infants

    African Journals Online (AJOL)

    EL-HAKIM

    regulation of the hematopoietic system6. Moreover, many studies have demonstrated that the apoptosis of immune cell in undernourished organisms may cause an increase in the organism's susceptibility to diseases related to immune suppression7,8,9. Lymphocyte apoptosis was described in peripheral blood and ...

  12. Apoptosis in mammalian oocytes: a review.

    Science.gov (United States)

    Tiwari, Meenakshi; Prasad, Shilpa; Tripathi, Anima; Pandey, Ashutosh N; Ali, Irfan; Singh, Arvind K; Shrivastav, Tulsidas G; Chaube, Shail K

    2015-08-01

    Apoptosis causes elimination of more than 99% of germ cells from cohort of ovary through follicular atresia. Less than 1% of germ cells, which are culminated in oocytes further undergo apoptosis during last phases of oogenesis and depletes ovarian reserve in most of the mammalian species including human. There are several players that induce apoptosis directly or indirectly in oocytes at various stages of meiotic cell cycle. Premature removal of encircling granulosa cells from immature oocytes, reduced levels of adenosine 3',5'-cyclic monophosphate and guanosine 3',5'-cyclic monophosphate, increased levels of calcium (Ca(2+)) and oxidants, sustained reduced level of maturation promoting factor, depletion of survival factors, nutrients and cell cycle proteins, reduced meiotic competency, increased levels of proapoptotic as well as apoptotic factors lead to oocyte apoptosis. The BH3-only proteins also act as key regulators of apoptosis in oocyte within the ovary. Both intrinsic (mitochondria-mediated) as well as extrinsic (cell surface death receptor-mediated) pathways are involved in oocyte apoptosis. BID, a BH3-only protein act as a bridge between both apoptotic pathways and its cleavage activates cell death machinery of both the pathways inside the follicular microenvironment. Oocyte apoptosis leads to the depletion of ovarian reserve that directly affects reproductive outcome of various mammals including human. In this review article, we highlight some of the important players and describe the pathways involved during oocyte apoptosis in mammals.

  13. Cortisol inhibits apoptosis in carp neutrophilic granulocytes.

    NARCIS (Netherlands)

    Weyts, F.A.A.; Flik, G.; Verburg-van Kemenade, B.M.L.

    1998-01-01

    The direct effect of cortisol treatment on carp neutrophil viability was examined in vitro. Cortisol treatment caused an inhibition of neutrophil apoptosis. The effect was blocked by glucocorticoid receptor blocker RU486, showing that rescue from apoptosis was receptor mediated. Using binding

  14. Crosstalk between apoptosis and inflammation in atherosclerosis

    NARCIS (Netherlands)

    Westra, Marijke Marianne

    2010-01-01

    In this thesis the role of several apoptosis regulating proteins in the development of atherosclerosis and atherosclerotic plaque stability is investigated. Apoptosis of different cell types in atherosclerotic plaques, such as macrophages and smooth muscle cells may inhibit or promote plaque

  15. Targeted induction of apoptosis for cancer therapy

    NARCIS (Netherlands)

    Bremer, Edwin

    2006-01-01

    Introduction to the thesis Programmed cell death, known as apoptosis, is an essential cellular homeostasis mechanism that ensures correct development and function of multi-cellular organisms. The pivotal importance of correct execution of apoptosis is apparent from the many human diseases with

  16. Hydrogen Sulfide Inhibits Cigarette Smoke-Induced Endoplasmic Reticulum Stress and Apoptosis in Bronchial Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Fan Lin

    2017-09-01

    nicotine-induced upregulation of apoptotic rate and overexpression of ERS-mediated apoptosis markers.Conclusion: H2S inhibited lung tissue damage by attenuating CS induced ERS in rat lung and exogenous H2S attenuated nicotine induced ERS-mediated apoptosis in bronchial epithelial cells.

  17. ENHANCEMENTS TO NATURAL ATTENUATION: SELECTED CASE STUDIES

    Energy Technology Data Exchange (ETDEWEB)

    Vangelas, K; W. H. Albright, W; E. S. Becvar, E; C. H. Benson, C; T. O. Early, T; E. Hood, E; P. M. Jardine, P; M. Lorah, M; E. Majche, E; D. Major, D; W. J. Waugh, W; G. Wein, G; O. R. West, O

    2007-05-15

    In 2003 the US Department of Energy (DOE) embarked on a project to explore an innovative approach to remediation of subsurface contaminant plumes that focused on introducing mechanisms for augmenting natural attenuation to achieve site closure. Termed enhanced attenuation (EA), this approach has drawn its inspiration from the concept of monitored natural attenuation (MNA).

  18. Reactive oxygen species regulated mitochondria-mediated apoptosis in PC12 cells exposed to chlorpyrifos

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Eun [Department of Pharmacology, College of Medicine, Hanyang University, Seoul (Korea, Republic of); Hanyang Biomedical Research Institute, Seoul (Korea, Republic of); Park, Jae Hyeon [Hanyang Biomedical Research Institute, Seoul (Korea, Republic of); Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul (Korea, Republic of); Shin, In Chul [Department of Pharmacology, College of Medicine, Hanyang University, Seoul (Korea, Republic of); Koh, Hyun Chul, E-mail: hckoh@hanyang.ac.kr [Department of Pharmacology, College of Medicine, Hanyang University, Seoul (Korea, Republic of); Hanyang Biomedical Research Institute, Seoul (Korea, Republic of); Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul (Korea, Republic of)

    2012-09-01

    Reactive oxidative species (ROS) generated by environmental toxicants including pesticides could be one of the factors underlying the neuronal cell damage in neurodegenerative diseases. In this study we found that chlorpyrifos (CPF) induced apoptosis in dopaminergic neuronal components of PC12 cells as demonstrated by the activation of caspases and nuclear condensation. Furthermore, CPF also reduced the tyrosine hydroxylase-positive immunoreactivity in substantia nigra of the rat. In addition, CPF induced inhibition of mitochondrial complex I activity. Importantly, N-acetyl cysteine (NAC) treatment effectively blocked apoptosis via the caspase-9 and caspase-3 pathways while NAC attenuated the inhibition of mitochondrial complex I activity as well as the oxidative metabolism of dopamine (DA). These results demonstrated that CPF-induced apoptosis was involved in mitochondrial dysfunction through the production of ROS. In the response of cellular antioxidant systems to CPF, we found that CPF treatment increased HO-1 expression while the expression of CuZnSOD and MnSOD was reduced. In addition, we found that CPF treatment activated MAPK pathways, including ERK 1/2, the JNK, and the p38 MAP kinase in a time-dependent manner. NAC treatment abolished MAPK phosphorylation caused by CPF, indicating that ROS are upstream signals of MAPK. Interestingly, MAPK inhibitors abolished cytotoxicity and reduced ROS generation by CPF treatment. Our results demonstrate that CPF induced neuronal cell death in part through MAPK activation via ROS generation, suggesting its potential to generate oxidative stress via mitochondrial damage and its involvement in oxidative stress-related neurodegenerative disease. -- Highlights: ► Chlorpyrifos induces apoptosis. ► Chlorpyrifos inhibits mitochondrial complex I activity. ► ROS is involved in chlorpyrifos-induced apoptosis. ► Chlorpyrifos affects cellular antioxidant systems. ► Chlorpyrifos-induced apoptosis mediates activation of MAPK.

  19. A fully integrated optofluidic attenuator

    Science.gov (United States)

    Müller, Philipp; Kloss, Anton; Liebetraut, Peter; Mönch, Wolfgang; Zappe, Hans

    2011-12-01

    A fast and reliable, fully integrated optofluidic optical attenuator is demonstrated. The concept employs only liquid and thus has no mechanically moving parts. Transparent and opaque aqueous liquid droplets are displaced using an on-chip electrowetting actuator and, due to the flexibility in the choice of liquids, various transmission spectra can be defined. The microfluidic attenuator system is fabricated using wafer-level bonding and dry film resists resulting in an ultra-compact (11×23×1.6 mm3) device requiring no external components for operation. The measured dynamic range of optical transmission is up to 47 dB, while the response times are below 100 ms for a 2 mm input beam. Using a novel double-actuator configuration, actuation speeds of the liquids of up to 39 mm s-1 were measured.

  20. SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Joel Walls; M.T. Taner; Gary Mavko; Jack Dvorkin

    2002-01-01

    In Section 1 of this first report we will describe the work we are doing to collect and analyze rock physics data for the purpose of modeling seismic attenuation from other measurable quantities such as porosity, water saturation, clay content and net stress. This work and other empirical methods to be presented later, will form the basis for ''Q pseudo-well modeling'' that is a key part of this project. In Section 2 of this report, we will show the fundamentals of a new method to extract Q, dispersion, and attenuation from field seismic data. The method is called Gabor-Morlet time-frequency decomposition. This technique has a number of advantages including greater stability and better time resolution than spectral ratio methods.

  1. Transplantation of mesenchymal stem cells overexpressing IL10 attenuates cardiac impairments in rats with myocardial infarction.

    Science.gov (United States)

    Meng, Xin; Li, Jianping; Yu, Ming; Yang, Jian; Zheng, Minjuan; Zhang, Jinzhou; Sun, Chao; Liang, Hongliang; Liu, Liwen

    2018-01-01

    Mesenchymal stem cell (MSC) has been well known to exert therapeutic potential for patients with myocardial infarction (MI). In addition, interleukin-10 (IL10) could attenuate MI through suppressing inflammation. Thus, the combination of MSC implantation with IL10 delivery may extend health benefits to ameliorate cardiac injury after MI. Here we established overexpression of IL10 in bone marrow-derived MSC through adenoviral transduction. Cell viability, apoptosis, and IL10 secretion under ischemic challenge in vitro were examined. In addition, MSC was transplanted into the injured hearts in a rat model of MI. Four weeks after the MI induction, MI, cardiac functions, apoptotic cells, and inflammation cytokines were assessed. In response to in vitro oxygen-glucose deprivation (OGD), IL10 overexpression in MSC (Ad.IL10-MSC) enhanced cell viability, decreased apoptosis, and increased IL10 secretion. Consistently, the implantation of Ad.IL10-MSCs into MI animals resulted in more reductions in myocardial infarct size, cardiac impairment, and cell apoptosis, compared to the individual treatments of either MSC or IL10 administration. Moreover, the attenuation of both systemic and local inflammations was most prominent for Ad.IL10-MSC treatment. IL10 overexpression and MSC may exert a synergistic anti-inflammatory effect to alleviate cardiac injury after MI. © 2017 Wiley Periodicals, Inc.

  2. Epigallocatechin 3-gallate attenuates neuronal damage induced by 3-hydroxykynurenine.

    Science.gov (United States)

    Jeong, Ji Hoon; Kim, Hyung Jun; Lee, Tae Jin; Kim, Mi Kyung; Park, Eon Sub; Choi, Byung Sun

    2004-01-15

    3-Hydroxykynurenine (3-HK), which is an endogenous metabolite of tryptophan in the kynurenine pathway, is a potential neurotoxin in several neurodegenerative disorders. Epigallocatechin 3-gallate (EGCG), a major compound of green tea, is recognized as a promising natural substance for protection against neuronal diseases. This study investigated the possible protective roles and mechanism of EGCG, against 3-HK-induced cell death. It was found that 3-HK induces neuronal cell death in the human neuroblastoma SH-SY5Y cell line. The reduced cell viability produced characteristic features such as cell shrinkages, plasma membrane blebbing, chromatin condensation, and nuclear fragmentation. The cells treated with 3-HK showed an increase in the concentration of reactive oxygen species (ROS) as well as in caspase activity. In addition, both are involved in the 3-HK-induced apoptosis. EGCG attenuated the cell viability reduction by 3-HK in both a dose- and time-dependent manner. Optical microscopy showed that EGCG inhibited the cell morphological features in the 3-HK-treated cells. Furthermore, the increase in the ROS concentration and the caspase activities by 3-HK were also attenuated by EGCG. These results showed that EGCG has a protective effect on the 3-HK induced cell death by inhibiting ROS production and caspase activity. The results suggest that EGCG might be a promising protective substance against the neuronal degenerative diseases.